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Abstract 

The next generations of Li- and Na-ion batteries will rely on the development of new sustainable, 

low-cost and safe positive electrode materials. To this end, we explored the world of minerals with 

an emphasis on spotting structures having the prerequisites for insertion and deinsertion of alkaline 

ions. From this survey, we embarked on the investigation of bimetallic sulfates derived from the 

bloedite mineral and having the general formula AxM(SO4)2·nH2O (A = Li, Na, M = 3d transition metal 

and n = 0, 4). These systems present rich crystal chemistry, undergoing phase transitions upon 

heating and removal of water. The new structures were determined by combining X-ray, neutron and 

electron diffraction techniques. We have also shown that lithium-based compounds LixM(SO4)2 

present interesting antiferromagnetic properties resulting from their peculiar structures, which solely 

enable super-super-exchange interactions. Finally, and more importantly, we identified among the 

isolated compounds three iron-based sulfates, namely Na2Fe(SO4)2·4H2O, Na2Fe(SO4)2 and Li2Fe(SO4)2, 

which present attractive electrochemical properties against both lithium and sodium. With a 

potential of 3.83 V vs. Li+/Li0, the new marinite phase Li2Fe(SO4)2 displays the highest potential ever 

observed for the FeIII+/FeII+ redox couple in a fluorine-free iron-based inorganic compound, only 

rivaled by the triplite form of LiFeSO4F. 

 

 





 

   

Résumé 

Les prochaines générations de batteries à ions lithium et sodium seront basées sur le développement 

de nouveaux matériaux d’électrode positive durables, peu chers et sûrs. Dans ce but, nous avons 

exploré le monde des minéraux à la recherche de structures présentant les pré-requis pour 

l’insertion et la désinsertion d’ions alcalins. Nous avons alors entrepris l’étude de sulfates 

bimétalliques dérivés du minéral bloedite, ayant pour formule générale AxM(SO4)2·nH2O (A = Li, Na, 

M = métal de transition 3d, et n = 0, 4). Ces systèmes présentent une cristallochimie riche, montrant 

des transitions structurales en fonction de la température ainsi qu’avec le départ des molécules 

d’eau. Les nouvelles structures ont été déterminées en combinant les techniques de diffraction des 

rayons X, neutrons et électrons. Nous avons également montré que les composés à base de lithium 

LixM(SO4)2 présentent des propriétés antiferromagnétiques intéressantes, du fait notamment de 

leurs structures particulières qui permettent seulement des interactions de super-super-échange. 

Enfin et surtout, nous avons, parmi les composés isolés, identifié trois sulfates à base de fer, à savoir 

Na2Fe(SO4)2·4H2O, Na2Fe(SO4)2 et Li2Fe(SO4)2, qui présentent des propriétés électrochimiques 

intéressantes face au lithium et au sodium. Avec un potentiel de 3,83 V vs. Li+/Li0, la nouvelle phase 

marinite Li2Fe(SO4)2 affiche le plus haut potentiel jamais observé pour le couple redox FeIII+/FeII+ dans 

un composé inorganique à base de fer et dépourvu de fluor, et est en fait seulement dépassé par 

celui de la forme triplite de LiFeSO4F. 
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General introduction  

Since the harnessing of fire (c.a. -400 000 years ago), the history of the different energy sources used 

over the time has been intimately linked to technological, economical, social and political changes 

[1,2]. Muscular power and wood were the only sources of energy at the early ages. During the 

Antiquity, Greeks and Romans started using the wind force for transportation, and at the middle age, 

windmills and watermills were developed for grinding and sawing. Later, massive use of wood for 

constructions and industries (metallurgy, forge, glasswork, etc.) led to the rapid deforestation of 

Europe at the 17th and 18th centuries, which pushed forwards the exploitation of coal. Coal and steam 

engines, which were invented at the end of the 18th century, would then constitute a breakthrough 

couple, which marked the beginning of the Industrial Revolution in Occident. Finally, the end of the 

19th century witnessed at its turn a considerable acceleration of the industrial development, with on 

one hand the development of oil refining techniques and the invention of the combustion engine, 

and on the other hand the beginning of large-scale electricity production and distribution and the 

design of electric motors. This led to the Second Industrial Revolution and the birth of a new 

individual mean of transport, the automobile. 

Nowadays, we are certainly at our turn at the dawn of a new breakthrough in the field of energy. 

Most of the energy consumed worldwide is currently supplied by fossil fuels (i.e. petroleum, coal and 

gas) [3]. The massive use of these energy sources is now at the origin of growing economical and 

political concerns since the resources are limited and are on the way of depletion. Indeed, the world 

is facing a rapid increase of the energy demand (Figure G.I.1), mainly due to the boom of global 

exchanges, the rapid population growth (the world population has increased by ~13-22% every 

decade since 1950, and the United Nations projections show no slowdown of this trend for the 21st 

century [4]), as well as the fast growing of the developing countries, which yearn to have the same 

standards of living as the developed countries. Combining the growing energy demand with the fears 

about a possible supply run out has inevitably led to a gradual rise of the fossil fuels’ prices since the 

first oil crisis at the beginning of the 1970s. 

Besides, the massive use of these fossil fuels is also behind environmental issues, as their 

consumption generates high levels of greenhouse gases (Figure G.I.1). The scientific community has 

noticed since the 1950s an important impact of these gases on the climate system, with many 

changes being unprecedented over decades to millennia: the atmosphere and oceans have warmed, 

the amounts of snow and ice have diminished, sea level has risen, etc. [5]. The exact consequences of 

these climate changes are still debated, but they will undoubtedly affect the global ecosystem 
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(Figure G.I.1) and are likely to induce repeated extreme weather events (e.g. storms, floods, 

droughts), large population migrations (due to shoreline erosion, coastal flooding and agricultural 

disruption), etc. Limiting climate changes definitively require substantial reductions of greenhouse 

gas emissions. 

 
Figure G.I.1: On the left, world energy consumption by fuel type in the period 1850-2000, with indications of 

the major technological inventions over this period (from [3]). On the right, evolution of the global average 

temperature changes (with optimistic and pessimistic predictions shown in blue and red, respectively) 
 and of the atmospheric CO2 content since 1950 (from [5]).  

There is therefore a urge for the development of more abundant, renewable and less contaminating 

energy sources, such as hydropower, wind and solar energies, biomass and geothermal energy. 

However, most of these sustainable energies are intermittent, and hence they have to be coupled 

with storage solutions in order to balance energy supply and demand. Among the various options 

available, which are discussed in detail in reference [6], electrochemical storage devices (e.g. fuel 

cells, batteries, supercapacitors [7]), and in particular batteries, appear as one of the most promising 

strategies. Batteries convert electric energy into chemical energy when charged and reversibly 

provide electric energy when discharged with high conversion efficiency and no gas emission. 

Moreover, these devices can be adapted in shape and size (from few mm3 to several dozen m3), and 

can therefore be considered for both stationary storage applications (e.g. load levelling, 

uninterrupted power supply UPS) and mobile applications (e.g. portable electronics, electric and 

hybrid vehicles). 

Several technologies of batteries do exist, the more common being the lead-acid, the nickel-cadmium 

(Ni-Cd), the nickel-metal hydride (Ni-MH), and the lithium batteries. Thanks to their high energy 

density as compared with other technologies, the lithium-ion batteries have rapidly flooded the 

market of portable electronics since the beginning of the 1990s, and they are now about to conquer 
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electric vehicles and mass storage. However, despite 30 years of intensive academic and industrial 

research and development focused on this technology, there is still place for improvement. Present 

challenges are two-fold. On one hand, the increasing demand for powering systems of portable 

electronic devices and zero-emission vehicles stimulates research towards higher energy and higher 

voltage Li-ion systems, and on the other hand, the development of mass storage required lower-cost 

batteries, for which expectations are presently placed in a sister-technology: the Na-ion batteries. In 

both cases, design and optimization of new battery materials are required. 

 

The work presented herein is perfectly in line with this context, as it was aimed at designing new 

sustainable, low-cost and safe positive electrode materials displaying high voltages for Li- and Na-ion 

batteries. To achieve this goal, inspired by mineral species, we explored a new family of sulfate 

compounds having the general formula A2M(SO4)2·nH2O (A = alkali, M = 3d transition metal, and 

n = 0, 4). The present manuscript describes the main results obtained through this study. 

This thesis is divided in four chapters: 

After giving a few historical elements on the development of the Li-ion and Na-ion batteries, the first 

chapter proposes an overview of the main families of positive electrode materials that were 

investigated for these two battery technologies. This will permit to highlight the different strategies 

explored to increase the energy density stored in the positive electrode, the main concepts brought 

out from these investigations, as well as to present the main achievements reached at the beginning 

of our work.  

The second chapter describes how we took example from minerals, namely the bloedite 

Na2Mg(SO4)2·4H2O and the eldfellite NaFe(SO4)2, to design novel iron-based electrode materials. We 

prepared thus four compounds that could cycled versus both lithium and sodium and that display 

relatively high operating potentials of 3.6 V vs. Li+/Li0 and 3.3-3.4 V vs. Na+/Na0. 

The third chapter focuses on a new series of compounds of general formula Li2M(SO4)2 (M = Co, Fe, 

Mn, Ni, Zn, Mg), which present a rich crystal chemistry. Moreover the iron counterpart shows 

attractive electrochemical properties, with an elevated potential of 3.83 V vs. Li+/Li0, which is in fact 

the highest potential ever reported for the FeIII+/FeII+ redox couple in a fluorine-free inorganic 

compound. A detail characterization of the lithium extraction/insertion process in this new 

Li2Fe(SO4)2 phase is presented therein. 
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Besides these attractive electrochemical results, the bimetallic sulfate compounds presented in this 

thesis can also constitute materials of interest for physical studies, as their structures present 

peculiar arrangements that solely enable super-super-exchange interactions. The fourth chapter is 

thus dedicated to a magnetic study of the Li2M(SO4)2 phases (M = Co, Fe, Mn, Ni), which all display 

antiferromagnetic behavior. Moreover, models for their ground-state magnetic structures, 

determined from neutron powder diffraction, are proposed and confronted to the 

Goodenough-Kanamori-Anderson rules. The knowledge of these ground-state magnetic structures is 

indeed of high importance for the battery community, as they are involved in all theoretical 

calculations (in particular DFT calculations), which are aimed at simulating and understanding the 

properties of the current electrode materials and eventually establish models capable of predicting 

better materials for the next generations of batteries. Moreover, an attempt of correlation between 

the magnetic and electrochemical properties is proposed at the end of the chapter.  

As part of conclusion, we summarize the main results achieved within this thesis work, and compare 

the electrochemical performances of the new sulfate compounds presented herein to other 

iron-based polyanionic electrode materials that have been studied up to now. Finally, we conclude 

with a discussion on the few indicators which have been proposed to rationalize the redox potential 

variations in these compounds with the hope that they help to design new high-performance 

electrode materials for the next generations of batteries. 

 



   

Chapter I. State of the art 

This first chapter is aimed at giving an insight of the battery research landscape at the time we 

started this thesis work towards the search for new sustainable positive electrode materials for the 

next generations of Li-ion and Na-ion batteries. However, we should precise that we do not pretend 

to provide here an exhaustive review of the state of the art of this field, and therefore there will be 

inevitable shortages in this overview.  

I.1 Brief overview of the main technologies of batteries 
All batteries are based on a same, simple concept. An electrochemical cell consists of two electrodes, 

a positive and a negative one (often improperly called the cathode and the anode, respectively), 

which are separated by an ion-conductive electronic-insulating medium, called electrolyte 

(Figure I.1). The two electrodes have different chemical potentials, determined by their respective 

chemistries (i.e. their redox couples). When these electrodes are connected by means of an external 

circuit, the electrochemical reactions proceed concurrently at both sides, and electrons 

spontaneously flow from the more negative to the more positive potential. At the same time, 

electroneutrality is ensured by ion transport through the electrolyte. When one of the redox 

reactions is finished, the electron flow (the current) stops. If the process can be reversed by applying 

an external potential difference, then the battery* can be recharged. In principle, the two electrodes 

can be chosen from any favored redox reaction, although only a few dozen of them have been 

commercially exploited [8].  

 
Figure I.1: (a) and (b) Schematic operation principle of an electrochemical cell on discharge and on charge, 

respectively. (c) Energy diagram of an electrochemical cell. 

  

                                                           
*
 The term “battery” was initially reserved to refer to a stack of cells, connected in series and/or in parallel to 

provide the required voltage and capacity, respectively; nowadays, it is commonly used to name a single 
electrochemical cell too. 
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The most commercialized rechargeable batteries are the lead-acid, the nickel-cadmium (Ni-Cd), the 

nickel-metal hydride (Ni-MH), and the lithium batteries. Selecting the proper technology depends on 

its intrinsic performances and on the aimed application. The major three criteria are the output 

voltage (expressed in V), the amount of energy (given in terms of specific capacity, in mAh/kg and 

mAh/L, or energy density, in Wh/kg or Wh/L)) and the electrical power density (expressed in W/kg or 

W/L) that the battery needs to provide to the electrical device (Figure I.2). Other characteristics have 

to be taken into account too, and include the size and mass of the battery, its reliability, durability, 

safety and its cost. In practice, the relative importance of each factor is rather application dependent. 

For instance, energy density would be the main criterion when choosing a battery for portable or 

transportation applications, while more importance would be attached to cost in the case of mass 

storage. 

 
Figure I.2: Comparison of the different battery technologies in terms of volumetric 

and gravimetric energy density (from [9]). 

I.1.1 Lead-acid batteries 

Lead-acid batteries were the first rechargeable (secondary) batteries to be developed. They were 

proposed by Gaston Planté in 1860 [10,11], that is sixty years after the very first primary battery, the 

“pile” of Alessandro Volta [12]. In these batteries, both electrodes involve lead redox couples, and 

the sulfuric-acid-based electrolyte directly takes part in the electrochemical reactions. Being cheap 

and reliable, they are still the most commonly used rechargeable batteries, in particular for 

automobile SLI systems (Starting, Lightning and Ignition). 

I.1.2 Nickel-based technologies 

Nickel-cadmium batteries, which have been developed from the turn of the 19th century [13,14], 

present more power but are more expensive. They are mainly used in transportation (aeronautic), 

telecommunications and uninterrupted power supply (UPS) devices. The world’s biggest battery, 
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installed in Fairbanks (Alaska, USA) is based on this technology and can provide 26 MW of standby 

power for 15 minutes, i.e. the time needed to start up a standard backup generator [15]. For smaller 

applications, the Ni-Cd batteries have been progressively replaced by Ni-MH batteries since the 

beginning of the 1990s [16]. These latter offer indeed higher performances and avoid the use of toxic 

cadmium. They are also employed to power hybrid electric vehicles (e.g. Toyota Prius). 

I.1.3 High-temperature batteries 

In the 1960s, the quest for higher energy density batteries turned the research focus to alkali metal 

negative electrodes. The motivation for employing lithium or sodium indeed relied on the fact that 

they are among the lightest elements (MLi = 6.941 g/mol and MNa = 22.990 g/mol) and the most 

electropositive ones (-3.045 V vs. SHE* for Li+/Li0 and -2.714 V vs. SHE for Na+/Na0). However, given 

their instability with water, the use of alkali metals required moving towards non-aqueous 

electrolytes, which would add some complexity since electrochemistry in these media were much 

less developed. Inspired by the recent progress made at that time on solid electrolytes for high 

temperature fuel cells [17], the Ford Motor Company developed the first prototypes of sodium cells, 

which consisted of molten sulfur and molten sodium at the positive and the negative electrodes, 

respectively, separated by the so-called β’’-alumina solid electrolyte, and were operated at around 

300°C [18,19]. Large-size Na/S batteries have been produced and installed in particular in Japan, 

where there are still employed for large-scale stationary storage [20]. At the beginning of the 1980s, 

a derivative technology, a molten-salt battery (Na // β’’-Al2O3 // NiCl2) called ZEBRA, was proposed by 

Coetzer and Nolte [21]. It has been later developed and commercialized by a Swiss company MES-

DEA for automotive and stationary storage applications [22,23], but have remained a niche 

technology.  

Following the same model, the first lithium rechargeable batteries were proposed at Argonne 

National Laboratory (ANL) in the late 1960s [24]. They used molten lithium and molten sulfur as the 

two electrodes with molten salts (LiCl-KCl) as the electrolyte and were operated at around 450°C. 

Because of difficulties with liquid electrode containment, the lithium and sulfur active materials were 

replaced by a solid lithium-aluminum alloy anode and a solid metal sulfide cathode (in particular the 

low cost FeS and FeS2) [25,26]. However, development of this technology eventually ceased around 

1990 due to corrosion, temperature and other insurmountable issues.   

                                                           
*
 SHE: Standard Hydrogen Electrode 
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I.1.4 The first room-temperature lithium batteries  

The development of rechargeable lithium batteries operating at room temperature and using organic 

electrolytes was more successful. It was made possible by the discovery, at the beginning of the 

1970s, of inorganic compounds which reacted reversibly with alkali cations according to intercalation 

reactions [27,28]. The feasibility of a lithium-based non-aqueous rechargeable cell was first 

demonstrated by Whittingham (Exxon Research and Engineering Co.), who employed titanium sulfide 

TiS2 as the positive electrode and lithium metal as the negative one [29–34]. Consecutively to this 

first achievement, several other chalcogenides were investigated as positive electrode materials in 

lithium-based cells (e.g. FeS2, MoS2, NiPS3) [35–43], and soon researchers started considering also 

oxide compounds (e.g. V2O5, MoO3, LiCoO2), which displayed higher redox potentials [31,44–51]. 

At the beginning of the 1980s, Moli Energy commercialized the first rechargeable lithium battery 

using molybdenite MoS2 as a positive electrode and metallic lithium as the negative one [39,40]. 

However, these lithium-metal batteries had soon to be withdrawn from sale because of safety issues. 

Indeed, the combination of a lithium metal anode with a liquid electrolyte resulted in a non-uniform 

plating of the lithium upon cycling, and the growth of uneven dendrites could cause short-circuits 

and explosion hazards. To circumvent this issue, two strategies were pursued, in which either the 

negative electrode or the electrolyte was modified [9]. The first alternative would give birth to the 

so-called lithium-ion batteries while the second approach would led to the lithium polymer batteries 

(Figure I.3). 

 
Figure I.3: Schematic representations of a lithium-metal battery, a lithium polymer battery 

and a lithium-ion battery.  
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I.1.5 Lithium-ion batteries 

The first attempts to prevent the growth of dendrites consisted in replacing the metallic lithium 

anode by lithium alloys [52–56]. However, these electrodes survived only a limited number of cycles 

owing to extreme volume changes during operation. This option was put aside for a few decades 

prior the arrival of electrode nanostructuring, which enabled to bypass such volume issues. 

Next, the use of a second insertion material for the negative electrode was envisaged [57]. In fact, 

the concept of rocking-chair batteries (in which cations “rock” between two host electrodes) had 

been previously used in nickel metal hydride (Ni-MH) cells; it was implemented for the first time in 

lithium cells by Murphy (rutile MO2) [58] and by Scrosati (LixWO2 // LixTiS2 2V) [59–61]. Note that 

nowadays the term of rocking-chair batteries is barely used to refer to such lithium batteries having 

two-insertion materials at both electrode, since they are more commonly called Li-ion batteries. 

At that time, graphite intercalation compounds (GIC), which had been used as negative electrode in 

batteries for several decades [62–65], were also studied as possible lithium host materials [66–69]. 

However, their potential use as a replacement of the lithium metal in commercial cells was long 

disregarded, because a pre-lithiation of the anode was required before being assembled against the 

conventional TiS2 or MoS2 cathode materials. In the mid-1980s, Yoshino (Asahi Kasei Co.) eventually 

bypassed this additional step by employing the carbonaceous material against a lithium-containing 

cathode material [70], namely LiCoO2 (which had been previously discovered by Goodenough at the 

beginning of the decade [48–51]). Few years later, such a graphite // LiCoO2 cell would become the 

first commercialized Li-ion batteries (SONY in 1991 [71–74], followed by A&T battery – an Asahi Kasei 

and Toshiba joint-venture company – in 1992 [75,76]). This technology presents an average potential 

of 3.6 V (i.e. three times that of classical alkaline batteries) and reaches energy densities as high as 

120-150 Wh/kg (i.e. two or three times those of the usual Ni-Cd batteries), and has now been used 

for more than 20 years to power high-performance portable electronic devices. 

I.1.6 Lithium polymer batteries 

The second alternative to prevent the formation of dendrites at the lithium-metal anode was 

proposed by Armand in 1979 and involved the replacement of the liquid electrolyte by a dry one: a 

solid solution of a lithium salt into polyethylene oxide [77–79], which gave birth to the so-called 

lithium solid-polymer electrolyte (Li-SPE) batteries, or more simply lithium-metal polymer batteries. 

Such batteries (Li-metal anode // Li-salt in PEO // LiFePO4 cathode) are presently produced at an 

industrial scale by Batscap [80] and power the Bluecar of Bolloré [81], which has recently 

encountered a great success through the Paris Autolib car-sharing program. However, this 

technology is restricted to large systems (electric vehicles or stationary storage) and is hardly 
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transferable to portable devices, as it requires to be maintained at relatively high temperatures 

(60-90°C) for both operation and storage. 

Concurrently to Armand, several groups tried to develop a lithium hybrid polymer electrolyte (Li-HPE) 

battery [82–84], in which the electrolyte would be a polymer matrix swollen with liquid solvent and a 

lithium salt. Such batteries have been developed by the companies Valence Technologies and 

Danionics but were never materialized at industrial scale because lithium metal dendrites were still 

an issue.  

Later, at the beginning of the 1990s, with the aim of combining the recent commercial success of 

liquid Li-ion batteries with the manufacturing advantages presented by the polymer technology, 

Bellcore researchers introduced a polymeric electrolyte in a Li-ion system (i.e. a battery with 

intercalation compounds at both electrodes, no lithium metal at the anode) [85–88]. These 

all-plastic, thin-film and flexible batteries, so-called plastic Li-ion (PLiON) batteries, have been 

commercialized by Valence Technology and others since 1999 [89].  

 
Figure I.4: Schematic drawing of a PLiON cell (adapted from [9]). 

Finally, more recently, a new generation of bonded-liquid electrolyte Li-ion cells have been 

developed, in which the electrolyte is a gel-coated microporous poly-olefin separator bonded to the 

electrodes. Confusingly called Li-ion polymer batteries or even simply lithium polymer batteries, they 

are currently commercialized (e.g. by Danionics) and are integrated in small electronic devices 

(e.g. the new range of Apple portable products). 

I.1.7 Sodium-ion batteries 

After the success of the Li-ion batteries, new expectations have been placed since the turn of the 

2010s in the development of a Na-ion technology, which is believed to provide more sustainable 

batteries at a lower cost. 

In fact, the concept of Na-ion battery is far from being new, since sodium intercalation chemistry 

[27,28] was studied in tandem with the lithium one in the 1970s and 1980s [36,90–94]. However 

research on room-temperature sodium batteries has been almost abandoned after the boom of 
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Li-ion batteries in the 1990s-2000s, and published reports on the sodium technology during this 

period are therefore very limited as compared to those reporting on the lithium one [95–100]. 

Despite offering lower energy densities than the lithium-ion, there has been a resurgent interest in 

Na-ion batteries in recent years [8,101–105] after the emergence of some concerns about lithium 

supplies. Although current lithium main producers (Talison in Australia, SQM and Rockwood Lithium 

in Chile, FMC in Argentina, Tianqi Lithium in China) assure that they possess enough resources to 

provide the lithium needed for the launch of the electrical vehicle for the next 70 years [106,107], 

there are speculations about lithium prices in front of the increasing demand predicted for the next 

few years and because most of the untapped lithium is localized in remote or politically sensitive 

area (Bolivia in particular [108]). Sodium being far more abundant and well distributed on the Earth 

than lithium (Table I.1), it is much less prone to become a strategic resource and suffer from 

geopolitical issues than lithium does. Moreover, replacing lithium by sodium enables to use 

aluminum current collectors (instead of cupper ones) and thereby further reduce the battery cost. 

Table I.1: Natural abundance and world production of lithium and sodium (from [109,110]), and some 
physicochemical properties of these alkali metals. 

 Li Na 

Abundance in Earth crust 20 ppm 23000 ppm 

Average world production 24 600 tons 281 800 000 tons 

BGS Relative Supply Risk Index in 
2012

*
 

6.7 n.a. 

Specific capacity 3.86 Ah/g 1.16 Ah/g 

A
+
/A

0
 redox potential -3.045 V vs. SHE -2.714 V vs. SHE 

Ionic radius [111] 0.76 Å 1.02 Å 

 

  

                                                           
*
 The Relative Supply Risk Index is given on a scale from 1 (very low risk) to 10 (very high risk). It results from an 

evaluation based on several factors that might affect the availability of a chemical element, which includes the 
natural abundance in the Earth’s crust, the location of current production and reserves, the political stability of 
those locations, the recyclability and the substitutability [109].  
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I.2 Positive electrode materials for Li- and Na-ion batteries 
Contrary to other battery technologies, lithium batteries rely on a rich and versatile chemistry, with a 

large range of materials suitable for the negative and positive electrodes (Figure I.5). However, as it 

can be noticed from this figure, the main factor limiting the energy density of these batteries has 

been the lack of high-capacity positive electrode materials [9]. Therefore, most of the work done for 

the last 30 years has been dedicated to the search for new cathode materials displaying better 

performances.  

 
Figure I.5: Voltage versus capacity of some positive and negative electrode materials presently used or under 

considerations for the rechargeable lithium-based cells (adapted from [9]). 

The ideal positive electrode material would be based on a redox couple having a high potential, but 

compatible with the stability window of current electrolytes (i.e. < 4.8 V vs. Li+/Li0; see Figure I.1.c), 

and it would present a high specific capacity, which is proportional to the number of electrons 

exchanged per formula unit and inversely proportional to the molar mass of the compound. 

However, these two points are not the only requirements that a positive electrode should comply 

with. It should also react with lithium according to a highly-reversible insertion/deinsertion 

mechanism, so that it can offer good capacity retention. This reversibility is mainly related to 

structural or morphological modifications when Li+ ions are removed from and uptaken into the 

compound. The electrode material should also be both a good ionic and electronic conductor, since 

these two properties are the main limiting kinetic factors for the redox reaction (more than charge 

transfer) and thus determine the charge/discharge rate capabilities of the electrode. Finally, it should 

contain lithium to be easily implemented in Li-ion batteries, and other constituents should be 
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preferably chosen among abundant, low-cost and non-toxic elements for safety and sustainability 

reasons. 

In fact, most of the current positive electrode are based on cobalt and/or nickel, and these metals 

are rather scarce, expensive, and not environmentally and health benign (Table I.2). Researchers are 

therefore appealed to design electrode materials based on more sustainable elements, with iron and 

manganese being the more attractive ones (Table I.2). We should mention here that in the last few 

years, several electrode materials based on vanadium have been studied and have shown very 

interesting properties, with in particular the possibility of working with several oxidation states and 

making symmetrical cells with the same material at both electrodes. However the feasibility of 

integrating them into commercial batteries is still uncertain due to relative low competitiveness as 

compared with cobalt-, nickel- or manganese-based materials, and also because of the toxicity of 

vanadium (in particular at the oxidation state +V). 

Since the first lithium battery of Whittingham, who used TiS2 at the cathode side [29–34], numerous 

positive electrode materials have been explored. After the sulfides, the battery community has 

mainly focused on two types of compounds, namely the oxides and the polyanions. Giving an 

exhaustive review of all these compounds is beyond the scope of this thesis (for that purpose, many 

review papers are available [9,105,112–117]), but the next part of this chapter intends to provide a 

small overview of the main families of electrode materials that have been studied for the last 30 

years, with a focus on the strategies drawn for the design of high-energy electrode materials as well 

as on the relations that can exist between the compositions and structures of these compounds and 

their electrochemical properties. 

Table I.2: Natural abundance, world production and indicators of toxicity for cobalt, nickel, iron, manganese, 
and vanadium (figures are taken from [109,110,118,119]). 

 Co Ni Fe Mn V 

Abundance in Earth crust 20 ppm 80 ppm 41000 ppm 950 ppm 160 ppm 

World production in 2011 
(tons) 

151 000 1 826 000 3 012 000 000 47 300 000 67 000 

BGS Relative Supply Risk 
Index in 2012

*
 

7.6 6.2 5.2 5.7 6.7 

Indicative metal prices 
in Sept. 2013 

20 k€/ton 10 k€/ton 0.1 k€/ton 1.6 k€/ton 19 k€/ton 

Recommended exposure 
limit (REL) set by the U.S. 
National Institute for 
Occupational Satety and 
Health (NIOSH) 

0.05 mg/m
3
 0.015 mg/m

3 
1 mg/m

3
 1 mg/m

3
 0.05 mg/m

3
 

 

                                                           
*
 See note * page 11. 
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Positive electrode materials for Na-ion batteries are also discussed. Indeed, as Na-ion technology 

works in a similar way to the Li-ion one, the knowledge and experience acquired for the latter has 

been leveraged to facilitate a rapid development of the former. As a result, new battery materials 

have been almost systematically evaluated for both technologies for the last few years. Despite the 

larger ionic radius of Na+ as compared to Li+ (Table I.1 page 11), sodium-based compounds frequently 

adopt similar structures to that of their lithium counterpart. However, fundamental differences have 

been observed between lithium and sodium insertion in several materials [120]. One of the most 

convincing example may be the fact that the amount of sodium intercalated into graphite does not 

exceed 40 mAh/g [121], while graphite is the negative electrode of most commercial Li-ion batteries 

(with practical capacities of about 300 mAh/g of C); presently the most promising negative electrodes 

for Na-ion batteries are in fact hard carbons. We can also mention that, for a same host compound, 

differences between Li and Na have also been observed in insertion mechanisms (successive phase 

transitions are common in the case of sodium), ionic diffusion properties (Na+ migration barriers may 

be lower than that for Li+ in layered structures), etc. Finally, we should note that some sodium 

compounds have no stable lithium analogues, which offers the possibility of finding novel 

intercalation structures, which could not be explored for lithium technology. We attempt to illustrate 

the majority of these points within the examples presented hereafter. 

I.2.1 The first electrode material for lithium batteries: titanium sulfide TiS2  

As discussed earlier, the very first lithium battery used titanium sulfide at the positive electrode [29–

34]. This compound presents indeed a favorable layered structure for lithium insertion (Figure I.6.a), 

which allows the formation of a solid solution over the entire composition range LixTiS2 (0 ≤ x ≤ 1). 

 

 
Figure I.6: (a) and (b) Representation of the structures of the end members of the solid-solution LixTiS2 

(0 ≤ x ≤ 1): TiS2 and LiTiS2, respectively. TiS6 octrahedra are displayed in blue and green ball represent the 
lithium cations. (c) Open circuit voltage (OCV) of the Li // TiS2 cell as a function of the amount of lithium 

inserted into positive electrode material (x) (from [31]). 

 

c) a) b) 
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Its structure is built on a hexagonal close packing (hcp) array of sulfur ions, with half of the 

octahedral sites filled with titanium cations. These TiS6 octahedra are arranged into layers parallel to 

the (001) plane, the (TiS2)n sheets being maintained together through Van der Waals interactions. 

When discharging the Li // TiS2 cell, lithium ions intercalate in between these layers (Figure I.6.b). 

The absence of phase transition upon this process favors its reversibility, as no extra energy expense 

is needed for the nucleation of new phases or for important structural rearrangement of the host 

material. The evolution of the potential of the electrode material versus the Li+/Li0 reference redox 

couple upon lithium insertion (x) is generally presented with an electrochemical curve as shown in 

Figure I.6.c. 

Titanium disulfide was also tested against sodium [27,122,123], but in this case Na+ insertion is 

accompanied by several phase changes due to favored trigonal prismatic coordination for 

intermediate Na+ content and octahedral coordination for Na/Ti ratios close to one. 

I.2.2 Lithium transition-metal oxides 

Following the studies on lithium intercalation into sulfides, researches rapidly turned towards oxides, 

which were expected to present higher redox potentials. Indeed, the replacement of sulfur by the 

more electronegative oxygen enhances the ionic character of the M‒X bond (M = transition metal 

and X = S, O, etc.), i.e. stabilizes the anti-bonding orbitals of the metal M, which translates to an 

increase of the potential of the redox couple Mn+/M(n-1)+.  

I.2.2.1 Layered oxides 

As aforementioned, Goodenough demonstrated reversible lithium extraction/insertion in LiCoO2 at 

the beginning of the 1980s [48–51]. This compound crystallizes in the same layered structure as 

α-NaFeO2 (Figure I.7.a). It is built on a cubic close packing (ccp, or face-centered cubic packing, fcc) 

array of oxide ions, in which the transition metal (III+) and lithium (I+) cations occupy all octahedral 

sites in alternate sheets. Conversely to the layered structure of TiS2, in which the TiS6 octahedra are 

stacked directly one on the top of the other, in the α-NaFeO2-type structure the (MO2)n layers are 

slightly staggered to minimize ionic interactions. 

Although the full removal of the lithium is feasible, LixCoO2 undergoes a series of structural 

evolutions above 4.2 V vs. Li+/Li0 (i.e. ~ half delithiation) [124–126]. Some of these processes may be 

poorly reversible and some of the new phases are metastable. Therefore, for lifetime and safety 

motivations the delithiation is limited to 0.5 lithium (Figure I.7.b), thereby reducing the theoretical 

capacity to 137 mAh/g. Yet, LiCoO2 has been the main material used as positive electrode in 

commercial Li-ion batteries for many years. 
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Figure I.7: (a) Representation of the layered structure of LiCoO2. CoO6 octahedra are displayed 

in purple and lithium are represented as green balls. (b) Typical charge/discharge curve 
obtained for a Li // LixCoO2 cell (from [48]). 

Following the discovery of LiCoO2, extensive work was done in order to identify other layered oxides 

suitable as positive electrode materials. Being isostructural to LiCoO2, LiNiO2 was soon considered as 

a potential contender [127–129]. However, its electrochemical performances were poorer than 

expected because of the inevitable presence of nickel cations in the lithium layers. Moreover, the 

delithiated phases LixNiO2 were found to be prone to oxygen release, which causes security issues 

when employed with organic solvents. From cost and sustainable points of view (vide supra, Table I.2 

page 13), cathodes based on elements such as manganese or iron were desirable. However, although 

numerous polymorphs of LiFeO2 and diverse syntheses have been investigated, none of them was 

found to be successful [130–138]. Research on LiMnO2 has been slightly more fruitful, but the 

layered lithium manganese oxides are not thermodynamically stable and convert easily upon cycling 

to the spinel structure (cf. § I.2.2.2 page 17) [139–141].  

Besides the studies of each individual LiMO2 (M = Co, Ni, Mn) compound, a huge amount of papers 

and patents have been produced on metal substitutions in these layered phases. The approach 

consisted in stabilizing the layered structure, using either inert cations (e.g. Al, Ga, Mg) [142–144] or 

a combination of transition metals (e.g. Co, Ni, Mn, Ti). Noticeable progresses include the 

compounds LiCo1-xNixO2 [145–150], LiNi1-x-yCoxAlyO2 (in particular the composition x = 0.15 & y = 0.05, 

called NCA) [151–156], or else LiNi1-x-yMnxCoyO2 (in particular with x = y = ⅓, named NMC) [157–162]. 

In these compounds, the cobalt increases the electronic conductivity and the layerness of the 

structure, the small amount of nickel found in the lithium layer helps to stabilize the structure 

without being detrimental for the lithium diffusion, while electrochemically inactive cations (AlIII+, 

MnIV+) prevent full lithium removal and thus the collapsing of the structure. Metal substitution in 

layered compounds therefore lead to electrode material with good stability properties and high 

reversible capacities (up to 200 mAh/g). 

b) a) 
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Given that the large amount of work done on layered LiMO2 compounds, it is no surprise that similar 

layered phases NaxMO2 (M = Co, Ni, Mn, Fe, V, Cr, etc.) have also been investigated for sodium 

intercalation electrodes [163–173]. In a general way, NaxMO2 systems form layered structures more 

easily than the lithium equivalents due to the larger ionic size difference between Na and transition 

metals [174]. These phases exist as several polytypes, which differ in the stacking of the oxygen 

layers (e.g. ABCABC, ABBA, ABBCCA). They are classified using a notation initially proposed by Delmas 

et al. [163], in which “On” and “Pn” (n = 1, 2, 3, etc.) refer to structures having the alkali ions in 

octahedral and trigonal prismatic coordinations, respectively, while n indicates the number of 

sodium layers per unit cell. All NaxMO2 phases reversibly intercalate and deintercalate sodium upon 

electrochemical cycling, but the manganese and cobalt oxides have been the most studied. They 

generally show multistep voltage-composition curves with several very pronounced but reversible 

biphasic and single-phase domains [171], due to Na-vacancy ordering and/or gliding of the oxygen 

planes. Finally, it is also interesting to note that half-desodiation of NaMnO2 does not result in 

conversion to a spinel phase contrary to what happens with Li0.5MnO2.  

 
Figure I.8: Structures of P2-NaxCoO2, O3-NaxCoO2, P3-NaxCoO2 (from [102]) and electrochemical behavior of 

NaxCoO2 phases with P’3, O’3 and O3 packings (from [91]). 

I.2.2.2 Spinel manganese oxide 

In parallel to layered oxides, Thackeray and Goodenough envisaged the use of tridimentional spinel 

structures, first with Fe3O4 [175] and then with LiMn2O4 [176,177]. The manganese compound would 

be then extensively developed by Bellcore labs in the 1980s and 1990s.  

The LiMn2O4 spinel structure (named after the eponymous mineral MgAl2O4) is based on a ccp oxygen 

array, in which half of the octahedral sites are occupied by manganese and ⅛ of the tetrahedral sites 

by lithium atoms. The MnO6 octahedra are connected to each other through their edges, while the 

LiO4 tetrahedra share their four vertices with MnO6 octahedra and their four faces with vacant 

octahedral sites, thus forming a three-dimensional network of conduction path for lithium diffusion 

(Figure I.9.a).  
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Figure I.9: (a) Structure of the spinel LiMn2O4. MnO6 octahedra are displayed in purple and lithium atoms are 

represented as green balls. (b) Typical charge/discharge curve of a Li // LixMn2O4 cell (from [178]). 

Given that LiMn2O4 possesses one lithium per formula unit, with half of the manganese in the 

oxidation state +III and the other half in the oxidation state +IV, this amphoteric electrode material 

can be either oxidized to λ-MnO2 with a potential centered around 4.1 V vs. Li+/Li0, or reduced to 

Li2Mn2O4 with a plateau at ~3 V vs. Li+/Li0 (Figure I.9.b). However, in Li-ion batteries, in which the 

cathode is the sole source of lithium, only the upper plateau can be used, reducing to 148 mAh/g the 

useful capacity of the electrode material. One should note even so that spinels can be prepared with 

an excess of lithium (Li1+xMn2O4), so that the positive electrode acts as a reservoir to compensate 

irreversible lithium loss in the cell [179]. 

Despite its specific capacity slightly lower than that of layered oxides, LiMn2O4 presents numerous 

advantages, including a high voltage, a good rate capability, and the non-toxicity and relative low 

cost of manganese, for which it has been long considered as a material of choice for high-power 

applications (e.g. electric vehicles). However, after more than 20 years of development, scientists still 

face stability issues when cycling at elevated temperatures (i.e. ~50°C). LiMn2O4 was indeed found to 

slowly dissolve in the organic electrolytes conventionally used in Li-ion batteries, and the resulting 

manganese contamination of the anode leads to severe capacity fade. Several reviews [180–183] 

describe in details these issues and the different solutions that have been proposed, which include 

improvement of the material stability via lithium excess [179,184] or metal substitution [178,185–

188], blending with layered materials [189], or else chemical modification of the electrolyte (to 

prevent formation of HF, which favors the dissolution of the electrode material) [190,191]. Thanks to 

these efforts LiMn2O4 is, with LiFePO4 (cf. § I.2.3.2 page 23), among the most used positive electrode 

materials for electric vehicles applications (e.g. Renault-Nissan). 

a) b) 



Chapter I. State of the art 

  19 

I.2.2.3 Li-rich layered oxides 

Pursuing the search for a layered lithium manganese oxide electrode material, interests were turned 

to Li2MnO3 at the turn of the 21st century. This compound presents a layered structure similar to the 

one of LiCoO2, but with ¼ of the lithium atoms of Li2MnO3 lying in the transition metal sheet (Li2MnO3 

can therefore be formulated as Li[Li1/3Mn2/3]O2) [192–194] (Figure I.10). This compound is in fact 

nearly electrochemically inert since all the manganese is in the oxidation state +IV (i.e. the material 

cannot be oxidized) and all the octahedral sites are fully occupied in the lithium layer (i.e. it cannot 

be reduced). However, an electroactive Li2-xMnO3-x/2 could be prepared from Li2O-leaching of 

Li2MnO3, which was induced either chemically by acid treatment [195–197] or electrochemically by 

charging the electrode up to 4.5 V vs. Li+/Li0 [198,199]. 

 
Figure I.10: Structure of Li2MnO3 (monoclinic, C2/m). MnO6 and LiO6 octahedra in the transition metal layer are 

displayed in purple and green, respectively. Li cations in the lithium layer are shown as green balls. 

Besides, pioneering works involving partial metal substitution with cobalt, chromium and nickel in 

the Li/Mn layer of Li2MnO3 [200–204] led to the development of new composite cathode materials of 

the type xLi2MnO3·(1-x)LiMO2, where LiMO2 may refer to layered compounds such as 

LiCo1/3Ni1/3Mn1/3O2 [205–210] but also to spinel LiMn2O4 [208,211]. These compounds were reported 

to exhibit specific capacities greater than 250 mAh/g (i.e. exceeding the one of the classical layered 

electrodes), and are therefore currently receiving worldwide attention for the next generation of 

Li-ion batteries. Although many research groups can reproduce these outstanding performances, 

numerous ambiguities remain concerning the chemical nature of the compounds (i.e. whether they 

form short-range ordered domains[206] or homogeneous solid-solutions [203,212]), as well as the 

understanding of the exact oxidation/reduction mechanisms. However, our group recently 

demonstrated that this extra-capacity results from both cationic (Mn+ ↔ M(n+1)+) and anionic 

(O2- ↔ O2
2-) reversible redox processes [213–217], hence opening a new road to the search of high 

capacity electrodes. 
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I.2.3 Polyanions 

Beside oxides, compounds containing polyanion groups (with the general formula (XOz)
n-, where 

X = Mo, W, S, P, Si, B, etc.) have been studied as positive electrode materials. The main advantage of 

these compounds resides in the fact that, for a given Mn+/M(n-1)+ redox couple, they present higher 

redox potentials than oxides (due to the inductive effect, which will be discussed hereafter), and 

thereby, they give rise to attractive potentials for the FeIII+/FeII+ redox couple (between 2.8 and 4 V 

vs. Li+/Li0 as compared to ~2.5 V for iron oxides). Moreover, polyanionic compounds present strong 

and stable frameworks, which are essential for extensive cycling and safety issues, and exhibit a large 

variety of crystal structures, with great versatility towards cation and anion substitutions for a given 

structural type. Therefore, they are ideal compounds to understand the structure-properties 

relations and to design new electrode materials made up of cheap and abundant elements (with iron 

in particular). However, it should also be noticed that polyanionic compounds suffer from two main 

drawbacks: (i) limited gravimetric capacities because of the weight penalty arising from the presence 

of heavy polyanionic groups, and (ii) poor intrinsic electronic conductivities because of the lack of 

direct M-M or M-O-M interactions for electronic delocalization. 

Once again, giving an exhaustive list of the various families of compounds studied as electrode 

materials is not the aim of this work. Numerous families of polyanions (XOz)
n- and several redox 

couples (M = Fe, Mn, Co, Ni, V, Ti, etc.) have been investigated for both lithium and sodium insertion 

electrode materials. The following pages will be mostly focused on iron-based compounds, as they 

are the materials showing the best compromise between performances, price and sustainability, as 

discussed earlier (vide supra, Table I.2 page 13). The reader is invited to consult various review 

papers [8,101–105,114–117] for a wider outline of the different polyanionic compounds that have 

already been explored as electrode materials.  

I.2.3.1 The NASICON-type compounds AxM2(XO4)3  

In the middle of the 1980s, the groups of Torardi and Delmas were the first ones to demonstrate the 

feasibility of reversible alkali (Li and Na) insertion into the tridimensional frameworks of polyanionic 

compounds, with the NASICON phases Fe2(MoO4)3 [218,219] and (Li,Na)Ti2(PO4)3 [95,220], 

respectively. Subsequently, Goodenough et al. extended this study to other NASICON-type 

compounds, namely Fe2(WO4)3 and Fe2(SO4)3 [221–223]. Whereas the FeIII+/FeII+ redox couple in a 

simple oxide like Fe2O3 was known to generally operate at a voltage around 2.5 V vs. Li+/Li0, they 

surprisingly found high potentials of 3.0 V for Fe2(MoO4)3 and Fe2(WO4)3 [221], and even 3.6 V for 

both polymorphs of Fe2(SO4)3 [222–224] (Figure I.11).  
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Figure I.11: Galvanostatic curves obtained for the (a) monoclinic and (b) rhombohedral polymorphs of Fe2(SO4)3 

cycled against a lithium anode (from [224]). 

NASICON-type compounds were already well known at that time since they had been extensively 

studied in the 1970s as alternative solid electrolytes for Na/S batteries, after that Goodegough and 

Hong had found that Na1+xZr2SixP3-xO12 (0 ≤ x ≤ 3) (which were baptized “NASICON”, for NA SuperIonic 

CONductor, by Goodenough’s colleagues [225]) presented high ionic conductivity properties 

comparable to the ones of β’’-alumina [226,227]. These compounds have the general formula 

AaM2(XO4)3, where A = Li, Na, a ≤ 5, M = transition metal and X = Mo, W, P, S, Si, etc.. They crystallize 

into two different structures, called NASICON and anti-NASICON, depending on the composition 

and/or the preparation procedure. They are both built on a three-dimensional framework of MO6 

octahedra and XO4 tetrahedra, which are linked to each other by corners only. Each MO6 octahedron 

shares its six corners with six SO4 groups, while each SO4 tetrahedron equally shares all its vertices 

with four different MO6 octahedra. The basic M2(XO4)3 repeating unit, made of two MO6 octahedra 

bridged by three XO4, has the shape of a lantern (Figure I.12). In the NASICON structure, these 

lantern units are stacked parallel to each other, while in the anti-NASICON framework they are 

alternatively oriented in two different directions, which are almost perpendicular one to another 

(Figure I.12). The latter anti-NASICON structure is thus less open than the NASICON one, and is 

therefore generally less favorable for alkali ion transport.  

a) b) 
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Figure I.12: Representation of the NASICON and anti-NASICON frameworks 

(after the rhombohedral and the monoclinic structures of Fe2(SO4)3, respectively [228,229]). 

One important property of the NASICON-type structures is their ability to accommodate a large 

variety of atoms [230]. Playing on the LixM2(XO4)3 composition, Goodenough et al. established the 

relative position of the redox couples of various transition metals (Figure I.13.a) [224,231], and they 

later found that the potential of a given redox couple could be tuned by changing the nature of the 

polyanion XO4 (Figure I.13.b) [232]. For instance, they showed that varying X from phosphorous to 

sulfur increases the Fe3+/Fe2+ and V3+/V2+ redox potentials by 0.8 V. Moreover, the substitution of one 

sulfate group out of three by a phosphate group induces a change in the OCV of about 0.3 V (i.e. one 

third of the 0.8 V), suggesting that this effect is additive.  

 
Figure I.13: (a) Relative energies of the redox couples of different transition metals in materials having a 

NASICON framework (from [231]). (b) Influence of the nature the polyanion on these redox  
energies (from [232]).  
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Goodenough explained these observations in terms of inductive effect: the strong covalent bonding 

within the polyanionic group XO4 adjacent to the redox center M induces a polarization of the M–O 

bond (Figure I.14), which stabilizes the transition metal redox couple (i.e. it lowers the redox energy 

and raises the redox potential) [222,232,233]. Thus, the more electronegative is X, the stronger the 

covalent bonding X–O, the weaker the M–O bond, and the higher the potential of the Mn+/M(n+1)+ 

redox couple. 

 
Figure I.14: Schematic representation of the inductive effect. 

Consecutively, Goodenough et al. broadened their study by investigating lithium insertion into 

several different framework structures containing phosphate polyanions. Beside showing that even 

with the same polyanion the variation in structure could have an important effect on the position of 

a given redox couple [234], they identified in the course of this study a new electrode material, 

namely LiFePO4, which would have a major impact within the battery community in the following 

years [233,235]. 

I.2.3.2 Phospho-olivines AMPO4 (A = Li, Na and M = Fe, Mn, Co, Ni) 

Goodenough rapidly identified LiFePO4 as an attractive cathode material. With a theoretical capacity 

of 170 mAh/g (i.e. of the same order as with LiNiO2), and despite an operating voltage lower than the 

ones of the layered oxides (3.45 V vs. Li+/Li0 compared to ~4 V for LiCoO2), the so-called LFP become 

after LiMn2O4 the second low-cost Li-based material constituted of  abundant and environmentally 

benign elements. 

LiFePO4, which is a mineral named triphylite, is isostructural to the olivine Mg2SiO4, which crystallizes 

in an orthorhombic unit cell (space group: Pnma or Pmnb, depending on the chosen description), but 

with the lithium and iron atoms being completely ordered between the octahedrally coordinated M1 

and M2 sites, respectively [236]. Hence the triphylite LiFePO4 structure (often confusingly refered to 
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as the olivine structure in the battery community) consists of edge-sharing FeO6 octahedra, which 

give birth to layers parallel to the (ac)Pmnb ≡ (bc)Pnma plane (Figure I.15). PO4 tetrahedra brigde these 

octahedra sheets along the bPmnb ≡ aPnma-axis. Each phosphate group shares one of its edges with one 

FeO6 octahedron, which is thus slightly distorded. The resulting electrostatic repulsions between the 

Fe and P cations weaken the FeII–O bond strength, which was explained to be at the origin the 

unusually high operating voltage observed for this electrode material (3.45 V vs. Li+/Li0) [237]. The 

lithium atoms sit at the intersection of tunnels, which run along the aPmnb ≡ bPnma and the cPmnb ≡ cPnma 

axes; conductivity studies have however shown that Li+ diffusion was mostly 1D along the [100]Pmnb ≡ 

[010]Pnma direction [238].  

 
Figure I.15: Structure of LiFePO4 described in the Pmnb unit cell, viewed along (a) the c- and (b) the a-axes.  

Blue octahedra and yellow tetrahedra represent the FeO6 and PO4 groups, respectively. 
Lithium atoms are displayed as green balls. 

Lithium extraction occurs following a two-phase mechanism between the lithiated phase LiFePO4 and 

the delithiated phase FePO4, with a unit-cell volume change (ΔV/V) of 8.5 % [237]. This biphasic 

mechanism is conveyed in the plateau observed on the charge/discharge curve represented in 

Figure I.16. Initially, only ~0.7 lithium could be extracted at very low current densities, which 

corresponds to a reversible capacity of ~120 mAh/g [233]. Researchers identified rapidly that the 

limited reversible capacity and low rate capability was related to the poor electronic and ionic 

conductivity of the compound. Improving the electronic conductivity of the electrode materials was 

eventually achieved by coating the LiFePO4 powder with conductive carbon [239–241], while 

reducing the particle size of the active material enabled a better fueling of the ions [242,243]. The 

synthesis procedure of LiFePO4 powders was also shown to be critical because some routes may 

favor the creation of defects into the structure: in case of Fe/Li mixing sites, the iron found in the 

lithium tunnel blocks the lithium diffusion, which results in poor electrochemical 

performances[238,244,245]. 
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Overall, in less than ten years, drastic improvements of the electrochemical performances of LiFePO4 

were achieved [105,116,246–251], so that first LFP-based cell were commercialized in 2005 by the 

new A123 company. This technology is now envisaged for larger volume applications, such as 

transportation.  

 
Figure I.16: Galvanostatic curve obtained for a Li // LiFePO4 cell (from [233]). 

Other triphylite phases LiMPO4 (M = Mn, Co, Ni) were also envisaged as possible lithium hosts 

[233,252–255]. However, none of them has yet showed superior electrochemically properties than 

the iron compound, even if they have quite higher redox potentials. Given that the cobalt and nickel 

analogues should present operating voltages far from the stability windows of commonly used liquid 

electrolytes (4.8 V and 5.1 V vs. Li+/Li0, respectively), most of the expectations were focused on the 

manganese analogue, which displays a potential of 4.1 V vs. Li+/Li0. However, it suffers from very low 

intrinsic ionic and electronic conductivities (σ ≈ 10-16 S/cm at RT and ΔE ≈ 1.1 eV for LiMnPO4 

compared to σ ≈ 10-9 S/cm and ΔE ≈ 0.6 eV for LiFePO4) [256,257] as well as large lattice distortions 

induced by the Jahn-Teller MnIII+ ions of the delithiated phase, which results in low capacity and poor 

rate capability. 

