
HAL Id: tel-01019909
https://theses.hal.science/tel-01019909

Submitted on 27 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hardware and software architecture facilitating the
operation by the industry of dynamically adaptable

heterogeneous embedded systems.
Laurent Gantel

To cite this version:
Laurent Gantel. Hardware and software architecture facilitating the operation by the industry of
dynamically adaptable heterogeneous embedded systems.. Signal and Image processing. Université
de Cergy Pontoise, 2014. English. �NNT : 2014CERG0684�. �tel-01019909�

https://theses.hal.science/tel-01019909
https://hal.archives-ouvertes.fr

ECOLE DOCTORALE SCIENCES ET INGENIERIE

Université de Cergy-Pontoise

PhD Thesis

Hardware and Software Ar
hite
ture for Heterogeneous

and Dynami
ally Re
on�gurable Systems-on-Chip

by

Laurent Gantel

Equipes Traitement de l'Information et Systèmes (ETIS)

CNRS UMR 8051

Embedded System Lab (ESL)

THALES Resear
h & Te
hnology FRANCE

Thesis defended on 14
th

January, 2014

M. Gilles Sassatelli Reporter

M. Frédéri
 Petrot Reporter

M. Daniel Chillet Examiner

M. Guy Gogniat Examiner

M. François Verdier Dire
tor

M. Fabri
e Lemonnier Dire
tor

M. Mohamed El Amine Benkhelifa Supervisor

3

Tell me and I forget, tea
h me and I may remember, involve me and I learn.

Benjamin Franklin

5

Abstra
t

This thesis aims to de�ne software and hardware me
hanisms helping in the manage-

ment of the Dynami
 and Heterogeneous Re
on�gurable Systems-on-Chip (DHRSoC).

The heterogeneity is due to the presen
e of general pro
essing units and re
on�g-

urable IPs. Our obje
tive is to provide to an appli
ation developer an abstra
ted

view of this heterogeneity, regarding the task mapping on the available pro
essing

elements. First, we homogenize the user interfa
e de�ning a hardware thread model.

Then, we pursue with the homogenization of the hardware threads management. We

implemented OS servi
es permitting to save and restore a hardware thread
ontext.

Con
eption tools have also been developed in order to over
ome the relo
ation issue.

The last step
onsisted in extending the a

ess to the distributed OS servi
es to ev-

ery thread running on the platform. This a

ess is provided independently from the

thread lo
ation and is is realized implementing the MRAPI API. With these three

steps, we build a solid basis to provide to the developer in future work, a design �ow

dedi
ated to DHRSoC allowing to perform pre
ise ar
hite
tural spa
e explorations.

Finally, to validate these me
hanisms, we realize a demonstration platform on a

Virtex 5 FPGA running a dynami
 tra
king appli
ation.

Résumé

Cette thèse s'intéresse à la dé�nition de mé
anismes logi
iels et matériels, fa
ili-

tant la gestion des systèmes-sur-pu
e hétérogènes et dynamiquement re
on�gurable

(DHRSoC). L'hétérogénéité de ses ar
hite
tures se manifeste par la présen
e à la fois

de pro
esseurs de
al
ul généralistes et de modules matériels re
on�gurables. Notre

obje
tif est de permettre à un développeur d'appli
ation de s'abstraire de
ette

hétérogénéité en
e qui
on
erne l'allo
ation des tâ
hes sur les di�érentes unités de

al
ul disponibles. Cette abstra
tion passe par une première phase d'homogénéisation

des interfa
es utilisateurs (API) et la dé�nition d'un modèle de thread matériel.

Cette homogénéisation se poursuit ensuite par la gestion de
es threads matériels.

Nous avons implémenté des servi
es au niveau du système d'exploitation (OS) per-

mettant de sauvegarder et restaurer le
ontexte d'un thread matériel. Des outils de

on
eption ont également été développés a�n de surpasser le problème de la relo
a-

tion d'un thread matériel au sein d'un FPGA. En�n, la dernière étape a été d'étendre

l'a

ès aux servi
es o�erts par tous les OS distribués au sein de la plateforme à tous

les threads s'exé
utant sur
elle-
i, indépendamment de leur lo
alisation. Ce
i a été

réalisé via une implémentation originale de l'API MRAPI. Ave

es trois étapes,

nous avons apporté une base solide a�n, dans le futur, de proposer au développeur

un �ot de
on
eption dédié aux ar
hite
tures DHRSoC lui permettant de pro
éder à

une exploration ar
hite
turale pré
ise de son système. Finalement, a�n d'éprouver

le fon
tionnement de
es mé
anismes, nous avons réalisé une plateforme de démon-

stration sur FPGA Virtex 5 mettant en s
ène une appli
ation de suivi de
ibles

dynamique.

7

Remer
iements

Je voudrais tout d'abord remer
ier mes dire
teurs de thèse, Amine Benkhelifa qui

m'a fait dé
ouvrir le monde de la re
her
he et m'a toujours poussé à aller plus loin,

depuis mes premières années universitaires jusqu'au terme de
e do
torat, et qui a

su me guider et me motiver tout au long de
ette thèse, François Verdier dont les

onseils et les remarques m'ont été utiles pour mener à bien
e projet, et Fabri
e

Lemonnier qui m'a fait
on�an
e et m'a a

ueilli au sein du laboratoire LSE
hez

Thales Resear
h and Te
hnology durant mon Master et ma thèse.

Mer
i également aux membres du jury qui m'ont fait l'honneur d'évaluer mon

travail, Gilles Sassatelli et Frédéri
 Petrot qui ont a

epté d'en être les rapporteurs,

Daniel Chillet et Guy Gognat qui en ont été les examinateurs.

Je tiens en parti
ulier à remer
ier mes
ollègues de bureau, Amel Khiar, qui a

toujours été là pour m'en
ourager et ave
 qui j'ai passé d'ex
ellents moments. Je la

remer
ie en
ore pour sa bonne humeur
ommuni
ative et tout
e qu'elle m'a apporté

durant toutes
es années. Un grand mer
i à Liang Zhou que j'ai appris à
onnaître

et à grandement appré
ier au �l du temps. Mer
i également à Lounis Zerioul, Guy

Wassi, et Christian Gamom, qui ont aussi été très présents et qui sont devenus au

�l du temps de véritables amis.

J'adresse mes remer
iements aux membres de TRT que j'ai eu la
han
e de
o-

toyer, ave
 lesquels j'ai pu
ollaborer dans un environnement de travail agréable, et

dont les diverses
ompéten
es m'ont été très utiles et surtout très instru
tives, parmi

lesquels Jimmy Le Rhun, Christophe Clienti, Paul Brelet, Rémi Barrere, Téodora

Petrisor, Philippe Millet, Philippe Bonnot et Lionel Thavot, ainsi qu'aux membres

du laboratoire ETIS dont entre autres Frédéri
 de Melo, Lounis Kessal, Emmanuel

Hu
k, Samuel Gar
ia, Thomas Lefebvre, Kaouthar Bousselam, Laurent Rodriguez,

Benoit Miramond, Lot� Bendaouia et Fakhreddine Gha�ari.

Une part de
es remer
iements va aux membres du projet FOSFOR ave
 lesquels

j'ai travaillé régulièrement: Fabri
e Muller, Daniel Chillet, Sébastien Pillement et

Ni
olas Kne
ht.

En�n je souhaite exprimer toute ma gratitude envers ma famille et mes pro
hes

pour leur présen
e et leur soutien durant toutes
es années.

Contents

1 Introdu
tion 1

1.1 Context . 1

1.1.1 Real-time appli
ations for embedded systems 1

1.1.2 Heterogeneous Systems-on-Chip 3

1.1.3 Modern FPGAs . 4

1.1.4 Dynami
 and Partial Re
on�guration 6

1.2 HSoC programming model . 7

1.2.1 Programming issue . 7

1.2.2 Dynami
ally Re
on�gurable HSoC 8

1.3 Obje
tives . 10

2 Uni�ed Thread Model 11

2.1 Related work . 11

2.1.1 Software kernel management 11

2.1.2 Run-time manager . 14

2.1.3 Hardware thread model . 17

2.1.4 Con
lusion . 21

2.2 Thread model . 22

2.2.1 Pro
ess de�nition . 22

2.2.2 Thread de�nition . 22

2.2.3 Software thread model . 23

2.2.4 Thread attributes . 25

2.2.5 Syn
hronization te
hniques among threads 26

2.2.6 Con
lusion . 28

2.3 Our Hardware Thread model . 28

2.3.1 Context: The FOSFOR proje
t 28

2.3.2 Hardware Thread spe
i�
ations 30

2.3.3 Hardware Thread ar
hite
ture 31

2.4 Hardware Thread programming model 36

2.4.1 Operating System servi
es proto
ol 36

2.4.2 Network
ommuni
ation proto
ol 38

2.4.3 A

elerator interfa
e . 39

2.5 Con
lusion . 41

3 Hardware threads preemption using Dynami
 and Partial Re
on-

�guration 43

3.1 Introdu
tion . 43

3.2 Related works . 44

3.2.1 Preemption me
hanisms . 44

3.2.2 Re
on�guration a

elerators 46

10 Contents

3.2.3 Design tools . 49

3.3 FPGA re
on�guration knowledge . 51

3.3.1 Virtex 5 FPGA resour
es . 51

3.3.2 FPGA
on�guration . 52

3.3.3 Bitstream parser . 54

3.4 Preemption me
hanisms . 58

3.4.1 Context management servi
e 58

3.4.2 Re
on�guration servi
e . 59

3.4.3 Relo
ation Servi
e . 59

3.5 Design �ow for hardware threads relo
ation 61

3.5.1 Standard �ow . 61

3.5.2 Problemati
s . 62

3.5.3 Relo
ation �ow . 65

3.5.4 Experimented tools . 69

3.5.5 Adapted Isolation Design Flow 71

3.6 Con
lusion . 77

4 Operating System for Dynami
ally and Re
on�gurable Heteroge-

neous SoC 81

4.1 Context and de�nitions . 82

4.1.1 Kernel stru
ture . 82

4.1.2 Thread API . 83

4.2 Related works . 85

4.2.1 Introdu
tion . 85

4.2.2 Inter-
ore
ommuni
ation in MPSoC 86

4.2.3 HRSoC middlewares . 90

4.2.4 Hybrid OS for HRSoC . 94

4.2.5 Con
lusion . 95

4.3 Spe
i�
ations . 96

4.3.1 Obje
tives . 96

4.3.2 Programming model . 97

4.3.3 Memory
onstraints . 97

4.3.4 Ar
hite
ture . 98

4.3.5 Portability . 99

4.4 Con
eption . 99

4.4.1 Operating system ar
hite
ture 100

4.4.2 Platform ar
hite
ture . 102

4.4.3 Multi
ore layer . 109

4.5 Implementation . 111

4.5.1 Modular operating system: MutekH 111

4.5.2 MRAPI Spe
i�
ation . 114

4.5.3 Hardware ar
hite
ture . 118

4.5.4 Domain de�nition . 119

4.5.5 Node de�nition . 120

Contents 11

4.5.6 MRAPI types . 120

4.5.7 Resour
es system
alls . 120

4.6 Con
lusion . 123

5 Appli
ation deployment 125

5.1 Introdu
tion . 125

5.2 Platform building . 126

5.2.1 Mi
roblaze platform . 126

5.2.2 Read and Write timings . 127

5.2.3 System
alls . 131

5.2.4 Hardware Threads en
apsulation 134

5.3 Tra
king appli
ation . 135

5.3.1 Presentation . 135

5.3.2 The Camshift IP . 137

5.3.3 The DVI IP . 138

5.3.4 Appli
ation deployment . 139

5.3.5 Results and performan
es . 142

5.4 Con
lusion . 143

6 Con
lusions 147

6.1 Summary . 147

6.1.1 Dis
ussion . 147

6.1.2 Key
ontributions . 147

6.1.3 Hypothesis and Limitations 148

6.2 Future Work . 149

A Network Interfa
e API 153

A.1 Supported requests . 153

A.1.1 Write request . 153

A.1.2 Read request . 154

A.1.3 Read request response . 155

A.1.4 Re
eive request . 155

B Hardware CRC 157

B.1 Relo
ation pro
ess . 157

B.2 CRC
omputation . 157

B.3 Hardware CRC module . 157

Bibliography 161

List of Figures

1.1 Partial and Dynami
 Re
on�guration (PDR) appli
ation example

[Xilinx 2010a℄ . 2

1.2 Design �ow from developer's point of view 3

1.3 Xilinx Zynq 7000 EPP blo
k diagram 5

1.4 Dynami
 and Partial Re
on�guration prin
iple 6

1.5 Abstra
tion level di�eren
es between hardware and software program-

ming models . 7

1.6 Heterogeneous threading appli
ation 9

1.7 Hardware Thread preemption . 9

2.1 µC-Linux ICAP driver [Bergmann 2003℄ 12

2.2 RAPTOR software ar
hite
ture [Rana 2007℄ 13

2.3 OS4RS platform ar
hite
ture [Nollet 2003℄ 15

2.4 Operating System for Re
on�gurable Systems software ar
hite
ture

[Steiger 2004℄ . 16

2.5 VFPGA runtime manager ar
hite
ture [El-Araby 2008℄ 18

2.6 Fun
tional Unit ar
hite
ture [Verdos
ia 1994℄ 19

2.7 Hybrid Thread model [Agron 2009a℄ 20

2.8 Re
onOS hardware thread model [Lubbers 2008℄ 21

2.9 Pro
ess and Thread . 22

2.10 Thread life
y
le . 23

2.11 User Thread model . 23

2.12 Kernel Thread model . 24

2.13 Hybrid Thread model . 25

2.14 FOSFOR platform ar
hite
ture . 29

2.15 Hardware Thread Ar
hite
ture . 31

2.16 OSSC ar
hite
ture . 32

2.17 Software and Hardware Thread States 33

2.18 Hardware Thread FSM example . 34

2.19 Hardware Thread HDL �les example 34

2.20 Network Interfa
e ar
hite
ture . 35

2.21 OSSC Status Word
ontent . 36

2.22 System Call pro
edure . 37

2.23 System Call pro
edure steps . 37

2.24 Network Interfa
e Send and Re
eive proto
ol 38

2.25 Network Interfa
e Write and Read proto
ol 39

2.26 Parallel pro
essing using pipelining 40

2.27 Syn
hronization Module . 41

3.1 Virtual Routing Channels . 45

14 List of Figures

3.2 (a) Implementation of PRR-PRR relo
ation (b) Top-Level blo
k di-

agram of ARC [Kallam 2009℄ . 46

3.3 ICAP a

elerators solutions [Liu 2009℄ 47

3.4 FaRM ar
hite
ture [Duhem 2011℄ . 47

3.5 Upar
 ar
hite
ture [Bonamy 2012℄ 48

3.6 ICAP Hard Ma
ro blo
k diagram [Hansen 2011℄ 48

3.7 RapidSmith s
reen
apture [Lavin 2011℄ 49

3.8 OpenPR s
reen
apture from FPGA Editor [Sohanghpurwala 2011℄ . 50

3.9 Isolation Design Flow s
reen
apture from FPGA Editor [Corbett 2012℄ 50

3.10 Sli
e-L and Sli
e-M [Xilinx 2009
℄ . 51

3.11 FPGA organization . 52

3.12 Type 1 Paquet Header Format [Xilinx 2009b℄ 53

3.13 Type 2 Paquet Header Format [Xilinx 2009b℄ 53

3.14 Frame address [Xilinx 2009b℄ . 54

3.15 Resour
es memory
on�guration for the Virtex 5 ar
hite
ture 55

3.16 Frame
omposition [Xilinx 2009b℄ . 55

3.17 Multiple Rows bitstream
ontent . 57

3.18 ICAP driver for Partial Re
on�guration 59

3.19 Partial bitstream relo
ation pro
ess 60

3.20 Partial re
on�guration: Partition and modules 61

3.21 Proxy Ma
ro Pla
ed and Routed example 62

3.22 Sli
e Ma
ro . 63

3.23 PlanAhead Sli
e Ma
ro pla
ement 63

3.24 Stati
 route through Re
on�gurable Partition 64

3.25 Relo
ation �ow . 65

3.26 Stati
 pla
e . 66

3.27 XDL File stru
ture . 67

3.28 Internal and external swit
h matri
es 68

3.29 PIP types . 68

3.30 XDL Net example . 69

3.31 Trusted routes . 70

3.32 Test design . 71

3.33 Software Bus Ma
ro implementation 73

3.34 Routed software Bus Ma
ro . 74

3.35 Hardware Bus Ma
ro extra
tion . 74

3.36 Hardware Bus Ma
ro extra
tion and homogenization 77

3.37 Adapted Isolation Design Flow . 78

3.38 Design test - Partition isolation . 78

4.1 Toppers/FMP [Tomiyama 2008℄ . 86

4.2 SMP System [Huerta 2008℄ . 87

4.3 ICPC Servi
e [Lin 2009℄ . 88

4.4 The multikernel model [Baumann 2009℄ 88

4.5 Fa
tored OS [Modzelewski 2009℄ . 89

List of Figures 15

4.6 Self-re
on�gurable platform [Shiyanovskii 2009a℄ 91

4.7 System framework overview [Guerin 2009a℄ 92

4.8 Hardware Dependant Software layer [Senou
i 2006℄ 93

4.9 MCAPI for MPSoC [Matilainen 2011℄ 93

4.10 Hybrid Threads platform [Agron 2009b℄ 95

4.11 User point of view . 97

4.12 Platform memory ar
hite
ture . 98

4.13 Sys
all Pro
edure . 100

4.14 Server types . 101

4.15 OS Server Ar
hite
ture . 101

4.16 Message Template . 102

4.17 Study Case Platform . 103

4.18 Distant system
all . 104

4.19 S
enario 1 platform . 106

4.20 S
enario 1 datagram . 106

4.21 S
enario 2 platform . 107

4.22 S
enario 2 datagram . 107

4.23 S
enario 3a platform . 108

4.24 S
enario 3a datagram . 108

4.25 S
enario 3b platform . 109

4.26 S
enario 3b datagram . 109

4.27 Operating system ar
hite
ture . 110

4.28 MutekH global view . 113

4.29 Homogeneous NoC-based Platform 118

4.30 Heterogeneous NoC-based Platform 119

4.31 MRAPI library �le stru
ture . 121

4.32 MRAPI lo
al tables . 122

4.33 Requests management proxies . 122

5.1 Demonstration platform . 126

5.2 Mi
roblaze platform . 127

5.3 Read and write test platform . 128

5.4 Bridge PLB-NoC ar
hite
ture . 129

5.5 Hardware platform used to test system
alls pro
edures 131

5.6 Hardware MRAPI global ar
hite
ture 132

5.7 MRAPI remote
all se
tions . 134

5.8 Target Tra
king Appli
ation . 136

5.9 Binary Long Obje
t (Blob) . 137

5.10 Pipelined Camshift hardware node 138

5.11 Pipelined Camshift User FSM . 138

5.12 Integration of the DVI IP in the Demonstration Platform 139

5.13 Appli
ation deployment . 140

5.14 Camshift slots (Virtex 5 LX110 devi
e) 140

5.15 Detailed appli
ation deployment . 141

16 List of Figures

5.16 Detailed appli
ation deployment . 145

6.1 Hardware node implementation
hoi
es 150

A.1 Write request pa
ket . 154

A.2 Read request pa
ket . 154

A.3 Read request response . 155

B.1 CRC Bitstream Computer module 159

List of Tables

1.1 Pro
essing Elements
omparison regarding
ontrol ability, performan
es

and general programmability . 4

1.2 Platform te
hnology
omparison regarding
ontrol
ost, �exibility and

performan
es . 4

3.1 Bitstream header
ontents . 56

3.2 Bitstream initialization
ommands 57

4.1 Resour
es table example . 105

5.1 Software layers footprints . 127

5.2 Code exe
ution time for a Mi
roblaze pro
essor (ML506 � 125 MHz) 128

5.3 Timings in
y
les to write into platform memories 129

5.4 Timings to read from platform memories 130

5.5 Network Interfa
e Communi
ation Measurements 130

5.6 NoC Send timings for 1 KB data . 131

5.7 Hw MRAPI Resour
es usage . 132

5.8 Timings to lo
ally initialize a node 133

5.9 Timings to a

ess a lo
al Mutex resour
e 133

5.10 Timings to a

ess a remote Mutex resour
e 133

5.11 Detailed timings to a

ess a remote Mutex resour
e 135

5.12 Hardware Thread Resour
es Usage. 136

5.13 Demonstration Platform resour
e utilization 142

5.14 Hardware Thread Resour
es Usage 143

5.15 Camshift slot resour
e utilization . 143

5.16 Appli
ation timings . 144

B.1 ICAP register involved in CRC
omputation 158

B.2 HW CRC Resour
es usage . 158

Chapter 1

Introdu
tion

Contents

1.1 Context . 1

1.1.1 Real-time appli
ations for embedded systems 1

1.1.2 Heterogeneous Systems-on-Chip 3

1.1.3 Modern FPGAs . 4

1.1.4 Dynami
 and Partial Re
on�guration 6

1.2 HSoC programming model . 7

1.2.1 Programming issue . 7

1.2.2 Dynami
ally Re
on�gurable HSoC 8

1.3 Obje
tives . 10

1.1 Context

1.1.1 Real-time appli
ations for embedded systems

Appli
ations for embedded systems dedi
ated to image and signal pro
essing are

be
oming in
reasingly
omplex. The amount of data pro
essed by these systems

tend to be more and more important and so, developers need more and more
om-

puting power. This is the
ase for instan
e, of monitoring system, automotive or

radar appli
ations. This leads to design new
omputing systems able to respe
t the

high performan
e
onstraints imposed by these appli
ations and their environment.

In order to satisfy these
onstraints, appli
ations must be pro�led and divided

into several tasks. Ea
h task whi
h is
onsidered responsible for the failure to hold

onstraints, has to be implemented separately on a dedi
ated pro
essing unit. For

instan
e,
ommuni
ating systems su
h as a network swit
h, have to handle several

proto
ols, transfer information at high rates and pro
ess large amount of data. To

a
hieve good performan
es and gain in �exibility,
ommuni
ation proto
ol sta
ks

may be implemented in hardware and take advantages of the partial and dynami

re
on�guration (Fig. 1.1).

In general, the multipli
ity of features needed by the end-users and mostly the

spe
i�
ity of these features, for
e designers to propose new ar
hite
tures. Target-

ing heterogeneous pro
essing units to deploy an appli
ation allows to a

elerate the

2 Chapter 1. Introdu
tion

������
��	
��

��
�������

����

��	
�

��
�������

����

��	
�

��
�������

����

��	
�

��
�������

����

��	
�

������

������

������

�����	

����

������
��	
��

����

��	
�

��
�������

��
�������

��
�������

����

��	
�

������
����
�
���
���

����
������

������

������

�����	

����� !
������
"�����
�������
�#$ ����� !
������
"�����
�"���
�#$

Figure 1.1: Partial and Dynami
 Re
on�guration (PDR) appli
ation example

[Xilinx 2010a℄

global performan
e of the appli
ation. However, the drawba
k is that it
ompli
ates

the development pro
ess.

Another
onstraint is the need of �exibility, or more pre
isely, of adaptability.

The appli
ations
omplexity requests to adapt the parameters and the provided

features of these systems. For example, the
omputation power
an depend on the

quality of servi
e required, and the power
onsumption of a system
an be monitored

regarding its environment or random events. Also, as embedded systems are more

and more integrated in our environment, these human or environmental intera
tions

require these systems to adapt themselves to the various queries and needs that this

implies.

In
ontrast, designers would want to get a simple view of their appli
ation whi
h

would abstra
t the platform spe
i�
ity, espe
ially the heterogeneity (Fig. 1.2). The

aim is to disso
iate the fun
tional validation of the appli
ation and the design ex-

ploration of its implementation.

In the fun
tional validation, tasks are des
ribed regarding high-level exe
ution

parameters su
h as the exe
ution time, the deadline, or the priority. During the

design exploration, these parameters and new ones like the power
onsumption or

the memory usage are added regarding one or several possible partitioning. These

two points lead us to
onsider the design of heterogeneous systems-on-
hip and the

way we
an leverage the issue of their programming
omplexity in order to ease the

move from the high-level modelling layer to the physi
al implementation.

1.1. Context 3

���������	

�����
��

���������	

�����
��

���������	

�����
��

���������	

�����
��

�������
����
����������	
��������
����
�
	�	

������������
�����
������������	
�����		���
�������	

�� �� ��
�����
��	����
����������
���
��	�
���
���
�����		���
�������

������������
��	��������
����
���
��
������� �� �� �� ��

 �

 �

 � �

 ! "

��
����������	
���

��

Figure 1.2: Design �ow from developer's point of view

1.1.2 Heterogeneous Systems-on-Chip

Platforms based on di�erent pro
essing elements are
alled Heterogeneous Systems-

on-Chip (HSoC). In su
h a platform, the appli
ation is divided into tasks. Whereas

some tasks are implemented as hardware a

elerators and allo
ated into a parti-

tion of the
hip, others run as software tasks on
omputing pro
essor elements. A

hardware a

elerator is de�ned as a hard-wired fun
tion developed to a

elerate the

pro
essing of a task. A
omputing pro
essor unit
ould be a General Purpose Pro-

essor (GPP), a spe
ialized one like a Digital Signal Pro
essor (DSP), a Graphi
s

Pro
essing Unit (GPU) or a simple Mi
ro-Controller Unit (MCU).

Ea
h one of these pro
essing elements is more or less suited to
ertain types of

tasks [Leon Adams 2007℄. The hardware a

elerator is well suited to intensive pro-

essing tasks, espe
ially tasks whose operations
an be parallelized. On the
ontrary,

it
an hardly be used with intensive
ontrol tasks. The latter are more suitable to

run on a GPP. Homogeneous tasks with a low data dependen
y
an be easily and

e�
iently parallelized on a GPU, whereas heterogeneous tasks with
omplex data

paths are not re
ommended for this ar
hite
ture. Simple
ontrol tasks pro
essing

small and well ordered data would likely be implemented on a Mi
ro-Controller

Unit. Playing with these di�erent pro
essing elements, it is possible to adapt the

appli
ation to be deployed regarding time exe
ution
onstraints or memory and

logi
 resour
es. Table 1.1 summarizes strengths and weaknesses of ea
h pro
essing

element.

Like it is possible to exe
ute a task on di�erent type of pro
essing units, the

4 Chapter 1. Introdu
tion

Pro
essing Element Control Performan
es Programmability

GPP +++ + +++

GPU + ++ ++

DSP + ++ ++

MCU +++ + +++

Hw. A

. + +++ +

Table 1.1: Pro
essing Elements
omparison regarding
ontrol ability, performan
es

and general programmability

platform whi
h in
ludes all these
omponents
an be implemented using di�erent

te
hnologies: an Appli
ation Spe
i�
 Integrated Cir
uits (ASIC), a Multi-Pro
essor

System-on-Chip (MPSoC), or a Field Programmable Gate-Array (FPGA).

ASIC te
hnology o�ers great performan
es but is very expensive and not �ex-

ible at all. In this do
ument we
onsider a MPSoC as a SoC made up of at most

a dozen of
ores like the OMAP5430 based on a Cortex-A15 multipro
essor
ore

[Instrument 2011℄. They are less e�
ient but
heaper, more �exible regarding tasks

pla
ement and software bugs may be re
overed. FPGAs is a good trade-o� between

the ASIC te
hnology and the MPSoC
hoi
e be
ause it is �exible, it provides better

performan
es
ompared with MPSoC and both software and hardware bugs may

be re
overed after the appli
ation system being pla
ed on the market. Table 1.2

summarizes the strengths and weaknesses of ea
h te
hnology.

Te
hnology Cost Flexibility Performan
es

ASIC + + +++

FPGA ++ +++ ++

MPSoC +++ ++ +

Table 1.2: Platform te
hnology
omparison regarding
ontrol
ost, �exibility and

performan
es

The solution whi
h interest us is the FPGA te
hnology. The exa
t reasons of

this
hoi
e, namely the
hara
teristi
s, the potential as well as the pros and
ons of

the last family of FPGA are detailed in the next subse
tion.

1.1.3 Modern FPGAs

A FPGA is a re
on�gurable
hip
omposed of several logi
 elements whose the

on�guration, that is to say the logi
al fun
tion they implement, as well as the in-

ter
onne
tions between them
an be modi�ed on the user's willing.

1.1. Context 5

A modern FPGA is a matrix of resour
es disposed in parallel
olumns. Ea
h

olumn
ontains either
on�gurable logi
 blo
ks (CLB), but also blo
k ram memories

(BRAM) or dedi
ated digital signal pro
essing (DSP) blo
ks. For this platform

we de�ned a hardware a

elerator as hard-wired fun
tion using a set of resour
es

allo
ated in a partition of the FPGA.

In addition to these
on�gurable elements, latest families of FPGAs, for instan
e

Xilinx Virtex 7 FPGAs (Fig. 1.3), in
lude hard
ore elements to a

elerate
ertain

pro
essing or
ommuni
ation. This is the
ase of the DDR
ontroller, the Ethernet

MAC
ontroller, or even of hard
ore pro
essors implemented with all the needed

peripherals as a full mi
ro-
ontroller unit (dual ARM9
ores with timers, UART, or

ICAP (Internal Con�guration A

ess Port)
ontrollers).

Figure 1.3: Xilinx Zynq 7000 EPP blo
k diagram

As modern FPGAs matri
es tend to be
ome larger and larger, designers have

now more spa
e to implement multi-
ore systems in
luding several soft-pro
essors

and hardware a

elerators. In order to o�er the best performan
es, and as told

previously, the use of FPGA as a
omplete autonomous system is be
oming a good

trade-o� between the ASIC te
hnology and the multipro
essor solution. The �rst

6 Chapter 1. Introdu
tion

is really e�
ient but rather expansive for small produ
tion lines, whereas the latter

is �exible and
an relies on many COTS but doesn't allow to rea
h the wanted per-

forman
es. Namely, a FPGA is a good trade-o� between power
onsumption and

pro
essing power.

Moreover, all pro
essing units detailed in Se
tion 1.1.2
an be implemented in-

side a FPGA. This
apability provides to the developer the �exibility to explore

di�erent solutions when designing his platform. Several ar
hite
ture
hoi
es
an be

made and
ompared. Ea
h fun
tion
an then be implemented on the wanted pro-

essing units in order to obtain the best partitioning.

1.1.4 Dynami
 and Partial Re
on�guration

The natural evolution of FPGAs leads them, due to the miniaturization, to o�er

more and more logi
 resour
es [Ko
h 2010b℄. This in
rease helps to fa
e the impor-

tant need of features required by the end-user. To manage the dramati
 in
rease of

the size of the FPGAs, espe
ially the design time, manufa
turers provided partial

re
on�guration features to their FPGAs (Fig. 1.4).

��������������

	
�
� 	
�
�

�
�������������

���� ����

�������
�������

	
�
� 	
�
�

�
�������������

���� ����

�������

�������
�������

	
�
� 	
�
�

�
�������������

���� ����

�������

�������������
����

�������������
�����

�������������
����

����	
��
�������������
����
�
�������������
����
�
�
�
�

��������������	
��
�������������
�������
�
�������������
������
����
�
�������
�
��
���

��	����������	����������������	
��
�������������
���
����
�������������
����
����������
����
�

Figure 1.4: Dynami
 and Partial Re
on�guration prin
iple

The use of the partial re
on�guration has the advantage of de
reasing the imple-

mentation time be
ause partial modules
an be implemented separately while the

stati
 part of the system remains the same and so do not need to be reimplemented.

1.2. HSoC programming model 7

Modern FPGAs manufa
turers, from now Xilinx and Altera, provide some me
h-

anisms to dynami
ally re
on�gure the
hip. The dynami
 re
on�guration allows to

re
on�gure a partial module while keeping the stati
 part un
hanged. The system

on the
hip would be able to re
on�gure a part of itself, this without any disturban
e

on the exe
ution of the rest of the system. In addition to the fun
tional interest,

it brings a
onsequent resour
es impa
t for autonomous embedded systems-on-
hip.

Moreover, in some
ases it is a good way to de
rease the power
onsumption while

being
apable of providing a larger
hoi
e of hardware a

elerators to a given appli-

ation.

1.2 HSoC programming model

1.2.1 Programming issue

Despite the real interest of this te
hnology, the main drawba
k of using hetero-

geneous platforms is that they are di�
ult to program. Indeed, abstra
tion level

di�eren
es between software fun
tions running on pro
essors and hardware a

el-

erators, make the development of appli
ations really tough. In order to ease the

validation and the exploration of the possible partitioning for a given platform, a

ommon abstra
tion has to be provided to the end-user (Fig. 1.5).

����������	�
���

�������������
����
�����

����������	�
���

�������������
��	
�
�����

����������	�
���

��	
����������
��	
�
�����

����������	�
���

����

��	
������	���
��

���

��� ���

��������� ������

������������

�� ��

�����	��

�����	��
�����
�

�������� ��
 ��
�����
�

!��"�#

!��"�$

!��"�%

���	���
����#

!��"�#&%

!��"�#&$

���	���
����$

!��"�$&%

!��"�$&$

���	���
����%

!��"�%&%

!��"�%&$

��
��� ����
'(
� �)�
���
���������������

���	���
����
��
�	�*�
'

Figure 1.5: Abstra
tion level di�eren
es between hardware and software program-

ming models

8 Chapter 1. Introdu
tion

To a
hieve it, a general trend whi
h is emerging
onsists in adopting a high-level

language to des
ribe the appli
ation. Coupled with new e�
ient tools able to sim-

ulate and automati
ally generate low-level
ode sour
es, su
h a design �ow would

allow to ta
kle the last FPGAs programming issues. Indeed, due to their in
reasing

size, the system
omplexity is in
reasing too and su
h tools would provide a simpler

view of the whole system. For instan
e, a language su
h as the Syn
hronous Data-

Flow language (SDF) [Lee 1987℄ provides a model of
omputation whi
h
an be

adapted both to software and hardware threads, and so abstra
t the heterogeneity

of the platform.

An intermediate approa
h
an be adopted whi
h provides not a unique program-

ming language to des
ribe both the software and the hardware, but in a �rst step,

a
ommon programming model. In this way, a
ommonly adopted programming

model in the software embedded domain is the threading model. To design a het-

erogeneous platform using this model, we have to raise the abstra
tion level of the

hardware a

elerators. This allows us to reuse lega
y works in the software domain

and so to fo
us on the hardware part of the model. In our
ase, the implementation

hoi
e is done between a software implementation on a pro
essor and a re
on�g-

urable hardware logi
 partition.

Like software threads, we de�ne hardware threads. A hardware thread en
ap-

sulates the hardware a

elerator and allows it to behave like a software thread.

Namely, a hardware thread would be able to a

ess operating system servi
es and

would have, from a
ertain point of view, a sequential exe
ution. These servi
es

in
lude the ability to
reate or delete a resour
e, and to operate a system
all. The

user should have the
apability to preempt any thread, both software or hardware,

and so to save and restore its
ontext. A parti
ular e�ort should be done on the

implementation of me
hanisms permitting the threads to
ommuni
ate in a trans-

parent way. Our �nal obje
tive is to o�er to the end-user a simple thread view of

its appli
ation, and to the designer an e�
ient way to
reate relo
atable hardware

a

elerators whi
h a
t like software threads (Fig. 1.6). To do so, hardware a

eler-

ators should be implemented in what we will
all a hardware thread to
ommuni
ate.

Developed in the standard hardware des
ription language whi
h is VHDL (Very

High-speed integrating
ir
uit Development Language), generi
 interfa
es and an ab-

stra
ted exe
ution model will allow in the future to integrate this intermediate pro-

gramming model with high-level design tools. This will result in the automati

generation of hardware threads, taking advantage of existing low-level stru
ture.

1.2.2 Dynami
ally Re
on�gurable HSoC

In this
ontext, the dynami
 and partial re
on�guration of FPGAs seems very in-

teresting to provide a �exible handling of hardware a

elerators. In dynami
ally

1.2. HSoC programming model 9

������
���	�

��
���	����	� ��	����	� ��	����	�

�� �� ��

�� �	������������� �� ������������������	�

������	�����

��	�������	��

�� �� �� ��

�� �� �� �� ��

Figure 1.6: Heterogeneous threading appli
ation

re
on�gurable HSoC, hardware threads are de�ned as relo
atable modules whi
h

an then be allo
ated into any available re
on�gurable partition of the FPGA.

The system, using the dynami
 and partial re
on�guration, allows the user to

preempt any module (Fig. 1.7). Namely, a part of the
hip is divided into several

dynami
 partitions. Ea
h partition is then allo
ated by the
ontrol part of the ap-

pli
ation to one hardware thread for a
ertain amount of time.

������ ������

���

�

��	
��

���

����������

����	
�����

����	
����

���

���

���

��	���

���

���

���

��	���
��������

�����������

����

�
��������������
��	

Figure 1.7: Hardware Thread preemption

The list of target appli
ations
an then be extended to multi-mode appli
ations

and to those whi
h need environment adaptation. As a perspe
tive, other appli-

ations based on the dynami
 dete
tion of events, su
h as se
urity systems,
ould

take advantage of this te
hnology. We
an also
ite bio-inspired ar
hite
tures whi
h

would rely on dynami
 re
on�guration me
hanisms in order to dynami
ally re
on-

�gure their ar
hite
ture.

10 Chapter 1. Introdu
tion

Moreover, being able to update system after its release
ould help the designer to

improve the adaptability to unknown spe
i�
ation modi�
ations, for instan
e when

implementing a H264
ode
. We
an also noti
e that it
ould have a good a�e
t on

the design
osts of these produ
ts.

1.3 Obje
tives

The goal of this PhD thesis is to propose a software and hardware ar
hite
ture

in order to improve the appli
ation development pro
ess when targeting a Hetero-

geneous System-on-Chip. With the in
reasing
omplexity of the appli
ation, an

abstra
ted programming model has to be adopted to fa
ilitate the des
ription of

these appli
ations and improve the �exibility regarding the implementation
hoi
es.

The proposed ar
hite
ture should rely on the existing operating system stru
ture and

provide servi
es and low-level me
hanisms to easily handle the thread heterogeneity.

In Chapter 2, we propose a model of hardware thread whi
h allows to abstra
t

this heterogeneity. Then we study me
hanisms and tools permitting to manage

hardware threads in the same way that what is done with software ones. In the

next
hapter, an operating system dedi
ated to heterogeneous systems-on-
hip is

spe
i�ed. The main feature of this operating system is to provide a �exible a

ess

to the operating system servi
es for every threads, both software or hardware, what-

ever is the
ore they are running on. Finally, an appli
ation will be detailed and

implemented on a demonstration platform.

