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Abstract

A transonic interaction between a shock wave and a turbulent boundary layer is ex-
perimentally and theoretically investigated. The configuration is a transonic channel
flow over a bump, where a shock wave causes the separation of the boundary layer
and a recirculating bubble is observed downstream of the shock foot.

First, the mean flow is experimentally investigated by means of PIV, then differ-
ent techniques allows to identify the main unsteadiness of this shock-wave/boundary-
layer interaction. As recognised in similar configurations, the flow presents two
distinct characteristic frequencies, whose origins are still unknown.

Numerical simulations are performed solving Reynolds-averaged Navier-Stokes
equations. Results are in good agreement with the experimental investigation on
the mean flow, but the approach fails to predict the unsteady behaviour of the
configuration. The solution of RANS equations is then considered as a base flow, and
a global stability analysis is performed. Eigenvalue decomposition of the linearised
Navier-Stokes operator indicates that the interaction is stable, and the dynamics
cannot be described by unstable global modes.

A linearised approach based on a singular-value decomposition of the global
Resolvent is then proposed: the noise-amplifier behaviour of the flow is highlighted
by the linearised approach. Medium-frequency perturbations are shown to be the
most amplified in the mixing layer, whilst the shock wave behaves as a low-pass filter.
Optimal forcing and optimal response are capable to reproduce the mechanisms that
are responsible for these two phenomena. A restriction on the location of the forcing
can give an insight on the origin on the unsteadiness.

The same approach is then applied to a transonic flow over the OAT15A profile,
where the flow can present, for a range of angles of attack, high-amplitude self-
sustained shock oscillations. Global stability analysis indicates that the shock buffet
onset is linked to a Hopf bifurcation, and the eigenvalue decomposition can describe
the phenomenon when an unstable global mode is present. Regardless of the angle
of attack, singular-value decomposition of the global Resolvent can describe the
convective instabilities responsible of medium-frequency unsteadiness.
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Chapter 1

Introduction

Shock waves almost inevitably occur when dealing with supersonic flows. The pres-
ence of shock waves entails the existence of discontinuities and regions of high gra-
dients, which are the shocks themselves and the shear layers resulting from the
interaction with the boundary layers developing on a surface. These gradients “acti-
vate” the viscous terms, which produce entropy, making shock waves an important
source of drag: directly, by entropy generation in the shock thickness (this contribu-
tion is called wave drag), and indirectly, by enhancing dissipation in the boundary
layer (hence an amplification of viscous drag). In addition, strong interactions with
the boundary layers may lead to catastrophic separation with possible occurrence
of large scale unsteadiness (Délery, 2000).

The interaction between a shock wave and a boundary layer remains one of the
most outstanding problems of modern high-speed fluid dynamics. The interaction
embodies all of the effects of compressibility, turbulence, and separation that present
special challenges for both experimentalists and theoreticians alike. Both external
and internal flows are often the subject of shock waves, which interact strongly with
turbulent boundary layers.

Shock-wave/boundary-layer interaction (SWBLI) has been the subject of many
studies during the last 60 years (Dolling, 2001). The interaction can have a signif-
icant influence on aircraft wings, air intakes or rocket performance and often leads
to undesirable effects, such as drag rise, drop of the lift due to flow separation, wall
heating and shock unsteadiness (Délery and Marvin, 1986). The last of the afore-
mentioned drawbacks has a multidisciplinary importance because it can affect the
vehicle and component structural integrity, shortening the fatigue life, and imposing
constraints on the geometry or the material selection, introducing additional weight
and cost.

Thus, a deeper understanding of the SWBLI phenomenon is required to gain
knowledge on a subject that interests both physical and industrial domains.

1
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1.1 Shock-wave/boundary layer interactions

In general, when a shock meets a wall, there is an interaction with the boundary
layer that exists in the vicinity of the wall. The strong pressure gradients due to the
shock modify the shape of the boundary layer. This deformation, whose effects are
notable even before the shock as the flow is subsonic in the boundary layer, modifies
the velocity field in the outer part of the flow and thus influences the shock, too.

In SWBLI three configurations are commonly studied: the case of a compression
ramp (Ardonceau, 1984; Selig et al., 1989; Thomas et al., 1994; Wu and Martin,
2007), the oblique shock impinging on a flat-plate boundary layer (Dupont et al.,
2006; Touber and Sandham, 2009a; Humble et al., 2006) and the normal shock on a
wall (or profile) (Délery, 1978; Bur et al., 2006; Bruce and Babinsky, 2008; Pirozzoli
et al., 2010a). In the first two configurations, a weak oblique shock interacts with
the boundary layer, and the flow remains supersonic after the interaction. In the
compression ramp configuration, the shock is induced by the flow-deviation due to
the ramp, whilst in the other case the shock is formed by an upstream external
device, and reflects on the wall inducing the interaction zone. Besides the different
geometry, in both cases the separated zone is proportional to the shock intensity, that
is given by the shock slope, and the flow remains supersonic after the interaction. In
the last configuration the shock is strong, normal to upstream the velocity direction,
and the flow after the interaction is subsonic.

Our study focuses on a strong normal shock impinging on a curved profile in a
transonic flow. The shock intensity depends only on the Mach number, function of
the downstream pressure and cannot be adjusted through geometrical parameters
as is the case in the compression ramp or impinging shock case. This configuration
is common in air intakes, nozzles jet or in flows over a profile.

Transonic SWBLI

A transonic interaction, if strong enough to cause the separation of the boundary
layer, is characterised by the existence in the outer flow of a lambda shock pattern,
like the one appearing in the sketch of figure 1.1: the necessity of this shock shape
stems from the fact that the leading shock (labelled S1 in figure 1.1) is a weak
oblique shock, in the sense of the weak solution of the shock theory, whose strength
is a function of only the upstream Mach number M0 and the incoming boundary
layer properties. Thus, referring to figure 1.1, when the shock S1 meets the strong
quasi-normal shock S3 present in the far outer field, there exists behind S1 and S3
two states 2 and 3 with different pressures and velocity inclinations. At the meeting
point I (see figure 1.1) of the two shocks, these states are not compatible, as can
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be seen from the shock polar diagram on the right of figure 1.1. In order to fulfill
the conditions for two adjacent flows to be compatible, that means having the same
pressure and the same velocity orientation, a third state (state number 4 in figure
1.1) must be introduced, with the same pressure and velocity orientation as state 3.

Figure 1.1: Lambda-shock wave pattern and shock polar diagram for a normal shock
wave on a wall. From Délery and Marvin (1986).

State 4 is reached through a trailing shock (number S2 in figure 1.1), weaker
than the strong shock S3, that is usually barely visible in Schlieren visualisation
because of the small density jump across the wave. As shown on the shock polar
diagram, the shock exists to ensure the compatibility condition for the two adjacent
flows 3 and 4, so that the same pressure and velocity orientation are obtained in
this region. Depending on the shock intensity, a locally supersonic zone may exist
downstream of this trailing shock. The extent of this zone, called supersonic tongue,
depends on the particular conditions for the strong coupling process associated to
the deviation towards the wall of the reattaching dissipative layer, and its position
in the flow field is determined by the separation bubble. The triple point emerging
from the meeting of the shocks cited above (point I in figure 1.1) generates a slip
line that surround the upper part of the supersonic tongue.

If we consider a transonic flow with upstream Mach number grater than 1.3, the
interaction is strong enough to cause the separation of the boundary layer (Délery
and Marvin, 1986). The recirculation bubble is however very sensitive to external
factors and its stream-wise extent can increase or decrease dramatically as a conse-
quence of shock displacements. For that reason, when studying this configuration,
it is common to use a bump in order to increase the size of the recirculation bubble:
the separation is caused by both the shock wave and the pressure gradient due to
the wall curvature. This is the case also for supersonic flows over airfoils.
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The Délery bump

In the present work we consider a well-documented geometry known as the Délery
bump or the Délery case C (Délery, 1978; Loyau et al., 1998; Galli et al., 2005; Bur
et al., 2006; Sandham et al., 2003), presented in figure 2.2. The incoming flow is
supersonic and the boundary layer, as it will be shown in details in the next chapter,
is fully turbulent. In this particular interaction, referring again to figure 1.1, the
normal shock S3 occurs at Mach number M = 1.4, and downstream of the point S1
the Mach number of the outer flow remains everywhere supersonic, its value ranging
from 1.05 near the boundary layer edge to 1.15 in the vicinity if the triple point I.
Shock S1 has the structure of a weak oblique shock wave, and the Mach number
on the downstream face of S2 decreases from nearly 1 at the edge of the dissipative
layer to 0.9 near point I. As the boundary layer edge is approached, the rear shock
S2 is weakened to such an extent that it causes no disturbance to the wall static
pressure distribution. The flow is everywhere subsonic downstream of S2 except for
the supersonic tongue, visible in figure 2.6.

In conclusion, if we examine a general interaction between a shock and a bound-
ary layer, many configurations are possible, depending on several parameters such
as the geometry, the shock strength, the Reynolds number or the nature of the
boundary layer. However, despite the differences in the configurations, there are
some aspects of the interaction that can be considered universal, and some features
of the flow that can always be found in shock-wave/boundary-layer interactions, not
only in the transonic domain with turbulent boundary layer, as the current study.

1.2 Unsteady features in SWBLI

Regardless of the configuration, many experimental and numerical studies have
shown the existence of two distinct characteristic frequencies: on the one hand,
shock motions involve generally frequencies much lower than those involved in the
incoming boundary layer, but on the other hand, the mixing layer downstream of
the separation line exhibits unsteadiness whose frequencies are higher than those
observed in the shock motions, but still below the energetic scales of incoming tur-
bulence. Inside the recirculation bubble one can find both low-frequency motions,
commonly related to the shock, and medium-frequency motions, typical of the mix-
ing layer. The latter unsteadiness can be related to Kelvin-Helmholtz instability
triggered in the shear layer downstream the shock wave and above the recircula-
tion bubble. Boundary layer fluctuations are commonly referred as high-frequency
motions.

Depending on the shock intensity, the boundary layer can either separate or
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remain attached after the interaction, and the flow can either remain supersonic
downstream of the shock wave or, in the case of a strong shock, become subsonic. If
the flow does not separate, numerical simulations for an impinging shock wave (Gar-
nier et al., 2002) suggest that the flow is stationary. On the contrary, experimental
investigations on a transonic case (Bogar et al., 1983) found that the interaction
is unsteady, and the shock frequencies vary with the channel length, arguing the
possibility that the natural frequencies are associated to the longitudinal acoustic
modes of the channel. If the flow separates, in both strong- and weak-shock cases,
an acoustic feedback is possible, at least in the subsonic zone between the reattach-
ment of the bubble and the shock foot. According to Souverein et al. (2010), without
separation the flow unsteadiness may be mostly governed by upstream events, with
the predominance of high-frequency oscillations coming from the boundary layer.
However, Piponniau et al. (2009) documented that low-frequency unsteadiness is
present even without flow separation.

It has been documented that SWBLI unsteadiness is independent of the laminar
or turbulent nature of the incoming flow (Chapman et al., 1958). Moreover, it
was shown (Dussauge and Piponniau, 2008) that the shock motion increases with
the shock intensity. Numerical simulations (Wu and Martin, 2007; Garnier, 2009;
Touber and Sandham, 2009a) indicate that in most configurations, both low- and
medium-frequency unsteadiness are broadband fluctuations, with the exception of
the transonic flow over a non-swept two-dimensional profile: it is known (McDevitt
and Okuno, 1985) that for a combination of Mach number and angles of attack,
the so-called buffet phenomenon dominates the interaction. In this particular case,
the unsteadiness is characterised by a high-amplitude modulation of the shock wave
with a very narrowband spectrum, and the shock exhibits periodic high-amplitude
motion, maintained without any external input of energy (Lee, 2001). In this case a
unique frequency value can describe the periodic pressure fluctuations of the shock
(Deck, 2005; Barakos and Drikakis, 2000) for various angles of attack.

In conclusions, regardless of the topology of the oscillations, one might say that
low-frequency unsteadiness can always be found in viscous interactions, and medium-
frequency motions are commonly related to the separated zone, and associated to
vortical structures that propagate along the shear layer. However, numerical sim-
ulations revealed some exceptions: the DNS performed by Wu and Martin (2008)
documented the presence of small-amplitude span-wise wrinkling on the shock, prob-
ably due to non-uniformity of turbulent structures in the incoming boundary layer.
Agostini et al. (2012), analysing results of LES computations, confirmed the pres-
ence of these medium-frequency motions, arguing that the kinematics of the shock is
the mirror of the physical phenomena in the separated zone, whatever the frequency.
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The Strouhal number

As commonly done in SWBLI (Erengil and Dolling, 1991b), one can introduce a
dimensionless frequency (or Strouhal number) defined as

SL =
fLsep
Ue

(1.1)

where f is the frequency, Lsep is the separation length and Ue is the external velocity.
Although widely used, other reference scales may be used to define the Strouhal num-
bers: in some configurations (typically when the separated zone displays a limited
extension) it is common to use an interaction length scale, defined as the distance
between the mean reflected-shock-foot position and the nominal inviscid impinge-
ment location. Using this scaling, Dussauge et al. (2006) have shown that a typical
value of SL = 0.02− 0.05 can describe qualitatively the shock motions in several ex-
periments as well as in numerical simulations. However, the frequencies found based
on this scaling exhibit some scatter in the values, as also noted by the authors, so
it is not obvious that a unique value, independent of flow conditions, should exist.

Regardless of the precise value of the Strouhal number, it is well established that
the shock exhibits low-frequency motions and that the separation-point position is
directly linked to this unsteadiness. Even if, as it will be discussed in the next
section, it is still not clear if the bubble motions are the cause or the consequence
of the shock displacement, there is a clear relation between the two phenomena: it
has been shown that low-frequency shock motions are linked to the contraction and
expansion of the bubble (Dupont et al., 2006), and for this reason it is common
to refer as breathing of the recirculation zone the low Strouhal number motions (or
pulsations) of this region.

Using the same frequency scaling, one can compute the Strouhal number of
the medium-frequency motions of the mixing layer. Typical values spanning from
SL = 0.1 to SL = 0.5 are common for subsonic shock-induced separation cases, and
are often referred to as flapping motions of the recirculating zones (Kiya and Sasaki,
1983). Those motions have been acknowledged since a long time (Cherry et al.,
1984) and have been associated to Kelvin-Helmholtz type instability. As explained
by Piponniau et al. (2009), even if the low- and medium-frequency typical values
depend on the flow conditions, there is at least a factor four between the two values.

1.3 The origins of the unsteadiness

If medium-frequency motions of the separated zone are commonly related to the
shear layer downstream the interaction, the origin of low-frequency motions affect-
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ing shock waves is controversial, and the question of why shock oscillations occur re-
mains rather unexplained. One of the first answers was suggested by Plotkin (1975),
who developed a mathematical model to explain the low-frequency unsteadiness in
SWBLI: the main idea is that the shock foot is affected by the passage of turbulent
eddies, while the stability of the mean flow tends to restore the shock to its original
position.

The hypothesis of shock motions caused by organised structures existing in the
incoming flow has been verified by several experimental investigations: Andreopou-
los and Muck (1987) found that the frequency of the shock-wave unsteadiness is of
the same order as the bursting frequency of the upstream boundary layer, and that
this frequency is independent of the downstream separated flow. Afterwards Erengil
and Dolling (1991a) and Dolling and Erengil (1991) found correlations between pres-
sure fluctuations in the upstream boundary layer and the shock velocity, but in a
more recent study Beresh et al. (2002) suggest that a thickening/thinning boundary
layer is not the cause of the shock unsteadiness: a correlation between stream-wise
velocity fluctuations in the upstream boundary layer and the shock position indi-
cates that low-frequency shock motions are inherited from eddies in the incoming
flow, and that the separation bubble responds to the movements of the shock wave.
In a compression ramp configuration, Ganapathisubramani et al. (2007) confirmed
this last theory, documenting the existence of long stream-wise coherent structures
in the boundary layer that are related to shock motions.

While the shock is undoubtedly affected by the passage of low- or high-speed
streaks, as for instance evidenced by the tomographic particle image velocimetry
study of Humble et al. (2009), the success of the mechanism proposed by Gana-
pathisubramani et al. (2009) to explain the low-frequency shock motions depends
on the existence of sufficiently long streaky structures. To prove that upstream
events are not the only cause of shock unsteadiness, Touber and Sandham (2009b)
performed large-eddy simulations in a shock-reflection configuration where special
care was devoted to the inflow conditions to prevent the development of coherent
structures. Although the upstream boundary layer was deprived of very long coher-
ent structures, the low-frequency shock motions could still be observed. The LES
computation of Hadjadj (2012) confirms this result, suggesting that low-frequency
instabilities are due to the intrinsic movement of the shock/bubble acting dynam-
ically as a coupled system. This result is an indication that the aforementioned
structures existing in the upstream boundary layer are not necessary for the low-
frequency SWBLI dynamics: if they exist the shock will be undoubtedly affected,
but upstream events might be only one of several contributing mechanisms.

Another interesting theory suggests that it is the downstream flow that plays the
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most important role in driving the low-frequency shock motions. Supporting this
idea, in a Mach 1.5 compression ramp configuration, the experimental investigation
of Thomas et al. (1994) indicates that the dynamics in the separation bubble is
responsible at first-order of the shock oscillations. This result is not in complete
disagreement with the previous theory, because separation bubbles are known to
amplify incoming disturbances (Dovgal et al., 1994), which can affect the shock
position through the separated zone. However, in a shock-reflection configuration,
Dupont et al. (2006) measured pressure fluctuations at two points along the cen-
treline of the flow, and found very weak coherence between the unsteadiness in the
upstream boundary layer and those at the shock foot. On the contrary, fluctuations
at the shock foot are found to be strongly correlated with the separated zone and
with the flow downstream of the reattachment. A small correlation between the
low-momentum structures in the incoming boundary layer and the separation point
has been documented also by the direct numerical simulations of Wu and Martin
(2008), where it is shown that the low-frequency shock unsteadiness is influenced
by the downstream flow. This result has been experimentally confirmed by the PIV
investigation of Dupont et al. (2008), highlighting the evidence of a link between
the reflected shock excursions and the size of the separated flow.

These latter studies deny the thesis that incoming turbulent eddies are the cause
of shock motions, and support the theory that the observed low-frequency oscilla-
tions are caused by coupling between the dynamics of the separation bubble and the
shock, either through global instability of the separation bubble, or through some
mechanism of self-sustainment: Pirozzoli and Grasso (2006) performed DNS on an
impinging SWIBLI and proposed that the large-scale low-frequency unsteadiness is
due to an acoustic feedback, similar to those responsible for the generation of tones
in cavity flows. However their simulation did not extend to long-enough times to
capture the lowest-frequency motions observed in the experiments.

The two theories described, even if in disagreement on the location, support
the idea that the instability of the system is driven by a unique source. However,
a plausible model is that the interaction responds as a dynamical system that is
forced by external disturbances (Clemens and Narayanaswamy, 2014). In this re-
spect, Touber and Sandham (2011) proposed an original derivation of the Plotkin
(1975) equation and indicated that the low-frequency unsteadiness was related to a
fundamental property of the shock wave. The model is obtained by using a com-
bined numerical/analytical theory, and proves that the coupling between the shock
and the boundary layer is mathematically equivalent to a first-order low-pass filter.
According to Touber and Sandham (2011) the observed low-frequency unsteadiness
in such interactions is not necessarily a property of the forcing, either from upstream
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or downstream of the shock, but an intrinsic property of the global system.
This theory is interesting since it does not deny the possibility of correlations

between the shock motions and the incoming boundary layer or the separated flow,
and extends the conceptual idea that the shock could act as a low-pass filter, for-
mally expressed by Plotkin (1975) and, to the author knowledge, verified only by
Poggie and Smits (2001, 2005). Combining the theoretical formulation with LES
simulations, Touber and Sandham (2011) showed that the low-frequency motions
can simply arise from a background noise, and the shock filters the fluctuations,
arising from the separated region or coming from the upstream boundary layer,
up to a given cut-off frequency, which would lead to the observed low-frequency
unsteadiness.

1.4 Stability analysis

Linear stability analysis has become a tool commonly used in fluid dynamics, which
can often give physical insights to understand flow unsteadiness (Theofilis, 2003;
Sipp et al., 2010). According to Huerre (2000), occurrences of unsteadiness can be
classified into two main categories: the flow can behave as an oscillator, and an ab-
solute instability imposes its own dynamics, or it can behave as a noise-amplifier, in
which the system filters and amplifies existing environmental noise, due to convective
instabilities.

In the first case, a global-mode decomposition has the ability to identify the
mechanism responsible for the self-sustained unsteadiness, indicating that the flow
is driven by an unstable global mode (Theofilis, 2011). In other configurations,
where the unsteadiness is characterised by a broadband spectrum and needs an ex-
ternal forcing to persist, the flow does not exhibit any unstable global mode. The
linearised Navier-Stokes operator acts as a linear filter of the external environment,
and a frequency-selection mechanism leads to a broadband spectrum: the eigen-
value decomposition poorly describes the dynamics of the phenomenon (Trefethen
et al., 1993; Sipp et al., 2010). In such cases a singular-value decomposition of the
Navier-Stokes evolution operator highlights optimal growth phenomena, which are
more suitable to describe the dynamics of a globally stable flow. The connection
between transient growth and convective instability has been discussed by Cossu
and Chomaz (1997) and numerous studies have successfully applied this method in
different configurations (Ehrenstein and Gallaire, 2005; Abdessemed et al., 2009).

In shock-wave/boundary-layer interaction, only few studies tried to answer the
question on the origins of the unsteadiness through stability analyses. Investigating
the linear stability using a base-flow derived from two-dimensional DNS, Robinet
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(2007) suggested that in a laminar SWBLI an unstable global mode, whose existence
depends on the shock intensity, may be the source of the unsteadiness. However the
mode was found to be three-dimensional and non-oscillatory, and has not been di-
rectly linked to the low-frequency shock oscillations. The work of Robinet (2007)
may be an extension to the supersonic domain of the existence of stationary global
instabilities inside recirculation bubbles: the interaction between the shock wave
and the boundary layer may cause, depending on the shock intensity, a recirculation
zone, whose behaviour dominates in the global stability analysis. Similar results
confirming that the flow becomes globally unstable via a three-dimensional station-
ary mode have been found in subsonic boundary-layer separations (Theofilis et al.,
2000), over a backward-facing step (Barkley et al., 2002) or in a flow over a bump
(Gallaire et al., 2007).

In a transonic flow over a NACA0012 profile configuration, Crouch et al. (2007,
2009) performed a global stability analysis using a base flow resulting from RANS
simulations. They found a strong link between the onset of shock unsteadiness in
the interaction and the appearance of an oscillatory unstable global mode. It has
been shown that, for a given Mach number, a critical value of the angle of attack
exists above which the shock starts to oscillate, in the same way that a critical
Reynolds numbers is responsible for vortex shedding in a cylinder wake (Jackson,
1987). Results are shown to be in good agreement with both experiments and
numerical URANS simulations. The study provides evidence linking the transonic
buffet onset to a Hopf bifurcation, indicating that a single oscillatory unstable global
mode can represent the low-frequency self-sustained shock motions.

In a shock impinging on a turbulent boundary layer configuration, Touber and
Sandham (2009b) performed a global-mode decomposition of a mean flow obtained
by time and span averaging the result of a three dimensional LES computation.
The mean flow obtained is in excellent agreement with experimental and numerical
results, but the most unstable global mode was found to be stationary (with zero-
frequency), so this result cannot be considered relevant to discuss unsteadiness.
Moreover, the mode being two-dimensional, it cannot be linked to the stationary
three-dimensional mode inside recirculation bubbles found by Robinet (2007) and
other researchers in the case of incompressible bubbles. Global modes must display
non-zero frequency to account for an unsteady phenomenon; for example, Ehrenstein
and Gallaire (2008) have shown that unstable oscillating bi-dimensional global modes
exist in certain incompressible separation bubbles. The fact that the mode found by
Touber and Sandham (2009b) is stationary and 2D does not give any information
about the unsteadiness.

Following a similar approach on the same configuration, Pirozzoli et al. (2010b)
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confirmed the presence of a single, non-oscillatory exponentially growing mode, but
as for Touber and Sandham (2009b) study, the link between the mode and the low-
frequency unsteadiness remains a hypothesis. However, contrary to the previous
work, Pirozzoli et al. (2010b) also documented the presence of slightly damped
oscillatory modes. Those modes, even if stable, display frequencies comparable to
the low-frequency unsteadiness observed in full LES and spatial structures that
resemble the breathing motions of the recirculation bubble. These partial results
constitute a hint that a linearised approach can give insight on the low-frequency
dynamics of the flow, but eigenvalue decompositions may not be the correct approach
to address this problem, because broadband fluctuations cannot be described by a
series of unstable global modes.

If shock-wave/boundary-layer interactions behave as noise amplifiers, the un-
steady behaviour would be better described through an analysis of its receptivity
to external forcing. In a general view, this approach highlights the property of the
linear operator by extracting optimal forcings that lead to largest responses. In sep-
aration bubbles the existence of optimal growths has been proven by Marquet et al.
(2008a); Blackburn et al. (2008), who described the flow dynamics by analysing the
two- and three-dimensional initial perturbations that maximise the energy gain over
a given time horizon. In configurations where there is a strong frequency-selection
process, working in the frequency domain instead of the temporal domain, as done
in optimal growth method, has a deeper physical meaning (Farrell and Ioannou,
1996). Such an analysis can show if some frequencies are amplified by the shock,
the mixing layer or the recirculation bubble, and if there is a link between the un-
steadiness observed in experiments and the response of the shock as it reacts to
the broadband pressure fluctuation environment. A similar approach has already
been used to describe the most amplified modes in a channel-flow configuration (Jo-
vanovic and Bamieh, 2005), in a turbulent pipe flow (McKeon and Sharma, 2010)
and in a Blasius boundary layer (Brandt et al., 2011).

1.5 Outline

In this work we propose to characterise the unsteadiness in a transonic shock-
wave/boundary layer interaction by means of experimental investigations and linear
stability analyses. We consider a channel-flow configuration at Mach number 1.4,
where the interaction between a strong shock and a turbulent boundary layer causes
the separation of the flow, leading to a recirculation bubble which is observed down-
stream the shock foot.

The experimental investigation is proposed in chapter 2: two-component PIV
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measurements and oil-flow visualisation yield to a complete description of the mean
velocity field (section 2.1), and the results will be used to validate the numerical
simulations presented in chapter 3. Unsteady transducers and high-speed flow visu-
alisation give an appraisal of the temporal behaviour of the flow, identifying low- and
medium-frequency peaks and indicating the zones of the flow where this unsteadi-
ness is most energetic: the frequency-selection process is highlighted in section 2.2
using wall pressure and skin-friction measurements. Then, Fourier modes decom-
position of Schlieren photography (section 2.3) can give an insight of the location
of low- and medium-frequency unsteadiness, whilst cross-correlation maps indicate
their spatial structures.

The numerical approach is presented in chapter 3: in section 3.1 the results of
the numerical simulation are compared in with the mean flow experimentally ob-
tained. The theoretical formulation that leads to the linear stability analysis is then
introduced. Results of the global-mode decomposition are presented in section 3.2,
whilst the results of the stability analysis based on the singular-value decomposition
of the global Resolvent are in section 3.3. Both approaches will assess the abil-
ity of linear stability analyses to predict the various flow unsteadiness phenomena
observed experimentally.

Finally, we will consider in chapter 4 another type of SWBLI, where a normal
shock causes the separation of the boundary layer over the OAT15A profile at differ-
ent angles of attack. The configuration, that has been experimentally investigated
by Jacquin et al. (2009), is presented in section 4.1. Then, a wide range of angles
of attack is numerically investigated by means of RANS and URANS simulation
(section 4.2), spanning from α = 2.5◦ to α = 7.0◦. When the angle of attack exceeds
a critical value, the flow presents high-amplitude periodic low-frequency oscillations,
known as shock buffeting. In section 4.3 we will show how direct and adjoint modes
decomposition can describe the main features of the flow. Then, in section 4.4 we
perform singular-value decompositions of the global Resolvent as proposed for the
channel-flow configuration, and compare the results to discuss the difference between
the two SWBLI considered.



Chapter 2

Experimental investigation

In this chapter, we present the main results of the experimental investigations con-
ducted in the so called Délery bump configuration. The experiments were performed
in the S8Ch transonic wind tunnel of the ONERA Meudon centre, a continuous
open-loop wind tunnel supplied with desiccated atmospheric air. The stagnation
conditions were near ambient pressure and temperature: pst = 0.96·105±300 Pa and
Tst = 300±10 K. The associated unit Reynolds number is around Re = 14×106m−1

which leads to a value of ReΘ = 3500 for the incoming boundary layer. An air dryer
is placed after the air inlet to control the humidity of the flow: during every test run
the rise of the total temperature was lower than 2◦ C degrees, and the dew point is
maintained around −50◦ C.