 

Given that the success encountered by LiFePO4 in Li-ion batteries, the search of a sodium equivalent 

was naturally investigated for Na-ion technology. However, the thermodynamically stable phase of 

NaFePO4 does not crystallize in the triphylite structure but in another orthorhombic structure derived 

from olivine, namely the maricite structure, in which conversely to the triphylite the alkali atom (Na) 

and the transition metal (Fe) respectively occupy the M2 and the M1 sites [236,258,259]. Therefore, 

the maricite structure is characterized by the fact that the Na+ cations are trapped into large cavities 

surrounded by the PO4 groups and the (FeO6)n chains running along the [100]Pmnb ≡ [010]Pnma direction 
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(Figure I.17), which is likely the cause of the poor electrochemical behavior of this compound in 

sodium cells [120,260]. 

 
Figure I.17: Structure of NaFePO4 described in the Pmnb unit cell, viewed along (a) the c- and (b) the a-axes.  

Blue octahedra and yellow tetrahedra represent the FeO6 and PO4 groups, respectively. 
Sodium atoms are displayed as cyan balls. 

The direct synthesis of triphylite NaFePO4 being unfavorable, this metastable phase could be 

obtained through cation exchange from LiFePO4 [261]. The reversible uptake of ~0.9 Na+ into the 

triphylite framework of FePO4 (prepared by oxidation of LiFePO4) occurs at an average voltage of 

2.9 V vs. Na+/Na0, i.e. ~0.55 V lower than the potential observed for the lithiation process, which is 

significantly more than the 0.331 V difference usually expected from the comparison of the relative 

position of the Na+/Na0 and Li+/Li0 redox couples, as it is more widely commented by Ceder et al. in 

reference [120]. Another interesting feature is the fact that the sodium extraction/insertion process 

happens via the formation of an intermediate phase, as reflected in the charge curve by the presence 

of two distinct plateaus (Figure I.18) [261]. This intermediate phase, which has a Na0.6/0.7FePO4 

stoichiometry, acts indeed as a buffer of the internal stresses in the structure due to the large 

dimensional mismatches between FePO4 and NaFePO4 (ΔV/V ≈ 18 %, as compared to ~ 8 % for the 

lithium system) [262]. Finally, the triphylite polymorph of NaFePO4 has been shown to be sufficiently 

stable to maintain its structure for at least 50 cycles and up to 480°C [261,263]. 

 
Figure I.18: Typical electrochemical curve obtained for a Na // triphylite NaFePO4 cell  

in PITT mode (from [261]).  
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Besides the huge amount of work and the great hopes placed in the triphylite LiFePO4 to stand as the 

material of choice for the next generation of positive electrode materials for Li-ion batteries, other 

polyanionic compounds with alternative compositions and structures were also investigated in 

search for higher energy electrode materials (i.a. other phosphates, pyrophosphates, silicates, 

borates, sulfates, etc.). Basically, there are two ways to increase the energy stored in a battery: 

(i) either by improving the specific capacity stored in the positive and the negative electrodes (i.e. the 

number of Li+/e- accepted per gram of material), or (ii) by enhancing the difference of potential 

between both electrodes. Both directions were explored, as exemplified as follows by the silicates 

and the borates on the one hand, and by the fluorophosphates and fluorosulfates on the other hand. 

I.2.3.3 Silicates Li2MSiO4 (M = Fe, Mn, Co) 

In the quest for high specific capacity electrode materials, much hope has been placed into 

compounds that could afford more than one-electron reversible exchange per transition metal. 

Armand early identified the silicate Li2FeSiO4 as a possible candidate for such a challenge [264–267]. 

However, despite intensive research efforts having been devoted to Li2MSiO4 (M = Fe, Mn, Co) [268–

280], limited achievements have been attained until now.  

The Li2MSiO4 (M = Fe, Mn, Co) family presents a rich cristallochemistry, with all the polymorphs being 

derived from the β- and γ-Li3PO4 structures. These crystal structures consist of tetragonally packed 

oxygen ions (i.e. a distorted hcp array of oxygen ions), with half of the tetrahedral sites occupied by 

the three cations Li+, MII+ and SiIV+, so that face-sharing is avoided. In the β-type structures, all 

tetrahedra share corners and point in the same direction perpendicular to the close-packed planes, 

while in the γ-polymorphs, tetrahedra share both corners and edges and are oriented in opposite 

directions (Figure I.19.a). Several variants (named βI, γ0, γII, etc.) exist for both β and γ structures, 

involving either cation ordering or distortion of the parent structure. Recently, all polymorphs were 

shown to have very similar energies, which explains the difficulties encountered to control of 

synthesis of single-phase samples [281]. 

 
Figure I.19: (a) Structural representations of two polymorphs of Li2FeSiO4 (from [278]).  

(b) Cycling of Li2FeSiO4 (from [282]).  
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One of the peculiarities of this silicate family is its quite poor intrinsic conductivity (σ ≈ 5·10-16 S/cm 

for Li2MnSiO4 and 6·10-14 S/cm for Li2FeSiO4 at room temperature [283]), due to isolated MO4 

tetrahedra and tightly bounded Li+ cations in tetrahedral sites. However this limitation could be 

overcome by combining carbon coating and particles nanosizing [274,284], as previously employed 

for LiFePO4. 

Similar electrochemical behavior was found for all Li2FeSiO4 polymorphs, as presented in 

Figure I.19.b. Almost one lithium (~160 mAh/g) can be removed from the structure during the first 

charge, which occurs around 3.1 V vs. Li+/Li0. Interestingly, Dominko and Masquelier showed that the 

exact value of this potential was closely related to the FeO4 arrangements of the different 

polymorphs [278]. Subsequent charges and discharges, which offer reversible capacities of 

120-140 mAh/g, experience a lowering of the voltage to 2.8 V vs. Li+/Li0, which results from a 

structural rearrangement to a more stable structure that minimizes repulsion between FeIII+ and SiIV+ 

cations in the charged phase [269,281,282]. The removal of the second lithium could not be 

achieved. In fact, recent theoretical calculations predicted that the FeIV+/FeIII+ redox couple would be 

located at a high voltage of 4.7 V vs. Li+/Li0 (i.e. close to the electrolyte stability limit) and would be 

accompanied by major structural rearrangement, both being detrimental to reversible cycling of the 

second lithium [281]. 

Unlike Li2FeSiO4, other members of the Li2MSiO4 family (M = Co, Mn) have not shown promising 

electrochemical properties so far. In addition to the poor ion and electron transport characteristics of 

Li2MnSiO4, Jahn-Teller MnIII+ (d5) cations are unstable in their tetrahedral environment, thus leading 

to important loss of crystallinity during the first oxidation and poor reversibility during the 

subsequent cycle [283]. Stabilization of the manganese was investigated in mixed Fe/Mn silicates, 

but electrochemically cycling of such Li2Fe1-xMnxSiO4 phases did not exceed 0.8 lithium ions 

[285,286]. 

I.2.3.4 Borates LiMBO3 (M = Fe, Mn, Co) 

LiMBO3 (M = Fe, Mn, Co) borate phases were considered for the first time in 2001 as possible 

alternatives for positive electrode materials by Piffard et al. [287]. BO3 groups are in fact the lightest 

polyanionic groups, so that the LiMBO3 compounds have theoretical capacities as high as 220 mAh/g. 

Therefore, although the potential of the FeIII+/FeII+ redox couple is relatively low compared to other 

polyanionic compounds (2.8 V vs. Li+/Li0), an electrode material based on LiFeBO3 could reach energy 

densities up to 617 Wh/kg, which is the highest theoretical energy density among the polyanionic 

compounds investigated up to now. 
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The crystal structure of LiMBO3 (M = Fe, Mn, Co) is described in a monoclinic unit cell (space group: 

C2/c) [287,288]. It is built on edge-sharing FeO5 trigonal bipyramids, which form chains along the 

<1 0 -1> directions (Figure I.20). Each planar BO3 group links three of these chains via corner sharing. 

Within this 3D framework, lithium atoms lie in tetrahedral sites. However, there is still a controversy 

in the literature surrounding the exact structure of LiFeBO3, in particular over the position of the 

lithium atoms [287,289–291]. 

 
Figure I.20: Structure of LiMBO3 viewed along (a) the a- and (b) the c-axes.  

Blue bipyramids and green triangles represent the FeO6 and BO3 groups, respectively. 
Lithium atoms are displayed as half-colored green balls. 

Whereas Piffard’s first results showed very limited reversible capacities for the three LiMBO3 (M = Fe, 

Mn, Co) phases [287], a significant breakthrough was made by Yamada et al. in 2010 when they 

reported for LiFeBO3 attractive reversible capacity of almost 1 lithium per iron atom (> 190 mAh/g at 

C/20) (Figure I.21) [289]. These impressive results were achieved by using nanosized particles and by 

paying special attention to prevent the samples from air exposure. Both experiments and ab initio 

calculations confirmed solid-solution behavior between isostructural end-members with a very small 

volume change (ΔV/V ≈ 2 %), which is favorable for reversible reaction and long-range cyclability 

[289,292]. 

 
Figure I.21: Typical charge-discharge curves obtained for LiFeBO3 (from [289]). 
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More recently, Ceder et al. compared the electrochemical performances of the monoclinic LiMnBO3 

with an hexagonal analogue. They showed that the former is the most interesting polymorph despite 

its lower redox potential (3.7 V vs. Li+/Li0 for the monoclinic form compared to 4.1 V for the 

hexagonal one). Consequently, Yamada et al. also studied the solid solution LiFe1-xMnxBO3 [293]. As 

expected, the potentials associated with the redox couples FeIII+/FeII+ and MnIII+/MnII+ were found to 

be at 3.0 V and 3.7 V vs. Li+/Li0, respectively. Thus, the introduction of manganese provides a higher 

potential, but in return, the practical capacity decreases and kinetic polarization increases. Finally, 

nanoscale LiCoBO3 was also studied as electrode material [294]. First results showed that the 

electrochemical activity is centered around 4 V vs. Li+/Li0, but the reversible capacity was only of 

~30 mAh/g at a moderate rate of C/20. 

I.2.3.5 Fluoro- and hydroxy-phosphates AxMPO4X (A = Li, Na, M = V, Fe, Mn and X = F, OH) 

In the early 2000s, Barker and co-workers proposed for the first time to use fluorophosphate 

compounds AMPO4F (with A an alkaline and M a 3d transition metal) as positive electrode materials 

[295]. Such compounds benefit from both the inductive effect of the phosphate groups and the high 

electronegativity of the fluorine anions, which should further stabilize the Mn+/M(n-1)+ redox couple. 

Most of the lithium-based LiMIII+PO4F compounds are isostructural to the naturally-occuring minerals 

tavorite LiFePO4OH [296] and amblygonite-montebrasite LiAlPO4(OH),F [297], which both crystallize 

in the same triclinic structure (space group: P-1). This structure is characterized by one-dimensional 

chains of corner-sharing FeO4X2 (X = F, OH) octahedra, where two adjacent octahedra are linked 

through the fluorine atoms or the oxygen of the hydroxyl group (Figure I.22). These chains are 

interconnected by corner-sharing PO4 tetrahedra. The resulting 3D framework delimitates different 

types of tunnels, at the rim of which lithium ions sit. Depending on the composition (e.g. F or OH, 

nature of the transition metal), the lithium occupies either two partially-occupied independent sites 

or a single site, although its exact position in some phases may still be the subject of controversy in 

the literature. Hence, this structure offers intersecting channels in which the Li+ ions are able to 

diffuse in the three dimensions, while the (FeO4X2)n chains ensure 1D electronic diffusion. 
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Figure I.22: Representation of the tavorite structure, viewed along (a) the a- and (b) the c-axes. 

Blue octahedra and yellow tetrahedra represent the FeO6 and PO4 groups, respectively. Lithium atoms are 
displayed as green balls. Oxygen and fluorine atoms are shown as red and orange balls, respectively. 

I.2.3.5.1 Lithium-based fluorophosphates 

From 2000 to 2007, Barker mainly studied the vanadium-based fluorophosphate LiVPO4F [295,298–

305]. This compound shows highly reversible lithium extraction/insertion in two potential ranges, 

around 1.8 V and 4.2 V vs. Li+/Li0, which are associated to the VIII+/VII+ and VIV+/VIII+ redox couples, 

respectively. The presence of these two plateaus offers the possibility of making a symmetrical 2.4V 

full cell by employing LiVPO4F at both the positive and the negative electrodes [302]. Moreover, 

long-range cyclability of graphite // LiVPO4F cells has been demonstrated at a C/2 cycling rate, with 

more than 120 mAh/g after 200 cycles [305]. However, the low-availability and the high-toxicity of 

vanadium (as discussed earlier, Table I.2 page 13) constitute the main obstacles for the 

commercialization of cells employing LiVPO4F.  

First reports on the synthesis and the electrochemical properties of the iron equivalent LiFePO4F 

were published in 2010 by the group of Armand and Tarascon [306–308] and by the one of Nazar 

[309,310]. Contrary to LiVPO4F, lithium extraction from LiFePO4F is not feasible, because the 

oxidation of FeIII+ into FeIV+ is located at too high a voltage (above 4.7 V vs. Li+/Li0, i.e. beyond the 

electrochemical stability window of the electrolyte). Conversely, high reversible lithium intercalation 

(up to 0.96 Li, that is 145 mAh/g) into LiFePO4F was observed at a moderate C/10 rate, with an 

operating voltage located close to 2.8 V vs. Li+/Li0 corresponding to the FeIII+/FeII+ couple 

(Figure I.23.a). The discharge process was described as a two-phase mechanism, leading to the phase 

Li2FePO4F, which conserves the tavorite framework with a volume expansion of about 8 %. 

Here, it is interesting to note that the FeIII+/FeII+ redox potential observed for LiFePO4F corresponds to 

the one recorded for the NASICON Li3Fe(PO4)3 (2.8 V vs. Li+/Li0 [234,311]), and is even lower than the 

one of the olivine LiFePO4 (3.45 V vs. Li+/Li0 [233,234]), which both contain no fluorine. Therefore, 
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this observation illustrates well that the incorporation of fluorine into a given composition does not 

systematically enhance the potential of the redox center. In fact, besides the nature of the 

neighboring atoms of the redox center, many other structural factors (e.g. the connectivity between 

atoms, the nature of the bonding) experimentally affect the position of redox potential. 

 
Figure I.23: Lithium insertion-deinsertion curves of (a) LiFePO4F (from [309]) and (b) LiFePO4OH (from [312]). 

I.2.3.5.2 Lithium-based hydroxyphosphates 

Electrochemical properties of the tavorite mineral’s composition LiFePO4OH were tested as soon as 

2001 by Whittingham’s group [313], but they observed no capacity between 1.9 and 4.1 V vs. Li+/Li0. 

No more attempts were reported until Delmas and co-workers reinvestigated this compound in 2009 

and found interesting electrochemical activity [312]. Using a C/50 rate, they obtained a 90 mAh/g 

reversible capacity (i.e. ~60 % of the theoretical one) at an average voltage of ~2.5 V vs. Li+/Li0 

(Figure I.23.b). An intriguing feature is the 0.12 V potential increase observed in the discharge curve 

after the first cycle, which was explained by an amorphization of the active material upon the first 

discharge [310]. Moreover, one can notice here that the 2.5 V potential of LiFePO4OH is about 0.3 V 

lower than the one reported for the LiFePO4F. This illustrates the effect of replacing an hydroxyl 

group OH‒ for a more electronegative fluorine ion F‒ on the redox potential for two isostructural 

compounds. This observation is further supported by a recently-reported mixed 

hydroxy-fluoro-phosphate LiFePO4(OH)0.4F0.6 of tavorite structure, which inserts lithium at an average 

voltage intermediate between those of LiFePO4OH and LiFePO4F [314] (Figure I.24). It is also worth 

noting the sloping shape of the cycling curve of LiFePO4(OH)0.4F0.6, which undergoes a single-phase 

(solid-solution) lithium extraction/insertion mechanism, in contrast with the flat-like curves of the 

two end-members LiFePO4OH and LiFePO4F. Such a charge/discharge profile, rather rare among 

polyanion compounds, constitutes an advantage for an electrode material at both material and 

practical point of views: first, it is associated with less strains within the particles, which favors better 
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reversibility and longer cycle life, and second, it permits facile monitoring of the state of charge of 

the full cell, as the operating voltage can be directly correlated to the remaining energy stored in it. 

 
Figure I.24: (a) Voltage profiles on first discharge of LiFePO4F, LiFePO4OH, and LiFePO4(OH)0.4F0.6 (from [314]). 

(b) Electrochemical cycling of LiFePO4(OH)0.4F0.6 versus lithium. Inset: discharge capacity 
at a C/10 rate for the first 20 cycles. (from [314]). 

Finally, the lithium manganese hydroxyphosphate LiMnPO4OH was also investigated [315] with the 

hope of using both MnIII+/MnII+ and MnIV+/MnIII+ redox couples, as for LiVPO4F. However, this material 

was found to present poorer electrochemical properties than LiFePO4OH, with a reversible capacity 

of about 100 mAh/g at a very slow rate of C/100. Moreover, after a first charge occurring between 

3.5 and 4.5 V vs. Li+/Li0, the discharge and charge curves become more sloping and are centered at an 

average voltage of 3.4 V vs. Li+/Li0. This drastic change in the curve profile should indicate a 

modification of the electrode material that has not been elucidated yet. Similar behavior and 

performances were also observed later for the mixed phase LiFe1-xMnxPO4OH [316]. 

I.2.3.5.3 Sodium-based fluorophosphates 

The sodium-based iron fluorophosphate has the general formula Na2FePO4F and does not crystallize 

in the tavorite structure, but in an orthorhombic unit cell (space group: Pbcn). It presents a 

layered-like two-dimensional framework, composed of FeO7F2 units made of face-sharing FeO4F2 

octahedra. These units are connected via bridging fluorine atoms to form chains, which are joined by 

PO4 tetrahedra to give (FePO4F)n infinite layers. The two sodium atoms, which are located in the 

interlayer spaces, possess facile 2D migration pathways. 

Na2FePO4F was first tested as positive electrode material against lithium [260], providing 124 mAh/g 

at an average potential of ~3.3 V vs. Li+/Li0 for 50 cycles at C/10. This demonstrated the feasibility of 

directly using sodium-based compounds as cathode materials for Li-ion batteries, in particular when 

lithium equivalent cannot be synthesized directly, without prior ion exchange. Na2FePO4F was later 
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incorporated in Na-ion batteries by Recham et al., who obtained about 100 mAh/g at an average 

voltage of 3 V vs. Na+/Na0 (Figure I.25) [306,308,317,318]. The removal of one sodium is associated 

with only a 3.7 % cell volume reduction. The remaining sodium atom, which cannot be 

electrochemically removed owing to the inaccessibly high potential of the FeIV+/FeIII+ redox couple, 

acts as a pillar between the layers.  

 
Figure I.25: (a) Structure of Na2FePO4F, and (b) electrochemical curve obtained 

when cycling Na2FePO4F versus sodium (from [318]). 

I.2.3.6 Fluoro- and hydroxy-sulfates AxMSO4X (A = Li, Na, M = Fe, Co, Ni, Mn, Zn and X = F, OH) 

At this stage, if we remind the 0.8 V shift observed by Goodenough et al. on the redox potentials 

when substituting phosphate groups by sulfates in NASICON compounds [232], an evident 

continuation of the work done on fluoro- and hydroxy-phosphates was naturally to explore the 

sulfate analogues.  

I.2.3.6.1 Lithium-based fluorosulfates 

The first fluorosulfate of tavorite structure to be synthesized was the LiMgSO4F phase and was 

reported in 2002 by Sebastian et al. [319]. Based on their conductivity measurements, they predicted 

that “isostructural transition metal analogues, LiMSO4F (M = Mn, Fe, Co), would be important for 

redox extraction/insertion of lithium involving MII/MIII oxidation states”, but they could not prepare 

them using ceramic methods. Eight years later, Tarascon and co-workers eventually obtained the 

tavorite LiFeSO4F phase by employing an unusual ionothermal route [308,318,320,321]. Indeed, this 

new phase was then found to decompose at temperature beyond 375°C and to be soluble in water, 

which explains the difficulties encountered to isolate it with classical ceramic approaches or 

low-temperature solution chemistry in aqueous media. Moreover, the authors also noticed that one 

of the determinant factors for the success of the synthesis was the use of monohydrate iron sulfate 

and lithium fluoride as the precursors. They pointed out that the szomolnokite-type structure of 

FeSO4·H2O [322] was in fact closely related to that of the tavorite LiFeSO4F [323], as seen in 
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Figure I.26. During the reaction, the water molecules that link adjacent FeO4(H2O)2 octahedra in the 

mother phase FeSO4·H2O are replaced by fluorine anions while lithium cation are inserted in the 

open cavities, thus forming the tavorite LiFeSO4F. 

 
Figure I.26: Comparison of the szomolnokite structure of FeSO4·H2O (on the left)  

and the one of the tavorite of LiFeSO4F (on the right). 

Tavorite LiFeSO4F displays a high redox potential of 3.6 V vs. Li+/Li0, which is, as expected, 0.8 V 

greater than the one of the isostructural fluorophosphate LiFePO4F. Nearly 0.9 lithium ions per 

formula unit (i.e. 135 mAh/g) can be reversibly extracted from the structure, with good capacity 

retention. The redox process follows a biphasic mechanism and leads to a delithiated FeSO4F phase, 

which conserves the tavorite framework although described in that case with a monoclinic cell (space 

group: C2/c); the resulting 8 % volume change between the lithiated and the delithiated phases is 

comparable with the ones of LiFePO4F and LiFePO4. 

 
Figure I.27: Cycling of the tavorite LiFeSO4F (from [321]). 

Therefore, with a potential slightly higher than that of the olivine LiFePO4 and a similar energy 

density (c.a. 500 Wh/kg), and because such good electrochemical response is achieved with no need 

of carbon coating nor nanosizing of the particles, tavorite LiFeSO4F stood as a new promising positive 
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electrode. Therefore, a lot of work have been dedicated in developing alternative synthesis routes, 

ranging from low-temperature solid-state reaction [324] to the use of polymers [325,326] or polyols 

[327,328] as reacting media, in order to propose more scalable ways to produce the new electrode 

material. 

These syntheses were consecutively extended to the preparation of other 3d-metal fluorosulfates 

LiMSO4F (M = Co, Ni, Mn, Zn), which revealed the rich polymorphism of this family of compounds 

[323]. While the cobalt and nickel phases were additional members of the tavorite series [321,329], 

the manganese compound was found to be isostructural to the triplite mineral [330] and the zinc 

counterpart to crystallize in a sillimanite-like structure [323,331–333].  

The structure of LiZnSO4F is built on chains of corner-sharing ZnO4F2 octahedra bridged by SO4 

tetrahedra similarly to the tavorite structure (Figure I.28); the main difference resides in the 

orientation of the octahedra along the chains and the way these chains are connected through SO4 

tetrahedra, which results in a higher symmetry for the sillimanite-like LiZnSO4F structure (monoclinic 

unit cell, space group: Pnma) and in narrower channels for lithium diffusion [323]. 

 
Figure I.28: Comparison of the tavorite, the sillimanite-like and the triplite structures (from [323]). 

On the contrary, the triplite structure significantly differs from the tavorite and the sillimanite-like 

ones, as seen in Figure I.28. First, the 3d-metal and lithium atoms, which have well-defined 

crystallographic sites in the tavorite and the sillimanite-like structures, are statistically distributed on 

two octahedral sites (denoted M1 and M2) in the triplite structure. Second, fluorine atoms are 
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arranged in a cis configuration, rather than a trans one, within the strongly distorted (Mi)O4F2 

octahedra. Finally, when the MO4F2 octahedra are only interconnected through corners in the 

tavorite and the sillimanite-like structures, in the triplite one they share edges, and form chains 

running along the [101] and [010] directions of the monoclinic unit cell (space group: C2/c). 

Although expected for the zinc phase, the four new compounds LiMSO4F (M = Co, Ni, Mn, Zn) were 

regrettably found to be electrochemically inactive up to 5 V vs. Li+/Li0. The solid solutions of triplite 

Li(Fe1-xMnx)SO4F (0.05 ≤ x ≤ 1) [330,334] and sillimanite-like Li(Fe1-yZny)SO4F (0.15 ≤ y ≤ 1) [332] were 

then investigated in order to probe the influence of the structure on the redox potential of the 

FeIII+/FeII+ couple. These studies also revealed high operating voltages of 3.6 V vs. Li+/Li0 for the 

sillimanite-like structure and even 3.9 V vs. Li+/Li0 for the triplite polymorph, which is indeed the 

highest potential ever reported for the FeIII+/FeII+ redox couple in any inorganic compounds. Intense 

efforts were therefore dedicated to stabilize a pure LiFeSO4F phase in the triplite structure. This was 

first achieved via solid-state routes [335,336] and later through spark plasma sintering (SPS) [337], 

mechanical billing[337] and ultra-rapid microwave synthesis [338], after that a thermodynamical 

study had showed that the formation of the triplite LiFeSO4F polymorph rather than the tavorite one 

was entropy-driven [339]. 

With respect to the electrochemical performances, nearly 0.7 Li+ ions per formula unit 

(i.e. ~105 mAh/g) can be reversibly removed from the triplite LiFeSO4F. The oxidation/reduction 

process involves a biphasic mechanism and is associated with a very low volume change 

(ΔV/V ≈ 0.5 %), in contrast with the tavorite and olivine systems presented earlier. However, this low 

global volume change is the result of anisotropic changes of the lattice parameters, and there is 

therefore no guarantee that mechanical stress will be reduced upon cycling [323]. Still, the attractive 

operating voltage of 3.9 V vs. Li+/Li0 potential makes this triplite LiFeSO4F polymorph an electrode 

material of high interest and may become, after electrode optimizations, a serious contender for the 

next generation of Li-ion batteries. 

 
Figure I.29: Cycling of the triplite LiFeSO4F (adapted from [323]).  
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I.2.3.6.2 Lithium-based hydroxysulfates 

The exploration of the fluorosulfate family has led to two attractive LiFeSO4F electrode materials, 

which are currently under development. However, the presence of fluorine in these compounds may 

be opposed to stringent sustainable or safety requirements of specific applications. This point has 

thus motivated the investigation of fluorine-free sulfates, and this has been done by replacing the F‒ 

ions for hydroxyl groups in the previously presented fluorosulfates. 

Reversible lithium insertion into the monoclinic form of FeSO4OH was reported by the group of 

Pralong in 2009 [340]. This phase indeed presents the same FeO6 and SO4 framework as the tavorite 

structure, but without any Li+ ions. First results showed a reversible capacity of ~110 mAh/g at a C/20 

rate, involving two successive redox steps located around 3.3 and 3.2 V vs. Li+/Li0 (Figure I.30). If 

compared to the 2.5 V potential recorded for LiFePO4OH [312], this constitutes once again a clear 

illustration of the shift of the position of the FeIII+/FeII+ redox couple when (PO4)
3- polyanions are 

replaced by (SO4)
2- ones. 

Subsequently, Tarascon’s group confirmed and completed the results of Pralong, by studying the 

solid-solution FeSO4F1-yOHy [341]. First of all, they showed a gradual decrease of the average redox 

potentials with the OH content (y) from 3.6 V to 3.2 V vs. Li+/Li0 (Figure I.30).  Next, the two-phase 

lithium insertion/extraction mechanism observed for the end-members LiFeSO4F and LiFeSO4OH 

were found to become a single-phase process for the F/OH mix compounds, as equally reported for 

the LiFePO4(OH)0.4F0.6 phase [314]. Finally, similarly to what had been reported for LiFePO4OH 

[310,312], they observed for FeSO4F0.48OH0.52 a slight shift of the discharge curve towards the high 

potentials after the first cycle, and explained here also this uncommon feature by local structural 

rearrangement. 

 
Figure I.30: Typical voltage-composition curves obtained for FeSO4OH, FeSO4F0.48(OH)0.52 and FeSO4F cycled at 

C/20 versus a Li metal anode (adapted from [341]). 

Later, in an unsuccessful attempt to synthesize a triplite polymorph of LiFeSO4OH, Tarascon’s group 

stabilized a new lithium iron hydroxy-sulfate, which presents a layered structure [342]. Indexed in a 



Chapter I. State of the art 

  39 

monoclinic (P21/c) unit cell, this LiFeSO4OH is built upon layers of FeO6 octahedra parallel to the (bc) 

planes, which are sandwiched on both sides by SO4 tetrahedra (Figure I.31.a). Within the sheets, 

FeO6 octahedra share both corners and edges, thus forming zig-zag chains running along the [010] 

direction. Lithium atoms sit in the space between the layers and are tetrahedrally coordinated by 

oxygen atoms. The sloping electrochemical curve of LiFeSO4OH, which inidcates a single-phase 

mechanism process, is centered around 3.6 V vs. Li+/Li0 and shows the reversible removal and uptake 

of 0.7 Li (i.e. ~110 mAh/g) at a rate of C/20 (Figure I.31.b).  

 
Figure I.31: (a) Structure and (b) electrochemistry of the layered LiFeSO4OH (from [323]).  

I.2.3.6.3 Sodium-based fluorosulfates 

Following on their work on LiMSO4F, Tarascon and co-workers explored sodium-based fluorosulfates 

NaMSO4F (M = Fe, Co, Ni, Mn), which were first prepared by both ionothermal and solid-state 

syntheses [320,331,343]. These compounds present a maxwellite structure (space group: C2/c) 

having the same framework as the tavorite, but with the large Na+ ions displaced towards the center 

of the tunnels as compared with the position occupied by Li+ in LiMSO4F [323]. Among these 

sodium-based compounds, NaFeSO4F is the only one to display electrochemical activity, with a high 

redox potential centered around 3.5 V vs. Na+/Na0, but it is far from being impressive from the 

capacity point of view (~0.1 Na+ per formula unit) [327,331,343]. This poor electrochemical 

properties are explained by limited ionic conductivity (1D Na+ diffusion along the [101] chanel and 

Ea ≈ 0.6 eV, as compared to the 3D Li+ diffusion and Ea < 0.4 eV for in the tavorite LiFeSO4F) together 

with a high volume change of ~14 % between NaFeSO4F and FeSO4F [344]. This illustrates the 

difficulties of extending solid-state electrochemistry concepts from a lithium phase to a sodium 

analogue, even though they are almost isostructural.  
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Interestingly, the NaMSO4F phases could also be obtained from the dehydration of the hydrated 

analogues NaMSO4F·2H2O (M = Fe, Co, Ni, Mn, Zn, Mg) [345–347], which isostructural to the mineral 

uklonskovite NaMgSO4F·2H2O. This structure is built upon MO4F2 octahedra linked together though 

the F atoms sitting in trans position, so as to form tavorite-like chains, with in addition two of the 

oxygen atoms constituting the equatorial plan being part of the H2O moieties (Figure I.32). These 

chains are here linked via strongly distorted NaO(H2O)2F tetrahedra. The removal of water induces a 

condensation of the structure through the bridging of the MO4F2 octahedra and SO4 tetrahedra so as 

to obtain the maxwellite structure of the anhydrous NaMSO4F phases 

 
Figure I.32: Comparative structural diagrams illustrating the water removal mechanism from  

(left) the uklonskovite NaMSO4F·2H2O to (right) the maxwellite NaMSO4F (adapted from [345]).  

 

I.3 Conclusion 
This first chapter intended to give the reader an insight of the battery research landscape at the time 

we have started this thesis towards the search for new positive electrode materials for Li- and Na-ion 

batteries. As it can be noticed from the short (non-exhaustive) overview of positive electrode 

materials given in this chapter, these two battery technologies rely on a rich and versatile chemistry. 

This offers the possibility of adjusting the material components of the battery to the requirements of 

the targeted application, and moreover opens a multitude of opportunities to chemists to imagine 

and design better materials for the next generations of batteries. 

Generally speaking, the main positive electrode materials that have been investigated up to now can 

be divided into two groups: the oxides and the polyanionic compounds. Oxides, which were part of 

the first commercial success of the Li-ion batteries, provide high potentials and high energy densities. 

However, environmental and economic considerations have encouraged replacing these cobalt- and 

nickel-based compounds by electrode materials relying on sustainable, naturally abundant and 
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non-toxic elements, and this led to the successful development of LiMn2O4 which is now used in the 

large-scale application of zero-emission vehicles. Pursuing the search for other sustainable electrode 

materials based on iron, much research has been focused for the last decades in polyanionic 

compounds. As illustrated in this chapter, these offered several advantages as electrode materials, 

among which their robust frameworks that enable safe and extended cycling, as well as the 

possibility of tuning the potential of the redox couple by playing on their composition and their 

structure. 

Although there is still no universal indicator capable of predicting the exact electrochemical 

performances of a given compound, several factors have been identified through the studies of 

different families of electrode materials for the last 25 years [348]. First of all, a common structural 

feature encountered among most of the compounds that have been previously presented is their 

open frameworks, which favor alkali ionic diffusion and allow for high cycling rates. These diffusion 

pathways may result from layers of transition metals (e.g. LiCoO2), from the packing of transition 

metal chains (e.g. LiFePO4, LiFeSO4F), or through a coherent network of empty interstitials with 

close-packed anion lattice (e.g. LiMn2O4). Regarding the potential of the redox couple Mn+/M(n+1)+, it is 

highly related to the iono-covalency of the M‒O bond, which itself also depends on a variety of 

interdependent chemical and structural features: the packing of the structure (isolated, corner-, 

edge- or face-sharing MOx polyhedra [234,349]), the presence and connectivity of electronegative 

elements and polyanionic groups around the redox center (inductive effect [222,232,233]), the 

position of the guest cation in the structure [113,115,349,350], etc. They are widely used as tools to 

explain the general trends observed through the different families of electrode materials, but they 

should be employed prudently for voltage prediction since unfortunately none of them is fully 

infallible individually, and the redox potential observed for a given compound is often the result of a 

combination of various parameters.  

Keeping in mind these observations, several strategies can be pursued to efficiently design new 

attractive materials. One relies on high-throughput materials computation to predict the structures 

of thousands of random compositions and calculate their physical chemistry properties with the goal 

of identifying the “magic phase composition” having both a high voltage and a high capacity [351–

354]. First results of such theoretical studies have been reported for the last few years [288,355–

357], but success is still limited. Another approach, mainly pursued by experimental chemists, 

consists in browsing through the structures of known compounds (e.g. already synthesized phases, 

minerals) to spot families of materials having attractive structural features for ion transport. In the 

work presented herein, we opted for the second option, making use of the about 4000 identified 

mineral species on Earth to design new electrode materials. In addition to the fact that minerals’ 
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structures are usually well known, understanding the conditions of their formation may suggest a 

starting point for their artificial synthesis, which could be generalized to their structural derivates. 

Here it is also interesting to note that many of the polyanionic compounds presented in the previous 

pages display original structures of minerals. The next chapter presents indeed one illustration of the 

feasibility of taking example from minerals structures to design new electrode materials having high 

redox potentials. 

 



   

Chapter II. Design of new electrode materials from bimetallic 

sulfate minerals 

II.1 Introduction 
We have seen in the previous chapter that polyanionic compounds can provide attractive positive 

electrode materials based on sustainable elements, in particular because they enable to tune the 

potential of the FeIII+/FeII+ redox center thanks to the inductive effect of the polyanionic groups 

(XO4)
n- [222,232,233]. From the different examples aforementioned, one can notice that 

sulfate-based compounds generally display higher potentials than phases with other polyanionic 

groups. This is explained by the fact that sulfur is more electronegative than other elements X 

involved in polyanionic groups (phosphorous, boron, silicon, etc.). Fluorosulfates, which combine the 

inductive effect of the sulfate group and the high electronegativity of the fluorine, provide indeed 

the highest potentials ever reported for the FeIII+/FeII+ redox couple (3.9 V vs. Li+/Li0 for triplite 

LiFeSO4F [330,335] and 3.5 V vs. Na+/Na0 for maxwellite NaFeSO4F [331]). However, growing 

reluctances to employ fluorine-containing compounds for safety reasons encouraged us to search for 

other high-voltage electrode materials based on sulfate but free of fluorine. Interestingly, we have 

seen in the previous chapter that although fluorine is the most electronegative element and is thus 

expected to enhance the redox potential of the neighboring redox center, fluorophosphates do not 

systematically display higher voltages than phosphate compounds that contain no fluorine 

(e.g. LiFePO4F, 2.8 V vs. Li+/Li0, versus Li3Fe(PO4)3 and LiFePO4, 2.8 V and 3.45 V respectively). We 

were thus reasonably confident in the possibility of finding fluorine-free sulfate compounds without 

severe voltage penalty.  

Working towards this goal, we decided to seek inspiration from minerals, encouraged by the fact that 

many positive electrode materials present the structure of mineral species (cf. Chapter I, in particular 

§ I.2.3 Polyanions from page 20) as well as by the existence of numerous well documented 

sulfate-based minerals [358]. More specifically, we focused on naturally-occurring sulfate 

compounds that contain both alkali (Na or K) and 3d transition metal or magnesium cations, as 

presented in Table II.1. These phases reveal a rich crystallochemistry with different levels of 

hydration and a great diversity of structures, which present MO6 octahedra and SO4 tetrahedra 

organized either in isolated cluster, in chains or in infinite sheets, thus giving rise to wide pathways in 

which alkali ions could diffuse. Thus, we explored the possibility of preparing new electrode materials 

from these polyanionic frameworks using metal substitution and dehydration processes. 
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Table II.1: Selection of sulfate-based minerals having both alkali and 3d transition metal (or magnesium) 
cations, arranged according to the Nickel-Strunz classification [359–361]. 

General formula Sodium-based minerals Potassium-based mineral 

Hydrated sulfates without additional anions, and with medium-sized (M) and large (A) cations 

A2M
II+

(SO4)2·2H2O kröhnkite Na2Cu(SO4)2·2H2O  

A2M
II+

(SO4)2·4H2O 
bloedite (astrakhanite) Na2Mg(SO4)2·4H2O 
changoite (zincbloedite) Na2Zn(SO4)2·4H2O 

nickelbloedite Na2(Mg,Ni)(SO4)2·4H2O 

leonite K2Mg(SO4)2·4H2O 
mereiterite K2Fe(SO4)2·4H2O 

A2M
II+

(SO4)2·5H2O konyaite Na2Mg(SO4)2·5H2O  

A2M
II+

(SO4)2·6H2O 
(Tutton’s salts [362]) 

 
cyanochroite K2Cu(SO4)2·6H2O 

picromerite (schoenite) K2Mg(SO4)2·6H2O 

A12M
II+

7(SO4)13·15H2O
 

loweite Na12Mg7(SO4)13·15H2O  

AM
III+

(SO4)2·H2O  krausite KFe(SO4)2·H2O 

AM
III+

(SO4)2·4H2O  goldichite KFe(SO4)2·4H2O 

AM
III+

(SO4)2·6H2O amarillite NaFe(SO4)2·6H2O  

A3M
III+

(SO4)3·3H2O ferrinatrite Na3Fe(SO4)3·3H2O  

Anhydrous sulfates without additional anions, and with medium-sized (M) and large (A) cations 

A2M
II+

2(SO4)3  
langbeinite K2Mg2(SO4)3 

manganolangbeinite K2Mn2(SO4)3 

A6M
II+

(SO4)4 vanthoffite Na6Mg(SO4)4  

AM
III+

(SO4)2 eldfellite NaFe(SO4)2 yavapaiite KFe(SO4)2 

 

In this chapter, we present two new electrode materials elaborated from the bloedite mineral 

Na2Mg(SO4)2·4H2O: the iron analogue Na2Fe(SO4)2·4H2O and its dehydrated derivate α-Na2Fe(SO4)2, 

whose crystal structure has been solved [363,364]. Both of them are electrochemically active against 

both lithium and sodium metal anodes. In the last part of the chapter, we also report on the 

electrochemical properties of the eldfellite and yavapaiite mineral compounds AFe(SO4)2 (A = Na, K).  

  



Chapter II. Design of new electrode materials from bimetallic sulfate minerals 

  45 

II.2 Bloedite compounds Na2M(SO4)2·4H2O (M = Mg, Zn, Co, Fe, Ni) 
Bloedite-type compounds having the general formula Na2M(SO4)2·4H2O (M = Mg, Zn, Ni, Co, Fe) have 

been widely studied since the 1940s. The first crystallographic study on the bloedite mineral 

Na2Mg(SO4)2·4H2O was reported by Lauro in 1940 [365]. Rumanova and Malitskaya determined its 

structure in 1958 [366], while Giglio reported the same year the one of the synthetic zinc-based 

phase Na2Zn(SO4)2·4H2O and mentioned that it was isostructural to the magnesium, cobalt, nickel 

and iron synthetic analogues [367]. These structural models were later revisited by different groups 

from the 1970’s to the end of the 2000’s [368–375]. In the 1960’s, Cot and co-workers carried out a 

detailed study of the thermal stability of these Na2M(SO4)2·4H2O phases (M =  Co, Ni, Zn, Fe) and 

proposed the formation of several anhydrous compounds Na2M(SO4)2 upon water removal from the 

hydrated parents [376–381]. Except for the zinc system, for which a crystal structure has been 

reported [382], none of these water-free phases was further investigated. We revisit herein these 

hydrated phases Na2M(SO4)2·4H2O phases (M =  Mg, Zn, Ni, Co, Fe), paying special attention to the 

iron analogue for its electrochemical properties. 

II.2.1 Syntheses 

Several procedures had been employed in the past to prepare the Na2M(SO4)2·4H2O (M = Mg, Zn, Co, 

Ni) phases [367–369,372–374,380,381]. In our case, we first chose a simple process inspired from 

natural sedimentation, which consists in slowly evaporating an equimolar solution of commercial 

sodium sulfate Na2SO4 and metal sulfate heptahydrate MSO4·7H2O at temperatures ranging from 

20°C to 90°C. Later, we experienced that the targeted phases were more rapidly obtained by 

precipitating these solutions of sulfate precursors in ethanol. Alternatively, we equally succeeded in 

preparing pure phases of Na2M(SO4)2·4H2O by ball-milling (Spex 8000M®) for 20 minutes equimolar 

amounts of the two aforementioned precursors [363]. 

Whatever the synthetic route used, these hydrated phases form accordingly to the following 

reaction: 

Na2SO4 + MIISO4·7H2O  Na2MII(SO4)2·4H2O + 3H2O 

Given the great aptitude of Fe(II+)-based precursors to oxidize, we prepared the iron analogue 

Na2Fe(SO4)2·4H2O using similar routes, but carrying the reaction out under inert conditions. This was 

achieved by employing degassed solvents and adding ascorbic acid for the solution-precipitation 

route, and by closing the ball-milling jar under argon for the mechanical milling route [363]. 
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II.2.2 Samples characterization 

The as-prepared cobalt- and nickel-based phases present bright pink and green colors, respectively 

(Figure II.1.a). Conversely, the magnesium-, zinc- and iron-based compounds are white, any 

coloration indicating a non-pure sample. The Na2M(SO4)2·4H2O (M = Mg, Zn, Ni, Co, Fe) powders 

obtained through solution routes present heterogeneous particle sizes, ranging from one to several 

dozens of microns (Figure II.1.b), while the ones prepared via mechanical milling are more 

homogeneous with particles smaller than one micron (Figure II.1.c).  

 
Figure II.1: (a) Powders of Na2M(SO4)2·4H2O (M = Mg, Zn, Ni, Co, Fe). (b) and (c) SEM images of 

Na2Fe(SO4)2·4H2O samples obtained via solution-precipitation and ball-milling routes, respectively. 

The presence of structural water was confirmed using infra-red spectroscopy (FTIR), and 

thermogravimetric analyses (TGA) coupled to mass spectroscopy (MS) verified the amount of four 

H2O moieties per formula unit. As seen in Figure II.2, the ATG-MS curves revealed two different 

water-loss mechanisms for the five Na2M(SO4)2·4H2O compounds: on the one hand the water 

departure of the magnesium, zinc and nickel phases occurs in two-steps, while on the other hand the 

cobalt and iron analogues release the majority of their structural water in one step, although the 

water removal is complete only after the long tail seen in the curves until ~280°C. 
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Figure II.2: TGA-MS curves of the five compounds Na2M(SO4)2·4H2O (M = Mg, Zn, Ni, Co, Fe), demonstrating 

the loss of four molecules of water between 100 and 300°C. Full lines correspond to the mass loss in 
percentages, while the dotted lines represent the mass curves for m/z = 18 and 17, which 

correspond to the detection of H2O
-
 and OH

-
 ions, respectively. 

Purity of the samples was first checked by X-ray diffraction (XRD). The profiles of these laboratory 

XRD patterns were simulated using the Le Bail method as implemented in the FullProf program 

[383,384] (cf. Annexes: § A.3.4 Diffraction data treatment, page 166). They could be fully indexed 

with the monoclinic cell (space group: P21/c) previously reported for the bloedite-type compounds 

[372]. Taking advantage of the great crystallinity of a Na2Co(SO4)2·4H2O sample, we performed 

Synchrotron X-ray diffraction at the CRISTAL beamline of SOLEIL Synchrotron (Saint-Aubin, France; 

cf. Annexes: § A.3.2.2 page 164) and neutron powder diffraction on the D2B diffractometer of the 

Institut Laue Langevin (Grenoble, France; cf. Annexes: § A.3.3 page 165). A joint Rieveld refinement 

[385] of these data, conducted using the FullProf program [383,384], enabled to refine the hydrogen 

positions without any constraints (see Figure II.3 and Table II.2). The resulting structural model was 

then used to refine the XRD patterns of the other four compounds Na2M(SO4)2·4H2O (M = Zn, Mg, Ni, 

Fe). The results of these refinements are presented in Table II.3 to Table II.6. One can observe a 

smooth increase in the unit cell volume as the ionic radii of the 3d-metal cations M(II+) [111] become 

bigger in the series Ni-Zn-Co-Fe (Figure II.4). As previously reported by Stoilova and Wildner [372], 

the magnesium analogue makes an exception as it does not follow this trend.  
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Figure II.3: Results of the joint Rietveld refinement of the (a) Synchrotron X-ray diffraction (XRD) and (b) 
neutron powder diffraction (NPD) data for Na2Co(SO4)2·4H2O. The blue sticks represent the Bragg peak 

positions of the phase, the red crosses and the black line are the experimental and the simulated patterns, 
respectively; the difference between these two patterns is shown with the green line 

(note that this color coding will be used in the rest of the manuscript). 

 

 
Figure II.4: (a) Comparison of the XRD patterns of the five bloedite phases Na2M(SO4)2·4H2O (M = Ni, Mg, Zn, 

Co, Fe). (b) and (c) Variation of the lattice parameters a, b, c, β and the cell volume V as a function of the ionic 
radii of M

II+
 [111] (note that error bars are smaller than the points displayed on the graphs). 
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Table II.2: Crystallographic data and atomic positions of Na2Co(SO4)2·4H2O deduced from a combined Rietveld 

refinement of SOLEIL Synchrotron X-ray diffraction ( = 0.6681 Å) and ILL neutron diffraction ( = 1.594 Å) data. 
Bond Valence Sum analysis (BVS) is also indicated. 

Na2Co(SO4)2·4H2O 

Space group P21/c χ² = 1.37 RBragg = 5.72 % 

a = 5.5356(4) Å b = 8.2436(5) Å c = 11.0978(6) Å β = 100.356(5)° V = 498.18(5) Å
3
 

Atom Wyckoff site x/a y/b z/c Biso (Å
2
) BVS 

Na 4e 0.1290(12) 0.0700(9) 0.3617(5) 0.99(15) 1.11(2) 

Co 2a 0 0 0 0.31(6) 2.00(2) 

S 4e 0.3701(9) 0.2879(5) 0.1361(4) 0.47(9) 5.93(9) 

O1 4e 0.3462(15) 0.2704(12) 0.2676(9) 1.1(2) 2.13(4) 

O2 4e 0.2026(15) 0.4151(12) 0.0789(9) 1.0(2) 2.04(4) 

O3 4e 0.3148(15) 0.1319 (12) 0.0725(9) 0.9(2) 1.80(4) 

O4 4e 0.6280(18) 0.3299(12) 0.1320(9) 1.0(2) 2.31(4) 

O5 4e 0.1277(15) 0.5392(12) 0.3379(9) 0.8(2) 1.66(4) 

O6 4e 0.1760(15) 0.7861(12) 0.0815(9) 0.9(2) 1.58(4) 

H1 4e 0.230(9) 0.445(5) 0.321(4) 2.2(9) 0.93(3) 

H2 4e 0.227(9) 0.636(5) 0.344(4) 3.2(9) 1.05(4) 

H3 4e 0.683(9) 0.303(6) 0.359(5) 3.1(9) 1.03(3) 

H4 4e 0.237(9) 0.719(6) 0.021(4) 3.2(9) 0.98(4) 

 

Table II.3: Crystallographic data and atomic positions of Na2Zn(SO4)2·4H2O deduced from a Rietveld refinement 

of SOLEIL Synchrotron data ( = 0.6681 Å). Bond Valence Sum analysis (BVS) is also indicated. Hydrogen atomic 
positions were not refined but fixed at the values determined from the joint refinement of data for the cobalt 
analogue. 

Na2Zn(SO4)2·4H2O 

Space group P21/c χ² = 1.70 RBragg = 4.60 % 

a = 5.5328(2) Å b = 8.2536(2) Å c = 11.0771(2) Å β = 100.185(2)° V = 497.87(2) Å
3
 

Atom Wyckoff site x/a y/b z/c Biso (Å
2
) BVS 

Na 4e 0.1283(7) 0.0698(5) 0.3616(4) 1.10(12) 1.12(2) 

Zn 2a 0 0 0 0.58(4) 2.05(2) 

S 4e 0.3723(5) 0.2882(4) 0.1362(3) 0.54(6) 5.98(3) 

O1 4e 0.3487(12) 0.2699(7) 0.2676(6) 0.83(7) 2.14(4) 

O2 4e 0.2069(11) 0.4158(8) 0.0791(6) 0.83(7) 1.94(3) 

O3 4e 0.3177(11) 0.1327(8) 0.0717(6) 0.83(7) 1.97(4) 

O4 4e 0.6296(12) 0.3300(8) 0.1318(6) 0.83(7) 2.20(4) 

O5 4e 0.1267(12) 0.5380(9) 0.3373(6) 0.83(7) 1.87(6) 

O6 4e 0.1736(12) 0.7866(9) 0.0823(6) 0.83(7) 1.75(6) 

H1 4e 0.230 0.4452 0.3208 2.2 0.94(5) 

H2 4e 0.227 0.6359 0.3438 3.2 1.05(5) 

H3 4e 0.683 0.3027 0.3587 3.1 0.89(3) 

H4 4e 0.237 0.7186 0.0206 3.2 0.87(6) 
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Table II.4: Crystallographic data and atomic positions of Na2Mg(SO4)2·4H2O deduced from a Rietveld 

refinement of laboratory XRD data (Co source: Kα1 = 1.78897 Å, Kα2 = 1.79285 Å). Bond Valence Sum analysis 
(BVS) is also indicated. Hydrogen atomic positions were not refined but fixed at the values determined from 
the joint refinement of data for the cobalt analogue. 

Na2Mg(SO4)2·4H2O 

Space group P21/c χ² = 3.08 RBragg = 7.71 % 

a = 5.5398(2) Å b = 8.2432(2) Å c = 11.1242(2) Å β = 100.868(2)° V = 498.88(2) Å
3
 

Atom Wyckoff site x/a y/b z/c Biso (Å
2
) BVS 

Na 4e 0.134(2) 0.071(2) 0.361(2) 1.93(18) 1.09(2) 

Mg 2a 0 0 0 2.1(2) 1.97(2) 

S 4e 0.369(2) 0.290(2) 0.139(2) 1.17(12) 5.91(10) 

O1 4e 0.344(2) 0.271(2) 0.264(2) 1.67(15) 2.43(6) 

O2 4e 0.210(2) 0.425(2) 0.075(2) 1.67(15) 1.88(4) 

O3 4e 0.312(2) 0.139(2) 0.068(2) 1.67(15) 1.93(5) 

O4 4e 0.634(2) 0.327(2) 0.131(2) 1.67(15) 2.17(5) 

O5 4e 0.123(2) 0.535(2) 0.340(2) 1.67(15) 1.79(2) 

O6 4e 0.176(2) 0.796(2) 0.082(2) 1.67(15) 1.71(2) 

H1 4e 0.230 0.445 0.321 2.2 0.93(2) 

H2 4e 0.227 0.636 0.344 3.2 1.03(2) 

H3 4e 0.683 0.303 0.359 3.1 1.03(2) 

H4 4e 0.237 0.719 0.021 3.2 0.95(2) 

 

Table II.5: Crystallographic data and atomic positions of Na2Ni(SO4)2·4H2O deduced from a Rietveld refinement 

of laboratory XRD data (Co source: Kα1 = 1.78897 Å, Kα2 = 1.79285 Å). Bond Valence Sum analysis (BVS) is also 
indicated. Hydrogen atomic positions were not refined but fixed at the values determined from the joint 
refinement of data for the cobalt analogue. 

