N

N

Hardware and software architecture facilitating the
operation by the industry of dynamically adaptable
heterogeneous embedded systems.

Laurent Gantel

» To cite this version:

Laurent Gantel. Hardware and software architecture facilitating the operation by the industry of
dynamically adaptable heterogeneous embedded systems.. Signal and Image processing. Université
de Cergy Pontoise, 2014. English. NNT: 2014CERG0684 . tel-01019909

HAL Id: tel-01019909
https://theses.hal.science/tel-01019909

Submitted on 27 Nov 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-01019909
https://hal.archives-ouvertes.fr

THALES

UNIVERSITE
de Cergy-Pontoise

ECOLE DOCTORALE SCIENCES ET INGENIERIE
Université de Cergy-Pontoise

PhD Thesis

Hardware and Software Architecture for Heterogeneous
and Dynamically Reconfigurable Systems-on-Chip

by
Laurent Gantel

Equipes Traitement de I’Information et Systémes (ETIS)
CNRS UMR 8051

Embedded System Lab (ESL)
THALES Research & Technology FRANCE

Thesis defended on 14" January, 2014

M. Gilles Sassatelli Reporter
M. Frédéric Petrot Reporter
M. Daniel Chillet Examiner
M. Guy Gogniat Examiner
M. Francois Verdier Director
M. Fabrice Lemonnier Director
M. Mohamed El Amine Benkhelifa Supervisor

Tell me and I forget, teach me and I may remember, involve me and I learn.

Benjamin Franklin

Abstract

This thesis aims to define software and hardware mechanisms helping in the manage-
ment of the Dynamic and Heterogeneous Reconfigurable Systems-on-Chip (DHRSoC).
The heterogeneity is due to the presence of general processing units and reconfig-
urable IPs. Our objective is to provide to an application developer an abstracted
view of this heterogeneity, regarding the task mapping on the available processing
elements. First, we homogenize the user interface defining a hardware thread model.
Then, we pursue with the homogenization of the hardware threads management. We
implemented OS services permitting to save and restore a hardware thread context.
Conception tools have also been developed in order to overcome the relocation issue.
The last step consisted in extending the access to the distributed OS services to ev-
ery thread running on the platform. This access is provided independently from the
thread location and is is realized implementing the MRAPI API. With these three
steps, we build a solid basis to provide to the developer in future work, a design flow
dedicated to DHRSoC allowing to perform precise architectural space explorations.
Finally, to validate these mechanisms, we realize a demonstration platform on a
Virtex 5 FPGA running a dynamic tracking application.

Résumé

Cette theése s’intéresse a la définition de mécanismes logiciels et matériels, facili-
tant la gestion des systémes-sur-puce hétérogénes et dynamiquement reconfigurable
(DHRSoC). L'hétérogénéité de ses architectures se manifeste par la présence a la fois
de processeurs de calcul généralistes et de modules matériels reconfigurables. Notre
objectif est de permettre & un développeur d’application de s’abstraire de cette
hétérogénéité en ce qui concerne 'allocation des taches sur les différentes unités de
calcul disponibles. Cette abstraction passe par une premiére phase d’homogénéisation
des interfaces utilisateurs (API) et la définition d’un modele de thread matériel.
Cette homogénéisation se poursuit ensuite par la gestion de ces threads matériels.
Nous avons implémenté des services au niveau du systéme d’exploitation (OS) per-
mettant de sauvegarder et restaurer le contexte d’'un thread matériel. Des outils de
conception ont également été développés afin de surpasser le probléme de la reloca-
tion d’un thread matériel au sein d’'un FPGA. Enfin, la derniére étape a été d’étendre
I'acces aux services offerts par tous les OS distribués au sein de la plateforme a tous
les threads s’exécutant sur celle-ci, indépendamment de leur localisation. Ceci a été
réalisé via une implémentation originale de PAPI MRAPI. Avec ces trois étapes,
nous avons apporté une base solide afin, dans le futur, de proposer au développeur
un flot de conception dédié aux architectures DHRSoC lui permettant de procéder &
une exploration architecturale précise de son systéme. Finalement, afin d’éprouver
le fonctionnement de ces mécanismes, nous avons réalisé une plateforme de démon-
stration sur FPGA Virtex 5 mettant en scéne une application de suivi de cibles
dynamique.

Remerciements

Je voudrais tout d’abord remercier mes directeurs de thése, Amine Benkhelifa qui
m’a fait découvrir le monde de la recherche et m’a toujours poussé & aller plus loin,
depuis mes premiéres années universitaires jusqu’au terme de ce doctorat, et qui a
su me guider et me motiver tout au long de cette thése, Francois Verdier dont les
conseils et les remarques m’ont été utiles pour mener & bien ce projet, et Fabrice
Lemonnier qui m’a fait confiance et m’a accueilli au sein du laboratoire LSE chez
Thales Research and Technology durant mon Master et ma these.

Merci également aux membres du jury qui m’ont fait I’honneur d’évaluer mon
travail, Gilles Sassatelli et Frédéric Petrot qui ont accepté d’en étre les rapporteurs,
Daniel Chillet et Guy Gognat qui en ont été les examinateurs.

Je tiens en particulier & remercier mes collégues de bureau, Amel Khiar, qui a
toujours été 14 pour m’encourager et avec qui j’ai passé d’excellents moments. Je la
remercie encore pour sa bonne humeur communicative et tout ce qu’elle m’a apporté
durant toutes ces années. Un grand merci & Liang Zhou que j’ai appris a connaitre
et & grandement apprécier au fil du temps. Merci également & Lounis Zerioul, Guy
Wassi, et Christian Gamom, qui ont aussi été trés présents et qui sont devenus au
fil du temps de véritables amis.

J’adresse mes remerciements aux membres de TRT que j’ai eu la chance de co-
toyer, avec lesquels j’ai pu collaborer dans un environnement de travail agréable, et
dont les diverses compétences m’ont été trés utiles et surtout trés instructives, parmi
lesquels Jimmy Le Rhun, Christophe Clienti, Paul Brelet, Rémi Barrere, Téodora
Petrisor, Philippe Millet, Philippe Bonnot et Lionel Thavot, ainsi qu’aux membres
du laboratoire ETIS dont entre autres Frédéric de Melo, Lounis Kessal, Emmanuel
Huck, Samuel Garcia, Thomas Lefebvre, Kaouthar Bousselam, Laurent Rodriguez,
Benoit Miramond, Lotfi Bendaouia et Fakhreddine Ghaffari.

Une part de ces remerciements va aux membres du projet FOSFOR avec lesquels
j'ai travaillé réguliérement: Fabrice Muller, Daniel Chillet, Sébastien Pillement et
Nicolas Knecht.

Enfin je souhaite exprimer toute ma gratitude envers ma famille et mes proches
pour leur présence et leur soutien durant toutes ces années.

Contents

1 Introduction 1

1.1 Context 1

1.1.1 Real-time applications for embedded systems 1

1.1.2 Heterogeneous Systems-on-Chip 3

1.1.3 Modern FPGAs 4

1.1.4 Dynamic and Partial Reconfiguration 6

1.2 HSoC programming model 7

1.2.1 Programming issue 7

1.2.2 Dynamically Reconfigurable HSoC 8

1.3 Objectives 10

2 Unified Thread Model 11

2.1 Related work 11

2.1.1 Software kernel management 11

2.1.2 Run-time managero 14

2.1.3 Hardware thread model 17

2.1.4 Conclusion 21

2.2 Thread model o 22

2.2.1 Process definition 22

2.2.2 Thread definition 22

2.2.3 Software thread model 23

2.2.4 Thread attributes Lo o 25

2.2.5 Synchronization techniques among threads 26

2.2.6 Conclusion 28

2.3 Our Hardware Thread model 28

2.3.1 Context: The FOSFOR project 28

2.3.2 Hardware Thread specifications 30

2.3.3 Hardware Thread architecture 31

2.4 Hardware Thread programming model 36

2.4.1 Operating System services protocol 36

2.4.2 Network communication protocol 38

2.4.3 Accelerator interfaceo 39

2.5 Conclusion L 41
3 Hardware threads preemption using Dynamic and Partial Recon-

figuration 43

3.1 Introduction 43

3.2 Related works 44

3.2.1 Preemption mechanisms 44

3.2.2 Reconfiguration accelerators 46

10 Contents
3.23 Designtools. 49
3.3 FPGA reconfiguration knowledge 51
3.3.1 Virtex 5 FPGA resources 51
3.3.2 FPGA configuration, 52
3.3.3 Bitstream parsero 54
3.4 Preemption mechanisms L 0oL 58
3.4.1 Context management service o8
3.4.2 Reconfiguration service 59
3.4.3 Relocation Service 59
3.5 Design flow for hardware threads relocation 61
3.5.1 Standard flow 61
3.5.2 Problematics o 62
3.5.3 Relocation flow oL 65
3.5.4 Experimented tools oL 69
3.5.5 Adapted Isolation Design Flow 71
3.6 Conclusion 7
4 Operating System for Dynamically and Reconfigurable Heteroge-

neous SoC 81
4.1 Context and definitions 82
4.1.1 Kernel structure o 82
4.1.2 Thread API 83
4.2 Related works 85
4.2.1 Introduction. 85
4.2.2 Inter-core communication in MPSoC 86
4.2.3 HRSoC middlewares 90
4.2.4 Hybrid OS for HRSoC 94
4.2.5 Conclusion 95
4.3 Specifications 96
4.3.1 Objectives 96
4.3.2 Programming model Lo 97
4.3.3 Memory constraintso 97
4.3.4 Architecture 98
4.3.5 Portability 99
4.4 Conception 99
4.4.1 Operating system architecture 100
4.4.2 Platform architecture 102
4.4.3 Multicore layero 109
4.5 TImplementationo 111
4.5.1 Modular operating system: MutekH 111
4.5.2 MRAPI Specification 114
4.5.3 Hardware architecture 118
4.5.4 Domain definition 119

4.5.5 Node definition 120

Contents

11

4.5.6 MRAPItypes
4.5.7 Resources systemcalls
4.6 Conclusion.
5 Application deployment
5.1 Introduction
5.2 Platform building o
5.2.1 Microblaze platform 0oL
5.2.2 Read and Write timingso
5.2.3 Systemcalls
5.2.4 Hardware Threads encapsulation
5.3 Tracking application oo
5.3.1 Presentation.
5.3.2 The Camshift IP
533 TheDVIIP
5.3.4 Application deployment
5.3.5 Results and performances
54 Conclusion L
6 Conclusions
6.1 Summary
6.1.1 Discussion
6.1.2 Key contributions o oo
6.1.3 Hypothesis and Limitations
6.2 Future Work
A Network Interface API
A1 Supported requests
A1l Writerequest
A12 Readrequest
A.1.3 Read request response

A.1.4 Receive request

B Hardware CRC
B.1 Relocation process . .
B.2 CRC computation . .
B.3 Hardware CRC module

Bibliography

120
120
123

125
125
126
126
127
131
134
135
135
137
138
139
142
143

147
147
147
147
148
149

153
153
153
154
155
155

157
157
157
157

161

1.1

1.2
1.3
14
1.5

1.6
1.7

2.1
2.2
2.3
2.4

2.5

2.6

2.7

2.8

2.9

2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23
2.24
2.25
2.26
2.27

3.1

List of Figures

Partial and Dynamic Reconfiguration (PDR) application example

[Xilinx 2010a] 2
Design flow from developer’s point of view 3
Xilinx Zynq 7000 EPP block diagram)
Dynamic and Partial Reconfiguration principle 6
Abstraction level differences between hardware and software program-

ming modelso L 7
Heterogeneous threading application 9
Hardware Thread preemption 9
pC-Linux ICAP driver [Bergmann 2003] 12
RAPTOR software architecture [Rana 2007] 13
OS4RS platform architecture [Nollet 2003] 15
Operating System for Reconfigurable Systems software architecture

[Steiger 2004] 16
VFPGA runtime manager architecture [El-Araby 2008] 18
Functional Unit architecture [Verdoscia 1994] 19
Hybrid Thread model [Agron 2009a] 20
ReconOS hardware thread model [Lubbers 2008] 21
Process and Thread 0. 22
Thread lifecycle 23
User Thread model 23
Kernel Thread model 24
Hybrid Thread model 25
FOSFOR platform architecture 29
Hardware Thread Architecture 31
OSSC architecture L o 32
Software and Hardware Thread States 33
Hardware Thread FSM example 34
Hardware Thread HDL files example 34
Network Interface architecture 35
OSSC Status Word content oL 36
System Call procedure 37
System Call procedure steps 37
Network Interface Send and Receive protocol 38
Network Interface Write and Read protocol 39
Parallel processing using pipelining 40
Synchronization Module 41

Virtual Routing Channels 45

14 List of Figures
3.2 (a) Implementation of PRR-PRR relocation (b) Top-Level block di-
agram of ARC [Kallam 2009] 46
3.3 ICAP accelerators solutions [Liu 2009] 47
3.4 FaRM architecture [Duhem 2011] 47
3.5 Uparc architecture [Bonamy 2012] 48
3.6 ICAP Hard Macro block diagram [Hansen 2011] 48
3.7 RapidSmith screen capture [Lavin 2011] 49
3.8 OpenPR screen capture from FPGA Editor [Sohanghpurwala 2011] . 50
3.9 Isolation Design Flow screen capture from FPGA Editor [Corbett 2012] 50
3.10 Slice-L and Slice-M [Xilinx 2009¢| 51
3.11 FPGA organization 52
3.12 Type 1 Paquet Header Format [Xilinx 2009b] 53
3.13 Type 2 Paquet Header Format [Xilinx 2009b] 53
3.14 Frame address [Xilinx 2009b]o 54
3.15 Resources memory configuration for the Virtex 5 architecture 55
3.16 Frame composition [Xilinx 2009b]o 55
3.17 Multiple Rows bitstream content a7
3.18 ICAP driver for Partial Reconfiguration 59
3.19 Partial bitstream relocation process 60
3.20 Partial reconfiguration: Partition and modules. 61
3.21 Proxy Macro Placed and Routed example 62
3.22 Slice Macro e 63
3.23 PlanAhead Slice Macro placement 63
3.24 Static route through Reconfigurable Partition 64
3.25 Relocation flow 65
3.26 Static place 66
3.27 XDL File structureo o 67
3.28 Internal and external switch matrices 68
3.29 PIP types o o o 68
3.30 XDL Net example 69
3.31 Trusted routes L 70
3.32 Test design 71
3.33 Software Bus Macro implementation 73
3.34 Routed software Bus Macro, 74
3.35 Hardware Bus Macro extraction 74
3.36 Hardware Bus Macro extraction and homogenization 7
3.37 Adapted Isolation Design Flow 78
3.38 Design test - Partition isolation 78
4.1 Toppers/FMP [Tomiyama 2008] 86
4.2 SMP System [Huerta 2008] 87
4.3 ICPC Service [Lin 2009] 88
4.4 The multikernel model [Baumann 2009] 88
4.5 Factored OS [Modzelewski 2009] 89

List of Figures 15

4.6

4.7

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33

5.1
5.2
5.3
5.4
5.5
0.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15

Self-reconfigurable platform [Shiyanovskii 2009a] 91
System framework overview [Guerin 2009a] 92
Hardware Dependant Software layer [Senouci 2006] 93
MCAPI for MPSoC [Matilainen 2011] 93
Hybrid Threads platform [Agron 2009b] 95
User point of view 97
Platform memory architecture 98
Syscall Procedure Lo oo o 100
Server types e 101
OS Server Architectureo 101
Message Template 102
Study Case Platform 0. 103
Distant system call Lo 104
Scenario 1 platform Lo 106
Scenario 1 datagram L 106
Scenario 2 platform oo 107
Scenario 2 datagramo 107
Scenario 3a platformo oo oo 108
Scenario 3a datagramo Lo 108
Scenario 3b platform Lo 109
Scenario 3b datagram Lo 109
Operating system architecture 110
MutekH global view oL 113
Homogeneous NoC-based Platform 118
Heterogeneous NoC-based Platform 119
MRAPI library file structure 121
MRAPT local tables 122
Requests management proxies 122
Demonstration platform o000 126
Microblaze platformo Lo 127
Read and write test platform0 0L 128
Bridge PLB-NoC architecture 129
Hardware platform used to test system calls procedures 131
Hardware MRAPI global architecture 132
MRAPI remote call sections 134
Target Tracking Application 136
Binary Long Object (Blob) 137
Pipelined Camshift hardware node 138
Pipelined Camshift User FSM 138
Integration of the DVI IP in the Demonstration Platform 139
Application deployment oL 140
Camshift slots (Virtex 5 LX110 device) 140
Detailed application deployment 141

List of Figures

5.16 Detailed application deployment 145
6.1 Hardware node implementation choices 150
A1 Write request packeto 154
A.2 Read request packet 154
A.3 Read request response 155

B.1 CRC Bitstream Computer module 159

1.1

1.2

3.1
3.2

4.1

5.1
5.2
5.3
5.4
9.9
0.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16

B.1
B.2

List of Tables

Processing Elements comparison regarding control ability, performances

and general programmabilityo L0000 4
Platform technology comparison regarding control cost, flexibility and

performances 4
Bitstream header contents oo 56
Bitstream initialization commands 57
Resources table example o 0oL 105
Software layers footprints oL 127
Code execution time for a Microblaze processor (ML506 @ 125 MHz) 128
Timings in cycles to write into platform memories 129
Timings to read from platform memories 130
Network Interface Communication Measurements 130
NoC Send timings for 1 KBdata 131
Hw MRAPI Resources usage 132
Timings to locally initialize anode 133
Timings to access a local Mutex resource 133
Timings to access a remote Mutex resource 133
Detailed timings to access a remote Mutex resource 135
Hardware Thread Resources Usage. 136
Demonstration Platform resource utilization 142
Hardware Thread Resources Usage 143
Camshift slot resource utilization 143
Application timingso 144
ICAP register involved in CRC computation 158

HW CRC Resources usage« o v v v v v v v oo 158

CHAPTER 1

Introduction

Contents
1.1 ContexXt v v v v i it i i e e e e e e e 1
1.1.1 Real-time applications for embedded systems 1
1.1.2 Heterogeneous Systems-on-Chip 3
1.1.3 Modern FPGAs 4
1.1.4 Dynamic and Partial Reconfiguration 6
1.2 HSoC programming model, 7
1.2.1 Programmingissueo 7
1.2.2 Dynamically Reconfigurable HSoC 8
1.3 Objectives o o i v v i i e e e e e e e 10

1.1 Context

1.1.1 Real-time applications for embedded systems

Applications for embedded systems dedicated to image and signal processing are
becoming increasingly complex. The amount of data processed by these systems
tend to be more and more important and so, developers need more and more com-
puting power. This is the case for instance, of monitoring system, automotive or
radar applications. This leads to design new computing systems able to respect the
high performance constraints imposed by these applications and their environment.

In order to satisfy these constraints, applications must be profiled and divided
into several tasks. Each task which is considered responsible for the failure to hold
constraints, has to be implemented separately on a dedicated processing unit. For
instance, communicating systems such as a network switch, have to handle several
protocols, transfer information at high rates and process large amount of data. To
achieve good performances and gain in flexibility, communication protocol stacks
may be implemented in hardware and take advantages of the partial and dynamic
reconfiguration (Fig. 1.1).

In general, the multiplicity of features needed by the end-users and mostly the
specificity of these features, force designers to propose new architectures. Target-
ing heterogeneous processing units to deploy an application allows to accelerate the

2 Chapter 1. Introduction

|
FPGA |
| /\
SN oc4s Portl, | (Config Memory
Siage
|
| 10 GigaEthII
~—[__ 10 GigaEth |~
e ocas Pota, FPGA bort 1
~—[Fibre oc4s - 10 GigaEth }—»"”
Switch \ T
Fabric —
{10 GigaEth | _II) ocas [Port2
— ocas Port 3 | Switch y
R = — «,m,
|
10 GigaEth | 10 GigaEth ~2olt4
R Py Port 4 ‘
— Fibre -
|
|

Multi-protocol switch without PDR Multi-protocol switch using PDR

Figure 1.1: Partial and Dynamic Reconfiguration (PDR) application example
[Xilinx 2010a]

global performance of the application. However, the drawback is that it complicates
the development process.

Another constraint is the need of flexibility, or more precisely, of adaptability.
The applications complexity requests to adapt the parameters and the provided
features of these systems. For example, the computation power can depend on the
quality of service required, and the power consumption of a system can be monitored
regarding its environment or random events. Also, as embedded systems are more
and more integrated in our environment, these human or environmental interactions
require these systems to adapt themselves to the various queries and needs that this
implies.

In contrast, designers would want to get a simple view of their application which
would abstract the platform specificity, especially the heterogeneity (Fig. 1.2). The
aim is to dissociate the functional validation of the application and the design ex-
ploration of its implementation.

In the functional validation, tasks are described regarding high-level execution
parameters such as the execution time, the deadline, or the priority. During the
design exploration, these parameters and new ones like the power consumption or
the memory usage are added regarding one or several possible partitioning. These
two points lead us to consider the design of heterogeneous systems-on-chip and the
way we can leverage the issue of their programming complexity in order to ease the
move from the high-level modelling layer to the physical implementation.

1.1. Context 3

Application:
@ Homogeneous communicating tasks

[OS Homogeneous API J 0S Servi
ervices:

@ @ @ Distributed over the platform

[os] [Cos) (Cos] (o] ORTsimce perrocessing element

Hardware Platform:
Heterogeneous Processing Elements

Processing
Element 3

Processing
Element 4

Processing
Element 1

Processing
Element 2

Figure 1.2: Design flow from developer’s point of view

1.1.2 Heterogeneous Systems-on-Chip

Platforms based on different processing elements are called Heterogeneous Systems-
on-Chip (HSoC). In such a platform, the application is divided into tasks. Whereas
some tasks are implemented as hardware accelerators and allocated into a parti-
tion of the chip, others run as software tasks on computing processor elements. A
hardware accelerator is defined as a hard-wired function developed to accelerate the
processing of a task. A computing processor unit could be a General Purpose Pro-
cessor (GPP), a specialized one like a Digital Signal Processor (DSP), a Graphics
Processing Unit (GPU) or a simple Micro-Controller Unit (MCU).

Each one of these processing elements is more or less suited to certain types of
tasks [Leon Adams 2007]. The hardware accelerator is well suited to intensive pro-
cessing tasks, especially tasks whose operations can be parallelized. On the contrary,
it can hardly be used with intensive control tasks. The latter are more suitable to
run on a GPP. Homogeneous tasks with a low data dependency can be easily and
efficiently parallelized on a GPU, whereas heterogeneous tasks with complex data
paths are not recommended for this architecture. Simple control tasks processing
small and well ordered data would likely be implemented on a Micro-Controller
Unit. Playing with these different processing elements, it is possible to adapt the
application to be deployed regarding time execution constraints or memory and
logic resources. Table 1.1 summarizes strengths and weaknesses of each processing
element.

Like it is possible to execute a task on different type of processing units, the

4 Chapter 1. Introduction

Processing Element Control Performances Programmability
GPP +++ + +++

GPU + ++ ++

DSP + ++ ++

MCU +++ + +++

Hw. Acc. + -+ +

Table 1.1: Processing Elements comparison regarding control ability, performances
and general programmability

platform which includes all these components can be implemented using different
technologies: an Application Specific Integrated Circuits (ASIC), a Multi-Processor
System-on-Chip (MPSoC), or a Field Programmable Gate-Array (FPGA).

ASIC technology offers great performances but is very expensive and not flex-
ible at all. In this document we consider a MPSoC as a SoC made up of at most
a dozen of cores like the OMAP5430 based on a Cortex-A15 multiprocessor core
[Instrument 2011]. They are less efficient but cheaper, more flexible regarding tasks
placement and software bugs may be recovered. FPGAs is a good trade-off between
the ASIC technology and the MPSoC choice because it is flexible, it provides better
performances compared with MPSoC and both software and hardware bugs may
be recovered after the application system being placed on the market. Table 1.2
summarizes the strengths and weaknesses of each technology.

Technology Cost Flexibility Performances
ASIC + + +++

FPGA ++ +++ ++

MPSoC +4+ +-+ +

Table 1.2: Platform technology comparison regarding control cost, flexibility and
performances

The solution which interest us is the FPGA technology. The exact reasons of
this choice, namely the characteristics, the potential as well as the pros and cons of
the last family of FPGA are detailed in the next subsection.

1.1.3 Modern FPGASs

A FPGA is a reconfigurable chip composed of several logic elements whose the
configuration, that is to say the logical function they implement, as well as the in-
terconnections between them can be modified on the user’s willing.

1.1. Context 5

A modern FPGA is a matrix of resources disposed in parallel columns. Each
column contains either configurable logic blocks (CLB), but also block ram memories
(BRAM) or dedicated digital signal processing (DSP) blocks. For this platform
we defined a hardware accelerator as hard-wired function using a set of resources
allocated in a partition of the FPGA.

In addition to these configurable elements, latest families of FPGAs, for instance
Xilinx Virtex 7 FPGAs (Fig. 1.3), include hardcore elements to accelerate certain
processing or communication. This is the case of the DDR controller, the Ethernet
MAC controller, or even of hardcore processors implemented with all the needed
peripherals as a full micro-controller unit (dual ARMY cores with timers, UART, or
ICAP (Internal Configuration Access Port) controllers).

Processing System '
Static Memory Controller Dynamic Memory Controller Programmable
Quad-SPI, NAND, NOR DDR3, DDR2, LPDDR2 .
Logic:
System Gates,
DSP, RAM

Cortex™-AO MPCore™
) KB I/D Caches

x SDI0
with DMA

Multi Standards 1/0s (3.3V & High Speed 1.8V)

2xUSB
with DMA

2x BigkE
with DMA

Multi Standards 1/0s (3.3V & High Speed 1.8V) Multi Gigabit Transceivers

! ! !

Figure 1.3: Xilinx Zynq 7000 EPP block diagram

As modern FPGAs matrices tend to become larger and larger, designers have
now more space to implement multi-core systems including several soft-processors
and hardware accelerators. In order to offer the best performances, and as told
previously, the use of FPGA as a complete autonomous system is becoming a good
trade-off between the ASIC technology and the multiprocessor solution. The first

6 Chapter 1. Introduction

is really efficient but rather expansive for small production lines, whereas the latter
is flexible and can relies on many COTS but doesn’t allow to reach the wanted per-
formances. Namely, a FPGA is a good trade-off between power consumption and
processing power.

Moreover, all processing units detailed in Section 1.1.2 can be implemented in-
side a FPGA. This capability provides to the developer the flexibility to explore
different solutions when designing his platform. Several architecture choices can be
made and compared. Each function can then be implemented on the wanted pro-
cessing units in order to obtain the best partitioning.

1.1.4 Dynamic and Partial Reconfiguration

The natural evolution of FPGAs leads them, due to the miniaturization, to offer
more and more logic resources [Koch 2010b]. This increase helps to face the impor-
tant need of features required by the end-user. To manage the dramatic increase of
the size of the FPGASs, especially the design time, manufacturers provided partial
reconfiguration features to their FPGAs (Fig. 1.4).

reconfiguration
°°”ﬂgg‘r'f‘“°” o PR PR Reconfigurable system:
: 2 Full reconfiguration
9 System reset

config0 configl

T=0 T=1

reconfiguration

Conﬁgg‘rrf‘“on o [FPoR C EECE Partially Reconfigurable system:

configd config0 » Partial reconfiguration

configl 2 Static system continues to run
T=0 T=1
reconfiguration
configuration FPGA FPGA Dynamically and Partially Reconfigurable system:
ports configo config0 ¢ Internal configuration port
o [config1 » Autonomous system
T=0 T=1

Figure 1.4: Dynamic and Partial Reconfiguration principle

The use of the partial reconfiguration has the advantage of decreasing the imple-
mentation time because partial modules can be implemented separately while the
static part of the system remains the same and so do not need to be reimplemented.

1.2. HSoC programming model 7

Modern FPGAs manufacturers, from now Xilinx and Altera, provide some mech-
anisms to dynamically reconfigure the chip. The dynamic reconfiguration allows to
reconfigure a partial module while keeping the static part unchanged. The system
on the chip would be able to reconfigure a part of itself, this without any disturbance
on the execution of the rest of the system. In addition to the functional interest,
it brings a consequent resources impact for autonomous embedded systems-on-chip.
Moreover, in some cases it is a good way to decrease the power consumption while
being capable of providing a larger choice of hardware accelerators to a given appli-
cation.

1.2 HSoC programming model

1.2.1 Programming issue

Despite the real interest of this technology, the main drawback of using hetero-
geneous platforms is that they are difficult to program. Indeed, abstraction level
differences between software functions running on processors and hardware accel-
erators, make the development of applications really tough. In order to ease the
validation and the exploration of the possible partitioning for a given platform, a
common abstraction has to be provided to the end-user (Fig. 1.5).

-

Task 1.1
Task 1.2

| —
—

-
> > >
° o o
h-3 2 2
o o o
Z Z Z
o o o
S 5 H
w N =

Application

complexity 4
Task 2.1
/ Task 2.2

‘ Task 1

‘ Task 2 (
7/ ‘ Task 3.1

| Task3 Task 3.2 i
- I
I
I
I

/

Heterogeneity:
« Abstraction differences

<

-
-
‘ Main program L 4— ~ Interrupts ‘

— — — =

‘ Interrupts ‘ ‘ Kernel ‘

Acc Acc

[]
[Fs]

Hardware platform Hardware platform Hardware platform

Hardware platform
Monoprocessor Monoprocessor Multiprocessor FPGA

Monothread Multithread Multithread

Multi-Accelerator

Figure 1.5: Abstraction level differences between hardware and software program-
ming models

8 Chapter 1. Introduction

To achieve it, a general trend which is emerging consists in adopting a high-level
language to describe the application. Coupled with new efficient tools able to sim-
ulate and automatically generate low-level code sources, such a design flow would
allow to tackle the last FPGAs programming issues. Indeed, due to their increasing
size, the system complexity is increasing too and such tools would provide a simpler
view of the whole system. For instance, a language such as the Synchronous Data-
Flow language (SDF') |Lee 1987| provides a model of computation which can be
adapted both to software and hardware threads, and so abstract the heterogeneity
of the platform.

An intermediate approach can be adopted which provides not a unique program-
ming language to describe both the software and the hardware, but in a first step,
a common programming model. In this way, a commonly adopted programming
model in the software embedded domain is the threading model. To design a het-
erogeneous platform using this model, we have to raise the abstraction level of the
hardware accelerators. This allows us to reuse legacy works in the software domain
and so to focus on the hardware part of the model. In our case, the implementation
choice is done between a software implementation on a processor and a reconfig-
urable hardware logic partition.

Like software threads, we define hardware threads. A hardware thread encap-
sulates the hardware accelerator and allows it to behave like a software thread.
Namely, a hardware thread would be able to access operating system services and
would have, from a certain point of view, a sequential execution. These services
include the ability to create or delete a resource, and to operate a system call. The
user should have the capability to preempt any thread, both software or hardware,
and so to save and restore its context. A particular effort should be done on the
implementation of mechanisms permitting the threads to communicate in a trans-
parent way. Our final objective is to offer to the end-user a simple thread view of
its application, and to the designer an efficient way to create relocatable hardware
accelerators which act like software threads (Fig. 1.6). To do so, hardware acceler-
ators should be implemented in what we will call a hardware thread to communicate.

Developed in the standard hardware description language which is VHDL (Very
High-speed integrating circuit Development Language), generic interfaces and an ab-
stracted execution model will allow in the future to integrate this intermediate pro-
gramming model with high-level design tools. This will result in the automatic
generation of hardware threads, taking advantage of existing low-level structure.

1.2.2 Dynamically Reconfigurable HSoC

In this context, the dynamic and partial reconfiguration of FPGAs seems very in-
teresting to provide a flexible handling of hardware accelerators. In dynamically

1.2. HSoC programming model 9
Processor Processor Processor FPGA
(57 (57) (s7) (s7) (1) Shared
[os } [os } [os] Lultly
1 1 Interconnect 1
HT HT HT HT
‘ @ Software Thread Hardware Accelerator ‘ HSoC platform

Figure 1.6: Heterogeneous threading application

reconfigurable HSoC, hardware threads are defined as relocatable modules which
can then be allocated into any available reconfigurable partition of the FPGA.

The system, using the dynamic and partial reconfiguration, allows the user to
preempt any module (Fig. 1.7). Namely, a part of the chip is divided into several
dynamic partitions. Each partition is then allocated by the control part of the ap-

plication to one hardware thread for a certain amount of time.

Memory
Load HT3

Preempt HT1

Memory

HT3
HT2
HT1
Preempt HT2

Restore HT1

context

— (=]

Hw Thread relocation

Figure 1.7: Hardware Thread preemption

The list of target applications can then be extended to multi-mode applications

and to those which need environment adaptation. As a perspective, other appli-
cations based on the dynamic detection of events, such as security systems, could
take advantage of this technology. We can also cite bio-inspired architectures which

would rely on dynamic reconfiguration mechanisms in order to dynamically recon-

figure their architecture.

10 Chapter 1. Introduction

Moreover, being able to update system after its release could help the designer to
improve the adaptability to unknown specification modifications, for instance when
implementing a H264 codec. We can also notice that it could have a good affect on
the design costs of these products.

1.3 Objectives

The goal of this PhD thesis is to propose a software and hardware architecture
in order to improve the application development process when targeting a Hetero-
geneous System-on-Chip. With the increasing complexity of the application, an
abstracted programming model has to be adopted to facilitate the description of
these applications and improve the flexibility regarding the implementation choices.
The proposed architecture should rely on the existing operating system structure and
provide services and low-level mechanisms to easily handle the thread heterogeneity.

In Chapter 2, we propose a model of hardware thread which allows to abstract
this heterogeneity. Then we study mechanisms and tools permitting to manage
hardware threads in the same way that what is done with software ones. In the
next chapter, an operating system dedicated to heterogeneous systems-on-chip is
specified. The main feature of this operating system is to provide a flexible access
to the operating system services for every threads, both software or hardware, what-
ever is the core they are running on. Finally, an application will be detailed and
implemented on a demonstration platform.

CHAPTER 2

Unified Thread Model

Contents
2.1 Relatedwork00, 11
2.1.1 Software kernel management 11
2.1.2 Run-time manager 14
2.1.3 Hardware thread model 17
2.1.4 Conclusiono 21
2.2 Thread model. 0., 22
2.2.1 Process definition 22
2.2.2 Thread definitiono oo 22
2.2.3 Software thread model 23
2.2.4 Thread attributes 25
2.2.5 Synchronization techniques among threads 26
2.2.6 Conclusion e 28
2.3 Owur Hardware Thread model 28
2.3.1 Context: The FOSFOR project 28
2.3.2 Hardware Thread specifications 30
2.3.3 Hardware Thread architecture 31
2.4 Hardware Thread programming model 36
2.4.1 Operating System services protocol 36
2.4.2 Network communication protocol 38
2.4.3 Accelerator interface oL 39
2.5 Conclusion ittt 41

2.1 Related work

2.1.1

Software kernel management

With the emergence of heterogeneous platform including both software processors
and reconfigurable areas, a natural way to tackle the heterogeneity of these recon-

figurable platforms has been to rely on the existing software abstraction layers. To

rise their abstraction level, the control of the hardware accelerators has been given

to a software operating system running on a processor.