Chapter 2

Uni�ed Thread Model

Contents

2.1 Related work . 11

2.1.1 Software kernel management 11

2.1.2 Run-time manager . 14

2.1.3 Hardware thread model . 17

2.1.4 Con
lusion . 21

2.2 Thread model . 22

2.2.1 Pro
ess de�nition . 22

2.2.2 Thread de�nition . 22

2.2.3 Software thread model . 23

2.2.4 Thread attributes . 25

2.2.5 Syn
hronization te
hniques among threads 26

2.2.6 Con
lusion . 28

2.3 Our Hardware Thread model 28

2.3.1 Context: The FOSFOR proje
t 28

2.3.2 Hardware Thread spe
i�
ations 30

2.3.3 Hardware Thread ar
hite
ture 31

2.4 Hardware Thread programming model 36

2.4.1 Operating System servi
es proto
ol 36

2.4.2 Network
ommuni
ation proto
ol 38

2.4.3 A

elerator interfa
e . 39

2.5 Con
lusion . 41

2.1 Related work

2.1.1 Software kernel management

With the emergen
e of heterogeneous platform in
luding both software pro
essors

and re
on�gurable areas, a natural way to ta
kle the heterogeneity of these re
on-

�gurable platforms has been to rely on the existing software abstra
tion layers. To

rise their abstra
tion level, the
ontrol of the hardware a

elerators has been given

to a software operating system running on a pro
essor.

12 Chapter 2. Uni�ed Thread Model

This s
heme leads to design a new kind of platform in whi
h a primitive or fun
-

tion used by a task, or a task itself,
an be a

elerated in hardware. The following

works aim to provide a simple way to load and run these a

elerators. They permit

to abstra
t the
omplexity of the
ommuni
ation between a pro
essor, namely an

appli
ation running on top of an operating system, and a hardware a

elerator.

This is the
ase of the Egret platform [Bergmann 2003℄ whi
h the obje
tive is

to provide a fully modular platform. A Mi
roblaze mi
ro-
ontroller unit is running

a µC-Linux operating system and allows the developer to
hoose whi
h hardware

a

elerators have to be exe
uted. To do so, a
lassi
 driver using the IOCTL

1

API

2

[IOC 1997℄ permits the developer to load a partial bitstream of the wished
on�gu-

ration through the Internal Con�guration A

ess Port (ICAP) of the FPGA (Fig.

2.1).

Figure 2.1: µC-Linux ICAP driver [Bergmann 2003℄

Authors of [Donato 2005℄ presented a platform based on the Linux operating

system. This
hoi
e has been done be
ause its sour
e
ode is available for free,

it has been ported on numerous platforms and it is modular regarding additional

drivers.

This platform has been named Caronte : it is
omposed of a Virtex 2 Pro FPGA

1

Input and Output Control

2

Appli
ation Programming Interfa
e

2.1. Related work 13

in
luding a Power PC 405 and one ICAP port. A software driver allows the devel-

oper to
ontrol the ICAP using the IOCTL proto
ol again. When loading a new

IP

3

ore, a
ommuni
ation proto
ol has been implemented to allow this IP to
laim

itself to the Core Manager IP, following a hot-plug philosophy. The inter
onne
t is

a Wishbone Bus and spe
i�
 Medium A

ess Controller (MAC) are used to provide

the ability to allo
ate address spa
e at run-time. This work led to the laun
h of

the
ommer
ial proje
t PetaLinux, whi
h aims to simplify the deployment of the

Linux operating system on re
on�gurable platforms. The use of Linux in MPSoC

platforms is a growing trend as shown by the re
ent a
quisition of the PetaLogix

ompany by Xilinx.

In [Rana 2007℄, a platform
omposed of several FPGAs is introdu
ed. The whole

platform is supervised by a unique pro
essor running Linux, and allowing re
on�g-

uration ability, partially or totally. Simple primitives are also implemented as a

driver using the IOCTL proto
ol.

The main issue to solve is the management of the
on
urrent exe
ution of ea
h

task present in the system. To handle this, we need to rely on a multitask operating

system providing simple and lega
y ways of
ommuni
ation to every task, both soft-

ware or hardware (Fig. 2.2). Espe
ially, hardware tasks are
onne
ted to a Medium

A

ess Controller (MAC), whi
h provides the ability to dynami
ally allo
ate address

spa
e for ea
h loaded module at run-time.

Figure 2.2: RAPTOR software ar
hite
ture [Rana 2007℄

The operating system used to abstra
t the re
on�guration pro
ess is based on the

work of Donato et al. [Donato 2005℄. When a re
on�gurable a

elerator is loaded on

the FPGA, a driver is loaded into the Linux kernel and is asso
iated to this a

elera-

3

Intelle
tual Property

14 Chapter 2. Uni�ed Thread Model

tor. To
ontrol the module, the appli
ation relies on the
lassi
al IOCTL
ommands.

In all these works, the management of the hardware a

elerators implies minimal

modi�
ation in the operating system and is easily portable. However, the a

elerator

is
onsidered as a hardware IP
ore and not as a hardware thread. From the user

point of view, this situation leads to a heterogeneous programming model for the

developer. It is not su�
ient regarding our obje
tives whi
h impose us to bear in

mind to allow a homogeneous programming model at a higher level of representation.

2.1.2 Run-time manager

Other solutions go further and propose to design a run-time manager. A run-

time manager is responsible for s
heduling hardware a

elerators at run-time and

managing the a

ess to shared resour
es. The system knows whi
h partitions are

available and whi
h a

elerators need to be loaded. Using adaptive algorithm, a

real-time unit dynami
ally pla
es and
on�gures the a

elerators. More than a

management of the hardware a

elerators as
o-pro
essor modules, the goal is to

de�ne a model in whi
h these a

elerators
ould be
onsidered as real tasks, in the

same way that the software ones are.

Nollet et al. [Nollet 2003℄ introdu
es one of the �rst approa
h to design an op-

erating system dedi
ated to Re
on�gurable Systems
alled OS4RS. It spe
i�
ally

targets the Heterogeneous Re
on�gurable System-on-Chips
omposed of ISP (In-

stru
tion Set Pro
essor) and re
on�gurable tiles.

This OS must be
apable of providing a similar set of servi
es for the heteroge-

neous tasks, as a traditional OS does for software appli
ation. It is based on RTAI,

a real-time Linux extension.

The hardware task are pla
ed into slots and
onne
ted to ea
h other via a

network-on-
hip. The Hardware Abstra
tion Layer (HAL) of the operating system

provides
ommuni
ation primitives su
h as send and re
eive as well as
ontrol mes-

sages to pla
e a new task and read or modify the network parameters (Fig. 2.3).

The
ommuni
ation API has been ported both in hardware and software. This

ommon interfa
e allows to migrate a task from a software to a hardware pro
essing

element in a transparent way.

The operating system in
ludes a two-level s
heduler. The �rst level dispat
hes

the task on the pro
essing units whereas lo
al s
hedulers handles the task assigned

to them. At the �rst level, the s
heduler relies on a
he
kpointing me
hanism to save

tasks
ontexts. They
hoose this solution be
ause this has the advantage to make

the
ontext independent from the targeted pro
essing element. A the lower level,

lo
al s
hedulers may employ pro
essor-spe
i�

ontexts, sin
e they will never move

tasks to another pro
essor. The de�nition and the management of the
he
kpoints

(ie. the de�nition of what needs to be saved) is up to the user. We
an noti
e that

this information is parti
ularly di�
ult to de�ne and is still an open issue.

In addition to the s
heduling servi
e, the operating system provides a relo
ation

servi
e using the
he
kpointing me
hanisms to syn
hronize the migration.

2.1. Related work 15

Figure 2.3: OS4RS platform ar
hite
ture [Nollet 2003℄

In [Steiger 2004℄, Platzner et al. also introdu
e an operating system dedi
ated to

re
on�gurable systems and dis
uss about two di�erent points. The �rst dis
ussion

is about design issues for re
on�gurable hardware operating system. The required

degree of �exibility paired with high
omputation demands asks for partially re
on-

�gurable hardware that is operated in a true multitasking manner.

For the authors, it is ne
essary to de�ne three things: (1) a programming model

dedi
ated to re
on�gurable systems with a set of well-de�ned system servi
es, (2)

a run-time system to handle the dynami
ity of the system and resolve
on�i
ts

between exe
utable obje
ts, and (3) the smallest unit of exe
ution, that is to say a

pro
ess or a thread.

They de�ne a hardware thread as a pre-pla
ed and pre-routed digital
ir
uit

whi
h
an be loaded and relo
ated easily in any available slots of the FPGA. A

square is the simplest shape to manage in spite of the fa
t that it also leads to a more

important internal fragmentation than more
omplex shapes, su
h as polyominoes.

Then they explain that 1-Dimensional (1D) pla
ement involves an easier s
heduling

of the di�erent threads but an in
rease of the external fragmentation. On the other

hand, 2-Dimensional (2D) pla
ement o�ers more possibility of pla
ement and so less

external fragmentation but is harder to manage.

In this paper, they target a real-time s
enario where ea
h in
oming thread is ei-

ther a

epted with a guarantee to meet the deadline or reje
ted. As in reality FPGA

resour
es distribution is not homogeneous, we
an assume that at least memory and

FIFOs are managed by the operating system, and so that a thread
an a

ess to

these resour
es using operating system servi
es : memory allo
ation and message

queue. They
on
lude saying that 1D pla
ement is more realisti
 regarding
urrent

FPGAs ar
hite
ture but 2D pla
ement is an interesting open issues in the way that

2D s
heduling is really more interesting in term of performan
e.

The se
ond dis
ussion deals with hard real-time tasks s
heduling. Target plat-

form is
omposed of a CPU
onne
ted to a re
on�gurable devi
e through two ports:

a C/R port for
on�guration and readba
k, and a COMM port for
ommuni
ation

16 Chapter 2. Uni�ed Thread Model

Figure 2.4: Operating System for Re
on�gurable Systems software ar
hite
ture

[Steiger 2004℄

between the operating system and the thread. This port is
alled Standard Task

Interfa
e (STI). The Task Communi
ation Bus (TCB) runs horizontally through all

hardware thread area into a number of dummy tasks.

The software operating system is divided in three layers (Fig. 2.4): a �rst layer

to manage tasks and resour
es, a se
ond to handle the
ontext issue, and the last

one whi
h is responsible for the
ommuni
ation and the
on�guration.

In [Wigley 2001℄, authors dis
uss the s
heduling problem of relo
atable hardware

tasks by an operating system. They give a spe
i�
ation of an ideal operating system

dedi
ated to the re
on�gurable
omputers. This operating system must provide a

s
heduler able to manage expli
it
ontext
hanges, namely the user has to insert

he
kpoints inside tasks sour
e
ode in order to ensure a
orre
t
ontext save.

In their spe
i�
ation, the operating system is responsible for managing the vir-

tual memory and prote
ting platform physi
al resour
es from
on�i
ting a

esses.

Task partitioning must be dynami
 as we must be able to operate load balan
ing or

task migration from software to hardware and vi
e-versa.

Also,
ommuni
ation between hardware tasks must be thought in order to be

optimized. If two tasks are presents on di�erent slots, we must take advantage of

2.1. Related work 17

it by initializing dire
t
ommuni
ation between these kind of tasks. Otherwise, a

bu�er should be used in order to pro
ess
ommuni
ation. A last point is the need

of veri�
ation tools and test
ases, that is to say appli
ation examples whi
h
ould

bene�t from the Dynami
 and Partial Re
on�guration.

Another example of run-time manager is introdu
ed in [Shiyanovskii 2009b℄.

Re
on�guration is managed by a software layer upon the real time operating system.

This layer is
alled Adaptation Manager, and
an be
ustomized in order to get a

trade-o� between the power
onsumption and the exe
ution speed. To do so it relies

on a learning pro
ess whi
h allows it to improve its de
ision skill.

The re
on�gurable platform is
omposed of tiles whi
h abstra
t the logi
 blo
k

programming level to provide to the developer an a

ess to
oarse grain primitives

su
h as �lters, FFT

4

or others higher level fun
tions. S
heduler poli
y is based on

priority. Tasks
an have three di�erent states : Ina
tive, A
tive and Reserved and

have real-time attributes su
h as exe
ution time, deadline, or laxity.

These works show that an operating system is ne
essary to manage the hardware

a

elerators. This abstra
tion layer has to take advantage of the dynami
 re
on�g-

uration and provides high-level me
hanisms to manage the available slots. It means

o�ering the ability to the end-user to
reate, suspend, resume and delete a hardware

task. At a lower-level, a re
on�gurable partition should be seen as a pro
essing el-

ement. The operating system should be able to share this resour
e between every

hardware a

elerators, leading us to view a hardware a

elerator as an equivalent

of a software thread.

2.1.3 Hardware thread model

Using the ability to
ontrol the Dynami
 and Partial Re
on�guration (DPR), re
ent

arti
les proposed abstra
tion models for the hardware a

elerators. The obje
tive

is to improve the programmability of these heterogeneous platform and to fa
ilitate

the
ommuni
ation between the a

elerators and the rest of the system providing a

default interfa
e.

Authors of [El-Araby 2008℄ de�ne VFPGAs. This a
ronym stands for Virtual

FPGAs. A VFPGA is a re
on�gurable zone
ontrolled by a pro
essor (Fig. 2.5).

A VFPGA
an be seen as a hardware task. This kind of task has three di�erent

states:
on�gured and waiting for input data (data in), pro
essing, or sending data

(data out).

A virtualization manager is implemented to re
eive exe
ution requests
oming

from pro
essors. It is responsible of loading the VFPGAs. As expe
ted, di�erent

tests show a gain regarding the exe
ution speed.

4

Fast Fourier Transform

18 Chapter 2. Uni�ed Thread Model

Figure 2.5: VFPGA runtime manager ar
hite
ture [El-Araby 2008℄

In [Verdos
ia 1994℄, authors ta
kle the issue of the hardware implementation of a

Data-Flow Graph (DFG) model of
omputation (MoC). In a DFG model, a pro
ess

an be represented by an a
tor. A
tors
ommuni
ate by sending ea
h other pa
kets

of data
alled tokens [Lee 1987℄. Although this model is generally stati
, this paper

de�nes a dynami
 model in whi
h a
tors inputs and outputs tokens
ome and go

from and to in�nite FIFOs. Every a
tors have two inputs and a unique output

allowing to de�ne three types of links between them:

•
lassi
al link: 2 → 2 (two outputs of two di�erent a
tors to the inputs of one

or two other a
tors)

• joint link: 2 → 1 (two outputs of two di�erent a
tors to the inputs of another

a
tor)

• and repli
a link: 1 → 2 (one output of an a
tor to the inputs of one or two

other a
tors)

A
tors are grouped in
lusters whi
h
ommuni
ate by Message Passing. Inside a

luster, a
tors are
alled Fun
tional Units (FUs). These FUs
ommuni
ate through

a
rossbar. Messages ex
hanged between FUs and between FUs and the host
or-

respond to the graph
on�guration and the produ
ed tokens. A FU is
omposed of

three elements (Fig. 2.6):

• "Control Unit": this
omponent permits to manage loops and
onditions, this

using Test Ma
ro

2.1. Related work 19

Figure 2.6: Fun
tional Unit ar
hite
ture [Verdos
ia 1994℄

• "Syn
hronization Unit": it is responsible for
ontrolling the presen
e of the

input tokens. Two signals are generated: ABIL if the two tokens are present,

ABOL with a delay of one
y
le to allow output �ring

• "Computation Unit": it
omposed of an ALU

5

, a multiplier and one Sele
tion

module. If a test is requested and that it passes, the output is a
tivated on

the arrival of the ABOL signal

The proposed model has three advantages. Firstly, all a
tors have the same ar-

hite
ture (two inputs - one input) so the same interfa
es with the external world,

then it allows to get an ar
hite
ture adapted to VLSI, and �nally all a
tors are able

to manage loops and
onditional instru
tions.

5

Arithmeti
 and Logi
al Unit

20 Chapter 2. Uni�ed Thread Model

Mu
h more
omplex a

elerators have then been developed, su
h as Hybrid

Thread [Agron 2009a℄. In this arti
le, the authors de�ne a model of POSIX

6

ompli-

ant hardware thread,
apable of pro
essing operating system
alls through a shared

memory, as software thread does (Fig. 2.7). A thread is
omposed of two �nite

states ma
hines (FSM). One used to answer to operating system requests and get

system
alls results, and the other one to pro
ess system
alls and get a

ess to a

heap. These FSMs are
ontrolled by the hardware a

elerators en
apsulated in the

User Logi

omponent.

Figure 2.7: Hybrid Thread model [Agron 2009a℄

Heap and sta
k are stored in an internal Blo
k RAM (BRAM) of the thread.

Like in a software POSIX thread, the sta
k is used to store the system
alls pa-

rameters. Moreover, in order to enhan
e the programmability of these threads, the

authors de�ned a high-level API whi
h allows the developer to des
ribe a hetero-

geneous appli
ation using the C language. A dedi
ated
ompiler written in Python

permits to translate the C
ode into a VHDL implementation of the Hybrid Thread.

In [Lubbers 2008℄, the authors introdu
e an operating system dedi
ated to re
on-

�gurable ar
hite
tures: Re
onOS. This operating system provides a homogeneous

abstra
tion layer to the threads, both software or hardware, and allows them to pro-

ess system
alls. This paper deals with the portage of Re
onOS on a Linux based

platform, and
ompares its performan
es with another one based on the eCOS op-

erating system. The goal is to demonstrate the portability of the
on
epts brought

by the Re
onOS ar
hite
ture.

6

Portable Operating System Interfa
e

2.1. Related work 21

In this operating system, every servi
es are managed by a software operating

system running on a pro
essor. Hardware system
alls are done through an API

des
ribed in a VHDL library. The hardware thread �nite state ma
hine is syn
hro-

nized with the software operating system in order it to pro
ess the system
all. The

interfa
e responsible for the
ommuni
ation is
alled OSIF for OS InterFa
e and

represents a set of registers a

essible through the pro
essor bus (Fig. 2.8).

Figure 2.8: Re
onOS hardware thread model [Lubbers 2008℄

Regarding the inter-thread
ommuni
ation, the thread heterogeneity is abstra
ted

asso
iating ea
h hardware thread with a software one, whi
h is a proxy or a del-

egate. When requested by a hardware thread, the system
all is exe
uted by the

orresponding software thread.

In order to link operating resour
es requested by the hardware thread with the

ones a

essible by the software one, a table of the used instan
es is maintained by

the delegate. In this way, the same hardware thread
an be used by several instan
es

of a software thread. This me
hanism has been implemented to foresee the future

use of the partial and dynami
 re
on�guration.

2.1.4 Con
lusion

As explained in the introdu
tion, our
hoi
e is oriented to the threading model.

Our goal is to propose a hardware thread model whi
h is able to
ommuni
ate with

software threads in the same way that what has been proposed by Hybrid Thread

[Agron 2009a℄ or Re
onOS [Lubbers 2008℄. This model has to be adapted to the

re
on�gurable platform and take advantage of the parallelism and the �exibility

o�ered by this type of platform. The de�nition of this model is the basi
 proposal

of this thesis and will lead us to de�ne in the next
hapters, an operating system

ar
hite
ture whi
h o�er the ability to abstra
t the spe
i�
ity of the hardware thread

regarding the software one.

22 Chapter 2. Uni�ed Thread Model

2.2 Thread model

2.2.1 Pro
ess de�nition

A pro
ess is de�ned as an independent stream of instru
tions, running on top of a

pro
essing element. A pro
ess permits to group some of a pro
essing element re-

sour
es together, su
h as the memory spa
e, the open �les, the signal handlers and

other information. Grouping resour
es inside a same entity fa
ilitates the manage-

ment of these resour
es by the running pro
ess [Tanenbaum 2001℄.

Pro
ess exe
ution is prote
ted by the fa
t that it has a private address spa
e.

Pro
esses are s
heduled by the kernel operating system and
ompete for the a

ess

to the pro
essing element. When a pro
ess is blo
ked by a system
all, the s
heduler

is responsible for saving the
ontext of this pro
ess and sele
ting another pro
ess

among the ones ready to be exe
uted.

2.2.2 Thread de�nition

A thread is exe
uted inside a pro
ess (Fig. 2.9). The main di�eren
e between a

thread and a pro
ess is that the latter has a full view of the memory spa
e address-

able by the pro
essor whereas threads inside a same pro
ess share the pro
essing

element resour
es owned by the pro
ess.

���������	
���
����

�������
�

��������	
�����

������

���������

�� ��

�������
�

�� �� ��

�������
�����

� ������

Figure 2.9: Pro
ess and Thread

A threading model provides the advantage to isolate appli
ation fun
tions ex-

e
utions regarding one to the others and so enfor
es parallelism when targeting

multi
ore platforms. It improves the programmability dividing appli
ation into sev-

eral tasks. In addition, a thread is easier to
reate or destroy than a pro
ess. A

simple representation of the thread life
y
le is depi
ted in Figure 2.10.

Moreover, as a thread is a sub-entity of a pro
ess, it has a smaller
ontext to

save than the latter. Indeed, it does not have to manage global resour
es su
h as

memory or CPU information. Thread
ontext mainly in
ludes registers and some

other lo
al values.

2.2. Thread model 23

����������	
�
����������

����	���������	
�
�

���������
���

������������
���

����� �����	

��		�	

������
����

�������

�������
	
��

	�
������

�	������

����

������

������

Figure 2.10: Thread life
y
le

2.2.3 Software thread model

Generally, it exists two ways to implement a thread model in an operating system.

Either in user spa
e or in kernel spa
e.

2.2.3.1 User thread model

In the user thread model, the operating system kernel is only aware of a single thread

in the pro
ess. Threads are s
heduled by a threads library implemented in the user

spa
e. The advantage of this model is that there is no need to modify the operating

system, whi
h is interesting if this one does not support the thread exe
ution model.

���������	
���
����

�������
�

��������	
�����

������

���������

�� ��

�������
�

�� �� ��

�������
�����

� ������

���������
������
�����

���������
������
�����

Figure 2.11: User Thread model

The user-level s
heduler allows only one thread to be a
tively running in the

pro
ess at a time. There is one thread table per pro
ess whi
h allows a fast
ontext

swit
h as there is no need to request a kernel intervention (Fig. 2.11). A lo
al

s
heduling poli
y is possible but is limited. For instan
e, as the user-level s
heduler

24 Chapter 2. Uni�ed Thread Model

annot manage a
lo
k interrupt, a round-robin s
heduling
annot be implemented.

Regarding the parallelism, the main drawba
k of this model is that a blo
king
all

from a thread would blo
k all the threads implemented inside the same pro
ess.

2.2.3.2 Kernel thread model

In the kernel thread model, kernel threads are separated tasks whi
h are asso
iated

with a pro
ess. In a kernel thread model, one kernel thread per pro
ess is
reated.

The pro
ess table and the thread table are both managed at the kernel level. A

preemptive s
heduling poli
y is used in whi
h the operating system de
ides whi
h

thread is eligible to share the pro
essor.

���������	
���
����

�������
�

��������	
�����

������

���������

�� ��

�������
�

�� �� ��

�������
�����

� ������

������
�����

Figure 2.12: Kernel Thread model

Moreover, when a thread performs a blo
king
all, its state is noti�ed to the

kernel whi
h
an de
ide to preempt the thread in favor of another ready thread. As

thread are managed at the kernel level, the drawba
k is that system
alls
osts are

higher than in the user thread model.

2.2.3.3 Hybrid thread model

In a hybrid thread model, several user-level threads are running on top of a kernel

thread (Fig. 2.13). A
ommonly used hybrid thread model is the POSIX threads

spe
i�
ation (Pthreads). POSIX stands for Portable Operating System Interfa
e.

Threads are user-level threads but are managed using a kernel-assisted
ontext-

swit
hing. It means that when a thread performs a system
all, if the
all is non-

blo
king, the thread rely on the user-level API. Otherwise, the kernel thread is

noti�ed that the thread is blo
ked and the kernel s
heduler
an try to �nd another

pro
ess whose at least one thread is runnable. This solution is more
omplex to

implement but tries to
ombine the best of the two models.

Finally, in embedded systems, the
ommonly used thread programming model is

the kernel threads model. The goal is to redu
e the memory footprint of the appli-

2.2. Thread model 25

���������	
���
����

�������
�

��
������

���������

�� ��

�������
�

�������
�����

� ������

���������
������
�����

���

�� ������
������

���

�� �� ��

������
������

�����

��� ���

�� ��

���������
������
�����

�� �� ��

Figure 2.13: Hybrid Thread model

ation as the kernel thread stru
ture is lighter than the pro
ess one. On the other

hand, performan
e is lower due to the ne
essity to regularly swit
h from the user

mode to the kernel mode. The hybrid thread model like POSIX tends to be adopted

be
ause the memory footprint be
ome negligible regarding the available resour
es

and above all be
ause it is a widely used standard in the
omputing domain. The

adoption of a standard being a good thing for the improvement of the appli
ations

portability.

2.2.4 Thread attributes

2.2.4.1 Storage stru
tures

At the time of its
reation, a thread is asso
iated with two storage stru
tures:

• a Data stru
ture: Data is where all of the program variables are stored. It is

broken down into storage for global and stati
 variables (stati
), storage for

dynami
ally allo
ated storage (heap), and storage for variables that are lo
al

to the fun
tion.

• a Sta
k stru
ture: The sta
k
ontains data about the program or pro
edure

all �ow in a thread. The sta
k, along with lo
al storage, is allo
ated for ea
h

thread
reated. While in use by a thread, the sta
k and lo
al storage are
on-

sidered to be thread resour
es. When the thread ends, these resour
es return

to the pro
ess for subsequent use by another thread.

2.2.4.2 Thread-private data

Thread-private data are data that threads
annot share between themselves. Mainly,

it in
ludes the following resour
es:

26 Chapter 2. Uni�ed Thread Model

• Thread identi�er: A unique number that
an be used to identify the thread.

• Priority: if the operating system allows spe
i�
ation of a thread priority, this

value would determine the relative importan
e of one thread to other threads

in the appli
ation.

• Call sta
k: The
all sta
k
ontains data about the program �ow or pro
edure

all �ow in the thread.

2.2.4.3 Thread-spe
i�
 data (TLS)

Threads
an have their own view of data items
alled thread-spe
i�
 data. Thread-

spe
i�
 data is di�erent from thread-private data. The threads implementation

de�nes the thread-private data at the kernel level, while the appli
ation de�nes the

thread-spe
i�
 data. Threads do not share thread-spe
i�
 storage, but all fun
tions

within that thread
an a

ess it.

Due to the design of the appli
ation, threads may not fun
tion
orre
tly if they

share the global storage of the appli
ation. If eliminating the global storage is not

feasible, using thread-spe
i�
 data is a good alternative.

2.2.5 Syn
hronization te
hniques among threads

Even if an appli
ation is thread-safe, in order to keep good performan
es, some

global resour
es have to be shared between threads. In this
ase, the most important

aspe
t of programming be
omes the ability to syn
hronize threads. Syn
hronization

is the
ooperative a
t of two or more threads that ensures that ea
h thread rea
hes

a known point of operation regarding to other threads before
ontinuing.

Threads
an be syn
hronized using operating system servi
es. These servi
es

ensure the developer that
riti
al resour
es are a

essed in a safe way and allow

threads to
ommuni
ate. The most
ommon syn
hronization primitives are:

• Mutexes

• Semaphores

• Condition variables

• Threads as syn
hronization primitives

• Message Passing

2.2.5.1 Mutexes

A mutual ex
lusion (mutex) is a
ooperative agreement between threads whi
h en-

sures that only one of the threads is allowed to a

ess the data or run
ertain

2.2. Thread model 27

appli
ation
ode at a time. The mutex is usually logi
ally asso
iated with the data

it prote
ts by the appli
ation.

Create, lo
k, unlo
k, and delete are operations typi
ally preformed on a mutex.

Any thread that su

essfully lo
ks the mutex is the owner until it unlo
ks the mutex.

Any thread that attempts to lo
k the mutex waits until the owner unlo
ks the mutex.

When the owner unlo
ks the mutex,
ontrol is returned to one waiting thread with

that thread be
oming the owner of the mutex. There
an be only one owner of a

mutex at a time.

2.2.5.2 Semaphores

Semaphores
an be used to
ontrol a

ess to shared resour
es. A semaphore
an be

thought of as an intelligent
ounter. Every semaphore has a
urrent
ount, whi
h is

greater than or equal to zero.

Any thread
an de
rement the
ount lo
king or taking the semaphore. Attempt-

ing to de
rement the
ount past 0
auses the thread that is
alling to wait for another

thread to unlo
k the semaphore. In the same way, any thread
an in
rement the

ount unlo
king or posting the semaphore. Posting a semaphore may wake up a

waiting thread if there is one present.

In their simplest form (with an initial
ount of 1), semaphores
an be thought of

as a mutual ex
lusion (mutex). The important distin
tion between semaphores and

mutexes is the
on
ept of ownership. No ownership is asso
iated with a semaphore.

Unlike mutexes, it is possible for a thread that never took for the semaphore to post

the semaphore.

2.2.5.3 Condition variables and threads

Condition variables allow threads to wait for
ertain events or
onditions to o

ur

and they notify other threads that are also waiting for the same events or
onditions.

The thread
an wait on a
ondition variable and broad
ast a
ondition su
h that

one or all of the threads that are waiting on the
ondition variable be
ome a
tive.

Condition variables do not have ownership asso
iated with them and are usually

stateless. A stateless
ondition variable means that if a thread signals a
ondition

variable to wake up a waiting thread when there
urrently are no waiting threads,

the signal is dis
arded and no a
tion is taken. The signal is e�e
tively lost. It is

possible for one thread to signal a
ondition immediately before a di�erent thread

begins waiting for it without any resulting a
tion.

2.2.5.4 Threads as syn
hronization primitives

Threads themselves
an be used as syn
hronization primitives when one thread

spe
i�
ally waits for another thread to
omplete. The waiting thread does not

ontinue pro
essing until the target thread has �nished running all of its appli
ation

ode.

28 Chapter 2. Uni�ed Thread Model

2.2.5.5 Message Passing

A message passing API
an be implemented on top of the previous me
hanisms.

Threads
an use this higher abstra
tion layer to syn
hronize and ex
hange data.

This API provides blo
king or non blo
king primitives to transparently send or

re
eive messages from a thread to another. Implementation
an be realized using

either the shared memory paradigm or a network proto
ol if a dedi
ated network is

available.

2.2.6 Con
lusion

Finally, to be
onsidered as a software thread equivalent, the operating system

managing the hardware threads has to provide them the ability to a

ess to the

same servi
es than the software ones. The hardware thread model has to take

it into a

ount, and spe
i�es additional me
hanisms whi
h allow the developer to

pro
ess system
alls.

2.3 Our Hardware Thread model

2.3.1 Context: The FOSFOR proje
t

2.3.1.1 Presentation

The FOSFOR proje
t is an ANR

7

proje
t started in January 2008 and
ompleted

in De
ember 2011. This is a
ollaboration between four partners: Thales Resear
h

and Te
hnology Fran
e based in Palaiseau, the ETIS lab lo
ated in Cergy-Pontoise,

the CAIRN from Lannion, and the LEAT based in Ni
e Sophia-Antipolis.

FOSFOR stands for Flexible Operating System FOr Re
on�gurable platform.

The aim of this proje
t is to de�ne a new kind of heterogeneous platform. This

platform is heterogeneous in the sense that threads and operating systems
ould be

implemented either in software (running on one of the pro
essors), or in hardware

(running in a partition of the FPGA).

Ea
h part
ould then be adapted regarding the deployed appli
ation. The goal

is to propose a homogeneous programming model for the appli
ation. This ar
hite
-

ture is done to demonstrate the re
on�gurable ar
hite
ture viability regarding the

development pro
ess
omplexity.

2.3.1.2 Platform ar
hite
ture

The FOSFOR ar
hite
ture is
omposed of multiple pro
essing elements
onne
ted

to a
entral bus (Fig. 2.14). We distinguish software pro
essing elements and hard-

ware pro
essing elements. Both implement respe
tfully a software and a hardware

version of the RTEMS

8

[RTE 1988℄ operating system. On ea
h pro
essor, a software

7

Agen
e Nationale pour la Re
her
he

8

Real-Time Exe
utive for Multipro
essor Systems

2.3. Our Hardware Thread model 29

operating system manages
lassi
 software threads whereas a hardware operating

system (HwOS) is able to manage re
on�gurable partitions. Hardware a

elerators

are s
heduled into these partitions.

������
���	�

��
�

���
�������	
�

�
����������
����

����	��

��	����	� ��	����	� ��	����	�

������

�� ��

�� �	������������� �� ���������������

�
������ �

�����!�"����	��

� �

��

���#

�$ �$ �$ �$

���# ���# ���#

�
�������	��

���	�������

�� �� �� �� ��

�����������

��#$

����������� �����������

����#$

����

�� ����������

��

��#$

��

��#$

��

�$ ����	���$%������� ���# ������&�����#	�"	%�%�

Figure 2.14: FOSFOR platform ar
hite
ture

The obje
tive is to provide at the user-level a homogeneous thread point of

view. To a
hieve it, we abstra
t hardware a

elerators into hardware threads. The

ar
hite
ture of these hardware threads is de�ned in details in Se
tions 2.3.2 and

2.3.3.

2.3.1.3 High-level
ommuni
ation me
hanisms

Communi
ation between threads
an be handled using two ways. For syn
hroniza-

tion and small data transfer, threads
an rely on the operating system servi
es.

These servi
es
an be lo
ally managed or shared between all pro
essing elements.

For larger amount of data, a middleware layer provides a message passing API with

Send and Re
eive primitives.

This middleware layer (Mw) is inserted between the appli
ation layer, based

on POSIX threads, and the operating system servi
es API. If a thread wants to

ommuni
ate with another one, it has a

ess to the simple middleware API using

transparent message passing proto
ol, or it
an a

ess dire
tly to the operating

system servi
es, su
h as Mutex or Message Queues primitives.

This high-level API
omposed of these two types of primitives has been ported

on the hardware side. From the user point of view, the appli
ation is only
omposed

of threads. Starting from here, an automati
 tool
an be expe
ted to generate both

30 Chapter 2. Uni�ed Thread Model

software and hardware
ode. For instan
e, basing the des
ription of the appli
ation

on the
omponents
an be a good solution to fa
ilitate the implementation of het-

erogeneous appli
ations on HRSoC platforms.

In software, the MPCI

9

layer in
luded in RTEMS is the base of the heterogeneous

ommuni
ation. It provides a transparent a

ess to distant servi
es. We extended

it to the hardware implementation of the servi
es. The bridge has to be transparent

to abstra
t both the lo
ation and the heterogeneity of the appli
ation threads. The

lo
ation of ea
h hardware thread whi
h dynami
ally
hanges regarding the available

slots is dynami
ally managed and abstra
ted by the middleware layer.

2.3.2 Hardware Thread spe
i�
ations

2.3.2.1 Obje
tives

In order to simplify the programming
omplexity of the HRSoC, hardware a

eler-

ators have to adopt the same behaviour as their software
ounterparts. To do so,

they should be able to obey the orders of the operating system. They also must have

the ability to
all operating system servi
es available in the whole platform, read

and write data from and to memories, and spe
i�
ally they should be asso
iated

with an interfa
e allowing the developer to
ontrol the exe
ution of these hardware

a

elerators. The hardware thread life
y
le should be equivalent to the software

one. All these features and interfa
es are assembled in order to en
apsulate the

a

elerator and so to de�ne what we
all a hardware thread.

2.3.2.2 De�nition

We de�ned a hardware thread to take advantage of the dynami
 re
on�guration

provided, for instan
e, in the Xilinx FPGAs. It is
omposed of two main parts:

a stati
 part whi
h
ontains all the interfa
es with the platform, and a dynami

appli
ation-spe
i�
 part, whi
h
ontains the A

elerator, the Finite State Ma
hine

(FSM)
ontrolling its exe
ution, and a private memory (Fig. 2.15).

Compared to a software thread, a hardware thread will run on a re
on�gurable

partition. This re
on�gurable partition
an be
ompared to a pro
ess, in whi
h the

logi
 resour
es are equals to the pro
essor resour
es shared between every threads

running inside this pro
ess. In this s
heme, a set of re
on�gurable partitions is a

pro
essing element
ontaining several pro
essor
ores. A parallel
an be done be-

tween a re
on�gurable partition and a pro
essor
ore.

Stati
 interfa
es
orrespond to the user-level API. It provides to the thread

an a

ess to the operating system and
ommuni
ation servi
es. The User FSM is

the sequential
ode exe
uted by the thread and �nally, the double port memory

onne
ted both to the A

elerator and the Network Interfa
e is used as the heap

and sta
k storage by the thread.

9

Multi-Pro
essor Communi
ation Interfa
e

2.3. Our Hardware Thread model 31

��������

�	�
������
���
�
������
������

��
����
��
������

��������
�� �����	

��
����

�����
�

���������

����

����

���������� ���������

!	���
���������

���
�����
"����

�������	�

Figure 2.15: Hardware Thread Ar
hite
ture

2.3.3 Hardware Thread ar
hite
ture

2.3.3.1 Operating System interfa
e

The stati
 part provides an interfa
e to intera
t with the operating system (OS

Interfa
e). It
ontains a spe
i�

omponent responsible for implementing the proto-

ol between a thread and the operating system
alled the OS Servi
es Component

(OSSC) (Fig. 2.16). This interfa
e is the same for all threads and
onsidered as

stati
. In this way, it
an be reusable by any hardware thread and so it
an ease

the thread preemption pro
ess. It is
omposed of a standard dual-port memory in

whi
h the thread
an write the identi�er of a system
all and its parameters. Upon

noti�
ation via a �SysCall� wire,
all parameters are read by the operating system

using a dedi
ated bus that
onne
ts all the re
on�gurable partitions. On
e the sys-

tem
all is done, return values are written ba
k in the memory and are read by the

thread.

This proto
ol allows a hardware module to perform system
alls with the exa
t

same semanti
 as pure software. Therefore we
an implement a
onsistent API for

both hardware and software threads, and greatly redu
e the heterogeneity gap.

2.3.3.2 System FSM

On
e instantiated by the operating system, this one
an
ontrol the System FSM

of the hardware thread to handle the a

elerator exe
ution. This FSM supports

four basi

ommands: start, suspend, resume and stop. Dynami
 and partial re
on-

�guration feature provided by Xilinx FPGAs allows the s
heduler to dynami
ally

re
on�gure the dynami
 part of the thread and so to temporarily share a given par-

tition between several threads, as it is done on the software side where a CPU is

32 Chapter 2. Uni�ed Thread Model

����������	

�
�
�

�
�

�
�
�

�����

������
�����������

��������	
�������
�

	��������

	������

�������

�		����

���

�������

�		����
	���	��

����� �

���������������!

�		����

������

���������������"

###

���������������$

%����&�$

Figure 2.16: OSSC ar
hite
ture

shared by software threads.

2.3.3.3 Hardware Thread life
y
le

However, a hardware thread has a spe
i�
 life
y
le
ompared to a software thread.

The operating system has to be able to manage temporarily and spatially the hard-

ware thread, so it has to take into a

ount if the thread is running and if it is

on�gured or not. Nonetheless, orders given by the operating system to a hardware

thread are the same as the ones given to a software one and in
lude starting, stop-

ping, or resuming its a
tivity.

From the s
heduler point of view, a hardware thread has the same three
lassi
al

states than a software thread: Ready, Waiting and Running. But as the
ompo-

nents of a hardware thread are inherently parallel, and it is lo
ated in a dynami
ally

re
on�gurable partition, we added new states to take into a

ount the
on�guration

status, as shown in Fig. 2.17.