Na2Ni(SO4)2·4H2O 

Space group P21/c χ² =1.63 RBragg =2.72 % 

a = 5.5316(2) Å b = 8.1906(2) Å c = 11.0379(2) Å β = 100.513(2)° V = 491.71(2) Å
3
 

Atom Wyckoff site x/a y/b z/c Biso (Å
2
) BVS 

Na 4e 0.130(2) 0.070(2) 0.362(2) 1.22(13) 1.14(2) 

Ni 2a 0 0 0 0.03(7) 2.00(2) 

S 4e 0.373(2) 0.287(2) 0.137(2) 0.68(8) 5.71(8) 

O1 4e 0.349(2) 0.268(2) 0.268(2) 1.03(10) 2.21(5) 

O2 4e 0.204(2) 0.416(2) 0.078(2) 1.03(10) 1.98(4) 

O3 4e 0.319(2) 0.127(2) 0.070(2) 1.03(10) 1.81(3) 

O4 4e 0.631(2) 0.329(2) 0.129(2) 1.03(10) 2.29(4) 

O5 4e 0.124(2) 0.535(2) 0.340(2) 1.03(10) 1.82(2) 

O6 4e 0.177(2) 0.790(2) 0.031(2) 1.03(10) 1.73(2) 

H1 4e 0.230 0.445 0.321 2.2 0.93(2) 

H2 4e 0.227 0.636 0.344 3.2 1.04(2) 

H3 4e 0.683 0.303 0.359 3.1 1.04(2) 

H4 4e 0.237 0.719 0.021 3.2 0.98(2) 
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Table II.6: Crystallographic data and atomic positions of Na2Fe(SO4)2·4H2O deduced from a Rietveld refinement 

of laboratory XRD data (Co source: Kα1 = 1.78897 Å, Kα2 = 1.79285 Å). Bond Valence Sum analysis (BVS) is also 
indicated. Hydrogen atomic positions were not refined but fixed at the values determined from the joint 
refinement of data for the cobalt analogue. 

Na2Fe(SO4)2·4H2O 

Space group P21/c χ² = 15.1 RBragg = 10.3 % 

a = 5.5581(3) Å b = 8.2622(5) Å c = 11.1753(6) Å β = 100.210(4)° V = 505.06(5) Å
3
 

Atom Wyckoff site x/a y/b z/c Biso (Å
2
) BVS 

Na 4e 0.129(3) 0.068(2) 0.362(2) 1.0(5) 1.22(4) 

Fe 2a 0 0 0 3.8(5) 1.74(5) 

S 4e 0.368(3) 0.290(2) 0.139(2) 0.1(3) 6.3(3) 

O1 4e 0.341(5) 0.266(3) 0.265(3) 0.34(11) 2.29(15) 

O2 4e 0.206(5) 0.416(3) 0.070(2) 0.34(11) 1.96(10) 

O3 4e 0.336(5) 0.150(3) 0.073(2) 0.34(11) 2.25(16) 

O4 4e 0.631(6) 0.330(3) 0.124(3) 0.34(11) 2.10(12) 

O5 4e 0.110(5) 0.537(3) 0.327(2) 0.34(11) 1.64(3) 

O6 4e 0.178(5) 0.788(3) 0.088(3) 0.34(11) 1.58(3) 

H1 4e 0.230 0.445 0.321 2.2 0.90(2) 

H2 4e 0.227 0.636 0.344 3.2 1.01(2) 

H3 4e 0.683 0.303 0.359 3.1 1.04(2) 

H4 4e 0.237 0.719 0.021 3.2 0.95(2) 

 

 

The bloedite structure is built upon isolated units made of one MO6 octahedron surrounded by four 

water moieties in the equatorial plane and two axial SO4 tetrahedra. These individual units are 

aligned along the a-axis, as seen in Figure II.5. The distance between two metals is above 5 Å, and 

thus the M(SO4)2(H2O)4 units are rather spaced one from another. Such a low connectivity between 

the 3d transition metals is likely to result in poor electronic conductivity properties. Conversely, ionic 

transport could be favored by the fact that the sodium ions sit in the large channels running along 

the [100] direction. Each sodium atom is coordinated by six oxygen atoms, which form distorted 

NaO6 octahedra that are linked two by two through edges, thus generating isolated Na2O10 

bi-octahedra. 
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Figure II.5: Representation of the bloedite structure, along the a-axis (left) and along the b-axis (right). 

 

II.2.3 Electrochemistry of Na2Fe(SO4)2·4H2O 

To explore the feasibility of sodium removal from these large channels, we studied the 

electrochemical properties of the Na2M(SO4)2·4H2O (M = Mg, Zn, Ni, Co, Fe) compounds against both 

lithium and sodium metal anodes. However, we found that the iron-based phase was the only one to 

show electrochemically activity against both lithium and sodium [363,364]. 

The electrode materials were prepared by ball-milling for 20 minutes under argon a 70:30 mass ratio 

of the active material Na2Fe(SO4)2·4H2O and carbon SP. The as-prepared positive electrode materials 

were loaded in Swagelok® cells (cf. Annexes: § A.2 Electrochemical characterizations, page 158) and 

tested against lithium and sodium metals with several electrolytes. Initial attempts to use classical 

LiPF6-based electrolytes (e.g. LP30) in lithium half-cells failed as a drastic voltage drop appeared 

when nearly ~0.4 Na+ ion was extracted from the material (Figure II.6.a). In situ XRD measurements 

of the electrode material at different states of charge showed that this voltage drop was associated 

with the reaction of Na2Fe(SO4)2·4H2O with the electrolyte, as indicated in particular by the 

apparition of Li2SO4 and FeSO4·H2O in the XRD patterns (Figure II.6.b). Therefore, we believe that at 

this stage of Na+-ion removal the structural water may become more labile and reacts with the PF6
– 

anion of the electrolyte salt; PF6
– would decompose into PF5 + HF, with the latter attacking at its turn 

our electrode material. 
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Figure II.6: (a) Galvanostatic curve obtained for a Li // LP30 // Na2Fe(SO4)2·4H2O/CSP cell showing the 

uncommon drop in voltage near Δx ≈ 0.4 as described in the text. (b) In situ XRD patterns of the positive 
electrode material at different states of charge.  

To circumvent this problem, we envisaged the use of PF6
–-free electrolytes, such as LiTFSI 1M in 

EC/DMC and LiClO4 or NaClO4 1M in PC. We eventually found that Na2Fe(SO4)2·4H2O successfully 

cycles versus both lithium and sodium metals using these electrolytes at a slow cycling rate of one 

electron in 50 hours (Figure II.7). Whatever the nature of the negative electrode (Li or Na metals), 

the first charge, whose amplitude nearly approaches one sodium, is flat (in red in Figure II.7). This 

contrasts with the following discharge and subsequent charge/discharge curves that show an S-type 

shape (in blue and green in Figure II.7). This phenomenon is highlighted when plotting the 

derivatives (dx/dV): they show a sharp peak for the first charge, which becomes much broader for 

the subsequent cycles. From both the voltage-composition and the derivative curves, one can 

deduce that the electrochemical activity of Na2Fe(SO4)2·4H2O is centered near 3.6 V versus Li+/Li0 and 

3.3 V versus Na+/Na0. These potentials are higher than the one of LiFePO4 (3.45 V vs. Li+/Li0 [233]) and 

compare well with other sulfate compounds, such as the NASICON-type Fe2(SO4)3 (3.6 V vs. Li+/Li0 

[222,223]), the tavorites LiFeSO4F (3.6 V vs. Li+/Li0 [321]) and FeSO4OH (3.2 V vs. Li+/Li0 [340]), the 

layered LiFeSO4OH (3.6 V vs. Li+/Li0 [342]), and the maxwellite NaFeSO4F (~3.5 V vs. Na+/Na0 [331]). 

Note that the 300-mV difference observed between the lithium and the sodium half-cells falls within 

the range of the voltage differences observed and/or expected for other polyanionic materials, as 

commented in Chapter I and in the following references [317,318,386,387]. Last, the shift to the left 

of the voltage-composition curves suggests a progressive solvent decomposition upon charging, with 

this effect being more pronounced for Na- than Li-based cells. The use of other (better) electrolytes 

could alleviate this issue, however we did not judge highly relevant to perform advanced electrode 

and electrolyte optimizations given that the limited cycling performances of Na2Fe(SO4)2·4H2O, as 

suggested by its poor kinetics (slow cycling rate, need of 30 %wt of conductive carbon) and its low 

reversible capacity (≤ 50 mAh/g for the first five cycles). 
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Figure II.7: Electrochemistry of Na2Fe(SO4)2·4H2O (a) versus sodium and (b) versus lithium, using NaClO4 in PC 

and LiClO4 in PC as the electrolytes, respectively, and a C/50 cycling rate. The left panels show the 
voltage-composition traces, with a flat-like first charge (in red) and more sloping subsequent discharge and 

charges (blue to green), while the right panels display the corresponding derivative curves (dx/dV). 

 

To grasp insights into the evolution of the voltage-composition curves from flat to S-type between 

the first charge and the subsequent discharge, ex situ X-ray diffraction measurements were carried 

out. For that purpose, Na // 1M NaClO4 in PC // Na2Fe(SO4)2·4H2O/C cells were assembled, stopped at 

different states of charge and discharge, and the positive electrodes were then recovered, washed 

and X-rayed. The collected diffraction patterns are shown in Figure II.8. They show the progressive 

amorphization of the active material NaxFe(SO4)2·4H2O upon charging, which goes with a growth of 

the background in the range 20 ≤ 2θ ≤ 45°. Such an amorphization is consistent with the onset of the 

S-type voltage-composition curve once the first charge is achieved. Note that featureless XRD 

patterns were equally obtained for Na1Fe(SO4)2·4H2O samples that were prepared from chemical 

oxidation of Na2Fe(SO4)2·4H2O using NO2BF4 in acetonitrile as the oxidizing agent. 
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Figure II.8: Ex situ X-ray diffraction patterns of the NaxFe(SO4)2·4H2O/CSP electrodes recovered at different 

states (x) of the first charge and the first discharge. The star indicates a reflection of Be, due to the beryllium 
window of the XRD sample holder (cf. Annexes: § A.3.1.2 page 162).  

57Fe Mössbauer spectroscopy* was used to gain access to the changes in the local environment and 

the oxidation state of the iron upon sodium removal and uptake (cf. Annexes: § A.4.1 57Fe Mössbauer 

Spectrosocopy, page 167). All the recorded spectra were fitted with Lorentzian lines using the 

FullHam program. First, the spectrum recorded for the pristine Na2Fe(SO4)2·4H2O (Figure II.9.a) 

presents a single and narrow doublet of a Fe(II+) in high-spin configuration, confirming that there is a 

unique iron site in the structure (Table II.7). Whatever the synthesis route employed, no trace of 

Fe(III+) was detected, confirming the purity of the pristine phase Na2Fe(SO4)2·4H2O. Next, the 

Mössbauer spectrum of the chemically oxidized phase Na1Fe(SO4)2·4H2O shows that iron is fully 

oxidized, but the large width of the signal suggests a distribution of iron environments, which is in 

agreement with the amorphous nature of the sample (Figure II.9.b and Table II.7). 

 
Figure II.9: 

57
Fe Mössbauer spectra of (a) the as-prepared Na2Fe(SO4)2·4H2O and (b) the Na1Fe(SO4)2·4H2O 

obtained from chemical oxidation of the pristine sample.  

                                                           
*
 All Mössbauer spectroscopy experiments presented in this manuscript were conducted in collaboration with 

Dr. Moulay Tahar Sougrati at the Institut Charles Gerhardt (UMR 5253), Université de Montpellier 2, 
Montpellier, France. 
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Table II.7: Room temperature 
57

Fe Mössbauer parameters for the pristine Na2Fe(SO4)2·4H2O, the chemically 
oxidized phase Na1Fe(SO4)2·4H2O, and the electrode materials NaxFe(SO4)2·4H2O/CSP at different states of 

charge and discharge.  represents the isomer shift relative to metallic iron standard at room temperature, 

while Eq and Γ indicate the quadrupole splitting and the line width, respectively. 

 Attribution  (mm/s) Eq (mm/s) Γ (mm/s) 
Molar 

fraction (%) 

Na2Fe(SO4)2·4H2O 
pristine 

Fe(II+)·A 1.25(1) 3.25(1) 0.27(1) 100(–) 

Na1Fe(SO4)2·4H2O 
chemically oxidized 

Fe(III+)·A 0.45(1) 0.41(1) 0.41(1) 92(2) 

Fe(III+)·B 0.42(2) 1.27(4) 0.38(6) 8(2) 

Na2Fe(SO4)2·4H2O/CSP 
electrode material 

Fe(II+)·A 1.26(1) 3.25(1) 0.31(2) 52(3) 

Fe(II+)·B 1.22(2) 2.31(5) 0.73(6) 39(3) 

Fe(III+)·C 0.55(4) 0.45(5) 0.49(–) 9(6) 

Na~1Fe(SO4)2·4H2O/CSP 
end of the 1

st
 charge 

Fe(III+)·A’ 0.42(1) 0.51(2) 0.49(3) 100(–) 

Na~1.7Fe(SO4)2·4H2O/CSP 

end of the 1
st

 discharge 

Fe(II+)·B 1.15(2) 2.39(4) 0.66(7) 72(4) 

Fe(III+)·A’ 0.42(–) 0.51(–) 0.49(–) 28(4) 

 

The NaxFe(SO4)2·4H2O/CSP samples prepared for the ex situ XRD experiment were also analyzed by 

Mössbauer spectroscopy. Figure II.10 presents the results of the fits of the collected spectra. First, 

one can notice that the spectrum of the electrode material Na2Fe(SO4)2·4H2O/CSP differs from the one 

recorded for the pristine Na2Fe(SO4)2·4H2O: the doublet of Fe(II+) (labelled Fe(II+)·A) observed for the 

pristine sample is still present, but it is accompanied by an additional broad doublet of Fe(II+) 

(labelled Fe(II+)·B) as well as a small doublet of an oxidized Fe(III+) (Table II.7). The presence of a 

second signal of divalent iron indicates that the environment of part of the Fe(II+) in the active 

material is modified during the electrode preparation. To assess the influence of the milling time on 

the amount of Na2Fe(SO4)2·4H2O that is altered, we prepared several electrode materials by 

ball-milling the active material with carbon for 10, 20, 40 and 60 minutes, and we found that 40 to 

45 % of the iron had its local environment modified whatever the ball-milling time. 

Figure II.11 shows the evolution of the relative contribution of each of the three signals (Fe(II+)·A, 

Fe(II+)·B and Fe(III+)·A’) as a function of the state of charge and state of discharge. When charging 

the electrode material, the two signals of Fe(II+) decrease simultaneously while the signal of Fe(III+) 

increases. The spectrum at the end of the charge (x ≈ 1.0) shows no trace of Fe(II+), and its large 

doublet of Fe(III+) (denoted Fe(III+)·A’) presents a quadrupole splitting slightly different from the one 

obtained for the chemically oxidized sample (Fe(III+)·A), which may suggest different iron 

environments (Table II.7). During the subsequent discharge, the Fe(III+) signal decreases at its turns 

in favor of the rise of the broad doublet of Fe(II+)·B, while no trace of Fe(II+)·A is detected. Again, 

such a broad signal indicates a diversity of similar iron environments, in agreement with the 

amorphous nature of the sample as concluded from the diffraction observations. 
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Figure II.10: Ex situ 

57
Fe Mössbauer spectra of the electrode material recovered at different states (x) of the 

first charge and the first discharge. Black circles represent the experimental data; the bold red (for charge) and 
blue (for discharge) lines are the simulated spectra, and are deconvoluted into thin blue and orange lines, 

which represent the Fe(II+) and Fe(III+) contributions, respectively. Note that the poor statistic of some of the 
spectra is due to the very small amount of sample available. 

 

 
Figure II.11: Evolution of the relative contribution of the three sub-spectra denoted Fe(II+)·A, Fe(II+)·B and 

Fe(III+)·A’ to the 
57

Fe Mössbauer spectra of the electrode material as a function of the state (x) of charge and 
discharge during the first cycle. 
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To complete the characterization of the electrode material during the first charge/discharge cycle, 

we probed the presence of water by combining infra-red spectroscopy and thermogravimetric 

analyses coupled to mass spectroscopy. The presence in the FTIR spectra of the chemically oxidized 

Na1Fe(SO4)2·4H2O samples, of both a broad signal above 3000 cm-1 and a sharp band at around 1700 

cm-1 (indicated with black arrows in Figure II.12), as equally observed for the pristine 

Na2Fe(SO4)2·4H2O ones, unambiguously indicated that the water was maintained into the structure 

after the removal of sodium. Moreover, ATG-MS measurements confirmed the amount of four 

molecules in these samples. However, to our surprise, both FTIR and ATG-MS analyses showed that 

conversely the electrode materials recovered after the first charge present no trace of water 

(Figure II.12). After verifying that Na2Fe(SO4)2·4H2O and the chemically oxidized phase 

Na1Fe(SO4)2·4H2O do not dehydrate when submerged into the electrolyte during extended time, we 

concluded that the loss of the structural water of our electrode material occurs concurrently to the 

electrochemical sodium removal and the amorphization of the structure, these concurrent 

phenomena being expressed in the peculiar flat-like trace of the first charge. However we have no 

explanation for the different behavior observed when the sample is oxidized chemically yet. 

 
Figure II.12: Infra-red spectra of the pristine Na2Fe(SO4)2·4H2O (in blue), the chemically oxidized phase 

Na1Fe(SO4)2·4H2O (in orange) and the electrode material recovered after the first charge (in red). The black 
arrows indicate the broad signal above 3000 cm

-1 
and the sharp band at around 1700 cm

-1
, which indicate the 

presence of structural water in the two first samples. These features are not visible in the third sample. Strong 
bands in the region 900-1300 cm

-1
 and medium bands below 800 cm

-1
 are attributed to the sulfate groups.  

At this stage, knowing that Na2Fe(SO4)2·4H2O can lose its structural water either by thermal 

treatment or through electrochemical oxidation, an obvious prolongation of this work was to prepare 

a dehydrated Na2Fe(SO4)2 phase (theoretical specific capacity of ~91 mAh/g versus ~73 mAh/g for the 

hydrated phase) to study its electrochemical behavior. Cot had previously reported the existence of 

such anhydrous phases Na2M(SO4)2 (M = Co, Ni, Fe, Zn) [376–379,381], but their structures were not 



Chapter II. Design of new electrode materials from bimetallic sulfate minerals 

  59 

solved. We therefore embarked in the preparation of high purity and well crystallized samples, which 

required to previously understand the water removal process. 

II.3 Anhydrous bloedite-derivatives α-Na2M(SO4)2 (M = Co, Fe) 

II.3.1 Dehydration of the bloedite phases Na2M(SO4)2·4H2O (M = Co, Fe) and preparation 

of the anhydrous derivatives α-Na2M(SO4)2 (M = Co, Fe) 

Previous thermogravimetric analyses had shown that the four water moieties of the bloedite 

compounds Na2M(SO4)2·4H2O (M = Mg, Zn, Ni, Co, Fe) were released between 100 and 300°C 

(Figure II.2 page 47), thus supporting the feasibility of preparing the corresponding anhydrous 

Na2M(SO4)2 phases. Moreover, these measurements suggested that these water removals occurred 

according to two different mechanisms depending on the nature of the divalent metal. For this 

reason, we decided to focus on the cobalt and iron systems, which present similar water-loss 

behaviors. 

To obtain further insight into the dehydration process, we monitored the evolution of the XRD 

patterns as a function of the heating temperature. These measurements were conducted using a 

special furnace chamber adapted to the diffractometer (see more details in Annexes: 

§ A.3.1.4 High-temperature XRD measurements, page 163), which enabled to slowly heat the 

Na2M(SO4)2·4H2O powder compounds either under air (M = Co) or under nitrogen flow (M = Fe) while 

recording the XRD patterns at different temperature steps. As one can see in Figure II.13, both iron 

and cobalt samples display a similar behavior upon water departure. The beginning of the 

dehydration process is associated with a radical change of the XRD patterns (green patterns in 

Figure II.13), from which we could identify a certain quantity of Na2SO4 and MSO4·H2O (M = Co or Fe) 

among other unknown phases. At the end of the dehydration, we observed the crystallization of a 

new phase whose pattern (shown in red in Figure II.13) matches with the Debye-Scherrer pattern 

reported by Cot for α-Na2Co(SO4)2 [376,381]. Note that the dehydration of the Na2M(SO4)2·4H2O 

phases to α-Na2M(SO4)2 is accompanied by a change in color of the powder samples, turning from 

pale pink to purple for the cobalt system and from white to sandy-grey for the iron one. TGA-MS and 

FTIR analyses on the recovered samples confirmed the removal of water (Figure II.14), and the 

nominal composition Na2M(SO4)2 was verified by EDX analysis, performed with a transmission 

electron microscope using short time exposure to prevent the gradual loss of sodium. 
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Figure II.13: Evolution of the XRD patterns upon the dehydration process of (a) Na2Co(SO4)2·4H2O and (b) 

Na2Fe(SO4)2·4H2O. Blue patterns correspond to the Na2M(SO4)2·4H2O phases, green patterns to the 
intermediate step described in the text and red patterns to the α-Na2M(SO4)2 phases. Blue sticks indicate the 

position of the Bragg reflections of the Na2M(SO4)2·4H2O phases, while the first and second raw of green sticks 
correspond to the Bragg reflections of M(SO4)·H2O (M = Co, Fe) and Na2SO4, respectively. 

 
Figure II.14: FTIR spectra of the hydrated Na2M(SO4)2·4H2O and anhydrous α-Na2M(SO4)2 phases, for the (a) 

cobalt and (b) iron systems. Note that the small bumps observed above 3000 cm
-1

 for the dehydrated 
Na2M(SO4)2 phases are more likely due to humidity at the surface of the IR pellet than to remaining structural 

water as no peak is seen at ~1700 cm
-1

. 

Before pursuing the discussion on these α-Na2M(SO4)2 phases, it is worth mentioning that these 

systems seem to be subject to thermodynamic and kinetic competition. Indeed, we experienced that, 

with further annealing at 300°C for several hours, the α-Na2M(SO4)2 phases (M = Co, Fe) undergo a 

phase transformation, with the resulting XRD patterns being comparable to the Debye-Scherrer 

patterns that Cot attributed to a second polymorph β-Na2M(SO4)2 (M = Co, Fe) [376,378,381]. We 

also obtained similar samples from stoichiometric mixtures of anhydrous precursors Na2SO4 and 

MSO4 pressed into a pellet and heated between 250 and 350°C either under air (M = Co, Mn) or in 

quart-tube sealed under vacuum (M = Fe). However, we have doubts about the fact that these 
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samples were really single-phased, as we were not able to find any unit cell that could index all the 

reflections of their XRD patterns. Besides, we also managed to prepare the α-Na2Co(SO4)2 phase 

directly from a stoichiometric mixture of Na2SO4 and CoSO4 annealed above 400°C for a few hours, 

but all our attempts to stabilize the iron analogue α-Na2Fe(SO4)2 from its anhydrous precursors failed, 

suggesting that the formation of this phase is favored by the presence of water in the starting 

materials. Finally, despite many tries, α-Na2Fe(SO4)2 could not be obtained as a pure phase from 

Na2Fe(SO4)2·4H2O, as an unidentified phase tended to grow in competition with the targeted one. 

However, by adjusting the dehydration conditions (temperature ramp, nitrogen flow, quantity of 

sample, etc), we were able to prepare samples which mainly contained the α-Na2Fe(SO4)2 phase, so 

that we could probe its electrochemical behavior. 

II.3.2 Structural determination of α-Na2Co(SO4)2  

The structural determination of α-Na2M(SO4)2 (M = Co, Fe) [364] was carried out on the cobalt-based 

compound because this sample was better crystallized and less sensitive to oxidation upon air 

exposure, which made it easier to handle. 

High quality data were actually needed to resolve the precise structure of α-Na2Co(SO4)2. A 

Synchrotron X-ray powder diffraction pattern (λ = 0.6681 Å) was thus collected at the CRISTAL 

beamline at SOLEIL Synchrotron (cf. Annexes: § A.3.2.2 CRISTAL beamline at SOLEIL Synchrotron, 

page 164). We first tried to refine the α-Na2Co(SO4)2 pattern starting from the structure proposed for 

Na2Zn(SO4)2 by Berg and Thorup [382]. This model led to acceptable Rietveld refinement of the main 

reflections, with the following parameters: S.G.: P2/n, a = 8.9725(2) Å, b = 10.3834(2) Å, 

c = 15.0443(2) Å, β = 90.235(5)°, V = 1401.62(4) Å3; however, it did not allow to describe weak 

reflections, which could be attributed to the existence of a superstructure (Figure II.15.a). This 

assumption was confirmed with neutron powder diffraction (NPD), that we performed on the D2B 

diffractometer at the Institut Laue Langevin (cf. Annexes: § A.3.3.1 D2B diffractometer at ILL, page 

165). Indeed, this technique provides better contrast between the different elements which 

constitute the phase, since cobalt scatters neutrons less efficiently (bCo = 2.49 fm) than X-ray, and Na, 

S and O give strong contributions to the intensities of the neutron Bragg reflections (bNa = 3.63 fm, 

bS = 2.847 fm, bO = 5.803 fm). The Rietveld refinement of the high-resolution NPD pattern of 

α-Na2Co(SO4)2 using the Na2Zn(SO4)2 model was poor, especially for reflections in the range 

35 ≤ 2θ ≤ 60° (Figure II.15.b). This was therefore a confirmation that α-Na2Co(SO4)2 adopts a 

structure different from the one reported for the zinc analogue [382], with the main difference 

between both models not resting in the transition metal position, as the XRD refinement is 

acceptable, but rather in the Na, S and O distribution.  
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Figure II.15: Results of the Rietveld refinements of (a) the Synchrotron X-ray powder diffraction and (b) the 

neutron powder diffraction patterns of α-Na2Co(SO4)2 using the Berg and Thorup’s Na2Zn(SO4)2 model [382], as 
described in the text. 

At this juncture, attempts to find the proper unit cell for α-Na2Co(SO4)2 from complementary 

Synchrotron XRD and NPD patterns lead to numerous possibilities, with cells having large volumes 

(2500-3000 Å3). To sort out between these different options, Dr. Artem M. Abakumov and Pr. 

Gustaaf Van Tendeloo* performed transmission electron microscopy (TEM) on a α-Na2Co(SO4)2 

sample. 

Using very weak and widely spread electron beam to avoid the alteration of the compound (as 

gradual loss of sodium had been observed when standard exposition conditions were employed), tilt 

series of selected area electron diffraction (SAED) patterns were collected and used for a 

reconstruction of the 3D reciprocal lattice. As seen in Figure II.16, the patterns present two groups of 

reflections with different intensities, confirming the existence of a superstructure. All bright 

reflections in the electron diffraction patterns could be indexed with the subcell derived from the 

Na2Zn(SO4)2 model proposed by Berg and Thorup [382]. Indexation of the weaker reflections 

required a new monoclinic supercell, with the lattice vectors related to the vectors of the subcell as 

asuper = 2asub + csub, bsuper = -bsub, and csuper = asub - csub. This lead to the supercell lattice parameters: 

asuper ≈ 23.3 Å, bsuper ≈ 10.3 Å, csuper ≈ 17.4 Å,  ≈ 99.0o, which corresponds to a cell volume three times 

larger than the subcell (Vsuper ≈ 4204 Å3 versus Vsub ≈ 1402 Å3). 

                                                           
*
 Electron Microscopy for Materials Science, University of Antwerp, Antwerp, Belgium. 
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Figure II.16: SAED patterns of a α-Na2Co(SO4)2 sample. They are indexed in the monoclinic supercell as 

described in the text. 

The Berg and Thorup’s Na2Zn(SO4)2 atomic positions were then transformed into this supercell, and 

the space group was determined to be C2/c (Table II.8). Note that this supercell contains 40 

independent atoms, which could hardly be refined with laboratory powder X-ray diffraction pattern 

but require high-quality data. The Rietveld refinement of the Synchrotron XRD data using this model 

with soft constraints on the S‒O distances of the sulfate group enabled to fit almost all weak 

superlattice reflections of the pattern; a few very weak reflections remain unindexed and may be 

attributed to a possible admixture. Then, this supercell was also checked against our neutron powder 

diffraction data, and it was found to perfectly match. Finally, a joint Rietveld refinement was 

performed against both the Synchrotron XRD and the NPD data; the corresponding results are given 

in Figure II.17 and Table II.8. 

 
Figure II.17: Results of the combined Rietveld refinement of the Synchrotron X-ray powder diffraction and the 
neutron powder diffraction patterns of α-Na2Co(SO4)2 against the monoclinic supercell described in the text.  
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Table II.8: Crystallographic data and atomic positions of α-Na2Co(SO4)2 deduced from a joint Rietveld 

refinement of SOLEIL Synchrotron X-ray diffraction ( = 0.6681 Å) and ILL neutron powder diffraction ( = 1.594 
Å) data. Bond Valence Sum analysis (BVS) is also indicated. Note that the S−O distances were controlled with 
soft constraints. 

α-Na2Co(SO4)2 

Space group C 2/c χ² = 3.26 RBragg = 5.49 % V = 4121.4(6) Å
3
 

a = 23.262(2) Å b = 10.3057(9) Å c = 17.4047(15) Å β = 98.972(6)° 

Atom Wyckoff site x/a y/b z/c Biso (Å
2
) BVS 

Co1 8f 0.4288(6) 0.1048(13) 0.0600(8) 1.41(10) 1.74(7) 

Co2 8f 0.4002(6) 0.3842(14) 0.2728(9) 1.41(10) 1.90(8) 

Co3 8f 0.2359(7) 0.1286(12) 0.1198(8) 1.41(10) 2.01(8) 

Na1 4e 0 0.144(5) ¼ 3.2(3) 0.83(4) 

Na2 8f 0.1684(19) 0.340(3) 0.428(2) 3.2(3) 0.98(6) 

Na3 8f 0.4007(17) 0.107(4) 0.396(2) 3.2(3) 0.93(5) 

Na4 8f 0.0626(15) 0.118(4) 0.077(2) 3.2(3) 1.10(6) 

Na5 8f 0.2392(16) 0.379(4) 0.234(2) 3.2(3) 1.08(7) 

Na6 4e 0 0.589(5) ¼ 3.2(3) 1.03(5) 

Na7 8f 0.3365(18) 0.449(3) 0.072(3) 3.2(3) 0.64(5) 

S1 8f 0.4735(8) 0.3789(18) 0.1246(10) 1.43(15) 6.3(3) 

O11 8f 0.4763(15) 0.239(2) 0.1319(19) 1.55(6) 2.03(13) 

O12 8f 0.0325(11) 0.074(3) 0.6431(18) 1.55(6) 2.17(14) 

O13 8f 0.4438(14) 0.421(3) 0.0502(15) 1.55(6) 2.02(15) 

O14 8f 0.4428(14) 0.433(3) 0.1843(17) 1.55(6) 1.99(17) 

S2 8f 0.1901(8) 0.3780(17) 0.0249(10) 1.43(15) 5.9(3) 

O21 8f 0.3531(13) 0.208(3) 0.0191(18) 1.55(6) 1.94(14) 

O22 8f 0.1676(13) 0.506(3) 0.0388(17) 1.55(6) 1.91(15) 

O23 8f 0.2109(14) 0.321(3) 0.1024(14) 1.55(6) 1.98(13) 

O24 8f 0.2559(11) 0.106(4) 0.0089(18) 1.55(6) 1.97(14) 

S3 8f 0.3619(8) 0.1042(17) 0.2144(10) 1.43(15) 5.9(3) 

O31 8f 0.3143(13) 0.185(3) 0.1754(18) 1.55(6) 1.92(14) 

O32 8f 0.3430(14) 0.010(3) 0.2692(16) 1.55(6) 1.79(15) 

O33 8f 0.4077(12) 0.187(3) 0.2573(18) 1.55(6) 2.14(14) 

O34 8f 0.3875(14) 0.031(2) 0.1552(16) 1.55(6) 1.80(14) 

S4 8f 0.1818(8) 0.1047(17) 0.5879(10) 1.43(15) 6.1(3) 

O41 8f 0.1579(14) 0.025(3) 0.0748(19) 1.55(6) 2.14(14) 

O42 8f 0.2604(11) 0.424(3) 0.3706(19) 1.55(6) 2.15(15) 

O43 8f 0.3511(13) 0.316(3) 0.3633(17) 1.55(6) 1.84(15) 

O44 8f 0.1868(14) 0.179(4) 0.5185(15) 1.55(6) 1.80(15) 

S5 8f 0.0047(8) 0.3694(17) 0.4150(10) 1.43(15) 6.0(3) 

O51 8f 0.0108(14) 0.490(3) 0.1289(16) 1.55(6) 1.95(13) 

O52 8f 0.0601(11) 0.391(3) 0.4641(17) 1.55(6) 2.02(14) 

O53 8f 0.0393(13) 0.341(4) 0.0338(17) 1.55(6) 2.01(16) 

O54 8f 0.0069(14) 0.261(3) 0.3636(17) 1.55(6) 1.99(16) 

S6 8f 0.1624(8) 0.1104(17) 0.2667(11) 1.43(15) 6.1(3) 

O61 8f 0.3246(15) 0.475(3) 0.2093(18) 1.55(6) 2.15(13) 

O62 8f 0.1604(15) 0.186(4) 0.3374(16) 1.55(6) 1.81(15) 

O63 8f 0.1073(11) 0.100(4) 0.2157(19) 1.55(6) 2.05(15) 

O64 8f 0.2094(13) 0.160(3) 0.2279(18) 1.55(6) 2.05(16) 
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Figure II.18: Crystal structure of α-Na2Co(SO4)2 represented with the monoclinic supercell described in the text. 

(a), (d) and (e) Projections along the b-axis, and the [1 0 -2] and [1 0 1] directions, respectively. CoO6 and SO4 
groups are displayed as blue octahedra and yellow tetrahedra, respectively. Cyan spheres correspond to the 
sodium atoms. (b) Chains of CoO6 octahedra and SO4 tetrahedra, which are alternatively connected through 

corners and edges. Na atoms are not displayed for clarity. (c) Enlargement of one chain, where oxygen atoms 
are represented as small red balls. The edges shared by CoO6 octahedra and SO4 tetrahedra are highlighted 

with red segments. 

The structure of α-Na2Co(SO4)2 as determined above is illustrated in Figure II.18. No obvious 

structural relation with its precursor phase Na2Co(SO4)2·4H2O was found. The structure consists in a 

complicated arrangement of CoO6 octahedra and SO4 tetrahedra, which are alternately connected 

either by corners and edges or by corners only, and give rise to small chains as shown in 

Figure II.18.c. Thus, each CoO6 octahedron is linked to four SO4 groups by vertices and shares an edge 

with a fifth SO4 tetrahedron. As for the sulfate groups, they are connected either to two CoO6 

octahedra (through one corner and one edge) or to three different CoO6 octahedra (through corners 

only); in both cases, the fourth oxygen of the SO4 tetrahedra points to small cavities where the Na 

atoms sit. Overall, the main difference between the structure of α-Na2Co(SO4)2 and the one reported 

for Na2Zn(SO4)2 [382] resides in the orientation of the SO4 groups, which explains why the mismatch 

was barely noticeable from X-ray diffraction but was much more obvious with neutron powder 

diffraction. 
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II.3.3 Electrochemistry of α-Na2Fe(SO4)2  

The electrochemical activity of the α-Na2M(SO4)2 phases (M = Co, Fe) was tested against both sodium 

and lithium metal negative electrodes. For the cobalt counterpart, alike the hydrated phase, no 

electrochemical activity could be detected up to 4.8 V vs. Li+/Li0, i.e. the electrochemical stability limit 

of our electrolyte. This contrasts with the iron-based phase α-Na2Fe(SO4)2, whose electrochemical 

activity is within the 2.5–4.5 V range (Figure II.19) [364]. The voltage-composition traces show here 

again high experimental potentials, which are centered around 3.6 V vs. Li+/Li0 and 3.4 V vs. Na+/Na0. 

Almost one sodium can be extracted from the structure and nearly 0.7 Li+ or Na+ ion (i.e. ~64 mAh/g) 

can be reversibly re-inserted at a rate of C/20. The discharge capacities remain stable upon cycling 

but one should note that, as for the hydrated parent phase, the curves are “walking to the left” as a 

result of a longer charge than discharge, and this effect is highly enhanced for sodium cells. We 

believe that it is linked to electrolyte degradation issues that we have not yet mastered. As for the 

profile of the electrochemical curves, it differ from the one obtained with the hydrated phase 

Na2Fe(SO4)2·4H2O. For the latter, the first flat-like charge neatly contrasted with the subsequent 

discharges and charges (see Figure II.7 page 54), whereas in the case of α-Na2Fe(SO4)2 the 

electrochemical curves already show an S-shape at the first charge (Figure II.19). Moreover, 

preliminary in situ XRD experiments seem to show no sign of amorphization of α-Na2Fe(SO4)2 during 

cycling, though the poor crystallinity of the electrode material does not enable to judge the exact 

nature of the charge-discharge mechanism. 

 
Figure II.19: Electrochemical characterization of α-Na2Fe(SO4)2 (a) versus sodium and (b) versus lithium. The 

first charge is displayed in red, and the subsequent discharges and charges are colored from blue to green. The 
corresponding derivative dx/dV curves are shown at the right of each galvanostatic curve. 
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At this stage, we got interested in probing the electrochemical properties of another mineral 

compound, namely the eldfellite NaFe(SO4)2, which has the same composition as the α-Na2Fe(SO4)2 

phase would have after oxidation, but presents a layered structure as opposed with the 3D 

framework of the latter.  

II.4 Syntheses and electrochemical properties of other sodium iron 

sulfates inspired from minerals  
Eldfellite NaFe(SO4)2, unnamed Na3Fe(SO4)3 and yavapaiite KFe(SO4)2 are rare mineral species that 

occur as high-temperature fumarolic phases in the neighborhood of volcanoes [388–393]. Although 

recently discovered as naturally-occurring compounds, these phases have been known since the 

1940s as they are involved in highly corrosive deposits in industrial boiler furnaces [394,395], and 

their syntheses were described as soon as 1945 [396–399]. The crystal structure of KFe(SO4)2 was 

reported in the 1970s [392,393] while the ones of the sodium compounds NaFe(SO4)2 and 

Na3Fe(SO4)3 were determined only few years ago [389,400]. At the end of the 1990s, Barker patented 

the use of NaFe(SO4)2 and Na3Fe(SO4)3 as positive electrode materials for Li-ion batteries [401], but to 

the best of our knowledge, no electrochemical data were ever reported. We therefore embarked in 

the synthesis and characterization of these phases.  

II.4.1 Syntheses 

To synthesize the three NaFe(SO4)2, Na3Fe(SO4)3 and KFe(SO4)2 phases, we employed a solid-state 

route similar to the one described by Perret and Couchot [398], using anhydrous iron (III+) sulfate 

and sodium/potassium sulfates as starting reagents to carry out the following reactions: 

A2SO4 + Fe2(SO4)3  2 AFe(SO4)2    (A = Na, K) 

3 Na2SO4 + Fe2(SO4)3  2 Na3Fe(SO4)3 

The Fe2(SO3)4 precursor was prepared from the commercial product Fe2(SO3)4.nH2O (n ≈ 5, CAS 

number: 15244-10-7), which was first washed several times with absolute ethanol to eliminate 

impurities, and in particular to avoid the formation of FeSO4OH, before being dehydrated by thermal 

treatment at 300°C under air for a dozen hours. Stoichiometric amounts of A2SO4 (A = Na, K) and 

Fe2(SO4)3 were then thoroughly mixed using a Spex 8000 ball-miller, pressed into pellets and 

annealed at 400°C for one night. Note that the samples had to be removed from the oven at 

high-temperature and immediately crushed with a mortar, since we experienced that the surface of 

the pellet got hydrated when slowly cooling down, resulting in an amorphous yellow slurry. 

Afterwards, the samples were safely stored in an argon-filled glove-box. 
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II.4.2 Characterizations 

Purity of the samples was first checked by laboratory X-ray diffraction, and we confirmed the crystal 

structures reported for the three phases [389,392,393,400] using neutron powder diffraction (NPD) 

performed on the D20 diffractometer of the Institut Laue Langevin (ILL, Grenoble, France; 

cf. Annexes: A.3.3.2 D20 diffractometer at ILL, page 165). The results of these Rietveld refinements 

are shown in Figure II.20 and Figure II.21, and in Table II.9 to Table II.11. BVS analyses, using b0 

parameters from Brown [402] (cf. Annexes: A.3.4.1 Refinement of the structures from XRD and NPD 

patterns, page 166), indicated that the Fe‒O bond lengths are in good agreement with iron in the III+ 

oxidation state, as also confirmed by Mössbauer spectroscopy (Figure II.22 and Table II.12). 

 
Figure II.20: Results of the Rietveld refinements of the NPD data of (a) NaFe(SO4)2 and (b) KFe(SO4)2. 

 
Figure II.21: Results of the Rietveld refinements of the NPD data of Na3Fe(SO4)3. 

 
Figure II.22: 

57
Fe Mössbauer spectra of (a) NaFe(SO4)2, (b) KFe(SO4)2, and (c) Na3Fe(SO4)3. 
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Table II.9: Crystallographic data and atomic positions of NaFe(SO4)2 deduced from the Rietveld refinement of 

the D20 NPD data ( = 1.594 Å, T = 50 K). Bond Valence Sum analysis (BVS) is also indicated. 

NaFe(SO4)2 

Space group C2/m  χ² = 23.8 RBragg = 3.01 % Biso = 0.30(12) 

a = 7.997(2) Å b = 5.163(2) Å c = 7.094(2) Å β = 91.939(6)° V = 292.70(4) Å
3
 

Atom Wyckoff site x/a y/b z/c BVS 

Na 2c 0 0 ½ 0.96(2) 

Fe 2a 0 0 0 2.96(3) 

S 4i 0.362(3) 0 0.218(3) 6.03(18) 

O1 4i 0.240(2) 0 0.060(2) 2.11(10) 

O2 4i 0.288(2) 0 0.403(2) 1.77(10) 

O3 8j 0.470(2) 0.233(2) 0.204(2) 2.05(6) 

 

Table II.10: Crystallographic data and atomic positions of KFe(SO4)2 deduced from the Rietveld refinement of 

the D20 NPD data ( = 2.416 Å, T = 7 K). Bond Valence Sum analysis (BVS) is also indicated. 

KFe(SO4)2 

Space group C2/m  χ² = 48.9 RBragg = 6.41 % Biso = 0.6(2) 

a = 8.127(2) Å b = 5.154(2) Å c = 7.829(2) Å β = 95.067(8)° V = 326.62(6) Å
3
 

Atom Wyckoff site x/a y/b z/c BVS 

K 2c 0 0 ½ 0.9(2) 

Fe 2a 0 0 0 3.0(2) 

S 4i 0.36(4) 0 0.20(4) 6.0(3) 

O1 4i 0.238(2) 0 0.056(3) 2.4(2) 

O2 4i 0.313(3) 0 0.370(3) 1.8(2) 

O3 8j 0.477(2) 0.231(3) 0.182(2) 1.9(2) 

 

Table II.11: Crystallographic data and atomic positions of Na3Fe(SO4)3 deduced from the Rietveld refinement of 

the D20 NPD data ( = 2.416 Å, T = 2 K). Bond Valence Sum analysis (BVS) is also indicated. 

Na3Fe(SO4)3 

Space group R-3  χ² = 10.8 RBragg = 4.15 % Biso = 0.5(3) 

a = 13.365(2) Å c = 9.082(2) Å   V = 1405.0(3) Å
3
 

Atom Wyckoff site x/a y/b z/c BVS 

Na 18f 0.224(3) 0.303(4) 0.156(3) 1.0(2) 

Fe1 3a 0 0 0 3.1(2) 

Fe2 3b 0 0 ½ 3.0(2) 

S 18f 0.186(5) 0.019(7) 0.260(8) 5.9(6) 

O1 18f 0.033(3) 0.138(3) 0.381(3) 2.1(3) 

O2 18f 0.248(3) 0.149(3) 0.276(3) 1.7(3) 

O3 18f 0.028(3) 0.291(2) 0.259(4) 2.2(4) 

O4 18f 0.120(3) 0.989(3) 0.115(4) 1.9(3) 
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Table II.12: Room temperature 
57

Fe Mössbauer parameters of NaFe(SO4)2, KFe(SO4)2, and Na3Fe(SO4)3.  

represents the isomer shift relative to metallic iron standard at room temperature, while Eq and Γ indicate the 
quadrupole splitting and the line width, respectively. Note that 

57
Fe Mössbauer parameters obtained for the 

two sodium-based compounds are in good agreement with those reported by Zboril et al. [403]. 

 Attribution  (mm/s) Eq (mm/s) Γ (mm/s) 
Molar 

fraction (%) 

NaFe(SO4)2 Fe(III+) 0.46(1) 0.46(1) 0.27(1) 100(–) 

KFe(SO4)2 Fe(III+) 0.49(1) 0.29(1) 0.28(1) 100(–) 

Na3Fe(SO4)3 Fe(III+) 0.46(1) 0.12(1) 0.33(1) 100(–) 

 

The yavapaiite KFe(SO4)2 and eldfellite NaFe(SO4)2 compounds are isostructural and crystallize in a 

monoclinic unit cell (space group: C2/m). Their structure is built upon layers of FeO6 octahedra and 

SO4 tetrahedra parallel to the (001) plane, inbetween which the alkali (K+ or Na+) cations lie in 

distorted octahedral coordination (Figure II.23.a). Within the [FeSO4]n sheets, the FeO6 octahedra are 

isolated one from each other and are connected through the sulfate groups (Figure II.23.b). Each SO4 

tetrahedron is thus linked to three different FeO6 octahedra via its vertices, and its fourth corner 

points to the sodium layer.  

 
Figure II.23: Representation of the structure of the yavapaiite KFe(SO4)2 and the eldfellite NaFe(SO4)2 viewed 

along (a) the b- and (b) the c-axes. 

Na3Fe(SO4)3 crystallizes in a rhombohedral structure (space group: R-3). It is built upon chains of FeO6 

octahedra and SO4 tetrahedra running along the c-axis, as seen in Figure II.24. The way the FeO6 and 

SO4 groups share their corners recall the Fe2(SO4)3 lantern units of the NASICON-type structures 

(Chapter I § I.2.3.1 The NASICON-type compounds AxM2(XO4)3 page 20), and give rise to a star or 

pinwheel pattern when viewed along the c-axis. Sodium atoms sit in between these [Fe(SO4)3]n chains 

in a highly distorted octahedral environment.  
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Figure II.24: (a) Representation of the structure of Na3Fe(SO4)3 viewed along the c-axis. (b) Chains of FeO6 

octahedra and SO4 tetrahedra that run along the the c-axis. 

II.4.3 Electrochemistry 

The electrochemical properties of the three compounds NaFe(SO4)2, KFe(SO4)2 and Na3Fe(SO4)3 were 

probed in lithium and sodium half-cells (Figure II.25 and Figure II.26). All of them were found to be 

electrochemically active, although very limited amount of lithium (or sodium) could be effectively 

inserted and extracted in these compounds. This is mostly due to the fact that their structures can 

not accomodate extra alkali cations and to the difficulty of oxidizing FeIII+ into FeIV+. This therefore 

reminds that choosing open 3D frameworks favoring the ionic diffusion is a good but not sufficient 

criterion to make good alkali hosts. Nevertheless, the three compounds NaFe(SO4)2, KFe(SO4)2 and 

Na3Fe(SO4)3 are still interesting electrode materials from a fundamental point of view as their all 

display high redox potentials of about 3.5 V vs. Li+/Li0 and 3.2 V vs. Na+/Na0, thus confirming once 

again that sulfate-based materials enable to reach elevated voltages for the FeIII+/FeII+ redox couple.  

 
Figure II.25: Typical voltage-composition curves obtained for NaFe(SO4)2 cycled against (a) a lithium metal and 

(b) a sodium metal anodes. The corresponding derivative dx/dV curves for the two first cycles are shown in 
insets. 
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Figure II.26: Typical voltage-composition curves obtained for (a) KFe(SO4)2 and (b) Na3Fe(SO4)3 against lithium. 

The corresponding derivative dx/dV curves for the two first cycles are shown in insets. 

II.5 Conclusion 
In this chapter, we have demonstrated the possibility of preparing new electrode materials based on 

abundant and sustainable elements (sodium, iron, sulfur and oxygen) from mineral species, and thus 

revealed that mineral compounds indeed constitute a rich structural database from which 

researchers can get inspiration to design new functional materials. 

We reported on the synthesis of bloedite-type compounds Na2M(SO4)2·4H2O (M = Mg, Zn, Ni, Co, Fe) 

and their dehydrated derivatives Na2M(SO4)2 (M = Co and Fe), for which we have solved the 

complete structure for the first time. We also prepared the mineral phases NaFe(SO4)2 and 

Na3Fe(SO4)3 in order to probe their properties in sodium and lithium half-cells. All the four iron-based 

compounds presented herein were found to be electrochemically active versus both lithium and 

sodium metal anodes. The low reversible capacities offered by these compounds (below 80 mAh/g) 

make them of limited interest for practical electrode materials, but they display however attractive 

voltages of 3.5-3.6 V vs. Li+/Li0 and 3.3-3.4 V vs. Na+/Na0, for which these new electrode materials 

should not be disregarded. 

These FeIII+/FeII+ redox potentials exceed indeed the benchmarked values obtained with 

phosphate-based compounds (LiFePO4: 3.45 V vs. Li+/Li0, NaFePO4 and Na2FePO4F: ~3.0 V vs. Na+/Na0) 

and compare with the potentials reported for other sulfate-based electrode materials (NASICON-type 

Fe2(SO4)3, layered LiFeSO4OH and tavorite LiFeSO4F: 3.6 V vs. Li+/Li0, maxwellite NaFeSO4F: ~3.5 V vs. 

Na+/Na0). Therefore, these results corroborate previous observations that sulfate-based electrode 

materials enable to reach the highest potential values for the FeIII+/FeII+ redox couple among 

inorganic compounds. Moreover, they confirm once again that incorporation of fluorine into 

electrode materials is not necessary to obtain high voltages. 
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At this stage, an obvious prolongation of this work was to explore the possibility of preparing lithium 

analogues to the sodium compounds presented above, in order to check if they adopt the same 

structures and to probe whether they equally offer high redox potentials.  

 





   

Chapter III. A new family of lithium metal sulfate compounds: 

Li2M(SO4)2 (M = Co, Fe, Mn, Ni, Zn, Mg) 

III.1 Introduction 
In the previous chapter, we presented the electrochemical properties of sodium iron sulfate 

compounds inspired from mineral species. These compounds can be employed as positive electrode 

materials against both sodium and lithium anodes, and display high FeIII+/FeII+ redox potentials as 

compared with other polyanionic compounds. An obvious prolongation of this work was thus to 

investigate the possibility of preparing lithium analogues to these compounds. 

First attempts consisting in synthesizing hydrated lithium metal sulfates using the same routes as 

employed for the preparation of the bloedite phases Na2M(SO4)2·4H2O were totally unfruitful. 

Li ↔ Na ionic exchange experiments conducted on both hydrated and anhydrous sodium-based 

phases were not more successful, although somewhat surprising since we were able to cycle these 

phases in lithium cells. Indeed all reactions performed with LiCl or LiNO3 in acetonitrile resulted in 

partial decomposition of the compounds, with in particular formation of lithium sulfate. Annealing at 

200°C pellets of α-Na2Co(SO4)2 with the same reagents equally ended up with the decomposition of 

the phase, but we noticed however the presence of new diffraction peaks in the XRD patterns, which 

could be compared to the pattern reported by Touboul et al. for a phase having the composition 

Li2Co(SO4)2 [404,405]. This was an impetus for the exploration of such Li2M(SO4)2 compounds. 

In the 1980s, after the first reports on the LISICON compound Li3.5Zn0.25GeO4 which presents high 

ionic conductivity at high temperature (i.e. ~0.13 S/cm at 300°C) [406,407], much efforts were 

dedicated to the search of new lithium compounds to be employed as solid electrolytes in 

high-voltage electrochemical devices. In this context, several groups worked on sulfate phases 

because the high-temperature polymorph of lithium sulfate (the cubic α-Li2SO4, stable at T > 572°C) 

had also been shown to present high ionic conductivity (i.e. ~1.08 S/cm at 600°C) [408–413]. Thus, in 

the search for new lithium-based sulfate phases, they extensively explored the binary systems 

Li2SO4‒Mn+(SO4)n/2 (M = Na, K, Rb, Cs, Ag, Mg, Ca, Zn, Cd, Mn, etc.) [404,405,410,414–424]. To the 

best of our knowledge, only three phases having the general formula Li2M(SO4)2 were reported in the 

course of these studies: a zinc, a cobalt and a nickel counterparts [414,404,405]. However, as these 

phases presented no outstanding conductivity properties, they drew very limited interest at that 

time, and only the structure of the nickel compound Li2Ni(SO4)2 was reported at the beginning of the 

2000s [425]. 
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Knowing that cobalt and iron usually display similar chemistry among the polyanion compounds (cf. 

Chapter I and Chapter II), we decided to focus first on isolating the Li2Co(SO4)2 phase, and to try next 

to extend its synthesis to an iron analogue and probe its electrochemical properties. 

III.2 Syntheses of the Li2M(SO4)2 phases (M = Co, Fe) 

III.2.1 Li2Co(SO4)2  

In an attempt to isolate Li2Co(SO4)2, we started by combining cobalt sulfate CoSO4 with various 

amounts of lithium sulfate Li2SO4. These mixtures were pressed into pellets and heated under air at 

various temperatures and for several annealing times. It was found that, when heated at 

temperatures above 300°C for more than 12 hours, stoichiometric ratios yield to almost pure 

samples of Li2Co(SO4)2, as deduced from powder X-ray diffraction and confirmed with atomic 

absorption and EDX measurements [426].  

