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Résumé

Cette thèse explore théoriquement et empiriquement certains aspects de la formation et de
l’évolution des prix des actifs financiers observés en haute fréquence. Nous commençons par
l’étude de la dynamique jointe de l’option et de son sous-jacent. Les données haute fréquence
rendant observable le processus de volatilité réalisée du sous-jacent, nous cherchons à savoir
si cette information est utilisée pour fixer les prix des options. Nous trouvons que le marché
ne l’exploite pas. Les modèles de volatilité stochastique sont donc à considérer comme des
modèles à forme réduite. Cette étude permet néanmoins de tester la pertinence d’une mesure
de couverture empirique que nous appelons delta effectif. C’est la pente de la régression des
rendements des prix de l’option sur ceux du sous-jacent. Elle fournit un indicateur de couverture
assez satisfaisant et indépendant de toute modélisation. Pour la dynamique des prix, nous nous
tournons dans les chapitres suivants vers des modèles plus explicites de la microstructure du
marché. L’une des caractéristiques de l’activité de marché est son regroupement, ou clustering.
Les processus de Hawkes, processus ponctuels présentant cette caractéristique, fournissent donc
un cadre mathématique adéquat pour l’étude de cette activité. La représentation Markovienne
de ces processus, ainsi que leur caractère affine quand le noyau est exponentiel, permettent
de recourir aux puissants outils analytiques que sont le générateur infinitésimal et la formule
de Dynkin pour calculer différentes quantités qui leur sont reliées, telles que les moments ou
autocovariances du nombre d’évènements sur un intervalle donné. Nous commençons par un
cadre monodimensionnel, assez simple pour éclairer la démarche, mais suffisamment riche pour
permettre des applications telles que le groupement des instants d’arrivée d’ordres de marché,
la prévision de l’activité de marché à venir sachant l’activité passée, ou la caractérisation de
formes inhabituelles, mais néanmoins observées, de signature plot où la volatilité mesurée
décroît quand la fréquence d’échantillonnage augmente. Nos calculs nous permettent aussi
de rendre la calibration des processus de Hawkes instantanée en recourant à la méthode des
moments. La généralisation au cas multidimensionnel nous permet ensuite de capturer, avec
le clustering, le phénomène de retour à la moyenne qui caractérise aussi l’activité de marché
observée en haute fréquence. Des formules générales pour le signature plot sont alors obtenues
et permettent de relier la forme de celui-ci à l’importance relative du clustering ou du retour à
la moyenne. Nos calculs permettent aussi d’obtenir la forme explicite de la volatilité associée
à la limite diffusive, connectant la dynamique de niveau microscopique à la volatilité observée
macroscopiquement, par exemple à l’échelle journalière. En outre, la modélisation des activités
d’achat et de vente par des processus de Hawkes permet de calculer l’impact d’un méta ordre
sur le prix de l’actif. On retrouve et on explique alors la forme concave de cet impact ainsi
que sa relaxation temporelle. Les résultats analytiques obtenus dans le cas multidimensionnel
fournissent ensuite le cadre adéquat à l’étude de la corrélation. On présente alors des résultats
généraux sur l’effet Epps, ainsi que sur la formation de la corrélation et du lead lag.

Mots-clés: dynamique jointe, processus de Hawkes, calibration, microstructure, volatilité,
signature plot, impact d’un méta ordre, corrélation, effet Epps, lead-lag.
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Abstract

