
HAL Id: tel-01019909
https://theses.hal.science/tel-01019909

Submitted on 27 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hardware and software architecture facilitating the
operation by the industry of dynamically adaptable

heterogeneous embedded systems.
Laurent Gantel

To cite this version:
Laurent Gantel. Hardware and software architecture facilitating the operation by the industry of
dynamically adaptable heterogeneous embedded systems.. Signal and Image processing. Université
de Cergy Pontoise, 2014. English. �NNT : 2014CERG0684�. �tel-01019909�

https://theses.hal.science/tel-01019909
https://hal.archives-ouvertes.fr

ECOLE DOCTORALE SCIENCES ET INGENIERIE

Université de Cergy-Pontoise

PhD Thesis

Hardware and Software Arhiteture for Heterogeneous

and Dynamially Reon�gurable Systems-on-Chip

by

Laurent Gantel

Equipes Traitement de l'Information et Systèmes (ETIS)

CNRS UMR 8051

Embedded System Lab (ESL)

THALES Researh & Tehnology FRANCE

Thesis defended on 14
th

January, 2014

M. Gilles Sassatelli Reporter

M. Frédéri Petrot Reporter

M. Daniel Chillet Examiner

M. Guy Gogniat Examiner

M. François Verdier Diretor

M. Fabrie Lemonnier Diretor

M. Mohamed El Amine Benkhelifa Supervisor

3

Tell me and I forget, teah me and I may remember, involve me and I learn.

Benjamin Franklin

5

Abstrat

This thesis aims to de�ne software and hardware mehanisms helping in the manage-

ment of the Dynami and Heterogeneous Reon�gurable Systems-on-Chip (DHRSoC).

The heterogeneity is due to the presene of general proessing units and reon�g-

urable IPs. Our objetive is to provide to an appliation developer an abstrated

view of this heterogeneity, regarding the task mapping on the available proessing

elements. First, we homogenize the user interfae de�ning a hardware thread model.

Then, we pursue with the homogenization of the hardware threads management. We

implemented OS servies permitting to save and restore a hardware thread ontext.

Coneption tools have also been developed in order to overome the reloation issue.

The last step onsisted in extending the aess to the distributed OS servies to ev-

ery thread running on the platform. This aess is provided independently from the

thread loation and is is realized implementing the MRAPI API. With these three

steps, we build a solid basis to provide to the developer in future work, a design �ow

dediated to DHRSoC allowing to perform preise arhitetural spae explorations.

Finally, to validate these mehanisms, we realize a demonstration platform on a

Virtex 5 FPGA running a dynami traking appliation.

Résumé

Cette thèse s'intéresse à la dé�nition de méanismes logiiels et matériels, faili-

tant la gestion des systèmes-sur-pue hétérogènes et dynamiquement reon�gurable

(DHRSoC). L'hétérogénéité de ses arhitetures se manifeste par la présene à la fois

de proesseurs de alul généralistes et de modules matériels reon�gurables. Notre

objetif est de permettre à un développeur d'appliation de s'abstraire de ette

hétérogénéité en e qui onerne l'alloation des tâhes sur les di�érentes unités de

alul disponibles. Cette abstration passe par une première phase d'homogénéisation

des interfaes utilisateurs (API) et la dé�nition d'un modèle de thread matériel.

Cette homogénéisation se poursuit ensuite par la gestion de es threads matériels.

Nous avons implémenté des servies au niveau du système d'exploitation (OS) per-

mettant de sauvegarder et restaurer le ontexte d'un thread matériel. Des outils de

oneption ont également été développés a�n de surpasser le problème de la reloa-

tion d'un thread matériel au sein d'un FPGA. En�n, la dernière étape a été d'étendre

l'aès aux servies o�erts par tous les OS distribués au sein de la plateforme à tous

les threads s'exéutant sur elle-i, indépendamment de leur loalisation. Cei a été

réalisé via une implémentation originale de l'API MRAPI. Ave es trois étapes,

nous avons apporté une base solide a�n, dans le futur, de proposer au développeur

un �ot de oneption dédié aux arhitetures DHRSoC lui permettant de proéder à

une exploration arhiteturale préise de son système. Finalement, a�n d'éprouver

le fontionnement de es méanismes, nous avons réalisé une plateforme de démon-

stration sur FPGA Virtex 5 mettant en sène une appliation de suivi de ibles

dynamique.

7

Remeriements

Je voudrais tout d'abord remerier mes direteurs de thèse, Amine Benkhelifa qui

m'a fait déouvrir le monde de la reherhe et m'a toujours poussé à aller plus loin,

depuis mes premières années universitaires jusqu'au terme de e dotorat, et qui a

su me guider et me motiver tout au long de ette thèse, François Verdier dont les

onseils et les remarques m'ont été utiles pour mener à bien e projet, et Fabrie

Lemonnier qui m'a fait on�ane et m'a aueilli au sein du laboratoire LSE hez

Thales Researh and Tehnology durant mon Master et ma thèse.

Meri également aux membres du jury qui m'ont fait l'honneur d'évaluer mon

travail, Gilles Sassatelli et Frédéri Petrot qui ont aepté d'en être les rapporteurs,

Daniel Chillet et Guy Gognat qui en ont été les examinateurs.

Je tiens en partiulier à remerier mes ollègues de bureau, Amel Khiar, qui a

toujours été là pour m'enourager et ave qui j'ai passé d'exellents moments. Je la

remerie enore pour sa bonne humeur ommuniative et tout e qu'elle m'a apporté

durant toutes es années. Un grand meri à Liang Zhou que j'ai appris à onnaître

et à grandement appréier au �l du temps. Meri également à Lounis Zerioul, Guy

Wassi, et Christian Gamom, qui ont aussi été très présents et qui sont devenus au

�l du temps de véritables amis.

J'adresse mes remeriements aux membres de TRT que j'ai eu la hane de o-

toyer, ave lesquels j'ai pu ollaborer dans un environnement de travail agréable, et

dont les diverses ompétenes m'ont été très utiles et surtout très instrutives, parmi

lesquels Jimmy Le Rhun, Christophe Clienti, Paul Brelet, Rémi Barrere, Téodora

Petrisor, Philippe Millet, Philippe Bonnot et Lionel Thavot, ainsi qu'aux membres

du laboratoire ETIS dont entre autres Frédéri de Melo, Lounis Kessal, Emmanuel

Huk, Samuel Garia, Thomas Lefebvre, Kaouthar Bousselam, Laurent Rodriguez,

Benoit Miramond, Lot� Bendaouia et Fakhreddine Gha�ari.

Une part de es remeriements va aux membres du projet FOSFOR ave lesquels

j'ai travaillé régulièrement: Fabrie Muller, Daniel Chillet, Sébastien Pillement et

Niolas Kneht.

En�n je souhaite exprimer toute ma gratitude envers ma famille et mes prohes

pour leur présene et leur soutien durant toutes es années.

Contents

1 Introdution 1

1.1 Context . 1

1.1.1 Real-time appliations for embedded systems 1

1.1.2 Heterogeneous Systems-on-Chip 3

1.1.3 Modern FPGAs . 4

1.1.4 Dynami and Partial Reon�guration 6

1.2 HSoC programming model . 7

1.2.1 Programming issue . 7

1.2.2 Dynamially Reon�gurable HSoC 8

1.3 Objetives . 10

2 Uni�ed Thread Model 11

2.1 Related work . 11

2.1.1 Software kernel management 11

2.1.2 Run-time manager . 14

2.1.3 Hardware thread model . 17

2.1.4 Conlusion . 21

2.2 Thread model . 22

2.2.1 Proess de�nition . 22

2.2.2 Thread de�nition . 22

2.2.3 Software thread model . 23

2.2.4 Thread attributes . 25

2.2.5 Synhronization tehniques among threads 26

2.2.6 Conlusion . 28

2.3 Our Hardware Thread model . 28

2.3.1 Context: The FOSFOR projet 28

2.3.2 Hardware Thread spei�ations 30

2.3.3 Hardware Thread arhiteture 31

2.4 Hardware Thread programming model 36

2.4.1 Operating System servies protool 36

2.4.2 Network ommuniation protool 38

2.4.3 Aelerator interfae . 39

2.5 Conlusion . 41

3 Hardware threads preemption using Dynami and Partial Reon-

�guration 43

3.1 Introdution . 43

3.2 Related works . 44

3.2.1 Preemption mehanisms . 44

3.2.2 Reon�guration aelerators 46

10 Contents

3.2.3 Design tools . 49

3.3 FPGA reon�guration knowledge . 51

3.3.1 Virtex 5 FPGA resoures . 51

3.3.2 FPGA on�guration . 52

3.3.3 Bitstream parser . 54

3.4 Preemption mehanisms . 58

3.4.1 Context management servie 58

3.4.2 Reon�guration servie . 59

3.4.3 Reloation Servie . 59

3.5 Design �ow for hardware threads reloation 61

3.5.1 Standard �ow . 61

3.5.2 Problematis . 62

3.5.3 Reloation �ow . 65

3.5.4 Experimented tools . 69

3.5.5 Adapted Isolation Design Flow 71

3.6 Conlusion . 77

4 Operating System for Dynamially and Reon�gurable Heteroge-

neous SoC 81

4.1 Context and de�nitions . 82

4.1.1 Kernel struture . 82

4.1.2 Thread API . 83

4.2 Related works . 85

4.2.1 Introdution . 85

4.2.2 Inter-ore ommuniation in MPSoC 86

4.2.3 HRSoC middlewares . 90

4.2.4 Hybrid OS for HRSoC . 94

4.2.5 Conlusion . 95

4.3 Spei�ations . 96

4.3.1 Objetives . 96

4.3.2 Programming model . 97

4.3.3 Memory onstraints . 97

4.3.4 Arhiteture . 98

4.3.5 Portability . 99

4.4 Coneption . 99

4.4.1 Operating system arhiteture 100

4.4.2 Platform arhiteture . 102

4.4.3 Multiore layer . 109

4.5 Implementation . 111

4.5.1 Modular operating system: MutekH 111

4.5.2 MRAPI Spei�ation . 114

4.5.3 Hardware arhiteture . 118

4.5.4 Domain de�nition . 119

4.5.5 Node de�nition . 120

Contents 11

4.5.6 MRAPI types . 120

4.5.7 Resoures system alls . 120

4.6 Conlusion . 123

5 Appliation deployment 125

5.1 Introdution . 125

5.2 Platform building . 126

5.2.1 Miroblaze platform . 126

5.2.2 Read and Write timings . 127

5.2.3 System alls . 131

5.2.4 Hardware Threads enapsulation 134

5.3 Traking appliation . 135

5.3.1 Presentation . 135

5.3.2 The Camshift IP . 137

5.3.3 The DVI IP . 138

5.3.4 Appliation deployment . 139

5.3.5 Results and performanes . 142

5.4 Conlusion . 143

6 Conlusions 147

6.1 Summary . 147

6.1.1 Disussion . 147

6.1.2 Key ontributions . 147

6.1.3 Hypothesis and Limitations 148

6.2 Future Work . 149

A Network Interfae API 153

A.1 Supported requests . 153

A.1.1 Write request . 153

A.1.2 Read request . 154

A.1.3 Read request response . 155

A.1.4 Reeive request . 155

B Hardware CRC 157

B.1 Reloation proess . 157

B.2 CRC omputation . 157

B.3 Hardware CRC module . 157

Bibliography 161

List of Figures

1.1 Partial and Dynami Reon�guration (PDR) appliation example

[Xilinx 2010a℄ . 2

1.2 Design �ow from developer's point of view 3

1.3 Xilinx Zynq 7000 EPP blok diagram 5

1.4 Dynami and Partial Reon�guration priniple 6

1.5 Abstration level di�erenes between hardware and software program-

ming models . 7

1.6 Heterogeneous threading appliation 9

1.7 Hardware Thread preemption . 9

2.1 µC-Linux ICAP driver [Bergmann 2003℄ 12

2.2 RAPTOR software arhiteture [Rana 2007℄ 13

2.3 OS4RS platform arhiteture [Nollet 2003℄ 15

2.4 Operating System for Reon�gurable Systems software arhiteture

[Steiger 2004℄ . 16

2.5 VFPGA runtime manager arhiteture [El-Araby 2008℄ 18

2.6 Funtional Unit arhiteture [Verdosia 1994℄ 19

2.7 Hybrid Thread model [Agron 2009a℄ 20

2.8 ReonOS hardware thread model [Lubbers 2008℄ 21

2.9 Proess and Thread . 22

2.10 Thread life yle . 23

2.11 User Thread model . 23

2.12 Kernel Thread model . 24

2.13 Hybrid Thread model . 25

2.14 FOSFOR platform arhiteture . 29

2.15 Hardware Thread Arhiteture . 31

2.16 OSSC arhiteture . 32

2.17 Software and Hardware Thread States 33

2.18 Hardware Thread FSM example . 34

2.19 Hardware Thread HDL �les example 34

2.20 Network Interfae arhiteture . 35

2.21 OSSC Status Word ontent . 36

2.22 System Call proedure . 37

2.23 System Call proedure steps . 37

2.24 Network Interfae Send and Reeive protool 38

2.25 Network Interfae Write and Read protool 39

2.26 Parallel proessing using pipelining 40

2.27 Synhronization Module . 41

3.1 Virtual Routing Channels . 45

14 List of Figures

3.2 (a) Implementation of PRR-PRR reloation (b) Top-Level blok di-

agram of ARC [Kallam 2009℄ . 46

3.3 ICAP aelerators solutions [Liu 2009℄ 47

3.4 FaRM arhiteture [Duhem 2011℄ . 47

3.5 Upar arhiteture [Bonamy 2012℄ 48

3.6 ICAP Hard Maro blok diagram [Hansen 2011℄ 48

3.7 RapidSmith sreen apture [Lavin 2011℄ 49

3.8 OpenPR sreen apture from FPGA Editor [Sohanghpurwala 2011℄ . 50

3.9 Isolation Design Flow sreen apture from FPGA Editor [Corbett 2012℄ 50

3.10 Slie-L and Slie-M [Xilinx 2009℄ . 51

3.11 FPGA organization . 52

3.12 Type 1 Paquet Header Format [Xilinx 2009b℄ 53

3.13 Type 2 Paquet Header Format [Xilinx 2009b℄ 53

3.14 Frame address [Xilinx 2009b℄ . 54

3.15 Resoures memory on�guration for the Virtex 5 arhiteture 55

3.16 Frame omposition [Xilinx 2009b℄ . 55

3.17 Multiple Rows bitstream ontent . 57

3.18 ICAP driver for Partial Reon�guration 59

3.19 Partial bitstream reloation proess 60

3.20 Partial reon�guration: Partition and modules 61

3.21 Proxy Maro Plaed and Routed example 62

3.22 Slie Maro . 63

3.23 PlanAhead Slie Maro plaement 63

3.24 Stati route through Reon�gurable Partition 64

3.25 Reloation �ow . 65

3.26 Stati plae . 66

3.27 XDL File struture . 67

3.28 Internal and external swith matries 68

3.29 PIP types . 68

3.30 XDL Net example . 69

3.31 Trusted routes . 70

3.32 Test design . 71

3.33 Software Bus Maro implementation 73

3.34 Routed software Bus Maro . 74

3.35 Hardware Bus Maro extration . 74

3.36 Hardware Bus Maro extration and homogenization 77

3.37 Adapted Isolation Design Flow . 78

3.38 Design test - Partition isolation . 78

4.1 Toppers/FMP [Tomiyama 2008℄ . 86

4.2 SMP System [Huerta 2008℄ . 87

4.3 ICPC Servie [Lin 2009℄ . 88

4.4 The multikernel model [Baumann 2009℄ 88

4.5 Fatored OS [Modzelewski 2009℄ . 89

List of Figures 15

4.6 Self-reon�gurable platform [Shiyanovskii 2009a℄ 91

4.7 System framework overview [Guerin 2009a℄ 92

4.8 Hardware Dependant Software layer [Senoui 2006℄ 93

4.9 MCAPI for MPSoC [Matilainen 2011℄ 93

4.10 Hybrid Threads platform [Agron 2009b℄ 95

4.11 User point of view . 97

4.12 Platform memory arhiteture . 98

4.13 Sysall Proedure . 100

4.14 Server types . 101

4.15 OS Server Arhiteture . 101

4.16 Message Template . 102

4.17 Study Case Platform . 103

4.18 Distant system all . 104

4.19 Senario 1 platform . 106

4.20 Senario 1 datagram . 106

4.21 Senario 2 platform . 107

4.22 Senario 2 datagram . 107

4.23 Senario 3a platform . 108

4.24 Senario 3a datagram . 108

4.25 Senario 3b platform . 109

4.26 Senario 3b datagram . 109

4.27 Operating system arhiteture . 110

4.28 MutekH global view . 113

4.29 Homogeneous NoC-based Platform 118

4.30 Heterogeneous NoC-based Platform 119

4.31 MRAPI library �le struture . 121

4.32 MRAPI loal tables . 122

4.33 Requests management proxies . 122

5.1 Demonstration platform . 126

5.2 Miroblaze platform . 127

5.3 Read and write test platform . 128

5.4 Bridge PLB-NoC arhiteture . 129

5.5 Hardware platform used to test system alls proedures 131

5.6 Hardware MRAPI global arhiteture 132

5.7 MRAPI remote all setions . 134

5.8 Target Traking Appliation . 136

5.9 Binary Long Objet (Blob) . 137

5.10 Pipelined Camshift hardware node 138

5.11 Pipelined Camshift User FSM . 138

5.12 Integration of the DVI IP in the Demonstration Platform 139

5.13 Appliation deployment . 140

5.14 Camshift slots (Virtex 5 LX110 devie) 140

5.15 Detailed appliation deployment . 141

16 List of Figures

5.16 Detailed appliation deployment . 145

6.1 Hardware node implementation hoies 150

A.1 Write request paket . 154

A.2 Read request paket . 154

A.3 Read request response . 155

B.1 CRC Bitstream Computer module 159

List of Tables

1.1 Proessing Elements omparison regarding ontrol ability, performanes

and general programmability . 4

1.2 Platform tehnology omparison regarding ontrol ost, �exibility and

performanes . 4

3.1 Bitstream header ontents . 56

3.2 Bitstream initialization ommands 57

4.1 Resoures table example . 105

5.1 Software layers footprints . 127

5.2 Code exeution time for a Miroblaze proessor (ML506 � 125 MHz) 128

5.3 Timings in yles to write into platform memories 129

5.4 Timings to read from platform memories 130

5.5 Network Interfae Communiation Measurements 130

5.6 NoC Send timings for 1 KB data . 131

5.7 Hw MRAPI Resoures usage . 132

5.8 Timings to loally initialize a node 133

5.9 Timings to aess a loal Mutex resoure 133

5.10 Timings to aess a remote Mutex resoure 133

5.11 Detailed timings to aess a remote Mutex resoure 135

5.12 Hardware Thread Resoures Usage. 136

5.13 Demonstration Platform resoure utilization 142

5.14 Hardware Thread Resoures Usage 143

5.15 Camshift slot resoure utilization . 143

5.16 Appliation timings . 144

B.1 ICAP register involved in CRC omputation 158

B.2 HW CRC Resoures usage . 158

Chapter 1

Introdution

Contents

1.1 Context . 1

1.1.1 Real-time appliations for embedded systems 1

1.1.2 Heterogeneous Systems-on-Chip 3

1.1.3 Modern FPGAs . 4

1.1.4 Dynami and Partial Reon�guration 6

1.2 HSoC programming model . 7

1.2.1 Programming issue . 7

1.2.2 Dynamially Reon�gurable HSoC 8

1.3 Objetives . 10

1.1 Context

1.1.1 Real-time appliations for embedded systems

Appliations for embedded systems dediated to image and signal proessing are

beoming inreasingly omplex. The amount of data proessed by these systems

tend to be more and more important and so, developers need more and more om-

puting power. This is the ase for instane, of monitoring system, automotive or

radar appliations. This leads to design new omputing systems able to respet the

high performane onstraints imposed by these appliations and their environment.

In order to satisfy these onstraints, appliations must be pro�led and divided

into several tasks. Eah task whih is onsidered responsible for the failure to hold

onstraints, has to be implemented separately on a dediated proessing unit. For

instane, ommuniating systems suh as a network swith, have to handle several

protools, transfer information at high rates and proess large amount of data. To

ahieve good performanes and gain in �exibility, ommuniation protool staks

may be implemented in hardware and take advantages of the partial and dynami

reon�guration (Fig. 1.1).

In general, the multipliity of features needed by the end-users and mostly the

spei�ity of these features, fore designers to propose new arhitetures. Target-

ing heterogeneous proessing units to deploy an appliation allows to aelerate the

2 Chapter 1. Introdution

������
��	
��

���������

����

��	
�

���������

����

��	
�

���������

����

��	
�

���������

����

��	
�

������

������

������

�����	

����

������
��	
��

����

��	
�

���������

���������

���������

����

��	
�

����������
�
���
���

����
������

������

������

�����	

����� !
������"�������������#$ ����� !
������"������"����#$

Figure 1.1: Partial and Dynami Reon�guration (PDR) appliation example

[Xilinx 2010a℄

global performane of the appliation. However, the drawbak is that it ompliates

the development proess.

Another onstraint is the need of �exibility, or more preisely, of adaptability.

The appliations omplexity requests to adapt the parameters and the provided

features of these systems. For example, the omputation power an depend on the

quality of servie required, and the power onsumption of a system an be monitored

regarding its environment or random events. Also, as embedded systems are more

and more integrated in our environment, these human or environmental interations

require these systems to adapt themselves to the various queries and needs that this

implies.

In ontrast, designers would want to get a simple view of their appliation whih

would abstrat the platform spei�ity, espeially the heterogeneity (Fig. 1.2). The

aim is to dissoiate the funtional validation of the appliation and the design ex-

ploration of its implementation.

In the funtional validation, tasks are desribed regarding high-level exeution

parameters suh as the exeution time, the deadline, or the priority. During the

design exploration, these parameters and new ones like the power onsumption or

the memory usage are added regarding one or several possible partitioning. These

two points lead us to onsider the design of heterogeneous systems-on-hip and the

way we an leverage the issue of their programming omplexity in order to ease the

move from the high-level modelling layer to the physial implementation.

1.1. Context 3

���������	

�������

���������	

�������

���������	

�������

���������	

�������

�����������
����������	
������������
�	�	

�����������������
������������	
�����		���
�������	

�� �� ��
�������	��������������
���
��	����
���
�����		���
�������

������������
��	��������
����
���
��������� �� �� �� ��

 �

 �

 � �

 ! "

��
����������	
���

��

Figure 1.2: Design �ow from developer's point of view

1.1.2 Heterogeneous Systems-on-Chip

Platforms based on di�erent proessing elements are alled Heterogeneous Systems-

on-Chip (HSoC). In suh a platform, the appliation is divided into tasks. Whereas

some tasks are implemented as hardware aelerators and alloated into a parti-

tion of the hip, others run as software tasks on omputing proessor elements. A

hardware aelerator is de�ned as a hard-wired funtion developed to aelerate the

proessing of a task. A omputing proessor unit ould be a General Purpose Pro-

essor (GPP), a speialized one like a Digital Signal Proessor (DSP), a Graphis

Proessing Unit (GPU) or a simple Miro-Controller Unit (MCU).

Eah one of these proessing elements is more or less suited to ertain types of

tasks [Leon Adams 2007℄. The hardware aelerator is well suited to intensive pro-

essing tasks, espeially tasks whose operations an be parallelized. On the ontrary,

it an hardly be used with intensive ontrol tasks. The latter are more suitable to

run on a GPP. Homogeneous tasks with a low data dependeny an be easily and

e�iently parallelized on a GPU, whereas heterogeneous tasks with omplex data

paths are not reommended for this arhiteture. Simple ontrol tasks proessing

small and well ordered data would likely be implemented on a Miro-Controller

Unit. Playing with these di�erent proessing elements, it is possible to adapt the

appliation to be deployed regarding time exeution onstraints or memory and

logi resoures. Table 1.1 summarizes strengths and weaknesses of eah proessing

element.

Like it is possible to exeute a task on di�erent type of proessing units, the

4 Chapter 1. Introdution

Proessing Element Control Performanes Programmability

GPP +++ + +++

GPU + ++ ++

DSP + ++ ++

MCU +++ + +++

Hw. A. + +++ +

Table 1.1: Proessing Elements omparison regarding ontrol ability, performanes

and general programmability

platform whih inludes all these omponents an be implemented using di�erent

tehnologies: an Appliation Spei� Integrated Ciruits (ASIC), a Multi-Proessor

System-on-Chip (MPSoC), or a Field Programmable Gate-Array (FPGA).

ASIC tehnology o�ers great performanes but is very expensive and not �ex-

ible at all. In this doument we onsider a MPSoC as a SoC made up of at most

a dozen of ores like the OMAP5430 based on a Cortex-A15 multiproessor ore

[Instrument 2011℄. They are less e�ient but heaper, more �exible regarding tasks

plaement and software bugs may be reovered. FPGAs is a good trade-o� between

the ASIC tehnology and the MPSoC hoie beause it is �exible, it provides better

performanes ompared with MPSoC and both software and hardware bugs may

be reovered after the appliation system being plaed on the market. Table 1.2

summarizes the strengths and weaknesses of eah tehnology.

Tehnology Cost Flexibility Performanes

ASIC + + +++

FPGA ++ +++ ++

MPSoC +++ ++ +

Table 1.2: Platform tehnology omparison regarding ontrol ost, �exibility and

performanes

The solution whih interest us is the FPGA tehnology. The exat reasons of

this hoie, namely the harateristis, the potential as well as the pros and ons of

the last family of FPGA are detailed in the next subsetion.

1.1.3 Modern FPGAs

A FPGA is a reon�gurable hip omposed of several logi elements whose the

on�guration, that is to say the logial funtion they implement, as well as the in-

teronnetions between them an be modi�ed on the user's willing.

1.1. Context 5

A modern FPGA is a matrix of resoures disposed in parallel olumns. Eah

olumn ontains either on�gurable logi bloks (CLB), but also blok ram memories

(BRAM) or dediated digital signal proessing (DSP) bloks. For this platform

we de�ned a hardware aelerator as hard-wired funtion using a set of resoures

alloated in a partition of the FPGA.

In addition to these on�gurable elements, latest families of FPGAs, for instane

Xilinx Virtex 7 FPGAs (Fig. 1.3), inlude hardore elements to aelerate ertain

proessing or ommuniation. This is the ase of the DDR ontroller, the Ethernet

MAC ontroller, or even of hardore proessors implemented with all the needed

peripherals as a full miro-ontroller unit (dual ARM9 ores with timers, UART, or

ICAP (Internal Con�guration Aess Port) ontrollers).

Figure 1.3: Xilinx Zynq 7000 EPP blok diagram

As modern FPGAs matries tend to beome larger and larger, designers have

now more spae to implement multi-ore systems inluding several soft-proessors

and hardware aelerators. In order to o�er the best performanes, and as told

previously, the use of FPGA as a omplete autonomous system is beoming a good

trade-o� between the ASIC tehnology and the multiproessor solution. The �rst

6 Chapter 1. Introdution

is really e�ient but rather expansive for small prodution lines, whereas the latter

is �exible and an relies on many COTS but doesn't allow to reah the wanted per-

formanes. Namely, a FPGA is a good trade-o� between power onsumption and

proessing power.

Moreover, all proessing units detailed in Setion 1.1.2 an be implemented in-

side a FPGA. This apability provides to the developer the �exibility to explore

di�erent solutions when designing his platform. Several arhiteture hoies an be

made and ompared. Eah funtion an then be implemented on the wanted pro-

essing units in order to obtain the best partitioning.

1.1.4 Dynami and Partial Reon�guration

The natural evolution of FPGAs leads them, due to the miniaturization, to o�er

more and more logi resoures [Koh 2010b℄. This inrease helps to fae the impor-

tant need of features required by the end-user. To manage the dramati inrease of

the size of the FPGAs, espeially the design time, manufaturers provided partial

reon�guration features to their FPGAs (Fig. 1.4).

��������������

	
�
� 	
�
�

��������������

���� ����

�������
�������

	
�
� 	
�
�

��������������

���� ����

�������

�������
�������

	
�
� 	
�
�

��������������

���� ����

�������

�������������
����

�������������
�����

�������������
����

����	
���������������
����
��������������
�����
���

��������������	
���������������
�������
��������������
������
�����
��������
��
���

��	����������	����������������	
���������������
�������
�������������
����
����������
�����

Figure 1.4: Dynami and Partial Reon�guration priniple

The use of the partial reon�guration has the advantage of dereasing the imple-

mentation time beause partial modules an be implemented separately while the

stati part of the system remains the same and so do not need to be reimplemented.

1.2. HSoC programming model 7

Modern FPGAs manufaturers, from now Xilinx and Altera, provide some meh-

anisms to dynamially reon�gure the hip. The dynami reon�guration allows to

reon�gure a partial module while keeping the stati part unhanged. The system

on the hip would be able to reon�gure a part of itself, this without any disturbane

on the exeution of the rest of the system. In addition to the funtional interest,

it brings a onsequent resoures impat for autonomous embedded systems-on-hip.

Moreover, in some ases it is a good way to derease the power onsumption while

being apable of providing a larger hoie of hardware aelerators to a given appli-

ation.

1.2 HSoC programming model

1.2.1 Programming issue

Despite the real interest of this tehnology, the main drawbak of using hetero-

geneous platforms is that they are di�ult to program. Indeed, abstration level

di�erenes between software funtions running on proessors and hardware ael-

erators, make the development of appliations really tough. In order to ease the

validation and the exploration of the possible partitioning for a given platform, a

ommon abstration has to be provided to the end-user (Fig. 1.5).

����������	�
���
�������������
����
�����

����������	�
���
�������������
��	
�
�����

����������	�
���
��	
����������
��	
�
�����

����������	�
���
����

��	
������	���
��

���

��� ���

��������� ������

������������

�� ��

�����	��

�����	��
�����
�

�������� �� ��
�����
�

!��"�#

!��"�$

!��"�%

���	���
����#

!��"�#&%

!��"�#&$

���	���
����$

!��"�$&%

!��"�$&$

���	���
����%

!��"�%&%

!��"�%&$

��
��� ����
'(
� �)�
���
���������������

���	���
����
���	�*�
'

Figure 1.5: Abstration level di�erenes between hardware and software program-

ming models

8 Chapter 1. Introdution

To ahieve it, a general trend whih is emerging onsists in adopting a high-level

language to desribe the appliation. Coupled with new e�ient tools able to sim-

ulate and automatially generate low-level ode soures, suh a design �ow would

allow to takle the last FPGAs programming issues. Indeed, due to their inreasing

size, the system omplexity is inreasing too and suh tools would provide a simpler

view of the whole system. For instane, a language suh as the Synhronous Data-

Flow language (SDF) [Lee 1987℄ provides a model of omputation whih an be

adapted both to software and hardware threads, and so abstrat the heterogeneity

of the platform.

An intermediate approah an be adopted whih provides not a unique program-

ming language to desribe both the software and the hardware, but in a �rst step,

a ommon programming model. In this way, a ommonly adopted programming

model in the software embedded domain is the threading model. To design a het-

erogeneous platform using this model, we have to raise the abstration level of the

hardware aelerators. This allows us to reuse legay works in the software domain

and so to fous on the hardware part of the model. In our ase, the implementation

hoie is done between a software implementation on a proessor and a reon�g-

urable hardware logi partition.

Like software threads, we de�ne hardware threads. A hardware thread enap-

sulates the hardware aelerator and allows it to behave like a software thread.

Namely, a hardware thread would be able to aess operating system servies and

would have, from a ertain point of view, a sequential exeution. These servies

inlude the ability to reate or delete a resoure, and to operate a system all. The

user should have the apability to preempt any thread, both software or hardware,

and so to save and restore its ontext. A partiular e�ort should be done on the

implementation of mehanisms permitting the threads to ommuniate in a trans-

parent way. Our �nal objetive is to o�er to the end-user a simple thread view of

its appliation, and to the designer an e�ient way to reate reloatable hardware

aelerators whih at like software threads (Fig. 1.6). To do so, hardware aeler-

ators should be implemented in what we will all a hardware thread to ommuniate.

Developed in the standard hardware desription language whih is VHDL (Very

High-speed integrating iruit Development Language), generi interfaes and an ab-

strated exeution model will allow in the future to integrate this intermediate pro-

gramming model with high-level design tools. This will result in the automati

generation of hardware threads, taking advantage of existing low-level struture.

1.2.2 Dynamially Reon�gurable HSoC

In this ontext, the dynami and partial reon�guration of FPGAs seems very in-

teresting to provide a �exible handling of hardware aelerators. In dynamially

1.2. HSoC programming model 9

������
���	�

�����	����	� ��	����	� ��	����	�

�� �� ��

�� �	������������� �� ������������������	�

������	�����

��	�������	��

�� �� �� ��

�� �� �� �� ��

Figure 1.6: Heterogeneous threading appliation

reon�gurable HSoC, hardware threads are de�ned as reloatable modules whih

an then be alloated into any available reon�gurable partition of the FPGA.

The system, using the dynami and partial reon�guration, allows the user to

preempt any module (Fig. 1.7). Namely, a part of the hip is divided into several

dynami partitions. Eah partition is then alloated by the ontrol part of the ap-

pliation to one hardware thread for a ertain amount of time.

������ ������

���

�

��	
��

���

����������

����	
�����

����	
����

���

���

���

��	���

���

���

���

��	���
��������

�����������

����

���������������
��	

Figure 1.7: Hardware Thread preemption

The list of target appliations an then be extended to multi-mode appliations

and to those whih need environment adaptation. As a perspetive, other appli-

ations based on the dynami detetion of events, suh as seurity systems, ould

take advantage of this tehnology. We an also ite bio-inspired arhitetures whih

would rely on dynami reon�guration mehanisms in order to dynamially reon-

�gure their arhiteture.

10 Chapter 1. Introdution

Moreover, being able to update system after its release ould help the designer to

improve the adaptability to unknown spei�ation modi�ations, for instane when

implementing a H264 ode. We an also notie that it ould have a good a�et on

the design osts of these produts.

1.3 Objetives

The goal of this PhD thesis is to propose a software and hardware arhiteture

in order to improve the appliation development proess when targeting a Hetero-

geneous System-on-Chip. With the inreasing omplexity of the appliation, an

abstrated programming model has to be adopted to failitate the desription of

these appliations and improve the �exibility regarding the implementation hoies.

The proposed arhiteture should rely on the existing operating system struture and

provide servies and low-level mehanisms to easily handle the thread heterogeneity.

In Chapter 2, we propose a model of hardware thread whih allows to abstrat

this heterogeneity. Then we study mehanisms and tools permitting to manage

hardware threads in the same way that what is done with software ones. In the

next hapter, an operating system dediated to heterogeneous systems-on-hip is

spei�ed. The main feature of this operating system is to provide a �exible aess

to the operating system servies for every threads, both software or hardware, what-

ever is the ore they are running on. Finally, an appliation will be detailed and

implemented on a demonstration platform.