III.2.2 Li2Fe(SO4)2  

The synthesis of Li2Fe(SO4)2 revealed to be more tricky, especially because of the greater propensity 

of divalent iron to oxidize. Indeed, our group had previously experienced the critical importance of 

working under inert conditions and using precursors of high-purity to produce pure Fe(II+)-based 

fluorosulfates phases [321,324,335,427,337]. For the synthesis of our new lithium iron sulfate, we 

decided therefore to employ the same precautions and explore similar routes to the ones used for 

the preparation of these fluorosulfates.  

Ionothermal synthesis 

Our first attempts to prepare Li2Fe(SO4)2 thus consisted in reacting stoichiometric mixtures of 

FeSO4·H2O and LiSO4·H2O, assuming that the departure of water could favor the reaction, as 

previously observed in the synthesis of tavorite LiFeSO4F [321,324,427]. 

Monohydrate iron sulfate FeSO4·H2O precursors were prepared from the commercial heptahydrate 

compound FeSO4·7H2O, using a procedure previously reported [324] that had proved to reliably 

provide the targeted compound free of any Fe(III+) traces. First, FeSO4·7H2O powder was dissolved 

into a small volume of degassed water. A small amount of ascorbic acid was subsequently added to 

this solution in order to complex any traces of Fe(III+), and the latter was then precipitated into 

absolute ethanol. After being dried under vacuum, the recovered pale green powder was immersed 

under an ionic liquid (1-Ethyl-3-MethylImidazolium bis(TriFluoromethylSulfonyl)Imide, commonly 

called EMI-TFSI), and slowly heated until 160°C to complete the dehydration. The recovered 

FeSO4·H2O powder was finally washed several times with ethyl acetate or dichloromethane, dried 

under vacuum and kept under argon until its use to prevent possible oxidation. 
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For the Li2Fe(SO4)2 synthesis, the as-prepared FeSO4·H2O was then ball-milled with Li2SO4·H2O in a 

stainless steel jar closed under argon. This powder mixture was immersed in EMI-TFSI, and heated at 

around 270-300°C for several hours to several days. With the XRD patterns of the recovered samples, 

we verified the formation of a certain amount of the Li2Fe(SO4)2 phase, which presented XRD 

reflections close to those observed for the cobalt counterpart, but reactions were incomplete, since 

remaining unreacted precursors were also found in the diffraction patterns. 

Ceramic route 

The use of hydrated precursors being unsuccessful, we attempted to prepare Li2Fe(SO4)2 from 

anhydrous iron and lithium sulfates. Li2SO4 was easily obtained by dehydrating the commercial 

monohydrate under air at 350°C for a couple of hours. For FeSO4, the FeSO4·H2O prepared through 

the aforementioned procedure was slowly heated under dynamical primary vacuum up to 280°C with 

a ~1°C/min temperature ramp and maintained at this temperature for one night. 

The two as-prepared anhydrous sulfate precursors were then thoroughly ball-milled under argon and 

the resulting powder pressed into pellets, which were then sealed under vacuum into quartz tubes 

and annealed for two days at 310°C. After cooling, the recovered sandy-grey powder was X-rayed to 

check the completion of the reaction and the nominal composition Li2Fe(SO4)2 was confirmed by 

complementary atomic absorption and EDX measurements [426,428].  

SPS route 

Later, we managed to considerably reduce the preparation time of Li2Fe(SO4)2 by employing Spark 

Plasma Sintering (abbreviated SPS, cf. Annexes: § A.1.2 SPS page 157). For this synthesis, about 

300 mg of the same Li2SO4‒FeSO4 mixture as described above was placed between two carbon paper 

disks (Papyex®) and introduced in a 10-mm diameter carbon matrix (Mersen® 2333). The powder was 

thus pressed to 50 MPa and annealed at 320°C (75°C/min via a sequence of 1 pulse of 1 ms of DC 

polarization) for 15 minutes with an HPD 10 FCT SPS machine(cf. Annexes: § A.1.2 SPS page 157). The 

samples of Li2Fe(SO4)2 prepared using this method were of the same degree of purity and displayed 

the same properties as the ones prepared via the ceramic route [337,363]. 
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III.3 Characterizations of the Li2M(SO4)2 phases (M = Co, Fe) 

III.3.1 Structure determination 

Although the existence of the Li2Co(SO4)2 phase had been reported at the beginning of the 1990s 

[404,405], its structure remained unknown at the beginning of our study. We therefore embarked in 

the search of a unit cell for Li2Co(SO4)2 using the Dicvol program [429,430] as implemented in the 

FullProf suite of software [383,384] (cf. Annexes: § A.3.4 Diffraction data treatment, page 166). We 

determined that all the reflections of its XRD pattern could be indexed with a monoclinic cell with the 

following parameters: space group P21/n, a ≈ 7.47 Å, b ≈ 8.11 Å, c ≈ 4.98 Å, β ≈ 92.68° and 

V ≈ 301.37 Å3. Here we should mention that these unit cell parameters are different from those 

reported by Isasi et al. for Li2Ni(SO4)2 [425], but are similar to the ones proposed by Lundén et al. to 

index the XRD pattern the Li2Zn(SO4)2 phase [414], though no structural data were provided for this 

latter. The structure of Li2Co(SO4)2 was then solved through global optimization (ab initio method) 

with the program FOX [431,432], assuming the presence of rigid SO4 tetrahedra within the unit cell. 

Note that direct methods using the program EXPO [433–435] led to the same solution. This structure 

was then standardized to the P21/c space group using the STRUCTURE TIDY program [436] and finally 

refined against the XRD pattern using the Rietveld method [385] with the FullProf program 

[383,384]. The accuracy of this structure was later confirmed with Synchrotron XRD data, which were 

obtained through the mail-in service of the 11-BM beamline of the Advanced Photon Source of the 

Argonne National Laboratories (Argonne, USA; cf. Annexes: § A.3.2.1  page 163) [426]; the results of 

the Rietveld refinement of these data are presented in Figure III.1 and Table III.1. 

 

Figure III.1: Result of the Rietveld refinement of the structure determined for Li2Co(SO4)2 against the 11-BM 
Synchrotron XRD data.  
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Table III.1: Crystallographic data and atomic positions of Li2Co(SO4)2 determined from the Rietveld refinement 
of its 11-BM Synchrotron XRD pattern (λ = 0.4131 Å). Bond Valence Sum analysis (BVS) is also given. 

Li2Co(SO4)2 

Space group P21/c χ² = 2.30 RBragg = 4.79 % 

a = 4.9787(2) Å b = 8.1113(2) Å c = 8.7831(2) Å β = 121.811(2)° V = 301.416(2) Å
3
 

Atom 
Wyckoff 

site 
Occupancy x/a y/b z/c Biso (Å

2
) BVS 

Li 4e 1.0 0.002(2) 0.638(2) 0.103(2) 1.16(11) 1.19(2) 

Co 2a 1.0 0 0 0 0.65(2) 1.92(2) 

S 4e 1.0 0.3361(2) 0.3046(13) 0.3024(2) 0.68(2) 5.97(2) 

O1 4e 1.0 0.1829(4) 0.4185(3) 0.1530(3) 0.70(4) 2.12(2) 

O2 4e 1.0 0.2048(5) 0.1365(2) 0.2466(3) 0.85(4) 1.97(2) 

O3 4e 1.0 0.2834(4) 0.3506(2) 0.4501(3) 0.73(4) 1.92(2) 

O4 4e 1.0 0.6794(4) 0.3022(2) 0.3748(3) 0.46(4) 2.04(2) 

 

 
Figure III.2: Results of the Rietveld refinement of the 11-BM Synchrotron XRD pattern of a Li2Fe(SO4)2 sample. 

Table III.2: Crystallographic data and atomic positions of Li2Fe(SO4)2. Results of the Rietveld refinement of the 
11-BM X-ray diffraction pattern (λ = 0.4131 Å). 

Li2Fe(SO4)2 

Space group P21/c χ² = 1.78 RBragg = 2.62 % 

a = 4.9886(2) Å b = 8.2062(2) Å c = 8.8293(2) Å β = 121.7499(2)° V = 307.359(2) Å
3
 

Atom 
Wyckoff 

site 
Occupancy x/a y/b z/c Biso (Å

2
) BVS 

Li 4e 1.0 0.0176(12) 0.6307(7) 0.1060(7) 1.30(12) 1.14(2) 

Fe 2a 1.0 0 0 0 0.49(2) 1.94(2) 

S 4e 1.0 0.3340(2) 0.3040(13) 0.3015(2) 0.49(2) 5.94(2) 

O1 4e 1.0 0.1779(4) 0.4183(2) 0.1501(2) 0.48(4) 2.08(2) 

O2 4e 1.0 0.2007(4) 0.1376(2) 0.2482(2) 0.37(4) 1.95(2) 

O3 4e 1.0 0.2879(4) 0.3517(2) 0.4470(2) 0.63(5) 1.95(2) 

O4 4e 1.0 0.6762(4) 0.3003(2) 0.3703(3) 0.42(4) 2.03(2) 

  



Chapter III. A new family of lithium metal sulfate compounds: Li2M(SO4)2 (M = Co, Fe, Mn, Ni, Zn, Mg) 

80   

As expected, the Li2Fe(SO4)2 phase was found to be isostructural to the cobalt counterpart [426]. The 

structure determined above for Li2Co(SO4)2 was therefore refined against the 11-BM Synchrotron 

XRD data obtained for the iron analogue. The atomic positions and crystallographic parameters 

resulting from this Rietveld refinement are shown in Figure III.2 and Table III.2.  

The structure of the Li2M(SO4)2 (M = Co, Fe) phases is illustrated in Figure III.3. It is built upon 

isolated MO6 octahedra that are linked one to the other through SO4 tetrahedra. This 3D framework 

gives rise to large open channels running along the [100] direction, in which the Li+ cations sit. Each 

octahedron is linked to six sulfate groups through their vertices. Conversely, each SO4 group is only 

bounded to three MO6 octahedra, and the non-shared fourth corner of the tetrahedra points 

towards the channels where the lithium resides. This peculiar arrangement of corner-sharing MO6 

octahedra and SO4 tetrahedra results in an open framework, as reflected by the low density of these 

compounds (ρ ≈ 2.8 g/cm3). Overall, the structure of the Li2M(SO4)2 (M = Co, Fe) compounds can be 

considered topologically similar to the phases Mg(HSO4)2 and Zn(HSO4)2 [437,438], although the Li 

site of the former is non-equivalent to the H site in the latter. This is the reason why the monoclinic 

structure determined for the Li2M(SO4)2 (M = Co, Fe) phases, which will be referred to as the marinite 

structure* herein, can be viewed as a novel structure.  

 
Figure III.3: Representation of the monoclinic marinite structure of Li2M(SO4)2 (M = Co, Fe),  

viewed along the a- and the b-axes.  

                                                           
*
 For the sake of the anecdote, we incidentally invented the name “marinite” in the course of one of our weekly 
group meetings after having spelled aloud the general formula “Li2M(SO4)2” for several dozens times when 
comparing these new compounds with the bloedite (Na2M(SO4)2·4H2O, M = Mg, Co, Fe, Ni, Zn), the triplite 
(LiMSO4F, M = Fe, Mn), the tavorite (LiMSO4F, M = Fe, Co, Ni), the sillimanite (LiMSO4F, M = Zn), olivine 
(LiMPO4, M = Fe, Co), etc. families of compounds, for which isostructural mineral species were known. This 
convenient code-name accidentally escaped from our group meetings, and it eventually started to be used by 
the European battery community to design the Li2M(SO4)2 compounds in meetings, in congresses and even in 
review papers [105,323]. 
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III.3.2 Mössbauer spectroscopy 

57Fe Mössbauer spectroscopy* was used to probe the oxidation state and the environment of the iron 

in Li2Fe(SO4)2. Figure III.4 shows an example of the typical spectra obtained for our samples. It shows 

a main doublet of divalent iron (noted Fe(II+)·A in Table III.3 and displayed in blue in Figure III.4), 

which accounts for about 90 % of the iron present in the sample. It is attributed to the iron sitting in 

an octahedral environment in the crystalline phase Li2Fe(SO4)2. 

Table III.3: Room temperature 
57

Fe Mössbauer parameters of Li2Fe(SO4)2.  represents the isomer shift relative 

to metallic iron standard at room temperature, while Eq and Γ are the quadrupole splitting and the line width, 
respectively. The stars * at the right of the value numbers indicate that the corresponding parameters were 
constrained for the fit of the spectrum. 

 Attribution  (mm/s) Eq (mm/s) Γ (mm/s) 
Atomic 

fraction (%) 

Li2Fe(SO4)2 
pristine 

Fe(II+)·A 1.30(1) 1.16(1) 0.27(1) 92(3) 

Fe(II+)·B1 1.30(5) 2.47(15) 0.26(7)* 2(1) 

Fe(II+)·B2 1.30(2) 2.85(6) 0.26(7)* 6(2) 

 

 
Figure III.4: Typical 

57
Fe Mössbauer spectra recorded for Li2Fe(SO4)2. The black circles and the red line represent 

the experimental and the simulated spectra, respectively. The blue subspectrum corresponds to the 
contribution denoted Fe(II+)·A, while the Fe(II+)·B1 and B2 subspectra are displayed in green. 

Whatever the synthesis route chosen (e.g. ceramic, ionothermal, SPS), the annealing temperature 

(e.g. 270 to 380°C) and the time reaction (e.g. 24 hours to several days), the spectra of all our 

Li2Fe(SO4)2 samples present shoulders surrounding the main doublet of Fe(II+)·A. This small signal 

was fitted with two doublets having large quadrupole splittings (noted Fe(II+)·B1 and Fe(II+)·B2 in 

Table III.3) and corresponds to about 8-12 % of the iron of the sample. The exact origin of this second 

kind of signal (intrinsic to Li2Fe(SO4)2 or other phase(s)) is not fully understood at this stage. Note that 

the Mössbauer parameters of doublet Fe(II+)·B2 are close to the ones of the FeSO4·H2O phase 

( ≈ 1.26 mm/s and Eq ≈ 2.72 mm/s; reference [324] and personal results not shown here), 

                                                           
*
 Mössbauer spectroscopy was performed in collaboration with Dr. Moulay Tahar Sougrati at the Institut 

Charles Gerhadt (UMR 5253), Université de Montpellier 2, Montpellier, France (cf. Annexes: § A.4.1 page 167). 
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however the presence of this hydrated sulfate is excluded since the samples were prepared at 

temperatures beyond its temperature of dehydration and were prevented from moisture exposure 

afterwards (contrary to the sample used for the structure determination in Figure III.2).  

III.3.3 Thermal stability 

Thermal gravimetric analysis (TGA) coupled with mass spectrometry (MS) and differential scanning 

calorimetry (DSC) were used to assess the thermal stability of both Li2Co(SO4)2 and Li2Fe(SO4)2 under 

argon. The cobalt sample showed no decomposition before melting at 585°C, whereas the iron-based 

one was found to decompose above 420°C (Figure III.5.a). Complementary high-temperature XRD 

measurements were performed under flowing N2 for the iron phase. They showed evidence of 

decomposition of Li2Fe(SO4)2 into Li2SO4 + Fe2O3, as seen in Figure III.5.b.  

 
Figure III.5: (a) TGA (solid lines) and DSC (dotted lines) measurements recorded for the Li2Co(SO4)2 (in purple) 

and the Li2Fe(SO4)2 (in blue) samples (b) Evolution of the XRD patterns upon heating Li2Fe(SO4)2. The blue, 
orange and red sticks represent the Bragg positions expected for the Li2Fe(SO4)2, Li2SO4, and Fe2O3 phases, 

respectively. 

III.3.4 Electrochemical properties of Li2Fe(SO4)2  

For electrochemical testing, electrode materials were simply prepared by ball-milling for 20 minutes 

under argon the active material with carbon SP, taken in a mass ratio of 80:20. They were cycled in 

half-cells against lithium metal, using LiClO4 1M in PC or EC/DMC as the electrolyte, since first 

attempts with LP30 appeared to have a slight reactivity with the active material. 

A typical voltage-composition trace of the marinite Li2Fe(SO4)2 cycled at a rate of one lithium per 20 

hours (C/20) is shown in Figure III.6. During the first charge, nearly 1 Li+ ion is removed from the 

structure, while 0.86 Li+ ions are reinserted on discharge, which gives a reversible capacity of about 

88 mAh/g (theoretical specific capacity of 102 mAh/g). The electrochemical activity is centered 

around 3.83 V vs. Li+/Li0 [426,428], as confirmed by the dx/dV derivative curve (Figure III.6) and by 

GITT experiments (Figure III.7.a; cf. Annexes: § A.2.3.2 Galvanostatic Intermittent Titration Technique 
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(GITT) tests, page 161). Note that this 3.83 V potential is in fact the highest potential ever reported 

for the FeIII+/FeII+ redox couple in a fluorine-free inorganic material [105,323,426,428], and it is only 

overstepped by the triplite form of LiFeSO4F (3.9 V vs. Li+/Li0, [330,335]). 

 
Figure III.6: Electrochemical characterization of marinite Li2Fe(SO4)2. Left: galvanostatic curve of Li2Fe(SO4)2 

versus lithium metal cycled at a C/20 rate. Upper right: corresponding derivative curve dx/dV. The red arrow 
indicates the feature discussed in the text. Bottom right: discharge capacity as function of the cycling rate. 

Therefore, if one takes into account the usual gap (~1.3 V) observed between the potentials of iron- 

and cobalt-based compounds, the potential related to the CoIII+/CoII+ redox couple in marinite 

Li2Co(SO4)2 would be well outside the stability range of the electrolyte, hence the absence of any 

electrochemical activity observed for this phase. Recent DFT calculations have shown that its 

potential would indeed lie around 5.2 V vs. Li+/Li0 [439]. The same trend was observed for the olivine 

LiCoPO4 and the tavorite LiCoSO4F, for which redox potentials about 1.3 V larger than their iron 

counterparts were measured or calculated [252,254,318,331,427,440].  

 
Figure III.7: (a) GITT and (b) PITT responses obtained from Li2Fe(SO4)2 in lithium half-cells. 

Besides, in order to test the electrode kinetics, we probed the rate capability of the iron phase 

Li2Fe(SO4)2; the corresponding results are shown in Figure III.6 at the bottom right. Given that the 

electrode contained only 20% carbon and that a thorough optimization of the electrode composition 
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was not performed, the fact that 85% of the initial capacity was retained at a 1C rate reflects good 

kinetics for Li+ insertion. 

Regarding the Li+ removal/uptake mechanism, the plateau observed in the voltage-composition trace 

on charge and on discharge (Figure III.6) is suggestive of a two-phase intercalation process, as also 

supported by PITT measurements (Figure III.7.b). However, one should notice the presence of a 

sloped region at the beginning of each charge (2 ≤ x ≤ 1.7), which is not visible in the discharge 

curves. This is more noticeable in the derivative curve, as indicated with a red arrow in Figure III.6. 

Such features which are clearly visible on charge but less so on discharge are not unprecedented, as 

similar observations were reported for the tavorite LiVPO4F [302,441], the maricite NaFePO4 [261] 

(see in Chapter I: Figure I.18 page 26), or also the rhombohedral form of Fe2(SO4)3 [224,230] (see in 

Chapter I: Figure I.11.b page 21); in these cases, the kinetics of Li+ insertion and removal have been 

suggested to play a role but no definitive explanation has been established. Further investigation of 

the charge/discharge mechanism of the marinite Li2Fe(SO4)2 will be presented in section III.3.7 (page 

92), but before to address this point, we will first examine the oxidized phase Li1Fe(SO4)2. 

III.3.5 The delithiated phase Li1Fe(SO4)2  

III.3.5.1 Preparation 

Li1Fe(SO4)2 can be made from both chemical and electrochemical oxidation of Li2Fe(SO4)2. To 

characterize this delithiated phase, samples prepared from chemical oxidation of the pristine phase 

were preferred to the ones obtained from electrochemical oxidation (i.e. electrode materials 

recovered at the end of the first charge in lithium half-cells), because the former were free of carbon 

and traces of electrolyte, and better crystallized than the latter, as seen in Figure III.8.  

 
Figure III.8: Comparison of the XRD patterns of the pristine Li2Fe(SO4)2 (blue pattern), the delithiated phase 

Li1Fe(SO4)2 obtained through chemically oxidation (yellow pattern) or electrochemical oxidation (red pattern). 
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To prepare these “chemically oxidized” samples, powders of Li2Fe(SO4)2 were reacted in acetonitrile 

with NO2BF4, which were employed as an oxidizing agent. This solution was stirred for at least 12 

hours at room temperature in an argon-filled glove-box. The oxidized sample was then recovered by 

centrifugation and washed several times with acetone. 

Atomic absorption and EDX measurements performed on the resulting sandy-grey powders verified 

the nominal composition of Li1Fe(SO4)2, and Mössbauer spectroscopy confirmed that the all the iron 

was oxidized into Fe(III+) (Figure III.9), in good agreement with electrochemical observations. Note 

however that the Mössbauer spectrum of the oxidized phase suggests the presence of three 

different iron environments (Table III.4); the main doublet is attributed to the Li1Fe(SO4)2 phase and 

accounts for ~85 % of the Fe(III+) present in the sample (orange subspectrum in Figure III.9, labeled 

Fe(III+)·A in Table III.4), while the other two may be related to the iron labeled Fe(II+)·B in the 

pristine phase Li2Fe(SO4)2, although no evidence have been established yet to confirm this 

assumption. 

 
Figure III.9: Typical 

57
Fe Mössbauer spectrum recorded for a chemically oxidized Li1Fe(SO4)2 sample. Orange 

subspectrum is attributed to Li1Fe(SO4)2, which is labeled Fe(III+)·A in Table III.4, while the dark and light grey 
subspectra correspond to the Fe(III+)·B and Fe(III+)·C contributions, respectively. 

 

Table III.4: Room temperature 
57

Fe Mössbauer parameters of Li1Fe(SO4)2.  represents the isomer shift relative 

to metallic iron standard at room temperature, while Eq and Γ are the quadrupole splitting and the line width, 
respectively. The stars * at the right of the value numbers indicate that the corresponding parameters were 
constrained for the fit of the spectrum. 

 Attribution  (mm/s) Eq (mm/s) Γ (mm/s) 
Atomic 

fraction (%) 

Li1Fe(SO4)2 

Fe(III+)·A 0.47(1) 0.33(1) 0.30(1)* 84(2) 

Fe(III+)·B 0.32(1) 0.42(2) 0.30(1)* 12(2) 

Fe(III+)·C 0.41(2) 1.26(4) 0.30(1)* 4(1) 
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III.3.5.2 Structure of Li1Fe(SO4)2  

All reflections of the XRD pattern of Li1Fe(SO4)2 could be indexed using the same monoclinic unit cell 

as the marinite Li2M(SO4)2 (M = Co, Fe) compounds (space group: P21/c), with the following lattice 

parameters: a = 4.789(2) Å, b = 8.350(2) Å, c = 7.902(2) Å, β = 121.45(2)°, V = 269.60(4) Å3 [426]. This 

corresponds to a cell volume reduction of about 12 % between Li2Fe(SO4)2 and Li1Fe(SO4)2, which is 

bigger than the changes observed in other Li+-insertion compounds such as LiFePO4 (ΔV/V ≈ 8 %, 

[237]) or tavorite LiFeSO4F (ΔV/V ≈ 8 %, [321]). The quality of the laboratory XRD data did not allow 

however to accurately refine the structure of Li1Fe(SO4)2, and in particular localize the position of the 

lithium atoms within the unit cell [426]. For this purpose, we performed neutron powder diffraction 

(NPD) on the high-resolution powder diffractometer D2B at the Institut Laue Langevin (Grenoble, 

France; cf. Annexes: § A.3.3.1 D2B diffractometer at ILL, page 165) [442]. We first started the 

refinement of the NPD pattern of Li1Fe(SO4)2 using solely the FeO6 octahedra and SO4 tetrahedra 

framework pertaining to the marinite structure of Li2Fe(SO4)2, without any lithium atom in the cell. 

Calculations of Fourier differential maps were performed with the GFourier program [443] of the 

FullProf Suite [383,384], and permitted to precisely localize the position of the lithium within the 

channels running along the a-axis. Figure III.10 presents two sections of the calculated Fourier 

differential maps, which unambiguously showed a peak in nuclear density (i.e. a missing atom) 

having an elongated ellipsoidal shape around the (½,0,½) position.  

 
Figure III.10: Sections of the Fourier difference maps obtained from the refinement of the NPD pattern of 
Li1Fe(SO4)2 against the FeO6 octahedra and SO4 tetrahedra framework pertaining to Li2Fe(SO4)2 structure. 

The blue ellipsoid shows the position of the missing Li atom. 

Refinement of the structure with one lithium atom placed in the 2d Wyckoff site (½, 0, ½) resulted in 

an important anisotropic displacement (equivalent isotropic temperature factor Biso ≈ 8 Å2), with the 

main direction of this ellipsoid being elongated along the <5 1 2> directions (Figure III.11.a). This 

suggested that the lithium ions were more likely distributed on a general position 4e with half 

occupancy and located in the vicinity of the (½, 0, ½) position. Refinement of this model led to a 

much lower temperature factor (Biso ≈ 1.1 Å2) [442], and the resulting structure is displayed in 

Figure III.11.b. Note that in this second model, the two half-occupied lithium positions around the 
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(½, 0, ½) site are separated by a distance of 0.7 Å, which is consistent with the anisotropic 

displacement calculated with the first model.  

 
Figure III.11: Comparison of the two hypotheses for the lithium position in the structure of Li1Fe(SO4)2, as 

described in the text: (a) Li in the 2d Wyckoff site, with an large anisotropic displacement (green elongated 
ellipsoids), and (b) Li in a half-occupied 4e Wyckoff site (half-colored green balls). 

Finally, a joint Rietveld refinement of the structure was performed against both the D2B NPD data 

and Synchrotron XRD data obtained through the 11-BM mail-in service of the Argonne Photon Source 

(Argonne, USA, see Annexes). The results of this refinement are presented in Table III.5 and 

Figure III.12. Note that the bond valence sum (BVS) analysis, using b0 parameters from Brown [402] 

(cf. Annexes: § A.3.4.1 Refinement of the structures from XRD and NPD patterns, page 166), 

indicated that the FeO bond lengths are in excellent agreement with iron in the III+ oxidation state, 

as previous deduced from Mössbauer spectroscopy (Figure III.9). 

 
Figure III.12: Results of the joint Rietveld refinement of Li1Fe(SO4)2 against the 11-BM Synchrotron X-ray 

diffraction pattern (left) and the D2B neutron powder diffraction pattern (right). The red crosses and the black 
line represent the experimental and the calculated patterns, respectively. The green line is the difference curve 

of these two patterns. Bragg positions are shown as blue sticks. 
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Table III.5: Crystal structure of Li1Fe(SO4)2 resulting from the joint refinement of both D2B NPD (high-resolution 
mode, λ = 1.594 Å, T = RT) and 11-BM Synchrotron XRD (λ = 0.4139 Å, T = RT) data. 

Li1Fe(SO4)2 

Space group P21/c χ² = 5.81
 

RBragg = 4.66 % 

a = 4. 7966(2) Å b = 8. 3628(2) Å c = 7. 9059(2) Å β = 121.475(5)° V = 270.465(3) Å
3
 

Atom 
Wyckoff 

site 
Occupancy x/a y/b z/c Biso (Å

2
) BVS 

Li 4e 0.5 0.560(3) 0.0236(14) 0.5258(18) 1.1(3) 1.12(3) 

Fe 2a 1.0 0 0 0 0.49 (2) 3.00 (2) 

S 4e 1.0 0.3048 (3) 0.1783 (2) 0.7613 (2) 0.27 (2) 5.95 (2) 

O1 4e 1.0 0.0455 (4) 0.1275 (2) 0.7997 (3) 0.69 (4) 1.99 (2) 

O2 4e 1.0 0.2632 (4) 0.1033 (2) 0.5854 (3) 0.66 (4) 2.00 (2) 

O3 4e 1.0 0.2824 (4) 0.3572 (2) 0.7377 (3) 0.57 (4) 2.02 (2) 

O4 4e 1.0 0.3757 (4) 0.6422 (2) 0.5594 (2) 0.55 (4) 2.01 (2) 

 

 
Figure III.13: Comparison of the structures of Li1Fe(SO4)2 (colored filled polyhedra) and Li2Fe(SO4)2 (open 

polyhedra). In the delithiated phase, lithium atoms (half-colored green balls) sit in a half-occupied position in 
the middle of the channels running along the a-axis. Grey balls indicate the position of the lithium atoms in the 

lithiated phase. The violet lines represent the Li
+
 diffusion pathways calculated for Li2Fe(SO4)2 [439]. 

Overall, the structure of Li1Fe(SO4)2 presents the same framework of FeO6 octahedra and SO4 

tetrahedra as its parent lithiated phase, but as shown in Figure III.13, the octahedra and tetrahedra 

in Li1Fe(SO4)2 are slightly tilted compared to Li2Fe(SO4)2. After the removal of one lithium, the 

remaining Li+ ion of Li1Fe(SO4)2 shifts towards the middle of the tunnel in a split position with half 

occupancy. The lithium is therefore coordinated by five oxygen atoms, which is more preferable than 

the highly elongated octahedral coordination that lithium would adopt in the (½, 0, ½) 2d Wyckoff 

position. Moreover, this five-coordination is geometrically similar to the coordination of the lithium 

in the pristine Li2Fe(SO4)2 compound. Besides, it is interesting to note that the position determined 

for the lithium cations in the delithiated phase Li1Fe(SO4)2 is placed just in the middle of the lithium 

diffusion pathway calculated for the lithiated phase Li2Fe(SO4)2 (violet lines in Figure III.13) [439]; this 
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is certainly not fortuitous, and we believed that further theoretical investigations of the delithiated 

phase Li1Fe(SO4)2 could be of great interest to explain this observation. Such calculations could also 

find out whether the split lithium site determined from diffraction experiments is the result of a 

static or a dynamic disorder. 

Another interesting point to address here is to compare the structure this new Li1Fe(SO4)2 phase (the 

“delithiated marinite”) with the one of the eldfellite NaFe(SO4)2 and the yavapaiite KFe(SO4)2, which 

were presented in the previous chapter (cf. Chapter II: § II.4 Syntheses and electrochemical 

properties of other sodium iron sulfates inspired from minerals, from page 67). At a first sight, the 

layered structure of the (Na/K)Fe(SO4)2 compounds (cf. Chapter I: Figure II.23 page 70) strongly differ 

from the 3D framework of the marinite Li1Fe(SO4)2 (Figure III.11.b page 87). However, when the 

Li1Fe(SO4)2 structure is viewed along the a-axis (Figure III.14.a) and the (Na/K)Fe(SO4)2 structure is 

oriented along the [1 -1 0] direction (Figure III.14.c), some similarities begin to appear. Next, if one 

imagine a site exchange between half of the Fe and half of the Na/K atoms in the eldfellite/yavapaiite 

structure, as represented with the thin red arrows in Figure III.14.c (i.e. the alkali and the iron atoms 

alternately occupy the 2a and 2c Wyckoff sites of the C2/m unit cell, respectively), then the resulting 

hypothetical structure (Figure III.14.b) is topologically very close to the one of Li1Fe(SO4)2 

(Figure III.14.b). Therefore, one can consider that the marinite and the eldfellite/yavapaiite are 

structurally related, but with a different distribution of the alkali and iron cations in the octahedral 

sites, which may be due to the size of cations since FeIII+ and Li+ present similar ionic radii (0.645 Å 

and 0.76  Å, respectively [111]) whereas the ones of Na+ and K+ are much larger (1.02 Å and 1.38 Å, 

respectively [111]). 

 
Figure III.14: Comparison of (a) the marinite structure of Li1Fe(SO4)2 viewed along the a-axis and (c) the 

eldfellite/yavapaiite structure of (Na/K)Fe(SO4)2 viewed along the [1-10] direction. The red arrows illustrate the 
hypothetical site exchange of half of the iron with half of the alkali cations, as described in the text, and the 

resulting hypothetical structure is displayed in (b).  



Chapter III. A new family of lithium metal sulfate compounds: Li2M(SO4)2 (M = Co, Fe, Mn, Ni, Zn, Mg) 

90   

At this point, we should mention that we could not stabilize Li1Fe(SO4)2 in the eldfellite/yavapaiite 

structure through chemical exchange from NaFe(SO4)2 or KFe(SO4)2, as here also, whatever the route 

employed (with either LiCl or LiNO3, either in acetonitrile or via solid-state reaction), all our attempts 

resulted in the decomposition of the material, with in particular the formation of Li2SO4. Finally, we 

can also remark the difference in thermal stability properties between the marinite Li1Fe(SO4)2 and 

the eldfellite/yavapaiite (Na/K)Fe(SO4)2: the latter compounds are stable up to 600°C whereas the 

former decomposes above 150°C (see below, Figure III.15). Here, DFT calculations would also be of 

great interest in order to understand the differences between these three phases.  

III.3.5.3 Stability properties of Li1Fe(SO4)2  

Several attempts have been made to prepare the delithiated marinite Li1Fe(SO4)2 via direct synthesis 

from stoichiometric mixtures of Li2SO4 and Fe2(SO4)3, but all of them failed. This was indeed 

understood when evaluating the thermal stability of the Li1Fe(SO4)2 sample obtained from the 

chemical oxidation of Li2Fe(SO4)2: high-temperature X-ray diffraction measurements performed 

under nitrogen flow indicated the decomposition of Li1Fe(SO4)2 into Li2SO4 + Fe2(SO4)3 at 

temperatures as low as 150°C (Figure III.15), suggesting that this phase would be in fact metastable. 

 
Figure III.15: Evolution of the XRD patterns upon heating Li1Fe(SO4)2. 

Moreover, contrary to the pristine Li2Fe(SO4)2 phase, the delithiated compound Li1Fe(SO4)2 was found 

to be moisture sensitive, with its XRD pattern evolving within a few hours when exposed to air 

(Figure III.16). The new reflections appearing in the XRD pattern can be compared to the pattern 

reported for the rhomboclase HFe(SO4)2·5H2O [444–446], and the presence of water in the sample 

was confirmed by TGA-MS analyses. As a result, Li1Fe(SO4)2 had to be permanently stored in an 

argon-filled glove-box and characterizations had to be carried out with special care in order to keep 

the sample in an inert environment at any time. 
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Figure III.16: Comparison of the XRD patterns of the pristine Li2Fe(SO4)2 (blue pattern), the chemically oxidized 

phase Li1Fe(SO4)2 (yellow pattern) and the same sample after air exposure (red pattern).  

III.3.6 Sodium insertion into Li1Fe(SO4)2  

Having remarked the structural relation existing between the delithiated marinite Li1Fe(SO4)2 and the 

eldfellite/yavapaiite (Na/K)Fe(SO4)2 compounds as discussed in the previous section, it was tempting 

to check whether sodium could be inserted into the marinite structure. We therefore assembled a 

sodium half-cell with Li1Fe(SO4)2/CSP at the positive electrode material, and a solution of 1 M NaClO4 

in PC as the electrolyte. Li1Fe(SO4)2 was found to reversibly uptake up to ~0.7 Na+ during the first 

cycle, but the reversible capacity rapidly decrease upon the subsequent cycles [426]. The average 

potential was centered around 3.4 V vs. Na+/Na0 (Figure III.17), with an approximately 400 mV 

difference compared to the 3.83 V vs. Li+/Li0 falling within the range of what is expected and usually 

observed when changing a lithium metal anode for a sodium metal one (see Chapter I and references 

[317,318,386,387]). 

 
Figure III.17: Galvanostatic curve obtained from Li1Fe(SO4)2 cycled versus a sodium metal anode. The derivative 

dx/dV corresponding to the first cycle is shown in inset. 

Figure III.18 compares the XRD pattern of the positive electrode material recovered from a 

Na // NaClO4 1M in PC // Li1Fe(SO4)2/CSP cell after a first discharge, labelled “Li1Na1Fe(SO4)2”, with the 

ones of the pristine Li2Fe(SO4)2 and the oxidized phase Li1Fe(SO4)2. The similarity of the three patterns 
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suggests that the general structure framework of the marinite is maintained after sodium insertion, 

with a unit cell volume that should be intermediate between the ones of the lithiated Li2Fe(SO4)2 and 

the delithiated Li1Fe(SO4)2 phases. However we have not determined the exact unit cell  

parameters yet. 

 
Figure III.18: Comparison of the XRD patterns of the pristine Li2Fe(SO4)2 (blue pattern), the chemically oxidized 

phase Li1Fe(SO4)2 (yellow pattern) and the phase “Li1Na1Fe(SO4)2” obtained by Na
+
 electrochemical insertion 

into Li1Fe(SO4)2 (red pattern).  

Here again, all our attempts to prepared a LiNaFe(SO4)2 phase via direct synthesis failed, whatever 

the alkali-based precursors employed (Li2SO4 + Na2SO4 or LiNaSO4) and the temperature of reaction 

(200-400°C). Synthesis of other members of the solid solution LixNa1-xFe(SO4)2 (0 ≤ x ≤ 1) were equally 

unsuccessful.  

III.3.7 Towards the understanding the Li+ extraction/insertion mechanism in Li2Fe(SO4)2  

The electrochemical signature of Li2Fe(SO4)2 cycled against a lithium metal anode was previously 

presented in section III.3.4 (page 82). As commented therein, the electrochemical curve presents a 

plateau both on charge and on discharge (see Figure III.6 page 83), suggesting a two-phase 

mechanism for Li+ extraction/insertion in Li2Fe(SO4)2. However, we also noticed the presence of a 

sloped region at the beginning of each charge (2 ≥ x ≥ 1.7), which is not visible on discharge. 

Understanding this feature called for further advanced characterizations.  

III.3.7.1 In operando characterizations 

X-ray diffraction 

To gain better insight into the mechanism of Li+ extraction/insertion in Li2Fe(SO4)2, we first performed 

in operando XRD measurements while charging and discharging the electrode material Li2Fe(SO4)2/CSP 

(Figure III.19). Despite the slopping region observed in the electrochemical curve no noticeable 

change in either the intensity or the position of the Bragg peaks in the XRD patterns was detected on 

charging up to x ≈ 1.7. This was somewhat surprising, since S-shaped electrochemical traces are 

usually the result of second-order mechanisms (i.e. solid-solution), which are generally reflected in 
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the XRD patterns by a gradual shift of the Bragg reflections upon lithium removal. Next, with further 

removal of lithium (for 1.7 ≥ x ≥ 1), diffraction peaks of the Li2Fe(SO4)2 phase progressively decrease 

in favor of the emergence of new peaks. At the end of the deinsertion process (near x ≈ 1), the 

Li2Fe(SO4)2 reflections had fully disappeared and the resulting XRD pattern (in yellow in Figure III.19) 

could be indexed with the unit cell previously determined for the Li1Fe(SO4)2 phase. This confirms 

that the oxidation process associated with the plateau observed on the charge curve (1.7 ≥ x ≥ 1) 

occurs according to a two-phase mechanism. On the subsequent discharge, the reverse phenomenon 

occurs, and the similarity between the XRD pattern of the starting electrode material and the one 

obtained at the end of the charge–discharge cycle indicates the full reversibility of the process. 

 
Figure III.19: In operando XRD patterns of the electrode material Li2Fe(SO4)2/CSP. Blue and yellow sticks 

represent the Bragg reflections of the Li2Fe(SO4)2 and Li1Fe(SO4)2 phases, respectively. 

Mössbauer spectroscopy 

As diffraction techniques did not provide any information about the feature observed at the 

beginning of the charge (2 ≥ x ≥ 1.7), we undertook an in operando 57Fe Mössbauer spectroscopy 

experiment in order to probe the iron environment in the electrode material and follow its oxidation 

state upon cycling. The results of these measurements are presented in Figure III.20 (page 95). 

First of all, we noticed that the spectrum of the electrode material (Li2Fe(SO4)2 ball-milled with CSP; 

Figure III.20.a) is quite different from the one of the pristine phase Li2Fe(SO4)2 (Figure III.4, page 81), 

suggesting that the electrode preparation step alters the active material, as previously observed with 

Na2Fe(SO4)2·4H2O (cf. Chapter I: § II.2.3 Electrochemistry of Na2Fe(SO4)2·4H2O from page 52). Note 

that, here also, no new reflection could be observed in the XRD pattern of the electrode material 

Li2Fe(SO4)2/CSP with compared to the one of the pristine phase Li2Fe(SO4)2; the only noticeable 

difference being a broadening of the peaks, as usually observed after electrode preparation using 
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mechanical milling. The Mössbauer spectrum of the electrode material was fitted with four doublets 

of divalent iron, as shown in Table III.6 and Figure III.20.a. In fact, the mechanical-milling seemed to 

enhance the small subspectrum labeled B in the spectrum of the pristine phase Li2Fe(SO4)2 seen at 

the beginning of the chapter (Figure III.4 and Table III.3, page 81); this contribution represented here 

about 32 % of the iron in the electrode material. 

The electrode material was then charged and discharged at a C/50 rate, while recording the 

Mössbauer spectra. We can first remark that, conversely to the XRD patterns, the Mössbauer spectra 

start changing since the very beginning of the charge, and keep evolving until the all the iron +II is 

oxidized into iron +III (Figure III.20.a to g). The Mössbauer spectrum recorded for the oxidized phase 

at the end of the first charge (Figure III.20.g and Table III.6) was fitted with a doublet having a 

quadrupole splitting slightly larger than the one determined for the chemically oxidized Li1Fe(SO4)2 

phase presented earlier (Fe(III+)·A in Table III.4 and Figure III.9, page 85). The other spectra acquired 

during the first charge/discharge cycle were fitted using a combination of the four doublets of 

divalent iron (labeled Fe(+II)·A1, A2, B1 and B3) and the doublet of trivalent iron (labeled Fe(+III)) 

(see Table III.6), which had been used to fit the spectra of the electrode material before cycling 

(Figure III.20.a) and at the end of the charge (Figure III.20.g), respectively; all the parameters were 

constrained, except the relative fractions of each contribution. This strategy enabled to well simulate 

all the spectra. The evolution of the relative fractions of the Fe(II+)·A, Fe(II+)·B and Fe(III+) 

contributions as a function of the state of charge/discharge is illustrated in the graph at the top 

right-hand corner of Figure III.20. This results provide interesting information. In fact, at the 

beginning of the charge (up to x ≈ 1.6, i.e. the S-shape part of the curve, and Figure III.20.a to c), the 

Fe(III+) contribution arises at the expense of the Fe(+II)·B signals (i.e. the iron in this environment is 

oxidized) while the Fe(+II)·A contribution remains almost the same. Next, this latter gradually 

disappears in favor of further increase of the Fe(III+) signal (i.e. the iron in the Fe(+II)·A environment 

is oxidized) in the second part of the charge (1.6 ≥ x ≥ 1, i.e. on the plateau region, and Figure III.20.c 

to g). Conversely, on the subsequent discharge (Figure III.20.g to j) both Fe(+II)·A and Fe(+II)·B 

contributions grow simultaneously at the expense of the signal of Fe(III+). 
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Figure III.20: In operando 

57
Fe Mössbauer spectra of the Li2Fe(SO4)2/CSP electrode material cycled in a lithium 

half-cell at a C/50 rate. The black circles and the red lines are the experimental and the simulated spectra, 
respectively. Blue subspectra corresponds to the contributions denoted Fe(II+)·A1 and A2, green subspectra 

represent the Fe(II+)·B1 and B2 ones. In the graph at the top right-hand corner, the state of charge/discharge 
corresponding to each spectrum is indicated by black points on the red electrochemical curve. The evolution of 

the atomic fractions of the Fe(II+)·A, Fe(II+)·B and Fe(III+) contributions upon cycling are represented in the 
same graph with the blue, green and yellow curves, respectively.  
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Table III.6: Room temperature 
57

Fe Mössbauer parameters for the electrode material Li2Fe(SO4)2/CSP before 

charging and at the end of the first charge.  represents the isomer shift relative to metallic iron standard at 

room temperature, while Eq and Γ are the quadrupole splitting and the line width, respectively. The stars * at 
the right of the numbers indicate that the corresponding parameters were constrained for the fitting of the 
spectrum. 

 Attribution  (mm/s) Eq (mm/s) Γ (mm/s) 
Atomic 

fraction (%) 

Li2Fe(SO4)2 
electrode material 

Fe(II+)·A1 1.28(1) 1.16(4) 0.34(4)* 48(7) 

Fe(II+)·A2 1.30(2)* 1.59(9) 0.34(4)* 20(6) 

Fe(II+)·B1 1.30(2)* 2.44(10) 0.34(4)* 15(4) 

Fe(II+)·B2 1.30(2)* 2.99(8) 0.34(4)* 17(4) 

Li~1.0Fe(SO4)2 
electrochemically oxidized 

Fe(II+)·A1 1.28(-)* 1.16(-)* 0.34(-)* 3(3) 

Fe(II+)·A2 1.30(-)* 1.59(-)* 0.34(-)* <1 

Fe(II+)·B1 1.30(-)* 2.44(-)* 0.34(-)* <1 

Fe(II+)·B2 1.30(-)* 2.99(-)* 0.34(-)* 2(2) 

Fe(III+)·A 0.45(1) 0.46(1) 0.43(1) 95(5) 

 

Therefore, this in operando Mössbauer experiment shows that the electrode preparation using 

mechanical-milling was at the origin of a modified Fe(II+) environment (i.e. the signal labeled 

Fe(II+)·B, represented in green in the figures). The oxidation of the iron in this modified environment 

is reflected by a sloping region in the charge curve, whereas the iron remaining in the same Fe(II+) 

environment as in the crystalline marinite Li2Fe(SO4)2 phase (labeled Fe(II+)·A, shown in blue in the 

figures) is oxidized on the plateau centered at 3.83 V of the electrochemical curve. To check this 

hypothesis, we undertook a careful study of the effect of the ball-milling time on the electrode 

material properties. 

 

III.3.7.2 Influence of the ball-milling time on the electrode material 

To test the influence of the ball-milling time on the electrode material properties, we prepared a new 

batch of marinite Li2Fe(SO4)2, from which we made four different electrode materials by ball-milling 

the pristine material with carbon SP for 15, 30, 45 and 60 minutes (hereinafter denoted BM-15, 

BM-30, BM-45 and BM-60, respectively). Each sample was then characterized by X-ray diffraction, 

57Fe Mössbauer spectroscopy and 7Li solid-state NMR, and was also cycled in lithium half-cells at a 

C/50 rate. The results of these characterizations are presented in Figure III.21 and Figure III.22 (page 

97). 
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Figure III.21: Influence of the ball-milling time on the Li2Fe(SO4)2/CSP electrode material properties. 

(a) 
57

Fe Mössbauer spectra, (b) solid-state 
7
Li spin-echo NMR spectra and (c) electrochemical curves of (from 

top to bottom) the pristine Li2Fe(SO4)2 and the electrode materials balled-milled for 15, 30, 45 and 60 minutes. 
Note that the upper voltage-composition trace correspond to the room-temperature carbon-coated Li2Fe(SO4)2 

electrode material. 

 
Figure III.22: Influence of the ball-milling time on the Li2Fe(SO4)2 electrode material properties. 

Evolution with the ball-milling of the contribution of each component determined from the quantitative fitting 
of the (a) Mössbauer and (b) NMR spectra, as well as (c) the relative length of the sloping curve versus the 

plateau in the electrochemical curve. The color-code is the same as in Figure III.21. 
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X-ray diffraction and Mössbauer spectroscopy 

As expected from the previous results, the XRD patterns of the four ball-milled electrode materials 

were found to be comparable with the one of the pristine sample, but with broader peaks (not 

shown here).  

Mössbauer spectra were fitted with the same subspectra as determined for the electrode material in 

the previous experiment. They clearly showed that the ball-milling time favored the growth of the 

Fe(II+)·B signals at the expense of the Fe(II+)·A ones (Figure III.21.a and Figure III.22.a). Note 

however that the relative atomic fractions of these signals seem to stabilize after 45 minutes of 

ball-milling around a Fe(II+)·A/Fe(II+)·B ratio of 60/40 (Figure III.22.a).  

7Li solid-state NMR 

7Li solid-state NMR was conducted by Dr. Robert Messinger*. Solid-state 7Li spin-echo spectra of the 

pristine marinite Li2Fe(SO4)2 and the four ball-milled electrode materials were acquired on a 300 MHz 

spectrometer with ultra-fast 62.5 kHz magic-angle-spinning (cf. Annexes: § A.4.2 7Li solid-state NMR, 

page 168). Figure III.21.b shows that, here also, the spectra clearly evolve with the ball-milling time. 

All the five spectra were deconvoluted into three components: two paramagnetic components 

labeled Li·A and Li·B, and a tiny diamagnetic signal which was attributed to a small amount of 

unreacted precursor Li2SO4. The fitting of the spectra were performed using in-house written 

programs run on the Maple® software. More precisely, the BM-60 spectrum was first fitted with all 

the parameters of the three components able to vary freely. The other BM samples were then fitted 

by fixing the paramagnetic shift anisotropy (PSA) and all other anisotropic parameters of the three 

subspectra, only the peak widths and intensities were let to vary. The line shape (i.e. the 

Gaussian/Lorentzian ratio) of the main contribution (Li·A) had to be modified between the pristine 

and the ball-milled samples, suggesting that Li2Fe(SO4)2 may go through some initial changes upon 

the first minutes of ball-milling, as also supported by the splitting of the Fe(II+)·A signal in the 

Mössbauer spectra. Overall, this simple fitting model was robust and resulted in excellent fits. 

The relative atomic fractions of each component (Li·A, Li·B and Li in Li2SO4; given in terms of lithium 

content in the different samples) are plotted Figure III.22.b. The main component (Li·A) accounts for 

roughly 88% of the lithium in the starting material, and is attributed to lithium in the cristalline 

marinite Li2Fe(SO4)2 phase. It is compensated by the second paramagnetic signal (Li·B; ~11 %) and the 

small diamagnetic peak ascribed to Li2SO4 (~4 %). The Li·B component has a greater distribution of 

local lithium environments (i.e. its line width is broader) than the Li·A one, which means that this Li·B 

                                                           
*
 CEMHTI (Conditions Extrêmes et Matériaux: Haute Température et Irradation), Site Haute Température, CNRS 

UPR 3079, Orléans, France. 
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environment is less well defined than the Li·A in the marinite Li2Fe(SO4)2, and could for instance 

indicate that this lithium is in an amorphous phase. The contribution of the Li·B signal gradually 

increases with the ball-milling time at the expense of the Li·A one (note that the Li2SO4 contribution 

remains constant in the five samples). Here it is worth to remark that the NMR and Mössbauer data 

were acquired on the same samples and that, although they were processed independently, their 

respective quantitative results line up impressively well (Figure III.22.a and b). The similar trends 

observed in the appearance of both the Li·B and Fe(II+)·B contributions at the expense of the Li·A and 

Fe(II+)·A ones hence suggest that these lithium and iron both lie in the same modified electrode 

material. 

Besides, 2D 7Li{7Li} EXSY* experiments were also conducted on the samples BM-30 and BM-60 with 

two different mixing times (1 ms and 8 ms, respectively) in order to probe chemical exchange 

between the lithium environments Li·A and Li·B. The spectrum acquired for the sample ball-milled for 

30 minutes is shown in Figure III.23; a very similar spectrum was obtained for the second sample (not 

shown here). These results show no chemical exchange between the two lithium environments over 

1 and 8 ms, which means that the lithium is not mobile between Li·A and Li·B over this time, and thus 

may suggest that they correspond to two different phases. 

 
Figure III.23: 2D 

7
Li{

7
Li} EXSY spectrum obtained for the sample BM-30 with a 1-ms mixing time. 

Electrochemical testings 

Besides XRD, Mössbauer and NMR characterizations, the four electrode materials were also tested in 

lithium half-cells (Figure III.21.c) in order to look at the influence of the ball-milling time on the 

length of the sloping part (highlighted in green in Figure III.21.c) with respect to the length of the 

plateau at 3.83 V vs. Li+/Li0 (highlighted in blue in Figure III.21.c) in the charge curve. As expected, 

and as better seen from the graph in Figure III.22.c, the contribution of the sloping part increases 

                                                           
*
 EXchange SpectroscopY. 
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gradually with the ball-milling time, hence corroborating our prediction that the more the ball-milling 

time, the more iron in the modified Fe(II+)·B environment (Mössbauer data, Figure III.22.a) and the 

longer the sloping part in the electrochemical curve. To complete the series and fully verify this 

hypothesis, we had to cycled a Li2Fe(SO4)2/CSP electrode material that had not been prepared by 

mechanical milling. Simple hand-grinding of carbon with active material was not sufficient for cycling 

a cell. Therefore, a room-temperature dry carbon deposition [447–449] was carried out by Alexandre 

Ponrouch* on the Li2Fe(SO4)2 particles to improve their electronic conductivity. This carbon-coated 

sample could then be cycled in a lithium half-cell at a C/50 rate after being hand-grinded with 30 % of 

CSP and, as seen in Figure III.21.a (electrochemical curve labeled “pristine” at the top of the column) 

and Figure III.22.a, more than 90 % of the 0.55 Li+ ions extracted from this electrode material 

occurred on the plateau of the electrochemical curve. 