This thesis explores theoretical and empirical aspects of price formation and evolution at
high frequency. We begin with the study of the joint dynamics of an option and its underlying.
The high frequency data making observable the realized volatility process of the underlying, we
want to know if this information is used to price options. We find that the market does not
process this information to fix option prices. The stochastic volatility models are then to be
considered as reduced form models. Nevertheless, this study tests the relevance of an empirical
hedging parameter that we call effective delta. This is the slope of the regression of option
price increments on those of the underlying. It proves to be a satisfactory model-independent
hedging parameter. For the price dynamics, we turn our attention in the following chapters
to more explicit models of market microstructure. One of the characteristics of the market
activity is its clustering. Hawkes processes are point processes with this characteristic, therefore
providing an adequate mathematical framework for the study of this activity. Moreover, the
Markov property associated to these processes when the kernel is exponential allows to use
powerful analytical tools such as the infinitesimal generator and the Dynkin formula to calculate
various quantities related to them, such as moments or autocovariances of the number of events
on a given interval. We begin with a monovariate framework, simple enough to illustrate the
method, but rich enough to enable applications such as the clustering of arrival times of market
orders, prediction of future market activity knowing past activity, or characterization of unusual
shapes, but nevertheless observed, of signature plot, where the measured volatility decreases
when the sampling frequency increases. Our calculations also allow us to make instantaneous
calibration of the process by relying on the method of moments. The generalization to the
multidimensional case then allow us to capture, besides the clustering, the phenomenon of mean
reversion, which also characterizes the market activity observed in high frequency. General
formulas for the signature plot are then obtained and used to connect its shape to the relative
importance of clustering or mean reversion. Our calculations also allow to obtain the explicit
form of the volatility associated with the diffusive limit, therefore connecting the dynamics
at microscopic level to the macroscopic volatility, for example on a daily scale. Additionally,
modelling buy and sell activity by Hawkes processes allows to calculate the market impact of a
meta order on the asset price. We retrieve and explain the usual concave form of this impact as
well as its relaxation with time. The analytical results obtained in the multivariate case provide
the adequate framework for the study of the correlation. We then present generic results on the
Epps effect as well as on the formation of the correlation and the lead lag.

Mots-clés: joint dynamics, Hawkes processes, calibration, microstructure, volatility, signature
plot, market impact, correlation, Epps effect, lead-lag.
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Introduction (In French)

Cette thèse explore, tant sur le plan empirique que celui de la modélisation, la formation
et l’évolution des prix des actifs financiers observés en haute fréquence. L’observation fine du
processus des prix est rendue possible grâce à la disponibilité de bases de données financières
de type tick à tick, c’est à dire relatant toute évolution du carnet d’ordre. Cela ouvre des
perspectives pour la compréhension du mécanisme de formation des prix, mais arrive aussi avec
son lot de nouvelles questions.

Nous exposons dans cette introduction les différentes questions auxquelles nous nous sommes
intéressés et résumons notre démarche ainsi que les résultats auxquels nous sommes arrivés, en
motivant les différentes directions prises dans nos recherches.

0.1 Dynamique jointe option/action entre théorie et pratique

0.1.1 Étude intraday et delta effectif

L’observation des prix en haute fréquence permet de rendre observables des quantités qui
ne l’étaient pas à une résolution plus grossière. Par exemple, le processus de volatilité réalisée
pendant la journée de trading est maintenant observable grâce à la disponibilité des données
d’une part, et à une multitude d’estimateurs d’autre part.

D’un autre côté, les modèles à volatilité stochastique utilisés dans le calcul des prix
d’options semblent donner de bonnes performances aussi bien statiques (génération du smile
de volatilité) que dynamiques (persistence du smile, meilleure qualité de couverture ...). Ces
modèles sont généralement utilisés comme outils d’extrapolation entre les prix d’options
liquides (les options vanilles) et celles exotiques, généralement non cotées. Mais ils présentent
aussi un scénario de formation du prix de l’option. Ce prix est, d’après ces modèles, le
résultat du traitement par le marché des innovations sur le spot du sous jacent et de sa
variance. Cette dernière étant rendue observable grâce aux données haute fréquence, il est alors
légitime de demander si les données racontent la même histoire de formation des prix des options.