(a) Photo of S8Ch wind tunnel. (b) Schematic diagram.

Figure 2.1: Photo and sketch of the test section of the S8Ch wind tunnel.

The test section has a span of 100×120 mm, and as shown in figure 2.1 the lower
wall is a profile designed to produce a uniform supersonic flow. A second throat of
adjustable cross section is placed at the outlet, and causes, by choking effect, a shock
wave whose position and intensity can be adjusted in a continuous manner. In the
present conditions, the ratio between the two throat sections is 1.12, and the shock
occurs at Mach number M = 1.4.

Two-component LDV measurements performed in the same configuration and
facility (Bur et al., 1998, 2009) showed that on the bump, upstream of the shock,

13
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the boundary layer is fully turbulent with the following characteristics: physical
thickness δ = 4 mm, displacement thickness δ∗ = 0.46 mm, momentum thickness
Θ = 0.25 mm and incompressible shape parameter Hi = 1.42. Comparing to similar
studies (Dupont et al., 2008; Humble et al., 2006; Lapsa and Dahm, 2011), the
boundary layer thickness is very small and consequently measurements close to the
wall are more challenging.

The position of the shock is monitored by the evolution of static pressure through
36 pressure taps on the lower wall. The detachment of the boundary layer starts
already on the bump and the recirculating bubble, whose average size can be eval-
uated by the oil-flow visualisation or PIV measurements (see section 2.1), extends
after the end of the profile. Previous studies (Galli et al., 2005) showed that there
is an optimal position of the lambda shock to achieve the maximal size of the recir-
culation zone, obtained when the tangent of the shock normal to the lower wall is
12.6 mm downstream of the end of the bump. As the present study focuses on the
separation of the boundary layer, the shock wave is maintained in that position in
order to obtain the largest recirculating zone.

Figure 2.2: The end of the bump with the lambda shock wave: Schlieren photograph
of the interaction, horizontal knife.

Downstream of the shock wave, the nominal Mach number is approximately
M = 0.75 in the upper zone, where the shock can be considered normal, and its
value increases up toM = 0.95 as approaching the triple point where the two legs of
the shock merge together, as shown in figure 2.2. Finally, it is important to note that
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the second throat placed at the end of the test section produces a further supersonic
zone that acts like a filter to the existing downstream noise that comes from the
engines at the end of the wind tunnel.

To visualise the flow and monitor the shock position in the test section, a
Schlieren apparatus is used. Very high-speed Schlieren photography give access
to a general description of the flow and its motions: a wide field (1280× 800 pixels)
at frequency rate 7500 fps framed the whole interaction, from the separation point
to the completely developed shear layer, yielding a complete characterisation of the
shock structure (figure 2.2), whilst a smaller image (460× 360 pixels) at frequency
rate 35000 fps is used to gain understanding of the temporal and spatial charac-
teristics of the interaction, as it will be shown in section 2.3. The knife-edge of
the Schlieren apparatus was oriented both horizontally and vertically, giving access
to a complete description of the vertical and horizontal components of the density
gradient.

The chapter proceeds as follows: a PIV study is first presented in section 2.1,
aiming at characterising the mean features of the flow field (Sartor et al., 2012).
The results will be used to validate the numerical simulation that will be performed
in the next chapter. Particular attention will be given to the turbulent behaviour of
the separated zone, and the boundary layer will be investigated using special lenses.
Once the flow is described in its steady behaviour, we focus on the unsteadiness
by wall measurements (section 2.2): unsteady pressure transducers and skin-friction
sensors will be placed in different zones of the flow, in order to characterise the
frequency of the unsteady phenomena involved in the interaction. The pressure
and skin-friction spectra will be compared to other studies and a frequency scaling
based on characteristic length and velocity will show that both the shock wave
and the separated zone present the typical unsteady behaviour observed in similar
configurations. The results will then be extended to an analysis of the whole flow-
field, presented in section 2.3, where Fourier modes decomposition of high-speed
Schlieren visualisation can be used to localise the zone of the flow that is affected
by low- and medium-frequency motions, whilst correlation maps will indicate the
spatial structure of the unsteadiness. These results will be compared to those of the
stability analysis of the next chapters.

2.1 PIV investigation

Particle Image Velocimetry (PIV) has become an essential tool in fluid measurements
and is therefore widely used in industrial as well as academic situations. However, it
has some limitations, such as the time necessary to compute the vector fields from
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the images, or the spatial resolution linked to the windows interrogation size and
the difficulty to characterise flow-fields where both high and low values of velocity
are present. In that respect, over the last decade, high speed dual-PIV (Souverein
et al., 2009), multi laser multi camera systems (Hou et al., 2002) or dense PIV based
on GPU’s (Champagnat et al., 2011) as FOLKI-PIV1 have been developed in order
to overcome the typical PIV limitations.

Since its invention, the PIV technique has become a tool widely used for incom-
pressible flow investigations. When studying phenomena at high Mach number, the
effects of compressibility bring with them technical problems such as seeding, optical
access through the wind tunnel windows or lighting. As result of the advances in
laser and digital imaging technology, in the last decade PIV has been applied to a
variety of typical compressible flows, ranging from transonic to hypersonic configura-
tion with and without shock waves. According to Hadjadj and Dussauge (2009), the
SWBLI problems can be divided into three families: the transonic shock-boundary
layer separation, the oblique shock impinging turbulent boundary layer and super-
sonic flow over a compression ramp. To the authors knowledge, the PIV technique
has been widely applied to compression ramps (Schrijer et al., 2006; Ganapathisubra-
mani et al., 2007) and impinging shock wave interaction (Hou et al., 2003; Humble
et al., 2007; Dupont et al., 2008; van Oudheusden et al., 2011): few PIV studies
(Hartmann et al., 2011) have been applied to a transonic interaction with a strong
shock wave that causes massive separation of the boundary layer. Even considering
LDV investigation (Délery, 1978; Muller et al., 2001), a deeper physical understand-
ing is still needed for this particular case that presents the additional disadvantage
that, in the same field, a supersonic, a high subsonic and a low speed reverse flow
zones coexist. From a technical point of view, the presence of high turbulence levels
due to the separation of the boundary layer can cause seeding problems that arise
in addition to the classical complications arising in supersonic flow PIV.

The purpose of the present section is thus to investigate by means of PIV the
transonic SWBLI previously introduced, using the capability of the recently devel-
oped software FOLKI-PIV (Champagnat et al., 2011). An important effort has been
made to discuss all the hypotheses of the study: the two-dimensionality assumption
of the flow is verified using multi plane PIV inspection, the repeatability of the
measurements is assured by an air dryer to exclude any displacement of the shock
in different test runs, the seeding system is described and a particle-response assess-
ment is presented to show the fidelity of the tracer for the measurement conditions.
The whole mean velocity field is discussed in details, providing a wide analysis of
the interaction, the recirculating bubble and the velocity profiles in the mixing layer.

1French acronym for Iterative Lucas-Kanade Optical Flow.
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By analysing the velocity fluctuations, an analysis of the statistical properties has
been accomplished in order to qualify the turbulent flow field and its anisotropic
behaviour. Finally, a zoom in the vicinity of the wall shows the main properties of
the flow, and both mean velocity and turbulent profiles are discussed for a transonic
boundary layer upstream of the shock wave.

2.1.1 PIV system

All the presented results stem from a 2C PIV investigation: the two velocity compo-
nents observed are the horizontal along x, and the vertical along y. Measurements
are thus performed along a plane located in the middle of the wind tunnel test sec-
tion (see figure 2.3), where the three dimensional effects due to side walls are less
pronounced. The test section is supposed to be wide enough to justify the neglect
of the wall effects studied by Bruce et al. (2011). A multi planar evaluation was
performed to assess the uniformity of the flow in the span-wise direction. The laser
sheet plane was displaced a few millimetres from the middle of the wind tunnel, and
the resulting velocity field for different laser positions were compared to each other:
since no significant differences were observed between the resulting fields, one con-
cludes that the two-dimensionality assumption of the flow is correct. The absence
of non-uniform span-wise effects in the centre of the wind tunnel can be confirmed
also by the oil flow visualisation in figure 2.4a which shows that the 3D effects are
not negligible only near the side walls of the test section.

Figure 2.3: Scheme of the experimental apparatus.

The light sheets are generated by a double pulse ND:YAG laser, which delivers
150mJ per pulse. The access for the laser light is provided by a window on the top
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wall of the wind tunnel, so that the light source direction is towards the decreasing
y direction: this configuration remains unchanged for both the PIV investigation
hereafter referred as global field and boundary layer investigation. Laser pulse sepa-
rations are 2.5 µs for the global fields and 1.5 µs for the zoom on the boundary layer.
1000 image pairs are acquired at 5.6 Hz and less than 4 minutes were sufficient to
record the data. A statistical assessment was performed to verify the convergence of
the mean field for the number of samples considered. The camera is equipped with
a lens of focal length of 105 mm for the global field, and a telecentric lens for the
boundary layer; as the CCD is 2048× 2048 pixels, the resulting magnification ratio
is around 20 pixels/mm and 37 pixels/mm for the two different cases.

(a) Oil flow visualisation (top view, flow coming
from the left). The lines identify the laser sheet
positions for the two investigations.

(b) Particle response to the shock wave: normal
Mach number vs local abscissa s.

Figure 2.4: Oil flow visualisations (view from the top) and Stokes number appraisal.

The parameter that mostly affects the results is the size of the interrogation
window: this window must be sufficiently large to contain enough particles for the
correlation, but the smaller it is the more detailed are the results, since each inter-
rogation window returns a vector as result. In our case, the resulting field has one
vector each 20 pixels, that means one vector each millimetre: each field presented
had at least 100×100 vectors. For the zoom on the boundary layer the interrogation
window is 10 pixels, thus the field presents 200 × 200 vectors, and considering the
different magnification ratio, we obtain one vector every 300 µm.
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Seeding

Flow seeding is a critical aspect of PIV in high-speed flows. Moreover, due to the
presence of a large zone of boundary layer separation with reverse flow, the pollution
on the lateral windows progressively perturbs the flow measurements. The most
effective solution for the tracer in the present case is thus the use of liquid particles
of Di-Ethyl-Hexyl-Sebacat (DEHS), produced by an atomiser aerosol generator2, not
only because the ease of use, but also because the liquid film that gradually settles
on the windows is less “opaque” than a deposit of particles as the incense or the
titanium dioxide, which are commonly used in supersonic PIV.

The DEHS oil injected has a density of about ρp = 900 kg/m3 and a typical
particle size of about dp = 0.5 µm. The characteristic particle response time is
derived from Stokes law for spherical particles as:

τp =
ρpdp

2

18µ
= 0.7µs (2.1)

where µ is the dynamic viscosity of the fluid. Considering a characteristic time of
the incoming flow given by:

τf =
δ

U∞
≈ 10µs (2.2)

the resulting Stokes number is:

St =
τp
τf
≈ 0.07 (2.3)

The profile of the Mach number across the shock wave is shown against the local
abscissa s in figure 2.4b: s = 0 indicates the shock position, and s is normal to the
shock wave. As a particle passes through the shock, its normal Mach number Mn

decreases from Mn1 to Mn2. ∆M indicates the jump in the normal Mach number
through the shock wave, defined as

∆M =
M −Mn2

Mn1 −Mn2

(2.4)

∆M is normalised so that before the shock ∆M = 1 and after ∆M = 0. The experi-
mental data profile (circles in figure 2.4b) indicates that there is a lag in the particle
spatial response due to the inertial effect of the tracers. The particle relaxation time
can also be estimated from an exponential fit of the post-shock particle response:
as indicated in figure 2.4b, this leads to a particle response time τp = 0.9µs, slightly
larger than the theoretical estimation (2.1) because of the particle agglomeration
(Ragni et al., 2011). According to Samimy and Lele (1991), in a compressible flow
the particle slip is fully negligible if the particle Stokes number is St < 0.1 so both the

2Topas Gmbh ATM 210.
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experimental measurements and the exponential fit referred to our seeding system
indicate that the particle response lag is within the limit of a PIV study.

The particle injection system plays an important role in the PIV image quality
achieved. Seeding by multi-hole pipes or bent-probe just upstream of the test section
were soon discarded for stability and homogeneity reasons. To achieve the most
regular seeding without a probe, it is convenient to place the particle generator far
upstream of the test chamber, so that the tracers concentration in the flow can
homogenise and create a uniform cloud of particles. To do so, the seeding system
was placed between the air dryer and the plenum chamber, in a low speed zone.
As the wind tunnel stagnation pressure is less than atmospheric, the particles were
naturally sucked into the flow.

PIV images processing

As previously mentioned, in the present paper the image processing does not rely
on a classical FFT based PIV software but on an iterative gradient-based cross-
correlation optimisation algorithm. The reader is referred to Champagnat et al.
(2011) for a complete explanation of the software FOLKI-PIV. The PIV computation
is about 50 times faster3 than a classical FFT-PIV algorithm, but the most important
quality of FOLKI-PIV is its capability to recognise a particle displacement regardless
if it is of a fraction of pixel or hundreds of pixels. Imposing a displacement of 30
pixels for a couple of images in the supersonic zone, yields a movement of at least
2 pixels in the separation bubble, where the speeds are about ± 20 m/s. Even
assuming a sensitivity of 0.1 pixels (as traditionally done in PIV (Raffel, 2007)), we
can detect velocities of 1 m/s, which is satisfying even for a subsonic field and more
accurate than the other studies in literature (Dupont et al., 2008; Humble et al.,
2007).

(a) Time between laser pulses = 3.5 µs. (b) Time between laser pulses = 2.5 µs.

Figure 2.5: Score fields for different times between images. Figure (a): the particle
displacement is too big, some trace particles have exited the PIV image. Figure (b):
sufficient correlation everywhere in the field.

3With images of 2048× 2048 pixels and a TESLA C1060 - 4Gb memory, less than 1 second is
required to process one image.
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A limit of the separation time between two laser pulses is the condition that the
same tracer must be present in two successive images: as described in Champagnat
et al. (2011), to determine how many particles exited from the laser sheet, it is suffi-
cient to look at the score field of the results, which is a number between 0 and 1 that
represent the Zero Normalised Sum Squared Differences (SSD). If the score is more
than 0.3, we can trust the result of the SSD calculation. An example of a score field
is represented in figure 2.5: if some particles enter or leave the laser sheet because of
span-wise velocity in a zone where the three dimensional effects due to the boundary
layer detachment are more pronounced, FOLKI-PIV fails to make the calculation of
correlation, and then responds with a low score. Experimental tests have shown that
the best compromise between sensitivity and correlation corresponds to a particle
displacement of about 30 pixels in the supersonic zone. Finally, the histogram of the
velocity field indicates that there is no concentration in integer pixel displacement:
the peak locking problem is minimised using a sub-pixel interpolation and to the
scattered light of each particle, that is in the region of 2 - 6 pixels across on the
image.

2.1.2 Shock-induced separation region

In this PIV investigation, the global field of view is about 100 mm large and is
horizontally centred on the downstream end of the bump (x = 351.4 mm): in the
reference coordinate system, the resulting field ranges from x = 300 mm to x = 400

mm.
Figure 2.6 shows the structure of the shock as observed in the Schlieren visualisa-

tion of figure 2.2, and the supersonic tongue (Délery and Marvin, 1986) is delimited
by the M = 1 isocontour line. The separation bubble, characterised by negative
values of the longitudinal velocity, is the direct consequence of the boundary layer
separation. A zoom in that area, shown in figure 2.7, where there also are velocity
vectors, shows the presence of the separation bubble, which starts at the shock foot
and extends up to x ≈ 378 mm. Note that the vectors have been decimated, the
result field being more dense. The presence of such a recirculating zone could have
been inferred from the Schlieren image in figure 2.2: close to the wall, starting from
x ≈ 330 mm and until x ≈ 380 mm, there is a zone where the turbulent structures
that start from the shock foot are no more visible.

Figure 2.7 illustrates the complexity of the flow to be measured: while the bulk
flow is supersonic, we also aim at characterising a recirculating bubble that presents
limited values of velocity, one order of magnitude smaller than the outer field. With
FOLKI-PIV and its multi-resolution framework, this can be done on the same image
pair, without the need to acquire additional images focusing on the recirculating
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Figure 2.6: Iso-contours of the horizontal velocity component for the global field
investigation. M = 1 solid black line.

bubble. To the authors knowledge, a transonic PIV with an accuracy of 1 m/s (with
a sub-pixel refinement of 0.1 pixel at worst) has never been reported. Unfortunately,
in the considered SWBLI, the boundary layer thickness is so small that its dynamics
cannot be entirely detected by the spatial resolution of the global field investigation:
in this result we dispose of one vector per millimetre, not sufficient to characterise
the boundary layer property. For that reason the boundary layer investigation has
been made with a special camera lens as explained in subsection 2.1.3.

Far away from the wall, the velocity field can describe the flow properties in a
more accurate way than other studies: PIV results of the current investigation have
higher spatial resolution and sensitivity than in previous studies. Figure 2.8 presents
a comparison with LDV results obtained by Délery (1983). The geometrical configu-
ration is the same in the two studies, but the nominal Mach number presents a slight
difference. In a transonic interaction over a bump, the Mach number determines the
shock position, tightly linked to the separation point of the boundary layer: a small
difference in the Mach number can cause a shift of the shock foot location along the
bump, which results in a displacement of the separating point. Besides that, the
centre of the recirculating bubble is the same for the two cases, and for that reason
we discuss the profiles inside both of the recirculating bubbles.
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Figure 2.7: Mean velocity field, zoom on the separation bubble. Iso-contours corre-
spond to the horizontal velocity component; Velocity vectors are down-sampled in
horizontal direction, showing 1 out of 5 for clarity.

Figure 2.8: Comparison of mean velocity profiles inside the recirculating bubble,
PIV data of the present study and LDV data of Délery (1983).

Following the lines of Piponniau et al. (2009), the profiles presented in figure
2.8 are given by u−U2

U1−U2
, where U1 is the external velocity of each profile and U2

is the highest in amplitude negative velocity inside the recirculation bubble. Such
a presentation enables us to highlight the slight differences obtained with the two
measurement techniques. Note that the velocity U1 is different for each profile
because the recirculating bubble is beneath the lambda shock inside the supersonic
tongue, in a zone where the external velocity highly depends on the stream-wise
position.

Figure 2.8 describes the velocity profiles along the vertical abscissa, from the
separation point to the end of the recirculating zone. As indicated in the figure, the
external velocity U1 decreases constantly as progressing in the downstream direc-
tion. Meanwhile, the y position at which this external velocity is reached increases,
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starting from y = 6 mm for the profile at x = 340 mm and attaining values up to
y = 16 mm when considering the last profile. Regarding the internal velocity U2,
its value decreases as approaching the centre of the bubble, situated approximately
at x = 355 mm and then begins to rise. The positive value of U2 in the last profile
indicates that the end of the recirculating zone is between x = 380 mm and x = 390

mm. Note that the boundary layer is not visible with the LDV measurements be-
cause of the low spatial resolution, whilst the dashed line, pertaining to the PIV
measurements, shows in the very first part of the profile a gradual transition from
the minimal LDV measured velocity U2 to u = 0.

All the mean velocity profiles are very similar and resemble those observed in
subsonic separated flows by Kiya and Sasaki (1983). They exhibit a quasi-linear
behaviour in the central region, from y = 4 mm to y = 8 mm, where large convective
eddies due to the Kelvin-Helmholtz instability develop and are shed downstream.
The slope of this linear region decreases in the downstream direction from x = 340

mm to x = 390 mm, indicating an increase of the mixing layer thickness, that can
be evaluated from

δω(x) =
U1(x)− U2(x)

∂u(x, y)/∂y
(2.5)

Such result can be used to give an appraisal of the spreading rate of the mixing
layer, given by δ′ω = δω(x)/x. This quantity is found to be constant and equal to
δ′ω ≈ 0.105. The value is not in good agreement with the spreading rate of the mixing
layer proposed by Papamoschou and Roshko (1988) for the compressible turbulent
shear layer, probably because the spreading rate is not correctly evaluated using the
small-field obtained with the PIV investigation.

Turbulence properties evolution in the interaction region

The FOLKI-PIV software provides the r.m.s of the horizontal and vertical velocity
fluctuation components. From these quantities one can derive the turbulent kinetic
energy and the Reynolds shear stresses, that read for our two-dimensional study:

k =
1

2
(u′2 + v′2) and R12 = −u′v′ (2.6)

The evolution of the first quantity, normalised with the characteristic velocity U∞ =

300 m/s, is presented in figure 2.9. The field shows that the turbulent kinetic
energy is strongest in the shear layer, above the recirculating zone: this region
also corresponds to the area where the medium scale turbulent structures are most
evident in figure 2.2. Once k has achieved its maximum value, it rapidly decays,
suggesting a redistribution of the fluctuations on all the components of velocity.
Beneath the shear layer, from x = 340 mm to x = 360 mm, a low-level turbulence
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zone indicates that the recirculating bubble presents a uniform recirculation at the
end of the bump, characterised by a constant reverse flow.

Figure 2.9: Evolution of the 2D turbulent kinetic energy k normalised with U2
∞.

It is worthwhile to say that the strong values of k on the bump just downstream
of the shock foot (from x = 330 mm to x = 335 mm) is deemed to be a small
blemish: this spot is due to a heap of tracer, that forms a drop of oil which remains
between the window and the bump. As the laser flashes on this drop, a random
reflection disturbs the PIV images, and the result is a spurious value of the velocity
fluctuations. This reflection affects the results only for the interrogation windows
that surround the spot.

Figure 2.10: Evolution of the fluctuation for the normalised longitudinal velocity
component

√
u′2/U∞.

To confirm the redistribution of fluctuation, it is useful to analyse separately the
two components u′/U =

√
u′2/U∞ and v′/U =

√
v′2/U∞. Figures 2.10 and 2.11

show that the contribution of the longitudinal velocity is the most important (in
order to see the relatively smaller values of

√
v′2, the colour-table has been changed

in the two plots). The stream-wise fluctuations are three times larger than those of
the vertical fluctuations.

This result is in contrast with those obtained in a plane mixing layer, where
√
u′2

is only 30% higher than
√
v′2, but similar observations are reported by Johnson et al.
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Figure 2.11: Evolution of the fluctuation for the normalised vertical velocity com-
ponent

√
v′2/U∞.

(1981). This behaviour indicates the presence of a high turbulence anisotropy above
the separation bubble. However, in the very last part of the field, where the shear
layer ends and

√
v′2 achieves its maximal values, the energy is equally divided into

the two fluctuation contributions. We can reasonably suppose that the decrease of
the turbulent kinetic energy is due to a redistribution of the fluctuation from

√
u′2

to
√
v′2 and also to the unmeasured w′, suggesting a return to isotropy.

The anisotropy of the flow plays a significant role in the turbulent production.
For an incompressible flow, the production term of the u′2 transport equation is:

Pu = −2u′v′
∂u

∂y
− 2u′2

∂u

∂x
(2.7)

The results obtained are presented in figure 2.12. For the current transonic interac-
tion the density presents a variation across the viscous layer of about ρe/ρw = 0.85,
deemed to be small enough to neglect compressibility effects. In the first part of
the interaction process the term involving the stream-wise derivative ∂u/∂x is as
large as the term involving the strain rate ∂u/∂y due to the strong retardation of
the whole dissipative flow: Pu is here the sum of two large positive terms. Down-
stream, the term involving ∂u/∂x becomes rapidly negligible. The results are in
good agreement with Délery (1983). The contribution of the vertical derivative is
linked to the development of the boundary layer: on the wall we can see upstream
the detachment of a positive value, and in the reverse flow zone a negative value.
Furthermore on the wall, downstream of the reattachment point, the production of
turbulence begins to rise, suggesting the presence of a redeveloping boundary layer.

The most interesting result is the Reynolds shear stress −u′v′/U2
∞, whose distri-

bution is presented in figure 2.13. For compressible flows, the Reynolds shear stress
is given by −ρu′v′. However, for the transonic interaction under investigation, the
change of density across the dissipative layer is small, so that −u′v′/U2

∞ can be
considered as a non dimensional Reynolds shear stress.
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Figure 2.12: Turbulence production term of the
√
u′2 transport equation Pu.

The maximum value of the normalised turbulent shear stress is 0.023, in good
agreement with the results obtained with LDV measurements (Bur et al., 2006;
Délery and Marvin, 1986), where the maximal value in a similar configuration (shock
in upstream position) was 0.026. Regarding the evolution in the shear layer, we can
say that the maximum of the Reynolds shear stress is downstream of the recirculating
zone: as suggested by Ardonceau (1984), the large values of the Reynolds shear stress
imply the existence of large-scale eddies, consistent with the Schlieren visualisation
of figure 2.2. In comparison to the turbulent kinetic energy, the strengthening of the
shear stress appears downstream of the strengthening of k and the turbulent shear-
stress reaches its maximum value downstream of the point where k culminates. For
separated flows, the stream-wise location of maximum shear stress often coincides
with the stream-wise location of the reattachment point (Délery, 1999), visible in
figure 2.7.

Figure 2.13: Evolution of the Reynolds shear stress −u′v′, normalised with U2
∞.

Flow field and dashed line: PIV measurements (present study). Solid line: LDV
measurements by Délery (1978).
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The presence of the first branch of the lambda shock is always visible in the tur-
bulent fields, particularly in the turbulent shear stress and in the

√
v′2 distributions:

an oblique line upstream of the detachment point indicates a significant rise of the
fluctuations immediately downstream of the shock wave and roughly parallel to it.
These fluctuations highlight the unsteady behaviour of the leading shock. In this
zone of the flow, as explained by Elsinga et al. (2005), the optical aberration effects
introduced by the inhomogeneous refraction index may affect the measurements,
as also observed in several other PIV studies (Humble et al., 2007; Mitchell et al.,
2011). A part from the oblique line close to the shock, the results obtained for the
Reynolds stress are in very good agreement with a similar study, made on the same
configuration, by Délery (1978).

2.1.3 Boundary layer

This section discusses the boundary layer upstream of the shock. The results have
been obtained with a particular lens, called telecentric, whose property is to filter
all the oblique rays not parallel to the optical axis. This property can be exploited
to reduce part of the laser reflections on the wall, whilst the light intensity of each
image remains high because of the wide aperture of the objective. The resulting fields
cannot be directly compared with other studies on the same configuration, because
our PIV data has a much better resolution in the near wall region than the LDV
measurements of Délery (1978). However, all the profiles presented below present
the main features that can be observed in similar supersonic turbulent boundary
layer investigations over a bump (Webster et al., 1996) or in shock reflection case
(Dupont et al., 2008; Humble et al., 2007).

Figure 2.14: Mean longitudinal velocity measurement in the boundary layer up-
stream of the shock: on the left the iso contour of the mean flow and on the right a
velocity profile referred to the position x = 315 mm.
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The main problem of the present configuration is that the boundary layer is much
thinner than in other similar studies. Even if the PIV system is able to measure
up to 300 µm from the wall, in terms of normalised distance this means that the
first reachable point is located at y/δ = 0.1. In terms of non dimensional distance
y+, assuming a friction velocity of uτ ≈ 20 m/s, the first PIV point is at y+ = 100,
but a departure of the experimental data from the profile expected from a classical
boundary layer profile can be observed as soon as y+ > 200. Notwithstanding,
the spatial resolution and the wall approach are satisfactory for boundary layer
investigations.

Even though some wall approach limitations exist, the velocity field could be
almost entirely characterised as shown in figure 2.14: the mean longitudinal velocity
in the boundary layer upstream of the shock is measured up to the wall, even if the
results can be considered rigorously accurate only down to y/δ = 0.1, because of
the PIV resolution. Both the mean velocity and the turbulent profiles presented in
this subsection have been extracted at x = 315 mm, the mean velocity has been
normalised with the external bulk velocity, denoted with U0, whose value upstream
of the shock is about U0 = 380 m/s. To compare turbulence results with those of
the interaction investigation, the velocity fluctuations profiles have been normalised
with the same U∞ as the one used in the previous subsection.

Figure 2.15 presents a comparison between the two components of the velocity
fluctuations. In this region, the boundary layer is not in equilibrium, and close
to the separation. A comparison with other studies on a flat plate configuration
such as Dupont et al. (2008) or Lapsa and Dahm (2011) is not possible. However,
some qualitative remarks can be done: for the longitudinal velocity fluctuations,
the region of high levels of turbulence starts near the wall and reaches its maximal
values of U∞/10 at y/δ = 0.1. The near wall peak described in figure 2.15 cannot be
considered completely resolved because, as mentioned before, the first measurable
point is located at y/δ = 0.1. Nevertheless, we included in the plot a point at
y/δ = 0.04 even if this point is probably linked to an interpolation process between
the point u′ = 0 at the wall and the first completely accurate point at y/δ = 0.1.
To the authors knowledge, PIV measurements of a turbulent boundary layer have
been reported with more accuracy only by Humble et al. (2006), who considered a
boundary layer almost 10 times thicker, or more recently by Lapsa and Dahm (2011)
but in a configuration with a supersonic flow without shock wave.