Conclusions on the Li+ extraction/insertion mechanism in Li2Fe(SO4)2 

Overall, we have shown here that Li2Fe(SO4)2 is altered by the ball-milling step of the electrode 

preparation. This modification of the active material is reflected in its electrochemical response by a 

sloping curve, while the oxidation of non-modified Li2Fe(SO4)2 material occurs as a plateau centered 

around 3.83 V vs. Li+/Li0. X-ray diffraction data suggest that this altered material is not long-range 

ordered, as supported by its corresponding broad Mössbauer and NMR components (Fe(II+)·B and 

Li·B) that indicate not well defined iron and lithium environments. Moreover, by comparing the 

quantitative results obtained from these two spectroscopic techniques, we can infer that the 

stoichiometric Li:Fe ratio in this altered electrode material is the same as the crystalline marinite 

Li2Fe(SO4)2 (providing Fe(II+)·A and Li·A signals), that is 2:1. Therefore, we can imagine for instance 

that this altered electrode material is simply an amorphous, disordered Li2Fe(SO4)2 phase. Another 

hypothesis could also be that the Fe(II+)·B and Li·B environments correspond in fact to an alteration 

of the surface of the particles of the active material (although this explanation is less likely since 2D 

EXSY RMN experiment showed no chemical exchange between the Li·A and Li·B environments). 

To test these assumptions, it would have been helpful to be able to distinguish amorphous regions 

from crystalline ones in samples of Li2Fe(SO4)2/CSP electrode materials by TEM and SAED 

observations. However, unfortunately, the crystalline marinite Li2Fe(SO4)2 phase is very sensitive to 

the electron beam and become amorphous within a few second of exposure, thereby preventing us 

from any definitive conclusion on the exact nature/location of the Fe(II+)·B and Li·B environments; 

the only information obtained from these TEM observations is that the particles size of the material 

is below 100 nm.  

                                                           
*
 Institut de Ciència de Materials de Barcelona (ICMAB), CSIC, Barcelona, Spain. 
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III.4 Other phases Li2M(SO4)2 (M = divalent metal) 
In the first part of this chapter, we synthesized and characterized two new phases, namely 

Li2Co(SO4)2 and Li2Fe(SO4)2. We determined in particular their crystal structure, which is described in 

a monoclinic unit, and we found attractive electrochemical properties for the marinite iron-based 

phase Li2Fe(SO4)2, which displays an elevated FeIII+/FeII+ redox potential of 3.83 V vs. Li+/Li0. 

Knowing the existence of two other compounds having the same general formula (Li2Zn(SO4)2 [414] 

and Li2Ni(SO4)2 [404,405,425]), a natural extension of this work was to explore the possibility of 

preparing other Li2M(SO4)2 analogues with other divalent metals and probe their electrochemical 

activity. In fact, we placed special interest in synthesizing a manganese-based phase because of the 

exciting prospect of exploiting the two redox couples MnIII+/MnII+ and MnIV+/MnIII+ to reach a very 

attractive specific capacity of 204 mAh/g (2 Li+ per formula unit), as compared with the 102 mAh/g 

theoretical capacity provide by the iron counterpart (1 Li+ per formula unit). On the other hand, the 

Li2Ni(SO4)2 phase also drew our attention, since this compound was reported to crystallize in an 

orthorhombic structure [425], different from the monoclinic marinite structure that we determined 

for Li2Co(SO4)2 and Li2Fe(SO4)2. This was indeed somewhat surprising because in many other families 

of lithium-based polyanionic compounds, the cobalt, iron and nickel analogues had been found to be 

isostructural (e.g. olivine phosphates LiMPO4, tavorite fluorosulfates LiMSO4F and fluorophosphates 

LiMPO4F; cf. Chapter I: § I.2.3 Polyanions from page 20). Reminding that the study of such a 

polymorphism in the fluorosulfate series led to the discovery of the high-potential triplite phase 

LiFeSO4F (3.9 V vs. Li+/Li0, [323,330,335,427]), we desired investigating the possibility of stabilizing 

the Li2Fe(SO4)2 phase into the orthorhombic structure of Li2Ni(SO4)2, in order to probe the effect of 

this structural modification on the electrochemical response.  

We therefore embarked to the synthesis of several Li2M(SO4)2 phases with different divalent cations, 

as presented below.  

III.4.1 Polymorphism of the Li2M(SO4)2 phases (M = Co, Fe, Mn, Mg, Zn, Ni) 

Li2Mn(SO4)2  

We easily synthesized a white powder sample of Li2Mn(SO4)2 using the same procedure as employed 

for the preparation of the cobalt counterpart, i.e. by annealing under air a stoichiometric mixture of 

MnSO4 and Li2SO4 at 325°C for 3 days [442]. This phase was found to be isostructural with the 

marinite iron and cobalt analogues. This contrasts with other sulfates and fluorosulfates series, in 

which the manganese phases crystallizes in a structure different from the cobalt one (e.g. tavorite 

LiCoSO4F vs. triplite LiMnSO4F, maxwellite NaCoSO4F vs. undetermined NaMnSO4F, bloedite 

Na2Co(SO4)2·4H2O vs. kröhnkite Na2Mn(SO4)2·2H2O; cf. Chapter I and Chapter II). Table III.7 and 
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Figure III.24 present the results of the Rietveld refinement of the monoclinic marinite structure 

against the XRD pattern of Li2Mn(SO4)2.  

Table III.7: Crystal structure of Li2Mn(SO4)2 resulting from the Rietveld refinement of its XRD powder pattern, 
measured at room temperature with Cu Kα radiation. 

Li2Mn(SO4)2 

Space group P21/c χ² = 9.64
 

RBragg = 8.31 % 

a = 4.9920(2) Å b = 8.3396(2) Å c = 8.8614(2) Å β = 121.230(5)° V = 315.464(5) Å
3
 

Atom 
Wyckoff 

site 
Occupancy x/a y/b z/c Biso (Å

2
) BVS 

Li 4e 1.0 0.021(3) 0.6326(14) 0.1010(16) 1.9(4) 1.08(2) 

Mn 2a 1.0 0 0 0 1.32 (4) 1.98 (2) 

S 4e 1.0 0.3284 (5) 0.3030 (3) 0.2970 (3) 1.77 (5) 6.29 (4) 

O1 4e 1.0 0.1761 (9) 0.4140 (4) 0.1490 (5) 0.84 (10) 2.13 (3) 

O2 4e 1.0 0.1954 (9) 0.1405 (5) 0.2460 (5) 1.29 (11) 2.00 (2) 

O3 4e 1.0 0.2813 (8) 0.3508 (4) 0.4379 (5) 1.80 (12) 2.12 (3) 

O4 4e 1.0 0.6619 (8) 0.2974 (5) 0.3607 (5) 0.61 (10) 2.11 (2) 

 

 
Figure III.24 : Result of the Rietveld refinement of the XRD pattern of Li2Mn(SO4)2  

using the monoclinic marinite structure determined herein. 

Regarding the electrochemical properties of this new phase Li2Mn(SO4)2, our hopes for a 2-electron 

electrode material were rapidly dismissed, as we detected no activity up to 4.8 V vs. Li+/Li0, that is the 

stability limit of our liquid electrolytes. Recent DFT calculations performed by the group of Islam 

[439] predicted for Li2Mn(SO4)2 a voltage of 4.5 V vs. Li+/Li0, which falls in the electrolyte stability 

window; however they also anticipated that the delithiated phase Li1Mn(SO4)2 would present 

Jahn-Teller distortion and may thereby be unfavorable to form, which could therefore explain the 

inactivity of the marinite Li2Mn(SO4)2 phase. 
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Li2Ni(SO4)2  

As expected from what was previously reported [425], we obtained Li2Ni(SO4)2 by heating under air a 

stoichiometric mixture of anhydrous lithium sulfate and nickel sulfate at 500°C for one night [450]. 

The XRD pattern of the recovered yellow powder was perfectly indexed with the orthorhombic unit 

cell (space group: Pbca) proposed by Isasi et al. [425]. The results of the Rietveld refinement of the 

proposed structure against our XRD data are presented in Figure III.25 and Table III.8. 

 

 
Figure III.25: Result of the Rietveld refinement of the XRD pattern of Li2Ni(SO4)2  

using the orthorhombic structure proposed by Isasi et al. [425]. 

Table III.8: Crystal structure of Li2Ni(SO4)2 resulting from the Rietveld refinement of its XRD powder pattern, 
measured at room temperature with Cu Kα radiation. 

Li2Ni(SO4)2 

Space group P bca χ² = 7.39
 

RBragg = 2.44 % 

a = 9.1400(2) Å b = 9.0240(2) Å c = 13.5911(2) Å V = 1120.99(3) Å
3
 

Atom 
Wyckoff 

site 
Occupancy x/a y/b z/c Biso (Å

2
) BVS 

Li1 8c 1.0 0.466(4) 0.718(4) 0.362(4) 0.40(7) 1.04(5) 

Li2 8c 1.0 0.719(4) 0.538(4) 0.635(4) 0.40(7) 0.97(6) 

Ni 8c 1.0 0.8617(4) 0.6030(4) 0.3779(3) 0.40(7) 1.90(3) 

S1 8c 1.0 0.6603(8) 0.8131(7) 0.5089(5) 0.40(7) 5.94(12) 

O11 8c 1.0 0.5003(13) 0.7967(13) 0.5236(11) 0.40(7) 1.90(3) 

O12 8c 1.0 0.7050(12) 0.9707(15) 0.4963(12) 0.40(7) 1.92(7) 

O13 8c 1.0 0.6886(14) 0.7281(14) 0.4187(9) 0.40(7) 2.04(6) 

O14 8c 1.0 0.7422(10) 0.7561(14) 0.5939(13) 0.40(7) 1.88(7) 

S2 8c 1.0 0.5755(7) 0.4303(7) 0.2735(5) 0.40(7) 5.87(12) 

O21 8c 1.0 0.4804(14) 0.4993(12) 0.3405(10) 0.40(7) 2.01(7) 

O22 8c 1.0 0.5230(13) 0.4617(12) 0.1720(12) 0.40(7) 1.90(6) 

O23 8c 1.0 0.5725(13) 0.2656(15) 0.2752(11) 0.40(7) 2.01(7) 

O24 8c 1.0 0.7246(16) 0.4883(15) 0.2750(11) 0.40(7) 2.07(7) 
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Figure III.26: Representation of the orthorhombic structure of Li2Ni(SO4)2,  

viewed along the (a) [010] and (b) [1-10] directions. 

Similarly to the marinite structure, which was presented at the beginning of this chapter (cf. page 

80), the structure of Li2Ni(SO4)2 is based on isolated NiO6 octahedra interconnected through SO4 

tetrahedra (Figure III.26). Each NiO6 octahedron is linked to six sulfate groups via its six corners; each 

SO4 tetrahedron is connected to three NiO6 octahedra and its fourth corner points to channels that 

run along the b-axis, and in which the lithium cations sit in an octahedral coordination. The 

difference between the two structures (orthorhombic vs. marinite monoclinic) resides in the way 

MO6 octahedra and SO4 tetrahedra are arranged along the b-axis. In the marinite structure, the FeO6 

octahedra are stacked one behind the other, while in the orthorhombic structure of Li2Ni(SO4)2, the 

NiO6 octahedra are slightly shifted one with respect to the other, giving rise to sorts of zigzag chains 

along the b-axis. This different stacking leads to shorter M-M distances in the orthorhombic structure 

of Li2Ni(SO4)2 than what is observed in the marinite monoclinic phases. 

Despite the presence of large open channels containing the lithium cations, which can be viewed as a 

favorable factor for lithium extraction/insertion, no electrochemical activity could be found for 

Li2Ni(SO4)2. This is not totally surprising as nickel-based compounds generally display high redox 

potentials that are hardly reachable with conventional electrolytes, as commented in Chapter 1. 

 

At this stage, we tried to understand the origin of the polymorphism existing in the Li2M(SO4)2 series 

of compounds. We noticed that NiII+ ions (ionic radii of 0.69 Å, [111]) are in fact smaller than CoII+ 

(0.745 Å), FeII+ (0.78 Å) and MnII+ (0.83 Å), whose phases crystallize in the marinite structure. To 

figure out if the cation size was a driving force for stabilizing one polymorph or another, we 

attempted to synthesized Li2M(SO4)2 phases with other divalent cations having bigger (CdII+: 0.95 Å 

and CaII+: 1.0 Å) or intermediate (MgII+: 0.95 Å, CuII+: 0.73 Å, and ZnII+: 0.74 Å) ionic radii. However we 



Chapter III. A new family of lithium metal sulfate compounds: Li2M(SO4)2 (M = Co, Fe, Mn, Ni, Zn, Mg) 

  105 

were only successful with the magnesium and zinc counterparts, as presented below and in 

reference [450]; we suppose that too large cations and the Jahn-Taller divalent copper ion may be 

unfavorable to the formation of the targeted phases.  

Li2Mg(SO4)2  

Li2Mg(SO4)2 was found much more tricky to obtained than other Li2M(SO4)2 phases. In fact, heating 

stoichiometric amounts of Li2SO4 and MgSO4 at 300-400°C for several hours resulted in a mixture of 

Li2Mg2(SO4)3 [420] and unreacted lithium sulfate, in agreement with the phase diagrams reported for 

the binary system Li2SO4‒MgSO4 [405,417,421]. However, by persevering few days more at 400°C, 

we observed the growth of a few diffraction peaks that could be compared to the XRD patterns 

obtained for the marinite phases Li2M(SO4)2 (M = Co, Fe, Mn). We eventually obtained a sample 

presenting Li2Mg(SO4)2 as the main phase with further annealing at 400°C for four weeks [450]. The 

XRD pattern of this white powder sample could be indexed with the monoclinic marinite unit cell 

(Figure III.27) with the following unit cell parameters (space group: P21/c): a = 4.9926(2) Å, 

b = 8.0853(2) Å, c = 8.7993(2) Å, β = 121.3847(9)° and V = 303.228(9) Å3.  

 
Figure III.27: Comparison of the experimental XRD pattern of the Li2Mg(SO4)2 sample (red circles) and  
the simulation of this phase from the monoclinic marinite structural model of Li2Co(SO4)2 (black line). 

Li2Zn(SO4)2  

We obtained the zinc phase following a similar procedure to the ones for the other analogues, that is 

annealing of a stoichiometric mixture of Li2SO4 and ZnSO4 at 400°C for 4 days under air [450]. From 

the XRD pattern of the resulting white powder, we determined that the as-prepared Li2Zn(SO4)2 was 

isostructural to the nickel counterpart. Table III.9 and Figure III.28 show the result of the refinement 

of the laboratory XRD data starting from the orthorhombic structure proposed by Isasi et al. from 

Li2Ni(SO4)2 [425].  
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Table III.9: Crystal structure of the orthorhombic form of Li2Zn(SO4)2 resulting from the Rietveld refinement of 
its XRD powder pattern, measured at room temperature with Co Kα radiation. 

Li2Zn(SO4)2 

Space group P bca χ² = 11.5
 

RBragg = 5.02 % 

a = 9.2178(2) Å b = 9.1065(2) Å c = 13.6492(3) Å V = 1145.74(3) Å
3
 

Atom 
Wyckoff 

site 
Occupancy x/a y/b z/c Biso (Å

2
) BVS 

Li1 8c 1.0 0.465(6) 0.737(6) 0.365(5) 0.0 1.01(7) 

Li2 8c 1.0 0.715(6) 0.531(6) 0.627(6) 0.0 0.94(9) 

Zn 8c 1.0 0.8606(5) 0.6048(6) 0.3773(3) 0.0 2.04(5) 

S1 8c 1.0 0.6705(11) 0.8110(10) 0.5100(7) 0.0 5.88(17) 

O11 8c 1.0 0.5105(18) 0.801(2) 0.5291(16) 0.0 2.03(9) 

O12 8c 1.0 0.704(2) 0.969(2) 0.4958(17) 0.0 1.99(10) 

O13 8c 1.0 0.688(2) 0.733(2) 0.4171(13) 0.0 2.13(9) 

O14 8c 1.0 0.7431(15) 0.749(2) 0.597(2) 0.0 1.91(11) 

S2 8c 1.0 0.5745(10) 0.4318(11) 0.2745(7) 0.0 5.83(18) 

O21 8c 1.0 0.487(2) 0.5035(17) 0.3512(15) 0.0 1.94(10) 

O22 8c 1.0 0.512(2) 0.4621(19) 0.1711(14) 0.0 1.77(7) 

O23 8c 1.0 0.5680(19) 0.266(2) 0.2707(16) 0.0 1.76(9) 

O24 8c 1.0 0.7177(3) 0.489(2) 0.2694(16) 0.0 2.18(12) 

 

 
Figure III.28: Results of the Rietveld refinement of the XRD pattern of Li2Zn(SO4)2 prepared at 400°C 

using the orthorhombic structure proposed by Isasi et al. from Li2Ni(SO4)2 [425]. 

In fact, finding Li2Zn(SO4)2 crystallizing in the orthorhombic structure was somewhat surprising for 

two reasons: (i) given that the ionic radius of ZnII+ is very close to the one of CoII+ (0.74 Å and 0.745 Å, 

respectively), we expected the zinc phase to be isostructural to Li2Co(SO4)2, and (ii) when they 

reported the existence of this phase [414], Lundén et al. proposed to index the XRD pattern of 

Li2Zn(SO4)2 into a monoclinic cell having parameters very close to the ones we determined for the 

marinite structure. This called therefore for further investigation of the zinc compound.  
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Figure III.29: DSC trace obtained for the orthorhombic form of Li2Zn(SO4)2 measured at a scanning rate of 

10K/min under argon flow. 

Indeed DSC measurements showed that, before melting at around 510°C, the orthorhombic 

Li2Zn(SO4)2 undergoes a phase transition between 465 and 480°C (Figure III.29). Following this 

observation, we further heated our sample up to 480°C under air, and the XRD pattern of the 

recovered powder confirmed that the phase had transformed into the monoclinic marinite structure 

[450]. Although the sample contained some impurities, we could simulate the main Bragg reflections 

of the experimental XRD pattern with the structural model obtained for marinite Li2Co(SO4)2 

(Figure III.30), using the following unit cell parameters (space group: P21/c): a = 4.9679(2) Å, 

b = 8.1281(4) Å, c = 8.7592(4) Å, β = 121.518(3)° and V = 301.51(2) Å3. 

 
Figure III.30: Comparison of the experimental XRD pattern of the Li2Zn(SO4)2 sample  

heated up to 480°C (red circles) and the simulation of the Li2Zn(SO4)2 phase from  
the monoclinic marinite structural model of Li2Co(SO4)2 (black line). 
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Comparison of the different Li2M(SO4)2 phases (M = Co, Fe, Mn, Mg, Zn, Ni) 

The aim of this crystal-chemical study was to understand the origin of the polymorphism occurring in 

the Li2M(SO4)2 series. Overall, we have stabilized five phases crystallizing into the monoclinic marinite 

structure (M = Co, Fe, Mn, Mg, Zn) and two other phases having the orthorhombic structure (M = Ni, 

Zn). Figure III.31 clearly shows that the unit cell volume decreases with the ionic radii of the divalent 

cations MII+ in both series, with however the exception of the magnesium counterpart, like in the 

case of the bloedite Na2M(SO4)2.4H2O compounds (cf. Chapter I: Figure II.4 page 48); this may be 

explained by the different electronic configuration of MgII+ as compared to the 3d transition metals. 

It is interesting to remark the difference in term of density between the monoclinic marinite 

structure and the orthorhombic one, with the zinc phase crystallizing in the two polymorphs 

(ρmono = 2.99 g/cm3 vs. ρortho = 3.15 g/cm3). At this point, DFT calculations could be valuable to have a 

better insight into the reasons of this polymorphism as well as the difference in terms of stability of 

these two structures. 

 

 
Figure III.31: Evolution of the volume per formula unit as a function of the ionic radii of the divalent cations M

II+
 

in the Li2M(SO4)2 series, where M = Ni (green cross), Mg (blue star), Zn (green and blue triangles), Co (blue 
point), Fe (blue diamond), Mn (blue square). 
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III.4.2 Study of the solid solutions Li2Fe1-yMy(SO4)2  

After having synthesized the different end-members of the Li2M(SO4)2 series, we had a look at the 

solid-solutions Li2Fe1-yMy(SO4)2 (M = Mn, Zn, Ni), with the aim of: (i) getting more insights about the 

absence of electrochemical activity for the Li2Mn(SO4)2 phase, and (ii) probing the electrochemical 

properties of an iron-based phase having the orthorhombic structure. 

III.4.2.1 Solid solutions Fe/Mn 

In order to get more information for the understanding of the absence of electrochemical activity of 

the Li2Mn(SO4)2 phase, we prepared five phases of the solid-solution Li2Fe1-yMny(SO4)2 (y = 0.05, 0.25, 

0.50, 0.75 and 0.95) by employing the same solid-state synthesis procedure as described for the 

synthesis of the iron end-member (see § III.2.2 page 76). The XRD patterns obtained for these five 

samples are presented in Figure III.32.a. As expected, refinements of these data showed that the unit 

cell parameters change linearly with the manganese content (Figure III.32.a). 

 
Figure III.32: (a) XRD patterns of the Li2Fe1-yMny(SO4)2 solid-solution phases, and  

(b) evolution of the unit cell parameters and volume with the manganese content. 

57Fe Mössbauer spectroscopy was performed on the same samples. The results of the fitting of these 

spectra are presented Figure III.33. Interestingly, while the isomer shift and line width of the doublet 

of the main signal of divalent iron remain almost the same for the six spectra, its quadrupole splitting 

decreases gradually as the manganese content increases, suggesting a modification of the local 

electronic environment of the iron. Although interpretation of this behavior is difficult without the 

help of DFT calculations, we can notice that such a decrease of the quadrupole splitting was observed 

in other manganese-substituted phases such as LiFe1-yMnyPO4 [451] and Fe1-yMnyNb2O6 [452]. 
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Figure III.33: On the left, 

57
Fe Mössbauer spectra of the Li2Fe1-yMny(SO4)2 phases, and on the right, evolution of 

Mössbauer parameters (: isomer shift, Eq: quadrupole splitting and Γ: line width) of the main doublet of the 
Li2Fe1-yMny(SO4)2 phases as a function of the manganese content (y). 

 

 
Figure III.34: Evolution, as a function of the manganese content (y) in Li2Fe1-yMny(SO4)2, of the specific 

capacities recorded for the first charge (in red) and for the first discharge of these phases, when cycled in 
lithium half-cells at a C/50 rate. The dotted line represents the theoretical specific capacity expected if all the 

iron contained in the sample participates is oxidized/reduced during the charge/discharge. 

These five samples were probed as positive electrode materials in lithium half-cells. The specific 

capacities recorded for each sample on the first charge and the first discharge are reported in 

Figure III.34 as a red and a blue curve, respectively. These results shows that the specific capacity 

decrease rapidly as the manganese content (y) in Li2Fe1-yMny(SO4)2 increases, with almost no activity 

measured for the samples containing more than 75 % of Mn [323]. Besides being inactive, the 

presence of the manganese in the active material therefore tends to limit the electrochemical 

response of the FeIII+/FeII+ redox couple, as noticed from the difference between the theoretical curve 
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(dotted black line in Figure III.34) and the experimental ones (blue and red lines in Figure III.34). 

Note that a similar behavior has been observed for other manganese-doped compounds, such as the 

triplite LiFe1-yMnySO4F [323], the layered LiFe1-yMnySO4OH [323], the pyrophosphate Li2Fe1-yMnyP2O7 

[453] and the borate LiFe1-yMnyBO3 [293] phases. A plausible reason for such poor capacities is that 

the structures of the delithiated phases cannot accommodate the local distortion of the octahedra 

around the Jahn-Teller MnIII+ ion, so that delithiation does not occur [323,439], however this still 

does not fully explain why the iron is not oxidized. 

III.4.2.2 Solid solutions Fe/Zn and Fe/Ni 

With the aim of stabilizing the an iron-based phase into the orthorhombic structure, we equally 

attempts to prepare some members of the solid-solutions Li2Fe1-yZny(SO4)2 and Li2Fe1-yNiy(SO4)2. To 

synthesize these phases, we also employed the same ceramic route as described for the synthesis of 

the iron end-member (see § III.2.2 page 76). Figure III.35 shows the XRD patterns of the phases 

prepared with 50 and 25 % of iron. The two members of the Fe/Zn solid-solution that we synthesized 

were obtained as the marinite polymorph; however, this is not a really surprising considering that the 

zinc phase can be obtained on the two forms. We were more successful with the Fe/Ni mixed 

samples, as the Li2Fe0.25Ni0.75(SO4)2 phase was stabilized in the orthorhombic structure.  

 
Figure III.35: XRD patterns (black lines) of some members of the solid-solutions Li2Fe1-yZny(SO4)2 (left) and 

Li2Fe1-yNiy(SO4)2 (right). There are compared with the pattern of the marinite Li2Fe(SO4)2 (in blue) and the ones 
recorded for the orthorhombic polymorphs of Li2Zn(SO4)2 and Li2Ni(SO4)2 (in green.) 

The electrochemical activity of the Li2Fe0.25Ni0.75(SO4)2 sample was then probed in a lithium half-cell. 

The voltage-composition trace obtained from this test in presented in the left panel of Figure III.36, 

and shows that almost all the iron contained in the phase can be oxidized, with a potential centered 

around 3.83 V vs. Li+/Li0, as better seen in the derivate curve displayed in the right panel of 

Figure III.36.  
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Figure III.36: On the left, voltage-composition trace for the orthorhombic phase Li2Fe0.25Ni0.75(SO4)2 cycled in a 

lithium half-cell. The graph on the right shows the corresponding derivative curve. 

Therefore, these preliminary results reveal no obvious change in the redox potential of the FeII+/FeIII+ 

redox couple when moving from the monoclinic marinite structure to the orthorhombic one of the 

nickel compound. This is certainly explained by the fact that these two structures do not show very 

important differences in terms of topology and the connectivity between the atoms (contrary to the 

tavorite and triplite structures adopted by LiFeSO4F for instance; see Chapter I: 

I.2.3.6.1 Lithium-based fluorosulfates, from page 34). 

III.5 Conclusion 
In this chapter, we have presented a new family of sulfate compounds having the general formula 

Li2M(SO4)2 (M = Co, Fe, Mn, Mg, Zn, Ni), from which only a couple of members had been briefly 

reported on previously. After having determined the monoclinic structure in which five of these 

phases crystallize, we have widely studied the electrochemical properties of the iron analogue. 

Indeed, despite a limited specific capacity (~85 mAh/g) which prevents its consideration for 

commercial applications, Li2Fe(SO4)2 is a very attractive electrode material from a theoretical point of 

view as it demonstrates a high-operating voltage of 3.83 V vs. Li+/Li0. This potential is in fact the 

highest potential ever reported for the FeIII+/FeII+ redox couple in a fluorine-free inorganic compound, 

and is only exceeded by the triplite polymorph of LiFeSO4F (3.9 V vs. Li+/Li0).  

Besides the attractive electrochemical properties offered by the iron compound, we have also seen 

that the Li2M(SO4)2 series shows an interesting polymorphism, which seems to be nested in the size 

of the transition metal cations (i.e. a monoclinic structure for M = Co, Fe, Mn, Mg, Zn and an 

orthorhombic one for M = Zn, Ni). Priminary tests showed that the FeIII+/FeII+ redox couple stabilized 

in the orthorhombic structure would also present a potential at around 3.8 V vs. Li+/Li0. This is not 

totally surprising since the monoclinic marinite and the orthorhombic structures are not drastically 
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different and both present MO6 octahedra solely interconnected via SO4 tetrahedra; similar redox 

potentials have been equally obtained for instance with NASICON and anti-NASICON Fe2(SO4)3 (3.6 V 

vs. Li+/Li0, [222–224]) or with tavorite and sillimanite-like LiFeSO4F (3.6 V vs. Li+/Li0, [321,332]), in 

both cases the two polymophs present similar structural arrangements (see Chapter I: Figure I.12 

page 22 and Figure I.28 page 36, respectively).  

Finally, the two peculiar 3D frameworks of MO6 octahedra and SO4 tetrahedra adopted by these 

Li2M(SO4)2 phases also make them materials of interest for physical studies, and in particular for 

magnetism as this will be presented in the next chapter.  

 

 

 





   

Chapter IV. Magnetic study of the Li2M(SO4)2 compounds 

(M = Co, Fe, Mn, Ni) 

IV.1 Introduction 
Being based on 3d transition metals, new materials initially designed for battery electrodes are often 

of interest for magnetic studies. In fact, here electrochemistry can be seen as a tool to synthesize 

new magnetic materials, with alkali insertion/deinsertion in host compounds permitting to tune the 

oxidation state of the transition metals while keeping their structural frameworks almost unchanged. 

Moreover, electrochemical routes can also provide metastable phases, as it has been exemplified for 

instance in the previous chapter with the case of Li1Fe(SO4)2 (see Chapter I: § III.3.5 page 84). 

Beside being interesting from a fundamental point of view, magnetic studies are also of importance 

for the battery research field, as magnetic structures (experimental ones, or in the absence of, 

calculated ones) are part of theoretical calculations (e.g. DFT) for electrode modelisation 

[312,439,440,454–458], with in the long term, the goal of being able to design new candidate 

materials (e.g. establish a material genome [351–354]) for the next generations of batteries. 

Similarly to the potential values of their redox centers, the magnetic properties of polyanionic 

materials are governed by the way the 3d orbitals of the transition metals overlap with the 2p 

orbitals of the oxygen atoms (i.e. the iono-covalency of the M‒O bond). The magnetic interactions 

within these structures are generally of two types (Figure IV.1.a): (i) super-exchange interactions, 

which involve two metals cations connected via a single oxygen atom (M‒O‒M), and 

(ii) super-super-exchange interactions, in which two transition metals are linked via two oxygen 

atoms pertaining to a polyanion group (M‒O‒O‒M). The M‒M magnetic couplings implied in these 

two kinds of interactions are described by the semi-empirical rules of 

Goodenough-Kanamori-Anderson [459–464], which are shown in Figure IV.1.b in the case of 180° 

super-exchange interactions. Note that these rules have originally been established for 

super-exchange interactions, but that they also apply for super-super-exchange interactions, 

although the magnitude of the coupling between the two transition metals is reduced in that case 

[464]. 
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Figure IV.1: (a) Schematic topology of super-exchange and super-super-exchange interactions between two 
transition metal atoms M (shown as red balls). The bold black segments show the interaction paths. Orange 

balls represent oxygen atoms and the blue tetrahedron is a polyanion group such as PO4, SO4, or AsO4. 
(b) Goodenough-Kanamori-Anderson rules for 180° super-exchange interactions (from [463]). 

(c) Electronic configurations of the five transition-metal cations involved in the Li2M(SO4)2 compounds that are 
studied in this chapter. Note that all of them correspond to case n°1 (“A” cations with a half-filled eg orbitals) of 

the Goodenough-Kanamori-Anderson rules as described in (b). 

As previously discussed in this thesis, polyanionic compounds provide a great variety of structures 

and chemistries. They offer thus the possibility of comparing the effect on their magnetic properties 

when changing the nature of the transition metal (e.g. Mn, Fe, Co, Ni), modifying the polyanion 

group (e.g. SO4, PO4, BO3, AsO4), or having different connectivity paths between the magnetic atoms. 

Here we can mention several works which compare the magnetism of different 3d metals within 

isostructural sulfate-based compounds, in which both M‒O‒M super-exchange interactions and 

M‒O‒O‒M super-super-exchange interactions are likely to occur; they include for example the 

antiferromagnetic anhydrous metal sulfates MSO4 (M = Fe, Ni, Co) [465], the antiferromagnetic 

fluorosulfates AMSO4F (A = Li, Na and M = Fe, Co) [466–468], the ferrimagnetic hydroxysulfates 

M3(OH)2(SO4)2(H2O)2 (M = Co, Mn, Ni) [469–471], or also the jarosite phases AM3(SO4)2(OH)6 (A = Na, 

K, Ag, Rb, H, NH4, etc. and M = Fe, Cr, V) whose Kagomé lattice leads to strong frustration and exotic 

magnetic structures [472–474]. 

Conversely to the compounds cited above, and as seen in the previous chapter, both the 

orthorhombic structure of Li2Ni(SO4)2 and the marinite monoclinic structure of LixM(SO4)2 (x = 1, 2 

and M = Co, Fe, Mn) present peculiar arrangements of MO6 octahedra that are only interconnected 
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through SO4 tetrahedra (Figure IV.2), which thereby, solely enable super-super-exchange interactions 

between the 3d metal cations. In fact, only few iron-based materials present such singular structures 

in which interactions between magnetic atoms are only possible via M-O-O-M pathways. Among 

these few examples we should cite FePO4 [475], Fe2(SO4)3 [476,477], Fe2(MoO4)3 [478], Li3Fe2(PO4)3 

[479,480], LiFeP2O7 [481] and AFe(SO4)2 (A = K, Cs, Rb) [482,483]; the first ones lead to 

antiferromagnetic long-range ordering [475–481], whereas the last ones present more complex 

magnetic structures (e.g. helical) due to spin-frustation [482,483]. 

 
Figure IV.2: Representations of the crystal structures of (a) the monoclinic marinite Li2M(SO4)2 phases  

(M = Fe, Co, Mn) and (b) the orthorhombic Li2Ni(SO4)2 analogue. 

In this context, we present in this chapter the results of our magnetic studies of the four marinite 

compounds Li2FeII(SO4)2, Li1FeIII(SO4)2, Li2MnII(SO4)2 and Li2CoII(SO4)2 and the orthorhombic phase 

Li2NiII(SO4)2, which were all found to order antiferromagnetically at low temperature [442,484]. We 

also provide models for their ground-state magnetic structures, which were determined from 

neutron powder diffraction, and we propose an estimation for the relative strengths of the 

super-super-exchange interaction occurring in these compounds. 
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IV.2 Marinites Li2M(SO4)2 (M = Co, Fe, Mn) and Li1Fe(SO4)2 

IV.2.1 Magnetic properties 

The macroscopic magnetic properties of the marinite compounds LixM(SO4)2 (x = 2, 1 & M = CoII+, 

FeII+, MnII+, FeIII+) were determined with a SQUID magnetometer (cf. Annexes: § A.4.7 Magnetic 

measurements, page 170) in both zero-field cooled (ZFC) and field cooled (FC) conditions under an 

applied magnetic field of 10 kOe [442]. The curves of the temperature dependence of the ZFC 

magnetic susceptibilities ( = f(T)) are shown in the main panel of Figure IV.3. All compounds show 

cusps of a long-range antiferromagnetic ordering, which occurs at a Néel temperature (TN) around 

7 K for Li2CoII(SO4)2, 6 K for Li2MnII(SO4)2, 4 K for Li2FeII(SO4)2 and 35 K for Li1FeIII(SO4)2. 

The drastic increase observed in the TN between the Fe(II+) and the Fe(III+) phase is not a surprise as 

it has already been reported for other systems upon lithium removal (e.g. tavorite (Li)FeSO4F [466], 

olivine (Li)FePO4 [237]). It is due to the fact that d5‒d5 interactions are stronger than d6‒d6 ones 

owing to a greater σ character of the Fe‒O bond and a shortening of the Fe‒Fe distance. The 

ordering temperature for the Li2M
II(SO4)2 phases (M = Co, Fe, Mn) are nearly the same (within ± 3 K), 

despite the different electronic configurations of divalent CoII+, FeII+ and MnII+ cations, in agreement 

with the fact that magnetic interactions are dominated by super-super-exchange interactions. 

Otherwise, one would have expected the TN to be higher for MnII+ and decrease as spins are added to 

the t2g orbitals, as it has been observed for the LiMSO4F series, in which magnetism is governed by 

super-exchange interactions [466]. 

The high temperature region (200 to 300 K) of the inverse susceptibility was then fitted to the 

Curie-Weiss equation (Figure IV.4.), in order to check the spin-state of the metal cations and examine 

the relative strength of the antiferromagnetic interactions. The Curie-Weiss law is given by: 

    
 

     
  Eq. IV.1 

which can be transformed into the linear equation: 

 
 

 
  

 

 
   

   

 
 Eq. IV.2 

and where  is the magnetic susceptibility, T is the temperature, θCW is the Curie-Weiss temperature 

and and C the Curie constant. 
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Figure IV.3: Temperature dependence of the magnetic susceptibility χ of the marinite compounds LixM(SO4)2 

(x = 2, 1 & M = Co
II+

, Fe
II+

, Mn
II+

, Fe
III+

), measured in ZFC conditions with a field of 10 kOe between 300 K and 2 K. 
Purple triangles, green squares, orange crosses and blue circles are assigned to Li2Co

II
(SO4)2, Li2Mn

II
(SO4)2, 

Li1Fe
III

(SO4)2 and Li2Fe
II
(SO4)2, respectively. Insets show enlargement of the ZFC (dark colors) and FC (light 

colors) magnetization curves at low temperatures. For Li2Co
II
(SO4)2, only the 10-kOe ZFC curve is shown (purple 

triangles) and compared to the ZFC (dark pink) and FC (light pink) curves measured with a field of 100 Oe. 

 
Figure IV.4: Evolution of the inverse of the ZFC magnetic susceptibility 1/χ of the marinite compounds 

LixM(SO4)2 (x = 2, 1 & M = Co
II+

, Fe
II+

, Mn
II+

, Fe
III+

) as a function of the temperature. Experimental curves are 
fitted with the ideal Curie-Weiss law in the temperature range 200 K ≤ T ≤ 300 K (dashed lines). 
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From these fittings, we deduced the Curie-Weiss θCW temperatures of the marinite phases to be 

around −30 K, −8 K, −23 K and −71 K, for Li2CoII(SO4)2, Li2MnII(SO4)2, Li2FeII(SO4)2 and Li1FeIII(SO4)2, 

respectively (Table IV.1). We could calculate from these values the frustration parameter 

f = |θCW|/TN [485,486], which indicated a small degree of frustration in the magnetic structure of the 

four compounds (f < 6), although being slightly more important for Li2CoII(SO4)2 (d7, f = 4.29) and 

Li2FeII(SO4)2 (d
6, f = 5.75) than for the other two marinite phases based on a d5 transition metals (MnII+ 

and FeIII+, f = 1.33 and 2.03, respectively). 

Table IV.1: Magnetic parameters of the marinite compounds LixM(SO4)2 (x = 2, 1 & M = Co
II+

, Fe
II+

, Mn
II+

, Fe
III+

) 
deduced from magnetic measurements, and compared to some expected theoretical values. 

  Li2Co
II
(SO4)2 Li2Mn

II
(SO4)2 Li2Fe

II
(SO4)2 Li1Fe

III
(SO4)2 

Electronic configuration 
d

7
: t2g

5
eg

2
 d

5
: t2g

3
eg

2
 d

6
: t2g

4
eg

2
 d

5
: t2g

3
eg

2
 

S = 3/2, L = 3 S = 5/2, L = 0 S = 2, L = 2 S = 5/2, L = 0 

Experimental values deduced from magnetic measurements (H = 10 kOe) 

Néel temperature  TN 7 K 6 K 4 K 35 K 

Curie-Weiss temperature  θCW −30 K −8 K −23 K −71 K 

Frustration parameter  f = |θCW|/TN 4.29 1.33 5.75 2.03 

Curie Constant  C  (emu.K.mol
-1

) 3.7 4.3 4.1 4.3 

Effective moment  µeff 5.4 µB 5.9 µB 5.7 µB 5.8 µB 

Expected theoretical values 

Effective 
moment µeff 

µeff(J) = g·J (J(J+1))
½
 6.6 µB 5.9 µB 6.7 µB 5.9 µB 

µeff(S,L) = (4S(S+1)+L(L+1))
½
 5.2 µB 5.9 µB 5.5 µB 5.9 µB 

µeff(S) = 2·(S(S+1))
½
 3.9 µB 5.9 µB 4.9 µB 5.9 µB 

 

From the Curie constant (C) deduced from the 1/ = f(T) fittings (Eq. IV.2 and Table IV.1), we 

calculated the effective moments (            ) to be 5.4 µB, 5.9 µB, 5.7 µB and 5.8 µB for 

Li2CoII(SO4)2, Li2MnII(SO4)2, Li2FeII(SO4)2 and Li1FeIII(SO4)2, respectively. These experimental values were 

then compared to theoretical models to probe the electronic configuration of the four cations CoII+, 

MnII+, FeII+ and FeIII+. 

Usually, the value of the effective moment of a given cation can be calculated using the following 

formula: 

                     Eq. IV.3 

where gJ is the Landé gyromagnetic factor and J is the total angular momentum (the sum of the spin 

angular momentum S and the orbital angular momentum L). However, the effective moment is often 

affected by the crystal field and thus differs from the expected value for the free ion. Two models are 

actually used to account for this phenomenon: 
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(i) the orbital moment L may be fully decoupled from the spin contribution S (i.e. the spin-orbit 

coupling L·S is null), thus leading to an effective moment given by the equation: 

                            Eq. IV.4 

(ii) the orbital contribution L may be completely quenched and the system would then present a 

spin-only effective moment, which is calculated from the formula: 

                   Eq. IV.5 

 (or             , where n is the number of unpaired electrons)  

The values of the effective moment expected in these three cases are reported in Table IV.1 for the 

four marinite compounds LixM(SO4)2. They show that the experimental effective moments µeff 

deduced from the magnetic measurements of Li2CoII(SO4)2 and Li2FeII(SO4)2 are consistent with the 

expected effective moment of a single 3d metal cation in a high-spin octahedral environment with an 

unquenched orbital moment which is fully decoupled from the spin contribution (Eq. IV.4). However 

one should note that the case of CoII is always pretty tricky, as high-spin CoII compounds are known 

to exhibit significant spin-orbit coupling, and we cannot completely rule out such a possibility 

without EPR experiments or magnetization measurements on single crystals. In the case of 

Li2MnII(SO4)2 and Li1FeIII(SO4)2, the orbital moment is null (L=0) and the experimental values for the 

effective moment are in good agreement with a spin-only effective moment calculated for a d5 

transition metal (Eq. IV.5).  

As for the low-temperature region, the insets of Figure IV.3 (page 119) show enlargements of the 

magnetization curves of the four marinite compounds measured in ZFC and FC conditions under a 

field of 10 kOe, as well as the ZFC and FC curves for the cobalt-based sample under 100 Oe. 

Li2MnII(SO4)2 and Li2FeII(SO4)2 present a typical antiferromagnetic behavior, with the ZFC and FC 

curves which superimpose well. Concerning LiFeIII(SO4)2, the ZFC and FC curves deviate below TN, 

which may result from either a ferromagnetic impurity or some ferro/ferrimagnetic contributions. A 

similar behavior is observed for Li2CoII(SO4)2, with in addition here a non-linearity of the moment 

versus the applied field, as the curves recorded under a field of 100 Oe lead to magnetization larger 

than expected from the value obtained at 10 kOe. 

To test this point, we recorded the magnetization curves at 2 K for the four samples (Figure IV.5). The 

magnetization curve of Li2CoII(SO4)2 clearly shows a hysteresis loop, which indicates a 

weak-ferromagnetic behavior with a remnant magnetization (Mr) of 0.12 µB and a coercive field (Hc) 

of 6.5 kOe. This can explain the discrepancy between the ZFC and FC curves previously mentioned. 

Close inspection of the data for Li2MnII(SO4)2 and Li1FeIII(SO4)2 also reveals a tiny 
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weak-ferromagnetism, with a remnant magnetization is around 0.02 µB for the two compounds. 

Conversely, the absence of any hysteresis loop on the magnetization curve of Li2FeII(SO4)2 confirms a 

pure antiferromagnetic ground state that is consistent with the ZFC/FC curves which neatly 

superimpose. 

Switching to higher fields, the evolution of the magnetization of Li1FeIII(SO4)2 is linear with the applied 

field, while an interesting feature is observed for Li2FeII(SO4)2 and Li2CoII(SO4)2. In fact, the 

magnetization curve of Li2CoII(SO4)2 presents an inflexion point around 45 kOe (better seen in the 

derivative curve in Figure IV.5), which may suggest a metamagnetic behavior; this point should 

however be confirmed by higher field measurements to check the feasibility of saturating the 

magnetization, and single crystal experiments would also help to confirm this. A similar inflexion 

point can be seen for the FeII-based compound, but the field at which it occurs is much lower (about 

10 kOe); therefore this could result from a canted magnetic structure that becomes collinear under 

the effect of the magnetic field. To figure this out, we embarked into a neutron powder diffraction 

study to determine the magnetic structures of each counterpart. 

 

Figure IV.5: Magnetization curves of Li2Co
II
(SO4)2 (purple), Li2Mn

II
(SO4)2 (green), Li1Fe

III
(SO4)2 (orange) and 

Li2Fe
II
(SO4)2 (blue) as a function of the applied field measured at 2 K. Derivative curves are displayed in the 

lower part of each diagram.  
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IV.2.2 Magnetic structures 

Neutron powder diffraction (NPD) measurements were performed on the four title compounds on 

the D20 diffractometer of the Institut Laue-Langevin (ILL, Grenoble, France; cf. Annexes: 

§ A.3.3.2 D20 diffractometer at ILL, page 165). With high resolution at low 2θ angles, the D20 

diffractometer is in fact an instrument of choice for magnetic structure determination. NPD patterns 

of the Li2CoII(SO4)2 and Li2FeII(SO4)2 samples were acquired in a high-flux configuration using a 

λ = 2.418 Å wavelength, while the Li2MnII(SO4)2 and Li1FeIII(SO4)2 phases were measured in a 

high-resolution mode at two different wavelengths: λ = 1.543 Å and λ = 2.416 Å [442]. 

First of all, the Rietveld refinements of the NPD patterns acquired above the Néel temperatures of 

each compound confirmed the accuracy of the monoclinic marinite structure that we determined for 

these phases in the previous chapter. The results of these refinements are presented in Figure IV.6, 

and in Table IV.2 to Table IV.5. 

 

 
Figure IV.6: Refinements of the nuclear structures of (a) Li2Co(SO4)2 (λ = 2.418 Å), (b) Li2Mn(SO4)2 (λ = 1.543 Å), 

(c) Li1Fe(SO4)2 (λ = 1.543 Å) and (d) Li2Fe(SO4)2 (λ = 2.418 Å) from their NPD patterns measured above their 
respective Néel temperatures (i.e. 15 K, 15 K, 50 K and 10 K, respectively). 
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Table IV.2: Crystallographic data and atomic positions of Li2Co
II
(SO4)2 deduced from the Rietveld refinement of 

the D20 NPD data recorded for this compound at 15 K (i.e. above TN). 

Li2Co
II
(SO4)2 

Nuclear structure D20 diffractometer in high-flux mode, λ = 2.418 Å, T = 15 K 

P 21/c V = 299.162 (4) Å
3
 RBragg = 1.86 % χ

2
 = 76.7 

a = 4.9671 (6) Å b = 8.0908 (8) Å c = 8.7639 (9) Å β = 121.855 (6)° 

Atom 
Wyckoff 
position 

Occupancy x/a y/b z/c BVS 

Co 2a 1.0 0 0 0 1.94 (3) 

Li 4e 1.0 0.014 (8) 0.635 (4) 0.101 (6) 1.19 (6) 

S 4e 1.0 0.339 (6) 0.302 (4) 0.305 (3) 6.0 (3) 

O1 4e 1.0 0.181 (4) 0.4176 (14) 0.1507 (17) 2.07 (11) 

O2 4e 1.0 0.200 (3) 0.1342 (18) 0.2463 (14) 1.94 (12) 

O3 4e 1.0 0.286 (3) 0.3510 (11) 0.4465 (14) 2.06 (15) 

O4 4e 1.0 0.685 (3) 0.3018 (10) 0.3764 (15) 2.05 (12) 

 

Table IV.3: Crystallographic data and atomic positions of Li2Mn
II
(SO4)2 deduced from the Rietveld refinement of 

the D20 NPD data recorded for this compound at 15 K (i.e. above TN). 

Li2Mn
II
(SO4)2 

Nuclear structure D20 diffractometer in high-resolution mode, λ = 1.543 Å, T = 15 K 

P 21/c V = 312.91 (3) Å
3
 RBragg = 3.38 % χ

2
 = 16.4 

a = 4.9811 (3) Å b = 8.3140 (5) Å c = 8.8382 (5) Å β = 121.250 (3)° 

Atom 
Wyckoff 
position 

Occupancy x/a y/b z/c Biso (Å
2
) BVS 

Mn 2a 1.0 0 0 0 0.7 (3) 2.12 (18) 

Li 4e 1.0 0.018 (5) 0.630 (3) 0.104 (3) 0.9 (4) 1.09 (2) 

S 4e 1.0 0.329 (3) 0.3026 (16) 0.2975 (17) 0.4 (2) 5.97 (13) 

O1 4e 1.0 0.1756 (17) 0.4145 (8) 0.1497 (8) 0.58 (12) 2.13 (7) 

O2 4e 1.0 0.1928 (14) 0.1391 (8) 0.2449 (8) 0.51 (12) 2.00 (6) 

O3 4e 1.0 0.2886 (16) 0.3533 (8) 0.4448 (8) 0.73 (13) 2.00 (8) 

O4 4e 1.0 0.6711 (17) 0.2980 (8) 0.3630 (9) 0.63 (12) 1.99 (7) 
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Table IV.4: Crystallographic data and atomic positions of Li1Fe
III

(SO4)2 deduced from the Rietveld refinement of 
the D20 NPD data recorded for this compound at 50 K (i.e. above TN). 

Li1Fe
III

(SO4)2 

Nuclear structure D20 diffractometer in high resolution mode, λ = 1.543 Å, T = 50 K 

P 21/c V = 269.72 (3) Å
3
 RBragg = 2.67 % χ

2
 = 13.5 

a = 4.7974 (3) Å b = 8.3815 (6) Å c = 7.8956 (6) Å β = 121.835 (4)° 

Atom 
Wyckoff 
position 

Occupancy x/a y/b z/c Biso (Å
2
) BVS 

Fe 2a 1.0 0 0 0 0.31 (17) 2.93 (3) 

Li 4e 0.5 0.58 (14) 0.03 (9) 0.52 (12) 1.5 (1.5) 1.06 (14) 

S 4e 1.0 0.297 (5) 0.1797 (19) 0.759 (3) 0.1 (4) 6.14 (19) 

O1 4e 1.0 0.041 (2) 0.1296 (11) 0.7985 (12) 0.25 (19) 2.03 (12) 

O2 4e 1.0 0.260 (3) 0.1067 (12) 0.5871 (13) 0.30 (19) 2.09 (13) 

O3 4e 1.0 0.2876 (19) 0.3564 (11) 0.7391 (13) 0.36 (19) 2.07 (8) 

O4 4e 1.0 0.378 (2) 0.6428 (12) 0.5594 (14) 0.53 (19) 1.94 (7) 

 

Table IV.5: Crystallographic data and atomic positions of Li2Fe
II
(SO4)2 deduced from the Rietveld refinement of 

the D20 NPD data recorded for this compound at 10 K (i.e. above TN). 

Li2Fe
II
(SO4)2 

Nuclear structure D20 diffractometer in high flux mode, λ = 2.418 Å, T = 10 K 

P 21/c V = 305.3 (2) Å
3
 RBragg = 6.4 % χ

2
 = 87.4 

a = 4.9836 (19) Å b = 8.191 (4) Å c = 8.811 (3) Å β = 121.92 (3)° 

Atom 
Wyckoff 
position 

Occupancy x/a y/b z/c BVS 

Fe 2a 1.0 0 0 0 2.22 (6) 

Li 4e 1.0 0.020 (15) 0.645 (8) 0.102 (11) 1.11 (12) 

S 4e 1.0 0.344 (12) 0.293 (8) 0.315 (8) 5.8 (5) 

O1 4e 1.0 0.185 (8) 0.414 (3) 0.154 (4) 1.7 (2) 

O2 4e 1.0 0.194 (6) 0.138 (4) 0.242 (4) 2.2 (3) 

O3 4e 1.0 0.284 (5) 0.357 (3) 0.448 (4) 2.3 (4) 

O4 4e 1.0 0.688 (6) 0.302 (3) 0.378 (4) 1.9 (3) 
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Upon cooling the powder samples down to 2 K (Figure IV.7), we observed the growth of new peaks, 

which indicate a long-range ordering of the magnetic moments. These extra peaks are better 

observed when plotting the difference patterns (green lines in Figure IV.7) between a diagram 

recorded above TN (red patterns in Figure IV.7) and another one recorded below TN (blue patterns in 

Figure IV.7). Note that, at the opposite, the nuclear Bragg peaks show no changes, suggesting that 

the structures remain intact at the magnetic transition (i.e. no magneto-elastic effect is detected). 