Dans un modèle où le sous-jacent St suit une volatilité stochastique, nous pouvons écrire sous
la probabilité historique:

dSt = µStdt+
√

VtStdW
1
t (1)

dVt = νdt+ ζdW 2
t (2)

d < W 1,W 2 >t = ρdt, (3)

l’application de la formule d’Itô au prix de l’option Ct = C(t, St, Vt) permet d’établir une relation
de régression de celui-ci sur le spot du sous-jacent, isolant le risque ’spot’ du risque de pure
volatilité :
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dCt =

(
∂C

∂S
+

ζρ√
VtSt

∂C

∂V

)

︸ ︷︷ ︸

delta spot effectif

dSt + ζ
√

1− ρ2
∂C

∂V
︸ ︷︷ ︸

delta volatilité

dZt. (4)

Cette régression est parfaitement observée sur les données optionnelles comme le montre
la figure 1 ci-dessous, où l’on régresse les incréments du prix d’option sur ceux du spot pour
des options sur Kospi 200 qui sont les plus liquides au monde. Remarquons que la fréquence
d’échantillonnage est importante, car une fréquence très élevée enlève toute corrélation entre
accroissements. Ce phénomène est connu sous le nom d’effet de EPPS (Epps, 1979), et se traduit
par la décroissance de la corrélation estimée quand la fréquence d’échantillonnage augmente. Il
fait partie de ces faits stylisés qui apparaissent quand on étudie les données à haute fréquence.
Cet effet disparaît dès que la période d’échantillonnage est de quelques minutes. Cela est à
comparer au monde action/action, où l’on doit attendre quelques dizaines de minutes pour le
voir disparaître. L’effet delta de l’action sur l’option est certainement une explication de la
décroissance de ce temps.
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Figure 1: Illustration de la relation de régression des incréments du prix de l’option par rapport
aux incréments de son sous jacent. Comme intuitivement attendu, la pente est positive pour le
Call et négative pour le Put.

Nous effectuons ces régressions de manière journalière sur notre ensemble de données
(options sur Eurostoxx, Kospi 200 et Dax), et trouvons généralement des R2 avoisinant les
90%. Ainsi, la plus grande part de variance du prix de l’option s’explique par la dynamique
du spot. Ensuite, nous calculons la variance réalisée en cours de journée sur des fenêtres de
temps glissantes, et par différents estimateurs. Nous essayons de relier le résidu de la première
régression à la dynamique de variance ainsi calculée mais les résultats s’avèrent insignifiants,
contredisant l’intuition apportée par le modèle à volatilité stochastique.

Cela nous pousse à remettre cette intuition en cause et à nous poser la question de la part
de risque que ces modèles projettent sur le spot, et la part de risque qu’ils attribuent à la
dynamique de la variance. Pour cela, nous devons calculer les ordres de grandeurs relatifs de ce
que nous avons appelé “delta spot effectif” et “delta volatlité” dans l’équation (4). Cette dernière,
écrite sous la probabilité historique, dépend de paramètres inobservables tels que la volatilité
de la variance, ou la corrélation entre spot et variance. Mais ces paramètres restent inchangés
par changement de probabilité. Nous pouvons donc les rendre observables par calibration d’un
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modèle spécifié sous la probabilité risque neutre. Nous calibrons donc tous les jours le modèle
de Heston aux prix des options liquides observées, et retrouvons les poids relatifs du risque spot
et du risque de volatilité. Cela nous permet de calculer un R2 implicite de ce modèle, et nous
arrivons globalement au même résultat observé empiriquement, à savoir que notre modèle de
volatilité stochastique attribue la majeure partie de la variance du prix de l’option à la variance
du spot du sous-jacent.

De plus, le delta effectif calculé empiriquement, défini comme la pente de la régression des
rendements des prix de l’option sur ceux du sous-jacent est très proche du delta total calculé par
le modèle de Heston. Ainsi, malgré un résultat négatif de la recherche de l’effet de la variance
réalisée dans le prix des options, nous obtenons une quantification du risque spot en accord entre
l’étude empirique et le modèle à volatilité stochastique. La sensibilité totale au spot, capturée
dans le coefficient de régression des incréments de l’option sur ceux du sous-jacent s’avère
être un bon paramètre de couverture, d’autant plus robuste qu’il est parfaitement empirique
et est indépendant de tout modèle et de toute hypothèse. Sa robustesse est confirmée par
une simulation de portefeuille contenant une option couverte en delta sur des données historiques.