In order to mitigate the re
on�guration laten
y, the s
heduler
an
hoose to

keep a thread
on�gured while it is waiting on a blo
king system
all. Furthermore,

in order to keep the network
omplexity at a manageable level, we forbid the pre-

emption of a hardware thread while there is a pending
ommuni
ation with this

thread. This is why we re�ne the Waiting state into three states:
on�gured and

non-preemptible,
on�gured and preemptible, and non
on�gured. The ability for a

thread to
laim itself as non-preemptible when
ommuni
ating involves to limit the

size of the pa
kets ex
hanged on the network, this in order to ensure that a thread

annot monopolize a re
on�gurable slot.

Similarly, the Running state is re�ned into preemptible and non-preemptible

states. To simplify the s
heduling management, a hardware thread
omes ba
k into

2.3. Our Hardware Thread model 33

��������
�����������	
��

�������
�������	
��

�������
�����������	
��

���	���
�������	
��

���	���
����
���	�����

�
���

�������

����	
��

����	
��

����	
��

�������	��

��

�������	��

��

����	
��

��������
 ��

��

��

��

��

�

�
��

��

��

��

����	���������������������

��
���	�����������

��������
�	��

�
���������
�	��

�
��� ���	���

�������
�������	
��

��

��

�������

����	
��

���
���

���
���
����
�� �������
����
��

Figure 2.17: Software and Hardware Thread States

a preemptible state by notifying it expli
itly with a blo
king system
all or a spe
i�

primitive.

2.3.3.4 User FSM

The user FSM de�nes the behaviour of the hardware thread. States de�ned into

this FSM allow the user to pro
ess system
alls, send or re
eive data to or from the

network and order the a

elerator to perform its fun
tion.

It
an be
ontrolled by an external operating system via a
ontrol register. The

operating system is therefore able to start, restart, suspend or resume the thread

exe
ution. This
ontrol register is mapped in the OSSC memory at o�set 0x00 (Fig.

2.16).

In Figure 2.18, blue ellipses
orrespond to the states whi
h are presents in the

System FSM of the thread. The RUNNING state allows the Pro
essing Logi
 Ele-

ment exe
ution, RECV and SEND states are middleware
alls, whereas LOCK and

UNLOCK are
lassi
al mutex primitives. In order to fa
ilitate task implementation

for the developer, we provide a VHDL pa
kage in
luding every available system

alls pro
edures. These pro
edures are responsible of writing
all parameters in the

OSSC memory and to get ba
k return values. This set of pro
edures,
oupled with

the
ommon interfa
es, allows to easily generate the hardware thread sour
e
ode

(Fig. 2.19).

2.3.3.5 Network interfa
e

A hardware thread would be
ommonly used in order to pro
ess large amount of

data. To be useful, it should provide an e�
ient way of
ommuni
ation. A network

34 Chapter 2. Uni�ed Thread Model

������������

	��
������

�����

������	�	�� ���
����� �������

����

�
��
 ���	

����

�������

�����������

�����

���������

������

�������

���
����

��
 �!
��	�"

#�����

��#���

�������

 �!
��	�"

����	��

�����

Figure 2.18: Hardware Thread FSM example

��������	
���
���
������

��
�������������������

���������
��
�����������	���

������������
��
�����������	�	���

���������
��
�����������	���

���������

���������� !�"

#$���������$���%�
�������&�&����
������'$�$����
��(��������������
����������������$���
��)*+,�����(�
����
�������)*+,�����(���
��������*+�����(�)*+,-'$�$���.
���������/����.���$�/�0�
������%��12#3�"�����������
������������������$���
����+4�
�������1��
������������������$���
��������$���
��������"�%��
���5
���������+4���
��������*+���+4-'$�$���.�'$�$��6.���$�/�0�

/������� !�"

/������$������

������/�������

2��#2��$�"

Figure 2.19: Hardware Thread HDL �les example

interfa
e is responsible for
reating and de
oding pa
kets, sent and re
eived, to and

from a dedi
ated network. Be
ause threads inside a HRSoC
an run in parallel, the

ideal environment for a hardware thread is a networked system in whi
h it
ould

ommuni
ate with another hardware thread from point to point.

The Network Interfa
e (NI) is the stati
 interfa
e of the Hardware Thread (Fig.

2.15). It is
onne
ted to a dedi
ated Network-on-Chip (NoC)[Devaux 2009℄ imple-

mented in order to o�er a fast medium of
ommuni
ation between hardware threads

and memories. It also ensures them a fast way of
ommuni
ation with software

threads.

2.3. Our Hardware Thread model 35

NI ar
hite
ture is shown in Fig. 2.20. Two FIFOs allow the User FSM to sta
k

Send and Re
eive requests. These requests are then respe
tively pro
essed by a

Pa
ketizer and a Depa
ketizer. A DMA is
onne
ted to one of the port of the

thread internal memory. This DMA is driven on one hand by the Pa
ketizer to

read data in memory and send it through the NoC and on the other hand by the

Depa
ketizer to re
eive data from the NoC and writes it into the internal memory.

����
���

���

��	�
��

�
	���

�������

�
��

����

��
��

���

��	���
��� ����	���
���

�
�� ������

��!��"

#$���!
��%
�"

���

�
�� �
��

���

&
�! &
�!

���'

!��� $��!���

�� ��

$��!��� !���

��%
�"
 ������

���(
��)
�)�$
�

��������	
�����
�

�����	�

���'

Figure 2.20: Network Interfa
e ar
hite
ture

Elements
onne
ted to the NoC
ommuni
ate through it by sending data pa
kets

over the network. We spe
i�ed and implemented a proto
ol to provide two main

features to a thread. The �rst one
onsists in sending data to an element
onne
ted

to the NoC. This element
an be another thread, a memory or another kind of

peripheral. The se
ond is re
eiving data from another element. In the
ase of

a passive element, su
h as a memory
onne
ted on a upper leaf of the NoC, we

de�ned spe
ial pa
kets to allow write operation in one shot and read operation in

two phases : one request from the thread and an answer from the memory. The

proto
ol adopted for the network has been thought to provide these two features in

a transparent way for the developer. This proto
ol is detailed in Appendix A.1.

36 Chapter 2. Uni�ed Thread Model

2.4 Hardware Thread programming model

2.4.1 Operating System servi
es proto
ol

2.4.1.1 Thread
ommands

When the operating system wants to send an order to a hardware thread, it has to

write it in the OS Servi
es Component (OSSC) memory (Fig. 2.16). The �rst word

of this memory is the Status Word. The Status Word entry is both used to re
eive

the operating system
ommands and the system
all status
ode. The
ontent of

the latter is explained in Se
tion 2.4.1.2. The
ontent of the former is detailed in

Figure 2.21. The operating system
ommand is always given priority over the thread

system
all. In this
ase, the
ommand �eld in the status word is de
oded by the

OSSC and the order is transmitted to the System FSM whi
h
ontrols the state of

the User FSM. Just after its
on�guration, the hardware thread is set in a ready

state by the System FSM.

���������	

���
��

����� �����

��������	
������
����
�
���

Figure 2.21: OSSC Status Word
ontent

When re
eiving the Start
ommand, the thread goes to the INIT state whi
h

must be de�ned by the developer (Fig. 2.18). When re
eiving the Suspend
om-

mand, the hardware is stu
k in its
urrent state by the System FSM and no registers

modi�
ation is allowed in this state. This
ommand
an be used to save the
ontext

of the thread.

2.4.1.2 User API

On the other side of the OSSC, when a thread wants to pro
ess a system
all, it

must
all a VHDL pro
edure whi
h will transparently handle the OS interfa
e. A

pro
edure takes as parameters the primitive parameters, the registers to store return

values as well as
ontrol signals to
ommuni
ate with the OSSC (Fig. 2.22).

A pro
edure is a Finite State Ma
hine whi
h sta
ks the parameters and the

requested servi
e in the OSSC memory (Fig. 2.23). Then it waits for the op-

erating system a
knowledge. A
tually, this a
knowledge is the dete
tion by the

OSSC of a read request from the operating system. After this, the pro
edure waits

for the operating system to answer. Even if the thread pro
esses a non-blo
king

all, it will re
eive a Status Code notifying if the
all su

eeded or not. This Sta-

tus Code is de�ned by the underlying operating system. It
ould be a value like

OS_SUCCESSFUL, OS_FAILURE or something spe
i�
 to the requested servi
e

2.4. Hardware Thread programming model 37

��������	

��
������

�������

�������

�������

�	
�����

��
���
�
	

�����	����

������������
�	
�����

������

�����	������

�����	��
�

��������	�

��������

���

�����

��
�����

����	�

��
��
�
�

�	
�����

�	
�����

�	
�����

�	
�����

���

��

�	���
	�

���
	���
�

��	���
�

Figure 2.22: System Call pro
edure

like ERR_MUTEX_INVALID or ERR_MSG_QUEUE_FULL.

�������������	

���
������

���
������

���������������

�	���������

�	���������

��������������� ����!��"#���"���"�$��"�
���%����"������&"�'"'��(

�"�"����(�)���'"�"��� ��"� �"��� ����
�&"��(��"#���!�� �����"�

�&"� �(��"#� ��!�� � ��� '�������"�� ���� �
�&"��)"�����!��(��"'��"�����&"��������
����
�&"�� �&"�)���"���"� %����� *��� �&"� ���
���%"�+�)� ��!�����&"������������

���"� �&"� ��� ���%"��+� �&"�)���"���"�
!"�� �&"� �"����� $� �"�� ,"*��"� �"������!�
���" *

�����������

Figure 2.23: System Call pro
edure steps

The advantage when disso
iating the user
ode from the operating system spe
i-

�
ity is that the appli
ation
an be easily ported on another operating system or

API. It just requires some modi�
ation in the OS Servi
es Component to be
om-

38 Chapter 2. Uni�ed Thread Model

pliant with the targeted operating system.

2.4.2 Network
ommuni
ation proto
ol

In the
ontext of the FOSFOR proje
t, we had to de�ne the stru
ture and the

behaviour of the interfa
e between a hardware thread and DRAFT Network-on-Chip

(NoC). This interfa
e should allow threads to pro
ess non-blo
king send and re
eive

requests. All requests are pro
essed sequentially without interruption. Namely, for

a given request, all pa
kets are sent or re
eived the one after the other.

The maximum pa
ket size is de�ned at
on�guration time, namely when syn-

thesizing the hardware platform. The Network Interfa
e
an a

ess to the internal

memory of the thread. This a

ess allows it to load data from the memory in order

to send it over the network and to get data from the network in order to store it in

the internal memory.

A
ommon abstra
tion level has been de�ned in the middleware layer. The

ommuni
ation pro
esses de�ned in software are adapted in hardware to allow them

to
ommuni
ate in a transparent way with the software threads.

2.4.2.1 Supported requests

The two �rst basi
 requests supported by the Network Interfa
e are the Send and

Re
eive primitives (Fig. 2.24). A Send request
onsists in sending one or several

pa
kets over the network. Pa
ket size is �xed by
ommuni
ation medium design (ie.

the NoC). A pa
ket is
omposed of a header followed by data to transmit. Data and

header are represented by 32-bit width �its. A re
eive request
onsists in waiting

for a pa
ket to
ome from the network. It is a passive request whi
h involves no

transmission from the requesting thread.

���������	�
��
���������	�
��

���� ����

������

���	��

�����
���

���

����������
����������
�
�
����������
����������
���
���

�����

���� ��!�

���������
��

���������
��

���� ��!�

������

���	��

�����
���

���

����������
����������
�
�
����������
����������
���
���

�����

���������
��

�	�������������� �	����������������

�

�

�

Figure 2.24: Network Interfa
e Send and Re
eive proto
ol

The two others supported requests are the Write and Read primitives (Fig.

2.4. Hardware Thread programming model 39

2.25). A Write request is similar to a Send request ex
ept that additional header

�its are sent after the two main �its. The main �its are essential to ensure a
or-

re
t routing inside the network. The �rst �it
ontains the sender and re
eiver port

address whereas the se
ond one
ontains the number of �its in
luded in the pa
ket.

Additional headers indi
ates the address of the targeted bu�er in the remote mem-

ory and the number of words to read or write.

���������	�
��
���������	�
��

���� ����

��������	�
��	��

��
���

�������
���������

���

����������
����������
�
����������
����������
���

�����

���� ��!�

����
��������

������������

���� ��!�

��
���

��
���

�������
���������

���

����������
����������
�
����������
����������
���

�����

����	�����	���
��	�������	���

�������������

� �

���������	�
��
���������	�
��

���� ����

��������	�
��	��

��
���

�������
���������

���

����������
����������
�
����������
����������
���

�����

���� ��!�

����
��������

������������

���� ��!�

��
���

��
���

�������
���������

���

����������
����������
�
����������
����������
���

�����

����	�����	���
��	����	�	���

!��	��������

������������

����	�����	���
��	����	�	���

�

"

�

#

Figure 2.25: Network Interfa
e Write and Read proto
ol

This proto
ol allows a hardware thread to e�
iently and dire
tly
ommuni
ate

with others hardware threads and also to ex
hange data with software threads using

memory bu�ers. The bridge visible in Figure 2.14 is responsible for translating

the messages between the pro
essor bus and the network-on-
hip. It permits to

get a homogeneous API and memory mapping between the software and hardware

threads.

2.4.3 A

elerator interfa
e

The a

elerator represents the main fun
tion of the hardware thread. As the in-

ternal stru
ture of a hardware thread is inherently parallel, we implement pipeline

me
hanisms between this fun
tion and the
ommuni
ation features in order to take

advantage of this parallelism (Fig. 2.26).

In the hardware thread, user appli
ation is des
ribed in the User FSM. This is

40 Chapter 2. Uni�ed Thread Model

in this state ma
hine that the user is allowed to pro
ess operating system
alls and

to be able to perform pipelining. From a fun
tional point of view, as the network-

on-
hip is full-duplex, the user is able to simultaneously run the Network Interfa
e

to send or re
eive data, and the hardware a

elerator to pro
ess these data taking

advantage of the double port internal memory.

���������	
���

���������	
���

������

�������� ��������

��������

	����� 	�������

��������

	�������

������

Figure 2.26: Parallel pro
essing using pipelining

To do so, the three modules whi
h are the Network Interfa
e Pa
ketizer, the De-

pa
ketizer and the Pro
essing Logi
 Element, should be able to syn
hronize. Ea
h

module is
onne
ted to a syn
hronization
ontroller (Fig. 2.27). This
ontroller

has a FIFO in whi
h the User FSM
an sta
k exe
ution requests. The
ontroller

pro
ess ea
h request one after the other, whi
h will impli
itly syn
hronize exe
ution

requests for a given module.

On the other hand, syn
hronization between two modules is expli
itly expressed

in the user request. This request should
ontain two pie
es of information:

•
onditions to start a request pro
essing, it means with whi
h module a syn-

hronization is ne
essary and how many syn
hronization have to be realized.

• and a mask whi
h identify modules waiting for a syn
hronization in order to

notify them the end of the pro
ess.

At the User FSM level, when the user wants to send or re
eive data, as well as

pro
ess it, he just have to send a simple request to the syn
hronization
ontroller.

On
e the request is bu�ered, the
ontroller sends ba
k an a
knowledge whi
h permits

to the User FSM to send a new request or to
all an operating servi
e without waiting

the end of the request pro
essing.

2.5. Con
lusion 41

��
������	�
���
�

������

���	
���	��
�

���
������������

��������
����

���

���

��
����	�
���
�

������

���	
�����
�

����

������

	���

���	
�����
�

���	
���	��
�

	���

������

�����
�����
����������

���

��������
����

��������
����

������

������

���
������������

���
������������

Figure 2.27: Syn
hronization Module

2.5 Con
lusion

In this
hapter we proposed a thread model whi
h
an a

ess to operating system

servi
es and whose the behaviour is
lose to a software one. Moreover, we introdu
ed

an additional programming model inspired from the Syn
hronous Data-Flow model.

This allows to program hardware threads with a higher level programming model

than the thread model.

All these features allow us to
onsider a hardware a

elerator as a real thread.

Obviously, even if they are similar, at low-level software and hardware threads
an-

not be managed in the same way by an operating system. This is why we need

dedi
ated te
hniques to manipulate hardware threads, espe
ially when the obje
-

tive is to be able to preempt them on the available slots provided by the platform.

This issue is the topi
 of the next
hapter.

Chapter 3

Hardware threads preemption

using Dynami
 and Partial

Re
on�guration

Contents

3.1 Introdu
tion . 43

3.2 Related works . 44

3.2.1 Preemption me
hanisms . 44

3.2.2 Re
on�guration a

elerators 46

3.2.3 Design tools . 49

3.3 FPGA re
on�guration knowledge 51

3.3.1 Virtex 5 FPGA resour
es . 51

3.3.2 FPGA
on�guration . 52

3.3.3 Bitstream parser . 54

3.4 Preemption me
hanisms . 58

3.4.1 Context management servi
e 58

3.4.2 Re
on�guration servi
e . 59

3.4.3 Relo
ation Servi
e . 59

3.5 Design �ow for hardware threads relo
ation 61

3.5.1 Standard �ow . 61

3.5.2 Problemati
s . 62

3.5.3 Relo
ation �ow . 65

3.5.4 Experimented tools . 69

3.5.5 Adapted Isolation Design Flow 71

3.6 Con
lusion . 77

3.1 Introdu
tion

Numerous works have been done about the management of the dynami
 and partial

re
on�guration, espe
ially the preemption of hardware a

elerators. These works

rely on the de�nition of hardware a

elerators as hardware threads, and de�ne

44

Chapter 3. Hardware threads preemption using Dynami
 and Partial

Re
on�guration

me
hanisms to provide this important feature to handle these threads on top of

an operating system.

In parallel, design tool �ows had to be rethought in order to o�er the ability to

design re
on�gurable platforms
omposed of independent re
on�gurable slots. This

low-level feature would ease the hardware threads s
heduling by an operating system

providing a �exible way to relo
ate module from one slot to another.

These two points are dis
ussed in this
hapter. A state-of-the-art of di�erent

preemption me
hanisms is introdu
ed in Se
tion 3.2. Se
tion 3.4 details our work

targeting the Virtex 5 FPGA family. Then the design �ow issue is ta
kled in Se
tion

3.5 where problemati
 and solutions are detailed before to be implemented. Finally,

Se
tion 3.6 summarizes our
ontribution and explains how it
an be integrated into

an operating system ar
hite
ture, making a link to the next
hapter.

3.2 Related works

3.2.1 Preemption me
hanisms

In [Kühnle 2006℄, Be
ker et al. in
lude in their dynami
ally re
on�gurable system

des
ribed in [Grimm 2004℄ a 2-Dimensional (2D) module relo
ator. In this system a

module
an only be relo
ated on an area whose resour
es are horizontally homoge-

neous regarding its point of origin. As they target Xilinx devi
es, FPGA resour
es

are always verti
ally homogeneous.

In parti
ular they target the Virtex-2 Pro FPGA family. However, one of the

spe
i�
ity of these
hips is that, on
ontrary of latest FPGAs, they
an only be

dynami
ally re
on�gured in 1-Dimensional (1D), that is to say it is ne
essary to

re
on�gure a whole
olumn of resour
es. To over
ome this issue and to o�er 2D

relo
ation me
hanisms, they propose to use the read-modify and write-ba
k method.

It
onsists in reading ba
k the module
on�guration, modifying it to pla
e the

module in the wanted area and writing-ba
k the bitstream.

The glit
h-less property of the re
on�gurable matrix ensures that if the same

data than the one whi
h is
urrently
on�gured is written in the memory, no glit
h

would disturb this data. Due to this property, they
an modify one module of a

olumn without
hanging the others implemented in the same
olumn.

The bitstream is modi�ed using the Jbits software [Gu

ione 1999℄ provided

by Xilinx for Virtex-II devi
es whi
h is running in parallel on a
omputer. This

bitstream is sent through the UART. From here, the downloaded bitstream does

not
ontain information about the bitstream lo
ation. It is added later by the

relo
ator.

Another issue raised in this paper is the �exibility needed for the
onne
tion

between the dynami
 module and the rest of the system. To leverage it, Virtual

Routing Channels are pla
ed near ea
h module. When re
on�guring the system, the

router near the module
an be dynami
ally linked to one of the slots of the routing

hannel (Fig. 3.1). These slots
an be re
on�gured a

ording to modules needs and

3.2. Related works 45

Figure 3.1: Virtual Routing Channels

so allow to
onne
t several modules of the same
olumn.

The paper [S. Corbetta M. Morandi M. Novati 2009℄ also deals with the 2D bit-

stream relo
ation. The introdu
ed relo
ator is named Birf and has been realized to

be used on Virtex 4 and 5. The relo
ation is limited to Sli
es-based modules. The

use of BRAMs and DSPs in re
on�gurable modules is prohibited in this design �ow.

There are no spe
i�
 design
onstraints as this �ow relies on old Xilinx tools options

(10.1 and above), whi
h unfortunately are not available in
urrent tools anymore

(13.1 and up).

In [T. Be
ker 2007℄, authors perform task relo
ation on stri
tly homogeneous ar-

eas. The relo
ator
omes in two versions : a software one and a hardware one. If it

exists non homogeneous resour
es from one partition to another, it means BRAMs

or DSPs, relo
ation
an still be done if they are not used by the design. In this
ase,

olumns are
onsidered as empty and not re
on�gured by the relo
ator.

In [Kallam 2009℄, the authors propose a method to relo
ate dynami
 modules

on the �y. The prin
iple is to perform a read-ba
k of the bitstream, word after word

(a word is 32 bits wide). Then the relo
ator pro
esses ea
h word in a pipeline in

order to relo
ate it in the destination area. It o�ers a gain in memory o

upan
y as

there is no need to store the totality of the partial bitstream anymore.

This is also interesting regarding the exe
ution speed be
ause using a BRAM

as storage memory o�ers a very fast a

ess to data. This te
hnique is well suited

for module relo
ation but does not allow to implement preemption me
hanisms.

However it has the advantage to show that dynami
 re
on�guration speed
an be

improved regarding the original ICAP
ontroller provided by Xilinx. This
ontroller

an a

ess to high-
apa
ity memory storage but is pro
essor-dependent. A

eler-

ating the partial re
on�guration pro
ess would allow to target a larger range of

real-time appli
ation.

46

Chapter 3. Hardware threads preemption using Dynami
 and Partial

Re
on�guration

Figure 3.2: (a) Implementation of PRR-PRR relo
ation (b) Top-Level blo
k diagram

of ARC [Kallam 2009℄

3.2.2 Re
on�guration a

elerators

[Liu 2009℄ proposes a design spa
e exploration of di�erent ar
hite
tures to improve

the
on�guration time of the ICAP driver when loading a partial bitstream. All tests

have been done on a Virtex 4 platform (ML405 Development Board). In addition

to the IP
ores provided by Xilinx, the OPB HwICAP and the XPS HwICAP, three

other solutions are asserted (Fig. 3.3).

The �rst solution is based on a DMA

1

engine running aside of the HwICAP

ontroller and feeding it through the pro
essor bus. The se
ond one is a
ustomized

instan
e of the XPS HwICAP whi
h allows it to be master on the pro
essor bus

and so a
t like a DMA
ontroller. Finally, the last ar
hite
ture
onsists in adding

a Blo
k RAM inside the ICAP
ontroller in order to store the bitstream and so

dramati
ally redu
e the transfer laten
y.

In summary, the DMA and the Master ar
hite
tures respe
tively o�er a speed-

up of 5.5 and 16 regarding a Mi
roblaze-platform using
a
he memory and the

XPS HwICAP. As for the BRAM solution, it permits to rea
h the theoreti
al limits

of the re
on�guration port but it must be reserved for small re
on�gurable modules.

FaRM [Duhem 2011℄ stands for Fast Re
on�guration Manager. This
omponent

is master on the PLB bus and so
an dire
tly a

ess to an external memory (Fig.

3.4). FIFOs are implemented to store the partial bitstream and allow to pro
ess

pre-fet
h load to hide a part of the re
on�guration overhead. It relies on
ompres-

sion without loss te
hniques to redu
e the amount of data to store in the FIFO.

Moreover, even if Xilinx re
ommends to operate the ICAP at 100MHz and so allows

1

Dire
t Memory A

ess

3.2. Related works 47

Figure 3.3: ICAP a

elerators solutions [Liu 2009℄

a maximum throughput of 400MB/s, the solution provides by FaRM
an over
lo
k

the ICAP at 200 MHz and so allows in
ertain
ases to pro
ess
on�guration with

a maximum throughput of 800 MB/s.

Figure 3.4: FaRM ar
hite
ture [Duhem 2011℄

Upar
 [Bonamy 2012℄ stands for Ultra-Fast Power-aware Re
on�guration Con-

troller. Like FaRM this
ontroller relies on de
ompression te
hniques and over
lo
k-

ing to enhan
e the re
on�guration pro
ess. However, they use a better
ompression

algorithm and a
ustomized BRAM for bitstream storage (Fig. 3.5). The latter

permits them to over
lo
k the ICAP at 362.5 MHz and so to rea
h a maximum

throughput of 1433 MB/s without
ompression, and 1008 MB/s with
ompression.

In the last
ase, the BRAM size of 256 KB allows to store maximum bitstream of

992 KB whi
h is more than 40% of the Virtex 5 SX50T FPGA full
on�guration �le.

The solution o�ered by Ko
h et al. [Hansen 2011℄ is
urrently the most e�
ient

regarding the re
on�guration throughput. Their a

elerator provides a wider data

path size than the original ICAP primitive extending it to 64 bits. In addition they

also rely on two di�erent
lo
ks: the �rst one to fet
h the input data, and the se
-

48

Chapter 3. Hardware threads preemption using Dynami
 and Partial

Re
on�guration

Figure 3.5: Upar
 ar
hite
ture [Bonamy 2012℄

ond one whi
h must operate at twi
e the frequen
y of that of the �rst one (Fig. 3.6).

Figure 3.6: ICAP Hard Ma
ro blo
k diagram [Hansen 2011℄

On a Virtex 5 platform, they
reate a Hard Ma
ro and a
hieve to feed the ICAP

with a
lo
k running at 550 MHz. Above this frequen
y, the
on�guration pro
ess

freezes and it is ne
essary to reboot the ICAP. This ar
hite
ture allows them to rea
h

a throughput of 2200 MB/s. This throughput
an only be a
hieved with bitstream

whose the size
an be
ontained into the FIFO of 64 KB. However, in future work the

3.2. Related works 49

addition of DMA me
hanisms and de
ompression engine
ould lead to improve the

a

ess to bigger external storage memories. Also, it should be noti
ed that during

readba
k, in order to ensure that the re
on�guration memory of the FPGA is read

orre
tly, this operation is still done at 100 MHz, that is to say at the
lassi
al

throughput.

3.2.3 Design tools

Regarding the design tools, the standard ones provided by Xilinx do not o�er the

ability to design independent and relo
atable dynami
 modules. A

ordingly, new

tools have been developed by the
ommunity to permit the development of design

using alternative
onstraints ne
essary to
ontrol at �ne-grain the pla
ement and

the routing of both the stati
 and the dynami
 modules.

RapidSmith [Lavin 2011℄ is a JAVA API whi
h allows to manipulate XDL

2

�les.

It relies on a
omplete database about the resour
es ar
hite
tures of ea
h Xilinx

FPGA devi
es (Fig. 3.7). It allows the developer to implement its own pla
er-

router going from the XDL format to the proprietary NCD

3

format used by the

Xilinx tools.

Figure 3.7: RapidSmith s
reen
apture [Lavin 2011℄

OpenPR [Sohanghpurwala 2011℄ is an open-sour
e software based on the same

routing engine whi
h permits to
reate independent partition using blo
ker ma
ros

[Ko
h 2010a℄. These ma
ros prevent the stati
 routing from
rossing inside the

re
on�gurable partitions (Fig. 3.8). However this tool is not integrated into the

standard �ow and the number of supported devi
es is limited.

2

Xilinx Des
ription Language

3

Native Cir
uit Des
ription

50

Chapter 3. Hardware threads preemption using Dynami
 and Partial

Re
on�guration

Figure 3.8: OpenPR s
reen
apture from FPGA Editor [Sohanghpurwala 2011℄

In order to keep using the Xilinx tools and the support of all existing devi
es, the

new Isolation Design Flow [Corbett 2012℄ provides additional options to segregate

the partitions in a design. Segregation in
ludes both the use of the logi
al resour
es

and the use of the routing resour
es (Fig. 3.9). Basi
ally, it was
reated to ta
kle se-

urity issues in
ryptographi
 systems, allowing safe fun
tion dupli
ation. However,

it
an be de�e
ted in order to design homogeneous and relo
atable partitions.

Figure 3.9: Isolation Design Flow s
reen
apture from FPGA Editor [Corbett 2012℄

3.3. FPGA re
on�guration knowledge 51

All these design tools have been experimented to pro
ess module relo
ation in

Virtex 5 FPGA devi
es. Results and
omparisons are detailed in Se
tion 3.5.4.

3.3 FPGA re
on�guration knowledge

Our obje
tive is to provide preemption me
hanisms on Virtex 5 FPGA, whi
h
ould

be applied in the future to Virtex 6 or even Virtex 7 FPGA with minimal
hanges

in the pro
edure. To do so, we �rst have to be well aware of how this kind of FPGA

is re
on�gured and parti
ularly how the
on�guration bitstream is organized. This

is the topi
 of the next se
tion whi
h will then lead us to propose preemption me
h-

anisms, before ta
kling the design �ow issue.

3.3.1 Virtex 5 FPGA resour
es

Logi
 resour
es are mainly represented by the Con�guration Logi
 Blo
k (CLB). A

CLB is a pro
essing unit of Xilinx FPGAs. Ea
h CLB is
onne
ted to a global swit
h

matrix for signal routing and is
omposed of two Sli
es. It exists two types of Sli
es

(Fig. 3.10): whereas Sli
es-L are sli
es
ontaining logi
 elements, namely LUTs

4

and Flip-Flops, Sli
es-M are sli
es done to be used as distributed memory. They

ontains also some Flips-Flops, but instead of LUTs it o�ers double ports memory

and shift registers. Amid the others logi
 resour
es, there are inputs-outputs,
lo
ks

(CMT : Clo
k Management Tile) and every inter
onne
tions between the di�erent

logi
 blo
ks.

Figure 3.10: Sli
e-L and Sli
e-M [Xilinx 2009
℄

4

Look-Up Tables

52

Chapter 3. Hardware threads preemption using Dynami
 and Partial

Re
on�guration

As Sli
es
an be very
ostly when used as memory
omponents, FPGA matri
es

ontain also physi
al Blo
k RAM (BRAM). On a maximum size of 36Kb, BRAMs

are disposed in
olumns. A BRAM
an either serve as storage memory or be used

as FIFO.

Like memory, arithmeti
 operations are resour
e
onsuming when using logi

blo
ks. This is why Digital Signal Pro
essing (DSP) blo
ks have been added in

Virtex 5 FPGA and allow to pro
ess arithmeti
 operation on 48-bits wide data.

3.3.1.1 FPGA organization

The FPGA is divided into rows and
olumns (Fig. 3.11). Rows are numbered in

as
ending order from the
enter of the FPGA. There may be a maximum of 20 rows.

Rows are indexed from 0 to 9 on ea
h side. The height of ea
h row is 20 CLBs,

whi
h
orresponds to a
olumn served by a global
lo
k line (HCLK).

������� ���	
�� ����
��	����

	����

	����

	����

	����

	����

������

�������� ��������������� ���������

���������

Figure 3.11: FPGA organization

3.3.2 FPGA
on�guration

A bitstream is a sequen
e of
ommands and data sent to the
on�guration port of

the FPGA. If we look further in the understanding of the re
on�guration pro
ess,

these
ommands are written in the registers of a
on�guration driver. In the
ase of

the dynami
 and partial re
on�guration, this driver is the ICAP driver.

3.3.2.1 Con�guration port proto
ol

Con�guration
ommands allow the user to read and write
on�guration data in

the
on�guration memory, to
ontrol the re
on�guration pro
ess and to
he
k if any

error o

urs during the
on�guration with the help of the CRC

5

register. Commands

are sent as pa
kets of 32-bits words. There are two types of pa
kets:

5

Cy
li
 Redundan
y Che
k

3.3. FPGA re
on�guration knowledge 53

• Pa
kets of type 1 that are used to read and write
on�guration registers. It

�rst sends a header in whi
h we de�ne the order to be a
hieved (NOP, Read

or Write), the register in whi
h we wish to operate (CRC, Control, Command,

Address Frame, ...) and the number of words we want to read or write. Then

it sends the
on�guration memory data.

Figure 3.12: Type 1 Paquet Header Format [Xilinx 2009b℄

• Type 2 pa
kets that are used to send or re
eive larger blo
ks of data. A pa
ket

of type 1 has to be sent previously in order to spe
ify the address where data

has to be sent.

Figure 3.13: Type 2 Paquet Header Format [Xilinx 2009b℄

3.3.2.2 Frame address

Among all the available
ommands, one of the most interesting regarding the pre-

emption is the
ommand whi
h allows to spe
ify the address where the
on�guration

ontent is written. It means whi
h area of the FPGA is targeted. An area is lo
ated

using the address of its �rst frame. A frame is the smallest unit of re
on�guration of

the FPGA. A frame is 1-bit width, and its height
orrespond to a row of the FPGA.

A frame has a total of 1312 bits. Ea
h frame has a unique 32 bits width address

whi
h is divided into �ve parts (Fig. 3.14).

The �rst part (bits 23-21) represents the Blo
k Type. In a Virtex FPGA, there

are four types of blo
ks:

• the re
on�gurable blo
ks and inter
onne
t: it in
ludes CLBs, IOBs, DSPs,

BRAMs, and
lo
ks

• the BRAMs
ontent

54

Chapter 3. Hardware threads preemption using Dynami
 and Partial

Re
on�guration

Figure 3.14: Frame address [Xilinx 2009b℄

• the spe
ial blo
ks that are used for the partial and dynami
 re
on�guration. In

ea
h
olumn there is a spe
ial frame available at minor address 0. In this frame,

the 21
st
word
orresponds to the HCLK, three of the four
on�guration bits

following the 12-bits of the ECC (error
orre
ting
ode) are used for example

for the
apture of registers.

• the BRAMs non-
on�guration blo
ks whi
h yield devi
e-spe
i�
 data [Xilinx 2009b℄

The se
ond part is the Top/Bottom Row bit whi
h indi
ates if the frame is

lo
ated in the upper part of the FPGA (Top = 0) or in the lower one (Top = 1). It

should be noti
ed that ex
ept for the HCLK rows, it is ne
essary to reverse the bit

order of the
on�guration frames to relo
ate a frame from the top to the bottom of

the FPGA, and inversely.

Row Address: It
orresponds to the row address as indi
ated in Figure 3.11.

Major Address: it
orresponds to the
olumn of resour
es that we want to re
on-

�gure. In the
ase of the BRAMs, the
on�guration and the
ontent is targeted by

two di�erent addresses.

Minor Address: it represents a frame inside a
olumn of resour
es. These frames

allow to a

ess to the routing and logi

on�guration of ea
h
olumn, as shown in

Figure 3.15.

The number of frames to write is dependent of the type of the targeted resour
es.

However, ea
h frame is
omposed of 41 words of 32 bits width. Figure 3.16 shows

how a frame is
omposed along of a CLB row.

3.3.3 Bitstream parser

Beyond the need to know where are written the data, it is ne
essary to �nd this

information inside a bitstream in order to be able to modify it on-line. This infor-

mation will be useful to be able to relo
ate a module. To do so, we need to parse

the partial bitstream and identify its
ontent.

Ea
h generated bitstream starts by a header indi
ating the design name, the

FPGA part in whi
h it has to be loaded, the time and date of
reation, as well as

the payload
on�guration data size (Table 3.1).

3.3. FPGA re
on�guration knowledge 55

���

���

���

���

����

���

���

���

���

���

���
��
	

�
�

��
	

�
��

��
	

�
��
�

��
�

����

����

��
	

�
�

��
	

�
��

��
	

�
��
�

��
�

����

����

����

����

��
	

�
�

��
	

�
��

��
	

�
��
�

��
�

���

���

���

���

���

����

���

���

���

���

���

���

��
	

�
�

��
	

�
��

��
	

�
��
�

��
�

��
	

�
�

��
	

�
��

��
	

�
��
�
�

��
�

���

����

��
	

�
�

��
	

�
��

��
	

�
��

��
�

���

���

���

���������		�
�

������� !��� �
�������
���
��
�

�� !"#
��������	 �$

��
��
��

������

��"!%� � !���%#�	��!�

����������

��"!%� � !���%#�	��!�

&�
 &�

���

���

���

���

���

���

���

Figure 3.15: Resour
es memory
on�guration for the Virtex 5 ar
hite
ture

Figure 3.16: Frame
omposition [Xilinx 2009b℄

3.3.3.1 Initialization
ommands

Ea
h bitstream in
ludes a �rst sequen
e of
ommands whi
h permits to syn
hronize

with the FPGA, to initialize the CRC register, and so on. This sequen
e di�ers

regarding the bitstream type if it is a full or a partial bitstream. For a partial

56

Chapter 3. Hardware threads preemption using Dynami
 and Partial

Re
on�guration

Field name Size in byte Default value

Magi
 Number Length 2 0x0009

Magi
 Number 8 0x0FF00FF00FF00FF0

Null Chara
ter 1 0x00

Half-Word 2 0x0001

'a' 1 0x61

Design Name Length 2 �

Design Name � �

Chara
ter ';' 1 �

User ID 17 UserID=0xFFFFFFFF

Null Chara
ter 1 0x00

'b' 1 0x62

Part Name Length 2 �

Part Name � �

Null Chara
ter 1 0x00

'
' 1 0x63

Date Length 2 0x000B

Date 10 �

Null Chara
ter 1 0x00

'd' 1 0x64

Time Length 2 0x0009

Time 8 �

Null Chara
ter 1 0x00

'e' 1 0x65

Bitstream Length 4 �

Table 3.1: Bitstream header
ontents

bitstream, the sequen
e of
ommands is des
ribed in Table 3.2.

A part of this sequen
e whi
h interests us is the one su

eeding the writing of the

Write CFG
ommand. It starts by a writing in the FAR register (Frame Address

Register) of the starting address of the re
on�guration. Followed by the number

of words to write
orresponding to the number of
olumn to re
on�gure in the ad-

dressed row.

3.3.3.2 Con�guration data

The re
on�guration is done row by row. When swit
hing from one row to another,

a new address is sent in the FAR register and also the number of new words to write

(Fig. 3.17).

3.3. FPGA re
on�guration knowledge 57

Command value Des
ription

0xFFFFFFFF Dummy Word (x8)

0x000000BB Bus Width Word

0x11220044 8 / 16 / 32 bus width

0xFFFFFFFF Dummy Word

0xFFFFFFFF Dummy Word

0xAA995566 Syn
 Word

0x20000000 No Operation (NOP)

0x30008001 Type 1 write 1 word to CMD register

0x00000007 Reset CRC

0x20000000 NOP

0x20000000 NOP

0x30018001 Type 1 write 1 word to ID register

0x02E9A093 ID Code

0x30008001 Type 1 write 1 word to CMD

0x00000001 Write CFG
ommand

0x20000000 NOP

0x30002001 Type 1 write 1 word to FAR

0x00100780 FAR value

0x20000000 NOP

0x30004000 Type 1 write 0 word to FDRI

0x50002031 Type 2 write 8241 words to FDRI

Table 3.2: Bitstream initialization
ommands

��������
�	
���
������
������

��������
������
���
����

���
���
�

���
���
�

���
���
�

������ ������
����

������ ������
����

������ ������
����

Figure 3.17: Multiple Rows bitstream
ontent

For partial bitstreams, in addition to
on�guration data, an additional frame is

58

Chapter 3. Hardware threads preemption using Dynami
 and Partial

Re
on�guration

written. The presen
e of this frame is not do
umented but may
orrespond to an

extra frame for syn
hronizing the HCLK row that is at the
enter of the frame. This

frame is found at the end of ea
h
on�guration data
orresponding to a FPGA row.