 

 
Figure IV.7: Evolution of the neutron powder diffraction patterns of (a) Li2Co(SO4)2, (b) Li2Mn(SO4)2, 

(c) Li1Fe(SO4)2 and (d) Li2Fe(SO4)2 while cooling the samples down to 2 K (λ = 2.42 Å). Blue patterns are 
measured at 2 K while the red ones are measured at (a) 12 K, (b) 10 K, (c) 50 K, and (d) 7 K, respectively. Black 
patterns correspond to intermediate temperatures. The green lines represent the difference curves between 

the blue and the red patterns for each sample, and thus reveal the magnetic peaks arising from the long-range 
ordering of their magnetic moments. 
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High-quality NPD patterns were then recorded at 1.85 K, and we embarked in the determination of 

the magnetic structure of each compound. We found that the magnetic reflections observed for 

Li2CoII(SO4)2, Li2MnII(SO4)2 and Li1FeIII(SO4)2 could be indexed in the same unit cell as its nuclear 

structure. The propagation vector is the gamma-point of the Brillouin zone: k = (0, 0, 0). A symmetry 

analysis was then performed using Bertaut’s method [487], as implemented in the program BasIReps 

of the FullProf suite of software [384,443], in order to determine all the possible spin configurations 

compatible with the crystal symmetry of the nuclear structure. The results of this analysis are 

summed up in Table IV.6. Two irreducible representations were found to be associated with the 2a 

Wyckoff site (0, 0, 0) occupied by the 3d metals: Γmagnetic = 3 Γ1 + 3 Γ3. These representations are built 

with three basis vectors Ψ1, Ψ2, and Ψ3, which are collinear to the a, b and c–axes of the unit cell, 

respectively. In the Γ1 representation, the magnetic moments of the two metal atoms which are 

non-related by lattice translations (labeled M1 in (0, 0, 0) and M2 in (0, ½, ½)) are constrained to be of 

the form (u, v, w) and (−u, v, −w) for M1 and for M2, respectively. In the Γ3 representation, the 

directions of the magnetic moments of the M1 and M2 atoms become of the form (u, v, w) and 

(u, −v, w), respectively. For the three phases Li2CoII(SO4)2, Li2MnII(SO4)2 and Li1FeIII(SO4)2, we tested all 

the possibilities given by these two irreducible representations against the NPD patterns recorded 

at 2 K. 

 

Table IV.6: Results of the symmetry analysis of the P21/c unit cell for the propagation vector k = (0, 0, 0). The 
basis vectors Ψi (i = 1, 2, 3) of the two general positions M1 (x, y, z) and M2 (−x, y+½, −z+½) are given for each 
irreducible representation Γj (j = 1, 3). 

k = (0, 0, 0) 

Γ1 x, y, z −x, y+½, −z+½ 

Ψ1 1 0 0 -1 0 0 

Ψ2 0 1 0 0 1 0 

Ψ3 0 0 1 0 0 -1 

Γ3 x, y, z −x, y+½, −z+½ 

Ψ1 1 0 0 1 0 0 

Ψ2 0 1 0 0 -1 0 

Ψ3 0 0 1 0 0 1 
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First, we found that the best solution to simulate the magnetic reflections of the NPD pattern of 

Li2CoII(SO4)2 was when the magnetic moments were aligned antiferromagnetically along the b-axis, as 

allowed by the Γ3 representation. The symmetry also permitted to add a weak ferromagnetic 

component in the (ac) plane, in agreement with the SQUID measurements, and without altering the 

quality of the refinement; however, due to the weakness of these ferromagnetic components, they 

could not be refined from NPD data and they were then fixed along the a-axis (arbitrarily) to the 

value of 0.12 µB, as deduced from the magnetization measurements (see page 121). The results of 

the refinement are shown in Figure IV.8.a and in Table IV.7. The refined value of the magnetic 

moment of the cobalt is then 3.33(7) µB. The magnetic structure of Li2CoII(SO4)2 is illustrated in 

Figure IV.9.a. It shows the alternate orientations (+ −) of the moments along the [011] direction, 

while the sequence of the moments is (+ +) along the [100] and the [001] directions.  

Unlike the cobalt phase, the best agreements with the magnetic reflections observed for 

Li2MnII(SO4)2 and Li1FeIII(SO4)2 were obtained using the irreducible representation Γ1. For the 

manganese analogue, a magnetic moment aligned along the a-axis provided a rather good fit of the 

magnetic reflections (hypothesis Mn-H1 in Figure IV.8.b). However, adding a small antiferromagnetic 

component along the c-axis improved the fit of the (1 0 1) and (-1 0 3) reflections (2θ = 46° and 48.5°, 

respectively) as shown in the panel Mn-H2 of Figure IV.8.b. The value of the total magnetic moment 

was then refined to 4.1(2) µB. Regarding Li1FeIII(SO4)2, we determined its moments to be aligned along 

the c-axis, with a magnitude of 4.33(12) µB. Note that a small peak at 2θ = 18.5° remains unindexed 

and may be attributed to an inhomogeneity of the sample or to a magnetic impurity (Figure IV.8.c). 

Finally, as SQUID measurements suggested a tiny weak-ferromagnetic behavior for both Li2MnII(SO4)2 

and Li1FeIII(SO4)2, a small component of 0.02 µB along the b-axis could be added to their magnetic 

moments without any significant change on the refinement of the NPD data. The results of the 

refinements relative to the Li2MnII(SO4)2 and Li1FeIII(SO4)2 compounds are given in Table IV.8 and 

Table IV.9, and are illustrated in Figure IV.8.b and c, and Figure IV.9.b and c, respectively. As the 

propagation vector of Li2MnII(SO4)2 and Li1FeIII(SO4)2 is the same as the one of Li2CoII(SO4)2 

(k = (0, 0, 0)), the spin sequence remains identical in the three compounds: (+ −) along [011] and (+ +) 

along the a-, b- and c-axes; the only difference lies in the orientation of the moments as discussed 

above. 
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Table IV.7: Magnetic structure of Li2Co
II
(SO4)2 determined from the Rietveld refinement of the D20 NPD data 

obtained at 1.85 K (i.e. below TN). 

Li2Co
II
(SO4)2 

Nuclear structure D20 diffractometer in high-flux mode, λ = 2.418 Å, T = 1.85 K 

P 21/c V = 299.22 (4) Å
3
 RBragg = 3.42 % χ

2
 = 107 

a = 4.9675 (6) Å b = 8.0912 (8) Å c = 8.7646 (9) Å β = 121.855 (6)° 

Magnetic structure D20 diffractometer in high-flux mode, λ = 2.418 Å, T = 1.85 K 

k = (0, 0,0) Γ3    

Atom Mx/a (µB) My/b (µB) Mz/c (µB) Mtot (µB) 

Co (0, 0, 0) 0.12 3.33(7) 0 3.33(7) 

Co (0, ½, ½) 0.12 -3.33(7) 0 3.33(7) 

 

Table IV.8: Magnetic structure of Li2Mn
II
(SO4)2 determined from the Rietveld refinement of the D20 NPD data 

obtained at 1.85 K (i.e. below TN). 

Li2Mn
II
(SO4)2 

Nuclear structure D20 diffractometer in high-resolution mode, λ = 1.543 Å, T = 1.85 K 

P 21/c V = 313.76 (3) Å
3
 RBragg = 2.84 % χ

2
 = 16.7 

a = 4.9857 (3) Å b = 8.3211 (4) Å c = 8.8462 (5) Å β = 121.248 (3)° 

Magnetic structure D20 diffractometer in high-resolution mode, λ = 2.416 Å, T = 1.85 K 

k = (0, 0, 0) Γ1    

Atom Mx/a (µB) My/b (µB) Mz/c (µB) Mtot (µB) 

Mn (0, 0, 0) 4.0(2) 0.02 -1.0(4) 4.1(2) 

Mn (0, ½, ½) -4.0(2) 0.02 1.0(4) 4.1(2) 

 

Table IV.9: Magnetic structure of Li1Fe
III

(SO4)2 determined from the Rietveld refinement of the D20 NPD data 
obtained at 1.85 K (i.e. below TN). 

Li1Fe
III

(SO4)2 

Nuclear structure D20 diffractometer in high resolution mode, λ = 1.543 Å, T = 1.85 K 

P 21/c V = 269.74 (4) Å
3
 RBragg = 3.84 % χ

2
 = 21.8 

a = 4.7972 (4) Å b = 8.3808 (8) Å c = 7.8943 (7) Å β = 121.801 (5)° 

Magnetic structure D20 diffractometer in high resolution mode, λ = 2.416 Å, T = 1.85 K 

k = (0, 0, 0) Γ1    

Atom Mx/a (µB) My/b (µB) Mz/c (µB) Mtot (µB) 

Fe (0, 0, 0) 0 0.02 4.33(12) 4.33(12) 

Fe (0, ½, ½) 0 0.02 -4.33(12) 4.33(12) 
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Figure IV.8: Refinements of the nuclear and magnetic parts of the NPD patterns measured at 1.85K for 
(a) Li2Co(SO4)2 (λ = 2.418 Å), (b) Li2Mn(SO4)2 (λ = 2.416 Å), (c) Li1Fe(SO4)2 (λ = 2.416 Å) and (d) Li2Fe(SO4)2 

(λ = 2.418 Å). For each phase, the first line of blue sticks corresponds to the Bragg positions of the nuclear part 
while the second line of blue sticks shows the positions of the expected reflections of the magnetic part. The 

boxes H1 and H2 on the right of the diagrams (b) and (d) highlight the difference of fitting of the patterns 
depending on the model chosen as described in the text. 

 

 
Figure IV.9: Nuclear and magnetic structures of (a) Li2Co

II
(SO4)2, (b) Li2Mn

II
(SO4)2, (c) Li1Fe

III
(SO4)2 and 

(d) Li2Fe(SO4)2. Magnetic moments are represented by a vector through the 3d metal atoms. Yellow vectors 
stand for positive moments, while the orange ones stand for negative moments. For clarity, Li atoms are 

omitted. 

  



Chapter IV. Magnetic study of the Li2M(SO4)2 compounds (M = Co, Fe, Mn, Ni) 

  131 

The same procedure was employed for the determination of the magnetic structure of Li2FeII(SO4)2. 

However, although it crystallizes in the same crystal structure as the previous compounds, its 

magnetic reflections could not be indexed in the nuclear unit cell. Therefore, in this case the 

propagation vector k was not (0, 0, 0) as for the other marinite compounds but it was found to be 

(½, 0, 0), which results in a magnetic unit cell 2a  b  c, where a, b and c are the unit cell parameters 

of the nuclear structure. A symmetry analysis was then performed for k = (½, 0, 0), and led to the two 

irreducible representations Γ1 and Γ3, as described in Table IV.10. The representation Γ1, with the 

basis vectors {(1, 0, 0), (0, 1, 0), (0, 0, 1)} for Fe1 and {(-1, 0, 0), (0, 1, 0), (0, 0, -1)} for Fe2, was found 

to give the best agreement with the observed magnetic peaks. A first magnetic model was 

determined with all the magnetic moments being aligned along the a-axis. However the refinement 

of this model did not result in a good fitting of all the magnetic peaks, as the intensity of the first 

satellite reflection at 2θ = 16.4° was not reproduced by this model (see hypothesis Fe-H1 in 

Figure IV.8.d). Adding a magnetic component along the b-axis was finally found to fit well the 

neutron data, leading to a non-collinear magnetic structure (panel Fe-H2 in Figure IV.8.d). The 

refined value of the magnetic moment of the iron is then 3.2(4) µB. The results of the refinement are 

summarized in Table IV.11, and are displayed in Figure IV.8.d and Figure IV.9.d. Thus, the 

propagation vector k = (½, 0, 0) for Li2FeII(SO4)2 results in a different spin sequence from the ones 

observed for the other marinite LixM(SO4)2 compounds. In Li2FeII(SO4)2, the spin sequence is (+ −) 

along [011] and [100], and (+ +) along the b- and c-axes. Moreover, the spins direction presents both 

a component along the a-axis and another component along the b-axis, so that the magnetic 

moments are not collinear. Therefore, we can retrospectively try to interpret the inflexion point at 

10 kOe observed in the magnetization curve of Li2FeII(SO4)2 (Figure IV.5, page 122): it is likely that this 

field is strong enough to align the magnetic moments and the magnetic structure becomes collinear 

at higher field. 

Table IV.10: Results of the symmetry analysis of the P21/c unit cell for the propagation vector k = (½, 0, 0). The 
basis vectors Ψi (i = 1, 2, 3) of the two general positions M1 (x, y, z) and M2 (−x, y+½, −z+½) are given for each 
irreducible representation Γj (j = 1, 3). 

k = (½, 0, 0) 

Γ1 x, y, z −x, y+½, −z+½ 

Ψ1 1 0 0 -1 0 0 

Ψ2 0 1 0 0 1 0 

Ψ3 0 0 1 0 0 -1 

Γ3 x, y, z −x, y+½, −z+½ 

Ψ1 1 0 0 1 0 0 

Ψ2 0 1 0 0 -1 0 

Ψ3 0 0 1 0 0 1 
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Table IV.11: Magnetic structure of Li2Fe
II
(SO4)2 determined from the Rietveld refinement of the D20 NPD data 

obtained at 1.85 K (i.e. below TN). 

Li2Fe
II
(SO4)2 

Nuclear structure D20 diffractometer in high flux mode, λ = 2.418 Å, T = 1.85 K 

P 21/c V = 305.4 (3) Å
3
 RBragg = 14.4 % χ

2
 = 124 

a = 4.984 (3) Å b = 8.190 (5) Å c = 8.813 (5) Å β = 121.91 (3)° 

Magnetic structure D20 diffractometer in high flux mode, λ = 2.418 Å, T = 1.85 K 

k = (½, 0, 0) Γ1    

Atom Mx/a (µB) My/b (µB) Mz/c (µB) Mtot (µB) 

Fe (0, 0, 0) 2.97(18) 1.3(3) 0 3.2(4) 

Fe (0, ½, ½) -2.97(18) 1.3(3) 0 3.2(4) 

 

Overall, Table IV.12 summarizes the values of the magnetic moments obtained from the refinements 

of the magnetic structures of the four marinite compounds studied here. This table shows that the 

magnetic moments refined for the manganese and the two iron phases are below the expected 

spin-only value (mth = g·S = 5 µB and 4 µB for the d5 and d6 ions, respectively). The reduction of the 

magnetic moment may be due to one (or more) of the following reasons: (i) the moments are not 

fully saturated at 1.85 K as these compounds present relatively low Néel temperatures, (ii)  zero-

point fluctuations of the antiferromagnetic ground state. Conversely, the experimental magnetic 

moment for the cobalt compound (CoII+: d7) is slightly larger than the theoretical value of 3 µB, which 

indicates a small contribution of the orbital moment, as often observed for CoII+ [467,468]. 

 

Table IV.12: Magnetic parameters of the marinite compounds LixM(SO4)2 (x = 2, 1 & M = Co
II+

, Fe
II+

, Mn
II+

, Fe
III+

) 
deduced from neutron diffraction measurements, compared to some expected theoretical values.  

  Li2Co
II
(SO4)2 Li2Mn

II
(SO4)2 Li2Fe

II
(SO4)2 Li1Fe

III
(SO4)2 

Electronic configuration 
d

7
: t2g

5
eg

2
 d

5
: t2g

3
eg

2
 d

6
: t2g

4
eg

2
 d

5
: t2g

3
eg

2
 

S = 3/2, L = 3 S = 5/2, L = 0 S = 2, L = 2 S = 5/2, L = 0 

Experimental values deduced from neutron diffraction 

Néel temperature  TN 8 K 6 K 5 K 39 K 

Magnetic moment at 1.85 K 3.3 µB 4.1 µB 3.2 µB 4.3 µB 

Expected theoretical values 

Magnetic moment  m = g·S 3 µB 5 µB 4 µB 5 µB 
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Finally, neutron diffraction patterns were recorded for each sample at small intervals of temperature 

from 2 K until the magnetic peaks vanished. Sequential refinements against these data were 

performed using the FullProf program [384,443] in order to follow the evolution of the magnitude of 

the magnetic moment with the temperature. The results of these refinements are presented in 

Figure IV.10. The Néel temperatures deduced from these measurements (Table IV.12) are in good 

agreement with the ones obtained from the SQUID data (Table IV.1, page 120).  

 
Figure IV.10: Temperature dependence of the moment value deduced from the sequential refinement of the 
magnetic structures against the D20 neutron powder diffraction data between 2 K and 50 K for the marinite 

compounds Li2Co
II
(SO4)2 (purple), Li2Mn

II
(SO4)2 (green), Li1Fe

III
(SO4)2 (orange) and Li2Fe

II
(SO4)2 (blue). 

IV.2.3 Analysis of the exchange paths of the marinite compounds 

To understand why Li2Fe(SO4)2 (FeII+: d6) presents a magnetic structure whose spin sequence is 

completely different from the other three marinite LixM(SO4)2 compounds (M = FeIII+, MnII+, CoII+ and 

x = 1, 2), we have performed an analysis of the topology of the super-super-exchange interactions 

which govern the nature of the long-range magnetic ordering.  

Inspection of the NPD patterns as a function of the temperature showed that whatever the transition 

metal, no additional magnetic reflections develop below the onset of long-range order, so that the 

magnetic structures that we determined in the previous section can be seen as the ground states. An 

analysis of the relative strengths and signs of the different super-super-exchange interactions that 

are required to produce the observed magnetic structure was performed by using the two programs 

SIMBO and ENERMAG [488], which are delivered with the FullProf suite [384,443]. These programs 

are described in details by Khayati et al. in reference [489]. We followed here a procedure which was 

successfully applied to other iron phosphates and sulfates [237,466,467,480,481]. 

Three interactions Jn (n = 1, 2, 3) are to be considered between the transition metal atoms in the 

marinite structure (Figure IV.11). J1 is the shortest one (less than 5Å for the MM direct distance), 

and links two transition metals (M) along [100] via two SO4 tetrahedra, so that J1 has a double 

exchange path. J2 and J3 link two M atoms via a single SO4 tetrahedron, the former along [211] and 
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the latter along [011]. J2 and J3 both show more linear MOOM configurations than J1 and 

therefore their MM direct distances are between 6.0 and 6.2 Å, respectively. The geometric 

characteristics of these three exchange paths are reported for each compound in Table IV.13, and 

the topology of these exchange paths within the monoclinic marinite unit cell is shown Figure IV.12. 

Here, it appears clearly that J1, J2 and J3 form triangular networks which may lead to frustration, if 

being of the same sign and strength. Therefore, we embarked in a study of their relative values, so as 

to obtain the observed magnetic structures as the ground state. Note that our analysis only deals 

with the spin sequence of the magnetic moments carried by the transition metal atoms; it does not 

consider their spatial orientation. This is a consequence of the fact that this analysis neglects the 

magnetocrystalline anisotropy which may play a role in these compounds, mostly for the cases in 

which L0. 

 
Figure IV.11: Geometrical characteristics of the three super-super-exchange paths J1, J2 and J3. 

 

 
Figure IV.12: Topology of the super-super-exchange paths J1, J2 and J3 within the marinite unit cell 

(i.e. how these three paths connect the transition metal atoms). For sake of clarity, only the magnetic  
atoms M are displayed; they are in colored in grey or white depending on the sign of their magnetic  
moment (as determined from our NPD experiment). Remark that J1, J2 and J3 form triangular paths  

in the (011) and (01-1) planes.  
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Table IV.13: Super-super-exchange paths of the four marinite compounds and their geometrical characteristics: 

distances MO, OO and OM (expressed in Å), and angles MOO, OOM and dihedral angles MOOM 
(expressed in °). 

 Distances (Å) Angles (°) 

Li2Co
II
(SO4)2 M−M M−O O−O O−M M−O−O O−O−M M−O−O−M 

Exchange interaction J1 4.9787       

 Path 1  2.0745 2.4193 2.1168 153.58 103.59 -35.43 

 Path 2  2.1168 2.4193 2.0745 103.59 153.58 35.43 

Exchange interaction J2 6.1214       

 Path 1  2.1518 2.4188 2.1168 125.65 161.24 136.24 

Exchange interaction J3 5.9778       

 Path 1  2.1518 2.3714 2.0745 159.71 136.59 40.17 

Li2Mn
II
(SO4)2 M−M M−O O−O O−M M−O−O O−O−M M−O−O−M 

Exchange interaction J1 4.9811       

 Path 1  2.126 2.4069 2.2164 155.97 99.62 -37.95 

 Path 2  2.2164 2.4069 2.126 99.62 155.97 37.95 

Exchange interaction J2 6.2275       

 Path 1  2.1881 2.4353 2.2164 122.71 157.93 145.56 

Exchange interaction J3 6.0671       

 Path 1  2.1881 2.3761 2.126 161.34 134.57 53.17 

Li2Fe
II
(SO4)2 M−M M−O O−O O−M M−O−O O−O−M M−O−O−M 

Exchange interaction J1 4.9849       

 Path 1  2.1192 2.3787 2.116 154.82 103.59 -31.19 

 Path 2  2.116 2.3787 2.1192 103.59 154.82 31.19 

Exchange interaction J2 6.1490       

 Path 1  2.2007 2.4349 2.116 124.22 161 137.15 

Exchange interaction J3 6.0156       

 Path 1  2.2007 2.3376 2.1192 157.51 136.42 51.31 

Li1Fe
III

(SO4)2 M−M M−O O−O O−M M−O−O O−O−M M−O−O−M 

Exchange interaction J1 4.7974       

 Path 1  2.0206 2.3943 2.0113 103.23 139.9 68.71 

 Path 2  2.0113 2.3943 2.0206 139.9 103.23 -68.71 

Exchange interaction J2 6.0152       

 Path 1  2.0417 2.3699 2.0113 162.56 144.47 -44.86 

Exchange interaction J3 5.7574       

 Path 1  2.0417 2.4113 2.0206 118.89 146.99 135.59 
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The first ordered magnetic state is obtained by a calculation as a function of the exchange integrals 

and of the propagation vector k (on the surface or inside the Brillouin zone). It is given by the 

eigenvector corresponding to the highest eigenvalue of the Fourier transform of the following matrix 

of exchange integrals:  

                          

 

 Eq. IV.6 

where i and j refer to the magnetic atoms in a primitive cell, and Jij(Rl) is the isotropic exchange 

interaction between the spins of the atoms i and j in unit cells separated by the lattice vector Rl. Our 

convention is that a negative value of Jij means an antiparallel coupling (pair interaction energy: 

Eij =  Jij·Si·Sj). 

The ij(k, J1, J2, J3) matrices contain many terms and eigenvalues, and are therefore cumbersome to 

obtain by hand; the phase diagram is therefore more easily obtained using the program ENERMAG 

[488]. The values of the three Jn (n = 1, 2, 3) were allowed to vary between −100 and +100, so as to 

map all possibilities for the relative values of exchange integrals. The resulting phase diagram is 

shown Figure IV.13, as cuts in the J2−J3 planes given for different values of J1. This diagram of 

first-ordered state indicate the magnetic structure (propagation vector and sign sequence) for a 

given set of (J1, J2, J3) values, which presents the lowest energy and therefore can be considered as 

the ground state if there is no further magnetic phase transition below the Néel temperature. 

First of all, we can notice wide domains in the phase diagram for which we got incommensurate or 

disordered magnetic phases (light blue regions in Figure IV.13), especially when J1 is negative and J2 

and J3 are of same relative values and signs, and when J1 is positive and J2 and J3 are of opposite signs 

but have the same absolute values. This comes as no surprise considering the possible geometric 

frustration present in these systems (Figure IV.12, page 134). Apart from these domains, the system 

adopts more likely two propagation vectors (k = (0, 0, 0) and k = (½, 0, 0)), each of them giving two 

different spin sequences between the magnetic moments located in M1 (0, 0, 0) and in M2 (0, ½, ½). 

Therefore four ordered magnetic structures are seen as ground states, depending on the relative 

values of J1, J2, and J3: k = (0, 0, 0) with (+ +) and (+ −), and k = (½, 0, 0) with (+ +) and (+ −). For 

example, the ferromagnetic structure, characterized by k = (0, 0, 0) and (+ +) is observed in the region 

for which all Jn (n = 1, 2, 3) are positive (yellow domain in Figure IV.13).  
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Figure IV.13: Phase diagram showing the influence of the values of the super-super-exchange integrals Jn 

(n = 1, 2 and 3) on the ground-state magnetic structures. The diagram is shown as cuts in the J2‒J3 planes, for 
different values of J1, all varying between −100 and +100. The orange arrows highly the domain which most 

probably corresponds to the experimental magnetic structures of the marinite compounds  
LixM(SO4)2 (x = 2, 1 & M = Co

II+
, Fe

II+
, Mn

II+
, Fe

III+
).  

First of all, the experimentally deduced magnetic structures for LixM(SO4)2 (M = FeIII+, CoII+, MnII+) 

(k = (0, 0, 0) and (+ −); red domain in Figure IV.13) and for Li2FeII(SO4)2 (k = (½, 0, 0) and (+ −); green 

domain in Figure IV.13) are mainly observed as the ground state when J3<0. This is in good 

agreement with the elongated MOOM configuration of the J3 path (Figure IV.11 and Table IV.13), 

for which the GoodenoughKanamoriAnderson rules [459–464] would predict an antiferromagnetic 

super-super-exchange interaction. Next, a closer inspection indicates that both structures can be 

obtained as a result of a slight change in intensity of J1 or J2, when J1 and J2 are of the same sign and 

strength, and smaller than J3 (this region in highlighted in Figure IV.13 with the orange arrows). Thus 

only a small variation of the exchange integral J1 or J2 can explain the change from the structure 

k = (0, 0, 0) (+ −) to the k = (½, 0, 0) (+ −) one. However this analysis can not figure out what would be 

the sign of the two integrals J1 and J2. Therefore, more detailed theoretical and numerical approaches 

(e.g. DFT calculations) would be needed to determine the exact nature of these two interactions 

(i.e. ferro- vs. antiferro-magnetic), as well as to understand the peculiar magnetic behavior of 

Li2FeII(SO4)2 in the marinite series. 
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At this stage, we decided to undertake a similar magnetic study for the Li2Ni(SO4)2 phase, in order to 

probe whether its orthorhombic structure, which equally enables only super-super-exchange 

interactions, also results in a long-range antiferromagnetic ordering as observed for the monoclinic 

marinite compounds. 

IV.3 The orthorhombic phase Li2Ni(SO4)2 

IV.3.1 Magnetic properties 

As we previously did for the marinite compounds, we recorded the magnetic susceptibility of 

Li2NiII(SO4)2 as a function of the temperature between 2 K and 300 K, and in both zero-field cooled 

(ZFC) and field cooled (FC) conditions with an applied field of 10 kOe, using a SQUID magnetometer 

[484]. Both ZFC and FC curves overlap on the whole range of temperature and show a cusp around 

TN = 28 K, as it is characteristic of a pure antiferromagnetic behavior (Figure IV.14.a). 

The high-temperature region (200 to 300 K) of the inverse susceptibility was then fitted to the 

Curie-Weiss equation (see Eq. IV.1 and Eq. IV.2, page 118), as shown in Figure IV.14.b. The 

characteristic values for Li2NiII(SO4)2 deduced from this fit are summed up in Table IV.14. The 

Curie-Weiss temperature was determined to be θCW = −45 K, which gives a frustration parameter 

f = |ΘCW/TN|  1.6, indicating a small degree of frustration in the magnetic structure [485,486]. 

Moreover, an effective moment µeff of ~3.3 µB per nickel atom was deduced from the Curie constant. 

This traduces a partial contribution of the orbital moment as it falls in-between the expected value 

for a spin-only effective moment (µeff(S) = 2.8 µB, Eq. IV.5 page 121) and the one calculated for an 

unquenched orbital moment which is decoupled from the spin contribution (meff(S+L) = 4.5 µB, 

Eq. IV.4 page 121). 

Finally, to probe the field dependence of the magnetism of Li2NiII(SO4)2, a magnetization curve 

M = f(H) was recorded at 2 K. The resulting curve is presented in Figure IV.15 and shows the linear 

response that is expected for a perfect collinear antiferromagnetic ground state. 
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Figure IV.14: Temperature dependence of (a) the magnetic susceptibility  and (b) the inverse of the magnetic 

susceptibility 1/ of Li2Ni(SO4)2, measured in ZFC (blue points) and FC (red crosses) conditions with a magnetic 
field of 10 kOe. The ideal Curie-Weiss behavior is represented by the dashed line (CW fit). 

Table IV.14: Magnetic parameters of the orthorhombic Li2Ni(SO4)2 deduced from magnetic measurements, and 
compared to some expected theoretical values. 

Li2Ni
II
(SO4)2 

Electronic configuration 
d

8
: t2g

6
eg

2
 

S=1, L=3 

Experimental values deduced from magnetic measurements (H = 10 kOe) 

Néel temperature  TN  28 K 

Curie Weiss temperature  θCW  -45 K 

Frustration parameter  f = |θCW |/TN 1.6 

Curie Constant  C  (emu.K.mol
-1

.Oe
-1

) 1.35 

Effective moment  µeff 3.3 µB 

Expected theoretical values 

Effective 
moment µeff 

µeff(J) = gJ·(J(J+1))
½
 5.6 µB 

µeff(S,L) = (4S(S+1)+L(L+1))
½
 4.5 µB 

µeff(S) = 2·(S(S+1))
½
 2.8 µB 

 

 
Figure IV.15: Magnetization curve of Li2Ni

II
(SO4)2 as a function of the applied field, measured at 2 K. The inset 

shows an enlargement of the low-field domain. 
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IV.3.2 Magnetic structures 

To better understand the magnetic ground state of Li2NiII(SO4)2, neutron powder diffraction 

experiments (NPD) were performed on the high-intensity D20 diffractometer at the Institut Laue 

Langevin (ILL, Grenoble, France, cf. Annexes: § A.3.3.2 D20 diffractometer at ILL, page 165). We 

started by acquiring a NPD pattern of Li2NiII(SO4)2 above the Néel temperature that we had 

determined from magnetic measurements. The Rietveld refinement of the latter confirmed the 

orthorhombic structure proposed by Isasi et al. [425] that we had used to refined our XRD data in the 

previous chapter (see Chapter I: Figure III.25 page 103). The results of this refinement are presented 

in Table IV.17 and Figure IV.16. 

 
Figure IV.16: Result of the Rietveld refinement of the orthorhombic nuclear structure of Li2Ni

II
(SO4)2 against its 

NPD pattern measured at 35 K. 

Table IV.15: Crystallographic data and atomic positions of Li2Ni
II
(SO4)2 deduced from the Rietveld refinement of 

the D20 NPD data recorded for this compound at 35 K (i.e. above TN).  

Li2Ni
II
(SO4)2 

Nuclear structure D20 diffractometer in high resolution mode λ = 1.543 Å T = 35 K 

P b c a  RBragg = 1.93 % χ
2
 = 11.6 

a = 9.1236 (6) Å b = 9.0096 (4) Å c = 13.5593 (10) Å V = 1114.58 (11) Å
3
 

Atom 
Wyckoff 
position 

Occupancy x/a y/b z/c Biso (Å
2
) BVS 

Ni 8c 1.0 0.8615 (11) 0.6029 (11) 0.3780 (7) 0.13 (17) 2.02 (5) 

Li1 8c 1.0 0.467 (6) 0.719 (5) 0.375 (5) 0.6 (9) 0.99 (6) 

Li2 8c 1.0 0.724 (6) 0.540 (6) 0.626 (4) 0.4 (9) 0.99 (7) 

S1 8c 1.0 0.660 (4) 0.812 (4) 0.508 (3) 0.1 (3) 6.0 (3) 

O11 8c 1.0 0.5010 (18) 0.8000 (15) 0.5233 (12) 0.3 (4) 2.02 (15) 

O12 8c 1.0 0.7040 (16) 0.9690 (17) 0.4940 (13) 0.5 (4) 2.03 (14) 

O13 8c 1.0 0.6882 (17) 0.7284 (18) 0.4169 (12) 0.2 (3) 2.08 (16) 

O14 8c 1.0 0.7426 (17) 0.756 (2) 0.5946 (13) 0.3 (3) 1.87 (15) 

S2 8c 1.0 0.576 (4) 0.431 (4) 0.274 (3) 0.1 (3) 6.0 (3) 

O21 8c 1.0 0.4824 (18) 0.4965 (18) 0.3476 (13) 0.3 (3) 2.11 (18) 

O22 8c 1.0 0.524 (2) 0.4639 (16) 0.1713 (12) 0.2 (3) 1.94 (16) 

O23 8c 1.0 0.5736 (17) 0.2647 (18) 0.2779 (13) 0.3 (3) 1.88 (14) 

O24 8c 1.0 0.7279 (19) 0.488 (2) 0.2793 (12) 0.3 (3) 1.95 (15) 

 



Chapter IV. Magnetic study of the Li2M(SO4)2 compounds (M = Co, Fe, Mn, Ni) 

  141 

As with the marinite compounds, upon cooling the Li2NiII(SO4)2 sample down to 2 K, we observed the 

growth of new peaks at low angles, indicating a long-range ordering of the magnetic moments 

(Figure IV.17). Here also, the nuclear Bragg peaks show no changes, suggesting that the structure 

remains intact at the magnetic transition (no magneto-elastic effect). 

 
Figure IV.17: Evolution of the NPD patterns of Li2Ni(SO4)2 while cooling the sample from 35 K (red pattern) to 

2 K (blue pattern). Patterns recorded at intermediate temperatures are displayed in black. The green line is the 
difference curve between the blue and the red patterns. 

High-quality NPD patterns were then recorded at 1.85 K using the two wavelengths 2.416 Å and 

1.543 Å in order to determine the magnetic structure of Li2NiII(SO4)2. The magnetic reflections, which 

are better observed on the former pattern, could be indexed in the same unit cell as the nuclear 

structure, i.e. using a propagation vector k = (0, 0, 0). 

A symmetry analysis was then performed using Bertaut’s method [487] with the BasIReps program 

[384,443], in order to determine all of the possible spin configurations which are compatible with the 

crystal symmetry of Li2NiII(SO4)2. Eight irreducible representations associated with the general 

Wyckoff site 8c (x, y, z) occupied by the Ni atoms: Γmag = Γ1 + Γ2 + Γ3 + Γ4 + Γ5 + Γ6 + Γ7 + Γ8. These 

representations are built with three basis vectors Ψi (i = 1, 2, 3) which are collinear to the a, b and c 

unit cell directions, respectively. Table IV.16 describes for each irreducible representation Γj 

(1 ≤ j ≤ 8) the orientation of magnetic moments carried by each of the eight Ni atoms of the unit cell. 
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Table IV.16: Results of the symmetry analysis of the Pbca unit cell for the propagation vector k = (0, 0, 0). The 
basis vectors Ψi (i = 1, 2, 3) of the eight general positions generated for the Wyckoff site 8c (x, y, z) are given for 
each irreducible representation Γj (1 ≤ j ≤ 8). Note that the eight general positions are given according to the 

order recommended in the International Tables for Crystallography [490]. 

k = (0, 0, 0) 

Γ1 x, y, z -x+½, -y, z+½ -x, y+½, -z+½ x+½, -y+½, -z -x, -y, -z x+½, y, -z+½ x, -y+½, z+½ -x+½, y+½, z 

Ψ1 1, 0, 0   , 0, 0   , 0, 0 1, 0, 0 1, 0, 0   , 0, 0   , 0, 0 1, 0, 0 

Ψ2 0, 1, 0 0,   , 0 0, 1, 0 0,   , 0 0, 1, 0 0,   , 0 0, 1, 0 0,   , 0 

Ψ3 0, 0, 1 0, 0, 1 0, 0,    0, 0,    0, 0, 1 0, 0, 1 0, 0,    0, 0,    

Γ2 x, y, z -x+½, -y, z+½ -x, y+½, -z+½ x+½, -y+½, -z -x, -y, -z x+½, y, -z+½ x, -y+½, z+½ -x+½, y+½, z 

Ψ1 1, 0, 0   , 0, 0   , 0, 0 1, 0, 0   , 0, 0 1, 0, 0 1, 0, 0   , 0, 0 

Ψ2 0, 1, 0 0,   , 0 0, 1, 0 0,   , 0 0,   , 0 0, 1, 0 0,   , 0 0, 1, 0 

Ψ3 0, 0, 1 0, 0, 1 0, 0,    0, 0,    0, 0,    0, 0,    0, 0, 1 0, 0, 1 

Γ3 x, y, z -x+½, -y, z+½ -x, y+½, -z+½ x+½, -y+½, -z -x, -y, -z x+½, y, -z+½ x, -y+½, z+½ -x+½, y+½, z 

Ψ1 1, 0, 0   , 0, 0 1, 0, 0   , 0, 0 1, 0, 0   , 0, 0 1, 0, 0   , 0, 0 

Ψ2 0, 1, 0 0,   , 0 0,   , 0 0, 1, 0 0, 1, 0 0,   , 0 0,   , 0 0, 1, 0 

Ψ3 0, 0, 1 0, 0, 1 0, 0, 1 0, 0, 1 0, 0, 1 0, 0, 1 0, 0, 1 0, 0, 1 

Γ4 x, y, z -x+½, -y, z+½ -x, y+½, -z+½ x+½, -y+½, -z -x, -y, -z x+½, y, -z+½ x, -y+½, z+½ -x+½, y+½, z 

Ψ1 1, 0, 0   , 0, 0 1, 0, 0   , 0, 0   , 0, 0 1, 0, 0   , 0, 0 1, 0, 0 

Ψ2 0, 1, 0 0,   , 0 0,   , 0 0, 1, 0 0,   , 0 0, 1, 0 0, 1, 0 0,   , 0 

Ψ3 0, 0, 1 0, 0, 1 0, 0, 1 0, 0, 1 0, 0,    0, 0,    0, 0,    0, 0,    

Γ5 x, y, z -x+½, -y, z+½ -x, y+½, -z+½ x+½, -y+½, -z -x, -y, -z x+½, y, -z+½ x, -y+½, z+½ -x+½, y+½, z 

Ψ1 1, 0, 0 1, 0, 0   , 0, 0   , 0, 0 1, 0, 0 1, 0, 0   , 0, 0   , 0, 0 

Ψ2 0, 1, 0 0, 1, 0 0, 1, 0 0, 1, 0 0, 1, 0 0, 1, 0 0, 1, 0 0, 1, 0 

Ψ3 0, 0, 1 0, 0,    0, 0,    0, 0, 1 0, 0, 1 0, 0,    0, 0,    0, 0, 1 

Γ6 x, y, z -x+½, -y, z+½ -x, y+½, -z+½ x+½, -y+½, -z -x, -y, -z x+½, y, -z+½ x, -y+½, z+½ -x+½, y+½, z 

Ψ1 1, 0, 0 1, 0, 0   , 0, 0   , 0, 0   , 0, 0   , 0, 0 1, 0, 0 1, 0, 0 

Ψ2 0, 1, 0 0, 1, 0 0, 1, 0 0, 1, 0 0,   , 0 0,   , 0 0,   , 0 0,   , 0 

Ψ3 0, 0, 1 0, 0,    0, 0,    0, 0, 1 0, 0,    0, 0, 1 0, 0, 1 0, 0,    

Γ7 x, y, z -x+½, -y, z+½ -x, y+½, -z+½ x+½, -y+½, -z -x, -y, -z x+½, y, -z+½ x, -y+½, z+½ -x+½, y+½, z 

Ψ1 1, 0, 0 1, 0, 0 1, 0, 0 1, 0, 0 1, 0, 0 1, 0, 0 1, 0, 0 1, 0, 0 

Ψ2 0, 1, 0 0, 1, 0 0,   , 0 0,   , 0 0, 1, 0 0, 1, 0 0,   , 0 0,   , 0 

Ψ3 0, 0, 1 0, 0,    0, 0, 1 0, 0,    0, 0, 1 0, 0,    0, 0, 1 0, 0,    

Γ8 x, y, z -x+½, -y, z+½ -x, y+½, -z+½ x+½, -y+½, -z -x, -y, -z x+½, y, -z+½ x, -y+½, z+½ -x+½, y+½, z 

Ψ1 1, 0, 0 1, 0, 0 1, 0, 0 1, 0, 0   , 0, 0   , 0, 0   , 0, 0   , 0, 0 

Ψ2 0, 1, 0 0, 1, 0 0,   , 0 0,   , 0 0,   , 0 0,   , 0 0, 1, 0 0, 1, 0 

Ψ3 0, 0, 1 0, 0,    0, 0, 1 0, 0,    0, 0,    0, 0, 1 0, 0,    0, 0, 1 
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After testing all the possibilities given by this symmetry analysis against the NPD pattern recorded at 

1.85 K with the 2.416 Å wavelength, we found that the best agreement with the observed magnetic 

reflections was obtained using Γ2. Coefficients that multiply the three basis vectors were first freely 

refined, and this led to a main component on Ψ3 and tiny values for Ψ1 and Ψ2, which included the 

zero value considering the standard deviations. A refinement was therefore undertaken with 

constraining the magnetic moments to be collinear to the c-axis only (i.e. by refining Ψ3 only, Ψ1 and 

Ψ2 being null). This latter refinement, which is shown in Figure IV.18, did not led to worse reliability 

values, and these results were then kept a the final model for the magnetic structure of Li2NiII(SO4)2 

(Table IV.17). Finally, this final magnetic structure was used for a Rietveld refinement of the NPD 

pattern recorded at 1.85 K with the shorter wavelength of 1.543 Å. The results of this refinement 

indicates, as initially assumed, that no structural distortion accompanies the magnetic transition 

(Table IV.17). 

 
Figure IV.18: Rietveld refinement of the NPD pattern of Li2Ni

II
(SO4)2 measured at 1.85 K. The first line of blue 

sticks corresponds to the Bragg positions of the nuclear part while the second line of blue sticks shows the 
positions of the expected reflections of the magnetic part. 

Table IV.17: Magnetic structure of Li2Ni
II
(SO4)2 determined from the Rietveld refinement of the NPD data 

recorded at 1.85K (i.e. below TN). The eight general positions of Ni are given according to the order 

recommended in the International Tables for Crystallography [490]. 

Li2Ni
II
(SO4)2 

Nuclear structure D20 diffractometer in high resolution mode, λ = 1.543 Å, T = 1.85 K 

P b c a  RBragg = 2.07 % χ
2
 = 12.2 

a = 9.1260 (5) Å b = 9.0117 (5) Å c = 13.5611 (7) Å V = 1115.28 (10) Å
3
 

Magnetic structure D20 diffractometer in high resolution mode, λ = 2.416 Å, T = 1.85 K 

k = (0 0 0) Γ2   

Atom Mz/c (µB) Atom Mz/c (µB) 

Ni1 (0.861, 0.603, 0.378) + 2.15(12) Ni5 (0.139, 0.397, 0.622) ‒ 2.15(12) 

Ni2 (0.639, 0.397, 0.878) + 2.15(12) Ni6 (0.361, 0.603, 0.122) ‒ 2.15(12) 

Ni3 (0.139, 0.103, 0.122) ‒ 2.15(12) Ni7 (0.861, 0.897, 0.878) + 2.15(12) 

Ni4 (0.361, 0.897, 0.622) ‒ 2.15(12) Ni8 (0.639, 0.103, 0.378) + 2.15(12) 
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The magnetic structure of Li2NiII(SO4)2 deduced from these analyses is shown in Figure IV.19. The 

magnetic moments of Li2NiII(SO4)2 are aligned antiferromagnetically along the c-axis, with a spin 

sequence (+ + − − − − + +), as seen in Table IV.17 (from Ni1 to Ni8). Remark that this magnetic 

structure can also be described as an antiferromagnetic stacking of ferromagnetic layers along  

the c-axis.  

 
Figure IV.19: Magnetic structure of Li2Ni(SO4)2. The blue balls shown the position of the Ni atoms 

within the unit cell, and red vectors represent their magnetic moments. 
For the sake of clarity, all other atoms (Li, S, O) are omitted. 

Finally, the refined value of the magnetic moments carried by each NiII+ is 2.15(12) B at 1.85 K. This 

is in good agreement with the spin-only magnetic moment m = g·S =2 µB expected for a d8 cation in 

low-spin configuration (t2g
6eg

2: S = 1). On heating, the magnetic peaks decrease in intensity, resulting 

from a decrease in the magnetic moment that reaches zero at TN = 28 K (Figure IV.20), in perfect 

agreement with the Néel temperature deduced from the SQUID data (see Table IV.14 page 139).  

 
Figure IV.20: Temperature dependence of the moment value deduced from the refinement of the magnetic 

structure of Li2Ni
II
(SO4)2 against the NPD patterns recorded between 2 and 35 K. 

At this stage, we undertook a similar analysis of the super-super-echange interactions governing the 

long-range ordering in the orthorhombic structure of Li2NiII(SO4)2, as we previously did for the 

marinite compounds.  
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IV.3.3 Analysis of the exchange paths in the orthorhombic structure of Li2Ni(SO4)2  

The orthorhombic structure of Li2NiII(SO4)2 indicates that only super-super-exchange interactions 

occur in this material. Considering the eight Ni atoms present in the unit cell, we identified five 

geometrically distinct Ni−O−O−Ni interactions, all of them going through the edge of one or two SO4 

tetrahedra, and giving the following direct Ni−Ni distances: 4.55 Å (J1), 4.94 Å (J2), 5.73 Å (J3) and 

6.22 Å (J4 and J5). If we considered only the shortest paths J1 and J2, the magnetic structure would not 

be long-range ordered because some parts of the structure would be disconnected from the others 

along the c-axis. Therefore, we had to consider the three first paths J1, J2 and J3 in order to obtain a 

3D connectivity. We neglected the last two paths (J4 and J5), because of the large distance gap 

between them and J3. The detailed geometrical characteristics of the J1, J2 and J3 paths are reported 

in Table IV.18 and are shown in Figure IV.21.  

Table IV.18: Super-super-exchange paths of the orthorhombic structure of Li2Ni
II
(SO4)2 and their geometrical 

characteristics: distances NiO, OO and ONi (expressed in Å), and angles NiOO, OONi and dihedral 

angle NiOONi (expressed in °). 

 Distances (Å) Angles (°) 
 Ni−Ni Ni−O O−O O−Ni Ni−O−O O−O−Ni Ni−O−O−Ni 

Exchange interaction J1 4.5554       
 Path 1  2.0429 2.4290 2.0694 108.28 105.60 89.02 
 Path 2  2.0694 2.4290 2.0429 105.60 108.28 89.02 

Exchange interaction J2 4.9401       
 Path 1  2.0694 2.4092 2.0132 100.19 124.85 108.32 
 Path 2  2.0849 2.4525 2.0774 138.35 113.96 27.16 

Exchange interaction J3 5.7296       
 Path 1  2.0849 2.3774 2.0509 153.84 135.25 3.18 

 

 
Figure IV.21: Geometrical characteristics of the three super-super-exchange paths J1 (red segment), J2 (blue 

segment) and J3 (green segment). Grey and white balls represent the Ni atoms that carry a positive and a 
negative magnetic moment, respectively. Light grey octahedra and light green tetrahedra show the 

connectivity of the NiO6 and SO4 groups around these three super-super-exchange paths. 
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The connectivity of these three exchange paths is shown in Figure IV.22. Conversely to the case of 

the marinite structure, this figure reveals no triangular paths, suggesting that Li2Ni(SO4)2 is not 

subject to geometrical frustration, in complete agreement with the frustration parameter value 

deduced from the susceptibility measurements (f = 1.6, see Table IV.14 page 139). 

 
Figure IV.22: (a) Topology of the three super-super-exchange paths J1 (red), J2 (blue) and J3 (green) connecting 

the nickel atoms in the Li2Ni
II
(SO4)2 structure. (b) Enlargement showing the distribution of the five 

super-super-exchange paths surrounding a Ni atom. Small red small are the oxygen atoms pertaining to the 
NiO6 octahedra; other atoms are omitted. 

To establish the relative signs and strengths of the three exchange integrals J1, J2 and J3 required to 

produce the observed magnetic structure, we used the same procedure as employed for the marinite 

compounds and described in the first part of this chapter (see page 136). With the help of the 

ENERMAG program [488], we calculated the (k, J1, J2, J3) matrices for different values of J1, J2 and J3 

varying between −100 and +100, and we kept for each given set of (J1, J2, J3) values, the magnetic 

structure (i.e. the propagation vector + the spin sequence) corresponding to the lowest energy to 

built the phase diagram shown in Figure IV.23. This phase diagram displays eight regions delimited 

by the sign of the three exchange integrals Jn (n = 1, 2, 3). Whatever the relative values of J1, J2 and J3, 

the propagation vector k = (0, 0, 0) were found to give the lowest energy. Thus, the eight regions 

differs solely by the spin sequence of the eight magnetic moments.  
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Figure IV.23: Phase diagram showing the influence of the sign of the super-super-exchange integrals J1, J2 and J3 
on the spin sequence of the ground-state magnetic structure of Li2Ni

II
(SO4)2. The domain corresponding to the 

experimental results is colored in orange. 

The spin sequence (+ + − − − − + +) deduced experimentally is then observed as the ground state for 

J1<0, J2>0 and J3<0 (orange region in Figure IV.23). As in the case of the marinite compounds, the 

negative sign of J3 (i.e. antiferromagnetic interaction) is in good agreement with the 

GoodenoughKanamoriAnderson rules [459–464], given that the elongated geometry of this 

exchange pathway (see Figure IV.21 and Table IV.18). However, having J1 and J2 of opposite signs 

was rather surprising at a first sight as these two exchange paths look similar from Figure IV.21: they 

both enlist a double exchange through two distinct SO4 groups. Nevertheless, when observing 

carefully the angles between the bonds involved in the exchange interaction J2 (see Table IV.18), one 

can remark that the two corresponding paths present indeed very different dihedral angles (108.32° 

vs. 27.16°), i.e. they are very distorted as compared with the paths J1 and J3. In any case, among the 

five interactions surrounding a NiII+ atom in the orthorhombic structure of Li2Ni(SO4)2 (see 

Figure IV.22.b), three of them are antiferromagnetic (J1 and 2 x J3) and two are ferromagnetic (2 x J2). 

Here, it is interesting to mention that a similar situation had been observed in the nickel-based 

oxides PrNiO3 and SmNiO3, in which an equal number of ferromagnetic and antiferromagnetic 

interactions between the nearest Ni atoms was reported [491–493]. Note that although the nickel is 

formally in the oxidation state III+ in these latter compounds, the proximity of their 3d levels with the 

2p levels of the oxygen induces ligan-hole effects, so that the ground state can also be seen as 

NiII+/O‒.  
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IV.4 Conclusion 
In this chapter we have reported on the magnetic structures and properties of the four members of 

the marinite series LixM(SO4)2 (x = 1,2 and M = Fe, Co, Mn), as well as those of the orthorhombic 

phase Li2NiII(SO4)2 [442,484]. A careful study of their magnetic properties revealed that these five 

compounds present a Curie-Weiss antiferromagnetism, with the CoII+, MnII+ and FeIII+-based 

analogues presenting a weak ferromagnetism and Li2CoII(SO4)2 showing indications of a possible 

meta-magnetic behavior. 

Moreover, the magnetic structures of these compounds have been determined from 

low-temperature neutron powder diffraction. Both the monoclinic marinite and the orthorhombic 

structures present particular arrangements of MO6 octahedra and SO4 tetrahedra that solely allows 

super-super-exchange interactions, so that these compounds can be seen as model cases to probe 

the Goodenough-Kanamori-Anderson rules [459–464]. First analyses of the sign and relative strength 

of exchange interactions for the five compounds showed no inconsistency with these semi-empirical 

rules. However they remind us the possibility of a coexistence of both negative (antiferromagnetic) 

and positive (ferromagnetic) super-super-exchange integrals to obtain the observed ground-state 

magnetic structures. Therefore, this study recalls that caution should be exercised when trying to 

predict the nature of the magnetic interactions within a structure by looking at the geometrical paths 

only. 

Indeed, in the case of electrode materials, determining the experimental magnetic ground-state 

among the other possibilities offered by the nuclear structure of the compound is of high importance 

to make reliable voltage predictions using DFT calculations. The results provided in this chapter have 

indeed been already employed for preliminary theoretical investigations of the marinites phases 

Li2M
II(SO4)2 (M = Fe, Co, Mn) and Li1FeIII(SO4)2, which provided good estimations of the open circuit 

voltages for these compounds [439]. 

Finally, although magnetic ordering occurs at very low temperature (typically < 150 K) while 

electrochemical properties are generally tested at ambient temperature, both the strength of the 

magnetic exchange interactions between 3d metals and the positioning of their redox potentials in 

polyanionic compounds are in part nested in the iono-covalency of the M-O bonds. Thus, noticing 

that Li2FeII(SO4)2 presented a very low Néel temperature (TN = 5 K) while this compound displayed in 

the meantime one of the highest redox potential (3.83 V vs. Li+/Li0) among the iron-based polyanionic 

electrode materials encouraged our group to relate magnetic parameters with redox potential values 

[323,494]. Indeed, the connection was straight: the better the covering between the 3d orbitals of 

the transition metal with the 2p orbitals of the oxygen, the more covalent the M-O bonds, the lower 



Chapter IV. Magnetic study of the Li2M(SO4)2 compounds (M = Co, Fe, Mn, Ni) 

  149 

the potential of the Mn+/M(n-1)+ redox couple, but the highest the magnetic temperature ordering TN 

(i.e. facil magnetic ordering). This trend was verified for a series of several Fe(II+)-based polyanionic 

electrode materials, as seen in Figure IV.24, although more examples are still needed to fully 

demonstrate the validity of this correlation. 

 
Figure IV.24: Correlation between antiferromagnetic Néel temperature (in blue) and redox voltage (in red) for 
various Fe

II+
-containing sulfate and phosphate compounds, showing that TN decreases as the redox potential 

increases (from [323]). 

In fact, relating structural features to magnetic properties has been a key topic over the last 50 years 

and physicists are still not able to elaborate tailor-made magnetic materials. Neither chemists can 

presently design electrode materials with the proper redox potential on demand. Nevertheless, we 

are fully convinced that bridging both the magnetism and the battery communities could provide 

supplementary clues in the search of the universal indicators that we are all looking for to correlate 

structures with magnetic and electrochemical properties. 