The near wall peak extends up to y/δ = 0.3 and then the velocity fluctuations
decrease constantly through the boundary layer. Concerning the vertical component
v′/U , the maximum value attained is around

√
v′2/U0 = 0.03 at y/δ = 0.2, smaller

than in the horizontal component. Both components reach their free-stream value
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Figure 2.15: Velocity fluctuations in the boundary layer upstream of the shock.

around 0.02 starting from y/δ = 2. This value is more likely the noise added by the
PIV technique rather than the turbulence level of the wind tunnel.

To perform an accurate comparison with other configuration, more data are
necessary. Moreover, the Morkovin representation (Elena and LaCharme, 1988)
should be used, where the fluctuations are normalised using the friction velocity.
However, the available data are not enough detailed to perform such comparison,
so the main conclusion is that the PIV investigation in the boundary layer gives
reasonable results (Dupont 2013, private communications).

2.2 Unsteadiness at the wall

In this section we characterise low- and medium-frequency fluctuations using sensors
placed at the lower wall of the wind tunnel (the positions of the sensors are given
in figure 2.16). Both Kulite and Hot-film sensors are used, giving access to pressure
and skin-friction fluctuations, respectively.

(a) Kulite sensors. (b) Hot-Film sensors.

Figure 2.16: Sensors position on the bump.

The output was amplified and digitised at a sampling frequency of 100 kHz,
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then Fourier analysis has been performed using 50% overlap and a Hanning window
function, providing spectra using 500 blocks of 32768 samples each. This yields,
for every spectrum and for both measurement techniques, a frequency resolution of
f = 3 Hz. As it will be shown in the next section, the unsteadiness is not very
energetic: for that reason, the use of 500 blocks to perform averaging on the spectra
has been used to smooth the results. Figure 2.17 shows the effect of the number of
blocks on a Kulite spectra at the shock foot: for this particular configuration, the
use of 500 blocks (instead of 32 or 64, as commonly used) is required to converge
the spectra.

(a) Power Spectral Density. (b) Premultiplied spectrum.

Figure 2.17: Effect of the number of blocks on the spectra.

Figure 2.17 presents another representation of the frequency content, called
weighted PSD. When a spectrum does not present any peaks but only some bumps
where the spectral density is higher than in other zones, it is usual to use this repre-
sentation, where the product between the power spectral density and the frequency
f is represented as a function of the log of the frequency.

E =

∫
PSD df =

∫
PSDf dln(f) (2.8)

This representation, often called premultiplied spectrum, gives access to the fre-
quency content of the energy fluctuations as the area below this curve.

2.2.1 Pressure fluctuations

Pressure fluctuations are investigated using high-frequency response pressure trans-
ducers4 following the work of Dupont et al. (2006). As represented in figure 2.16, all
the sensors were located on the lower wall of the test section: one at the shock foot
(x = 315 mm), one inside the recirculating bubble on the bump (x = 335 mm), one

4Kulite series XCQ-093-15A, XCS-093-15D and XCS-093-5D.
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on the reattachment point (x = 395 mm), and two next to it, respectively at x = 390

mm and x = 400 mm. The pressure range is 0-350 mbar and 0-1 bar, depending
on the chosen pressure transducer, and the bandwidth of all transducers is around
20 kHz, sufficient to measure both low- and medium-frequency unsteadiness of the
shock and the separated zone.

As shown in figure 2.18a, the spectra obtained indicate that the unsteadiness is
broadband, without a single predominant peak. Moreover, all sensors display high
PSD in the low-frequency range, regardless of the position. Then, depending on
the distance to the shock-foot, the spectra can present a medium-frequency bump,
with a power spectral density one order of magnitude lower than the one in the
low-frequency zone. The high-frequency content due the turbulent structures in the
boundary layer is probably at frequencies higher than 50 kHz, not measured because
of the bandwidth of the sensors.

When considering the weighted PSD, represented in figure 2.18b, the pressure
transducer at the shock foot indicates that most of the energy content is in the
low-frequency range, whilst for the sensors in the separated zone medium-frequency
motions are the most energetic, presenting a peak in the premultiplied spectra where
the PSD presented a bump.

(a) Power Spectral Density. (b) Premultiplied spectrum.

Figure 2.18: Wall-pressure fluctuations on the centreline of the test section: at the
shock foot, between the separation point and the end of the bump, and around the
reattachment point.

The horizontal axis of all figures present the Strouhal number, computed using
equation (1.1) with a characteristic length L = 35 mm, corresponding to the distance
between the separation point and the projection of the second shock on the wall,
and a velocity of U = 300 m/s, corresponding to the speed of the flow above the
recirculation bubble. This scaling yields, for the sensor placed at the shock foot, to
a maximum of f · PSD around 0.04, that corresponds to a frequency of 300 Hz.

The green solid line corresponding to x = 335 mm in figure 2.18 indicates that the
spectrum of a pressure transducer placed close to the shock just after the separation
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point exhibits the low-frequency unsteadiness due to the shock but also the medium-
frequency due to the mixing-layer zone. This behaviour suggests that the sensor was
placed in an intermediary zone between the two separated phenomena. The last
three sensors, who are placed close to the end of the separation bubble, display a
very similar spectrum, indicating that pressure fluctuations inside the recirculation
zone propagate downstream without change of their frequency content.

The most energetic perturbations in this zone are around 4000 Hz, that corre-
sponds to a Strouhal number of 0.5. The scale in the premultiplied spectra of figure
2.18b are arbitrary, but the whole spectrum is known up to a multiplicative con-
stant, and this constant is the same for all frequencies: the fact that the peak in the
medium-frequency motions is more energetic than the one in the low-frequency indi-
cates that shock motions contribute less to the total amount of unsteadiness present
in the interaction. However, even if less energetic, low-frequency unsteadiness is
present in the whole interaction, as indicated by figure 2.18a, where the power spec-
tral density for low-frequency unsteadiness is high for all the sensors. Thus, even if
the weighted PSD in figure 2.18b presents a peak in the low-frequency range only
for the sensor at the shock foot, one can find low-frequency fluctuations even in the
separated zone.

On the contrary, the PSD distribution at the separation point indicates that the
shock foot present only low-frequency motions, suggesting a low-pass filter behaviour
with a cut-off frequency around f = 300 − 400 Hz (that correspond to the peak in
the weighted PSD of figure 2.18b): the shock passes low-frequency motions but
attenuates all the pressure fluctuations arising from the separated zone.

2.2.2 Skin-friction fluctuations

The purpose of this investigation is to determine statistical quantities of the skin-
friction fluctuations. To do that, thin metal film deposited on an electrically in-
sulating substrate, called hot-film sensors, are used. As indicated in figure 2.16,
three sensors were placed on the lower wall of the wind tunnel after the end of the
bump: one inside the recirculating bubble (x = 360 mm), one around the end of
the separated region (x = 390 mm) and one downstream of the recirculation bubble
(x = 420 mm).

The sensors5 were operated with a commercial constant temperature circuit
(DISA 55M10) and the signals were amplified, digitised and processed as described
in the previous section. Figure 2.19 presents the classic and weighted spectra for
the three films: in all cases one can notice that, as for the Kulite measurements

5Glue-on probe model 55-R47. The sensor is a 0.1×0.9 mm nickel film deposited on a 0.05 mm
thick polyimide foil carrying a 0.5 µm quartz coating.
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downstream of the shock foot, the classic spectrum presents a high level of power
spectral density in the low-frequency region, and a bump at medium-frequencies.
When observing the weighted PSD, the bump is a broadband peak centred around
SL = 0.03, a slightly smaller value when compared to the wall-pressure fluctuations.

As for the Kulite investigation, when a sensor is placed inside the recirculation
zone and close to the shock foot (solid line corresponding to x = 360 mm in figure
2.19) both low- and medium-frequency motions are clearly observed: the weighted
spectrum presents a bump in the low-frequency range whose energy content has the
same order of magnitude as medium-frequency motions. This low-frequency bump
is still visible when the sensor is at the end of the recirculation zone and disappear
completely for the most downstream hot-film.

Finally, the peak corresponding to f = 50 Hz present in all curves of figure 2.19
is a consequence of the commercial electric-power distribution system and is not
linked to any physical phenomenon of the interaction.

(a) Power Spectral Density. (b) Premultiplied spectrum.

Figure 2.19: Skin-friction fluctuations on the centreline of the test section: inside
the recirculation zone, at the reattachment point and after the separated zone.

As for the medium-frequency peak, the skin-friction fluctuations indicate that
shock unsteadiness has a lower frequency with respect to the pressure fluctuations:
the weighted PSD present a maximum value for f = 70 − 100 Hz when computed
with Hot-films signals, whilst in the Kulite investigation of section 2.2.1 the peak was
around f = 300− 400 Hz. This shift is due to the different measurement technique
and attenuates when considering transducers in the same position, as for medium-
frequency motions: Kulite sensors indicate a maximum of premultiplied spectrum
for f = 4 kHz, while the skin-friction measurements present a peak in f = 3 kHz.

Despite the small difference in the peaks of the weighted spectra, both mea-
surement techniques confirm that this transonic SWBLI is characterised by low-
frequency motions, mostly located at the shock foot but which are present also in
the separated region, and medium-frequency motions, localised after the separation
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point and not only limited to the recirculation zone. This observation compares
favourably with all the SWBLI studies discussed in literature, and by scaling the
frequency with the above mentioned characteristic length and velocity scales one
can find a good agreement with other configurations in the supersonic regime such
as compression ramps (Dolling and Brusniak, 1989; Wu and Martin, 2008) or shock
impinging on a turbulent boundary layer (Dupont et al., 2006; Touber and Sandham,
2008).

2.3 High-speed Schlieren visualisation

Pressure and skin-friction measurements, although very reliable, are only at few
points, and always located at the wall. In order to have a global description of the
unsteady behaviour of the interaction, high-speed Schlieren visualisation is proposed.
If Kulite measurements are too local, it has to be said that the Schlieren visualisation
may suffer the opposite problem, as the image that we obtain is the span-wise
integration of the light beam, so it may include three dimensional effects due for
example to the boundary layers at the vertical walls of the wind tunnel. Despite
the integration of these three dimensional effects that can be partially excluded by
focusing the Schlieren image at the centreline of the wind tunnel, the images yield
a detailed description of the unsteady behaviour of the whole interaction.

Schlieren visualisation is a technique based on the deflection of light by a refrac-
tive index, widely used to investigate the dynamics of the fluid structure. The flow
index gradient is directly related to flow density gradient, and the deflected light is
compared to undeflected light at a viewing screen by blocking the undisturbed light
using a knife edge. The light that is deflected toward or away from the knife edge
produces a shadow pattern that is a light-intensity representation of the expansions
(low density regions) and compressions (high density regions) which characterise the
flow. In particular, the magnitude of the observed gradient is proportional to the
light intensity measured by the camera sensor: a dark point on the image corre-
sponds to negative density gradient, whilst a bright point indicates the presence of
a positive one.

A high speed camera6 is placed on the side of the wind tunnel, and 60000 images
(464 × 360 pixels) are recorded at 35 kHz frame rate. The magnification ratio is
around 3.3 px/mm, producing an image whose length is 140 mm and spans the whole
channel height. The results presented in the next sections stem from acquisitions
with both horizontal and vertical knife-edge: the light intensity is proportional,
respectively, to the vertical ∂ρ/∂y and horizontal ∂ρ/∂x components of the density

6Vision Research, Phantom V710. 7 Gpx/second throughput, 300 ns digital exposure.
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(a) ∂ρ/∂x, Schlieren image. (b) ∂ρ/∂x, numerical simulation.

Figure 2.20: Horizontal density gradient obtained with a Schlieren apparatus, using
a vertically oriented knife edge, and by numerical simulation from chapter 3.

gradient, as represented in figures 2.20 and 2.21.

Figure 2.20a presents the horizontal density gradient, obtained with a vertically
oriented knife edge: the shock wave has a positive density gradient, and is therefore
white. The boundary layers are not visible, as they do not present any gradient in
the stream-wise direction. The shock wave compares favourably with the density
derivative in the stream-wise direction obtained from the mean flow computed in
chapter 3, presented in figure 2.20b. In the instantaneous Schlieren image, the flow
after the shock foot is characterised by the existence of the mixing layer, and presents
a succession of positive and negative density gradients, due to the vortices that are
shed from the separation point. In this zone there are the small-scale structures that
are responsible for the high-frequency unsteadiness, not captured by the numerical
simulation. Figure 2.20a also indicate that the mixing layer is the source of noise,
whose presence can be seen under the form of Mach lines, almost vertical, that
perturb the shock.

Figure 2.21a has been obtained with a horizontal edge-oriented knife: the bound-
ary layer, that displays a positive gradient normal to the wall, is bright on the lower
wall while it is dark on the upper one, corresponding to respectively positive and
negative ∂ρ/∂y, respectively. Considering the shock wave, the density gradient is
positive in the flow direction: in almost all the channel, the vertical component of
the velocity is slightly negative, due to the curvature of the bump on the lower wall.
The density gradient is thus a vector whose vertical component is negative, except
for the upper part of the shock (bright spot on the top of figure 2.21a). The mixing
layer zone is characterised as before by a succession of small-scale structures and
also, close to the shock foot, by a bright horizontal elongated zone, corresponding to
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(a) ∂ρ/∂y, Schlieren image. (b) ∂ρ/∂y, numerical simulation.

Figure 2.21: Vertical density gradient obtained with a Schlieren apparatus, using a
horizontally oriented knife edge, and by numerical simulation from chapter 3.

the mixing layer that was created by the boundary layer separation near the shock
foot. This horizontal line defines clearly the extension of the separated zone. The
numerical result presented in figure 2.21b confirms the presence of a shock wave
almost completely characterised by a negative density gradient and the bright zone
above the recirculation bubble due to the separation of the boundary layer.

In this section, we use Schlieren photography to get a better understanding of
the spatial distribution of the unsteadiness of the flow, performing Fourier analysis
and investigating the two-point correlations of the density gradient field on the
whole image. If on one side flow-visualisation methods offer a good spatial and
temporal description of the observed zone, for example giving access to 464 × 360

points at 35 kHz, on the other side the number of tonal values that are used to
describe the light intensity is not comparable to the level of description obtained by
other sensors, as for example the Kulite or hot-film sensors described in section 2.2.
In our investigation the camera was equipped with a 12-bit colour depth sensor:
the light intensity measured by each pixel is associated to a number between 0
and 4095. The available range is too small to describe at the same time both the
strong density gradient due to the shock wave and the small density variations in
the mixing layer caused by the vortex shedding. For this reason, the image often
presents colour saturation, for example in figure 2.21a on the shock (black region
caused by the absence of light) or at the beginning of the mixing layer (white region
associated to too much light intensity). This problem can affect the results of the
image processing, altering for example the Fourier modes (adding high-frequency
energy in the saturated zone due to the signal truncation), or the correlation maps
(showing 100% correlation because of the absence of texture in the images).
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2.3.1 Fourier modes decomposition

FFT is the most important discrete transform, used to perform Fourier analysis. In
image processing, the samples can be the values of pixels along a row or column of
a raster image. The time resolved image sequence can be written as I(i, j, n) where
I is the light intensity of each image point (or pixel). In this study, i and j vary
from 1 to 464 and 1 to 360, respectively, and n defines the snapshot number and
varies from 1 to N = 60000. For a given position (i, j), the time series that represent
the evolution of light intensity at a given pixel of the field can be written as pij(n).
Assuming a linear correspondence between light intensity and density gradient, one
can compute the Fourier transform of pij(n) using an FFT algorithm with Hanning
window function, 60 blocks with 50% overlap of 2048 images. Due to the limited
amount of data samples, the spectrum has a resolution of f = 17 Hz and does not
present any peak; yet, relying on the informations obtained in the previous section,
we consider in the following the spatial structure of a low- and a medium-frequency
mode, corresponding to the peaks displayed in pressure spectrum of figure 2.18b.

Figure 2.22 shows the spatial structure of a low-frequency mode at f = 300 Hz,
obtained with vertical and horizontal edge-oriented knives. The left side of the figure,
referred to horizontal density gradient, indicates that low-frequency unsteadiness of
the stream-wise density gradient is located on the whole lambda shock wave, without
small scales structures after the separation point. Figure 2.22b shows the vertical
density gradient associated to this low-frequency mode. It indicates that the mode
has its maximum strength at the shock foot (see also upper wall shock foot), but
that it is in general located on the entire shock wave pattern, mostly in the first
leg, but also in the second one that forms the lambda pattern. Moreover, low-
frequency fluctuations are found also in the core of the mixing layer, where the PIV
investigation (section 2.1) indicates that the turbulence production has its maximal
value. The absence of energy inside the shock is a consequence of the lack of light in
the Schlieren images (as in figure 2.21a), and should not be interpreted as a steady
region of the flow.

On both representations in figure 2.22, in the upper left side of the image two
diagonal lines indicate the presence of compression waves in the supersonic zone,
which are generated at the sonic throat and propagate across the flow at the Mach
angle α = sin−1(1/M). As it will be shown by the global stability analysis, those
compression waves are important in the flow dynamics because they represent the
direction along which information propagates in the supersonic zone.

Figure 2.23 presents the Fourier mode at f = 4000 Hz, the frequency where
pressure fluctuations reach their maximal value in the separated zone. On both
density gradient components, the Fourier mode is located in the mixing layer region
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(a) Horizontal density gradient ∂ρ/∂x. (b) Vertical density gradient ∂ρ/∂y.

Figure 2.22: Fourier mode at low-frequency (f = 300 Hz) for the horizontal (a) and
vertical (b) density gradient.

downstream of the separation point. Concerning the horizontal density gradient,
figure 2.23a indicates the presence of some small-scale structures, located in the
mixing layer. Similar structures are also visible on the upper wall. The mode shape
in the shock region remains close to the shape of the low-frequency mode, with
amplitudes decreased by a factor 4: this behaviour confirms results already discussed
when analysing the pre-multiplied spectra obtained with wall measurements, where
we observed that the strong peak observed at low-frequencies and close to the shock
foot rapidly disappears as more downstream sensors are considered. Note that the
energy levels change between figures 2.22 and 2.23: the maximum mode energy on
the shock is 4 times lower than the energy in the low-frequency mode.

(a) Horizontal density gradient ∂ρ/∂x. (b) Vertical density gradient ∂ρ/∂y.

Figure 2.23: Fourier mode at medium-frequency (f = 4000 Hz) for the horizontal
(a) and vertical (b) density gradient.
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The vertical density gradient of the medium-frequency mode indicates that the
most energetic fluctuations are in the mixing layer, whilst the shock does not present
any medium-frequency unsteadiness at all. This result is in disagreement with what
was observed in the Fourier mode decomposition of the horizontal density gradient,
where medium-frequency motions were present inside the shock wave, too. This
feature has been observed also in the DNS simulations of Wu and Martin (2008), who
documented the presence of small-amplitude span-wise wrinkling on the shock, and
by Agostini et al. (2012) in LES simulations. However, the energy in the medium-
frequency Fourier mode on the shock could also come from the truncated signal
due to colour saturation: the white zone in the Schlieren photography is always
associated to high energy on the Fourier mode, whatever the frequency, whilst a
saturated black zone corresponds to low energy. This feature can affect the result
by adding non-physical mode energy: in the shock-wave region when investigating
the horizontal density gradient, and the boundary layers when investigating the
vertical one.

Although less detailed in frequencies, the Fourier modes decomposition confirms
the presence of two characteristic modes, and indicates the spatial location of the
unsteadiness: the shock wave seems to behave as a low-pass filter, displaying its
maximum fluctuations at low-frequencies, even though some energy is still visible
in the medium-frequency range. Low-frequency unsteadiness is located not only at
the shock foot, as suggested by Kulite measurements, but also on the whole shock
wave and also at the top of the recirculation bubble. This feature is not observable
with wall pressure transducers and indicates that the mixing layer has energetic
contributions for both low- and medium-frequencies. A similar result has recently
observed in a compression ramp configuration (Grilli et al., 2012), where dynamic
mode decomposition confirms the presence of a low-frequency mode associated to
the pulsation of the separation bubble and accompanied by a forward-backward
motion of the shock.

Medium-frequency unsteadiness is located in the mixing layer that develops after
the separation point. Using LES flow fields, Pirozzoli et al. (2010b) performed a
similar Fourier analysis and found a similar result in a shock-impinging supersonic
configuration: the medium-frequency mode is energetic in the mixing layer that
develops after the separation point. Concerning the presence of medium-frequency
motions on the shock, further investigations are needed to understand if the shock
behaves as a low-pass filter as indicated by the unsteady-pressure measurement in
section 2.2 and by other studies (Plotkin, 1975; Touber and Sandham, 2011), or
if the shock is just a mirror of the physical phenomena localised in the separated
zone presenting both low- and medium-frequency motions (Wu and Martin, 2008;
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Agostini et al., 2012).

2.3.2 Two-point correlations

In this section a set of N = 20000 images is used for analysing two-point correlations.
Contrary to the analysis performed in the previous section, the correlation does not
carry any information about the interaction in the frequency domain, but can give
insights on the coherent structures present in the flow. As previously mentioned,
the image series can be written as I(i, j, n) where the light intensity of a given pixel
at time n (indicated as pij(n)) is proportional to the horizontal or vertical flow-
density gradient. If we consider another pixel on the image, whose coordinates are
given by (k, l), one can compute the correlation between the time series at point
(k, l), indicated as pkl(n), and the time series at all other points pij(n). For image-
processing applications where the brightness of the images varies due to lighting,
the images have to be normalised by subtracting the mean and dividing them by
the standard deviation. The cross correlation coefficient is given by:

Ckl(i, j) =
1

N

N∑
n=1

[pij(n)− pij] [pkl(n)− pkl]
σijσkl

(2.9)

Where pij indicates the mean value of the light intensity and σij and σkl are the
standard deviations at the pixels (i, j) and (k, l), respectively.

σij =

√√√√ 1

N

N∑
n=1

(pij(n)− pij)2

The result of this operation is a set of 464×360 fields that represent, for each in-
terrogation point (k, l) the correlation map between the chosen pixel and the whole
image. The approach proposed in this section consists in fixing an interrogation
point, for example at the shock foot or in the mixing layer, and look at the zones
of the flow where the density gradients are correlated to that point. Contrary to
the correlation analyses based on wall pressure measurements (Dolling and Erengil,
1991; Dupont et al., 2006; Debiève and Dupont, 2009) or on numerical simulation
data (Larchevêque et al., 2010; Touber and Sandham, 2008), the presently examined
quantity is not directly linked to a physical quantity, but is just a qualitative asso-
ciation between light intensity and density gradient, without a calibration process.

Figures 2.24 (a) and (b) present the correlation maps for the horizontal and
vertical density gradient, when the reference point is at the shock foot. On both
Schlieren visualisations one can notice a strong correlation between the shock foot
and the entire shock wave, suggesting that shock movements are, regardless of the
frequency, rigid-body displacements centred on the shock mean position.
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(a) Horizontal density gradient ∂ρ/∂x. (b) Vertical density gradient ∂ρ/∂y.

Figure 2.24: Correlations for a reference point located at the shock foot for the
horizontal (a) and vertical (b) density gradient. The correlation point is indicated
by the + symbol.

(a) Downstream displacement: smaller bubble. (b) Upstream displacement: bigger bubble.

Figure 2.25: Relation between stream-wise shock displacements from its mean po-
sition and vertical movements of mixing layer and slip line.

The horizontally elongated regions observed in the mixing-layer in figure 2.24b
indicate that shock movements are correlated to vertical displacements of the mixing
layer, the separation point being located at the wall just downstream of the shock
foot. Due to the bump slope, stream-wise shock movements correspond to vertical
displacements of the separation point, that impact the recirculation bubble height.
The consequences are contraction and expansion motions of the separated zone
that were already observed with conditional analysis in a similar SWBLI: Kussoy
et al. (1988) used two-component LDV to investigate a Mach number M = 2.85

flow past a flared cylinder. The shock wave position was determined using high-
speed shadowgraph and pressure transducers. Simultaneous laser velocimetry and
measurements of wall-pressure fluctuations showed that the so called breathing of
the separated zone was synchronised with the motion of the front leg of the lambda-
shock system.

The sketch in figure 2.25 explains how the horizontal shock displacements from
its mean position are correlated to the contraction and expansion of the separated
zone. This simplified model also links the stream-wise shock oscillations to the
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vertical movements of the slip line, indicated by the correlation map in figure 2.24b.
As this discontinuity in the flow does not display significant variations in density
along the horizontal component of velocity, the slip-line unsteadiness is only visible
when analysing vertical density gradients.

(a) Horizontal density gradient ∂ρ/∂x. (b) Vertical density gradient ∂ρ/∂y.

Figure 2.26: Correlations for a reference point in the mixing layer zone for the
horizontal (a) and vertical (b) density gradient. The red dot indicates the correlation
reference point.

The boundary layer fluctuations do not seem to be correlated to the shock or
the mixing layer, even if this observation is limited by the spatial resolution of the
Schlieren visualisation, that is not sufficiently accurate to investigate the small-scale
structures of the incoming flow: when considering a point in the incoming boundary
layer, the correlation coefficient is small everywhere in the flow except in the flow
upstream the shock foot. On the contrary, when considering a point in the mixing
layer, the spatial resolution of the Schlieren investigation is sufficiently detailed to
correlate the vortex generated by the separation point.

Figure 2.26 presents the correlation maps for different points in the mixing layer:
in this figure the reference pixel pkl is always at the same vertical coordinate that
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corresponds to the centreline of the mixing layer, and is moving downstream, starting
from x = 340 mm in the figure on the top. When considering the horizontal density
gradient, the correlation maps indicate the presence of large scale structures that can
be linked to the vortex shedding caused by the separation point. The sketch in figure
2.27a helps understanding the horizontal density distribution caused by a vortical
structure, and the effect of a fluctuation on those region. On the lower part of the
image, the evolution of the density gradient is plotted for two position of the vortex.
The correlation map highlights the zone in the mixing layer where we find similar
density gradient distribution, due to the occurrence of a vortical structure. The
result is a positive zone in the center of the vortex, where the correlation point is,
flanked by two anti-correlated zone above and under the vortex. A similar behaviour
can be observed in figure 2.27b where the anti-correlated zone are above and under
the correlation point.

(a) Horizontal density gradient ∂ρ/∂x. (b) Vertical density gradient ∂ρ/∂y.

Figure 2.27: Vertical and horizontal pressure distributions when vortical structures
are shed in the mixing layer zone.

When considering the vertical density gradient of figure 2.26b the relation be-
tween the mixing layer movements and the shock displacement is more evident than
in figure 2.26a: close to the separation point, the shock foot and the mixing layer
are highly correlated, as indicated when the reference point was near the shock foot
(figure 2.24). In this zone, the Fourier modes decomposition showed high energy at
low-frequencies. Considering reference points more downstream in the mixing layer,
the shock movements become less and less correlated with the fluctuations at these
points, while some circular structures begin to appear in the mixing layer. As for the
horizontal density gradients, the circular structures can be related to the vortices
generated by the Kelvin-Helmholtz instability, that are convected along the shear-
layer in the downstream direction. Similar circular periodic patterns have also been
observed in a shock-reflection configuration by Agostini et al. (2012) and associated
to medium frequency unsteadiness trough band-pass filtering.
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2.4 Conclusions

The aim of the experimental study presented in this chapter was to characterise a
transonic shock wave/boundary layer interaction over the Délery bump, focusing
on both the mean flow and the unsteadiness. Two-component PIV measurements
gave access to a full flow description, providing details on the turbulent velocity
field in the interaction region. The results presented for the mean flow give a com-
plete description of the shock-induced separation region, providing new insight in
the SWBLI case of a strong shock interacting with a turbulent boundary layer. The
accuracy of the measurements was validated through a comparison with a similar
study on the same configuration where possible, and all the results are in fair agree-
ment with similar investigations. The boundary layer is shown to be completely
developed and its size increases while approaching the shock due to the curvature
of the bump. The main effect of the shock wave is the flow detachment with conse-
quent formation of a separated region. The boundary layer recovery starts gradually
downstream of the recirculating bubble. Three regions of the flow, supersonic, sub-
sonic and reverse flow, have been completely characterised, and the mixing layer has
also been analysed starting from the shock foot.

The analysis of wall-pressure and skin-friction fluctuations give access to a local
description of the unsteady behaviour of the interaction. Near the shock foot, low-
frequency unsteadiness dominates the spectrum, while after the separation point
medium-frequency fluctuations are most energetic. The recirculation zone presents
both low- and medium-frequency unsteadiness. Similarly to other SWBLI configu-
rations the fluctuations are broadband and weak in amplitude, and no single-peak
frequency dominates the spectrum as in the buffet problem. Using a characteris-
tic length and velocity, the flow unsteadiness can be scaled to obtain two Strouhal
numbers representative of low- and medium-frequency unsteadiness, that compare
favourably with other configurations, confirming that the frequency-selection process
typical of SWBLI is present for this particular transonic case.