Chapter 2

Uni�ed Thread Model

Contents

2.1 Related work . 11

2.1.1 Software kernel management 11

2.1.2 Run-time manager . 14

2.1.3 Hardware thread model . 17

2.1.4 Conlusion . 21

2.2 Thread model . 22

2.2.1 Proess de�nition . 22

2.2.2 Thread de�nition . 22

2.2.3 Software thread model . 23

2.2.4 Thread attributes . 25

2.2.5 Synhronization tehniques among threads 26

2.2.6 Conlusion . 28

2.3 Our Hardware Thread model 28

2.3.1 Context: The FOSFOR projet 28

2.3.2 Hardware Thread spei�ations 30

2.3.3 Hardware Thread arhiteture 31

2.4 Hardware Thread programming model 36

2.4.1 Operating System servies protool 36

2.4.2 Network ommuniation protool 38

2.4.3 Aelerator interfae . 39

2.5 Conlusion . 41

2.1 Related work

2.1.1 Software kernel management

With the emergene of heterogeneous platform inluding both software proessors

and reon�gurable areas, a natural way to takle the heterogeneity of these reon-

�gurable platforms has been to rely on the existing software abstration layers. To

rise their abstration level, the ontrol of the hardware aelerators has been given

to a software operating system running on a proessor.

12 Chapter 2. Uni�ed Thread Model

This sheme leads to design a new kind of platform in whih a primitive or fun-

tion used by a task, or a task itself, an be aelerated in hardware. The following

works aim to provide a simple way to load and run these aelerators. They permit

to abstrat the omplexity of the ommuniation between a proessor, namely an

appliation running on top of an operating system, and a hardware aelerator.

This is the ase of the Egret platform [Bergmann 2003℄ whih the objetive is

to provide a fully modular platform. A Miroblaze miro-ontroller unit is running

a µC-Linux operating system and allows the developer to hoose whih hardware

aelerators have to be exeuted. To do so, a lassi driver using the IOCTL

1

API

2

[IOC 1997℄ permits the developer to load a partial bitstream of the wished on�gu-

ration through the Internal Con�guration Aess Port (ICAP) of the FPGA (Fig.

2.1).

Figure 2.1: µC-Linux ICAP driver [Bergmann 2003℄

Authors of [Donato 2005℄ presented a platform based on the Linux operating

system. This hoie has been done beause its soure ode is available for free,

it has been ported on numerous platforms and it is modular regarding additional

drivers.

This platform has been named Caronte : it is omposed of a Virtex 2 Pro FPGA

1

Input and Output Control

2

Appliation Programming Interfae

2.1. Related work 13

inluding a Power PC 405 and one ICAP port. A software driver allows the devel-

oper to ontrol the ICAP using the IOCTL protool again. When loading a new

IP

3

ore, a ommuniation protool has been implemented to allow this IP to laim

itself to the Core Manager IP, following a hot-plug philosophy. The interonnet is

a Wishbone Bus and spei� Medium Aess Controller (MAC) are used to provide

the ability to alloate address spae at run-time. This work led to the launh of

the ommerial projet PetaLinux, whih aims to simplify the deployment of the

Linux operating system on reon�gurable platforms. The use of Linux in MPSoC

platforms is a growing trend as shown by the reent aquisition of the PetaLogix

ompany by Xilinx.

In [Rana 2007℄, a platform omposed of several FPGAs is introdued. The whole

platform is supervised by a unique proessor running Linux, and allowing reon�g-

uration ability, partially or totally. Simple primitives are also implemented as a

driver using the IOCTL protool.

The main issue to solve is the management of the onurrent exeution of eah

task present in the system. To handle this, we need to rely on a multitask operating

system providing simple and legay ways of ommuniation to every task, both soft-

ware or hardware (Fig. 2.2). Espeially, hardware tasks are onneted to a Medium

Aess Controller (MAC), whih provides the ability to dynamially alloate address

spae for eah loaded module at run-time.

Figure 2.2: RAPTOR software arhiteture [Rana 2007℄

The operating system used to abstrat the reon�guration proess is based on the

work of Donato et al. [Donato 2005℄. When a reon�gurable aelerator is loaded on

the FPGA, a driver is loaded into the Linux kernel and is assoiated to this aelera-

3

Intelletual Property

14 Chapter 2. Uni�ed Thread Model

tor. To ontrol the module, the appliation relies on the lassial IOCTL ommands.

In all these works, the management of the hardware aelerators implies minimal

modi�ation in the operating system and is easily portable. However, the aelerator

is onsidered as a hardware IP ore and not as a hardware thread. From the user

point of view, this situation leads to a heterogeneous programming model for the

developer. It is not su�ient regarding our objetives whih impose us to bear in

mind to allow a homogeneous programming model at a higher level of representation.

2.1.2 Run-time manager

Other solutions go further and propose to design a run-time manager. A run-

time manager is responsible for sheduling hardware aelerators at run-time and

managing the aess to shared resoures. The system knows whih partitions are

available and whih aelerators need to be loaded. Using adaptive algorithm, a

real-time unit dynamially plaes and on�gures the aelerators. More than a

management of the hardware aelerators as o-proessor modules, the goal is to

de�ne a model in whih these aelerators ould be onsidered as real tasks, in the

same way that the software ones are.

Nollet et al. [Nollet 2003℄ introdues one of the �rst approah to design an op-

erating system dediated to Reon�gurable Systems alled OS4RS. It spei�ally

targets the Heterogeneous Reon�gurable System-on-Chips omposed of ISP (In-

strution Set Proessor) and reon�gurable tiles.

This OS must be apable of providing a similar set of servies for the heteroge-

neous tasks, as a traditional OS does for software appliation. It is based on RTAI,

a real-time Linux extension.

The hardware task are plaed into slots and onneted to eah other via a

network-on-hip. The Hardware Abstration Layer (HAL) of the operating system

provides ommuniation primitives suh as send and reeive as well as ontrol mes-

sages to plae a new task and read or modify the network parameters (Fig. 2.3).

The ommuniation API has been ported both in hardware and software. This

ommon interfae allows to migrate a task from a software to a hardware proessing

element in a transparent way.

The operating system inludes a two-level sheduler. The �rst level dispathes

the task on the proessing units whereas loal shedulers handles the task assigned

to them. At the �rst level, the sheduler relies on a hekpointing mehanism to save

tasks ontexts. They hoose this solution beause this has the advantage to make

the ontext independent from the targeted proessing element. A the lower level,

loal shedulers may employ proessor-spei� ontexts, sine they will never move

tasks to another proessor. The de�nition and the management of the hekpoints

(ie. the de�nition of what needs to be saved) is up to the user. We an notie that

this information is partiularly di�ult to de�ne and is still an open issue.

In addition to the sheduling servie, the operating system provides a reloation

servie using the hekpointing mehanisms to synhronize the migration.

2.1. Related work 15

Figure 2.3: OS4RS platform arhiteture [Nollet 2003℄

In [Steiger 2004℄, Platzner et al. also introdue an operating system dediated to

reon�gurable systems and disuss about two di�erent points. The �rst disussion

is about design issues for reon�gurable hardware operating system. The required

degree of �exibility paired with high omputation demands asks for partially reon-

�gurable hardware that is operated in a true multitasking manner.

For the authors, it is neessary to de�ne three things: (1) a programming model

dediated to reon�gurable systems with a set of well-de�ned system servies, (2)

a run-time system to handle the dynamiity of the system and resolve on�its

between exeutable objets, and (3) the smallest unit of exeution, that is to say a

proess or a thread.

They de�ne a hardware thread as a pre-plaed and pre-routed digital iruit

whih an be loaded and reloated easily in any available slots of the FPGA. A

square is the simplest shape to manage in spite of the fat that it also leads to a more

important internal fragmentation than more omplex shapes, suh as polyominoes.

Then they explain that 1-Dimensional (1D) plaement involves an easier sheduling

of the di�erent threads but an inrease of the external fragmentation. On the other

hand, 2-Dimensional (2D) plaement o�ers more possibility of plaement and so less

external fragmentation but is harder to manage.

In this paper, they target a real-time senario where eah inoming thread is ei-

ther aepted with a guarantee to meet the deadline or rejeted. As in reality FPGA

resoures distribution is not homogeneous, we an assume that at least memory and

FIFOs are managed by the operating system, and so that a thread an aess to

these resoures using operating system servies : memory alloation and message

queue. They onlude saying that 1D plaement is more realisti regarding urrent

FPGAs arhiteture but 2D plaement is an interesting open issues in the way that

2D sheduling is really more interesting in term of performane.

The seond disussion deals with hard real-time tasks sheduling. Target plat-

form is omposed of a CPU onneted to a reon�gurable devie through two ports:

a C/R port for on�guration and readbak, and a COMM port for ommuniation

16 Chapter 2. Uni�ed Thread Model

Figure 2.4: Operating System for Reon�gurable Systems software arhiteture

[Steiger 2004℄

between the operating system and the thread. This port is alled Standard Task

Interfae (STI). The Task Communiation Bus (TCB) runs horizontally through all

hardware thread area into a number of dummy tasks.

The software operating system is divided in three layers (Fig. 2.4): a �rst layer

to manage tasks and resoures, a seond to handle the ontext issue, and the last

one whih is responsible for the ommuniation and the on�guration.

In [Wigley 2001℄, authors disuss the sheduling problem of reloatable hardware

tasks by an operating system. They give a spei�ation of an ideal operating system

dediated to the reon�gurable omputers. This operating system must provide a

sheduler able to manage expliit ontext hanges, namely the user has to insert

hekpoints inside tasks soure ode in order to ensure a orret ontext save.

In their spei�ation, the operating system is responsible for managing the vir-

tual memory and proteting platform physial resoures from on�iting aesses.

Task partitioning must be dynami as we must be able to operate load balaning or

task migration from software to hardware and vie-versa.

Also, ommuniation between hardware tasks must be thought in order to be

optimized. If two tasks are presents on di�erent slots, we must take advantage of

2.1. Related work 17

it by initializing diret ommuniation between these kind of tasks. Otherwise, a

bu�er should be used in order to proess ommuniation. A last point is the need

of veri�ation tools and test ases, that is to say appliation examples whih ould

bene�t from the Dynami and Partial Reon�guration.

Another example of run-time manager is introdued in [Shiyanovskii 2009b℄.

Reon�guration is managed by a software layer upon the real time operating system.

This layer is alled Adaptation Manager, and an be ustomized in order to get a

trade-o� between the power onsumption and the exeution speed. To do so it relies

on a learning proess whih allows it to improve its deision skill.

The reon�gurable platform is omposed of tiles whih abstrat the logi blok

programming level to provide to the developer an aess to oarse grain primitives

suh as �lters, FFT

4

or others higher level funtions. Sheduler poliy is based on

priority. Tasks an have three di�erent states : Inative, Ative and Reserved and

have real-time attributes suh as exeution time, deadline, or laxity.

These works show that an operating system is neessary to manage the hardware

aelerators. This abstration layer has to take advantage of the dynami reon�g-

uration and provides high-level mehanisms to manage the available slots. It means

o�ering the ability to the end-user to reate, suspend, resume and delete a hardware

task. At a lower-level, a reon�gurable partition should be seen as a proessing el-

ement. The operating system should be able to share this resoure between every

hardware aelerators, leading us to view a hardware aelerator as an equivalent

of a software thread.

2.1.3 Hardware thread model

Using the ability to ontrol the Dynami and Partial Reon�guration (DPR), reent

artiles proposed abstration models for the hardware aelerators. The objetive

is to improve the programmability of these heterogeneous platform and to failitate

the ommuniation between the aelerators and the rest of the system providing a

default interfae.

Authors of [El-Araby 2008℄ de�ne VFPGAs. This aronym stands for Virtual

FPGAs. A VFPGA is a reon�gurable zone ontrolled by a proessor (Fig. 2.5).

A VFPGA an be seen as a hardware task. This kind of task has three di�erent

states: on�gured and waiting for input data (data in), proessing, or sending data

(data out).

A virtualization manager is implemented to reeive exeution requests oming

from proessors. It is responsible of loading the VFPGAs. As expeted, di�erent

tests show a gain regarding the exeution speed.

4

Fast Fourier Transform

18 Chapter 2. Uni�ed Thread Model

Figure 2.5: VFPGA runtime manager arhiteture [El-Araby 2008℄

In [Verdosia 1994℄, authors takle the issue of the hardware implementation of a

Data-Flow Graph (DFG) model of omputation (MoC). In a DFG model, a proess

an be represented by an ator. Ators ommuniate by sending eah other pakets

of data alled tokens [Lee 1987℄. Although this model is generally stati, this paper

de�nes a dynami model in whih ators inputs and outputs tokens ome and go

from and to in�nite FIFOs. Every ators have two inputs and a unique output

allowing to de�ne three types of links between them:

• lassial link: 2 → 2 (two outputs of two di�erent ators to the inputs of one

or two other ators)

• joint link: 2 → 1 (two outputs of two di�erent ators to the inputs of another

ator)

• and replia link: 1 → 2 (one output of an ator to the inputs of one or two

other ators)

Ators are grouped in lusters whih ommuniate by Message Passing. Inside a

luster, ators are alled Funtional Units (FUs). These FUs ommuniate through

a rossbar. Messages exhanged between FUs and between FUs and the host or-

respond to the graph on�guration and the produed tokens. A FU is omposed of

three elements (Fig. 2.6):

• "Control Unit": this omponent permits to manage loops and onditions, this

using Test Maro

2.1. Related work 19

Figure 2.6: Funtional Unit arhiteture [Verdosia 1994℄

• "Synhronization Unit": it is responsible for ontrolling the presene of the

input tokens. Two signals are generated: ABIL if the two tokens are present,

ABOL with a delay of one yle to allow output �ring

• "Computation Unit": it omposed of an ALU

5

, a multiplier and one Seletion

module. If a test is requested and that it passes, the output is ativated on

the arrival of the ABOL signal

The proposed model has three advantages. Firstly, all ators have the same ar-

hiteture (two inputs - one input) so the same interfaes with the external world,

then it allows to get an arhiteture adapted to VLSI, and �nally all ators are able

to manage loops and onditional instrutions.

5

Arithmeti and Logial Unit

20 Chapter 2. Uni�ed Thread Model

Muh more omplex aelerators have then been developed, suh as Hybrid

Thread [Agron 2009a℄. In this artile, the authors de�ne a model of POSIX

6

ompli-

ant hardware thread, apable of proessing operating system alls through a shared

memory, as software thread does (Fig. 2.7). A thread is omposed of two �nite

states mahines (FSM). One used to answer to operating system requests and get

system alls results, and the other one to proess system alls and get aess to a

heap. These FSMs are ontrolled by the hardware aelerators enapsulated in the

User Logi omponent.

Figure 2.7: Hybrid Thread model [Agron 2009a℄

Heap and stak are stored in an internal Blok RAM (BRAM) of the thread.

Like in a software POSIX thread, the stak is used to store the system alls pa-

rameters. Moreover, in order to enhane the programmability of these threads, the

authors de�ned a high-level API whih allows the developer to desribe a hetero-

geneous appliation using the C language. A dediated ompiler written in Python

permits to translate the C ode into a VHDL implementation of the Hybrid Thread.

In [Lubbers 2008℄, the authors introdue an operating system dediated to reon-

�gurable arhitetures: ReonOS. This operating system provides a homogeneous

abstration layer to the threads, both software or hardware, and allows them to pro-

ess system alls. This paper deals with the portage of ReonOS on a Linux based

platform, and ompares its performanes with another one based on the eCOS op-

erating system. The goal is to demonstrate the portability of the onepts brought

by the ReonOS arhiteture.

6

Portable Operating System Interfae

2.1. Related work 21

In this operating system, every servies are managed by a software operating

system running on a proessor. Hardware system alls are done through an API

desribed in a VHDL library. The hardware thread �nite state mahine is synhro-

nized with the software operating system in order it to proess the system all. The

interfae responsible for the ommuniation is alled OSIF for OS InterFae and

represents a set of registers aessible through the proessor bus (Fig. 2.8).

Figure 2.8: ReonOS hardware thread model [Lubbers 2008℄

Regarding the inter-thread ommuniation, the thread heterogeneity is abstrated

assoiating eah hardware thread with a software one, whih is a proxy or a del-

egate. When requested by a hardware thread, the system all is exeuted by the

orresponding software thread.

In order to link operating resoures requested by the hardware thread with the

ones aessible by the software one, a table of the used instanes is maintained by

the delegate. In this way, the same hardware thread an be used by several instanes

of a software thread. This mehanism has been implemented to foresee the future

use of the partial and dynami reon�guration.

2.1.4 Conlusion

As explained in the introdution, our hoie is oriented to the threading model.

Our goal is to propose a hardware thread model whih is able to ommuniate with

software threads in the same way that what has been proposed by Hybrid Thread

[Agron 2009a℄ or ReonOS [Lubbers 2008℄. This model has to be adapted to the

reon�gurable platform and take advantage of the parallelism and the �exibility

o�ered by this type of platform. The de�nition of this model is the basi proposal

of this thesis and will lead us to de�ne in the next hapters, an operating system

arhiteture whih o�er the ability to abstrat the spei�ity of the hardware thread

regarding the software one.

22 Chapter 2. Uni�ed Thread Model

2.2 Thread model

2.2.1 Proess de�nition

A proess is de�ned as an independent stream of instrutions, running on top of a

proessing element. A proess permits to group some of a proessing element re-

soures together, suh as the memory spae, the open �les, the signal handlers and

other information. Grouping resoures inside a same entity failitates the manage-

ment of these resoures by the running proess [Tanenbaum 2001℄.

Proess exeution is proteted by the fat that it has a private address spae.

Proesses are sheduled by the kernel operating system and ompete for the aess

to the proessing element. When a proess is bloked by a system all, the sheduler

is responsible for saving the ontext of this proess and seleting another proess

among the ones ready to be exeuted.

2.2.2 Thread de�nition

A thread is exeuted inside a proess (Fig. 2.9). The main di�erene between a

thread and a proess is that the latter has a full view of the memory spae address-

able by the proessor whereas threads inside a same proess share the proessing

element resoures owned by the proess.

���������	
�������

�������
�

��������	
�����
������

���������

�� ��

�������
�

�� �� ��

�������
�����

� ������

Figure 2.9: Proess and Thread

A threading model provides the advantage to isolate appliation funtions ex-

eutions regarding one to the others and so enfores parallelism when targeting

multiore platforms. It improves the programmability dividing appliation into sev-

eral tasks. In addition, a thread is easier to reate or destroy than a proess. A

simple representation of the thread life yle is depited in Figure 2.10.

Moreover, as a thread is a sub-entity of a proess, it has a smaller ontext to

save than the latter. Indeed, it does not have to manage global resoures suh as

memory or CPU information. Thread ontext mainly inludes registers and some

other loal values.

2.2. Thread model 23

����������	
�
����������

����	���������	
�
�

���������
���

������������
���

����� �����	

��		�	

������
����

�������

�������
	
��

	�������

�	������

����

������

������

Figure 2.10: Thread life yle

2.2.3 Software thread model

Generally, it exists two ways to implement a thread model in an operating system.

Either in user spae or in kernel spae.

2.2.3.1 User thread model

In the user thread model, the operating system kernel is only aware of a single thread

in the proess. Threads are sheduled by a threads library implemented in the user

spae. The advantage of this model is that there is no need to modify the operating

system, whih is interesting if this one does not support the thread exeution model.

���������	
�������

�������
�

��������	
�����
������

���������

�� ��

�������
�

�� �� ��

�������
�����

� ������

���������
������
�����

���������
������
�����

Figure 2.11: User Thread model

The user-level sheduler allows only one thread to be atively running in the

proess at a time. There is one thread table per proess whih allows a fast ontext

swith as there is no need to request a kernel intervention (Fig. 2.11). A loal

sheduling poliy is possible but is limited. For instane, as the user-level sheduler

24 Chapter 2. Uni�ed Thread Model

annot manage a lok interrupt, a round-robin sheduling annot be implemented.

Regarding the parallelism, the main drawbak of this model is that a bloking all

from a thread would blok all the threads implemented inside the same proess.

2.2.3.2 Kernel thread model

In the kernel thread model, kernel threads are separated tasks whih are assoiated

with a proess. In a kernel thread model, one kernel thread per proess is reated.

The proess table and the thread table are both managed at the kernel level. A

preemptive sheduling poliy is used in whih the operating system deides whih

thread is eligible to share the proessor.

���������	
�������

�������
�

��������	
�����
������

���������

�� ��

�������
�

�� �� ��

�������
�����

� ������

������
�����

Figure 2.12: Kernel Thread model

Moreover, when a thread performs a bloking all, its state is noti�ed to the

kernel whih an deide to preempt the thread in favor of another ready thread. As

thread are managed at the kernel level, the drawbak is that system alls osts are

higher than in the user thread model.

2.2.3.3 Hybrid thread model

In a hybrid thread model, several user-level threads are running on top of a kernel

thread (Fig. 2.13). A ommonly used hybrid thread model is the POSIX threads

spei�ation (Pthreads). POSIX stands for Portable Operating System Interfae.

Threads are user-level threads but are managed using a kernel-assisted ontext-

swithing. It means that when a thread performs a system all, if the all is non-

bloking, the thread rely on the user-level API. Otherwise, the kernel thread is

noti�ed that the thread is bloked and the kernel sheduler an try to �nd another

proess whose at least one thread is runnable. This solution is more omplex to

implement but tries to ombine the best of the two models.

Finally, in embedded systems, the ommonly used thread programming model is

the kernel threads model. The goal is to redue the memory footprint of the appli-

2.2. Thread model 25

���������	
�������

�������
�

��
������

���������

�� ��

�������
�

�������
�����

� ������

���������
������
�����

���

�� ������
������

���

�� �� ��

������
������

�����

��� ���

�� ��

���������
������
�����

�� �� ��

Figure 2.13: Hybrid Thread model

ation as the kernel thread struture is lighter than the proess one. On the other

hand, performane is lower due to the neessity to regularly swith from the user

mode to the kernel mode. The hybrid thread model like POSIX tends to be adopted

beause the memory footprint beome negligible regarding the available resoures

and above all beause it is a widely used standard in the omputing domain. The

adoption of a standard being a good thing for the improvement of the appliations

portability.

2.2.4 Thread attributes

2.2.4.1 Storage strutures

At the time of its reation, a thread is assoiated with two storage strutures:

• a Data struture: Data is where all of the program variables are stored. It is

broken down into storage for global and stati variables (stati), storage for

dynamially alloated storage (heap), and storage for variables that are loal

to the funtion.

• a Stak struture: The stak ontains data about the program or proedure

all �ow in a thread. The stak, along with loal storage, is alloated for eah

thread reated. While in use by a thread, the stak and loal storage are on-

sidered to be thread resoures. When the thread ends, these resoures return

to the proess for subsequent use by another thread.

2.2.4.2 Thread-private data

Thread-private data are data that threads annot share between themselves. Mainly,

it inludes the following resoures:

26 Chapter 2. Uni�ed Thread Model

• Thread identi�er: A unique number that an be used to identify the thread.

• Priority: if the operating system allows spei�ation of a thread priority, this

value would determine the relative importane of one thread to other threads

in the appliation.

• Call stak: The all stak ontains data about the program �ow or proedure

all �ow in the thread.

2.2.4.3 Thread-spei� data (TLS)

Threads an have their own view of data items alled thread-spei� data. Thread-

spei� data is di�erent from thread-private data. The threads implementation

de�nes the thread-private data at the kernel level, while the appliation de�nes the

thread-spei� data. Threads do not share thread-spei� storage, but all funtions

within that thread an aess it.

Due to the design of the appliation, threads may not funtion orretly if they

share the global storage of the appliation. If eliminating the global storage is not

feasible, using thread-spei� data is a good alternative.

2.2.5 Synhronization tehniques among threads

Even if an appliation is thread-safe, in order to keep good performanes, some

global resoures have to be shared between threads. In this ase, the most important

aspet of programming beomes the ability to synhronize threads. Synhronization

is the ooperative at of two or more threads that ensures that eah thread reahes

a known point of operation regarding to other threads before ontinuing.

Threads an be synhronized using operating system servies. These servies

ensure the developer that ritial resoures are aessed in a safe way and allow

threads to ommuniate. The most ommon synhronization primitives are:

• Mutexes

• Semaphores

• Condition variables

• Threads as synhronization primitives

• Message Passing

2.2.5.1 Mutexes

A mutual exlusion (mutex) is a ooperative agreement between threads whih en-

sures that only one of the threads is allowed to aess the data or run ertain

2.2. Thread model 27

appliation ode at a time. The mutex is usually logially assoiated with the data

it protets by the appliation.

Create, lok, unlok, and delete are operations typially preformed on a mutex.

Any thread that suessfully loks the mutex is the owner until it unloks the mutex.

Any thread that attempts to lok the mutex waits until the owner unloks the mutex.

When the owner unloks the mutex, ontrol is returned to one waiting thread with

that thread beoming the owner of the mutex. There an be only one owner of a

mutex at a time.

2.2.5.2 Semaphores

Semaphores an be used to ontrol aess to shared resoures. A semaphore an be

thought of as an intelligent ounter. Every semaphore has a urrent ount, whih is

greater than or equal to zero.

Any thread an derement the ount loking or taking the semaphore. Attempt-

ing to derement the ount past 0 auses the thread that is alling to wait for another

thread to unlok the semaphore. In the same way, any thread an inrement the

ount unloking or posting the semaphore. Posting a semaphore may wake up a

waiting thread if there is one present.

In their simplest form (with an initial ount of 1), semaphores an be thought of

as a mutual exlusion (mutex). The important distintion between semaphores and

mutexes is the onept of ownership. No ownership is assoiated with a semaphore.

Unlike mutexes, it is possible for a thread that never took for the semaphore to post

the semaphore.

2.2.5.3 Condition variables and threads

Condition variables allow threads to wait for ertain events or onditions to our

and they notify other threads that are also waiting for the same events or onditions.

The thread an wait on a ondition variable and broadast a ondition suh that

one or all of the threads that are waiting on the ondition variable beome ative.

Condition variables do not have ownership assoiated with them and are usually

stateless. A stateless ondition variable means that if a thread signals a ondition

variable to wake up a waiting thread when there urrently are no waiting threads,

the signal is disarded and no ation is taken. The signal is e�etively lost. It is

possible for one thread to signal a ondition immediately before a di�erent thread

begins waiting for it without any resulting ation.

2.2.5.4 Threads as synhronization primitives

Threads themselves an be used as synhronization primitives when one thread

spei�ally waits for another thread to omplete. The waiting thread does not

ontinue proessing until the target thread has �nished running all of its appliation

ode.

28 Chapter 2. Uni�ed Thread Model

2.2.5.5 Message Passing

A message passing API an be implemented on top of the previous mehanisms.

Threads an use this higher abstration layer to synhronize and exhange data.

This API provides bloking or non bloking primitives to transparently send or

reeive messages from a thread to another. Implementation an be realized using

either the shared memory paradigm or a network protool if a dediated network is

available.

2.2.6 Conlusion

Finally, to be onsidered as a software thread equivalent, the operating system

managing the hardware threads has to provide them the ability to aess to the

same servies than the software ones. The hardware thread model has to take

it into aount, and spei�es additional mehanisms whih allow the developer to

proess system alls.

2.3 Our Hardware Thread model

2.3.1 Context: The FOSFOR projet

2.3.1.1 Presentation

The FOSFOR projet is an ANR

7

projet started in January 2008 and ompleted

in Deember 2011. This is a ollaboration between four partners: Thales Researh

and Tehnology Frane based in Palaiseau, the ETIS lab loated in Cergy-Pontoise,

the CAIRN from Lannion, and the LEAT based in Nie Sophia-Antipolis.

FOSFOR stands for Flexible Operating System FOr Reon�gurable platform.

The aim of this projet is to de�ne a new kind of heterogeneous platform. This

platform is heterogeneous in the sense that threads and operating systems ould be

implemented either in software (running on one of the proessors), or in hardware

(running in a partition of the FPGA).

Eah part ould then be adapted regarding the deployed appliation. The goal

is to propose a homogeneous programming model for the appliation. This arhite-

ture is done to demonstrate the reon�gurable arhiteture viability regarding the

development proess omplexity.

2.3.1.2 Platform arhiteture

The FOSFOR arhiteture is omposed of multiple proessing elements onneted

to a entral bus (Fig. 2.14). We distinguish software proessing elements and hard-

ware proessing elements. Both implement respetfully a software and a hardware

version of the RTEMS

8

[RTE 1988℄ operating system. On eah proessor, a software

7

Agene Nationale pour la Reherhe

8

Real-Time Exeutive for Multiproessor Systems

2.3. Our Hardware Thread model 29

operating system manages lassi software threads whereas a hardware operating

system (HwOS) is able to manage reon�gurable partitions. Hardware aelerators

are sheduled into these partitions.

������
���	�

���

���
�������	
�

�����������
����

����	��

��	����	� ��	����	� ��	����	�

������

�� ��

�� �	������������� �� ���������������

�
������ �

�����!�"����	��

� �

��

���#

�$ �$ �$ �$

���# ���# ���#

�
�������	��
���	�������

�� �� �� �� ��

�����������

��#$

����������� �����������

����#$

����

�� ����������

��

��#$

��

��#$

��

�$ ����	���$%������� ���# ������&�����#	�"	%�%�

Figure 2.14: FOSFOR platform arhiteture

The objetive is to provide at the user-level a homogeneous thread point of

view. To ahieve it, we abstrat hardware aelerators into hardware threads. The

arhiteture of these hardware threads is de�ned in details in Setions 2.3.2 and

2.3.3.

2.3.1.3 High-level ommuniation mehanisms

Communiation between threads an be handled using two ways. For synhroniza-

tion and small data transfer, threads an rely on the operating system servies.

These servies an be loally managed or shared between all proessing elements.

For larger amount of data, a middleware layer provides a message passing API with

Send and Reeive primitives.

This middleware layer (Mw) is inserted between the appliation layer, based

on POSIX threads, and the operating system servies API. If a thread wants to

ommuniate with another one, it has aess to the simple middleware API using

transparent message passing protool, or it an aess diretly to the operating

system servies, suh as Mutex or Message Queues primitives.

This high-level API omposed of these two types of primitives has been ported

on the hardware side. From the user point of view, the appliation is only omposed

of threads. Starting from here, an automati tool an be expeted to generate both

30 Chapter 2. Uni�ed Thread Model

software and hardware ode. For instane, basing the desription of the appliation

on the omponents an be a good solution to failitate the implementation of het-

erogeneous appliations on HRSoC platforms.

In software, the MPCI

9

layer inluded in RTEMS is the base of the heterogeneous

ommuniation. It provides a transparent aess to distant servies. We extended

it to the hardware implementation of the servies. The bridge has to be transparent

to abstrat both the loation and the heterogeneity of the appliation threads. The

loation of eah hardware thread whih dynamially hanges regarding the available

slots is dynamially managed and abstrated by the middleware layer.

2.3.2 Hardware Thread spei�ations

2.3.2.1 Objetives

In order to simplify the programming omplexity of the HRSoC, hardware aeler-

ators have to adopt the same behaviour as their software ounterparts. To do so,

they should be able to obey the orders of the operating system. They also must have

the ability to all operating system servies available in the whole platform, read

and write data from and to memories, and spei�ally they should be assoiated

with an interfae allowing the developer to ontrol the exeution of these hardware

aelerators. The hardware thread life yle should be equivalent to the software

one. All these features and interfaes are assembled in order to enapsulate the

aelerator and so to de�ne what we all a hardware thread.

2.3.2.2 De�nition

We de�ned a hardware thread to take advantage of the dynami reon�guration

provided, for instane, in the Xilinx FPGAs. It is omposed of two main parts:

a stati part whih ontains all the interfaes with the platform, and a dynami

appliation-spei� part, whih ontains the Aelerator, the Finite State Mahine

(FSM) ontrolling its exeution, and a private memory (Fig. 2.15).

Compared to a software thread, a hardware thread will run on a reon�gurable

partition. This reon�gurable partition an be ompared to a proess, in whih the

logi resoures are equals to the proessor resoures shared between every threads

running inside this proess. In this sheme, a set of reon�gurable partitions is a

proessing element ontaining several proessor ores. A parallel an be done be-

tween a reon�gurable partition and a proessor ore.

Stati interfaes orrespond to the user-level API. It provides to the thread

an aess to the operating system and ommuniation servies. The User FSM is

the sequential ode exeuted by the thread and �nally, the double port memory

onneted both to the Aelerator and the Network Interfae is used as the heap

and stak storage by the thread.

9

Multi-Proessor Communiation Interfae

2.3. Our Hardware Thread model 31

��������

�	�
������
����
������
������

��
����
��
������

��������
�� �����	

��
����

�����
�
���������

����

����

���������� ���������

!	������������

���
�����"����

�������	�

Figure 2.15: Hardware Thread Arhiteture

2.3.3 Hardware Thread arhiteture

2.3.3.1 Operating System interfae

The stati part provides an interfae to interat with the operating system (OS

Interfae). It ontains a spei� omponent responsible for implementing the proto-

ol between a thread and the operating system alled the OS Servies Component

(OSSC) (Fig. 2.16). This interfae is the same for all threads and onsidered as

stati. In this way, it an be reusable by any hardware thread and so it an ease

the thread preemption proess. It is omposed of a standard dual-port memory in

whih the thread an write the identi�er of a system all and its parameters. Upon

noti�ation via a �SysCall� wire, all parameters are read by the operating system

using a dediated bus that onnets all the reon�gurable partitions. One the sys-

tem all is done, return values are written bak in the memory and are read by the

thread.

This protool allows a hardware module to perform system alls with the exat

same semanti as pure software. Therefore we an implement a onsistent API for

both hardware and software threads, and greatly redue the heterogeneity gap.

2.3.3.2 System FSM

One instantiated by the operating system, this one an ontrol the System FSM

of the hardware thread to handle the aelerator exeution. This FSM supports

four basi ommands: start, suspend, resume and stop. Dynami and partial reon-

�guration feature provided by Xilinx FPGAs allows the sheduler to dynamially

reon�gure the dynami part of the thread and so to temporarily share a given par-

tition between several threads, as it is done on the software side where a CPU is

32 Chapter 2. Uni�ed Thread Model

����������	

�
�
�

�
�

�
�
�

�����

�����������������

��������	
��������

	��������

	������

�������

�		����

���

�������

�		����
	���	��

����� �

���������������!

�		����

������

���������������"

###

���������������$

%����&�$

Figure 2.16: OSSC arhiteture

shared by software threads.

2.3.3.3 Hardware Thread life yle

However, a hardware thread has a spei� life yle ompared to a software thread.

The operating system has to be able to manage temporarily and spatially the hard-

ware thread, so it has to take into aount if the thread is running and if it is

on�gured or not. Nonetheless, orders given by the operating system to a hardware

thread are the same as the ones given to a software one and inlude starting, stop-

ping, or resuming its ativity.

From the sheduler point of view, a hardware thread has the same three lassial

states than a software thread: Ready, Waiting and Running. But as the ompo-

nents of a hardware thread are inherently parallel, and it is loated in a dynamially

reon�gurable partition, we added new states to take into aount the on�guration

status, as shown in Fig. 2.17.

In order to mitigate the reon�guration lateny, the sheduler an hoose to

keep a thread on�gured while it is waiting on a bloking system all. Furthermore,

in order to keep the network omplexity at a manageable level, we forbid the pre-

emption of a hardware thread while there is a pending ommuniation with this

thread. This is why we re�ne the Waiting state into three states: on�gured and

non-preemptible, on�gured and preemptible, and non on�gured. The ability for a

thread to laim itself as non-preemptible when ommuniating involves to limit the

size of the pakets exhanged on the network, this in order to ensure that a thread

annot monopolize a reon�gurable slot.