 





   

General conclusion 

This thesis work was aimed at searching for new positive electrode materials for Li- and Na-ion 

batteries made of sustainable, low-cost and environmentally benign elements and displaying high 

operating voltages. Guided by our previous work on iron fluorosulfates, which demonstrate 

attractive potentials of 3.6-3.9 V vs. Li+/Li0 [318,320,321,325,331,335,345,495], but with the desire to 

avoid safety concerns associated with the use of fluorine, we decided to focus on sulfate-based 

compounds. 

In the search for new materials, we noticed that the nature provides numerous examples of sulfate 

compounds phases among minerals. We rapidly realized the advantages of using mineral species as a 

source of inspiration because: (i) most of mineral compounds have been well characterized by 

mineralogists, and they constitute thus a precious database in which the chemists can spot structures 

displaying the best features for the targeted application, (ii) these natural phases are most probably 

thermodynamically stable (or at least metastable), and knowing the conditions of their formation in 

nature can provide a first approach for their syntheses in the laboratory, and (iii) once the model 

mineral compound chosen, the chemist can play with its composition or use structural considerations 

to modify the phase so as to obtain the desired physicochemical properties. 

In the work presented herein, we have successfully employed this strategy to prepare several 

compounds Na2M(SO4)2·4H2O (M = Mg, Zn, Ni, Co, Fe), which are all isostructural to the bloedite 

mineral, and from which we identified the iron phase to be electrochemically active versus both 

sodium and lithium [363]. More importantly, we showed that this new electrode material displays 

elevated potentials of 3.3 V vs. Na+/Na0 and 3.6 V vs. Li+/Li0, which compete with the ones reported 

for other sulfate-based electrode materials (e.g. NASICON Fe(SO4)3, tavorite LiFeSO4F, layered 

LiFeSO4OH, maxwellite NaFeSO4F). Consequently, we prepared the dehydrated derivates 

α-Na2M(SO4)2 (M = Fe, Co), for which we determined a monoclinic super-structure arising from a 

complex ordering of the SO4 groups, and we equally obtained high potentials of 3.4 V vs. Na+/Na0 and 

3.6 V vs. Li+/Li0 for the iron counterpart [364]. Finally, we also evaluated the redox potential of three 

other mineral phases, namely NaFe(SO4)2, KFe(SO4)2 and Na3Fe(SO4)3, which although presenting 

limited reversible capacities, demonstrate as well FeIII+/FeII+ redox potentials centered around 3.5 V 

vs. Li+/Li0. 

Next, in the search for lithium analogues to these compounds, we successfully synthesized the 

Li2M(SO4)2 (M = Co, Fe) phases [337,426,428]. After having determined the monoclinic marinite 
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structure of these compounds, we established that the iron analogue displays an outstanding voltage 

of 3.83 V vs. Li+/Li0, which is in fact the highest potential ever reported for the FeIII+/FeII+ redox couple 

in an inorganic material free of fluorine, and is only matched by the triplite polymorph of LiFeSO4F 

(3.9 V vs. Li+/Li0). Besides these attractive electrochemical properties, we identified several other 

members of the Li2M(SO4)2 series (M = Mn, Mg, Ni, Zn), which crystallize into two different structures 

(i.e. the aforementioned monoclinic marinite one and the orthorhombic structure previously 

reported for the nickel phase) [442,484]. Now a remaining question regards the existence of 

polymorphism as observed for the tavorite and triplite phases of LiFeSO4F. 

At this stage, we realized that these Li2M(SO4)2 phases could also be of interest beyond the field of 

electrochemistry, and in particular for magnetic studies. Indeed, their peculiar structural frameworks 

of MO6 octahedra and SO4 tetrahedra solely allow super-super-exchange interactions, and these 

phases can thus serve as model compounds to test the Goodenough-Kanamori-Anderson rules for 

this kind of interactions. Therefore, we found from magnetic measurements that the five phases 

Li2MnII+(SO4)2, Li1FeIII+(SO4)2, Li2FeII+(SO4)2, Li2CoII+(SO4)2 and Li2NiII+(SO4)2 show antiferromagnetic 

behavior at low temperatures (below 35 K), and we determined their magnetic structures at 2 K from 

neutron powder diffraction [442,484]. A first analysis of the super-super-exchange interactions 

within these structures was also provided.  

 

Overall, in this thesis work, we have prepared several new alkali iron sulfates which present elevated 

redox potentials versus both lithium and sodium metal anodes. Therefore, we have demonstrated, as 

it was also achieved in the meantime with the layered hydroxysulfate LiFeSO4OH [342], that the 

presence of fluorine in sulfate-based electrode materials is not necessary to reach high operating 

voltages. Figure G.C.1 shows indeed that these new sulfate compounds, in particular Li2Fe(SO4)2, rank 

at the top of the scale of potentials for the iron-based polyanionic materials studied up to now as 

positive electrodes for Li-ion and Na-ion batteries. However, this figure also illustrates well the main 

drawback of our bimetallic disulfates AxFe(SO4)2·nH2O (A = Li, Na, x = 1, 2 and n = 0, 4), which is 

nested in their low intrinsic specific capacities (i.e. below 100 mAh/g) due to the fact that they 

contain two heavy sulfate groups per iron atom. Therefore, this reminds us that searching for new 

electrode materials does not systematically lead to compounds with outstanding performances in 

terms of both operating voltage and energy density.  
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Figure G.C.1: Performances, in terms of operating voltage and theoretical specific capacity, of iron-based 
polyanion compounds studied as positive electrodes for Li-ion (top) and Na-ion (bottom) batteries (data 

from [105]). The different families of compounds are gathered in different colors: blue for sulfates, green 
 for phosphates, cyan for pyrophosphates, red for borates, purple for silicates, pink for arseniates, brown  

for molybdates, yellow for tungstates. New electrodes materials which were  
presented in this work are labeled in red.  
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However, we believe that these new sulfate compounds are certainly valuable materials, in particular 

to enhance our basic understanding of the chemical and structural factors influencing the redox 

potentials of the polyanionic electrode materials. As we have started to discuss in Chapter I, the 

potential of the redox couple Mn+/M(n+1)+ in an inorganic compound is highly related to the 

iono-covalency of the M‒O bond. The difference observed in the voltage of a given redox couple 

between oxides and polyanionic compounds is explained by the strong covalent bonding within the 

polyanionic units (i.e. the X-O bond), which weakens the M‒O bond and stabilizes the anti-bonding 

orbitals of the redox center [222,232,233]. This inductive effect has been widely described since the 

early works of Goodenough on NASICON compounds [222,232,233,496]. It is a strong indicator, 

which justifies well the overall general trends in voltage differences between the polyanionic 

compounds: sulfates present higher redox potentials than phosphates, which usually have enhanced 

potential as compared with silicates, borates or arsenates (Figure G.C.1). However, a closer 

inspection of this figure reveals that these general rules have their own limitations as they cannot be 

applied blindly to any compounds. In fact the inductive effect applies well when comparing 

compounds having the same structure (e.g. potential variations within the NASICON compounds, the 

tavorite structure, etc.), but it becomes less efficient to account for differencies observed between 

compounds having different structures, in particular when having the same polyanion [234], and 

completely fails in comparing two polymorphs having the same exact composition (e.g. tavorite vs. 

triplite LiFeSO4F). This clearly shows that other structural factors play an important role in tuning the 

redox potentials.  

Besides the iono-covalent character of the M-O bonding, the crystal field experienced by the cation 

Mn+ would also affect the energy positioning of its anti-bonding orbitals [349,350]. Indeed, the 

presence of various cations surrounding the redox center (i.e. other transition metals Mn+, the 

cations Xx+ of the polyanionic groups, but also the alkali cation A+) and more importantly the 

connectivity of the redox center polyhedron with the neighboring polyhedra MO6, XO4 and AOz 

(i.e. corner-, edge- or face-sharing) will influence the strength of the Madelung electric field felt by 

the cation. Hence, shorter distances M‒M, M‒X or M‒A (e.g. due to edge- or face-sharing polyhedra) 

result in more cationic repulsions and lower Madelung electric field, which in turn yields in a higher 

redox potential [349,350].  

At this stage, the difficulty resides in the fact that all these parameters (i.e. ionocovalency, Madelung 

electric field, inductive effect, electronegativity, interatomic distances, etc.) are highly correlated. 

Researchers are still actively seeking to identify new descriptors (e.g. M‒O bond lengths, number of 

polyanion per transition metal, number of coordination, density) to rationalize the potential 

differences experimentally observed between different polyanionic electrode materials 
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[115,234,323,349,350]. In our quest for such indicators, our group has recently proposed to correlate 

redox potentials of the electrode materials with their magnetic ordering temperature TN [323,494], 

since these two properties are partly nested in the iono-covalency of the M‒O bonds; Li2Fe(SO4)2 

illustrates well this trend, displaying both a very low Néel temperature (TN = 5 K) and one of the 

highest redox potentials (3.83 V vs. Li+/Li0) observed in Fe(II+)-based polyanionic compounds. 

However, there is not presently an ideal framework that permits the evaluation of each parameter 

influencing redox potential. In analogy to French grammar, when a new indicator that describes well 

the voltage trend in a series of model compounds is identified, one often faces one or two exceptions 

that rapidly limit the universality of the rule. Nonetheless, the search for new polyanion-based 

electrode materials is a pursuit of great importance; even if new compounds fail to compete 

performance-wise with today’s electrode materials, they expand the database available for 

identifying relevant indicators, as this thesis work has demonstrated with marinite Li2Fe(SO4)2. This is 

essential for better understanding the existing relationships, if any, between composition, structure 

and redox potential, which will facilitate the design of high-performance polyanionic cathode 

materials for the next generations of batteries. 

 





   

Annexes 

A.1 Samples preparation 

A.1.1 Quartz tubes sealed under vacuum 

Ceramic syntheses of samples containing divalent iron require to work under inert or reducing 

conditions in order to prevent the oxidation of the Fe(II+) into Fe(III+). One solution is to seal under 

vaccum a pelletized powder sample into a quart tube [426]. To do so, the powder reactants are first 

thouroughtly mixed together (usually by ball-milling), and then pressed into a pellet with an unixial 

press at 10 tons for one minute. The pellet is then introduced into a quartz tube, which is pumped 

under primary vacuum (~10-2 bar) for 20 minutes. While maintaining a dynamical vacuum, the quartz 

tube is melted using an oxygen/butane torch to close the tube under vacuum. The pellet inside the 

tube under vacuum can then be annealed in any furnace. 

A.1.2 SPS 

Spark Plasma Sintering (SPS), also named Flash Sintering, is a synthesis route, in which a high 

pressure and an electric current are concurrently applied to a powder sample so that the rate and 

mass transfer is significantly increased to allow rapid diffusion of atoms [497,498]. Compared with 

classical ceramic or hot pressing approaches, SPS has the advantage of providing heating in a quick 

and homogeneous way in order to significantly reduce the reaction time.  

 
Figure A.1: (a) SPS machine connected to the argon-filled glove box. (b) Carbon matrix containing the powder 

sample, and placed in the SPS machine. (c) Drawing of the synthesis principle. 

Li2M(SO4)2 (M = Co, Fe) could also synthesized via Spark Plasma Sintering with an HPD 10 FCT SPS 

machine connected to an argon dry box (Figure A.1) [337]. This apparatus was handled by Sylvain 

Boulineau (Laboratoire de Réactivité et de Chimie des Solides ‒ LRCS, CNRS UMR 7314, UPJV, 

Amiens, France). For these syntheses, a powder mixture of Li2SO4 and MSO4, previously ball-milled 

under argon for 45 minutes, was placed between two carbon paper disks (Papyex®) and introduced 
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in a 10-mm inner-diameter carbon matrix (Mersen 2333®). The powder was then pressed into the 

carbon matrix at 50 MPa and annealed under vacuum of under argon at 320°C (heating ramp: 

75°C/min, via a sequence of 1 pulse of 1 ms of DC polarization) for 15 minutes in the SPS machine. 

A.1.3 Mechanical-milling 

Mechanical-milling (or ball-milling) enable is an energetic milling, which was used to thouroughly mix 

powder reactants for a synthesis, or a pristine material with carbon for electrode preparation. Note 

that this milling also induces a reduction of the particle size.  

To do so, the powders to be mixed were introduced with a stainless steal ball (of 7 g or 4 g) into 

cylindrical cells (inner volume of 40 cm3 for reactant mixing or 10 cm3 for electrode preparation). The 

mechanical-milling were carried out using a SPEX 8000® miller for 15 to 60 minutes. During this 

process, the cell is moved with a complex movement in the three directions at a high rotation speed 

of 1400 rpm. For samples containing Fe(II+), which is prone to be oxidized during the milling due to 

the high temperature that can be generated locally, special care was taken in closing the ball-milling 

cell under argon, and divide the milling time into 15-min milling steps separated by at least 10-min 

pauses into order to prevent overheating of the cell.  

A.2 Electrochemical characterizations 
To characterize the electrochemical properties of our materials, all electrochemical tests were 

performed in half cells, which consist in using a single electrode material (the material to test) as the 

working electrode (WE) and pure lithium or sodium metal as the counter electrode (CE), which is also 

used as the reference electrode (RE) since its potential does not change during the charge/discharge 

cycles (Li+/Li0: ‒3.045 V vs. SHE and Na+/Na0: ‒2.714 V vs. SHE) and can then be set to be zero. 

A.2.1 Electrode preparation 

As discussed in Chapter I, polyanionic compounds present low electronic conductivities, which 

constitute an important limitant factor for their electrochemical activity. To enhance the electronic 

conductivity of a material for priliminary evaluation of its electrochemical performances, the 

particles of the pristine compound can be reduced in size and mixed with a conductive additive using 

mechanical milling (cf. § A.1.3 Mechanical-milling, page 158). In our case, we usually ball-milled for 

(unless otherwise specified) 20 minutes the pristine materials with carbon Super P (also named 

carbon SP), taken in a mass ratio 80:20 or 70:30, in a 10-cm3 ball-milling cell closed under argon. 
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A.2.2 Electrochemical cells 

A.2.2.1 Swagelok cells 

Most of the electrochemical tests versus lithium (or sodium) were carried out in Swagelok®-type cells 

(Figure A.2). The cells were assembled in an argon-filled glove box, using the as-prepared working 

electrode materials as the positive electrodes and lithium (or sodium) metal disc as the negative 

electrodes. These two electrodes were separated by two Whatman® GF/D borosilicate glass fibre 

sheets saturated with an electrolyte of (unless otherwise specified) 1M LiClO4 (or NaClO4) in 

propylene carbonate (PC). Usual cathode loading was 9-13 mg.cm-2 per cell. 

 
Figure A.2: Technical drawing of a Sawgelok® cell. 

A.2.2.2 Special cell for in operando experiments 

For in operando experiments, we used a special cell (Figure A.3) designed in house by Jean-Bernard 

Leriche (Laboratoire de Réactivité et de Chimie des Solides ‒ LRCS, CNRS UMR 7314, UPJV, Amiens, 

France). Its special shape is adapted to the sample holder of the Bruker D8 diffractometers 

(cf. § A.3.1 Laboratory XRD measurements, page 162). It is equipped beryllium window, which is 

almost transparent to X-ray and also acts as a current collector, and on which is desposited the 

electrode material to be studied [499,500]. In our case, a thin sheet of aluminum foil 

(thckiness: 3 µm, from Goodfellow) was placed between the beryllium window and the positive 

electrode material to prevent the oxidation of the beryllium during the high-voltage stage. The rest 

of the cell was assembled as usual (cathode material // separator + electrolyte // anode material) in 

an argon-filled glove-box. Note that Be and Al give diffraction peaks at (λCo) 2θ = 53.8° and 59.9°, and 

2θ = 45.2°, respectively. 
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This special cell being bigger than the Swagelok® cells, is was also used to prepare larger quantity of 

cycled electrode materials for ex situ experiments. In this case, the beryllium window was replaced 

by a stainless steel current collector, and the cathode loading was up to 30 mg per cell (i.e. still 9-13 

mg.cm-2). 

 
Figure A.3: Technical drawing and picture of the special cell designed at the LRCS for in operando XRD 

experiments. 

A.2.3 Electrochemical cycling tests 

Electrochemical tests were conducted at 20°C using a Mac-Pile system (BioLogic S.A.) or more 

occasionally a VMP3 unit (BioLogic S.A.). Unless otherwise specified, the cells were typically cycled 

between 3.2 and 4.5 V vs. Li+/Li0 (or between 2.5 and 4.2 V vs. Na+/Na0) at a rate of 1 Li+ (Na+) 

exchanged per 20 hours (noted C/20). 

A.2.3.1 Galvanostatic tests 

Most of the electrochemical tests presented in this thesis were performed in galvanostatic mode, 

i.e. by imposing a constant current density to the cell and following the evolution of the cell voltage, 

which is recorded regularly. The charge (or discharge) rate is generally given using the nomenclature 

C/n, which means that the intensity of the current is imposed so that the complete charge (or 

discharge) is reached in n hours. Note that, in this thesis, a complete charge (or discharge) 

corresponds to the removal (or uptake) of 1 Li+ or 1 Na+ per transition metal. 

These galvanostatic measurements enable to trace the voltage-composition curves V = f(x) presented 

throughout the thesis. These curves provide first information on the charge/discharge mechanism, as 

they generally present either a S-shape for a single-phase (solid solution) process or a plateau 

(L-shape) for a two-phase mechanism. Moreover, calculating the derivative -δx/δV of the 

voltage-composition traces and plotting the curves -δx/δV = f(V) (i.e. ~simulation of a cyclic 
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voltammetry) often enable to determine more precisely the average working potential of the 

electrode material.  

A.2.3.2 Galvanostatic Intermittent Titration Technique (GITT) tests 

When cycling a cell in a classical galvanostatic mode, the system is generally not at equilibrium, and 

there is thus a shift of the experimental potential as compared to the theoretical one. This 

polarization is usually dependent of the charge/discharge rate. Indeed to reach the potential at the 

thermodynamical equilibrium, the system must be maintained in open circuit for an extended period 

of time. 

The principle of these GITT measurements consist in alternating short times of galvanostatic 

charge/discharge and longer stages of open circuit voltage relaxation (no current), so that to obtain a 

curve whose values at the end of the open circuit periods is close to the thermodynamic potential 

[501]. For this work, GITT tests have been performed at room temperature with a charge/discharge 

rate equivalent to C/20 for steps of 30 minutes alternated with open circuit stages of 15 hours.  

A.2.3.3 Potentiostatic Titration Technique (PITT) tests 

A PITT experiment consists in increasing the potential applied to the cell by small steps of a few mV 

and following the evolution of the current response until it reaches a limit value (ilim) [502]. Such an 

experiment provides some information about the charge/discharge mechanism. Indeed in the case of 

a single-phase process, the kinetics of Li+ de/intercalation is controlled by the diffusion of the ions 

through the host compound and the current variations are governed by a Cottrell equation 

(      ); on the other hand, for a two-phase mechanism, there are two cases: either the limitant 

step is the kinetics of phase transformation or the ionic or electronic diffusion within one of the two 

phases, so that the current decays does not necessarily follow a Cottrel equation.  

For the PITT experiements presented in this thesis, the voltage was incremented by 10 mV between 

2.5 and 4.5 V, letting the current decay until a limit corresponding to a fixed rate of C/100. 
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A.3 Structural characterizations 

A.3.1 Laboratory XRD measurements 

Laboratory X-ray diffraction (XRD) was used for this thesis work as a routine characterization method 

for verifying the purity of the samples. High-quality laboratory X-ray patterns were also acquired on 

the best samples in order to perform Rietveld refinement of the structural models proposed in the 

literature, or to determine the structure of novel phases. 

A.3.1.1 Facilities 

Three different XRD diffractometers were used to record the laboratory XRD patterns presented in 

this thesis: 

- a Bruker D8 diffractometer equipped with a Vantec detector and a Co-Kα source 

(λKα1 = 1.78897 Å, λKα2 = 1.79285 Å), operating at 40 kV and 40 mA, in reflection mode with a 

θ/θ Bragg-Brentano geometry, 

- a Bruker D8 diffractometer equipped with a LynxEye detector and a Cu-Kα source 

(λKα1 = 1,54056 Å et λKα2 = 1.54439 Å), operating at 40 kV and 40 mA, in reflection mode with 

a θ/θ Bragg-Brentano geometry, 

- a Bruker D4 ENDEAVOR diffractometer equipped with a LynxEye detector and a Cu-Kα source 

(λKα1 = 1,54056 Å et λKα2 = 1.54439 Å), operating at 40 kV and 40 mA, in reflection mode with 

a θ/2θ Bragg-Brentano geometry, 

A.3.1.2 Air sensitive samples 

To record XRD patterns of the air sensitive samples, the sample was prepared in an argon-filled 

glove-box and closed either in a special sample “dome” holder or below the X-ray transparent 

beryllium window of the electrochemical cell originally designed for in operando experiments and 

described above (see § A.2.2.2 page 159). 

A.3.1.3 In operando XRD experiments 

For in operando experiments, we used the special electrochemical cell equipped with a X-ray 

transparent beryllium window described above (see § A.2.2.2 page 159). The cell was placed in the 

Bruker D8 diffractometer (λCo) in place of the standard sample holder, and connected to a MacPile 

unit to control the electrochemical experiment. XRD patterns were continuously recorded in the 

range 10 ≤ 2θ ≤ 50° (approximately two-hour scans) while performing a classical galvanostatic cycling 

of the cell at a C/40 rate.  
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A.3.1.4 High-temperature XRD measurements 

Temperature-controlled XRD experiments were carried out with the Bruker D8 diffractometer having 

the Co source (see above), which was equipped with an Anton Paar HTK1200 furnace chamber 

(Figure A.4). For these experiments, the powder samples were placed on an alumina sample holder, 

and heated under air or under nitrogen flow, from room temperature and up to 600°C with a ramp of 

12°C/min. A delay of five minutes was observed before recording each pattern in the range 

10 ≤ 2θ ≤ 50° for approximately one hour at constant temperature. 

 
Figure A.4: (a) Anton Paar HTK1200 furnace chamber monted on the the Bruker D8 diffractometer. (b) Alumina 

sample holder for high-temperature XRD experiments. 

A.3.2 Synchrotron XRD measurements 

Additional high-resolution Synchrotron X-ray powder diffraction data were also recorded for some 

samples in order to confirm or determine their structural models. 

A.3.2.1 11-BM mail-in service of the Advanced Photon Source at Argonne National Laboratory 

Samples of LixM(SO4)2 (x = 1, 2 and M = Co, Fe) were measured with Synchrotron X-ray radiation 

(wavelengths of λ = 0.4131 Å or λ = 0.4139 Å) through the mail-in service of the 11-BM beamline of 

the Advanced Photon Source (APS) at Argonne National Laboratory (ANL, Argonne, USA). For these 

measurements, the samples Li2M(SO4)2 (M = Co, Fe) were sealed under argon in 0.7-mm diameter 

quartz capillaries, the latter being fitted in the kapton tube of the sample bases provided by the 

11-BM mail-in service. In the case of Li1Fe(SO4)2, the sample was directly filled into the kapton tube of 

the sample base and sealed with a drop of epoxy glue in an argon-filled glove-box. 

Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. 

Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-

AC02-06CH11357. Matthew Suchamel and Linda Carlson, members of the 11-BM staff, are 

acknowledged for their assistance and for their precious advice for sample preparation. 
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Figure A.5: Sample base kit of the 11-BM mail-in service. 

A.3.2.2 CRISTAL beamline at SOLEIL Synchrotron 

For the Na2M(SO4)2·nH2O (M = Co, Zn and n = 4, 0) compounds, temperature-controlled 

high-resolution Synchrotron X-ray diffraction was performed on the 2-circle diffractometer of the 

CRISTAL beamline at SOLEIL Synchrotron (Saint-Aubin, France), with a wavelength of λ = 0.6681 Å. 

Na2M(SO4)2·4H2O (M = Co, Zn) powder samples were filled in 0.7-mm diameter quartz capillaries, 

which were let open at one end in order to permit the departure of water. After having acquired a 

pattern of hydrated compound at room temperature, the formation of the corresponding 

dehydrated phase Na2M(SO4)2 was followed by recording X-ray patterns while heating the capillary 

using a Cyberstar hot-gas blower. 

These measurements were performed with the assistance of Erik Elkaim, who is kindly 

acknowledged.  

 
Figure A.6: (a) Large view of the 2-circle diffractometer of the CRISTAL beamline, with the gas blower installed 

for high-temperature experiments. (b) Enlargement on the sample capillary during the high-temperature 
experiment performed on the Na2Co(SO4)·4H2O sample. Note the difference in the color of the sample 

between the extremities of the capillary (pink: Na2Co(SO4)·4H2O) and the middle of the capillary above the gas 
blower (purple: dehydrated phase Na2Co(SO4)2). 
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A.3.3 Neutron powder diffraction 

Neutron diffraction is a complementary technique to X-ray diffraction, since the former enables to 

localize light elements (in our case the lithium atoms) which are barely visible with the latter. This is 

due to the fact that X-rays interfere with electrons, and are thus more scattered by heavier atoms. 

Conversely, neutrons interfere with nuclei. 

Moreover when a compound presents antiferromagnetic interactions, neutron powder diffraction 

enables to determine the long range ordering of the magnetic moments. The spatial orientation and 

the magnitude of the magnetic moments carried by the transition metals can indeed be 

unambiguously determined. 

In both cases, a large quantity of powder sample is necessary for NPD experiments as compared to 

XRD experiments (i.e. about one gram for the former vs. few milligrams for the latter). 

For this thesis work, Neutron Powder Diffraction (NPD) has been performed with the assistance of 

Thomas Hansen on the two diffractometers D2B and D20 at the Institut Laue Langevin (ILL, Grenoble, 

France). Both diffractometers are in Debye-Scherrer geometry. Powder samples were filled into 

vanadium cylindrical sample holders (vanadium is transparent to neutrons). 

A.3.3.1 D2B diffractometer at ILL 

The high resolution D2B diffractometer was used to recorded NPD patterns at room temperature 

with a wavelength of λ = 1.594 Å, in order to precisely refine the nuclear structures. It was in 

particular employed to localize the lithium into the Li1Fe(SO4)2 phase, and also to confirm the 

super-structure of the α-Na2Co(SO4)2 phase thanks to better contrast between the atoms obtained 

with neutrons.  

A.3.3.2 D20 diffractometer at ILL 

The high-intensity D20 diffractometer was mainly used for the determination of magnetic structures. 

For these measurements, the sample holder was placed in a hellium cryostat, which enables to reach 

temperatures as low as 1.8 K. NPD patterns were acquired in two different configurations: (i) either 

in high-flux mode with a wavelength of λ = 2.418 Å, (ii) or in high-resolution mode with two different 

wavelengths λ = 1.543 Å and λ = 2.416 Å. In the second case, patterns recorded with the first 

wavelength on a wide 2θ angle range were used to refine the nuclear structures at low temperature, 

while patterns obtained with the large second wavelength were of good resolution at low 2θ angles 

and were used to determine the magnetic structure of the compounds. 
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A.3.4 Diffraction data treatment 

A.3.4.1 Refinement of the structures from XRD and NPD patterns 

Crystal structures were refined against our experimental XRD and NPD patterns using the Rietveld 

method [385], as implemented in the FullProf suite of software [383,384]. 

Results of these refinements are presented in different tables within this thesis. All the values are 

given with standard deviations corresponding to 3 sigmas (i.e. three times the value reported in the 

output file of FullProf). 

In most cases, a bond valence sum (BVS) analysis was also performed during the Rieveld refinement, 

using the b0 parameters from Brown and Altermatt [402].  

A.3.4.2 Crystal structure determination  

Powder patterns were indexed using the Dicvol program [429,430], which is distributed with the 

FullProf suite software [383,384]. From the angular positions of the main diffraction peaks observed 

in the XRD powder pattern, this program proposes one or several solutions of crystalline systems and 

unit cell parameters that could index the pattern. Each proposition is associated with two figures of 

merit (MN and FN) which account for its validity. The XRD pattern is then refined using the Le Bail 

method (Profile Matching) with the FullProf program in order to determine more precisely the unit 

cell parameters. 

The structure determinations were then carried out with both the EXPO software, using the direct 

method [433–435], and the FOX program [432,431], using global optimization (ab initio calculations). 

The as-determined cristal structures were then refined using the Rietveld method [385], as 

implemented in the FullProf suite of software [383,384]. 

A.3.4.3 Magnetic structure determination 

Magnetic structures were determined from a symmetry analysis, using the method of Bertaut [487] 

as implemented in the BasIreps program of the FullProf suite of software [383,384]. This analysis 

enable to impose constraints to the magnetic moment carried by each magnetic atoms in the unit 

cell according to the symmetry of the unit cell, and permit to reduce the number of possible 

magnetic configurations, as some of them are forbidden by symmetry.  

A.3.4.4 Visualisation, drawing and analyses of the structures 

The structures were standardized using the STRUCTURE TIDY program [436]. They were drawn and 

examined with the help of three programs: (i) the FullProf Studio program of the FullProf suite 

[383,384], (ii) the VESTA visualization program [503] and (iii) the DIAMOND software. 
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Data of the structures that were not determined from our diffraction data were obtained from the 

ICSD database. 

A.4 Other physical-chemical characterizations 

A.4.1 57Fe Mössbauer Spectrosocopy 

The 57Fe Mössbauer Spectrosocopy is a nuclear resonant technique, which permit to obtain 

information about the oxidation state of the iron, the symmetry of its environment and its magnetic 

properties, if any, in the material studied [504]. It implies transitions between the nuclear ground 

state of the 57Fe and its first nuclear excited states, which are the consequences of the absorption of 

a photon.  

If the material does not present magnetic interactions (which is the cases of the materials studied at 

room temperature in this thesis), the Mössbauer spectrum of a nucleus of 57Fe is generally a doublet, 

as seen in Figure A.7. The difference between the two maxima of the doublet is named quadrupole 

splitting (noted ΔEq), while their barycentre with respect to the origin of the velocities is named 

isomeric shift (noted δ). These two hyperfine parameters are influenced by the electric field 

generated by the electrons of the iron atoms and the ones of the neighboring atoms. Thus the 

Mössbauer doublet of an iron in the oxidation state II+ typically presents an isomer shift around 

1.0 mm/s and a quadripole splitting ranging from 0.2 to 3.5 mm/s, while the doublet of an iron III+ 

has an isomer shift close to 0.3-0.4 mm/s and a quadripole splitting smaller than 2 mm/s [505]. 

 
Figure A.7: Schematic Mössbauer spectra showing the isomer shift (δ) and the quadripole splitting (ΔEq) of a 

typical doublet of Fe(II+). 

For this thesis, Mössbauer experiments were performed at the Institut Charles Gerhadt (UMR 5253, 

Université de Montpellier 2, Montpellier, France) in close collaboration with Dr. Moulay Tahar 

Sougrati. 57Fe Mössbauer spectra were recorded in transmission geometry (Figure A.8) in constant 

acceleration mode and with a 57Co(Rh) source with normal activity of 925 MBq. The velocity scale 
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( 4 mm/s-1) was calibrated at room temperature with a -Fe foil. The absorbers were typically 

prepared from 20 to 50 mg of powder samples (Figure A.8). For in operando experiments, we used a 

special cell similar to the one designed for in operando experiments, but having two beryllium 

windows: one at the positive and one at the negative electrodes. 

The hyperfine parameters  (isomer shift, giving with respect to that of -Fe) and Eq (quadrupole 

splitting) were determined by fitting Lorentzian lines to the experimental data using MOSFIT program 

and were then refined using the program FullHam of Dr. R. P. Hermann. 

 
Figure A.8: (a) Iron-base sample prepared in a 1-cm diameter absorber probe scealed under argon for 

Mössbauer spectroscopy measurement. (b) In-house built Mössbauer spectrometer at the AIME laboratory 
(Montpellier, France). 

A.4.2 7Li solid-state NMR 

7Li solid-state Nuclear Magnetic Resonance (NMR) was used to probe the local environment of the 

lithium within the Li2Fe(SO4)2 samples. These experiments were carried out by Dr. Robert Messinger 

at the Laboratory “Conditions Extrêmes et Matériaux: Haute Température et Irradation” (CEMHTI, 

Site Haute Température, CNRS UPR 3079, Orléans, France).  

All spectra were acquired on a 300 MHz Bruker AVANCE II 300 NMR spectrometer with a 7.05 Tesla 

wide-bore superconducting magnet operating at 116.6 MHz for 7Li nuclei. Measurements were 

conducted with a Bruker 1.3-mm magic-angle-spinning (MAS) probehead, where samples were 

rotated in zirconia rotors at ultra-fast MAS rates of 62.5 kHz with pure N2 gas at ambient 

temperature. 7Li spin-echo MAS spectra were acquired with half-echo delays (τ/2) of one rotor 

period (16 µs), and with a recycle delay of 100 ms (so that all paramagnetic and diamagnetic 7Li 

species have fully relaxed). 7Li shifts were referenced to a 1 M aqueous solution of LiCl. 

2D 7Li{7Li} EXSY (EXchange SpectroscopY) experiments were performed with a micing time of 1 ms 

and were spin-echo detected with half-echo delays of one rotor period. 
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A.4.3 Thermal analyses 

Thermal analyses enable to follow the physical and chemical changes of a material with the 

temperature. ThermoGravimetric Analyses (TGA) detect mass variations (mass loss or mass gain) 

while heating the sample in a given atmosphere (e.g. inert gas, air, reducing conditions). Their can be 

coupled to Mass Spectroscopy (MS), in order to analyse the gas associated with a mass loss. 

Differential Scanning Calorimetry (DSC) enable to observe changes of state, phase transitions and 

chemical reactions by measuring the difference in the amount of heat required to increase the 

temperature of the sample as compared to a reference.  

In our case, these experiments were performed by Matthieu Courty (Laboratoire de Réactivité et de 

Chimie des Solides ‒ LRCS, CNRS UMR 7314, UPJV, Amiens, France) Unless otherwise specified, 

TGA-MS analyses were carried out on ~20 mg of powder samples placed in an alumina or a platinium 

crucible, in the temperature range 20-800°C (heating rate: 10°C/min) under argon flow (50 cm3/min) 

using a STA-449C Jupiter unit (Netzsch) coupled to a quadrupole mass spectrometer QMS 403 Aëlos 

equipped with a stainless-steel capillary and a secondary-electron multiplier detector (Channeltron). 

DSC measurements were performed under the same conditions using a 204F1 Netzsch unit, with the 

samples sealed in aluminium crucibles. 

A.4.4 Elemental analyses using atomic absorption spectroscopy 

Atomic absorption spectroscopy was used to quantify alkali to transition metals ratio in the samples. 

These measurements were performed on a Perkin Elmer AAnalyst 300 spectrometer equipped with a 

10-cm single slot burner head for a C2H2-air combustion flame. Samples were solubilized in water to 

get solutions at around 2 ppm in metal to be titrated. Solutions were continuously aspirated through 

a mounted stainless steel nebulizer that was mounted to a plastic coated mixing chamber with an 

end cap with a drain interlock assembly. Gas flow rates recommended by a spectrometer 

manufacturer were used to maintain oxidizing flame conditions. The smallest slit widths were 

selected to lessen any spectral interferences. 

A.4.5 Electronic microscopy and elemental analyses 

SEM images were recorded on a FEI Quanta 200F Scanning Electron Microscope operating at 20 kV. 

Elemental analyses were performed with an EDAX EDS (X-ray Energy Dispersive Spectroscopy) in 

order to check the sulfur to transition metals ratio of the samples; these measurements were 

repeated on at least 10 different spots, on different particules of the samples. 

Transmission Electron Microscopy (TEM) on the Li2M(SO4)2 samples was performed by Pr. Loic 

Dupont (Laboratoire de Réactivité et de Chimie des Solides ‒ LRCS, CNRS UMR 7314, UPJV, Amiens, 
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France) on a Tecnai F20 S-Twin microscope, operating at 200 keV and fitted with an EDAX EDS (X-ray 

Energy Dispersive Spectroscopy). 

On the other hand, the -Na2Co(SO4)2 sample was studied by Transmission Electron Microscopy by 

Artem M. Abakumov and Gustaaf Van Tendeloo (Laboratory “Electron Microscopy for Materials 

Science”, University of Antwerp, Antwerp, Belgium). Selected Area Electron Diffraction (SAED) 

patterns and EDX spectra were obtained with a Tecnai G2 electron microscope operated at 200 kV 

equipped with an EDAX attachment. SAED patterns of -Na2Co(SO4)2 were taken with a very weak 

and widely spread electron beam. In these conditions the material almost did not suffer from the 

electron beam damage and allowed obtaining tilt series of the SAED patterns, which could be used 

for a reconstruction of the 3D reciprocal lattice. 

A.4.6 Infra-red spectroscopy 

Fourier Transform Infrared Spectroscopy (FTIR) was used to probe the presence of water in the 

samples. To do so, the samples were mixed with KBr powder using a mortar in an argon filled 

glove-box. This mixture was pressed at 10 tons for one minute to form a 13-mm diameter pellet, 

which was transferred in a FTIR sample holder close under argon, so that to prevent the pellet to be 

contaminated by moisture. Spectar were collected in the 4000-500 cm-1 wavenumber range using a 

Nicolet Avatar 370 DTGS spectrometer in transmission mode. 

A.4.7 Magnetic measurements 

Macroscopic magnetic properties of the LixM(SO4)2 samples (x = 1, 2 and M = Fe, Co, Mn, Ni) were 

probed on about 20 mg of the powder samples filled into gel caps, using either a SQUID 5S or a 

SQUID XL magnetometers (Quantum design). Susceptibility measurements (χ = f(T)) were carried out 

in zero-field-cooled (ZFC) and field-cooled (FC) conditions, in the temperature range 2 K-300 K, under 

applied magnetic fields (H) of 10 kOe and 100 Oe. Magnetization curves (M = f(H)) were recorded at 

2 K by varying the applied field between -50 kOe and 50 kOe.  
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A.5 Useful data tables 

A.5.1 Shannon ionic radii of a selection of cations 

Cation 
Electronic 

configuration 
Coordination 

number 
Spin state 

Ionic radius (Å) 
[111] 

Fe(III+) [Ar] 3d
5
 6 HS 0.645 

Ni(II+) [Ar] 3d
8
 6 

 
0.69 

Mg(II+) [Ne] 3s
0
 6 

 
0.72 

Cu(II+) [Ar] 3d
9
 6 

 
0.73 

Zn(II+) [Ar] 3d
10

 6 
 

0.74 

Co(II+) [Ar] 3d
7
 6 HS 0.745 

Li(I+) [He] 2s
0
 6 

 
0.76 

Fe(II+) [Ar] 3d
6
 6 HS 0.78 

Mn(II+) [Ar] 3d
5
 6 HS 0.83 

Ag(II+) [Kr] 4d
9
 6 

 
0.94 

Cd(II+) [Kr] 4d
10

 6 
 

0.95 

Ca(II+) [Ar] 4s
0
 6 

 
1.00 

Na(I+) [Ne] 3s
0
 6 

 
1.02 

K(I+) [Ar] 4s
0
 6 

 
1.38 

 

A.5.2 Hyperfine parameters obtained from the Mössbauer spectra of several 

sulfate-based compounds 

Phase 
Oxidation state 

of Fe 
 (mm/s) Eq (mm/s) 

FeSO4.7H2O +II 1.26 3.20 

FeSO4.H2O +II 1.26 2.72 

α-FeSO4  +II 1.28 3.11 

β-FeSO4  +II 1.28 2.8-2.9 

Monoclinic marinite Li2Fe(SO4)2  +II 1.30 1.16 

Amorphous Li2Fe(SO4)2  +II 1.26 2.44-2.99 

Na2Fe(SO4)2.4H2O +II 1.25 3.25 

Na6Fe(SO4)4 +II 1.30 1.47 

K2Fe(SO4)2.4H2O  
+II 1.26 3.55 

+II 1.3 1.83 

K2Fe2(SO4)3 
+II 1.31 0.28 

+II 1.32 0.85 

Amorphous Fe2(SO4)3.5H2O +III 0.45 0.36 

Rhombohedral Fe2(SO4)3  +III 0.46 0 

Monoclinic Fe2(SO4)3  +III 0.5 0.28 

FeSO4OH +III 0.42 1.39 

Monoclinic marinite Li1Fe(SO4)2 +III 0.46 0.33 

Na1Fe(SO4)2.4H2O +III 0.45 0.41 

NaFe(SO4)2 +III 0.47 0.46 

Na3Fe(SO4)3  +III 0.46 0.12 

KFe(SO4)2 +III 0.47 0.29 
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A.5.3 Tables of selected interatomic distances and bond angles 

A.5.3.1 Na2Co(SO4)2.4H2O 

Distances (Å)     

Co-Co 5.5356(4)  Na-O1 2.391(12) 

Co-Co 6.9124(3)  Na-O2 2.424(12) 

Co-Co 8.2436(5)  Na-O2 2.375(9) 

Co-O3 2.089(9)  Na-O4 2.388(12) 

Co-O5 2.074(9)  Na-O5 2.421(9) 

Co-O6 2.136(9)  Na-O6 2.610(12) 

S-O1 1.496(12)  S-O3 1.473(9) 

S-O2 1.467(9)  S-O4 1.478(12) 

O5-H1 1.00(4)  O6-H3 0.94(4) 

O5-H2 0.96(4)  O6-H4 0.98(4) 

Angles (°)     

H1-O5-H2 109(1)  H3-O6-H4 103(1) 

 

A.5.3.2 Na2Fe(SO4)2.4H2O 

Distances (Å)     

Fe-Fe 5.5581(2)  Na-O1 2.391(11) 

Fe-Fe 6.9491(1)  Na-O2 2.470(10) 

Fe-Fe 8.2622(2)  Na-O2 2.291(9) 

Fe-O3 2.270(8)  Na-O4 2.370(10) 

Fe-O5 2.153(8)  Na-O5 2.302(9) 

Fe-O6 2.162(8)  Na-O6 2.615(10) 

S-O1 1.451(11)  S-O3 1.368(10) 

S-O2 1.498(9)  S-O4 1.537(11) 

O5-H1 1.024(8)  O6-H3 0.896(7) 

O5-H2 1.040(7)  O6-H4 1.049(8) 

Angles (°)     

H1-O5-H2 101(1)  H3-O6-H4 102(1) 
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A.5.3.3 α-Na2Co(SO4)2 

Distances (Å)      

Co1-Co1 4.71(2) Co1-Co3 4.76(3) Co2-Co3 4.66(2) 

Co1-Co2 4.83(3) Co1-Co3 5.32(2) Co2-Co3 5.04(2) 

Co1-Co2 5.40(2) Co2-Co2 4.84(3) Co3-Co3 4.99(3) 

Co1-O1a 2.08(3) Co2-O2a 2.03(3) Co3-O3b 2.09(4) 

Co1-O1b 2.09(4) Co2-O4a 2.04(4) Co3-O4b 2.09(4) 

Co1-O4c 2.20(4) Co2-O3c 2.08(4) Co3-O1c 2.02(4) 

Co1-O1e 2.41(4) Co2-O3d 2.22(4) Co3-O1d 2.16(3) 

Co1-O2e 2.28(4) Co2-O1f 2.15(4) Co3-O2d 2.14(4) 

Co1-O3e 1.99(4) Co2-O3f 2.25(4) Co3-O4f 2.11(4) 

Na1-O4a 2.73(6) Na2-O2b 2.53(5) Na3-O2b 2.36(6) 

Na1-O4e 2.32(4) Na2-O4c 2.68(5) Na3-O2c 2.61(5) 

Na1-O3f 2.71(4) Na2-O2d 2.66(6) Na3-O3c 2.59(5) 

Na6-O1a 2.58(4) Na2-O4d 2.30(5) Na3-O3d 2.48(5) 

Na6-O3c 2.41(4) Na2-O2e 2.76(6) Na3-O1e 2.49(6) 

Na6-O1e 2.41(4) Na2-O2f 2.24(5) Na3-O2e 2.49(5) 

Na4-O2a 2.46(5) Na5-O3b 2.37(5) Na7-O3a 2.61(6) 

Na4-O3a 2.26(5) Na5-O2c 2.35(5) Na7-O1b 2.72(5) 

Na4-O1d 2.44(5) Na5-O2d 2.42(5) Na7-O4b 2.46(5) 

Na4-O3e 2.48(5) Na5-O1f 2.33(5) Na7-O1d 2.62(6) 

Na4-O4e 2.54(5) Na5-O4f 2.39(5) Na7-O1f 2.49(6) 

Na4-O3f 2.49(5) Na5-O1c 2.92(5) Na7-O4d 2.86(6) 

S1-O11 1.46(3) S2-O21 1.47(4) S3-O31 1.47(4) 

S1-O12 1.45(3) S2-O22 1.46(4) S3-O32 1.49(4) 

S1-O13 1.45(4) S2-O23 1.49(4) S3-O33 1.48(4) 

S1-O14 1.47(4) S2-O24 1.49(4) S3-O34 1.49(4) 

S4-O41 1.46(4) S5-O51 1.49(4) S6-O61 1.48(3) 

S4-O42 1.46(4) S5-O52 1.46(4) S6-O62 1.47(4) 

S4-O43 1.49(4) S5-O53 1.50(4) S6-O63 1.45(4) 

S4-O44 1.47(4) S5-O54 1.45(4) S6-O64 1.47() 

 

A.5.3.4 Li2Co(SO4)2 

Distances (Å)     

Co-Co 4.9786(2)  S-O1 1.4502(17) 

Co-Co 5.9777(2)  S-O2 1.4834(18) 

Co-Co 6.1213(2)  S-O3 1.4976(19) 

Co-O2 2.1472(16)  S-O4 1.4767(19) 

Co-O2 2.1472(16)  Li-O1 1.871(6) 

Co-O3 2.0759(21)  Li-O1 1.977(6) 

Co-O3 2.0759(21)  Li-O2 2.079(8) 

Co-O4 2.1151(16)  Li-O3 2.254(7) 

Co-O4 2.1151(16)  Li-O4 1.994(7) 
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A.5.3.5 Li2Fe(SO4)2 

Distances (Å)     

Fe-Fe 4.9886(2)  S-O1 1.4751(17) 

Fe-Fe 6.0270(2)  S-O2 1.4824(18) 

Fe-Fe 6.1671(2)  S-O3 1.4726(19) 

Fe-O2 2.1843(16)  S-O4 1.4808(19) 

Fe-O2 2.1843(16)  Li-O1 1.871(6) 

Fe-O3 2.1142(20)  Li-O1 1.977(6) 

Fe-O3 2.1142(20)  Li-O2 2.079(8) 

Fe-O4 2.1586(16)  Li-O3 2.254(7) 

Fe-O4 2.1586(16)  Li-O4 1.994(7) 

 

A.5.3.6 Li1Fe(SO4)2 

Distances (Å)     

Fe-Fe 4.7975(2)  S-O1 1.4880(19) 

Fe-Fe 5.7540(2)  S-O2 1.4413(19) 

Fe-Fe 6.0256(2)  S-O3 1.5041(18) 

Fe-O1 2.0133(2)  S-O4 1.4767(13) 

Fe-O1 2.0133(2)  Li-O1 2.367(11) 

Fe-O3 2.0335(2)  Li-O2 1.842(17) 

Fe-O3 2.0335(2)  Li-O2 1.843(17) 

Fe-O4 1.9997(2)  Li-O3 2.128(13) 

Fe-O4 1.9997(2)  Li-O3 2.188(12) 

 

A.5.3.7 Li2Mn(SO4)2 

Distances (Å)     

Mn-Mn 4.9925(4)  S-O1 1.451(4) 

Mn-Mn 6.0847(3)  S-O2 1.483(4) 

Mn-Mn 6.2458(4)  S-O3 1.452(5) 

Mn-O1 2.190(4)  S-O4 1.456(4) 

Mn-O1 2.190(4)  Li-O1 1.970(11) 

Mn-O3 2.135(4)  Li-O2 2.005(12) 

Mn-O3 2.135(4)  Li-O2 2.106(15) 

Mn-O4 2.239(3)  Li-O3 2.265(11) 

Mn-O4 2.239(3)  Li-O3 1.972(11) 

 

 

 



   

Résumé étendu 

F.1. Introduction générale 
Depuis la domestication du feu il y a environ 400 000 ans, l’histoire des énergie a été intimement liée 

à celle des changements technologiques, économiques et politiques [1,2]. L’énergie musculaire et le 

bois étaient les seules sources d’énergie durant la Préhistoire. Pendant l’Antiquité, les Grecs et les 

Romains commencèrent à utiliser la force du vent pour le transport, et au Moyen-Age les moulins à 

vent et moulins à eau se multiplièrent pour le meulage et le sciage. Plus tard, l’utilisation massive du 

bois pour les constructions et les premières industries (métallurgie, verrerie, etc.) conduit à la 

déforestation rapide de l’Europe aux XVIIème et XVIIIème siècles, ce qui encouragea ensuite 

l’exploitation des mines de charbon. Le charbon et l’invention de la machine à vapeur à la fin du 

XVIIème siècle marqueront d’ailleurs le début de la Révolution Industrielle en Occident. La fin du XIXème 

siècle sera le témoin à son tour d’une accélération considérable du développement industriel, avec 

d’une part le début du raffinage du pétrole et l’invention du moteur à combustion, et d’autre part le 

début de la production et de la distribution d’électricité à grande échelle ainsi que de la conception 

du moteur électrique. Le développement de ces deux technologies conduira à la Seconde Révolution 

Industrielle et à la naissance d’un nouveau moyen de transport individuel, la voiture. 

Aujourd’hui, nous sommes certainement à notre tour à l’aube d’une nouvelle révolution dans le 

domaine de l’énergie. La majorité de l’énergie consommée dans le monde est d’origine fossile 

(i.e. pétrole, charbon et gaz) [3]. L’utilisation massive de ces sources d’énergie entraine de plus en 

plus de tensions politiques et économiques, car ces ressources sont limitées et sont sur la voie de 

l’épuisement. En effet, le monde fait face à une augmentation rapide de la demande d’énergie 

(Figure F.1), principalement dû à l’explosion des échanges mondiaux, à la croissance rapide de la 

population (depuis 1950, la population mondiale a augmenté de 13 à 22% tous les 10 ans, et les 

prévisions des Nations Unies ne suggèrent pas de ralentissement de cette tendance pour le XXIème 

siècle [4]), ainsi qu’au développement rapide des pays émergeants, qui prétendent au même niveau 

de vie que les pays développés. La demande croissante d’énergie combinée aux craintes d’un 

possible épuisement a inévitablement conduit à une montée régulière des prix des combustibles 

fossiles depuis la première crise du pétrole au début des années 1970.  

Par ailleurs, l’utilisation massive des énergies fossiles est également à l’origine de problèmes 

environnementaux, puisque leur combustion génère de grandes quantités de gaz à effet de serre 

(Figure F.1). Depuis les années 1950, la communauté scientifique a remarqué un impact non 
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négligeable de ces gaz sur le climat, avec nombreux changements sans précédent : l’atmosphère et 

les océans se sont réchauffés, les quantités de neige et de glace ont diminué, le niveau de la mer 

s’est élevé, etc. [5]. Les conséquences exactes de ces changements climatiques sont encore en débat, 

mais elles vont sans aucun doute affecter l’écosystème mondial (Figure F.1) et sont susceptibles de 

provoquer de plus en plus régulièrement des évènements climatiques extrêmes (par exemple : 

tempêtes, inondations, sècheresses), des migrations massives de populations (en conséquence de 

l’érosion des côtes, de la submersion des littoraux, des perturbations des productions agricoles), etc. 

Limiter ces changements climatiques ne sera possible que si nous parvenons à réduire de façon 

considérable nos émissions de gaz à effet de serre. 

 
Figure F.1 : A gauche : consommation mondiale d’énergie en fonction du type de ressource pendant la période 

1850-2000, avec en parallèle les inventions technologiques majeures de cette période (d’après [3]).  

A droite : évolution des changements de la température moyenne à l’échelle mondiale (les prédictions 
optimistes et pessimistes sont respectivement représentées en bleu et en rouge) et évolution de la 

concentration atmosphérique en CO2 depuis 1950 (d’après [5]).  

Ainsi, il est devenu urgent de développer des sources d’énergies plus abondantes, renouvelables et 

moins polluantes, telles que le sont les énergies hydraulique, solaire et éolienne, la biomasse et la 

géothermie. Cependant, certaines d’entre elles ne fournissent pas de l’énergie en continu 

(i.e. énergies intermittentes), et doivent donc être couplées à des solutions de stockage afin 

d’équilibrer production et demande d’énergie. Parmi les différentes options existantes, lesquelles 

sont discutées en détails dans la référence [6], les systèmes de stockage électrochimique (piles à 

combustible, batteries, supercondensateurs, etc. [7]), et en particulier les batteries, apparaissent 

comme les solutions les plus prometteuses. Les batteries convertissent l’énergie électrique en 

énergie chimique quand elles sont chargées, et inversement, fournissent de l’énergie électrique 

quand elles sont déchargées ; cela avec un rendement de conversion élevé et sans émission de gaz à 

effet de serre. De plus, la forme et la taille de ces dispositifs peuvent être adaptées (e.g. de quelques 
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mm3 à plusieurs dizaines de m3), et ils peuvent donc être utilisés tout autant pour des applications de 

stockage stationnaire (unités d’alimentation permanentes, écrêtage de pointe) que pour des 

applications mobiles (dispositifs électroniques portables, véhicules électriques et hybrides). 