3.3.3.3 Desyn
hronization
ommands

After the
on�guration data, a series of NOP (No Operation) is sent to allow the

FPGA to
omplete the re
on�guration. This is followed by a
ontrol
ommand of

the CRC and an ICAP desyn
hronization.

Command value Des
ription

0x3000C001 Type 1 write 1 word to MASK register

0x00001000 CTL0 - Enable System Monitor Overtemperature Power Down

0x30030001 Type 1 write 1 word to CTL1 register

0x00000000 NULL

0x30008001 Type 1 write 1 word to CMD register

0x00000003 Last Frame (LFRM)

0x20000000 Dummy Word (x 101)

0x30002001 Type 1 write 1 word to FAR register

0x00ef8000 Row = 15, Top = 0, Blo
k type = 7

0x30000001 Type 1 write 1 word to CRC register

0x6efe
e57 CRC value

0x30008001 Type 1 write 1 word to CMD register

0x0000000d Desyn

0x20000000 NOP

3.4 Preemption me
hanisms

Preemption implies the ability for an operating system to save the exe
ution
ontext

of a hardware thread running in a given slot, to load a new one into this slot, and

later, to restore the
ontext of the �rst hardware thread in any of the available slots

of the platform. The last requirement involves to be able to relo
ate a hardware

thread from one slot to another.

To manage hardware threads in this way, using the information from the pre-

vious se
tion, we implement three operating system servi
es whi
h are a
ontext

management servi
e, a re
on�guration servi
e and a relo
ation servi
e.

3.4.1 Context management servi
e

There are two ways to save the
ontext of a hardware thread. Either using
he
k-

pointing me
hanisms [Huang 2008℄ or pro
essing partial readba
k [Lee 2010℄. The

�rst one is intrusive and implies that the developer inserts
he
kpoints in his sour
e

ode. Che
kpoints are the only moments where the preemption is enabled. To

3.4. Preemption me
hanisms 59

preempt a thread, the s
heduler has to wait until the thread rea
hes a
he
kpoint

and so saves its
ontext. Consequen
es are a time overhead at ea
h
he
kpoints and

laten
y in preemption de
ision. The advantage is that the
ontext size
ould be

dramati
ally redu
ed, and ideally to zero.

The se
ond way is the readba
k me
hanism whi
h is te
hnology dependent but

whi
h avoids real time failure sin
e preemption
ould be done immediately without

risk to lose information. This is what we have
hosen to use. Readba
k
onsists

of reading the
ontents of the partial zone where the module is lo
ated. In the

ase of the hardware threads, segregation between stati
 part and dynami
 part

permits task
ontext redu
tion and o�ers a
ommon interfa
e in order to integrate

di�erent a

elerators in the same partition. It should be noti
ed that appli
ation

must ensure preemption is disabled when the thread is
urrently
ommuni
ating to

avoid blo
king or data loss.

3.4.2 Re
on�guration servi
e

A design using the partial and dynami
 re
on�guration te
hnique provided by Xil-

inx FPGAs [Lysaght 2006℄, is
omposed of a stati
 part and several re
on�gurable

partitions in whi
h re
on�gurable modules
an be loaded. Using this te
hnology,

the operating system is able to s
hedule hardware threads [Belaid 2009℄, without

resetting the rest of the system. For real-time appli
ations, both readba
k and re-

on�guration overheads
an be minimized using dedi
ated hardware re
on�guration

ontroller, su
h as FaRM [Duhem 2011℄, Upar
 [Bonamy 2012℄ or the solution of-

fered by Hansen et al. [Hansen 2011℄. For instan
e, FaRM, whi
h is used in the

design test detailed in Se
tion 3.5.5, allows to pro
ess
on�guration with the theo-

reti
al maximum throughput of 400 MB/s at a frequen
y of 100 MHz.

����

���
����	
��
�

����
��
���	�

����
�

����
��	�
�

���������

���
����	
��
�

����
��� ���

Figure 3.18: ICAP driver for Partial Re
on�guration

3.4.3 Relo
ation Servi
e

As logi
 resour
es are
riti
al in FPGAs, we would want to be able to run several

threads in the same re
on�gurable slot at di�erent times. One of the issue en
oun-

tered in the
lassi
al �ow is that a partial bitstream for a given module is generated

60

Chapter 3. Hardware threads preemption using Dynami
 and Partial

Re
on�guration

for one slot and only one. To load a module on another slot, we need either another

bitstream, whi
h is memory
onsuming, or a relo
ated bitstream, whose
reation is

time
onsuming.

In embedded system, with the in
rease of the FPGAs size, and so of the bitstream

size, the amount of memory needed to store one spe
i�
 partial bitstream for ea
h

targeted partition is be
oming more and more prohibitive. This is why a relo
ation

servi
e seems to be the best
hoi
e. To relo
ate a partial bitstream, we implemented

two servi
es: a bitstream parser and a bitstream relo
ater.

A bitstream parser is needed to �nd the right information in the bitstream. Xil-

inx FPGAs are organized in rows and
olumns. Ea
h
olumn is
omposed of several

frames, whi
h is the smallest re
on�gurable entity. To re
on�gure a FPGA, the

ICAP reads a bitstream, writes address information in the Frame Address Register

(FAR) of the ICAP and writes frames
ontents into FPGA memory. Information

whi
h interests us in the bitstream are the FAR values and the CRC value. The

pro
ess to relo
ate a partial bitstream is detailed in Fig. 3.19.

�������

���

���� ��������

��	
�������

��	
���

��������

����� ����	�
� �������

��	
�������

��	
���

��
�
���

�
�
�������������

����
���������
�������

�

�
���
�����

���
�������������
���

			

��
���������

����
			

����������������
��
����
����

��
�
���������
���

�����������
�������

������������
��
��

�������

�������������

��
�

Figure 3.19: Partial bitstream relo
ation pro
ess

This pro
ess needs two bitstreams, one for the sour
e partition and the other

implemented for the target partition. A readba
k is done on the �rst partition. The

resulting
ontext is then saved in a new bitstream. The headers and footers of the

se
ond bitstream are then modi�ed to target the wanted partition modifying the

FAR value and adding a newly
omputed CRC value. In order to de
rease the time

overhead of the CRC
omputation, we implemented a dedi
ated hardware module.

Details on this implementation
an be found in Appendix B.2. Finally, merging

3.5. Design �ow for hardware threads relo
ation 61

the headers and the saved
ontext, we get a new relo
ated bitstream. A list of

the di�erent available partitions, identi�ed by their FAR value and their size,
an

be
reated in order to simplify this pro
ess. This solution would make the se
ond

bitstream unne
essary.

3.5 Design �ow for hardware threads relo
ation

3.5.1 Standard �ow

In the latest versions of the Xilinx software ISE Design Suite (IDS), the realization of

a design
omposed of re
on�gurable modules, but not relo
atable, has been greatly

simpli�ed and automated for the end user.

3.5.1.1 Dynami
 partitions

The user, from a
omplete stati
 design, has the ability to
reate one or more dy-

nami
 partitions. In ea
h of these partitions, it will be able to instantiate one or

more modules. Modules implemented in the same partition have to share the same

inputs and outputs, without ne
essarily using all of them. If a module need to be

implemented on several partitions, one instan
e of this module is
reated for ea
h

partition (Fig. 3.20).

��������	
��
�
��
��������

��������	
��
�
��
��������

��������

�������	

�������	

�������

��������������	

��
�

��
���������
��������

��
���������
��������

Figure 3.20: Partial re
on�guration: Partition and modules

3.5.1.2 Proxy Ma
ros inter
onne
tions

On
e ea
h module dynami
ally assigned to a partition, the user has to pla
e and

route the stati
 partition. At this moment, we end up with a design whose stati

part is pla
ed and routed and whi
h
ontains "proxy ma
ro", whi
h are bus ma
ros

automati
ally pla
ed by the tool (Fig. 3.21). These "proxy" are pla
ed in the dy-

nami
 partitions, at the boundaries with the stati
 partition. They ensure that the

inputs and outputs signals of the modules sharing the same partition go through

62

Chapter 3. Hardware threads preemption using Dynami
 and Partial

Re
on�guration

the same path and that there will be no routing issues during the re
on�guration of

this partition.

��������

	
�
�
����
�
���

��
������������
���
�
�����

��������

	
�
�
����
�
���

��
������������
���
�
�����

��������
��

���
�

������
���
��������
���

��������

	
�
�
����
�
���

��
������������
���
�
�����

���� ����

Figure 3.21: Proxy Ma
ro Pla
ed and Routed example

3.5.2 Problemati
s

Module relo
ation
onsists in moving a module from a dynami
 partition to an-

other. This pro
ess for
es us to de�ne relo
atable modules. To do so, the following

onditions are mandatory:

• the resour
es provided to a module should remain the same from one partition

to another. Namely, partitions should be homogeneous regarding resour
es

relative lo
ation. These resour
es in
lude every logi
 blo
k (LUTs, BRAM,

et
...), as well as the routing between these di�erent blo
ks.

• the
onne
tion between the module and the stati
 partition should be able

to support the dynami
 re
on�guration and should be homogeneous from one

partition to another.

3.5.2.1 Partitions inter
onne
tion

The �rst issue whi
h is en
ountered is that from a partition to another, even if they

have identi
al shapes and have the same inputs and outputs, the "proxy ma
ro" au-

tomati
ally generated for these inputs and outputs by Xilinx tools are not mandatory

pla
ed at the same relative lo
ation inside the partition.

Help with design
onstraints, it is possible to
ontrol where these proxy are

pla
ed but not the route between this proxy and the dynami
 partition. Con
retely,

it is possible to pla
e an input or output signal of the module, and so a proxy, on

a given sli
e, but it is not possible to
onstrain whi
h input or output of the sli
e

will be used. From a partition to another, routing in ea
h partition will be likely

di�erent and so the relo
ation of a module will lead to a routing failure.

3.5. Design �ow for hardware threads relo
ation 63

To leverage this issue, several works listed in the state of the art used hard bus

ma
ro (Sli
e ma
ro in Figure 3.22). These hard ma
ros are manually pla
ed on

both sides of the boundary between two modules, a stati
 one and a dynami
 one

or both dynami
s. Routing between the two modules is de�ned inside the ma
ro

and remains the same during the implementation.

������

��	�
��
	��
�
��

������
���	����
	��
�
��

��
����	���

����������

��	
�	���������

�����������

�
��

Figure 3.22: Sli
e Ma
ro

It was possible, in the 10.1 version of PlanAhead and earlier, to manually add

bus ma
ro. In the latest version, the tool allows the user to de�ne pla
ement
on-

straints whi
h pla
e the bus ma
ro on the boundary between the stati
 partition

and the dynami
 module. However, during the implementation, these
onstraints

are not always respe
ted and the ma
ro
ould be moved in the stati
 part as the

tool keeps automati
ally pla
ing its own proxy ma
ro (Fig. 3.23).

������

��	�
��
	��
�
��

������
���	����
	��
�
��

������	���

����������

��	
�	���������

�����������

�	����������

������

��	�
��
	��
�
��

������
���	����
	��
�
��

�����	���

�
��

�
��

Figure 3.23: PlanAhead Sli
e Ma
ro pla
ement

It should be noti
ed that there is a way to suppress the automati
 insertion of

proxy ma
ro setting the PARTITION_PIN_DIRECT_ROUTE
onstraint to true.

This has the e�e
t to route the partition output dire
tly to the stati
 partition

64

Chapter 3. Hardware threads preemption using Dynami
 and Partial

Re
on�guration

without inserting an additional proxy ma
ro. However, the bus ma
ro previously

pla
ed are always repla
ed somewhere inside the stati
 partition.

This is due to the fa
t that the partial re
on�guration �ow provided by PlanA-

head do not support a dynami
 part to be overlapped by a stati
 one. A new �ow

must be found using only the stati
 �ow provided by PlanAhead and inserting addi-

tional
onstraints during the implementation of ea
h module whi
h would keep the

required pla
ement and prohibition
onstraints.

3.5.2.2 Partitions routing

The se
ond issue whi
h need to be solved regarding the relo
ation of dynami
 mod-

ules is the partitions routing. The routing matrix of Xilinx FPGAs is known to be

glit
h-less. Namely, when the routing matrix is re
on�gured, if there is no modi�
a-

tions to the
on�guration memory of a routing wire, this one will not be disturbed

by the re
on�guration. As a
onsequen
e, routing wires of the stati
 partition are

allowed to go a
ross the dynami
 partitions without being a�e
ted by the dynami

re
on�guration pro
ess (Fig. 3.24). This me
hanism fa
ilitates the routing pro
ess

and improves its e�
ien
y regarding timing
onstraints.

����

����	
��
���	�

�
��
����	
��
���	�

����������
����	
��
���	�

�������
��
���	�

�
��
�������
��
���	�

��	�����������
���������

�������	�����
��	��

Figure 3.24: Stati
 route through Re
on�gurable Partition

The drawba
k when the obje
tive is to be able to dynami
ally relo
ate the par-

tial modules over every available partition is that when the module
ontext will be

saved, in addition to the module routing information, the stati
 routing whi
h go

a
ross this module will also be saved into this
ontext. As a
onsequen
e, when

relo
ating the module, the stati
 routing of the target partition will likely not be

the same than in the sour
e one. So this routing may be
ut and may produ
e a

routing failure.

3.5. Design �ow for hardware threads relo
ation 65

3.5.3 Relo
ation �ow

We have to propose a new design �ow whi
h is able to apply the pla
ement and

prohibition
onstraints needed to design homogeneous and independent partitions.

To deal with this issue, this se
tion introdu
es the theoreti
al pro
edures steps of

su
h a design �ow and the possible solution o�ered by the alternative tools.

3.5.3.1 Pro
edure steps

The di�erent steps to make a design supporting dynami
 modules relo
ation are

des
ribed in Figure 3.25:

1) OFFLINE : implementation of a stati
 design
ontaining empty slots to host the

dynami
 modules

2) OFFLINE : insertion of inter
onne
tion
omponents between dynami
 and stati

modules

3) OFFLINE : separate implementation of ea
h dynami
 module prohibiting the use

of the stati
 resour
es

4) OFFLINE : merging of the di�erent implementations

5) INLINE : module exe
ution stop and
ontext save

6) INLINE : modi�
ation of the module
ontext and
omputation of the new CRC

value in order to pla
e it in a new slot

7) INLINE : restoration of the module
ontext and restart

��

��

��

���

��

��

��

��� ���

���� ����

����

��

��

��

���

����

��

��

��

����

����

�	
��
������
�� ������������
��

Figure 3.25: Relo
ation �ow

66

Chapter 3. Hardware threads preemption using Dynami
 and Partial

Re
on�guration

3.5.3.2 Stati
 partition design: Global methodology

As we
annot use the partial re
on�guration �ow provided by PlanAhead as is, we

have to use the stati
 �ow and add the ne
essary
onstraints to separate the dy-

nami
 modules from the stati
 part of the system.

The �rst
onstraint to be applied is the pla
ement
onstraint. Dynami
 par-

titions
an be delimited by prohibiting the pla
ement of stati
 resour
es. This

prohibition is done using the CONFIG PROHIBIT
onstraint on the a�e
ted areas

in the UCF
onstraint �le. Unfortunately, this
onstraint prevents both the auto-

mati
 pla
ement of modules by the ISE pla
er, and the manual pla
ement using the

onstraint �le, so no bus ma
ros
an be added at this stage Fig. 3.26.

����

����	
��
���	�

�
��
����	
��
���	�

����������
����	
��
���	�

�������
��
���	�

�
��
�������
��
���	�

��	�����������
���������

�������	�����
��	��

Figure 3.26: Stati
 pla
e

It is also ne
essary to apply routing
onstraints on dynami
 areas to ensure that

no wire from the stati
 routing
rosses the re
on�gurable area. No
onstraints are

de�ned in the Xilinx tools that would meet both needs. One solution is to use

blo
ker ma
ros, su
h as de�ned by Ko
k. et al. [Ko
h 2010a℄ [Ko
h 2009℄ in their

design tool named Re
obus Builder. In addition to blo
k the routing, blo
ker ma
ros

o

upy resour
es available in the dynami
 area and so a
t as a pla
ement
onstraint.

Ma
ros
an be generated using the XDL language (Xilinx Des
ription Language).

This language allows to de�ne the lo
ation of the di�erent
omponents (internal and

external signals of the modules) on the
ir
uit (Sli
es, BRAM, DSP, ...) and their

on�guration (LUT used or multiplexer, values
ontained in the BRAM, ...). It
an

also des
ribe the routing between these
omponents, whi
h will serve to blo
k the

routes within the re
on�gurable areas.

The use of su
h a language permits to automate the generation of ma
ros. The

stru
ture of the FPGAs matrix being regular at a
ertain level, it is possible to
reate

ommuni
ation bus
omposed of a same ma
ro repeated along the boundaries, and

to blo
k areas of varying sizes.

3.5. Design �ow for hardware threads relo
ation 67

3.5.3.3 Ma
ro generation with XDL

An XDL �le allows to des
ribe a FPGA design at several levels of its implementation:

• after the pla
ement step: the �le des
ribes the lo
ation of the di�erent used

resour
es, as well as how they are
on�gured.

• after the routing step: in addition to pla
ement information, the routing be-

tween the di�erent resour
es is des
ribed using the semanti
s of the Nets.

The design is des
ribed in the �le as a Module. This module has Ports, used to

des
ribe the input and output ports of the ma
ro, as well as Sli
es, BRAMs, DSPs,

and Nets.

������

���	
�

��
��
����
���
������

��
��
����
���
������

��
��
��������
���
����������

��	
��	�

��	
��	�

���

���	
�

Figure 3.27: XDL File stru
ture

The Sli
es are des
ribed spe
ifying their
oordinates, and the
on�gurations of

their LUTs, multiplexers and registers. These
on�gurations indi
ate whi
h inputs

and outputs of the Sli
e are used, and what is the logi
 equation of the LUTs.

In addition to the resour
es dedi
ated to logi
 fun
tions, global routing matri
es

are part of the FPGA resour
es. These matri
es are lo
ated within ea
h logi

resour
e (CLB, BRAM or DSP), and outside thereof.

Matri
es provide a

ess to internal inputs and outputs for ea
h resour
e. Ea
h

input and output has a single routing path possible to the global routing matrix.

External matri
es o�er more possibilities and allow to go to other global routing

matri
es in order to �nally rea
h the internal matrix of the end point of the route

(Fig. 3.28).

The Nets are used to des
ribe the inter
onne
tions between the various resour
es

of a design. An inter
onne
tion is a route, whi
h
an propagate a signal from

one point to another. In the XDL des
ription, a route goes from the output of a

68

Chapter 3. Hardware threads preemption using Dynami
 and Partial

Re
on�guration

����������	
���
�	�
�� ��	������
�	�
�� ��
��

��
��

������������

�����
��	��������	
�����
�	������	

����
�

��	�

Figure 3.28: Internal and external swit
h matri
es

resour
e to the input of several other resour
es. It passes through Programmable

Inter
onne
tion Points (PIPs). These PIPs are entry points and / or output of the

routing matri
es.

The transition from a global swit
h matrix to another follows a
ertain logi
 in

the routing paths that
an be taken from a given PIP. PIPs of external matri
es are

identi�ed with a tag in their name. This tag permits to identify a pattern. There

are three types of PIPs: PIPs starting a pattern (BEG), intermediate PIPs (MID)

and PIPs ending a pattern (END). A pattern is a set of three matri
es, whose the

relative positions of the three types of PIPs, namely, BEG, MID and END, are

identi�ed by their name (Fig. 3.29).

����������	
���
�	�
��

��� ������ ���

����������	
���
�	�
�� ����������	
���
�	�
��

Figure 3.29: PIP types

In the XDL des
ription, a PIP does not only refer to an inter
onne
tion point,

but to a segment
onne
ting two points of inter
onne
tion. The segments des
ribed

relate only to internal segments, that is to say that the segments
onne
ting two

external matri
es are impli
itly des
ribed (Fig. 3.30).

The XDL language is a good solution to
ontrol design routing at a very �ne

grain. Several of the alternative design tools presented in the next se
tion turn on

3.5. Design �ow for hardware threads relo
ation 69

��������	
������
�������	
������ �����

�����

��������	
������
�������	
������ �����

�����

�

���
�����
���

������� ����
��

�������

��

��� ��������	�
����
��
��������������
������				 ����	�
����
��
������������ 				�				�
	��				��������!�				���				
�				�
������
��������				�
	��				
"����!�				���
��������				
�				�������				�

�����				 #�$�%���
���$���������!���� 				��				�
���				
"����!�				����
��				
�				
�������				�
���				��������!�				�
���
�������				
�					����				�

�

Figure 3.30: XDL Net example

the use of this language.

3.5.4 Experimented tools

3.5.4.1 RapidSmith

RapidSmith is a tool developed by the Brigham Youth University. It provides a

framework to easily manage XDL �les. It was designed in order to allow a developer

to implement his own routing tools. In our
ase, it
ould be used to design
ustom

ma
ros, and espe
ially it
ould help us to
reate blo
ker ma
ros in order to apply

�ne routing
onstraints.

However,
reating an e�
ient routing tools may take many time. Fortunately,

another interesting tool
alled OpenPR has been realized. This tool is based on the

same engine as RapidSmith and o�ers a higher level of abstra
tion in the design of

independent partitions.

3.5.4.2 OpenPR

OpenPR is a tool based on the TORC [Steiner 2011℄ framework whi
h provides

a routing engine for the Xilinx FPGAs. OpenPR was
reated to o�er the same

features as those provided by the Xilinx Partial Re
on�guration Toolkit whi
h was

available for ISE 9.2, but not for the latest versions. It allows the design of empty

dynami
 region
onne
ted to the stati
 partition through hardware bus ma
ros. It

is thought to be modular and above all extensible.

No IHM is provided with this tool and all manipulations are done in
ommand

line. A spe
i�
 dire
tory stru
ture has been adopted to ease the
hoi
e of the

implementable modules inside a given proje
t. A proje
t is de�ned by an XML �le

70

Chapter 3. Hardware threads preemption using Dynami
 and Partial

Re
on�guration

in order to fa
ilitate a future integration inside an IDE

6

.

Using this tool, we managed to design dynami
ally re
on�guration appli
ations

on a Virtex 5 LX110 devi
e. Unfortunately, depending on the
omplexity of the

design, the routing
onstraints are not always respe
ted, and the router
an ignore

them or keep stu
k inside the pla
e and route pro
ess. Nonetheless, this tool stays

promising and its open-sour
e
hara
teristi
 makes it more �exible than a propri-

etary solution, even if more
omplex to implement.

3.5.4.3 Xilinx Isolation Design Flow

The Isolation Design Flow (IDF), alternatively
alled Se
ure Chip Crypto (SCC)

design �ow, has been
reated to target fault-tolerant systems, espe
ially in the

riti
al appli
ations in whi
h safety and fault
ontainment is a primary obje
tive.

This �ow allows a designer to isolate the di�erent modules of his system against

ea
h other. This is done regarding both the logi
 and the routing resour
es.

In this �ow, ea
h module to isolate is de�ned and synthesized separately. A top-

level module groups all these modules as bla
k boxes. To ensure a
orre
t isolation,

the implementation of these modules is done under some
onstraints. Namely, every

onne
tions between two isolated partitions have to pass through trusted routes (Fig.

3.31).

����������

��������
����������

��������

��	
������	��

��������	��

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����������	
��

�����	�

�����	�

�����	�

�����	�

�������

����������	
���������

���

���

���

���

��
��

������	�������	����

��	
�����

��	
�����

��	
�����

��	
�����

Figure 3.31: Trusted routes

A trusted route spe
i�es that an output of a partition has to pass through a

dire
t route. If the output is used as a load for two di�erent inputs, this signal

have to be split into two di�erent signals passing through a LUT resour
e, and so

6

Integrated Development Environment

3.5. Design �ow for hardware threads relo
ation 71

forms what is
alled a trusted route. These
onstraints have to be applied to every

inter-partitions signals when it is ne
essary ex
ept for the global signals su
h as the

lo
k signal.

This �ow has the advantage to be integrated into the PlanAhead tool provided

by Xilinx and is available now for the Virtex-4, Virtex-5, and Spartan-6 devi
es

and soon for the Kintex-7 devi
es. In the following, we
hoose to investigate the

adaptation of this design �ow in order to perform relo
ation on a Virtex-5 platform

.

3.5.5 Adapted Isolation Design Flow

3.5.5.1 Hardware platform

Initially, the test of the Isolation Design Flow for the relo
ation of hardware module

has been experimented on the simple design shown in Fig. 3.32, and implemented

on a Virtex 5 SX50T FPGA using the version 13.1 of IDS

7

. It is a Mi
roblaze-based

platform
omposed of the FaRM IP des
ribed in Se
tion 3.2.2 and used to re
on-

�gure the dynami
 partitions, a hardware CRC module used to
ompute the new

CRC of the relo
ated module as well as two dynami
 modules.

����

����
��
	�	

��� �
����

��������

�������
����� ���!"

��#!����$�
 !�#����!

����

%&���&��

&�����

��

��!����#!�

%���'(������ ���)�!�

�
���*

�������*

�������
����!"

�	�

Figure 3.32: Test design

There is no external memory. The only o�-
hip
onne
tions are the FPGA
lo
k

and the reset button. The two re
on�gurable modules implement respe
tively a

7

ISE Design Suite

72

Chapter 3. Hardware threads preemption using Dynami
 and Partial

Re
on�guration

two-bits adder and a two-bits multiplier. Ea
h one of these modules is
ontrolled

by the pro
essor through a dedi
ated GPIO peripheral.

In the
ase of the relo
ation where routes between the stati
 partition and the

dynami
 ones have to be relatively identi
al, we instantiated hard ma
ros to
onne
t

these two types of partition.

3.5.5.2 Modules input and output signals

The Isolation Design Flow requires us to synthesize ea
h module of the design sepa-

rately. In ea
h isolated module, inputs and outputs whi
h are not dire
tly
onne
ted

to an input or an output pad of the FPGA has to be instantiated as a trusted route

and therefore has to be de�ned in the HDL �le as a non-bu�ered port as follow:

attribute bu�er_type: string;

attribute bu�er_type of <port_name> : signal is "none";

In order to improve the
lo
king routing of the design, the instantiation of the

lo
k bu�er has been removed from the top level sour
e �le and let to the
ontrol

of the synthesizer. In this way, re
on�gurable modules, like the stati
 partition, use

the global
lo
k tree instead of a trusted route using a
ombinatorial path via a

look-up table.

3.5.5.3 Software bus ma
ro

On
e ea
h module is synthesized, the main part of the �ow is done using the PlanA-

head tool. Modules netlists are imported in the design and these whi
h need to

be isolated are
onverted into partitions. Ea
h partition is
on�gured with the

SCC_ISOLATION attribute, whi
h noti�es that the partitions have to be designed

using the Isolation Design Flow.

Then the physi
al blo
k of ea
h module is pla
ed inside the FPGA matrix.

Another
onstraint imposed by the Isolation Design Flow is that the inputs and the

outputs pad used by a partition have to be in
luded inside the region
overed by

its
orresponding physi
al blo
k. In addition, the boundary between two isolated

partition have to be of at least one CLB-wide, horizontally or verti
ally. This

boundary is
alled a Fen
e and is an area in whi
h neither the logi
 resour
es nor

the routing swit
h matri
es will be used (Fig. 3.31).

Firstly, as we wanted to provide a �exible solution for the instantiation of the

bus ma
ro, we let the routing engine of ISE
reating the trusted routes. Therefore

we relied on a software implementation of the bus ma
ro.

To do so, we instantiated LUTs in the top-level sour
e
ode to
onne
t the re-

on�gurable partitions with the stati
 one. For ea
h wire of the bus ma
ro, the

3.5. Design �ow for hardware threads relo
ation 73

����������	��
���
�������
����
���	��
������
����
������
����

���

�������������
���������������������

���� ����!
��������

�"��#���$�����#�
�������
 ��#�#�%#�����������������

����������

��	��

��	

��	��

��	

� �!
�������

��

��	��

��	

��	��

��	

���

Figure 3.33: Software Bus Ma
ro implementation

following
onstraints has been applied:

1 −−

2 −− xps_gpio_0

3 −− bus ma
ro LUTs outpu t s from s t a t i
 to dynami

4 a t t r i b u t e LOCK_PINS of lut_xps_gpio_0_GPIO_IO_O_bm_in_0 : l a b e l i s "

ALL" ;

5 a t t r i b u t e LOCK_PINS of lut_xps_gpio_0_GPIO_IO_O_bm_out_0 : l a b e l i s

"ALL" ;

6

7 s i g n a l xps_gpio_0_GPIO_IO_O_bm_in_0 : s t d_ l og i
 := ' 0 ' ;

8 a t t r i b u t e S of xps_gpio_0_GPIO_IO_O_bm_in_0 : s i g n a l i s "TRUE" ;

9

10 s i g n a l xps_gpio_0_GPIO_IO_O_bm_s_0 : s t d_ l og i
 := ' 0 ' ;

11 a t t r i b u t e S of xps_gpio_0_GPIO_IO_O_bm_s_0 : s i g n a l i s "TRUE" ;

12

13 s i g n a l xps_gpio_0_GPIO_IO_O_bm_out_0 : s t d_ l og i
 := ' 0 ' ;

14 t t r i b u t e S of xps_gpio_0_GPIO_IO_O_bm_out_0 : s i g n a l i s "TRUE" ;

15 −−

And the instan
es of ea
h LUTs:

1 −− i n pu t bus ma
ro LUTs

2 lut_xps_gpio_1_GPIO_IO_I_bm_in_0 : LUT1

3 gener i
 map (INIT => X"2")

4 port map (I 0 => xps_gpio_1_GPIO_IO_I_bm_in_0, O =>

xps_gpio_1_GPIO_IO_I_bm_s_0) ;

5 −−

6

7 −− output bus ma
ro LUTs

8 lut_xps_gpio_1_GPIO_IO_I_bm_out_0 : LUT1

9 gener i
 map (INIT => X"2")

10 port map (I 0 => xps_gpio_1_GPIO_IO_I_bm_s_0 , O =>

xps_gpio_1_GPIO_IO_I_bm_out_0) ;

11 −−

The UCF �le �xes the additional lo
ation
onstraints:

1 # inpu t bus ma
ro LUTs

74

Chapter 3. Hardware threads preemption using Dynami
 and Partial

Re
on�guration

2 INST "lut_xps_gpio_1_GPIO_IO_I_bm_in_0" LOC = SLICE_X∗∗Y∗∗ | BEL = ∗6

LUT ;

3 #−−

As a result, the
onstraints were too lazy and are not ne
essary respe
ted by

the synthesizer, so the routing between the two partitions
an be implemented in

several ways, even if the LUTs pla
ement is respe
ted (Fig. 3.34).

����������	��
���
�������
����
���	��
������
����
������
����

���

�������������
���������������������

���� ����!
��������

�"��#���$�����#�

�������� ��#�

#�%#�����������������

�����#���
�������������'(������
���
������%����

������)�*�
��

����������

��	��

��	

��	��

��	

��	��

��	

��	��

��	

��

���

� �!
�������

Figure 3.34: Routed software Bus Ma
ro

3.5.5.4 Hardware bus ma
ro

To over
ome this issue we de
ided to implement hardware bus ma
ros (Fig. 3.35).

����������	��
���
�������
����
���	��
������
����
������
����

���

�������������
���������������������

���� ����!
��������

�"��#���$�����#�

�������� ��#�

#�%#�����������������

�����#���
���������������������
���
������%����

����������
��

�+�������������������

,���%�-.�
/��� ����!
��������

����������

��	��

��	

��	��

��	

/ �!
�������

��	��

��	

��	��

��	

��

���

Figure 3.35: Hardware Bus Ma
ro extra
tion

3.5. Design �ow for hardware threads relo
ation 75

To
reate a hardware bus ma
ro, we started to get the XDL des
ription of the

urrent implemented design. In this des
ription, we looked for the LUTs whi
h

form the soft bus ma
ro of the �rst partition. A �rst implementation with a soft

bus ma
ro is ne
essary before extra
ting a hard ma
ro. These LUTs are then
opied

into a new XDL �le and formatted to
reate a hard ma
ro. The XDL des
ription of

the implemented design is obtained using the following
ommand:

$ xdl n
d2xdl
on�g_1_routed.n
d

where �
on�g_1_routed.n
d� is the Native Des
ription Cir
uit File generated

after the pla
e and route phase.

In order to extra
t and generate the hardware ma
ro, we rely on the RapidSmith

framework. More information, espe
ially the installation pro
ess
an be found on

this website: http://rapidsmith.sour
eforge.net/.

In our
ase, we limit ourself in the de�nition of hardware ma
ros. To do so, we

reate a new proje
t in the E
lipse framework. The appli
ation Lut_Ma
ro_Extra
tor

whi
h is in the RapidSmith workspa
e allows to extra
t a software bus ma
ro from

a
omplete design and to
reate a new module whi
h
an be implemented as a hard-

ware ma
ro. The following listing gives a partial example of the generated ma
ro for

a bus ma
ro named bus_ma
ro_v5_4io_tb whi
h
ontains seven inputs and seven

outputs, de�ned with generi
 names.

1 de s i g n "__XILINX_NMC_MACRO" x
5v s x50 t f f 1 136 −1;

2

3 module "bus_ma
ro_v5_4io_tb " "bus_ma
ro_v5_4io_tb_0" ,
 f g "

_SYSTEM_MACRO: : FALSE" ;

4

5 po r t input0_tb "bus_ma
ro_v5_4io_tb_0" "D1" ;

6 po r t input1_tb "bus_ma
ro_v5_4io_tb_0" "C1" ;

7 po r t input2_tb "bus_ma
ro_v5_4io_tb_1" "D1" ;

8 po r t input3_tb "bus_ma
ro_v5_4io_tb_1" "C1" ;

9 po r t input4_tb "bus_ma
ro_v5_4io_tb_4" "D1" ;

10 po r t input5_tb "bus_ma
ro_v5_4io_tb_4" "C1" ;

11 po r t input6_tb "bus_ma
ro_v5_4io_tb_5" "D1" ;

12

13 po r t output0_tb "bus_ma
ro_v5_4io_tb_2" "D" ;

14 po r t output1_tb "bus_ma
ro_v5_4io_tb_2" "C" ;

15 po r t output2_tb "bus_ma
ro_v5_4io_tb_3" "D" ;

16 po r t output3_tb "bus_ma
ro_v5_4io_tb_3" "C" ;

17 po r t output4_tb "bus_ma
ro_v5_4io_tb_6" "D" ;

18 po r t output5_tb "bus_ma
ro_v5_4io_tb_6" "C" ;

19 po r t output6_tb "bus_ma
ro_v5_4io_tb_7" "D" ;

The hardware ma
ro is
omposed of several LUTs. A LUT
omponent is de�ned

and its inputs and outputs are
on�gured regarding the signals whi
h are routed

through this LUT:

76

Chapter 3. Hardware threads preemption using Dynami
 and Partial

Re
on�guration

1 i n s t "xps_gpio_0_GPIO_IO_I_bm_s_0" "SLICEL " , p l a
 e d CLBLM_X34Y19

SLICE_X47Y19 ,

2
 f g " A5LUT::#OFF A6LUT::#OFF ACY0::#OFF AFF::#OFF

3 AFFINIT ::#OFF AFFMUX::#OFF

4 . . .

5 D5LUT::#OFF D6LUT : lut_xps_gpio_0_GPIO_IO_I_bm_in_0:#LUT :O6=A1

6 _BEL_PROP: : D6LUT :BEL :D6LUT DCY0::#OFF DFF::#OFF

7 DFFINIT ::#OFF DFFMUX::#OFF DFFSR::#OFF DOUTMUX::#OFF

8 DUSED: : 0 PRECYINIT::#OFF REVUSED::#OFF SRUSED::#OFF

9 SYNC_ATTR::#OFF "

10 ;

The next listing illustrates one of the extra
ted inter
onne
t:

1 net "xps_gpio_0_GPIO_IO_I_bm_s_0" ,

2 ou t p i n "xps_gpio_0_GPIO_IO_I_bm_s_0" D ,

3 i n p i n "xps_gpio_0_GPIO_IO_I_bm_out_0" D1 ,

4 p ip CLBLM_X34Y19 L_D −> SITE_LOGIC_OUTS11 ,

5 p ip CLBLM_X34Y21 SITE_IMUX_B42 −> L_D1 ,

6 p ip INT_X34Y19 LOGIC_OUTS11 −> NL2BEG_S0 ,

7 p ip INT_X34Y21 CTRL2 −> CTRL_BOUNCE2 ,

8 p ip INT_X34Y21 CTRL_BOUNCE2 −> IMUX_B42 ,

9 p ip INT_X34Y21 FAN3 −> FAN_BOUNCE3 ,

10 p ip INT_X34Y21 FAN_BOUNCE3 −> CTRL2 ,

11 p ip INT_X34Y21 NL2MID0 −> WL2BEG1 ,

12 p ip INT_X34Y21 WL2BEG1 −> FAN3 ,

13 ;

This inter
onne
t is translated to �t with the generi
 names of the inputs and

outputs. It be
omes:

1 net "xps_gpio_0_GPIO_IO_I_bm_s_0 " ,

2 ou t p i n "bus_ma
ro_v5_4io_bt_0" D ,

3 i n p i n "bus_ma
ro_v5_4io_bt_2" D1 ,

4 p ip CLBLM_X34Y19 L_D −> SITE_LOGIC_OUTS11 ,

5 p ip CLBLM_X34Y21 SITE_IMUX_B42 −> L_D1 ,

6 p ip INT_X34Y19 LOGIC_OUTS11 −> NL2BEG_S0 ,

7 p ip INT_X34Y21 CTRL2 −> CTRL_BOUNCE2 ,

8 p ip INT_X34Y21 CTRL_BOUNCE2 −> IMUX_B42 ,

9 p ip INT_X34Y21 FAN3 −> FAN_BOUNCE3 ,

10 p ip INT_X34Y21 FAN_BOUNCE3 −> CTRL2 ,

11 p ip INT_X34Y21 NL2MID0 −> WL2BEG1 ,

12 p ip INT_X34Y21 WL2BEG1 −> FAN3 ,

13 ;

At the end, we get a design whose stati
-dynami
 inter
onne
tion are relatively

homogeneous:

3.5.5.5 Design synthesis

An issue whi
h o

urs when implementing these hard ma
ro is that the pla
ement

onstraints is not respe
ted in the sense that the ma
ro is systemati
ally moved

during the pla
ement phase. It is an issue due to the fa
t that this ma
ro overlaps

both the stati
 and the dynami
 areas.