12 Chapter 2. Unified Thread Model

This scheme leads to design a new kind of platform in which a primitive or func-
tion used by a task, or a task itself, can be accelerated in hardware. The following
works aim to provide a simple way to load and run these accelerators. They permit
to abstract the complexity of the communication between a processor, namely an
application running on top of an operating system, and a hardware accelerator.

This is the case of the Egret platform [Bergmann 2003] which the objective is
to provide a fully modular platform. A Microblaze micro-controller unit is running
a pC-Linux operating system and allows the developer to choose which hardware
accelerators have to be executed. To do so, a classic driver using the IOCTL' API?
[IOC 1997] permits the developer to load a partial bitstream of the wished configu-
ration through the Internal Configuration Access Port (ICAP) of the FPGA (Fig.

/dev/icap /proc/icap
major = 120 register entries
minor = 0

Linux Kernel

reserve address A
space
request address space
register major number
register syscalls
register fproc entries

ICAP module

Memory-Mapped /O
i Space

‘
‘
1 |
Emmm
S
i
1

Figure 2.1: pC-Linux ICAP driver [Bergmann 2003]

Authors of [Donato 2005] presented a platform based on the Linux operating
system. This choice has been done because its source code is available for free,
it has been ported on numerous platforms and it is modular regarding additional
drivers.

This platform has been named Caronte : it is composed of a Virtex 2 Pro FPGA

nput and Output Control
2 Application Programming Interface

2.1. Related work 13

including a Power PC 405 and one ICAP port. A software driver allows the devel-
oper to control the ICAP using the IOCTL protocol again. When loading a new
IP3 core, a communication protocol has been implemented to allow this IP to claim
itself to the Core Manager IP, following a hot-plug philosophy. The interconnect is
a Wishbone Bus and specific Medium Access Controller (MAC) are used to provide
the ability to allocate address space at run-time. This work led to the launch of
the commercial project PetaLinuz, which aims to simplify the deployment of the
Linux operating system on reconfigurable platforms. The use of Linux in MPSoC
platforms is a growing trend as shown by the recent acquisition of the Petal.ogix
company by Xilinx.

In [Rana 2007], a platform composed of several FPGAs is introduced. The whole
platform is supervised by a unique processor running Linux, and allowing reconfig-
uration ability, partially or totally. Simple primitives are also implemented as a
driver using the IOCTL protocol.

The main issue to solve is the management of the concurrent execution of each
task present in the system. To handle this, we need to rely on a multitask operating
system providing simple and legacy ways of communication to every task, both soft-
ware or hardware (Fig. 2.2). Especially, hardware tasks are connected to a Medium
Access Controller (MAC), which provides the ability to dynamically allocate address
space for each loaded module at run-time.

Kernel

Register/Unregister devices
Request/Free memory areas

kernel
modutes | YCM | ‘ MAC I IP Core Manager (SW part)
Register system calls
IP-Core :] |
drivers Driver Driver Driver
Data /O
recun:':%rable IP Core llpc«e {IF‘ coru] {IP Core [Pccr.

Figure 2.2: RAPTOR software architecture [Rana 2007]

The operating system used to abstract the reconfiguration process is based on the
work of Donato et al. [Donato 2005]. When a reconfigurable accelerator is loaded on
the FPGA, a driver is loaded into the Linux kernel and is associated to this accelera-

3Intellectual Property

14 Chapter 2. Unified Thread Model

tor. To control the module, the application relies on the classical IOCTL commands.

In all these works, the management of the hardware accelerators implies minimal
modification in the operating system and is easily portable. However, the accelerator
is considered as a hardware IP core and not as a hardware thread. From the user
point of view, this situation leads to a heterogeneous programming model for the
developer. It is not sufficient regarding our objectives which impose us to bear in
mind to allow a homogeneous programming model at a higher level of representation.

2.1.2 Run-time manager

Other solutions go further and propose to design a run-time manager. A run-
time manager is responsible for scheduling hardware accelerators at run-time and
managing the access to shared resources. The system knows which partitions are
available and which accelerators need to be loaded. Using adaptive algorithm, a
real-time unit dynamically places and configures the accelerators. More than a
management of the hardware accelerators as co-processor modules, the goal is to
define a model in which these accelerators could be considered as real tasks, in the
same way that the software ones are.

Nollet et al. [Nollet 2003] introduces one of the first approach to design an op-
erating system dedicated to Reconfigurable Systems called OS4RS. It specifically
targets the Heterogeneous Reconfigurable System-on-Chips composed of ISP (In-
struction Set Processor) and reconfigurable tiles.

This OS must be capable of providing a similar set of services for the heteroge-
neous tasks, as a traditional OS does for software application. It is based on RTAI,
a real-time Linux extension.

The hardware task are placed into slots and connected to each other via a
network-on-chip. The Hardware Abstraction Layer (HAL) of the operating system
provides communication primitives such as send and receive as well as control mes-
sages to place a new task and read or modify the network parameters (Fig. 2.3).
The communication API has been ported both in hardware and software. This
common interface allows to migrate a task from a software to a hardware processing
element in a transparent way.

The operating system includes a two-level scheduler. The first level dispatches
the task on the processing units whereas local schedulers handles the task assigned
to them. At the first level, the scheduler relies on a checkpointing mechanism to save
tasks contexts. They choose this solution because this has the advantage to make
the context independent from the targeted processing element. A the lower level,
local schedulers may employ processor-specific contexts, since they will never move
tasks to another processor. The definition and the management of the checkpoints
(ie. the definition of what needs to be saved) is up to the user. We can notice that
this information is particularly difficult to define and is still an open issue.

In addition to the scheduling service, the operating system provides a relocation
service using the checkpointing mechanisms to synchronize the migration.

2.1. Related work 15

SRR

Figure 2.3: OS4RS platform architecture [Nollet 2003]

In [Steiger 2004], Platzner et al. also introduce an operating system dedicated to
reconfigurable systems and discuss about two different points. The first discussion
is about design issues for reconfigurable hardware operating system. The required
degree of flexibility paired with high computation demands asks for partially recon-
figurable hardware that is operated in a true multitasking manner.

For the authors, it is necessary to define three things: (1) a programming model
dedicated to reconfigurable systems with a set of well-defined system services, (2)
a run-time system to handle the dynamicity of the system and resolve conflicts
between executable objects, and (3) the smallest unit of execution, that is to say a
process or a thread.

They define a hardware thread as a pre-placed and pre-routed digital circuit
which can be loaded and relocated easily in any available slots of the FPGA. A
square is the simplest shape to manage in spite of the fact that it also leads to a more
important internal fragmentation than more complex shapes, such as polyominoes.
Then they explain that 1-Dimensional (1D) placement involves an easier scheduling
of the different threads but an increase of the external fragmentation. On the other
hand, 2-Dimensional (2D) placement offers more possibility of placement and so less
external fragmentation but is harder to manage.

In this paper, they target a real-time scenario where each incoming thread is ei-
ther accepted with a guarantee to meet the deadline or rejected. As in reality FPGA
resources distribution is not homogeneous, we can assume that at least memory and
FIFOs are managed by the operating system, and so that a thread can access to
these resources using operating system services : memory allocation and message
queue. They conclude saying that 1D placement is more realistic regarding current
FPGAs architecture but 2D placement is an interesting open issues in the way that
2D scheduling is really more interesting in term of performance.

The second discussion deals with hard real-time tasks scheduling. Target plat-
form is composed of a CPU connected to a reconfigurable device through two ports:
a C/R port for configuration and readback, and a COMM port for communication

16 Chapter 2. Unified Thread Model

Task Scheduler

Resource Managcr Tasks and Resources Layer

(Placer) 3
Raw Task Task Preparation Task Con- |
i —» :
Reposnory 8_. Unit (TPU) b Soge Context Management Layer
x :
Caommunication and
| COMM Driver | IUR Driver | : Configuration Layer
C/R
W A ———
: C/R port }
| Memory
I ‘J Management
L Task Controller = Unit (MMU)
r Standard Task Interface (STI) :ﬁ".g i
Hardware Task P Device
B Drivers

Figure 2.4: Operating System for Reconfigurable Systems software architecture
[Steiger 2004]

between the operating system and the thread. This port is called Standard Task
Interface (STI). The Task Communication Bus (T'CB) runs horizontally through all
hardware thread area into a number of dummy tasks.

The software operating system is divided in three layers (Fig. 2.4): a first layer
to manage tasks and resources, a second to handle the context issue, and the last
one which is responsible for the communication and the configuration.

In [Wigley 2001], authors discuss the scheduling problem of relocatable hardware
tasks by an operating system. They give a specification of an ideal operating system
dedicated to the reconfigurable computers. This operating system must provide a
scheduler able to manage explicit context changes, namely the user has to insert
checkpoints inside tasks source code in order to ensure a correct context save.

In their specification, the operating system is responsible for managing the vir-
tual memory and protecting platform physical resources from conflicting accesses.
Task partitioning must be dynamic as we must be able to operate load balancing or
task migration from software to hardware and vice-versa.

Also, communication between hardware tasks must be thought in order to be
optimized. If two tasks are presents on different slots, we must take advantage of

2.1. Related work 17

it by initializing direct communication between these kind of tasks. Otherwise, a
buffer should be used in order to process communication. A last point is the need
of verification tools and test cases, that is to say application examples which could
benefit from the Dynamic and Partial Reconfiguration.

Another example of run-time manager is introduced in [Shiyanovskii 2009b].
Reconfiguration is managed by a software layer upon the real time operating system.
This layer is called Adaptation Manager, and can be customized in order to get a
trade-off between the power consumption and the execution speed. To do so it relies
on a learning process which allows it to improve its decision skill.

The reconfigurable platform is composed of tiles which abstract the logic block
programming level to provide to the developer an access to coarse grain primitives
such as filters, FFT* or others higher level functions. Scheduler policy is based on
priority. Tasks can have three different states : Inactive, Active and Reserved and
have real-time attributes such as execution time, deadline, or laxity.

These works show that an operating system is necessary to manage the hardware
accelerators. This abstraction layer has to take advantage of the dynamic reconfig-
uration and provides high-level mechanisms to manage the available slots. It means
offering the ability to the end-user to create, suspend, resume and delete a hardware
task. At a lower-level, a reconfigurable partition should be seen as a processing el-
ement. The operating system should be able to share this resource between every
hardware accelerators, leading us to view a hardware accelerator as an equivalent
of a software thread.

2.1.3 Hardware thread model

Using the ability to control the Dynamic and Partial Reconfiguration (DPR), recent
articles proposed abstraction models for the hardware accelerators. The objective
is to improve the programmability of these heterogeneous platform and to facilitate
the communication between the accelerators and the rest of the system providing a
default interface.

Authors of [El-Araby 2008] define VFPGAs. This acronym stands for Virtual
FPGAs. A VFPGA is a reconfigurable zone controlled by a processor (Fig. 2.5).
A VFPGA can be seen as a hardware task. This kind of task has three different
states: configured and waiting for input data (data in), processing, or sending data
(data out).

A virtualization manager is implemented to receive execution requests coming
from processors. It is responsible of loading the VFPGAs. As expected, different
tests show a gain regarding the execution speed.

4Fast Fourier Transform

18 Chapter 2. Unified Thread Model

T TTT T T T 3

| bk !

1

| P1 Virtual : |Mem Meml
| \ Space |

R ! [[
I = 1

: ") P Message Queue R] VFPGA

| Virtualization 4_! Vendor

|) N Manager :API ______

e | VFPGA

1 |

: o (Virtual : l T i T
) P Space 1 Mem Mem
| n) “P |

: os!

Fig. 5. Run-Time virtualization layer using PRTR

Figure 2.5: VFPGA runtime manager architecture [El-Araby 2008]

In [Verdoscia 1994], authors tackle the issue of the hardware implementation of a
Data-Flow Graph (DFG) model of computation (MoC). In a DFG model, a process
can be represented by an actor. Actors communicate by sending each other packets
of data called tokens [Lee 1987|. Although this model is generally static, this paper
defines a dynamic model in which actors inputs and outputs tokens come and go
from and to infinite FIFOs. FEvery actors have two inputs and a unique output
allowing to define three types of links between them:

e classical link: 2 — 2 (two outputs of two different actors to the inputs of one
or two other actors)

e joint link: 2 — 1 (two outputs of two different actors to the inputs of another
actor)

e and replica link: 1 — 2 (one output of an actor to the inputs of one or two
other actors)

Actors are grouped in clusters which communicate by Message Passing. Inside a
cluster, actors are called Functional Units (FUs). These FUs communicate through
a crossbar. Messages exchanged between FUs and between FUs and the host cor-
respond to the graph configuration and the produced tokens. A FU is composed of
three elements (Fig. 2.6):

e "Control Unit": this component permits to manage loops and conditions, this
using Test Macro

2.1. Related work

TOKEN_1 TOKEN_21
L
i)) z
C , 2 Eg_)
8 o 2.
OPCODE || ﬁ E » COMPUTATION i =z E
Tk 1 [—] i
5 E | mue UNIT | €5
C 7 e | £
o T z
-« z
7]
Y
TOKEN_O
(a) FU architecture.
FOP s0p
ol _ABIL i
ABOL >

(¢) Synchronization Unit.

TOKEN_ILREADY TOKEN_2L.READY

OPCODET T T
— OPER &%
i vaor
LOOP CONTROL L
!
3 3
| I :
il F MPX MPX
¥O
90%
FoN
ABOL
) PT
£ iy
2] _‘,/
v yTR
(b) Control Unit.
TOKEN_II TOKEN_21
TOKEN_ILREADY |
TQEEN_2LREADY)
v
ABIL & s
r .
|
. . .
v v v v v
OPER)|72_,,_ ‘ _|2,‘|){2; | FoN
g5 am g5| mur 25| SELECT €

} Y Y [

-« 2%
TR
»| OUT
ABOL LATCH

A
TOKEN_O

(d) Computation Unit.

Figure 7. An FU design

Figure 2.6: Functional Unit architecture [Verdoscia 1994]

e "Synchronization Unit": it is responsible for controlling the presence of the
input tokens. Two signals are generated: ABIL if the two tokens are present,

ABOL with a delay of one cycle to allow output firing

e "Computation Unit": it composed of an ALU ®, a multiplier and one Selection
module. If a test is requested and that it passes, the output is activated on

the arrival of the ABOL signal

The proposed model has three advantages. Firstly, all actors have the same ar-
chitecture (two inputs - one input) so the same interfaces with the external world,
then it allows to get an architecture adapted to VLSI, and finally all actors are able

to manage loops and conditional instructions.

% Arithmetic and Logical Unit

20 Chapter 2. Unified Thread Model

Much more complex accelerators have then been developed, such as Hybrid
Thread [Agron 2009a]. In this article, the authors define a model of POSIX® compli-
ant hardware thread, capable of processing operating system calls through a shared
memory, as software thread does (Fig. 2.7). A thread is composed of two finite
states machines (FSM). One used to answer to operating system requests and get
system calls results, and the other one to process system calls and get access to a
heap. These FSMs are controlled by the hardware accelerators encapsulated in the
User Logic component.

: Hardware Thread
: : Hardware Thread Interface
: | IPIF l ' User State Machine User |:
ANV 2 ic |}
TN S— S 2 Logie
Doy System State R :
] 138 f---a i E :
5:8: |E§:; : :Machme o it :
::g:/ Jile | I :
my e g S H
NN Tt v feme] g s
8 RS . BH;\M g i 5
"E\) R c 1, ° H
g, 1 G { & b :
NG, L |] - % Lreal | H
::u?‘: A Stack Fo< (2] | :
. HE S o) X H
:: | :%ﬁ:: e o State Inf 2 E : 15 H
o :agﬁmlgg. — "'%"1"5 :
D SRR rmen] | E | A& :
[IR == K b :
R —J:
: Timer || Over- | “ .

[Flow e

Figure 2.7: Hybrid Thread model [Agron 2009a]

Heap and stack are stored in an internal Block RAM (BRAM) of the thread.
Like in a software POSIX thread, the stack is used to store the system calls pa-
rameters. Moreover, in order to enhance the programmability of these threads, the
authors defined a high-level API which allows the developer to describe a hetero-
geneous application using the C language. A dedicated compiler written in Python
permits to translate the C code into a VHDL implementation of the Hybrid Thread.

In [Lubbers 2008], the authors introduce an operating system dedicated to recon-
figurable architectures: ReconOS. This operating system provides a homogeneous
abstraction layer to the threads, both software or hardware, and allows them to pro-
cess system calls. This paper deals with the portage of ReconOS on a Linux based
platform, and compares its performances with another one based on the eCOS op-
erating system. The goal is to demonstrate the portability of the concepts brought
by the ReconOS architecture.

SPortable Operating System Interface

2.1. Related work 21

In this operating system, every services are managed by a software operating
system running on a processor. Hardware system calls are done through an API
described in a VHDL library. The hardware thread finite state machine is synchro-
nized with the software operating system in order it to process the system call. The
interface responsible for the communication is called OSIF for OS InterFace and
represents a set of registers accessible through the processor bus (Fig. 2.8).

- hardware thread - --------------cc-o--- 3
i
OS synchronization state machine

DCR bus (CPU)

A done =07

|
m | /'sem_post un<='1' |/shm_read()
i | (C_SEM_B) P
I AN
AR
- @?} Y
| N done="1'/ |
i k\ un<='0_ -~
i /shm,wmeﬂ b ==
< I 1 I
tointerrupt 1 1 ! \WRlTE transitions occur only when
controller !] 08 interface is ready

PLB bus (Memory)

Figure 2.8: ReconOS hardware thread model [Lubbers 2008]

Regarding the inter-thread communication, the thread heterogeneity is abstracted
associating each hardware thread with a software one, which is a proxy or a del-
egate. When requested by a hardware thread, the system call is executed by the
corresponding software thread.

In order to link operating resources requested by the hardware thread with the
ones accessible by the software one, a table of the used instances is maintained by
the delegate. In this way, the same hardware thread can be used by several instances
of a software thread. This mechanism has been implemented to foresee the future
use of the partial and dynamic reconfiguration.

2.1.4 Conclusion

As explained in the introduction, our choice is oriented to the threading model.
Our goal is to propose a hardware thread model which is able to communicate with
software threads in the same way that what has been proposed by Hybrid Thread
[Agron 2009a] or ReconOS [Lubbers 2008|. This model has to be adapted to the
reconfigurable platform and take advantage of the parallelism and the flexibility
offered by this type of platform. The definition of this model is the basic proposal
of this thesis and will lead us to define in the next chapters, an operating system
architecture which offer the ability to abstract the specificity of the hardware thread
regarding the software one.

22 Chapter 2. Unified Thread Model

2.2 Thread model

2.2.1 Process definition

A process is defined as an independent stream of instructions, running on top of a
processing element. A process permits to group some of a processing element re-
sources together, such as the memory space, the open files, the signal handlers and
other information. Grouping resources inside a same entity facilitates the manage-
ment of these resources by the running process [Tanenbaum 2001].

Process execution is protected by the fact that it has a private address space.
Processes are scheduled by the kernel operating system and compete for the access
to the processing element. When a process is blocked by a system call, the scheduler
is responsible for saving the context of this process and selecting another process
among the ones ready to be executed.

2.2.2 Thread definition

A thread is executed inside a process (Fig. 2.9). The main difference between a
thread and a process is that the latter has a full view of the memory space address-
able by the processor whereas threads inside a same process share the processing
element resources owned by the process.

Process 1 Process 2

Operating System Kernel
process
table

[Processing Elements }

Thread

Figure 2.9: Process and Thread

A threading model provides the advantage to isolate application functions ex-
ecutions regarding one to the others and so enforces parallelism when targeting
multicore platforms. It improves the programmability dividing application into sev-
eral tasks. In addition, a thread is easier to create or destroy than a process. A
simple representation of the thread life cycle is depicted in Figure 2.10.

Moreover, as a thread is a sub-entity of a process, it has a smaller context to
save than the latter. Indeed, it does not have to manage global resources such as
memory or CPU information. Thread context mainly includes registers and some
other local values.

2.2. Thread model 23

Running
preemptible

system
call

schedule |

D Scheduled state (Running)

cond_true ' Non scheduled state
— Thread action

----# Scheduler action

Figure 2.10: Thread life cycle

2.2.3 Software thread model

Generally, it exists two ways to implement a thread model in an operating system.
Either in user space or in kernel space.

2.2.3.1 User thread model

In the user thread model, the operating system kernel is only aware of a single thread
in the process. Threads are scheduled by a threads library implemented in the user
space. The advantage of this model is that there is no need to modify the operating
system, which is interesting if this one does not support the thread execution model.

Process 1 Process 2

thread thread
[scheduler][table] [scheduler][table]

Operating System Kernel
process

[Processing Elements J Thread

Figure 2.11: User Thread model

The user-level scheduler allows only one thread to be actively running in the
process at a time. There is one thread table per process which allows a fast context
switch as there is no need to request a kernel intervention (Fig. 2.11). A local
scheduling policy is possible but is limited. For instance, as the user-level scheduler

24 Chapter 2. Unified Thread Model

cannot manage a clock interrupt, a round-robin scheduling cannot be implemented.
Regarding the parallelism, the main drawback of this model is that a blocking call
from a thread would block all the threads implemented inside the same process.

2.2.3.2 Kernel thread model

In the kernel thread model, kernel threads are separated tasks which are associated
with a process. In a kernel thread model, one kernel thread per process is created.
The process table and the thread table are both managed at the kernel level. A
preemptive scheduling policy is used in which the operating system decides which
thread is eligible to share the processor.

Process 1 Process 2

Operating System Kernel

[scheduler] process ‘ ‘ thread ‘

table table

[Processing Elements J Thread

Figure 2.12: Kernel Thread model

Moreover, when a thread performs a blocking call, its state is notified to the
kernel which can decide to preempt the thread in favor of another ready thread. As
thread are managed at the kernel level, the drawback is that system calls costs are
higher than in the user thread model.

2.2.3.3 Hybrid thread model

In a hybrid thread model, several user-level threads are running on top of a kernel
thread (Fig. 2.13). A commonly used hybrid thread model is the POSIX threads
specification (Pthreads). POSIX stands for Portable Operating System Interface.
Threads are user-level threads but are managed using a kernel-assisted context-
switching. It means that when a thread performs a system call, if the call is non-
blocking, the thread rely on the user-level API. Otherwise, the kernel thread is
notified that the thread is blocked and the kernel scheduler can try to find another
process whose at least one thread is runnable. This solution is more complex to
implement but tries to combine the best of the two models.

Finally, in embedded systems, the commonly used thread programming model is
the kernel threads model. The goal is to reduce the memory footprint of the appli-

2.2. Thread model 25
Process 1 Process 2
thread thread
[scheduler] [table] [scheduler] [table }
E
KT1 KT2 KT3 KT4
OS Kernel
process kernel thread
table table
Thread :
[Processing Elements } Kernel Thread

Figure 2.13: Hybrid Thread model

cation as the kernel thread structure is lighter than the process one. On the other
hand, performance is lower due to the necessity to regularly switch from the user
mode to the kernel mode. The hybrid thread model like POSIX tends to be adopted
because the memory footprint become negligible regarding the available resources
and above all because it is a widely used standard in the computing domain. The
adoption of a standard being a good thing for the improvement of the applications
portability.

2.2.4 Thread attributes
2.2.4.1 Storage structures

At the time of its creation, a thread is associated with two storage structures:

e a Data structure: Data is where all of the program variables are stored. It is
broken down into storage for global and static variables (static), storage for
dynamically allocated storage (heap), and storage for variables that are local
to the function.

e a Stack structure: The stack contains data about the program or procedure
call flow in a thread. The stack, along with local storage, is allocated for each
thread created. While in use by a thread, the stack and local storage are con-
sidered to be thread resources. When the thread ends, these resources return
to the process for subsequent use by another thread.

2.2.4.2 Thread-private data

Thread-private data are data that threads cannot share between themselves. Mainly,
it includes the following resources:

26 Chapter 2. Unified Thread Model

e Thread identifier: A unique number that can be used to identify the thread.

e Priority: if the operating system allows specification of a thread priority, this
value would determine the relative importance of one thread to other threads
in the application.

e (Call stack: The call stack contains data about the program flow or procedure
call flow in the thread.

2.2.4.3 Thread-specific data (TLS)

Threads can have their own view of data items called thread-specific data. Thread-
specific data is different from thread-private data. The threads implementation
defines the thread-private data at the kernel level, while the application defines the
thread-specific data. Threads do not share thread-specific storage, but all functions
within that thread can access it.

Due to the design of the application, threads may not function correctly if they
share the global storage of the application. If eliminating the global storage is not
feasible, using thread-specific data is a good alternative.

2.2.5 Synchronization techniques among threads

Even if an application is thread-safe, in order to keep good performances, some
global resources have to be shared between threads. In this case, the most important
aspect of programming becomes the ability to synchronize threads. Synchronization
is the cooperative act of two or more threads that ensures that each thread reaches
a known point of operation regarding to other threads before continuing.

Threads can be synchronized using operating system services. These services
ensure the developer that critical resources are accessed in a safe way and allow
threads to communicate. The most common synchronization primitives are:

o Mutexes

Semaphores

Condition variables

Threads as synchronization primitives

Message Passing

2.2.5.1 Mutexes

A mutual exclusion (mutez) is a cooperative agreement between threads which en-
sures that only one of the threads is allowed to access the data or run certain

2.2. Thread model 27

application code at a time. The mutex is usually logically associated with the data
it protects by the application.

Create, lock, unlock, and delete are operations typically preformed on a mutex.
Any thread that successfully locks the mutex is the owner until it unlocks the mutex.
Any thread that attempts to lock the mutex waits until the owner unlocks the mutex.
When the owner unlocks the mutex, control is returned to one waiting thread with
that thread becoming the owner of the mutex. There can be only one owner of a
mutex at a time.

2.2.5.2 Semaphores

Semaphores can be used to control access to shared resources. A semaphore can be
thought of as an intelligent counter. Every semaphore has a current count, which is
greater than or equal to zero.

Any thread can decrement the count locking or taking the semaphore. Attempt-
ing to decrement the count past 0 causes the thread that is calling to wait for another
thread to unlock the semaphore. In the same way, any thread can increment the
count unlocking or posting the semaphore. Posting a semaphore may wake up a
waiting thread if there is one present.

In their simplest form (with an initial count of 1), semaphores can be thought of
as a mutual exclusion (mutex). The important distinction between semaphores and
mutexes is the concept of ownership. No ownership is associated with a semaphore.
Unlike mutexes, it is possible for a thread that never took for the semaphore to post
the semaphore.

2.2.5.3 Condition variables and threads

Condition variables allow threads to wait for certain events or conditions to occur
and they notify other threads that are also waiting for the same events or conditions.
The thread can wait on a condition variable and broadcast a condition such that
one or all of the threads that are waiting on the condition variable become active.

Condition variables do not have ownership associated with them and are usually
stateless. A stateless condition variable means that if a thread signals a condition
variable to wake up a waiting thread when there currently are no waiting threads,
the signal is discarded and no action is taken. The signal is effectively lost. It is
possible for one thread to signal a condition immediately before a different thread
begins waiting for it without any resulting action.

2.2.5.4 Threads as synchronization primitives

Threads themselves can be used as synchronization primitives when one thread
specifically waits for another thread to complete. The waiting thread does not
continue processing until the target thread has finished running all of its application
code.

28 Chapter 2. Unified Thread Model

2.2.5.5 Message Passing

A message passing API can be implemented on top of the previous mechanisms.
Threads can use this higher abstraction layer to synchronize and exchange data.
This APIT provides blocking or non blocking primitives to transparently send or
receive messages from a thread to another. Implementation can be realized using
either the shared memory paradigm or a network protocol if a dedicated network is
available.

2.2.6 Conclusion

Finally, to be considered as a software thread equivalent, the operating system
managing the hardware threads has to provide them the ability to access to the
same services than the software ones. The hardware thread model has to take
it into account, and specifies additional mechanisms which allow the developer to
process system calls.

2.3 Our Hardware Thread model

2.3.1 Context: The FOSFOR project
2.3.1.1 Presentation

The FOSFOR project is an ANR' project started in January 2008 and completed
in December 2011. This is a collaboration between four partners: Thales Research
and Technology France based in Palaiseau, the ETIS lab located in Cergy-Pontoise,
the CAIRN from Lannion, and the LEAT based in Nice Sophia-Antipolis.

FOSFOR stands for Flexible Operating System FOr Reconfigurable platform.
The aim of this project is to define a new kind of heterogeneous platform. This
platform is heterogeneous in the sense that threads and operating systems could be
implemented either in software (running on one of the processors), or in hardware
(running in a partition of the FPGA).

Each part could then be adapted regarding the deployed application. The goal
is to propose a homogeneous programming model for the application. This architec-
ture is done to demonstrate the reconfigurable architecture viability regarding the
development process complexity.

2.3.1.2 Platform architecture

The FOSFOR architecture is composed of multiple processing elements connected
to a central bus (Fig. 2.14). We distinguish software processing elements and hard-
ware processing elements. Both implement respectfully a software and a hardware
version of the RTEMS®[RTE 1988] operating system. On each processor, a software

"Agence Nationale pour la Recherche
®Real-Time Executive for Multiprocessor Systems

2.3. Our Hardware Thread model 29

operating system manages classic software threads whereas a hardware operating
system (HwOS) is able to manage reconfigurable partitions. Hardware accelerators
are scheduled into these partitions.

Processor Processor Processor FPGA
Flexible OS Flexible OS Flexible 0OS ,ahared
emor
CMw) Cvw) Cvw) y
MPCI MPCI MPCI

* * * System Bus

Flexible
HwOS

Reconfigurable Partitions [Network]
@ Software Thread Hardware Thread (VW) Middleware FOSFOR platform

E Network Interface OS Services Component
Figure 2.14: FOSFOR platform architecture

The objective is to provide at the user-level a homogeneous thread point of
view. To achieve it, we abstract hardware accelerators into hardware threads. The
architecture of these hardware threads is defined in details in Sections 2.3.2 and
2.3.3.

2.3.1.3 High-level communication mechanisms

Communication between threads can be handled using two ways. For synchroniza-
tion and small data transfer, threads can rely on the operating system services.
These services can be locally managed or shared between all processing elements.
For larger amount of data, a middleware layer provides a message passing APT with
Send and Receive primitives.

This middleware layer (Mw) is inserted between the application layer, based
on POSIX threads, and the operating system services API. If a thread wants to
communicate with another one, it has access to the simple middleware API using
transparent message passing protocol, or it can access directly to the operating
system services, such as Mutex or Message Queues primitives.

This high-level API composed of these two types of primitives has been ported
on the hardware side. From the user point of view, the application is only composed
of threads. Starting from here, an automatic tool can be expected to generate both

30 Chapter 2. Unified Thread Model

software and hardware code. For instance, basing the description of the application
on the components can be a good solution to facilitate the implementation of het-
erogeneous applications on HRSoC platforms.

In software, the MPCI? layer included in RTEMS is the base of the heterogeneous
communication. It provides a transparent access to distant services. We extended
it to the hardware implementation of the services. The bridge has to be transparent
to abstract both the location and the heterogeneity of the application threads. The
location of each hardware thread which dynamically changes regarding the available
slots is dynamically managed and abstracted by the middleware layer.

2.3.2 Hardware Thread specifications
2.3.2.1 Objectives

In order to simplify the programming complexity of the HRSoC, hardware acceler-
ators have to adopt the same behaviour as their software counterparts. To do so,
they should be able to obey the orders of the operating system. They also must have
the ability to call operating system services available in the whole platform, read
and write data from and to memories, and specifically they should be associated
with an interface allowing the developer to control the execution of these hardware
accelerators. The hardware thread life cycle should be equivalent to the software
one. All these features and interfaces are assembled in order to encapsulate the
accelerator and so to define what we call a hardware thread.

2.3.2.2 Definition

We defined a hardware thread to take advantage of the dynamic reconfiguration
provided, for instance, in the Xilinx FPGAs. It is composed of two main parts:
a static part which contains all the interfaces with the platform, and a dynamic
application-specific part, which contains the Accelerator, the Finite State Machine
(FSM) controlling its execution, and a private memory (Fig. 2.15).

Compared to a software thread, a hardware thread will run on a reconfigurable
partition. This reconfigurable partition can be compared to a process, in which the
logic resources are equals to the processor resources shared between every threads
running inside this process. In this scheme, a set of reconfigurable partitions is a
processing element containing several processor cores. A parallel can be done be-
tween a reconfigurable partition and a processor core.

Static interfaces correspond to the user-level API. It provides to the thread
an access to the operating system and communication services. The User FSM is
the sequential code executed by the thread and finally, the double port memory
connected both to the Accelerator and the Network Interface is used as the heap
and stack storage by the thread.

9Multi-Processor Communication Interface

2.3. Our Hardware Thread model 31

Hardware Thread (HT)

. OS interface
|:| Static modules System FSM (0ssC) w

system call i

B Dynamic modules | = W @ _ . ___..___.._ 1

“ Control signals
Network
Interface
A

i data
I

User FSM

Figure 2.15: Hardware Thread Architecture

2.3.3 Hardware Thread architecture
2.3.3.1 Operating System interface

The static part provides an interface to interact with the operating system (OS
Interface). Tt contains a specific component responsible for implementing the proto-
col between a thread and the operating system called the OS Services Component
(OSSC) (Fig. 2.16). This interface is the same for all threads and considered as
static. In this way, it can be reusable by any hardware thread and so it can ease
the thread preemption process. It is composed of a standard dual-port memory in
which the thread can write the identifier of a system call and its parameters. Upon
notification via a “SysCall” wire, call parameters are read by the operating system
using a dedicated bus that connects all the reconfigurable partitions. Once the sys-
tem call is done, return values are written back in the memory and are read by the
thread.

This protocol allows a hardware module to perform system calls with the exact
same semantic as pure software. Therefore we can implement a consistent API for
both hardware and software threads, and greatly reduce the heterogeneity gap.

2.3.3.2 System FSM

Once instantiated by the operating system, this one can control the System FSM
of the hardware thread to handle the accelerator execution. This FSM supports
four basic commands: start, suspend, resume and stop. Dynamic and partial recon-
figuration feature provided by Xilinx FPGAs allows the scheduler to dynamically
reconfigure the dynamic part of the thread and so to temporarily share a given par-
tition between several threads, as it is done on the software side where a CPU is

32 Chapter 2. Unified Thread Model

OS interface (OSSC)

Double-Port memory

H
Illllllalrlalrl‘nlllll’ — data_out w
task ID O
; S
User FSM <IIILeIItLJLnIIIIIIII param / return O - data_in
gé address
TTTOCTINEL L = I:l R/W R
/ B z
syscall param / return M syscall
TLTUCTTINCY = —- B

address address s

decoder

Figure 2.16: OSSC architecture

shared by software threads.

2.3.3.3 Hardware Thread life cycle

However, a hardware thread has a specific life cycle compared to a software thread.
The operating system has to be able to manage temporarily and spatially the hard-
ware thread, so it has to take into account if the thread is running and if it is
configured or not. Nonetheless, orders given by the operating system to a hardware
thread are the same as the ones given to a software one and include starting, stop-
ping, or resuming its activity.

From the scheduler point of view, a hardware thread has the same three classical
states than a software thread: Ready, Waiting and Running. But as the compo-
nents of a hardware thread are inherently parallel, and it is located in a dynamically
reconfigurable partition, we added new states to take into account the configuration
status, as shown in Fig. 2.17.