Fourier modes decomposition of high-speed Schlieren visualisation can give some
spatial information about the zone of the field where low- and medium-frequency un-
steadiness are more energetic. The results confirm the separations of temporal scales
between the unsteadiness in the shock region and in the mixing layer: the shock wave
seems to behave as a low-pass filter, even if some medium-frequency motions can be
found in the shock region, whilst the mixing layer region is characterised by medium-
frequency motions. When considering correlation maps obtained investigating the
vertical and horizontal density gradients, one can observe that shock motions are
solid displacement accompanied by expansion and contraction movements of the
recirculation bubble. When considering the mixing layer region, correlation maps
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can highlight the vortex shedding caused by the separation point, linking Kelvin-
Helmholtz type instability to the medium-frequency unsteadiness observed with wall
measurements. Moreover, the size of the structure is small if compared to the size
of the recirculation bubble, indicating that the medium-frequency unsteadiness is
associated to the so called flapping motion of the shear layer.



Chapter 3

Numerical approach

The configuration experimentally analysed in chapter 2 is now numerically consid-
ered. The domain is a two-dimensional reproduction of the S8Ch wind tunnel, from
the convergent section up to the second throat, not included in order to avoid the
second shock wave, whose role is to filter the noise arising from the wind tunnel
engines in the experimental investigation.

In a general case of turbulent flow for which the scale decoupling assumption
holds, the dynamics of the large scales may be captured using unsteady RANS
equations. Following this approach, the impact of the small scales dynamics onto
the large ones is accounted for by a turbulence model, which results in additional
viscosity, called the eddy viscosity.

In the case of SWBLI, all the experimental result described in the previous chap-
ter have shown that the most energetic fluctuations can be divided in two distinct
phenomena: the low-frequency oscillations in the shock region and the medium-
frequency motions, localised mostly in the recirculation bubble and in the shear
layer downstream the separation point. Both phenomena exhibit characteristic fre-
quencies below those that can be observed in the small-scale motions representative
of turbulence. For this reason, even if the turbulence undoubtedly affects the ob-
served unsteady motions, we believe that the dynamics of a shock-wave/boundary-
layer interaction can be described by the temporal integration of Reynolds-averaged
Navier-Stokes equations. This assumption does not imply the independence of low-
and medium-frequency unsteadiness to the turbulence, but indicates that most of
the interaction dynamics can be captured without a complete simulation of all the
small-scale structures present in the flow.

In this chapter we first perform a numerical simulation solving RANS equations
(section 3.1). The flow field converges to a steady-state solution, indicating that
unforced RANS equations are not able to capture the low- and medium-frequency
unsteadiness. The asymptotic two-dimensional numerical solution is compared with

47
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the mean flow obtained by PIV investigation in section 2.1. The solution is then
considered for a stability analysis: the linearisation of the equations is presented
in section 3.2, together with the eigenvalue decomposition of the Jacobian matrix.
Different model governing small-amplitude perturbations are compared by analysing
the flow spectrum and the associated global modes.

Finally, in section 3.3 we propose a stability analysis based on the global Resol-
vent, which aims at analysing the convective instabilities arising in a flow subject
to external forcing: this forcing can be seen as environmental noise that is natu-
rally present in the case of a real flow; the investigation will highlight any physical
mechanism that is able to select and amplify particular perturbations at given fre-
quencies. Such an approach should be able to analyse the role of the shock, the
mixing layer or the recirculation bubble, in the frequency-selection process, and if
there is a link between the unsteadiness observed in experiments and the quantities
computed during the stability analysis.

3.1 Numerical simulation

Shock-wave/boundary-layer interactions require an accurate model to reproduce the
various dynamical features shown in the experimental chapter. Turbulence models
remain widely used in this area as the computational cost to solve the Navier-Stokes
equations using direct numerical simulation (DNS) drastically increases with the
Reynolds number. The Reynolds-Averaged Navier-Stokes equations (RANS) are
obtained considering turbulent flows for which scale decoupling assumption holds.
The whole numerical investigation presented in this section is based on this assump-
tion, considering that the impact of the small scales dynamics onto the large ones is
correctly captured by an eddy viscosity µt.

The simulations were performed using the elsA v3.3 code developed at ONERA
and CERFACS (Cambier et al., 2012). This software solves, among others, RANS
equations with various turbulence models and relies on a finite volume formulation
applied on structured grids. Numerical computations were performed in parallel
over up to 64 cores on ONERA’s supercomputer Stelvio, using 2.8 GHz Intel Xeon
5560 (Nehalem) processors.

3.1.1 RANS equations

After spatial discretisation the governing equations can be recast in the general
conservative form:
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dw

dt
= R(w) (3.1)

where w ∈ RN represents the set of conservative variables describing the flow
at each spatial location of the mesh in the domain Ω and R : Ω ∈ RN → RN is
derivable over Ω and represents the discrete residuals. Using a finite volume method,
the dimension of w corresponds to the number of cells in the mesh times the number
of variables. Note that all boundary conditions are included in the discrete operator
R.

In a more complete form, the Navier-Stokes equations in equation (3.1) can be
rewritten as:

d

dt

(
wmf

wtf

)
=

(
Rc,mf +Rd,mf

Rc,tf +Rd,tf + T

)
(3.2)

where the superscripts mf and tf refer respectively to the mean and turbulent fields
of the RANS equations. In particular, wmf = (ρ, ρU, ρE)T where ρ designates the
density, U the velocity and E the total energy of the flow. Terms Rc, Rd and T
correspond respectively to the convective and diffusive fluxes of the equations and
the turbulence source term. The continuous form of the mean field fluxes in equation
(3.2) are given by:

Rc,mf = −

 ρU

ρU⊗U + pI

ρEU + pU

 Rd,mf =

 0

τ + τr

τU + τrU− q− qt

 (3.3)

with
p = ρRT τ = −2

3
µ (∇ ·U) I + 2µD q = −cpµ

Pr
∇T (3.4)

τr = −2

3
µt (∇ ·U) I + 2µtD qt = −cpµt

Prt

∇T (3.5)

p is the pressure, R the perfect gas constant, cp the heat capacity at constant pres-
sure, µ the viscosity, T the temperature, τ the viscous tensor, q the heat flux,
D and I the rate of strain and identity tensors respectively, µt the eddy viscosity
(computed with the chosen turbulence model), τr the Reynolds stress tensor, qt

the flux of diffusion of turbulent enthalpy, Pr and Prt the classical and turbulent
Prandtl number assumed constants and taken respectively equal to 0.72 and 0.9.
The preceding equations were derived using Boussinesq hypothesis and perfect gas
relations. The viscosity is computed using Sutherland’s law:

µ = µs

√
T

Ts

1 + Cs/Ts
1 + Cs/T

(3.6)
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with the constants µs = 1.71 10−5 Pa·s, Cs = 110.4 and Ts = 273 K. The variables
U,E are Favre averages whereas the other ones corresponds to the classical Reynolds
average.

Turbulence model

Spalart-Allmaras (S-A) turbulence model (Spalart and Allmaras, 1992) has been
used to provide closure for the averaged Reynolds stresses, introducing the kinematic
viscosity transform ν̃ with wtf = (ρν̃). The model has been chosen because previous
studies (Brunet, 2003; Deck, 2005; Crouch et al., 2007) proved its ability to correctly
reproduce the challenging buffet configuration, indicating that this particular one-
equation model compares favourably even with more complex non-linear low-Re
eddy-viscosity models (Barakos and Drikakis, 2000). The turbulent fluxes and source
terms are then given by:

Rc,tf = −
(
ρν̃U

)
Rd,tf =

(
µ+ ρν̃

σν̃
∇ν̃
)

(3.7)

T =
(
Prod+ Cross+Dest

)
(3.8)

The source terms can be identified as:

• a production term Prod = Cb1S̃ρν̃

• a cross diffusion term Diff =
Cb2
σ
∇ρν̃ · ∇ν̃

• a destruction term Dest = −Cw1fwρ
ν̃2

η2

with, noting Ω the vorticity:

S̃ = |Ω|+ ν̃

K2η2
fv2, fv2 = 1− χ

1 + χfv1

fw = g

(
1 + C6

w3

g6 + C6
w3

)1/6

g = r + Cw2

(
r6 − r

)
r =

ν̃

S̃K2η2

The turbulent eddy viscosity is finally defined by µt = ρν̃fv1 with:

fv1 =
χ3

χ3 + C3
v1

χ =
ρν̃

µ

The values of the constants for the Spalart-Allmaras model are given in Table 3.1.
The model is designed such that the turbulent variable ρν̃ tends towards the eddy
viscosity µt far from the walls.
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Cb1 Cb2 σ K Cw1 Cw2 Cw3 Cv1

0.1355 0.622 2/3 0.41 Cb1/K
2 + (1 + Cb2)/σ 0.3 2 7.1

Table 3.1: Constants used in the Spalart-Allmaras model.

Numerical scheme

We use the finite volume code elsA developed at ONERA (Cambier et al., 2012)
to solve the steady RANS and unsteady URANS equations. The system defined in
equation (3.2) is solved for each cell (i, j) of volume Ω and surface Σ in its integral
formulation:

d

dt
Wij = Rc

ij −Rd
ij + Tij = Rij, (3.9)

with:
Wij =

1
Ω

∫
Ω

WdΩ Tij =
1
Ω

∫
Ω

T dΩ (3.10)

Rc,d
ij =

1
Σ

∮
Σ

Rc,d · ndΣ =
1
Ω

(
Rc,d

i+1/2,j +Rc,d
i,j+1/2 +Rc,d

i-1/2,j +Rc,d
i,j-1/2

)
(3.11)

In particular Rij corresponds to the discrete residual operator.
A second-order AUSM+(P) upwind scheme is used for the mean convective fluxes

(Mary et al., 2000). Roe and Jameson schemes were not considered due to poor shock
treatment when investigating low-frequency dynamics. All numerical limiters where
forced to be inactive. The convective flux associated to the turbulence equationRc,tf

ij

is discretised using the first-order Roe scheme with Harten’s correction to prevent the
occurrence of low eigenvalues (Harten and Hyman, 1983), whilst a central difference
scheme is used for the turbulent diffusive flux. The viscous flux of the mean field is
calculated at the interface by averaging cell-centred values of flux density which is
computed from cell-centred evaluation of gradients. The source terms are discretised
using estimates of gradients and variables at cell centres.

Steady-state solutions are obtained using a backward-Euler scheme with local
time-stepping. Unsteady solutions are computed using second-order Gear’s formu-
lation with a physical time step fixed at Tst = 5 · 10−7, which corresponds, for the
grid described in section 3.1.2 to maximum CFL numbers of about 15 in the bound-
ary layer, and in most of the domain below 1. At least 8 Newton sub-iterations are
required at each time step to decrease the norm of the residual by a factor of 10.

Boundary conditions

The boundary conditions are imposed directly in the fluxes evaluation at the bound-
ary, and correspond to the experimental configuration as described in chapter 2: both
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(a) Residuals computation. (b) Normalised residual.

Figure 3.1: Evolution of the explicit residuals during a base flow computation ini-
tialising the flow with a uniform state.

upper and lower walls are considered as adiabatic and the boundary layers start de-
veloping in the settling chamber. As in the experimental investigation, a boundary
layer develops at the upper wall and interacts with the shock wave producing an
incipient separation bubble.

The inlet boundary condition matches the thermodynamical state of the flow
in the settling chamber of the experiment: the total temperature is 300 K and the
total pressure is 96500 Pa. The flow enters in the contraction at Mach number 0.1,
given by a horizontal velocity of 35 m/s and no vertical velocity component. The
boundary condition at the end of the domain is an outlet pressure condition, where
the uniform pressure value has been imposed to match the shock-wave position on
the bump (approximately p = 62 kPa at x = 0.65 m).

Convergence of the computation is assessed by ensuring that the explicit residuals
of the mean and turbulent equations have decreased from their value at the first
iteration (the computation is initialised with a uniform flow) by at least 8 orders of
magnitude. A typical evolution of the residuals is given in figure 3.1 for the mesh
described in section 3.1.2.

3.1.2 Computational grid

The computational domain is a single-block reproduction of the S8Ch wind tunnel.
All the numerical simulations and the stability analyses are performed on the same
structured grid, composed of 120000 nodes: 300 nodes in the vertical direction and
400 nodes in the stream-wise direction, 200 of whom in the vicinity of the shock,
where the average distance between two mesh points is 0.45 mm. Considering the
bump length c as a characteristic dimension, this corresponds to a resolution of
∆x/c = 0.0016 in the interaction region. In this zone, outside of the boundary layer,
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the cells are almost square, the grid spacing in the boundary layer is refined in order
to locate the first point always below y+ = 0.6.

Figure 3.2: Left: whole domain, showing 1 point out of 4 in x and 1 out of 8 in y.
Right: zoom in the shock region, showing all the points of the grid.

Figure 3.2 shows the whole domain used in the numerical investigation: on the
left, one can see that all the channel is represented, from the convergent section to
the test section. The shock region is refined using a constant point distribution in
the horizontal direction (only one point out of 4 is represented in x and 1 point out
of 8 in the vertical direction). The right part of figure 3.2 presents a zoom in the
vicinity of the shock, where the cells are almost square, to obtain the same resolution
for both the horizontal and vertical directions. To check the spatial convergence of
the computations, four other meshes are considered, where we modified the number
of points in the interaction region. Considering the mesh with 120000 points as the
reference, two coarser and two finer grids are analysed. The characteristics of the
different grids with the spacing between their nodes are summarised in table 3.2.

mesh name Imax Jmax ∆x ∆x/c

mesh 1 340 300 0.69 mm 2.4 · 10−3

mesh 2 370 300 0.57 mm 2.0 · 10−3

reference 400 300 0.45 mm 1.6 · 10−3

mesh 3 450 300 0.34 mm 1.2 · 10−3

mesh 4 540 300 0.23 mm 0.8 · 10−3

Table 3.2: Characteristics of the computational grids.

All grids converge to the same RANS solution in terms of shock location, size
of the recirculation bubble and separation point position. The effect of the grid
refinement impacts the shock thickness: figure 3.3 presents the density jump across
the shock obtained using the different grids. The points on the lines indicate nodes
in the meshes. Stream-wise density profiles have been extracted at the point where
the shock wave is normal to the flow direction, around y = 0.08 m. One can notice
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that the shock is always described by the same number of points, and the shock
location, marked in figure 3.3a by a vertical line, is independent of the grid spacing.

(a) Density across the shock wave. (b) Density-gradient across the shock wave.

Figure 3.3: Density and density-gradient evolution across the shock wave.

However, the mesh refinement has a strong impact on the shock thickness: figure
3.3b presents the evolution of ∂ρ/∂x and indicates that coarser grids correspond to
thicker shocks. As will be shown in the next sections, this will not impact the
results of global-mode decomposition. On the contrary, the results of the stability
analysis based on the global Resolvent will show a higher dependency on the grid
spacing, as they consider the energy associated to the shock wave, that depends on
its thickness. Despite this particular case that will be discussed in section 3.3, the
computations show a good grid convergence, and if not specified, the results will
refer to the reference mesh.

3.1.3 Results

The velocity field stemming from the RANS simulation is presented in figure 3.4.
Superimposed to the isocontour plot of the stream-wise velocity field, the dashed-
dotted line indicates the zone of the flow where the Mach number is equal to 1.
The lambda-shock system can also be seen by observing the distribution of the
horizontal and vertical density gradient, as shown in figures 2.20 and 2.21. On the
upper wall the strong pressure gradient of the shock wave induces separation of
the turbulent boundary layer, and a small separation bubble is visible. This feature
cannot be confirmed by the experimental investigation since PIV results do not cover
the whole channel.

Figure 3.5a presents a comparison between the horizontal velocity component
obtained with the PIV investigation, as described in section 2.1, and the result
of the RANS simulation. The shock position, even if not completely captured by
the PIV frame, is correctly reproduced on the top of the test section, but in the
numerical result the shock foot seems to be slightly more downstream. Moreover,
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Figure 3.4: Stream-wise velocity field. Sonic line dash-dotted.

the PIV results indicates a thicker shock, but this can be caused by the integration
of shock unsteadiness in the experiments. The supersonic tongue is underestimated
by the RANS simulation, while the extent of the separation bubble is overestimated.
Figure 3.5b presents the turbulent eddy-viscosity obtained with the Spalart-Allmaras
turbulence model.

(a) Horizontal velocity field: RANS simulation
versus PIV measurements (solid lines).

(b) Turbulent viscosity ratio.

Figure 3.5: RANS simulation results and comparison with PIV investigation.

Some other comparisons between the numerical and experimental results are
presented in figure 3.6. Static pressure has been measured through 36 pressure taps
in the centreline at the lower wall: numerical result, obtained representing static
pressure at the first grid cell, are in a good agreement with the wind tunnel data:
the flow acceleration on the convergent is correctly reproduced and one can observe
a rise of static pressure starting from x = 320 mm, corresponding to the shock foot.
The recirculation bubble is characterised by a small pressure plateau, and after the
separated zone the static pressure reaches the value imposed at the downstream
boundary condition.

Figure 3.6b presents two velocity profiles taken inside the recirculation bubble
(at x = 360 mm) after the end of the bump. Starting from the wall, one can notice
that the PIV investigation and RANS simulations are in agreement in the separated
zone, with the PIV measurements indicating a smaller negative velocity inside the
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bubble. This can be considered, as discussed in section 2.1, as a limitation of the
experimental investigation, that tends to underestimate the velocity magnitude close
to the walls. From y = 10 mm to y = 50 mm, the profile is between the first shock leg
and the second shock. Here the velocity values obtained with RANS simulation are
5% smaller than those obtained in the experimental investigation. This discrepancy
can be attributed to the different shock shapes obtained in the numerical and PIV
studies. However, starting from y = 60 mm, the profile is in the supersonic zone
before the shock wave (see figure 3.5), where experimental and numerical results
indicate the same velocity.

(a) Wall pressure. (b) Velocity profiles.

Figure 3.6: Comparison between experimental and numerical investigation.

Overall, RANS computations are in a fair agreement with the experimental in-
vestigation, even if some discrepancy exists in the separation zone, probably caused
by the tendency of PIV investigation to underestimate the size of the recirculation
bubble, as discussed in section 2.1. However, the goal of the RANS simulation is not
to reproduce the mean flow, but to obtain a base flow, sufficiently close to the exper-
imental configuration analysed in chapter 2, in order to investigate the unsteadiness
of this transonic SWBLI. In that respect, the characteristic length and velocity used
in future sections to scale the frequency are the same as in the experimental investi-
gation: L = 35 mm is taken as the interaction length, corresponding to the distance
between the separation point and the projection of the second shock on the wall,
and U = 300 m/s is considered again as the characteristic velocity, corresponding
to the speed of the flow above the recirculation bubble, even if the numerical results
indicate a slightly different value.

URANS computations indicate that the flow is steady. This result is not surpris-
ing since Knight and Degrez (1998) analysed the numerical prediction capabilities
of RANS computations and stated that turbulent interaction predictions are only
correct in terms of mean-pressure distribution: in this case, the RANS calculations
fail to predict the intermittent separation stage and to capture the high levels of
unsteadiness in the shock system.
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Configuration without boundary layers

For reasons that will be clear in the next sections, we also considered a configuration
with the same geometry, but with a slip boundary condition on both upper and lower
walls, in order to remove the boundary layers and the separated regions from the
base flow. The computational grid is the same as the one described in section 3.1.2,
but without the grid refinement close to the walls. A new RANS simulation yields
a transonic channel flow with a normal shock wave impinging on the bump. The
outlet pressure was adapted in order to locate the shock at approximately the same
position as the configuration with boundary layers.

Figure 3.7: Configuration without boundary layers. Sonic line dash-dotted.

As can be seen from figure 3.7, the shock foot is at the end of the bump, approxi-
mately in the same position as in the configuration with boundary layers (figure 3.4).
The absence of viscous effects yields a single curved shock without the characteristic
lambda pattern observed in the previous case: the shock is now a normal strong
shock always perpendicular to velocity vector. This configuration gives access to
the effects of the shock wave independently from the separation bubble, and as will
be seen in next sections, can give some useful insight on the acoustic resonances and
on the shock response to external forcing.

3.2 Global-mode decomposition

In this section we describe the linearisation process that yields the Jacobian matrix,
and then we perform a stability analysis based on the eigenvalue decomposition of
the linear operator.

3.2.1 Theoretical formulation

In the following, the flow dynamics is governed by equation (3.1). RANS computa-
tions described in section 3.1 indicate that there exists a steady solution w0 ∈ RN,
referred to as the base flow, defined by the discrete equation:

R (w0) = 0. (3.12)



58 CHAPTER 3. NUMERICAL APPROACH

In the examined case, the governing system contains the Spalart-Allmaras equations,
thus the base flow w0 takes into account the Reynolds stresses involved in the
turbulent model. The vector w0 thus represents

w0 = (ρ0, ρU0, ρV0, ρE0, ρν0)T (3.13)

where ρν is introduced by the Spalart-Allmaras turbulence model and the subscript

0 indicates that the variables are referred to the steady solution found by RANS
simulations.

The stability of the base flow is probed by analysing the evolution of a small
amplitude perturbation εw′ superimposed on the base flow: w = w0 + εw′, with
ε� 1. In the case of governing equations involving a turbulence model, the pertur-
bation also involves variations of the turbulent quantities, and the turbulence model
equation is also linearised in the stability study. However, we will show in section
3.2.3 that some interesting results can be obtained considering other linearisation
methods, where the fluctuation of the turbulent quantities are not taken into ac-
count when deriving the Jacobian matrix (frozen µt model), or where the turbulent
variable is not considered at all (quasi-laminar model).

The equation governing the perturbation is given by the linearisation to the first
order of the discretised equations (3.2):

dw′

dt
= Jw′ (3.14)

The Jacobian operator J ∈ RN×N corresponds to the linearisation of the discrete
Navier-Stokes operator R around the base flow w0:

Jij =
∂Ri

∂wj

∣∣∣∣
w=w0

(3.15)

where Ri designates the ith component of the residual, which is a priori a function of
all unknowns wj in the mesh. The J operator involves spatial stream-wise and cross-
stream derivatives, which may be discretised with finite volumes to lead to a large-
scale matrix. Since we use a finite volume method, the spatial discretisation stencil
is compact and the ith component of the residual only depends on few neighbouring
unknowns. Hence, J is a sparse matrix in such cases. The proposed formalism does
not assume homogeneity of the fluctuations in a given direction, and corresponds to
the BiGlobal linear-stability analysis as introduced by Theofilis (2003).

A base flow or a matrix J is said to be asymptotically stable if the modulus of
any initial perturbation tends to zero for large times; otherwise it is asymptotically
unstable. Based on this definition, the stability of a base flow is determined by
scrutinising the spectrum of the matrix J. To this end, particular solutions of
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equation (3.14) are sought in the form of normal modes w′ = ŵeλt, where λ = σ+iω

describes its temporal behaviour (σ is the amplification rate and ω the pulsation)
and ŵ ∈ CN its spatial structure. Then equation (3.14) may be recast into the
following eigenvalue problem:

Jŵ = λŵ (3.16)

If at least one of the eigenvalues λ exhibits a positive growth rate σ, then the base
flow w0 is unstable. We refer to unstable flows as oscillators since the unstable
mode will naturally grow and impose its dynamics to the flow regardless of any
external perturbations. Noise amplifiers refer to globally stable flows, in which case
an external forcing term is required to maintain unsteadiness.

3.2.2 Numerical strategy

To compute the linearised operator, we follow a strategy based on a finite difference
method to obtain Ju, where u is an arbitrary vector. More precisely, we evaluate the
Jacobian matrix by repeated evaluations of the residual function. The code used
to perform CFD simulation may then be used in a black box manner: assuming
that the code generates a valid discrete residual R(u), one may obtain Ju with the
following first order approximation:

Ju =
1

ε
[R (w0 + εu)−R (w0)] (3.17)

where ε is a small constant. By choosing a series of well-defined vectors u, we can
compute all the Jacobian coefficients involved in (3.15) solely by residual evalua-
tions, which are provided by the numerical code. Moreover, the Jacobian structure
is intrinsically linked to the discretisation stencil, which we chose to be compact,
ensuring the sparsity of the matrix. The procedure is then optimised using a set of
vectors u that take into account the stencil discretisation of the residual R in order
to compute all the matrix J coefficients with only a few residual evaluations. More
details on the numerical strategy can be found in Mettot et al. (2013).

Once we obtain the linearised Navier-Stokes operator, the eigenvalue problems in
equation (3.16) are solved using Krylov methods combined with a shift-invert strat-
egy (open source library ARPACK (Lehoucq et al., 1998)), so as to focus on the least-
damped eigenvalues. Matrix inversions are carried out in the following with a direct
sparse LU solver for distributed memory machines (MUMPS see http://graal.ens-
lyon.fr/MUMPS/, or SuperLU-dist see http://acts.nersc.gov/superlu/). The in-
verses are quickly obtained but the drawback is the very high requirements in terms
of memory, typically around 50 times the memory of the matrix to be inverted.
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3.2.3 Results

The theoretical approach hereby described has been applied to the RANS solution
presented in section 3.1. In order to ease the comparison between numerical and
experimental investigation, we will present the results using the dimensionalised
frequency f (expressed in Hertz, instead of the pulsation ω). The Strouhal number
SL, as introduced in equation (1.1), is also shown in the plots. By solving the
eigenvalue problem in equation (3.16) we obtain a set of global modes, depicted
in figures 3.9 and 3.11. The spectrum is obtained by computing the five closest
eigenvalues with respect to a given shift. Several computations with a shift ranging
from f = 0 up to f = 7000 Hz (corresponding to SL = 0.8).

Figure 3.8: Eigenvalues.

(a) Stable mode at f = 0 Hz.

(b) Stable mode at f = 130 Hz.

(c) Stable mode at f = 540 Hz.

Figure 3.9: Stable global modes.

As indicated in figure 3.8, all the eigenvalues display a negative real part, indi-
cating that the global modes are damped. Among the stable eigenvalues (see red
symbols) one can recognise a group of modes in the lower part of the spectrum,
in the range of Strouhal number that corresponds to low-frequency unsteadiness.
Figure 3.9 shows the real part of some of those modes (only the density component
is depicted), that is located entirely on the shock wave. The first mode (figure 3.9a)
is stationary, and does not carry any information about the unsteady behaviour of
the interaction. The two other (figures 3.9b and 3.9c) are also located mainly on the
shock as in the previous case, but with the addition of the slip line caused by the
triple point and some sort of vertical structures after the shock. A possible interpre-
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tation could be that those structures are acoustic waves that resonate with the test
section, and the shock responds with a solid-body motion to those waves. However,
despite the fact that the mode frequency is in the range of low-frequency motions,
all the modes are stable, so the link between the low-frequency shock unsteadiness
and those modes remains a hypothesis.

Considering higher Strouhal numbers, one can recognise that the eigenvalues in
figures 3.8 and 3.10 (the eigenvalues are represented) are grouped in periodic quasi-
horizontal lines, with some scattering as the damping rate becomes very strong.
The spatial form corresponding to the first mode on each quasi-horizontal line (see
red symbols) is presented in figure 3.11: the shock wave is still visible, but the
circular structures present in each case suggest that the modes are probably linked
to acoustic phenomenon.

Figure 3.10: Eigenvalues.

(a) Stable mode at f = 1290 Hz.

(b) Stable mode at f = 2340 Hz.

(c) Stable mode at f = 3500 Hz.

Figure 3.11: Stable global modes.

In this configuration, as for a generic flow in long ducts, if the acoustic wavelength
has the same size of the characteristic device length, the acoustic standing-wave
resonances may dominate the flow (Koch, 2005). As it will be shown in section
3.3, those resonances are independent from the interaction between the shock and
the boundary layer, and scale with the channel height. Considering more damped
eigenvalues, more than 100 eigenvalues have been analysed. Even if many modes
can be found in the Strouhal number range that correspond to medium-frequency
unsteadiness, none of them present a spatial structure that can be linked to mixing



62 CHAPTER 3. NUMERICAL APPROACH

layer instabilities as expected from the experimental investigation.

Grid convergence

As previously introduced, two finer and two coarser meshes have been considered to
assess the grid dependency. In the numerical simulation of section 3.1.2, changing the
spatial resolution in the interaction zone was directly affecting the shock thickness.
Figure 3.12a shows the superposition of the spectra obtained with all the different
grids, as described in section 3.1.2.

(a) Grid convergence. (b) Configuration without boundary layers.

Figure 3.12: Eigenvalue decomposition for different grids and configurations.