3.6. Con
lusion 77

����������	��
���
�������
����
���	��
������
����
������
����

���

�������������
���������������������

���� ����!
��������

�������"	��#����
��
�������������

$��� ����!
��������

�%��"���&�����"�

�������� ��"�

"�#"�����������������

����'"���
�������������()������
���
������#����

������*�+�
��

�,�������������������

-���#�./�
$��� ����!
��������

����������

��	��

��	

��	��

��	

$ �!
�������

��	��

��	

��	��

��	

��

��

Figure 3.36: Hardware Bus Ma
ro extra
tion and homogenization

To over
ome this issue, the following lo
ation
onstraints applied to the hard

ma
ros have to be inserted in an external
onstraint �le and passed to the XST

synthesizer using the -u
 �ag:

INST <hard_ma
ro_name> LOC = SLICE_X#Y#;

where �#� represents valid Sli
e X and Y
oordinates. This �ag ensures that

the synthesizer will respe
t the lo
ation
onstraints and that the hard ma
ro will be

pla
ed at the
orre
t position, over the stati
 and the dynami
 boundary. Finally,

on
e the design is pla
ed and routed, the
orre
t isolation of ea
h partition
an be

he
ked with the help of the Isolation Veri�
ation Tool (IVT) [Corbett 2012℄ and

partial and full bitsreams
an be generated (Fig. 3.37).

After implementation (Fig. 3.38), the two modules are well isolated in terms of

logi
 and routing resour
es, and the one CLB-wide boundary between the dynami

modules and the stati
 partition is respe
ted. This su

essful result permitted us to

perform a safe relo
ation of these two modules in the available dynami
 partitions

without additional bitstreams and, the most important, for the �rst time with the

standard
urrent design tools provided by Xilinx.

3.6 Con
lusion

In this
hapter, we introdu
ed tools and me
hanisms whi
h allow us to manage the

hardware threads like their software
ounterparts. Starting from here, we are able to

provide at the operating system level, an API to
reate, delete or preempt hardware

threads. All these features
an serve as a basis for a hardware threads management

servi
e whi
h
an be integrated into an operating system.

78

Chapter 3. Hardware threads preemption using Dynami
 and Partial

Re
on�guration

����������	��
���
�������
����
���	��
������
����
������
����

���

�������������
���������������������

���� ����!
��������

�������"���#����
��
�������������

$��� ����!
��������

�%��"���&�����"�

�������� ��"�

"�#"�����������������

����'"���
�������������()������
���
������#����

������*�+�
��

�,�������������������

-���#�./�
$��� ����!
��������

����������0�����������
����������

1��#��
2��������!��������

Figure 3.37: Adapted Isolation Design Flow

Figure 3.38: Design test - Partition isolation

In spite of its useful multi-pro
essor
ommuni
ation layer, the RTEMS operating

system
hosen in the frame of the FOSFOR proje
t is not �exible enough to mat
h

more pre
isely with the �exibility provided by the re
on�gurable platforms. The

MPCI prevent the user to
reate distant resour
es and a thread whi
h would want

to remotely a

ess to a given resour
e, have to run on a
ore whi
h implement itself

the servi
e able to manage the resour
e. For instan
e, if a hardware thread wants

to a

ess to a memory partition, the partition servi
e should be implemented in the

3.6. Con
lusion 79

hardware operating system. Regarding the spe
i�
ity of ea
h
ore, some servi
es

are more suitable to be implemented on one
ore rather than on another one.

For these reasons, in the next
hapter, we go a step further than in the FOSFOR

proje
t and deal with the spe
i�
ation of a new operating system dedi
ated to the

heterogeneous re
on�gurable platforms. This operating system would be able to

abstra
t the heterogeneity and so to o�er the same API to handle the hardware

threads than the one used to managed the software ones. In order to handle the

heterogeneity in a �exible way, this management has to be extended and in
lude

the a

ess to all available servi
es of the platform.

Chapter 4

Operating System for

Dynami
ally and Re
on�gurable

Heterogeneous SoC

Contents

4.1 Context and de�nitions . 82

4.1.1 Kernel stru
ture . 82

4.1.2 Thread API . 83

4.2 Related works . 85

4.2.1 Introdu
tion . 85

4.2.2 Inter-
ore
ommuni
ation in MPSoC 86

4.2.3 HRSoC middlewares . 90

4.2.4 Hybrid OS for HRSoC . 94

4.2.5 Con
lusion . 95

4.3 Spe
i�
ations . 96

4.3.1 Obje
tives . 96

4.3.2 Programming model . 97

4.3.3 Memory
onstraints . 97

4.3.4 Ar
hite
ture . 98

4.3.5 Portability . 99

4.4 Con
eption . 99

4.4.1 Operating system ar
hite
ture 100

4.4.2 Platform ar
hite
ture . 102

4.4.3 Multi
ore layer . 109

4.5 Implementation . 111

4.5.1 Modular operating system: MutekH 111

4.5.2 MRAPI Spe
i�
ation . 114

4.5.3 Hardware ar
hite
ture . 118

4.5.4 Domain de�nition . 119

4.5.5 Node de�nition . 120

4.5.6 MRAPI types . 120

4.5.7 Resour
es system
alls . 120

4.6 Con
lusion . 123

82

Chapter 4. Operating System for Dynami
ally and Re
on�gurable

Heterogeneous SoC

4.1 Context and de�nitions

Heterogeneous Re
on�gurable Systems-on-Chip allow us to implement an appli
a-

tion with software threads and hardware threads. In this
hapter, our obje
tive is

to fa
ilitate the
ohabitation between these heterogeneous entities.

As seen in the introdu
tion of Chapter 2, software threads are managed on top

of an operating system and therefore
an a

ess to the servi
es it o�ers. Due to a

need of s
alability, an operating system dedi
ated to HRSoC should be distributed

over the di�erent
ores
omposing this platform. However, in most of distributed

operating systems, the servi
es implemented on a
ore by an operating system
an

only be a

essed by the threads running on this same
ore. In order to ensure

a fair a

ess to all servi
es to every threads, both software or hardware, we have

to provide a �exible solution whi
h would extend the number of available servi
es

for all threads to a set of servi
es whi
h
an be lo
ated on di�erent
ores. Su
h

a solution should allow a �exible implementation of the operating system servi
es

over the platform, regarding the a�nity ea
h one has to run on a given
ore.

To be able to enfor
e this �exibility in an operating system, it is essential to

orre
tly de�ne the kernel stru
ture of this operating system, as well as how the

threads managed by this operating system will
ommuni
ate, namely whi
h inter-

pro
ess
ommuni
ation API is implemented and how it is implemented for this

purpose.

4.1.1 Kernel stru
ture

The kernel stru
ture is an essential element of an operating system. It de�nes the

stability, the modularity, and the portability of a system. Currently, there are three

types of kernel in the state of the art: monolithi
 kernel, mi
ro-kernel and exo-kernel.

4.1.1.1 Monolithi
 kernel

Monolithi
 kernels, be
ause of their
on
eption in one and unique blo
k, are the most

performing kernels but also the less �exible. The portability and the maintenan
e

of su
h a kernel is rather di�
ult and its stru
ture is rarely well suited to handle

the s
alability and the adaptability required by multi
ore embedded systems.

4.1.1.2 Mi
ro-kernel

Mi
ro-kernels prin
iple is based on the
lient-server model. Communi
ation servi
e

between these two entities is realized through Inter-Pro
ess Communi
ation (IPC)

me
hanisms. Regarding the performan
es, the �rst mi
ro-kernels were very low

ompared to monolithi
 kernels.

Like for the thread model, the trend to �ll this gap was the design of hybrid

mi
ro-kernel. The
riti
al servi
es like the memory management, the s
heduler and

the inter-pro
ess
ommuni
ation were bring ba
k into the kernel.

4.1. Context and de�nitions 83

This problem of performan
es has been imputed to IPC. Initiatives like the

Ma
h [A

etta 1986℄ or L4 kernels [Liedtke 2001℄ allowed to redu
e the impa
t of

the IPCs in term of overheads. A
tually, this issue is posed essentially when porting

the kernel on pro
essors like the x86, whi
h have a prote
ted mode needing a virtual

memory manager. The use of mi
ro-kernels as it has been though at the beginning,

namely fully modular is possible in embedded ar
hite
tures with a uni�ed memory

spa
e. In all
ases, the IPCs must be implemented
arefully in order to a
hieve good

performan
es.

4.1.1.3 Exo-kernel

The term of exo-kernel was invented by the Laboratory for Computer S
ien
e (LCS)

at MIT

1

. Exo-kernels are a
tually mi
ro-kernels pushed to limit. The role of the

kernel is limited to the arbitration of a

esses to material resour
es. The resour
es

abstra
tion is minimal at the kernel level and
ustomized at the user one. Servi
es

are known as libraries and are dynami
ally linked to the appli
ation level to let the

user
hoose its own level of abstra
tion.

The advantage of this kind of kernel lies in the fa
t that almost all the operations

are performed at the user-level, so the number of swit
hes into kernel model is

redu
ed to a minimum.

4.1.2 Thread API

This se
tion draw a non-exhaustive list of existing standards for the C language and

some spe
i�
ations of software appli
ation programming interfa
es (API) dedi
ated

to operating system
ommuni
ation me
hanisms.

4.1.2.1 MISRA-C

It is a standard used in the automotive (MISRA = Motor Industry Software Reli-

ability Asso
iation). This is a list of rules and guidan
e of "good" programming.

The obje
tive is to allow the developer to write portable and safe
ode.

4.1.2.2 POSIX

POSIX stands for Portable Operating System Interfa
e and is a C standard. This

standard will be portable and is widely used in the UNIX world. One of the inter-

esting elements that may well apply to the embedded domain is thread management

and all real-time extensions made in version 1003.1b-1993.

4.1.2.3 ARINC 653

The ARINC 653 is a spe
i�
ation of interfa
es between the operating system and

the appli
ation. This spe
i�
ation has been de�ned for the avioni
s. The operating

1

Massa
husetts Institute of Te
hnology

84

Chapter 4. Operating System for Dynami
ally and Re
on�gurable

Heterogeneous SoC

system kernel is
omposed of two parts. The �rst part is a main module allowing to

prote
t and multiplex the hardware resour
es. The se
ond is spe
i�
 to ea
h system

partition.

A partition is a subset of the operating system whose physi
al limitations were

learly de�ned. Ea
h partition is independent, whi
h provides a safe operation sin
e

the di�erent address spa
es are separated. A failure in one partition does not a�e
t

other partitions. The following servi
es are de�ned:

• servi
es related to partition management:
reation, deletion, suspension, and

ompletion of a partition

• the servi
es of inter-partition
ommuni
ation: Message Queues and Sampled

Message Queues

• servi
es related to the multi-threading management, whi
h
orresponds to the

intra-partition
ommuni
ation: Messages Queues, Sampled Message Queues,

Events and Semaphores

• thread management

• failure management

• time management

Regarding interfa
es and memory management, the developer does what he

wishes when implementing this spe
i�
ation.

4.1.2.4 TIPC : Transparent IPC

Originally developed by Eri
sson, TIPC is a
ommuni
ation proto
ol developed by

VxWorks and now set free on Sour
eforge. This is a proto
ol espe
ially dedi
ated

to networked systems. Ea
h node of the system has a network address (denoted

N). These nodes are grouped into
lusters (denoted C). Finally, these
lusters are

themselves grouped into zones (noted Z). A node address
onsists of the following:

"Z_ID"."C_ID"."N_ID". Other features in
lude:

• message size from the appli
ation point of view is between 1 and 66000 bytes

• syn
hronization between two ports is done by handshake

• there is a naming servi
e to translate the name of a node address

• it also implements an error handler that manages transmission errors, ina
-

essible links and invalid names and addresses

Another feature, the same node
an have multiple addresses whi
h allows appli-

ation to easily implement multi
ast by providing the same address to all subs
ribers

of a
hannel.

4.2. Related works 85

4.1.2.5 MCAPI : Multi
ore API

The Multi
ore Asso
iation [Asso
iation 2012℄ is an asso
iation grouping industrial

and a
ademi
 partners with the aim of de�ning a new standard allowing to abstra
t

ommuni
ations among heterogeneous multi
ore platforms.

MCAPI for Multi
ore Communi
ation API, is one of the three working groups of

the Multi
ore Asso
iation. Its obje
tive is to de�ne a message-passing API to man-

age
ommuni
ations and syn
hronization between
ores. The se
ond working group,

named MRAPI, is responsible for de�ning an API to manage resour
es whi
h are

shared by the pro
essing elements of a heterogeneous multi
ore platform. MTAPI is

a third working group whi
h aims to de�ne a new standard for thread management

(
reation, pla
ement, s
heduling, ...).

These three working groups are the most important but there are other groups

su
h as the Multi
ore Programming Pra
ti
es Working Group and the Multi
ore

Virtualization Working Group. Currently, a
omplete version of the MCAPI spe
i-

�
ation and a �rst stable one of the MRAPI spe
i�
ation have been released.

4.1.2.6 LINX

LINX for Linux is an open-sour
e implementation of the LINX inter-pro
ess
om-

muni
ation proto
ol. It targets heterogeneous multi
ore systems using the Ethernet

proto
ol to
ommuni
ate. On ea
h of node, a thread is
reated and serves as a
on-

ne
tion point (proxy) with the other nodes of the system. The API enables LINX to

abstra
t the lo
ation of other threads running in the system and thus makes inter-

pro
ess
ommuni
ation transparent to the user regarding the hardware platform

used.

In addition it implements a neighbor dis
overy me
hanism and handles
ases

where a server (ie. another thread) previously found, is no longer a

essible. How-

ever, as it relies on the Ethernet proto
ol, this solution is too heavy for intra-
hip

ommuni
ation.

Related works listed in the next se
tion refers to some examples of what
ould

be done to enhan
e the
ommuni
ation between threads in multi
ore and heteroge-

neous platforms. The
hoi
e of an well-adapted kernel stru
ture and of a standard

inter-thread
ommuni
ation API would permit to rea
h a good trade-o� between

performan
es and portability.

4.2 Related works

4.2.1 Introdu
tion

In this se
tion, we address the
ommuni
ation issue between threads lo
ated on

di�erent pro
essors. Our �nal goal remains to leverage the heterogeneity of the

platform, espe
ially the fa
t that some servi
es
ould be implemented more or less

easily on a
ore. In this
ontext,we are interested in providing the support of future

design exploration tools whi
h permit to �nd whi
h servi
e should be implemented

86

Chapter 4. Operating System for Dynami
ally and Re
on�gurable

Heterogeneous SoC

on whi
h
ore. This support
onsists in o�ering to an operating system the ability

to share its servi
es with other threads running on remote pro
essing elements.

Targeting multipro
essor system is an old issue. Several papers addressed this is-

sue and espe
ially the
on
erns of the multipro
essor
ommuni
ation. In these
ases,

a pro
essor is
onsidered a
ore. Proto
ols based on the shared memory paradigm,

the message passing proto
ol or solution adapted from the
loud
omputing is pre-

sented in the following.

4.2.2 Inter-
ore
ommuni
ation in MPSoC

In [Tomiyama 2008℄ the authors propose an operating system for asymmetri
 mul-

ti
ore systems
alled TOPPERS-FMP (Fig. 4.1). This operating system is based

on the µITRON spe
i�
ation and its main
hara
teristi
s are the system
alls virtu-

alization (for both lo
al and remote
alls), an independent exe
ution for ea
h node

and a known limit for the inter-task
ommuni
ations laten
y in the worst
ase.

Figure 4.1: Toppers/FMP [Tomiyama 2008℄

Following the µITRON spe
i�
ation, obje
ts are
lassi�ed: tasks and handlers

are assigned to a pro
essor and ea
h one has a lo
al s
heduler, whi
h guarantees

independen
e between
ores. Ea
h obje
t is identi�ed by a unique identi�er.

In this operating system, the inter-
ore
ommuni
ation me
hanism is
alled IPSC

for Inter-Pro
essor System Call. Through this me
hanism, a pro
ess has a dire
t

a

ess to the memory of another one due to the presen
e of a uni�ed memory spa
e

in the shared memory. The syn
hronization between the two pro
essors is done

using spin lo
ks

2

whereas intra-pro
essor syn
hronization is realized by disabling

interrupts.

The authors of [Huerta 2008℄ introdu
ed a Symmetri
 MutliPro
essor (SMP)

based system
omposed of Mi
roblaze pro
essors (Fig. 4.2). The operating system

2

busy waiting for a lo
k

4.2. Related works 87

is spread over the platform and is in
harge of task allo
ation on every pro
essor.

Task s
heduling is globally manage by a unique s
heduler. Communi
ation between

pro
essors is realized via hardware interrupt me
hanisms. This solution is easy to

implement but la
ks of s
alability.

Figure 4.2: SMP System [Huerta 2008℄

The subje
t of [Lin 2009℄ deals with Inter-Pro
essor Communi
ation (IPC) in

heterogeneous multi
ore platforms. They aim to redu
e the overhead due to the

ommuni
ation in periodi
 pipelined multi
ore appli
ations.

They argue that
lassi
al proto
ols like Message Box, FIFOs or shared memory

are badly linked to the mono
ore histori
al
ontext. So they introdu
e the NTU

3

Inter-Core Pro
ess Communi
ation (NTU ICPC). This is a user-level proto
ol based

on the sender-re
eiver paradigm. It is implemented at the middleware level. Its

main goal is to limit the number of
opy to one per transa
tion. It
an be seen as a

syn
hronous shared-bu�er
ommuni
ation. This method has the advantage to avoid

ontext swit
h and to improve the portability.

By default,
ommuni
ations use lo
al bu�ers ((
alled individual working spa
e),

otherwise if the sender and the re
eiver
an both a

ess to a shared bu�er, they do

a ¹ero-
opy IPC

�

. This is possible only if no broad
ast nor multi
ast is required.

As shown in Fig. 4.3, the software ar
hite
ture
ontains three layers. The �rst

layer is the hardware dependent layer (Memory Management Unit), the se
ond is

responsible for the
ommuni
ation (mail sending and bu�er management), and the

last layer handles the virtualization (middleware proto
ol).

In [Baumann 2009℄ the authors propose an operating system spe
i�
ation dedi-

ated to multi
ore ar
hite
tures. This operating system should be distributed and

3

National Taiwan University

88

Chapter 4. Operating System for Dynami
ally and Re
on�gurable

Heterogeneous SoC

Figure 4.3: ICPC Servi
e [Lin 2009℄

provide expli
it inter-
ore
ommuni
ation me
hanisms. It also has to o�er well-

de�ned hardware abstra
tion layer and information about ea
h
ore state should be

repli
ated and not globally shared (Fig. 4.4).

Figure 4.4: The multikernel model [Baumann 2009℄

Fa
ing the
ore heterogeneity, this OS would be �exible. Ca
he
oheren
y man-

agement is not a ne
essity. Con
erning inter-
ore
ommuni
ation, it would be re-

alized through Message Passing me
hanisms, what would make the system more

modular and s
alable.

At the kernel level, this operating system only manages the a

ess to the hard-

ware resour
es whi
h
orrespond to the CPU drivers. Hen
e at the user level, ea
h

ore would handle syn
hronization me
hanisms, the memory management and the

s
heduling. In order to get more �exibility, ea
h pro
ess in the appli
ation would

4.2. Related works 89

be represented by a dispat
her obje
t present on ea
h node the pro
ess
an run on.

It would be a kind of repli
a that we
an a
tive or dea
tivate regarding the
ore load.

Fos (Fa
tored operating system) [Modzelewski 2009℄ is an operating system de-

signed for many
ore ar
hite
ture. It has been de�ned to be s
alable, easily extended

and programmable, as well as able to perform automati
 fault management. The au-

thors seek to realize an operating system espe
ially dedi
ated to appli
ations whi
h

an take advantage of a
loud
omputing platform. In su
h a platform, number of

available
ores for one appli
ation is potentially unlimited. The main point is so to

handle the s
alability of these platforms.

As the operating system should be able to well balan
e the load of work on

the di�erent
ores it
ontrols, resour
es requests, that is to say
omputing power

allo
ation for a given appli
ation is highly dynami
. Also, as the number of
ore is

important, the operating system should dete
t if a
ore do not work anymore and

in this
ase, modify the appli
ation deployment.

Figure 4.5: Fa
tored OS [Modzelewski 2009℄

Authors noti
e that, giving Linux as an example, the
hoi
e to keep a monolithi

ar
hite
ture and so to add lo
ks on operating system shared stru
tures in order to

port it on multi-
ore platform, be
omes more and more
omplex to do and hard to

maintain. This is why they prefer to develop a new operating system based on the

IaaS model (Infrastru
ture as a Servi
e),
ommonly used in the networked servers

and virtualization �elds (Fig. 4.5). Fos relies on the following prin
iples:

• to be adapted to a multi
ore ar
hite
ture, the s
heduling must be thought in

two dimensions: time and spa
e.

• for more safety, operating system servers must run on ex
lusive
ores from the

ones allo
ated for appli
ations.

• operating system servi
es are split into spe
i�
 primitives, so ea
h server
an

ommuni
ate through message passing with the other servers if ever it needs

90

Chapter 4. Operating System for Dynami
ally and Re
on�gurable

Heterogeneous SoC

a primitive implemented by these ones.

• servers whose primitives are
omplementary are grouped into �fun
tion spe
i�

�eet� in order to optimize their pla
ement and redu
e
ommuni
ation
osts

(servers fa
torization).

• a server
an be loaded or unloaded to in
rease or redu
e resour
e use (i.e.
ore

use).

• resour
es used by an appli
ation have to be monitored in order to be able to

e�
iently manage fault appearan
e and to optimize platform resour
e use.

• in
ase of fault appearan
e on one of the servers, some are repli
ated to be

used as substitute.

• the operating system in
ludes a mi
ro-kernel, a minimal kernel whi
h have to

be present on ea
h
ore: it handles the hardware abstra
tion layer as well as

appli
ation allo
ation and loading.

• a library
alled �OS Layer Server� permits to translate a system
all performed

by an appli
ation into a message towards the appropriate server. A spe
ial

server
alled �Gateway Server� allows to go from one ma
hine to another if

ne
essary.

Synthesis:

Con
erning this �rst aspe
t of the state of the art, we
an say that due to the need

of s
alability, Inter-Pro
ess Communi
ation via Message Passing seems to be the

best
hoi
e when targeting heterogeneous multi
ore System-on-Chip. The operating

system should follow an AMP strategy and be distributed over the platform. In

addition, we should rely on a
lient-server me
hanism to provide remote a

esses to

operating system servi
es.

4.2.3 HRSoC middlewares

In addition to the multi
ore aspe
t, this dedi
ated operating system should be able

to handle its heterogeneity, espe
ially the presen
e of re
on�gurable hardware
om-

ponent as pro
essing elements.

In [Shiyanovskii 2009a℄, re
on�guration is handled by a software layer on top of

a real-time operating system (Fig. 4.6). This layer is
alled Adaptation Manager

and is able to adapt in order to get a trade-o� between the power
onsumption and

the exe
ution speed. It relies on a learning pro
ess whi
h allows the manager to

improve the laten
y to take a de
ision.

4.2. Related works 91

Figure 4.6: Self-re
on�gurable platform [Shiyanovskii 2009a℄

A
tually, the re
on�gurable platform is
omposed of tiles permitting to per-

form high-level fun
tions regarding CLBs programming layer (�lters, FFT, ...). A

priority-based s
heduler is implemented to manage task exe
ution. These tasks
an

have three di�erent states: Ina
tive, A
tive or Reserved. The latter state is used to

de�ne a tile waiting for a task to arrive.

[Guerin 2009a℄ deals with the
on
eption of an operating system dedi
ated to the

heterogeneous multi-
ore systems-on-
hip (HMC-SoC). They start from the observa-

tion that the main approa
h whi
h propose to have a standard pro
essor intera
ting

with hardware
o-pro
essors through some drivers is not adapted to
omplex system

anymore. On the other hand, the spe
ialized approa
h whi
h
onsists to have one

board support pa
kage (BSP) for ea
h plateform
oupled with a modular develop-

ment is too generi
 to provide good performan
es. So they propose an intermediate

approa
h based on
omponents (Fig. 4.7).

To a
hieve this, they need to de�ne stable and generi
 interfa
es as well as a
lear

segregation between hardware dependent
omponents and hardware independent

ones. The hardware abstra
tion layer is
omposed of 27 primitives responsible for:

• the endianness

• the multipro
essor
on�guration (boot and
ores identi�
ation)

• the input / output
on�i
ts

• the
ontext handling

• the syn
hronization

• the traps

92

Chapter 4. Operating System for Dynami
ally and Re
on�gurable

Heterogeneous SoC

Figure 4.7: System framework overview [Guerin 2009a℄

• the memory and the
a
he

The operating system whi
h illustrates this approa
h is
alled DNA OS (DNA is

Not just Another Operating System). It is based on BeOS and o�ers thread manage-

ment and s
heduling servi
es, a �le system with or without MMU, dynami
 memory

management, Semaphore and Message Passing servi
es as well as the ability to load

ea
h of these servi
es dynami
ally inside the kernel.

In [Senou
i 2006℄, the authors introdu
ed a software ar
hite
ture based on the

Mutek kernel. The operating system is split in two parts: the HdS layer and the HiS

layer. HdS stands for pour Hardware dependent Software and is a HAL managing

the multipro
essor and the heterogeneous aspe
ts of the
ores (boot, mutex syn
hro-

nization and
ontext swit
h). HiS stands for Hardware independent Software and is

omposed of the operating system, a middleware and the user layer.

They also propose a design �ow allowing to spe
ify this HdS layer. The imple-

mented s
heduler
an manage SMP platform or one instan
e of it
an be deployed

on ea
h
ore. In addition, one of the most important advantage of this OS is its low

memory footprint.

Authors of [Matilainen 2011℄ propose an MCAPI implementation for the Systems-

on-Chip. They
hoose MCAPI be
ause it was though for inter-
ore
ommuni
ation,

not inter-
omputer ones. An API is needed in order to develop e�
iently
omplex

portable appli
ations. OpenMP [Board 2012℄ requires spe
ial support from the
om-

piler whi
h is not the
ase for MCAPI. Even if redu
ed MPI versions are available,

4.2. Related works 93

Figure 4.8: Hardware Dependant Software layer [Senou
i 2006℄

MPI requires more
hanges to sour
e
odes and CORBA [OMG 2006℄ is too heavy-

weight. Regarding the implementation they did, it o�ers a lower memory footprint

at the expense of less �exibility due to a limited number of
alls.

MCAPI o�ers three types of
ommuni
ation: Message whi
h is a basi
 message

passing proto
ol, Pa
kets whi
h is a
onne
ted mode allowing to send or re
eive sev-

eral messages in a row, and S
alar whi
h permits to send or re
eive single �xed-size

word (Fig. 4.9).

Figure 4.9: MCAPI for MPSoC [Matilainen 2011℄

The top layer implements MCAPI spe
i�ed abstra
tion for user appli
ation and

does only simple error
he
king for fun
tion
alls. The underlying layer (Transport)

implements the interfa
e between the top layer and the HAL. Moreover, in this

implementation, hardware a

elerators are also seen as MCAPI nodes. It should be

noti
ed that the node topology is stati
 to make the implementation simpler.

94

Chapter 4. Operating System for Dynami
ally and Re
on�gurable

Heterogeneous SoC

In [Kamppi 2011℄ they designed an IDE

4

whi
h allows to integrate some IP-

XACT [541 2010℄
omponents together. It is open sour
e and in
ludes the genera-

tion of endpoints in order to be
ompliant with MCAPI.

Synthesis:

In order to manage the heterogeneity of a HRSoC platform, it is ne
essary to o�er

an additional layer on top of the operating system. This layer would help to provide

a transparent a

ess to the operating system servi
es. Moreover,
ertain servi
es

are more likely to be e�
iently implemented in hardware, so a hybrid operating

system servi
es should be proposed to the developer in order to improve the overall

performan
es of the appli
ation and really take advantage of the heterogeneity of

the platform.

4.2.4 Hybrid OS for HRSoC

The mi
ro-kernel introdu
ed in [Nordstrom 2005℄ is de�ned as a RTU

5

. The aim is

to redu
e the memory footprint of the kernel, taking advantage of the parallelism

and enhan
e the kernel exe
ution determinism.

To a
hieve it, some part of the operating system are implemented in hardware:

the s
heduler, the Semaphore and Flags servi
es, an interrupt
ontroller as well as

timers. This RTU is based on the µC/OS-II kernel. When the paper has been

published, all features have not been implemented yet. Nonetheless, we
an noti
e

for the ones whi
h were implemented, that the gain is signi�
ant.

[Agron 2009b℄ asserts that a monolithi
 operating system is not adapted to mul-

ti
ore platforms anymore, parallelism
ausing important laten
ies for thread syn-

hronization. Managing mutexes at the ISA layer (Instru
tion Set Ar
hite
ture)

using atomi
 instru
tions
ould be an e�
ient solution but is not really portable.

Finally, remote pro
edure
alls are too expensive in terms of time overhead.

So, the proposed idea is to port some features of a mi
ro-kernel in hardware

to light up the software part (Fig. 4.10). The authors developed a Linux-based

mi
ro-kernel, �attened in order to simplify it, but always POSIX
ompliant. The

Mutex servi
e, the s
heduler, variable
onditions and thread management are the

servi
es
hosen to be ported.

The s
heduler manages tasks all over the
ores and so a
ts like a SMP kernel.

The advantage for a pro
essor
ore is that it would be interrupted only when a

preemption is ne
essary. The rest of the time, it quietly exe
ute the thread the

s
heduler assigned it. This s
heduler module is able to manage 128 priority levels

and the Mutex IP provides two primitives: lo
k and unlo
k, requiring only one

instru
tion to be performed (atomi
ity).

4

Integrated Development Environment

5

Real-Time Unit

4.2. Related works 95

Figure 4.10: Hybrid Threads platform [Agron 2009b℄

Finally, Götz et al. also proposes a hybrid solution in whi
h the operating system

servi
es
an be migrated during run-time from a software to a hardware implementa-

tion and re
ipro
ally, depending on the appli
ation needs [Götz 2009℄. An heuristi

has been developed in order to optimize the resour
e use of ea
h appli
ation that

would be loaded on the platform.

4.2.5 Con
lusion

The need of more and more
omputing power in the
urrent embedded system

pushes the designers to provides a new kind of system whi
h are heterogeneous

and more and more distributed. In order to adapt to the need of s
alability of

su
h a system, Inter-Pro
ess Communi
ation be
ame a
ornerstone of the operating

system. This
ommuni
ation should rely on a de
entralized system. The Message

Passing
ommuni
ation paradigm is well adapted to manage the
ommuni
ation of

these heterogeneous multi
ore System-on-Chip. To go further, the operating system

should also be de
entralized. An Asymmetri
 Multipro
essor System would be the

best
hoi
e to manage the numerous
ores independently the one regarding the

others. Additionally, the a

ess to the operating system servi
es would be based on

the a
lient-server me
hanism that o�ers a good s
alability.

Regarding the heterogeneity aspe
t, the addition of a middleware layer would

brought a signi�
ant abstra
tion to the HRSoC platforms. This layer would provides

a transparent a

ess to every available servi
es in the platform. This �exibility would

improve the platform partitioning allowing the developer to implement some servi
es

96

Chapter 4. Operating System for Dynami
ally and Re
on�gurable

Heterogeneous SoC

in hardware and others in software, and also to
hoose on whi
h pro
essing units

these servi
es would be implemented. Su
h a partitioning would enhan
e the overall

performan
es of the appli
ation as it would take into a

ount of the advantages of

ea
h pro
essing units.

This �exibility brought by distributed servi
es will enhan
e the global perfor-

man
e gain allowing any thread to a

ess to the most available e�
ient implemen-

tation of a given servi
e. Moreover, basing the implementation of this additional

layer on a widely supported standard would help the integration of the operating

system in high-level design spa
e exploration tools.

4.3 Spe
i�
ations

A

ordingly to the general information and the state of the art introdu
ed previ-

ously, we �rst de�ne the spe
i�
ations of an ideal operating system for the HRSoC.

It in
ludes the
onstraints, the main obje
tives, and the
hosen solutions regarding

the state of the art. This spe
i�
ation will be a base to ta
kle the
on
eption phase

in whi
h the details of the implementation of this operating system will be dis
ussed

(See Se
tion 4.4).

4.3.1 Obje
tives

Our goal is to abstra
t the heterogeneity of future multi
ore platforms, this in order

to provide a fair a

ess to any servi
e for any thread in the system and also to de�ne

a homogeneous model of
ommuni
ation. We need distributed servi
es to permit an

optimized distribution regarding
ores spe
i�
ity and threads lo
ation.

Currently, emerging embedded systems tend to have a versatile general appear-

an
e, and are able to satisfy most of the �nal
lient's needs. This versatility,
oupled

with the in
reasing need of performan
es, modify their ar
hite
tures into heteroge-

neous platforms. In order to satisfy these needs, they provide several pro
essing

units, ea
h of these dedi
ated to a spe
ial task in the system, the whole forming a

so-
alled multi
ore system, in whi
h one
ore equals one pro
essing unit.

In su
h a system, the developer
an deploy his appli
ation onto general purpose

pro
essor, dedi
ated ones like DSP or ASIP (Appli
ation Spe
i�
 Instru
tion-set

Pro
essor), but also hardware a

elerators running on re
on�gurable
hips espe-

ially used to perform re
urrent and intensive pro
essing, denoted as IP (Intelle
tual

Properties) in FPGA devi
es.

In this se
tion our obje
tive is to de�ne the stru
ture and the
hara
teristi
s

of an operating system dedi
ated to this kind of system de�ned as multi
ore and

heterogeneous.

4.3. Spe
i�
ations 97

4.3.2 Programming model

For the end-user, the appli
ation will be viewed as a homogeneous set of threads

ommuni
ating through operating system servi
es, wherever they are lo
ated (Fig.

4.11).

On top of HRSoC platforms, the developer wishes in a �rst time to be able to

validate his appli
ation without being dependent from its
omposition, for instan
e

the number of
ores or the type of these
ores. This need of abstra
tion involves

to add an intermediate layer between the hardware and the appli
ation. The de-

ployment of the appli
ation and the operating system, meaning task pla
ement and

servi
es distribution over the di�erent
ores, should be the most transparent as pos-

sible for the developer, and ideally handled by automati
 tools.

�� �� ��

���� �� ��

��	
� ��	
�

��	
�
�

����
	���
�

������	�

��
	�����	��������
�
�

����
�	
����
	���

Figure 4.11: User point of view

The advantage is a simpli�
ation of the programming model thanks to a unique

interfa
e and an a

eleration of the development pro
ess that
an be rea
hed through

the automati
 generation of
ode. The drawba
k is lowest performan
es and �ex-

ibility
onstraints among the generi
ity. The
all to an operating system servi
e

should respe
t all or a part of an existing standard.

4.3.3 Memory
onstraints

We
hose to implement a NUMA ar
hite
ture, it means a distributed memory with

Non-Uniform Memory A

esses. The operating system footprint should be
onsis-

tent with the System-on-Chip
apa
ity. Pragmati
ally, we set that the footprint of

the kernel alone must be under 25 kB.

It is
onsidered that the address spa
e of the multi
ore system is a uni�ed ad-

dress spa
e. All
ores share the total system memory. Nevertheless ea
h
ore will be

able to have a private address spa
e in whi
h it will host its
ode and private data

(Fig. 4.12). The addition of a memory management unit (MMU) is not ne
essary.

98

Chapter 4. Operating System for Dynami
ally and Re
on�gurable

Heterogeneous SoC

�� ��

��� ����	
�������

�� ��

�� ��

�� ��

����

�� ��

����

��	��������	

��

� �������

� �
����

���

������
���������

	
����

� �

�
�

��

Figure 4.12: Platform memory ar
hite
ture

4.3.4 Ar
hite
ture

The spe
i�
ation of the operating system ar
hite
ture in
ludes the di�erent modules

whi
h
ompose the multi
ore system, and the distributed servers.

4.3.4.1 Operating system ar
hite
ture

The appearan
e of multi
ore system for
ed the operating system to be modular

in order to take the most advantages of the parallel ability of the platform and

also to optimize its memory footprint by sharing
ertain servi
es among multiple

ores. These servi
es will therefore be seen as distributed servi
es. For the sake of

�exibility, we also wish a request to a servi
e to be independent of its lo
ation. The

servi
e
an be present on the same
ore than the thread whi
h needs it, but
an also

be found on another
ore.

Ea
h servi
e performs a spe
i�
 fun
tion. Some servi
es will be performed by sev-

eral other di�erent servi
es. These servi
es will then need to
ommuni
ate together.

For example, a semaphore release by the servi
e whi
h manages the Semaphore will

require it to inform the s
heduler servi
e that a thread
an be unblo
ked.

Regarding the kernel ar
hite
ture, the modularity
onstraint ex
ludes the adop-

tion of a monolithi
 kernel, more powerful but harder to port on a new ar
hite
ture

and very in�exible. Mi
ro-kernel is more modular. For performan
es reasons, the

inter-thread
ommuni
ation and above all the address spa
es swit
h must be mini-

mized. For this, the exo-kernels provide a solution even more �exible than the one

provided by the mi
ro-kernel. In most
ases when designing embedded systems,

an exo-kernel
an be seen as a mi
ro-kernel whi
h the abstra
tion layer has been

redu
ed to a minimum, namely the Hardware Abstra
tion Layer (HAL).

The stru
ture
hosen for our kernel is
loser to the exo-kernel than the mi
ro-

kernel as it exists today. The operating system servers are hosted in the user-spa
e.

For multi
ore platforms, the in
rease of the number of
ores requires to in
rease the

number of memories. For better management of the lo
ality, a separation of this

memory into multiple adja
ent address spa
es is required (NUMA: several physi
al

memories but only one uni�ed address spa
e). Therefore, the establishment of a

4.4. Con
eption 99

me
hanism of MPU

6

whi
h would
ombine �exibility and performan
e would be

more feasible in an exo-kernel.

4.3.4.2 Servi
es for multi
ore

An inter-
ore
ommuni
ation servi
e should allow to send messages from one
ore to

another. This servi
e must be su�
iently generi
 to support di�erent inter
onne
t

ar
hite
tures (Bus with shared memory, Network-on-Chip, ...). This module should

also be able to manage the broad
ast, whi
h will be useful to syn
hronize several

ores.

A lo
alization fun
tion permitting to �nd existing servi
es and resour
es on

the platform must be present in ea
h module to make itself independent of the

threads, servi
es and resour
es pla
ement. The servi
es are de�ned and stati
ally

distributed at
ompile-time. The resour
es are dynami
ally
reated at run-time.

There are servi
es and resour
es that are lo
al, and others that are global, that is

to say, available for the threads running on remote
ores.

For more portability, resour
es will be a

essible by a unique name, independent

from the platform on whi
h the appli
ation runs. A system of name resolution should

o�er the ability to identify a given resour
e using a user-de�ned name, stati
ally or

dynami
ally.

Regarding the inter-thread
ommuni
ation, the operating system should at least

have a
ommuni
ation servi
e. Tasks s
heduling will always be done lo
ally to ea
h

ore. So there will be one s
heduler servi
e per
ore.

4.3.5 Portability

Constraints on the platform are its multi
ore aspe
t and its heterogeneity. It has

an impa
t on the hardware abstra
tion layer whi
h should take into a

ount that

one of the
ore should be appointed to initialize the platform and syn
hronize other

ores. This
ore would play the role of supervisor. Additionally, the HAL should

handle the heterogeneity of the
ores and for instan
e the di�eren
es of endianness.