In order to mitigate the reconfiguration latency, the scheduler can choose to
keep a thread configured while it is waiting on a blocking system call. Furthermore,
in order to keep the network complexity at a manageable level, we forbid the pre-
emption of a hardware thread while there is a pending communication with this
thread. This is why we refine the Waiting state into three states: configured and
non-preemptible, configured and preemptible, and non configured. The ability for a
thread to claim itself as non-preemptible when communicating involves to limit the
size of the packets exchanged on the network, this in order to ensure that a thread
cannot monopolize a reconfigurable slot.

Similarly, the Running state is refined into preemptible and non-preemptible
states. To simplify the scheduling management, a hardware thread comes back into

2.3. Our Hardware Thread model 33

syscall

cond_true

Running Waiting
on-preemptible on-preemptible
syscall_preempt

O Configured state (Running)

Q Unconfigured state

—® Thread action o
---- 9 Scheduler action | g

Running
preemptible

exit
preempt

schedule,”” syscall
/ ; S S S cond_true .- ! breemnt
; .-“preempt | configure ; ipreempt ip P
cond_true .
Read semeees “{ Ready)e-------ceecmane- cond_true . Waiting
< non configured
Software Thread Hardware Thread

Figure 2.17: Software and Hardware Thread States

a preemptible state by notifying it explicitly with a blocking system call or a specific
primitive.

2.3.3.4 User FSM

The user FSM defines the behaviour of the hardware thread. States defined into
this FSM allow the user to process system calls, send or receive data to or from the
network and order the accelerator to perform its function.

It can be controlled by an external operating system via a control register. The
operating system is therefore able to start, restart, suspend or resume the thread
execution. This control register is mapped in the OSSC memory at offset 0x00 (Fig.
2.16).

In Figure 2.18, blue ellipses correspond to the states which are presents in the
System FSM of the thread. The RUNNING state allows the Processing Logic Ele-
ment execution, RECV and SEND states are middleware calls, whereas LOCK and
UNLOCK are classical mutex primitives. In order to facilitate task implementation
for the developer, we provide a VHDL package including every available system
calls procedures. These procedures are responsible of writing call parameters in the
OSSC memory and to get back return values. This set of procedures, coupled with
the common interfaces, allows to easily generate the hardware thread source code
(Fig. 2.19).

2.3.3.5 Network interface

A hardware thread would be commonly used in order to process large amount of
data. To be useful, it should provide an efficient way of communication. A network

34 Chapter 2. Unified Thread Model

create task

preempted

N

\
BN
=9 reset

BN
\

<\
=+ restart

O System state
(D userstate

Figure 2.18: Hardware Thread FSM example

system_fsm.vhd user_fsm.vhd

os_command

user_states_en | case fsm_state is

when READY => when INIT =>
en<="0" param_1 <= X"00000101" ;
-- new_fsm_state <= LOCK_MUTEX;
when USER_STATES => reset user fsm -
en="1, = P when LOCK_MUTEX =>
- PROC_MUTEX_LOCK(param_1,
when RESETED => return_1, status);
reset ='1"; if locked ='1' then
-- new_fsm_state <= RECV;
when SUSPENDED => else
en="'0% new_fsm_state <= fsm_state;
end if;

when RESUMED => -
en="1" when RECV =>
PROC_RECV(param_1, param_2, status);

Figure 2.19: Hardware Thread HDL files example

interface is responsible for creating and decoding packets, sent and received, to and
from a dedicated network. Because threads inside a HRSoC can run in parallel, the
ideal environment for a hardware thread is a networked system in which it could
communicate with another hardware thread from point to point.

The Network Interface (NI) is the static interface of the Hardware Thread (Fig.
2.15). Tt is connected to a dedicated Network-on-Chip (NoC)[Devaux 2009] imple-
mented in order to offer a fast medium of communication between hardware threads
and memories. It also ensures them a fast way of communication with software
threads.

2.3. Our Hardware Thread model 35

NI architecture is shown in Fig. 2.20. Two FIFOs allow the User FSM to stack
Send and Receive requests. These requests are then respectively processed by a
Packetizer and a Depacketizer. A DMA is connected to one of the port of the
thread internal memory. This DMA is driven on one hand by the Packetizer to
read data in memory and send it through the NoC and on the other hand by the
Depacketizer to receive data from the NoC and writes it into the internal memory.

Network Interface

7 size N
] &pt »_|Memory Thread
@ ol’n U " \Wrapper, Me:'r?gry
200y \4

] @buf‘ferI N H
i—q—>re_ {] FFo :

User u receive,] Q

FSM] noc IDI H

7 fed ack N
M—ME Packetizer

DMA

FIFO g

Depacketizer

headers data data headers

{ NoC Wrapper J

< Network-on-Chip >

Figure 2.20: Network Interface architecture

Elements connected to the NoC communicate through it by sending data packets
over the network. We specified and implemented a protocol to provide two main
features to a thread. The first one consists in sending data to an element connected
to the NoC. This element can be another thread, a memory or another kind of
peripheral. The second is receiving data from another element. In the case of
a passive element, such as a memory connected on a upper leaf of the NoC, we
defined special packets to allow write operation in one shot and read operation in
two phases : one request from the thread and an answer from the memory. The
protocol adopted for the network has been thought to provide these two features in
a transparent way for the developer. This protocol is detailed in Appendix A.1.

36 Chapter 2. Unified Thread Model

2.4 Hardware Thread programming model

2.4.1 Operating System services protocol
2.4.1.1 Thread commands

When the operating system wants to send an order to a hardware thread, it has to
write it in the OS Services Component (OSSC) memory (Fig. 2.16). The first word
of this memory is the Status Word. The Status Word entry is both used to receive
the operating system commands and the system call status code. The content of
the latter is explained in Section 2.4.1.2. The content of the former is detailed in
Figure 2.21. The operating system command is always given priority over the thread
system call. In this case, the command field in the status word is decoded by the
OSSC and the order is transmitted to the System FSM which controls the state of
the User FSM. Just after its configuration, the hardware thread is set in a ready
state by the System FSM.

Bits | 31-8 7-5 4-0
Content ‘ (ignored) command status code

Figure 2.21: OSSC Status Word content

When receiving the Start command, the thread goes to the INIT state which
must be defined by the developer (Fig. 2.18). When receiving the Suspend com-
mand, the hardware is stuck in its current state by the System FSM and no registers

modification is allowed in this state. This command can be used to save the context
of the thread.

2.4.1.2 User API

On the other side of the OSSC, when a thread wants to process a system call, it
must call a VHDL procedure which will transparently handle the OS interface. A
procedure takes as parameters the primitive parameters, the registers to store return
values as well as control signals to communicate with the OSSC (Fig. 2.22).

A procedure is a Finite State Machine which stacks the parameters and the
requested service in the OSSC memory (Fig. 2.23). Then it waits for the op-
erating system acknowledge. Actually, this acknowledge is the detection by the
OSSC of a read request from the operating system. After this, the procedure waits
for the operating system to answer. Even if the thread processes a non-blocking
call, it will receive a Status Code notifying if the call succeeded or not. This Sta-
tus Code is defined by the underlying operating system. It could be a value like
OS_SUCCESSFUL, OS_FAILURE or something specific to the requested service

2.4. Hardware Thread programming model 37

User_FSM N regser

return_1

B system port

,E‘
-
return_j

] userport

-t

return_M

clk —w ’E:

rst —

param_1
param i

param_N

proc_state

[:‘ return_j
[:‘ return_M

i

—»[ossc_mem_in

2R

:‘ return_1

0SSC (DPRAM)

I ossc_rw
System Call
Procedure :‘ o0ssc_mem_addr

ossc_mem_out
O——————1+—#»dataint
0ssc_sysre
poSSCSVSIEd L pfllsysreq

data_outl

.

Figure 2.22: System Call procedure

like ERR_MUTEX_INVALID or ERR_MSG_QUEUE_FULL.

WR_STATUS_WORD Status Word including required service

is written in the memory.

Necessary parameters are sent and
the sysreq signal is set.

The sysreq signal is maintained until
the Operating System reads the Status
Word

Then the procedure waits for the OS
answer, polling on the Status Word.

Once the OS answers, the procedure
get the return values before returning
itself.

Figure 2.23: System Call procedure steps

The advantage when dissociating the user code from the operating system speci-
ficity is that the application can be easily ported on another operating system or
APL. It just requires some modification in the OS Services Component to be com-

38 Chapter 2. Unified Thread Model

pliant with the targeted operating system.

2.4.2 Network communication protocol

In the context of the FOSFOR project, we had to define the structure and the
behaviour of the interface between a hardware thread and DRAFT Network-on-Chip
(NoC). This interface should allow threads to process non-blocking send and receive
requests. All requests are processed sequentially without interruption. Namely, for
a given request, all packets are sent or received the one after the other.

The maximum packet size is defined at configuration time, namely when syn-
thesizing the hardware platform. The Network Interface can access to the internal
memory of the thread. This access allows it to load data from the memory in order
to send it over the network and to get data from the network in order to store it in
the internal memory.

A common abstraction level has been defined in the middleware layer. The
communication processes defined in software are adapted in hardware to allow them
to communicate in a transparent way with the software threads.

2.4.2.1 Supported requests

The two first basic requests supported by the Network Interface are the Send and
Receive primitives (Fig. 2.24). A Send request consists in sending one or several
packets over the network. Packet size is fixed by communication medium design (ie.
the NoC). A packet is composed of a header followed by data to transmit. Data and
header are represented by 32-bit width flits. A receive request consists in waiting
for a packet to come from the network. It is a passive request which involves no
transmission from the requesting thread.

Hw Thread Sender Hw Thread Receiver

Memory Memory

@data @data

data_size data_size

“J DMA transfer DMA transfer [

Network Network
Interface Interface
A Iy
> nl

Network-on-Chip

NoC transfer

Figure 2.24: Network Interface Send and Receive protocol

The two others supported requests are the Write and Read primitives (Fig.

2.4. Hardware Thread programming model 39

2.25). A Write request is similar to a Send request except that additional header
flits are sent after the two main flits. The main flits are essential to ensure a cor-
rect routing inside the network. The first flit contains the sender and receiver port
address whereas the second one contains the number of flits included in the packet.
Additional headers indicates the address of the targeted buffer in the remote mem-
ory and the number of words to read or write.

Hw Thread Sender Memor
Memory Memory
@data P posr @data
Orasas2rT OrasdsszrT
data_size| | Gosuzssn Write request 3 Grrsuazean data_size
Oxzssseet ", R Oxzssssedt
~jJ DMA 5
@D 4 M ®
Decode head
Network Network | and write data.
Interface Interface
A A
@d:
= Network-on-Chip e

NoC transfer

Hw Thread Sender

Memory

oos
data_size S
- Ouasssontt Read request
=} DMA
transfer

Memory

@data @data

data_size

Network
Interface

Decode header
and read data

% Network
@ "'..,,”.“" Interface

Decode header
and read data

NoC transfer @

Network-on-Chip éj

@ NoC transfer
Figure 2.25: Network Interface Write and Read protocol

This protocol allows a hardware thread to efficiently and directly communicate
with others hardware threads and also to exchange data with software threads using
memory buffers. The bridge visible in Figure 2.14 is responsible for translating
the messages between the processor bus and the network-on-chip. It permits to
get a homogeneous API and memory mapping between the software and hardware
threads.

2.4.3 Accelerator interface

The accelerator represents the main function of the hardware thread. As the in-
ternal structure of a hardware thread is inherently parallel, we implement pipeline
mechanisms between this function and the communication features in order to take
advantage of this parallelism (Fig. 2.26).

In the hardware thread, user application is described in the User FSM. This is

40 Chapter 2. Unified Thread Model

in this state machine that the user is allowed to process operating system calls and
to be able to perform pipelining. From a functional point of view, as the network-
on-chip is full-duplex, the user is able to simultaneously run the Network Interface
to send or receive data, and the hardware accelerator to process these data taking
advantage of the double port internal memory.

—p Implicit sync.

Explitcit sync. |

recv N =9 recv N+1 |=» recv N+2 == 000

comp N = comp N+1 == 000=== comp N+i

send N = 000==»| send N+i =»| send N+j

Figure 2.26: Parallel processing using pipelining

To do so, the three modules which are the Network Interface Packetizer, the De-
packetizer and the Processing Logic Element, should be able to synchronize. Each
module is connected to a synchronization controller (Fig. 2.27). This controller
has a FIFO in which the User FSM can stack execution requests. The controller
process each request one after the other, which will implicitly synchronize execution
requests for a given module.

On the other hand, synchronization between two modules is explicitly expressed
in the user request. This request should contain two pieces of information:

e conditions to start a request processing, it means with which module a syn-
chronization is necessary and how many synchronization have to be realized.

e and a mask which identify modules waiting for a synchronization in order to
notify them the end of the process.

At the User FSM level, when the user wants to send or receive data, as well as
process it, he just have to send a simple request to the synchronization controller.
Once the request is buffered, the controller sends back an acknowledge which permits
to the User FSM to send a new request or to call an operating service without waiting
the end of the request processing.

2.5. Conclusion 41

params / FlFO requests } params

on_duty dpack B .
on_duty dpack NI
@ <_ (Depacketizer)
A

; A params

params
on_dut g l

I
H o dn_duty pack NI
User N (Packetizer)
FSM L
Sync. Controller ;
i
params /~ FIFO requests : N params
done JUE— - [. !
i done
-~ Acc.
. Sync. Controller

» Synchronization Module “

Figure 2.27: Synchronization Module

2.5 Conclusion

In this chapter we proposed a thread model which can access to operating system
services and whose the behaviour is close to a software one. Moreover, we introduced
an additional programming model inspired from the Synchronous Data-Flow model.
This allows to program hardware threads with a higher level programming model
than the thread model.

All these features allow us to consider a hardware accelerator as a real thread.
Obviously, even if they are similar, at low-level software and hardware threads can-
not be managed in the same way by an operating system. This is why we need
dedicated techniques to manipulate hardware threads, especially when the objec-
tive is to be able to preempt them on the available slots provided by the platform.
This issue is the topic of the next chapter.

CHAPTER 3

Hardware threads preemption
using Dynamic and Partial
Reconfiguration

Contents
3.1 Imtroductiont 43
3.2 Related works 44
3.2.1 Preemption mechanisms 44
3.2.2 Reconfiguration accelerators 46
323 Designtools. oo 49
3.3 FPGA reconfiguration knowledge 51
3.3.1 Virtex 5 FPGA resources 51
3.3.2 FPGA configuration 52
3.3.3 Bitstream parsero 54
3.4 Preemption mechanisms 58
3.4.1 Context management service 58
3.4.2 Reconfiguration service 59
3.4.3 Relocation Service oL 59
3.5 Design flow for hardware threads relocation 61
3.5.1 Standardflow Lo oo 61
3.5.2 Problematics L o 62
3.5.3 Relocationflow L. 65
3.5.4 Experimented tools. 69
3.5.5 Adapted Isolation Design Flow 71
3.6 Conclusionttt 77

3.1 Introduction

Numerous works have been done about the management of the dynamic and partial
reconfiguration, especially the preemption of hardware accelerators. These works
rely on the definition of hardware accelerators as hardware threads, and define

Chapter 3. Hardware threads preemption using Dynamic and Partial
44 Reconfiguration

mechanisms to provide this important feature to handle these threads on top of
an operating system.

In parallel, design tool flows had to be rethought in order to offer the ability to
design reconfigurable platforms composed of independent reconfigurable slots. This
low-level feature would ease the hardware threads scheduling by an operating system
providing a flexible way to relocate module from one slot to another.

These two points are discussed in this chapter. A state-of-the-art of different
preemption mechanisms is introduced in Section 3.2. Section 3.4 details our work
targeting the Virtex 5 FPGA family. Then the design flow issue is tackled in Section
3.5 where problematic and solutions are detailed before to be implemented. Finally,
Section 3.6 summarizes our contribution and explains how it can be integrated into
an operating system architecture, making a link to the next chapter.

3.2 Related works

3.2.1 Preemption mechanisms

In [Kiithnle 2006], Becker et al. include in their dynamically reconfigurable system
described in [Grimm 2004] a 2-Dimensional (2D) module relocator. In this system a
module can only be relocated on an area whose resources are horizontally homoge-
neous regarding its point of origin. As they target Xilinx devices, FPGA resources
are always vertically homogeneous.

In particular they target the Virtex-2 Pro FPGA family. However, one of the
specificity of these chips is that, on contrary of latest FPGAs, they can only be
dynamically reconfigured in 1-Dimensional (1D), that is to say it is necessary to
reconfigure a whole column of resources. To overcome this issue and to offer 2D
relocation mechanisms, they propose to use the read-modify and write-back method.
It consists in reading back the module configuration, modifying it to place the
module in the wanted area and writing-back the bitstream.

The glitch-less property of the reconfigurable matrix ensures that if the same
data than the one which is currently configured is written in the memory, no glitch
would disturb this data. Due to this property, they can modify one module of a
column without changing the others implemented in the same column.

The bitstream is modified using the Jbits software [Guccione 1999| provided
by Xilinx for Virtex-II devices which is running in parallel on a computer. This
bitstream is sent through the UART. From here, the downloaded bitstream does
not contain information about the bitstream location. It is added later by the
relocator.

Another issue raised in this paper is the flexibility needed for the connection
between the dynamic module and the rest of the system. To leverage it, Virtual
Routing Channels are placed near each module. When reconfiguring the system, the
router near the module can be dynamically linked to one of the slots of the routing
channel (Fig. 3.1). These slots can be reconfigured according to modules needs and

3.2. Related works 45

Vertical Routing Channel

Recqnfiguratplp area Static area A)]

- d g

%

Configuration siot n
Configuration siot 0

TIT

Wi I

Figure 3.1: Virtual Routing Channels

so allow to connect several modules of the same column.

The paper [S. Corbetta M. Morandi M. Novati 2009] also deals with the 2D bit-
stream relocation. The introduced relocator is named Birf and has been realized to
be used on Virtex 4 and 5. The relocation is limited to Slices-based modules. The
use of BRAMs and DSPs in reconfigurable modules is prohibited in this design flow.
There are no specific design constraints as this flow relies on old Xilinx tools options

(10.1 and above), which unfortunately are not available in current tools anymore
(13.1 and up).

In [T. Becker 2007], authors perform task relocation on strictly homogeneous ar-
eas. The relocator comes in two versions : a software one and a hardware one. If it
exists non homogeneous resources from one partition to another, it means BRAMs
or DSPs, relocation can still be done if they are not used by the design. In this case,
columns are considered as empty and not reconfigured by the relocator.

In [Kallam 2009], the authors propose a method to relocate dynamic modules
on the fly. The principle is to perform a read-back of the bitstream, word after word
(a word is 32 bits wide). Then the relocator processes each word in a pipeline in
order to relocate it in the destination area. It offers a gain in memory occupancy as
there is no need to store the totality of the partial bitstream anymore.

This is also interesting regarding the execution speed because using a BRAM
as storage memory offers a very fast access to data. This technique is well suited
for module relocation but does not allow to implement preemption mechanisms.
However it has the advantage to show that dynamic reconfiguration speed can be
improved regarding the original ICAP controller provided by Xilinx. This controller
can access to high-capacity memory storage but is processor-dependent. Acceler-
ating the partial reconfiguration process would allow to target a larger range of
real-time application.

Chapter 3. Hardware threads preemption using Dynamic and Partial

46 Reconfiguration

FPGA SrcPRR P Relocatorgn, 0

ARC % DestPRR FARs: ;

ICAP Wrapper g > FAR "l R .
5 2 | Generator FARo: | E

T L Data_Out

ICAP 0 |, done Relocator,, | 0 - B

g c Addr R

[] l I) ICAP Mode A | Daamn A

PRR T —> M
(Source) PRR s PRR | Data_In 0
active Bitstream | | (desfination) (destination) ICAP .

Wrapper Data_Out
Busy 12‘7

(a) (b)

Figure 3.2: (a) Implementation of PRR-PRR relocation (b) Top-Level block diagram
of ARC [Kallam 2009]

3.2.2 Reconfiguration accelerators

[Liu 2009] proposes a design space exploration of different architectures to improve
the configuration time of the ICAP driver when loading a partial bitstream. All tests
have been done on a Virtex 4 platform (ML405 Development Board). In addition
to the IP cores provided by Xilinx, the OPB HwICAP and the XPS HwICAP, three
other solutions are asserted (Fig. 3.3).

The first solution is based on a DMA! engine running aside of the HwICAP
controller and feeding it through the processor bus. The second one is a customized
instance of the XPS HwICAP which allows it to be master on the processor bus
and so act like a DMA controller. Finally, the last architecture consists in adding
a Block RAM inside the ICAP controller in order to store the bitstream and so
dramatically reduce the transfer latency.

In summary, the DMA and the Master architectures respectively offer a speed-
up of 5.5 and 16 regarding a Microblaze-platform using cache memory and the
XPS HwICAP. As for the BRAM solution, it permits to reach the theoretical limits
of the reconfiguration port but it must be reserved for small reconfigurable modules.

FaRM [Duhem 2011] stands for Fast Reconfiguration Manager. This component
is master on the PLB bus and so can directly access to an external memory (Fig.
3.4). FIFOs are implemented to store the partial bitstream and allow to process
pre-fetch load to hide a part of the reconfiguration overhead. It relies on compres-
sion without loss techniques to reduce the amount of data to store in the FIFO.
Moreover, even if Xilinx recommends to operate the ICAP at 100MHz and so allows

!Direct Memory Access

3.2. Related works 47

e—— S Host Bus (PLB)
Host Bus (PLB) dosipelllp Masts D
ost Bus aster nterface
Slave Master Slave Slave Interface
Interface Interface Interface 1 Interface BRAM_HWICAP
| DMA_HWICAP| PLB Siave | LB Mastor | | PLB IP Interface |
Interface

LB 51 PLE Moot | PLB IP Interface (Slave Burst) | Burst Interface

lave laster Register Groups Master Attachment
Interface Interface lodule] HWICAP

Slave Attachment
HWICAP e Partial Bitstream

Register
Groups FIFO I Block RAM

[
TCAP Contl o ol Wiite/Read FIFOS
Master Attachment] State Machine late Machine
Stave Alachment Write/Read FIFOs ——

ICAP Control
State Machine

lodule Module

Modul
Register Groups
ICAP d i
(Burst Transfer Support) Register Groups | ICAP |

DMA Controller
; Configuration Configuration
Memory Memory

Memory (a) MST_-HWICAP (b) BRAM_-HWICAP

Figure 3.3: ICAP accelerators solutions [Liu 2009]

a maximum throughput of 400MB/s, the solution provides by FaRM can overclock
the ICAP at 200 MHz and so allows in certain cases to process configuration with
a maximum throughput of 800 MB/s.

Wrapper 1 WRITE_Clk
= 1
Scheduling : Smart Interface
Algorithm PLB 2 I
o <]:> Register bank
CTRL bus <r‘:::> N 16-400k x 32 bits
g : 0 |-
s : o9 (:::)
- !) S write fsm
T +RLE
s ‘_ : L~ decoding
2 ' 512 x 32bits ICAP
Bitstream DATA bus <::> g <EZ:> e
storage 0 1 | g 1
RLE s : Control FSM <:]— 2 8 <:| <:>
i x | Read FSM
!
i CTRL_CIK | READBACK_CIK |

Figure 3.4: FaRM architecture [Duhem 2011]

Uparc [Bonamy 2012] stands for Ultra-Fast Power-aware Reconfiguration Con-
troller. Like FaRM this controller relies on decompression techniques and overclock-
ing to enhance the reconfiguration process. However, they use a better compression
algorithm and a customized BRAM for bitstream storage (Fig. 3.5). The latter
permits them to overclock the ICAP at 362.5 MHz and so to reach a maximum
throughput of 1433 MB/s without compression, and 1008 MB/s with compression.
In the last case, the BRAM size of 256 KB allows to store maximum bitstream of
992 KB which is more than 40% of the Virtex 5 SX50T FPGA full configuration file.

The solution offered by Koch et al. [Hansen 2011] is currently the most efficient
regarding the reconfiguration throughput. Their accelerator provides a wider data
path size than the original ICAP primitive extending it to 64 bits. In addition they
also rely on two different clocks: the first one to fetch the input data, and the sec-

Chapter 3. Hardware threads preemption using Dynamic and Partial
48 Reconfiguration

DyCloGen . CLK 2

o o :
‘ i .-, Decompressor !
W R
CLK_A | CLK B ;! g

Frequency adaptation:
timing, bandwidth,
power consumption.

| oo ICAP cje
Bitstream BRAM Add f
External ! <—r
P (| Manager | =] UReC (¢
Start : 4

UPaRC

Figure 3.5: Uparc architecture [Bonamy 2012]

ond one which must operate at twice the frequency of that of the first one (Fig. 3.6).

L(31:0) = D(31:0) o
=2 >
[a]
=) -
g = Pl 1310 ’
i H ey [OR10) gy
— ‘l | WRITE
ICAP
H(31:0) o | T BUSY
S P cE BUSY -
[=]
t -t ok

P RisiNG

EDGE
— | DETECTOR

CLK1X

*

MODE

WRITE

CLK2X

RISING
EDGE
DETECTOR

Figure 3.6: ICAP Hard Macro block diagram [Hansen 2011]

On a Virtex 5 platform, they create a Hard Macro and achieve to feed the ICAP
with a clock running at 550 MHz. Above this frequency, the configuration process
freezes and it is necessary to reboot the ICAP. This architecture allows them to reach
a throughput of 2200 MB/s. This throughput can only be achieved with bitstream
whose the size can be contained into the FIFO of 64 KB. However, in future work the

3.2. Related works 49

addition of DMA mechanisms and decompression engine could lead to improve the
access to bigger external storage memories. Also, it should be noticed that during
readback, in order to ensure that the reconfiguration memory of the FPGA is read
correctly, this operation is still done at 100 MHz, that is to say at the classical
throughput.

3.2.3 Design tools

Regarding the design tools, the standard ones provided by Xilinx do not offer the
ability to design independent and relocatable dynamic modules. Accordingly, new
tools have been developed by the community to permit the development of design
using alternative constraints necessary to control at fine-grain the placement and
the routing of both the static and the dynamic modules.

RapidSmith [Lavin 2011] is a JAVA API which allows to manipulate XDL? files.
It relies on a complete database about the resources architectures of each Xilinx
FPGA devices (Fig. 3.7). Tt allows the developer to implement its own placer-
router going from the XDL format to the proprietary NCD? format used by the
Xilinx tools.

| = apsk_comb_stitched_placed xdi - Hand HMPlacer

snngmnnsnnsnnens .

i

<
rotvexaSifes8 | CLBX39Y13 | CL8 (80,63)

Figure 3.7: RapidSmith screen capture [Lavin 2011]

OpenPR [Sohanghpurwala 2011] is an open-source software based on the same
routing engine which permits to create independent partition using blocker macros
[Koch 2010a]. These macros prevent the static routing from crossing inside the
reconfigurable partitions (Fig. 3.8). However this tool is not integrated into the
standard flow and the number of supported devices is limited.

2Xilinx Description Language
*Native Circuit Description

Chapter 3. Hardware threads preemption using Dynamic and Partial
50 Reconfiguration

Figure 3.8: OpenPR screen capture from FPGA Editor [Sohanghpurwala 2011]

In order to keep using the Xilinx tools and the support of all existing devices, the
new Isolation Design Flow [Corbett 2012] provides additional options to segregate
the partitions in a design. Segregation includes both the use of the logical resources
and the use of the routing resources (Fig. 3.9). Basically, it was created to tackle se-
curity issues in cryptographic systems, allowing safe function duplication. However,
it can be deflected in order to design homogeneous and relocatable partitions.

® Xiliow FPGA [iitsr - impl_2_rauted.ned

o v, srecs 1 S 18N Mo Lok Changes
1128 21 G 0o

Figure 3.9: Isolation Design Flow screen capture from FPGA Editor [Corbett 2012]

3.3. FPGA reconfiguration knowledge 51

All these design tools have been experimented to process module relocation in
Virtex 5 FPGA devices. Results and comparisons are detailed in Section 3.5.4.

3.3 FPGA reconfiguration knowledge

Our objective is to provide preemption mechanisms on Virtex 5 FPGA, which could
be applied in the future to Virtex 6 or even Virtex 7 FPGA with minimal changes
in the procedure. To do so, we first have to be well aware of how this kind of FPGA
is reconfigured and particularly how the configuration bitstream is organized. This
is the topic of the next section which will then lead us to propose preemption mech-
anisms, before tackling the design flow issue.

3.3.1 Virtex 5 FPGA resources

Logic resources are mainly represented by the Configuration Logic Block (CLB). A
CLB is a processing unit of Xilinx FPGAs. Each CLB is connected to a global switch
matrix for signal routing and is composed of two Slices. It exists two types of Slices
(Fig. 3.10): whereas Slices-L are slices containing logic elements, namely LUTs*
and Flip-Flops, Slices-M are slices done to be used as distributed memory. They
contains also some Flips-Flops, but instead of LUTs it offers double ports memory
and shift registers. Amid the others logic resources, there are inputs-outputs, clocks
(CMT : Clock Management Tile) and every interconnections between the different
logic blocks.

DPRAM + SRL

LLLLFlips-Flop

Figure 3.10: Slice-L and Slice-M [Xilinx 2009c¢|

‘Look-Up Tables

Chapter 3. Hardware threads preemption using Dynamic and Partial
52 Reconfiguration

As Slices can be very costly when used as memory components, FPGA matrices
contain also physical Block RAM (BRAM). On a maximum size of 36Kb, BRAMs
are disposed in columns. A BRAM can either serve as storage memory or be used
as FIFO.

Like memory, arithmetic operations are resource consuming when using logic
blocks. This is why Digital Signal Processing (DSP) blocks have been added in
Virtex 5 FPGA and allow to process arithmetic operation on 48-bits wide data.

3.3.1.1 FPGA organization

The FPGA is divided into rows and columns (Fig. 3.11). Rows are numbered in
ascending order from the center of the FPGA. There may be a maximum of 20 rows.
Rows are indexed from 0 to 9 on each side. The height of each row is 20 CLBs,
which corresponds to a column served by a global clock line (HCLK).

Column 0 Columns 9to 10 Column 17

PR

Row 2 { 20CLBs 4BRAMs 8DSPs 40 10Bs

Smn

HCLK line

Row 1

Row 0

Row 0

Row 1

Row 2

Figure 3.11: FPGA organization

3.3.2 FPGA configuration

A bitstream is a sequence of commands and data sent to the configuration port of
the FPGA. If we look further in the understanding of the reconfiguration process,
these commands are written in the registers of a configuration driver. In the case of
the dynamic and partial reconfiguration, this driver is the ICAP driver.

3.3.2.1 Configuration port protocol

Configuration commands allow the user to read and write configuration data in
the configuration memory, to control the reconfiguration process and to check if any
error occurs during the configuration with the help of the CRC® register. Commands
are sent as packets of 32-bits words. There are two types of packets:

5Cyclic Redundancy Check

3.3. FPGA reconfiguration knowledge 53

e Packets of type 1 that are used to read and write configuration registers. It
first sends a header in which we define the order to be achieved (NOP, Read
or Write), the register in which we wish to operate (CRC, Control, Command,
Address Frame, ...) and the number of words we want to read or write. Then
it sends the configuration memory data.

H.?:::r Opcode Register Address Reserved Word Count
[31:29] [28:27] [26:13] [12:11] [10:0]
001 XX RRRRRRRRRxxxxx RR XOOOXXXXXX
Notes:

1. "R" means the bit is not used and reserved for future use.

Figure 3.12: Type 1 Paquet Header Format [Xilinx 2009b]

e Type 2 packets that are used to send or receive larger blocks of data. A packet
of type 1 has to be sent previously in order to specify the address where data
has to be sent.

Header Opcode Word Count
Type
[31:29] [28:27] [26:0]
010 RR OO

Figure 3.13: Type 2 Paquet Header Format [Xilinx 2009b]

3.3.2.2 Frame address

Among all the available commands, one of the most interesting regarding the pre-
emption is the command which allows to specify the address where the configuration
content is written. It means which area of the FPGA is targeted. An area is located
using the address of its first frame. A frame is the smallest unit of reconfiguration of
the FPGA. A frame is 1-bit width, and its height correspond to a row of the FPGA.
A frame has a total of 1312 bits. Each frame has a unique 32 bits width address
which is divided into five parts (Fig. 3.14).

The first part (bits 23-21) represents the Block Type. In a Virtex FPGA, there
are four types of blocks:

e the reconfigurable blocks and interconnect: it includes CLBs, I0Bs, DSPs,
BRAMs, and clocks

e the BRAMSs content

Chapter 3. Hardware threads preemption using Dynamic and Partial

54 Reconfiguration
Top/
Block Bottom Row Major Minor
Unused Type Row Address Address Address
N A N A N N Al
31 24 | 23 21 | 20| 19 15] 14 7 | 6 0

UG181_c6_10_DB2607

Figure 3.14: Frame address [Xilinx 2009b|

e the special blocks that are used for the partial and dynamic reconfiguration. In
each column there is a special frame available at minor address 0. In this frame,
the 21%% word corresponds to the HCLK, three of the four configuration bits
following the 12-bits of the ECC (error correcting code) are used for example
for the capture of registers.

e the BRAMSs non-configuration blocks which yield device-specific data [Xilinx 2009b]

The second part is the Top/Bottom Row bit which indicates if the frame is
located in the upper part of the FPGA (Top = 0) or in the lower one (Top = 1). It
should be noticed that except for the HCLK rows, it is necessary to reverse the bit
order of the configuration frames to relocate a frame from the top to the bottom of
the FPGA, and inversely.

Row Address: It corresponds to the row address as indicated in Figure 3.11.
Major Address: it corresponds to the column of resources that we want to recon-
figure. In the case of the BRAMs, the configuration and the content is targeted by
two different addresses.

Minor Address: it represents a frame inside a column of resources. These frames
allow to access to the routing and logic configuration of each column, as shown in
Figure 3.15.

The number of frames to write is dependent of the type of the targeted resources.
However, each frame is composed of 41 words of 32 bits width. Figure 3.16 shows
how a frame is composed along of a CLB row.

3.3.3 Bitstream parser

Beyond the need to know where are written the data, it is necessary to find this
information inside a bitstream in order to be able to modify it on-line. This infor-
mation will be useful to be able to relocate a module. To do so, we need to parse
the partial bitstream and identify its content.

Each generated bitstream starts by a header indicating the design name, the
FPGA part in which it has to be loaded, the time and date of creation, as well as
the payload configuration data size (Table 3.1).