Plusieurs technologies de batteries existent, les plus courantes sont les batteries au plomb, les 

batteries nickel-cadmium (Ni-Cd), les batteries nickel-hydrure métallique (Ni-MH), et les batteries au 

lithium. Grâce à leur densité d’énergie élevée par rapport aux autres technologies, les batteries Li-ion 

ont rapidement envahi le marché de l’électronique portable depuis le début des années 1990, et 

elles sont maintenant sur le point de conquérir les véhicules électriques et le stockage de masse. 

Cependant, malgré 30 ans de recherche académique et de développement industriel consacrés à 

cette technologie, des améliorations sont encore possibles et nécessaires. Nous pouvons considérer 

que les challenges actuels sont doubles. D’un côté, les besoins pour les dispositifs électroniques 

portables et les véhicules électriques stimulent la recherche vers des systèmes Li-ion présentant de 

plus grandes capacités d’énergie et de plus haut potentiels ; d’un autre côté, le développement du 

stockage de masse requiert des batteries moins chères, et dont la solution pourrait se trouver dans 

une technologie soeur : les batteries Na-ion. Dans les deux cas, la conception et l’optimisation de 

nouveaux matériaux de batteries est requis.  

 

Contrairement à d’autres technologies, les batteries Li-ion reposent sur une chimie riche, où une 

grande variété de matériaux peuvent être employés en tant qu’électrodes positives et négatives. 

Cependant, les matériaux d’électrodes positives actuels présentent encore de trop faibles capacités 

spécifiques, et sont ainsi le principal facteur pénalisant les batteries en termes de densité d’énergie 

[9]. C’est pourquoi ces 30 dernières années d’importants efforts ont été dédiés à la recherche de 

nouveaux matériaux de cathode présentant de meilleures performances.  

Le matériau d’électrode positive idéal reposerait sur un couple redox possédant un haut potentiel, 

mais compatible avec la fenêtre de stabilité des électrolytes actuels (i.e. < 4.8 V vs. Li+/Li0). Il 

présenterait également une grande capacité spécifique, laquelle est proportionnelle au nombre 

d’électrons échangés par formule unitaire et inversement proportionnelle à la masse molaire du 

composé. Cependant ces deux propriétés ne sont pas les uniques critères qu’un bon matériau 

d’électrode positive doit remplir. Il doit également réagir avec le lithium selon un mécanisme 

d’insertion/désinsertion parfaitement réversible, de façon à présenter une bonne rétention de 

capacité. Cette réversibilité est principalement liée aux modifications structurales et morphologiques 

subies par le matériau d’électrode lors de l’extraction et de la réinsertion des cations alcalins dans le 

matériau actif. Une électrode positive doit également être un bon conducteur ionique et 
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électronique, puisque ces deux propriétés sont les principaux facteurs limitant la cinétique de la 

réaction redox (plus que le transfert de masse) et qu’ils déterminent ainsi les performances en 

puissance de l’électrode. Enfin, elle doit contenir du lithium pour être facilement implémentée dans 

les batteries Li-ion, et, pour des raisons de durabilité et de sécurité, les autres constituants doivent 

être préférablement choisis parmi les éléments abondants, peu chers et non toxiques. 

Les principaux matériaux d’électrode positive étudiés jusqu’à présent peuvent être classés en deux 

groupes : les oxydes et les composés polyanioniques. Les oxydes, qui sont à l’origine du premier 

succès commercial des batteries Li-ion, fournissent de hauts potentiels et de hautes densités 

d’énergie. Cependant, pour des raisons environnementales et économiques, ces matériaux 

d’électrodes à base de cobalt et de nickel sont maintenant appelés à être remplacés par des 

éléments plus durables tels que le fer ou le manganèse. Les oxydes de fer présentant des 

performances médiocres en tant que matériaux d’électrode positive, les recherches se sont tournées 

à la fin des années 1990 vers les matériaux polyanioniques à base de fer, qui offrent des charpentes 

structurelles robustes permettant de meilleures performances en cyclage, et avec lesquelles il est 

possible d’ajuster le potentiel redox du couple FeIII+/FeII+ en jouant sur la composition et la structure 

du composé. 

Bien qu’il n’existe pas d’indicateur universel permettant de prévoir les performances 

électrochimiques d’un composé donné avant de l’avoir synthétisé, plusieurs paramètres importants 

ont été identifiés à travers des différentes familles de matériaux d’électrode étudiés ces 25 dernières 

années [348]. Tout d’abord, une première caractéristique rencontrée dans la plupart des bons 

matériaux d’électrode est leur charpente structurale ouverte, favorisant la diffusion des cations 

alcalins et permettant des cyclages à hauts régimes. En ce qui concerne le potentiel du couple redox 

Mn+/M(n+1)+, celui-ci est fortement corrélé au caractère ionocovalent de la liaison M‒O, qui lui-même 

dépend de différents paramètres chimiques et structurels interdépendants: la compacité de la 

structure (polyèdres MOx isolés ou partageant des sommets, des arêtes ou des faces [234,349]), la 

présence et la connectivité d’éléments électronégatifs et de groupements polyanioniques autour du 

centre redox (effet inductif [222,232,233]), la position du cation hôte dans la structure 

[113,115,349,350], etc. Ces différents paramètres sont utilisés pour expliquer les tendances 

générales observées dans les différentes familles de matériaux d’électrode. Toutefois, ils doivent être 

employés avec précautions pour prédire le potentiel d’un nouveau composé, puisque aucun d’entre 

eux n’est parfaitement fiable pris individuellement, et que le potentiel redox d’un matériau donné 

est souvent le résultat d’une combinaison de ces différents paramètres. 
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En tenant compte de ces observations, plusieurs stratégies peuvent être adoptées pour concevoir de 

nouveaux matériaux d’électrode. L’une d’entre elles s’appuie sur des calculs théoriques 

combinatoires, avec lesquels on va tenter de prédire les structures de milliers de matériaux avec des 

compositions chimiques aléatoires et de calculer leurs propriétés physico-chimiques, dans le but 

d’identifier la « composition magique » présentant à la fois un haut potentiel et une grande capacité 

spécifique [351–354]. Les premiers résultats de telles études théoriques ont été rapportées ces 

dernières années [288,355–357], mais leur succès reste encore limité. Une autre approche, suivie par 

le chimiste expérimental, consiste à repérer parmi les structures de composés connus (par exemple, 

des phases précédemment synthétisées, des minéraux, etc.) les familles de matériaux qui présentent 

des aspects structuraux favorables au transport ionique. Pour les travaux présentés dans ce 

manuscrit, nous avons choisi de nous inspirer des quelques 4000 espèces minérales rapportées par 

nos confrères minéralogistes pour concevoir de nouveaux matériaux d’électrode. En plus du fait que 

les structures des minéraux sont généralement connues avec précision, la compréhension des 

conditions de leur formation dans la nature peut suggérer un bon point de départ pour leur synthèse 

artificielle, laquelle pourra ensuite être généralisée à la préparation de leurs dérivés structuraux. Il 

est par ailleurs intéressant de remarquer que de nombreux composés polyanioniques 

précédemment étudiés en tant que matériaux d’électrode cristallisent en fait dans des structures de 

minéraux.  

Inspirés par les minéraux, nous avons donc exploré dans ce travail de thèse une nouvelle famille de 

composés à base de sulfates de formule générale A2M(SO4)2·nH2O (A = alcalin, M = métal de 

transition 3d, et n = 0, 4). Ce manuscrit décrit les principaux résultats obtenus au cours de cette 

étude.  

F.2. Elaboration de nouveaux matériaux d’électrode à partir de minéraux à 

base de sulfates 
Parmi tous les matériaux d’électrode contenant des groupements polyanioniques, les sulfates sont 

ceux qui présentent les potentiels redox les plus élevés ; ceci est expliqué par le fait que le soufre est 

plus électronégatif que les autres éléments centraux de groupements polyanioniques (phosphore, 

bore, silicium, etc.). Les fluorosulfates, qui combinent l’effet inductif des groupements sulfates et 

l’électronégativité du fluor, affichent en fait les plus hauts potentiels jamais rapportés pour le couple 

redox FeIII+/FeII+ (3,9 V vs. Li+/Li0 pour la triplite LiFeSO4F [330,335] et 3,5 V vs. Na+/Na0 pour la 

maxwellite NaFeSO4F [331]). Cependant, connaissant les réticences des industriels à utiliser des 

composés d’électrode fluorés, nous avons entrepris la recherche d’autres matériaux à base de 

sulfates mais dépourvus de fluor. Dans ce but, nous avons choisi d’explorer les minéraux, parmi 
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lesquels sont rapportés de nombreux sulfates [358]. Nous nous sommes en particuliers focalisés sur 

les sulfates minéraux contenant à la fois des métaux alcalins (Na ou K) et des métaux de transition 3d 

ou des cations magnésium, et nous avons choisi de travailler sur des composés dérivés du minéral 

bloedite Na2Mg(SO4)2·4H2O. 

F.2.1. Les composés de type bloedite Na2M(SO4)2·4H2O (M = Mg, Zn, Co, Fe, Ni) 

Les composés de type bloedite Na2M(SO4)2·4H2O (M = Mg, Zn, Ni, Co, Fe) ont été très largement 

étudiés depuis les années 1940 [365–382]. Pour la synthèse de ces composés, nous avons commencé 

par imiter le processus d’évaporation des saumures naturelles, en évaporant lentement une solution 

équimolaire de sulfate de sodium Na2SO4 et du sulfate de métal correspondant MSO4·7H2O à des 

températures allant de 20°C à 90°C. Nous avons ensuite obtenu les mêmes phases par précipitation 

de cette même solution dans l’éthanol. Enfin, nous avons également pu préparer les cinq composés 

Na2M(SO4)2·4H2O par broyage mécanique (Spex 8000M®) d’un mélange équimolaire des sulfates 

précurseurs pendant 20 minutes, sous air ou sous argon. Quelque soit la voie de synthèse utilisée, les 

phases hydratées se forment selon la réaction suivante: 

Na2SO4 + MIISO4·7H2O  Na2MII(SO4)2·4H2O + 3H2O 

 
Figure F.2 : Représentation de la structure bloedite, selon les axes a (à gauche) et b (à droite). 

La structure bloedite est constituée d’unités isolées, faites d’un octaèdre MO6 entouré de quatre 

molécules d’eau placées dans le plan équatorial de l’octaèdre et de deux tétraèdres SO4 en positions 

axiales. Ces unités M(SO4)2(H2O)4 sont alignées selon l’axe a (Figure F.2), et les ions sodium sont 

rangés deux par deux dans de larges tunnels parallèles à cette même direction. Chaque atome de 

sodium est coordiné à six atomes d’oxygène, formant ainsi des octaèdres NaO6 distordus, qui 

partagent deux à deux leurs faces pour former des groupements isolés Na2O10. 
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Afin de vérifier la possibilité d’extraire le sodium de ces larges tunnels, nous avons testé les 

propriétés électrochimiques des cinq phases Na2M(SO4)2·4H2O (M = Mg, Zn, Ni, Co, Fe) face au 

lithium et au sodium ; seul le composé à base de fer s’est révélé être électrochimiquement actif, 

comme le montrent les courbes présentées dans la Figure F.3 [363,364]. Le potentiel redox du 

couple FeIII+/FeII+ est centré autour de 3,6 V versus Li+/Li0 et 3,3 V versus Na+/Na0. Ces potentiels sont 

plus élevés que celui de LiFePO4 (3,45 V vs. Li+/Li0 [233]) et sont du même ordre de grandeur que 

d’autres composés à base de sulfates, tels que les NASICON Fe2(SO4)3 (3,6 V vs. Li+/Li0 [222,223]), les 

tavorites LiFeSO4F (3,6 V vs. Li+/Li0 [321]) et FeSO4OH (3,2 V vs. Li+/Li0 [340]), le composé lamellaire 

LiFeSO4OH (3,6 V vs. Li+/Li0 [342]), et la maxwellite NaFeSO4F (~3,5 V vs. Na+/Na0 [331]). 

 
Figure F.3 : Courbes électrochimiques de Na2Fe(SO4)2·4H2O cyclé face (a) au sodium et (b) au lithium, en 

utilisant respectivement des électrolytes à base de NaClO4 dans PC et LiClO4 dans PC, et un régime de C/50. 
Les cadres de gauche montrent les courbes potentiels-composition, avec une première charge relativement 

plate (en rouge) et les décharges et charges suivantes plus pentues (de bleu à vert). Dans les cadres de droite 
sont représentées les courbes dérivées correspondantes (dx/dV). 

Des mesures de diffraction des rayons X (DRX), de spectrométrie Mössbauer du 57Fe et de 

spectroscopie infrarouge réalisées sur des matériaux d’électrodes à différents états de charge 

(expériences ex situ) ont permis de mettre en évidence que, lors de la première charge (en rouge sur 

la Figure F.3), l’extraction d’un sodium est associée à l’amorphisation du matériau actif et à la perte 

des quatre molécules d’eau présentes dans sa structure.  

Sachant que Na2Fe(SO4)2·4H2O pouvait perdre son eau structurelle, une prolongation évidente de ce 

travail était d’essayer de préparer une phase anhydre Na2Fe(SO4)2 (capacité spécifique théorique de 

~91 mAh/g contre ~73 mAh/g pour la phase hydratée), afin d’étudier son comportement 

électrochimique.  

F.2.2. Les dérivés anhydres des phases bloedite α-Na2M(SO4)2 (M = Co, Fe) 

Les analyses thermogravimétriques des phases Na2M(SO4)2·4H2O (M = Mg, Zn, Ni, Co, Fe) ont montré 

que leurs quatre molécules d’eau étaient libérées entre 100 et 300°C, suivant deux mécanismes 
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différents selon la nature du métal divalent. Pour cette raison, nous avons décidé de nous focaliser 

pour cette étude sur les systèmes au cobalt et au fer, qui présentaient des comportements similaires.  

Pour mieux comprendre le procédé de déshydratation des deux phases Na2M(SO4)2·4H2O (M =  Co, 

Fe), nous avons suivi l’évolution de leurs diagrammes de DRX en fonction de la température 

(Figure F.4). A la fin de la déshydratation, nous avons observé la cristallisation d’une nouvelle phase 

dont le diagramme de DRX (en rouge dans la Figure F.4) correspondait au diagramme de Debye-

Scherrer rapporté par Cot pour la phase α-Na2Co(SO4)2 [376,381].  

 
Figure F.4 : Evolution des digrammes de DRX pendant le processus de déshydratation de (a) Na2Co(SO4)2·4H2O 

et (b) Na2Fe(SO4)2·4H2O. Les diagrammes bleus correspondent aux phases Na2M(SO4)2·4H2O, les verts à une 
étape intermédiaire dans laquelle on peut identifier les composés Na2SO4 et MSO4·H2O parmi d’autres phases, 

et les diagrammes rouges sont ceux des phases α-Na2M(SO4)2.  

Nous avons déterminé la structure des phases α-Na2M(SO4)2 (M = Co, Fe) [364] en combinant des 

mesures de diffraction des rayons X avec un rayonnement Synchrotron, de diffraction des neutrons 

sur poudre (NPD) et de diffraction électronique (SAED). Nous avons ainsi déterminé que ces phases 

cristallisent dans une super-maille monoclinique (groupe d’espace : C2/c), avec les paramètres 

suivants pour la phase au cobalt : a = 23.262(2) Å, b = 10.3057(9) Å, c = 17.4047(15) Å, β = 98.972(6)°, 

V = 4121.4(6) Å3. Leur structure consiste en un arrangement compliqué d’octaèdres de MO6 et de 

tétraèdres de SO4, qui sont alternativement connectés soit par des sommets et des arêtes, soit par 

des sommets uniquement, et forment ainsi de courtes chaines comme illustrées dans la Figure F.5. 

Les atomes de sodium se trouvent dans des petits tunnels parallèles à la direction [101].  
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Figure F.5 : Structure de α-Na2Co(SO4)2 représentée avec la super-maille monoclinique décrite dans le texte. 

(a), (d) and (e) Projections selon l’axe b et les directions [1 0 -2] et [1 0 1], respectivement. Les groupes CoO6 et 
SO4 sont respectivement représentés par des octaèdres bleus et des tétraèdres jaunes. Les boules cyan 

correspondent aux atomes de sodium. (b) Chaines d’octaèdres CoO6 et de tétraèdres SO4, qui sont 
alternativement connectés par des sommets et des arêtes. Les atomes de sodium ne sont pas représentés pour 

plus de clarté. (c) Détails d’une chaine, où les atomes d’oxygènes sont représentés en rouge. Les arêtes 
partagées par les octaèdres de CoO6 et les tétraèdres de SO4 sont mis en évidence par des traits rouges. 

Les phases α-Na2M(SO4)2 (M = Co, Fe) ont ensuite été testées face au sodium et au lithium, mais 

comme pour les composés hydratés, seul le matériau à base de fer s’est révélé électroactif dans la 

fenêtre de potentiel accessible avec les électrolytes utilisés [364]. Les courbes potentiel-composition 

(Figure F.6) montrent que le potentiel du couple FeIII+/FeII+ est une nouvelle fois élevé: 3,6 V vs. Li+/Li0 

et 3,4 V vs. Na+/Na0. Le profil des courbes galvanostatiques de α-Na2Fe(SO4)2 diffère de celui de la 

phase hydratée Na2Fe(SO4)2·4H2O : elles présentent une forme en S dès la première charge. De plus, 

des mesures préliminaires de diffraction des rayons X sur les matériaux d’électrode semblent 

montrer que α-Na2Fe(SO4)2 ne s’amorphise pas pendant le cyclage, bien que la mauvaise cristallinité 

du matériau d’électrode ne permette pas à ce stade de déterminer la nature du mécanisme de 

charge-décharge. 
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Figure F.6 : Caractérisation électrochimique de α-Na2Fe(SO4)2 (a) versus sodium et (b) versus lithium. La 

première charge est tracée en rouge, et les décharges et charges suivantes sont représentées en bleu et vert. 
Les courbes dérivées correspondantes dx/dV sont montrées à la droite de chaque courbe galvanostatique.  

F.2.3. Conclusion 

Dans cette étude, nous avons prouvé la faisabilité de préparer de nouveaux matériaux d’électrode à 

base d’éléments abondants et durables (sodium, fer, soufre et oxygène) en s’inspirant d’espèces 

minérales, et nous avons ainsi montré que les composés minéraux constituent une riche base de 

données dans laquelle les chercheurs peuvent choisir des structures modèles à partir desquelles 

concevoir de nouveaux matériaux fonctionnels.  

Nous avons rapporté la synthèse des composés de types bloedite Na2M(SO4)2·4H2O (M = Mg, Zn, Ni, 

Co, Fe) et de leur dérivés déshydratés Na2M(SO4)2 (M = Co et Fe), pour lesquels nous avons résolu la 

structure cristalline. Ces matériaux d’électrodes sont relativement limités en terme de capacité 

(< 80 mAh/g) du fait de leur grande masse moléculaire, mais ils présentent toutefois des potentiels 

élevés pour le couple redox FeIII+/FeII+ (3,5-3,6 V vs. Li+/Li0 et 3,3-3,4 V vs. Na+/Na0), pour lesquels ces 

nouveaux matériaux d’électrode restent intéressants d’un point de vue fondamental. 

Ces potentiels redox excèdent en effet les valeurs de références obtenues avec des composés à base 

de phosphates (LiFePO4 : 3,45 V vs. Li+/Li0, NaFePO4 et Na2FePO4F : ~3,0 V vs. Na+/Na0) et sont 

proches des potentiels rapportés pour d’autres matériaux à base de sulfates (type NASICON 

Fe2(SO4)3, lamellaire LiFeSO4OH et tavorite LiFeSO4F : 3,6 V vs. Li+/Li0, maxwellite NaFeSO4F : ~3,5 V 

vs. Na+/Na0). Par conséquent, ces résultats corroborent les précédentes observations qui suggéraient 

que l’utilisation de sulfates dans les matériaux d’électrode permettait d’atteindre de hautes valeurs 

de potentiels. De plus, ils confirment une fois de plus que l’incorporation de fluor dans des matériaux 

d’électrode n’est pas indispensable pour obtenir de hauts potentiels.  

Poursuivant notre quête de nouveaux matériaux d’électrode à haut potentiel, nous avons ensuite 

essayé de préparer des analogues aux phases bloedite à base de lithium.  
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F.3. Une nouvelle famille de composés Li2M(SO4)2 (M = Co, Fe, Mn, Ni, Zn, 

Mg) 
Pour la synthèse de nouveaux sulfates bimétalliques à base de lithium, nous avons commencé par 

utiliser les mêmes voies de synthèse que celles utilisées pour la préparation des phases de type 

bloedite, mais toutes les tentatives sont restées infructueuses. Nous avons également essayé de 

procéder à des échanges ioniques Li ↔ Na sur les composés au sodium (phases hydratées et 

anhydres), mais bien que ces phases aient été cyclées dans des batteries au lithium, tous nos essais 

ont conduit à la décomposition partielle des composés, avec en particulier la formation de sulfate de 

lithium. Toutefois, en chauffant à 200°C des pastilles de α-Na2Co(SO4)2 mélangé avec du chlorure de 

lithium ou du nitrate de lithium, nous avons remarqué qu’après décomposition du sulfate de sodium 

et de cobalt, de nouveaux pics de diffraction apparaissaient dans les diagrammes de DRX du 

mélange. Les positions de ces nouveaux pics de diffraction étaient en fait très similaires à ceux d’un 

diagramme de DRX rapporté par Touboul et al. pour une phase Li2Co(SO4)2 [404,405], et nous avons 

alors entrepris d’explorer cette nouvelle famille de composés.  

F.3.1. Synthèse des phases Li2M(SO4)2 (M = Co, Fe, Mn, Ni, Zn, Mg) 

A notre connaissance, seuls trois composés répondant à la formule générale Li2M(SO4)2 avaient été 

jusqu’alors rapportés dans la littérature (M = Co [404,405], Ni [404,405,425] et Zn [414]), et seule la 

structure de Li2Ni(SO4)2 avait été déterminée [425]. Nous avons obtenu ces phases pures par voie 

solide et avons ensuite étendu leur synthèse à d’autres métaux divalents (M = Fe, Mn, Mg). Les 

diagrammes de rayons X des composés au cobalt, fer, manganèse et magnésium ont montré que ces 

quatre phases sont isostructurales et cristallisent dans une maille différente de celle de la structure 

orthorhombique de Li2Ni(SO4)2 (Figure F.7). En ce qui concerne le composé à base de zinc, nous 

avons pu le stabiliser dans les deux structures. 

Nous avons résolu la structure des phases Li2M(SO4)2 (M = Co, Fe, Mn, Mg, Zn) à partir de nos 

diagrammes de rayons X [426]. L’ensemble des pics de diffraction ont pu être indexés dans une 

maille monoclinique avec les paramètres de mailles suivants : P21/n, a = 4.9787(2) Å, b = 8.1113(2) Å, 

c = 8.7831(2) Å, β = 121.811(2)°, V = 301.416(2) Å3 pour la phase au cobalt. 
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Figure F.7 : Représentation de la structure orthorhombique de Li2Ni(SO4)2,  

vue selon les directions (a) [010] et (b) [1-10]. 

Tout comme celle de la phase Li2Ni(SO4)2 (Figure F.7), la structure des phases monocliniques 

(Figure F.8) est constituée d’octaèdres de MO6 isolés les uns des autres et reliés par le biais de 

tétraèdres de SO4. Cette charpente tridimensionnelle donne naissance à de larges tunnels le long de 

la direction [100], dans lesquels se trouvent les cations Li+. Chaque octaèdre de MO6 partage ses six 

sommets avec un groupement sulfate, tandis que chaque tétraèdre SO4 est lié à trois octaèdres MO6 

et que son quatrième sommet pointe dans les tunnels occupés par les ions lithium. Cet arrangement 

particulier donne une structure très ouverte, comme reflété par la faible densité de ces composés 

(ρ ≈ 2.8 g/cm3). La principale différence entre les structures orthorhombique (Figure F.7) et 

monoclinique (Figure F.8) réside en fait dans la façon dont les polyèdres de MO6 et SO4 sont 

interconnectés le long des chaines d’octaèdres et de tétraèdres. 

 
Figure F.8 : Représentation de la structure monoclinique marinite de Li2M(SO4)2 (M = Co, Fe, Mn, Zn, Mg), 

vue selon les axes a et b. 

F.3.2. Propriétés électrochimiques de Li2Fe(SO4)2  

Comme observé pour les phases à base de sodium, parmi les six composés Li2M(SO4)2 (M = Co, Fe, 

Mn, Mg, Zn), seule la phase à base de fer est électrochimiquement active face au lithium métallique 
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(Figure F.9). Pendant la première charge, environ un lithium est extrait de la structure, et 0,86 

lithium sont ensuite réinsérés en décharge ; ce qui donne une capacité réversible d’environ 

88 mAh/g (capacité spécifique théorique de 102 mAh/g). L’activité électrochimique Li2Fe(SO4)2 est 

centrée autour de 3,83 V vs. Li+/Li0 [426,428], comme confirmé par la courbe dérivée dx/dV 

(Figure F.9) et les mesures en mode GITT. Il est important de remarquer que ce potentiel de 3,83 V 

est en fait le plus haut potentiel jamais rapporté pour le couple redox FeIII+/FeII+ dans un composé 

inorganique dépourvu de fluor [105,323,426,428], et qu’il est seulement dépassé par la forme triplite 

de LiFeSO4F (3,9 V vs. Li+/Li0, [330,335]). De plus, nous avons également testé les performances en 

puissance de Li2Fe(SO4)2 (Figure F.9). Compte tenu du fait que le matériau d’électrode ne contient 

que 20% de carbone et que la composition de l’électrode n’a pas été optimisé, la rétention de 85% 

de la capacité initiale à un régime de 1C reflète une bonne cinétique d’insertion du lithium. 

 
Figure F.9 : Caratérisations électrochimiques de la phase marinite Li2Fe(SO4)2.  

A gauche : Courbe galvanostatique de Li2Fe(SO4)2 cyclé face au lithium métallique à un régime de C/20. 
En haut à droite : courbe dérivée dx/dV correspondante. La flèche rouge indique l’accident discuté dans le 

texte. En bas à droite : capacité en décharge en function du régime de cyclage. 

Concernant le mécanisme d’extraction/insertion du lithium, le plateau observé en charge et en 

décharge dans la courbe potentiel-composition (Figure F.9) suggère un processus biphasique, comme 

également corroboré par les mesures en mode PITT. Cependant, on peut également observer une 

région plus pentue au début de chaque charge (2 ≤ x ≤ 1.7), qui n’est pas visible en décharge. Cet 

“accident” est davantage visible sur la courbe dérivée dx/dV, comme indiqué avec la flèche rouge 

dans la Figure F.9. Pour comprendre ces observations, nous avons entrepris une étude détaillée du 

mécanisme de charge/décharge de notre nouveau matériau d’électrode. 

Des expériences in operando de diffraction des rayons X ont confirmé le caractére biphasique du 

processus électrochimique au niveau du plateau observé en charge et en décharge (Figure F.10). 

Toutefois, nous n’avons observé aucun changement dans le diagramme de diffraction (ni dans la 
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position des pics, ni dans leur intensité) au début de la charge entre x = 2 et x ≈ 1,7. Ces résultats 

semblaient donc suggérer que l’activité électrochimique en début de charge pouvait être associée 

avec une partie amorphe du matériau d’électrode. Pour confirmer cette hypothèse, nous avons 

effectué une expérience complémentaire de spectrométrie Mössbauer in operando afin de sonder 

l’environnement du fer dans le matériau d’électrode et de suivre son état d’oxydation pendant le 

cyclage (Figure F.11). 

 
Figure F.10 : Diagrammes de DRX du materiau d’électrode Li2Fe(SO4)2/CSP enregistrés in operando. Les barres 

bleues et jaunes indiquent la position des reflections de Bragg pour les phases Li2Fe(SO4)2 et Li1Fe(SO4)2. 

Nous avons tout d’abord remarqué que le spectre Mössbauer du matériau d’électrode (Li2Fe(SO4)2 

mélangé à 20% de CSP par broyage mécanique) était distinct de celui du matériau actif seul. Alors que 

notre spectre de référence de Li2Fe(SO4)2 présentait un doublet majoritaire de Fe(II+) (noté Fe(II+)·A) 

ayant les paramètres hyperfins suivants :  = 1,30(1) mm/s, Eq = 1,16(1) mm/s, Γ = 0.27(1) mm/s et 

représentant plus de 92% du fer de l’échantillon, nous avons eu besoin de quatre doublets de Fe(II+) 

(environnements notés Fe(II+)·A1, Fe(II+)·A2, Fe(II+)·B1 et Fe(II+)·B2) pour simuler le spectre du 

matériau d’électrode avant cyclage (Figure F.11.a). Pendant la première partie de la charge 

(2 ≥ x ≥ 1,6, i.e. la partie pentue de la courbe électrochimique), nous observons que la contribution 

relative des sous-spectres Fe(II+)·B1 et Fe(II+)·B2 (en vert) diminue au profit de l’apparition d’un 

nouveau doublet de Fe(III+) (Figure F.11.a à c); puis lorsque les signaux Fe(II+)·B1 et Fe(II+)·B2 ont 

totalement disparu et que la courbe électrochimique aborde le plateau, le fer de type Fe(II+)·A1 et 

Fe(II+)·A2 (en bleu) commence a être oxydé (Figure F.11.c à g). A la fin de la charge, la totalité du fer 

est à l’état d’oxydation III+ (Figure F.11.g). En décharge, en revanche, les quatre environnements de 

fer divalent apparaissent simultanément au fur et à mesure que le fer trivalent est réduit et jusqu’à la 

fin du premier cycle, où l’on retrouve un spectre très similaire à celui du matériau d’électrode initial 

(Figure F.11.h à k). 
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Figure F.11 : Spectres Mössbauer du 

57
Fe enregistrés in operando pendant le cyclage du matériau d’électrode 

Li2Fe(SO4)2/CSP face au lithium métallique. Les cercles noirs et les lignes rouges représentent respectivement les 
spectres expérimentaux et simulés. Les sous-spectres bleus correspondent aux contributions notées Fe(II+)·A1 
et A2, les sous-spectres verts représentent celles notées Fe(II+)·B1 et B2. Dans le graphique en haut à droite, 
l’état de charge/décharge de l’électrode est indiqué par des points noirs sur la courbe électrochimique en 
rouge. L’évolution pendant le cyclage des contributions relatives des environnements Fe(II+)·A, Fe(II+)·B et 

Fe(III+) est représentée sur le même graphique par les courbes bleue, verte et jaune, respectivement. 
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Ainsi, nous avons montré grâce à cette expérience Mössbauer in operando que la phase Li2Fe(SO4)2 

était altérée pendant la préparation du matériau d’électrode par broyage mécanique. Le nouvel 

environnement de fer ainsi généré (Fe(+II)·B) s’oxyde au début de la charge (partie pentue de la 

courbe électrochimique) alors que le fer de la phase cristalline Li2Fe(SO4)2 (Fe(+II)·A) ne rentre en jeu 

qu’à partir du plateau centré à 3.83 V.  

 
Figure F.12 : Influence du temps de broyage sur les propriétés du matériau d’électrode Li2Fe(SO4)2/CSP. 

(a) Spectres Mössbauer du 
57

Fe, (b) spectres RMN du 
7
Li à l’état solide et (c) courbes électrochimiques de 

la phase Li2Fe(SO4)2 et des matériaux d’électrode broyés pendant 15, 30, 45 et 60 minutes (de haut en bas). 
La première courbe électrochimique a été obtenue avec un matériau d’électrode de Li2Fe(SO4)2 coaté avec du 

carbone et non broyé. 

Pour complètement confirmer cette hypothèse, nous avons combiné des mesures de diffraction des 

rayons X, spectrométrie Mössbauer, RMN du 7Li à l’état solide et cyclages galvanostatiques sur 

plusieurs matériaux d’électrodes préparés avec différents temps de broyage (Figure F.12). Ces 
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caractérisations ont permis de montrer que la modification du matériau d’électrode par broyage 

mécanique est directement corrélée à la longueur de la partie pentue de la courbe électrochimique. 

Le matériau d’électrode ainsi altéré est vraisemblablement très mal cristallisé puisque non visible par 

diffraction des rayons X. L’analyse quantitative des résultats Mössbauer et RMN a par ailleurs permis 

d’établir que le ratio Li:Fe dans le matériau altéré est identique à celui de la phase marinite 

Li2Fe(SO4)2, ce qui pourrait suggère qu’il puisse être simplement une phase Li2Fe(SO4)2 amorphe, très 

désordonnée. 

F.3.3. Conclusion 

Nous avons présenté une nouvelle famille de composés ayant la formule générale Li2M(SO4)2 

(M = Co, Fe, Mn, Mg, Zn, Ni), parmi lesquels seuls trois de ces phases avaient été précédemment 

rapportées [404,405,425]. Après avoir déterminé la structure monoclinique dans laquelle cinq de ces 

phases cristallisent, nous avons étudié les propriétés électrochimiques de l’analogue au fer. Malgré 

une capacité spécifique relativement faible (~85 mAh/g), Li2Fe(SO4)2 est un matériau d’électrode très 

intéressant d’un point de vue fondamental car il possède un potentiel redox élevé de 3,83 V vs. 

Li+/Li0 ; ce potentiel étant en fait le plus haut potentiel jamais rapporté pour le couple redox FeIII+/FeII+ 

dans un composé inorganique dépourvu de fluor. 

Outre les propriétés électrochimiques présentées par le composé au fer, nous avons par la suite 

montré que les composés Li2M(SO4)2 (M = Co, Fe, Mn, Ni) sont également intéressants du point de 

vue de leurs propriétés magnétiques. 

F.4. Etude magnétique des composés Li2M(SO4)2 (M = Co, Fe, Mn, Ni) 
Etant basés sur des métaux de transition 3d, les nouveaux matériaux d’électrodes sont souvent 

intéressants à étudier pour leurs propriétés magnétiques. De manière similaire aux potentiels de 

leurs couples redox, les propriétes magnétiques des matériaux polyanioniques sont gouvernées par 

la façon dont les orbitales 3d des métaux de transition se recouvrent avec les orbitales 2p des 

atomes d’oxygène (i.e. l’ionocovalence de la liaison M‒O). Les interactions magnétiques dans ces 

structures sont généralement de deux types : (i) des interactions de super-échange, qui impliquent 

deux cations métalliques connectés via un seul atome d’oxygène (M‒O‒M), et (ii) des interactions de 

super-super-échange, dans lesquelles deux métaux de transition sont liés via deux atomes d’oxygène 

appartenant à un groupement polyanionique (M‒O‒O‒M). Les couplages magnétiques M‒M 

impliqués dans ces deux types d’interactions sont décrits par les règles semi-empiriques de 

Goodenough-Kanamori-Anderson [459–464]. Remarquons que ces règles ont été initiallement 

établies pour des interactions de super-échange, mais qu’elles s’appliquent aussi pour les 
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interactions de super-super-échange, bien que la force de ce couplage entre deux métaux de 

transition est plus faible que dans le cas du super-échange [464]. 

 
Figure F.13 : (a) Topologie des interactions de super-échange et de super-super-échange entre deux métaux de 
transition M (représentés par des boules rouges). Les segments noirs indiquent les chemins d’interaction. Les 
boules orange sont les atomes d’oxygène et les tétraèdres bleus représentent un groupement polyanionique 

tel que PO4, SO4 ou AsO4. (b) Règles de Goodenough-Kanamori-Anderson pour des interactions de 
super-échange à 180° (d’après [463]). (c) Configurations électroniques des cinq métaux de transition présents 

dans les composés Li2M(SO4)2 étudiés ici. Remarquons que tous correspondent au cas n°1 (cations “A” avec des 
orbitales eg à moitié remplies) des règles de Goodenough-Kanamori-Anderson décrites dans (b). 

La structure orthorhombique de Li2NiII(SO4)2 et la structure monoclinique des phases Li2FeII(SO4)2, 

Li1FeIII(SO4)2, Li2MnII(SO4)2 et Li2CoII(SO4)2 présentent toutes deux des arrangements singuliers 

d’octaèdres MO6 qui sont interconnectés au travers de tétraèdres SO4. Les seules interactions 

magnétiques possibles dans ces cinq phases sont donc de type super-super-échange. 

Dans cette étude, nous avons montré que tous ces composés s’ordonnent antiferromagnétiquement 

à basse température [442,484]. L’évolution de leurs courbes de susceptibilité magnétique en 

fonction de la température (Figure F.14) a pu être modélisée avec des modèles de type Curie-Weiss. 

De plus, les courbes d’aimantation enregistrées à 2K ont montré que les composés à base de CoII+, 

MnII+ et FeIII+ présentent un ferromagnétisme faible et que Li2CoII(SO4)2 pourrait avoir un 

comportement méta-magnétique.  
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Figure F.14 : Evolution de la susceptibilité magnétique des composés marinite LixM(SO4)2 (x = 2, 1 & M = Co

II+
, 

Fe
II+

, Mn
II+

, Fe
III+

) en fonction de la température, refroidis sous champ nul (conditions ZFC) et mesurés avec un 
champ de 10 kOe entre 2 K et 300 K. Les inserts montrent des agrandissements des courbes d’aimantation des 

quatre phases refroidies sous champ nul (ZFC, couleurs vives) et sous champ (FC, couleurs pâles). 

Nous avons observé par des mesures de diffraction des neutrons sur poudre (NPD) que les moments 

magnétiques de ces cinq phases s’ordonnaient à basse température (Figure F.15 et Figure F.17 

gauche), et nous en avons résolu les structures magnétiques à 2 K (Figure F.16 et Figure F.17 droite) 

[442,484]. Pour les phases Li1FeIII(SO4)2, Li2MnII(SO4)2 et Li2CoII(SO4)2, nous avons déterminé un 

vecteur de propagation nul et un couplage antiferromagnétique le long de la direction [011] ; les trois 

structures présentent des moments colinéaires et ne diffèrent que par l’orientation de leurs 

moments. Dans le cas de Li2FeII(SO4)2, la structure magnétique est un peu plus complexe, puisque le 

vecteur de propagation est k = (½, 0, 0) et que les moments magnétiques ne sont alors plus 

colinéaires. Enfin, dans la phase orthorhombique Li2NiII(SO4)2, les moments sont alignés 

antiferromagnétiquement selon l’axe c et la structure magnétique peut être décrite comme un 

empilement antiferromagnétique de couches ferromagnétiques selon ce même axe. 

Enfin, les premières analyses du signe et de la force relative des interactions d’échange pour ces cinq 

composés ont montré que les règles semi-empiriques de Goodenough-Kanamori-Anderson [459–

464] sont respectées dans ces matériaux où seules des interactions de super-super-échange 

gouvernent la mise en ordre magnétique.  
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Figure F.15 : Evolution des diagrammes de diffraction des neutrons sur poudre de (a) Li2Co(SO4)2, 

(b) Li2Mn(SO4)2, (c) Li1Fe(SO4)2 et (d) Li2Fe(SO4)2 pendant le refroidissement des échantillons à 2 K (λ = 2.42 Å). 
Les diagrammes bleus correspondent à la température de 2 K tandis que les rouges ont été mesurés à (a) 12 K, 
(b) 10 K, (c) 50 K et (d) 7 K. Les diagrammes noirs correspondent aux températures intermédiaires. Les lignes 

vertes sont les courbes de différence entre les diagrammes bleu et rouge, et montrent ainsi les pics 
magnétiques apparaissant lors de la mise en ordre des moments magnétiques à basse température.  

 
Figure F.16 : Structures nucléaires et magnétiques de (a) Li2Co

II
(SO4)2, (b) Li2Mn

II
(SO4)2, (c) Li1Fe

III
(SO4)2 et 

(d) Li2Fe(SO4)2. Les moments magnétiques sont représentés par un vecteur traversant les atomes de métaux de 
transition. Les atomes de lithium ont été omis pour plus de clarté. 

 

TN=8K TN=6K 

TN=39K TN=5K 
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Figure F.17 : A gauche : évolution des diagrammes de NPD de Li2Ni(SO4)2 entre 35 K (diagramme rouge) et 2 K 
(diagramme bleu). Les diagrammes enregistrés aux températures intermédiaires sont tracés en noir. La ligne 
verte est la différence entre les diagrammes bleu et rouge. A droite : Structure magnétique de Li2Ni(SO4)2. Les 
boules bleues indiquent la position des atomes de Ni dans la maille, et les vecteurs rouges représentent leurs 

moments magnétiques. Les autres atomes (Li, S, O) sont omis pour plus de clarté. 

En conclusion, nous avons montré au cours de cette étude que les cinq phases Li2M(SO4)2 (M = Co, 

Fe, Mn, Ni) s’ordonnent antiferromagnétiquement à basse température. De plus, nous pouvons 

remarquer que Li2FeII(SO4)2, qui présente l’un des plus hauts potentiels redox (3,83 V vs. Li+/Li0) 

rapporté pour un matériau d’électrode polyanionique à base de fer, possède également l’une des 

plus basses températures de Néel (TN = 5 K). La Figure F.18 suggère en fait que les valeurs de 

potentiels du couple FeIII+/FeII+ pourraient être corrélées aux valeurs de températures de Néel dans 

les matériaux polyanioniques [323,494]. La force des interactions magnétiques entre les métaux 3d 

et le positionnement de leurs potentiels redox sont tous deux gouvernés par l’ionocovalence des 

liaisons M-O dans les composés polyanioniques. En effet, plus le recouvrement entre les orbitales 3d 

du métal de transition et les orbitales 2p de l’oxygène est important, plus la liaison M-O est 

covalente, plus le potentiel du couple redox Mn+/M(n-1)+ sera faible, mais plus la température de mise 

en ordre magnétique TN sera élevée (i.e. la mise en ordre sera plus facile). 

 
Figure F.18 : Corrélation entre la température de Néel (en bleu) et le potentiel redox (en rouge) pour plusieurs 

phosphates et sulfates de Fe(II+), montrant que la TN diminue quand le potentiel redox augmente [323]. 

 

TN=28K 
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F.5. Conclusion générale 
L’objectif de ce travail de thèse était de concevoir de nouveaux matériaux d’électrode positive pour 

les batteries Li-ion et Na-ion, constitués d’éléments peu chers, durables et inoffensifs pour 

l’environnement, et présentant des potentiels redox élevés. Guidés par notre précédent travail sur 

les fluorosulfates à base de fer, qui montraient des potentiels intéressants de 3,6-3,9 V vs. Li+/Li0 

[318,320,321,325,331,335,345,495], mais souhaitant s’affranchir des éventuels problèmes de 

sécurité associés à l’utilisation de fluor, nous avons décidé de concentrer nos efforts sur des 

composés à base de sulfate. Nous avons alors remarqué que la nature fourni de nombreux exemples 

de sulfates parmi les minéraux, et nous avons rapidement compris les avantages d’utiliser les 

espèces minérales comme source d’inspiration : (i) la plupart des minéraux ont été bien caractérisés 

par les minéralogistes et ils contituent ainsi une précieuse banque de données dans laquelle les 

chimistes peuvent identifier les structures ayant les meilleures caractéristiques pour l’application 

visée, (ii) ces phases minérales sont très probablement thermodynamiquement stables (ou au moins 

métastables) et la connaissance des conditions de leur formation dans la nature peut fournir une 

première approche pour leur synthèse en laboratoire, (iii) une fois le composé minéral modèle choisi, 

le chimiste peut modifier la phase de façon à obtenir les propriétés physico-chimiques désirées.  

 

Dans le travail présenté ici, nous avons employé avec succès cette stratégie pour préparer plusieurs 

composés Na2M(SO4)2·4H2O (M = Mg, Zn, Ni, Co, Fe), tous isostructuraux au minéral bloedite, et 

parmi lesquels nous avons montré que la phase à base de fer était électrochimiquement active face 

au sodium et au lithium [363]. Nous avons en fait montré que ce nouveau matériau d’électrode 

affiche des potentiels élevés de 3,3 V vs. Na+/Na0 et 3,6 V vs. Li+/Li0, qui rivalisent avec ceux rapportés 

pour d’autres matériaux d’électrode à base de sulfate (par exemple, le NASICON Fe(SO4)3, la tavorite 

LiFeSO4F, la phase lamellaire LiFeSO4OH, la maxwellite NaFeSO4F). Nous avons ensuite préparé les 

dérivés déshydratés α-Na2M(SO4)2 (M = Fe, Co) pour lesquels nous avons déterminé une 

super-structure monoclinique, et nous avons également obtenu de hauts potentiels de 3,4 V vs. 

Na+/Na0 et 3,6 V vs. Li+/Li0 avec le composé à base de fer [364]. 

Ensuite, en recherchant des analogues à base de lithium à ces composés, nous avons synthétisé avec 

succès les phases Li2M(SO4)2 (M = Co, Fe, Mn, Mg, Ni, Zn) [337,426,428,442,484,450]. Après avoir 

déterminé la structure monoclinique marinite de ces composés, nous avons établi que le composé à 

base de fer présente un potentiel exceptionnel de 3.83 V vs. Li+/Li0, lequel est en fait le plus haut 

potentiel jamais rapporté pour le couple redox FeIII+/FeII+ dans un composé inorganique à base de 

fluor et est seulement dépassé par le polymorphe triplite de LiFeSO4F (3,9 V vs. Li+/Li0). Le mécanisme 
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d’insertion/désinsertion du lithium dans Li2Fe(SO4)2 a été étudié par diffraction des rayons X et 

spectroscopie Mössbauer, et des résultats préliminaires pourraient suggérer l’existence d’un 

polymorphisme pour Li2Fe(SO4)2, comme cela a été précédemment observé pour les phases tavorite 

et triplite de LiFeSO4F. 

Enfin, nous avons étudié les propriétés magnétiques des phases Li2MnII+(SO4)2, Li1FeIII+(SO4)2, 

Li2FeII+(SO4)2, Li2CoII+(SO4)2 et Li2NiII+(SO4)2 et en avons déterminé les strcutures magnétiques à basse 

température [442,484]. Les structures particulières de ces composés permettent uniquement des 

interactions de super-super-échange, et nous avons donc utilisé ces phases pour tester les règles de 

Goodenough-Kanamori-Anderson pour ce type d’interactions.  

 

Pour résumer, dans ce travail de thèse, nous avons préparé plusieurs nouveaux sulfates à base de fer 

et d’ions alcalins, qui présentent des potentiels redox élevés face à des anodes de lithium et de 

sodium. Nous avons ainsi démontré, et cela a été également confirmé avec les résultats récemment 

publiés pour l’hydroxysulfate lamellaire LiFeSO4OH [342], que la présence de fluor dans des 

matériaux d’électrode à base de sulfate n’est pas indispensable pour atteindre de hauts potentiels. 

La Figure F.19 montre en effet que les nouveaux sulfates présentés dans ce manuscrit, et en 

particulier Li2Fe(SO4)2, offrent des potentiels qui sont parmi les plus hauts sur l’échelle de potentiel 

des matériaux polyanioniques à base de fer étudiés en tant qu’électrode positive pour les batteries 

Li-ion et Na-ion. Cependant, la Figure F.19 illustre également bien le principal défaut de nos 

disulfates bimétalliques AxFe(SO4)2·nH2O (A = Li, Na, x = 1, 2 and n = 0, 4) : leurs faibles capacités 

spécifiques intrinsèques (i.e. inférieures à 100 mAh/g) dues au fait qu’ils contiennent deux lourds 

groupements sulfates par atome de fer. Ceci nous rappelle que concevoir de nouveaux matériaux 

d’électrode présentant des performances exceptionnelles à la fois en termes de potentiel et de 

densité d’énergie n’est pas une tâche facile.  
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Figure F.19 : Performances, en termes de potentiel expérimental et de capacité spécifique théorique, de 

différents composés polyanioniques à base de fer étudiés en tant qu’électrode positive pour les batteries Li-ion 
(en haut) et Na-ion (en bas) (données de la référence [105]). Les différentes familles de composés sont 

regroupées par couleurs : bleu pour les sulfates, vert pour les phosphates, cyan pour les pyrophosphates, rouge 
pour les borates, violet pour les silicates, rose pour les arséniates, marron pour les molybdates, jaunes pour les 

tungstates. Les nouveaux matériaux présentés dans ce manuscrit sont indiqués en rouge.  
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Nous croyons que les nouveaux sulfates présentés ici restent toutefois des matériaux intéressants, 

en particulier pour améliorer notre compréhension des facteurs chimiques et structurels qui 

influencent les potentiels redox des matériaux d’électrode polyanioniques. 

Le potentiel d’un couple redox Mn+/M(n+1)+ dans un composé inorganique est intimement lié à 

l’iono-covalence de la liaison M‒O. La différence observée dans le potentiel d’un couple redox donné 

entre oxydes et composés polyanioniques est en fait expliquée par le fort caractère covalent des 

liaisons au sein des groupements polyanioniques (i.e. les liaisons X-O), qui affaiblissent la liaison M‒O 

et stabilisent les orbitales anti-liantes du centre redox [222,232,233]. Cet effet inductif a été 

largement décrit depuis les premiers travaux de Goodenough sur les composés NASICON 

[222,232,233,496]. Il explique ainsi très bien les tendances générales observées entre les composés 

contenant différents groupements polyanioniques : les sulfates présentent de plus haut potentiels 

redox que les phosphates, lesquels ont généralement de meilleurs potentiels que les silicates, 

borates ou arsenates (Figure F.19). Cependant, la Figure F.19 montre également des exceptions à 

cette tendance ; l’effet inductif ne peut en fait être utilisé rigoureusement que lorsque l’on compare 

des composés isostructuraux (par exemple, pour expliquer les variations de potentiel au sein des 

composés NASICON ou des phases de structure tavorite), mais il est moins évident de l’utiliser pour 

expliquer les différences observées entre des composés ayant des structures différentes, d’autant 

plus si elles contiennent le même polyanion [234], et il est même totalement impossible de comparer 

deux polymorphes ayant la même composition (e.g. tavorite vs. triplite LiFeSO4F) avec le seul effet 

inductif. Au vu de ces observations, il est évident que d’autres facteurs structurels jouent un rôle 

important dans la stabilisation des couples redox.  

Hormis le caractère iono-covalent de la liaison M-O, le champ crystallin autour du cation Mn+ affecte 

également le positionnement de l’énergie de ses orbitales anti-liantes [349,350]. En fait, la présence 

de plusieurs cations autour du centre redox (i.e. autres métaux de transition Mn+, les cations Xx+ des 

groupements polyanioniques, mais aussi les cations alcalins A+) et, plus important encore, la 

connectivité du polyèdre MO6 avec les polyèdres voisins MO6, XO4 et AOz (i.e. partage de sommets, 

arêtes ou faces) influencent la force du champ électrique de Madelung ressenti par le cation Mn+. 

Ainsi, de plus courtes distances M‒M, M‒X ou M‒A (par exemple dues à des polyèdres partageant 

des arêtes ou des faces) conduisent à plus de répulsions cationiques et à un potentiel de Madelung 

plus faible, ce qui à son tour engendre un potentiel redox plus élevé [349,350]. 

La principale difficulté réside dans le fait que tous ces paramètres (i.e. ionocovalence, champ 

électrique de Madelung, effet inductif, électronégativité, distances interatomiques, etc.) sont 

intimement corrélés. Les chercheurs essaient donc d’identifier de nouveaux descripteurs (e.g., les 
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longueurs de liaison M‒O, le nombre de polyanions par métal de transition, la coordinence des 

centres redox, la compacité de la structure, etc.) qui permettraient de rationaliser les différences de 

potentiel observées expérimentalement entre tous les matériaux d’électrode polyanioniques 

[115,234,323,349,350]. Notre groupe a ainsi récemment proposé de corréler les potentiels redox des 

matériaux d’électrode avec leurs températures de mise en ordre magnétique TN [323,494], puisque 

ces deux propriétés dépendent en partie de l’ionocovalence des liaisons M‒O ; Li2Fe(SO4)2 illustre 

bien cette correlation, puisqu’il présente à la fois une température de Néel très basse (TN = 5 K) et 

l’un des plus hauts potentiels redox (3.83 V vs. Li+/Li0) observés parmi les composés polyanioniques à 

base de Fe(II+).  

Malheureusement, l´’évaluation de ces indicateurs est difficile puisqu’il n’existe pas de structure 

idéale qui permette de modifier indépendemment chacun paramètre influençant le potentiel redox. 

Comme dans la grammaire française, quand un nouvel indicateur est proposé pour expliquer 

l’évolution de potentiel dans une série de composés modèles, on trouve souvent une ou deux 

exceptions qui limitent rapidement l’universalité de cette règle. Quoi qu’il en soit, la recherche de 

nouveaux matériaux d’électrode à base de polyanions est une quête de grande importante. Même si 

ces nouveaux composés ne permettent pas toujours de rivaliser en termes de performances avec les 

matériaux d’électrodes actuels, ils peuvent, comme l’a démontré ce travail de thèse avec la marinite 

Li2Fe(SO4)2, contribuer à une meilleure compréhension des relations existant entre composition, 

structure et potentiel redox, ce qui facilitera certainement la conception de matériaux de cathodes à 

base de polyanions présentant de hautes performances pour les prochaines générations de batteries.  
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