On can notice a very small grid dependency of the eigenvalues. The modes can
be considered converged in the lower part of the spectrum, while some discrepancies
appear at higher frequencies, which is consistent with the fact that these modes are
associated to small-scale structures. Coarser meshes can cause spatial filtering of
those structures. However, the frequency associated to those structures are outside
the range of interest of our study (the medium frequency unsteadiness occurs in
the experiments around f = 2 − 6 kHz), so we consider that the reference grid is
adapted for the purpose of the investigation.
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Boundary-layer effects

Figure 3.12b presents the comparison between the eigenvalues of the reference case
and the eigenvalues obtained when considering the base flow obtained with a slip
condition on the walls, described in section 3.1. The absence of boundary layers
barely impacts the eigenvalue distribution: one can still recognise that the modes
are grouped in quasi-horizontal lines, confirming that these modes are neither linked
to the boundary layer nor the shear-layer dynamics, but more to the acoustical
features of the channel. Low-frequency eigenvalues are slightly more damped, and no
high-frequency modes appear or disappear from the spectrum in this configuration,
suggesting once again that the eigenvalue decomposition does not yield a complete
characterisation of the dynamics of the SWBLI.

Other models governing the perturbation dynamics

All the results presented up to this point were obtained considering a linear model
obtained by linearisation of the full equations, including the turbulence model: the
imposed perturbations included fluctuations of the eddy viscosity µ′t. We will now
consider two different cases, where we treat differently the turbulence variable in the
linearisation process.

(a) Uncoupled spectrum. (b) Quasi-laminar spectrum.

Figure 3.13: Eigenvalue decomposition for linearisation methods.

In particular, we will consider the so-called uncoupled and quasi-laminar system
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as proposed by Reynolds and Hussain (1972). The first case is obtained when in the
mean field equations (3.2) the turbulent variable is frozen in the linearisation process,
so that the eddy viscosity is a spatial field that only depends on the coordinate
system, without fluctuations µ′t (Cossu et al., 2009; Juan and Javier, 2006). In the
second case, turbulence is taken into account only for the determination of the base
flow (RANS simulation), but during the linearisation process the eddy viscosity µt is
neglected in (3.3). This is equivalent to assuming that, when analysing the evolution
of the small amplitude perturbation, the turbulence affects the perturbations only
indirectly, through the mean velocity profile, and not directly, through its stresses
(Reynolds and Hussain, 1972). It’s important to note that the base flow is always
the same since w0 satisfies equation (3.12) as presented in section 3.1, but a different
linearisation process leads to a different Jacobian matrix J.

The eigenvalue decomposition of the Jacobian matrix for the uncoupled system
is presented in figure 3.13a. In the same plot is also represented the spectrum
obtained for the coupled system as discussed before, indicated as reference: an
unstable global mode appears at f = 57 Hz. The mode, whose spatial distribution
of density component is presented in figure 3.14a is similar to the stable mode
obtained for f = 0 Hz but we also observe structures on the mixing layer and
the slip line. The result suggests that the shock motions could be described by an
unstable global mode. Yet, this is most likely not relevant to describe the broadband
SWBLI unsteadiness, because it indicates that the flow spectrum should display a
peak in the vicinity of the eigen-frequency, similarly to the shock buffeting problem
considered in chapter 4.

(a) Unstable global mode at f = 57 Hz. Uncou-
pled Jacobian matrix.

(b) Unstable global mode at f = 1590 Hz.
Quasi-laminar Jacobian matrix.

Figure 3.14: Unstable global modes obtained with different linearisation methods.

A part from the unstable global mode, one can notice a very good agreement
between the coupled and uncoupled system, for all medium frequency modes. When
considering eigenvalues with frequencies less than 2000 Hz excluding acoustic modes,
a small shift in the amplification rate is observed.

The eigenvalue decomposition of the quasi-laminar system, presented in figure
3.13b, yields similar results: most of the modes are grouped in lines as the acoustic
modes in the reference case, whilst the others show a shift in σ. However, in this case
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no low-frequency unstable modes are found, but concerning the medium-frequency
range, a series of slightly unstable modes can be observed at frequencies where the
reference case presented the least stable eigenvalues. The spatial distribution of
the most unstable mode is presented in figure 3.14b: the density component shows
periodic quasi-circular structures as for the acoustic resonance mode at a similar
frequency in figure 3.11a, but with the addition of more energetic structures in the
mixing layer zone.

Here again the result is interesting since it suggests that Kelvin-Helmholtz type
instability could be described by the considered approach; yet such modes may
not be relevant to discuss medium-frequency unsteadiness since in the experimental
spectrum we observed broadband fluctuations, not linked to acoustic phenomena.
As Reynolds and Hussain (1972), who considered the linear stability of the mean
flow profile in a turbulent channel flow, we conclude that the eddy viscosity model
is mandatory to take into account the impact of the small turbulent scales onto the
perturbations dynamics.

3.3 The global Resolvent

Regardless of the fact that the Jacobian matrix J may or may not have unstable
eigenvalues in equation (3.16), the flow may exhibit transient growth due to the non-
normality of the linearised Navier-Stokes operator (Sipp et al., 2010). In the case
of a noise-amplifier flow, all the eigenvalues of J are damped: an external forcing
is required to sustain unsteadiness. In experiments, this external forcing may be
the environmental noise naturally present in the wind tunnel, or some form of noise
arising from the separated zone, which is not taken into account in the RANS and
URANS simulation.

3.3.1 Theoretical formulation

Noise amplifiers dynamics can be analysed by considering the response of the base
flow to a small amplitude forcing. For this reason we consider the RANS equations
as in (3.1) where we add a small external forcing f ′:

dw

dt
= R(w) + f ′ (3.18)

The flow w can be seen as the superposition of the base flow w0 plus a response w′,
driven by the external forcing f ′:

w = w0 + w′ (3.19)
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If we introduce this decomposition in equation (3.18) and consider that the base
flow w0 is a solution of the Navier-Stokes equations (thus dtw0 = 0) we have:

dtw
′ = R(w0 + w′) + f ′ (3.20)

Considering a first-order Taylor expansion of the Residual, which is valid for small
amplitude forcing, the response w′ is governed by the linearised Navier-Stokes equa-
tions, with J as the Jacobian matrix introduced in equation (3.14):

dtw
′ = Jw′ + f ′ (3.21)

We consider, at a given real frequency ω, a forcing f ′(x,y, t) and a response w′(x,y, t)

in the form f ′ = f̂(x,y)eiωt and w′ = ŵ(x,y)eiωt: the harmonic forcing f̂ induces the
harmonic response û, with f̂ , ŵ ∈ CN . Simplifying and re-arranging the equation
for ŵ yields:

ŵ = R f̂ (3.22)

where R(ω) ∈ CN×N is the global Resolvent matrix:

R = (iωI− J)−1 (3.23)

I is the identity matrix, and the global-Resolvent matrix is defined for any real
frequency ω since all eigenvalues of J are strictly damped.

The relation in equation (3.22) gives access, for a given frequency, to the harmonic
response of the system when forced with a harmonic forcing of a given spatial form.
We now introduce the gain G, function of the external forcing f̂ , that is defined for
every frequency as the ratio between the energy of the response and the energy of
the forcing itself.

G(f̂) =
〈ŵ, ŵ〉Qe

〈f̂ , f̂〉Q
(3.24)

For the forcing, the scalar product 〈·, ·〉Q is a discrete inner-product in CN based on
a positive definite hermitian matrix Q such that:

〈u,v〉|Q = u∗Qv (3.25)

where ∗ denotes conjugate transpose. The associated norm ‖u‖Q =
√
〈u,u〉|Q will

be used. For the flow response, as we want the numerator of the gain function (3.24)
to be the kinetic energy E =

∫
(u2 + v2)dxdy of the response ŵ, we define a pseudo

scalar product 〈·, ·〉Qe such that

〈w,w〉|Qe
= w∗Qew = E (3.26)

The computation of the matrix Q and Qe is given in section 3.3.2, where we show
in particular that the matrix is real, symmetric and semi-definite positive.
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Among all the possible perturbations, we are looking for the forcing that causes
the strongest response in the flow, thus the forcing which maximises the gain func-
tion, called the optimal forcing. Inserting equation (3.22) into (3.24) we obtain:

Gmax(f̂) = sup
f̂

〈R f̂ ,R f̂〉Qe

〈f̂ , f̂〉Q
= sup

f̂

〈f̂ ,R†R f̂〉Qe

〈f̂ , f̂〉Q
(3.27)

where R† is the adjoint operator. The previous ratio is a Rayleigh quotient since
R†R is an Hermitian matrix. For each frequency ω, this optimisation problem,
that leads to the so-called optimal forcing, can be solved by using the singular-value
decomposition of the global Resolvent R(ω), given by:

R†R f̂ = λ2f̂ (3.28)

The optimal gain λ2 is real and corresponds to the singular value of the global
Resolvent R(ω). In equation (3.28) the real eigenvalue λ2 is related to the forcing
f̂ of unit norm, and λmax is related to the optimal forcing that maximises the gain
function.

The gain function quantifies if the flow acts like a high-, low- or broad-band
filter. The evolution of the gain, function of the frequency forcing, is given by the
evolution of the most energetic eigenvalue λmax of the global Resolvent R. Once
this optimal forcing has been computed, the associated optimal response ŵ can be
obtained solving (3.22), that for the specific case reduces to ŵ = R(ω)f̂ .

Note that the gain G corresponds to the ratio of two quantities of different physi-
cal dimensions: the numerator refers to the kinetic energy of the response, whilst the
denominator is an integration of the forcing over the domain. The gain G has been
chosen because the optimisation problem introduced above is mathematically well-
posed. The physical meaning of the gain G has been discussed by Sipp and Marquet
(2012) through an energetic input-output approach on a transitional boundary-layer
developing on a flat plate.

3.3.2 Numerical strategy

The global Resolvent discussed in this section is straightforwardly obtained, for each
frequency ω, once we have the Jacobian matrix, derived in equation (3.17).

Scalar product Q

Let us consider two continuous complex functions f ,g: Ω ∈ RN → CN. The domain
Ω which corresponds to the mesh is discretised such that Ω =

⋃
i=1,N Ωi, and we

designate by F ∈ CN and G ∈ CN the complex vectors corresponding to the discrete
form of the functions f and g on

⋃
i=1,N Ωi.
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The discrete inner product 〈·, ·〉Q in equation (3.25) is defined as the discretisation
of the continuous inner product inducing the L2 norm. That is:∫

Ω

f∗gdΩ =
∑

i=1,N

F∗i GiΩi = F∗QG = 〈F,G〉|Q (3.29)

As a consequence, Q is a real diagonal matrix whose terms Qi correspond to the
volume Ωi of the discretised cell i.

Scalar product Qe

Let us consider the two-dimensional laminar response at a given cell location of our
mesh ŵ = [ρ′, (ρu)′, (ρv)′, (ρE)′]T . As the response corresponds to small perturba-
tions of the base-flow conservative variables, we will denote the fluctuation with ′

to differentiate them from the base flow values. We aim at computing the kinetic
energy E =

∫
(u′2 + v′2)dΩ of the response at the considered cell of volume Ω. At

first order we have:

(ρu)′ = ρ′u+ ρu′ (3.30)

(ρv)′ = ρ′v + ρv′ (3.31)

In particular,

u′2 = (ρ′, ρ′u+ ρu′)

(
a b

c d

)(
ρ′

ρ′u+ ρu′

)
(3.32)

= aρ′2 + bρ′2u+ bρρ′u′ + cρ′2u+ dρ′2u2 + (3.33)

+ dρρ′uu′ + cρρ′u′ + dρρ′uu′ + dρ2u′2 (3.34)

which by identification leads to:

a = u2/ρ2, b = −u/ρ2, c = −u/ρ2, d = 1/ρ2 (3.35)

Therefore the energy matrix Qe is given by:

u′2 + v′2 = ŵ∗



(u2+v2)Ω
ρ2

−uΩ
ρ2

−vΩ
ρ2

0

−uΩ
ρ2

Ω
ρ2

0 0

−vΩ
ρ2

0 Ω
ρ2

0

0 0 0 0

0 0 0 0

 ŵ (3.36)

The matrix Qe is real, symmetric, and by definition semidefinite positive. Once all
the matrices are obtained, the eigenvalue problem in equation (3.28) can be solved
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using the algorithm of Lanczos and matrix inversions are obtained as described in
section 3.2.2. Note that solution of the eigenvalue problem in equation (3.28) is
found up to a multiplicative constant: we will only focus on the spatial structures
of those modes.

3.3.3 Energy maximisation on the whole domain

We present here the results that have been obtained by choosing the scalar products
in equation (3.24) without any restriction on the surface where we want to maximise
the kinetic energy of the response: the scalar product in (3.26) is computed consid-
ering the whole domain Ω. The forcing is referred only to the momentum variables
and is applied on the whole domain, perturbing thus at the same time the incoming
boundary layer, the shock and the mixing-layer regions.

Gain function

The evolution of the three most energetic singular values of the global Resolvent,
function of the forcing frequency, is presented in figure 3.15. In the range 1− 8000

Hz (Strouhal number between 10−4 and 1) the singular value λ1 is always much
greater than the other singular values λ2 and λ3, indicating that the flow dynamics
in the frequency range where our study is focused on can be represented just by the
most energetic λi.

(a) Gain function, logarithmic scale. (b) Normalised premultiplied optimal gain.

Figure 3.15: Most energetic singular values of the global Resolvent. Each λi repre-
sents the gain when the flow is forced, at the frequency f , with an optimal forcing.

The physical dimension of the singular values of the global Resolvent is given
by the ratio between a kinetic energy and the time-derivative of momentum, both
integrated on the domain. In order to ease the comparison with other studies, it
is useful to normalise this quantity: in figure 3.15 as well as in all future plots,
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the gain function has been normalised dividing the eigenvalues by a characteristic
time and multiplying by a characteristic density. The first quantity is given by the
ratio between the length of the bump c = 0.286 m and the reference velocity Uref
(the same used to compute the Strouhal number), whilst the second one is the flow
density in the interaction zone, where u = Uref , that is ρref = 0.73 kg/m3.

The value 1 of this particular gain function does not define a threshold between
damping and amplification: the role of the gain curve is to indicate if there is a
preferred range of frequencies associated to a strong response. In other words, if the
flow is perturbed with a broadband environmental noise, it is more likely that the
unsteadiness of the flow caused by that noise is located in the range of frequencies
where we have strong gains.

Figure 3.15 also shows that the gain function is not constant, but is more en-
ergetic for low frequencies up to 50 Hz, then decreases rapidly to another plateau
for 1− 4 kHz. The physical interpretation relies on the frequency-selection process
typical of this noise amplifier configuration: if we force the flow with an optimal
forcing at different frequency, the response is more energetic when we consider low
frequencies up to 50 Hz, and medium frequencies in the range of 1 − 4 kHz. The
weighted gain in figure 3.15b presents a peak near f = 50 Hz, that indicates the
frequency below which the gain function, or the PSD as observed in other studies
(Dupont et al., 2006), has a slope of -1.

If we observe the gain behaviour at higher frequencies, we can notice a third
bump in figure 3.15b starting from 10 kHz. This rise in the gain function could be
associated to high-frequency motions related to turbulent fluctuations, but as the
proposed model relies on a base flow that is solution of RANS equations, it is not
legitimate to discuss the turbulence-related motions as they are introduced through
the S-A turbulence model.

Low-frequency

The optimal forcing is shown in figure 3.16a: it is located mostly in the boundary
layer on the divergent part of the bump and has its highest value on the shock foot.
Starting from the top of the bump, where the flow becomes supersonic, the optimal
forcing forms an oblique pattern that bounces upstream on the upper sonic line and
then hits the shock foot.

To investigate the nature of this line we consider the well-known theory of char-
acteristics (Liepmann, 1957): in the supersonic region inside theM = 1 line, outside
the boundary layer, the viscous forces are negligible, and the equations of motions
reduce to the Euler equations. The hyperbolic equations governing the compressible
flow can be recast in the characteristic form. The main result of this approach is
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(a) Optimal forcing, frequency f = 50 Hz.

(b) Optimal response, frequency f = 50 Hz.

Figure 3.16: Real part of the optimal forcing and associated optimal response.

the existence of some typical lines, called the characteristic lines, along which infor-
mation propagates inside the supersonic flow. The slope of those characteristic lines
with respect to the flow direction is given by

γ = ± tan−1

√
1

M2 − 1
(3.37)

Figure 3.16a shows the superposition of the optimal forcing with the left and right
characteristic lines, associated to the negative and positive sign in equation (3.3.3),
respectively. The oblique part of the forcing follows exactly the right characteristic
line that impacts on the shock foot, where the recirculation bubble begins. This
feature can be interpreted as follows: the separation point has a fundamental im-
portance in the dynamics of the flow, and forcing its position can influence the whole
dynamics. As the information propagates along the characteristic lines, the optimal
forcing is energetic in the zone of the flow where a perturbation can propagate and
impact the separation point.

The real part of the optimal response for low-frequency forcing is presented in
figure 3.16b: the mode is located mostly on the shock wave, with a spatial form
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similar to what has been observed for the low-frequency Fourier mode of figure 2.22.
Moreover, although less marked, the response is also located in the core of the mixing
layer, with a horizontal structure of large wavelength: the low-frequency response
is associated to a breathing of the recirculating bubble. The presence of a negative
value of the mode in the mixing layer, associated to a positive value in the shock,
indicates that the contraction of the bubble is related to a downstream motion of
the reflected shock, whereas its expansions are related to intense reverse flow and,
consequently, upstream motion of the reflected shock. This observation is consistent
with the model proposed by Piponniau et al. (2009).

Medium-frequency

Following the same steps, we consider now a medium-frequency optimal forcing and
its induced response, presented in figure 3.17. The optimal forcing has now a more
elaborated spatial structure, but is still located both in the supersonic zone before
the shock and at the beginning of the mixing layer. Moreover, the maximum value
is again at the shock foot, where the pressure gradient causes the separation of the
boundary layer. Here the optimal forcing is no longer located along the characteristic
lines as for the optimal forcing at low frequency.

One can notice similarities of the optimal forcing and optimal response spa-
tial structures with those obtained by Marquet et al. (2008a) on an incompressible
rounded backward-facing step: we observe the Orr (Orr, 1907) and Kelvin-Helmholtz
(Drazin and Reid, 1980) mechanisms respectively at play in the forcing and response.
The medium-frequency forcing induces a response (figure 3.17b) that is mainly lo-
cated after the interaction: the structures of the response start from the separation
point around x = 0.33 mm and display a small wavelength: the size of the structure
is small if compared to the size of the recirculation bubble, visible in figure 3.4,
indicating that the medium-frequency unsteadiness is associated to the so-called
flapping motion of the shear layer (Kiya and Sasaki, 1983).

The mode is still present but less visible in the shock wave: the physical inter-
pretation relies on the fact that the most energetic response is in the mixing layer
and that, as confirmed by the spectra in figure 2.18, it is the dominant medium-
frequency motion. Moreover the mode wavelength inside the shock can be related
to the convection velocity: the shock wave occurs at u = 420 m/s and the speed
of sound is a = 320 m/s. Considering a convective velocity given by the difference
between the speed of the flow and the speed of sound, we can estimate a wavelength
L = (u − a)/f of 30 mm for the considered frequency, that compares favourably
with figure 3.17b. This results is consistent with the observation made by Robi-
net (2007), who found that when an oblique shock is disturbed, the perturbations
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(a) Optimal forcing, frequency f = 4000 Hz.

(b) Optimal response, frequency f = 4000 Hz.

Figure 3.17: Real part of the optimal forcing and associated optimal response.

propagate along the shock.

Density effects

Figure 3.18 shows the optimal response on the variable ρ: the spatial structure
of the response indicates that the mode is located on the shock for low-frequency
forcing and on the separated zone for medium-frequency, as previously mentioned for
the variable ρU . However, considering the low-frequency mode, unlike figure 3.16b,
the optimal response on the density (figure 3.18a) indicates that the second shock
leg exhibits low-frequency unsteadiness as the other part of the shock, confirming
the experimental result in the left part of figure 2.22. Near the separation point,
the medium-frequency mode is less energetic, suggesting that the breathing of the
bubble is linked to velocity fluctuation more than density perturbation.

For medium-frequency motions, figure 3.18b indicates again that Kelvin-Helmholtz
instability characterises the mixing-layer zone, as previously inferred from figure
3.17b. In comparison with the mode on ρU , the response on the density component
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(a) Optimal response, frequency f = 50 Hz.

(b) Optimal response, frequency f = 4000 Hz.

Figure 3.18: Real part of the density component for the optimal response.

is more localised in the centre of the mixing layer, without significant contribution
at the wall. If we compare this result with the correlation map in figure 2.24 ob-
tained with Schlieren photography we can recognise a similarity in the pattern of the
structure: although the experimental result does not rely on the flow density but on
its gradients, in both cases we can observe periodical round structures that develop
starting from the separation point. Moreover, the wavelength of those structures
associated to an optimal response at 4000 Hz is of the same order of magnitude as
the experimental one (see figure 2.26).

Acoustic resonances

For both low- and medium-frequency forcing, the optimal response resulting from
the linearised approach compares favourably with the experimental investigation of
chapter 2. In contrast with the experimental data, an isolated peak, located around
f = 1200 Hz and its multiples, is visible in the gain function for all the singular
values and indicates a resonance frequency. To investigate the nature of this peak
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we consider again the wall-slip configuration introduced in section 3.1, where a slip
condition at both walls avoids the development of the boundary layers.

For this configuration we obtain a new gain function, visible in figure 3.19a: the
acoustic peaks are now more visible, and the gain function for the most energetic
eigenvalue indicates that the resonance frequency does not change when not consid-
ering the boundary layers. The high value of the gain in the peaks indicates that
for these frequencies the flow is very sensitive to external forcing, and the responses
show (see figure 3.19) that acoustic resonance mechanisms are responsible for these
phenomena.

(a) Gain function. (b) Optimal responses at different frequencies.

Figure 3.19: Acoustic resonance on the configuration without the boundary layers.

The optimal responses associated to the resonance frequencies for this particular
slip configuration are presented in figure 3.19b for the two first resonant peaks at
f ≈ 41200 Hz and f ≈ 2400 Hz. For both frequencies, even if the optimal forcing
and its response are located everywhere in the domain, only the zone after the shock
has a significant energy content. Regarding the size of the structures in the modes,
here again we can relate the response wavelength to the convection velocity through
L = |u − a|/f , where u is the local flow speed. Furthermore, the structure of the
optimal responses of figure 3.19b indicates that the mode actually corresponds to an
acoustic resonance mode linked to the channel height and not to the channel length
(Koch, 1985).

One can notice a similarity in the spatial structure between the optimal responses
of figure 3.19b and the least stable global mode of figure 3.11: a part from the shock
shape, which has been modified by the interaction with the boundary layer, both
analyses (Jacobian eigenvalues and Resolvent singular values) highlight the acous-
tic resonances, with a fair agreement on the frequency prediction. This indicates
that the acoustic phenomena in the channel-flow configuration cannot be neglected
when studying the flow properties. However, the stability analysis based on the
global Resolvent can describe the frequency-selection mechanism that cause shock
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unsteadiness and Kelvin-Helmholtz type instabilities, while global-mode decompo-
sition fails to predict both the low-frequency and medium-frequency motions.

Considering again the entire gain function, the evolution of the first singular
value in the configuration without boundary layer still indicates a high gain for
low-frequencies: the energy content of the optimal response remains high even with-
out the separation, suggesting that low-frequency unsteadiness linked to the shock
motions has an inviscid nature. This implies that low-frequency shock oscillations
could be observed as a consequence of a broadband noise. In this case, even without
the boundary layers in the incoming flow or the recirculation zone after the sepa-
ration, the shock would amplify existing environmental broadband noise and react
preferentially with low-frequency motions.

Finally, comparing the gain function with the reference configuration (solid line in
3.19a), one can notice that λ1 is less energetic in the configuration without boundary
layers: this could be due to the absence of the lambda shock as well as the mixing
layer contribution (as can be seen in figure 3.18a) or to the different shock strength.
Moreover, the grid spacing in the vertical direction changes between the wall-slip
configuration and the reference. As it shown in section 3.1.2 and discussed in next
paragraph, the grid spacing has a strong influence on the internal shock structure
and on the singular values at low-frequencies.

Grid convergence

Similarly to previous sections, the grid dependency is verified with the introduction
of four additional grids: two coarser (mesh 1 and mesh 2) and two finer (mesh 3 and
mesh 4) meshes.

(a) Gain function, logarithmic scale. (b) Normalised premultiplied optimal gain.

Figure 3.20: Gain function for different computational grids.

Figure 3.20 shows the superposition of the gain curves obtained with the grids
described in section 3.1.2. Is it seen that the medium- and high-frequency motions
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are well converged while some strong discrepancies remain at low-frequencies. The
differences between the curves at low-frequency are more pronounced than those
observed in modes distributions in the eigenvalue decomposition (figure 3.12a).

As previously shown, low-frequency gain is associated to a response in the shock
wave, whose thickness is linked to the grid resolution. More importantly, a finer grid
yields high values of density derivatives on the shock, as shown in figure 3.3. For
low frequency, the most energetic eigenvalues of the global Resolvent are entirely
on the shock: the consequence is a strong dependency on the grid refinement. This
behaviour is even more remarkable when observing the weighted gain in figure 3.20.

The vertical shift associated to different grids in the gain function is equivalent
to the horizontal shift in the spectra of figure 3.12a. A part from the discrepancy of
the value of λ for low-frequency, the gain function still shows the behaviour observed
in the previous section with the characteristic low-pass filter behaviour and a bump
for high-frequencies. Moreover, medium-frequency λ values are not impacted by the
grid refinements, and show the same peaks in frequency even in the weighted gain
of figure 3.20.

3.3.4 Energy maximisation on a sub domain

Even if the forcing highest value is always located, for the discussed frequencies, in
the shock foot region, a great amount of forcing is present both in the supersonic field
upstream of the shock and in the mixing layer above the recirculation bubble. The
investigation previously discussed, although capable of reproducing the experimental
results of chapter 2, does not indicate the source of the unsteadiness, and whether
if it is legitimate to suppose that the source is unique.

In order to analyse separately the receptivity mechanism associated to different
zones of the flow (upstream boundary layer, recirculation bubble and shock wave),
we consider now a gain function maximisation as introduced in equation (3.27), but
using a restrained forcing term f̂s ∈ S that evolves in a subspace S ∈ CM ⊂ CN with
M < N of the flow configuration: the surface where the response kinetic energy is
maximised is still the whole field, but the optimal forcing is now located only in a
subspace of the entire domain, defined through a mesh subset, in order to exclude
one or more elements of the interaction. The sub-optimal forcing is then applied on
the momentum variables, as previously.

We thus introduce a prolongation matrix P ∈ CN×M such that if f̂s ∈ S then
Pf̂s ∈ CN, whose action is to add 0 to the restricted term. Similarly we define the
restriction matrix P∗ such that if f̂ ∈ CN then P∗f̂ ∈ S. Note that by definition of
these matrices we have: P∗P = I. In particular, the response ŵ now verifies:
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ŵ = RωPf̂s (3.38)

The energy maximisation (3.27) remains a generalised Rayleigh quotient whose so-
lution is given by:

R∗ωQeRωPf̂s = λ2QPf̂s. (3.39)

The solutions f̂s of this eigenvalue problem are thus sought in the subspace S and
then extended to our configuration with f̂ = Pf̂s.

The main purpose of this subspace investigation is to isolate the unsteadiness: it
has been shown that the shock acts as a low-pass filter of the external noise and the
separation bubble is prone to both low and medium-frequency unsteadiness, but the
forcing that caused each response was located in the whole domain. Following the
different theories on the origin of SWBLI unsteadiness discussed in the introduction,
we defined three zones, called subspaces, where we localise the optimal forcing.

These zones correspond the incoming boundary layer upstream of the shock wave,
the recirculation bubble generated by the separation after the end of the bump, and
a large zone that includes both the supersonic flow before and after the shock, but
excludes the boundary layer and the separated zone. A sketch of these regions is
presented in figure 3.21, where the solid black lines represent the velocity field of
the base flow and indicate the shock position.

Figure 3.21: Sub-domains used for local energy maximisation, indicated in different
colour. The solid lines indicate the base-flow velocity field.

The gain functions obtained using different subspaces are plotted in figure 3.22a.
The main effect of the subspace is to reduce the energy gain, suggesting the trivial
result that the more we force the flow, the more convective unsteadiness can be
triggered. The strong difference in curves level is mainly caused by the fact that the
subspaces do not involve the same surface area, so the values of λ are not comparable
between the different cases.
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(a) Optimal gain, most energetic eigenvalue. (b) Normalised premultiplied optimal gain.

Figure 3.22: Gain function when the forcing is in different domains of the interaction.