3.3. FPGA reconfiguration knowledge 55

CLB DSP 10B
CLB 10B BRAM CLK
DSP
x10 x20
DSP
CLB 10B BRAM CLK
CLB [PEP 10B
HCLK HCLK HCLK HCLK HCLK
CLB DSP I10B
cLB 0B BRAM CLK
DSP
DSP
CLB 0B BRAM CLK
CLB DSP 10B
contents
ol 0 ol N o|— B o|— = ol N ol ™
oo & oo @ oo ® oo ol oo =l oo)
E|E = ElE g E|E £ E|E i E|lE] E|E £
= I o 5] iio IS i a o E o o
H_/
frames 0 .. 25 frames 26 and 27 others all frames
- interconnect - column interfaces — logic configuration ~ logic configuration

Figure 3.15: Resources memory configuration for the Virtex 5 architecture

Bitstream Frame Bits
= |13
1 Word 1 0 =z
a1 Word 2 0 ek
= 640 configuration bits
ol sorcdr o9 E for 10 GLBs above
= the HCLK row
" o | 1280
:)
[l 16 unusad HCLK
HCLK configuration bits
config A Mord 20 b o | 658 J
Word —=[a1 Word 21 0 > |2 |ess } 4 miscellaneous HCLK
2 configuration bits
M Word22 0 == 9
12 ECC bits
o |84
. E 820
* B EL
640 configuration bits
o for 10 CLBs below
o
- le}gg = g the HCLK row
a1 Word40 o
M Worddl 0 = |o

LIG191_c6_09 060407

Figure 3.16: Frame composition [Xilinx 2009b]

3.3.3.1 Initialization commands

Each bitstream includes a first sequence of commands which permits to synchronize
with the FPGA, to initialize the CRC register, and so on. This sequence differs
regarding the bitstream type if it is a full or a partial bitstream. For a partial

Chapter 3. Hardware threads preemption using Dynamic and Partial

56

Reconfiguration

Field name

Size in byte

Default value

Magic Number Length 2 0x0009
Magic Number 8 0x0FFOOFFOOFFOOFFO
Null Character 1 0x00

Half-Word 2 0x0001
‘a’ 1 0x61
Design Name Length 2 —
Design Name — —
Character ’;’ 1 —
User ID 17 UserID=0xFFFFFFFF
Null Character 1 0x00
b’ 1 0x62
Part Name Length 2 —
Part Name — —
Null Character 1 0x00
¢’ 1 0x63
Date Length 2 0x000B
Date 10 —
Null Character 1 0x00
'd’ 1 0x64
Time Length 2 0x0009
Time 8 —
Null Character 1 0x00
‘e’ 1 0x65
Bitstream Length 4 —

Table 3.1: Bitstream header contents

bitstream, the sequence of commands is described in Table 3.2.

A part of this sequence which interests us is the one succeeding the writing of the

Write CFG command. It starts by a writing in the FAR register (Frame Address
Register) of the starting address of the reconfiguration. Followed by the number

of words to write corresponding to the number of column to reconfigure in the ad-

dressed row.

3.3.3.2 Configuration data

The reconfiguration is done row by row. When switching from one row to another,

a new address is sent in the FAR register and also the number of new words to write
(Fig. 3.17).

3.3. FPGA reconfiguration knowledge

57

Command value Description

0xFFFFFFFF Dummy Word (x8)
0x000000BB Bus Width Word
0x11220044 8 / 16 / 32 bus width
0xFFFFFFFF Dummy Word
0xFFFFFFFF Dummy Word
0xAA995566 Sync Word
0x20000000 No Operation (NOP)
0x30008001 Type 1 write 1 word to CMD register
0x00000007 Reset CRC
0x20000000 NOP

0x20000000 NOP

0x30018001 Type 1 write 1 word to ID register
0x02E9A093 ID Code

0x30008001 Type 1 write 1 word to CMD
0x00000001 Write CFG command
0x20000000 NOP

0x30002001 Type 1 write 1 word to FAR
0x00100780 FAR value
0x20000000 NOP

0x30004000 Type 1 write 0 word to FDRI
0x50002031 Type 2 write 8241 words to FDRI

Table 3.2: Bitstream initialization commands

Commands
(Sync, Reset, ID...)

FAR Row 0

Configuration data

FAR Row 1

Configuration data

Far Row 2

Configuration data

Commands
(,CRC, Desynch)

Figure 3.17: Multiple Rows bitstream content

For partial bitstreams, in addition to configuration data, an additional frame is

Chapter 3. Hardware threads preemption using Dynamic and Partial
58 Reconfiguration

written. The presence of this frame is not documented but may correspond to an
extra frame for synchronizing the HCLK row that is at the center of the frame. This
frame is found at the end of each configuration data corresponding to a FPGA row.

3.3.3.3 Desynchronization commands

After the configuration data, a series of NOP (No Operation) is sent to allow the
FPGA to complete the reconfiguration. This is followed by a control command of
the CRC and an ICAP desynchronization.

Command value Description
0x3000C001 Type 1 write 1 word to MASK register
0x00001000 CTLO - Enable System Monitor Overtemperature Power Down
0x30030001 Type 1 write 1 word to CTLI register
0x00000000 NULL
0x30008001 Type 1 write 1 word to CMD register
0x00000003 Last Frame (LFRM)
0x20000000 Dummy Word (x 101)
0x30002001 Type 1 write 1 word to FAR register
0x00ef8000 Row = 15, Top = 0, Block type = 7
0x30000001 Type 1 write 1 word to CRC register
Ox6efeced7 CRC value
0x30008001 Type 1 write 1 word to CMD register
0x0000000d Desync
0x20000000 NOP

3.4 Preemption mechanisms

Preemption implies the ability for an operating system to save the execution context
of a hardware thread running in a given slot, to load a new one into this slot, and
later, to restore the context of the first hardware thread in any of the available slots
of the platform. The last requirement involves to be able to relocate a hardware
thread from one slot to another.

To manage hardware threads in this way, using the information from the pre-
vious section, we implement three operating system services which are a context
management service, a reconfiguration service and a relocation service.

3.4.1 Context management service

There are two ways to save the context of a hardware thread. Either using check-
pointing mechanisms [Huang 2008] or processing partial readback [Lee 2010]. The
first one is intrusive and implies that the developer inserts checkpoints in his source
code. Checkpoints are the only moments where the preemption is enabled. To

3.4. Preemption mechanisms 59

preempt a thread, the scheduler has to wait until the thread reaches a checkpoint
and so saves its context. Consequences are a time overhead at each checkpoints and
latency in preemption decision. The advantage is that the context size could be
dramatically reduced, and ideally to zero.

The second way is the readback mechanism which is technology dependent but
which avoids real time failure since preemption could be done immediately without
risk to lose information. This is what we have chosen to use. Readback consists
of reading the contents of the partial zone where the module is located. In the
case of the hardware threads, segregation between static part and dynamic part
permits task context reduction and offers a common interface in order to integrate
different accelerators in the same partition. It should be noticed that application
must ensure preemption is disabled when the thread is currently communicating to
avoid blocking or data loss.

3.4.2 Reconfiguration service

A design using the partial and dynamic reconfiguration technique provided by Xil-
inx FPGAs [Lysaght 2006], is composed of a static part and several reconfigurable
partitions in which reconfigurable modules can be loaded. Using this technology,
the operating system is able to schedule hardware threads [Belaid 2009]|, without
resetting the rest of the system. For real-time applications, both readback and re-
configuration overheads can be minimized using dedicated hardware reconfiguration
controller, such as FaRM [Duhem 2011], Uparc [Bonamy 2012] or the solution of-
fered by Hansen et al. [Hansen 2011]. For instance, FaRM, which is used in the
design test detailed in Section 3.5.5, allows to process configuration with the theo-
retical maximum throughput of 400 MB/s at a frequency of 100 MHz.

FPGA
ICAP port

ICAP T e e i
driver (\
[[|

non non
Y | | configured HT1 configured HT2 [
slot slot |
Operating |

System \)

~_ = = O O O O O O e -

Figure 3.18: ICAP driver for Partial Reconfiguration

3.4.3 Relocation Service

As logic resources are critical in FPGAs, we would want to be able to run several
threads in the same reconfigurable slot at different times. One of the issue encoun-
tered in the classical flow is that a partial bitstream for a given module is generated

Chapter 3. Hardware threads preemption using Dynamic and Partial
60 Reconfiguration

for one slot and only one. To load a module on another slot, we need either another
bitstream, which is memory consuming, or a relocated bitstream, whose creation is
time consuming.

In embedded system, with the increase of the FPGAs size, and so of the bitstream
size, the amount of memory needed to store one specific partial bitstream for each
targeted partition is becoming more and more prohibitive. This is why a relocation
service seems to be the best choice. To relocate a partial bitstream, we implemented
two services: a bitstream parser and a bitstream relocater.

A bitstream parser is needed to find the right information in the bitstream. Xil-
inx FPGAs are organized in rows and columns. Each column is composed of several
frames, which is the smallest reconfigurable entity. To reconfigure a FPGA, the
ICAP reads a bitstream, writes address information in the Frame Address Register
(FAR) of the ICAP and writes frames contents into FPGA memory. Information
which interests us in the bitstream are the FAR values and the CRC value. The
process to relocate a partial bitstream is detailed in Fig. 3.19.

Configuration file Relocation process
structure
Synchr.c;ﬁization
Size
Partition Address
Store |::> Readback |::> Relocate |::> Restore
Address New Address New Address|
Confiduration
Ratd Data New data New data
CRC New CRC New CRC
Unique
CRC value configuration Target FAR
Desynchronization file address
Updated CRC
value

Figure 3.19: Partial bitstream relocation process

This process needs two bitstreams, one for the source partition and the other
implemented for the target partition. A readback is done on the first partition. The
resulting context is then saved in a new bitstream. The headers and footers of the
second bitstream are then modified to target the wanted partition modifying the
FAR value and adding a newly computed CRC value. In order to decrease the time
overhead of the CRC computation, we implemented a dedicated hardware module.
Details on this implementation can be found in Appendix B.2. Finally, merging

3.5. Design flow for hardware threads relocation 61

the headers and the saved context, we get a new relocated bitstream. A list of
the different available partitions, identified by their FAR value and their size, can
be created in order to simplify this process. This solution would make the second
bitstream unnecessary.

3.5 Design flow for hardware threads relocation

3.5.1 Standard flow

In the latest versions of the Xilinx software ISE Design Suite (IDS), the realization of
a design composed of reconfigurable modules, but not relocatable, has been greatly
simplified and automated for the end user.

3.5.1.1 Dynamic partitions

The user, from a complete static design, has the ability to create one or more dy-
namic partitions. In each of these partitions, it will be able to instantiate one or
more modules. Modules implemented in the same partition have to share the same
inputs and outputs, without necessarily using all of them. If a module need to be
implemented on several partitions, one instance of this module is created for each
partition (Fig. 3.20).

(" Partition 1 ™
g 22izbase o

Module 1

Static Partition
Reconfigurable / Module 2
Partition 1

|
Reconfigurable fm
Partition 2 I\._database |

FPGA Module 3

Module 1

o

\

Figure 3.20: Partial reconfiguration: Partition and modules

3.5.1.2 Proxy Macros interconnections

Once each module dynamically assigned to a partition, the user has to place and
route the static partition. At this moment, we end up with a design whose static
part is placed and routed and which contains "prozy macro”, which are bus macros
automatically placed by the tool (Fig. 3.21). These "prozy” are placed in the dy-
namic partitions, at the boundaries with the static partition. They ensure that the
inputs and outputs signals of the modules sharing the same partition go through

Chapter 3. Hardware threads preemption using Dynamic and Partial
62 Reconfiguration

the same path and that there will be no routing issues during the reconfiguration of
this partition.

Dynamic Reconfiguration

-

Static Partition Static Partition

Reconfigurable Reconfigurable
Partition 1 Partition 1

FPGA FPGA

E»] Proxy macro

—m Route

Figure 3.21: Proxy Macro Placed and Routed example

3.5.2 Problematics

Module relocation consists in moving a module from a dynamic partition to an-
other. This process forces us to define relocatable modules. To do so, the following
conditions are mandatory:

e the resources provided to a module should remain the same from one partition
to another. Namely, partitions should be homogeneous regarding resources
relative location. These resources include every logic block (LUTs, BRAM,
etc...), as well as the routing between these different blocks.

e the connection between the module and the static partition should be able
to support the dynamic reconfiguration and should be homogeneous from one
partition to another.

3.5.2.1 Partitions interconnection

The first issue which is encountered is that from a partition to another, even if they
have identical shapes and have the same inputs and outputs, the "prozy macro” au-
tomatically generated for these inputs and outputs by Xilinx tools are not mandatory
placed at the same relative location inside the partition.

Help with design constraints, it is possible to control where these proxy are
placed but not the route between this proxy and the dynamic partition. Concretely,
it is possible to place an input or output signal of the module, and so a proxy, on
a given slice, but it is not possible to constrain which input or output of the slice
will be used. From a partition to another, routing in each partition will be likely
different and so the relocation of a module will lead to a routing failure.

3.5. Design flow for hardware threads relocation 63

To leverage this issue, several works listed in the state of the art used hard bus
macro (Slice macro in Figure 3.22). These hard macros are manually placed on
both sides of the boundary between two modules, a static one and a dynamic one
or both dynamics. Routing between the two modules is defined inside the macro
and remains the same during the implementation.

Static Partition [] Slice macro

L i [Module port
—m Used route

Module

—_ Available route

Reconfigurable Partition
FPGA

Figure 3.22: Slice Macro

It was possible, in the 10.1 version of PlanAhead and earlier, to manually add
bus macro. In the latest version, the tool allows the user to define placement con-
straints which place the bus macro on the boundary between the static partition
and the dynamic module. However, during the implementation, these constraints
are not always respected and the macro could be moved in the static part as the
tool keeps automatically placing its own proxy macro (Fig. 3.23).

Static Partition

Proxy macro

Module port

vyoo

Used route

Available route

HE] Bus macro
Reconfigurable Partition

S E g
v

FPGA
l Place & Route
Static Partition
Module
E] Reconfigurable Partition
FPGA

Figure 3.23: PlanAhead Slice Macro placement

It should be noticed that there is a way to suppress the automatic insertion of
proxy macro setting the PARTITION PIN DIRECT ROUTE constraint to true.
This has the effect to route the partition output directly to the static partition

Chapter 3. Hardware threads preemption using Dynamic and Partial
64 Reconfiguration

without inserting an additional proxy macro. However, the bus macro previously
placed are always replaced somewhere inside the static partition.

This is due to the fact that the partial reconfiguration flow provided by PlanA-
head do not support a dynamic part to be overlapped by a static one. A new flow
must be found using only the static flow provided by PlanAhead and inserting addi-
tional constraints during the implementation of each module which would keep the
required placement and prohibition constraints.

3.5.2.2 Partitions routing

The second issue which need to be solved regarding the relocation of dynamic mod-
ules is the partitions routing. The routing matrix of Xilinx FPGAs is known to be
glitch-less. Namely, when the routing matrix is reconfigured, if there is no modifica-
tions to the configuration memory of a routing wire, this one will not be disturbed
by the reconfiguration. As a consequence, routing wires of the static partition are
allowed to go across the dynamic partitions without being affected by the dynamic
reconfiguration process (Fig. 3.24). This mechanism facilitates the routing process
and improves its efficiency regarding timing constraints.

RRLLLISLLL AL L
jEEL LI LI LIIE
I ITLITT AN S
[EmEEEE——
SIL LI N e
SISTTTTTTL BT -
TITE IIIL(TTe
SR TTIT T T

Logic resource

Used logic resource

Prohibited logic resource

BN I EN

Figure 3.24: Static route through Reconfigurable Partition

The drawback when the objective is to be able to dynamically relocate the par-
tial modules over every available partition is that when the module context will be
saved, in addition to the module routing information, the static routing which go
across this module will also be saved into this context. As a consequence, when
relocating the module, the static routing of the target partition will likely not be
the same than in the source one. So this routing may be cut and may produce a
routing failure.

3.5. Design flow for hardware threads relocation 65

3.5.3 Relocation flow

We have to propose a new design flow which is able to apply the placement and
prohibition constraints needed to design homogeneous and independent partitions.
To deal with this issue, this section introduces the theoretical procedures steps of
such a design flow and the possible solution offered by the alternative tools.

3.5.3.1 Procedure steps

The different steps to make a design supporting dynamic modules relocation are
described in Figure 3.25:

1) OFFLINE: implementation of a static design containing empty slots to host the
dynamic modules

2) OFFLINE: insertion of interconnection components between dynamic and static
modules

3) OFFLINE: separate implementation of each dynamic module prohibiting the use
of the static resources

4) OFFLINE: merging of the different implementations
5) INLINE: module execution stop and context save

6) INLINE: modification of the module context and computation of the new CRC
value in order to place it in a new slot

7) INLINE: restoration of the module context and restart

(6

{3}

@ = @ | @ -

P :
Sz M2
172 e 2
'-
[} 3
ﬂ FPGA M3
FPGA FPGA FPGA FPGA

FPGA
Q Prohibited zone |:| Impemented zone

Figure 3.25: Relocation flow

3§ 2

Chapter 3. Hardware threads preemption using Dynamic and Partial
66 Reconfiguration

3.5.3.2 Static partition design: Global methodology

As we cannot use the partial reconfiguration flow provided by PlanAhead as is, we
have to use the static flow and add the necessary constraints to separate the dy-
namic modules from the static part of the system.

The first constraint to be applied is the placement constraint. Dynamic par-
titions can be delimited by prohibiting the placement of static resources. This
prohibition is done using the CONFIG PROHIBIT constraint on the affected areas
in the UCF constraint file. Unfortunately, this constraint prevents both the auto-
matic placement of modules by the ISE placer, and the manual placement using the
constraint file, so no bus macros can be added at this stage Fig. 3.26.

FPGA

e IIEIILELL,
i L IILIIIELL,

LI LIIIE L

i Communication macro

TTIT L TITTT S

ELIL TITT LT N ety
EPEF**EFEP****F;I** Partition

y=oLIIIL. 1L
Sl TTTTTTT T [alw

Logic resource

Used logic resource

Prohibited logic resource

BN N NN

Figure 3.26: Static place

It is also necessary to apply routing constraints on dynamic areas to ensure that
no wire from the static routing crosses the reconfigurable area. No constraints are
defined in the Xilinx tools that would meet both needs. One solution is to use
blocker macros, such as defined by Kock. et al. [Koch 2010a] [Koch 2009] in their
design tool named Recobus Builder. In addition to block the routing, blocker macros
occupy resources available in the dynamic area and so act as a placement constraint.

Macros can be generated using the XDL language (Xilinz Description Language).
This language allows to define the location of the different components (internal and
external signals of the modules) on the circuit (Slices, BRAM, DSP, ...) and their
configuration (LUT used or multiplexer, values contained in the BRAM, ...). Tt can
also describe the routing between these components, which will serve to block the
routes within the reconfigurable areas.

The use of such a language permits to automate the generation of macros. The
structure of the FPGAs matrix being regular at a certain level, it is possible to create
communication bus composed of a same macro repeated along the boundaries, and
to block areas of varying sizes.

3.5. Design flow for hardware threads relocation 67

3.5.3.3 Macro generation with XDL

An XDL file allows to describe a FPGA design at several levels of its implementation:

e after the placement step: the file describes the location of the different used
resources, as well as how they are configured.

e after the routing step: in addition to placement information, the routing be-
tween the different resources is described using the semantics of the Nets.

The design is described in the file as a Module. This module has Ports, used to
describe the input and output ports of the macro, as well as Slices, BRAMs, DSPs,
and Nets.

Module

(Port A)
Port B

Slice XaYa CLB Xa'Ya'

Slice X...Y... CLB X..."Y...

[)
==
[3

[Net netl]

()

[Net net3]

Figure 3.27: XDL File structure

The Slices are described specifying their coordinates, and the configurations of
their LUTs, multiplexers and registers. These configurations indicate which inputs
and outputs of the Slice are used, and what is the logic equation of the LUTs.

In addition to the resources dedicated to logic functions, global routing matrices
are part of the FPGA resources. These matrices are located within each logic
resource (CLB, BRAM or DSP), and outside thereof.

Matrices provide access to internal inputs and outputs for each resource. Each
input and output has a single routing path possible to the global routing matrix.
External matrices offer more possibilities and allow to go to other global routing
matrices in order to finally reach the internal matrix of the end point of the route
(Fig. 3.28).

The Nets are used to describe the interconnections between the various resources
of a design. An interconnection is a route, which can propagate a signal from
one point to another. In the XDL description, a route goes from the output of a

Chapter 3. Hardware threads preemption using Dynamic and Partial
68 Reconfiguration

| O PIP: Programmable
Interconnection Point

—— Nets

Global routing matrice Internal matrice Slice

Figure 3.28: Internal and external switch matrices

resource to the input of several other resources. It passes through Programmable
Interconnection Points (PIPs). These PIPs are entry points and / or output of the
routing matrices.

The transition from a global switch matrix to another follows a certain logic in
the routing paths that can be taken from a given PIP. PIPs of external matrices are
identified with a tag in their name. This tag permits to identify a pattern. There
are three types of PIPs: PIPs starting a pattern (BEG), intermediate PIPs (MID)
and PIPs ending a pattern (END). A pattern is a set of three matrices, whose the
relative positions of the three types of PIPs, namely, BEG, MID and END, are
identified by their name (Fig. 3.29).

Global routing matrice Global routing matrice Global routing matrice

Figure 3.29: PIP types

In the XDL description, a PIP does not only refer to an interconnection point,
but to a segment connecting two points of interconnection. The segments described
relate only to internal segments, that is to say that the segments connecting two
external matrices are implicitly described (Fig. 3.30).

The XDL language is a good solution to control design routing at a very fine
grain. Several of the alternative design tools presented in the next section turn on

3.5. Design flow for hardware threads relocation 69

EL2BEGO EL2MIDO

LOGIC_OUT

External matrice Internal matrice Slice

net "net _blocker_macro_CLBLM_X3Y0_S1_A"
outpin "blocker_macro_CLBLM_X3Y0_S1" A ,
Pip CLBLM_X3Y0 M_A -> SITE_LOGIC_OUTS12 ,
Pip INT_X3Y0 LOGIC_OUTS12 -> EL2BEGO ,
inpin "blocker_macro_CLBLL_X4Y0_S2" B4 ,
pip INT_X4Y0 EL2MIDO -> IMUX_B13 ,
pip CLBLL_X4Y0 SITE_IMUX_B13 -> M_B4 ,

Figure 3.30: XDL Net example

the use of this language.

3.5.4 Experimented tools
3.5.4.1 RapidSmith

RapidSmith is a tool developed by the Brigham Youth University. It provides a
framework to easily manage XDL files. It was designed in order to allow a developer
to implement his own routing tools. In our case, it could be used to design custom
macros, and especially it could help us to create blocker macros in order to apply
fine routing constraints.

However, creating an efficient routing tools may take many time. Fortunately,
another interesting tool called OpenPR has been realized. This tool is based on the
same engine as RapidSmith and offers a higher level of abstraction in the design of
independent partitions.

3.5.4.2 OpenPR

OpenPR is a tool based on the TORC [Steiner 2011] framework which provides
a routing engine for the Xilinx FPGAs. OpenPR was created to offer the same
features as those provided by the Xilinx Partial Reconfiguration Toolkit which was
available for ISE 9.2, but not for the latest versions. It allows the design of empty
dynamic region connected to the static partition through hardware bus macros. It
is thought to be modular and above all extensible.

No IHM is provided with this tool and all manipulations are done in command
line. A specific directory structure has been adopted to ease the choice of the
implementable modules inside a given project. A project is defined by an XML file

Chapter 3. Hardware threads preemption using Dynamic and Partial
70 Reconfiguration

in order to facilitate a future integration inside an IDES.

Using this tool, we managed to design dynamically reconfiguration applications
on a Virtex 5 LX110 device. Unfortunately, depending on the complexity of the
design, the routing constraints are not always respected, and the router can ignore
them or keep stuck inside the place and route process. Nonetheless, this tool stays
promising and its open-source characteristic makes it more flexible than a propri-
etary solution, even if more complex to implement.

3.5.4.3 Xilinx Isolation Design Flow

The Isolation Design Flow (IDF), alternatively called Secure Chip Crypto (SCC)
design flow, has been created to target fault-tolerant systems, especially in the
critical applications in which safety and fault containment is a primary objective.
This flow allows a designer to isolate the different modules of his system against
each other. This is done regarding both the logic and the routing resources.

In this flow, each module to isolate is defined and synthesized separately. A top-
level module groups all these modules as black boxes. To ensure a correct isolation,
the implementation of these modules is done under some constraints. Namely, every

connections between two isolated partitions have to pass through trusted routes (Fig.
3.31).

Direct routing path

/

start
start =
load _,M s o
Eence :
Module 0 Module 0 Prohibited
resources
Controller Controller
(static) (static) FENCE |
start ..
load |, 'E
load .»[VJl-=~:
Module 1 Module 1
Normal routes Trusted routes

| M Additional LUT

Figure 3.31: Trusted routes

A trusted route specifies that an output of a partition has to pass through a
direct route. If the output is used as a load for two different inputs, this signal
have to be split into two different signals passing through a LUT resource, and so

Integrated Development Environment

3.5. Design flow for hardware threads relocation 71

forms what is called a trusted route. These constraints have to be applied to every
inter-partitions signals when it is necessary except for the global signals such as the
clock signal.

This flow has the advantage to be integrated into the PlanAhead tool provided
by Xilinx and is available now for the Virtex-4, Virtex-5, and Spartan-6 devices
and soon for the Kintex-7 devices. In the following, we choose to investigate the
adaptation of this design flow in order to perform relocation on a Virtex-5 platform

3.5.5 Adapted Isolation Design Flow
3.5.5.1 Hardware platform

Initially, the test of the Isolation Design Flow for the relocation of hardware module
has been experimented on the simple design shown in Fig. 3.32, and implemented
on a Virtex 5 SX50T FPGA using the version 13.1 of IDS”. It is a Microblaze-based
platform composed of the FaRM IP described in Section 3.2.2 and used to recon-
figure the dynamic partitions, a hardware CRC module used to compute the new
CRC of the relocated module as well as two dynamic modules.

FPGA
BRAM
ILMB DLMB
Microblaze
processor BRAM
PLB bus
Hw
UART ‘ GPIO_0 ‘ FaRM ‘ ‘ CRC ‘ GPIO_1
= e LT 2 SO
! i ICAP LD
i Moduleo | i Module1 |
1 s 1 e
! (2-bits | ! (2-bits |
i adder) 1 ' multiplier) 1
b momd e
Design Test platform
! Hard Macro

Figure 3.32: Test design

There is no external memory. The only off-chip connections are the FPGA clock
and the reset button. The two reconfigurable modules implement respectively a

"ISE Design Suite

Chapter 3. Hardware threads preemption using Dynamic and Partial
72 Reconfiguration

two-bits adder and a two-bits multiplier. Each one of these modules is controlled
by the processor through a dedicated GPIO peripheral.

In the case of the relocation where routes between the static partition and the
dynamic ones have to be relatively identical, we instantiated hard macros to connect
these two types of partition.

3.5.5.2 Modules input and output signals

The Isolation Design Flow requires us to synthesize each module of the design sepa-
rately. In each isolated module, inputs and outputs which are not directly connected
to an input or an output pad of the FPGA has to be instantiated as a trusted route
and therefore has to be defined in the HDL file as a non-buffered port as follow:

attribute buffer type: string;
attribute buffer type of <port name> : signal is "none”;

In order to improve the clocking routing of the design, the instantiation of the
clock buffer has been removed from the top level source file and let to the control
of the synthesizer. In this way, reconfigurable modules, like the static partition, use
the global clock tree instead of a trusted route using a combinatorial path via a
look-up table.

3.5.5.3 Software bus macro

Once each module is synthesized, the main part of the flow is done using the PlanA-
head tool. Modules netlists are imported in the design and these which need to
be isolated are converted into partitions. Each partition is configured with the
SCC_ISOLATION attribute, which notifies that the partitions have to be designed
using the Isolation Design Flow.

Then the physical block of each module is placed inside the FPGA matrix.
Another constraint imposed by the Isolation Design Flow is that the inputs and the
outputs pad used by a partition have to be included inside the region covered by
its corresponding physical block. In addition, the boundary between two isolated
partition have to be of at least one CLB-wide, horizontally or vertically. This
boundary is called a Fence and is an area in which neither the logic resources nor
the routing switch matrices will be used (Fig. 3.31).

Firstly, as we wanted to provide a flexible solution for the instantiation of the
bus macro, we let the routing engine of ISE creating the trusted routes. Therefore
we relied on a software implementation of the bus macro.

To do so, we instantiated LUTs in the top-level source code to connect the re-
configurable partitions with the static one. For each wire of the bus macro, the

3.5. Design flow for hardware threads relocation

73

Sw bus macro

ISE : Individual projects
- Top Level
- Module 1

- Module 2 start -VE

load -FE

Controller
Inter-connect
Placement Constraints
start =
Software bus macros load =+

ynthesize each projects|
ith high area constraintg

Figure 3.33: Software Bus Macro implementation

following constraints has been applied:

o W N R

© © N o

10
11
12
13
14
15

— xps_gpio_0
—— bus macro LUTs outputs from static to dynamic
attribute LOCK PINS of lut xps gpio 0 GPIO 10 O bm in 0 : label

ALL";

attribute LOCK PINS of lut xps gpio 0 GPIO 10 O bm out 0 : label
IIALLII;

signal xps _gpio 0 GPIO IO _O bm in 0 : std logic := '0’;

attribute S of xps_gpio 0 GPIO 10 O bm in 0 : signal is "TRUE";

signal xps gpio 0 GPIO IO O bm s 0 : std logic := '0";
attribute S of xps gpio 0 GPIO IO O bm s 0 : signal is "TRUE";

signal xps gpio 0 GPIO IO O bm out 0 : std logic := '0’;
ttribute S of xps gpio 0 GPIO 10 O bm out 0 : signal is "TRUE";

is

is

And the instances of each LUTs:

1
2
3
4

© © N o o

11

—— input bus macro LUTs

lut xps gpio 1 GPIO 1O | bm in 0 : LUTI1

generic map (INIT = X"2")

port map (10 => xps gpio 1 GPIO 10
xps_gpio 1 GPIO 10 | bm s 0);

I bm in 0, O =>

—— output bus macro LUTs

lut xps gpio 1 GPIO 10 | bm out 0 : LUT1

generic map (INIT = X"2")

port map (10 => xps_gpio_1 GPIO 10 | bm s 0, O =
xps_gpio 1 GPIO 10 | bm_ out 0);

The UCF file fixes the additional location constraints:

1

input bus macro LUTs

Chapter 3. Hardware threads preemption using Dynamic and Partial
74 Reconfiguration

2 INST "lut_xps_gpio_1_GPIO 10 | bm_in 0" LOC = SLICE Xs#xYxx | BEL = %6
LUT;
3 H#—

As a result, the constraints were too lazy and are not necessary respected by
the synthesizer, so the routing between the two partitions can be implemented in
several ways, even if the LUTSs placement is respected (Fig. 3.34).

PlanAhead
Constraints 1/0Os and
Modules regions

Sw bus macro

ISE : Individual projects
- Top Level
- Module 1

- Module 2 ;
Place & Route
start >
Software bus macros

R -

Synthesize each
projects with
high area constraints

Controller
Inter-connect

Placement Constraints

Figure 3.34: Routed software Bus Macro

3.5.5.4 Hardware bus macro

To overcome this issue we decided to implement hardware bus macros (Fig. 3.35).

PanAhead Hw bus macro
ISE : Individual projects — Constraints I/Os and _—
- Top Level Modules regions | -~

- Module 1

- Module 2 start -PE'—l % ;start
{ i IP1

load .»E M Eload

Place & Route

Controller
Inter-connect

Placement Constraints Extract inter-connect
start =»

load =»{V]
L

Software bus macros Using XDL

I Hardware bus macros

Synthesize each
projects with
high area constraints

Figure 3.35: Hardware Bus Macro extraction

3.5. Design flow for hardware threads relocation 75

To create a hardware bus macro, we started to get the XDL description of the
current implemented design. In this description, we looked for the LUTs which
form the soft bus macro of the first partition. A first implementation with a soft
bus macro is necessary before extracting a hard macro. These LUTs are then copied
into a new XDL file and formatted to create a hard macro. The XDL description of
the implemented design is obtained using the following command:

$ xdl ned2xdl config 1 routed.ncd

where “config 1 routed.ncd” is the Native Description Circuit File generated
after the place and route phase.

In order to extract and generate the hardware macro, we rely on the RapidSmith
framework. More information, especially the installation process can be found on
this website: http://rapidsmith.sourceforge.net/.

In our case, we limit ourself in the definition of hardware macros. To do so, we
create a new project in the Eclipse framework. The application Lut Macro Extractor
which is in the RapidSmith workspace allows to extract a software bus macro from
a complete design and to create a new module which can be implemented as a hard-
ware macro. The following listing gives a partial example of the generated macro for
a bus macro named bus_macro_v5_4io_tb which contains seven inputs and seven
outputs, defined with generic names.

1 design " XILINX NMC MACRO" xc5vsx50tff1136 —1;
2

3 module "bus macro_v5 4io tb" "bus macro v5 4io tb 0" , cfg "

_SYSTEM MACRO: : FALSE"

4

5 port input0 tb "bus macro v5 4io tb 0" "D1" ;
6 port inputl_tb "bus_macro_v5_ 4io_tb_0" "C1" ;
7 port input2_tb "bus_macro_v5_ 4io_tb_1" "D1" ;
8 port input3 tb "bus macro v5 4io tb 1" "C1" ;
9 port inputd4_tb "bus_macro_v5_ 4io_tb_4" "D1" ;
10 port inputb5 tb "bus macro v5 4io tb 4" "C1" ;
11 port input6é tb "bus macro vb5 4io tb 5" "D1" ;
12

13 port output0 tb "bus macro v5 4io tb 2" "D" ;
14 port outputl tb "bus macro_vb 4io tb 2" "C" ;
15 port output2 tb "bus macro v5 4io tb 3" "D" ;
16 port output3 tb "bus macro_vb 4io tb 3" "C" ;
17 port output4 tb "bus macro v5 4io tb 6" "D" ;
18 port output5 tb "bus macro v5 4io tb 6" "C" ;
19 port output6 tb "bus macro_vb 4io tb 7" "D" ;

The hardware macro is composed of several LUTs. A LUT component is defined
and its inputs and outputs are configured regarding the signals which are routed
through this LUT:

Chapter 3. Hardware threads preemption using Dynamic and Partial

76

Reconfiguration

1 inst "xps_gpio 0 GPIO 10
SLICE X47Y19
cfg " ASLUT::#OFF A6LUT::#OFF ACYO0::#OFF AFF::#OFF

AFFINIT ::#OFF AFFMUX::# OFF

I_bm s 0" "SLICEL", placed CLBLM_ X34Y19

D5LUT ::# OFF D6LUT :lut_xps_gpio_ 0 GPIO 10 | bm_in_ 0:#LUT:06=Al
~ BEL_PROP::D6LUT :BEL:D6LUT DCYO0::#OFF DFF::#OFF
DFFINIT :: #OFF DFFMUX::#OFF DFFSR::#OFF DOUTMUX::# OFF

DUSED::0 PRECYINIT::#OFF REVUSED::#OFF SRUSED::# OFF

SYNC ATTR::#OFF "

© 0 N g W N

=
o

The next listing illustrates one of the extracted interconnect:

net "xps gpio 0 GPIO IO | bm s 0"

outpin "xps gpio 0 GPIO IO I bm s 0" D ,
inpin "xps gpio 0 GPIO 10 | bm out 0" D1 ,
pip CLBLM_ X34Y19 L D —> SITE_LOGIC_OUTSI11
pip CLBLM X34Y21 SITE IMUX B42 —> L D1 ,
pip INT X34Y19 LOGIC OUTS11 —> NL2BEG SO ,
pip INT_X34Y21 CTRL2 —> CTRL_BOUNCE2 ,

pip INT_ X34Y21 CTRL BOUNCE2 —> IMUX_ B42 ,
pip INT_X34Y21 FAN3 —> FAN_BOUNCE3 ,

pip INT_ X34Y21 FAN BOUNCE3 —> CTRL2 ,

pip INT X34Y21 NL2MIDO —> WL2BEG1 ,

pip INT X34Y21 WL2BEG1 —> FAN3

© © N oW N

=
w N+ O

This interconnect is translated to fit with the generic names of the inputs and

outputs. It becomes:

net "xps gpio 0 GPIO IO I bm s 0" ,
outpin "bus macro_v5 4io bt 0" D
inpin "bus macro v5 4io bt 2" DI ,
pip CLBLM_X34Y19 L_D —> SITE_LOGIC_OUTSI11 ,
pip CLBLM X34Y21 SITE IMUX B42 —> L D1 ,
pip INT X34Y19 LOGIC OUTS11 —> NL2BEG SO ,
pip INT_X34Y21 CTRL2 —> CTRL_BOUNCE2 ,
pip INT X34Y21 CTRL BOUNCE2 —> IMUX B42 |,
pip INT X34Y21 FAN3 —> FAN_ BOUNCE3 ,
pip INT X34Y21 FAN BOUNCE3 —> CTRL2 ,
pip INT_X34Y21 NL2MIDO —> WL2BEGL ,
pip INT_ X34Y21 WL2BEG1 —> FAN3 ,

13 ;

At the end, we get a design whose static-dynamic interconnection are relatively

homogeneous:

3.5.5.5 Design synthesis

An issue which occurs when implementing these hard macro is that the placement

constraints is not respected in the sense that the macro is systematically moved
during the placement phase. It is an issue due to the fact that this macro overlaps
both the static and the dynamic areas.