To simplify the porting of the OS, the endianness must be swit
hed Big Endian to

Little Endian and vi
e versa. To simplify the pro
ess, a default endianness should

be de�ned inside the platform.

4.4 Con
eption

The
on
eption se
tion des
ribes how we
hoose to implement the spe
i�
ations

de�ned in the previous se
tion. That means the operating system we
hoose to be

implemented, how we manage the
ommuni
ation between
ores and how we ensure

the homogeneity of the programming model.

6

Memory Prote
tion Unit

100

Chapter 4. Operating System for Dynami
ally and Re
on�gurable

Heterogeneous SoC

4.4.1 Operating system ar
hite
ture

As we made the
hoi
e of a distributed ar
hite
ture, ea
h
ore implements an in-

stan
e of the operating system. The operating system is
omposed of a kernel and

multiple servers. The role of the latter is to provide all appli
ation threads an a

ess

to the operating system servi
es, and espe
ially to the resour
es they manage. In

this
ontext, a resour
e is an instan
e of a Semaphore, of a Message Queue or of

another servi
e. It
orresponds to the entity whi
h is manipulated by the thread,

using the servi
e primitives. The distribution of the servi
es on di�erent
ores may

be uneven, depending on memory spa
e, logi
 elements availability,
ore a�nity or

threads lo
ation.

4.4.1.1 Servers ar
hite
ture

Servers are instantiated stati
ally. During the
reation of a resour
e, the sear
h for

a server
apable of pro
essing this work has been performed at
ompile time. When

the server is lo
al, the task wanting to run the servi
e sends its message dire
tly to

this server lo
ally. Otherwise, if it is remote, the task sends a message to the remote

node on whi
h it stands.

����������	
���

��������
��	
�����

������	��
�����������

���
��

����	���

�������
��	���	�

��
���
��	���	�

����������	
���

��������
��	
�����

����

����	���

�������
��	���	�

��
���
��	���	�

�����		
��	
�����

������	�
������������

�����		
��	
�����

��	

��

��	

��

Figure 4.13: Sys
all Pro
edure

Resour
es are instantiated dynami
ally. When handling an existing resour
e, a

thread has to �nd where the resour
e is lo
ated, then send a message to the server

owning this resour
e. If the server is on another
ore than the thread, a message

must be sent to the
ore in order this one to transmit it to its lo
al server (Fig. 4.13).

Regarding its ar
hite
ture, a server is a module that implements the me
ha-

nisms for handling a
ertain type of resour
e. These me
hanisms, when the servi
e

is implemented lo
ally, are a me
hanism of lo
ation and a me
hanism of resour
e

management (Fig. 4.14). These two me
hanisms are optional. If not implemented,

4.4. Con
eption 101

�� ������������

� �	
���

��
��
��

�� ���
��������
���

�

�
�

��
��
�
�����������������
����

�
�

�
�

���������������
����

�� ��

�

�	�
��
����
�

��
�� ��
�

!���
�������

����" ����"

����
� ����
�

��

�
�

��

��
�#

����"

����
�

��

�

�
�

����" ����������������
��

Figure 4.14: Server types

the server is restri
ted to the
ommuni
ation servi
e allowing to send and re
eive

messages, and so to a

ess to remote servers or resour
es using Inter-Thread Com-

muni
ation (Fig. 4.15).

������

��������	�
����
����	�����

����	��� ��
�	���

����	����

����������	�������
�����

�����
�����

 �	������

!���
�	�"�

#�
��	�����
�

����	#�
���$�����

Figure 4.15: OS Server Ar
hite
ture

4.4.1.2 Kernel ar
hite
ture

The kernel on ea
h
ore will be implemented as an exo-kernel and so will provide

a minimal set of features. It must be
omposed at the fun
tional level of: a HAL

7

whi
h gives a

ess to a timer ti
k for the operating system, an interrupt module, a

bootloader, a thread management server, and �nally an inter-
ore
ommuni
ation

server allowing a

ess to remote servers and resour
es.

7

Hardware Abstra
tion Layer

102

Chapter 4. Operating System for Dynami
ally and Re
on�gurable

Heterogeneous SoC

4.4.1.3 Communi
ation ar
hite
ture

A user thread a

esses the servi
es of the operating system through a spe
i�
 API.

Several standard APIs exist. Whatever the
hosen standard, it is ne
essary to ho-

mogenize the system
alls for all types of threads that
ontain the appli
ation, whi
h

ould be either software or hardware. For s
alability reasons,
ommuni
ation be-

tween a server and a thread is made only by message passing. The message must

ontain all information ne
essary to enable the server to exe
ute the query. This

stateless proto
ol is intended to limit the number of transa
tions between a thread

and a server when performing a system
all. Similarly, the
ommuni
ation between

two servers is done by en
apsulating the message in a routing header spe
i�
 to the

physi
al
ommuni
ation medium (Fig. 4.16).

��������� �	 �
 ���

��
��������

������ �����
� ��

��������

��

����������

��
��������
����

Figure 4.16: Message Template

All messages ex
hanged in the system have the same format. They
onsist of

two segments:

• system data (System Call): this segment indi
ates the servi
e to whi
h it

orresponds, the operation whi
h is requested to do on this resour
e, as well

as the identi�er and the priority of the
alling thread if any. The following

data are the parameters of the requested operation

• the header needed to route the message through the inter
onne
t in the
ase

of a
ommuni
ation between two
ores

4.4.2 Platform ar
hite
ture

4.4.2.1 Hardware ar
hite
ture

To illustrate the di�erent me
hanisms that we need to implement, we rely on the

platform des
ribed in Figure 4.17. It in
ludes three
ores: Core0, Core1, and Core2.

Core0 supervise the entire system and is responsible for initializing the platform

and starting the other
ores. Ea
h
ore has a

ess to a private memory, a shared

memory and
an
ommuni
ate with other
ores through an inter
onne
t.

Core0 and Core1 implement both lo
ally a Semaphore servi
e. Core2 does not

implement it. The appli
ation is
omposed of two threads, T1 and T2, respe
tively

4.4. Con
eption 103

�� ����

��

������
	�
���

����

��

��

����
����

����������

������������

�� ������������

� ����

��
���������������

�� �������� ������

��

	�
���

��

��

�

!
�

!
�

!

	�
���

��

	�
���

��

��

��
 ��
�������������

�

!
�

����������������

Figure 4.17: Study Case Platform

present on Core1 and Core2. At T0, we
onsider that the supervisor has
on�gured

every nodes and they are ready to exe
ute the threads they implement.

Ea
h
ore has a lo
al s
heduler. The resour
es
reated by the servers
an be lo
al

or global. In the
ase of global resour
es, information on this resour
e are �lled in a

lo
al table, re�e
ted in the private memory of ea
h
ore (GT = Global Table). This

table allows ea
h
ore to lo
ate any global resour
e
reated in the platform.

4.4.2.2 Study
ase

S
enario

The appli
ation s
enario is as follows: T1
reates the global Semaphore S1 then

releases it. S1 is initialized to 0 (ie. there are no resour
es available).

1 T1 () {

2
reate_semaphore ("S1" , GLOBAL) ;

3 r e l ea s e_semapho re ("S1") ;

4 }

T2 starts waiting for Semaphore S1.

1 T2 () {

2
reate_semaphore ("S2" , GLOBAL) ;

3 take_semaphore ("S1") ;

4 }

104

Chapter 4. Operating System for Dynami
ally and Re
on�gurable

Heterogeneous SoC

S
enario steps

T1
reates the global semaphore S1. Core1 implements a Semaphore servi
e so

the request is pro
essed lo
ally. When S1 is
reated, Core1 warns the other
ores

that a new global Semaphore has been
reated. To do so, it sends a message to ea
h

ore.

When a
ore re
eived this message, it updates its global table GT. The
ontent

of the global table is detailed in Table 4.1. Depending on the
ase
hosen for the im-

plementation of Semaphore servi
e, some �elds would be left blank, for example the

Attribute and Pointer values are not ne
epla
edssary when the resour
e is distant.

For its part, T2 wants to
reate a new semaphore. Sin
e it does not implement

the servi
e, it must
all this servi
e on Core1. To
onsider the establishment of

remote servi
es
alls, it is ne
essary to add a proxy me
hanism, or repli
a, whi
h

will emulate the presen
e of thread on the remote
ore (Fig. 4.18). For reasons

of spa
e and memory laten
y, this proxy must
ontain the minimum information

ne
essary to be managed by the s
heduler.

�� ��

��

������
	�
���

����

��

��

����

������������

�� ������������

� ����

��
���������������

�� ���������������

��

�

�
�

�

	�
���

��

	�
���

��

�� ��
 ��
���������� ��

�

�
�

������������� ��

��

��
���������� ��
!���
���������� ���

��

� �����"��#�
��

�

�

�

�

�

�

�

Figure 4.18: Distant system
all

The
reation of Semaphore S2 unfolds as follow (Fig. 4.18):

(1) T2, lo
ated on Core2, performs a system
all whi
h is translated as a message

to its lo
al Semaphore server.

(2) as the lo
al server does not implement the servi
e, the
all is dire
tly routed to

the Communi
ation server. It therefore starts an inter-
ore
ommuni
ation to

4.4. Con
eption 105

have the Core1 perform the request.

(3) the Communi
ation server sends the message a
ross the inter
onne
t.

(4) the
ommuni
ation server of Core1 re
eives the message. It then
reates a

repli
a of T2.

(5) on
e the repli
a is
reated, it forwards the
all to the server so that Semaphore

performs the servi
e requested by T2.

(6) when the servi
e is performed, the proxy is destroyed and the feedba
k infor-

mation is transmitted to the inter-
ore
ommuni
ation servi
e.

(7) the feedba
k information is sent to Core2 for transmission to T2.

Then T2 uses the resour
e S1. It does not implement the servi
e, thus the

servi
e implementation at
ompile time is redu
ed to a dire
t
all of the remote

servi
e, disregarding whether the resour
e is global or lo
al sin
e it is ne
essarily

global. It therefore lo
ates S1 through its global table.

It is
onsidered that the resour
e S1 is managed lo
ally by Core1 and dire
tly

ina

essible by the other nodes. All requests for an operation on S1 must be done

by Core1. In the global table, the value asso
iated with ea
h resour
e is the
ore

identi�er on whi
h it is lo
ated.

Resour
e Core ID Status Attributes Pointer

S1 1 Created Shared 0x90000150

Table 4.1: Resour
es table example

In this
ase, Core2 sends a message to Core1 spe
ifying the identi�er of the

Semaphore and the request (Semaphore lo
king). The message is re
eived by Core1,

via a thread dedi
ated to this task. The request of T2 is performed on Core1 and

a proxy of T2 is pla
ed in the waiting queue of S1.

The advantages are that this solution is s
alable be
ause all
ommuni
ations are

done by message passing and that there is no
on�i
t about the ownership as the

resour
e is still managed by the
reator of the resour
e. On the other hand, the

drawba
k
onsists in the fa
t that all operations on a resour
e are
entralized on

reator's lo
ation.

When T1 releases the semaphore, T2 is the highest priority thread waiting and

therefore takes the Semaphore. The information is returned to Core2 in another

message. T2 is then released and be
omes ready to run.

Possible s
enarios

106

Chapter 4. Operating System for Dynami
ally and Re
on�gurable

Heterogeneous SoC

When a thread uses a servi
e of the operating system, there are three possible

s
enarios:

1) the server is implemented lo
ally, and the resour
e is lo
al. In this
ase, after

lo
ating the resour
e, the thread
alls dire
tly the lo
al server and the resour
e

is handled dire
tly by the servi
e (Fig. 4.19 and 4.20).

��

�

�����

�
�

	
�����

���

�
�����������

� ����

��������

�� �������
��������

�

�����

������

�

� �
�

�������
�������� ����
��������

����� �����
������
�������

�
� �

�
���������
���������

� �����!��"�

��������	

Figure 4.19: S
enario 1 platform

�

��������	

�
�

�
�

����

� �
�

�
�

����

���	
�����

�	
�����

��������	����������������	������	
������������������������������
���
������

Figure 4.20: S
enario 1 datagram

2) The server is implemented lo
ally, and the resour
e is remote.

The server is present lo
ally but does not have the resour
e, it must �rst

lo
ate it. On
e lo
ated, it is responsible for sending a message to the
ore whi
h

possesses it for the latter to pro
ess the request in its pla
e (Fig. 4.21 and 4.22).

4.4. Con
eption 107

�� ��

�

������
��	
��

�
��

�
�

�
���

������
�����

�� ��
���������

� ����

���
����

�� ���������������	

�

�
		� �
		�

��	
��

��

��	
��

��

� �

���!���
"�
����#���
�����!���

�
		� �
		�������
�����!��

�
� �

"��������������!���

�
�

� �����$�
%�

��������	

Figure 4.21: S
enario 2 platform

�

��������	

�
��

�
��

�����

� �
��

�
��

�����

����	

����	

�
�	

�
�	

�
�	

�
�	

�
��
��

�

�
��
��

��
��
��

�

�
��
��

���

��

���

�� �������
���
��

� ������
����
�
�
�������
�
��
�
���������
�
��

�
���
!"
�
�
�
����������
�
�
�
���#���

�
��
��

�

��

�

��
��

�

��

�

�

�
���$�

�
���$�

!%
&��� ���'

�������
���$�

Figure 4.22: S
enario 2 datagram

3) The server is not implemented lo
ally, and the resour
e is remote.

A servi
e not implemented lo
ally is de
lined into two di�erent versions:

a) The server implements a lo
alization me
hanism: the server
an not handle

resour
es, but it is able to lo
ate the resour
e. On
e lo
ated, it sends a

message to the
ore whi
h own the resour
e (Fig. 4.23 and 4.24).

108

Chapter 4. Operating System for Dynami
ally and Re
on�gurable

Heterogeneous SoC

�� ��

�

������
��	
��

�
��
 �
���

������
�����

�� ��
���������

� ����

���
����

�� ���������������	

�

�
		� �
		�

��	
��

��

��	
��

��

� �

���!���
"�
����#���
�����!���

�
		� �
		�������
�����!��

�
� �

"��������������!���

�
�

� �����$�
%�

��������	
�

�

Figure 4.23: S
enario 3a platform

�

��������	
�

�
��

�
��

�����

� �
��

�
��

�����

����	

����	

�
�	

�
�	

�
�	

�
�	

�
�

����������

� ��
��������
���������������������������������������
��� ���!���!��������
���"���"��#��

���������!

���������!

���������!
�

���������!

�������!

����"

����"
�

����"

"

Figure 4.24: S
enario 3a datagram

b) The server is not implemented (Fig. 4.25). The
all for this servi
e has re-

sulted in sending a message to another
ore whi
h is known to own the servi
e.

Then that other
ore has the resour
e, or by extension, is able to lo
ate and

deliver the message to
ore whi
h e�e
tively owns it (Fig. 4.26).

4.4. Con
eption 109

�� ��

�

������
��	
��

�
��
 �
���

������
�����

�� ��
���������

� ����

���
����

�� ���������������	

�

�
		� �
		�

��	
��

��

��	
��

��

�

���!���
"�
����#���
�����!���

�
		� �
		�������
�����!��

�
� �

"��������������!���

�

� �����$�
%�

��������	

��

�
�
�

�
		�

��	
��

��

�

�
�

Figure 4.25: S
enario 3b platform

�

��������	
�

�
��

�
��

�����

� �
��

�
��

�����

����	

����	

�
�	

�
�	

�
�	

�
�	

����

����

�
�

�
�

�
�

�
�

������
���

������
�����

������
���

������
���

������
�����

����
���

�
���

�
�����

�
���

�

Figure 4.26: S
enario 3b datagram

4.4.3 Multi
ore layer

The abstra
tion provided by the software ar
hite
ture has to be integrated in an

operating system. We have to keep up the existing stru
ture of this operating

system, espe
ially the servi
es it provides. In a
ommon operating system, a thread

a

esses the operating system servi
es via
lassi
al system
alls (ie. dire
t
onne
tion

to the
alled primitive). To abstra
t remote a

esses to an operating system resour
e,

110

Chapter 4. Operating System for Dynami
ally and Re
on�gurable

Heterogeneous SoC

an additional layer must be added. This layer has three obje
tives:

i) to make the di�eren
e at
ompile time, between a request for
reating remote

or lo
al resour
es

ii) to translate
alls to the operating system primitives into messages understand-

able by the servers

iii) to manage the heterogeneity of the platform: di�erentiation of how to manage

a software thread with how to pro
ess with a hardware thread

����������	
���
���

���������	
��
� �

�

�����	�
�
����
�
� ��������

���
�

� ����������	
������
���
�����������
� �
����
���

�����
�
�����������������
��
� �����
����
�������
�����������������	�

��
����	�
�������
�

���
��� �
� ��� ���

�
��
�

 	!����������

�
�

��
�
��
����
���
����
���
� �
	�
"
�
��
 �#
� �
�����
�
������$����	

��
��
� %
	��	

�
�&
�
����

�!
��������

�	
��

���

Figure 4.27: Operating system ar
hite
ture

The implementation of this multi
ore layer requires us to identify the existing

me
hanisms permitting to the di�erent nodes of the system to
ommuni
ate. These

me
hanisms must be adapted or modi�ed to allow sending a message from a
ore

to another and to ensure the transfer of all the ne
essary information. Finally, the

operating system should implement the following modules:

• a module that implements a servi
e of message passing

• one or several modules that allows to manage the resour
es available on

the platform (e.g. a Semaphore servi
e)

• a module enabling to abstra
t the use of the partial and dynami
 re
on-

�guration

4.5. Implementation 111

4.5 Implementation

4.5.1 Modular operating system: MutekH

To validate the
hoi
es and
on
epts to be implemented in order to realize this

operating system, we will use an existing operating system: MutekH [LIP6 2012℄.

This operating system was
hosen be
ause it is a multi
ore heterogeneous operating

system, open sour
e and
urrently still maintained by the LIP6 laboratory (www.

mutekh. org).

4.5.1.1 Main features

The following table lists the features of this operating system and
ompares them

with what is expe
ted of our "ideal" operating system (HSoC OS).

S
heduling

HSoC OS MutekH

Type Preemptive Preemptive

Criteria priority round robin

Max. number of task. >= 16 unlimited

Thread servi
e HSoC OS MutekH

Create Yes Yes

Delete Yes Yes

Suspend Yes Yes

Resume Yes Handled by the

s
heduler

Mutex servi
e

HSoC OS MutekH

Create Yes Yes

Delete Yes Yes

Blo
king take Yes Yes

Non-blo
king take Yes Yes

Release Yes Yes

Priority inheritan
e Yes unknown

Deadlo
ks management Optional No, non-blo
king take

possible

Semaphore servi
e

HSoC OS MutekH

Create Yes Yes

Delete Yes Yes

Blo
king take Yes Yes

Non-blo
king take Yes Yes

Release Yes Yes

112

Chapter 4. Operating System for Dynami
ally and Re
on�gurable

Heterogeneous SoC

Message Passing

servi
e

HSoC OS MutekH

Blo
king send Yes No

Blo
king re
eipt Yes No

Non-blo
king send Yes No

Non-blo
king re
eipt Yes No

Memory allo
ation

servi
e

HSoC OS MutekH

Fixed allo
ation Yes Yes

Dynami
 allo
ation No Yes

Remote

ommuni
ation

OS HSoC OS MutekH

Resour
e
reation Yes No

Resour
e destru
tion Yes No

Resour
e manipulation Yes No

Debug - Monitoring

HSoC OS MutekH

Support GDB Optional but

re
ommended

OK

Statisti
s Optional Yes

Hooks Optional Yes

Hardware Thread

servi
e

HSoC OS MutekH

Create Yes No

Delete Yes No

Suspend Yes No

Resume Yes No

Hardware Threads

s
heduling

HSoC OS MutekH

Preemption Save and restoration

through readba
k

No

Relo
ation Yes, on homogeneous

areas

No

4.5. Implementation 113

Multi
ore support

HSoC OS MutekH

Bootloader

management

Supervisor pro
essor Supervisor pro
essor

Task migration Optional Yes, pointer to the
ode

in shared memory

Features

HSoC OS MutekH

Kernel footprint < 25 ko �

Memory safety Memory Prote
tion

Unit

Memory Management

Unit

Mi
roblaze Port Yes Partially done

(fun
tional)

Abstra
tion API Industrial standard POSIX standard

Spa
e address Uni�ed for every
ores Shared memory

Modularity Modular OS servi
es OK

4.5.1.2 Servi
es stru
ture

Currently, MutekH o�ers modular servi
es to be implemented on the target plat-

form. Being an exo-kernel, additional servi
es are de�ned as libraries (Fig. 4.28).

These libraries are separated into two
ategories: OS Interfa
e Libraries whose APIs

are provided by the user and Servi
es Libraries whose APIs are provided by the op-

erating system.

Figure 4.28: MutekH global view

114

Chapter 4. Operating System for Dynami
ally and Re
on�gurable

Heterogeneous SoC

The
ore of MutekH, Hexo (Hardware independent kernel
ode), provides the

following servi
es:

• memory allo
ators

• memory regions

• page allo
ator

• s
heduler

• timer

• semaphore

In order to satisfy the
on
eption requirements des
ribed in the previous se
tion,

we need to add a new library whi
h will be used as an multi
ore resour
e manager.

This library has to handle the lo
al and remote a

esses to every resour
es of the

platform providing a
ommon API for every servers of the platform. In our
ase,

we rely on the MRAPI spe
i�
ation provided by the MCA (Multi-Core Asso
ia-

tion [Asso
iation 2012℄). This spe
i�
ation whi
h o�ers an API to a

ess to global

servi
es is detailed in the next se
tion.

4.5.2 MRAPI Spe
i�
ation

4.5.2.1 MRAPI de�nition

MRAPI (Multi-Core Resour
e Management API) is a spe
i�
ation whi
h aims to

o�er a standard API de�ning basi
 syn
hronization me
hanisms, memory a

esses

and system metadata. Syn
hronization me
hanisms in
ludes Mutexes, Semaphores

and pairs of Reader/Writer lo
ks. A

essed memories
an be shared or remote,

whereas system metadata addresses the
olle
t of hardware informations.

Their approa
h
onsists in suppressing the dependen
y of the existing standard

with the SMP ar
hite
ture and provide an API whi
h
ould be easily implemented on

a distributed operating system
ontaining heterogeneous
ores and shared resour
es.

The advantage of using a standard API is the portability as a developer will be able

to lo
ate the non-portable fun
tionalities.

MRAPI shares the same
on
epts as those found in MCAPI. It is orthogonal to

this spe
i�
ation and the two are inter-operable. In these spe
i�
ations, a system

is
omposed of:

• domains: a domain is a system
omponent whi
h in
ludes a
ertain number

of nodes

• nodes: a node is an independent thread of
ontrol. It may be a pro
ess, a

thread, a hardware a

elerator or an operating system instan
e

4.5. Implementation 115

By default, most resour
es are shared between di�erent domains of the system.

For e�
ien
y reasons, it is possible to disable this by setting the attribute sharing

MRAPI_DOMAIN_SHARED to MRAPI_FALSE when
reating the resour
e.

4.5.2.2 MRAPI Mutexes

A mutex
an be de
lared as a global resour
e by spe
ifying the pro
ess-shared at-

tribute. The Mutex is based on POSIX mutexes. They must support the dete
tion

of deadlo
ks and in this sense are similar to the implementation of mutex type

PTRHEAD_MUTEX_ERRORCHECK. The sharing of a mutex between multiple

pro
esses is not always possible. This is implementation dependent. In parti
ular

in the
ase of the use of a fork.

They also support re
ursion but this is not the default
ase. For ea
h lo
k, a

unique key is returned and is used to
he
k the order of
alling Unlo
k primitives

for the same mutex.

Regarding other features, the priority inheritan
e me
hanisms are not guaran-

teed until the spe
i�
ation of threads in MTAPI

8

is not
learly de�ned. The opera-

tions on mutexes are all blo
king and by default, a mutex is visible to all pro
esses

and tasks. The primitives de�ned by the API are equivalent to the following POSIX

primitives:

• pthread_mutex_init (m
api_mutex_init)

• pthread_mutex_destroy (m
api_mutex_destroy)

• pthread_mutex_lo
k (m
api_mutex_lo
k)

• pthread_mutex_trylo
k (m
api_mutex_trylo
k)

• pthread_mutex_unlo
k (m
api_mutex_unlo
k)

Mutexes have attributes. These attributes must be de�ned before
reating the

mutex and
an not be
hanged later.

4.5.2.3 MRAPI Semaphores

Semaphores are also based on the POSIX standard. All operations are blo
king and

by default a Semaphore is visible to any pro
ess or task. This servi
e also provides

primitives for notifying deadlo
ks.

However, MRAPI only supports named Semaphores and the XSI interfa
e (X/Open

System Interfa
es Extension) is not supported. Moreover, like Mutexes, the me
h-

anisms to �ght against priority inversion are not guaranteed as MTAPI is not
om-

pleted.

8

Multi
ore Task management API

116

Chapter 4. Operating System for Dynami
ally and Re
on�gurable

Heterogeneous SoC

4.5.2.4 MRAPI Reader/Writer Lo
ks

The Reader / Writer Lo
ks
an handle multiple
on
urrent a

esses to read from a

memory, or ex
lusive a

ess for writing. To ensure fairness, MRAPI must implement

a me
hanism for serializing queries so that no new read request is a

epted from

the moment where a write request is pending. MRAPI Reader / Writer Lo
ks are

similar to POSIX R/W Lo
ks, but as MRAPI provides additional fun
tionalities,

MRAPI lo
ks implementation is more �exible and for instan
e, lo
ks
an be shared

by all nodes as well as by only a group of nodes.

4.5.2.5 MRAPI Memories

MRAPI supports two types of memory: shared memories and remote memories.

MRAPI shared memories are similar to POSIX shared memory, ex
ept that they ex-

tend their fun
tionality to several operating system, against one for POSIX. MRAPI

supports the heterogeneous elements of exe
ution and ensures
onsisten
y of shared

memory regardless of the operating systems or the types of
ores used to
ompose

the platform.

Remote memories relate memories a

essible only through me
hanisms external

to the pro
essor, that is to say other types of instru
tions than simple load and

store. There are no
onstraints on how to a

ess these memories, however, it is

preferable to provide an implementation in whi
h the sending of data and
al
ulation

of data
an be done in parallel. That is to implement me
hanisms of non-blo
king

ommuni
ation with the memory (read and write).

In addition, �ush and syn
 primitives are provided to support any
a
he man-

agement, and a

ess of s
atter / gather type. There are two types of a

ess to a

remote memory, all to be uniform:

• a

ess with stri
t semanti
s: the type of a

ess must be spe
i�ed upon the

reation of the bu�er (e.g. DMA, software
a
he, ...)

• a

ess without semanti
s: the type of a

ess spe
i�ed upon the
reation is set

to MRAPI_RMEM_ATYPE_ANY. The a
tual type of a

ess is given only

when a

essing the bu�er.

The use of pointers is still allowed but limited to a

ess to lo
al memory. Remote

a

ess must always be done making a
opy and must use the MRAPI primitives.

The implementation must still provide at least the default type of a

ess

9

whi
h

must follow the stri
t semanti
s.

9

MRAPI_RMEM_ATYPE_DEFAULT

4.5. Implementation 117

4.5.2.6 MRAPI Metadata

Metadata provides a

ess to information about the hardware platform. You
an a
-

ess this information by using the primitive mrapi_resour
es_get() whi
h returns

the information as a tree. Ea
h node of the tree represents a system resour
e and

has attributes giving additional information about the resour
e. The information

ontained in the tree
an be �ltered using the input parameter subsystem_�lter.

The implementation of these �lters depends on the implementation.

4.5.2.7 MRAPI Attributes

The attributes were de�ned to allow an extension of the API. It is possible to de�ne

additional attributes spe
i�
 to its own implementation. In order to make the

API as portable as possible while keeping a �exible implementation, the attributes

are maintained in a data stru
ture opaque, non-visible to the user. Ea
h resour
e

is asso
iated with a data stru
ture and must have
ertain attributes and default

value. These values are de�ned in the spe
i�
ations. Three primitives are used to

manipulate the attributes:

• mrap_<resour
e>_init_attributes()

• mrap_<resour
e>_set_attribute: to be repeated for ea
h attribute to set

• mrap_<resour
e>_
reate(): takes as parameter attributes

• mrap_<resour
e>_get_attribute()

Note: On
e the resour
e is
reated, its attributes should not
hange. For a

resour
es management like remote resour
es, an additional layer should be imple-

mented. In our
ase, this additional layer is brought by the servers ar
hite
ture.

4.5.2.8 Non-blo
king
alls

There is three types of primitives:

• blo
king primitives

• non-blo
king primitives: it means primitives
ontaining the word "_i" at the

end of their name, indi
ating that it returns immediately

• and "single-attempts blo
king" primitives: namely, primitives in
luding the

word "try" in their name

Remote memories are the only one to support non-blo
king
alls. In this
ase,

the primitive
an return the fo
us to the user before the
ompletion of the operation.

To
he
k this
ompletion, the API provides the following primitives:

118

Chapter 4. Operating System for Dynami
ally and Re
on�gurable

Heterogeneous SoC

• mrapi_test() : test the operation test without being blo
ked

• mrapi_wait() : wait for the
ompletion of an operation or until a timeout

• mrapi_wait_any() : wait for the
ompletion of one of the running operation

given as parameters, or until a timeout

• mrapi_
an
el() :
an
el an operation

4.5.3 Hardware ar
hite
ture

4.5.3.1 Homogeneous NoC-based platform

In order to validate the
ommuni
ation me
hanisms between two pro
essors, we �rst

design a homogeneous platform. In this platform, ea
h pro
essor is master on its

own bus and
an a

ess to the NoC resour
es through a bridge. A Bram memory is

used to test read and write me
hanisms on the NoC.

������ ���	
�

�
�����

�������	�

�����
����

������ ���	
�

�
�����

�
����

����

����

���
�	��
	���

����

����

���
�	��
	���

����� �����

����� �����

Figure 4.29: Homogeneous NoC-based Platform

4.5.3.2 Development environment

The MutekH operating system [LIP6 2012℄ has been ported on the Mi
roblaze pro-

essor. To enhan
e its programmability, we developed an E
lipse plug-in whi
h
an

be integrated into the Software Development Kit (SDK) provided by Xilinx to pro-

gram the Mi
roblaze. This plugin allows to
reate a new proje
t to deploy MutekH

on a Mi
roblaze pro
essor,
hoosing the libraries to in
lude into the kernel and the

memory mapping of the appli
ation.

4.5.3.3 Heterogeneous NoC-based platform

The heterogeneous platform we realized extends the homogeneous platform adding

Hardware Thread instan
es (HT). These tasks perform system
alls through the

Re
on�gurable Zone (RZ) bus whi
h is a bus dedi
ated to the hardware tasks in the

FOSFOR proje
t. Messages on the bus are re
overed by a hardware
ommuni
ation

4.5. Implementation 119

server responsible of translating requests into messages routed by the NoC towards

a pro
essor. Experiments on this platform will be des
ribed in the Chapter 5.

������ ���	
�

�
�����

�������	�

�� �
��

������

	���

��
�
�

���
�
����

�	���� �
!�

������ ���	
�

�
�����

������

�
����

����

�"��

�#�
�	"�
	���

����

�"��

�#�
�	"�
	���

�$����

��

�������������� ��������������

����	
��
����������

����� �����

�%������

Figure 4.30: Heterogeneous NoC-based Platform

4.5.4 Domain de�nition

The platform is
onsidered to be a NoC-based design and ea
h
ore, pro
essors
ores

or re
on�gurable
ores, have a unique identi�er on the network-on-
hip.

We
ould have de�ned a domain as a Network-on-Chip, however this would have

led us to de�ne a
ore as a node. This situation would be problemati
 be
ause as

the node identi�er should also be unique, a
ore would have to ensure that the num-

ber it
hose is not already used by the other
ores
onne
ted to the network when

reating a new node. Another solution would be to request to a
ore
onsidered as

a supervisor, to generate a number for it, what
ould also be a bottlene
k.

For these reasons, we de
ide that a domain is de�ned by a
ore. As every
ore

are already
onne
ted and de�ned on the NoC by a unique identi�er, the domain

number is derived from this identi�er. So, to attribute an identi�
ation number to a

new node, a
ore performs it independently from the others
ores managing a lo
al

table.

This solution
onsiders that in the platform, only the hardware thread
an be

re
on�gured. In this implementation, we do not take into a

ount the possibility

to re
on�gure a dynami
 partition instantiating a pro
essor
ore as de�ned in the

Figure 4.30, but only instantiating a Hardware Thread.

120

Chapter 4. Operating System for Dynami
ally and Re
on�gurable

Heterogeneous SoC

4.5.5 Node de�nition

As regarding the MRAPI spe
i�
ation a node should be an independent thread of

ontrol. In MutekH, we de�ned that a software node is implemented as a POSIX

thread. This
hoi
e has been made be
ause a node is
onsidered to be mapped any-

where on the network regarding appli
ation needs, so a node number is dynami
ally

generated by a
ore when initializing the node.

On the hardware side, a hardware thread running in a re
on�gurable partition is

onsider as a node, and like the software operating system, the Hw MRAPI module

is responsible for generating the node identi�er of ea
h hardware threads.

4.5.6 MRAPI types

In the Multi-Core Asso
iation (MCA) implementation, used types are de�ned in

the �le m
a.h. De�ned types are pre�xed by �m
a_�. Symboli

onstants are then

de�ned in order to homogenize the di�erent implementations under generi
 types

pre�xed by �mrapi_�.

In our
ase, the implementation is done in the mrapi_impl_spe
.h �le. We

asso
iate �mrapi_� types to �mmh_� types (MRAPI MutekH) de�ned in the �le

�mmh.h�, whi
h are themselves linked to already de�ned types in the MutekH kernel

(hexo/types/h) (Fig. 4.31).

The implementation is done to be deployed on a 32-bit wide ar
hite
ture. Re-

garding primitives implementation, it exists two levels of �les: mrapi.h and mrapi.

in
luding API primitives as de�ned in the spe
i�
ation whi
h only
he
k spe
i-

�ed errors messages, and mrapi_impl_spe
.h and mrapi_impl_spe
.
 in
luding

the e�e
tive implemented API primitives whi
h
ontent is spe
i�
 to the targeted

operating system and platform.

4.5.7 Resour
es system
alls

4.5.7.1 Prin
iple

A thread wanting to a

ess a system resour
e, whi
h
ould be lo
al or distant,
an

do it in a transparent way using the MRAPI primitives. A
all to one of these

primitives when
on
erning a system resour
e, is translated by a
all to a �exible

server.

A �exible server is an operating system servi
e whi
h
ould be implemented in

three ways:

• with a minimal servi
e unable to lo
alize a resour
e but able to trans-

mit a request to a

ess to remote servi
es to another
ore

• with a partial servi
e able to lo
alize a resour
e and so to request a

remote a

ess to the owner

4.5. Implementation 121

��������

������	

���
������
�

�������
�

��	����

����

��������

���
������
�

�������
�

������	�����

���
������
�

�������
�

�����

�������

���
������
�

�������
�

�����

���
������
�

�������
�

����	�������

���
������
�

�������
�

��������������	��

���
������
�

�������
�

����

��������������	�	

���
������
�

�������
�

����

�����������	���������	

���
������
�

�������
�

������������	���������	

���
������
�

�������
�

������������������	

���
������
�

�������
�

������

�����������	���������	

���
������
�

�������
�

������������	���������	

���
������
�

�������
�

������������������	

���
������
�

�������
�

Figure 4.31: MRAPI library �le stru
ture

• with a full servi
e able to lo
alize a resour
e and so to request a remote

a

ess to the owner but also to manage resour
es lo
ally

4.5.7.2 Lo
al tables

In order to store all ne
essary information to
ommuni
ate between nodes, three

lo
al tables are
reated (Fig. 4.32): a servi
es table whi
h remains the same all

along the appli
ation exe
ution and so is de�ned as a stati
 table, a resour
es table

whi
h is updated ea
h time a new global resour
e is
reated and a nodes table whi
h

is updated ea
h time a node is
reated inside the domain (ie. on the
ore). The two

latter are managed as dynami

hain lists. Ea
h table is
reated at the initialization

of the
ore and is shared by every node running on it.

122

Chapter 4. Operating System for Dynami
ally and Re
on�gurable

Heterogeneous SoC

������

����	
���
� 	������	
���
� ��	�����	
���
�

���������
������	
��

���������
������	
��

�

���������
������	
��

�
�����	�����
��
������

�
�����	�����
��
������

�

�
�����	�����
��
������

�
��
�������
��
������

�
��
�������
��
������

�

�
��
�������
��
������

������ ������ ���������

Figure 4.32: MRAPI lo
al tables

4.5.7.3 HAL
ommuni
ation support

To enfor
e the syn
hronization between the di�erent
ores, we need to rely on a mul-

ti
ore
ommuni
ation API whi
h allows to send messages from one
ore to another.

This API must o�er low-level primitives to send and re
eive these messages. In or-

der to lower the global footprint of the MRAPI implementation, this
ommuni
ation

layer is implemented at the HAL level.

4.5.7.4 Remote
all management

When a remote
all is performed, the message is gathered by a spe
ial thread running

on ea
h
ore. Conne
ted to the message a
knowledgement me
hanisms provided by

the implementation, this thread wakes up,
reate a repli
a whi
h will pro
ess the

all and go sleep until the
all is
ompleted or another message arrived (Fig. 4.33).

������

����������	
	���
������

������
������

������
������

�����

������

���

�	�
���
����

���������
����	��
��	���
�	�
������

�
�
�
�
�
�
�

���

����������	������

�
������������

�������������	
	����	����	���	� ����

����
����� �����!�"������	��

����
�����
������"������
"���������	��

����������������
��#	������������!����
�"�

� �

�

����	

�

�

�

�

�

�

�

�

�

�

Figure 4.33: Requests management proxies

4.6. Con
lusion 123

4.6 Con
lusion

In this
hapter, we de�ned the spe
i�
ation of an ideal operating system whi
h

would be able to manage a heterogeneous re
on�gurable system-on-
hip. Regarding

the multi
ore and heterogeneity issues, this operating system have to provide simple

ommuni
ation me
hanisms and above all, be enough �exible to e�
iently use the

dynami
ity brought by the Dynami
 and Partial Re
on�guration.

To manage it, we relied on the MRAPI spe
i�
ation whi
h provides a simple API

on top of the operating system. This API allowed us to implement a �exible server

me
hanism to adapt the set of servi
es provided by the operating system to the
ore

is running on. Moreover, the modular
ompilation of the MutekH operating system

we
hose as a basis is well suited to enfor
e an easy implementation of a design spa
e

exploration tool.

In the next
hapter, we evaluate the performan
e of the proposed solution when

integrated in a full heterogeneous and dynami
ally re
on�gurable System-on-Chip.

Chapter 5

Appli
ation deployment

Contents

5.1 Introdu
tion . 125

5.2 Platform building . 126

5.2.1 Mi
roblaze platform . 126

5.2.2 Read and Write timings . 127

5.2.3 System
alls . 131

5.2.4 Hardware Threads en
apsulation 134

5.3 Tra
king appli
ation . 135

5.3.1 Presentation . 135

5.3.2 The Camshift IP . 137

5.3.3 The DVI IP . 138

5.3.4 Appli
ation deployment . 139

5.3.5 Results and performan
es . 142

5.4 Con
lusion . 143

In this
hapter we implement a set of features exposed in the previous
hapters

whi
h
hara
terize an HRSoC, and we build a demonstration platform in an in
re-

mental way in order to detail these di�erent features. We give experiment results

about the
omponents of the system, in
luding data transfer and system
alls tim-

ings as well as memory footprints for the software ar
hite
ture. We also provide

timings and resour
e usage for the hardware one.