Similarly, the Running state is re�ned into preemptible and non-preemptible

states. To simplify the sheduling management, a hardware thread omes bak into

2.3. Our Hardware Thread model 33

��������
�����������	
��

�������
�������	
��

�������
�����������	
��

���	���
�������	
��

���	���
�������	�����

�
���

�������

����	
��

����	
��

����	
��

�������	����

�������	����

����	
��

�������� ����

��

����

�
�
����

����

����	���������������������

�����	�����������

���������	��

�����������	��

�
��� ���	���

�������
�������	
��

����

�������

����	
��

������

���
��������� �������������

Figure 2.17: Software and Hardware Thread States

a preemptible state by notifying it expliitly with a bloking system all or a spei�

primitive.

2.3.3.4 User FSM

The user FSM de�nes the behaviour of the hardware thread. States de�ned into

this FSM allow the user to proess system alls, send or reeive data to or from the

network and order the aelerator to perform its funtion.

It an be ontrolled by an external operating system via a ontrol register. The

operating system is therefore able to start, restart, suspend or resume the thread

exeution. This ontrol register is mapped in the OSSC memory at o�set 0x00 (Fig.

2.16).

In Figure 2.18, blue ellipses orrespond to the states whih are presents in the

System FSM of the thread. The RUNNING state allows the Proessing Logi Ele-

ment exeution, RECV and SEND states are middleware alls, whereas LOCK and

UNLOCK are lassial mutex primitives. In order to failitate task implementation

for the developer, we provide a VHDL pakage inluding every available system

alls proedures. These proedures are responsible of writing all parameters in the

OSSC memory and to get bak return values. This set of proedures, oupled with

the ommon interfaes, allows to easily generate the hardware thread soure ode

(Fig. 2.19).

2.3.3.5 Network interfae

A hardware thread would be ommonly used in order to proess large amount of

data. To be useful, it should provide an e�ient way of ommuniation. A network

34 Chapter 2. Uni�ed Thread Model

������������

	��
������

�����

������	�	�� ���
����� �������

����

���
 ���	

����

�������

�����������

�����

���������

������

�������

���
����

�� �!
��	�"

#�����

��#���

�������

 �!
��	�"

����	��

�����

Figure 2.18: Hardware Thread FSM example

��������	
���
���������

��
�������������������

���������
��
�����������	���

������������
��
�����������	�	���

���������
��
�����������	���

���������

���������� !�"

#$���������$���%�
�������&�&����
������'$�$������(��������������
����������������$�����)*+,�����(�
����
�������)*+,�����(���
��������*+�����(�)*+,-'$�$���.
���������/����.���$�/�0�
������%��12#3�"�����������
������������������$�������+4�
�������1��
������������������$�����������$���
��������"�%��
���5
���������+4���
��������*+���+4-'$�$���.�'$�$��6.���$�/�0�

/������� !�"

/������$������

������/�������

2��#2��$�"

Figure 2.19: Hardware Thread HDL �les example

interfae is responsible for reating and deoding pakets, sent and reeived, to and

from a dediated network. Beause threads inside a HRSoC an run in parallel, the

ideal environment for a hardware thread is a networked system in whih it ould

ommuniate with another hardware thread from point to point.

The Network Interfae (NI) is the stati interfae of the Hardware Thread (Fig.

2.15). It is onneted to a dediated Network-on-Chip (NoC)[Devaux 2009℄ imple-

mented in order to o�er a fast medium of ommuniation between hardware threads

and memories. It also ensures them a fast way of ommuniation with software

threads.

2.3. Our Hardware Thread model 35

NI arhiteture is shown in Fig. 2.20. Two FIFOs allow the User FSM to stak

Send and Reeive requests. These requests are then respetively proessed by a

Paketizer and a Depaketizer. A DMA is onneted to one of the port of the

thread internal memory. This DMA is driven on one hand by the Paketizer to

read data in memory and send it through the NoC and on the other hand by the

Depaketizer to reeive data from the NoC and writes it into the internal memory.

����
���

���

��	�
��

�	���

�������

�
��

����

����

���

��	���
��� ����	���
���

��� ������

��!��"

#$���!
��%�"

���

�
�� �
��

���

&�! &�!

���'

!��� $��!���

�� ��

$��!��� !���

��%�"
 ������

���(��)�)�$
�

��������	
������

�����	�

���'

Figure 2.20: Network Interfae arhiteture

Elements onneted to the NoC ommuniate through it by sending data pakets

over the network. We spei�ed and implemented a protool to provide two main

features to a thread. The �rst one onsists in sending data to an element onneted

to the NoC. This element an be another thread, a memory or another kind of

peripheral. The seond is reeiving data from another element. In the ase of

a passive element, suh as a memory onneted on a upper leaf of the NoC, we

de�ned speial pakets to allow write operation in one shot and read operation in

two phases : one request from the thread and an answer from the memory. The

protool adopted for the network has been thought to provide these two features in

a transparent way for the developer. This protool is detailed in Appendix A.1.

36 Chapter 2. Uni�ed Thread Model

2.4 Hardware Thread programming model

2.4.1 Operating System servies protool

2.4.1.1 Thread ommands

When the operating system wants to send an order to a hardware thread, it has to

write it in the OS Servies Component (OSSC) memory (Fig. 2.16). The �rst word

of this memory is the Status Word. The Status Word entry is both used to reeive

the operating system ommands and the system all status ode. The ontent of

the latter is explained in Setion 2.4.1.2. The ontent of the former is detailed in

Figure 2.21. The operating system ommand is always given priority over the thread

system all. In this ase, the ommand �eld in the status word is deoded by the

OSSC and the order is transmitted to the System FSM whih ontrols the state of

the User FSM. Just after its on�guration, the hardware thread is set in a ready

state by the System FSM.

���������	

�����

����� �����

��������	
������ �����
���

Figure 2.21: OSSC Status Word ontent

When reeiving the Start ommand, the thread goes to the INIT state whih

must be de�ned by the developer (Fig. 2.18). When reeiving the Suspend om-

mand, the hardware is stuk in its urrent state by the System FSM and no registers

modi�ation is allowed in this state. This ommand an be used to save the ontext

of the thread.

2.4.1.2 User API

On the other side of the OSSC, when a thread wants to proess a system all, it

must all a VHDL proedure whih will transparently handle the OS interfae. A

proedure takes as parameters the primitive parameters, the registers to store return

values as well as ontrol signals to ommuniate with the OSSC (Fig. 2.22).

A proedure is a Finite State Mahine whih staks the parameters and the

requested servie in the OSSC memory (Fig. 2.23). Then it waits for the op-

erating system aknowledge. Atually, this aknowledge is the detetion by the

OSSC of a read request from the operating system. After this, the proedure waits

for the operating system to answer. Even if the thread proesses a non-bloking

all, it will reeive a Status Code notifying if the all sueeded or not. This Sta-

tus Code is de�ned by the underlying operating system. It ould be a value like

OS_SUCCESSFUL, OS_FAILURE or something spei� to the requested servie

2.4. Hardware Thread programming model 37

��������	

��������

�������

�������

�������

�	
�����

�����
�
	

�����	����

������������
�	
�����

������

�����	������

�����	���

��������	�

��������

���

�����

��
�����

����	�

��
���
�

�	
�����

�	
�����

�	
�����

�	
�����

���

��

�	���
	�

���
	����

��	����

Figure 2.22: System Call proedure

like ERR_MUTEX_INVALID or ERR_MSG_QUEUE_FULL.

�������������	

���
������

���
������

���������������

�	���������

�	���������

��������������� ����!��"#���"���"�$��"�
���%����"������&"�'"'��(

�"�"����(�)���'"�"��� ��"� �"��� ����
�&"��(��"#���!�� �����"�

�&"� �(��"#� ��!�� � ��� '�������"�� ���� �
�&"��)"�����!��(��"'��"�����&"��������
����
�&"�� �&"�)���"���"� %����� *��� �&"� ���
���%"�+�)� ��!�����&"������������

���"� �&"� ��� ���%"��+� �&"�)���"���"�
!"�� �&"� �"����� $� �"�� ,"*��"� �"������!�
���" *

�����������

Figure 2.23: System Call proedure steps

The advantage when dissoiating the user ode from the operating system spei-

�ity is that the appliation an be easily ported on another operating system or

API. It just requires some modi�ation in the OS Servies Component to be om-

38 Chapter 2. Uni�ed Thread Model

pliant with the targeted operating system.

2.4.2 Network ommuniation protool

In the ontext of the FOSFOR projet, we had to de�ne the struture and the

behaviour of the interfae between a hardware thread and DRAFT Network-on-Chip

(NoC). This interfae should allow threads to proess non-bloking send and reeive

requests. All requests are proessed sequentially without interruption. Namely, for

a given request, all pakets are sent or reeived the one after the other.

The maximum paket size is de�ned at on�guration time, namely when syn-

thesizing the hardware platform. The Network Interfae an aess to the internal

memory of the thread. This aess allows it to load data from the memory in order

to send it over the network and to get data from the network in order to store it in

the internal memory.

A ommon abstration level has been de�ned in the middleware layer. The

ommuniation proesses de�ned in software are adapted in hardware to allow them

to ommuniate in a transparent way with the software threads.

2.4.2.1 Supported requests

The two �rst basi requests supported by the Network Interfae are the Send and

Reeive primitives (Fig. 2.24). A Send request onsists in sending one or several

pakets over the network. Paket size is �xed by ommuniation medium design (ie.

the NoC). A paket is omposed of a header followed by data to transmit. Data and

header are represented by 32-bit width �its. A reeive request onsists in waiting

for a paket to ome from the network. It is a passive request whih involves no

transmission from the requesting thread.

���������	�
�����������	�
��
���� ����

������

���	��

��������

���

����������
����������
�
�
����������
����������
���
���

�����

���� ��!�

�����������

�����������

���� ��!�

������

���	��

��������

���

����������
����������
�
�
����������
����������
���
���

�����

�����������

�	�������������� �	����������������

�

�

�

Figure 2.24: Network Interfae Send and Reeive protool

The two others supported requests are the Write and Read primitives (Fig.

2.4. Hardware Thread programming model 39

2.25). A Write request is similar to a Send request exept that additional header

�its are sent after the two main �its. The main �its are essential to ensure a or-

ret routing inside the network. The �rst �it ontains the sender and reeiver port

address whereas the seond one ontains the number of �its inluded in the paket.

Additional headers indiates the address of the targeted bu�er in the remote mem-

ory and the number of words to read or write.

���������	�
�����������	�
��
���� ����

��������	�
��	��

�����

�������
���������

���

����������
����������
�
����������
����������
���

�����

���� ��!�

����
��������

������������

���� ��!�

�����

�����

�������
���������

���

����������
����������
�
����������
����������
���

�����

����	�����	���
��	�������	���

�������������

� �

���������	�
�����������	�
��
���� ����

��������	�
��	��

�����

�������
���������

���

����������
����������
�
����������
����������
���

�����

���� ��!�

����
��������

������������

���� ��!�

�����

�����

�������
���������

���

����������
����������
�
����������
����������
���

�����

����	�����	���
��	����	�	���

!��	��������

������������

����	�����	���
��	����	�	���

�

"

�

#

Figure 2.25: Network Interfae Write and Read protool

This protool allows a hardware thread to e�iently and diretly ommuniate

with others hardware threads and also to exhange data with software threads using

memory bu�ers. The bridge visible in Figure 2.14 is responsible for translating

the messages between the proessor bus and the network-on-hip. It permits to

get a homogeneous API and memory mapping between the software and hardware

threads.

2.4.3 Aelerator interfae

The aelerator represents the main funtion of the hardware thread. As the in-

ternal struture of a hardware thread is inherently parallel, we implement pipeline

mehanisms between this funtion and the ommuniation features in order to take

advantage of this parallelism (Fig. 2.26).

In the hardware thread, user appliation is desribed in the User FSM. This is

40 Chapter 2. Uni�ed Thread Model

in this state mahine that the user is allowed to proess operating system alls and

to be able to perform pipelining. From a funtional point of view, as the network-

on-hip is full-duplex, the user is able to simultaneously run the Network Interfae

to send or reeive data, and the hardware aelerator to proess these data taking

advantage of the double port internal memory.

���������	
���

���������	
���

������

�������� ��������

��������

	����� 	�������

��������

	�������

������

Figure 2.26: Parallel proessing using pipelining

To do so, the three modules whih are the Network Interfae Paketizer, the De-

paketizer and the Proessing Logi Element, should be able to synhronize. Eah

module is onneted to a synhronization ontroller (Fig. 2.27). This ontroller

has a FIFO in whih the User FSM an stak exeution requests. The ontroller

proess eah request one after the other, whih will impliitly synhronize exeution

requests for a given module.

On the other hand, synhronization between two modules is expliitly expressed

in the user request. This request should ontain two piees of information:

• onditions to start a request proessing, it means with whih module a syn-

hronization is neessary and how many synhronization have to be realized.

• and a mask whih identify modules waiting for a synhronization in order to

notify them the end of the proess.

At the User FSM level, when the user wants to send or reeive data, as well as

proess it, he just have to send a simple request to the synhronization ontroller.

One the request is bu�ered, the ontroller sends bak an aknowledge whih permits

to the User FSM to send a new request or to all an operating servie without waiting

the end of the request proessing.

2.5. Conlusion 41

��
������	�
����

������

���	
���	���

���������������

��������
����

���
���

��
����	�
����

������

���	
������

����

������

	���

���	
������

���	
���	���

	���

������

����������
����������

���

��������
����

��������
����

������

������

���������������

���������������

Figure 2.27: Synhronization Module

2.5 Conlusion

In this hapter we proposed a thread model whih an aess to operating system

servies and whose the behaviour is lose to a software one. Moreover, we introdued

an additional programming model inspired from the Synhronous Data-Flow model.

This allows to program hardware threads with a higher level programming model

than the thread model.

All these features allow us to onsider a hardware aelerator as a real thread.

Obviously, even if they are similar, at low-level software and hardware threads an-

not be managed in the same way by an operating system. This is why we need

dediated tehniques to manipulate hardware threads, espeially when the obje-

tive is to be able to preempt them on the available slots provided by the platform.

This issue is the topi of the next hapter.

Chapter 3

Hardware threads preemption

using Dynami and Partial

Reon�guration

Contents

3.1 Introdution . 43

3.2 Related works . 44

3.2.1 Preemption mehanisms . 44

3.2.2 Reon�guration aelerators 46

3.2.3 Design tools . 49

3.3 FPGA reon�guration knowledge 51

3.3.1 Virtex 5 FPGA resoures . 51

3.3.2 FPGA on�guration . 52

3.3.3 Bitstream parser . 54

3.4 Preemption mehanisms . 58

3.4.1 Context management servie 58

3.4.2 Reon�guration servie . 59

3.4.3 Reloation Servie . 59

3.5 Design �ow for hardware threads reloation 61

3.5.1 Standard �ow . 61

3.5.2 Problematis . 62

3.5.3 Reloation �ow . 65

3.5.4 Experimented tools . 69

3.5.5 Adapted Isolation Design Flow 71

3.6 Conlusion . 77

3.1 Introdution

Numerous works have been done about the management of the dynami and partial

reon�guration, espeially the preemption of hardware aelerators. These works

rely on the de�nition of hardware aelerators as hardware threads, and de�ne

44

Chapter 3. Hardware threads preemption using Dynami and Partial

Reon�guration

mehanisms to provide this important feature to handle these threads on top of

an operating system.

In parallel, design tool �ows had to be rethought in order to o�er the ability to

design reon�gurable platforms omposed of independent reon�gurable slots. This

low-level feature would ease the hardware threads sheduling by an operating system

providing a �exible way to reloate module from one slot to another.

These two points are disussed in this hapter. A state-of-the-art of di�erent

preemption mehanisms is introdued in Setion 3.2. Setion 3.4 details our work

targeting the Virtex 5 FPGA family. Then the design �ow issue is takled in Setion

3.5 where problemati and solutions are detailed before to be implemented. Finally,

Setion 3.6 summarizes our ontribution and explains how it an be integrated into

an operating system arhiteture, making a link to the next hapter.

3.2 Related works

3.2.1 Preemption mehanisms

In [Kühnle 2006℄, Beker et al. inlude in their dynamially reon�gurable system

desribed in [Grimm 2004℄ a 2-Dimensional (2D) module reloator. In this system a

module an only be reloated on an area whose resoures are horizontally homoge-

neous regarding its point of origin. As they target Xilinx devies, FPGA resoures

are always vertially homogeneous.

In partiular they target the Virtex-2 Pro FPGA family. However, one of the

spei�ity of these hips is that, on ontrary of latest FPGAs, they an only be

dynamially reon�gured in 1-Dimensional (1D), that is to say it is neessary to

reon�gure a whole olumn of resoures. To overome this issue and to o�er 2D

reloation mehanisms, they propose to use the read-modify and write-bak method.

It onsists in reading bak the module on�guration, modifying it to plae the

module in the wanted area and writing-bak the bitstream.

The glith-less property of the reon�gurable matrix ensures that if the same

data than the one whih is urrently on�gured is written in the memory, no glith

would disturb this data. Due to this property, they an modify one module of a

olumn without hanging the others implemented in the same olumn.

The bitstream is modi�ed using the Jbits software [Guione 1999℄ provided

by Xilinx for Virtex-II devies whih is running in parallel on a omputer. This

bitstream is sent through the UART. From here, the downloaded bitstream does

not ontain information about the bitstream loation. It is added later by the

reloator.

Another issue raised in this paper is the �exibility needed for the onnetion

between the dynami module and the rest of the system. To leverage it, Virtual

Routing Channels are plaed near eah module. When reon�guring the system, the

router near the module an be dynamially linked to one of the slots of the routing

hannel (Fig. 3.1). These slots an be reon�gured aording to modules needs and

3.2. Related works 45

Figure 3.1: Virtual Routing Channels

so allow to onnet several modules of the same olumn.

The paper [S. Corbetta M. Morandi M. Novati 2009℄ also deals with the 2D bit-

stream reloation. The introdued reloator is named Birf and has been realized to

be used on Virtex 4 and 5. The reloation is limited to Slies-based modules. The

use of BRAMs and DSPs in reon�gurable modules is prohibited in this design �ow.

There are no spei� design onstraints as this �ow relies on old Xilinx tools options

(10.1 and above), whih unfortunately are not available in urrent tools anymore

(13.1 and up).

In [T. Beker 2007℄, authors perform task reloation on stritly homogeneous ar-

eas. The reloator omes in two versions : a software one and a hardware one. If it

exists non homogeneous resoures from one partition to another, it means BRAMs

or DSPs, reloation an still be done if they are not used by the design. In this ase,

olumns are onsidered as empty and not reon�gured by the reloator.

In [Kallam 2009℄, the authors propose a method to reloate dynami modules

on the �y. The priniple is to perform a read-bak of the bitstream, word after word

(a word is 32 bits wide). Then the reloator proesses eah word in a pipeline in

order to reloate it in the destination area. It o�ers a gain in memory oupany as

there is no need to store the totality of the partial bitstream anymore.

This is also interesting regarding the exeution speed beause using a BRAM

as storage memory o�ers a very fast aess to data. This tehnique is well suited

for module reloation but does not allow to implement preemption mehanisms.

However it has the advantage to show that dynami reon�guration speed an be

improved regarding the original ICAP ontroller provided by Xilinx. This ontroller

an aess to high-apaity memory storage but is proessor-dependent. Aeler-

ating the partial reon�guration proess would allow to target a larger range of

real-time appliation.

46

Chapter 3. Hardware threads preemption using Dynami and Partial

Reon�guration

Figure 3.2: (a) Implementation of PRR-PRR reloation (b) Top-Level blok diagram

of ARC [Kallam 2009℄

3.2.2 Reon�guration aelerators

[Liu 2009℄ proposes a design spae exploration of di�erent arhitetures to improve

the on�guration time of the ICAP driver when loading a partial bitstream. All tests

have been done on a Virtex 4 platform (ML405 Development Board). In addition

to the IP ores provided by Xilinx, the OPB HwICAP and the XPS HwICAP, three

other solutions are asserted (Fig. 3.3).

The �rst solution is based on a DMA

1

engine running aside of the HwICAP

ontroller and feeding it through the proessor bus. The seond one is a ustomized

instane of the XPS HwICAP whih allows it to be master on the proessor bus

and so at like a DMA ontroller. Finally, the last arhiteture onsists in adding

a Blok RAM inside the ICAP ontroller in order to store the bitstream and so

dramatially redue the transfer lateny.

In summary, the DMA and the Master arhitetures respetively o�er a speed-

up of 5.5 and 16 regarding a Miroblaze-platform using ahe memory and the

XPS HwICAP. As for the BRAM solution, it permits to reah the theoretial limits

of the reon�guration port but it must be reserved for small reon�gurable modules.

FaRM [Duhem 2011℄ stands for Fast Reon�guration Manager. This omponent

is master on the PLB bus and so an diretly aess to an external memory (Fig.

3.4). FIFOs are implemented to store the partial bitstream and allow to proess

pre-feth load to hide a part of the reon�guration overhead. It relies on ompres-

sion without loss tehniques to redue the amount of data to store in the FIFO.

Moreover, even if Xilinx reommends to operate the ICAP at 100MHz and so allows

1

Diret Memory Aess

3.2. Related works 47

Figure 3.3: ICAP aelerators solutions [Liu 2009℄

a maximum throughput of 400MB/s, the solution provides by FaRM an overlok

the ICAP at 200 MHz and so allows in ertain ases to proess on�guration with

a maximum throughput of 800 MB/s.

Figure 3.4: FaRM arhiteture [Duhem 2011℄

Upar [Bonamy 2012℄ stands for Ultra-Fast Power-aware Reon�guration Con-

troller. Like FaRM this ontroller relies on deompression tehniques and overlok-

ing to enhane the reon�guration proess. However, they use a better ompression

algorithm and a ustomized BRAM for bitstream storage (Fig. 3.5). The latter

permits them to overlok the ICAP at 362.5 MHz and so to reah a maximum

throughput of 1433 MB/s without ompression, and 1008 MB/s with ompression.

In the last ase, the BRAM size of 256 KB allows to store maximum bitstream of

992 KB whih is more than 40% of the Virtex 5 SX50T FPGA full on�guration �le.

The solution o�ered by Koh et al. [Hansen 2011℄ is urrently the most e�ient

regarding the reon�guration throughput. Their aelerator provides a wider data

path size than the original ICAP primitive extending it to 64 bits. In addition they

also rely on two di�erent loks: the �rst one to feth the input data, and the se-

48

Chapter 3. Hardware threads preemption using Dynami and Partial

Reon�guration

Figure 3.5: Upar arhiteture [Bonamy 2012℄

ond one whih must operate at twie the frequeny of that of the �rst one (Fig. 3.6).

Figure 3.6: ICAP Hard Maro blok diagram [Hansen 2011℄

On a Virtex 5 platform, they reate a Hard Maro and ahieve to feed the ICAP

with a lok running at 550 MHz. Above this frequeny, the on�guration proess

freezes and it is neessary to reboot the ICAP. This arhiteture allows them to reah

a throughput of 2200 MB/s. This throughput an only be ahieved with bitstream

whose the size an be ontained into the FIFO of 64 KB. However, in future work the

3.2. Related works 49

addition of DMA mehanisms and deompression engine ould lead to improve the

aess to bigger external storage memories. Also, it should be notied that during

readbak, in order to ensure that the reon�guration memory of the FPGA is read

orretly, this operation is still done at 100 MHz, that is to say at the lassial

throughput.

3.2.3 Design tools

Regarding the design tools, the standard ones provided by Xilinx do not o�er the

ability to design independent and reloatable dynami modules. Aordingly, new

tools have been developed by the ommunity to permit the development of design

using alternative onstraints neessary to ontrol at �ne-grain the plaement and

the routing of both the stati and the dynami modules.

RapidSmith [Lavin 2011℄ is a JAVA API whih allows to manipulate XDL

2

�les.

It relies on a omplete database about the resoures arhitetures of eah Xilinx

FPGA devies (Fig. 3.7). It allows the developer to implement its own plaer-

router going from the XDL format to the proprietary NCD

3

format used by the

Xilinx tools.

Figure 3.7: RapidSmith sreen apture [Lavin 2011℄

OpenPR [Sohanghpurwala 2011℄ is an open-soure software based on the same

routing engine whih permits to reate independent partition using bloker maros

[Koh 2010a℄. These maros prevent the stati routing from rossing inside the

reon�gurable partitions (Fig. 3.8). However this tool is not integrated into the

standard �ow and the number of supported devies is limited.

2

Xilinx Desription Language

3

Native Ciruit Desription

50

Chapter 3. Hardware threads preemption using Dynami and Partial

Reon�guration

Figure 3.8: OpenPR sreen apture from FPGA Editor [Sohanghpurwala 2011℄

In order to keep using the Xilinx tools and the support of all existing devies, the

new Isolation Design Flow [Corbett 2012℄ provides additional options to segregate

the partitions in a design. Segregation inludes both the use of the logial resoures

and the use of the routing resoures (Fig. 3.9). Basially, it was reated to takle se-

urity issues in ryptographi systems, allowing safe funtion dupliation. However,

it an be de�eted in order to design homogeneous and reloatable partitions.

Figure 3.9: Isolation Design Flow sreen apture from FPGA Editor [Corbett 2012℄

3.3. FPGA reon�guration knowledge 51

All these design tools have been experimented to proess module reloation in

Virtex 5 FPGA devies. Results and omparisons are detailed in Setion 3.5.4.

3.3 FPGA reon�guration knowledge

Our objetive is to provide preemption mehanisms on Virtex 5 FPGA, whih ould

be applied in the future to Virtex 6 or even Virtex 7 FPGA with minimal hanges

in the proedure. To do so, we �rst have to be well aware of how this kind of FPGA

is reon�gured and partiularly how the on�guration bitstream is organized. This

is the topi of the next setion whih will then lead us to propose preemption meh-

anisms, before takling the design �ow issue.

3.3.1 Virtex 5 FPGA resoures

Logi resoures are mainly represented by the Con�guration Logi Blok (CLB). A

CLB is a proessing unit of Xilinx FPGAs. Eah CLB is onneted to a global swith

matrix for signal routing and is omposed of two Slies. It exists two types of Slies

(Fig. 3.10): whereas Slies-L are slies ontaining logi elements, namely LUTs

4

and Flip-Flops, Slies-M are slies done to be used as distributed memory. They

ontains also some Flips-Flops, but instead of LUTs it o�ers double ports memory

and shift registers. Amid the others logi resoures, there are inputs-outputs, loks

(CMT : Clok Management Tile) and every interonnetions between the di�erent

logi bloks.

Figure 3.10: Slie-L and Slie-M [Xilinx 2009℄

4

Look-Up Tables

52

Chapter 3. Hardware threads preemption using Dynami and Partial

Reon�guration

As Slies an be very ostly when used as memory omponents, FPGA matries

ontain also physial Blok RAM (BRAM). On a maximum size of 36Kb, BRAMs

are disposed in olumns. A BRAM an either serve as storage memory or be used

as FIFO.

Like memory, arithmeti operations are resoure onsuming when using logi

bloks. This is why Digital Signal Proessing (DSP) bloks have been added in

Virtex 5 FPGA and allow to proess arithmeti operation on 48-bits wide data.

3.3.1.1 FPGA organization

The FPGA is divided into rows and olumns (Fig. 3.11). Rows are numbered in

asending order from the enter of the FPGA. There may be a maximum of 20 rows.

Rows are indexed from 0 to 9 on eah side. The height of eah row is 20 CLBs,

whih orresponds to a olumn served by a global lok line (HCLK).

������� ���	
�� ������	����

	����

	����

	����

	����

	����

������

�������� ��������������� ���������

���������

Figure 3.11: FPGA organization

3.3.2 FPGA on�guration

A bitstream is a sequene of ommands and data sent to the on�guration port of

the FPGA. If we look further in the understanding of the reon�guration proess,

these ommands are written in the registers of a on�guration driver. In the ase of

the dynami and partial reon�guration, this driver is the ICAP driver.

3.3.2.1 Con�guration port protool

Con�guration ommands allow the user to read and write on�guration data in

the on�guration memory, to ontrol the reon�guration proess and to hek if any

error ours during the on�guration with the help of the CRC

5

register. Commands

are sent as pakets of 32-bits words. There are two types of pakets:

5

Cyli Redundany Chek

3.3. FPGA reon�guration knowledge 53

• Pakets of type 1 that are used to read and write on�guration registers. It

�rst sends a header in whih we de�ne the order to be ahieved (NOP, Read

or Write), the register in whih we wish to operate (CRC, Control, Command,

Address Frame, ...) and the number of words we want to read or write. Then

it sends the on�guration memory data.

Figure 3.12: Type 1 Paquet Header Format [Xilinx 2009b℄

• Type 2 pakets that are used to send or reeive larger bloks of data. A paket

of type 1 has to be sent previously in order to speify the address where data

has to be sent.

Figure 3.13: Type 2 Paquet Header Format [Xilinx 2009b℄

3.3.2.2 Frame address

Among all the available ommands, one of the most interesting regarding the pre-

emption is the ommand whih allows to speify the address where the on�guration

ontent is written. It means whih area of the FPGA is targeted. An area is loated

using the address of its �rst frame. A frame is the smallest unit of reon�guration of

the FPGA. A frame is 1-bit width, and its height orrespond to a row of the FPGA.

A frame has a total of 1312 bits. Eah frame has a unique 32 bits width address

whih is divided into �ve parts (Fig. 3.14).

The �rst part (bits 23-21) represents the Blok Type. In a Virtex FPGA, there

are four types of bloks:

• the reon�gurable bloks and interonnet: it inludes CLBs, IOBs, DSPs,

BRAMs, and loks

• the BRAMs ontent

54

Chapter 3. Hardware threads preemption using Dynami and Partial

Reon�guration

Figure 3.14: Frame address [Xilinx 2009b℄

• the speial bloks that are used for the partial and dynami reon�guration. In

eah olumn there is a speial frame available at minor address 0. In this frame,

the 21
st
word orresponds to the HCLK, three of the four on�guration bits

following the 12-bits of the ECC (error orreting ode) are used for example

for the apture of registers.

• the BRAMs non-on�guration bloks whih yield devie-spei� data [Xilinx 2009b℄

The seond part is the Top/Bottom Row bit whih indiates if the frame is

loated in the upper part of the FPGA (Top = 0) or in the lower one (Top = 1). It

should be notied that exept for the HCLK rows, it is neessary to reverse the bit

order of the on�guration frames to reloate a frame from the top to the bottom of

the FPGA, and inversely.

Row Address: It orresponds to the row address as indiated in Figure 3.11.

Major Address: it orresponds to the olumn of resoures that we want to reon-

�gure. In the ase of the BRAMs, the on�guration and the ontent is targeted by

two di�erent addresses.

Minor Address: it represents a frame inside a olumn of resoures. These frames

allow to aess to the routing and logi on�guration of eah olumn, as shown in

Figure 3.15.

The number of frames to write is dependent of the type of the targeted resoures.

However, eah frame is omposed of 41 words of 32 bits width. Figure 3.16 shows

how a frame is omposed along of a CLB row.

3.3.3 Bitstream parser

Beyond the need to know where are written the data, it is neessary to �nd this

information inside a bitstream in order to be able to modify it on-line. This infor-

mation will be useful to be able to reloate a module. To do so, we need to parse

the partial bitstream and identify its ontent.

Eah generated bitstream starts by a header indiating the design name, the

FPGA part in whih it has to be loaded, the time and date of reation, as well as

the payload on�guration data size (Table 3.1).

3.3. FPGA reon�guration knowledge 55

���

���

���

���

����

���

���

���

���

���

���
��
	

�
�

��
	

�
��

��
	

�
��
�

��
�

����

����

��
	

�
�

��
	

�
��

��
	

�
��
�

��
�

����

����

����

����

��
	

�
�

��
	

�
��

��
	

�
��
�

��
�

���

���

���

���

���

����

���

���

���

���

���

���

��
	

�
�

��
	

�
��

��
	

�
��
�

��
�

��
	

�
�

��
	

�
��

��
	

�
��
�
�

��
�

���

����

��
	

�
�

��
	

�
��

��
	

�
��

��
�

���

���

���

���������		�
�

������� !��� �
�������
�����
�

�� !"#
��������	 �$

������

������

��"!%� � !���%#�	��!�

����������

��"!%� � !���%#�	��!�

&� &�

���

���

���

���

���

���

���

Figure 3.15: Resoures memory on�guration for the Virtex 5 arhiteture

Figure 3.16: Frame omposition [Xilinx 2009b℄

3.3.3.1 Initialization ommands

Eah bitstream inludes a �rst sequene of ommands whih permits to synhronize

with the FPGA, to initialize the CRC register, and so on. This sequene di�ers

regarding the bitstream type if it is a full or a partial bitstream. For a partial

56

Chapter 3. Hardware threads preemption using Dynami and Partial

Reon�guration

Field name Size in byte Default value

Magi Number Length 2 0x0009

Magi Number 8 0x0FF00FF00FF00FF0

Null Charater 1 0x00

Half-Word 2 0x0001

'a' 1 0x61

Design Name Length 2 �

Design Name � �

Charater ';' 1 �

User ID 17 UserID=0xFFFFFFFF

Null Charater 1 0x00

'b' 1 0x62

Part Name Length 2 �

Part Name � �

Null Charater 1 0x00

'' 1 0x63

Date Length 2 0x000B

Date 10 �

Null Charater 1 0x00

'd' 1 0x64

Time Length 2 0x0009

Time 8 �

Null Charater 1 0x00

'e' 1 0x65

Bitstream Length 4 �

Table 3.1: Bitstream header ontents

bitstream, the sequene of ommands is desribed in Table 3.2.

A part of this sequene whih interests us is the one sueeding the writing of the

Write CFG ommand. It starts by a writing in the FAR register (Frame Address

Register) of the starting address of the reon�guration. Followed by the number

of words to write orresponding to the number of olumn to reon�gure in the ad-

dressed row.

3.3.3.2 Con�guration data

The reon�guration is done row by row. When swithing from one row to another,

a new address is sent in the FAR register and also the number of new words to write

(Fig. 3.17).

3.3. FPGA reon�guration knowledge 57

Command value Desription

0xFFFFFFFF Dummy Word (x8)

0x000000BB Bus Width Word

0x11220044 8 / 16 / 32 bus width

0xFFFFFFFF Dummy Word

0xFFFFFFFF Dummy Word

0xAA995566 Syn Word

0x20000000 No Operation (NOP)

0x30008001 Type 1 write 1 word to CMD register

0x00000007 Reset CRC

0x20000000 NOP

0x20000000 NOP

0x30018001 Type 1 write 1 word to ID register

0x02E9A093 ID Code

0x30008001 Type 1 write 1 word to CMD

0x00000001 Write CFG ommand

0x20000000 NOP

0x30002001 Type 1 write 1 word to FAR

0x00100780 FAR value

0x20000000 NOP

0x30004000 Type 1 write 0 word to FDRI

0x50002031 Type 2 write 8241 words to FDRI

Table 3.2: Bitstream initialization ommands

��������
�	
���������������

��������
���������
����

�������

�������

�������

������ ����������

������ ����������

������ ����������

Figure 3.17: Multiple Rows bitstream ontent

For partial bitstreams, in addition to on�guration data, an additional frame is

58

Chapter 3. Hardware threads preemption using Dynami and Partial

Reon�guration

written. The presene of this frame is not doumented but may orrespond to an

extra frame for synhronizing the HCLK row that is at the enter of the frame. This

frame is found at the end of eah on�guration data orresponding to a FPGA row.