3.6. Conclusion 7T

PlanAhead Hw bus macro
ISE : Individual projects ——P» Constraints I/0Os and _—
- Top Level Modules regions //

- Module 1 ; ;
- Module 2 start —PE'—,_% gstart
‘ H IP1

load "E M Eload

Place & Route

Controller
Inter-connect

Placement Constraints Extract inter-connect
start >
Software bus macros Using XDL load -FE
Hardware bus macros -

L

Synthesize each Insert homogeneous

~ projects with - Inter-connect
high area constraints

Hardware bus macros

Figure 3.36: Hardware Bus Macro extraction and homogenization

To overcome this issue, the following location constraints applied to the hard
macros have to be inserted in an external constraint file and passed to the XST
synthesizer using the -uc flag:

INST <hard_macro_name> LOC = SLICE X#Y#;

where “#” represents valid Slice X and Y coordinates. This flag ensures that
the synthesizer will respect the location constraints and that the hard macro will be
placed at the correct position, over the static and the dynamic boundary. Finally,
once the design is placed and routed, the correct isolation of each partition can be
checked with the help of the Isolation Verification Tool (IVT) [Corbett 2012] and
partial and full bitsreams can be generated (Fig. 3.37).

After implementation (Fig. 8.38), the two modules are well isolated in terms of
logic and routing resources, and the one CLB-wide boundary between the dynamic
modules and the static partition is respected. This successful result permitted us to
perform a safe relocation of these two modules in the available dynamic partitions
without additional bitstreams and, the most important, for the first time with the
standard current design tools provided by Xilinx.

3.6 Conclusion

In this chapter, we introduced tools and mechanisms which allow us to manage the
hardware threads like their software counterparts. Starting from here, we are able to
provide at the operating system level, an API to create, delete or preempt hardware
threads. All these features can serve as a basis for a hardware threads management
service which can be integrated into an operating system.

Chapter 3. Hardware threads preemption using Dynamic and Partial
78 Reconfiguration

PlanAhead
ISE : Individual projects Constraints 1/0s and
- Top Level Modules regions
- Module 1

- Molclilule 2 ; v

Isolation Verification
‘ Place & Route H Tool (IVT)

| v

Extract inter-connect

Inter-connect
Placement Constraints

‘ Bitgen ‘

Software bus macros Using XDL Generate bitstream

* Hardware bus macros

Synthesize each
projects with
high area constraints

Insert homogeneous ‘
Figure 3.37: Adapted Isolation Design Flow

Inter-connect

Hardware bus macros ‘

Figure 3.38: Design test - Partition isolation

In spite of its useful multi-processor communication layer, the RTEMS operating
system chosen in the frame of the FOSFOR project is not flexible enough to match
more precisely with the flexibility provided by the reconfigurable platforms. The
MPCI prevent the user to create distant resources and a thread which would want
to remotely access to a given resource, have to run on a core which implement itself
the service able to manage the resource. For instance, if a hardware thread wants
to access to a memory partition, the partition service should be implemented in the

3.6. Conclusion 79

hardware operating system. Regarding the specificity of each core, some services
are more suitable to be implemented on one core rather than on another one.

For these reasons, in the next chapter, we go a step further than in the FOSFOR
project and deal with the specification of a new operating system dedicated to the
heterogeneous reconfigurable platforms. This operating system would be able to
abstract the heterogeneity and so to offer the same API to handle the hardware
threads than the one used to managed the software ones. In order to handle the
heterogeneity in a flexible way, this management has to be extended and include
the access to all available services of the platform.

CHAPTER 4

Operating System for

Dynamically and Reconfigurable

Heterogeneous SoC

Contents
4.1 Context and definitions v v v v v v v v v e 82
4.1.1 Kernel structureo 82
412 Thread API 83
4.2 Related works e e e 85
4.2.1 Introduction e 85
4.2.2 Inter-core communication in MPSoC 86
4.2.3 HRSoC middlewares 90
4.2.4 Hybrid OS for HRSoC 94
425 Conclusion 95
4.3 Specifications v v v v v i e e e e e e e e e e e e 96
4.3.1 Objectives L 96
4.3.2 Programming model oL 97
4.3.3 Memory constraintso Lo L 97
4.3.4 Architecture 98
4.3.5 Portability 99
4.4 Conception . . v v v v v v v v bt e e e e e e e e e e e 99
4.4.1 Operating system architecture 100
4.4.2 Platform architecture 102
4.4.3 Multicorelayer L 109
4.5 Implementation 111
4.5.1 Modular operating system: MutekH 111
4.5.2 MRAPI Specification 114
4.5.3 Hardware architecture 118
4.5.4 Domain definition o000 119
4.5.5 Node definition 0 .. 120
4.5.6 MRAPItypes i 120
4.5.7 Resourcessystemcalls 120

4.6 ConclusSion . . v v v v v v v e e e e e e e e e e e e e e e e 123

Chapter 4. Operating System for Dynamically and Reconfigurable
82 Heterogeneous SoC

4.1 Context and definitions

Heterogeneous Reconfigurable Systems-on-Chip allow us to implement an applica-
tion with software threads and hardware threads. In this chapter, our objective is
to facilitate the cohabitation between these heterogeneous entities.

As seen in the introduction of Chapter 2, software threads are managed on top
of an operating system and therefore can access to the services it offers. Due to a
need of scalability, an operating system dedicated to HRSoC should be distributed
over the different cores composing this platform. However, in most of distributed
operating systems, the services implemented on a core by an operating system can
only be accessed by the threads running on this same core. In order to ensure
a fair access to all services to every threads, both software or hardware, we have
to provide a flexible solution which would extend the number of available services
for all threads to a set of services which can be located on different cores. Such
a solution should allow a flexible implementation of the operating system services
over the platform, regarding the affinity each one has to run on a given core.

To be able to enforce this flexibility in an operating system, it is essential to
correctly define the kernel structure of this operating system, as well as how the
threads managed by this operating system will communicate, namely which inter-
process communication API is implemented and how it is implemented for this
purpose.

4.1.1 Kernel structure

The kernel structure is an essential element of an operating system. It defines the
stability, the modularity, and the portability of a system. Currently, there are three
types of kernel in the state of the art: monolithic kernel, micro-kernel and exo-kernel.

4.1.1.1 Monolithic kernel

Monolithic kernels, because of their conception in one and unique block, are the most
performing kernels but also the less flexible. The portability and the maintenance
of such a kernel is rather difficult and its structure is rarely well suited to handle
the scalability and the adaptability required by multicore embedded systems.

4.1.1.2 Micro-kernel

Micro-kernels principle is based on the client-server model. Communication service
between these two entities is realized through Inter-Process Communication (IPC)
mechanisms. Regarding the performances, the first micro-kernels were very low
compared to monolithic kernels.

Like for the thread model, the trend to fill this gap was the design of hybrid
micro-kernel. The critical services like the memory management, the scheduler and
the inter-process communication were bring back into the kernel.

4.1. Context and definitions 83

This problem of performances has been imputed to IPC. Initiatives like the
Mach [Accetta 1986] or L4 kernels [Liedtke 2001] allowed to reduce the impact of
the IPCs in term of overheads. Actually, this issue is posed essentially when porting
the kernel on processors like the x86, which have a protected mode needing a virtual
memory manager. The use of micro-kernels as it has been though at the beginning,
namely fully modular is possible in embedded architectures with a unified memory
space. In all cases, the IPCs must be implemented carefully in order to achieve good
performances.

4.1.1.3 Exo-kernel

The term of exo-kernel was invented by the Laboratory for Computer Science (LCS)
at MIT!. Exo-kernels are actually micro-kernels pushed to limit. The role of the
kernel is limited to the arbitration of accesses to material resources. The resources
abstraction is minimal at the kernel level and customized at the user one. Services
are known as libraries and are dynamically linked to the application level to let the
user choose its own level of abstraction.

The advantage of this kind of kernel lies in the fact that almost all the operations
are performed at the user-level, so the number of switches into kernel model is
reduced to a minimum.

4.1.2 Thread API

This section draw a non-exhaustive list of existing standards for the C language and
some specifications of software application programming interfaces (API) dedicated
to operating system communication mechanisms.

4.1.2.1 MISRA-C

It is a standard used in the automotive (MISRA = Motor Industry Software Reli-
ability Association). This is a list of rules and guidance of "good" programming,.
The objective is to allow the developer to write portable and safe code.

4.1.2.2 POSIX

POSIX stands for Portable Operating System Interface and is a C standard. This
standard will be portable and is widely used in the UNIX world. One of the inter-
esting elements that may well apply to the embedded domain is thread management
and all real-time extensions made in version 1003.1b-1993.

4.1.2.3 ARINC 653

The ARINC 653 is a specification of interfaces between the operating system and
the application. This specification has been defined for the avionics. The operating

!Massachusetts Institute of Technology

Chapter 4. Operating System for Dynamically and Reconfigurable
84 Heterogeneous SoC

system kernel is composed of two parts. The first part is a main module allowing to
protect and multiplex the hardware resources. The second is specific to each system
partition.

A partition is a subset of the operating system whose physical limitations were
clearly defined. Each partition is independent, which provides a safe operation since
the different address spaces are separated. A failure in one partition does not affect
other partitions. The following services are defined:

e services related to partition management: creation, deletion, suspension, and
completion of a partition

e the services of inter-partition communication: Message Queues and Sampled
Message Queues

e gservices related to the multi-threading management, which corresponds to the
intra-partition communication: Messages Queues, Sampled Message Queues,
Events and Semaphores

e thread management
e failure management

e time management

Regarding interfaces and memory management, the developer does what he
wishes when implementing this specification.

4.1.2.4 TIPC : Transparent TPC

Originally developed by Ericsson, TIPC is a communication protocol developed by
VxWorks and now set free on Sourceforge. This is a protocol especially dedicated
to networked systems. Fach node of the system has a network address (denoted
N). These nodes are grouped into clusters (denoted C). Finally, these clusters are
themselves grouped into zones (noted Z). A node address consists of the following:
"Z ID"."C_ID"."N_ID". Other features include:

e message size from the application point of view is between 1 and 66000 bytes

e synchronization between two ports is done by handshake

there is a naming service to translate the name of a node address

it also implements an error handler that manages transmission errors, inac-
cessible links and invalid names and addresses

Another feature, the same node can have multiple addresses which allows appli-
cation to easily implement multicast by providing the same address to all subscribers
of a channel.

4.2. Related works 85

4.1.2.5 MCAPI : Multicore API

The Multicore Association [Association 2012| is an association grouping industrial
and academic partners with the aim of defining a new standard allowing to abstract
communications among heterogeneous multicore platforms.

MCAPI for Multicore Communication API, is one of the three working groups of
the Multicore Association. Its objective is to define a message-passing API to man-
age communications and synchronization between cores. The second working group,
named MRAPI, is responsible for defining an API to manage resources which are
shared by the processing elements of a heterogeneous multicore platform. MTAPT is
a third working group which aims to define a new standard for thread management
(creation, placement, scheduling, ...).

These three working groups are the most important but there are other groups
such as the Multicore Programming Practices Working Group and the Multicore
Virtualization Working Group. Currently, a complete version of the MCAPIT speci-
fication and a first stable one of the MRAPI specification have been released.

4.1.2.6 LINX

LINX for Linux is an open-source implementation of the LINX inter-process com-
munication protocol. It targets heterogeneous multicore systems using the Ethernet
protocol to communicate. On each of node, a thread is created and serves as a con-
nection point (prory) with the other nodes of the system. The API enables LINX to
abstract the location of other threads running in the system and thus makes inter-
process communication transparent to the user regarding the hardware platform
used.

In addition it implements a neighbor discovery mechanism and handles cases
where a server (ie. another thread) previously found, is no longer accessible. How-
ever, as it relies on the Ethernet protocol, this solution is too heavy for intra-chip
communication.

Related works listed in the next section refers to some examples of what could
be done to enhance the communication between threads in multicore and heteroge-
neous platforms. The choice of an well-adapted kernel structure and of a standard
inter-thread communication API would permit to reach a good trade-off between
performances and portability.

4.2 Related works

4.2.1 Introduction

In this section, we address the communication issue between threads located on
different processors. Our final goal remains to leverage the heterogeneity of the
platform, especially the fact that some services could be implemented more or less
easily on a core. In this context,we are interested in providing the support of future
design exploration tools which permit to find which service should be implemented

Chapter 4. Operating System for Dynamically and Reconfigurable
86 Heterogeneous SoC

on which core. This support consists in offering to an operating system the ability
to share its services with other threads running on remote processing elements.

Targeting multiprocessor system is an old issue. Several papers addressed this is-
sue and especially the concerns of the multiprocessor communication. In these cases,
a processor is considered a core. Protocols based on the shared memory paradigm,
the message passing protocol or solution adapted from the cloud computing is pre-
sented in the following.

4.2.2 Inter-core communication in MPSoC

In [Tomiyama 2008] the authors propose an operating system for asymmetric mul-
ticore systems called TOPPERS-FMP (Fig. 4.1). This operating system is based
on the uITRON specification and its main characteristics are the system calls virtu-
alization (for both local and remote calls), an independent execution for each node
and a known limit for the inter-task communications latency in the worst case.

Processor Processor
- : i
Task J Local Task J Local
memory memory
RTOS kernel e RTOS kernel e
[y 3 Fy Fy r
Local bus Local bus 1
Global bus

Figure 4.1: Toppers/FMP [Tomiyama 2008|

Following the uITRON specification, objects are classified: tasks and handlers
are assigned to a processor and each one has a local scheduler, which guarantees
independence between cores. Each object is identified by a unique identifier.

In this operating system, the inter-core communication mechanism is called IPSC
for Inter-Processor System Call. Through this mechanism, a process has a direct
access to the memory of another one due to the presence of a unified memory space
in the shared memory. The synchronization between the two processors is done
using spin locks? whereas intra-processor synchronization is realized by disabling
interrupts.

The authors of [Huerta 2008] introduced a Symmetric MutliProcessor (SMP)
based system composed of Microblaze processors (Fig. 4.2). The operating system

*busy waiting for a lock

4.2. Related works 87

is spread over the platform and is in charge of task allocation on every processor.
Task scheduling is globally manage by a unique scheduler. Communication between
processors is realized via hardware interrupt mechanisms. This solution is easy to
implement but lacks of scalability.

D T T
|
: 10000000 i Bl 3880088 I 010000000 S 0830008
|
1 [oum][1ke] | [epuD]|[1KE] | [ecpuiD] [1KB cpulD | [1B
| 1 A A ! Fy A 1 A Yy A A
| | - i | o i |) m 4 i
I 1 Hd = | & = ! s 2 i =
N S 2 S L T I 4 v °v
! 1 1
]
“» Micreblaze 0 . Microblaze_1 N Microblaze_2 - Microblaze_3
=
g A A 4 A A A A A
o
£ o £ o 4y o B ")
£ 5 8 5 a 5 8) 8
\ 4 h 4 4 \ 4 A 4 \ 4 4 h 4
I
! OPB
i A A 7y A
|
¥ ¥
UART Lite timer hwy_mutex 128 KB
blockram
T
| 200000000

Figure 4.2: SMP System [Huerta 2008|

The subject of [Lin 2009| deals with Inter-Processor Communication (IPC) in
heterogeneous multicore platforms. They aim to reduce the overhead due to the
communication in periodic pipelined multicore applications.

They argue that classical protocols like Message Box, FIFOs or shared memory
are badly linked to the monocore historical context. So they introduce the NTU?
Inter-Core Process Communication (NTU ICPC). This is a user-level protocol based
on the sender-receiver paradigm. It is implemented at the middleware level. Its
main goal is to limit the number of copy to one per transaction. It can be seen as a
synchronous shared-buffer communication. This method has the advantage to avoid
context switch and to improve the portability.

By default, communications use local buffers ((called individual working space),
otherwise if the sender and the receiver can both access to a shared buffer, they do
a zero-copy IPC: This is possible only if no broadcast nor multicast is required.

As shown in Fig. 4.3, the software architecture contains three layers. The first
layer is the hardware dependent layer (Memory Management Unit), the second is
responsible for the communication (mail sending and buffer management), and the
last layer handles the virtualization (middleware protocol).

In [Baumann 2009] the authors propose an operating system specification dedi-
cated to multicore architectures. This operating system should be distributed and

3National Taiwan University

Chapter 4. Operating System for Dynamically and Reconfigurable
88 Heterogeneous SoC

[API]

p "
Multi- Multi-
R .
Protocol Layer Send][Send][eceive][Receive
\

. . Mail 10 Buffer
Main Function Layer
Subsystem Subsystem
r 1\
Porting Layer OS dependent] [F‘Ialform dependent
\ J

Figure 4.3: ICPC Service [Lin 2009]

provide explicit inter-core communication mechanisms. It also has to offer well-
defined hardware abstraction layer and information about each core state should be
replicated and not globally shared (Fig. 4.4).

Arch-specific
code I

| e ||

r—- -‘1— ————— y--————- H

1 | oS node | | 0S node 0S node | 1

Agreement 1
algorithms 1 State State State State 1
: replica replica replica replica :

! :

1

1

Heterogeneous

cores x86 x64 ARM e GPU

< Interconnect >

Figure 4.4: The multikernel model [Baumann 2009]

Facing the core heterogeneity, this OS would be flexible. Cache coherency man-
agement is not a necessity. Concerning inter-core communication, it would be re-
alized through Message Passing mechanisms, what would make the system more
modular and scalable.

At the kernel level, this operating system only manages the access to the hard-
ware resources which correspond to the CPU drivers. Hence at the user level, each
core would handle synchronization mechanisms, the memory management and the
scheduling. In order to get more flexibility, each process in the application would

4.2. Related works 89

be represented by a dispatcher object present on each node the process can run on.
It would be a kind of replica that we can active or deactivate regarding the core load.

Fos (Factored operating system) [Modzelewski 2009] is an operating system de-
signed for manycore architecture. It has been defined to be scalable, easily extended
and programmable, as well as able to perform automatic fault management. The au-
thors seek to realize an operating system especially dedicated to applications which
can take advantage of a cloud computing platform. In such a platform, number of
available cores for one application is potentially unlimited. The main point is so to
handle the scalability of these platforms.

As the operating system should be able to well balance the load of work on
the different cores it controls, resources requests, that is to say computing power
allocation for a given application is highly dynamic. Also, as the number of core is
important, the operating system should detect if a core do not work anymore and
in this case, modify the application deployment.

Application
u-kernel
- Idle Processor Core
B Application
FS Server ESE5--- [§- File System Servers
E E-++ E-Paging System Servers
u-kernel

Figure 4.5: Factored OS [Modzelewski 2009]

Authors notice that, giving Linux as an example, the choice to keep a monolithic
architecture and so to add locks on operating system shared structures in order to
port it on multi-core platform, becomes more and more complex to do and hard to
maintain. This is why they prefer to develop a new operating system based on the
[aaS model (Infrastructure as a Service), commonly used in the networked servers
and virtualization fields (Fig. 4.5). Fos relies on the following principles:

e to be adapted to a multicore architecture, the scheduling must be thought in
two dimensions: time and space.

e for more safety, operating system servers must run on exclusive cores from the
ones allocated for applications.

e operating system services are split into specific primitives, so each server can
communicate through message passing with the other servers if ever it needs

Chapter 4. Operating System for Dynamically and Reconfigurable
90 Heterogeneous SoC

a primitive implemented by these ones.

e servers whose primitives are complementary are grouped into “function specific
fleet” in order to optimize their placement and reduce communication costs
(servers factorization,).

e a server can be loaded or unloaded to increase or reduce resource use (i.e. core
use).

e resources used by an application have to be monitored in order to be able to
efficiently manage fault appearance and to optimize platform resource use.

e in case of fault appearance on one of the servers, some are replicated to be
used as substitute.

e the operating system includes a micro-kernel, a minimal kernel which have to
be present on each core: it handles the hardware abstraction layer as well as
application allocation and loading.

e alibrary called “OS Layer Server” permits to translate a system call performed
by an application into a message towards the appropriate server. A special
server called “Gateway Server” allows to go from one machine to another if
necessary.

Synthesis:

Concerning this first aspect of the state of the art, we can say that due to the need
of scalability, Inter-Process Communication via Message Passing seems to be the
best choice when targeting heterogeneous multicore System-on-Chip. The operating
system should follow an AMP strategy and be distributed over the platform. In
addition, we should rely on a client-server mechanism to provide remote accesses to
operating system services.

4.2.3 HRSoC middlewares

In addition to the multicore aspect, this dedicated operating system should be able
to handle its heterogeneity, especially the presence of reconfigurable hardware com-
ponent as processing elements.

In [Shiyanovskii 2009a], reconfiguration is handled by a software layer on top of
a real-time operating system (Fig. 4.6). This layer is called Adaptation Manager
and is able to adapt in order to get a trade-off between the power consumption and
the execution speed. It relies on a learning process which allows the manager to
improve the latency to take a decision.

4.2. Related works 91

Layer 4 Adaptation Manager
Layer3 Real Time OS Kernels
Layer 2 Embedded]
Hard/Soft | |ASIC Config Embedded
Controller Memory
Processor

Figure 4.6: Self-reconfigurable platform [Shiyanovskii 2009a]

Actually, the reconfigurable platform is composed of tiles permitting to per-
form high-level functions regarding CLBs programming layer (filters, FFT, ...). A
priority-based scheduler is implemented to manage task execution. These tasks can
have three different states: Inactive, Active or Reserved. The latter state is used to
define a tile waiting for a task to arrive.

[Guerin 2009a] deals with the conception of an operating system dedicated to the
heterogeneous multi-core systems-on-chip (HMC-SoC). They start from the observa-
tion that the main approach which propose to have a standard processor interacting
with hardware co-processors through some drivers is not adapted to complex system
anymore. On the other hand, the specialized approach which consists to have one
board support package (BSP) for each plateform coupled with a modular develop-
ment is too generic to provide good performances. So they propose an intermediate
approach based on components (Fig. 4.7).

To achieve this, they need to define stable and generic interfaces as well as a clear
segregation between hardware dependent components and hardware independent
ones. The hardware abstraction layer is composed of 27 primitives responsible for:

e the endianness

e the multiprocessor configuration (boot and cores identification)
e the input / output conflicts

e the context handling

e the synchronization

e the traps

Chapter 4. Operating System for Dynamically and Reconfigurable
92 Heterogeneous SoC

USER PROGRAMING INTERFACE

MONOLITHIC
OPERATING SYSTEM

HARDWARE
ABSTRACTION

HARDWARE INTERFACE

Figure 4.7: System framework overview [Guerin 2009a]

e the memory and the cache

The operating system which illustrates this approach is called DNA OS (DNA is
Not just Another Operating System,). Tt is based on BeOS and offers thread manage-
ment and scheduling services, a file system with or without MMU, dynamic memory
management, Semaphore and Message Passing services as well as the ability to load
each of these services dynamically inside the kernel.

In [Senouci 2006], the authors introduced a software architecture based on the
Mutek kernel. The operating system is split in two parts: the HdS layer and the HiS
layer. HdAS stands for pour Hardware dependent Software and is a HAL managing
the multiprocessor and the heterogeneous aspects of the cores (boot, mutex synchro-
nization and context switch). HiS stands for Hardware independent Software and is
composed of the operating system, a middleware and the user layer.

They also propose a design flow allowing to specify this HdS layer. The imple-
mented scheduler can manage SMP platform or one instance of it can be deployed
on each core. In addition, one of the most important advantage of this OS is its low
memory footprint.

Authors of [Matilainen 2011] propose an MCAPI implementation for the Systems-
on-Chip. They choose MCAPI because it was though for inter-core communication,
not inter-computer ones. An API is needed in order to develop efficiently complex
portable applications. OpenMP [Board 2012] requires special support from the com-
piler which is not the case for MCAPI. Even if reduced MPI versions are available,

4.2. Related works 93

] Applications)
HiS Middelware
0S >~SW Archi
e
HdS Hardware dependent
Software

)
HW Platform } HW Archi

Figure 4.8: Hardware Dependant Software layer [Senouci 2006]

MPI requires more changes to source codes and CORBA [OMG 2006] is too heavy-
weight. Regarding the implementation they did, it offers a lower memory footprint
at the expense of less flexibility due to a limited number of calls.

MCAPT offers three types of communication: Message which is a basic message
passing protocol, Packets which is a connected mode allowing to send or receive sev-
eral messages in a row, and Scalar which permits to send or receive single fixed-size

word (Fig. 4.9).

MCAPI TOP MCAPI transport Communication medium MCAPI transport MCAP| TOP
Applicationsﬂ{ MCAPI node #0 Connectlo:Iess MCAPI node #2 I Applications
— message chan. ol —
Tx Endpoint <0,1> H i Endpoint <2,1> E Rx
BUF ||| |(attributes, port 1) |]! Cb (attributes, port 1) BUF
| i Packet Cg MCAPI node #3
—— _—) - :) acke
Tx Endpoint <0,2> : channel T IG
BUF (attributes, port 2) || il Rx Endpoint <3,1>
o <1 i|| BUF ||(attributes, port 1)
MCAPI node #1 QD '
(:(- Scalar
: Endpoint <1,1> _LS_ET; 1 Endpoint <3,2>
ﬁ (attributes, port 1) .j:) Ce (attributes, port 2)

Figure 2. Example with 4 MCAPI nodes that are using the three available communication schemes. Communicating endpoints must have the same type, hence
there are 6 of them.

Figure 4.9: MCAPI for MPSoC [Matilainen 2011]

The top layer implements MCAPT specified abstraction for user application and
does only simple error checking for function calls. The underlying layer (Transport)
implements the interface between the top layer and the HAL. Moreover, in this
implementation, hardware accelerators are also seen as MCAPI nodes. It should be
noticed that the node topology is static to make the implementation simpler.

Chapter 4. Operating System for Dynamically and Reconfigurable
94 Heterogeneous SoC

In [Kamppi 2011] they designed an IDE* which allows to integrate some IP-
XACT [541 2010] components together. It is open source and includes the genera-
tion of endpoints in order to be compliant with MCAPI.

Synthesis:

In order to manage the heterogeneity of a HRSoC platform, it is necessary to offer
an additional layer on top of the operating system. This layer would help to provide
a transparent access to the operating system services. Moreover, certain services
are more likely to be efficiently implemented in hardware, so a hybrid operating
system services should be proposed to the developer in order to improve the overall
performances of the application and really take advantage of the heterogeneity of
the platform.

4.2.4 Hybrid OS for HRSoC

The micro-kernel introduced in [Nordstrom 2005] is defined as a RTU®. The aim is
to reduce the memory footprint of the kernel, taking advantage of the parallelism
and enhance the kernel execution determinism.

To achieve it, some part of the operating system are implemented in hardware:
the scheduler, the Semaphore and Flags services, an interrupt controller as well as
timers. This RTU is based on the uC/OS-IT kernel. When the paper has been
published, all features have not been implemented yet. Nonetheless, we can notice
for the ones which were implemented, that the gain is significant.

[Agron 2009b] asserts that a monolithic operating system is not adapted to mul-
ticore platforms anymore, parallelism causing important latencies for thread syn-
chronization. Managing mutexes at the ISA layer (Instruction Set Architecture)
using atomic instructions could be an efficient solution but is not really portable.
Finally, remote procedure calls are too expensive in terms of time overhead.

So, the proposed idea is to port some features of a micro-kernel in hardware
to light up the software part (Fig. 4.10). The authors developed a Linux-based
micro-kernel, flattened in order to simplify it, but always POSIX compliant. The
Mutex service, the scheduler, variable conditions and thread management are the
services chosen to be ported.

The scheduler manages tasks all over the cores and so acts like a SMP kernel.
The advantage for a processor core is that it would be interrupted only when a
preemption is necessary. The rest of the time, it quietly execute the thread the
scheduler assigned it. This scheduler module is able to manage 128 priority levels
and the Mutex IP provides two primitives: lock and unlock, requiring only one
instruction to be performed (atomicity).

*Integrated Development Environment
’Real-Time Unit

4.2. Related works 95

=PU Hetero CPU Hetero CPU
D: 3 ID:4 ID: 7 ID: 6 ID:8

ST VAWTTHAL V-HWTTHAL
ofiwa Softwars Software Helero Hetero
[smeax':eJ [Thread] [Thread jhiEnd
I
P .
_ ¥ Systemn Bus v y

Fy I 3 A
ul Y
Y 3

¥

¥
B Mutexes Thread Scheduler Conditional Shared
W2 Cucue Manager Ready Variables Memory
6 4
7
_-.D E
A Thread 3 unlocks mutex M2 by calling hthread_mutex_unlock{M2), which
sends signal to Mutex Manager.

B: Mutex Manager inspects M2's queue and decides ID 6 will own mutex next.
C: Mutex Manager sends add_thread(6) to Thread Manager.

D: Thread Manager gives ID & to Scheduler to add to Ready to Run queue.

E: Scheduler finds that ID 6 is a hetero. thread, does not add ID 6 to queue.

F: Scheduler instead sends SIGNAL command 1o ID 6's V-HWTI.

G: Hetero thread 6 resumes execution, now owner of mutex M2.

Figure 4.10: Hybrid Threads platform [Agron 2009b]

Finally, G6tz et al. also proposes a hybrid solution in which the operating system
services can be migrated during run-time from a software to a hardware implementa-
tion and reciprocally, depending on the application needs [Gotz 2009]. An heuristic
has been developed in order to optimize the resource use of each application that
would be loaded on the platform.

4.2.5 Conclusion

The need of more and more computing power in the current embedded system
pushes the designers to provides a new kind of system which are heterogeneous
and more and more distributed. In order to adapt to the need of scalability of
such a system, Inter-Process Communication became a cornerstone of the operating
system. This communication should rely on a decentralized system. The Message
Passing communication paradigm is well adapted to manage the communication of
these heterogeneous multicore System-on-Chip. To go further, the operating system
should also be decentralized. An Asymmetric Multiprocessor System would be the
best choice to manage the numerous cores independently the one regarding the
others. Additionally, the access to the operating system services would be based on
the a client-server mechanism that offers a good scalability.

Regarding the heterogeneity aspect, the addition of a middleware layer would
brought a significant abstraction to the HRSoC platforms. This layer would provides
a transparent access to every available services in the platform. This flexibility would
improve the platform partitioning allowing the developer to implement some services

Chapter 4. Operating System for Dynamically and Reconfigurable
96 Heterogeneous SoC

in hardware and others in software, and also to choose on which processing units
these services would be implemented. Such a partitioning would enhance the overall
performances of the application as it would take into account of the advantages of
each processing units.

This flexibility brought by distributed services will enhance the global perfor-
mance gain allowing any thread to access to the most available efficient implemen-
tation of a given service. Moreover, basing the implementation of this additional
layer on a widely supported standard would help the integration of the operating
system in high-level design space exploration tools.

4.3 Specifications

Accordingly to the general information and the state of the art introduced previ-
ously, we first define the specifications of an ideal operating system for the HRSoC.
It includes the constraints, the main objectives, and the chosen solutions regarding
the state of the art. This specification will be a base to tackle the conception phase
in which the details of the implementation of this operating system will be discussed

(See Section 4.4).

4.3.1 Objectives

Our goal is to abstract the heterogeneity of future multicore platforms, this in order
to provide a fair access to any service for any thread in the system and also to define
a homogeneous model of communication. We need distributed services to permit an
optimized distribution regarding cores specificity and threads location.

Currently, emerging embedded systems tend to have a versatile general appear-
ance, and are able to satisfy most of the final client’s needs. This versatility, coupled
with the increasing need of performances, modify their architectures into heteroge-
neous platforms. In order to satisfy these needs, they provide several processing
units, each of these dedicated to a special task in the system, the whole forming a
so-called multicore system, in which one core equals one processing unit.

In such a system, the developer can deploy his application onto general purpose
processor, dedicated ones like DSP or ASIP (Application Specific Instruction-set
Processor), but also hardware accelerators running on reconfigurable chips espe-
cially used to perform recurrent and intensive processing, denoted as IP (Intellectual
Properties) in FPGA devices.

In this section our objective is to define the structure and the characteristics
of an operating system dedicated to this kind of system defined as multicore and
heterogeneous.

4.3. Specifications 97

4.3.2 Programming model

For the end-user, the application will be viewed as a homogeneous set of threads
communicating through operating system services, wherever they are located (Fig.
4.11).

On top of HRSoC platforms, the developer wishes in a first time to be able to
validate his application without being dependent from its composition, for instance
the number of cores or the type of these cores. This need of abstraction involves
to add an intermediate layer between the hardware and the application. The de-
ployment of the application and the operating system, meaning task placement and
services distribution over the different cores, should be the most transparent as pos-
sible for the developer, and ideally handled by automatic tools.

Threads

Standard interface

OS Services

User abstraction level

Platform

Figure 4.11: User point of view

The advantage is a simplification of the programming model thanks to a unique
interface and an acceleration of the development process that can be reached through
the automatic generation of code. The drawback is lowest performances and flex-
ibility constraints among the genericity. The call to an operating system service
should respect all or a part of an existing standard.

4.3.3 Memory constraints

We chose to implement a NUMA architecture, it means a distributed memory with
Non-Uniform Memory Accesses. The operating system footprint should be consis-
tent with the System-on-Chip capacity. Pragmatically, we set that the footprint of
the kernel alone must be under 25 kB.

It is considered that the address space of the multicore system is a unified ad-
dress space. All cores share the total system memory. Nevertheless each core will be
able to have a private address space in which it will host its code and private data
(Fig. 4.12). The addition of a memory management unit (MMU) is not necessary.

Chapter 4. Operating System for Dynamically and Reconfigurable
98 Heterogeneous SoC

o
Interconnect

Thread To other cores

Service
®

Hardware @
thread il

Core

Lo iI00

Figure 4.12: Platform memory architecture

4.3.4 Architecture

The specification of the operating system architecture includes the different modules
which compose the multicore system, and the distributed servers.