For the subspace in the shock region, the λ reduction mostly affects the medium-
frequency content of the gain, and an abrupt decrease is observed after the acoustic
peak close to 1.2 kHz: the gain function is similar to that obtained for the con-
figuration without boundary layers, confirming the low-pass filter behaviour of the
shock wave, and also indicating that medium-frequency unsteadiness is linked to the
separated region and cannot be triggered by forcing only the shock wave.

For the subspace in the recirculation zone (called bubble), the shape of the gain
curve presents a behaviour similar to the whole domain configuration: the gain
is most energetic for low-frequency, and the small bump is observed in the same
medium-frequency range as the configuration without subspaces. This indicates
that the mixing-layer zone is sensitive both to low- and medium-frequency forcing.
If we consider now a subspace in the incoming boundary layer (called upstream),
the associated gain function, green line in figure 3.22, shows that the frequency-
selection process is no more present like in the other cases: an optimal forcing in
this zone will not be able to trigger the low-frequency unsteadiness more than the
medium-frequency.

Figure 3.22b presents the “premultiplied gain”, where the product between the
eigenvalue associated to the optimal forcing and the forcing frequency has been
divided by a scale factor to ease the comparison. This plot indicates that the low-
frequency unsteadiness has a preferred frequency between 40 and 60 Hz. The re-
sponse associated to a forcing in this frequency range, linked to shock unsteadiness,
is obviously more energetic when the forcing is imposed on the shock wave. However,
this response is still present for the other configurations except when the forcing is
on the incoming boundary layer.

If we focus on higher values of f , one can observe that when the subspace is
in the recirculation zone, the peak on the weighted gain is shifted towards higher
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(a) Optimal forcing, f = 50 Hz. (b) Optimal response, f = 50 Hz.

(c) Optimal forcing, f = 4000 Hz. (d) Optimal response, f = 4000 Hz.

Figure 3.23: Subspace in the incoming boundary layer.

frequencies with respect to the configuration without subspace, but still in a range
that compares favourably with the experimental results. When the subspace is in
the shock wave, medium-frequency unsteadiness is not triggered. Regarding the gain
function obtained when the forcing is in the incoming boundary layer, as mentioned
for figure 3.22a, the energetic content of the response drops for frequencies higher
than 10 kHz, suggesting that there is no preferred unsteadiness for this spatial form
of the forcing.

However, the fact that there is no peak for medium-frequencies in this configura-
tion does not mean that a forcing in this zone cannot trigger the medium-frequency
instability: figure 3.23 presents the optimal forcing and associated response when
the subspace is in the incoming boundary layer. In figure 3.23a and 3.23c one can see
that the forcing is located only in a subset of the domain corresponding to the su-
personic boundary layer on the bump. Figure 3.23b indicates that the low-frequency
response is on the shock as for the configuration without subspace, even if the shock
top il less energetic than the shock leg.

Considering the optimal response to medium-frequency perturbations (figure
3.23d), imposing a forcing only in the incoming boundary layer yields a Kelvin-
Helmholtz type instability in the mixing layer as in the configuration without re-
strictions, despite the reduced size of the forcing.

A very similar behaviour is observed when the forcing is only in the mixing-layer
zone (figures 3.24a and 3.24c): even if we do not impose the forcing directly on the
shock, the perturbation can propagate upstream and trigger the shock unsteadiness.
However, as for the previous case, the energy of the response in the upper part of
the shock is smaller than in the lower part, suggesting that a perturbation located
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(a) Optimal forcing, f = 50 Hz. (b) Optimal response, f = 50 Hz.

(c) Optimal forcing, f = 4000 Hz. (d) Optimal response, f = 4000 Hz.

Figure 3.24: Subspace in the recirculation zone.

only on the bubble or in the incoming boundary layer does not cause a solid shock
motion but rather oscillations of the shock leg.

As for the configuration with the perturbation localised only in the boundary
layer upstream of the interaction, the low-frequency unsteadiness can be triggered
without imposing a forcing directly on the shock wave, indicating that the shock is
the mirror of the physical phenomena around him.

Considering figure 3.24d, the optimal response to medium-frequency perturba-
tion of the mixing layer causes a Kelvin-Helmholtz type instability as for the config-
uration without subspace. This result is not surprising since we are forcing directly
in the mixing layer zone.

(a) Optimal forcing, f = 50 Hz. (b) Optimal response, f = 50 Hz.

(c) Optimal forcing, f = 4000 Hz. (d) Optimal response, f = 4000 Hz.

Figure 3.25: Subspace in the shock wave.
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Figure 3.25 presents the final case of the subspace in the shock region, when the
forcing (figures 3.25a and 3.25c) is not applied on the boundary layer or the separated
region. Obviously the shock presents low-frequency response when excited with
low-frequency: this response is uniformly distributed along the entire shock wave.
However, forcing the shock with medium-frequency perturbations does not produce
a response in the mixing layer, indicating that perturbations in the shock region are
not able to trigger the unsteadiness to the separated zone.

This last observation confirms that the shock has a low-pass filter behaviour: if
a local forcing is applied to it without involving the separated zone, the shock is not
capable to trigger Kelvin-Helmholtz type instabilities in the mixing layer, and acts
like a filter to medium-frequency perturbations.

3.4 Conclusions

The aim of the numerical investigation proposed in this chapter was to examine
the transonic flow over the Délery bump using numerical simulation and stability
analysis. The configuration experimentally investigated in chapter 2 is initially
analysed using RANS simulation: the choice of the model is discussed with respect
to the scale decoupling assumption, and the results are discussed in terms of grid
convergence. In particular, we showed that the shock thickness is sensitive to the
spatial resolution of the domain.

The mean flow obtained using a local time stepping approach is in accordance
with PIV results presented in section 2.1. The solution gives a complete description
of the transonic interaction, within the limitations of RANS approach (Knight and
Degrez, 1998). When integrating the equation in time, URANS simulation con-
verge to a steady state, and therefore fails to predict the unsteady behaviour of the
interaction: no unsteadiness is found in the shock region nor in the mixing layer.

A stability analysis is then considered: the RANS equations are linearised around
the base flow obtained with RANS simulation, and the Jacobian matrix is computed
using residual evaluation in a discrete framework. The eigenvalue decomposition of
the linear operator indicates that, contrarily to Robinet (2007) and Touber and
Sandham (2011), no unstable global modes are present when considering coupled
equations, and the least-stable eigenvalues cannot be linked to the unsteady dynam-
ics.

The spectrum presents robust grid convergence properties. It indicates that most
of the stable global modes corresponds to acoustic resonances, and reveals some
interesting results when neglecting the effect of the turbulence equation. However,
as recognised in other papers (Sipp and Marquet, 2012), if the configuration is
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stable, a global-mode decomposition poorly describes the dynamics of the flow: the
spectrum can give some insight on the presence of low-frequency shock motions, but
a different stability analysis is required to perform a thorough characterisation of
the unsteady aspects of the considered SWBLI.

The global Resolvent is then introduced, and convective instabilities are analysed
by observing the receptivity of the flow to external forcing. This approach highlights
the frequency-selection process typical of globally stable flows, and indicates that the
considered SWBLI behaves as a noise amplifier. As indicated by the gain function,
there exists some optimal forcing that can trigger low-frequency oscillations in the
shock region, while medium-frequency perturbations can cause unsteadiness in the
mixing layer zone.

The optimal forcings are shown to be concentrated in the boundary layer both
upstream and downstream of the shock foot. In the supersonic region, low-frequency
forcings are also located along the right characteristic line that impinges on the sep-
aration point. Since in supersonic flows information travels along the characteristic
lines, this indicates that low-frequency unsteadiness can be triggered by upstream
perturbations, as long as they are in the boundary layer or on a characteristic line
that communicates with the shock foot. However, low-frequency shock motions don’t
need an upstream source to be present, since it has been shown that a sub-optimal
forcing localised only in the separated zone is able to cause unsteadiness.

Concerning higher frequencies, the gain function indicates that medium-frequency
perturbations can trigger Kelvin-Helmholtz type instabilities. The optimal forcing
is still located close to the shock foot, but a significant amount of forcing can be
observed in the mixing layer. The optimal response is located only downstream of
the separation, and no solid shock motions are observed.

By perturbing the flow on the restricted forcing locations, it has been shown
that both the incoming boundary layer and the separated zone can trigger Kelvin-
Helmholtz type instabilities, but the shock acts as a low-pass filter and is not capable
to cause mixing-layer unsteadiness if forced at medium-frequencies.

Grid convergence studies indicates that the optimal gains are not converged at
low frequencies because of the shock discretisation. Yet, the method is capable of
reproducing the spatial form of both low and medium-frequency motions, suggesting
that the proposed model is well adapted for the configuration and could be applied
to different SWBLI.
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Chapter 4

Flow over the OAT15A profile

In this chapter, we will consider another type of two-dimensional SWBLI in a tran-
sonic flow, where a normal shock causes the separation of the boundary layer over the
OAT15A supercritical profile. When the angle of attack is small, the configuration
presents some aspect similar to the channel flow discussed in the previous chapters:
the interaction between the strong shock and the turbulent boundary layer on the
suction side of the profile causes the separation of the flow, the shock is characterised
by the lambda pattern and a recirculation bubble is observed downstream the shock
foot. As it will be shown, the interaction embodies all the aspects that can be found
in other types of SWBLI, exhibiting both low- and medium-frequency unsteadiness.

When the angle of attack exceeds a critical value, the flow presents low-frequency
oscillations, known as shock buffeting. These oscillations differ from the low-frequency
motions typical of SWBLI because they are periodic and have high-amplitude. The
buffet phenomenon presents an industrial interest and has therefore been the subject
of numerous studies in the past (Pearcey, 1958; McDevitt and Okuno, 1985; Lee,
1990): the shock unsteadiness is a strong phenomenon that can lead to catastrophic
consequences, and is maintained without any external input of energy. However,
the periodic motions are still much lower than the timescales of the wall-bounded
turbulence, so a numerical simulation performed solving RANS equations is justified.

For these reasons, recent numerical studies have revealed that unsteady RANS
simulations can successfully reproduce the buffet unsteadiness using different tur-
bulence models (Barakos and Drikakis, 2000; Brunet, 2003; Deck, 2005; Thiery and
Coustols, 2006). Despite some discrepancy with the experimental investigation on
the critical angle of attack that determines the buffet onset, numerical simulations
can provide a complete description of this particular SWBLI, including the low-
frequency unsteady behaviour.

An attractive alternative to the time-integration of the URANS equations has
been proposed by Crouch et al. (2007), who applied global-stability analysis to
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the buffet problem on a NACA0012 profile. The linearised approach has shown
that, unlike other type of SWBLIs, the low-frequency unsteadiness can be linked
to a global instability as for a generic oscillator flow (Crouch et al., 2009). In this
chapter we will follow a similar approach considering an OAT15A profile, and apply
the method described in chapter 3 to characterise the flow unsteadiness using global
mode and singular-value decomposition.

The configuration is introduced in section 4.1, where we present the experimental
results of the investigation performed by Jacquin et al. (2009) on the same configu-
ration. Then, a wide range of angles of attack is numerically investigated by means
of RANS and URANS simulations (section 4.2), spanning from α = 2.5◦ to α = 7.0◦,
showing that the low-frequency shock oscillations can be reproduced using a turbu-
lence model. In section 4.3 we will show how direct and adjoint modes decomposition
can describe the main features of the flow, and that the buffet phenomenon is linked
to a global instability. Finally, in section 4.4 we present some results obtained
when performing a singular-value decompositions of the global Resolvent. As for
the channel-flow configuration, the approach indicates that convective instabilities
can arise in the medium-frequency range regardless of the presence of the buffet
phenomenon.

To scale the results with other SWBLI, the dimensionless frequency discussed
in this chapter is obtained scaling with the chord c = 230 mm and the reference
velocity Uref = 240 m/s. This velocity corresponds to the speed of the undisturbed
flow, where the Mach number is M = 0.73.

4.1 Experimental investigation

The experiments were conducted in the transonic S3Ch wind tunnel of ONERA,
a continuous closed-loop facility powered by a 3500 kW two-stage fan. The model
is an OAT15A supercritical aerofoil characterised by a c = 0.23 m chord length,
relative thickness of 12.3% and a 0.78 m span. The central region of the wing is
equipped with 68 static pressure taps and 36 unsteady Kulite transducers. In their
investigation, Jacquin et al. (2009) considered several combinations of Mach number
and angles of attack, adjusted by means of adaptable walls. In the numerical study,
we will only consider M = 0.73 with variation of the incidence α. The stagnation
conditions were near ambient pressure and temperature, and the Reynolds number
based on the chord length is around Rec = 3× 106. The boundary-layer transition
was triggered on the model using a Carborundum strip located at x/c = 0.07 from
the leading edge.

Figure 4.1a shows the mean distribution of the wall pressure coefficient Cp around
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the profile for four angles of attack. The upper part of the curves, that corresponds
to the suction side of the profile, is characterised by a pressure plateau before the
compression caused by the shock. Starting from α = 3.5◦ this pressure jump is
smeared out along the profile, indicating an unsteady position of the shock. In figure
4.1a one can also observe the effect of the Carborundum strips located at x/c = 0.07
(on both pressure and suction sides of the profile), which create a compression wave
particularly visible in the Schlieren image of figure 4.2.

(a) Mean surface pressure coefficient. (b) Power spectrum of pressure at x/c = 0.45.

Figure 4.1: Experimental investigation from Jacquin et al. (2009).

The buffet onset can also be noticed from the power spectra of pressure in figure
4.1b: for α = 3.0◦ the shock is steady, the signal energy remaining low and dis-
tributed among all frequencies. However, a bump can be detected between 40 and
100 Hz, the amplitude of this bump increasing with the angle of attack. For higher
values of α, the bump becomes narrower and a peak that corresponds to the buffet
frequency (f = 69 Hz) is visible from α = 3.25◦. When increasing the angle of attack,
the peak frequency remains at f = 69 Hz, indicating that the buffet frequency does
not depend on the angle of attack. On the contrary, as shown by other studies (Lee,
2001; McDevitt and Okuno, 1985), the buffet frequency is sensitive to the upstream
Mach number. Regardless of the angle of attack, all the spectra are energetic in
the medium-frequency range. Unfortunately the experimental studies focused only
on the low-frequency unsteadiness, so all the spectra presented by Jacquin et al.
(2009) do not give any information about a possible medium-frequency bump in the
premultiplied spectra as those observed in other SWBLIs.

Figure 4.2 shows the instantaneous Schlieren images for the two extreme shock
positions when the buffet is observed, at α = 3.5◦. On both images one can recognise
the shock wave with the classical lambda pattern, as observed in the channel flow.
When the shock is in the most upstream position (figure 4.2a) the separation involves
half of the profile, and the recirculation bubble can be recognised by a bright zone
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close to the profile under the mixing layer (darker zone that starts at the shock foot).
When the shock is in the most downstream position (figure 4.2b) the separation is
smaller, and the shock is better captured by the Schlieren image because of less
three-dimensional effects.

(a) Shock most upstream location. (b) Shock most downstream location.

Figure 4.2: Instantaneous Schlieren images from Jacquin et al. (2009).

Independent of the shock position, the compression wave caused by the Car-
borundum strip is always visible on the Schlieren image starting from the profile at
x/c = 0.07. Slightly upstream, one can recognise in both cases of figure 4.2 a bright
curved line: as it will be shown in next sections, this is a left characteristic line, that
has a central role in the stability of the flow.

4.2 Numerical simulation

The numerical simulations were performed using the same approach as for the
channel-flow configuration, described in section 3.1: RANS equations are solved us-
ing elsA v3.3 code (Cambier et al., 2012). The Spalart-Allmaras turbulence model
(Spalart and Allmaras, 1992) has been used to provide closure for the averaged
Reynolds stresses. Second-order AUSM+(P) upwind scheme and a first-order Roe
scheme with Harten’s correction are used for the mean and turbulent convective
fluxes, respectively. A second-order central difference scheme is used for the diffu-
sive fluxes.

A first-order backward-Euler scheme with local time-stepping yields steady-state
solutions, whilst unsteady computations are performed using second-order Gear’s
formulation with a physical time step fixed at Tst = 5 ·10−7. This yields a maximum
CFL numbers of about 13 in the boundary layer upstream the shock, 26 in the wake,
and less than 1 in most of the domain.
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Computational grids

Numerical simulations and stability analyses are performed on the same two di-
mensional structured grid, a C-type mesh where far-field conditions are imposed 50
chords away from the profile. The reference grid is composed of 70000 cells: 120
nodes in the direction normal to the profile, 90 nodes in the wake and 210 nodes
on each side of the profile. The first mesh point in the boundary layer is below
y+ = 0.9 near the interaction. Two additional grids are considered for the mesh
convergence, where the grid refinement has been changed in the shock region, in a
similar way as done for the channel-flow configuration in section 3.1.2. Considering
the chord length c as a characteristic dimension, the grid definition in the shock
region is ∆x/c = 0.003 for the reference mesh, ∆x/c = 0.002 and ∆x/c = 0.001 for
the convergence study.

(a) Whole domain, showing 1 point out of 8
along the profile and 1 point out of 4 in the
direction perpendicular to it.

(b) Zoom in the shock region, showing all the
grid points around x/c = 0.5.

Figure 4.3: Reference mesh used for the numerical simulation and stability analysis.

Figure 4.3 shows the whole domain used in the numerical investigation: on figure
4.3a one can see the whole domain, where only one point out of 8 is represented in
along the profile and 1 point out of 4 in the direction perpendicular to it for the
reference mesh. The shock region is refined using a constant grid refinement in
the stream-wise direction: figure 4.3b presents a zoom in the vicinity of the shock,
showing all the grid cells. Similarly to the channel-flow configuration, the effect of
the grid refinement impacts the shock thickness, but not the shock location.
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Boundary conditions

The simulations mimic the wind-tunnel testing conditions described in section 4.1,
with boundary conditions that match the experimental situation: the far-field pres-
sure is 101325 Pa, the total temperature is 300 K and the Mach number is M =

0.73. The boundary layer on the profile is fully turbulent with a Reynolds number
Rec = 3.2 × 106 based on the chord length. No transition term is imposed on the
profile, that is considered as an adiabatic wall.

A set of 10 simulations is performed imposing different angles of attack, spanning
from α = 2.5◦ up to α = 7.0◦ every ∆α = 0.25◦. The maximal Mach number
(occurring before the shock) associated to the lower and upper values of α correspond
to M = 1.35 and M = 1.50. This is done always on the same mesh by changing the
velocity vector components in the far-field condition, given by u = Uref cosα and
v = Uref sinα, where u and v are the velocity components and Uref = 240 m/s is
the reference velocity modulus.

RANS results

By solving RANS equations using a local time step, the computation converges to a
steady solution. Figure 4.4 presents the horizontal velocity field and the turbulent-
viscosity ratio for the particular case of α = 3.5◦: the flow presents some similarities
with the RANS solution obtained in the channel-flow configuration discussed in
section 3.1.

(a) Horizontal velocity field. (b) Turbulent eddy-viscosity ratio.

Figure 4.4: RANS solution at α = 3.5◦ (buffet onset condition).

By comparing figure 4.4a with image 3.1a one can notice that on both cases
the separation starts at the shock foot, and the recirculation bubble modifies the
shock shape into a lambda pattern. However, in the channel-flow configuration the
lambda is more accentuated due to the higher curvature of the bump with respect
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to the profile. Contrary to the channel-flow configuration, where the end of the
recirculation bubble is free to move in the stream-wise direction, the reattachment
point is fixed by the end of the profile, and thus does not vary with the angle of
attack. However, when the angle of attack is very high, the flow can never reattach.
By comparing figure 4.4b with figure 3.1b one can also notice that the turbulent-
viscosity ratio has similar values above the recirculation bubble (that is around
µt/µ ≈ 1200), but then in the profile configuration we can observe an increase in
turbulent viscosity after the trailing edge. This feature could be introduced by the
Spalart-Allmaras model, where the destruction term depends on the distance from
the wall.

Figure 4.5a shows the distribution of the pressure coefficient along the profile for
various angles of attack: within the limits of RANS computation, the results recover
the experimental measurements of Jacquin et al. (2009) presented in section 4.1. As
in figure 4.1a, the distribution of the wall pressure coefficient Cp around the profile
is characterised by a pressure plateau before the shock. On the pressure side of the
profile, the Cp does not present a strong dependency on the incidence.

The effect of the angle of attack is to decrease the pressure on the suction side of
the profile (figure 4.5a presents -Cp), and move upstream the shock: a configuration
with a high angle of attack will be characterised by a stronger shock that causes a
greater recirculation bubble. Figure 4.6 presents a comparison between two RANS
solutions obtained with the lower and higher angles of attack considered in this
study.

(a) Pressure coefficient. (b) Skin-friction distribution.

Figure 4.5: Pressure and skin-friction distribution for different angles of attack.

The displacement of the separation point as α increases can be observed also in
figure 4.5b, that presents the steady-state distribution of skin-friction coefficient for
small angles of attack, up to α = 3.5◦.

Two separated zones are visible for α = 2.5◦ and α = 2.75◦: one at the shock foot
and one at the trailing edge. For α = 3.0◦, the recirculation zone extends from the
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shock foot to the end of the profile. In this case, as will be shown below, the unsteady
RANS simulation still converges to a steady-state solution. This behaviour is not
in agreement with the idea that buffet onset occurs once the separation bubble
extends from the shock to the trailing edge, as proposed by Pearcey and Holder
(1962). As previously stated by Crouch et al. (2009), the results do not show a clear
link between buffet onset and the qualitative features of the flow separation.

(a) Horizontal velocity, α = 2.5◦. (b) Horizontal velocity, α = 7.0◦.

Figure 4.6: RANS solution at different angles of attack.

The configuration with angles of attack greater than α = 4.5◦, as the one pre-
sented in figure 4.6b, are not commonly investigated because of their limited indus-
trial interest. However, as it will be shown in next sections, those configurations are
interesting when considered from a stability-analysis point of view.

URANS results

URANS computations are initialised using the RANS solution obtained when the
residuals attains the same value, fixed to 10−3. When the angle of attack is small,
temporal integration of RANS equations yields a steady solution, and as for the
channel-flow configuration no unsteady phenomena can be observed in the inter-
action. Increasing the angle of attack, URANS simulations indicate an unsteady
behaviour: for α ≥ 3.5◦, the shock begins to oscillate back and forth with periodic
motions.

Figure 4.7a presents the time evolution of the pressure coefficient for the buffet-
onset configuration: the frequency of the unsteady phenomenon is around 77 Hz
when the angle of attack is lower than 4.5◦, and slightly increases up to 80 Hz for
even higher values of α. The growth rates of the different configurations indicates
that the less unstable configuration is obtained for α = 3.5◦ (note that the scale
changes between figure 4.7a and 4.7b.
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(a) Buffet onset condition (α = 3.5◦). (b) Evolution of pressure coefficient.

Figure 4.7: URANS solution at different angles of attack.

The amplitude of the shock oscillations increases as the angle of attack is in-
creased, while the mean value of the lift coefficient, that coincides with the value
obtained solving the RANS equations, decreases. The numerical simulations indi-
cate that up to α = 6.0◦ the flow is unsteady: a further increment of the angle of
attack corresponds to a steady solution, suggesting a return to a stable configura-
tion. This phenomenon, known as buffet offset, has been observed in other studies
(McDevitt and Okuno, 1985) but to the authors knowledge never documented for
the OAT15A profile.

As it will be shown in section 4.3, the URANS simulations are in good agreement
with the stability analysis. On the contrary, the critical angle of attack that defines
the buffet onset found in this study (that is α = 3.5◦) is not exactly the same as
in previous analysis. In the case of Jacquin et al. (2005) described in section 4.1
the threshold value was α = 3.25◦, whilst in the numerical reproduction of the same
configuration performed by Deck (2005) by means of URANS equations the onset
appears at α = 4.0◦. However, the value found in the present study is in agreement
with the numerical investigation performed by Deck (2005) by means of zonal DES.

The discrepancy between these values could be due to the turbulent transition
of the boundary layer, fixed by a Carborundum strip in the experimental case or
numerically imposed in the case of Brunet (2003) and Deck (2005). However, as
reported in other configurations (Thiery and Coustols, 2006; Huang et al., 2012), it
is known that numerical simulations need a higher angle of attack to reproduce the
buffet phenomenon.

4.3 Global-mode decomposition

As done in section 3.2 for the channel-flow configuration, we now consider a global
stability analysis and perform an eigenvalue decomposition of the Jacobian matrix.
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Both numerical and stability results show a fair grid convergence (square symbols in
figure 4.8), so all the results discussed hereafter for the buffet problem are referred
to the coarser mesh, presented in figure 4.3.

The linearisation that yields the matrix J is performed as described in section
3.2.2: for each angle of attack we obtain a base flow u0, that is a fixed-point of
RANS equations satisfying R(u0) = 0. As shown in the previous section, a steady
solution can always be found. Note that the shock smoothing proposed by Crouch
et al. (2007) was not required here since the linearised equations were obtained
by a “discretise-then-linearise” approach rather than a “linearise-then-discretise” ap-
proach.

The adjoint problem

A Jacobian matrix J is thus obtained for each angle of attack that was considered.
Additionally, in this chapter we also consider the adjoint problem: we define the
adjoint Jacobian matrix J† such that, for any arbitrary vectors u and v we have:

〈u,Jv〉 = 〈J†u,v〉 (4.1)

The scalar product Q is the same as in equation (3.25), defined by (3.29). The
Jacobian matrix is non-normal if JJ† 6= J†J, and the spectrum of J† is equal to the
conjugate of the spectrum of J. The solutions of the adjoint eigen-problem w̃ are
given by:

J†w̃ = λ∗w̃ (4.2)

where the quantity w̃ is called the adjoint global mode, associated to the direct global
mode ŵ (Sipp et al., 2010). If the global modes are non-normal, the convective non-
normality results in a different localisation of the direct and adjoint global modes
(Marquet et al., 2009).

The direct and adjoint problems can give an insight on where to put actuators to
suppress the unsteadiness: passive control, to be most efficient, should be placed at
location where direct and adjoint global modes overlap, whereas active control, by for
example blowing and suction at the wall, should be placed where the adjoint global
mode is maximum (Mettot et al., 2013). Moreover, the adjoint mode propagates
upstream while the direct mode propagates downstream, which comes from the
opposite sign of the transport equations in the direct and adjoint problems (Chomaz,
2005).

Results

The eigenvalue decomposition gives access to the spectrum presented in figure 4.8.
All the stable eigenvalues are roughly independent from the configuration, except
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one in the frequency range of the buffet phenomenon: a dash-dot line in figure 4.8
indicates the path that this eigenvalue takes while increasing the angle of attack.
The flow is stable for small angles of attack, up to α = 3.25◦. Then, the least
stable eigenvalue crosses the real axis between α = 3.25◦ and α = 3.5◦: the onset
of instability is due to a Hopf bifurcation, as observed by Crouch et al. (2007), and
the critical angle of attack that determines the offset of the buffet phenomenon is
α = 3.5◦. A further increase in the angle of attack results in an increase in the
instability growth rate, up to α = 4.0◦. Then, the growth rate begins to decrease
and we can observe buffet offset after α = 6.0◦. To the authors knowledge this
“return to stability” behaviour has never been documented in literature.

Figure 4.8: Stability analysis spectrum for the buffet configuration.

The physical frequency of the buffet phenomenon resulting from the eigenvalue
decomposition at α = 3.5◦ is 77 Hz, satisfyingly close to the experimental value
of 69 Hz found by Jacquin et al. (2009) in the same configuration. It is worth
saying that a value of 77 Hz was found in the experimental investigation in the
configuration where M = 0.74 instead of M = 0.73 like in this study. After the
onset, the buffet frequency remains constant up to the most unstable configuration,
and then increases up to 80 Hz for α = 6.0◦: the “return to stability” phenomenon
is accompanied by an increase of the shock-buffet frequency. The angle of attack
that defines the thresholds of buffet onset and offset, as well as the frequency of the
unstable modes, compares favourably with the numerical results obtained with the
URANS simulation presented in section 4.2.

When using frozen viscosity linearisation, no unstable modes are found. Crouch
et al. (2009) documented the same behaviour, indicating that, as for the channel-
flow configuration, the eddy-viscosity term presents a central role in the linearised
dynamic. When considering different meshes, a small shift in the real part of an
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eigenvalue is observed: in figure 4.8 the square points show the mesh dependency
indicating the position of the first unstable eigenvalue, obtained when α = 3.5◦ for
the others grids.

Figure 4.9 presents the spatial structure of the unstable global mode at α = 4.0◦

corresponding to the most unstable configuration. The mode structure is the most
energetic in the shock for all the conservative variables, but a non negligible contri-
bution is located in the mixing layer. In the stream-wise momentum components
the mode is present also in the recirculation bubble, but we observe an opposite sign
between the shock and the separated zone: this suggests that shock oscillations and
bubble expansions are in phase opposition, similarly to what has experimentally
been observed for the low frequency motions in the channel-flow configuration of
chapter 2.