3.3.3.3 Desynhronization ommands

After the on�guration data, a series of NOP (No Operation) is sent to allow the

FPGA to omplete the reon�guration. This is followed by a ontrol ommand of

the CRC and an ICAP desynhronization.

Command value Desription

0x3000C001 Type 1 write 1 word to MASK register

0x00001000 CTL0 - Enable System Monitor Overtemperature Power Down

0x30030001 Type 1 write 1 word to CTL1 register

0x00000000 NULL

0x30008001 Type 1 write 1 word to CMD register

0x00000003 Last Frame (LFRM)

0x20000000 Dummy Word (x 101)

0x30002001 Type 1 write 1 word to FAR register

0x00ef8000 Row = 15, Top = 0, Blok type = 7

0x30000001 Type 1 write 1 word to CRC register

0x6efee57 CRC value

0x30008001 Type 1 write 1 word to CMD register

0x0000000d Desyn

0x20000000 NOP

3.4 Preemption mehanisms

Preemption implies the ability for an operating system to save the exeution ontext

of a hardware thread running in a given slot, to load a new one into this slot, and

later, to restore the ontext of the �rst hardware thread in any of the available slots

of the platform. The last requirement involves to be able to reloate a hardware

thread from one slot to another.

To manage hardware threads in this way, using the information from the pre-

vious setion, we implement three operating system servies whih are a ontext

management servie, a reon�guration servie and a reloation servie.

3.4.1 Context management servie

There are two ways to save the ontext of a hardware thread. Either using hek-

pointing mehanisms [Huang 2008℄ or proessing partial readbak [Lee 2010℄. The

�rst one is intrusive and implies that the developer inserts hekpoints in his soure

ode. Chekpoints are the only moments where the preemption is enabled. To

3.4. Preemption mehanisms 59

preempt a thread, the sheduler has to wait until the thread reahes a hekpoint

and so saves its ontext. Consequenes are a time overhead at eah hekpoints and

lateny in preemption deision. The advantage is that the ontext size ould be

dramatially redued, and ideally to zero.

The seond way is the readbak mehanism whih is tehnology dependent but

whih avoids real time failure sine preemption ould be done immediately without

risk to lose information. This is what we have hosen to use. Readbak onsists

of reading the ontents of the partial zone where the module is loated. In the

ase of the hardware threads, segregation between stati part and dynami part

permits task ontext redution and o�ers a ommon interfae in order to integrate

di�erent aelerators in the same partition. It should be notied that appliation

must ensure preemption is disabled when the thread is urrently ommuniating to

avoid bloking or data loss.

3.4.2 Reon�guration servie

A design using the partial and dynami reon�guration tehnique provided by Xil-

inx FPGAs [Lysaght 2006℄, is omposed of a stati part and several reon�gurable

partitions in whih reon�gurable modules an be loaded. Using this tehnology,

the operating system is able to shedule hardware threads [Belaid 2009℄, without

resetting the rest of the system. For real-time appliations, both readbak and re-

on�guration overheads an be minimized using dediated hardware reon�guration

ontroller, suh as FaRM [Duhem 2011℄, Upar [Bonamy 2012℄ or the solution of-

fered by Hansen et al. [Hansen 2011℄. For instane, FaRM, whih is used in the

design test detailed in Setion 3.5.5, allows to proess on�guration with the theo-

retial maximum throughput of 400 MB/s at a frequeny of 100 MHz.

����

���
����	
���

����
�����	�

�����

����
��	��

���������

���
����	
���

����
��� ���

Figure 3.18: ICAP driver for Partial Reon�guration

3.4.3 Reloation Servie

As logi resoures are ritial in FPGAs, we would want to be able to run several

threads in the same reon�gurable slot at di�erent times. One of the issue enoun-

tered in the lassial �ow is that a partial bitstream for a given module is generated

60

Chapter 3. Hardware threads preemption using Dynami and Partial

Reon�guration

for one slot and only one. To load a module on another slot, we need either another

bitstream, whih is memory onsuming, or a reloated bitstream, whose reation is

time onsuming.

In embedded system, with the inrease of the FPGAs size, and so of the bitstream

size, the amount of memory needed to store one spei� partial bitstream for eah

targeted partition is beoming more and more prohibitive. This is why a reloation

servie seems to be the best hoie. To reloate a partial bitstream, we implemented

two servies: a bitstream parser and a bitstream reloater.

A bitstream parser is needed to �nd the right information in the bitstream. Xil-

inx FPGAs are organized in rows and olumns. Eah olumn is omposed of several

frames, whih is the smallest reon�gurable entity. To reon�gure a FPGA, the

ICAP reads a bitstream, writes address information in the Frame Address Register

(FAR) of the ICAP and writes frames ontents into FPGA memory. Information

whih interests us in the bitstream are the FAR values and the CRC value. The

proess to reloate a partial bitstream is detailed in Fig. 3.19.

�������

���

���� ��������

��	
�������

��	
���

��������

����� ����	�
� �������

��	
�������

��	
���

���
���

�
��������������

����
���������
�������

�

�
���
�����

����������������
���

			

�����������

����
			

������������������
����
����

���
���������
���

�����������
�������

������������
����

�������

�������������

���

Figure 3.19: Partial bitstream reloation proess

This proess needs two bitstreams, one for the soure partition and the other

implemented for the target partition. A readbak is done on the �rst partition. The

resulting ontext is then saved in a new bitstream. The headers and footers of the

seond bitstream are then modi�ed to target the wanted partition modifying the

FAR value and adding a newly omputed CRC value. In order to derease the time

overhead of the CRC omputation, we implemented a dediated hardware module.

Details on this implementation an be found in Appendix B.2. Finally, merging

3.5. Design �ow for hardware threads reloation 61

the headers and the saved ontext, we get a new reloated bitstream. A list of

the di�erent available partitions, identi�ed by their FAR value and their size, an

be reated in order to simplify this proess. This solution would make the seond

bitstream unneessary.

3.5 Design �ow for hardware threads reloation

3.5.1 Standard �ow

In the latest versions of the Xilinx software ISE Design Suite (IDS), the realization of

a design omposed of reon�gurable modules, but not reloatable, has been greatly

simpli�ed and automated for the end user.

3.5.1.1 Dynami partitions

The user, from a omplete stati design, has the ability to reate one or more dy-

nami partitions. In eah of these partitions, it will be able to instantiate one or

more modules. Modules implemented in the same partition have to share the same

inputs and outputs, without neessarily using all of them. If a module need to be

implemented on several partitions, one instane of this module is reated for eah

partition (Fig. 3.20).

��������	
���
��
��������

��������	
���
��
��������

��������

�������	

�������	

�������

��������������	

���

��
���������
��������

��
���������
��������

Figure 3.20: Partial reon�guration: Partition and modules

3.5.1.2 Proxy Maros interonnetions

One eah module dynamially assigned to a partition, the user has to plae and

route the stati partition. At this moment, we end up with a design whose stati

part is plaed and routed and whih ontains "proxy maro", whih are bus maros

automatially plaed by the tool (Fig. 3.21). These "proxy" are plaed in the dy-

nami partitions, at the boundaries with the stati partition. They ensure that the

inputs and outputs signals of the modules sharing the same partition go through

62

Chapter 3. Hardware threads preemption using Dynami and Partial

Reon�guration

the same path and that there will be no routing issues during the reon�guration of

this partition.

��������

	
�
�����
�
���

��������������
���
�
�����

��������

	
�
�����
�
���

��������������
���
�
�����

����������

���
�

�����������������
���

��������

	
�
�����
�
���

��������������
���
�
�����

���� ����

Figure 3.21: Proxy Maro Plaed and Routed example

3.5.2 Problematis

Module reloation onsists in moving a module from a dynami partition to an-

other. This proess fores us to de�ne reloatable modules. To do so, the following

onditions are mandatory:

• the resoures provided to a module should remain the same from one partition

to another. Namely, partitions should be homogeneous regarding resoures

relative loation. These resoures inlude every logi blok (LUTs, BRAM,

et...), as well as the routing between these di�erent bloks.

• the onnetion between the module and the stati partition should be able

to support the dynami reon�guration and should be homogeneous from one

partition to another.

3.5.2.1 Partitions interonnetion

The �rst issue whih is enountered is that from a partition to another, even if they

have idential shapes and have the same inputs and outputs, the "proxy maro" au-

tomatially generated for these inputs and outputs by Xilinx tools are not mandatory

plaed at the same relative loation inside the partition.

Help with design onstraints, it is possible to ontrol where these proxy are

plaed but not the route between this proxy and the dynami partition. Conretely,

it is possible to plae an input or output signal of the module, and so a proxy, on

a given slie, but it is not possible to onstrain whih input or output of the slie

will be used. From a partition to another, routing in eah partition will be likely

di�erent and so the reloation of a module will lead to a routing failure.

3.5. Design �ow for hardware threads reloation 63

To leverage this issue, several works listed in the state of the art used hard bus

maro (Slie maro in Figure 3.22). These hard maros are manually plaed on

both sides of the boundary between two modules, a stati one and a dynami one

or both dynamis. Routing between the two modules is de�ned inside the maro

and remains the same during the implementation.

������

��	�
��	��
�
��

������
���	����	��
�
��

��
����	���

����������

��	
�	���������

�����������

���

Figure 3.22: Slie Maro

It was possible, in the 10.1 version of PlanAhead and earlier, to manually add

bus maro. In the latest version, the tool allows the user to de�ne plaement on-

straints whih plae the bus maro on the boundary between the stati partition

and the dynami module. However, during the implementation, these onstraints

are not always respeted and the maro ould be moved in the stati part as the

tool keeps automatially plaing its own proxy maro (Fig. 3.23).

������

��	�
��	��
�
��

������
���	����	��
�
��

������	���

����������

��	
�	���������

�����������

�	����������

������

��	�
��	��
�
��

������
���	����	��
�
��

�����	���

���

���

Figure 3.23: PlanAhead Slie Maro plaement

It should be notied that there is a way to suppress the automati insertion of

proxy maro setting the PARTITION_PIN_DIRECT_ROUTE onstraint to true.

This has the e�et to route the partition output diretly to the stati partition

64

Chapter 3. Hardware threads preemption using Dynami and Partial

Reon�guration

without inserting an additional proxy maro. However, the bus maro previously

plaed are always replaed somewhere inside the stati partition.

This is due to the fat that the partial reon�guration �ow provided by PlanA-

head do not support a dynami part to be overlapped by a stati one. A new �ow

must be found using only the stati �ow provided by PlanAhead and inserting addi-

tional onstraints during the implementation of eah module whih would keep the

required plaement and prohibition onstraints.

3.5.2.2 Partitions routing

The seond issue whih need to be solved regarding the reloation of dynami mod-

ules is the partitions routing. The routing matrix of Xilinx FPGAs is known to be

glith-less. Namely, when the routing matrix is reon�gured, if there is no modi�a-

tions to the on�guration memory of a routing wire, this one will not be disturbed

by the reon�guration. As a onsequene, routing wires of the stati partition are

allowed to go aross the dynami partitions without being a�eted by the dynami

reon�guration proess (Fig. 3.24). This mehanism failitates the routing proess

and improves its e�ieny regarding timing onstraints.

����

����	
�����	�

���
����	
�����	�

����������
����	
�����	�

�������
�����	�

���
�������
�����	�

��	�����������
���������

�������	�����
��	��

Figure 3.24: Stati route through Reon�gurable Partition

The drawbak when the objetive is to be able to dynamially reloate the par-

tial modules over every available partition is that when the module ontext will be

saved, in addition to the module routing information, the stati routing whih go

aross this module will also be saved into this ontext. As a onsequene, when

reloating the module, the stati routing of the target partition will likely not be

the same than in the soure one. So this routing may be ut and may produe a

routing failure.

3.5. Design �ow for hardware threads reloation 65

3.5.3 Reloation �ow

We have to propose a new design �ow whih is able to apply the plaement and

prohibition onstraints needed to design homogeneous and independent partitions.

To deal with this issue, this setion introdues the theoretial proedures steps of

suh a design �ow and the possible solution o�ered by the alternative tools.

3.5.3.1 Proedure steps

The di�erent steps to make a design supporting dynami modules reloation are

desribed in Figure 3.25:

1) OFFLINE : implementation of a stati design ontaining empty slots to host the

dynami modules

2) OFFLINE : insertion of interonnetion omponents between dynami and stati

modules

3) OFFLINE : separate implementation of eah dynami module prohibiting the use

of the stati resoures

4) OFFLINE : merging of the di�erent implementations

5) INLINE : module exeution stop and ontext save

6) INLINE : modi�ation of the module ontext and omputation of the new CRC

value in order to plae it in a new slot

7) INLINE : restoration of the module ontext and restart

��

��

��

���

��

��

��

��� ���

���� ����

����

��

��

��

���

����

��

��

��

����

����

�	
��������
�� ������������
��

Figure 3.25: Reloation �ow

66

Chapter 3. Hardware threads preemption using Dynami and Partial

Reon�guration

3.5.3.2 Stati partition design: Global methodology

As we annot use the partial reon�guration �ow provided by PlanAhead as is, we

have to use the stati �ow and add the neessary onstraints to separate the dy-

nami modules from the stati part of the system.

The �rst onstraint to be applied is the plaement onstraint. Dynami par-

titions an be delimited by prohibiting the plaement of stati resoures. This

prohibition is done using the CONFIG PROHIBIT onstraint on the a�eted areas

in the UCF onstraint �le. Unfortunately, this onstraint prevents both the auto-

mati plaement of modules by the ISE plaer, and the manual plaement using the

onstraint �le, so no bus maros an be added at this stage Fig. 3.26.

����

����	
�����	�

���
����	
�����	�

����������
����	
�����	�

�������
�����	�

���
�������
�����	�

��	�����������
���������

�������	�����
��	��

Figure 3.26: Stati plae

It is also neessary to apply routing onstraints on dynami areas to ensure that

no wire from the stati routing rosses the reon�gurable area. No onstraints are

de�ned in the Xilinx tools that would meet both needs. One solution is to use

bloker maros, suh as de�ned by Kok. et al. [Koh 2010a℄ [Koh 2009℄ in their

design tool named Reobus Builder. In addition to blok the routing, bloker maros

oupy resoures available in the dynami area and so at as a plaement onstraint.

Maros an be generated using the XDL language (Xilinx Desription Language).

This language allows to de�ne the loation of the di�erent omponents (internal and

external signals of the modules) on the iruit (Slies, BRAM, DSP, ...) and their

on�guration (LUT used or multiplexer, values ontained in the BRAM, ...). It an

also desribe the routing between these omponents, whih will serve to blok the

routes within the reon�gurable areas.

The use of suh a language permits to automate the generation of maros. The

struture of the FPGAs matrix being regular at a ertain level, it is possible to reate

ommuniation bus omposed of a same maro repeated along the boundaries, and

to blok areas of varying sizes.

3.5. Design �ow for hardware threads reloation 67

3.5.3.3 Maro generation with XDL

An XDL �le allows to desribe a FPGA design at several levels of its implementation:

• after the plaement step: the �le desribes the loation of the di�erent used

resoures, as well as how they are on�gured.

• after the routing step: in addition to plaement information, the routing be-

tween the di�erent resoures is desribed using the semantis of the Nets.

The design is desribed in the �le as a Module. This module has Ports, used to

desribe the input and output ports of the maro, as well as Slies, BRAMs, DSPs,

and Nets.

������

���	
�

����
����
���
������

����
����
���
������

����
��������
���
����������

��	
��	�

��	
��	�

���

���	
�

Figure 3.27: XDL File struture

The Slies are desribed speifying their oordinates, and the on�gurations of

their LUTs, multiplexers and registers. These on�gurations indiate whih inputs

and outputs of the Slie are used, and what is the logi equation of the LUTs.

In addition to the resoures dediated to logi funtions, global routing matries

are part of the FPGA resoures. These matries are loated within eah logi

resoure (CLB, BRAM or DSP), and outside thereof.

Matries provide aess to internal inputs and outputs for eah resoure. Eah

input and output has a single routing path possible to the global routing matrix.

External matries o�er more possibilities and allow to go to other global routing

matries in order to �nally reah the internal matrix of the end point of the route

(Fig. 3.28).

The Nets are used to desribe the interonnetions between the various resoures

of a design. An interonnetion is a route, whih an propagate a signal from

one point to another. In the XDL desription, a route goes from the output of a

68

Chapter 3. Hardware threads preemption using Dynami and Partial

Reon�guration

����������	
����	�
�� ��	�������	�
�� ��
��

��
��

�����������������
��	��������	
�����
�	������	

����
�

��	�

Figure 3.28: Internal and external swith matries

resoure to the input of several other resoures. It passes through Programmable

Interonnetion Points (PIPs). These PIPs are entry points and / or output of the

routing matries.

The transition from a global swith matrix to another follows a ertain logi in

the routing paths that an be taken from a given PIP. PIPs of external matries are

identi�ed with a tag in their name. This tag permits to identify a pattern. There

are three types of PIPs: PIPs starting a pattern (BEG), intermediate PIPs (MID)

and PIPs ending a pattern (END). A pattern is a set of three matries, whose the

relative positions of the three types of PIPs, namely, BEG, MID and END, are

identi�ed by their name (Fig. 3.29).

����������	
����	�
��

��� ������ ���

����������	
����	�
�� ����������	
����	�
��

Figure 3.29: PIP types

In the XDL desription, a PIP does not only refer to an interonnetion point,

but to a segment onneting two points of interonnetion. The segments desribed

relate only to internal segments, that is to say that the segments onneting two

external matries are impliitly desribed (Fig. 3.30).

The XDL language is a good solution to ontrol design routing at a very �ne

grain. Several of the alternative design tools presented in the next setion turn on

3.5. Design �ow for hardware threads reloation 69

��������	
������ �������	
������ �����

�����

��������	
������ �������	
������ �����

�����

�

��������
���

������� ������

�������

��

��� ��������	�
����
����������������
������				 ����	�
����
�������������� 				�				�
	��				��������!�				���				
�				���������������				�
	��				"����!�				�����������				
�				�������				�

�����				 #�$�%���
���$���������!���� 				��				�
���				"����!�				������				
�				�������				�
���				��������!�				�����������				
�					����				�

�

Figure 3.30: XDL Net example

the use of this language.

3.5.4 Experimented tools

3.5.4.1 RapidSmith

RapidSmith is a tool developed by the Brigham Youth University. It provides a

framework to easily manage XDL �les. It was designed in order to allow a developer

to implement his own routing tools. In our ase, it ould be used to design ustom

maros, and espeially it ould help us to reate bloker maros in order to apply

�ne routing onstraints.

However, reating an e�ient routing tools may take many time. Fortunately,

another interesting tool alled OpenPR has been realized. This tool is based on the

same engine as RapidSmith and o�ers a higher level of abstration in the design of

independent partitions.

3.5.4.2 OpenPR

OpenPR is a tool based on the TORC [Steiner 2011℄ framework whih provides

a routing engine for the Xilinx FPGAs. OpenPR was reated to o�er the same

features as those provided by the Xilinx Partial Reon�guration Toolkit whih was

available for ISE 9.2, but not for the latest versions. It allows the design of empty

dynami region onneted to the stati partition through hardware bus maros. It

is thought to be modular and above all extensible.

No IHM is provided with this tool and all manipulations are done in ommand

line. A spei� diretory struture has been adopted to ease the hoie of the

implementable modules inside a given projet. A projet is de�ned by an XML �le

70

Chapter 3. Hardware threads preemption using Dynami and Partial

Reon�guration

in order to failitate a future integration inside an IDE

6

.

Using this tool, we managed to design dynamially reon�guration appliations

on a Virtex 5 LX110 devie. Unfortunately, depending on the omplexity of the

design, the routing onstraints are not always respeted, and the router an ignore

them or keep stuk inside the plae and route proess. Nonetheless, this tool stays

promising and its open-soure harateristi makes it more �exible than a propri-

etary solution, even if more omplex to implement.

3.5.4.3 Xilinx Isolation Design Flow

The Isolation Design Flow (IDF), alternatively alled Seure Chip Crypto (SCC)

design �ow, has been reated to target fault-tolerant systems, espeially in the

ritial appliations in whih safety and fault ontainment is a primary objetive.

This �ow allows a designer to isolate the di�erent modules of his system against

eah other. This is done regarding both the logi and the routing resoures.

In this �ow, eah module to isolate is de�ned and synthesized separately. A top-

level module groups all these modules as blak boxes. To ensure a orret isolation,

the implementation of these modules is done under some onstraints. Namely, every

onnetions between two isolated partitions have to pass through trusted routes (Fig.

3.31).

����������

��������
����������

��������

��	
������	��
��������	��

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����������	
��

�����	�

�����	�

�����	�

�����	�

�������

����������	
���������

���

���

���

���

����

������	�������	����

��	
�����

��	
�����

��	
�����

��	
�����

Figure 3.31: Trusted routes

A trusted route spei�es that an output of a partition has to pass through a

diret route. If the output is used as a load for two di�erent inputs, this signal

have to be split into two di�erent signals passing through a LUT resoure, and so

6

Integrated Development Environment

3.5. Design �ow for hardware threads reloation 71

forms what is alled a trusted route. These onstraints have to be applied to every

inter-partitions signals when it is neessary exept for the global signals suh as the

lok signal.

This �ow has the advantage to be integrated into the PlanAhead tool provided

by Xilinx and is available now for the Virtex-4, Virtex-5, and Spartan-6 devies

and soon for the Kintex-7 devies. In the following, we hoose to investigate the

adaptation of this design �ow in order to perform reloation on a Virtex-5 platform

.

3.5.5 Adapted Isolation Design Flow

3.5.5.1 Hardware platform

Initially, the test of the Isolation Design Flow for the reloation of hardware module

has been experimented on the simple design shown in Fig. 3.32, and implemented

on a Virtex 5 SX50T FPGA using the version 13.1 of IDS

7

. It is a Miroblaze-based

platform omposed of the FaRM IP desribed in Setion 3.2.2 and used to reon-

�gure the dynami partitions, a hardware CRC module used to ompute the new

CRC of the reloated module as well as two dynami modules.

����

����
��
	�	

��� �����

��������

�������
����� ���!"

��#!����$�
 !�#����!

����

%&���&��

&�����

��

��!����#!�

%���'(������ ���)�!�

����*

�������*

�������
����!"

�	�

Figure 3.32: Test design

There is no external memory. The only o�-hip onnetions are the FPGA lok

and the reset button. The two reon�gurable modules implement respetively a

7

ISE Design Suite

72

Chapter 3. Hardware threads preemption using Dynami and Partial

Reon�guration

two-bits adder and a two-bits multiplier. Eah one of these modules is ontrolled

by the proessor through a dediated GPIO peripheral.

In the ase of the reloation where routes between the stati partition and the

dynami ones have to be relatively idential, we instantiated hard maros to onnet

these two types of partition.

3.5.5.2 Modules input and output signals

The Isolation Design Flow requires us to synthesize eah module of the design sepa-

rately. In eah isolated module, inputs and outputs whih are not diretly onneted

to an input or an output pad of the FPGA has to be instantiated as a trusted route

and therefore has to be de�ned in the HDL �le as a non-bu�ered port as follow:

attribute bu�er_type: string;

attribute bu�er_type of <port_name> : signal is "none";

In order to improve the loking routing of the design, the instantiation of the

lok bu�er has been removed from the top level soure �le and let to the ontrol

of the synthesizer. In this way, reon�gurable modules, like the stati partition, use

the global lok tree instead of a trusted route using a ombinatorial path via a

look-up table.

3.5.5.3 Software bus maro

One eah module is synthesized, the main part of the �ow is done using the PlanA-

head tool. Modules netlists are imported in the design and these whih need to

be isolated are onverted into partitions. Eah partition is on�gured with the

SCC_ISOLATION attribute, whih noti�es that the partitions have to be designed

using the Isolation Design Flow.

Then the physial blok of eah module is plaed inside the FPGA matrix.

Another onstraint imposed by the Isolation Design Flow is that the inputs and the

outputs pad used by a partition have to be inluded inside the region overed by

its orresponding physial blok. In addition, the boundary between two isolated

partition have to be of at least one CLB-wide, horizontally or vertially. This

boundary is alled a Fene and is an area in whih neither the logi resoures nor

the routing swith matries will be used (Fig. 3.31).

Firstly, as we wanted to provide a �exible solution for the instantiation of the

bus maro, we let the routing engine of ISE reating the trusted routes. Therefore

we relied on a software implementation of the bus maro.

To do so, we instantiated LUTs in the top-level soure ode to onnet the re-

on�gurable partitions with the stati one. For eah wire of the bus maro, the

3.5. Design �ow for hardware threads reloation 73

����������	��
����������
�������	��
������
����
������
����

���

�������������
���������������������

���� ����!
��������

�"��#���$�����#��������
 ��#�#�%#�����������������

����������

��	��

��	

��	��

��	

� �!
�������

��

��	��

��	

��	��

��	

���

Figure 3.33: Software Bus Maro implementation

following onstraints has been applied:

1 −−

2 −− xps_gpio_0

3 −− bus maro LUTs outpu t s from s t a t i to dynami

4 a t t r i b u t e LOCK_PINS of lut_xps_gpio_0_GPIO_IO_O_bm_in_0 : l a b e l i s "

ALL" ;

5 a t t r i b u t e LOCK_PINS of lut_xps_gpio_0_GPIO_IO_O_bm_out_0 : l a b e l i s

"ALL" ;

6

7 s i g n a l xps_gpio_0_GPIO_IO_O_bm_in_0 : s t d_ l og i := ' 0 ' ;

8 a t t r i b u t e S of xps_gpio_0_GPIO_IO_O_bm_in_0 : s i g n a l i s "TRUE" ;

9

10 s i g n a l xps_gpio_0_GPIO_IO_O_bm_s_0 : s t d_ l og i := ' 0 ' ;

11 a t t r i b u t e S of xps_gpio_0_GPIO_IO_O_bm_s_0 : s i g n a l i s "TRUE" ;

12

13 s i g n a l xps_gpio_0_GPIO_IO_O_bm_out_0 : s t d_ l og i := ' 0 ' ;

14 t t r i b u t e S of xps_gpio_0_GPIO_IO_O_bm_out_0 : s i g n a l i s "TRUE" ;

15 −−

And the instanes of eah LUTs:

1 −− i n pu t bus maro LUTs

2 lut_xps_gpio_1_GPIO_IO_I_bm_in_0 : LUT1

3 gener i map (INIT => X"2")

4 port map (I 0 => xps_gpio_1_GPIO_IO_I_bm_in_0, O =>

xps_gpio_1_GPIO_IO_I_bm_s_0) ;

5 −−

6

7 −− output bus maro LUTs

8 lut_xps_gpio_1_GPIO_IO_I_bm_out_0 : LUT1

9 gener i map (INIT => X"2")

10 port map (I 0 => xps_gpio_1_GPIO_IO_I_bm_s_0 , O =>

xps_gpio_1_GPIO_IO_I_bm_out_0) ;

11 −−

The UCF �le �xes the additional loation onstraints:

1 # inpu t bus maro LUTs

74

Chapter 3. Hardware threads preemption using Dynami and Partial

Reon�guration

2 INST "lut_xps_gpio_1_GPIO_IO_I_bm_in_0" LOC = SLICE_X∗∗Y∗∗ | BEL = ∗6

LUT ;

3 #−−

As a result, the onstraints were too lazy and are not neessary respeted by

the synthesizer, so the routing between the two partitions an be implemented in

several ways, even if the LUTs plaement is respeted (Fig. 3.34).

����������	��
����������
�������	��
������
����
������
����

���

�������������
���������������������

���� ����!
��������

�"��#���$�����#�
�������� ��#�

#�%#�����������������

�����#���
�������������'(������
���
������%����

������)�*�
��

����������

��	��

��	

��	��

��	

��	��

��	

��	��

��	

��

���

� �!
�������

Figure 3.34: Routed software Bus Maro

3.5.5.4 Hardware bus maro

To overome this issue we deided to implement hardware bus maros (Fig. 3.35).

����������	��
����������
�������	��
������
����
������
����

���

�������������
���������������������

���� ����!
��������

�"��#���$�����#�
�������� ��#�

#�%#�����������������

�����#���
���������������������
���
������%����

����������
��

�+�������������������

,���%�-.�
/��� ����!
��������

����������

��	��

��	

��	��

��	

/ �!
�������

��	��

��	

��	��

��	

��

���

Figure 3.35: Hardware Bus Maro extration

3.5. Design �ow for hardware threads reloation 75

To reate a hardware bus maro, we started to get the XDL desription of the

urrent implemented design. In this desription, we looked for the LUTs whih

form the soft bus maro of the �rst partition. A �rst implementation with a soft

bus maro is neessary before extrating a hard maro. These LUTs are then opied

into a new XDL �le and formatted to reate a hard maro. The XDL desription of

the implemented design is obtained using the following ommand:

$ xdl nd2xdl on�g_1_routed.nd

where �on�g_1_routed.nd� is the Native Desription Ciruit File generated

after the plae and route phase.

In order to extrat and generate the hardware maro, we rely on the RapidSmith

framework. More information, espeially the installation proess an be found on

this website: http://rapidsmith.soureforge.net/.

In our ase, we limit ourself in the de�nition of hardware maros. To do so, we

reate a new projet in the Elipse framework. The appliation Lut_Maro_Extrator

whih is in the RapidSmith workspae allows to extrat a software bus maro from

a omplete design and to reate a new module whih an be implemented as a hard-

ware maro. The following listing gives a partial example of the generated maro for

a bus maro named bus_maro_v5_4io_tb whih ontains seven inputs and seven

outputs, de�ned with generi names.

1 de s i g n "__XILINX_NMC_MACRO" x5v s x50 t f f 1 136 −1;

2

3 module "bus_maro_v5_4io_tb " "bus_maro_v5_4io_tb_0" , f g "

_SYSTEM_MACRO: : FALSE" ;

4

5 po r t input0_tb "bus_maro_v5_4io_tb_0" "D1" ;

6 po r t input1_tb "bus_maro_v5_4io_tb_0" "C1" ;

7 po r t input2_tb "bus_maro_v5_4io_tb_1" "D1" ;

8 po r t input3_tb "bus_maro_v5_4io_tb_1" "C1" ;

9 po r t input4_tb "bus_maro_v5_4io_tb_4" "D1" ;

10 po r t input5_tb "bus_maro_v5_4io_tb_4" "C1" ;

11 po r t input6_tb "bus_maro_v5_4io_tb_5" "D1" ;

12

13 po r t output0_tb "bus_maro_v5_4io_tb_2" "D" ;

14 po r t output1_tb "bus_maro_v5_4io_tb_2" "C" ;

15 po r t output2_tb "bus_maro_v5_4io_tb_3" "D" ;

16 po r t output3_tb "bus_maro_v5_4io_tb_3" "C" ;

17 po r t output4_tb "bus_maro_v5_4io_tb_6" "D" ;

18 po r t output5_tb "bus_maro_v5_4io_tb_6" "C" ;

19 po r t output6_tb "bus_maro_v5_4io_tb_7" "D" ;

The hardware maro is omposed of several LUTs. A LUT omponent is de�ned

and its inputs and outputs are on�gured regarding the signals whih are routed

through this LUT:

76

Chapter 3. Hardware threads preemption using Dynami and Partial

Reon�guration

1 i n s t "xps_gpio_0_GPIO_IO_I_bm_s_0" "SLICEL " , p l a e d CLBLM_X34Y19

SLICE_X47Y19 ,

2 f g " A5LUT::#OFF A6LUT::#OFF ACY0::#OFF AFF::#OFF

3 AFFINIT ::#OFF AFFMUX::#OFF

4 . . .

5 D5LUT::#OFF D6LUT : lut_xps_gpio_0_GPIO_IO_I_bm_in_0:#LUT :O6=A1

6 _BEL_PROP: : D6LUT :BEL :D6LUT DCY0::#OFF DFF::#OFF

7 DFFINIT ::#OFF DFFMUX::#OFF DFFSR::#OFF DOUTMUX::#OFF

8 DUSED: : 0 PRECYINIT::#OFF REVUSED::#OFF SRUSED::#OFF

9 SYNC_ATTR::#OFF "

10 ;

The next listing illustrates one of the extrated interonnet:

1 net "xps_gpio_0_GPIO_IO_I_bm_s_0" ,

2 ou t p i n "xps_gpio_0_GPIO_IO_I_bm_s_0" D ,

3 i n p i n "xps_gpio_0_GPIO_IO_I_bm_out_0" D1 ,

4 p ip CLBLM_X34Y19 L_D −> SITE_LOGIC_OUTS11 ,

5 p ip CLBLM_X34Y21 SITE_IMUX_B42 −> L_D1 ,

6 p ip INT_X34Y19 LOGIC_OUTS11 −> NL2BEG_S0 ,

7 p ip INT_X34Y21 CTRL2 −> CTRL_BOUNCE2 ,

8 p ip INT_X34Y21 CTRL_BOUNCE2 −> IMUX_B42 ,

9 p ip INT_X34Y21 FAN3 −> FAN_BOUNCE3 ,

10 p ip INT_X34Y21 FAN_BOUNCE3 −> CTRL2 ,

11 p ip INT_X34Y21 NL2MID0 −> WL2BEG1 ,

12 p ip INT_X34Y21 WL2BEG1 −> FAN3 ,

13 ;

This interonnet is translated to �t with the generi names of the inputs and

outputs. It beomes:

1 net "xps_gpio_0_GPIO_IO_I_bm_s_0 " ,

2 ou t p i n "bus_maro_v5_4io_bt_0" D ,

3 i n p i n "bus_maro_v5_4io_bt_2" D1 ,

4 p ip CLBLM_X34Y19 L_D −> SITE_LOGIC_OUTS11 ,

5 p ip CLBLM_X34Y21 SITE_IMUX_B42 −> L_D1 ,

6 p ip INT_X34Y19 LOGIC_OUTS11 −> NL2BEG_S0 ,

7 p ip INT_X34Y21 CTRL2 −> CTRL_BOUNCE2 ,

8 p ip INT_X34Y21 CTRL_BOUNCE2 −> IMUX_B42 ,

9 p ip INT_X34Y21 FAN3 −> FAN_BOUNCE3 ,

10 p ip INT_X34Y21 FAN_BOUNCE3 −> CTRL2 ,

11 p ip INT_X34Y21 NL2MID0 −> WL2BEG1 ,

12 p ip INT_X34Y21 WL2BEG1 −> FAN3 ,

13 ;

At the end, we get a design whose stati-dynami interonnetion are relatively

homogeneous:

3.5.5.5 Design synthesis

An issue whih ours when implementing these hard maro is that the plaement

onstraints is not respeted in the sense that the maro is systematially moved

during the plaement phase. It is an issue due to the fat that this maro overlaps

both the stati and the dynami areas.