5.1 Introdu
tion

A demonstration platform (Fig. 5.1) is built to highlight the di�erent
ommuni-

ation and abstra
tion me
hanisms provided by this operating system dedi
ated to

re
on�gurable platforms whi
h allows to take advantage of the dynami
 and partial

re
on�guration te
hnology.

This platform is
omposed of a
ouple of Mi
roblaze pro
essors, ea
h one be-

ing master on its own PLB bus. Also, both have a

ess to a DDR2 memory, an

interrupt
ontroller is used to notify the re
eption of a message by the PLB-NoC

bridge and a timer gives the operating system ti
k and the ability to pro
ess timing

126 Chapter 5. Appli
ation deployment

measurements.

Spe
i�
ally, the se
ond Mi
roblaze has an a

ess to the FaRM ICAP
ontroller

whi
h allows it to partially re
on�gure the FPGA. It has also an a

ess to a DVI

ontroller and is responsible for displaying the pro
essed video. In the frame of this

demonstration, the video will be stored into the DDR2 memory.

��������	

�������

��	
����
���������
���
�����	

	
�����

	
����� 	
�����

	
�����

��

����

���
����
�

���
�

 ����!

����
�
����

����

����
�
����

�������

������ ���
�
��

����

���
����
�

��������	

 ����!

�����

���� ��

�����

���� ��

	
���"�

!"
 ��
�#

!"
 ��
�$

	
���#�

!"
�����

�$�%��

%���

Figure 5.1: Demonstration platform

Two bridges have been instantiated to permit the Mi
roblaze pro
essors to
om-

muni
ate through the 8-port Draft NoC. On the bottom of this NoC, in addition to

these bridges, two hardware nodes
an be hosted, namely Hw Node 0 and Hw Node

1. On the top of the NoC, the Hw MRAPI module is
onne
ted to these hardware

nodes by a dedi
ated bus (RZ bus on Fig. 5.1) and a Blo
k RAM
onne
ted to the

port 5 allows to ex
hange small amount of data (8KB). All experiments have been

realized on a Virtex 5 LX110 Development Board (x
5vlx110) designed by Avnet.

5.2 Platform building

5.2.1 Mi
roblaze platform

We start the building of our platform with a simple Mi
roblaze system (Fig.5.2).

The instru
tion and data
odes of the appli
ation are stored in the Blo
k RAM of

the Mi
roblaze. We realized a port of the MutekH operating system on this pro-

essor. On top of this operating system, we add the MRAPI layer des
ribed in the

5.2. Platform building 127

Chapter 4 and ported on the MutekH operating system. The memory footprint of

ea
h one of these layers is spe
i�ed in the Table 5.1.

��������	

�������

��

����

���
����
�

���
�
����

���	
�

����
�
����

����

Figure 5.2: Mi
roblaze platform

Component Memory footprint Overhead

MutekH 56392 Bytes 0

with MRAPI 57592 Bytes 1200 (2.12%)

with appli
ation (1 node) 58080 Bytes 1688 (2.99%)

with appli
ation (2 nodes) 58104 Bytes 1712 (3.03%)

with appli
ation (3 nodes) 58112 Bytes 1720 (3.05%)

with appli
ation (8 nodes) 58128 Bytes 1736 (3.07%)

Table 5.1: Software layers footprints

The bigger amount of memory that we
an provide in the lo
al BRAM of the Mi-

roblaze pro
essor is 64 KB. Even if the memory footprint is lower than this
apa
ity,

sta
k and heap over�ow
an o

ur when
reating new threads. This is why in the

next steps in whi
h the MRAPI layer is in
luded, we
onsider the appli
ation
ode

to be stored in the DDR2 memory be
ause its storage
apa
ity is
onsiderably more

important. Otherwise, the appli
ation is
onsidered to be stored in the lo
al BRAM.

Table 5.2 gives an overview of the laten
ies generated by the storage of the pro-

gram and data
odes into an internal BRAM memory, an external SRAM memory

or an external SDRAM memory for the same appli
ation:

5.2.2 Read and Write timings

Memory a

esses:

To abstra
t the heterogeneity of the appli
ation, spe
i�

ommuni
ation me
ha-

nisms have to be implemented, both in hardware and software, espe
ially the a

ess

to the system memory distributed all over the platform. Memories in
lude external

128 Chapter 5. Appli
ation deployment

Storage Memory without

Ca
he

with Ca
he

BRAM 4.080 ms 960.168 us

SRAM 57.604 ms 17.282 ms

SDRAM 93.703 ms 29.283 ms

Table 5.2: Code exe
ution time for a Mi
roblaze pro
essor (ML506 � 125 MHz)

DDR2 memory and lo
al Blo
k Rams
onne
ted on the top of the NoC (Fig. 5.3).

��������	

�������

��

����

���
����
�

���
�
����

���	
�

����
�
����

����

�
�������������	����

��
����

�������

�������

����

�����

�������

����� �

�#
���
 %

Figure 5.3: Read and write test platform

The ar
hite
ture of the bridge developed to inter
onne
t the PLB-based Mi
rob-

laze system with Draft, the network-on-
hip implemented by CAIRN, is depi
ted

in Figure 5.4. This one is based on the PLB Master Burst IP [Xilinx 2010b℄ and

allows half-duplex transfers between the PLB to the NoC interfa
es and data
opies

between two bu�ers mapped on the PLB memory. These transfers are
ontrolled by

the Master Command FSM whi
h is driven by the pro
essor using
ontrol registers.

To this platform, we add a hardware thread instan
e (Hw Node 0) whi
h
an

also perform dire
t read and write a

ess to the BRAM NoC memory and indire
t

ones to the DDR2 memory passing through the bridge. Indire
t be
ause the bridge

being
ontrolled by the pro
essor, data pa
ket
an
ontinue to the DDR2 memory

only if this one enables it.

Tables 5.3 and 5.4 detail the data transfer timings between software or hardware

nodes and the platform memories. The program
ode is stored in the lo
al BRAM

5.2. Platform building 129

��������	

��
��

�

�	
�������
��

�
�

�

�

�

� �

�

�

�

�

	

����
��

������

���
	��

�	����

�

�

�

�	��
�������
��

�

�	����

�	������

����	
��������

��

�

����

����	�
	�
��	
�

Figure 5.4: Bridge PLB-NoC ar
hite
ture

of the Mi
roblaze.

Node DDR2

(
y
les)

Throughput Bram-NoC

(
y
les)

Throughput

Sw : write 1 KB 4390 17.11 MB/s 1961 38.30 MB/s

Sw : write 2 KB 8742 17.18 MB/s 3637 41.30 MB/s

Sw : write 4 KB 17446 17.22 MB/s 6988 42.99 MB/s

Sw : write 8 KB 34854 17.24 MB/s 13721 43.79 MB/s

Hw : write 1 Ko 2152 34.9 MB/s 1354 55.48 MB/s

Hw : write 2 Ko 3691 40.7 MB/s 2667 56.33 MB/s

Hw : write 4 Ko 6735 44.6 MB/s 5290 56.80 MB/s

Hw : write 8 Ko 13443 44.7 MB/s 10494 57.26 MB/s

Table 5.3: Timings in
y
les to write into platform memories

Table 5.5 details the timings for the read and write transa
tions from a hardware

thread to a BRAM
onne
ted on the top of the NoC. Timing measurements follow

the data path visible in the des
ription of the Network Interfa
e of the hardware

thread (
f. Se
tion 2.3.3.5).

This table shows that the time needed to pro
ess a read transa
tion is more

important than to pro
ess a write transa
tion. This is due to the fa
t that there

is a delay needed when setting the address before to get the data from the BRAM

130 Chapter 5. Appli
ation deployment

Node DDR2

(
y
les)

Throughput Bram-NoC

(
y
les)

Throughput

Sw : read 1 Ko 7658 9.80 MB/s 3016 24.90 MB/s

Sw : read 2 Ko 15278 9.83 MB/s 5446 27.58 MB/s

Sw : read 4 Ko 30518 9.84 MB/s 10306 29.15 MB/s

Sw : read 8 Ko 61002 9.85 MB/s 20504 29.30 MB/s

Hw : read 1 Ko 1956 38.40 MB/s 2154 34.87 MB/s

Hw : read 2 Ko 3636 41.32 MB/s 4254 35.31 MB/s

Hw : read 4 Ko 6924 43.39 MB/s 8447 35.57 MB/s

Hw : read 8 Ko 13685 43.91 MB/s 16845 35.67 MB/s

Table 5.4: Timings to read from platform memories

but also an additional 1-
y
le delay is introdu
ed to ensure that the NoC is ready

to transfer a data. This laten
y has been added to avoid timing failures and data

loss but
an be optimized in some
ases.

Operation Time

Push wr. req. by User FSM 6
y
les

Pop wr. req. by Pa
ketizer 7
y
les

Pro
ess wr. req. by Pa
ketizer and DMA 8
y
les

Push rd. req. by User FSM 8
y
les

Pop rd. req. by Pa
ketizer 9
y
les

Pro
ess rd. req. by Pa
ketizer and DMA 10
y
les

Write 32-bits word (Full pro
ess) 16
y
les

Read 32-bits word (Full pro
ess) 21
y
les

Table 5.5: Network Interfa
e Communi
ation Measurements

Node Communi
ations:

In addition to memory a

esses, the platform o�ers to the nodes the ability to

initiate dire
t
ommuni
ations. Table 5.6 presents the network-on-
hip interfa
e

performan
es. The proto
ol used to abstra
t the heterogeneity of the
ommuni
a-

tions has been introdu
ed in the Se
tion 2.4.2.

We
an see that the
ommuni
ation between software and hardware nodes is

limited by the bridge performan
es but globally, the DMA me
hanism implemented

inside the bridge provides e�
ient and fast
ommuni
ations between the di�erent

domains.

5.2. Platform building 131

Sender Re
eiver Timing Throughput

Sw domain Sw domain 2301
y
les 32.64 MB/s

Sw node Hw node 2069
y
les 36.30 MB/s

Hw node Sw node 2138
y
les 35.13 MB/s

Hw node Hw node 1341
y
les 56.01 MB/s

Table 5.6: NoC Send timings for 1 KB data

5.2.3 System
alls

The platform used to test the di�erent system
alls
on�guration is illustrated in

Figure 5.5. The system is
omposed of three domains: two software ones represented

by the domains 0 and 1, and a hardware one as the number 2.

��������	

�������

��

����

���
����
�

���
�
����

���	
�

����
�
����

����

�
�������������	����

��
����

�������

�������

����

����$

&3456��

�����78

9����:�

;<
6��
 =

;<
�>?&�

�@�ABC

DD>�
�
����

�������

���
�
��

����

���
����
�

��������	

���	
�

�����

&3456��

����
������ E F����� G

F����� �

�

�

�

�

Figure 5.5: Hardware platform used to test system
alls pro
edures

On
e
ommuni
ation me
hanisms is set up, we
an add the upper layer of the

ommuni
ation infrastru
ture. In this way, we extend the platform in
luding the

Hw MRAPI module (Fig. 5.6) on top of the NoC. In phase A, the hardware node

pro
esses the system
all. This
all is then en
oded and transmitted through the

Network-on-Chip by the Hw MRAPI module (Phase B). In phase C, the message is

re
eived by the software node on the bridge inputs and an interrupt is laun
hed to

the Mi
roblaze pro
essor. Finally, the pro
essor gets the message from the bridge

and handles the request (Phase D).

132 Chapter 5. Appli
ation deployment

�������
����	
�

�
�
���
����

����
�

�����
����
�

����
�

���������
�

����
�

��

����
��

�������

�����
��

���������	
���
�����

�������

���������

	�
������

������ �
	

Figure 5.6: Hardware MRAPI global ar
hite
ture

The Hardware MRAPI module is used to abstra
t the heterogeneous
ommu-

ni
ation, espe
ially the a

ess to the syn
hronization me
hanisms provided by the

operating systems distributed all over the platform (Fig. 5.5). It is
onne
ted as

a master on the RZ bus and is responsible for the boot and the initialization of

the hardware nodes. It
an be likened to a MRAPI
ommuni
ation server. The

Network Interfa
e gives it a way to send or re
eive MRAPI requests. The Sys
all

Manager formats and de
odes these requests. The resour
e usage of this
omponent

is des
ribed in Table 5.7.

Component Reg. LUTs BRAMs /

FIFOs

DSP Freq.

(MHz)

Hw MRAPI 312 541 2 0 251.256

Table 5.7: Hw MRAPI Resour
es usage

At the software side, times needed to initialize a node, to get its generated node

ID, and to initialize the mutex attributes are given in Table 5.8. The
all to the

di�erent primitives of MRAPI often involves
alling the mrapi_node_id_get prim-

itive. The two others are only
alled when initializing the system.

System
alls
an be of two types: either lo
al or distant. In the
ase of a lo
al

all, we measure the time taken to pro
ess system
all using the genuine primitives

provided by the operating system and the overhead brought by the MRAPI layer

(Table 5.9):

The main overhead is due to the management of the node tables used to allo
ate

5.2. Platform building 133

Primitives Sw Node (DDR2)

mrapi_initialize 1354
y
les (17.6 us)

mrapi_node_id_get 1368
y
les (17.7 us)

mrapi_mutex_init_attributes 1054
y
les (13.7 us)

Table 5.8: Timings to lo
ally initialize a node

Primitives MutekH MRAPI Overhead

mutex_
reate 345
y
les (4.4 us) 3383
y
les (43.9 us) x9.8

mutex_lo
k 846
y
les (10.9 us) 3018
y
les (39.2 us) x3.5

mutex_unlo
k 1756
y
les (22.8 us) 2888
y
les (37.5 us) x1.6

mutex_delete 184
y
les (2.3 us) 3580
y
les (46.5 us) x19.4

Table 5.9: Timings to a

ess a lo
al Mutex resour
e

or deallo
ate a new mutex resour
e. When
reating a mutex, we have to �nd a free

pla
e in the table and to initialize the resour
e stru
ture. After this pro
ess, the

node ID is sent to the other domains of the platform. Moreover, the spe
i�
ations

imposes several parameter
he
ks and error management for ea
h system
all.

In the
ase of the distant
all, we add the time taken to send a request message

to the owner domain of the resour
e, and to re
eive the return values. Also, di�erent

ouples of Node sender / Domain re
eiver are possible and implemented: a software

node sends a request to a software domain, or a hardware node sends a request to

a software domain. System
alls timings are depi
ted in Table 5.10.

Primitives Sw Node to Sw Domain Hw Node to Sw Domain

mutex_
reate 752 116
y
les (9.77 ms) 740 611
y
les (9.62 ms)

mutex_lo
k 652 898
y
les (8.48 ms) 576 234
y
les (7.49 ms)

mutex_unlo
k 767 580
y
les (9.97 ms) 658 526
y
les (8.56 ms)

mutex_delete 767 109
y
les (9.97 ms) 729 167
y
les (9.47 ms)

Table 5.10: Timings to a

ess a remote Mutex resour
e

Details about these timings are given in Table 5.11 for the se
ond
ase of the

Table 5.10, where a hardware node requests a resour
e lo
ated on a software do-

main. The di�erent se
tions when
rossing over the MRAPI layers are illustrated

in Figure 5.7.

The main overhead is due to the preemption laten
y between ea
h threads pro-

essing the system
all, that is to say the Request Manager thread and the allo
ated

Proxy thread. This laten
y depends on the operating system ti
k. In our
ase, we

134 Chapter 5. Appli
ation deployment

����������
�

���������	
��

����	�������
	������

�����
���

��
������	������	���

�

����	
�
���
�

����������	�����

���������

�����
�����������

�����
���

���������

�	����	�����

��������	������	���

�

	�
�����
��
�

�	����������������

�������������

���������

��������
�	������

�����
��	��
���

�����
���

�����
���

�

�

�

�

� �

�

�

�

�

�

Figure 5.7: MRAPI remote
all se
tions

annot set a ti
k lower than 3 ms.

A solution to over
ome this issue would be to target a more re
ent te
hnology

su
h as the Zynq platforms. With hardware dual-
ore pro
essors, it would be pos-

sible to get a higher running frequen
y and have ea
h thread running on a di�erent

ore.

The two following
ases have not been implemented yet: a software node sends a

request to a hardware domain and a hardware node sends a request to a hardware

domain, be
ause no hardware servi
e has been implemented in this platform in the

frame of this thesis.

5.2.4 Hardware Threads en
apsulation

The resour
es measurements for the stati
 part of the hardware node when imple-

menting the pipeline me
hanisms are illustrated in the Table 5.12.

On top of these abstra
tion layers, an appli
ation
omposed of software and

hardware threads
an be deployed. In the next se
tion, appli
ation s
enario and

partitioning
hoi
es are �rst des
ribed and, to
on
lude this
hapter, appli
ation

performan
es and results are given.

5.3. Tra
king appli
ation 135

Se
tions Create Lo
k Unlo
k Delete

Hw MRAPI

request

28
y
les

(0.364 ms)

29
y
les

(0.377 ms)

28
y
les

(0.364 ms)

24
y
les

(0.312 ms)

0 3747
y
les

(48.7 µs)

3745
y
les

(48.6 µs)

3772
y
les

(49.0 µs)

3733
y
les

(48.5 µs)

1 3537
y
les

(45.9 µs)

3533
y
les

(45.9 µs)

3538
y
les

(45.9 µs)

3532
y
les

(45.9 µs)

2 14011
y
les

(182.1 µs)

16396
y
les

(213.1 µs)

14143
y
les

(183.8 µs)

11607
y
les

(150.8 µs)

3 2606
y
les

(33.8 µs)

2594
y
les

(33.7 µs)

2599
y
les

(33.7 µs)

2595
y
les

(33.7 µs)

4 3775
y
les

(49.0 µs)

3431
y
les

(44.6 µs)

3252
y
les

(42.2 µs)

3985
y
les

(51.8 µs)

5 1627
y
les

(21.1 µs)

1631
y
les

(21.2 µs)

1642
y
les

(21.3 µs)

1627
y
les

(21.1 µs)

6 19590
y
les

(254.6 µs)

17412
y
les

(226.3 µs)

17541
y
les

(228.0 µs)

17408
y
les

(226.3 µs)

7 2602
y
les

(33.8 µs)

2609
y
les

(33.9 µs)

2599
y
les

(33.7 µs)

2590
y
les

(33.6 µs)

8 489
y
les

(6.3 µs)

494
y
les

(6.4 µs)

495
y
les

(6.4 µs)

480
y
les

(6.2 µs)

Total Sw 51984
y
les

(675.7 µs)

51845
y
les

(673.9 µs)

49581
y
les

(644.5 µs)

47557
y
les

(618.2 µs)

Hw Mrapi get

returns

1106
y
les

(14.3 µs)

963
y
les

(12.5 µs)

963
y
les

(12.5 µs)

963
y
les

(12.5 µs)

Pro
ess re-

turns value

10
y
les

(0.13 µs)

8
y
les (0.10

µs)

8
y
les (0.10

µs)

8
y
les (0.10

µs)

Table 5.11: Detailed timings to a

ess a remote Mutex resour
e

5.3 Tra
king appli
ation

5.3.1 Presentation

The appli
ation deployed on the demonstration platform is a target tra
king ap-

pli
ation whose the genuine version is illustrated in Fig. 5.8. This appli
ation is

responsible for dete
ting and tra
king targets in an infra-red video stream. In the

frame of this demonstration, the spatial resolution has been set up to 128x128 pixels

per frame.

The appli
ation is divided into four stati
 nodes, and a dynami
 one. The �rst

thread of the stati
 part
orresponds to the a
quisition of the data from the
amera

(A
quisition). It is followed by the target dete
tion thread (Dete
tion). The third

136 Chapter 5. Appli
ation deployment

Component Reg. LUTs BRAMs DSP Freq. (MHz)

OS Interfa
e 38 73 1 0 956.938

System FSM 4 6 0 0 781.250

Syn
.
trl 104 156 1 0 284.333

FU Re
v 68 226 0 0 248.369

FU Send 105 175 0 0 299.850

Token Counter 6 12 0 0 448.430

Token Che
ker 9 15 0 0 534.474

FIFO Req.
trl 37 60 1 0 284.333

FIFO Syn
.
trl 27 34 1 0 381.679

Syn
. module 311 467 3 0 284.333

Hw Task stati
 562 939 6 0 271.370

Table 5.12: Hardware Thread Resour
es Usage.

���������	
�

�
������
�
�
��
�����
����������

�����

�����
�

�����
�

������	
�����	�	�	
�

�����
����
��

�������

�	����

��������	
�
�
��	��

������	
��
�
��	��

���
���
���

���
�����

��

��

��

 !

��

��

 "

��

�����#���$

���
��
��
���%�������

�����#���$

���
��
��
���%�������

���
���
���

Figure 5.8: Target Tra
king Appli
ation

thread gets the results from the tra
king threads and ensures the
oheren
y within

a list of the
urrent tra
ked targets (CCM). A last thread asks for this list and

displays the bounding box of ea
h target into the input image (In
rustation).

In the version that we implemented, the dynami
 part of the appli
ation is repre-

sented by the tra
king threads, ea
h one responsible for maintaining the
oordinates

of one of the dete
ted targets in the video (Tra
king) by
omputing the Continu-

ously Adaptive Mean shift (Camshift) algorithm [Cheng 1995℄. As a result, they

5.3. Tra
king appli
ation 137

provide the CCM thread with the bounding box
oordinates of the target they are

tra
king. In order to emphasize the management of the dynami
ity provided by the

platform, we
hose to implement the di�erent tra
king threads in hardware.

�����

���	

��������	
�

�
�����	
�

�
��

�
�
��

�
��

�

�

�

�
��

�
��

�

Figure 5.9: Binary Long Obje
t (Blob)

Spe
i�
ally, the
ore responsible for the
omputing is implemented in a hard-

ware thread, and a software one is in
harge of both the initialization of this
ore

and of the data transfer. Data transferred between the two threads
onsists in a

Blob or Binary Long Obje
t, whi
h is a sub-frame supposed to
ontain the target

to be tra
ked. Therefore, for ea
h frame, there will be one blob per target (Fig. 5.9).

5.3.2 The Camshift IP

As said previously, a blob is pro
essed by a hardware task whi
h implements the

Camshift algorithm. The Camshift IP is implemented as pi
tured in the Figure

5.10. This IP re
eives from the NoC the blob
ontaining the target assigned by the

Dete
tion thread. This re
eption is realized by the dedi
ated Fun
tional Unit (FU

Re
v), whi
h stores re
eived data inside the thread memory (M1a or M1b).

Then the FU Re
v sends a syn
hronization token to the Camshift
ore embedded

in the Camshift Fun
tional Unit (FU Camshift). The
ore
omputes the target

oordinates before to save it with the noti�
ation of
onvergen
e (�ag indi
ating if

the target has been lo
ked) inside the se
ond bu�er (M2a or M2b). After
omputing,

the FU Camshift sends a syn
hronization token to the FU responsible for sending

the results.

Finally, the last Fun
tional Unit (FU Send) reads the values stored in the se
ond

bu�er and sends it to the software domains. After re
eption, Domain 1's pro
essor

uses these
oordinates to insert the bounding box, whereas Domain 0's pro
essor

a
quires a new blob inside the
urrent frame, depending on the re
eived results.

All these syn
hronizations are managed by the Syn
hronization Module (Syn
.

Module in Fig. 5.10), and ordered by the User FSM. Some data is dire
tly ex
hanged

138 Chapter 5. Appli
ation deployment

��
����

��
��	
��
�

��
����

���

���

������
����

��������
����

��

��

���

���

�����
�������
������

�� ������
�����������������
�� ������

��	
��
������

Figure 5.10: Pipelined Camshift hardware node

between this User FSM and the FU Camshift in order to parametrize the re
eption

request as we
annot know the size of the next blob before the end of the
ur-

rent
omputation. This is why, as depi
ted in Figure 5.11, we have to stall between

the end of the send request and the following
y
le of re
eive-
ompute-send requests.

����
�������

����	
�
�������

���

�������

��	�
������

������
�
�

���	
��

������������

������������

����	
��
���������

����

Figure 5.11: Pipelined Camshift User FSM

5.3.3 The DVI IP

The LX110 Development Board that we use for our demonstration platform does

not
ome by default with a video output. In order to display the frames before and

after the pro
essing, we
omplete the platform with a dedi
ated daughter-board

whi
h provides, among other features, a DVI output. This output was driven by a

DVI IP that we developed and whose the integration in the demonstration platform

is detailed in Figure 5.12.

The IP has an a

ess to a VFBC
hannel (Video Frame Bu�er Controller) whi
h

allows it to dire
tly read data from the DDR2 memory. It also o�ers a set of �ve

slave registers to the Mi
roblaze of the Domain 1 in order to
on�gure the data

5.3. Tra
king appli
ation 139

���������	�
�
��
������

���
�
����
�����

�
�
�

�
�
�

��
�������

��������

����
����������

������

�������

��	
�

��	
�

���	
�

���

���������

����������

����
���

�����

�����

��������

���

��� ���

!�"����"#�

�$"�

������

Figure 5.12: Integration of the DVI IP in the Demonstration Platform

transfer between the IP and the DDR2 memory. The VFBC port permits to a

ess

2-Dimensional frames inside the memory and so to dynami
ally adapt to di�erent

resolutions.

5.3.4 Appli
ation deployment

The appli
ation is deployed on the platform as depi
ted in Figure 5.13. The sour
e

video is a gray-s
ale video and is a
quired from the DDR2 memory so we skip the

pre-pro
essing of the in
oming frame ex
ept the binarization of the frame (Dete
-

tion pro
ess). In this video, we
onsider that we already know the number of targets

so we
an simplify the Dete
tion pro
ess and the CCM
omponent only need to

manage a stati
 list of these targets.

On the other hand, the se
ond part of the CCM pro
ess running on Domain 1

is in
harge of the re
on�guration of the hardware tasks regarding the appli
ation

needs. It means the number of targets per frame and the maximum number of slots

dedi
ated to the Camshift pro
esses (Fig. 5.14).

Figure 5.15 details the software nodes and their syn
hronizations and intera
-

tions inside the platform using the Network-on-Chip
ommuni
ation medium and

the operating system servi
es.

On Domain 0, the A
quisition node is not
reated be
ause a
quisition does not

o

ur as video frames are pre-loaded in the DDR2 memory. Hen
e, the �rst
reated

node is the Dete
tion node. The Dete
tion node gets frames from the DDR2 (Stati

Frames). A stati
 pre-initialized table permits the node to know how many targets

140 Chapter 5. Appli
ation deployment

��������	

�������

��	
����
���������
���
�����	

	
�����

	
����� 	
�����

	
�����

��

����

���
����
�

�������
�
 ����!

����
�
����

����

����
�
����

�������

������ ���
�
��

����

���
����
�

��������	

 ����!

�����

��� !��

�����

��� !��

	
���"�

"#�!��
�$ "#�!��
�%

	
���#�

"#
�����

�$�%��

�� �&�'�(����)��
�

��)(��" ��)(���

�(*������
��&�
���(��
��&���

�������$ �������%

��������

Figure 5.13: Appli
ation deployment

Figure 5.14: Camshift slots (Virtex 5 LX110 devi
e)

5.3. Tra
king appli
ation 141

are presents in ea
h frame (Stati
 Targets).

Then the Dete
tion node
ompares the number of dete
ted targets with the

number of hardware tasks whi
h are
on�gured at this moment (Camshift Hw nodes).

If the number of re
on�gured tasks is lower than the number of dete
ted targets and

that one or several partition slots are available to host a hardware Camshift task,

the Dete
tion node unlo
ks the Re
on�guration Manager node to have it performing

a re
on�guration request.

Then the Re
on�guration Manager node syn
hronize with the Re
on�guration

Completer node whi
h is able to drive the FaRM IP to pro
ess the requested re
on-

�guration.

After the re
on�guration request, the Dete
tion node allo
ates a Tra
king node

for ea
h one of the targets that
an be pro
essed simultaneously by the di�erent

hardware Camshift tasks. Then the Dete
tion node unlo
ks the Tra
king nodes and

waits for a syn
hronization signal from ea
h one of them to know when the frame

pro
essing is
ompleted.

��������

�������	

�������

����������	
�

�����������
��

���������
���

���������
���

������������
���
�

�
�����
�����
�
���

���
�
�
����

�������
������

� ����

�
�����
��	!"
�
�
���

�
�
�����
���

��	�#�����
$%����

��	�#�����
$%����

&�� &�� &��&��&��

�����

���

Figure 5.15: Detailed appli
ation deployment

The Tra
king node gets ba
k the information about the target (initial blob
oor-

dinates and hardware node port number), then it extra
ts the blob inside the frame

before to send it to the hardware node.

The hardware node re
eives the blob from the Network-on-Chip, pro
esses it and

142 Chapter 5. Appli
ation deployment

sends ba
k the
oordinates of the new blob to both the Domain 0 and the Domain

1. Results are then
olle
ted on the Domain 0 by the software Tra
king node asso-

iated with it, and on the Domain 1 by the In
rustation node.

The Tra
king node
ompares the new
oordinates with the previous ones and

he
ks if the
onvergen
e o

urred. If this is the
ase, the node sends a syn
hroniza-

tion signal to the Dete
tion node to notify the end of the pro
essing. Otherwise,

the Tra
king node loop ba
k and send the new blob
orresponding to the previously

al
ulated
oordinates.

On Domain 1, the In
rustation node modify the bu�er used by the DVI IP in or-

der to en
ompass the dete
ted target, drawing a re
tangle around the target. On
e

every Tra
king nodes have
onverged, the Dete
tion node starts a new pro
essing

round for the next video frame.

5.3.5 Results and performan
es

Table 5.13 shows the hardware resour
es needed to host the full demonstration plat-

form on the LX110 devi
e.

Sli
e Logi
 Utilization Used Available Utilization

Sli
e Registers 19980 69120 28%

Sli
e LUTs 29302 69120 42%

bonded IOBs 113 440 25%

Blo
kRAM/FIFO 75 128 58%

BUFG/BUFGCTRLs 7 32 21%

DCM ADVs 1 12 8%

DSP48Es 8 64 12%

ICAPs 1 2 50%

PLL ADVs 1 6 16%

Table 5.13: Demonstration Platform resour
e utilization

Table 5.14 details the hardware resour
es used by the partially re
on�gurable

part of the Camshift node. The Hardware Task PRR o

upies a partition as large

as the slot de�ned in Figure 5.14. The number of resour
es
overed by ea
h slot is

indi
ated in Table 5.15. The re
on�guration overhead to load a new Camshift task

in this slot, using the FaRM IP running at 75 MHz, equals to 274 228
y
les (=

3.56 ms (= 2.74 ms at 100 MHz)).

In our
ase, this re
on�guration laten
y
an be hidden by the fa
t that on
e

the Re
on�guration Manager node requested the re
on�guration, it is up to the

Re
on�guration Completer node to pro
ess the re
on�guration while the Dete
tion

5.4. Con
lusion 143

node
ontinue its work with the
urrently re
on�gured hardware nodes. Also, other

solution like bitstream �le pre-fet
hing
an help redu
ing this laten
y.

Component Reg. LUTs BRAMs /

FIFOs

DSP Freq.

(MHz)

User FSM 141 204 0 0 241.354

FU Camshift 193 178 0 1 81.618

Camshift IP 2835 6651 0 0 76.363

Hw Task PRR 3117 6974 0 1 81.618

Table 5.14: Hardware Thread Resour
es Usage

Site Type Available Required Utilization

LUT 7680 6973 91%

FD LD 7680 3168 42%

Sli
e L 1380 1253 91%

Sli
e M 540 491 91%

DSP48E 24 1 5%

RAMBFIFO36 12 0 0%

Table 5.15: Camshift slot resour
e utilization

Table 5.16 gives the di�erent timing results of the appli
ation. A graphi
al view

of these timings is given in Figure 5.16. We
an see that the major part of the time

is spent in the binarization and the extra
tion of the blob from the
urrent frame

(get_blob).

In a further step, the a
quisition
hain and the pre-pro
essing of the Dete
tion

pro
ess are planned to be implemented as hardware IPs. Also, regarding the blob

extra
tion, the use of a pro
essor running at a higher frequen
y will be su�
ient to

signi�
antly lower this overhead. With an average time
omprised between 74.6 ms

and 135.1 ms using pre-binarized frames, the above improvements will permit us to

target real-time performan
es.

5.4 Con
lusion

This
hapter detailed the design steps of a partially re
on�gurable platform. We

built a heterogeneous platform system
omposed of di�erent types of pro
essing

units. The
omputational element in
ludes both general purpose pro
essors and

144 Chapter 5. Appli
ation deployment

(Domain) Se
tion Cy
les Time

(0) Binarization 36923076 480 ms

(0) Dete
tion 1068 13.8 µs

(0) Che
k slots 4 52 ns

(0) Allo
. target 2409 31.3 µs

(0) Send attr. 6195 80.5 µs

(0) Init blob 207188 2.69 ms

(0) Get blob 11530 -

4791544

149.9 µs - 62.2 ms

(0) Send blob 6515 - 8706 84.6 µs - 113 µs

(0) Re
v data 4805 62.4 µs

(0) Che
k
vge 1446 18.7 µs

(1) Dvi init 289 3.7 µs

(1) Display 168 2.1 µs

(1) Wait result 183 - 4687472 2.3 µs - 60.9 ms

(1) In
rust 31304 406 µs

(1) Display 376 4.8 µs

Per frame bypassing

binarization

� 74.6 ms - 135.1 ms

Table 5.16: Appli
ation timings

dedi
ated a

elerators.

The �rst step was to provide a low-level
ommuni
ation layer, permitting the

user to pro
eed simple read and write transa
tions. This former layer has been

evaluated and a fo
us has been set on the heterogeneous
ommuni
ation.

As expe
ted, the
ommuni
ation between hardware nodes is more e�
ient than

between software
omponents. Regarding heterogeneous
ommuni
ation, the
on-

eption of the DMA
apable
ommuni
ation bridge is a good trade-o� to take advan-

tage of the heterogeneous pro
essing without being penalized by the
ommuni
ation

overhead.

The se
ond step rose up the abstra
tion layer to the operating system level.

In this part, we evaluate the hardware thread en
apsulation whi
h allows them

to pro
ess system
all. This ability is provided by the MRAPI layer, a multi
ore

ommuni
ation API ported on both the software and the hardware domains of

the platform. The overhead provided by this additional layer must be evaluated

a

ording to the advantage of a totally de
entralized operating system servi
e set.

Again, regarding the
ommuni
ation issue between heterogeneous
omponents,

this abstra
tion layer allows to
onsider a �exible mapping of the appli
ation tasks

and so to optimize the data transfer between the di�erent nodes.

5.4. Con
lusion 145

��������

�������	

�������

�����
�������

�����
��������

��
����
�������
����

���
�
������

�������
������

������

��
����
��� !����

����

����"�����
#$�����

����
���������

%��
&����������

��
�'��������
����

(�����)�����

"�
&*�!���

�!!�
*������

����*����

����*(!�(

���*(!�(

����*(!�(

��
+*���'!�

"�
&*
+��

�+�*����

��� !��

$���*���'!�

��
�'��

��� !��

,-����

.
���

/	�/�0�

-��.�0�

�12���

�2�0��3�1
�
���

-,�1�0��3�		/�0�

1
�,�0�

	-�4�0�

	,2�2�0��5�1��2���

,�1�0�

,�-�0�

�	�0�

/�4�0�

/�.1���

	1-�.�0��5��1
�,���

.1��4�0��5�1	�/���

4,�1�����3�	/.�	���
�+����������� ���������
(� ��������"��(�����)�����6

����
���� 	/�-�0�

7!�(� ��
����������������
���������	�
�������
�����

Figure 5.16: Detailed appli
ation deployment

Finally, all these
ommuni
ation me
hanisms open up the way to the build of a

heterogeneous platform with partially re
on�gurable ability. The re
on�guration is

pro
eed using the FaRM IP and allows to dynami
ally load any hardware threads

of the appli
ation.

The di�erent features of this platform are illustrated by the deployment of a

tra
king appli
ation. This deployment is an important step in the vision that we

have of the future of the embedded systems, espe
ially the image pro
essing, the

multimedia and the high performan
e
omputing systems.

This implementation is e�e
tively a milestone towards the realization of an

HRSoC
apable to host software tasks and hardware relo
atable
omponents, pro-

viding a
ommon interfa
e to fa
ilitate both the
ommuni
ation and the mapping.

We already planned future work in order to improve the performan
es of this HRSoC

and make it a generi
 platform allowing to deploy and evaluate real-time appli
a-

tions on a physi
al system.

Chapter 6

Con
lusions

6.1 Summary

6.1.1 Dis
ussion

In this thesis, we dis
ussed the programmability issues en
ountered when designing

re
on�gurable systems. From the user point of view, who is
onsidered to be an

appli
ation developer, either a software one or a hardware one, these issues
on-

erns the management of the heterogeneity and the ability to take advantage of the

�exibility o�ered by the dynami
 and partial re
on�guration te
hnology.

To solve these issues, we have turned towards a solution whi
h would provide a

programming model �tting on ea
h kind of pro
essing
ores embedded in the system.

These
ores are the pro
essor
ores and the re
on�gurable IPs.

An important point when designing this kind of platform is to let the user the

possibility to
hoose on whi
h
ore ea
h one of the fun
tions or tasks of its appli
a-

tion
an be mapped. This step of mapping should be as �exible as possible in order

to allow an e�
ient design spa
e exploration and so to be adaptable to a larger

number of platforms.

Although the main feature of this programming model would
on
entrate on the

task
ommuni
ation, this model should be extended to the servi
es provided by the

operating system. This
onstraint is linked to the fa
t that the operating system

model is widespread and that we need to support lega
y model.

Moreover, ea
h task of the appli
ation should be able to a

ess any servi
es

provided by the system. Obviously, these a

esses should be limited by timing
on-

siderations and laten
ies overheads due to the physi
al lo
ation of the operating

system servi
es regarding the tasks ones, but again, this
hoi
e should be left to the

user.

6.1.2 Key
ontributions

Addressing these issues respe
ting our
onstraints required the realization of a new

operating system dedi
ated to the re
on�gurable systems, and espe
ially to the

dynami
ally and partially re
on�gurable systems.

148 Chapter 6. Con
lusions

The �rst step has been to leverage the hardware des
ription to the same level

as the software ones. Another
onstraint was to keep using
lassi
al HDL tools

provided by the FPGA manufa
turers. In
on
rete terms, the obje
tive was not

to
reate a new language but to provide a new abstra
tion level to manipulate the

hardware
omponent. At this level, the intera
tion between a software task and our

hardware task model relies on a
ommon interfa
e whi
h provides an a

ess to OS

primitives for the hardware tasks and gives us the ability to swap the way we map

a task, either in software or in hardware.

This programming model has been
oupled with the integration of a preemption

servi
e inside the operating system. This servi
e is responsible for managing the

save and the restoration of the hardware tasks
ontext. It relies on two features: in

one hand the knowledge of the internal stru
ture of the
on�guration �les, and on

the other hand the re-use of an existing IP (FaRM), whi
h permits us to improve

the re
on�guration pro
ess.