4.3.4.1 Operating system architecture

The appearance of multicore system forced the operating system to be modular
in order to take the most advantages of the parallel ability of the platform and
also to optimize its memory footprint by sharing certain services among multiple
cores. These services will therefore be seen as distributed services. For the sake of
flexibility, we also wish a request to a service to be independent of its location. The
service can be present on the same core than the thread which needs it, but can also
be found on another core.

Each service performs a specific function. Some services will be performed by sev-
eral other different services. These services will then need to communicate together.
For example, a semaphore release by the service which manages the Semaphore will
require it to inform the scheduler service that a thread can be unblocked.

Regarding the kernel architecture, the modularity constraint excludes the adop-
tion of a monolithic kernel, more powerful but harder to port on a new architecture
and very inflexible. Micro-kernel is more modular. For performances reasons, the
inter-thread communication and above all the address spaces switch must be mini-
mized. For this, the exo-kernels provide a solution even more flexible than the one
provided by the micro-kernel. In most cases when designing embedded systems,
an exo-kernel can be seen as a micro-kernel which the abstraction layer has been
reduced to a minimum, namely the Hardware Abstraction Layer (HAL).

The structure chosen for our kernel is closer to the exo-kernel than the micro-
kernel as it exists today. The operating system servers are hosted in the user-space.
For multicore platforms, the increase of the number of cores requires to increase the
number of memories. For better management of the locality, a separation of this
memory into multiple adjacent address spaces is required (NUMA: several physical
memories but only one unified address space). Therefore, the establishment of a

4.4. Conception 99

mechanism of MPU® which would combine flexibility and performance would be
more feasible in an exo-kernel.

4.3.4.2 Services for multicore

An inter-core communication service should allow to send messages from one core to
another. This service must be sufficiently generic to support different interconnect
architectures (Bus with shared memory, Network-on-Chip, ...). This module should
also be able to manage the broadcast, which will be useful to synchronize several
cores.

A localization function permitting to find existing services and resources on
the platform must be present in each module to make itself independent of the
threads, services and resources placement. The services are defined and statically
distributed at compile-time. The resources are dynamically created at run-time.
There are services and resources that are local, and others that are global, that is
to say, available for the threads running on remote cores.

For more portability, resources will be accessible by a unique name, independent
from the platform on which the application runs. A system of name resolution should
offer the ability to identify a given resource using a user-defined name, statically or
dynamically.

Regarding the inter-thread communication, the operating system should at least
have a communication service. Tasks scheduling will always be done locally to each
core. So there will be one scheduler service per core.

4.3.5 Portability

Constraints on the platform are its multicore aspect and its heterogeneity. It has
an impact on the hardware abstraction layer which should take into account that
one of the core should be appointed to initialize the platform and synchronize other
cores. This core would play the role of supervisor. Additionally, the HAL should
handle the heterogeneity of the cores and for instance the differences of endianness.
To simplify the porting of the OS, the endianness must be switched Big Endian to
Little Endian and vice versa. To simplify the process, a default endianness should
be defined inside the platform.

4.4 Conception

The conception section describes how we choose to implement the specifications
defined in the previous section. That means the operating system we choose to be
implemented, how we manage the communication between cores and how we ensure
the homogeneity of the programming model.

5Memory Protection Unit

Chapter 4. Operating System for Dynamically and Reconfigurable
100 Heterogeneous SoC

4.4.1 Operating system architecture

As we made the choice of a distributed architecture, each core implements an in-
stance of the operating system. The operating system is composed of a kernel and
multiple servers. The role of the latter is to provide all application threads an access
to the operating system services, and especially to the resources they manage. In
this context, a resource is an instance of a Semaphore, of a Message Queue or of
another service. It corresponds to the entity which is manipulated by the thread,
using the service primitives. The distribution of the services on different cores may
be uneven, depending on memory space, logic elements availability, core affinity or
threads location.

4.4.1.1 Servers architecture

Servers are instantiated statically. During the creation of a resource, the search for
a server capable of processing this work has been performed at compile time. When
the server is local, the task wanting to run the service sends its message directly to
this server locally. Otherwise, if it is remote, the task sends a message to the remote
node on which it stands.

Receive
System call

Receive
System call

Send Msg
For Service

Send Msg
for Service

Process
System call

Process
System call

A J A A J

Return Receive Return Receive
Response Response Response Response

Y

Create Resource Access Resource

Figure 4.13: Syscall Procedure

Resources are instantiated dynamically. When handling an existing resource, a
thread has to find where the resource is located, then send a message to the server
owning this resource. If the server is on another core than the thread, a message
must be sent to the core in order this one to transmit it to its local server (Fig. 4.13).

Regarding its architecture, a server is a module that implements the mecha-
nisms for handling a certain type of resource. These mechanisms, when the service
is implemented locally, are a mechanism of location and a mechanism of resource
management (Fig. 4.14). These two mechanisms are optional. If not implemented,

4.4. Conception 101

Memory Memory Memory
[[
N N
Core3 Core2 Corel @ Thread
R’ Resource
Communication Server
Shared
Memory a Server)
L + Localization Service
SL
§ .
+ Management Service
[Interconnect] Operating System

Figure 4.14: Server types

the server is restricted to the communication service allowing to send and receive
messages, and so to access to remote servers or resources using Inter-Thread Com-
munication (Fig. 4.15).

[] Application

Cﬁ Direct RPC (
Send ITC r‘ - Recv ITC
1 LA

OS Server

Local service

4>[Inter-Core Communication]7 Hardware abstraction layer

Figure 4.15: OS Server Architecture

4.4.1.2 Kernel architecture

The kernel on each core will be implemented as an exo-kernel and so will provide
a minimal set of features. It must be composed at the functional level of: a HAL?
which gives access to a timer tick for the operating system, an interrupt module, a
bootloader, a thread management server, and finally an inter-core communication
server allowing access to remote servers and resources.

"Hardware Abstraction Layer

Chapter 4. Operating System for Dynamically and Reconfigurable
102 Heterogeneous SoC

4.4.1.3 Communication architecture

A user thread accesses the services of the operating system through a specific API.
Several standard APIs exist. Whatever the chosen standard, it is necessary to ho-
mogenize the system calls for all types of threads that contain the application, which
could be either software or hardware. For scalability reasons, communication be-
tween a server and a thread is made only by message passing. The message must
contain all information necessary to enable the server to execute the query. This
stateless protocol is intended to limit the number of transactions between a thread
and a server when performing a system call. Similarly, the communication between
two servers is done by encapsulating the message in a routing header specific to the
physical communication medium (Fig. 4.16).

Message Header) System Call

ID Src ‘ ID Dest ‘ Message Size ‘ Service ‘ Op ‘ Task ID ‘Task Prio‘ pl ‘ p2 ‘

Figure 4.16: Message Template

All messages exchanged in the system have the same format. They consist of
two segments:

e system data (System Call): this segment indicates the service to which it
corresponds, the operation which is requested to do on this resource, as well
as the identifier and the priority of the calling thread if any. The following
data are the parameters of the requested operation

e the header needed to route the message through the interconnect in the case
of a communication between two cores

4.4.2 Platform architecture
4.4.2.1 Hardware architecture

To illustrate the different mechanisms that we need to implement, we rely on the
platform described in Figure 4.17. It includes three cores: Core0), Corel, and Core?2.
Corel) supervise the entire system and is responsible for initializing the platform
and starting the other cores. Fach core has access to a private memory, a shared
memory and can communicate with other cores through an interconnect.

Core0 and Corel implement both locally a Semaphore service. Core2 does not
implement it. The application is composed of two threads, 71 and T2, respectively

4.4. Conception 103

Memol Memor Memor
N N N

Core0 Corel Core2

Global Table

Task

Semaphore Resource

Semaphore Server

Communication Server

Supervisor

os

Operating System

[Interconnect]

I

Shared
Memory

Figure 4.17: Study Case Platform

present on Corel and Core2. At Ty, we consider that the supervisor has configured
every nodes and they are ready to execute the threads they implement.

Each core has a local scheduler. The resources created by the servers can be local
or global. In the case of global resources, information on this resource are filled in a
local table, reflected in the private memory of each core (GT = Global Table). This
table allows each core to locate any global resource created in the platform.

4.4.2.2 Study case

Scenario

The application scenario is as follows: T'1 creates the global Semaphore S7 then
releases it. S is initialized to O (ie. there are no resources available).

r T104

2 create_semaphore("S1", GLOBAL);
3 release _semaphore("S1");

¢}

T2 starts waiting for Semaphore S1.

204
create_semaphore("S2", GLOBAL);
take semaphore("S1");

}

W N R

Chapter 4. Operating System for Dynamically and Reconfigurable
104 Heterogeneous SoC

Scenario steps

T1 creates the global semaphore S1. Corel implements a Semaphore service so
the request is processed locally. When S7 is created, Corel warns the other cores
that a new global Semaphore has been created. To do so, it sends a message to each
core.

When a core received this message, it updates its global table GT. The content
of the global table is detailed in Table 4.1. Depending on the case chosen for the im-
plementation of Semaphore service, some fields would be left blank, for example the
Attribute and Pointer values are not neceplacedssary when the resource is distant.

For its part, T2 wants to create a new semaphore. Since it does not implement
the service, it must call this service on Corel. To consider the establishment of
remote services calls, it is necessary to add a proxy mechanism, or replica, which
will emulate the presence of thread on the remote core (Fig. 4.18). For reasons
of space and memory latency, this proxy must contain the minimum information
necessary to be managed by the scheduler.

Memor! Memon
7 7

@ Task
Corel Core2

T Task Proxy

Semaphore Resource

Sem Semaphore Server

Semaphore Server
+ Semaphore Service

Communication Server

(2

Q’/)/ ; i Operating System
terconnect R i

?

Shared
Memory

Figure 4.18: Distant system call

The creation of Semaphore S2 unfolds as follow (Fig. 4.18):

(1) T2, located on Core2, performs a system call which is translated as a message
to its local Semaphore server.

(2) as the local server does not implement the service, the call is directly routed to
the Communication server. It therefore starts an inter-core communication to

4.4. Conception 105

have the Corel perform the request.
(3) the Communication server sends the message across the interconnect.

(4) the communication server of Corel receives the message. It then creates a
replica of T2.

(5) once the replica is created, it forwards the call to the server so that Semaphore
performs the service requested by T2.

(6) when the service is performed, the proxy is destroyed and the feedback infor-
mation is transmitted to the inter-core communication service.

(7) the feedback information is sent to Core2 for transmission to T2

Then T2 uses the resource SI. It does not implement the service, thus the
service implementation at compile time is reduced to a direct call of the remote
service, disregarding whether the resource is global or local since it is necessarily
global. It therefore locates SI through its global table.

It is considered that the resource S7 is managed locally by Corel and directly
inaccessible by the other nodes. All requests for an operation on S7 must be done
by Corel. In the global table, the value associated with each resource is the core
identifier on which it is located.

Resource | Core ID | Status | Attributes Pointer
S1 1 Created Shared 0x90000150

Table 4.1: Resources table example

In this case, Core2 sends a message to Corel specifying the identifier of the
Semaphore and the request (Semaphore locking). The message is received by Corel,
via a thread dedicated to this task. The request of T2 is performed on Core! and
a proxy of T2 is placed in the waiting queue of ST.

The advantages are that this solution is scalable because all communications are
done by message passing and that there is no conflict about the ownership as the
resource is still managed by the creator of the resource. On the other hand, the
drawback consists in the fact that all operations on a resource are centralized on
creator’s location.

When T1 releases the semaphore, T2 is the highest priority thread waiting and
therefore takes the Semaphore. The information is returned to Core2 in another
message. T2 is then released and becomes ready to run.

Possible scenarios

Chapter 4. Operating System for Dynamically and Reconfigurable
106 Heterogeneous SoC

When a thread uses a service of the operating system, there are three possible
scenarios:

1) the server is implemented locally, and the resource is local. In this case, after
locating the resource, the thread calls directly the local server and the resource
is handled directly by the service (Fig. 4.19 and /.20).

Global Table
@ Task
T Task Proxy

Resource

Server
+ Localization Service

s+ Operating Service

Communication Server

Operating System

[Interconnect }

Scenario 1

Figure 4.19: Scenario 1 platform

T S, S, Comm
ﬁ { sTidopp |
,,,,,, WwEpP |
]
,,,,,,,,,,,, -
T S, S, Comm

Scenario 1

S : Service — Op : Operation — Tid : Task ID — P : Parameters — R : Returns

Figure 4.20: Scenario 1 datagram

2) The server is implemented locally, and the resource is remote.

The server is present locally but does not have the resource, it must first
locate it. Once located, it is responsible for sending a message to the core which
possesses it for the latter to process the request in its place (Fig. 4.21 and 4.22).

4.4. Conception 107

Memor: Memor
Global Table
) 7
@ Task
Corel Core2
i Task Proxy
[Rl Resource
Server
Shared + Localization Service
Memory
S + Operating Service
‘ ‘ Communication Server
Operating System
Interconnect

Scenario 2

Figure 4.21: Scenario 2 platform

S Comml Comm?2 S S T

o1 02 L2 proxy

| sopTidp |

T MH | SOpTdP |

1] { sopTidP | If blocking,

- ol - >
| OpTidP T { creates proxy
TdR |

|
_MH | TAR | I
mdR | [T

T S S Comml Comm?2 S S T

L1 o1 02 L2 proxy

Scenario 2 Message Header

System Call

S : Service — Op : Operation — Tid : Task ID — P : Parameters — R : Returns

Figure 4.22: Scenario 2 datagram

3) The server is not implemented locally, and the resource is remote.

A service not implemented locally is declined into two different versions:

a) The server implements a localization mechanism: the server can not handle
resources, but it is able to locate the resource. Once located, it sends a
message to the core which own the resource (Fig. 4.23 and 4.24).

Chapter 4. Operating System for Dynamically and Reconfigurable
108 Heterogeneous SoC

Memor Memor
Global Table
))
@ Task
Corel Core2
Task Proxy
Resource
Server
Shared + Localization Service
Memory
S + Operating Service
‘ ‘ Comm.| Communication Server
‘ i Operating System
Interconnect R
Scenario 3a
Figure 4.23: Scenario 3a platform
T S, S Comml Comm2 Sos S,
| sopTidP | [
{ sopTidP |
T MH | SOpTdP |
il [sopTdp | _
“ OpTidP |
Cmer L[]
PMH | TR f
‘ g TdR | ‘ T
o
T S Sos Comml Comm?2 Soz S,

Scenario 3a Message Header

. .) System Call
S : Service — Op : Operation — Tid : Task ID — P : Parameters — R : Returns

Figure 4.24: Scenario 3a datagram

b) The server is not implemented (Fig. 4.25). The call for this service has re-
sulted in sending a message to another core which is known to own the service.
Then that other core has the resource, or by extension, is able to locate and
deliver the message to core which effectively owns it (Fig. 4.26).

4.4. Conception 109

Memor Memor Memol
) N 7 @
Task
Corel Core2 Core3
Task Proxy
Resource
Server

+ Localization Service

S + Operating Service

comm.| Communication Server

3 I H H @

0S| Operating System
Interconnect

Scenario 3b ‘ ‘

Shared
Memory

Figure 4.25: Scenario 3b platform

T Su S, Comml Comm2 S, S, Comm3 Sqs S,

ﬁ | sopTidP | “
"1 mn | sopmae |
] [sopTdp |
T | sopTiar
j ‘ MH | SOpTdP ! o
| OpTidP ! J
TR
| MH Tid R ‘
RCLE

- R I
[

T S, S, Comml Comm2 S, S, Comm3 Sqs S,
Scenario 3b

Figure 4.26: Scenario 3b datagram

4.4.3 Multicore layer

The abstraction provided by the software architecture has to be integrated in an
operating system. We have to keep up the existing structure of this operating
system, especially the services it provides. In a common operating system, a thread
accesses the operating system services via classical system calls (ie. direct connection
to the called primitive). To abstract remote accesses to an operating system resource,

Chapter 4. Operating System for Dynamically and Reconfigurable
110 Heterogeneous SoC

an additional layer must be added. This layer has three objectives:

i) to make the difference at compile time, between a request for creating remote
or local resources

ii) to translate calls to the operating system primitives into messages understand-
able by the servers

iii) to manage the heterogeneity of the platform: differentiation of how to manage
a software thread with how to process with a hardware thread

[Application threads

v

Existing OS :
» Keep existing services
* Multicore layer
e Syscall — distant or local syscall
e Communication — Posix => Message Passing
» Heterogeneity — Switch Sw/ Hw threads

v

[Operating Libraries]

Threads Sem Msg DPR

Server | « Server Infrastructure :
* Send/recv ITC
Sem * Resources localization

i » Sem
; * Genuine Sem. Service if available on the core

Infrastructure

Figure 4.27: Operating system architecture

The implementation of this multicore layer requires us to identify the existing
mechanisms permitting to the different nodes of the system to communicate. These
mechanisms must be adapted or modified to allow sending a message from a core
to another and to ensure the transfer of all the necessary information. Finally, the
operating system should implement the following modules:

e a module that implements a service of message passing

e one or several modules that allows to manage the resources available on
the platform (e.g. a Semaphore service)

e a module enabling to abstract the use of the partial and dynamic recon-
figuration

4.5. Implementation 111

4.5 Implementation

4.5.1 Modular operating system: MutekH

To validate the choices and concepts to be implemented in order to realize this
operating system, we will use an existing operating system: MutekH [LIP6 2012].
This operating system was chosen because it is a multicore heterogeneous operating
system, open source and currently still maintained by the LIP6 laboratory (www.
mutekh. org).

4.5.1.1 Main features

The following table lists the features of this operating system and compares them
with what is expected of our "ideal” operating system (HSoC OS).

HSoC 0OS MutekH
Scheduling
Type Preemptive Preemptive
Criteria, priority round robin
Max. number of task. >=16 unlimited
Thread service HSoC OS MutekH
Create Yes Yes
Delete Yes Yes
Suspend Yes Yes
Resume Yes Handled by the
scheduler
HSoC 0OS MutekH
Mutex service
Create Yes Yes
Delete Yes Yes
Blocking take Yes Yes
Non-blocking take Yes Yes
Release Yes Yes
Priority inheritance Yes unknown
Deadlocks management Optional No, non-blocking take
possible
HSoC OS MutekH
Semaphore service
Create Yes Yes
Delete Yes Yes
Blocking take Yes Yes
Non-blocking take Yes Yes
Release Yes Yes

Chapter 4. Operating System for Dynamically and Reconfigurable

112

Heterogeneous SoC

HSoC OS MutekH
Message Passing
service
Blocking send Yes No
Blocking receipt Yes No
Non-blocking send Yes No
Non-blocking receipt Yes No
HSoC OS MutekH
Memory allocation
service
Fixed allocation Yes Yes
Dynamic allocation No Yes
OS HSoC 0OS MutekH
Remote
communication
Resource creation Yes No
Resource destruction Yes No
Resource manipulation Yes No
HSoC OS MutekH
Debug - Monitoring
Support GDB Optional but OK
recommended
Statistics Optional Yes
Hooks Optional Yes
HSoC OS MutekH
Hardware Thread
service
Create Yes No
Delete Yes No
Suspend Yes No
Resume Yes No
HSoC OS MutekH
Hardware Threads
scheduling
Preemption Save and restoration No
through readback
Relocation Yes, on homogeneous No
areas

4.5.

Implementation 113
HSoC OS MutekH
Multicore support
Bootloader Supervisor processor Supervisor processor
management
Task migration Optional Yes, pointer to the code
in shared memory
HSoC OS MutekH
Features
Kernel footprint < 25 ko -
Memory safety Memory Protection Memory Management
Unit Unit
Microblaze Port Yes Partially done
(functional)
Abstraction API Industrial standard POSIX standard
Space address Unified for every cores Shared memory
Modularity Modular OS services OK

4.5.1.2 Services structure

Currently, MutekH offers modular services to be implemented on the target plat-
form. Being an exo-kernel, additional services are defined as libraries (Fig. 4.28).

These libraries are separated into two categories: OS Interface Libraries whose APIs
are provided by the user and Services Libraries whose APIs are provided by the op-
erating system.

User level tasks Kernel level tasks

syscallsI
[Libc)é VFs

Networké Unix* i

{ posix threads [Device drivers J

éScripting i Loader Custom 0S API

[Plaform support J [Processor support J [Memory allocators J ;Virtual memoryé

Processors heterogeneity support Timer service Schedulers

Figure 4.28: MutekH global view

Chapter 4. Operating System for Dynamically and Reconfigurable
114 Heterogeneous SoC

The core of MutekH, Hexo (Hardware independent kernel code), provides the
following services:

e memory allocators
e memory regions

e page allocator

e scheduler

e timer

e semaphore

In order to satisfy the conception requirements described in the previous section,
we need to add a new library which will be used as an multicore resource manager.
This library has to handle the local and remote accesses to every resources of the
platform providing a common API for every servers of the platform. In our case,
we rely on the MRAPI specification provided by the MCA (Multi-Core Associa-
tion [Association 2012]). This specification which offers an API to access to global
services is detailed in the next section.

4.5.2 MRAPI Specification
4.5.2.1 MRAPI definition

MRAPI (Multi-Core Resource Management API) is a specification which aims to
offer a standard API defining basic synchronization mechanisms, memory accesses
and system metadata. Synchronization mechanisms includes Mutexes, Semaphores
and pairs of Reader/Writer locks. Accessed memories can be shared or remote,
whereas system metadata addresses the collect of hardware informations.

Their approach consists in suppressing the dependency of the existing standard
with the SMP architecture and provide an API which could be easily implemented on
a distributed operating system containing heterogeneous cores and shared resources.
The advantage of using a standard APT is the portability as a developer will be able
to locate the non-portable functionalities.

MRAPI shares the same concepts as those found in MCAPI. Tt is orthogonal to
this specification and the two are inter-operable. In these specifications, a system
is composed of:

e domains: a domain is a system component which includes a certain number
of nodes

e nodes: a node is an independent thread of control. It may be a process, a
thread, a hardware accelerator or an operating system instance

4.5. Implementation 115

By default, most resources are shared between different domains of the system.
For efficiency reasons, it is possible to disable this by setting the attribute sharing
MRAPI DOMAIN SHARED to MRAPI FALSE when creating the resource.

4.5.2.2 MRAPI Mutexes

A mutex can be declared as a global resource by specifying the process-shared at-
tribute. The Mutex is based on POSIX mutexes. They must support the detection
of deadlocks and in this sense are similar to the implementation of mutex type
PTRHEAD MUTEX ERRORCHECK. The sharing of a mutex between multiple
processes is not always possible. This is implementation dependent. In particular
in the case of the use of a fork.

They also support recursion but this is not the default case. For each lock, a
unique key is returned and is used to check the order of calling Unlock primitives
for the same mutex.

Regarding other features, the priority inheritance mechanisms are not guaran-
teed until the specification of threads in MTAPI® is not clearly defined. The opera-
tions on mutexes are all blocking and by default, a mutex is visible to all processes
and tasks. The primitives defined by the APT are equivalent to the following POSIX
primitives:

e pthread mutex init (mcapi mutex init)

pthread mutex destroy (mcapi mutex destroy)

pthread mutex lock (mcapi mutex lock)

pthread mutex trylock (mcapi mutex trylock)

pthread mutex unlock (mcapi mutex unlock)

Mutexes have attributes. These attributes must be defined before creating the
mutex and can not be changed later.

4.5.2.3 MRAPI Semaphores

Semaphores are also based on the POSIX standard. All operations are blocking and
by default a Semaphore is visible to any process or task. This service also provides
primitives for notifying deadlocks.

However, MRAPT only supports named Semaphores and the XSI interface (X/Open
System Interfaces Extension) is not supported. Moreover, like Mutexes, the mech-
anisms to fight against priority inversion are not guaranteed as MTAPIT is not com-
pleted.

8Multicore Task management APT

Chapter 4. Operating System for Dynamically and Reconfigurable
116 Heterogeneous SoC

4.5.2.4 MRAPI Reader/Writer Locks

The Reader / Writer Locks can handle multiple concurrent accesses to read from a
memory, or exclusive access for writing. To ensure fairness, MRAPI must implement
a mechanism for serializing queries so that no new read request is accepted from
the moment where a write request is pending. MRAPI Reader / Writer Locks are
similar to POSIX R/W Locks, but as MRAPI provides additional functionalities,
MRAPI locks implementation is more flexible and for instance, locks can be shared
by all nodes as well as by only a group of nodes.

4.5.2.5 MRAPI Memories

MRAPI supports two types of memory: shared memories and remote memories.
MRAPI shared memories are similar to POSIX shared memory, except that they ex-
tend their functionality to several operating system, against one for POSIX. MRAPI
supports the heterogeneous elements of execution and ensures consistency of shared
memory regardless of the operating systems or the types of cores used to compose
the platform.

Remote memories relate memories accessible only through mechanisms external
to the processor, that is to say other types of instructions than simple load and
store. There are no constraints on how to access these memories, however, it is
preferable to provide an implementation in which the sending of data and calculation
of data can be done in parallel. That is to implement mechanisms of non-blocking
communication with the memory (read and write).

In addition, flush and sync primitives are provided to support any cache man-
agement, and access of scatter / gather type. There are two types of access to a
remote memory, all to be uniform:

e access with strict semantics: the type of access must be specified upon the
creation of the buffer (e.g. DMA, software cache, ...)

e access without semantics: the type of access specified upon the creation is set
to MRAPI_RMEM ATYPE ANY. The actual type of access is given only
when accessing the buffer.

The use of pointers is still allowed but limited to access to local memory. Remote
access must always be done making a copy and must use the MRAPI primitives.
The implementation must still provide at least the default type of access” which
must follow the strict semantics.

'MRAPI_RMEM_ATYPE_DEFAULT

4.5. Implementation 117

4.5.2.6 MRAPI Metadata

Metadata provides access to information about the hardware platform. You can ac-
cess this information by using the primitive mrapi resources get() which returns
the information as a tree. Each node of the tree represents a system resource and
has attributes giving additional information about the resource. The information
contained in the tree can be filtered using the input parameter subsystem filter.
The implementation of these filters depends on the implementation.

4.5.2.7 MRAPI Attributes

The attributes were defined to allow an extension of the API. It is possible to define
additional attributes specific to its own implementation. In order to make the
API as portable as possible while keeping a flexible implementation, the attributes
are maintained in a data structure opaque, non-visible to the user. Each resource
is associated with a data structure and must have certain attributes and default
value. These values are defined in the specifications. Three primitives are used to
manipulate the attributes:

e mrap_<resource> init_attributes()
e mrap <resource> set attribute: to be repeated for each attribute to set
e mrap <resource> create(): takes as parameter attributes

e mrap_<resource> get attribute()

Note: Once the resource is created, its attributes should not change. For a
resources management like remote resources, an additional layer should be imple-
mented. In our case, this additional layer is brought by the servers architecture.
4.5.2.8 Non-blocking calls
There is three types of primitives:

e blocking primitives

e non-blocking primitives: it means primitives containing the word " i" at the
end of their name, indicating that it returns immediately

e and "single-attempts blocking" primitives: namely, primitives including the
word "try" in their name

Remote memories are the only one to support non-blocking calls. In this case,
the primitive can return the focus to the user before the completion of the operation.
To check this completion, the API provides the following primitives:

Chapter 4. Operating System for Dynamically and Reconfigurable
118 Heterogeneous SoC

e mrapi_test() : test the operation test without being blocked
e mrapi_wait() : wait for the completion of an operation or until a timeout

e mrapi_wait any() : wait for the completion of one of the running operation
given as parameters, or until a timeout

e mrapi_cancel() : cancel an operation

4.5.3 Hardware architecture
4.5.3.1 Homogeneous NoC-based platform

In order to validate the communication mechanisms between two processors, we first
design a homogeneous platform. In this platform, each processor is master on its
own bus and can access to the NoC resources through a bridge. A Bram memory is

- Interrupt
ey ey Controller

used to test read and write mechanisms on the NoC.

. Interrupt
ey ey Controller
Bridge BRAM Bridge

I

[DRAFT NoC J

MRAPI

uBlaze

MRAPI

uBlaze

Figure 4.29: Homogeneous NoC-based Platform

4.5.3.2 Development environment

The MutekH operating system [LIP6 2012] has been ported on the Microblaze pro-
cessor. To enhance its programmability, we developed an Eclipse plug-in which can
be integrated into the Software Development Kit (SDK) provided by Xilinx to pro-
gram the Microblaze. This plugin allows to create a new project to deploy MutekH
on a Microblaze processor, choosing the libraries to include into the kernel and the
memory mapping of the application.

4.5.3.3 Heterogeneous NoC-based platform

The heterogeneous platform we realized extends the homogeneous platform adding
Hardware Thread instances (HT). These tasks perform system calls through the
Reconfigurable Zone (RZ) bus which is a bus dedicated to the hardware tasks in the
FOSFOR project. Messages on the bus are recovered by a hardware communication

4.5. Implementation 119

server responsible of translating requests into messages routed by the NoC towards
a processor. Experiments on this platform will be described in the Chapter 5.

ProZessor 2ore Pro2essor 2ore
M RAPI M RAPI
Interrupt Interrupt
uBIaze Memory Timer Sl uBIaze Memory Timer S,

L o
q b 9
Bridge Bridge

W AN H

HW MRAPI
Bram
Comm. Server
RZBus ¢—

Reconfigurable core

<

PLB Bus < > PLB Bus

Figure 4.30: Heterogeneous NoC-based Platform

4.5.4 Domain definition

The platform is considered to be a NoC-based design and each core, processors cores
or reconfigurable cores, have a unique identifier on the network-on-chip.

We could have defined a domain as a Network-on-Chip, however this would have
led us to define a core as a node. This situation would be problematic because as
the node identifier should also be unique, a core would have to ensure that the num-
ber it chose is not already used by the other cores connected to the network when
creating a new node. Another solution would be to request to a core considered as
a supervisor, to generate a number for it, what could also be a bottleneck.

For these reasons, we decide that a domain is defined by a core. As every core
are already connected and defined on the NoC by a unique identifier, the domain
number is derived from this identifier. So, to attribute an identification number to a
new node, a core performs it independently from the others cores managing a local
table.

This solution considers that in the platform, only the hardware thread can be
reconfigured. In this implementation, we do not take into account the possibility
to reconfigure a dynamic partition instantiating a processor core as defined in the
Figure 4.30, but only instantiating a Hardware Thread.

Chapter 4. Operating System for Dynamically and Reconfigurable
120 Heterogeneous SoC

4.5.5 Node definition

As regarding the MRAPI specification a node should be an independent thread of
control. In MutekH, we defined that a software node is implemented as a POSIX
thread. This choice has been made because a node is considered to be mapped any-
where on the network regarding application needs, so a node number is dynamically
generated by a core when initializing the node.

On the hardware side, a hardware thread running in a reconfigurable partition is
consider as a node, and like the software operating system, the Hw MRAPI module
is responsible for generating the node identifier of each hardware threads.

4.5.6 MRAPI types

In the Multi-Core Association (MCA) implementation, used types are defined in
the file mca.h. Defined types are prefixed by “mca_”. Symbolic constants are then
defined in order to homogenize the different implementations under generic types
prefixed by “mrapi_”.

In our case, the implementation is done in the mrapi impl spec.h file. We
associate “mrapi_"” types to “mmh_” types (MRAPI MutekH) defined in the file
“mmh.h” which are themselves linked to already defined types in the MutekH kernel
(hezo/types/h) (Fig. 4.31).

The implementation is done to be deployed on a 32-bit wide architecture. Re-
garding primitives implementation, it exists two levels of files: mrapi.h and mrapi.c
including APIT primitives as defined in the specification which only check speci-
fied errors messages, and mrapi impl spec.h and mrapi impl spec.c including
the effective implemented API primitives which content is specific to the targeted
operating system and platform.

4.5.7 Resources system calls
4.5.7.1 Principle

A thread wanting to access a system resource, which could be local or distant, can
do it in a transparent way using the MRAPI primitives. A call to one of these
primitives when concerning a system resource, is translated by a call to a flexible
server.

A flexible server is an operating system service which could be implemented in
three ways:

e with a minimal service unable to localize a resource but able to trans-
mit a request to access to remote services to another core

e with a partial service able to localize a resource and so to request a
remote access to the owner

4.5. Implementation 121

D libmrapi
ﬂ mrapi.c

include

mrapi.h
mmbh.h
mmh_config.h
impl
mrapi_impl_spec.h
impl
mrapi_services_table.c
mrapi_resources_table.c
mrapi_nodes_table.c
impl

mrapi_impl_spec.c

tables
mrapi_services_table.c
mrapi_resources_table.c

mrapi_nodes_table.c

-] Makefile
ﬂ mrapi.config

Figure 4.31: MRAPI library file structure

e with a full service able to localize a resource and so to request a remote
access to the owner but also to manage resources locally

4.5.7.2 Local tables

In order to store all necessary information to communicate between nodes, three
local tables are created (Fig. 4.32): a services table which remains the same all
along the application execution and so is defined as a static table, a resources table
which is updated each time a new global resource is created and a nodes table which
is updated each time a node is created inside the domain (ie. on the core). The two
latter are managed as dynamic chain lists. Each table is created at the initialization
of the core and is shared by every node running on it.

Chapter 4. Operating System for Dynamically and Reconfigurable

122

Heterogeneous SoC

Domain

node_id_0 service_type 0 resource_id_0
node_ptr 0 core id O core_id 0
node id 1 service_type 1 resource_id 1
node_ptr_1 core_id_1 core_id_1
node_id_n service_type_n resource_id_n
node_ptr_n core_id_n core_id_n
nodes table services table resources table

Figure 4.32: MRAPI local tables

4.5.7.3 HAL communication support

To enforce the synchronization between the different cores, we need to rely on a mul-
ticore communication API which allows to send messages from one core to another.
This APT must offer low-level primitives to send and receive these messages. In or-
der to lower the global footprint of the MRAPI implementation, this communication
layer is implemented at the HAL level.

4.5.7.4 Remote call management

When a remote call is performed, the message is gathered by a special thread running
on each core. Connected to the message acknowledgement mechanisms provided by
the implementation, this thread wakes up, create a replica which will process the
call and go sleep until the call is completed or another message arrived (Fig. 4.33).

/\

Domain

@ @ Proxies pool

Network Interface »| Requests Manager
Interrupt Handler irq Thread

©

Arequest arrives P
% An IRQ occures ®Evem
@ The Request Manager allocate a proxy
@ The Proxy performed the call
@ The Proxy notified the end of the call
@ The result is sent back to the remote node

Proxy 0
Thread

Proxy 1 @
Thread

~-o0z~0z

. Proxy n
Thread

N —

Figure 4.33: Requests management proxies

4.6. Conclusion 123

4.6 Conclusion

In this chapter, we defined the specification of an ideal operating system which
would be able to manage a heterogeneous reconfigurable system-on-chip. Regarding
the multicore and heterogeneity issues, this operating system have to provide simple
communication mechanisms and above all, be enough flexible to efficiently use the
dynamicity brought by the Dynamic and Partial Reconfiguration.

To manage it, we relied on the MRAPI specification which provides a simple API
on top of the operating system. This APT allowed us to implement a flexible server
mechanism to adapt the set of services provided by the operating system to the core
is running on. Moreover, the modular compilation of the MutekH operating system
we chose as a basis is well suited to enforce an easy implementation of a design space
exploration tool.

In the next chapter, we evaluate the performance of the proposed solution when
integrated in a full heterogeneous and dynamically reconfigurable System-on-Chip.