3.6. Conlusion 77

����������	��
����������
�������	��
������
����
������
����

���

�������������
���������������������

���� ����!
��������

�������"	��#����
��
�������������

$��� ����!
��������

�%��"���&�����"�
�������� ��"�

"�#"�����������������

����'"���
�������������()������
���
������#����

������*�+�
��

�,�������������������

-���#�./�
$��� ����!
��������

����������

��	��

��	

��	��

��	

$ �!
�������

��	��

��	

��	��

��	

��

��

Figure 3.36: Hardware Bus Maro extration and homogenization

To overome this issue, the following loation onstraints applied to the hard

maros have to be inserted in an external onstraint �le and passed to the XST

synthesizer using the -u �ag:

INST <hard_maro_name> LOC = SLICE_X#Y#;

where �#� represents valid Slie X and Y oordinates. This �ag ensures that

the synthesizer will respet the loation onstraints and that the hard maro will be

plaed at the orret position, over the stati and the dynami boundary. Finally,

one the design is plaed and routed, the orret isolation of eah partition an be

heked with the help of the Isolation Veri�ation Tool (IVT) [Corbett 2012℄ and

partial and full bitsreams an be generated (Fig. 3.37).

After implementation (Fig. 3.38), the two modules are well isolated in terms of

logi and routing resoures, and the one CLB-wide boundary between the dynami

modules and the stati partition is respeted. This suessful result permitted us to

perform a safe reloation of these two modules in the available dynami partitions

without additional bitstreams and, the most important, for the �rst time with the

standard urrent design tools provided by Xilinx.

3.6 Conlusion

In this hapter, we introdued tools and mehanisms whih allow us to manage the

hardware threads like their software ounterparts. Starting from here, we are able to

provide at the operating system level, an API to reate, delete or preempt hardware

threads. All these features an serve as a basis for a hardware threads management

servie whih an be integrated into an operating system.

78

Chapter 3. Hardware threads preemption using Dynami and Partial

Reon�guration

����������	��
����������
�������	��
������
����
������
����

���

�������������
���������������������

���� ����!
��������

�������"���#����
��
�������������

$��� ����!
��������

�%��"���&�����"�
�������� ��"�

"�#"�����������������

����'"���
�������������()������
���
������#����

������*�+�
��

�,�������������������

-���#�./�
$��� ����!
��������

����������0�����������
����������

1��#��
2��������!��������

Figure 3.37: Adapted Isolation Design Flow

Figure 3.38: Design test - Partition isolation

In spite of its useful multi-proessor ommuniation layer, the RTEMS operating

system hosen in the frame of the FOSFOR projet is not �exible enough to math

more preisely with the �exibility provided by the reon�gurable platforms. The

MPCI prevent the user to reate distant resoures and a thread whih would want

to remotely aess to a given resoure, have to run on a ore whih implement itself

the servie able to manage the resoure. For instane, if a hardware thread wants

to aess to a memory partition, the partition servie should be implemented in the

3.6. Conlusion 79

hardware operating system. Regarding the spei�ity of eah ore, some servies

are more suitable to be implemented on one ore rather than on another one.

For these reasons, in the next hapter, we go a step further than in the FOSFOR

projet and deal with the spei�ation of a new operating system dediated to the

heterogeneous reon�gurable platforms. This operating system would be able to

abstrat the heterogeneity and so to o�er the same API to handle the hardware

threads than the one used to managed the software ones. In order to handle the

heterogeneity in a �exible way, this management has to be extended and inlude

the aess to all available servies of the platform.

Chapter 4

Operating System for

Dynamially and Reon�gurable

Heterogeneous SoC

Contents

4.1 Context and de�nitions . 82

4.1.1 Kernel struture . 82

4.1.2 Thread API . 83

4.2 Related works . 85

4.2.1 Introdution . 85

4.2.2 Inter-ore ommuniation in MPSoC 86

4.2.3 HRSoC middlewares . 90

4.2.4 Hybrid OS for HRSoC . 94

4.2.5 Conlusion . 95

4.3 Spei�ations . 96

4.3.1 Objetives . 96

4.3.2 Programming model . 97

4.3.3 Memory onstraints . 97

4.3.4 Arhiteture . 98

4.3.5 Portability . 99

4.4 Coneption . 99

4.4.1 Operating system arhiteture 100

4.4.2 Platform arhiteture . 102

4.4.3 Multiore layer . 109

4.5 Implementation . 111

4.5.1 Modular operating system: MutekH 111

4.5.2 MRAPI Spei�ation . 114

4.5.3 Hardware arhiteture . 118

4.5.4 Domain de�nition . 119

4.5.5 Node de�nition . 120

4.5.6 MRAPI types . 120

4.5.7 Resoures system alls . 120

4.6 Conlusion . 123

82

Chapter 4. Operating System for Dynamially and Reon�gurable

Heterogeneous SoC

4.1 Context and de�nitions

Heterogeneous Reon�gurable Systems-on-Chip allow us to implement an applia-

tion with software threads and hardware threads. In this hapter, our objetive is

to failitate the ohabitation between these heterogeneous entities.

As seen in the introdution of Chapter 2, software threads are managed on top

of an operating system and therefore an aess to the servies it o�ers. Due to a

need of salability, an operating system dediated to HRSoC should be distributed

over the di�erent ores omposing this platform. However, in most of distributed

operating systems, the servies implemented on a ore by an operating system an

only be aessed by the threads running on this same ore. In order to ensure

a fair aess to all servies to every threads, both software or hardware, we have

to provide a �exible solution whih would extend the number of available servies

for all threads to a set of servies whih an be loated on di�erent ores. Suh

a solution should allow a �exible implementation of the operating system servies

over the platform, regarding the a�nity eah one has to run on a given ore.

To be able to enfore this �exibility in an operating system, it is essential to

orretly de�ne the kernel struture of this operating system, as well as how the

threads managed by this operating system will ommuniate, namely whih inter-

proess ommuniation API is implemented and how it is implemented for this

purpose.

4.1.1 Kernel struture

The kernel struture is an essential element of an operating system. It de�nes the

stability, the modularity, and the portability of a system. Currently, there are three

types of kernel in the state of the art: monolithi kernel, miro-kernel and exo-kernel.

4.1.1.1 Monolithi kernel

Monolithi kernels, beause of their oneption in one and unique blok, are the most

performing kernels but also the less �exible. The portability and the maintenane

of suh a kernel is rather di�ult and its struture is rarely well suited to handle

the salability and the adaptability required by multiore embedded systems.

4.1.1.2 Miro-kernel

Miro-kernels priniple is based on the lient-server model. Communiation servie

between these two entities is realized through Inter-Proess Communiation (IPC)

mehanisms. Regarding the performanes, the �rst miro-kernels were very low

ompared to monolithi kernels.

Like for the thread model, the trend to �ll this gap was the design of hybrid

miro-kernel. The ritial servies like the memory management, the sheduler and

the inter-proess ommuniation were bring bak into the kernel.

4.1. Context and de�nitions 83

This problem of performanes has been imputed to IPC. Initiatives like the

Mah [Aetta 1986℄ or L4 kernels [Liedtke 2001℄ allowed to redue the impat of

the IPCs in term of overheads. Atually, this issue is posed essentially when porting

the kernel on proessors like the x86, whih have a proteted mode needing a virtual

memory manager. The use of miro-kernels as it has been though at the beginning,

namely fully modular is possible in embedded arhitetures with a uni�ed memory

spae. In all ases, the IPCs must be implemented arefully in order to ahieve good

performanes.

4.1.1.3 Exo-kernel

The term of exo-kernel was invented by the Laboratory for Computer Siene (LCS)

at MIT

1

. Exo-kernels are atually miro-kernels pushed to limit. The role of the

kernel is limited to the arbitration of aesses to material resoures. The resoures

abstration is minimal at the kernel level and ustomized at the user one. Servies

are known as libraries and are dynamially linked to the appliation level to let the

user hoose its own level of abstration.

The advantage of this kind of kernel lies in the fat that almost all the operations

are performed at the user-level, so the number of swithes into kernel model is

redued to a minimum.

4.1.2 Thread API

This setion draw a non-exhaustive list of existing standards for the C language and

some spei�ations of software appliation programming interfaes (API) dediated

to operating system ommuniation mehanisms.

4.1.2.1 MISRA-C

It is a standard used in the automotive (MISRA = Motor Industry Software Reli-

ability Assoiation). This is a list of rules and guidane of "good" programming.

The objetive is to allow the developer to write portable and safe ode.

4.1.2.2 POSIX

POSIX stands for Portable Operating System Interfae and is a C standard. This

standard will be portable and is widely used in the UNIX world. One of the inter-

esting elements that may well apply to the embedded domain is thread management

and all real-time extensions made in version 1003.1b-1993.

4.1.2.3 ARINC 653

The ARINC 653 is a spei�ation of interfaes between the operating system and

the appliation. This spei�ation has been de�ned for the avionis. The operating

1

Massahusetts Institute of Tehnology

84

Chapter 4. Operating System for Dynamially and Reon�gurable

Heterogeneous SoC

system kernel is omposed of two parts. The �rst part is a main module allowing to

protet and multiplex the hardware resoures. The seond is spei� to eah system

partition.

A partition is a subset of the operating system whose physial limitations were

learly de�ned. Eah partition is independent, whih provides a safe operation sine

the di�erent address spaes are separated. A failure in one partition does not a�et

other partitions. The following servies are de�ned:

• servies related to partition management: reation, deletion, suspension, and

ompletion of a partition

• the servies of inter-partition ommuniation: Message Queues and Sampled

Message Queues

• servies related to the multi-threading management, whih orresponds to the

intra-partition ommuniation: Messages Queues, Sampled Message Queues,

Events and Semaphores

• thread management

• failure management

• time management

Regarding interfaes and memory management, the developer does what he

wishes when implementing this spei�ation.

4.1.2.4 TIPC : Transparent IPC

Originally developed by Erisson, TIPC is a ommuniation protool developed by

VxWorks and now set free on Soureforge. This is a protool espeially dediated

to networked systems. Eah node of the system has a network address (denoted

N). These nodes are grouped into lusters (denoted C). Finally, these lusters are

themselves grouped into zones (noted Z). A node address onsists of the following:

"Z_ID"."C_ID"."N_ID". Other features inlude:

• message size from the appliation point of view is between 1 and 66000 bytes

• synhronization between two ports is done by handshake

• there is a naming servie to translate the name of a node address

• it also implements an error handler that manages transmission errors, ina-

essible links and invalid names and addresses

Another feature, the same node an have multiple addresses whih allows appli-

ation to easily implement multiast by providing the same address to all subsribers

of a hannel.

4.2. Related works 85

4.1.2.5 MCAPI : Multiore API

The Multiore Assoiation [Assoiation 2012℄ is an assoiation grouping industrial

and aademi partners with the aim of de�ning a new standard allowing to abstrat

ommuniations among heterogeneous multiore platforms.

MCAPI for Multiore Communiation API, is one of the three working groups of

the Multiore Assoiation. Its objetive is to de�ne a message-passing API to man-

age ommuniations and synhronization between ores. The seond working group,

named MRAPI, is responsible for de�ning an API to manage resoures whih are

shared by the proessing elements of a heterogeneous multiore platform. MTAPI is

a third working group whih aims to de�ne a new standard for thread management

(reation, plaement, sheduling, ...).

These three working groups are the most important but there are other groups

suh as the Multiore Programming Praties Working Group and the Multiore

Virtualization Working Group. Currently, a omplete version of the MCAPI spei-

�ation and a �rst stable one of the MRAPI spei�ation have been released.

4.1.2.6 LINX

LINX for Linux is an open-soure implementation of the LINX inter-proess om-

muniation protool. It targets heterogeneous multiore systems using the Ethernet

protool to ommuniate. On eah of node, a thread is reated and serves as a on-

netion point (proxy) with the other nodes of the system. The API enables LINX to

abstrat the loation of other threads running in the system and thus makes inter-

proess ommuniation transparent to the user regarding the hardware platform

used.

In addition it implements a neighbor disovery mehanism and handles ases

where a server (ie. another thread) previously found, is no longer aessible. How-

ever, as it relies on the Ethernet protool, this solution is too heavy for intra-hip

ommuniation.

Related works listed in the next setion refers to some examples of what ould

be done to enhane the ommuniation between threads in multiore and heteroge-

neous platforms. The hoie of an well-adapted kernel struture and of a standard

inter-thread ommuniation API would permit to reah a good trade-o� between

performanes and portability.

4.2 Related works

4.2.1 Introdution

In this setion, we address the ommuniation issue between threads loated on

di�erent proessors. Our �nal goal remains to leverage the heterogeneity of the

platform, espeially the fat that some servies ould be implemented more or less

easily on a ore. In this ontext,we are interested in providing the support of future

design exploration tools whih permit to �nd whih servie should be implemented

86

Chapter 4. Operating System for Dynamially and Reon�gurable

Heterogeneous SoC

on whih ore. This support onsists in o�ering to an operating system the ability

to share its servies with other threads running on remote proessing elements.

Targeting multiproessor system is an old issue. Several papers addressed this is-

sue and espeially the onerns of the multiproessor ommuniation. In these ases,

a proessor is onsidered a ore. Protools based on the shared memory paradigm,

the message passing protool or solution adapted from the loud omputing is pre-

sented in the following.

4.2.2 Inter-ore ommuniation in MPSoC

In [Tomiyama 2008℄ the authors propose an operating system for asymmetri mul-

tiore systems alled TOPPERS-FMP (Fig. 4.1). This operating system is based

on the µITRON spei�ation and its main harateristis are the system alls virtu-

alization (for both loal and remote alls), an independent exeution for eah node

and a known limit for the inter-task ommuniations lateny in the worst ase.

Figure 4.1: Toppers/FMP [Tomiyama 2008℄

Following the µITRON spei�ation, objets are lassi�ed: tasks and handlers

are assigned to a proessor and eah one has a loal sheduler, whih guarantees

independene between ores. Eah objet is identi�ed by a unique identi�er.

In this operating system, the inter-ore ommuniation mehanism is alled IPSC

for Inter-Proessor System Call. Through this mehanism, a proess has a diret

aess to the memory of another one due to the presene of a uni�ed memory spae

in the shared memory. The synhronization between the two proessors is done

using spin loks

2

whereas intra-proessor synhronization is realized by disabling

interrupts.

The authors of [Huerta 2008℄ introdued a Symmetri MutliProessor (SMP)

based system omposed of Miroblaze proessors (Fig. 4.2). The operating system

2

busy waiting for a lok

4.2. Related works 87

is spread over the platform and is in harge of task alloation on every proessor.

Task sheduling is globally manage by a unique sheduler. Communiation between

proessors is realized via hardware interrupt mehanisms. This solution is easy to

implement but laks of salability.

Figure 4.2: SMP System [Huerta 2008℄

The subjet of [Lin 2009℄ deals with Inter-Proessor Communiation (IPC) in

heterogeneous multiore platforms. They aim to redue the overhead due to the

ommuniation in periodi pipelined multiore appliations.

They argue that lassial protools like Message Box, FIFOs or shared memory

are badly linked to the monoore historial ontext. So they introdue the NTU

3

Inter-Core Proess Communiation (NTU ICPC). This is a user-level protool based

on the sender-reeiver paradigm. It is implemented at the middleware level. Its

main goal is to limit the number of opy to one per transation. It an be seen as a

synhronous shared-bu�er ommuniation. This method has the advantage to avoid

ontext swith and to improve the portability.

By default, ommuniations use loal bu�ers ((alled individual working spae),

otherwise if the sender and the reeiver an both aess to a shared bu�er, they do

a ¹ero-opy IPC

�

. This is possible only if no broadast nor multiast is required.

As shown in Fig. 4.3, the software arhiteture ontains three layers. The �rst

layer is the hardware dependent layer (Memory Management Unit), the seond is

responsible for the ommuniation (mail sending and bu�er management), and the

last layer handles the virtualization (middleware protool).

In [Baumann 2009℄ the authors propose an operating system spei�ation dedi-

ated to multiore arhitetures. This operating system should be distributed and

3

National Taiwan University

88

Chapter 4. Operating System for Dynamially and Reon�gurable

Heterogeneous SoC

Figure 4.3: ICPC Servie [Lin 2009℄

provide expliit inter-ore ommuniation mehanisms. It also has to o�er well-

de�ned hardware abstration layer and information about eah ore state should be

repliated and not globally shared (Fig. 4.4).

Figure 4.4: The multikernel model [Baumann 2009℄

Faing the ore heterogeneity, this OS would be �exible. Cahe ohereny man-

agement is not a neessity. Conerning inter-ore ommuniation, it would be re-

alized through Message Passing mehanisms, what would make the system more

modular and salable.

At the kernel level, this operating system only manages the aess to the hard-

ware resoures whih orrespond to the CPU drivers. Hene at the user level, eah

ore would handle synhronization mehanisms, the memory management and the

sheduling. In order to get more �exibility, eah proess in the appliation would

4.2. Related works 89

be represented by a dispather objet present on eah node the proess an run on.

It would be a kind of replia that we an ative or deativate regarding the ore load.

Fos (Fatored operating system) [Modzelewski 2009℄ is an operating system de-

signed for manyore arhiteture. It has been de�ned to be salable, easily extended

and programmable, as well as able to perform automati fault management. The au-

thors seek to realize an operating system espeially dediated to appliations whih

an take advantage of a loud omputing platform. In suh a platform, number of

available ores for one appliation is potentially unlimited. The main point is so to

handle the salability of these platforms.

As the operating system should be able to well balane the load of work on

the di�erent ores it ontrols, resoures requests, that is to say omputing power

alloation for a given appliation is highly dynami. Also, as the number of ore is

important, the operating system should detet if a ore do not work anymore and

in this ase, modify the appliation deployment.

Figure 4.5: Fatored OS [Modzelewski 2009℄

Authors notie that, giving Linux as an example, the hoie to keep a monolithi

arhiteture and so to add loks on operating system shared strutures in order to

port it on multi-ore platform, beomes more and more omplex to do and hard to

maintain. This is why they prefer to develop a new operating system based on the

IaaS model (Infrastruture as a Servie), ommonly used in the networked servers

and virtualization �elds (Fig. 4.5). Fos relies on the following priniples:

• to be adapted to a multiore arhiteture, the sheduling must be thought in

two dimensions: time and spae.

• for more safety, operating system servers must run on exlusive ores from the

ones alloated for appliations.

• operating system servies are split into spei� primitives, so eah server an

ommuniate through message passing with the other servers if ever it needs

90

Chapter 4. Operating System for Dynamially and Reon�gurable

Heterogeneous SoC

a primitive implemented by these ones.

• servers whose primitives are omplementary are grouped into �funtion spei�

�eet� in order to optimize their plaement and redue ommuniation osts

(servers fatorization).

• a server an be loaded or unloaded to inrease or redue resoure use (i.e. ore

use).

• resoures used by an appliation have to be monitored in order to be able to

e�iently manage fault appearane and to optimize platform resoure use.

• in ase of fault appearane on one of the servers, some are repliated to be

used as substitute.

• the operating system inludes a miro-kernel, a minimal kernel whih have to

be present on eah ore: it handles the hardware abstration layer as well as

appliation alloation and loading.

• a library alled �OS Layer Server� permits to translate a system all performed

by an appliation into a message towards the appropriate server. A speial

server alled �Gateway Server� allows to go from one mahine to another if

neessary.

Synthesis:

Conerning this �rst aspet of the state of the art, we an say that due to the need

of salability, Inter-Proess Communiation via Message Passing seems to be the

best hoie when targeting heterogeneous multiore System-on-Chip. The operating

system should follow an AMP strategy and be distributed over the platform. In

addition, we should rely on a lient-server mehanism to provide remote aesses to

operating system servies.

4.2.3 HRSoC middlewares

In addition to the multiore aspet, this dediated operating system should be able

to handle its heterogeneity, espeially the presene of reon�gurable hardware om-

ponent as proessing elements.

In [Shiyanovskii 2009a℄, reon�guration is handled by a software layer on top of

a real-time operating system (Fig. 4.6). This layer is alled Adaptation Manager

and is able to adapt in order to get a trade-o� between the power onsumption and

the exeution speed. It relies on a learning proess whih allows the manager to

improve the lateny to take a deision.

4.2. Related works 91

Figure 4.6: Self-reon�gurable platform [Shiyanovskii 2009a℄

Atually, the reon�gurable platform is omposed of tiles permitting to per-

form high-level funtions regarding CLBs programming layer (�lters, FFT, ...). A

priority-based sheduler is implemented to manage task exeution. These tasks an

have three di�erent states: Inative, Ative or Reserved. The latter state is used to

de�ne a tile waiting for a task to arrive.

[Guerin 2009a℄ deals with the oneption of an operating system dediated to the

heterogeneous multi-ore systems-on-hip (HMC-SoC). They start from the observa-

tion that the main approah whih propose to have a standard proessor interating

with hardware o-proessors through some drivers is not adapted to omplex system

anymore. On the other hand, the speialized approah whih onsists to have one

board support pakage (BSP) for eah plateform oupled with a modular develop-

ment is too generi to provide good performanes. So they propose an intermediate

approah based on omponents (Fig. 4.7).

To ahieve this, they need to de�ne stable and generi interfaes as well as a lear

segregation between hardware dependent omponents and hardware independent

ones. The hardware abstration layer is omposed of 27 primitives responsible for:

• the endianness

• the multiproessor on�guration (boot and ores identi�ation)

• the input / output on�its

• the ontext handling

• the synhronization

• the traps

92

Chapter 4. Operating System for Dynamially and Reon�gurable

Heterogeneous SoC

Figure 4.7: System framework overview [Guerin 2009a℄

• the memory and the ahe

The operating system whih illustrates this approah is alled DNA OS (DNA is

Not just Another Operating System). It is based on BeOS and o�ers thread manage-

ment and sheduling servies, a �le system with or without MMU, dynami memory

management, Semaphore and Message Passing servies as well as the ability to load

eah of these servies dynamially inside the kernel.

In [Senoui 2006℄, the authors introdued a software arhiteture based on the

Mutek kernel. The operating system is split in two parts: the HdS layer and the HiS

layer. HdS stands for pour Hardware dependent Software and is a HAL managing

the multiproessor and the heterogeneous aspets of the ores (boot, mutex synhro-

nization and ontext swith). HiS stands for Hardware independent Software and is

omposed of the operating system, a middleware and the user layer.

They also propose a design �ow allowing to speify this HdS layer. The imple-

mented sheduler an manage SMP platform or one instane of it an be deployed

on eah ore. In addition, one of the most important advantage of this OS is its low

memory footprint.

Authors of [Matilainen 2011℄ propose an MCAPI implementation for the Systems-

on-Chip. They hoose MCAPI beause it was though for inter-ore ommuniation,

not inter-omputer ones. An API is needed in order to develop e�iently omplex

portable appliations. OpenMP [Board 2012℄ requires speial support from the om-

piler whih is not the ase for MCAPI. Even if redued MPI versions are available,

4.2. Related works 93

Figure 4.8: Hardware Dependant Software layer [Senoui 2006℄

MPI requires more hanges to soure odes and CORBA [OMG 2006℄ is too heavy-

weight. Regarding the implementation they did, it o�ers a lower memory footprint

at the expense of less �exibility due to a limited number of alls.

MCAPI o�ers three types of ommuniation: Message whih is a basi message

passing protool, Pakets whih is a onneted mode allowing to send or reeive sev-

eral messages in a row, and Salar whih permits to send or reeive single �xed-size

word (Fig. 4.9).

Figure 4.9: MCAPI for MPSoC [Matilainen 2011℄

The top layer implements MCAPI spei�ed abstration for user appliation and

does only simple error heking for funtion alls. The underlying layer (Transport)

implements the interfae between the top layer and the HAL. Moreover, in this

implementation, hardware aelerators are also seen as MCAPI nodes. It should be

notied that the node topology is stati to make the implementation simpler.

94

Chapter 4. Operating System for Dynamially and Reon�gurable

Heterogeneous SoC

In [Kamppi 2011℄ they designed an IDE

4

whih allows to integrate some IP-

XACT [541 2010℄ omponents together. It is open soure and inludes the genera-

tion of endpoints in order to be ompliant with MCAPI.

Synthesis:

In order to manage the heterogeneity of a HRSoC platform, it is neessary to o�er

an additional layer on top of the operating system. This layer would help to provide

a transparent aess to the operating system servies. Moreover, ertain servies

are more likely to be e�iently implemented in hardware, so a hybrid operating

system servies should be proposed to the developer in order to improve the overall

performanes of the appliation and really take advantage of the heterogeneity of

the platform.

4.2.4 Hybrid OS for HRSoC

The miro-kernel introdued in [Nordstrom 2005℄ is de�ned as a RTU

5

. The aim is

to redue the memory footprint of the kernel, taking advantage of the parallelism

and enhane the kernel exeution determinism.

To ahieve it, some part of the operating system are implemented in hardware:

the sheduler, the Semaphore and Flags servies, an interrupt ontroller as well as

timers. This RTU is based on the µC/OS-II kernel. When the paper has been

published, all features have not been implemented yet. Nonetheless, we an notie

for the ones whih were implemented, that the gain is signi�ant.

[Agron 2009b℄ asserts that a monolithi operating system is not adapted to mul-

tiore platforms anymore, parallelism ausing important latenies for thread syn-

hronization. Managing mutexes at the ISA layer (Instrution Set Arhiteture)

using atomi instrutions ould be an e�ient solution but is not really portable.

Finally, remote proedure alls are too expensive in terms of time overhead.

So, the proposed idea is to port some features of a miro-kernel in hardware

to light up the software part (Fig. 4.10). The authors developed a Linux-based

miro-kernel, �attened in order to simplify it, but always POSIX ompliant. The

Mutex servie, the sheduler, variable onditions and thread management are the

servies hosen to be ported.

The sheduler manages tasks all over the ores and so ats like a SMP kernel.

The advantage for a proessor ore is that it would be interrupted only when a

preemption is neessary. The rest of the time, it quietly exeute the thread the

sheduler assigned it. This sheduler module is able to manage 128 priority levels

and the Mutex IP provides two primitives: lok and unlok, requiring only one

instrution to be performed (atomiity).

4

Integrated Development Environment

5

Real-Time Unit

4.2. Related works 95

Figure 4.10: Hybrid Threads platform [Agron 2009b℄

Finally, Götz et al. also proposes a hybrid solution in whih the operating system

servies an be migrated during run-time from a software to a hardware implementa-

tion and reiproally, depending on the appliation needs [Götz 2009℄. An heuristi

has been developed in order to optimize the resoure use of eah appliation that

would be loaded on the platform.

4.2.5 Conlusion

The need of more and more omputing power in the urrent embedded system

pushes the designers to provides a new kind of system whih are heterogeneous

and more and more distributed. In order to adapt to the need of salability of

suh a system, Inter-Proess Communiation beame a ornerstone of the operating

system. This ommuniation should rely on a deentralized system. The Message

Passing ommuniation paradigm is well adapted to manage the ommuniation of

these heterogeneous multiore System-on-Chip. To go further, the operating system

should also be deentralized. An Asymmetri Multiproessor System would be the

best hoie to manage the numerous ores independently the one regarding the

others. Additionally, the aess to the operating system servies would be based on

the a lient-server mehanism that o�ers a good salability.

Regarding the heterogeneity aspet, the addition of a middleware layer would

brought a signi�ant abstration to the HRSoC platforms. This layer would provides

a transparent aess to every available servies in the platform. This �exibility would

improve the platform partitioning allowing the developer to implement some servies

96

Chapter 4. Operating System for Dynamially and Reon�gurable

Heterogeneous SoC

in hardware and others in software, and also to hoose on whih proessing units

these servies would be implemented. Suh a partitioning would enhane the overall

performanes of the appliation as it would take into aount of the advantages of

eah proessing units.

This �exibility brought by distributed servies will enhane the global perfor-

mane gain allowing any thread to aess to the most available e�ient implemen-

tation of a given servie. Moreover, basing the implementation of this additional

layer on a widely supported standard would help the integration of the operating

system in high-level design spae exploration tools.

4.3 Spei�ations

Aordingly to the general information and the state of the art introdued previ-

ously, we �rst de�ne the spei�ations of an ideal operating system for the HRSoC.

It inludes the onstraints, the main objetives, and the hosen solutions regarding

the state of the art. This spei�ation will be a base to takle the oneption phase

in whih the details of the implementation of this operating system will be disussed

(See Setion 4.4).

4.3.1 Objetives

Our goal is to abstrat the heterogeneity of future multiore platforms, this in order

to provide a fair aess to any servie for any thread in the system and also to de�ne

a homogeneous model of ommuniation. We need distributed servies to permit an

optimized distribution regarding ores spei�ity and threads loation.

Currently, emerging embedded systems tend to have a versatile general appear-

ane, and are able to satisfy most of the �nal lient's needs. This versatility, oupled

with the inreasing need of performanes, modify their arhitetures into heteroge-

neous platforms. In order to satisfy these needs, they provide several proessing

units, eah of these dediated to a speial task in the system, the whole forming a

so-alled multiore system, in whih one ore equals one proessing unit.

In suh a system, the developer an deploy his appliation onto general purpose

proessor, dediated ones like DSP or ASIP (Appliation Spei� Instrution-set

Proessor), but also hardware aelerators running on reon�gurable hips espe-

ially used to perform reurrent and intensive proessing, denoted as IP (Intelletual

Properties) in FPGA devies.

In this setion our objetive is to de�ne the struture and the harateristis

of an operating system dediated to this kind of system de�ned as multiore and

heterogeneous.

4.3. Spei�ations 97

4.3.2 Programming model

For the end-user, the appliation will be viewed as a homogeneous set of threads

ommuniating through operating system servies, wherever they are loated (Fig.

4.11).

On top of HRSoC platforms, the developer wishes in a �rst time to be able to

validate his appliation without being dependent from its omposition, for instane

the number of ores or the type of these ores. This need of abstration involves

to add an intermediate layer between the hardware and the appliation. The de-

ployment of the appliation and the operating system, meaning task plaement and

servies distribution over the di�erent ores, should be the most transparent as pos-

sible for the developer, and ideally handled by automati tools.

�� �� ��

���� �� ��

��	
� ��	
�

��	
��

����
	���
�

������	�

��
	�����	��������
�
�

�����	����
	���

Figure 4.11: User point of view

The advantage is a simpli�ation of the programming model thanks to a unique

interfae and an aeleration of the development proess that an be reahed through

the automati generation of ode. The drawbak is lowest performanes and �ex-

ibility onstraints among the generiity. The all to an operating system servie

should respet all or a part of an existing standard.

4.3.3 Memory onstraints

We hose to implement a NUMA arhiteture, it means a distributed memory with

Non-Uniform Memory Aesses. The operating system footprint should be onsis-

tent with the System-on-Chip apaity. Pragmatially, we set that the footprint of

the kernel alone must be under 25 kB.

It is onsidered that the address spae of the multiore system is a uni�ed ad-

dress spae. All ores share the total system memory. Nevertheless eah ore will be

able to have a private address spae in whih it will host its ode and private data

(Fig. 4.12). The addition of a memory management unit (MMU) is not neessary.

98

Chapter 4. Operating System for Dynamially and Reon�gurable

Heterogeneous SoC

�� ��

��� ����	
�������

�� ��

�� ��

�� ��

����

�� ��

����

��	��������	

��

� �������

� �
����

���

������
���������

	
����

� �

�
�

��

Figure 4.12: Platform memory arhiteture

4.3.4 Arhiteture

The spei�ation of the operating system arhiteture inludes the di�erent modules

whih ompose the multiore system, and the distributed servers.

4.3.4.1 Operating system arhiteture

The appearane of multiore system fored the operating system to be modular

in order to take the most advantages of the parallel ability of the platform and

also to optimize its memory footprint by sharing ertain servies among multiple

ores. These servies will therefore be seen as distributed servies. For the sake of

�exibility, we also wish a request to a servie to be independent of its loation. The

servie an be present on the same ore than the thread whih needs it, but an also

be found on another ore.

Eah servie performs a spei� funtion. Some servies will be performed by sev-

eral other di�erent servies. These servies will then need to ommuniate together.

For example, a semaphore release by the servie whih manages the Semaphore will

require it to inform the sheduler servie that a thread an be unbloked.

Regarding the kernel arhiteture, the modularity onstraint exludes the adop-

tion of a monolithi kernel, more powerful but harder to port on a new arhiteture

and very in�exible. Miro-kernel is more modular. For performanes reasons, the

inter-thread ommuniation and above all the address spaes swith must be mini-

mized. For this, the exo-kernels provide a solution even more �exible than the one

provided by the miro-kernel. In most ases when designing embedded systems,

an exo-kernel an be seen as a miro-kernel whih the abstration layer has been

redued to a minimum, namely the Hardware Abstration Layer (HAL).

The struture hosen for our kernel is loser to the exo-kernel than the miro-

kernel as it exists today. The operating system servers are hosted in the user-spae.

For multiore platforms, the inrease of the number of ores requires to inrease the

number of memories. For better management of the loality, a separation of this

memory into multiple adjaent address spaes is required (NUMA: several physial

memories but only one uni�ed address spae). Therefore, the establishment of a

4.4. Coneption 99

mehanism of MPU

6

whih would ombine �exibility and performane would be

more feasible in an exo-kernel.

4.3.4.2 Servies for multiore

An inter-ore ommuniation servie should allow to send messages from one ore to

another. This servie must be su�iently generi to support di�erent interonnet

arhitetures (Bus with shared memory, Network-on-Chip, ...). This module should

also be able to manage the broadast, whih will be useful to synhronize several

ores.

A loalization funtion permitting to �nd existing servies and resoures on

the platform must be present in eah module to make itself independent of the

threads, servies and resoures plaement. The servies are de�ned and statially

distributed at ompile-time. The resoures are dynamially reated at run-time.

There are servies and resoures that are loal, and others that are global, that is

to say, available for the threads running on remote ores.

For more portability, resoures will be aessible by a unique name, independent

from the platform on whih the appliation runs. A system of name resolution should

o�er the ability to identify a given resoure using a user-de�ned name, statially or

dynamially.

Regarding the inter-thread ommuniation, the operating system should at least

have a ommuniation servie. Tasks sheduling will always be done loally to eah

ore. So there will be one sheduler servie per ore.

4.3.5 Portability

Constraints on the platform are its multiore aspet and its heterogeneity. It has

an impat on the hardware abstration layer whih should take into aount that

one of the ore should be appointed to initialize the platform and synhronize other

ores. This ore would play the role of supervisor. Additionally, the HAL should

handle the heterogeneity of the ores and for instane the di�erenes of endianness.

To simplify the porting of the OS, the endianness must be swithed Big Endian to

Little Endian and vie versa. To simplify the proess, a default endianness should

be de�ned inside the platform.

4.4 Coneption

The oneption setion desribes how we hoose to implement the spei�ations

de�ned in the previous setion. That means the operating system we hoose to be

implemented, how we manage the ommuniation between ores and how we ensure

the homogeneity of the programming model.

6

Memory Protetion Unit

100

Chapter 4. Operating System for Dynamially and Reon�gurable

Heterogeneous SoC

4.4.1 Operating system arhiteture

As we made the hoie of a distributed arhiteture, eah ore implements an in-

stane of the operating system. The operating system is omposed of a kernel and

multiple servers. The role of the latter is to provide all appliation threads an aess

to the operating system servies, and espeially to the resoures they manage. In

this ontext, a resoure is an instane of a Semaphore, of a Message Queue or of

another servie. It orresponds to the entity whih is manipulated by the thread,

using the servie primitives. The distribution of the servies on di�erent ores may

be uneven, depending on memory spae, logi elements availability, ore a�nity or

threads loation.