(a) ρ component. (b) ρU component.

(c) ρV component. (d) ρE component.

(e) ρν̃ component. (f) ρν̃ component, domain.

Figure 4.9: Direct buffet mode for α = 4.0◦. Real part of different components.

If we look at the turbulence component in figure 4.9 we can notice that the
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buffet phenomenon is associated to large scale fluctuation of the eddy-viscosity, that
propagates in the wake. This feature is not linked to the Kelvin-Helmholtz type
instability but is more likely the fluctuation of turbulence viscosity due to contraction
and expansion of the recirculation bubble, caused by the shock displacement.

The adjoint problem of equation (4.2) yields the adjoint mode, that is depicted in
figure 4.10 for the configuration with α = 4.0◦ (corresponding to the most unstable
configuration). The adjoint mode indicates the regions on the flow where we have
maximum receptivity to momentum forcing and mass injection (Marquet et al.,
2008b). In this configuration, those zones are localised in the boundary layer both
upstream and downstream the interaction, mostly on the suction side. The adjoint
mode in the supersonic flow has a triangular shape, whose edges follow the boundary
layer, the upwind part of the sonic line, and an oblique line impinging the profile
exactly where the boundary layer separates.

Figure 4.10a shows the superposition of the adjoint mode with the characteristic
lines (obtained with equation (3.3.3)). The oblique part of the adjoint mode follows
exactly the right characteristic line that impacts on the shock foot, where the recir-
culation bubble begins. This feature can be interpreted as follows: the separation
point has a fundamental importance in the dynamic of the flow, and a modification
of its position can influence the whole dynamics. The adjoint mode indicates the
zone where the flow presents high receptivity to external forcing. As in supersonic
flows information travels along characteristic lines, only the supersonic zone that is
connected to the separation point trough a characteristic line can influence the sep-
aration point. A similar behaviour was observed in the channel-flow configuration
when discussing the optimal forcing that induces low-frequency motions (section
3.3).

If we consider now the characteristic lines associated to the positive sign of equa-
tion (3.3.3), called the left characteristic, we can see that the adjoint mode follows
those lines only in the upwind part of the supersonic zone and with very low en-
ergy. Then, these left characteristic lines reflect on the sonic line and propagate
along the right characteristic that hit the separation point. This difference in the
energy suggests that pressure disturbances that propagate along Mach waves from
the profile to the sonic line have less impact on the buffet phenomenon than velocity
disturbances that travel along characteristic lines and impact directly on the sep-
aration point. Although less energetic in the adjoint mode, this characteristic line
has a central role in the buffet phenomenon as its presence can be seen also from
the Schlieren image in figure 4.2.

Recently Agostini et al. (2012) have performed LES computations of a shock
reflection on a turbulent boundary layer at Mach number M = 2.3. Using two-
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(a) ρ component. (b) ρU component.

(c) ρV component. (d) ρE component.

(e) ρν̃ component. (f) ρU component, domain.

Figure 4.10: Spatial structure of the adjoint buffet mode for α = 4.0◦. Superposition
of the sonic (dash-dotted) and characteristic (solid) lines.

point correlations they showed how some vortical structures in the mixing layer
generate pressure fluctuations that propagate along the characteristic lines of the
expansion fan. A similar analysis is not possible here (and neither in the channel-
flow configuration) because of the transonic nature of the flow: after the shock wave
the flow becomes subsonic, and the characteristic lines do not exist anymore.

In figure 4.10f we can also observe the adjoint mode spatial structure far away
from the profile: the adjoint mode is located in the part of the incoming flow that
will become the boundary layer around the profile, showing that variations of the
incoming flow have a strong impact on the dynamics of the interaction. Acoustic
effects due to the compressible nature of the equations are also visible: some acoustic
waves come from downstream of the profile and propagate upwind towards the
interaction.
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(a) Direct mode, α = 3.5◦. (b) Direct mode, α = 6.0◦.

(c) Adjoint mode, α = 3.5◦. (d) Adjoint mode, α = 6.0◦.

Figure 4.11: Unstable global modes. Real part of density component.

Figure 4.11 shows the direct and adjoint global modes for the configurations
that correspond to buffet onset and offset. Even if the base flow presents some
differences in terms of shock position, separation point location and size of the
recirculation bubble, one can notice some similar aspects that are present in each
unstable configuration: the unstable global mode is always predominantly located
on the shock wave, independently from the angle of attack. When considering
configurations with a stronger interaction, the only difference between the different
cases is the shock position and the size of the recirculation bubble.

Concerning the adjoint modes, figures 4.10 and 4.11 also indicate that the adjoint
variables are continuous with zero gradient at the shock. This feature has been
demonstrated in quasi-one-dimensional Euler equations by Giles and Pierce (1997),
using a theoretical approach that relies on the derivation of a closed form solution
to the adjoint equations. In the same paper, it is shown how a change in sign in
either of the hyperbolic characteristic is responsible for a log(x) singularity at the
sonic point. However, for two-dimensional configurations as the case of the current
study, it is argued that there is no longer a singularity at a sonic line, as confirmed
in the present case. This has been explained by considering the region of influence
of points in the neighbourhood of the sonic line by Giles and Pierce (2001).
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4.4 Global-Resolvent analysis

The numerical simulations of section 4.2 and the global-mode decomposition of
section 4.3 indicate that the flow presents self-sustained oscillations when the angle
of attack is between α = 3.5◦ and α = 6.0◦. In those cases the dynamic of the
flow is dominated by the unstable global mode. However, that does not mean that
the buffet unsteadiness is the only one present: the flow may still behave as a noise
amplifier and a frequency-selection process such as that described in the channel-flow
configuration may still be possible, regardless of the angle of attack.

In this section we apply the theoretical approach introduced in section 3.3.2 to
the transonic flow over the OAT15A profile. From a mathematical point of view, the
global Resolvent is defined when the determinant of (iωI−J) is different from zero.
This condition is assured, for a given frequency ω, as long as there is no eigenvalue
of the Jacobian matrix J with real part equal to zero, and imaginary part equal to
ω. In this case, the leading singular value of the global Resolvent, and thus the gain
function, tends to infinity.

Figure 4.12: Gain function for different angles of attack.

The gain functions in figure 4.12 confirm this behaviour: considering the low-
frequency range, the curves present the highest peaks when α = 3.5◦ and α = 6.0◦:
in this configuration the buffet mode is the closest to the imaginary axis. The peaks
that correspond to the most energetic gains are located at the frequencies which
match those of the neutral eigenvalues. Considering the configurations displaying
an unstable global mode, after α = 4.0◦ there is a slight rise in the buffet frequency,
and the buffet offset is accompanied by a decrease in the oscillations period. This
behaviour was already observed in the spectrum of figure 4.8. Since the profile is in
the free-stream, acoustic resonances such as those observed in the channel flow are
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not present. The gain function still presents a low-pass filter behaviour: regardless
of the angle of attack, the very first part of the gain function is a straight horizontal
line, as in the channel-flow configuration.

Considering low-frequency motions, even if the singular-value decomposition of
the global Resolvent can be performed, there is no interest to compute the optimal
forcing and associated response of the flow at a frequency where we have an unstable
eigenvalue: in this case, the dynamic of the flow is dominated by the global mode,
and no convective instabilities can in principle arise. For this reason we will discuss
low-frequency motions only for the configurations where no unstable global modes
are found.

Figure 4.13 presents the optimal forcing at f = 80 Hz and the associated response
for two angles of attack: α = 2.5◦, before the buffet onset, and α = 7.0◦, after the
buffet offset. One can notice a strong similarity between the optimal forcing at α =

2.5◦ and the unstable adjoint global mode at the buffet onset (figure 4.11c). Likewise,
the optimal forcing at α = 7.0◦ has a space distribution similar to the adjoint
unstable global mode of figure 4.11d, obtained for α = 6.0◦: despite the difference
on the size of the recirculation bubble, the optimal forcing is always located in the
boundary layer on the suction side, and on the supersonic zone along an oblique line
that impinges on the shock foot. As for the adjoint global mode and the optimal
forcing in the channel-flow configuration, the spatial structure in the supersonic zone
is located along the right characteristic line that ends at the separation point. Close
to the leading edge, the most upwind part of the forcing follows the left characteristic
line.

Although in a different configuration, both optimal responses of the OAT15A
profile present the same spatial structure as in the channel flow, yielding the same
conclusion as in the previous section concerning the shock wave: if the flow is excited
with some form of low-frequency forcing, the response will be on the shock, with
the highest value close to the shock foot. Regarding the behaviour of the separated
zone, the spatial structure of the response seems to depend on the angle of attack:
if the height of the recirculation bubble is small compared to its length, that is the
case for α = 2.5◦, the optimal response is energetic in both the mixing layer as well
as inside the separated area. Note that, as indicated in figure 4.5b, in the α = 2.5◦

configuration the trailing edge separation and the shock induced separation are
divided by a re-attached zone. When increasing the angle of attack, as for example
when α = 7.0◦, the shock-induced separation merges with the separated zone at the
trailing edge: the lambda shape of the shock is strengthened, and the separated zone
is comparable in size to the channel-flow configuration. In this case, the optimal
response after the shock is located only in the mixing layer above the recirculation
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(a) Forcing, α = 2.5◦. (b) Response, α = 2.5◦.

(c) Forcing, α = 7.0◦. (d) Response, α = 7.0◦.

Figure 4.13: Optimal forcing and response for low-frequency unsteadiness (f = 80

Hz): before the buffet onset (α = 2.5◦) and after the offset (α = 7.0◦).

bubble, and not inside it as in the previously discussed case.
Despite this small detail on the spatial form of the optimal response, the singular-

value decomposition of the global Resolvent indicates that low-frequency unsteadi-
ness is mostly located in the shock wave, and associated to the so-called breathing
of the mixing layer.

Considering again the optimal gains in figure 4.12, we can notice a rise in the
medium-frequency range for all the angles of attack. As for the channel-flow config-
uration, the eigenvalue decomposition of section 4.3 did not indicate any unstable
mode in the equivalent zone of the spectrum. The gain function for α = 2.5◦ presents
the same bump as in the channel flow, so it is necessary to consider the premultiplied
gain to see a peak in medium-frequency range. Increasing the angle of attack the
premultiplied scale is not needed and an energetic bump can always be observed
for higher α. As previously stated, the global Resolvent singular values tends to
infinity as the real part of a Jacobian eigenvalue tends to zero. The fact that the
medium-frequency bump becomes narrower as increasing the angle of attack may
be linked to a global instability that could arise for higher α.

Figure 4.14 presents the optimal forcing for the peak frequency in the premulti-
plied gain function of four different configurations. Those frequencies are f = 4000

Hz for α = 2.5◦, f = 3000 Hz for α = 4.0◦, f = 2000 Hz for α = 5.5◦, and f = 1400

Hz for α = 7.0◦. The optimal forcing is located in the boundary layer (on the whole
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(a) α = 2.5◦, f = 4000 Hz. (b) α = 4.0◦, f = 3000 Hz.

(c) α = 5.5◦, f = 2000 Hz. (d) α = 7.0◦, f = 1400 Hz.

Figure 4.14: Optimal forcing for medium-frequency unsteadiness.

suction side for low angles of attack, before the interaction for higher α), with a
maximum value at the shock foot. In the supersonic zone, the forcing does not
exactly follow the right characteristic line that ends at the separation point, but has
a small-scale structure similar to the one observed in section 3.3.

The optimal responses associated to those medium-frequency forcing is presented
in figure 4.15: it indicates that Kelvin-Helmholtz instabilities are still present in this
configuration, regardless of the angle of attack. Contrarily to the channel flow case,
two zones of the flow are affected by this medium-frequency motion: the mixing
layer caused by the separated region and the mixing layer after the trailing edge.
This last instability was not present in the channel-flow configuration because of
the boundary walls, and may explain why the gain is higher in this configuration:
a medium-frequency forcing can trigger at the same time Kelvin-Helmholtz type
instability on two different zones of the flow.

Comparing the Kelvin-Helmholtz type response in figure 4.15 one can notice
that the responses become more present as increasing the angle of attack, and the
contribution of the separated zone is roughly the same as the contribution due to
the trailing edge: the peak in the gain function indicates that medium-frequency
instabilities are the most energetic for the frequency that can trigger at the same
time both unsteadiness on the profile.

The evolution of the gain function in figure 4.12 indicates that the Kelvin-
Helmholtz instability frequency becomes smaller when increasing α this behaviour
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(a) α = 2.5◦, f = 4000 Hz. (b) α = 4.0◦, f = 3000 Hz.

(c) α = 5.5◦, f = 2000 Hz. (d) α = 7.0◦, f = 1400 Hz.

Figure 4.15: Optimal response for medium-frequency unsteadiness.

may be due to the fact that this unsteadiness depends on the mixing layer thickness:
the higher the angle of attack, the larger the separated zone, and thus the smaller
the frequency. However, the medium-frequency unsteadiness is broad band, indi-
cating that in the flow Kelvin-Helmholtz type instabilities are present in the range
1− 4 kHz, similarly to the channel-flow configuration.

4.5 Conclusions

This chapter focused on the unsteady dynamics of the transonic interaction between
a shock and a boundary layer over an OAT15A profile. The experimental investi-
gation performed by Jacquin et al. (2005) is considered as reference and is used to
compare the results.

Two-dimensional numerical simulations can reproduce the oscillatory motions of
the shock wave known as the buffet phenomenon: when integrating the equation
in time, URANS simulation can predict the unsteady behaviour of the interaction,
and both the frequency of the periodic shock motions as well as the critical angle of
attack that characterise the buffet onset are in fair agreement with the experimental
investigation. Buffet offset is observed when the angle of attack exceeds α = 6.0◦.
The results recover and extend the numerical results obtained in previous studies
(Brunet, 2003; Deck, 2005). The mean flow obtained using a local time stepping is
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then considered for a stability analysis.
The linearised Navier-Stokes operator is thus again obtained in a discrete frame-

work. Global-mode decomposition indicates that the buffet phenomenon is linked
to a global instability of the flow. The angle of attack that defines the threshold
of the unsteady shock motions is in agreement with the numerical simulation, and
the buffet offset is accompanied by a small rise in the buffet frequency. The direct
global mode compares favourably with the stability analysis performed by Crouch
et al. (2009), whilst the adjoint global mode, whose spatial distribution follows the
characteristic lines in the supersonic region of the flow, can give an insight of where
control should be placed to suppress the unsteadiness.

The eigenvalue decomposition of the Jacobian matrix indicates that the shock
buffet is the only global instability present in the interaction. However, as observed
in the channel flow configuration, convective instabilities can arise when the flow is
subject to external forcing. For this reason, a singular-value decomposition of the
global Resolvent is performed, and the gain function indicates that the interaction
behaves as a noise amplifier: when the flow is stable, optimal forcing indicates that
broad-band shock oscillations can be triggered by environmental noise.

Concerning medium-frequency motions, the global-Resolvent analysis indicates
that medium-scale unsteadiness can arises from the separated zone. Similar motions
have also been observed in the Délery bump, by means of correlation of Schlieren
images and linear-stability analysis, and are linked to Kelvin-Helmholtz instability.
However, despite the channel-flow configuration, the medium-frequency motions are
present both in the mixing-layer above the separated region as well as in the mixing
layer at the trailing edge of the profile. This unsteadiness is shown to be broad
band and not related to the presence of the shock buffet phenomenon. Moreover,
the intensity of the oscillations increase with the interaction strength while the peak
frequency decreases as the angle of attack is increased.
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Chapter 5

Conclusions

It is well established that SWBLIs are unsteady phenomena, characterised by low-
frequency shock motions and medium-frequency unsteadiness linked to the separated
zone. The main purpose of this study was twofold: to describe experimentally
the unsteady dynamics of the transonic interaction between a strong shock and
a turbulent boundary layer developing over the Délery bump, and to address the
problem of the unsteadiness in SWBLI using stability analysis.

The experimental investigation presented in chapter 2 gave access to a full char-
acterisation of the considered configuration: the flow has been investigated using
PIV measurements, which gave access to the mean features of the interaction.
Wall-pressure measurements indicated that the shock is affected by low-frequency
unsteadiness, whilst medium-frequency fluctuations are typical of the separation-
bubble dynamics, in agreement with other studies. A more global investigation
using high-speed Schlieren photography yielded a complete characterisation of the
unsteady behaviour of the interaction: medium-frequency fluctuations are located
almost exclusively in the mixing-layer generated by the separation point, although
low-frequency unsteadiness is found both in the shock region and in the recircu-
lation bubble. The shock foots on both walls seemed to be the most affected by
these fluctuations. By computing the Strouhal number, the frequencies of shock
and mixing-layer motions compare favourably with other studies: the experimen-
tal measurements showed that the particular case of the transonic SWBLI over the
Délery bump presents the typical unsteadiness observed in more common interac-
tions.

Numerical simulations provided a base flow, that adequately represented the
interaction as observed experimentally. Despite the limitations introduced by the
turbulence model, a RANS approach could correctly reproduce the mean behaviour
of the interaction, but no information could be deduced concerning the unsteady
phenomena. A linear stability analysis has then been proposed: the absence of

107



108 CHAPTER 5. CONCLUSIONS

unstable global modes indicated that the amplifier dynamics should be described
by an optimal perturbation formalism and not by an eigenvalue decomposition as
proposed by previous studies: a forcing is always required to maintain unsteadiness.

A theoretical formulation based on a singular-value decomposition of the global
Resolvent has then been proposed: it has been shown that the non normality of the
linear operator has a great importance in describing the frequency-selection process
observed experimentally. The main result of this approach is the confirmation that
the low-frequency unsteadiness does not come from a global instability, but is the
response of the shock to existing environmental noise: the energy growth observed
experimentally is caused by the non normality of the stable linearised Navier-Stokes
operator and not by an unstable eigenvalue. Regarding low-frequency motions,
the singular-value decomposition of the global Resolvent indicated that the optimal
forcing is at the shock foot, but a forcing in the separated zone or in the incoming
boundary layer could also trigger the shock unsteadiness. In particular, the optimal
forcing that can trigger the largest flow response has been shown to be located along
the characteristic line that impacts the shock foot. Considering medium-frequency
unsteadiness, the unsteadiness is linked to a Kelvin-Helmholtz type instability, that
exists regardless of the presence of the shock wave.

From a broader perspective, it has been shown that SWBLI are amplifier flows:
in a global framework, they should be characterised by analysing the singular values
and vectors of the flow, and not the eigenvalues of the Jacobian matrix. This
approach, conceptually simple because based on a robust and very general concept,
yielded a direct link with receptivity studies since the spatial location of the optimal
forcing identifies sensitive regions of the flow. The results obtained confirm that
the problem of the unsteadiness can be analysed with a linear approach, that the
scale decoupling assumption holds, and that a 2D configuration can be a good
representation of the experimental cases.

Concerning the separated zone, both the experimental investigation and the sta-
bility analysis indicated that low-frequency unsteadiness is responsible for the so
called “breathing” of the mixing layer, whilst the recirculation bubble is primarily
affected by medium-frequency motions. The behaviour of the shock wave is more
complicated: on one side, the wall-unsteadiness investigation indicated that the
shock is uniquely affected by low-frequency motions, but the Fourier-mode decom-
position has shown that medium-frequency unsteadiness could be present, with a
lower energy content, even on the shock wave. This last observation is in agreement
with Agostini et al. (2012), and indicates that the shock kinematics is the mirror
of the physical phenomena localised in the separated zone. However, the presence
of the shock in the medium-frequency Fourier modes could come from some three
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dimensional effect captured by the Schlieren investigation, or form the image sat-
uration caused by inappropriate lighting. When considering the stability analysis,
the gain function indicated that the shock wave is not prone to medium-frequency
motions, exhibits high energy only for low frequency, and filter the high-frequency
motions arising from the environment. In conclusion, we believe that, at first order
and in a two-dimensional configuration, the shock wave acts like a low-pass filter.

Regarding the source of unsteadiness, the linearised approach does not fully
answer the question on the origins of the shock motions. Nevertheless, it has been
shown that both perturbations on the incoming flow and on the recirculation bubble
are linked to the shock unsteadiness, implying that the source of low-frequency
motions may not be unique. This result is an indication that the superstructures
existing in the upstream boundary layer (Ganapathisubramani et al., 2009) are not
necessary for the low-frequency SWBLI dynamics: as observed by the numerical
simulations of Touber and Sandham (2009b), the interaction exhibits low-frequency
unsteadiness even without the presence of the turbulent eddies in the incoming flow.
We support the idea that interaction responds as a dynamical system that is forced
by external or internal disturbances: if forced by an external agent, such as for
example the incoming flow, the shock will respond. However, even in the absence
of this forcing, low-frequency oscillations can be caused by coupling between the
dynamics of the separation bubble and the shock (Dussauge and Piponniau, 2008).

The global modes decomposition of the Jacobian matrix indicated that shock
unsteadiness is not an intrinsic property of the global system (Touber and Sandham,
2011) that can be explained by the presence of an unstable global mode (Robinet,
2007; Touber and Sandham, 2009b; Pirozzoli et al., 2010b). These last works can
be seen as an extension to the supersonic domain of the existence of stationary
global instabilities inside recirculation bubbles, but the stationary global modes can
not give any information about unsteadiness of the interaction as it comes from a
response to existing disturbances.

The approach applied to the Délery bump configuration has then been used to
investigate the similar transonic SWBLI of a flow over the OAT15A profile. The
high-amplitude periodic shock motions, when present, can correctly be reproduced
by the RANS approach, and the eigenvalue decomposition can predict the low-
frequency instability (Crouch et al., 2009). By comparing the results of the stability
analysis with the experimental investigation performed in the same configuration,
a good agreement on frequencies is found. The many angles of attack considered
gave access to a complete description of the interaction for the chosen combination
of Mach and Reynolds numbers, shedding new light on the buffet offset. Moreover,
it has been shown the spatial form of the adjoint global mode linked to the buffet
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phenomenon: the mode is linked to the characteristic lines and indicate the zone of
the flow that can be relevant for control purposes.

When focusing on the pseudo-resonance phenomena, the singular-value decom-
position indicated that the flow is prone to low-frequency unsteadiness even before
the buffet onset. However, besides the periodic shock motions, the most energetic
sources of unsteadiness are the mixing layers developing from the separation point
and the trailing edge: here medium-frequency motions, linked to Kelvin-Helmholtz
type instabilities, are observed. Moreover, the importance of those unsteadiness on
the flow increases when increasing the angle of attack.

The flow over the OAT15A profile presented some similarities with the channel-
flow configuration: when considering a small angle of attack, in both cases a numer-
ical approach based on RANS simulations failed to predict the shock motions, and
the eigenvalue decomposition indicated that the linearised Navier-Stokes operator
is stable in a global framework. The unsteadiness has been linked to convective
instabilities, and it was shown that the singular-value decomposition of the global
Resolvent is capable of describing both low- and medium-frequency motions. How-
ever, when increasing the angle of attack the buffet phenomenon appears, and the
flow over the OAT15A profile is characterised by the presence of an unstable mode.
The shock motions are shown to be periodic, and the unsteady behaviour no longer
presented the noise-amplifier dynamics typical of shock-wave/boundary layers inter-
actions.

5.1 Perspectives

Concerning the experimental study, PIV measurements could be used not only to
investigate the mean flow, but also to have access to the unsteady motions of the
shock. Although 1000 pairs of images are enough to obtain a good description of
the interaction, some interesting results could be obtained when applying the cross-
correlation technique as for the Schlieren images to PIV results. To do that, at least
5000 images are necessary. Moreover the use of PIV-3C or tomographic PIV could
extend the correlation analysis to the span-wise velocity component, and give access
to three-dimensional structures that can arise in the interaction. Given the time
scales of the unsteady phenomena, PIV-RT may not be adapted to characterise the
medium-frequency motions.

The high-speed Schlieren visualisation have shown the potential of the Fourier
modes decomposition and correlation technique, but further work is needed: the
images quality have to be improved, for example by the use of 16-bit camera sensors
that increase the results definition, and image saturation have to be avoided, because
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of its strong impact on the Fourier modes decomposition. Moreover, the quality
of the results increases when considering longer data samples: a better memory
allocation in the image processing could give access to spectra with higher frequency
definition. The assumption of the linear relation between light intensity and density
gradients have to be discussed in details to obtain a deeper physical meaning of
the results. Finally, the shadowgraph technique could be used as an alternative to
Schlieren visualisation, to obtain a clearer definition of the medium-scale structures
of the mixing layer, without the decomposition in horizontal and vertical density
gradients.

Concerning the numerical investigation on the Délery bump configuration, the
natural evolution of this work consists in the computation of the sensitivity gradi-
ents, that would give access to the zone of the flow where passive control should
be placed to suppress the unsteadiness. Moreover, the theoretical method applied
on the considered transonic interaction could be used to investigate more common
configurations: an interesting application could be the IUSTI shock-reflection case,
well documented in literature, where the unsteady behaviour of shock wave and
mixing-layer region depends on the shock intensity (Dupont et al., 2006). In partic-
ular, a stability analysis could explain if the unsteadiness comes from an unstable
global mode or from a frequency-selection process. Interesting results could be ob-
tained by linking the high-amplitude shock oscillations of the “massive separation”,
obtained when considering a high deviation angle, to an unstable global mode. On
the contrary, it could be shown that the frequency-selection process observed in the
“incipient separation” case, caused by small shock angles, can be explained by a
singular-value decomposition of the global Resolvent, as for the Délery bump con-
figuration.

The buffet phenomenon has been investigated for a flow at a given combination
of Mach and Reynolds number over the OAT15A profile. However, the phenomenon
is sensitive to the incoming-flow conditions, and a complete characterisation of the
interaction for a wide range of Mach and Reynolds numbers would be interesting
and could give some insight on the origins of the unsteadiness. The results of the
global modes decomposition have shown the importance of the characteristic lines
in the supersonic region, so a finer grid spacing is required in the whole suction side
of the profile, not only in the vicinity of the shock. Similarly, the singular-value de-
composition of the global Resolvent has shown that medium-frequency unsteadiness
are mostly located in the mixing layers developing downstream the trailing edge: a
finer mesh that is able to describe the medium scale structures in this particular
region of the flow would suit better further studies.

Still concerning the buffet phenomenon, another natural step would be the evalu-
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ation of the impact on the unstable eigenvalue of a modification of the base flow due
to the presence of a stationary force. To this end, the computation of the sensitivity
gradients would give access to control maps that can suggest where the actuators
should be placed in order to perform open loop control.
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Appendix A

Résumé en français

Résumé

Dans cette étude nous considérons l’interaction entre une onde de choc et une couche
limite turbulente dans un écoulement transsonique sur une bosse d’un point de vue
expérimentale et théorique, ainsi que dans un écoulement autour d’un profil d’aile.

Dans le premier cas, des mesures ont permis de montrer que l’interaction est
caractérisée par la coexistence de deux fréquences distinctes, mais l’origine des os-
cillations basse fréquence est controversée. Des simulations numériques s’appuyant
sur les équations RANS permettent une description de l’écoulement moyen, mais
ne sont pas capables de reproduire le comportement instationnaire de l’interaction.
Nous proposons une étude de stabilité globale : une décomposition en valeurs pro-
pres de l’opérateur de Navier-Stokes linéarisé au tour d’un champ de base RANS
indique que l’interaction est un phénomène stable, et la dynamique de l’écoulement
ne peut pas être décrite par un mode global instable.

Nous considérons ensuite une approche linéarisée, où la réceptivité de l’écoulement
à un forçage externe est analysée à travers une décomposition en valeurs singulières
du Résolvant Global. Cette approche est proposée afin d’expliquer la sélection de
fréquence dans cet écoulement, et montre que l’interaction filtre et amplifie le bruit
résiduel existant : certaines perturbations sont plus amplifiées dans la couche de
mélange, tandis que le choc semble se comporter comme un filtre passe-bas.

La même approche est enfin appliquée sur un cas d’écoulement transsonique au-
tour d’un profil d’aile, qui peut présenter des oscillations périodiques de l’onde de
choc. La décomposition en valeurs propres de l’opérateur de Navier-Stokes linéarisé
est capable de décrire la dynamique instationnaire quand un mode instable est
présent. Cependant, la décomposition en valeurs singulières du Résolvant Global
peut indiquer la présence des instabilités convectives qui sont responsables du com-
portement instationnaire à moyenne fréquence de l’écoulement.
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A.1 Introduction

L’interaction d’une onde de choc avec la couche limite conduit à une perte de perfor-
mance et est responsable d’effets indésirables comme l’augmentation de la traînée,
la formation du décollement et des charges aérodynamiques instationnaires (Délery
and Marvin, 1986). La physique de ce phénomène, qu’on peut observer sur un profil
d’aile ou dans une prise d’air d’un aéronef, est loin d’être bien comprise, notamment
pour les aspects qui concernent les oscillations de choc induites par l’interaction
(Dolling, 2001).