CHAPTER 5

Application deployment

Contents
5.1 Imtroduction 125
5.2 Platform building 126
5.2.1 Microblaze platform 126
5.2.2 Read and Write timings 127
523 Systemecalls. e 131
5.2.4 Hardware Threads encapsulation 134
5.3 Tracking application v v v v v v v v v v e 135
5.3.1 Presentation 135
5.3.2 The Camshift TP 137
533 TheDVIIP 138
5.3.4 Application deployment L 139
5.3.5 Results and performances 142
54 Conclusion ittt 143

In this chapter we implement a set of features exposed in the previous chapters
which characterize an HRSoC, and we build a demonstration platform in an incre-
mental way in order to detail these different features. We give experiment results
about the components of the system, including data transfer and system calls tim-
ings as well as memory footprints for the software architecture. We also provide
timings and resource usage for the hardware one.

5.1 Introduction

A demonstration platform (Fig. 5.1) is built to highlight the different communi-
cation and abstraction mechanisms provided by this operating system dedicated to
reconfigurable platforms which allows to take advantage of the dynamic and partial
reconfiguration technology.

This platform is composed of a couple of Microblaze processors, each one be-
ing master on its own PLB bus. Also, both have access to a DDR2 memory, an
interrupt controller is used to notify the reception of a message by the PLB-NoC
bridge and a timer gives the operating system tick and the ability to process timing

126 Chapter 5. Application deployment

measurements.

Specifically, the second Microblaze has an access to the FaRM ICAP controller
which allows it to partially reconfigure the FPGA. It has also an access to a DVI
controller and is responsible for displaying the processed video. In the frame of this
demonstration, the video will be stored into the DDR2 memory.

[M-;;‘;:;;ze] [C'm.f;] [] [2o] [] [2o] [v] [] [] [__ﬂ]
I A I A A I A A I A
Y Y Y Y Y y

[PLB Bus] [PLB Bus]

T
PLB_NoC Node 0 PLB_NoC Node 1
' port<0> ! port<1> port<2> ' port<3>
[i 8-ports DRAFT Network-on-Chip g]
A
port<4> port<5>

Figure 5.1: Demonstration platform

Two bridges have been instantiated to permit the Microblaze processors to com-
municate through the 8-port Draft NoC. On the bottom of this NoC, in addition to
these bridges, two hardware nodes can be hosted, namely Hw Node 0 and Hw Node
1. On the top of the NoC, the Hw MRAPI module is connected to these hardware
nodes by a dedicated bus (RZ bus on Fig. 5.1) and a Block RAM connected to the
port 5 allows to exchange small amount of data (8KB). All experiments have been
realized on a Virtex 5 LX110 Development Board (zcvlz110) designed by Avnet.

5.2 Platform building

5.2.1 Microblaze platform

We start the building of our platform with a simple Microblaze system (Fig.5.2).
The instruction and data codes of the application are stored in the Block RAM of
the Microblaze. We realized a port of the MutekH operating system on this pro-
cessor. On top of this operating system, we add the MRAPI layer described in the

5.2. Platform building 127

Chapter 4 and ported on the MutekH operating system. The memory footprint of
each one of these layers is specified in the Table 5.1.

Microblaze Interrupt Timer DDR2
Controller (x2) Memory
A A
Yy y

[PLB Bus]

Figure 5.2: Microblaze platform

Component Memory footprint Overhead
MutekH 56392 Bytes 0

with MRAPI 57592 Bytes 1200 (2.12%)
with application (1 node) 58080 Bytes 1688 (2.99%)
with application (2 nodes) 58104 Bytes 1712 (3.03%)
with application (3 nodes) 58112 Bytes 1720 (3.05%)
with application (8 nodes) 58128 Bytes 1736 (3.07%)

Table 5.1: Software layers footprints

The bigger amount of memory that we can provide in the local BRAM of the Mi-
croblaze processor is 64 KB. Even if the memory footprint is lower than this capacity,
stack and heap overflow can occur when creating new threads. This is why in the
next steps in which the MRAPI layer is included, we consider the application code
to be stored in the DDR2 memory because its storage capacity is considerably more
important. Otherwise, the application is considered to be stored in the local BRAM.

Table 5.2 gives an overview of the latencies generated by the storage of the pro-
gram and data codes into an internal BRAM memory, an external SRAM memory
or an external SDRAM memory for the same application:

5.2.2 Read and Write timings
Memory accesses:
To abstract the heterogeneity of the application, specific communication mecha-

nisms have to be implemented, both in hardware and software, especially the access
to the system memory distributed all over the platform. Memories include external

128 Chapter 5. Application deployment

Storage Memory without with Cache
Cache

BRAM 4.080 ms 960.168 us

SRAM 57.604 ms 17.282 ms

SDRAM 93.703 ms 29.283 ms

Table 5.2: Code execution time for a Microblaze processor (ML506 @ 125 MHz)

DDR2 memory and local Block Rams connected on the top of the NoC (Fig. 5.3).

Microblaze

Y

4 Y
[PLB Bus

Bridge Hw
PLB NoC Node 0

port<1>

Interrupt Timer DDR2
Controller (x2) Memory
A A

8-ports DRAFT Network-on-Chip]

port<5>

BRAM

Figure 5.3: Read and write test platform

The architecture of the bridge developed to interconnect the PLB-based Microb-
laze system with Draft, the network-on-chip implemented by CAIRN, is depicted
in Figure 5.4. This one is based on the PLB Master Burst IP [Xilinx 2010b] and
allows half-duplex transfers between the PLB to the NoC interfaces and data copies
between two buffers mapped on the PLB memory. These transfers are controlled by
the Master Command FSM which is driven by the processor using control registers.

To this platform, we add a hardware thread instance (Hw Node 0) which can
also perform direct read and write access to the BRAM NoC memory and indirect
ones to the DDR2 memory passing through the bridge. Indirect because the bridge
being controlled by the processor, data packet can continue to the DDR2 memory
only if this one enables it.

Tables 5.3 and 5.4 detail the data transfer timings between software or hardware
nodes and the platform memories. The program code is stored in the local BRAM

5.2. Platform building

129

AN

S e
1 Address Q
O
A
Slave registers
P (A\ (j (—j
Write)
c i Write NoC I
B w Local Link "
5 =4 =
u
: N
o
M C
PLB Master
ﬂ Burst FIFO o
o
r
t

Read

E Local Link

Read NoC

/)
2]

4
|

4

\Y

Figure 5.4: Bridge PLB-NoC architecture

of the Microblaze.

Node DDR2 Throughput | Bram-NoC Throughput
(cycles) (cycles)
Sw : write 1 KB | 4390 17.11 MB/s 1961 38.30 MB/s
Sw : write 2 KB | 8742 17.18 MB/s | 3637 41.30 MB/s
Sw : write 4 KB | 17446 17.22 MB/s | 6988 42.99 MB/s
Sw : write 8 KB | 34854 17.24 MB/s 13721 43.79 MB/s
Hw : write 1 Ko | 2152 34.9 MB/s 1354 55.48 MB/s
Hw : write 2 Ko | 3691 40.7 MB/s 2667 56.33 MB/s
Hw : write 4 Ko | 6735 44.6 MB/s 5290 56.80 MB/s
Hw : write 8 Ko | 13443 44.7 MB/s 10494 57.26 MB/s

Table 5.3: Timings in cycles to write into platform memories

Table 5.5 details the timings for the read and write transactions from a hardware
thread to a BRAM connected on the top of the NoC. Timing measurements follow
the data path visible in the description of the Network Interface of the hardware
thread (cf. Section 2.3.3.5).

This table shows that the time needed to process a read transaction is more
important than to process a write transaction. This is due to the fact that there
is a delay needed when setting the address before to get the data from the BRAM

130 Chapter 5. Application deployment

Node DDR2 Throughput| Bram-NoC Throughput
(cycles) (cycles)
Sw : read 1 Ko 7658 9.80 MB/s 3016 24.90 MB/s
Sw : read 2 Ko 15278 9.83 MB/s 5446 27.58 MB/s
Sw : read 4 Ko 30518 9.84 MB/s 10306 29.15 MB/s
Sw : read 8 Ko 61002 9.85 MB/s 20504 29.30 MB/s
Hw : read 1 Ko | 1956 38.40 MB/s | 2154 34.87 MB/s
Hw : read 2 Ko | 3636 41.32 MB/s | 4254 35.31 MB/s
Hw : read 4 Ko | 6924 43.39 MB/s | 8447 35.57 MB/s
Hw : read 8 Ko | 13685 43.91 MB/s | 16845 35.67 MB/s

Table 5.4: Timings to read from platform memories

but also an additional 1-cycle delay is introduced to ensure that the NoC is ready
to transfer a data. This latency has been added to avoid timing failures and data
loss but can be optimized in some cases.

Operation Time

Push wr. req. by User FSM 6 cycles
Pop wr. req. by Packetizer 7 cycles
Process wr. req. by Packetizer and DMA 8 cycles
Push rd. req. by User FSM 8 cycles
Pop rd. req. by Packetizer 9 cycles
Process rd. req. by Packetizer and DMA 10 cycles
Write 32-bits word (Full process) 16 cycles
Read 32-bits word (Full process) 21 cycles

Table 5.5: Network Interface Communication Measurements

Node Communications:

In addition to memory accesses, the platform offers to the nodes the ability to
initiate direct communications. Table 5.6 presents the network-on-chip interface
performances. The protocol used to abstract the heterogeneity of the communica-
tions has been introduced in the Section 2.4.2.

We can see that the communication between software and hardware nodes is
limited by the bridge performances but globally, the DMA mechanism implemented
inside the bridge provides efficient and fast communications between the different
domains.

5.2. Platform building 131

Sender Receiver Timaing Throughput
Sw domain Sw domain 2301 cycles 32.64 MB/s
Sw node Hw node 2069 cycles 36.30 MB/s
Hw node Sw node 2138 cycles 35.13 MB/s
Hw node Hw node 1341 cycles 56.01 MB/s

Table 5.6: NoC Send timings for 1 KB data

5.2.3 System calls

The platform used to test the different system calls configuration is illustrated in
Figure 5.5. The system is composed of three domains: two software ones represented
by the domains 0 and 1, and a hardware one as the number 2.

Domain 0 Domain 1

Microblaze Interrupt Timer DDR2 DDR2 Timer Interrupt Microblaze
Controller (x2) Memory Memory Controller
A A I

A A A

A
V© A A y Y Y

1 PLB Bus] [PLB Bus]

Hw
Node 0

port<1>

Bridge
PLB NoC

Bridge
PLB NoC

J 8-ports DRAFT Network-on-Chip]

port<4> /@ port<5>
7/

- _: i Domain 2
MRAP| - BRAM

RZ bus

Figure 5.5: Hardware platform used to test system calls procedures

Once communication mechanisms is set up, we can add the upper layer of the
communication infrastructure. In this way, we extend the platform including the
Hw MRAPI module (Fig. 5.6) on top of the NoC. In phase A, the hardware node
processes the system call. This call is then encoded and transmitted through the
Network-on-Chip by the Hw MRAPI module (Phase B). In phase C, the message is
received by the software node on the bridge inputs and an interrupt is launched to
the Microblaze processor. Finally, the processor gets the message from the bridge
and handles the request (Phase D).

132 Chapter 5. Application deployment

AN AN

RZ bus NoC

Hw MRAPI Communication Server

Send FIFO
—®- sysreq —>DDD > tx_noc —>
. w -4 P data_out_noc —|
l— address - Syscall NoC -t x_noc |
—® data_in Manager Interface -t data_in_noc -s—
l«— data_out -« ﬁﬁ”:o

[[}
./ ./

Figure 5.6: Hardware MRAPI global architecture

The Hardware MRAPI module is used to abstract the heterogeneous commu-
nication, especially the access to the synchronization mechanisms provided by the
operating systems distributed all over the platform (Fig. 5.5). It is connected as
a master on the RZ bus and is responsible for the boot and the initialization of
the hardware nodes. It can be likened to a MRAPI communication server. The
Network Interface gives it a way to send or receive MRAPI requests. The Syscall
Manager formats and decodes these requests. The resource usage of this component
is described in Table 5.7.

Component Reg. LUTs BRAMs /| DSP Freq.
FIFOs (MHz)
Hw MRAPI 312 541 2 0 251.256

Table 5.7 Hw MRAPI Resources usage

At the software side, times needed to initialize a node, to get its generated node
ID, and to initialize the mutex attributes are given in Table 5.8. The call to the
different primitives of MRAPIT often involves calling the mrapi node id_get prim-
itive. The two others are only called when initializing the system.

System calls can be of two types: either local or distant. In the case of a local
call, we measure the time taken to process system call using the genuine primitives
provided by the operating system and the overhead brought by the MRAPI layer
(Table 5.9):

The main overhead is due to the management of the node tables used to allocate

5.2. Platform building 133

Primitives Sw Node (DDR2)

mrapi_ initialize 1354 cycles (17.6 us)

mrapi _node id get 1368 cycles (17.7 us)

mrapi _mutex init attributes | 1054 cycles (13.7 us)

Table 5.8: Timings to locally initialize a node

Primitives MutekH MRAPI Overhead
mutex create | 345 cycles (4.4 us) 3383 cycles (43.9 us) | x9.8
mutex lock 846 cycles (10.9 us) | 3018 cycles (39.2 us) | x3.5
mutex unlock| 1756 cycles (22.8 us) | 2888 cycles (37.5 us) | x1.6
mutex delete | 184 cycles (2.3 us) 3580 cycles (46.5 us) | x19.4

Table 5.9: Timings to access a local Mutex resource

or deallocate a new mutex resource. When creating a mutex, we have to find a free
place in the table and to initialize the resource structure. After this process, the
node ID is sent to the other domains of the platform. Moreover, the specifications
imposes several parameter checks and error management for each system call.

In the case of the distant call, we add the time taken to send a request message
to the owner domain of the resource, and to receive the return values. Also, different
couples of Node sender / Domain receiver are possible and implemented: a software
node sends a request to a software domain, or a hardware node sends a request to

a software domain. System calls timings are depicted in Table 5.10.

Primaitives

Sw Node to Sw Domain

Hw Node to Sw Domain

mutex create

752 116 cycles (9.77 ms)

740 611 cycles (9.62 ms)

mutex lock

652 898 cycles (8.48 ms

576 234 cycles (7.49 ms

mutex unlock

mutex delete

()
767 580 cycles (9.97 ms)
767 109 cycles (9.97 ms)

()
658 526 cycles (8.56 ms)
729 167 cycles (9.47 ms)

Table 5.10: Timings to access a remote Mutex resource

Details about these timings are given in Table 5.11 for the second case of the
Table 5.10, where a hardware node requests a resource located on a software do-
main. The different sections when crossing over the MRAPIT layers are illustrated

in Figure 5.7.

The main overhead is due to the preemption latency between each threads pro-
cessing the system call, that is to say the Request Manager thread and the allocated

Proxy thread. This latency depends on the operating system tick. In our case, we

134 Chapter 5. Application deployment

irq_bridge req_manager mrapi_proxy
~—. get_headers(); allocate_proxy(); mrapi_initialize();
(o) get_req_and_src_id(); sem_wait(); get_node_id();
sem_wait();
(1D sem_post();
~= disable_bridge_irq();
} ‘ i .
get_msg_content(); (2)
sem_post(); | @ .
sem_wait(); | 2 execute_service(); (4)
‘
set_answer_msg(); (5)
send_msg(); 6
sem_post(); 7
P }
(8) free_proxy(); e

enable_bridge_irq();

}

Figure 5.7: MRAPI remote call sections

cannot set a tick lower than 3 ms.

A solution to overcome this issue would be to target a more recent technology
such as the Zynq platforms. With hardware dual-core processors, it would be pos-
sible to get a higher running frequency and have each thread running on a different
core.

The two following cases have not been implemented yet: a software node sends a
request to a hardware domain and a hardware node sends a request to a hardware
domain, because no hardware service has been implemented in this platform in the
frame of this thesis.

5.2.4 Hardware Threads encapsulation

The resources measurements for the static part of the hardware node when imple-
menting the pipeline mechanisms are illustrated in the Table 5.12.

On top of these abstraction layers, an application composed of software and
hardware threads can be deployed. In the next section, application scenario and
partitioning choices are first described and, to conclude this chapter, application
performances and results are given.

5.3. Tracking application 135

Sections Create Lock Unlock Delete

Hw MRAPI | 28 cycles | 29 cycles | 28 cycles | 24 cycles

request (0.364 ms) (0.377 ms) (0.364 ms) (0.312 ms)

0 3747 cycles | 3745 cycles | 3772 cycles | 3733 cycles
(48.7 us) (48.6 us) (49.0 ps) (48.5 us)

1 3537 cycles | 3533 cycles | 3538 cycles | 3532 cycles
(45.9 us) (45.9 ps) (45.9 ps) (45.9 us)

2 14011 cycles | 16396 cycles | 14143 cycles | 11607 cycles
(182.1 us) (213.1 us) (183.8 us) (150.8 us)

3 2606 cycles | 2594 cycles | 2599 cycles | 2595 cycles
(33.8 us) (33.7 pus) (33.7 pus) (33.7 us)

4 3775 cycles | 3431 cycles | 3252 cycles | 3985 cycles
(49.0 us) (44.6 ps) (42.2 ps) (51.8 us)

5 1627 cycles | 1631 cycles | 1642 cycles | 1627 cycles
(21.1 ps) (21.2 us) (21.3 us) (21.1 ps)

6 19590 cycles | 17412 cycles | 17541 cycles | 17408 cycles
(254.6 us) (226.3 us) (228.0 us) (226.3 us)

7 2602 cycles | 2609 cycles | 2599 cycles | 2590 cycles
(33.8 us) (33.9 pus) (33.7 pus) (33.6 us)

8 489 cycles | 494 cycles | 495 cycles | 480 cycles
(6.3 us) (6.4 us) (6.4 us) (6.2 us)

Total Sw 51984 cycles | 51845 cycles | 49581 cycles | 47557 cycles
(675.7 us) (673.9 us) (644.5 us) (618.2 us)

Hw Mrapi get | 1106 cycles | 963 cycles | 963 cycles | 963 cycles

returns (14.3 us) (12.5 ps) (12.5 ps) (12.5 us)

Process re- | 10 cycles | 8 cycles (0.10 | 8 cycles (0.10 | 8 cycles (0.10

turns value (0.13 us) us) us) us)

Table 5.11: Detailed timings to access a remote Mutex resource

5.3 Tracking application

5.3.1 Presentation

The application deployed on the demonstration platform is a target tracking ap-
plication whose the genuine version is illustrated in Fig. 5.8. This application is
responsible for detecting and tracking targets in an infra-red video stream. In the
frame of this demonstration, the spatial resolution has been set up to 128x128 pixels
per frame.

The application is divided into four static nodes, and a dynamic one. The first
thread of the static part corresponds to the acquisition of the data from the camera
(Acquisition). Tt is followed by the target detection thread (Detection). The third

136 Chapter 5. Application deployment

Component Reg. LUTs | BRAMs | DSP | Freq. (vn:)
OS Interface 38 73 1 0 956.938
System FSM 4 6 0 0 781.250
Sync. ctrl 104 156 1 0 284.333
FU Recv 68 226 0 0 248.369
FU Send 105 175 0 0 299.850
Token Counter 6 12 0 0 448.430
Token Checker 9 15 0 0 534.474
FIFO Req. ctrl 37 60 1 0 284.333
FIFO Sync. ctrl 27 34 1 0 381.679
Sync. module 311 467 3 0 284.333
Hw Task static 562 939 6 0 271.370

Table 5.12: Hardware Thread Resources Usage.

RD

WR t RD
=

Mo

Connected
A . Component .
Acquisition ——= Detection f|------=TII--------= .~ "~ = " |----- =T[[----= Incrustation
s_Newlmage m_UpdateBE Management m_Incruste
(listC) (listC)

s_BlobReady

WR ' :
")_s EndTrack | :

RD Track |
1 e =TIT------*
m_NewBlob
I— s_BlobReady (id, coord) H
A

-]
M1
s_EndTrack
Track
RD 2 m Newiob

(id, coord)

T shared memory

——= Signal

TT Message

Figure 5.8: Target Tracking Application

thread gets the results from the tracking threads and ensures the coherency within
a list of the current tracked targets (CCM). A last thread asks for this list and
displays the bounding box of each target into the input image (Incrustation,).

In the version that we implemented, the dynamic part of the application is repre-
sented by the tracking threads, each one responsible for maintaining the coordinates
of one of the detected targets in the video (Tracking) by computing the Continu-
ously Adaptive Mean shift (Camshift) algorithm [Cheng 1995]. As a result, they

5.3. Tracking application 137

provide the CCM thread with the bounding box coordinates of the target they are
tracking. In order to emphasize the management of the dynamicity provided by the
platform, we chose to implement the different tracking threads in hardware.

Frame Width

A
\

Blob Width

Frame Height

Blob Height

Blob

Frame

Figure 5.9: Binary Long Object (Blob)

Specifically, the core responsible for the computing is implemented in a hard-
ware thread, and a software one is in charge of both the initialization of this core
and of the data transfer. Data transferred between the two threads consists in a
Blob or Binary Long Object, which is a sub-frame supposed to contain the target
to be tracked. Therefore, for each frame, there will be one blob per target (Fig. 5.9).

5.3.2 The Camshift IP

As said previously, a blob is processed by a hardware task which implements the
Camshift algorithm. The Camshift TP is implemented as pictured in the Figure
5.10. This IP receives from the NoC the blob containing the target assigned by the
Detection thread. This reception is realized by the dedicated Functional Unit (FU
Recv), which stores received data inside the thread memory (Mla or M1b).

Then the FU Recv sends a synchronization token to the Camshift core embedded
in the Camshift Functional Unit (FU Camshift). The core computes the target
coordinates before to save it with the notification of convergence (flag indicating if
the target has been locked) inside the second buffer (M2a or M2b). After computing,
the FU Camshift sends a synchronization token to the FU responsible for sending
the results.

Finally, the last Functional Unit (F'U Send) reads the values stored in the second
buffer and sends it to the software domains. After reception, Domain 1’s processor
uses these coordinates to insert the bounding box, whereas Domain 0’s processor
acquires a new blob inside the current frame, depending on the received results.

All these synchronizations are managed by the Synchronization Module (Sync.
Module in Fig. 5.10), and ordered by the User FSM. Some data is directly exchanged

138 Chapter 5. Application deployment

Camshift Node

s FU |
Recv - - Sender Mo
[P N y E I Mila Node
e N v T
Sync. FU N
User FSM | Module | C i g
) i . M2a N
i Receiver
p N > wzb <—+ e %—» M1
FU \ J
— 7 send
— |

Figure 5.10: Pipelined Camshift hardware node

between this User FSM and the FU Camshift in order to parametrize the reception
request as we cannot know the size of the next blob before the end of the cur-
rent computation. This is why, as depicted in Figure 5.11, we have to stall between
the end of the send request and the following cycle of receive-compute-send requests.

Recv Compute
request request
Wait Send
convge request

compute_done ='0"
Figure 5.11: Pipelined Camshift User FSM

convge ='1'

5.3.3 The DVI IP

The LX110 Development Board that we use for our demonstration platform does
not come by default with a video output. In order to display the frames before and
after the processing, we complete the platform with a dedicated daughter-board
which provides, among other features, a DVI output. This output was driven by a
DVI IP that we developed and whose the integration in the demonstration platform
is detailed in Figure 5.12.

The IP has an access to a VFBC channel (Video Frame Buffer Controller) which
allows it to directly read data from the DDR2 memory. It also offers a set of five
slave registers to the Microblaze of the Domain 1 in order to configure the data

5.3. Tracking application 139

Video Config.
Picoblaze
Clock
Management

Microblaze

Domain 1

CLOCK.

DVI IP PLB J Bus

/ﬁ DDR2
clk= Controller DDR2 >
e
= XSize (MPMC)
.|
D . data_enable
v -~ _—_—
: - rgb_data VEBC
DVI . hsync Ve N
o | vsync
- -t
: _

Figure 5.12: Integration of the DVI IP in the Demonstration Platform

transfer between the IP and the DDR2 memory. The VFBC port permits to access
2-Dimensional frames inside the memory and so to dynamically adapt to different
resolutions.

5.3.4 Application deployment

The application is deployed on the platform as depicted in Figure 5.13. The source
video is a gray-scale video and is acquired from the DDR2 memory so we skip the
pre-processing of the incoming frame except the binarization of the frame (Detec-
tion process). In this video, we consider that we already know the number of targets
so we can simplify the Detection process and the CCM component only need to
manage a static list of these targets.

On the other hand, the second part of the CCM process running on Domain 1
is in charge of the reconfiguration of the hardware tasks regarding the application
needs. It means the number of targets per frame and the maximum number of slots
dedicated to the Camshift processes (Fig. 5.14).

Figure 5.15 details the software nodes and their synchronizations and interac-
tions inside the platform using the Network-on-Chip communication medium and
the operating system services.

On Domain 0, the Acquisition node is not created because acquisition does not
occur as video frames are pre-loaded in the DDR2 memory. Hence, the first created
node is the Detection node. The Detection node gets frames from the DDR2 (Static
Frames). A static pre-initialized table permits the node to know how many targets

140 Chapter 5. Application deployment
Domain 0 Domain 1
[Acquisition + Detection + CCM] [CCM + Incrustation]
Microbl. Int t N DDR2 DDR2 . Int t Microbl
e Cr;r?trrroulrer Timer Memory FaRM Memory pviip Timer Cr(‘u:trrroulrer
4 1 I A A 1 A
Y Y Y
[PLB Bus] [PLB Bus]
Bridge Bridge
PLB_NoC PLB_NoC
Hw Node 0 Hw Node 1
port<0> port<1> port<2> port<3>
Y

8-ports DRAFT Network-on-Chip

porce> |
port<4>

Domain 2

RZ bus

port<5>

BRAM

Figure 5.14:

: Application deployment

Camshift slots (Virtex 5 LX110 device)

5.3. Tracking application 141

are presents in each frame (Static Targets).

Then the Detection node compares the number of detected targets with the
number of hardware tasks which are configured at this moment (Camshift Hw nodes).
If the number of reconfigured tasks is lower than the number of detected targets and
that one or several partition slots are available to host a hardware Camshift task,
the Detection node unlocks the Reconfiguration Manager node to have it performing
a reconfiguration request.

Then the Reconfiguration Manager node synchronize with the Reconfiguration
Completer node which is able to drive the FaRM IP to process the requested recon-
figuration.

After the reconfiguration request, the Detection node allocates a Tracking node
for each one of the targets that can be processed simultaneously by the different
hardware Camshift tasks. Then the Detection node unlocks the Tracking nodes and
waits for a synchronization signal from each one of them to know when the frame
processing is completed.

/ MRAPI

i ~Reconf. Reconf.

H H » ICAP IP
i(Manager (Completer >

node {11111 »__node (FarM)

ccMm

DDR2
_Memory Domain 1
Domain 0 \
e .l ./ INCrustation » DVIIP
Static targets - node. o
ENoC é NoC ENOC ENOC ENOC
v A
Camshift 0 Camshift 1
Hw node Hw node
Domain 2 I

Figure 5.15: Detailed application deployment

The Tracking node gets back the information about the target (initial blob coor-
dinates and hardware node port number), then it extracts the blob inside the frame
before to send it to the hardware node.

The hardware node receives the blob from the Network-on-Chip, processes it and

142 Chapter 5. Application deployment

sends back the coordinates of the new blob to both the Domain 0 and the Domain
1. Results are then collected on the Domain 0 by the software Tracking node asso-
ciated with it, and on the Domain 1 by the Incrustation node.

The Tracking node compares the new coordinates with the previous ones and
checks if the convergence occurred. If this is the case, the node sends a synchroniza-
tion signal to the Detection node to notify the end of the processing. Otherwise,
the Tracking node loop back and send the new blob corresponding to the previously
calculated coordinates.

On Domain 1, the Incrustation node modify the buffer used by the DVI IP in or-
der to encompass the detected target, drawing a rectangle around the target. Once
every Tracking nodes have converged, the Detection node starts a new processing
round for the next video frame.

5.3.5 Results and performances

Table 5.13 shows the hardware resources needed to host the full demonstration plat-
form on the LX110 device.

Slice Logic Utilization Used Available Utilization
Slice Registers 19980 69120 28%
Slice LUTs 29302 69120 42%
bonded IOBs 113 440 25%
BlockRAM /FIFO 75 128 58%
BUFG/BUFGCTRLs 7 32 21%
DCM ADVs 1 12 8%
DSP48Es 8 64 12%
ICAPs 1 2 50%
PLL ADVs 1 6 16%

Table 5.13: Demonstration Platform resource utilization

Table 5.14 details the hardware resources used by the partially reconfigurable
part of the Camshift node. The Hardware Task PRR occupies a partition as large
as the slot defined in Figure 5.14. The number of resources covered by each slot is
indicated in Table 5.15. The reconfiguration overhead to load a new Camshift task
in this slot, using the FaRM IP running at 75 MHz, equals to 274 228 cycles (=
3.56 ms (= 2.7} ms at 100 MHz)).

In our case, this reconfiguration latency can be hidden by the fact that once
the Reconfiguration Manager node requested the reconfiguration, it is up to the
Reconfiguration Completer node to process the reconfiguration while the Detection

5.4. Conclusion 143

node continue its work with the currently reconfigured hardware nodes. Also, other
solution like bitstream file pre-fetching can help reducing this latency.

Component Reg. LUTs BRAMs /| DSP Freq.
FIFOs (MH2z)
User FSM 141 204 0 0 241.354
FU Camshift 193 178 0 1 81.618
Camshift TP 2835 6651 0 0 76.363
Hw Task PRR 3117 6974 0 1 81.618
Table 5.14: Hardware Thread Resources Usage
Site Type Avatzlable Required Utilization
LUT 7680 6973 91%
FD LD 7680 3168 42%
Slice L 1380 1253 91%
Slice M 540 491 91%
DSP48E 24 1 5%
RAMBFIFO36 12 0 0%

Table 5.15: Camshift slot resource utilization

Table 5.16 gives the different timing results of the application. A graphical view
of these timings is given in Figure 5.16. We can see that the major part of the time
is spent in the binarization and the extraction of the blob from the current frame
(get_blob).

In a further step, the acquisition chain and the pre-processing of the Detection
process are planned to be implemented as hardware IPs. Also, regarding the blob
extraction, the use of a processor running at a higher frequency will be sufficient to
significantly lower this overhead. With an average time comprised between 74.6 ms
and 135.1 ms using pre-binarized frames, the above improvements will permit us to
target real-time performances.

5.4 Conclusion

This chapter detailed the design steps of a partially reconfigurable platform. We
built a heterogeneous platform system composed of different types of processing
units. The computational element includes both general purpose processors and

144 Chapter 5. Application deployment

(Domain) Section Cycles Time

(0y Binarization 36923076 480 ms

0y Detection 1068 13.8 us

(0) Check slots 4 52 ns

(o) Alloc. target 2409 31.3 us

(o) Send attr. 6195 80.5 us

0y Init blob 207188 2.69 ms

0y Get blob 11530 - | 149.9 us - 62.2 ms
4791544

(0) Send blob 6515 - 8706 84.6 pus - 113 us

(o) Recv data 4805 62.4 s

(0) Check cvge 1446 18.7 us

(1) Dvi init 289 3.7 us

1y Display 168 2.1 us

(1) Wait result 183 - 4687472 2.3 ps - 60.9 ms

(1) Incrust 31304 406 ps

1y Display 376 4.8 us

Per frame bypassing | - 74.6 ms - 135.1 ms

binarization

Table 5.16: Application timings

dedicated accelerators.

The first step was to provide a low-level communication layer, permitting the
user to proceed simple read and write transactions. This former layer has been
evaluated and a focus has been set on the heterogeneous communication.

As expected, the communication between hardware nodes is more efficient than
between software components. Regarding heterogeneous communication, the con-
ception of the DMA capable communication bridge is a good trade-off to take advan-
tage of the heterogeneous processing without being penalized by the communication
overhead.

The second step rose up the abstraction layer to the operating system level.
In this part, we evaluate the hardware thread encapsulation which allows them
to process system call. This ability is provided by the MRAPI layer, a multicore
communication API ported on both the software and the hardware domains of
the platform. The overhead provided by this additional layer must be evaluated
according to the advantage of a totally decentralized operating system service set.

Again, regarding the communication issue between heterogeneous components,
this abstraction layer allows to consider a flexible mapping of the application tasks
and so to optimize the data transfer between the different nodes.

5.4. Conclusion 145

: Blob processing iteration
Reconf. Domain 0 L] (on average, 3 per frame)
Manager
node
Detection node
Domain 1
CRew."" ICAP IP
¢ (FarRM)

K
node

Static frames Incrustation

ovi e
[=- |

560.7 ps - 61.3 ms

Static targets

i display

Camshift 0 i Average time per frame
Hw node Domain 2 ‘ bypassing the binarization: 0 mB =& e

Figure 5.16: Detailed application deployment

Finally, all these communication mechanisms open up the way to the build of a
heterogeneous platform with partially reconfigurable ability. The reconfiguration is
proceed using the FaRM IP and allows to dynamically load any hardware threads
of the application.

The different features of this platform are illustrated by the deployment of a
tracking application. This deployment is an important step in the vision that we
have of the future of the embedded systems, especially the image processing, the
multimedia and the high performance computing systems.

This implementation is effectively a milestone towards the realization of an
HRSoC capable to host software tasks and hardware relocatable components, pro-
viding a common interface to facilitate both the communication and the mapping.
We already planned future work in order to improve the performances of this HRSoC
and make it a generic platform allowing to deploy and evaluate real-time applica-
tions on a physical system.

CHAPTER 6

Conclusions

6.1 Summary

6.1.1 Discussion

In this thesis, we discussed the programmability issues encountered when designing
reconfigurable systems. From the user point of view, who is considered to be an
application developer, either a software one or a hardware one, these issues con-
cerns the management of the heterogeneity and the ability to take advantage of the
flexibility offered by the dynamic and partial reconfiguration technology.

To solve these issues, we have turned towards a solution which would provide a
programming model fitting on each kind of processing cores embedded in the system.
These cores are the processor cores and the reconfigurable IPs.

An important point when designing this kind of platform is to let the user the
possibility to choose on which core each one of the functions or tasks of its applica-
tion can be mapped. This step of mapping should be as flexible as possible in order
to allow an efficient design space exploration and so to be adaptable to a larger
number of platforms.

Although the main feature of this programming model would concentrate on the
task communication, this model should be extended to the services provided by the
operating system. This constraint is linked to the fact that the operating system
model is widespread and that we need to support legacy model.

Moreover, each task of the application should be able to access any services
provided by the system. Obviously, these accesses should be limited by timing con-
siderations and latencies overheads due to the physical location of the operating
system services regarding the tasks ones, but again, this choice should be left to the
user.

6.1.2 Key contributions

Addressing these issues respecting our constraints required the realization of a new
operating system dedicated to the reconfigurable systems, and especially to the
dynamically and partially reconfigurable systems.

148 Chapter 6. Conclusions

The first step has been to leverage the hardware description to the same level
as the software ones. Another constraint was to keep using classical HDL tools
provided by the FPGA manufacturers. In concrete terms, the objective was not
to create a new language but to provide a new abstraction level to manipulate the
hardware component. At this level, the interaction between a software task and our
hardware task model relies on a common interface which provides an access to OS
primitives for the hardware tasks and gives us the ability to swap the way we map
a task, either in software or in hardware.