4.4.1.1 Servers arhiteture

Servers are instantiated statially. During the reation of a resoure, the searh for

a server apable of proessing this work has been performed at ompile time. When

the server is loal, the task wanting to run the servie sends its message diretly to

this server loally. Otherwise, if it is remote, the task sends a message to the remote

node on whih it stands.

����������	
���

��������
��	
�����

������	��
�����������

�����

����	���

�������
��	���	�

��
���
��	���	�

����������	
���

��������
��	
�����

����

����	���

�������
��	���	�

��
���
��	���	�

�����		
��	
�����

������	�
������������

�����		
��	
�����

��	

��

��	

��

Figure 4.13: Sysall Proedure

Resoures are instantiated dynamially. When handling an existing resoure, a

thread has to �nd where the resoure is loated, then send a message to the server

owning this resoure. If the server is on another ore than the thread, a message

must be sent to the ore in order this one to transmit it to its loal server (Fig. 4.13).

Regarding its arhiteture, a server is a module that implements the meha-

nisms for handling a ertain type of resoure. These mehanisms, when the servie

is implemented loally, are a mehanism of loation and a mehanism of resoure

management (Fig. 4.14). These two mehanisms are optional. If not implemented,

4.4. Coneption 101

�� ������������

� �	
���

����
��

�� ���
�����������

�

�
�

��
��
�
�����������������
����

�
�

�
�

���������������
����

�� ��

�

�	�
��
����
�

��
�� ��
�

!���
�������

����" ����"

����
� ����
�

��

�
�

��

��
�#

����"

����
�

��

�

�
�

����" ����������������
��

Figure 4.14: Server types

the server is restrited to the ommuniation servie allowing to send and reeive

messages, and so to aess to remote servers or resoures using Inter-Thread Com-

muniation (Fig. 4.15).

������

��������	�
��������	�����

����	��� ���	���

����	����

����������	������������

����������

 �	������

!����	�"�

#���	������

����	#����$�����

Figure 4.15: OS Server Arhiteture

4.4.1.2 Kernel arhiteture

The kernel on eah ore will be implemented as an exo-kernel and so will provide

a minimal set of features. It must be omposed at the funtional level of: a HAL

7

whih gives aess to a timer tik for the operating system, an interrupt module, a

bootloader, a thread management server, and �nally an inter-ore ommuniation

server allowing aess to remote servers and resoures.

7

Hardware Abstration Layer

102

Chapter 4. Operating System for Dynamially and Reon�gurable

Heterogeneous SoC

4.4.1.3 Communiation arhiteture

A user thread aesses the servies of the operating system through a spei� API.

Several standard APIs exist. Whatever the hosen standard, it is neessary to ho-

mogenize the system alls for all types of threads that ontain the appliation, whih

ould be either software or hardware. For salability reasons, ommuniation be-

tween a server and a thread is made only by message passing. The message must

ontain all information neessary to enable the server to exeute the query. This

stateless protool is intended to limit the number of transations between a thread

and a server when performing a system all. Similarly, the ommuniation between

two servers is done by enapsulating the message in a routing header spei� to the

physial ommuniation medium (Fig. 4.16).

��������� �	 �
 ���

����������

������ ������ ����������

������������

��������������

Figure 4.16: Message Template

All messages exhanged in the system have the same format. They onsist of

two segments:

• system data (System Call): this segment indiates the servie to whih it

orresponds, the operation whih is requested to do on this resoure, as well

as the identi�er and the priority of the alling thread if any. The following

data are the parameters of the requested operation

• the header needed to route the message through the interonnet in the ase

of a ommuniation between two ores

4.4.2 Platform arhiteture

4.4.2.1 Hardware arhiteture

To illustrate the di�erent mehanisms that we need to implement, we rely on the

platform desribed in Figure 4.17. It inludes three ores: Core0, Core1, and Core2.

Core0 supervise the entire system and is responsible for initializing the platform

and starting the other ores. Eah ore has aess to a private memory, a shared

memory and an ommuniate with other ores through an interonnet.

Core0 and Core1 implement both loally a Semaphore servie. Core2 does not

implement it. The appliation is omposed of two threads, T1 and T2, respetively

4.4. Coneption 103

�� ����

��

������
	�
���

����

��

��

��������

����������

������������

�� ������������

� ����

��
���������������

�� �������� ������

��

	�
���

��

��
 �

! �

!�

!

	�
���

��

	�
���

��

��

��
 ��
�������������

�

! �

����������������

Figure 4.17: Study Case Platform

present on Core1 and Core2. At T0, we onsider that the supervisor has on�gured

every nodes and they are ready to exeute the threads they implement.

Eah ore has a loal sheduler. The resoures reated by the servers an be loal

or global. In the ase of global resoures, information on this resoure are �lled in a

loal table, re�eted in the private memory of eah ore (GT = Global Table). This

table allows eah ore to loate any global resoure reated in the platform.

4.4.2.2 Study ase

Senario

The appliation senario is as follows: T1 reates the global Semaphore S1 then

releases it. S1 is initialized to 0 (ie. there are no resoures available).

1 T1 () {

2 reate_semaphore ("S1" , GLOBAL) ;

3 r e l ea s e_semapho re ("S1") ;

4 }

T2 starts waiting for Semaphore S1.

1 T2 () {

2 reate_semaphore ("S2" , GLOBAL) ;

3 take_semaphore ("S1") ;

4 }

104

Chapter 4. Operating System for Dynamially and Reon�gurable

Heterogeneous SoC

Senario steps

T1 reates the global semaphore S1. Core1 implements a Semaphore servie so

the request is proessed loally. When S1 is reated, Core1 warns the other ores

that a new global Semaphore has been reated. To do so, it sends a message to eah

ore.

When a ore reeived this message, it updates its global table GT. The ontent

of the global table is detailed in Table 4.1. Depending on the ase hosen for the im-

plementation of Semaphore servie, some �elds would be left blank, for example the

Attribute and Pointer values are not neeplaedssary when the resoure is distant.

For its part, T2 wants to reate a new semaphore. Sine it does not implement

the servie, it must all this servie on Core1. To onsider the establishment of

remote servies alls, it is neessary to add a proxy mehanism, or replia, whih

will emulate the presene of thread on the remote ore (Fig. 4.18). For reasons

of spae and memory lateny, this proxy must ontain the minimum information

neessary to be managed by the sheduler.

�� ��

��

������
	�
���

����

��

��

����

������������

�� ������������

� ����

��
���������������

�� ���������������

��

�

� �

�

	�
���

��

	�
���

��

�� ��
 ��
���������� ��

�

� �

������������� ��

��

��
���������� ��
!���
���������� ���

��

� �����"��#�
��

�

�

�

�

�

�

�

Figure 4.18: Distant system all

The reation of Semaphore S2 unfolds as follow (Fig. 4.18):

(1) T2, loated on Core2, performs a system all whih is translated as a message

to its loal Semaphore server.

(2) as the loal server does not implement the servie, the all is diretly routed to

the Communiation server. It therefore starts an inter-ore ommuniation to

4.4. Coneption 105

have the Core1 perform the request.

(3) the Communiation server sends the message aross the interonnet.

(4) the ommuniation server of Core1 reeives the message. It then reates a

replia of T2.

(5) one the replia is reated, it forwards the all to the server so that Semaphore

performs the servie requested by T2.

(6) when the servie is performed, the proxy is destroyed and the feedbak infor-

mation is transmitted to the inter-ore ommuniation servie.

(7) the feedbak information is sent to Core2 for transmission to T2.

Then T2 uses the resoure S1. It does not implement the servie, thus the

servie implementation at ompile time is redued to a diret all of the remote

servie, disregarding whether the resoure is global or loal sine it is neessarily

global. It therefore loates S1 through its global table.

It is onsidered that the resoure S1 is managed loally by Core1 and diretly

inaessible by the other nodes. All requests for an operation on S1 must be done

by Core1. In the global table, the value assoiated with eah resoure is the ore

identi�er on whih it is loated.

Resoure Core ID Status Attributes Pointer

S1 1 Created Shared 0x90000150

Table 4.1: Resoures table example

In this ase, Core2 sends a message to Core1 speifying the identi�er of the

Semaphore and the request (Semaphore loking). The message is reeived by Core1,

via a thread dediated to this task. The request of T2 is performed on Core1 and

a proxy of T2 is plaed in the waiting queue of S1.

The advantages are that this solution is salable beause all ommuniations are

done by message passing and that there is no on�it about the ownership as the

resoure is still managed by the reator of the resoure. On the other hand, the

drawbak onsists in the fat that all operations on a resoure are entralized on

reator's loation.

When T1 releases the semaphore, T2 is the highest priority thread waiting and

therefore takes the Semaphore. The information is returned to Core2 in another

message. T2 is then released and beomes ready to run.

Possible senarios

106

Chapter 4. Operating System for Dynamially and Reon�gurable

Heterogeneous SoC

When a thread uses a servie of the operating system, there are three possible

senarios:

1) the server is implemented loally, and the resoure is loal. In this ase, after

loating the resoure, the thread alls diretly the loal server and the resoure

is handled diretly by the servie (Fig. 4.19 and 4.20).

��

�

�����

�
�

	
�����

���

� �����������

� ����

��������

�� �������
��������

�

�����

������

�

� �
�

�������
�������� ����
��������

����� �����
������
�������

�
� �

�
���������
���������

� �����!��"�

��������	

Figure 4.19: Senario 1 platform

�

��������	

�
�

�
�

����

� �
�

�
�

����

���	
�����

�	
�����

��������	����������������	������	
���������������������������������������

Figure 4.20: Senario 1 datagram

2) The server is implemented loally, and the resoure is remote.

The server is present loally but does not have the resoure, it must �rst

loate it. One loated, it is responsible for sending a message to the ore whih

possesses it for the latter to proess the request in its plae (Fig. 4.21 and 4.22).

4.4. Coneption 107

�� ��

�

������
��	
��

�
��

�
�

�
���

������
�����

�� ��
���������

� ����

���
����

�� ���������������	

�

�
		� �
		�

��	
��

��

��	
��

��

� �

���!���
"�
����#���
�����!���

�
		� �
		�������
�����!��

�
� �

"��������������!���

�
�

� �����$�
%�

��������	

Figure 4.21: Senario 2 platform

�

��������	

�
��

�
��

�����

� �
��

�
��

�����

����	

����	

�
�	

�
�	

�
�	

�
�	

�
��
��
�

�
��
��
��
��
��
�

�
��
��
���

��
���

�� �������
�����

� ������
����
�
�
�������
�
��
�
���������
�
��
�
���
!"
�
�
�
����������
�
�
�
���#���

�
��
��
�

��
�

��
��
�

��
�

�

�
���$�

�
���$�

!%
&��� ���'

�������
���$�

Figure 4.22: Senario 2 datagram

3) The server is not implemented loally, and the resoure is remote.

A servie not implemented loally is delined into two di�erent versions:

a) The server implements a loalization mehanism: the server an not handle

resoures, but it is able to loate the resoure. One loated, it sends a

message to the ore whih own the resoure (Fig. 4.23 and 4.24).

108

Chapter 4. Operating System for Dynamially and Reon�gurable

Heterogeneous SoC

�� ��

�

������
��	
��

�
�� �
���

������
�����

�� ��
���������

� ����

���
����

�� ���������������	

�

�
		� �
		�

��	
��

��

��	
��

��

� �

���!���
"�
����#���
�����!���

�
		� �
		�������
�����!��

�
� �

"��������������!���

�
�

� �����$�
%�

��������	
�

�

Figure 4.23: Senario 3a platform

�

��������	
�

�
��

�
��

�����

� �
��

�
��

�����

����	

����	

�
�	

�
�	

�
�	

�
�	

�
�����������

� ����������
�� ���!���!�����������"���"��#��

���������!

���������!

���������!
�

���������!

�������!

����"

����"
�

����"

"

Figure 4.24: Senario 3a datagram

b) The server is not implemented (Fig. 4.25). The all for this servie has re-

sulted in sending a message to another ore whih is known to own the servie.

Then that other ore has the resoure, or by extension, is able to loate and

deliver the message to ore whih e�etively owns it (Fig. 4.26).

4.4. Coneption 109

�� ��

�

������
��	
��

�
�� �
���

������
�����

�� ��
���������

� ����

���
����

�� ���������������	

�

�
		� �
		�

��	
��

��

��	
��

��

�

���!���
"�
����#���
�����!���

�
		� �
		�������
�����!��

�
� �

"��������������!���

�

� �����$�
%�

��������	

��

�
��

�
		�

��	
��

��

�

�
�

Figure 4.25: Senario 3b platform

�

��������	
�

�
��

�
��

�����

� �
��

�
��

�����

����	

����	

�
�	

�
�	

�
�	

�
�	

����

����

�
�

�
�

�
�

�
�

���������

�����������

���������

���������

�����������

�������

����

������

����

�

Figure 4.26: Senario 3b datagram

4.4.3 Multiore layer

The abstration provided by the software arhiteture has to be integrated in an

operating system. We have to keep up the existing struture of this operating

system, espeially the servies it provides. In a ommon operating system, a thread

aesses the operating system servies via lassial system alls (ie. diret onnetion

to the alled primitive). To abstrat remote aesses to an operating system resoure,

110

Chapter 4. Operating System for Dynamially and Reon�gurable

Heterogeneous SoC

an additional layer must be added. This layer has three objetives:

i) to make the di�erene at ompile time, between a request for reating remote

or loal resoures

ii) to translate alls to the operating system primitives into messages understand-

able by the servers

iii) to manage the heterogeneity of the platform: di�erentiation of how to manage

a software thread with how to proess with a hardware thread

����������	
������

���������	
��
� ��
�����	�
������
� ��������
����

� ����������	
��������������������
� �����
���
������
�����������������
��
� ���������
�������
�����������������	�

������	�
��������

������ �� ��� ���

����

 	!����������

��

��
�����������������
� �	�
"
���
 �#
� �������
������$����	

��
��
� %	��	
��&
�����
�!
��������
�	
��
���

Figure 4.27: Operating system arhiteture

The implementation of this multiore layer requires us to identify the existing

mehanisms permitting to the di�erent nodes of the system to ommuniate. These

mehanisms must be adapted or modi�ed to allow sending a message from a ore

to another and to ensure the transfer of all the neessary information. Finally, the

operating system should implement the following modules:

• a module that implements a servie of message passing

• one or several modules that allows to manage the resoures available on

the platform (e.g. a Semaphore servie)

• a module enabling to abstrat the use of the partial and dynami reon-

�guration

4.5. Implementation 111

4.5 Implementation

4.5.1 Modular operating system: MutekH

To validate the hoies and onepts to be implemented in order to realize this

operating system, we will use an existing operating system: MutekH [LIP6 2012℄.

This operating system was hosen beause it is a multiore heterogeneous operating

system, open soure and urrently still maintained by the LIP6 laboratory (www.

mutekh. org).

4.5.1.1 Main features

The following table lists the features of this operating system and ompares them

with what is expeted of our "ideal" operating system (HSoC OS).

Sheduling

HSoC OS MutekH

Type Preemptive Preemptive

Criteria priority round robin

Max. number of task. >= 16 unlimited

Thread servie HSoC OS MutekH

Create Yes Yes

Delete Yes Yes

Suspend Yes Yes

Resume Yes Handled by the

sheduler

Mutex servie

HSoC OS MutekH

Create Yes Yes

Delete Yes Yes

Bloking take Yes Yes

Non-bloking take Yes Yes

Release Yes Yes

Priority inheritane Yes unknown

Deadloks management Optional No, non-bloking take

possible

Semaphore servie

HSoC OS MutekH

Create Yes Yes

Delete Yes Yes

Bloking take Yes Yes

Non-bloking take Yes Yes

Release Yes Yes

112

Chapter 4. Operating System for Dynamially and Reon�gurable

Heterogeneous SoC

Message Passing

servie

HSoC OS MutekH

Bloking send Yes No

Bloking reeipt Yes No

Non-bloking send Yes No

Non-bloking reeipt Yes No

Memory alloation

servie

HSoC OS MutekH

Fixed alloation Yes Yes

Dynami alloation No Yes

Remote

ommuniation

OS HSoC OS MutekH

Resoure reation Yes No

Resoure destrution Yes No

Resoure manipulation Yes No

Debug - Monitoring

HSoC OS MutekH

Support GDB Optional but

reommended

OK

Statistis Optional Yes

Hooks Optional Yes

Hardware Thread

servie

HSoC OS MutekH

Create Yes No

Delete Yes No

Suspend Yes No

Resume Yes No

Hardware Threads

sheduling

HSoC OS MutekH

Preemption Save and restoration

through readbak

No

Reloation Yes, on homogeneous

areas

No

4.5. Implementation 113

Multiore support

HSoC OS MutekH

Bootloader

management

Supervisor proessor Supervisor proessor

Task migration Optional Yes, pointer to the ode

in shared memory

Features

HSoC OS MutekH

Kernel footprint < 25 ko �

Memory safety Memory Protetion

Unit

Memory Management

Unit

Miroblaze Port Yes Partially done

(funtional)

Abstration API Industrial standard POSIX standard

Spae address Uni�ed for every ores Shared memory

Modularity Modular OS servies OK

4.5.1.2 Servies struture

Currently, MutekH o�ers modular servies to be implemented on the target plat-

form. Being an exo-kernel, additional servies are de�ned as libraries (Fig. 4.28).

These libraries are separated into two ategories: OS Interfae Libraries whose APIs

are provided by the user and Servies Libraries whose APIs are provided by the op-

erating system.

Figure 4.28: MutekH global view

114

Chapter 4. Operating System for Dynamially and Reon�gurable

Heterogeneous SoC

The ore of MutekH, Hexo (Hardware independent kernel ode), provides the

following servies:

• memory alloators

• memory regions

• page alloator

• sheduler

• timer

• semaphore

In order to satisfy the oneption requirements desribed in the previous setion,

we need to add a new library whih will be used as an multiore resoure manager.

This library has to handle the loal and remote aesses to every resoures of the

platform providing a ommon API for every servers of the platform. In our ase,

we rely on the MRAPI spei�ation provided by the MCA (Multi-Core Assoia-

tion [Assoiation 2012℄). This spei�ation whih o�ers an API to aess to global

servies is detailed in the next setion.

4.5.2 MRAPI Spei�ation

4.5.2.1 MRAPI de�nition

MRAPI (Multi-Core Resoure Management API) is a spei�ation whih aims to

o�er a standard API de�ning basi synhronization mehanisms, memory aesses

and system metadata. Synhronization mehanisms inludes Mutexes, Semaphores

and pairs of Reader/Writer loks. Aessed memories an be shared or remote,

whereas system metadata addresses the ollet of hardware informations.

Their approah onsists in suppressing the dependeny of the existing standard

with the SMP arhiteture and provide an API whih ould be easily implemented on

a distributed operating system ontaining heterogeneous ores and shared resoures.

The advantage of using a standard API is the portability as a developer will be able

to loate the non-portable funtionalities.

MRAPI shares the same onepts as those found in MCAPI. It is orthogonal to

this spei�ation and the two are inter-operable. In these spei�ations, a system

is omposed of:

• domains: a domain is a system omponent whih inludes a ertain number

of nodes

• nodes: a node is an independent thread of ontrol. It may be a proess, a

thread, a hardware aelerator or an operating system instane

4.5. Implementation 115

By default, most resoures are shared between di�erent domains of the system.

For e�ieny reasons, it is possible to disable this by setting the attribute sharing

MRAPI_DOMAIN_SHARED to MRAPI_FALSE when reating the resoure.

4.5.2.2 MRAPI Mutexes

A mutex an be delared as a global resoure by speifying the proess-shared at-

tribute. The Mutex is based on POSIX mutexes. They must support the detetion

of deadloks and in this sense are similar to the implementation of mutex type

PTRHEAD_MUTEX_ERRORCHECK. The sharing of a mutex between multiple

proesses is not always possible. This is implementation dependent. In partiular

in the ase of the use of a fork.

They also support reursion but this is not the default ase. For eah lok, a

unique key is returned and is used to hek the order of alling Unlok primitives

for the same mutex.

Regarding other features, the priority inheritane mehanisms are not guaran-

teed until the spei�ation of threads in MTAPI

8

is not learly de�ned. The opera-

tions on mutexes are all bloking and by default, a mutex is visible to all proesses

and tasks. The primitives de�ned by the API are equivalent to the following POSIX

primitives:

• pthread_mutex_init (mapi_mutex_init)

• pthread_mutex_destroy (mapi_mutex_destroy)

• pthread_mutex_lok (mapi_mutex_lok)

• pthread_mutex_trylok (mapi_mutex_trylok)

• pthread_mutex_unlok (mapi_mutex_unlok)

Mutexes have attributes. These attributes must be de�ned before reating the

mutex and an not be hanged later.

4.5.2.3 MRAPI Semaphores

Semaphores are also based on the POSIX standard. All operations are bloking and

by default a Semaphore is visible to any proess or task. This servie also provides

primitives for notifying deadloks.

However, MRAPI only supports named Semaphores and the XSI interfae (X/Open

System Interfaes Extension) is not supported. Moreover, like Mutexes, the meh-

anisms to �ght against priority inversion are not guaranteed as MTAPI is not om-

pleted.

8

Multiore Task management API

116

Chapter 4. Operating System for Dynamially and Reon�gurable

Heterogeneous SoC

4.5.2.4 MRAPI Reader/Writer Loks

The Reader / Writer Loks an handle multiple onurrent aesses to read from a

memory, or exlusive aess for writing. To ensure fairness, MRAPI must implement

a mehanism for serializing queries so that no new read request is aepted from

the moment where a write request is pending. MRAPI Reader / Writer Loks are

similar to POSIX R/W Loks, but as MRAPI provides additional funtionalities,

MRAPI loks implementation is more �exible and for instane, loks an be shared

by all nodes as well as by only a group of nodes.

4.5.2.5 MRAPI Memories

MRAPI supports two types of memory: shared memories and remote memories.

MRAPI shared memories are similar to POSIX shared memory, exept that they ex-

tend their funtionality to several operating system, against one for POSIX. MRAPI

supports the heterogeneous elements of exeution and ensures onsisteny of shared

memory regardless of the operating systems or the types of ores used to ompose

the platform.

Remote memories relate memories aessible only through mehanisms external

to the proessor, that is to say other types of instrutions than simple load and

store. There are no onstraints on how to aess these memories, however, it is

preferable to provide an implementation in whih the sending of data and alulation

of data an be done in parallel. That is to implement mehanisms of non-bloking

ommuniation with the memory (read and write).

In addition, �ush and syn primitives are provided to support any ahe man-

agement, and aess of satter / gather type. There are two types of aess to a

remote memory, all to be uniform:

• aess with strit semantis: the type of aess must be spei�ed upon the

reation of the bu�er (e.g. DMA, software ahe, ...)

• aess without semantis: the type of aess spei�ed upon the reation is set

to MRAPI_RMEM_ATYPE_ANY. The atual type of aess is given only

when aessing the bu�er.

The use of pointers is still allowed but limited to aess to loal memory. Remote

aess must always be done making a opy and must use the MRAPI primitives.

The implementation must still provide at least the default type of aess

9

whih

must follow the strit semantis.

9

MRAPI_RMEM_ATYPE_DEFAULT

4.5. Implementation 117

4.5.2.6 MRAPI Metadata

Metadata provides aess to information about the hardware platform. You an a-

ess this information by using the primitive mrapi_resoures_get() whih returns

the information as a tree. Eah node of the tree represents a system resoure and

has attributes giving additional information about the resoure. The information

ontained in the tree an be �ltered using the input parameter subsystem_�lter.

The implementation of these �lters depends on the implementation.

4.5.2.7 MRAPI Attributes

The attributes were de�ned to allow an extension of the API. It is possible to de�ne

additional attributes spei� to its own implementation. In order to make the

API as portable as possible while keeping a �exible implementation, the attributes

are maintained in a data struture opaque, non-visible to the user. Eah resoure

is assoiated with a data struture and must have ertain attributes and default

value. These values are de�ned in the spei�ations. Three primitives are used to

manipulate the attributes:

• mrap_<resoure>_init_attributes()

• mrap_<resoure>_set_attribute: to be repeated for eah attribute to set

• mrap_<resoure>_reate(): takes as parameter attributes

• mrap_<resoure>_get_attribute()

Note: One the resoure is reated, its attributes should not hange. For a

resoures management like remote resoures, an additional layer should be imple-

mented. In our ase, this additional layer is brought by the servers arhiteture.

4.5.2.8 Non-bloking alls

There is three types of primitives:

• bloking primitives

• non-bloking primitives: it means primitives ontaining the word "_i" at the

end of their name, indiating that it returns immediately

• and "single-attempts bloking" primitives: namely, primitives inluding the

word "try" in their name

Remote memories are the only one to support non-bloking alls. In this ase,

the primitive an return the fous to the user before the ompletion of the operation.

To hek this ompletion, the API provides the following primitives:

118

Chapter 4. Operating System for Dynamially and Reon�gurable

Heterogeneous SoC

• mrapi_test() : test the operation test without being bloked

• mrapi_wait() : wait for the ompletion of an operation or until a timeout

• mrapi_wait_any() : wait for the ompletion of one of the running operation

given as parameters, or until a timeout

• mrapi_anel() : anel an operation

4.5.3 Hardware arhiteture

4.5.3.1 Homogeneous NoC-based platform

In order to validate the ommuniation mehanisms between two proessors, we �rst

design a homogeneous platform. In this platform, eah proessor is master on its

own bus and an aess to the NoC resoures through a bridge. A Bram memory is

used to test read and write mehanisms on the NoC.

������ ���	
�

������

�������	�

�����
����

������ ���	
�

������

�
����

����

����

���
�	��
	���

����

����

���
�	��
	���

����� �����

����� �����

Figure 4.29: Homogeneous NoC-based Platform

4.5.3.2 Development environment

The MutekH operating system [LIP6 2012℄ has been ported on the Miroblaze pro-

essor. To enhane its programmability, we developed an Elipse plug-in whih an

be integrated into the Software Development Kit (SDK) provided by Xilinx to pro-

gram the Miroblaze. This plugin allows to reate a new projet to deploy MutekH

on a Miroblaze proessor, hoosing the libraries to inlude into the kernel and the

memory mapping of the appliation.

4.5.3.3 Heterogeneous NoC-based platform

The heterogeneous platform we realized extends the homogeneous platform adding

Hardware Thread instanes (HT). These tasks perform system alls through the

Reon�gurable Zone (RZ) bus whih is a bus dediated to the hardware tasks in the

FOSFOR projet. Messages on the bus are reovered by a hardware ommuniation

4.5. Implementation 119

server responsible of translating requests into messages routed by the NoC towards

a proessor. Experiments on this platform will be desribed in the Chapter 5.

������ ���	
�

������

�������	�

�� �
��

������

	���

��
�
�

���
�
����

�	���� �
!�

������ ���	
�

������

������

�
����

����

�"��

�#�
�	"�
	���

����

�"��

�#�
�	"�
	���

�$����

��

�������������� ��������������

����	
������������

����� �����

�%������

Figure 4.30: Heterogeneous NoC-based Platform

4.5.4 Domain de�nition

The platform is onsidered to be a NoC-based design and eah ore, proessors ores

or reon�gurable ores, have a unique identi�er on the network-on-hip.

We ould have de�ned a domain as a Network-on-Chip, however this would have

led us to de�ne a ore as a node. This situation would be problemati beause as

the node identi�er should also be unique, a ore would have to ensure that the num-

ber it hose is not already used by the other ores onneted to the network when

reating a new node. Another solution would be to request to a ore onsidered as

a supervisor, to generate a number for it, what ould also be a bottlenek.

For these reasons, we deide that a domain is de�ned by a ore. As every ore

are already onneted and de�ned on the NoC by a unique identi�er, the domain

number is derived from this identi�er. So, to attribute an identi�ation number to a

new node, a ore performs it independently from the others ores managing a loal

table.

This solution onsiders that in the platform, only the hardware thread an be

reon�gured. In this implementation, we do not take into aount the possibility

to reon�gure a dynami partition instantiating a proessor ore as de�ned in the

Figure 4.30, but only instantiating a Hardware Thread.

120

Chapter 4. Operating System for Dynamially and Reon�gurable

Heterogeneous SoC

4.5.5 Node de�nition

As regarding the MRAPI spei�ation a node should be an independent thread of

ontrol. In MutekH, we de�ned that a software node is implemented as a POSIX

thread. This hoie has been made beause a node is onsidered to be mapped any-

where on the network regarding appliation needs, so a node number is dynamially

generated by a ore when initializing the node.

On the hardware side, a hardware thread running in a reon�gurable partition is

onsider as a node, and like the software operating system, the Hw MRAPI module

is responsible for generating the node identi�er of eah hardware threads.

4.5.6 MRAPI types

In the Multi-Core Assoiation (MCA) implementation, used types are de�ned in

the �le ma.h. De�ned types are pre�xed by �ma_�. Symboli onstants are then

de�ned in order to homogenize the di�erent implementations under generi types

pre�xed by �mrapi_�.

In our ase, the implementation is done in the mrapi_impl_spe.h �le. We

assoiate �mrapi_� types to �mmh_� types (MRAPI MutekH) de�ned in the �le

�mmh.h�, whih are themselves linked to already de�ned types in the MutekH kernel

(hexo/types/h) (Fig. 4.31).

The implementation is done to be deployed on a 32-bit wide arhiteture. Re-

garding primitives implementation, it exists two levels of �les: mrapi.h and mrapi.

inluding API primitives as de�ned in the spei�ation whih only hek spei-

�ed errors messages, and mrapi_impl_spe.h and mrapi_impl_spe. inluding

the e�etive implemented API primitives whih ontent is spei� to the targeted

operating system and platform.

4.5.7 Resoures system alls

4.5.7.1 Priniple

A thread wanting to aess a system resoure, whih ould be loal or distant, an

do it in a transparent way using the MRAPI primitives. A all to one of these

primitives when onerning a system resoure, is translated by a all to a �exible

server.

A �exible server is an operating system servie whih ould be implemented in

three ways:

• with a minimal servie unable to loalize a resoure but able to trans-

mit a request to aess to remote servies to another ore

• with a partial servie able to loalize a resoure and so to request a

remote aess to the owner

4.5. Implementation 121

��������

������	

���������
�
�������
�

��	����

����

��������

���������
�
�������
�

������	�����

���������
�
�������
�

�����

�������

���������
�
�������
�

�����

���������
�
�������
�

����	�������

���������
�
�������
�

��������������	��

���������
�
�������
�

����

��������������	�	

���������
�
�������
�

����

�����������	���������	

���������
�
�������
�

������������	���������	

���������
�
�������
�

������������������	

���������
�
�������
�

������

�����������	���������	

���������
�
�������
�

������������	���������	

���������
�
�������
�

������������������	

���������
�
�������
�

Figure 4.31: MRAPI library �le struture

• with a full servie able to loalize a resoure and so to request a remote

aess to the owner but also to manage resoures loally

4.5.7.2 Loal tables

In order to store all neessary information to ommuniate between nodes, three

loal tables are reated (Fig. 4.32): a servies table whih remains the same all

along the appliation exeution and so is de�ned as a stati table, a resoures table

whih is updated eah time a new global resoure is reated and a nodes table whih

is updated eah time a node is reated inside the domain (ie. on the ore). The two

latter are managed as dynami hain lists. Eah table is reated at the initialization

of the ore and is shared by every node running on it.

122

Chapter 4. Operating System for Dynamially and Reon�gurable

Heterogeneous SoC

������

����	
���� 	������	
���� ��	�����	
����

���������
������	
��

���������
������	
��

�

���������
������	
��

�
�����	�����
��
������

�
�����	�����
��
������

�

�
�����	�����
��
������

���
�������
��
������

���
�������
��
������

�

���
�������
��
������

������ ������ ���������

Figure 4.32: MRAPI loal tables

4.5.7.3 HAL ommuniation support

To enfore the synhronization between the di�erent ores, we need to rely on a mul-

tiore ommuniation API whih allows to send messages from one ore to another.

This API must o�er low-level primitives to send and reeive these messages. In or-

der to lower the global footprint of the MRAPI implementation, this ommuniation

layer is implemented at the HAL level.

4.5.7.4 Remote all management

When a remote all is performed, the message is gathered by a speial thread running

on eah ore. Conneted to the message aknowledgement mehanisms provided by

the implementation, this thread wakes up, reate a replia whih will proess the

all and go sleep until the all is ompleted or another message arrived (Fig. 4.33).

������

����������	
	���
������

������
������

������
������

�����

������

���

�	�
�������

���������
����	��
��	���
�	�������

�
�
�
�
�
�
�

���

����������	������

�
������������

�������������	
	����	����	���	� ����

��������� �����!�"������	��

���������
������"������
"���������	��

����������������
��#	������������!����
�"�

� �

�

����	

�

�

�

�

�

�

�

�

�

�

Figure 4.33: Requests management proxies

4.6. Conlusion 123

4.6 Conlusion

In this hapter, we de�ned the spei�ation of an ideal operating system whih

would be able to manage a heterogeneous reon�gurable system-on-hip. Regarding

the multiore and heterogeneity issues, this operating system have to provide simple

ommuniation mehanisms and above all, be enough �exible to e�iently use the

dynamiity brought by the Dynami and Partial Reon�guration.

To manage it, we relied on the MRAPI spei�ation whih provides a simple API

on top of the operating system. This API allowed us to implement a �exible server

mehanism to adapt the set of servies provided by the operating system to the ore

is running on. Moreover, the modular ompilation of the MutekH operating system

we hose as a basis is well suited to enfore an easy implementation of a design spae

exploration tool.

In the next hapter, we evaluate the performane of the proposed solution when

integrated in a full heterogeneous and dynamially reon�gurable System-on-Chip.

Chapter 5

Appliation deployment

Contents

5.1 Introdution . 125

5.2 Platform building . 126

5.2.1 Miroblaze platform . 126

5.2.2 Read and Write timings . 127

5.2.3 System alls . 131

5.2.4 Hardware Threads enapsulation 134

5.3 Traking appliation . 135

5.3.1 Presentation . 135

5.3.2 The Camshift IP . 137

5.3.3 The DVI IP . 138

5.3.4 Appliation deployment . 139

5.3.5 Results and performanes . 142

5.4 Conlusion . 143

In this hapter we implement a set of features exposed in the previous hapters

whih haraterize an HRSoC, and we build a demonstration platform in an inre-

mental way in order to detail these di�erent features. We give experiment results

about the omponents of the system, inluding data transfer and system alls tim-

ings as well as memory footprints for the software arhiteture. We also provide

timings and resoure usage for the hardware one.

5.1 Introdution

A demonstration platform (Fig. 5.1) is built to highlight the di�erent ommuni-

ation and abstration mehanisms provided by this operating system dediated to

reon�gurable platforms whih allows to take advantage of the dynami and partial

reon�guration tehnology.

This platform is omposed of a ouple of Miroblaze proessors, eah one be-

ing master on its own PLB bus. Also, both have aess to a DDR2 memory, an

interrupt ontroller is used to notify the reeption of a message by the PLB-NoC

bridge and a timer gives the operating system tik and the ability to proess timing

126 Chapter 5. Appliation deployment

measurements.

Spei�ally, the seond Miroblaze has an aess to the FaRM ICAP ontroller

whih allows it to partially reon�gure the FPGA. It has also an aess to a DVI

ontroller and is responsible for displaying the proessed video. In the frame of this

demonstration, the video will be stored into the DDR2 memory.

��������	

�������

��	
�������������
���
�����	

	
�����

	
����� 	
�����

	
�����

��
����
�������
�

���
�

 ����!