In addition, a relo
ation servi
e has been implemented. In this way, we inves-

tigate a new solution based on the reversal of the Isolation Design Flow provided

by Xilinx in order to design relo
atable hardware tasks. With some additional
on-

straints inserted in the PlanAhead tool and management s
ripts to automati
ally

insert these
onstraints, we manage to relo
ate a hardware tasks from one partition

to another one using a unique partial
on�guration �le.

On the software side, an implementation of the MRAPI spe
i�
ation has been

done to fa
ilitate the syn
hronization with the hardware tasks. A set of three dif-

ferent operating servers has been proposed in order to �t with the needs of a re
on-

�gurable platform.

Ea
h one of these servers respe
tively allows to a

ess dire
tly to a known remote

operating resour
e (for instan
e, a Semaphore, a Mutex or a memory bu�er), to

lo
ate and a

ess to an unknown remote resour
e and to lo
ally
reate and pro
ess

a resour
e. These three types of servers permit to adapt the deployment of the

operating system resour
es regarding the spe
i�
ity of ea
h one of the
ores it is

omposed of.

Finally, the implementation of a
omplete heterogeneous and re
on�gurable

system-on-
hip is a good a
hievement of this programming model on a physi
al

support.

6.1.3 Hypothesis and Limitations

The �rst hypothesis whi
h is also the �rst limitation of our operating system is

that we
onsider the number of
ore to be inferior to sixteen be
ause we de
ided to

spe
i�
ally target multi
ore platforms and not many
ore systems.

Regarding the
ommuni
ation on the platform, the PLB stru
ture has limit; in

6.2. Future Work 149

this sense AXI would be better as we
ould
onne
t the hardware tasks dire
tly

to the AXI infrastru
ture, through the AXI-Stream interfa
e for instan
e, and so

onserve e�
ient dire
t
ommuni
ation with hardware and software task without

passing through a
ustom bridge.

Also, when adding new abstra
tion layers as the MRAPI layer, the pri
e
an be

lower performan
es, espe
ially regarding timing overheads whi
h
an be important,

but the gain obtained in the programmability
annot be negle
ted.

Finally, the
hoi
e of keeping the manufa
turer tools in order to perform the

relo
ation imposes us to be dependant of their evolutions, but also to their limits.

This is the
ase when a routing pro
ess does not provide the wanted results and that

the only solution would be to manually route the
on�i
ting wires. This work
an be

pro
essed using spe
i�
 tools like RapidSmith but in our
ase, knowing these limi-

tations, the solution we propose
an be easier and faster under favourable
onditions.

6.2 Future Work

In future work, the management of the dynami
 and partial re
on�guration in the

ase study that we used to demonstrate our propositions
an be enhan
ed. Instead

of reserving the re
on�guration of the hardware thread only to add or remove a

Camshift thread in the platform, we
an pro
ess fun
tionality swit
hing and imple-

ment some of the pre-pro
essing operations in hardware.

Another tra
k that
ould be interesting in the future is to re
onsider the asso
i-

ation between an MRAPI node and a hardware thread. Keeping the
on
ept that a

software thread is a node running on a pro
essor whi
h is a domain, we
an enhan
e

the parallel de�ning a hardware thread as a domain, whi
h leads to de�ne a node

as a partially re
on�gurable region (PRR). All PRRs will share the same hardware

thread pro
essing unit whi
h allows a PRR to send and re
eive data, and also to

all lo
al or remote servi
es (Fig. 6.1).

Also, a �exible adaptation of the Pro
essing Fun
tional Unit (FU)
ould be re-

alized to allow the user to
hoose the interfa
es required by the fun
tional unit. The

hoi
e
an be made, for instan
e, between a memory port, in read or write a

ess, or

even both, and a FIFO port. Several
ombination
an be thought in order to make

a trade-o� between the enhan
ement of the stream pro
essing with FIFOs, and the

storage
apa
ity and random a

ess provided by memory blo
ks. Then this is up to

the user to develop the logi
 glue whi
h will
ontrol the a

ess to the data.

Regarding the relo
ation issue, we will investigate the Isolation Design Flow

whi
h is now available for the 7 series. Larger devi
es allow more �exibility for

the routing engine and so we
ould in
rease the su

ess rate of the proposed re-

150 Chapter 6. Con
lusions

���������

���	
��

��������	
��
����������������

���������

���	
��� ���	
���

��������

����	���
 ����	����

�
 �� �� ��

��

����������

���������	
�

���������

���	
��

��������	
��
����������������

���������

���	
��� ���	
���

��������

����	���
 ����	����

�
 �� �� ��

��

����

�����

�����

����

�����

�����

����

�����

�����

����

�����

�����

���	
���

���	���	�������������	���	����	��

���	���	�������������	��
	�� ������!
"�#	$�����"
��

Figure 6.1: Hardware node implementation
hoi
es

lo
ation �ow. This type of design �ow leads the way to the
on
eption of very

�exible systems-on-
hip in whi
h the di�erent tasks
an be moved over the platform

regarding external parameters. These parameters
an be in�uen
ed by the power

onsumption, the heating issues or the
ommuni
ation issues. For the last example,

the in
reasing size of the FPGA
an lead to important routing laten
ies whi
h
an

be over
ome with the displa
ement of the
ommuni
ating tasks.

Furthermore, the multipli
ity of the proposed features in a single devi
e open the

way to the management of
omplex appli
ations in whi
h the numerous modes of

exe
ution and the asso
iated quality of servi
e that must be provided by the system

should be handled.

To
on
lude, beside the te
hni
al aspe
t, a vision of the future of the FPGA, and

more spe
i�
ally of the HRSoC,
an be introdu
ed. Today, FPGA manufa
turers

adopt two di�erent approa
hes to speed up and fa
ilitate the development pro
ess

on their devi
es. On one hand, the High-Level Synthesis (HLS) approa
h, proposed

by Xilinx, allows the user to des
ribe a hardware IP in a high-level language and a

spe
ial synthesizer is responsible for the translation to the RTL level. The advantage

of this method is its modularity and the �ne-tuning possible using pre
ise synthesis

options. The goal is limited to the enhan
ement of the IP development pro
ess.

On the other hand, the OpenCL-based approa
h o�ered by Altera permits to de-

s
ribe the whole appli
ation in a high-level language and interfa
es are automati
ally

reated to make the
ommuni
ation between the di�erent parts of the appli
ation,

either software or hardware, transparent for the developer. In this way, this solution

6.2. Future Work 151

is more turned toward the high-performan
e
omputing but the tuning
apa
ity is

limited.

We think that these two approa
hes are intended to
onverge and to form a

omplete design �ow allowing to
reate HRSoC platforms and appli
ations from a

high-level model to a true implementation level.

To a
hieve this, in this thesis we de�ned a low-level en
apsulation of the hardware

omponent in order to support a data-�ow programming model,
oupled with the

lassi
al threading model. The interfa
es that have been de�ned provide a su�
ient

abstra
tion level to
onsider a heterogeneous appli
ation to be homogeneous. From

here, only few e�orts are ne
essary in order to integrate these
omponents into a

omplete design �ow able to automati
ally map ea
h part of the appli
ation and to

ensure their
orre
t
ommuni
ation.

However, even if we want to keep this abstra
tion to be able to model the whole

appli
ation, we also want to keep a full
ontrol over the hardware implementation.

In this way, the design of the hardware thread has been thought to be modular and

so it will be possible to automati
ally generate hardware tasks sour
e
odes and

interfa
es using a dedi
ated high-level synthesis tools, and so to form a
omplete

design �ow.

�����������

Appendix A

Network Interfa
e API

Contents

A.1 Supported requests . 153

A.1.1 Write request . 153

A.1.2 Read request . 154

A.1.3 Read request response . 155

A.1.4 Re
eive request . 155

A.1 Supported requests

The two �rst basi
s request supported by the Network Interfa
e are the Send and

Re
eive primitives. A Send request
onsists in sending one or several pa
kets over

the network. Pa
ket size is �xed by
ommuni
ation medium design (ie. the NoC).

A pa
ket is
omposed of a header followed by data to transmit. Data and header are

represented by 32-bit width �its. A re
eive request
onsists in waiting for a pa
ket

to
ome from the network. It is a passive request whi
h involves no transmission

from the requesting thread.

The two others supported requests are the Write and Read primitives. A Write

request is similar to a Send request ex
ept that additional header �its are sent after

the two main �its. The main �its are essential to ensure a
orre
t routing inside the

network. The �rst �it
ontains the sender and re
eiver port address whereas the

se
ond one
ontains the number of �its in
luded in the pa
ket.

A.1.1 Write request

Pa
ket sending, from a thread to external memory
onne
ted on the network.

The pro
edure SEND_PROC(data_size, data_ptr, port_addr, bu�er_addr) is

both used to send Write and Read
ommands to a memory
onne
ted on the NoC.

For a Write
ommand, the parameters are the following :

⋄ data_size: size of the data to send in the internal memory

154 Appendix A. Network Interfa
e API

������� ��	�� ��
�	�
��
���������������	

�������

����

�����������������

Figure A.1: Write request pa
ket

⋄ data_ptr: pointer on the data to send in the internal memory

⋄ port_addr: port identi�er address of the external memory
onne
ted on the

NoC

⋄ bu�er_addr: pointer on the bu�er in the external memory

A.1.2 Read request

Pa
ket sending, from a thread to an external memory
onne
ted on the network.

The pa
ket
ontains useful information for the memory to to read and send ba
k

read data. to the thread. In the
ase of an ex
hange between hardware threads,

be
ause a thread owns its own internal DMA, the �it ��write_bu�er� is not used.

������� ��	�� ��
�	�
��
���������������	

��HIJKLMN���

OPQO

�R�����������
�������	���

Figure A.2: Read request pa
ket

For a Read
ommand, the parameters are the following :

⋄ data_size : size of the data to read in the external memory (bu�er_size)

⋄ data_ptr : pointer on the data to read in the external memory (read_bu�er)

⋄ port_addr : port identi�er address of the external memory
onne
ted to the

NoC

⋄ bu�er_addr : pointer on the bu�er used to write the read data. Used by the

external memory to make the response (write_bu�er)

It gives ba
k the hand to the user immediately after request parameters have

been sta
ked into the FIFO.

A.1. Supported requests 155

A.1.3 Read request response

Re
eption by a thread, of one or several pa
ket from an external memory; Pa
kets

oming after a read request from the thread to this external memory.

������� ��	�� ��
�	�
��
��������������	

�������������

����

����������������S

Figure A.3: Read request response

A.1.4 Re
eive request

RECEIVE_PROC(data_size, data_ptr, port_addr, bu�er_addr)

⋄ data_size : size of the data to re
eive from the NoC

⋄ data_ptr : pointer on the bu�er used to write the re
eived data in the internal

memory

⋄ port_addr : port identi�er address of the sender

⋄ bu�er_addr : pointer on the bu�er used to write the data. Not used by a

hardware task, only by the NoC-AHB bridge

It gives ba
k the hand on
e the depa
ketizer re
eived the whole data. At this

moment, the on_duty_depa
k signal is
leared.

Appendix B

Hardware CRC

Contents

B.1 Relo
ation pro
ess . 157

B.2 CRC
omputation . 157

B.3 Hardware CRC module . 157

B.1 Relo
ation pro
ess

As dis
ussed in Se
tion 3.4.3, in order to relo
ate a bitstream from one partition to

another it is ne
essary to pro
ess to the readba
k of the �rst partition.

After the readba
k, the relo
ation to the other partition is done modifying the

FAR value (Frame Address Register)
ontained in the readba
k bitstream. As during

the module exe
ution, some
on�guration data like the Flips-Flops or the memory

ontents may
hange, we need to re
ompute the CRC for these new values to avoid

an ICAP reje
tion.

Noti
e: Disabling the CRC
ontrol is possible using the default value 0x0000DEFC.

However, for safety reason, this is highly inadvisable.

B.2 CRC
omputation

A

ording to [Xilinx 2006℄, the CRC
omputation on the Virtex 4 devi
es is not

pro
essed using all data written to
on�guration port, but only with spe
i�
 regis-

ters.

Regarding the Virtex 5 devi
es, the CRC
omputation is done on 32 bits data

width and use the same polynomial than the Ethernet CRC32 (IEEE 802.3) [Xilinx 2001℄.

To design the hardware module responsible for the CRC
omputation, we relied on

The Virtex 5 Sele
tMAP simulator provided in [Xilinx 2009a℄. Table B.1 shows

whi
h registers among the ICAP ones are used to perform the CRC
omputation.

B.3 Hardware CRC module

The hardware CRC module has an input for the
urrent CRC value, whi
h in our

ase is initialized to 0. It also has an input for the 32-bits data and the register

address on 5 bits at whi
h it has to be written. So, the algorithm implementation

158 Appendix B. Hardware CRC

Register Address Used

CRC 00000 No

FAR 00001 Yes

FDRI 00010 Yes

FDRO 00011 No

CMD 00100 Yes

CTL0 00101 Yes

MASK 00110 Yes

STAT 00111 No

LOUT 01000 No

COR0 01001 Yes

MFWR 01010 Yes

CBC 01011 Yes

IDCODE 01100 Yes

AXSS 01101 Yes

COR1 01110 Yes

CSB0 01111 Yes

WBSTAR 10000 Yes

TIMER 10001 Yes

BOOTSTS 10110 No

CTL1 11000 Yes

Table B.1: ICAP register involved in CRC
omputation

takes an input data on 37 bits as an input and return the new CRC value on 32 bits

(Fig. B.1).

It should be noti
e that the register address is not used to segregate whi
h data

should be a part of the CRC
omputation but as an integral part of the input data.

Table B.2 gives the resour
es usage of the CRC module. The Hw CRC IP is the

ombinatorial IP whi
h
omputes the CRC. The Hw CRC PLB module is the Hw

CRC IP en
apsulated with a PLB bus wrapper.

Component Reg. LUTs BRAMs /

FIFOs

DSP Freq.

(MHz)

Hw CRC IP 0 160 0 0 Comb.

Hw CRC PLB 290 339 0 0 310.627

Table B.2: HW CRC Resour
es usage

The re
on�guration laten
y depends on the partial bitstream size. This size

depends itself on the size of the dynami
 part of the Hardware Thread. The
om-

B.3. Hardware CRC module 159

�
�
�

�
�
�
�
�
	

�
�

�
���
���

����
����
���

�
�

�����
�
�
���

�
���
����
��
������

���������

���������

���������

���������

Figure B.1: CRC Bitstream Computer module

position of the Hardware Thread as well as the resour
es overhead
aused by the

en
apsulation of the hardware IP is des
ribed in the next se
tion.

�����������

Bibliography

[541 2010℄ IEEE Standard for IP-XACT, Standard Stru
ture for Pa
kaging, Inte-

grating, and Reusing IP within Tools Flows. IEEE Std 1685-2009, pages C1

�360, 18 2010. (Cited on page 94.)

[A

etta 1986℄ Mike A

etta, Robert Baron, William Bolosky, David Golub,

Ri
hard Rashid, Avadis Tevanian and Mi
hael Young. Ma
h: A New Kernel

Foundation for UNIX Development. pages 93�112, 1986. (Cited on page 83.)

[Agron 2009a℄ J. Agron and D. Andrews. Hardware Mi
rokernels for Heterogeneous

Many
ore Systems. In Pro
eedings of the International Conferen
e on Paral-

lel Pro
essing Workshops (ICPPW '09), pages 19�26, Vienna, Austria, sept.

2009. IEEE. (Cited on pages 13, 20 and 21.)

[Agron 2009b℄ J. Agron and D. Andrews. Hardware Mi
rokernels for Heterogeneous

Many
ore Systems. In Parallel Pro
essing Workshops, 2009. ICPPW '09. In-

ternational Conferen
e on, pages 19 �26, september 2009. (Cited on pages 15,

94 and 95.)

[Asso
iation 2012℄ Multi
ore Asso
iation. Multi
ore Asso
iation website. http:

//www.multi
ore-asso
iation.org/home.php, 2012. (Cited on pages 85

and 114.)

[Baumann 2009℄ Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim

Harris, Rebe

a Isaa
s, Simon Peter, Timothy Ros
oe, Adrian S
hüpba
h

and Akhilesh Singhania. The multikernel: a new OS ar
hite
ture for s
alable

multi
ore systems. In Pro
eedings of the ACM SIGOPS 22nd symposium on

Operating systems prin
iples, SOSP '09, pages 29�44, New York, NY, USA,

2009. ACM. (Cited on pages 14, 87 and 88.)

[Be
kho� 2012℄ Christian Be
kho�, Dirk Ko
h and Torresen Jim. GoAhead: A

Partial Re
on�guration Framework. In 20th Annual IEEE Symposium on

Field-Programmable Custom Computing Ma
hines (FCCM), pages 37�44.

IEEE, 2012. (Not
ited.)

[Belaid 2009℄ I. Belaid, F. Muller and M. Benjemaa. O�-line pla
ement of hardware

tasks on FPGA. In Field Programmable Logi
 and Appli
ations, 2009. FPL

2009. International Conferen
e on, pages 591 �595, aug. 2009. (Cited on

page 59.)

[Bergmann 2003℄ N.W. Bergmann and J. Williams. The Egret platform for re
on-

�gurable system on
hip. In Field-Programmable Te
hnology (FPT), 2003.

Pro
eedings. 2003 IEEE International Conferen
e on, pages 340 � 343, de
.

2003. (Cited on pages 13 and 12.)

162 Bibliography

[Board 2012℄ OpenMP Ar
hite
ture Review Board. OpenMP website. http:

//openmp.org/wp/, 2012. (Cited on page 92.)

[Bonamy 2012℄ R. Bonamy, Hung-Manh Pham, S. Pillement and D. Chillet. UP-

aRC, Ultra-fast power-aware re
on�guration
ontroller. In Design, Automa-

tion Test in Europe Conferen
e Exhibition (DATE), 2012, pages 1373 �1378,

mar
h 2012. (Cited on pages 14, 47, 48 and 59.)

[Cheng 1995℄ Yizong Cheng. Mean shift, mode seeking, and
lustering. IEEE Trans-

a
tions on Pattern Analysis and Ma
hine Intelligen
e, vol. 17, no. 8, pages

790 �799, aug 1995. (Cited on page 136.)

[Corbett 2012℄ John D. Corbett. Xilinx White Paper 412: The Xilinx Isolation

Design Flow for Fault-Tolerant Systems, January 2012. (Cited on pages 14,

50 and 77.)

[Devaux 2009℄ L. Devaux, D. Chillet, S. Pillement and D. Demigny. Flexible
om-

muni
ation support for dynami
ally re
on�gurable FPGAS. In Pro
eeding

of the 5th Conferen
e on Southern Programmable Logi
 (SPL 2009), pages

65�70, 1-3 2009. (Cited on page 34.)

[Donato 2005℄ A. Donato, F. Ferrandi, M. Santambrogio and D. S
iuto. Operating

system support for dynami
ally re
on�gurable SoC ar
hite
tures. In SOC

Conferen
e, 2005. Pro
eedings. IEEE International, pages 233 �238, sept.

2005. (Cited on pages 12 and 13.)

[Duhem 2011℄ François Duhem, Fabri
e Muller and Philippe Lorenzini. FaRM:

fast re
on�guration manager for redu
ing re
on�guration time overhead on

FPGA. In Pro
eedings of the 7th international
onferen
e on Re
on�gurable

omputing: ar
hite
tures, tools and appli
ations, ARC'11, pages 253�260,

Berlin, Heidelberg, 2011. Springer-Verlag. (Cited on pages 14, 46, 47 and 59.)

[El-Araby 2008℄ E. El-Araby, I. Gonzalez and T. El-Ghazawi. Virtualizing and

sharing re
on�gurable resour
es in High-Performan
e Re
on�gurable Com-

puting systems. In High-Performan
e Re
on�gurable Computing Te
hnology

and Appli
ations, 2008. HPRCTA 2008. Se
ond International Workshop on,

pages 1 �8, nov. 2008. (Cited on pages 13, 17 and 18.)

[Götz 2009℄ Mar
elo Götz, A
him Rettberg, Carlos Eduardo Pereira and Franz J.

Rammig. Run-time re
on�gurable RTOS for re
on�gurable systems-on-
hip.

J. Embedded Comput., vol. 3, no. 1, pages 39�51, January 2009. (Cited on

page 95.)

[Grimm 2004℄ M.Ullmann M. Hübner B. Grimm and J. Be
ker. An FPGA Run-

Time System for Dynami
al On-Demand Re
on�guration. FPL 2004 : �eld-

programmable logi
 and appli
ations - 3203 - 842-846, August 2004. (Cited

on page 44.)

Bibliography 163

[Gu

ione 1999℄ Steve Gu

ione, Delon Levi and Prasanna Sundararajan. JBits:

Java based interfa
e for re
on�gurable
omputing. 1999. (Cited on page 44.)

[Guerin 2009a℄ X. Guerin and F. Petrot. A System Framework for the Design of Em-

bedded Software Targeting Heterogeneous Multi-
ore SoCs. In Appli
ation-

spe
i�
 Systems, Ar
hite
tures and Pro
essors, 2009. ASAP 2009. 20th IEEE

International Conferen
e on, pages 153 �160, july 2009. (Cited on pages 15,

91 and 92.)

[Guerin 2009b℄ X. Guerin and F. Petrot. A System Framework for the Design of Em-

bedded Software Targeting Heterogeneous Multi-
ore SoCs. In Appli
ation-

spe
i�
 Systems, Ar
hite
tures and Pro
essors, 2009. ASAP 2009. 20th IEEE

International Conferen
e on, pages 153 �160, july 2009. (Not
ited.)

[Hansen 2011℄ S.G. Hansen, D. Ko
h and J. Torresen. High Speed Partial Run-

Time Re
on�guration Using Enhan
ed ICAP Hard Ma
ro. In Parallel and

Distributed Pro
essing Workshops and Phd Forum (IPDPSW), 2011 IEEE

International Symposium on, pages 174 �180, may 2011. (Cited on pages 14,

47, 48 and 59.)

[Huang 2008℄ Chun-Hsian Huang and Pao-Ann Hsiung. Software-
ontrolled dy-

nami
ally swappable hardware design in partially re
on�gurable systems.

EURASIP J. Embedded Syst., vol. 2008, pages 4:1�4:11, January 2008.

(Cited on page 58.)

[Huerta 2008℄ P. Huerta, J. Castillo, C. San
hez and J.I. Martinez. Operating Sys-

tem for Symmetri
 Multipro
essors on FPGA. In Re
on�gurable Computing

and FPGAs, 2008. ReConFig '08. International Conferen
e on, pages 157

�162, de
ember 2008. (Cited on pages 14, 86 and 87.)

[Instrument 2011℄ Texas Instrument. OMAP 5 mobile appli
ations platform. http:

//fo
us.ti.
om/pdfs/wtbu/OMAP5_2011-7-13.pdfs, July 2011. (Cited on

page 4.)

[IOC 1997℄ IOCTL Spe
i�
ation. http://pubs.opengroup.org/onlinepubs/

7908799/xsh/io
tl.html, 1997. (Cited on page 12.)

[J. Carver 2008℄ A. Forin J. Carver N. Pittman. Relo
ation and Automati
 Floor-

planning of FPGA Partial Con�guration Bit-Streams. Mi
rosoft Resear
h -

Te
hni
al Report MSR-TR-2008-111, August 2008. (Not
ited.)

[Kaashoek 1997℄ M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger, He
-

tor M. Bri
eño, Russell Hunt, David Mazières, Thomas Pin
kney, Robert

Grimm, John Jannotti and Kenneth Ma
kenzie. Appli
ation performan
e

and �exibility on exokernel systems. In Pro
eedings of the sixteenth ACM

symposium on Operating systems prin
iples, SOSP '97, pages 52�65, New

York, NY, USA, 1997. ACM. (Not
ited.)

164 Bibliography

[Kallam 2009℄ A. Sudarsanam R. Kallam and A. Dasu. PRR-PRR Dynami
 Relo-

ation. IEEE Computer Ar
hite
ture Letters - vol. 8 (2), September 2009.

(Cited on pages 14, 45 and 46.)

[Kalte 2005℄ H. Kalte, G. Lee, M. Porrmann and U. Ru
kert. REPLICA: A Bit-

stream Manipulation Filter for Module Relo
ation in Partial Re
on�gurable

Systems. In Parallel and Distributed Pro
essing Symposium, 2005. Pro
eed-

ings. 19th IEEE International, page 151b, april 2005. (Not
ited.)

[Kamppi 2011℄ A. Kamppi, L. Matilainen, J. Maatta, E. Salminen, T.D.

Hamalainen and M. Hannikainen. Ka
tus2: Environment for Embedded Prod-

u
t Development Using IP-XACT and MCAPI. In Digital System Design

(DSD), 2011 14th Euromi
ro Conferen
e on, pages 262 �265, 31 2011-sept.

2 2011. (Cited on page 94.)

[Ko
h 2009℄ Dirk Ko
h, Christian Be
kho� and Jüergen Tei
h. A
ommuni
ation

ar
hite
ture for
omplex runtime re
on�gurable systems and its implementa-

tion on spartan-3 FPGAs. In Pro
eeding of the ACM/SIGDA international

symposium on Field programmable gate arrays, FPGA '09, pages 253�256,

New York, NY, USA, 2009. ACM. (Cited on page 66.)

[Ko
h 2010a℄ Dirk Ko
h, Christian Be
kho� and Jim Torrison. Fine-Grained Par-

tial Runtime Re
on�guration on Virtex-5 FPGAs. In Pro
eedings of the 2010

18th IEEE Annual International Symposium on Field-Programmable Cus-

tom Computing Ma
hines, FCCM '10, pages 69�72, Washington, DC, USA,

2010. IEEE Computer So
iety. (Cited on pages 49 and 66.)

[Ko
h 2010b℄ Dirk Ko
h and Jim Torresen. Advan
es and Trends in Dynami
 Par-

tial Run-time Re
on�guration. In Dagstuhl-Seminar 10281: Dynami
ally Re-

on�gurable Ar
hite
tures, page 6, S
hloss Dagstuhl, Germany, July 2010.

Internationales Begegnungs- und Fors
hungszentrum für Informatik (IBFI),

S
hloss Dagstuhl, Germany. (Cited on page 6.)

[Kühnle 2006℄ M. Hübner C. S
hu
k M. Kühnle and J. Be
ker. New 2-Dimensional

Partial Dynami
 Re
on�guration Te
hniques for Real-time Adaptive Mi
ro-

ele
troni
 Cir
uits. IEEE ISVLSI, 00:6, Mar
h 2006. (Cited on page 44.)

[Lavin 2011℄ Christopher Lavin, Mar
 Padilla, Jaren Lampre
ht, Philip Lundri-

gan, Brent Nelson and Brad Hut
hings. RapidSmith: Do-It-Yourself CAD

Tools for Xilinx FPGAs. In Pro
eedings of the 21th International Workshop

on Field-Programmable Logi
 and Appli
ations (FPL'11), September 2011.

(Cited on pages 14 and 49.)

[Lee 1987℄ Edward A. Lee and David G. Messers
hmitt. Syn
hronous Data Flow.

In Pro
eedings of the IEEE, volume 75, pages 1235�1245, sep. 1987. (Cited

on pages 8 and 18.)

Bibliography 165

[Lee 2010℄ Trong-Yen Lee, Che-Cheng Hu, Li-Wen Lai and Chia-Chun Tsai. Hard-

ware Context-Swit
h Methodology for Dynami
ally Partially Re
on�gurable

Systems. J. Inf. S
i. Eng., vol. 26, no. 4, pages 1289�1305, 2010. (Cited on

page 58.)

[Leon Adams 2007℄ Texas Instrument Leon Adams. Choosing the right ar-

hite
ture for real-time signal pro
essing designs. http://www.ee.up.

a
.za/main/_media/en/undergrad/subje
ts/esp411/
hoosing_right_

ar
hite
ture.pdf, June 2007. (Cited on page 3.)

[Liedtke 2001℄ Jo
hen Liedtke, Uwe Dannowski, Kevin Elphinstone, Gerd Lie�än-

der, Espen Skoglund, Volkmar Uhlig, Christian Ceelen, Andreas Haeberlen

and Mar
us Völp. The L4Ka Vision, April 2001. (Cited on page 83.)

[Lin 2009℄ Yu-Hsien Lin, Chiaheng Tu, Chi-Sheng Shih and Shih-Hao Hung. Zero-

Bu�er Inter-
ore Pro
ess Communi
ation Proto
ol for Heterogeneous Multi-

ore Platforms. In Embedded and Real-Time Computing Systems and Ap-

pli
ations, 2009. RTCSA '09. 15th IEEE International Conferen
e on, pages

69 �78, august 2009. (Cited on pages 14, 87 and 88.)

[LIP6 2012℄ LIP6. MutekH website. http://www.mutekh.org/tra
/mutekh, 2012.

(Cited on pages 111 and 118.)

[Liu 2009℄ Ming Liu, W. Kuehn, Zhonghai Lu and A. Jants
h. Run-time Partial Re-

on�guration speed investigation and ar
hite
tural design spa
e exploration.

In Field Programmable Logi
 and Appli
ations, 2009. FPL 2009. Interna-

tional Conferen
e on, pages 498 �502, aug. 2009. (Cited on pages 14, 46

and 47.)

[Lubbers 2008℄ E. Lubbers and M. Platzner. A portable abstra
tion layer for hard-

ware threads. In Field Programmable Logi
 and Appli
ations, 2008. FPL

2008. International Conferen
e on, pages 17 �22, sept. 2008. (Cited on

pages 13, 20 and 21.)

[Lubbers 2009℄ E. Lubbers and M. Platzner. Cooperative multithreading in dynami-

ally re
on�gurable systems. In Field Programmable Logi
 and Appli
ations,

2009. FPL 2009. International Conferen
e on, pages 551 �554, 31 2009-sept.

2 2009. (Not
ited.)

[Lysaght 2006℄ P. Lysaght, B. Blodget, J. Mason, J. Young and B. Bridgford. Invited

Paper: Enhan
ed Ar
hite
tures, Design Methodologies and CAD Tools for

Dynami
 Re
on�guration of Xilinx FPGAs. In Field Programmable Logi

and Appli
ations, 2006. FPL '06. International Conferen
e on, pages 1 �6,

28-30 2006. (Cited on page 59.)

[Matilainen 2011℄ L. Matilainen, E. Salminen, T.D. Hamalainen and M. Han-

nikainen. Multi
ore Communi
ations API (MCAPI) implementation on an

166 Bibliography

FPGA multipro
essor. In Embedded Computer Systems (SAMOS), 2011 In-

ternational Conferen
e on, pages 286 �293, july 2011. (Cited on pages 15,

92 and 93.)

[Modzelewski 2009℄ K. Modzelewski, J. Miller, A. Belay, N. Be
kmann, C. Gruen-

wald, D. Wentzla�, L. Youse� and A. Agarwal. A Uni�ed Operating System

for Clouds and Many
ore: fos. In Rapid System Prototyping, 2006. Seven-

teenth IEEE International Workshop on, november 2009. (Cited on pages 14

and 89.)

[Muller 2006℄ C. Claus F.H. Muller and W. Ste
hele. Combitgen: A new approa
h

for
reating partial bitstreams in Virtex-II Pro devi
es. Workshop on re
on-

�gurable
omputing Pro
eedings (ARCS 06) - 122-131, Mar
h 2006. (Not

ited.)

[Nojiri 2009℄ T. Nojiri, Y. Kondo, N. Irie, M. Ito, H. Sasaki and H. Maejima. Do-

main Partitioning Te
hnology for Embedded Multi
ore Pro
essors. Mi
ro,

IEEE, vol. 29, no. 6, pages 7 �17, de
ember 2009. (Not
ited.)

[Nollet 2003℄ V. Nollet, P. Coene, D. Verkest, S. Vernalde and R. Lauwereins. De-

signing an operating system for a heterogeneous re
on�gurable SoC. In Paral-

lel and Distributed Pro
essing Symposium, 2003. Pro
eedings. International,

page 7 pp., april 2003. (Cited on pages 13, 14 and 15.)

[Nordstrom 2005℄ S. Nordstrom, L. Lindh, L. Johansson and T. Skoglund. Appli-

ation spe
i�
 real-time mi
rokernel in hardware. In Real Time Conferen
e,

2005. 14th IEEE-NPSS, page 4 pp., june 2005. (Cited on page 94.)

[OMG 2006℄ OMG. CORBA Components Spe
i�
ation - Version 4.0, April 2006.

(Cited on page 93.)

[Rana 2007℄ V. Rana, M. Santambrogio, D. S
iuto, B. Kettelhoit, M. Koester,

M. Porrmann and U. Ru
kert. Partial Dynami
 Re
on�guration in a Multi-

FPGA Clustered Ar
hite
ture Based on Linux. In Parallel and Distributed

Pro
essing Symposium, 2007. IPDPS 2007. IEEE International, pages 1 �8,

mar
h 2007. (Cited on page 13.)

[Rossi 2009℄ D. Rossi, F. Campi, A. Deledda, C. Mu

i, S. Pu
illo, S. Whitty,

R. Ernst, S. Chevobbe, S. Guyetant, M. Kuhnle, M. Hubner, J. Be
ker

and W. Putzke-Roeming. A multi-
ore signal pro
essor for heterogeneous

re
on�gurable
omputing. In System-on-Chip, 2009. SOC 2009. International

Symposium on, pages 106 �109, o
tober 2009. (Not
ited.)

[RTE 1988℄ RTEMS Website. http://www.rtems.org, 1988. (Cited on page 28.)

[S. Corbetta M. Morandi M. Novati 2009℄ M. Domeni
o Santambrogio D. S
iuto

S. Corbetta M. Morandi M. Novati and P. Spoletini. Internal and Exter-

nal Bitstream Relo
ation for Partial Dynami
 Re
on�guration. IEEE trans-

Bibliography 167

a
tions on very large s
ale integration (VLSI) systems - vol. 17, no11, pp.

1650-1654, O
tober 2009. (Cited on page 45.)

[Senou
i 2006℄ B. Senou
i, A. Bou
hhima, F. Rousseau, F. Petrot and A. Jerraya.

Fast Prototyping of POSIX Based Appli
ations on a Multipro
essor SoC Ar-

hite
ture: "Hardware-Dependent Software Oriented Approa
h". In Rapid

System Prototyping, 2006. Seventeenth IEEE International Workshop on,

pages 69 �75, june 2006. (Cited on pages 15, 92 and 93.)

[Shiyanovskii 2009a℄ Y. Shiyanovskii, F. Wol�, C. Papa
hristou and D. Weyer. An

Adaptable Task Manager for Re
on�gurable Ar
hite
ture Kernels. In Adap-

tive Hardware and Systems, 2009. AHS 2009. NASA/ESA Conferen
e on,

pages 132 �137, august 2009. (Cited on pages 15, 90 and 91.)

[Shiyanovskii 2009b℄ Y. Shiyanovskii, F. Wol�, C. Papa
hristou and D. Weyer. An

Adaptable Task Manager for Re
on�gurable Ar
hite
ture Kernels. In Adap-

tive Hardware and Systems, 2009. AHS 2009. NASA/ESA Conferen
e on,

pages 132 �137, 29 2009-aug. 1 2009. (Cited on page 17.)

[Sohanghpurwala 2011℄ A.A. Sohanghpurwala, P. Athanas, T. Frangieh and

A. Wood. OpenPR: An Open-Sour
e Partial-Re
on�guration Toolkit for Xil-

inx FPGAs. In Parallel and Distributed Pro
essing Workshops and Phd

Forum (IPDPSW), 2011 IEEE International Symposium on, pages 228 �235,

may 2011. (Cited on pages 14, 49 and 50.)

[Steiger 2004℄ C. Steiger, H. Walder and M. Platzner. Operating Systems for Re
on-

�gurable Embedded Platforms: Online S
heduling of Real-Time Tasks. IEEE

Trans. Comput., vol. 53, no. 11, pages 1393�1407, November 2004. (Cited

on pages 13, 15 and 16.)

[Steiner 2011℄ Neil Steiner, Aaron Wood, Hamid Shojaei, Ja
ob Cou
h, Peter

Athanas and Matthew Fren
h. Tor
: towards an open-sour
e tool �ow. In

Pro
eedings of the 19th ACM/SIGDA international symposium on Field pro-

grammable gate arrays, FPGA '11, pages 41�44, New York, NY, USA, 2011.

ACM. (Cited on page 69.)

[T. Be
ker 2007℄ W. Luk T. Be
ker and P.Y.K. Cheung. Enhan
ing Relo
ata-

bility of Partial Bitstreams for Run-Time Re
on�guration. IEEE Field-

Programmable Custom Computing Ma
hines, 2007 - 35-44, April 2007.

(Cited on page 45.)

[Tanenbaum 2001℄ Andrew S. Tanenbaum. Modern operating systems. Prenti
e

Hall PTR, Upper Saddle River, NJ, USA, 2nd édition, 2001. (Cited on

page 22.)

[Tomiyama 2008℄ H. Tomiyama, S. Honda and H. Takada. Real-time operating sys-

tems for multi
ore embedded systems. In SoC Design Conferen
e, 2008.

168 Bibliography

ISOCC '08. International, volume 01, pages I�62 �I�67, november 2008.

(Cited on pages 14 and 86.)

[Verdos
ia 1994℄ Lorenzo Verdos
ia and Roberto Va

aro. A
tor Hardware Design

For Stati
 Data�ow Model. In Workshop on Massive Parallelism: Hardware,

Software, and Appli
ations, pages 421�430, 1994. (Cited on pages 13, 18

and 19.)

[Wigley 2001℄ G. Wigley and D. Kearney. The �rst real operating system for re
on-

�gurable
omputers. In Computer Systems Ar
hite
ture Conferen
e, 2001.

ACSAC 2001. Pro
eedings. 6th Australasian, pages 130 �137, 2001. (Cited

on page 16.)

[Xilinx 2001℄ Xilinx. IEEE 802.3 Cy
li
 Redundan
y Che
k. Xilinx website, Mar
h

2001. (Cited on page 157.)

[Xilinx 2006℄ Xilinx. Virtex FPGA Series Con�guration and Readba
k. Xilinx web-

site, Mar
h 2006. (Cited on page 157.)

[Xilinx 2009a℄ Xilinx. Synthesis and Simulation Design Guide. Xilinx website, De-

ember 2009. (Cited on page 157.)

[Xilinx 2009b℄ Xilinx. Virtex-5 FPGA Con�guration User Guide. Xilinx website,

August 2009. (Cited on pages 14, 53, 54 and 55.)

[Xilinx 2009
℄ Xilinx. Virtex-5 FPGA User Guide.

www.xilinx.
om/support/do
umentation/user_guides/ug190.pdf, Novem-

ber 2009. (Cited on pages 14 and 51.)

[Xilinx 2010a℄ Xilinx. Partial Re
on�guration User Guide. http://www.xilinx.

om/support/do
umentation/sw_manuals/xilinx12_1/ug702.pdf, May

2010. (Cited on pages 13 and 2.)

[Xilinx 2010b℄ Xilinx. PLBV46 Master Burst Do
umentation. http:

//www.xilinx.
om/support/do
umentation/ip_do
umentation/plbv46_

master_burst.pdf, De
ember 2010. (Cited on page 128.)