This programming model has been coupled with the integration of a preemption
service inside the operating system. This service is responsible for managing the
save and the restoration of the hardware tasks context. It relies on two features: in
one hand the knowledge of the internal structure of the configuration files, and on
the other hand the re-use of an existing IP (FaRM), which permits us to improve
the reconfiguration process.

In addition, a relocation service has been implemented. In this way, we inves-
tigate a new solution based on the reversal of the Isolation Design Flow provided
by Xilinx in order to design relocatable hardware tasks. With some additional con-
straints inserted in the PlanAhead tool and management scripts to automatically
insert these constraints, we manage to relocate a hardware tasks from one partition
to another one using a unique partial configuration file.

On the software side, an implementation of the MRAPI specification has been
done to facilitate the synchronization with the hardware tasks. A set of three dif-
ferent operating servers has been proposed in order to fit with the needs of a recon-
figurable platform.

Each one of these servers respectively allows to access directly to a known remote
operating resource (for instance, a Semaphore, a Muter or a memory buffer), to
locate and access to an unknown remote resource and to locally create and process
a resource. These three types of servers permit to adapt the deployment of the
operating system resources regarding the specificity of each one of the cores it is
composed of.

Finally, the implementation of a complete heterogeneous and reconfigurable
system-on-chip is a good achievement of this programming model on a physical
support.

6.1.3 Hypothesis and Limitations

The first hypothesis which is also the first limitation of our operating system is
that we consider the number of core to be inferior to sixteen because we decided to
specifically target multicore platforms and not manycore systems.

Regarding the communication on the platform, the PLB structure has limit; in

6.2. Future Work 149

this sense AXI would be better as we could connect the hardware tasks directly
to the AXI infrastructure, through the AXI-Stream interface for instance, and so
conserve efficient direct communication with hardware and software task without
passing through a custom bridge.

Also, when adding new abstraction layers as the MRAPIT layer, the price can be
lower performances, especially regarding timing overheads which can be important,
but the gain obtained in the programmability cannot be neglected.

Finally, the choice of keeping the manufacturer tools in order to perform the
relocation imposes us to be dependant of their evolutions, but also to their limits.
This is the case when a routing process does not provide the wanted results and that
the only solution would be to manually route the conflicting wires. This work can be
processed using specific tools like RapidSmith but in our case, knowing these limi-
tations, the solution we propose can be easier and faster under favourable conditions.

6.2 Future Work

In future work, the management of the dynamic and partial reconfiguration in the
case study that we used to demonstrate our propositions can be enhanced. Instead
of reserving the reconfiguration of the hardware thread only to add or remove a
Camshift thread in the platform, we can process functionality switching and imple-
ment some of the pre-processing operations in hardware.

Another track that could be interesting in the future is to reconsider the associ-
ation between an MRAPI node and a hardware thread. Keeping the concept that a
software thread is a node running on a processor which is a domain, we can enhance
the parallel defining a hardware thread as a domain, which leads to define a node
as a partially reconfigurable region (PRR). All PRRs will share the same hardware
thread processing unit which allows a PRR to send and receive data, and also to
call local or remote services (Fig. 6.1).

Also, a flexible adaptation of the Processing Functional Unit (FU) could be re-
alized to allow the user to choose the interfaces required by the functional unit. The
choice can be made, for instance, between a memory port, in read or write access, or
even both, and a FIFO port. Several combination can be thought in order to make
a trade-off between the enhancement of the stream processing with FIFOs, and the
storage capacity and random access provided by memory blocks. Then this is up to
the user to develop the logic glue which will control the access to the data.

Regarding the relocation issue, we will investigate the Isolation Design Flow
which is now available for the 7 series. Larger devices allow more flexibility for
the routing engine and so we could increase the success rate of the proposed re-

150 Chapter 6. Conclusions

Domain 0 Domain 1 Domain 2
Processor Processor Hw Task 0 Hw Task 1 MRAPI domain
®| 1@ O |fem] =
: MRAPI node
Hw MRAPI PRR 1 ‘ PRR 1 ‘ i
PRR 2 PRR 2 :
! !
J i A J
[8-ports DRAFT Network-on-Chip]

A hardware node = A hardware task

Domain 0 Domain 1 Domain 2 Domain 3

Hw Task 0 Hw Task 1

PRR O PRRO

PRR 1 PRR 1
PRR 2 ‘ PRR 2 ‘

Processor Processor

)| @ ()

ju ju
A i \/ \ \

[8-ports DRAFT Network-on-Chip]

A hardware node = A partially reconfigruable region

Figure 6.1: Hardware node implementation choices

location flow. This type of design flow leads the way to the conception of very
flexible systems-on-chip in which the different tasks can be moved over the platform
regarding external parameters. These parameters can be influenced by the power
consumption, the heating issues or the communication issues. For the last example,
the increasing size of the FPGA can lead to important routing latencies which can
be overcome with the displacement of the communicating tasks.

Furthermore, the multiplicity of the proposed features in a single device open the
way to the management of complex applications in which the numerous modes of
execution and the associated quality of service that must be provided by the system
should be handled.

To conclude, beside the technical aspect, a vision of the future of the FPGA, and
more specifically of the HRSoC, can be introduced. Today, FPGA manufacturers
adopt two different approaches to speed up and facilitate the development process
on their devices. On one hand, the High-Level Synthesis (HLS) approach, proposed
by Xilinx, allows the user to describe a hardware IP in a high-level language and a
special synthesizer is responsible for the translation to the RTL level. The advantage
of this method is its modularity and the fine-tuning possible using precise synthesis
options. The goal is limited to the enhancement of the IP development process.

On the other hand, the OpenCL-based approach offered by Altera permits to de-
scribe the whole application in a high-level language and interfaces are automatically
created to make the communication between the different parts of the application,
either software or hardware, transparent for the developer. In this way, this solution

6.2. Future Work 151

is more turned toward the high-performance computing but the tuning capacity is
limited.

We think that these two approaches are intended to converge and to form a
complete design flow allowing to create HRSoC platforms and applications from a
high-level model to a true implementation level.

To achieve this, in this thesis we defined a low-level encapsulation of the hardware
component in order to support a data-flow programming model, coupled with the
classical threading model. The interfaces that have been defined provide a sufficient
abstraction level to consider a heterogeneous application to be homogeneous. From
here, only few efforts are necessary in order to integrate these components into a
complete design flow able to automatically map each part of the application and to
ensure their correct communication.

However, even if we want to keep this abstraction to be able to model the whole
application, we also want to keep a full control over the hardware implementation.
In this way, the design of the hardware thread has been thought to be modular and
so it will be possible to automatically generate hardware tasks source codes and
interfaces using a dedicated high-level synthesis tools, and so to form a complete
design flow.

APPENDIX A

Network Interface API

Contents
A.1 Supportedrequestso 153
A1l Writerequest oL 153
A12 Readrequest 154
A.1.3 Read request response 155
A14 Receiverequest 155

A.1 Supported requests

The two first basics request supported by the Network Interface are the Send and
Receive primitives. A Send request consists in sending one or several packets over
the network. Packet size is fixed by communication medium design (ie. the NoC).
A packet is composed of a header followed by data to transmit. Data and header are
represented by 32-bit width flits. A receive request consists in waiting for a packet
to come from the network. It is a passive request which involves no transmission
from the requesting thread.

The two others supported requests are the Write and Read primitives. A Write
request is similar to a Send request except that additional header flits are sent after
the two main flits. The main flits are essential to ensure a correct routing inside the
network. The first flit contains the sender and receiver port address whereas the
second one contains the number of flits included in the packet.

A.1.1 Write request

Packet sending, from a thread to external memory connected on the network.

The procedure SEND_PROC(data_ size, data_ ptr, port_addr, buffer addr) is
both used to send Write and Read commands to a memory connected on the NoC.
For a Write command, the parameters are the following :

o data_size: size of the data to send in the internal memory

154 Appendix A. Network Interface API

'01' | @src | @ dest
N = number of flits
@buffer
data (flit 1 to N)

control

Figure A.1: Write request packet

¢ data_ptr: pointer on the data to send in the internal memory

o port_addr: port identifier address of the external memory connected on the
NoC

¢ buffer addr: pointer on the buffer in the external memory

A.1.2 Read request

Packet sending, from a thread to an external memory connected on the network.
The packet contains useful information for the memory to to read and send back
read data. to the thread. In the case of an exchange between hardware threads,
because a thread owns its own internal DMA, the flit “Qwrite buffer” is not used.

'10' | @src | @ dest
N = number of flits

@read buftér

@write buffer
buffer size

control

Figure A.2: Read request packet

For a Read command, the parameters are the following :
o data_size : size of the data to read in the external memory (buffer size)
o data_ptr : pointer on the data to read in the external memory (read_ buffer)

o port_addr : port identifier address of the external memory connected to the
NoC

¢ buffer addr : pointer on the buffer used to write the read data. Used by the

external memory to make the response (write_ buffer)

It gives back the hand to the user immediately after request parameters have
been stacked into the FIFO.

A.1. Supported requests 155

A.1.3 Read request response

Reception by a thread, of one or several packet from an external memory; Packets
coming after a read request from the thread to this external memory.

11' | @src | @ dest
N = number offlits

@write buffer

data (flit 1 to N)

control

Figure A.3: Read request response

A.1.4 Receive request

RECEIVE PROC(data_size, data_ ptr, port _addr, buffer addr)

o data_size : size of the data to receive from the NoC

¢ data_ptr : pointer on the buffer used to write the received data in the internal
memory

¢ port_addr : port identifier address of the sender

o buffer addr : pointer on the buffer used to write the data. Not used by a
hardware task, only by the NoC-AHB bridge

It gives back the hand once the depacketizer received the whole data. At this
moment, the on duty depack signal is cleared.

APPENDIX B

Hardware CRC

Contents
B.1 Relocation process o v v v ittt h e e e 157
B.2 CRCcomputationt nnnn.. 157
B.3 Hardware CRCmodule. 157

B.1 Relocation process

As discussed in Section 3.4.3, in order to relocate a bitstream from one partition to
another it is necessary to process to the readback of the first partition.

After the readback, the relocation to the other partition is done modifying the
FAR value (Frame Address Register) contained in the readback bitstream. As during
the module execution, some configuration data like the Flips-Flops or the memory
contents may change, we need to recompute the CRC for these new values to avoid
an ICAP rejection.

Notice: Disabling the CRC control is possible using the default value 0x0000DEFC.
However, for safety reason, this is highly inadvisable.

B.2 CRC computation

According to [Xilinx 2006], the CRC computation on the Virtex 4 devices is not
processed using all data written to configuration port, but only with specific regis-
ters.

Regarding the Virtex 5 devices, the CRC computation is done on 32 bits data
width and use the same polynomial than the Ethernet CRC32 (IEEE 802.3) [Xilinx 2001].
To design the hardware module responsible for the CRC computation, we relied on
The Virtex 5 SelectMAP simulator provided in [Xilinx 2009a]. Table B.1 shows
which registers among the ICAP ones are used to perform the CRC computation.

B.3 Hardware CRC module

The hardware CRC module has an input for the current CRC value, which in our
case is initialized to 0. It also has an input for the 32-bits data and the register
address on 5 bits at which it has to be written. So, the algorithm implementation

158 Appendix B. Hardware CRC

Register | Address | Used
CRC 00000 No
FAR 00001 Yes

FDRI 00010 Yes
FDRO 00011 No
CMD 00100 Yes
CTLO 00101 Yes
MASK 00110 Yes
STAT 00111 No
LOUT 01000 No
CORO 01001 Yes
MFWR 01010 Yes
CBC 01011 Yes
IDCODE 01100 Yes
AXSS 01101 Yes
COR1 01110 Yes
CSBO 01111 Yes
WBSTAR 10000 Yes
TIMER 10001 Yes
BOOTSTS 10110 No
CTL1 11000 Yes

Table B.1: ICAP register involved in CRC computation

takes an input data on 37 bits as an input and return the new CRC value on 32 bits
(Fig. B.1).
It should be notice that the register address is not used to segregate which data
should be a part of the CRC computation but as an integral part of the input data.
Table B.2 gives the resources usage of the CRC module. The Hw CRC IP is the
combinatorial IP which computes the CRC. The Hw CRC PLB module is the Hw
CRC TP encapsulated with a PLB bus wrapper.

Component Reg. LUTs BRAMs /| DSP Freq.
FIFOs (MH2z)

Hw CRC IP 0 160 0 0 Comb.

Hw CRC PLB 290 339 0 0 310.627

Table B.2: HW CRC Resources usage

The reconfiguration latency depends on the partial bitstream size. This size
depends itself on the size of the dynamic part of the Hardware Thread. The com-

B.3. Hardware CRC module 159

'O

reg0 (rw) (\
p <Gummmp CRCvalue <(uummmpy
L N
B regl (rw)
| e AP qum—
n reg addr
t I Hardware CRC
e _reg2(w) module
; < data)
a
c reg3 (ro)

value L

Figure B.1: CRC Bitstream Computer module

position of the Hardware Thread as well as the resources overhead caused by the
encapsulation of the hardware IP is described in the next section.

Bibliography

[541 2010] IEEE Standard for IP-XACT, Standard Structure for Packaging, Inte-
grating, and Reusing IP within Tools Flows. IEEE Std 1685-2009, pages C1
-360, 18 2010. (Cited on page 94.)

[Accetta 1986] Mike Accetta, Robert Baron, William Bolosky, David Golub,
Richard Rashid, Avadis Tevanian and Michael Young. Mach: A New Kernel
Foundation for UNIX Development. pages 93112, 1986. (Cited on page 83.)

[Agron 2009a] J. Agron and D. Andrews. Hardware Microkernels for Heterogeneous
Mangycore Systems. In Proceedings of the International Conference on Paral-
lel Processing Workshops (ICPPW ’09), pages 19-26, Vienna, Austria, sept.
2009. TEEE. (Cited on pages 13, 20 and 21.)

[Agron 2009b| J. Agron and D. Andrews. Hardware Microkernels for Heterogeneous
Mangycore Systems. In Parallel Processing Workshops, 2009. ICPPW ’09. In-
ternational Conference on, pages 19 —26, september 2009. (Cited on pages 15,
94 and 95.)

[Association 2012] Multicore Association. Multicore Association website. http:
//www.multicore-association.org/home.php, 2012. (Cited on pages 85
and 114.)

[Baumann 2009] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim
Harris, Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schiipbach
and Akhilesh Singhania. The multikernel: a new OS architecture for scalable
multicore systems. In Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles, SOSP ’09, pages 29-44, New York, NY, USA,
2009. ACM. (Cited on pages 14, 87 and 88.)

[Beckhoff 2012] Christian Beckhoff, Dirk Koch and Torresen Jim. GoAhead: A
Partial Reconfiguration Framework. In 20th Annual TEEE Symposium on
Field-Programmable Custom Computing Machines (FCCM), pages 37-44.
IEEE, 2012. (Not cited.)

[Belaid 2009] I. Belaid, F. Muller and M. Benjemaa. Off-line placement of hardware
tasks on FPGA. In Field Programmable Logic and Applications, 2009. FPL
2009. International Conference on, pages 591 —595, aug. 2009. (Cited on
page 59.)

[Bergmann 2003] N.W. Bergmann and J. Williams. The Egret platform for recon-
figurable system on chip. In Field-Programmable Technology (FPT), 2003.
Proceedings. 2003 ITEEE International Conference on, pages 340 — 343, dec.
2003. (Cited on pages 13 and 12.)

162 Bibliography

[Board 2012] OpenMP Architecture Review Board. OpenMP website. http:
//openmp.org/wp/, 2012. (Cited on page 92.)

[Bonamy 2012] R. Bonamy, Hung-Manh Pham, S. Pillement and D. Chillet. UP-
aRC, Ultra-fast power-aware reconfiguration controller. In Design, Automa-
tion Test in Europe Conference Exhibition (DATE), 2012, pages 1373 —1378,
march 2012. (Cited on pages 14, 47, 48 and 59.)

[Cheng 1995] Yizong Cheng. Mean shift, mode seeking, and clustering. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 17, no. 8, pages
790 -799, aug 1995. (Cited on page 136.)

[Corbett 2012] John D. Corbett. Xilinz White Paper 412: The Xilinz Isolation
Design Flow for Fault-Tolerant Systems, January 2012. (Cited on pages 14,
50 and 77.)

[Devaux 2009] L. Devaux, D. Chillet, S. Pillement and D. Demigny. Flezible com-
munication support for dynamically reconfigurable FPGAS. In Proceeding
of the 5th Conference on Southern Programmable Logic (SPL 2009), pages
65-70, 1-3 2009. (Cited on page 34.)

[Donato 2005] A. Donato, F. Ferrandi, M. Santambrogio and D. Sciuto. Operating
system support for dynamically reconfigurable SoC' architectures. In SOC
Conference, 2005. Proceedings. IEEE International, pages 233 —238, sept.
2005. (Cited on pages 12 and 13.)

[Duhem 2011] Frangois Duhem, Fabrice Muller and Philippe Lorenzini. FaRM:
fast reconfiguration manager for reducing reconfiguration time overhead on
FPGA. In Proceedings of the 7th international conference on Reconfigurable
computing: architectures, tools and applications, ARC’11, pages 253-260,
Berlin, Heidelberg, 2011. Springer-Verlag. (Cited on pages 14, 46, 47 and 59.)

[El-Araby 2008] E. El-Araby, 1. Gonzalez and T. El-Ghazawi. Virtualizing and
sharing reconfigurable resources in High-Performance Reconfigurable Com-
puting systems. In High-Performance Reconfigurable Computing Technology
and Applications, 2008. HPRCTA 2008. Second International Workshop on,
pages 1 -8, nov. 2008. (Cited on pages 13, 17 and 18.)

[Gotz 2009] Marcelo Gotz, Achim Rettberg, Carlos Eduardo Pereira and Franz J.
Rammig. Run-time reconfigurable RTOS for reconfigurable systems-on-chip.
J. Embedded Comput., vol. 3, no. 1, pages 39-51, January 2009. (Cited on
page 95.)

[Grimm 2004] M.Ullmann M. Hiibner B. Grimm and J. Becker. An FPGA Run-
Time System for Dynamical On-Demand Reconfiguration. FPL 2004 : field-
programmable logic and applications - 3203 - 842-846, August 2004. (Cited
on page 44.)

Bibliography 163

[Guccione 1999] Steve Guccione, Delon Levi and Prasanna Sundararajan. JBits:
Java based interface for reconfigurable computing. 1999. (Cited on page 44.)

[Guerin 2009a] X. Guerin and F. Petrot. A System Framework for the Design of Em-
bedded Software Targeting Heterogeneous Multi-core SoCs. In Application-
specific Systems, Architectures and Processors, 2009. ASAP 2009. 20th IEEE
International Conference on, pages 153 ~160, july 2009. (Cited on pages 15,
91 and 92.)

[Guerin 2009b] X. Guerin and F. Petrot. A System Framework for the Design of Em-
bedded Software Targeting Heterogeneous Multi-core SoCs. In Application-
specific Systems, Architectures and Processors, 2009. ASAP 2009. 20th IEEE
International Conference on, pages 153 —160, july 2009. (Not cited.)

[Hansen 2011] S.G. Hansen, D. Koch and J. Torresen. High Speed Partial Run-
Time Reconfiguration Using Enhanced ICAP Hard Macro. In Parallel and
Distributed Processing Workshops and Phd Forum (IPDPSW), 2011 IEEE

International Symposium on, pages 174 —180, may 2011. (Cited on pages 14,
47, 48 and 59.)

[Huang 2008] Chun-Hsian Huang and Pao-Ann Hsiung. Software-controlled dy-
namically swappable hardware design in partially reconfigurable systems.
EURASIP J. Embedded Syst., vol. 2008, pages 4:1-4:11, January 2008.
(Cited on page 58.)

[Huerta 2008] P. Huerta, J. Castillo, C. Sanchez and J.I. Martinez. Operating Sys-
tem for Symmetric Multiprocessors on FPGA. In Reconfigurable Computing
and FPGAs, 2008. ReConFig ’08. International Conference on, pages 157
~162, december 2008. (Cited on pages 14, 86 and 87.)

[Instrument 2011] Texas Instrument. OMAP 5 mobile applications platform. http:
//focus.ti.com/pdfs/wtbu/0OMAP5_2011-7-13.pdfs, July 2011. (Cited on

page 4.)

[IOC 1997] IOCTL Specification. http://pubs.opengroup.org/onlinepubs/
7908799/xsh/ioctl.html, 1997. (Cited on page 12.)

[J. Carver 2008] A. Forin J. Carver N. Pittman. Relocation and Automatic Floor-
planning of FPGA Partial Configuration Bit-Streams. Microsoft Research -
Technical Report MSR-TR-2008-111, August 2008. (Not cited.)

[Kaashoek 1997] M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger, Hec-
tor M. Briceno, Russell Hunt, David Maziéres, Thomas Pinckney, Robert
Grimm, John Jannotti and Kenneth Mackenzie. Application performance
and flexibility on exokernel systems. In Proceedings of the sixteenth ACM
symposium on Operating systems principles, SOSP 97, pages 52-65, New
York, NY, USA, 1997. ACM. (Not cited.)

164 Bibliography

[Kallam 2009] A. Sudarsanam R. Kallam and A. Dasu. PRR-PRR Dynamic Relo-
cation. TEEE Computer Architecture Letters - vol. 8 (2), September 2009.
(Cited on pages 14, 45 and 46.)

[Kalte 2005] H. Kalte, G. Lee, M. Porrmann and U. Ruckert. REPLICA: A Bit-
stream Manipulation Filter for Module Relocation in Partial Reconfigurable
Systems. In Parallel and Distributed Processing Symposium, 2005. Proceed-
ings. 19th TEEE International, page 151b, april 2005. (Not cited.)

[Kamppi 2011] A. Kamppi, L. Matilainen, J. Maatta, E. Salminen, T.D.
Hamalainen and M. Hannikainen. Kactus2: Environment for Embedded Prod-
uct Development Using IP-XACT and MCAPI. In Digital System Design
(DSD), 2011 14th Euromicro Conference on, pages 262 —265, 31 2011-sept.
2 2011. (Cited on page 94.)

[Koch 2009] Dirk Koch, Christian Beckhoff and Jiiergen Teich. A communication
architecture for complex runtime reconfigurable systems and its implementa-
tion on spartan-3 FPGAs. In Proceeding of the ACM/SIGDA international
symposium on Field programmable gate arrays, FPGA ’09, pages 253-256,
New York, NY, USA, 2009. ACM. (Cited on page 66.)

[Koch 2010a| Dirk Koch, Christian Beckhoff and Jim Torrison. Fine-Grained Par-
tial Runtime Reconfiguration on Virtex-5 FPGAs. In Proceedings of the 2010
18th TEEE Annual International Symposium on Field-Programmable Cus-
tom Computing Machines, FCCM ’10, pages 69-72, Washington, DC, USA,
2010. IEEE Computer Society. (Cited on pages 49 and 66.)

[Koch 2010b| Dirk Koch and Jim Torresen. Advances and Trends in Dynamic Par-
tial Run-time Reconfiguration. In Dagstuhl-Seminar 10281: Dynamically Re-
configurable Architectures, page 6, Schloss Dagstuhl, Germany, July 2010.
Internationales Begegnungs- und Forschungszentrum fiir Informatik (IBFI),
Schloss Dagstuhl, Germany. (Cited on page 6.)

[Kiihnle 2006] M. Hiibner C. Schuck M. Kiihnle and J. Becker. New 2-Dimensional
Partial Dynamic Reconfiguration Techniques for Real-time Adaptive Micro-
electronic Circuits. IEEE ISVLSI, 00:6, March 2006. (Cited on page 44.)

[Lavin 2011| Christopher Lavin, Marc Padilla, Jaren Lamprecht, Philip Lundri-
gan, Brent Nelson and Brad Hutchings. RapidSmith: Do-It- Yourself CAD
Tools for Xilinz FPGAs. In Proceedings of the 21th International Workshop
on Field-Programmable Logic and Applications (FPL’11), September 2011.
(Cited on pages 14 and 49.)

[Lee 1987] Edward A. Lee and David G. Messerschmitt. Synchronous Data Flow.
In Proceedings of the IEEE, volume 75, pages 1235-1245, sep. 1987. (Cited
on pages 8 and 18.)

Bibliography 165

[Lee 2010] Trong-Yen Lee, Che-Cheng Hu, Li-Wen Lai and Chia-Chun Tsai. Hard-
ware Context-Switch Methodology for Dynamically Partially Reconfigurable
Systems. J. Inf. Sci. Eng., vol. 26, no. 4, pages 1289-1305, 2010. (Cited on
page 58.)

[Leon Adams 2007] Texas Instrument Leon Adams. Choosing the right ar-
chitecture for real-time signal processing designs. http://www.ee.up.
ac.za/main/_media/en/undergrad/subjects/esp411l/choosing_right_
architecture.pdf, June 2007. (Cited on page 3.)

[Liedtke 2001| Jochen Liedtke, Uwe Dannowski, Kevin Elphinstone, Gerd Lieflin-
der, Espen Skoglund, Volkmar Uhlig, Christian Ceelen, Andreas Haeberlen
and Marcus Volp. The L4Ka Vision, April 2001. (Cited on page 83.)

[Lin 2009] Yu-Hsien Lin, Chiaheng Tu, Chi-Sheng Shih and Shih-Hao Hung. Zero-
Buffer Inter-core Process Communication Protocol for Heterogeneous Multi-
core Platforms. In Embedded and Real-Time Computing Systems and Ap-
plications, 2009. RTCSA ’09. 15th IEEE International Conference on, pages
69 78, august 2009. (Cited on pages 14, 87 and 88.)

[LIP6 2012] LIP6. MutekH website. http://www.mutekh.org/trac/mutekh, 2012.
(Cited on pages 111 and 118.)

[Liu 2009] Ming Liu, W. Kuehn, Zhonghai Lu and A. Jantsch. Run-time Partial Re-
configuration speed investigation and architectural design space exploration.
In Field Programmable Logic and Applications, 2009. FPL 2009. Interna-
tional Conference on, pages 498 —502, aug. 2009. (Cited on pages 14, 46
and 47.)

[Lubbers 2008] E. Lubbers and M. Platzner. A portable abstraction layer for hard-
ware threads. In Field Programmable Logic and Applications, 2008. FPL
2008. International Conference on, pages 17 —22, sept. 2008. (Cited on
pages 13, 20 and 21.)

[Lubbers 2009] E. Lubbers and M. Platzner. Cooperative multithreading in dynami-
cally reconfigurable systems. In Field Programmable Logic and Applications,
2009. FPL 2009. International Conference on, pages 551 —554, 31 2009-sept.
2 2009. (Not cited.)

[Lysaght 2006] P. Lysaght, B. Blodget, J. Mason, J. Young and B. Bridgford. Invited
Paper: Enhanced Architectures, Design Methodologies and CAD Tools for
Dynamic Reconfiguration of Xilint FPGAs. In Field Programmable Logic
and Applications, 2006. FPL ’06. International Conference on, pages 1 —6,
28-30 2006. (Cited on page 59.)

[Matilainen 2011] L. Matilainen, E. Salminen, T.D. Hamalainen and M. Han-
nikainen. Multicore Communications API (MCAPI) implementation on an

166 Bibliography

FPGA multiprocessor. In Embedded Computer Systems (SAMOS), 2011 In-
ternational Conference on, pages 286 —293, july 2011. (Cited on pages 15,
92 and 93.)

[Modzelewski 2009] K. Modzelewski, J. Miller, A. Belay, N. Beckmann, C. Gruen-
wald, D. Wentzlaff, L. Youseff and A. Agarwal. A Unified Operating System
for Clouds and Manycore: fos. In Rapid System Prototyping, 2006. Seven-
teenth TEEE International Workshop on, november 2009. (Cited on pages 14
and 89.)

[Muller 2006] C. Claus F.H. Muller and W. Stechele. Combitgen: A new approach
for creating partial bitstreams in Virtex-II Pro devices. Workshop on recon-
figurable computing Proceedings (ARCS 06) - 122-131, March 2006. (Not
cited.)

[Nojiri 2009] T. Nojiri, Y. Kondo, N. Irie, M. Ito, H. Sasaki and H. Maejima. Do-
main Partitioning Technology for Embedded Multicore Processors. Micro,
IEEE, vol. 29, no. 6, pages 7 —17, december 2009. (Not cited.)

[Nollet 2003] V. Nollet, P. Coene, D. Verkest, S. Vernalde and R. Lauwereins. De-
signing an operating system for a heterogeneous reconfigurable SoC. In Paral-
lel and Distributed Processing Symposium, 2003. Proceedings. International,
page 7 pp., april 2003. (Cited on pages 13, 14 and 15.)

[Nordstrom 2005] S. Nordstrom, L. Lindh, L. Johansson and T. Skoglund. Appli-
cation specific real-time microkernel in hardware. In Real Time Conference,

2005. 14th IEEE-NPSS, page 4 pp., june 2005. (Cited on page 94.)

[OMG 2006] OMG. CORBA Components Specification - Version 4.0, April 2006.
(Cited on page 93.)

[Rana 2007] V. Rana, M. Santambrogio, D. Sciuto, B. Kettelhoit, M. Koester,
M. Porrmann and U. Ruckert. Partial Dynamic Reconfiguration in a Multi-
FPGA Clustered Architecture Based on Linuz. In Parallel and Distributed
Processing Symposium, 2007. IPDPS 2007. IEEE International, pages 1 -8,
march 2007. (Cited on page 13.)

[Rossi 2009] D. Rossi, F. Campi, A. Deledda, C. Mucci, S. Pucillo, S. Whitty,
R. Ernst, S. Chevobbe, S. Guyetant, M. Kuhnle, M. Hubner, J. Becker
and W. Putzke-Roeming. A multi-core signal processor for heterogeneous
reconfigurable computing. In System-on-Chip, 2009. SOC 2009. International
Symposium on, pages 106 —109, october 2009. (Not cited.)

[RTE 1988] RTEMS Website. http://www.rtems.org, 1988. (Cited on page 28.)

[S. Corbetta M. Morandi M. Novati 2009] M. Domenico Santambrogio D. Sciuto
S. Corbetta M. Morandi M. Novati and P. Spoletini. Internal and Exter-
nal Bitstream Relocation for Partial Dynamic Reconfiguration. TEEE trans-

Bibliography 167

actions on very large scale integration (VLSI) systems - vol. 17, noll, pp.
1650-1654, October 2009. (Cited on page 45.)

[Senouci 2006] B. Senouci, A. Bouchhima, F. Rousseau, F. Petrot and A. Jerraya.
Fast Prototyping of POSIX Based Applications on a Multiprocessor SoC Ar-
chitecture: "Hardware-Dependent Software Oriented Approach”. In Rapid
System Prototyping, 2006. Seventeenth IEEE International Workshop on,
pages 69 ~75, june 2006. (Cited on pages 15, 92 and 93.)

[Shiyanovskii 2009a] Y. Shiyanovskii, F. Wolff, C. Papachristou and D. Weyer. An
Adaptable Task Manager for Reconfigurable Architecture Kernels. In Adap-
tive Hardware and Systems, 2009. AHS 2009. NASA/ESA Conference on,
pages 132 —137, august 2009. (Cited on pages 15, 90 and 91.)

[Shiyanovskii 2009b| Y. Shiyanovskii, F. Wolff, C. Papachristou and D. Weyer. An
Adaptable Task Manager for Reconfigurable Architecture Kernels. In Adap-
tive Hardware and Systems, 2009. AHS 2009. NASA /ESA Conference on,
pages 132 —137, 29 2009-aug. 1 2009. (Cited on page 17.)

[Sohanghpurwala 2011] A.A. Sohanghpurwala, P. Athanas, T. Frangieh and
A. Wood. OpenPR: An Open-Source Partial-Reconfiguration Toolkit for Xil-
mzr FPGAs. In Parallel and Distributed Processing Workshops and Phd
Forum (IPDPSW), 2011 IEEE International Symposium on, pages 228 ~235,
may 2011. (Cited on pages 14, 49 and 50.)

[Steiger 2004] C. Steiger, H. Walder and M. Platzner. Operating Systems for Recon-
figurable Embedded Platforms: Online Scheduling of Real-Time Tasks. IEEE
Trans. Comput., vol. 53, no. 11, pages 1393-1407, November 2004. (Cited
on pages 13, 15 and 16.)

[Steiner 2011] Neil Steiner, Aaron Wood, Hamid Shojaei, Jacob Couch, Peter
Athanas and Matthew French. Torc: towards an open-source tool flow. In
Proceedings of the 19th ACM/SIGDA international symposium on Field pro-
grammable gate arrays, FPGA ’11, pages 41-44, New York, NY, USA, 2011.
ACM. (Cited on page 69.)

[T. Becker 2007] W. Luk T. Becker and P.Y.K. Cheung. Enhancing Relocata-
bility of Partial Bitstreams for Run-Time Reconfiguration. ITEEE Field-
Programmable Custom Computing Machines, 2007 - 35-44, April 2007.
(Cited on page 45.)

[Tanenbaum 2001] Andrew S. Tanenbaum. Modern operating systems. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2nd édition, 2001. (Cited on
page 22.)

[Tomiyama 2008] H. Tomiyama, S. Honda and H. Takada. Real-time operating sys-
tems for multicore embedded systems. In SoC Design Conference, 2008.

168 Bibliography

ISOCC ’08. International, volume 01, pages [-62 —I-67, november 2008.
(Cited on pages 14 and 86.)

[Verdoscia 1994] Lorenzo Verdoscia and Roberto Vaccaro. Actor Hardware Design
For Static Dataflow Model. In Workshop on Massive Parallelism: Hardware,
Software, and Applications, pages 421-430, 1994. (Cited on pages 13, 18
and 19.)

[Wigley 2001] G. Wigley and D. Kearney. The first real operating system for recon-
figurable computers. In Computer Systems Architecture Conference, 2001.
ACSAC 2001. Proceedings. 6th Australasian, pages 130 ~137, 2001. (Cited

on page 16.)

[Xilinx 2001] Xilinx. IEEE 802.3 Cyclic Redundancy Check. Xilinx website, March
2001. (Cited on page 157.)

[Xilinx 2006] Xilinx. Virtexr FPGA Series Configuration and Readback. Xilinx web-
site, March 2006. (Cited on page 157.)

[Xilinx 2009a] Xilinx. Synthesis and Simulation Design Guide. Xilinx website, De-
cember 2009. (Cited on page 157.)

[Xilinx 2009b| Xilinx. Virtez-5 FPGA Configuration User Guide. Xilinx website,
August 2009. (Cited on pages 14, 53, 54 and 55.)

[Xilinx 2009¢| Xilinx. Virtex-5 FPGA User Guide.
www.xilinx.com /support/documentation/user_guides/ugl90.pdf, Novem-
ber 2009. (Cited on pages 14 and 51.)

[Xilinx 2010a] Xilinx. Partial Reconfiguration User Guide. http://www.xilinx.
com/support/documentation/sw_manuals/xilinx12_1/ug702.pdf, May
2010. (Cited on pages 13 and 2.)

[Xilinx 2010b] Xilinx. PLBV46 Master Burst Documentation. http:
//www.xilinx.com/support/documentation/ip_documentation/plbv46_
master_burst.pdf, December 2010. (Cited on page 128.)