����
�
����

����

����
�
����

�������

������ ���
�
��
����
�������
�

��������	

 ����!

�����

���� ��

�����

���� ��

	
���"�

!"
 ��
�#

!"
 ��
�$

	
���#�

!"
�����

�$�%��

%���

Figure 5.1: Demonstration platform

Two bridges have been instantiated to permit the Miroblaze proessors to om-

muniate through the 8-port Draft NoC. On the bottom of this NoC, in addition to

these bridges, two hardware nodes an be hosted, namely Hw Node 0 and Hw Node

1. On the top of the NoC, the Hw MRAPI module is onneted to these hardware

nodes by a dediated bus (RZ bus on Fig. 5.1) and a Blok RAM onneted to the

port 5 allows to exhange small amount of data (8KB). All experiments have been

realized on a Virtex 5 LX110 Development Board (x5vlx110) designed by Avnet.

5.2 Platform building

5.2.1 Miroblaze platform

We start the building of our platform with a simple Miroblaze system (Fig.5.2).

The instrution and data odes of the appliation are stored in the Blok RAM of

the Miroblaze. We realized a port of the MutekH operating system on this pro-

essor. On top of this operating system, we add the MRAPI layer desribed in the

5.2. Platform building 127

Chapter 4 and ported on the MutekH operating system. The memory footprint of

eah one of these layers is spei�ed in the Table 5.1.

��������	

�������

��
����
�������
�

���
�
����

���	
�

����
�
����

����

Figure 5.2: Miroblaze platform

Component Memory footprint Overhead

MutekH 56392 Bytes 0

with MRAPI 57592 Bytes 1200 (2.12%)

with appliation (1 node) 58080 Bytes 1688 (2.99%)

with appliation (2 nodes) 58104 Bytes 1712 (3.03%)

with appliation (3 nodes) 58112 Bytes 1720 (3.05%)

with appliation (8 nodes) 58128 Bytes 1736 (3.07%)

Table 5.1: Software layers footprints

The bigger amount of memory that we an provide in the loal BRAM of the Mi-

roblaze proessor is 64 KB. Even if the memory footprint is lower than this apaity,

stak and heap over�ow an our when reating new threads. This is why in the

next steps in whih the MRAPI layer is inluded, we onsider the appliation ode

to be stored in the DDR2 memory beause its storage apaity is onsiderably more

important. Otherwise, the appliation is onsidered to be stored in the loal BRAM.

Table 5.2 gives an overview of the latenies generated by the storage of the pro-

gram and data odes into an internal BRAM memory, an external SRAM memory

or an external SDRAM memory for the same appliation:

5.2.2 Read and Write timings

Memory aesses:

To abstrat the heterogeneity of the appliation, spei� ommuniation meha-

nisms have to be implemented, both in hardware and software, espeially the aess

to the system memory distributed all over the platform. Memories inlude external

128 Chapter 5. Appliation deployment

Storage Memory without

Cahe

with Cahe

BRAM 4.080 ms 960.168 us

SRAM 57.604 ms 17.282 ms

SDRAM 93.703 ms 29.283 ms

Table 5.2: Code exeution time for a Miroblaze proessor (ML506 � 125 MHz)

DDR2 memory and loal Blok Rams onneted on the top of the NoC (Fig. 5.3).

��������	

�������

��
����
�������
�

���
�
����

���	
�

����
�
����

����

��������������	����
������

�������

�������

����

�����

�������

����� �

�#
���
 %

Figure 5.3: Read and write test platform

The arhiteture of the bridge developed to interonnet the PLB-based Mirob-

laze system with Draft, the network-on-hip implemented by CAIRN, is depited

in Figure 5.4. This one is based on the PLB Master Burst IP [Xilinx 2010b℄ and

allows half-duplex transfers between the PLB to the NoC interfaes and data opies

between two bu�ers mapped on the PLB memory. These transfers are ontrolled by

the Master Command FSM whih is driven by the proessor using ontrol registers.

To this platform, we add a hardware thread instane (Hw Node 0) whih an

also perform diret read and write aess to the BRAM NoC memory and indiret

ones to the DDR2 memory passing through the bridge. Indiret beause the bridge

being ontrolled by the proessor, data paket an ontinue to the DDR2 memory

only if this one enables it.

Tables 5.3 and 5.4 detail the data transfer timings between software or hardware

nodes and the platform memories. The program ode is stored in the loal BRAM

5.2. Platform building 129

��������	

��
��

�
�	
���������

�
�

�

�

�

� �

�

�

�

�

	

����
��

������

���
	��

�	����

�

�

�

�	��
���������

�
�	����

�	������

����	
��������

��

�

����

����	�
	���	
�

Figure 5.4: Bridge PLB-NoC arhiteture

of the Miroblaze.

Node DDR2

(yles)

Throughput Bram-NoC

(yles)

Throughput

Sw : write 1 KB 4390 17.11 MB/s 1961 38.30 MB/s

Sw : write 2 KB 8742 17.18 MB/s 3637 41.30 MB/s

Sw : write 4 KB 17446 17.22 MB/s 6988 42.99 MB/s

Sw : write 8 KB 34854 17.24 MB/s 13721 43.79 MB/s

Hw : write 1 Ko 2152 34.9 MB/s 1354 55.48 MB/s

Hw : write 2 Ko 3691 40.7 MB/s 2667 56.33 MB/s

Hw : write 4 Ko 6735 44.6 MB/s 5290 56.80 MB/s

Hw : write 8 Ko 13443 44.7 MB/s 10494 57.26 MB/s

Table 5.3: Timings in yles to write into platform memories

Table 5.5 details the timings for the read and write transations from a hardware

thread to a BRAM onneted on the top of the NoC. Timing measurements follow

the data path visible in the desription of the Network Interfae of the hardware

thread (f. Setion 2.3.3.5).

This table shows that the time needed to proess a read transation is more

important than to proess a write transation. This is due to the fat that there

is a delay needed when setting the address before to get the data from the BRAM

130 Chapter 5. Appliation deployment

Node DDR2

(yles)

Throughput Bram-NoC

(yles)

Throughput

Sw : read 1 Ko 7658 9.80 MB/s 3016 24.90 MB/s

Sw : read 2 Ko 15278 9.83 MB/s 5446 27.58 MB/s

Sw : read 4 Ko 30518 9.84 MB/s 10306 29.15 MB/s

Sw : read 8 Ko 61002 9.85 MB/s 20504 29.30 MB/s

Hw : read 1 Ko 1956 38.40 MB/s 2154 34.87 MB/s

Hw : read 2 Ko 3636 41.32 MB/s 4254 35.31 MB/s

Hw : read 4 Ko 6924 43.39 MB/s 8447 35.57 MB/s

Hw : read 8 Ko 13685 43.91 MB/s 16845 35.67 MB/s

Table 5.4: Timings to read from platform memories

but also an additional 1-yle delay is introdued to ensure that the NoC is ready

to transfer a data. This lateny has been added to avoid timing failures and data

loss but an be optimized in some ases.

Operation Time

Push wr. req. by User FSM 6 yles

Pop wr. req. by Paketizer 7 yles

Proess wr. req. by Paketizer and DMA 8 yles

Push rd. req. by User FSM 8 yles

Pop rd. req. by Paketizer 9 yles

Proess rd. req. by Paketizer and DMA 10 yles

Write 32-bits word (Full proess) 16 yles

Read 32-bits word (Full proess) 21 yles

Table 5.5: Network Interfae Communiation Measurements

Node Communiations:

In addition to memory aesses, the platform o�ers to the nodes the ability to

initiate diret ommuniations. Table 5.6 presents the network-on-hip interfae

performanes. The protool used to abstrat the heterogeneity of the ommunia-

tions has been introdued in the Setion 2.4.2.

We an see that the ommuniation between software and hardware nodes is

limited by the bridge performanes but globally, the DMA mehanism implemented

inside the bridge provides e�ient and fast ommuniations between the di�erent

domains.

5.2. Platform building 131

Sender Reeiver Timing Throughput

Sw domain Sw domain 2301 yles 32.64 MB/s

Sw node Hw node 2069 yles 36.30 MB/s

Hw node Sw node 2138 yles 35.13 MB/s

Hw node Hw node 1341 yles 56.01 MB/s

Table 5.6: NoC Send timings for 1 KB data

5.2.3 System alls

The platform used to test the di�erent system alls on�guration is illustrated in

Figure 5.5. The system is omposed of three domains: two software ones represented

by the domains 0 and 1, and a hardware one as the number 2.

��������	

�������

��
����
�������
�

���
�
����

���	
�

����
�
����

����

��������������	����
������

�������

�������

����

����$

&3456��

�����78

9����:�

;<
6��
 =

;<
�>?&�

�@�ABC

DD>�
�
����

�������

���
�
��
����
�������
�

��������	

���	
�

�����

&3456��

����
������ E F����� G

F����� �

�

�

�

�

Figure 5.5: Hardware platform used to test system alls proedures

One ommuniation mehanisms is set up, we an add the upper layer of the

ommuniation infrastruture. In this way, we extend the platform inluding the

Hw MRAPI module (Fig. 5.6) on top of the NoC. In phase A, the hardware node

proesses the system all. This all is then enoded and transmitted through the

Network-on-Chip by the Hw MRAPI module (Phase B). In phase C, the message is

reeived by the software node on the bridge inputs and an interrupt is launhed to

the Miroblaze proessor. Finally, the proessor gets the message from the bridge

and handles the request (Phase D).

132 Chapter 5. Appliation deployment

�������
����	
�

��
���
����

�����

����������

�����

����������

����
�

��

����
��

�������

�������

���������	
��������
�������

���������

	�
������

������ �
	

Figure 5.6: Hardware MRAPI global arhiteture

The Hardware MRAPI module is used to abstrat the heterogeneous ommu-

niation, espeially the aess to the synhronization mehanisms provided by the

operating systems distributed all over the platform (Fig. 5.5). It is onneted as

a master on the RZ bus and is responsible for the boot and the initialization of

the hardware nodes. It an be likened to a MRAPI ommuniation server. The

Network Interfae gives it a way to send or reeive MRAPI requests. The Sysall

Manager formats and deodes these requests. The resoure usage of this omponent

is desribed in Table 5.7.

Component Reg. LUTs BRAMs /

FIFOs

DSP Freq.

(MHz)

Hw MRAPI 312 541 2 0 251.256

Table 5.7: Hw MRAPI Resoures usage

At the software side, times needed to initialize a node, to get its generated node

ID, and to initialize the mutex attributes are given in Table 5.8. The all to the

di�erent primitives of MRAPI often involves alling the mrapi_node_id_get prim-

itive. The two others are only alled when initializing the system.

System alls an be of two types: either loal or distant. In the ase of a loal

all, we measure the time taken to proess system all using the genuine primitives

provided by the operating system and the overhead brought by the MRAPI layer

(Table 5.9):

The main overhead is due to the management of the node tables used to alloate

5.2. Platform building 133

Primitives Sw Node (DDR2)

mrapi_initialize 1354 yles (17.6 us)

mrapi_node_id_get 1368 yles (17.7 us)

mrapi_mutex_init_attributes 1054 yles (13.7 us)

Table 5.8: Timings to loally initialize a node

Primitives MutekH MRAPI Overhead

mutex_reate 345 yles (4.4 us) 3383 yles (43.9 us) x9.8

mutex_lok 846 yles (10.9 us) 3018 yles (39.2 us) x3.5

mutex_unlok 1756 yles (22.8 us) 2888 yles (37.5 us) x1.6

mutex_delete 184 yles (2.3 us) 3580 yles (46.5 us) x19.4

Table 5.9: Timings to aess a loal Mutex resoure

or dealloate a new mutex resoure. When reating a mutex, we have to �nd a free

plae in the table and to initialize the resoure struture. After this proess, the

node ID is sent to the other domains of the platform. Moreover, the spei�ations

imposes several parameter heks and error management for eah system all.

In the ase of the distant all, we add the time taken to send a request message

to the owner domain of the resoure, and to reeive the return values. Also, di�erent

ouples of Node sender / Domain reeiver are possible and implemented: a software

node sends a request to a software domain, or a hardware node sends a request to

a software domain. System alls timings are depited in Table 5.10.

Primitives Sw Node to Sw Domain Hw Node to Sw Domain

mutex_reate 752 116 yles (9.77 ms) 740 611 yles (9.62 ms)

mutex_lok 652 898 yles (8.48 ms) 576 234 yles (7.49 ms)

mutex_unlok 767 580 yles (9.97 ms) 658 526 yles (8.56 ms)

mutex_delete 767 109 yles (9.97 ms) 729 167 yles (9.47 ms)

Table 5.10: Timings to aess a remote Mutex resoure

Details about these timings are given in Table 5.11 for the seond ase of the

Table 5.10, where a hardware node requests a resoure loated on a software do-

main. The di�erent setions when rossing over the MRAPI layers are illustrated

in Figure 5.7.

The main overhead is due to the preemption lateny between eah threads pro-

essing the system all, that is to say the Request Manager thread and the alloated

Proxy thread. This lateny depends on the operating system tik. In our ase, we

134 Chapter 5. Appliation deployment

����������
�

���������	
��
����	�������
	������

�����
���
��
������	������	���

�

����	
�
���
�

����������	�����

���������

�����
�����������

�����
���

���������

�	����	�����

��������	������	���
�

	�
�������
�

�	����������������
�������������

���������

��������
�	������

�����
��	��
���

�����
���

�����
���

�

�

�

�

� �

�

�

�

�

�

Figure 5.7: MRAPI remote all setions

annot set a tik lower than 3 ms.

A solution to overome this issue would be to target a more reent tehnology

suh as the Zynq platforms. With hardware dual-ore proessors, it would be pos-

sible to get a higher running frequeny and have eah thread running on a di�erent

ore.

The two following ases have not been implemented yet: a software node sends a

request to a hardware domain and a hardware node sends a request to a hardware

domain, beause no hardware servie has been implemented in this platform in the

frame of this thesis.

5.2.4 Hardware Threads enapsulation

The resoures measurements for the stati part of the hardware node when imple-

menting the pipeline mehanisms are illustrated in the Table 5.12.

On top of these abstration layers, an appliation omposed of software and

hardware threads an be deployed. In the next setion, appliation senario and

partitioning hoies are �rst desribed and, to onlude this hapter, appliation

performanes and results are given.

5.3. Traking appliation 135

Setions Create Lok Unlok Delete

Hw MRAPI

request

28 yles

(0.364 ms)

29 yles

(0.377 ms)

28 yles

(0.364 ms)

24 yles

(0.312 ms)

0 3747 yles

(48.7 µs)

3745 yles

(48.6 µs)

3772 yles

(49.0 µs)

3733 yles

(48.5 µs)

1 3537 yles

(45.9 µs)

3533 yles

(45.9 µs)

3538 yles

(45.9 µs)

3532 yles

(45.9 µs)

2 14011 yles

(182.1 µs)

16396 yles

(213.1 µs)

14143 yles

(183.8 µs)

11607 yles

(150.8 µs)

3 2606 yles

(33.8 µs)

2594 yles

(33.7 µs)

2599 yles

(33.7 µs)

2595 yles

(33.7 µs)

4 3775 yles

(49.0 µs)

3431 yles

(44.6 µs)

3252 yles

(42.2 µs)

3985 yles

(51.8 µs)

5 1627 yles

(21.1 µs)

1631 yles

(21.2 µs)

1642 yles

(21.3 µs)

1627 yles

(21.1 µs)

6 19590 yles

(254.6 µs)

17412 yles

(226.3 µs)

17541 yles

(228.0 µs)

17408 yles

(226.3 µs)

7 2602 yles

(33.8 µs)

2609 yles

(33.9 µs)

2599 yles

(33.7 µs)

2590 yles

(33.6 µs)

8 489 yles

(6.3 µs)

494 yles

(6.4 µs)

495 yles

(6.4 µs)

480 yles

(6.2 µs)

Total Sw 51984 yles

(675.7 µs)

51845 yles

(673.9 µs)

49581 yles

(644.5 µs)

47557 yles

(618.2 µs)

Hw Mrapi get

returns

1106 yles

(14.3 µs)

963 yles

(12.5 µs)

963 yles

(12.5 µs)

963 yles

(12.5 µs)

Proess re-

turns value

10 yles

(0.13 µs)

8 yles (0.10

µs)

8 yles (0.10

µs)

8 yles (0.10

µs)

Table 5.11: Detailed timings to aess a remote Mutex resoure

5.3 Traking appliation

5.3.1 Presentation

The appliation deployed on the demonstration platform is a target traking ap-

pliation whose the genuine version is illustrated in Fig. 5.8. This appliation is

responsible for deteting and traking targets in an infra-red video stream. In the

frame of this demonstration, the spatial resolution has been set up to 128x128 pixels

per frame.

The appliation is divided into four stati nodes, and a dynami one. The �rst

thread of the stati part orresponds to the aquisition of the data from the amera

(Aquisition). It is followed by the target detetion thread (Detetion). The third

136 Chapter 5. Appliation deployment

Component Reg. LUTs BRAMs DSP Freq. (MHz)

OS Interfae 38 73 1 0 956.938

System FSM 4 6 0 0 781.250

Syn. trl 104 156 1 0 284.333

FU Rev 68 226 0 0 248.369

FU Send 105 175 0 0 299.850

Token Counter 6 12 0 0 448.430

Token Cheker 9 15 0 0 534.474

FIFO Req. trl 37 60 1 0 284.333

FIFO Syn. trl 27 34 1 0 381.679

Syn. module 311 467 3 0 284.333

Hw Task stati 562 939 6 0 271.370

Table 5.12: Hardware Thread Resoures Usage.

���������	
�

�
�������
�
��
�����
����������

�����

�����
�

�����
�

������	
�����	�	�	
�

���������
��

�������

�	����

��������	
�
���	��

������	
��
���	��

������
���

���
�����

��

��

��

 !

��

��

 "

��

�����#���$

���
����
���%�������

�����#���$

���
����
���%�������

������
���

Figure 5.8: Target Traking Appliation

thread gets the results from the traking threads and ensures the ohereny within

a list of the urrent traked targets (CCM). A last thread asks for this list and

displays the bounding box of eah target into the input image (Inrustation).

In the version that we implemented, the dynami part of the appliation is repre-

sented by the traking threads, eah one responsible for maintaining the oordinates

of one of the deteted targets in the video (Traking) by omputing the Continu-

ously Adaptive Mean shift (Camshift) algorithm [Cheng 1995℄. As a result, they

5.3. Traking appliation 137

provide the CCM thread with the bounding box oordinates of the target they are

traking. In order to emphasize the management of the dynamiity provided by the

platform, we hose to implement the di�erent traking threads in hardware.

�����

���	

��������	
�

������	
�

�
��

�
�
��

�
��

�

�
�

�
��

�
��

�

Figure 5.9: Binary Long Objet (Blob)

Spei�ally, the ore responsible for the omputing is implemented in a hard-

ware thread, and a software one is in harge of both the initialization of this ore

and of the data transfer. Data transferred between the two threads onsists in a

Blob or Binary Long Objet, whih is a sub-frame supposed to ontain the target

to be traked. Therefore, for eah frame, there will be one blob per target (Fig. 5.9).

5.3.2 The Camshift IP

As said previously, a blob is proessed by a hardware task whih implements the

Camshift algorithm. The Camshift IP is implemented as pitured in the Figure

5.10. This IP reeives from the NoC the blob ontaining the target assigned by the

Detetion thread. This reeption is realized by the dediated Funtional Unit (FU

Rev), whih stores reeived data inside the thread memory (M1a or M1b).

Then the FU Rev sends a synhronization token to the Camshift ore embedded

in the Camshift Funtional Unit (FU Camshift). The ore omputes the target

oordinates before to save it with the noti�ation of onvergene (�ag indiating if

the target has been loked) inside the seond bu�er (M2a or M2b). After omputing,

the FU Camshift sends a synhronization token to the FU responsible for sending

the results.

Finally, the last Funtional Unit (FU Send) reads the values stored in the seond

bu�er and sends it to the software domains. After reeption, Domain 1's proessor

uses these oordinates to insert the bounding box, whereas Domain 0's proessor

aquires a new blob inside the urrent frame, depending on the reeived results.

All these synhronizations are managed by the Synhronization Module (Syn.

Module in Fig. 5.10), and ordered by the User FSM. Some data is diretly exhanged

138 Chapter 5. Appliation deployment

��
����

��
��	
���

��
����

���

���

������
����

��������
����

��

��

���

���

�����
�������
������

�� ������
�����������������
�� ������

��	
��������

Figure 5.10: Pipelined Camshift hardware node

between this User FSM and the FU Camshift in order to parametrize the reeption

request as we annot know the size of the next blob before the end of the ur-

rent omputation. This is why, as depited in Figure 5.11, we have to stall between

the end of the send request and the following yle of reeive-ompute-send requests.

����
�������

����	
�
�������

���
�������

��	�
������

�������
�

���	
��

������������

������������

����	
�����������

����

Figure 5.11: Pipelined Camshift User FSM

5.3.3 The DVI IP

The LX110 Development Board that we use for our demonstration platform does

not ome by default with a video output. In order to display the frames before and

after the proessing, we omplete the platform with a dediated daughter-board

whih provides, among other features, a DVI output. This output was driven by a

DVI IP that we developed and whose the integration in the demonstration platform

is detailed in Figure 5.12.

The IP has an aess to a VFBC hannel (Video Frame Bu�er Controller) whih

allows it to diretly read data from the DDR2 memory. It also o�ers a set of �ve

slave registers to the Miroblaze of the Domain 1 in order to on�gure the data

5.3. Traking appliation 139

���������	�
�
��������

����
����
�����

�
�
�

�
�
�

���������

��������

����
����������

������

�������

��	
�

��	
�

���	�

���

���������

����������

�������

�����

�����

��������

���

��� ���

!�"����"#�

�$"�

������

Figure 5.12: Integration of the DVI IP in the Demonstration Platform

transfer between the IP and the DDR2 memory. The VFBC port permits to aess

2-Dimensional frames inside the memory and so to dynamially adapt to di�erent

resolutions.

5.3.4 Appliation deployment

The appliation is deployed on the platform as depited in Figure 5.13. The soure

video is a gray-sale video and is aquired from the DDR2 memory so we skip the

pre-proessing of the inoming frame exept the binarization of the frame (Dete-

tion proess). In this video, we onsider that we already know the number of targets

so we an simplify the Detetion proess and the CCM omponent only need to

manage a stati list of these targets.

On the other hand, the seond part of the CCM proess running on Domain 1

is in harge of the reon�guration of the hardware tasks regarding the appliation

needs. It means the number of targets per frame and the maximum number of slots

dediated to the Camshift proesses (Fig. 5.14).

Figure 5.15 details the software nodes and their synhronizations and intera-

tions inside the platform using the Network-on-Chip ommuniation medium and

the operating system servies.

On Domain 0, the Aquisition node is not reated beause aquisition does not

our as video frames are pre-loaded in the DDR2 memory. Hene, the �rst reated

node is the Detetion node. The Detetion node gets frames from the DDR2 (Stati

Frames). A stati pre-initialized table permits the node to know how many targets

140 Chapter 5. Appliation deployment

��������	

�������

��	
�������������
���
�����	

	
�����

	
����� 	
�����

	
�����

��
����
�������
�

�������
�
 ����!

����
�
����

����

����
�
����

�������

������ ���
�
��
����
�������
�

��������	

 ����!

�����

��� !��

�����

��� !��

	
���"�

"#�!��
�$ "#�!��
�%

	
���#�

"#
�����

�$�%��

�� �&�'�(����)��
�

��)(��" ��)(���

�(*������
��&����(��
��&���

�������$ �������%

��������

Figure 5.13: Appliation deployment

Figure 5.14: Camshift slots (Virtex 5 LX110 devie)

5.3. Traking appliation 141

are presents in eah frame (Stati Targets).

Then the Detetion node ompares the number of deteted targets with the

number of hardware tasks whih are on�gured at this moment (Camshift Hw nodes).

If the number of reon�gured tasks is lower than the number of deteted targets and

that one or several partition slots are available to host a hardware Camshift task,

the Detetion node unloks the Reon�guration Manager node to have it performing

a reon�guration request.

Then the Reon�guration Manager node synhronize with the Reon�guration

Completer node whih is able to drive the FaRM IP to proess the requested reon-

�guration.

After the reon�guration request, the Detetion node alloates a Traking node

for eah one of the targets that an be proessed simultaneously by the di�erent

hardware Camshift tasks. Then the Detetion node unloks the Traking nodes and

waits for a synhronization signal from eah one of them to know when the frame

proessing is ompleted.

��������

�������	

�������

����������	
�

�����������
��

���������
���

���������
���

������������
���
�

�
�����
�����
�
���

���
�
�����

�������
������

� ����

�
�����
��	!"
�
�
���

�
�
�����
���

��	�#�����
$%����

��	�#�����
$%����

&�� &�� &��&��&��

�����

���

Figure 5.15: Detailed appliation deployment

The Traking node gets bak the information about the target (initial blob oor-

dinates and hardware node port number), then it extrats the blob inside the frame

before to send it to the hardware node.

The hardware node reeives the blob from the Network-on-Chip, proesses it and

142 Chapter 5. Appliation deployment

sends bak the oordinates of the new blob to both the Domain 0 and the Domain

1. Results are then olleted on the Domain 0 by the software Traking node asso-

iated with it, and on the Domain 1 by the Inrustation node.

The Traking node ompares the new oordinates with the previous ones and

heks if the onvergene ourred. If this is the ase, the node sends a synhroniza-

tion signal to the Detetion node to notify the end of the proessing. Otherwise,

the Traking node loop bak and send the new blob orresponding to the previously

alulated oordinates.

On Domain 1, the Inrustation node modify the bu�er used by the DVI IP in or-

der to enompass the deteted target, drawing a retangle around the target. One

every Traking nodes have onverged, the Detetion node starts a new proessing

round for the next video frame.

5.3.5 Results and performanes

Table 5.13 shows the hardware resoures needed to host the full demonstration plat-

form on the LX110 devie.

Slie Logi Utilization Used Available Utilization

Slie Registers 19980 69120 28%

Slie LUTs 29302 69120 42%

bonded IOBs 113 440 25%

BlokRAM/FIFO 75 128 58%

BUFG/BUFGCTRLs 7 32 21%

DCM ADVs 1 12 8%

DSP48Es 8 64 12%

ICAPs 1 2 50%

PLL ADVs 1 6 16%

Table 5.13: Demonstration Platform resoure utilization

Table 5.14 details the hardware resoures used by the partially reon�gurable

part of the Camshift node. The Hardware Task PRR oupies a partition as large

as the slot de�ned in Figure 5.14. The number of resoures overed by eah slot is

indiated in Table 5.15. The reon�guration overhead to load a new Camshift task

in this slot, using the FaRM IP running at 75 MHz, equals to 274 228 yles (=

3.56 ms (= 2.74 ms at 100 MHz)).

In our ase, this reon�guration lateny an be hidden by the fat that one

the Reon�guration Manager node requested the reon�guration, it is up to the

Reon�guration Completer node to proess the reon�guration while the Detetion

5.4. Conlusion 143

node ontinue its work with the urrently reon�gured hardware nodes. Also, other

solution like bitstream �le pre-fething an help reduing this lateny.

Component Reg. LUTs BRAMs /

FIFOs

DSP Freq.

(MHz)

User FSM 141 204 0 0 241.354

FU Camshift 193 178 0 1 81.618

Camshift IP 2835 6651 0 0 76.363

Hw Task PRR 3117 6974 0 1 81.618

Table 5.14: Hardware Thread Resoures Usage

Site Type Available Required Utilization

LUT 7680 6973 91%

FD LD 7680 3168 42%

Slie L 1380 1253 91%

Slie M 540 491 91%

DSP48E 24 1 5%

RAMBFIFO36 12 0 0%

Table 5.15: Camshift slot resoure utilization

Table 5.16 gives the di�erent timing results of the appliation. A graphial view

of these timings is given in Figure 5.16. We an see that the major part of the time

is spent in the binarization and the extration of the blob from the urrent frame

(get_blob).

In a further step, the aquisition hain and the pre-proessing of the Detetion

proess are planned to be implemented as hardware IPs. Also, regarding the blob

extration, the use of a proessor running at a higher frequeny will be su�ient to

signi�antly lower this overhead. With an average time omprised between 74.6 ms

and 135.1 ms using pre-binarized frames, the above improvements will permit us to

target real-time performanes.

5.4 Conlusion

This hapter detailed the design steps of a partially reon�gurable platform. We

built a heterogeneous platform system omposed of di�erent types of proessing

units. The omputational element inludes both general purpose proessors and

144 Chapter 5. Appliation deployment

(Domain) Setion Cyles Time

(0) Binarization 36923076 480 ms

(0) Detetion 1068 13.8 µs

(0) Chek slots 4 52 ns

(0) Allo. target 2409 31.3 µs

(0) Send attr. 6195 80.5 µs

(0) Init blob 207188 2.69 ms

(0) Get blob 11530 -

4791544

149.9 µs - 62.2 ms

(0) Send blob 6515 - 8706 84.6 µs - 113 µs

(0) Rev data 4805 62.4 µs

(0) Chek vge 1446 18.7 µs

(1) Dvi init 289 3.7 µs

(1) Display 168 2.1 µs

(1) Wait result 183 - 4687472 2.3 µs - 60.9 ms

(1) Inrust 31304 406 µs

(1) Display 376 4.8 µs

Per frame bypassing

binarization

� 74.6 ms - 135.1 ms

Table 5.16: Appliation timings

dediated aelerators.

The �rst step was to provide a low-level ommuniation layer, permitting the

user to proeed simple read and write transations. This former layer has been

evaluated and a fous has been set on the heterogeneous ommuniation.

As expeted, the ommuniation between hardware nodes is more e�ient than

between software omponents. Regarding heterogeneous ommuniation, the on-

eption of the DMA apable ommuniation bridge is a good trade-o� to take advan-

tage of the heterogeneous proessing without being penalized by the ommuniation

overhead.

The seond step rose up the abstration layer to the operating system level.

In this part, we evaluate the hardware thread enapsulation whih allows them

to proess system all. This ability is provided by the MRAPI layer, a multiore

ommuniation API ported on both the software and the hardware domains of

the platform. The overhead provided by this additional layer must be evaluated

aording to the advantage of a totally deentralized operating system servie set.

Again, regarding the ommuniation issue between heterogeneous omponents,

this abstration layer allows to onsider a �exible mapping of the appliation tasks

and so to optimize the data transfer between the di�erent nodes.

5.4. Conlusion 145

��������

�������	

�������

������������

�������������

������
�������
����

���
�
������

�������
������

������

������
��� !����

����

����"�����
#$�����

�������������

%��&����������

���'��������
����

(�����)�����

"�&*�!���

�!!�*������

����*����

����*(!�(

���*(!�(

����*(!�(

��+*���'!�

"�&*+��

�+�*����

��� !��

$���*���'!�

���'��

��� !��

,-����

.
���

/	�/�0�

-��.�0�

�12���

�2�0��3�1
�
���

-,�1�0��3�		/�0�

1
�,�0�

	-�4�0�

	,2�2�0��5�1��2���

,�1�0�

,�-�0�

�	�0�

/�4�0�

/�.1���

	1-�.�0��5��1
�,���

.1��4�0��5�1	�/���

4,�1�����3�	/.�	���
�+����������� ���������
(� ��������"��(�����)�����6

�������� 	/�-�0�

7!�(� ������������������
���������	�
������������

Figure 5.16: Detailed appliation deployment

Finally, all these ommuniation mehanisms open up the way to the build of a

heterogeneous platform with partially reon�gurable ability. The reon�guration is

proeed using the FaRM IP and allows to dynamially load any hardware threads

of the appliation.

The di�erent features of this platform are illustrated by the deployment of a

traking appliation. This deployment is an important step in the vision that we

have of the future of the embedded systems, espeially the image proessing, the

multimedia and the high performane omputing systems.

This implementation is e�etively a milestone towards the realization of an

HRSoC apable to host software tasks and hardware reloatable omponents, pro-

viding a ommon interfae to failitate both the ommuniation and the mapping.

We already planned future work in order to improve the performanes of this HRSoC

and make it a generi platform allowing to deploy and evaluate real-time applia-

tions on a physial system.

Chapter 6

Conlusions

6.1 Summary

6.1.1 Disussion

In this thesis, we disussed the programmability issues enountered when designing

reon�gurable systems. From the user point of view, who is onsidered to be an

appliation developer, either a software one or a hardware one, these issues on-

erns the management of the heterogeneity and the ability to take advantage of the

�exibility o�ered by the dynami and partial reon�guration tehnology.

To solve these issues, we have turned towards a solution whih would provide a

programming model �tting on eah kind of proessing ores embedded in the system.

These ores are the proessor ores and the reon�gurable IPs.

An important point when designing this kind of platform is to let the user the

possibility to hoose on whih ore eah one of the funtions or tasks of its applia-

tion an be mapped. This step of mapping should be as �exible as possible in order

to allow an e�ient design spae exploration and so to be adaptable to a larger

number of platforms.

Although the main feature of this programming model would onentrate on the

task ommuniation, this model should be extended to the servies provided by the

operating system. This onstraint is linked to the fat that the operating system

model is widespread and that we need to support legay model.

Moreover, eah task of the appliation should be able to aess any servies

provided by the system. Obviously, these aesses should be limited by timing on-

siderations and latenies overheads due to the physial loation of the operating

system servies regarding the tasks ones, but again, this hoie should be left to the

user.

6.1.2 Key ontributions

Addressing these issues respeting our onstraints required the realization of a new

operating system dediated to the reon�gurable systems, and espeially to the

dynamially and partially reon�gurable systems.

148 Chapter 6. Conlusions

The �rst step has been to leverage the hardware desription to the same level

as the software ones. Another onstraint was to keep using lassial HDL tools

provided by the FPGA manufaturers. In onrete terms, the objetive was not

to reate a new language but to provide a new abstration level to manipulate the

hardware omponent. At this level, the interation between a software task and our

hardware task model relies on a ommon interfae whih provides an aess to OS

primitives for the hardware tasks and gives us the ability to swap the way we map

a task, either in software or in hardware.

This programming model has been oupled with the integration of a preemption

servie inside the operating system. This servie is responsible for managing the

save and the restoration of the hardware tasks ontext. It relies on two features: in

one hand the knowledge of the internal struture of the on�guration �les, and on

the other hand the re-use of an existing IP (FaRM), whih permits us to improve

the reon�guration proess.

In addition, a reloation servie has been implemented. In this way, we inves-

tigate a new solution based on the reversal of the Isolation Design Flow provided

by Xilinx in order to design reloatable hardware tasks. With some additional on-

straints inserted in the PlanAhead tool and management sripts to automatially

insert these onstraints, we manage to reloate a hardware tasks from one partition

to another one using a unique partial on�guration �le.

On the software side, an implementation of the MRAPI spei�ation has been

done to failitate the synhronization with the hardware tasks. A set of three dif-

ferent operating servers has been proposed in order to �t with the needs of a reon-

�gurable platform.

Eah one of these servers respetively allows to aess diretly to a known remote

operating resoure (for instane, a Semaphore, a Mutex or a memory bu�er), to

loate and aess to an unknown remote resoure and to loally reate and proess

a resoure. These three types of servers permit to adapt the deployment of the

operating system resoures regarding the spei�ity of eah one of the ores it is

omposed of.