Dans le domaine des interactions onde de choc/couche limite (IOCCL), trois con-
figurations sont couramment étudiées : la rampe de compression (Ardonceau, 1984;
Selig et al., 1989; Thomas et al., 1994; Wu and Martin, 2007), la reflection d’une
onde sur une plaque plane (Dupont et al., 2006; Touber and Sandham, 2009a; Hum-
ble et al., 2006), et l’onde de choc normale à la paroi (Bur et al., 2006; Bruce and
Babinsky, 2008; Pirozzoli et al., 2010a). Dans les deux premiers cas, une onde faible
et oblique interagit avec la couche limite et l’écoulement en aval de l’interaction
est supersonique. Notre étude se focalise sur une onde de choc forte et normale à
la paroi qui interagit avec la couche limite turbulente et devient subsonique après
l’interaction. Dans le présent travail, nous considérons une géométrie bien docu-
mentée comme la bosse de Délery (Délery, 1978; Loyau et al., 1998; Sandham et al.,
2003). L’interaction se caractérise par l’existence d’une onde de choc en lambda qui
provoque une séparation massive à partir du pied du choc.

De nombreux études expérimentales (Bogar et al., 1983; Piponniau et al., 2009;
Souverein et al., 2010) et numériques (Garnier et al., 2002; Wu and Martin, 2008;
Agostini et al., 2012) ont montré la coexistence de deux fréquences caractéristiques
distinctes : d’un côté, le battement de l’onde de choc implique généralement une
oscillation à basse fréquence, de l’autre côté, la couche de mélange qui se développe
après le décollement bat à des fréquences qui sont plus élevées que celles du mouve-
ment de choc, mais plus basses que celles qui sont observées dans la couche limite
amont. Pour décrire les instationnarités, la fréquence adimensionalisée ou nombre
de Strouhal est couramment utilisée (Erengil and Dolling, 1991b). Avec cette adi-
mensionalisation, Dussauge et al. (2006) ont montré que des valeurs typiques de
SL = 0.02 − 0.05 peuvent décrire les mouvements du choc dans plusieurs configu-
rations. Concernant les oscillations à moyenne fréquence, des valeurs typiques de
SL = 0.1 jusqu’à SL = 0.5 sont courantes pour les zones décollées, et sont souvent
associées à un mouvement de flapping (Kiya and Sasaki, 1983). Ces oscillations sont
connues depuis longtemps (Cherry et al., 1984) et sont associées à des instabilités
de type Kelvin-Helmholtz.

L’origine du mouvement basse fréquence des ondes de choc est controversée : de
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nombreuses études ont supposé un lien entre le tremblement de choc et les tour-
billons présents dans la couche limite turbulente (Andreopoulos and Muck, 1987;
Erengil and Dolling, 1991a; Beresh et al., 2002). Dans une compression sur rampe,
Ganapathisubramani et al. (2007) a suggéré que les mouvements des choc sont
liés au passage de certaines structures cohérentes provenant de la couche limite
en amont. Cependant, d’autres études numériques (Touber and Sandham, 2009b;
Hadjadj, 2012) ont montré que ces structures ne sont pas nécessaires pour observer
des instationnarités dans la zone du choc. Cette hypothèse a été confirmée par des
études expérimentales (Dupont et al., 2006), qui indiquent que les fluctuations de
pression dans la couche limite amont sont en très faible cohérence avec les variations
de pression générées par le choc : la source de l’instabilité pourrait être l’organisation
de l’écoulement en aval par une rétroaction acoustique dans la bulle de recirculation.
Les deux théories proposées, quoiqu’en désaccord sur la position, soutiennent l’idée
que l’instabilité du système provient d’une source unique. Cependant, un modèle
plausible est que l’interaction répond comme un système dynamique qui est forcé
par des perturbations externes (Clemens and Narayanaswamy, 2014).

L’analyse de stabilité linéaire est couramment utilisée pour avoir des informations
sur le comportement des instationnarités dans un écoulement (Theofilis, 2003; Sipp
et al., 2010). Selon Huerre (2000), les instationnarités peuvent être classifiées en
deux catégories : l’écoulement peut se comporter comme un oscillateur, et imposer
sa propre dynamique, ou il peut avoir un comportement de type amplificateur de
bruit. Dans le premier cas, une décompositions en modes globaux peut décrire la
dynamique de l’écoulement qui est piloté par un mode global instable (Theofilis,
2011). Dans le deuxième cas, le système filtre et amplifie certains bruits de fond
du système à cause des instabilités convectives, et une décomposition en valeurs
propres de l’opérateur de Navier-Stokes linearisé ne peut pas décrire la dynamique
du système (Trefethen et al., 1993; Sipp et al., 2010).

Dans le domaine des IOCCL, peu d’études ont essayé de répondre à la question
des origines des instabilités en utilisant une approche linéaire. Quelques études
ont lié les oscillations du choc à un mode global instable (Robinet, 2007; Touber
and Sandham, 2009b). Cependant, le mode trouvé est stationnaire, et le lien avec
le comportement instable du choc reste une hypothèse. Dans cette étude nous
proposons de décrire la dynamique de l’interaction à travers une décomposition en
valeurs singulières du Résolvant Global, en étudiant la réponse de l’écoulement à des
forçages externes. Cette approche a été appliquée avec succès pour décrire les modes
les plus amplifiés dans des écoulements incompressibles (Jovanovic and Bamieh,
2005; McKeon and Sharma, 2010; Brandt et al., 2011). Ensuite, nous considérons un
cas similaire d’un écoulement transsonique autour d’un profil. Comme dans d’autres
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études (Crouch et al., 2007, 2009), les oscillations périodiques du choc peuvent être
décrites par une décomposition en valeurs propres de l’opérateur de Navier-Stokes
linearisé. L’analyse du Résolvant Global est capable de mettre en évidence les
instabilités convectives qui peuvent se développer à cause du mécanisme de sélection
des fréquences présent dans l’écoulement indépendamment de la présence d’un mode
instable.

A.2 Résultats expérimentaux

Dans cette partie, nous présentons les principaux résultats obtenus expérimentale-
ment au sein de la soufflerie S8Ch de l’ONERA. La configuration, connue sous le
nom de “bosse de Délery”, présente une onde de choc à Mach 1.4 provoquant la
séparation de la couche limite et une bulle de recirculation créée à partir du pied de
choc.

Vélocimétrie par Images de Particules

La Vélocimétrie par Images de Particules (PIV) est devenue un outil incontournable
dans l’étude des écoulements complexes. Cette technique permet d’avoir accès aux
champs de vitesse moyens sur une partie de l’écoulement. Dans cette étude, le champ
PIV, visible en figure A.1, est centré sur l’aval de la bosse et permet de visualiser la
partie supersonique et la région décollée résultant de l’interaction avec le choc.

Ce résultat a été obtenu en moyennant en temps un échantillon de 1000 images et
ne permet pas de connaître le comportement instationnaire de l’écoulement. Cepen-
dant, on peut observer la forme typique de choc dite “en lambda” et la zone décollée
qui présente des valeurs de vitesse négatives un ordre de grandeur plus petites que
dans la zone supersonique.

Le champ de vitesse permet en outre d’avoir accès aux grandeurs caractéristiques
de l’interaction nécessaires pour adimensionner correctement les fréquences dans les
sections suivantes. En particulier, la vitesse utilisée comme référence est donnée
par la valeur de la composante horizontale de vitesse au dessus de la zone séparée
(U = 300 m/s). La longueur d’interaction définie comme la distance entre le pied du
choc et le centre de la bulle de recirculation est choisie comme longueur de référence.

Mesures instationnaires à la paroi

Pour analyser le comportement en temps de l’interaction, différents capteurs de
pression et de frottement ont été placés à la paroi. La figure A.2 montre les spectres
obtenus à partir des mesures de pression instationnaires lorsque les capteurs sont
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Figure A.1: Champ de vitesse longitudinale obtenu par PIV, isoligneM = 1 en noir.

placés au pied de choc (pour x = 315 mm), au niveau de la zone décollée (x = 335

mm) et au point de recollement (390 mm < x <400 mm).

(a) Densité spectrale de puissance. (b) Spectre premultiplié.

Figure A.2: Spectres de pression à la paroi à différents endroits de l’interaction.

Le principal résultat de cette analyse est que les mouvements du choc sont car-
actérisés par des oscillations à basse fréquence tandis que les oscillations à moyenne
fréquence sont typiques dans la zone décollée.
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Visualisation par images de strioscopie

Afin d’accéder à une information plus globale de la distribution spatiale des in-
stationnarités dans l’interaction, l’écoulement a été analysé à l’aide d’images de
strioscopie acquises avec une caméra haute cadence. Cette technique de mesure
donne accès aux gradients de densité (horizontaux ou verticaux selon l’orientation
du couteau) lesquels permettent de caractériser l’onde de choc et les structures tour-
billonnaires présentes dans la couche de mélange.

À partir des échantillons (60000 images acquises à une cadence de 35000 Hz),
deux traitements sont effectués: une décomposition en modes de Fourier et une
cross-correlation des images entres elles. Les deux techniques mettent en exergue la
forme spatiale des modes qui représentent les instationnarités typiques de certaines
fréquences.

La figure A.3 montre les modes de Fourier obtenus à partir des gradients verticaux
de densité pour des fréquences caractéristiques du battement de choc (f = 300 Hz
pour la figure A.3a) et des instationnarités de la couche de mélange (f = 4000 Hz
pour la figure A.3b).

(a) Mode à f = 300 Hz. (b) Mode à f = 4000 Hz.

Figure A.3: Modes de Fourier pour le gradient vertical de densité.

La figure A.3 montre que les oscillations à basse fréquence sont typiques de
l’intégralité de l’onde de choc et que la partie centrale de la couche de mélange suit
les mouvements du choc. Sur un mode de Fourier à plus haute fréquence, la plupart
de l’énergie est concentrée dans la zone de cisaillement et le mode n’est plus présent
sur le choc.

La figure A.4 montre les résultats de la correlation des images de strioscopie
quand le point d’interrogation est dans la couche de mélange. Cette opération
permet de mettre en évidence les zones de l’écoulement qui présentent un com-
portement similaire pendant leur mouvement du au comportement instationnaire
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(a) Gradient de densité horizontale ∂ρ/∂x. (b) Gradient de densité verticale ∂ρ/∂y.

Figure A.4: Correlations pour un point de référence dans la couche de mélange.

de l’interaction.

Lorsque le point d’interrogation est près du point de décollement, les deux ré-
sultats produits par les gradients verticaux et horizontaux de densité indiquent que
le choc est corrélé avec la couche de mélange. Les battements horizontaux du choc
imposent donc un mouvement vertical de la couche de cisaillement. Enfin, lorsque
le point d’interrogation est loin du point de séparation, les corrélations sur le choc
diminuent en faveur de l’apparition de certaines structures circulaires symétriques
par rapport au point d’interrogation. Ce résultat indique la présence des struc-
tures tourbillonnaires dans la couche de mélange, lesquelles sont associées grâce aux
mesures de pression à la paroi à des fluctuations à moyenne fréquence de la zone
cisaillée.

A.3 Approche numérique

Un modèle de type RANS a été choisi pour les simulations numériques et l’analyse
de stabilité. L’hypothèse sur laquelle l’étude numérique s’appuie est que les deux
phénomènes instationnaires observés expérimentalement sont caractérisés par des
fréquences inférieures aux fréquences typiques des structures qui caractérisent les
effets de la turbulence. Cette hypothèse de séparation d’échelle de fréquence permet
de modéliser l’impact des petites structures sur les plus larges à travers une viscosité
turbulente µt.
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Simulation numérique

Des calculs de type RANS avec un modèle de Spalart-Allmaras ont permis de simuler
l’écoulement dans un domaine qui reproduit l’intégralité de la veine d’essai utilisée
pour l’étude expérimentale.

Figure A.5: Composante horizontale de la vitesse. Ligne sonique en pointillée.

Le résultat, présenté en figure A.5, est en accord avec les mesures PIV mais
indique que l’écoulement est stationnaire : l’intégration en temps des équations
n’est pas capable de reproduire les mouvements à basse fréquence de battement du
choc ansi que les fluctuations observées expérimentalement dans la zone cisaillée.

Décomposition en modes globaux

Le résultat de la simulation RANS est ensuite considéré comme champ de base
pour une analyse de stabilité : grâce à une linéarisation des équations on obtient la
matrice Jacobienne, qui est donnée par :

J =
∂R
∂w

∣∣∣∣
w=w0

(A.1)

où w0 est le vecteur qui représente le champ de base, solution des équations RANS.
À partir de cette matrice nous considérons le problème aux valeurs propres :

Jŵ = λŵ (A.2)

Si au moins une des valeurs propres λ présente un taux d’amplification σ positif,
alors l’écoulement est instable. Le spectre obtenu est représenté en figure A.6, où l’on
peut observer que les valeurs propres de la matrice Jacobienne sont complètement
stables : les instationnarités ne peuvent pas être liées à un mode global instable.

Toutes les valeurs propre à basses fréquences ont une partie réelle faible, et
aucun mode ne peut être observé à la fréquence caractéristique du battement du
choc. Parmi les valeurs propres stables à moyenne fréquence, certaines sont très
proches de l’axe imaginaire : les modes globaux associés, représentés en figure A.7,
sont des modes acoustiques, liés aux résonances du tuyau et non pas à la dynamique
de la zone décollée.
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Figure A.6: Valeurs propres.

(a) Mode stable à f = 1290 Hz.

(b) Mode stable à f = 2340 Hz.

(c) Mode stable à f = 3500 Hz.

Figure A.7: Modes globaux stables.

Le Résolvant Global

Vu l’absence de modes globaux instables, la dynamique de l’interaction est de type
amplificateur de bruit. Pour décrire le mécanisme de sélection de fréquences nous
considérons le Résolvant Global, qui est définit par

R = (iωI− J)−1 (A.3)

où J est la matrice Jacobienne et I est la matrice identité. Le Résolvant Global
existe pour chaque fréquence ω, car toutes les valeurs propres de J sont à partie
réelle négative, et met en relation la réponse de l’écoulement ŵ quand il est soumis
à un forçage externe f̂ à travers ŵ = R f̂ . Grâce à une décomposition en valeurs
singulières de la matrice R on peut calculer le forçage (dit optimal), à une certaine
fréquence, qui produit la réponse la plus énergétique de l’écoulement. En faisant
cette opération pour toutes les fréquences ω on obtient la courbe de gain G(ω), qui
représente le ratio entre l’énergie de la réponse obtenue par un forçage optimal et le
forçage lui-même.

L’évolution en fréquence de la courbe de gain, donnée par la valeur propre la
plus énergétique λ1 du Résolvant Global, est montrée en figure A.8. Cette courbe
indique que l’interaction est très sensible aux basses fréquences, caractéristiques du
battement du choc, et aux moyennes fréquences, caractéristiques des fluctuations de
la couche de mélange.
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(a) Fonction de gain, échelle logarithmique. (b) Gain premultiplié.

Figure A.8: Valeurs propres du Résolvant Global. Chaque λi représente le gain
quand l’écoulement est forcé, à la fréquence f , avec un forçage optimal.

La figure A.8b montre le gain premultiplié, où l’on peut observer que la réponse
la plus énergétique pour un forçage optimal à basse fréquence est obtenue pour f =
50 Hz. Cette réponse est représentée en figure A.9.

Figure A.9: Réponse optimale à fréquence f = 50 Hz.

La réponse est concentrée uniquement sur le choc, et indique qu’un forçage à
basse fréquence est capable d’activer une réponse de l’écoulement qui est sur le
choc. On peut observer des similarités entre la réponse optimale et le mode de
Fourier obtenu expérimentalement à partir des images de strioscopie, représenté en
figure A.3.

La figure A.10 montre la réponse obtenue quand l’écoulement est forcé à travers
un forçage optimal à 4000 Hz, fréquence pour laquelle la courbe de gain de la figure
A.8b est maximale.

La réponse n’est pas dans le choc comme dans le cas à basse fréquence, mais est
plutôt concentrée dans la zone cisaillée, avec des structures circulaires périodiques
qui commencent à partir du point de décollement. Un comportement similaire a déjà
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Figure A.10: Réponse optimale à fréquence f = 4000 Hz.

été observé dans l’analyse expérimentalebasé sur la corrélation croisée des images de
strioscopie, et indique que les mouvements à moyennes fréquences de l’interaction
sont dues à une instabilité de type Kelvin-Helmholtz dans la couche de cisaillement.

A.4 Tremblement transsonique sur le profil OAT15A

Dans cette partie nous avons considéré un autre type d’IOCCL : un écoulement
transsonique autour d’un profile de type OAT15A. Ce type d’écoulement présente
des similarités avec la configuration analysée précédemment, avec la principale dif-
férence que, pour certaines incidences, l’onde de choc est soumise à des mouvements
périodiques de grande amplitude. La zone décollée s’étend périodiquement du pied
de choc au sillage du profil considéré et produit un lâcher de structures tourbillon-
naires.

Simulation numérique

La même approche décrite pour la configuration de Délery est appliquée à cet écoule-
ment, qui a été précédemment analysé expérimentalement par Jacquin et al. (2009).
Pour toutes les incidences considérées, les simulations RANS arrivent à la défini-
tion d’un champ de base qui est utilisé pour l’analyse de stabilité. Pour certaines
incidences (dès α = 3.5◦ jusqu’à α = 6.0◦), l’intégration des équations en temps
reproduit le mouvement de battement de choc connu comme le “buffet”.

La figure A.11a montre la solution RANS obtenue pour α = 3.5◦ : on peut
observer la présence, comme dans le cas de la bosse de Délery, d’une onde de choc qui
provoque la séparation de la couche limite turbulente, et une bulle de recirculations
s’étend du pieds de choc jusqu’au bord de fuite du profil.

La figure A.11b montre les effets de l’instationnarité du choc sur le coefficient
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(a) Champs de vitesse horizontale. (b) Évolution du coefficient de pression.

Figure A.11: Solutions RANS et URANS pour α = 3.5◦.

de pression : l’évolution du Cp en fonction du temps indique que l’écoulement est
caractérisé par des oscillations périodiques de l’onde de choc, pour une fréquence
d’environ 80 Hz.

Analyse de stabilité

Une analyse de stabilité linéaire comme pour le cas précédent est appliquée pour
ce type d’écoulement. Pour chaque incidence, les simulations RANS donnent un
champ de base qui est linéarisé pour obtenir la matrice Jacobienne. Ensuite, chaque
configuration est analysée par décomposition en valeurs propres.

Figure A.12: Valeurs propres pour différentes incidences.

Contrairement au cas précédent, un mode global instable apparaît pour des in-
cidences comprises entre α = 3.5◦ et α = 6.0◦. Le spectre montrant l’évolution de
cette valeur propre instable en fonction de l’incidence est présenté en figure A.12 :
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on peut observer que, en accord avec la simulation URANS, la fréquence du mode
instable est à 80 Hz, et la configuration la plus instable arrive pour α = 4.0◦.

(a) Mode direct. (b) Mode adjoint.

Figure A.13: Modes instables pour α = 4.0◦. Composante de densité.

Le mode direct instable associé à la valeur propre à partie réelle positive est
présenté, pour le cas α = 4.0◦, en figure A.13a : le mode, principalement sur l’onde de
choc indique, comme observé par Crouch et al. (2007), que l’origine du tremblement
transsonique est une instabilité de type globale.

En considérant le problème adjoint aux valeurs propres, on a accès aux modes
instables adjoints associé à l’instabilité de buffet. Ce mode, représenté en figure
A.13b, est énergétique sur la couche limite en amont du décollement et suit la ligne
caractéristique descendante qui arrive sur le pied de choc.

La décomposition en valeurs propres de la matrice Jacobienne permet de re-
produire correctement les mouvements périodiques de battement du choc observé
expérimentalement et par simulation numérique. Cependant, dans l’écoulement
d’autres types d’instationnarités, comme dans le cas de la bosse de Délery, peu-
vent arriver. Pour répondre à la question des instabilités convectives nous con-
sidérons le Résolvant Global. Indépendamment de la nature stable ou instable de
l’écoulement, la courbe de gain introduite dans la section précédente peut mettre
en évidence un mécanisme de sélection de fréquence qui peut se manifester dans ce
type d’interaction.

Encore une fois, l’évolution de la valeur propre la plus énergétique du Résolvant
Global, présentée en figure A.14a, indique que l’écoulement est sensible aux forçages
à basses fréquences (autour de f = 80 Hz) et à moyennes fréquences (entre f =
1 kHz et f = 4 kHz). La présence de la valeur propre instable f = 80 Hz cause
le pic dans la courbe de gain qui, contrairement au cas de la bosse, est lié à une
instabilité globale. En considérant la courbe de gain à moyenne fréquence, un pic à
une fréquence qui décroît avec l’augmentation de l’incidence peut être observé.

La figure A.14b montre la réponse optimale à fréquence f = 3000 Hz pour le
cas α = 4.0◦. Comme dans le cas de la bosse de Délery l’instationnarité à moyenne
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(a) Fonction de gain. (b) Réponse optimale à f = 3000 Hz, α = 4.0◦.

Figure A.14: Analyse du Résolvant Global : instabilités convectives.

fréquence est caractérisé par des modes de type Kelvin-Helmholtz qui se développent
à partir des deux zones cisaillées produites par le décollement et par le bord de fuite.
Ce résultat indique que, à part la présence du battement de l’onde de choc présent
pour certaines fréquences, l’écoulement autour d’un profil est caractérisé par des
oscillations à moyennes fréquences, présentes pour toutes les incidences, qui sont
liées à la présence de la couche de mélange.

A.5 Conclusions

L’objectif de cette étude était double : décrire la dynamique instable de l’interaction
entre une onde de choc et une couche limite turbulente sur la configuration dite
“bosse de Délery”, et adresser le problème des instationnarités en utilisant l’analyse
de stabilité.

L’étude expérimentale a permis de caractériser la configuration considérée :
l’écoulement moyen a été analysé par PIV, et le comportement instable a été décrit
par des mesures à la paroi et par des images de strioscopie à haute cadence. Le
choc est affecté par des instabilités à basse fréquence, tandis que la zone décollée est
siège de fluctuations à moyennes fréquences. En calculant le nombre de Strouhal,
les fréquences des mouvements du choc et de la couche de mélange se comparent
favorablement avec d’autres études.

Des simulations de type RANS ont ensuite donné accès à l’écoulement moyen,
qui reproduit l’interaction comme observé expérimentalement. Une analyse de sta-
bilité linéaire a alors été proposée : l’absence de modes globaux instables a indiqué
que l’écoulement se comporte comme un amplificateur de bruit et sa dynamique
ne peut pas être décrite par une décomposition en valeurs propres. Une formu-
lation théorique basée sur une décomposition en valeurs singulières du Résolvant
Global a alors été proposée : il a été montré que la non normalité de l’opérateur
linéaire a une grande importance dans la description du processus de sélection de
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fréquences observées expérimentalement. Le résultat principal de cette approche
est la confirmation que l’instabilité à basse fréquence ne vient pas d’une instabilité
globale, mais est la réponse de l’écoulement au bruit environnemental auquel il est
soumis. En ce qui concerne les fluctuations à basse fréquence, le forçage optimal
est maximal au pied de choc. Considérant les fluctuations à moyenne fréquence, les
instationnarités observés dans la couche de mélange sont liés à une instabilité de
type Kelvin-Helmholtz, qui existe indépendamment de la présence du choc.

L’approche appliquée à la configuration bosse de Délery a ensuite été utilisée pour
étudier la configuration transsonique d’un écoulement autour du profil OAT15A.
Dans ce cas, les mouvements périodiques du choc, lorsqu’ils sont présents, peuvent
être correctement reproduits par l’approche RANS, et la décomposition en valeurs
propres peut prédire l’instabilité à basse fréquence. Concernant les instabilités con-
vectives, la décomposition en valeurs singulières a indiqué que l’écoulement est sujet
aux instabilités à basse fréquence même avant le début du phénomène de buffet. À
part les mouvements périodiques du choc, il a été démontré que les sources les plus
énergétiques d’instabilités sont les couches de mélange en développement du point
de séparation et du bord de fuite du profil.

Perspectives

En ce qui concerne l’étude expérimentale, les résultats obtenus avec les correlations
des images de strioscopie ont montré le potentiel de la technique, mais pourraient
être améliorés avec des acquisitions de données plus longues, qui donneraient une
meilleure résolution temporelle dans la décomposition de Fourier.

En ce qui concerne l’étude numérique, l’extension de l’analyse de stabilité à
différentes configurations comme le cas IUSTI pourrait donner des résultats intéres-
sants. La suite naturelle de l’approche linéarisée serait le calcul des gradients de sen-
sibilité, pour avoir accès aux informations concernants le contrôle de l’écoulement.
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Unsteadiness in transonic shock-wave/boundary-layer interactions: experimental investigation

and global stability analysis

A transonic interaction between a shock wave and a turbulent boundary layer is experimentally and theoretically investigated.
The configuration is a transonic channel flow over a bump, where a shock wave causes the separation of the boundary layer
and a recirculating bubble is observed downstream of the shock foot.
First, the mean flow is experimentally investigated by means of PIV, then different techniques allows to identify the main
unsteadiness of this shock-wave/boundary-layer interaction. As recognised in similar configurations, the flow presents two
distinct characteristic frequencies, whose origins are still unknown.
Numerical simulations are performed solving Reynolds-averaged Navier-Stokes equations. Results are in good agreement with
the experimental investigation on the mean flow, but the approach fails to predict the unsteady behaviour of the configuration.
The solution of RANS equations is then considered as a base flow, and a global stability analysis is performed. Eigenvalue
decomposition of the linearised Navier-Stokes operator indicates that the interaction is stable, and the dynamics cannot be
described by unstable global modes.
A linearised approach based on a singular-value decomposition of the global Resolvent is then proposed: the noise-amplifier
behaviour of the flow is highlighted by the linearised approach. Medium-frequency perturbations are shown to be the most
amplified in the mixing layer, whilst the shock wave behaves as a low-pass filter. Optimal forcing and optimal response are
capable to reproduce the mechanisms that are responsible for these two phenomena. A restriction on the location of the forcing
can give an insight on the origin on the unsteadiness.
The same approach is then applied to a transonic flow over the OAT15A profile, where the flow can present, for a range of
angles of attack, high-amplitude self-sustained shock oscillations. Global stability analysis indicates that the shock buffet onset
is linked to a Hopf bifurcation, and the eigenvalue decomposition can describe the phenomenon when an unstable global mode
is present. Regardless of the angle of attack, singular-value decomposition of the global Resolvent can describe the convective
instabilities responsible of medium-frequency unsteadiness.

Mots-clés : SHOCK-WAVE/BOUNDARY-LAYER INTERACTION ; SWBLI ; TRANSONIC ; STABILITY ANALYSIS ; BUFFET

Instationnarités dans les interactions choc/couche-limite en régime transsonique : étude

expérimentale et analyse de stabilité

Dans cette étude nous considérons l'interaction entre une onde de choc et une couche limite turbulente dans un écoulement
transsonique sur une bosse d'un point de vue expérimentale et théorique, ainsi que dans un écoulement autour d'un profil d'aile.
Dans le premier cas, des mesures ont permis de montrer que l'interaction est caractérisée par la coexistence de deux
fréquences distinctes, mais l'origine des oscillations basse fréquence est controversée. Des simulations numériques s'appuyant
sur les équations RANS permettent une description de l'écoulement moyen, mais ne sont pas capables de reproduire le
comportement instationnaire de l'interaction. Nous proposons une étude de stabilité globale : une décomposition en valeurs
propres de l'opérateur de Navier-Stokes linéarisé au tour d'un champ de base RANS indique que l'interaction est un
phénomène stable, et la dynamique de l'écoulement ne peut pas être décrite par un mode global instable.
Nous considérons ensuite une approche linéarisée, où la réceptivité de l'écoulement à un forçage externe est analysée à
travers une décomposition en valeurs singulières du Résolvant Global. Cette approche est proposée afin d'expliquer la sélection
de fréquence dans cet écoulement, et montre que l'interaction filtre et amplifie le bruit résiduel existant : certaines perturbations
sont plus amplifiées dans la couche de mélange, tandis que le choc semble se comporter comme un filtre passe-bas.
La même approche est enfin appliquée sur un cas d'écoulement transsonique autour d'un profil d'aile, qui peut présenter des
oscillations périodiques de l'onde de choc. La décomposition en valeurs propres de l'opérateur de Navier-Stokes linéarisé est
capable de décrire la dynamique instationnaire quand un mode instable est présent. Cependant, la décomposition en valeurs
singulières du Résolvant Global peut indiquer la présence des instabilités convectives qui sont responsables du comportement
instationnaire à moyenne fréquence de l'écoulement.

Keywords : INTERACTION ONDE DE CHOC/COUCHE LIMITE ; IOCCL ; TRANSSONIQUE ; ANALYSE DE STABILITE ; TREMBLEMENT 
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