Finally, the implementation of a omplete heterogeneous and reon�gurable

system-on-hip is a good ahievement of this programming model on a physial

support.

6.1.3 Hypothesis and Limitations

The �rst hypothesis whih is also the �rst limitation of our operating system is

that we onsider the number of ore to be inferior to sixteen beause we deided to

spei�ally target multiore platforms and not manyore systems.

Regarding the ommuniation on the platform, the PLB struture has limit; in

6.2. Future Work 149

this sense AXI would be better as we ould onnet the hardware tasks diretly

to the AXI infrastruture, through the AXI-Stream interfae for instane, and so

onserve e�ient diret ommuniation with hardware and software task without

passing through a ustom bridge.

Also, when adding new abstration layers as the MRAPI layer, the prie an be

lower performanes, espeially regarding timing overheads whih an be important,

but the gain obtained in the programmability annot be negleted.

Finally, the hoie of keeping the manufaturer tools in order to perform the

reloation imposes us to be dependant of their evolutions, but also to their limits.

This is the ase when a routing proess does not provide the wanted results and that

the only solution would be to manually route the on�iting wires. This work an be

proessed using spei� tools like RapidSmith but in our ase, knowing these limi-

tations, the solution we propose an be easier and faster under favourable onditions.

6.2 Future Work

In future work, the management of the dynami and partial reon�guration in the

ase study that we used to demonstrate our propositions an be enhaned. Instead

of reserving the reon�guration of the hardware thread only to add or remove a

Camshift thread in the platform, we an proess funtionality swithing and imple-

ment some of the pre-proessing operations in hardware.

Another trak that ould be interesting in the future is to reonsider the assoi-

ation between an MRAPI node and a hardware thread. Keeping the onept that a

software thread is a node running on a proessor whih is a domain, we an enhane

the parallel de�ning a hardware thread as a domain, whih leads to de�ne a node

as a partially reon�gurable region (PRR). All PRRs will share the same hardware

thread proessing unit whih allows a PRR to send and reeive data, and also to

all loal or remote servies (Fig. 6.1).

Also, a �exible adaptation of the Proessing Funtional Unit (FU) ould be re-

alized to allow the user to hoose the interfaes required by the funtional unit. The

hoie an be made, for instane, between a memory port, in read or write aess, or

even both, and a FIFO port. Several ombination an be thought in order to make

a trade-o� between the enhanement of the stream proessing with FIFOs, and the

storage apaity and random aess provided by memory bloks. Then this is up to

the user to develop the logi glue whih will ontrol the aess to the data.

Regarding the reloation issue, we will investigate the Isolation Design Flow

whih is now available for the 7 series. Larger devies allow more �exibility for

the routing engine and so we ould inrease the suess rate of the proposed re-

150 Chapter 6. Conlusions

���������

���	
��

��������	
������������������

���������

���	
��� ���	
���

��������

����	��� ����	����

� �� �� ��

��

����������

���������	
�

���������

���	
��

��������	
������������������

���������

���	
��� ���	
���

��������

����	��� ����	����

� �� �� ��

��

����

�����

�����

����

�����

�����

����

�����

�����

����

�����

�����

���	
���

���	���	�������������	���	����	��

���	���	�������������	��
	�� ������!
"�#	$�����"
��

Figure 6.1: Hardware node implementation hoies

loation �ow. This type of design �ow leads the way to the oneption of very

�exible systems-on-hip in whih the di�erent tasks an be moved over the platform

regarding external parameters. These parameters an be in�uened by the power

onsumption, the heating issues or the ommuniation issues. For the last example,

the inreasing size of the FPGA an lead to important routing latenies whih an

be overome with the displaement of the ommuniating tasks.

Furthermore, the multipliity of the proposed features in a single devie open the

way to the management of omplex appliations in whih the numerous modes of

exeution and the assoiated quality of servie that must be provided by the system

should be handled.

To onlude, beside the tehnial aspet, a vision of the future of the FPGA, and

more spei�ally of the HRSoC, an be introdued. Today, FPGA manufaturers

adopt two di�erent approahes to speed up and failitate the development proess

on their devies. On one hand, the High-Level Synthesis (HLS) approah, proposed

by Xilinx, allows the user to desribe a hardware IP in a high-level language and a

speial synthesizer is responsible for the translation to the RTL level. The advantage

of this method is its modularity and the �ne-tuning possible using preise synthesis

options. The goal is limited to the enhanement of the IP development proess.

On the other hand, the OpenCL-based approah o�ered by Altera permits to de-

sribe the whole appliation in a high-level language and interfaes are automatially

reated to make the ommuniation between the di�erent parts of the appliation,

either software or hardware, transparent for the developer. In this way, this solution

6.2. Future Work 151

is more turned toward the high-performane omputing but the tuning apaity is

limited.

We think that these two approahes are intended to onverge and to form a

omplete design �ow allowing to reate HRSoC platforms and appliations from a

high-level model to a true implementation level.

To ahieve this, in this thesis we de�ned a low-level enapsulation of the hardware

omponent in order to support a data-�ow programming model, oupled with the

lassial threading model. The interfaes that have been de�ned provide a su�ient

abstration level to onsider a heterogeneous appliation to be homogeneous. From

here, only few e�orts are neessary in order to integrate these omponents into a

omplete design �ow able to automatially map eah part of the appliation and to

ensure their orret ommuniation.

However, even if we want to keep this abstration to be able to model the whole

appliation, we also want to keep a full ontrol over the hardware implementation.

In this way, the design of the hardware thread has been thought to be modular and

so it will be possible to automatially generate hardware tasks soure odes and

interfaes using a dediated high-level synthesis tools, and so to form a omplete

design �ow.

�����������

Appendix A

Network Interfae API

Contents

A.1 Supported requests . 153

A.1.1 Write request . 153

A.1.2 Read request . 154

A.1.3 Read request response . 155

A.1.4 Reeive request . 155

A.1 Supported requests

The two �rst basis request supported by the Network Interfae are the Send and

Reeive primitives. A Send request onsists in sending one or several pakets over

the network. Paket size is �xed by ommuniation medium design (ie. the NoC).

A paket is omposed of a header followed by data to transmit. Data and header are

represented by 32-bit width �its. A reeive request onsists in waiting for a paket

to ome from the network. It is a passive request whih involves no transmission

from the requesting thread.

The two others supported requests are the Write and Read primitives. A Write

request is similar to a Send request exept that additional header �its are sent after

the two main �its. The main �its are essential to ensure a orret routing inside the

network. The �rst �it ontains the sender and reeiver port address whereas the

seond one ontains the number of �its inluded in the paket.

A.1.1 Write request

Paket sending, from a thread to external memory onneted on the network.

The proedure SEND_PROC(data_size, data_ptr, port_addr, bu�er_addr) is

both used to send Write and Read ommands to a memory onneted on the NoC.

For a Write ommand, the parameters are the following :

⋄ data_size: size of the data to send in the internal memory

154 Appendix A. Network Interfae API

������� ��	�� ��
�	�
�����������������	

�������

����

�����������������

Figure A.1: Write request paket

⋄ data_ptr: pointer on the data to send in the internal memory

⋄ port_addr: port identi�er address of the external memory onneted on the

NoC

⋄ bu�er_addr: pointer on the bu�er in the external memory

A.1.2 Read request

Paket sending, from a thread to an external memory onneted on the network.

The paket ontains useful information for the memory to to read and send bak

read data. to the thread. In the ase of an exhange between hardware threads,

beause a thread owns its own internal DMA, the �it ��write_bu�er� is not used.

������� ��	�� ��
�	�
�����������������	

��HIJKLMN���

OPQO

�R�����������
�������	���

Figure A.2: Read request paket

For a Read ommand, the parameters are the following :

⋄ data_size : size of the data to read in the external memory (bu�er_size)

⋄ data_ptr : pointer on the data to read in the external memory (read_bu�er)

⋄ port_addr : port identi�er address of the external memory onneted to the

NoC

⋄ bu�er_addr : pointer on the bu�er used to write the read data. Used by the

external memory to make the response (write_bu�er)

It gives bak the hand to the user immediately after request parameters have

been staked into the FIFO.

A.1. Supported requests 155

A.1.3 Read request response

Reeption by a thread, of one or several paket from an external memory; Pakets

oming after a read request from the thread to this external memory.

������� ��	�� ��
�	�
����������������	

�������������

����

����������������S

Figure A.3: Read request response

A.1.4 Reeive request

RECEIVE_PROC(data_size, data_ptr, port_addr, bu�er_addr)

⋄ data_size : size of the data to reeive from the NoC

⋄ data_ptr : pointer on the bu�er used to write the reeived data in the internal

memory

⋄ port_addr : port identi�er address of the sender

⋄ bu�er_addr : pointer on the bu�er used to write the data. Not used by a

hardware task, only by the NoC-AHB bridge

It gives bak the hand one the depaketizer reeived the whole data. At this

moment, the on_duty_depak signal is leared.

Appendix B

Hardware CRC

Contents

B.1 Reloation proess . 157

B.2 CRC omputation . 157

B.3 Hardware CRC module . 157

B.1 Reloation proess

As disussed in Setion 3.4.3, in order to reloate a bitstream from one partition to

another it is neessary to proess to the readbak of the �rst partition.

After the readbak, the reloation to the other partition is done modifying the

FAR value (Frame Address Register) ontained in the readbak bitstream. As during

the module exeution, some on�guration data like the Flips-Flops or the memory

ontents may hange, we need to reompute the CRC for these new values to avoid

an ICAP rejetion.

Notie: Disabling the CRC ontrol is possible using the default value 0x0000DEFC.

However, for safety reason, this is highly inadvisable.

B.2 CRC omputation

Aording to [Xilinx 2006℄, the CRC omputation on the Virtex 4 devies is not

proessed using all data written to on�guration port, but only with spei� regis-

ters.

Regarding the Virtex 5 devies, the CRC omputation is done on 32 bits data

width and use the same polynomial than the Ethernet CRC32 (IEEE 802.3) [Xilinx 2001℄.

To design the hardware module responsible for the CRC omputation, we relied on

The Virtex 5 SeletMAP simulator provided in [Xilinx 2009a℄. Table B.1 shows

whih registers among the ICAP ones are used to perform the CRC omputation.

B.3 Hardware CRC module

The hardware CRC module has an input for the urrent CRC value, whih in our

ase is initialized to 0. It also has an input for the 32-bits data and the register

address on 5 bits at whih it has to be written. So, the algorithm implementation

158 Appendix B. Hardware CRC

Register Address Used

CRC 00000 No

FAR 00001 Yes

FDRI 00010 Yes

FDRO 00011 No

CMD 00100 Yes

CTL0 00101 Yes

MASK 00110 Yes

STAT 00111 No

LOUT 01000 No

COR0 01001 Yes

MFWR 01010 Yes

CBC 01011 Yes

IDCODE 01100 Yes

AXSS 01101 Yes

COR1 01110 Yes

CSB0 01111 Yes

WBSTAR 10000 Yes

TIMER 10001 Yes

BOOTSTS 10110 No

CTL1 11000 Yes

Table B.1: ICAP register involved in CRC omputation

takes an input data on 37 bits as an input and return the new CRC value on 32 bits

(Fig. B.1).

It should be notie that the register address is not used to segregate whih data

should be a part of the CRC omputation but as an integral part of the input data.

Table B.2 gives the resoures usage of the CRC module. The Hw CRC IP is the

ombinatorial IP whih omputes the CRC. The Hw CRC PLB module is the Hw

CRC IP enapsulated with a PLB bus wrapper.

Component Reg. LUTs BRAMs /

FIFOs

DSP Freq.

(MHz)

Hw CRC IP 0 160 0 0 Comb.

Hw CRC PLB 290 339 0 0 310.627

Table B.2: HW CRC Resoures usage

The reon�guration lateny depends on the partial bitstream size. This size

depends itself on the size of the dynami part of the Hardware Thread. The om-

B.3. Hardware CRC module 159

�
�
�

�
�
�
�
�
	

�
�

����
���

����
����
���

�
�

������
�
���

�
���
������
������

���������

���������

���������

���������

Figure B.1: CRC Bitstream Computer module

position of the Hardware Thread as well as the resoures overhead aused by the

enapsulation of the hardware IP is desribed in the next setion.

�����������

Bibliography

[541 2010℄ IEEE Standard for IP-XACT, Standard Struture for Pakaging, Inte-

grating, and Reusing IP within Tools Flows. IEEE Std 1685-2009, pages C1

�360, 18 2010. (Cited on page 94.)

[Aetta 1986℄ Mike Aetta, Robert Baron, William Bolosky, David Golub,

Rihard Rashid, Avadis Tevanian and Mihael Young. Mah: A New Kernel

Foundation for UNIX Development. pages 93�112, 1986. (Cited on page 83.)

[Agron 2009a℄ J. Agron and D. Andrews. Hardware Mirokernels for Heterogeneous

Manyore Systems. In Proeedings of the International Conferene on Paral-

lel Proessing Workshops (ICPPW '09), pages 19�26, Vienna, Austria, sept.

2009. IEEE. (Cited on pages 13, 20 and 21.)

[Agron 2009b℄ J. Agron and D. Andrews. Hardware Mirokernels for Heterogeneous

Manyore Systems. In Parallel Proessing Workshops, 2009. ICPPW '09. In-

ternational Conferene on, pages 19 �26, september 2009. (Cited on pages 15,

94 and 95.)

[Assoiation 2012℄ Multiore Assoiation. Multiore Assoiation website. http:

//www.multiore-assoiation.org/home.php, 2012. (Cited on pages 85

and 114.)

[Baumann 2009℄ Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim

Harris, Rebea Isaas, Simon Peter, Timothy Rosoe, Adrian Shüpbah

and Akhilesh Singhania. The multikernel: a new OS arhiteture for salable

multiore systems. In Proeedings of the ACM SIGOPS 22nd symposium on

Operating systems priniples, SOSP '09, pages 29�44, New York, NY, USA,

2009. ACM. (Cited on pages 14, 87 and 88.)

[Bekho� 2012℄ Christian Bekho�, Dirk Koh and Torresen Jim. GoAhead: A

Partial Reon�guration Framework. In 20th Annual IEEE Symposium on

Field-Programmable Custom Computing Mahines (FCCM), pages 37�44.

IEEE, 2012. (Not ited.)

[Belaid 2009℄ I. Belaid, F. Muller and M. Benjemaa. O�-line plaement of hardware

tasks on FPGA. In Field Programmable Logi and Appliations, 2009. FPL

2009. International Conferene on, pages 591 �595, aug. 2009. (Cited on

page 59.)

[Bergmann 2003℄ N.W. Bergmann and J. Williams. The Egret platform for reon-

�gurable system on hip. In Field-Programmable Tehnology (FPT), 2003.

Proeedings. 2003 IEEE International Conferene on, pages 340 � 343, de.

2003. (Cited on pages 13 and 12.)

162 Bibliography

[Board 2012℄ OpenMP Arhiteture Review Board. OpenMP website. http:

//openmp.org/wp/, 2012. (Cited on page 92.)

[Bonamy 2012℄ R. Bonamy, Hung-Manh Pham, S. Pillement and D. Chillet. UP-

aRC, Ultra-fast power-aware reon�guration ontroller. In Design, Automa-

tion Test in Europe Conferene Exhibition (DATE), 2012, pages 1373 �1378,

marh 2012. (Cited on pages 14, 47, 48 and 59.)

[Cheng 1995℄ Yizong Cheng. Mean shift, mode seeking, and lustering. IEEE Trans-

ations on Pattern Analysis and Mahine Intelligene, vol. 17, no. 8, pages

790 �799, aug 1995. (Cited on page 136.)

[Corbett 2012℄ John D. Corbett. Xilinx White Paper 412: The Xilinx Isolation

Design Flow for Fault-Tolerant Systems, January 2012. (Cited on pages 14,

50 and 77.)

[Devaux 2009℄ L. Devaux, D. Chillet, S. Pillement and D. Demigny. Flexible om-

muniation support for dynamially reon�gurable FPGAS. In Proeeding

of the 5th Conferene on Southern Programmable Logi (SPL 2009), pages

65�70, 1-3 2009. (Cited on page 34.)

[Donato 2005℄ A. Donato, F. Ferrandi, M. Santambrogio and D. Siuto. Operating

system support for dynamially reon�gurable SoC arhitetures. In SOC

Conferene, 2005. Proeedings. IEEE International, pages 233 �238, sept.

2005. (Cited on pages 12 and 13.)

[Duhem 2011℄ François Duhem, Fabrie Muller and Philippe Lorenzini. FaRM:

fast reon�guration manager for reduing reon�guration time overhead on

FPGA. In Proeedings of the 7th international onferene on Reon�gurable

omputing: arhitetures, tools and appliations, ARC'11, pages 253�260,

Berlin, Heidelberg, 2011. Springer-Verlag. (Cited on pages 14, 46, 47 and 59.)

[El-Araby 2008℄ E. El-Araby, I. Gonzalez and T. El-Ghazawi. Virtualizing and

sharing reon�gurable resoures in High-Performane Reon�gurable Com-

puting systems. In High-Performane Reon�gurable Computing Tehnology

and Appliations, 2008. HPRCTA 2008. Seond International Workshop on,

pages 1 �8, nov. 2008. (Cited on pages 13, 17 and 18.)

[Götz 2009℄ Marelo Götz, Ahim Rettberg, Carlos Eduardo Pereira and Franz J.

Rammig. Run-time reon�gurable RTOS for reon�gurable systems-on-hip.

J. Embedded Comput., vol. 3, no. 1, pages 39�51, January 2009. (Cited on

page 95.)

[Grimm 2004℄ M.Ullmann M. Hübner B. Grimm and J. Beker. An FPGA Run-

Time System for Dynamial On-Demand Reon�guration. FPL 2004 : �eld-

programmable logi and appliations - 3203 - 842-846, August 2004. (Cited

on page 44.)

Bibliography 163

[Guione 1999℄ Steve Guione, Delon Levi and Prasanna Sundararajan. JBits:

Java based interfae for reon�gurable omputing. 1999. (Cited on page 44.)

[Guerin 2009a℄ X. Guerin and F. Petrot. A System Framework for the Design of Em-

bedded Software Targeting Heterogeneous Multi-ore SoCs. In Appliation-

spei� Systems, Arhitetures and Proessors, 2009. ASAP 2009. 20th IEEE

International Conferene on, pages 153 �160, july 2009. (Cited on pages 15,

91 and 92.)

[Guerin 2009b℄ X. Guerin and F. Petrot. A System Framework for the Design of Em-

bedded Software Targeting Heterogeneous Multi-ore SoCs. In Appliation-

spei� Systems, Arhitetures and Proessors, 2009. ASAP 2009. 20th IEEE

International Conferene on, pages 153 �160, july 2009. (Not ited.)

[Hansen 2011℄ S.G. Hansen, D. Koh and J. Torresen. High Speed Partial Run-

Time Reon�guration Using Enhaned ICAP Hard Maro. In Parallel and

Distributed Proessing Workshops and Phd Forum (IPDPSW), 2011 IEEE

International Symposium on, pages 174 �180, may 2011. (Cited on pages 14,

47, 48 and 59.)

[Huang 2008℄ Chun-Hsian Huang and Pao-Ann Hsiung. Software-ontrolled dy-

namially swappable hardware design in partially reon�gurable systems.

EURASIP J. Embedded Syst., vol. 2008, pages 4:1�4:11, January 2008.

(Cited on page 58.)

[Huerta 2008℄ P. Huerta, J. Castillo, C. Sanhez and J.I. Martinez. Operating Sys-

tem for Symmetri Multiproessors on FPGA. In Reon�gurable Computing

and FPGAs, 2008. ReConFig '08. International Conferene on, pages 157

�162, deember 2008. (Cited on pages 14, 86 and 87.)

[Instrument 2011℄ Texas Instrument. OMAP 5 mobile appliations platform. http:

//fous.ti.om/pdfs/wtbu/OMAP5_2011-7-13.pdfs, July 2011. (Cited on

page 4.)

[IOC 1997℄ IOCTL Spei�ation. http://pubs.opengroup.org/onlinepubs/

7908799/xsh/iotl.html, 1997. (Cited on page 12.)

[J. Carver 2008℄ A. Forin J. Carver N. Pittman. Reloation and Automati Floor-

planning of FPGA Partial Con�guration Bit-Streams. Mirosoft Researh -

Tehnial Report MSR-TR-2008-111, August 2008. (Not ited.)

[Kaashoek 1997℄ M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger, He-

tor M. Brieño, Russell Hunt, David Mazières, Thomas Pinkney, Robert

Grimm, John Jannotti and Kenneth Makenzie. Appliation performane

and �exibility on exokernel systems. In Proeedings of the sixteenth ACM

symposium on Operating systems priniples, SOSP '97, pages 52�65, New

York, NY, USA, 1997. ACM. (Not ited.)

164 Bibliography

[Kallam 2009℄ A. Sudarsanam R. Kallam and A. Dasu. PRR-PRR Dynami Relo-

ation. IEEE Computer Arhiteture Letters - vol. 8 (2), September 2009.

(Cited on pages 14, 45 and 46.)

[Kalte 2005℄ H. Kalte, G. Lee, M. Porrmann and U. Rukert. REPLICA: A Bit-

stream Manipulation Filter for Module Reloation in Partial Reon�gurable

Systems. In Parallel and Distributed Proessing Symposium, 2005. Proeed-

ings. 19th IEEE International, page 151b, april 2005. (Not ited.)

[Kamppi 2011℄ A. Kamppi, L. Matilainen, J. Maatta, E. Salminen, T.D.

Hamalainen and M. Hannikainen. Katus2: Environment for Embedded Prod-

ut Development Using IP-XACT and MCAPI. In Digital System Design

(DSD), 2011 14th Euromiro Conferene on, pages 262 �265, 31 2011-sept.

2 2011. (Cited on page 94.)

[Koh 2009℄ Dirk Koh, Christian Bekho� and Jüergen Teih. A ommuniation

arhiteture for omplex runtime reon�gurable systems and its implementa-

tion on spartan-3 FPGAs. In Proeeding of the ACM/SIGDA international

symposium on Field programmable gate arrays, FPGA '09, pages 253�256,

New York, NY, USA, 2009. ACM. (Cited on page 66.)

[Koh 2010a℄ Dirk Koh, Christian Bekho� and Jim Torrison. Fine-Grained Par-

tial Runtime Reon�guration on Virtex-5 FPGAs. In Proeedings of the 2010

18th IEEE Annual International Symposium on Field-Programmable Cus-

tom Computing Mahines, FCCM '10, pages 69�72, Washington, DC, USA,

2010. IEEE Computer Soiety. (Cited on pages 49 and 66.)

[Koh 2010b℄ Dirk Koh and Jim Torresen. Advanes and Trends in Dynami Par-

tial Run-time Reon�guration. In Dagstuhl-Seminar 10281: Dynamially Re-

on�gurable Arhitetures, page 6, Shloss Dagstuhl, Germany, July 2010.

Internationales Begegnungs- und Forshungszentrum für Informatik (IBFI),

Shloss Dagstuhl, Germany. (Cited on page 6.)

[Kühnle 2006℄ M. Hübner C. Shuk M. Kühnle and J. Beker. New 2-Dimensional

Partial Dynami Reon�guration Tehniques for Real-time Adaptive Miro-

eletroni Ciruits. IEEE ISVLSI, 00:6, Marh 2006. (Cited on page 44.)

[Lavin 2011℄ Christopher Lavin, Mar Padilla, Jaren Lampreht, Philip Lundri-

gan, Brent Nelson and Brad Huthings. RapidSmith: Do-It-Yourself CAD

Tools for Xilinx FPGAs. In Proeedings of the 21th International Workshop

on Field-Programmable Logi and Appliations (FPL'11), September 2011.

(Cited on pages 14 and 49.)

[Lee 1987℄ Edward A. Lee and David G. Messershmitt. Synhronous Data Flow.

In Proeedings of the IEEE, volume 75, pages 1235�1245, sep. 1987. (Cited

on pages 8 and 18.)

Bibliography 165

[Lee 2010℄ Trong-Yen Lee, Che-Cheng Hu, Li-Wen Lai and Chia-Chun Tsai. Hard-

ware Context-Swith Methodology for Dynamially Partially Reon�gurable

Systems. J. Inf. Si. Eng., vol. 26, no. 4, pages 1289�1305, 2010. (Cited on

page 58.)

[Leon Adams 2007℄ Texas Instrument Leon Adams. Choosing the right ar-

hiteture for real-time signal proessing designs. http://www.ee.up.

a.za/main/_media/en/undergrad/subjets/esp411/hoosing_right_

arhiteture.pdf, June 2007. (Cited on page 3.)

[Liedtke 2001℄ Johen Liedtke, Uwe Dannowski, Kevin Elphinstone, Gerd Lie�än-

der, Espen Skoglund, Volkmar Uhlig, Christian Ceelen, Andreas Haeberlen

and Marus Völp. The L4Ka Vision, April 2001. (Cited on page 83.)

[Lin 2009℄ Yu-Hsien Lin, Chiaheng Tu, Chi-Sheng Shih and Shih-Hao Hung. Zero-

Bu�er Inter-ore Proess Communiation Protool for Heterogeneous Multi-

ore Platforms. In Embedded and Real-Time Computing Systems and Ap-

pliations, 2009. RTCSA '09. 15th IEEE International Conferene on, pages

69 �78, august 2009. (Cited on pages 14, 87 and 88.)

[LIP6 2012℄ LIP6. MutekH website. http://www.mutekh.org/tra/mutekh, 2012.

(Cited on pages 111 and 118.)

[Liu 2009℄ Ming Liu, W. Kuehn, Zhonghai Lu and A. Jantsh. Run-time Partial Re-

on�guration speed investigation and arhitetural design spae exploration.

In Field Programmable Logi and Appliations, 2009. FPL 2009. Interna-

tional Conferene on, pages 498 �502, aug. 2009. (Cited on pages 14, 46

and 47.)

[Lubbers 2008℄ E. Lubbers and M. Platzner. A portable abstration layer for hard-

ware threads. In Field Programmable Logi and Appliations, 2008. FPL

2008. International Conferene on, pages 17 �22, sept. 2008. (Cited on

pages 13, 20 and 21.)

[Lubbers 2009℄ E. Lubbers and M. Platzner. Cooperative multithreading in dynami-

ally reon�gurable systems. In Field Programmable Logi and Appliations,

2009. FPL 2009. International Conferene on, pages 551 �554, 31 2009-sept.

2 2009. (Not ited.)

[Lysaght 2006℄ P. Lysaght, B. Blodget, J. Mason, J. Young and B. Bridgford. Invited

Paper: Enhaned Arhitetures, Design Methodologies and CAD Tools for

Dynami Reon�guration of Xilinx FPGAs. In Field Programmable Logi

and Appliations, 2006. FPL '06. International Conferene on, pages 1 �6,

28-30 2006. (Cited on page 59.)

[Matilainen 2011℄ L. Matilainen, E. Salminen, T.D. Hamalainen and M. Han-

nikainen. Multiore Communiations API (MCAPI) implementation on an

166 Bibliography

FPGA multiproessor. In Embedded Computer Systems (SAMOS), 2011 In-

ternational Conferene on, pages 286 �293, july 2011. (Cited on pages 15,

92 and 93.)

[Modzelewski 2009℄ K. Modzelewski, J. Miller, A. Belay, N. Bekmann, C. Gruen-

wald, D. Wentzla�, L. Youse� and A. Agarwal. A Uni�ed Operating System

for Clouds and Manyore: fos. In Rapid System Prototyping, 2006. Seven-

teenth IEEE International Workshop on, november 2009. (Cited on pages 14

and 89.)

[Muller 2006℄ C. Claus F.H. Muller and W. Stehele. Combitgen: A new approah

for reating partial bitstreams in Virtex-II Pro devies. Workshop on reon-

�gurable omputing Proeedings (ARCS 06) - 122-131, Marh 2006. (Not

ited.)

[Nojiri 2009℄ T. Nojiri, Y. Kondo, N. Irie, M. Ito, H. Sasaki and H. Maejima. Do-

main Partitioning Tehnology for Embedded Multiore Proessors. Miro,

IEEE, vol. 29, no. 6, pages 7 �17, deember 2009. (Not ited.)

[Nollet 2003℄ V. Nollet, P. Coene, D. Verkest, S. Vernalde and R. Lauwereins. De-

signing an operating system for a heterogeneous reon�gurable SoC. In Paral-

lel and Distributed Proessing Symposium, 2003. Proeedings. International,

page 7 pp., april 2003. (Cited on pages 13, 14 and 15.)

[Nordstrom 2005℄ S. Nordstrom, L. Lindh, L. Johansson and T. Skoglund. Appli-

ation spei� real-time mirokernel in hardware. In Real Time Conferene,

2005. 14th IEEE-NPSS, page 4 pp., june 2005. (Cited on page 94.)

[OMG 2006℄ OMG. CORBA Components Spei�ation - Version 4.0, April 2006.

(Cited on page 93.)

[Rana 2007℄ V. Rana, M. Santambrogio, D. Siuto, B. Kettelhoit, M. Koester,

M. Porrmann and U. Rukert. Partial Dynami Reon�guration in a Multi-

FPGA Clustered Arhiteture Based on Linux. In Parallel and Distributed

Proessing Symposium, 2007. IPDPS 2007. IEEE International, pages 1 �8,

marh 2007. (Cited on page 13.)

[Rossi 2009℄ D. Rossi, F. Campi, A. Deledda, C. Mui, S. Puillo, S. Whitty,

R. Ernst, S. Chevobbe, S. Guyetant, M. Kuhnle, M. Hubner, J. Beker

and W. Putzke-Roeming. A multi-ore signal proessor for heterogeneous

reon�gurable omputing. In System-on-Chip, 2009. SOC 2009. International

Symposium on, pages 106 �109, otober 2009. (Not ited.)

[RTE 1988℄ RTEMS Website. http://www.rtems.org, 1988. (Cited on page 28.)

[S. Corbetta M. Morandi M. Novati 2009℄ M. Domenio Santambrogio D. Siuto

S. Corbetta M. Morandi M. Novati and P. Spoletini. Internal and Exter-

nal Bitstream Reloation for Partial Dynami Reon�guration. IEEE trans-

Bibliography 167

ations on very large sale integration (VLSI) systems - vol. 17, no11, pp.

1650-1654, Otober 2009. (Cited on page 45.)

[Senoui 2006℄ B. Senoui, A. Bouhhima, F. Rousseau, F. Petrot and A. Jerraya.

Fast Prototyping of POSIX Based Appliations on a Multiproessor SoC Ar-

hiteture: "Hardware-Dependent Software Oriented Approah". In Rapid

System Prototyping, 2006. Seventeenth IEEE International Workshop on,

pages 69 �75, june 2006. (Cited on pages 15, 92 and 93.)

[Shiyanovskii 2009a℄ Y. Shiyanovskii, F. Wol�, C. Papahristou and D. Weyer. An

Adaptable Task Manager for Reon�gurable Arhiteture Kernels. In Adap-

tive Hardware and Systems, 2009. AHS 2009. NASA/ESA Conferene on,

pages 132 �137, august 2009. (Cited on pages 15, 90 and 91.)

[Shiyanovskii 2009b℄ Y. Shiyanovskii, F. Wol�, C. Papahristou and D. Weyer. An

Adaptable Task Manager for Reon�gurable Arhiteture Kernels. In Adap-

tive Hardware and Systems, 2009. AHS 2009. NASA/ESA Conferene on,

pages 132 �137, 29 2009-aug. 1 2009. (Cited on page 17.)

[Sohanghpurwala 2011℄ A.A. Sohanghpurwala, P. Athanas, T. Frangieh and

A. Wood. OpenPR: An Open-Soure Partial-Reon�guration Toolkit for Xil-

inx FPGAs. In Parallel and Distributed Proessing Workshops and Phd

Forum (IPDPSW), 2011 IEEE International Symposium on, pages 228 �235,

may 2011. (Cited on pages 14, 49 and 50.)

[Steiger 2004℄ C. Steiger, H. Walder and M. Platzner. Operating Systems for Reon-

�gurable Embedded Platforms: Online Sheduling of Real-Time Tasks. IEEE

Trans. Comput., vol. 53, no. 11, pages 1393�1407, November 2004. (Cited

on pages 13, 15 and 16.)

[Steiner 2011℄ Neil Steiner, Aaron Wood, Hamid Shojaei, Jaob Couh, Peter

Athanas and Matthew Frenh. Tor: towards an open-soure tool �ow. In

Proeedings of the 19th ACM/SIGDA international symposium on Field pro-

grammable gate arrays, FPGA '11, pages 41�44, New York, NY, USA, 2011.

ACM. (Cited on page 69.)

[T. Beker 2007℄ W. Luk T. Beker and P.Y.K. Cheung. Enhaning Reloata-

bility of Partial Bitstreams for Run-Time Reon�guration. IEEE Field-

Programmable Custom Computing Mahines, 2007 - 35-44, April 2007.

(Cited on page 45.)

[Tanenbaum 2001℄ Andrew S. Tanenbaum. Modern operating systems. Prentie

Hall PTR, Upper Saddle River, NJ, USA, 2nd édition, 2001. (Cited on

page 22.)

[Tomiyama 2008℄ H. Tomiyama, S. Honda and H. Takada. Real-time operating sys-

tems for multiore embedded systems. In SoC Design Conferene, 2008.

168 Bibliography

ISOCC '08. International, volume 01, pages I�62 �I�67, november 2008.

(Cited on pages 14 and 86.)

[Verdosia 1994℄ Lorenzo Verdosia and Roberto Vaaro. Ator Hardware Design

For Stati Data�ow Model. In Workshop on Massive Parallelism: Hardware,

Software, and Appliations, pages 421�430, 1994. (Cited on pages 13, 18

and 19.)

[Wigley 2001℄ G. Wigley and D. Kearney. The �rst real operating system for reon-

�gurable omputers. In Computer Systems Arhiteture Conferene, 2001.

ACSAC 2001. Proeedings. 6th Australasian, pages 130 �137, 2001. (Cited

on page 16.)

[Xilinx 2001℄ Xilinx. IEEE 802.3 Cyli Redundany Chek. Xilinx website, Marh

2001. (Cited on page 157.)

[Xilinx 2006℄ Xilinx. Virtex FPGA Series Con�guration and Readbak. Xilinx web-

site, Marh 2006. (Cited on page 157.)

[Xilinx 2009a℄ Xilinx. Synthesis and Simulation Design Guide. Xilinx website, De-

ember 2009. (Cited on page 157.)

[Xilinx 2009b℄ Xilinx. Virtex-5 FPGA Con�guration User Guide. Xilinx website,

August 2009. (Cited on pages 14, 53, 54 and 55.)

[Xilinx 2009℄ Xilinx. Virtex-5 FPGA User Guide.

www.xilinx.om/support/doumentation/user_guides/ug190.pdf, Novem-

ber 2009. (Cited on pages 14 and 51.)

[Xilinx 2010a℄ Xilinx. Partial Reon�guration User Guide. http://www.xilinx.

om/support/doumentation/sw_manuals/xilinx12_1/ug702.pdf, May

2010. (Cited on pages 13 and 2.)

[Xilinx 2010b℄ Xilinx. PLBV46 Master Burst Doumentation. http:

//www.xilinx.om/support/doumentation/ip_doumentation/plbv46_

master_burst.pdf, Deember 2010. (Cited on page 128.)