En guise d’application, remarquons qu’une pratique répandue en salles des marchés consiste
à postuler une dynamique de la volatilité implicite quand le spot du sous-jacent varie. La nappe
de volatilité implicite est paramètrée sous la forme Σ = Σ(S,m) où m est la moneyness m = K

S .
Le delta de l’option est alors corrigé pour rendre compte de cette dynamique et s’écrit :

dC

dS
= ∆BS −VegaBS × Skew

K

S2
︸ ︷︷ ︸

correction statique

+ VegaBS ×
∂Σ

∂S
︸ ︷︷ ︸

correction dynamique

(5)

où Skew = ∂Σ
∂m .

La correction statique provient du changement de moneyness de l’option quand le spot
change, tandis que la correction dynamique est due au mouvement imposé à la nappe de
volatilité par la dynamique du spot.

L’étude faite précédemment fournit alors une manière de tester la pertinence de cette
dynamique. À la fin de la journée de trading, la comparaison de ce delta corrigé au delta effectif
calculé par régression et qui est complètement indépendant de toute hypothèse de modèlisation
peut fournir un outil de test des dynamiques de volatilité implicites utilisées.

0.1.2 Augmentation de l’échelle de temps et dynamique de volatilité implicite

Une critique peut cependant être faite à l’étude effectuée jusqu’à présent : c’est celle de
l’échelle de temps. En effet, les variances réalisées sont calculées sur des fenêtres de temps
glissantes assez petites, ne dépassant pas la demi-heure. Cela peut donner lieu à beaucoup de
bruit. On aimerait donc généraliser l’étude à une échelle de temps plus grande où l’on aurait
plus confiance dans nos estimateurs de variance réalisée, en l’estimant par exemple sur une
journée entière et en essayant de voir l’impact de ses variations sur l’évolution du prix de l’option.

Cette approche est problématique. En effet, l’option change de jour en jour. Ce n’est plus
le même instrument entre deux journées de trading. La prise en compte des effets de passage
du temps et de changement de moneyness peut appeler à faire des hypothèses qui viendraient
polluer l’étude. L’idée est donc de chercher une quantité indépendante de la maturité et de la
moneyness et que l’on traiterait comme la même quantité financière de jour en jour.
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L’étude précédente, en établissant l’adéquation du delta effectif obtenu empiriquement avec
celui de Heston, ainsi que du R2 empirique de la régression de l’option sur l’action avec celui
implicite dans le modèle de Heston, augmente notre confiance dans l’intuition apportée par la
volatilité stochastique. Nous développons alors les prédictions théoriques de ce modèle. Parmi
elles, l’espérance de la variance réalisée, qui s’écrit :

E

[
1

T

∫ T

0
Vtdt

]

= V∞ + (V0 − V∞)
1− e−κT

κT
, (6)

où V0 désigne la variance instantanée.

Cette équation donne une paramétisation possible de la volatilité à la monnaie, où l’on voit
que le niveau de volatilité dépend de la variance instantanée V0. Différentes études comme
(Gatheral, 2006) prédisent que cette variance instantanée est au premier ordre linéaire en
fonction du spot, ce que nous arrivons à vérifier empiriquement, en calibrant des nappes de
volatilité implicite à la paramétrisation ci-dessus. Grâce à (Durrleman, 2008), la variance
instantanée V0 est interprètée comme étant la volatilité implicite à la monnaie quand la maturité
tend vers 0, et désigne donc la même quantité “financière” de jour en jour, ce qui résoud notre
problème mentionné plus haut.

La régression linéaire de V0 sur le spot est très significative et nous permet comme
précédemment d’isoler la dépendance au spot de cette quantité. Nous essayons ensuite
d’expliquer la variance résiduelle de V0 entre l’ouverture et la clôture du marché par la variance
réalisée sur la journée, mais les résultats sont, cette fois encore, non significatifs.

En conclusion, le marché ne semble pas traiter l’information de volatilité réalisée pour fixer
le prix des options. Les modèles à volatilité stochastiques, bien qu’en adéquation sur beaucoup
d’aspects avec ce qui est réellement observé dans les données, ne sont pas à prendre comme
modèles structurels, c’est à dire donnant un mécanisme de formation des prix, mais plutôt
comme des modèles à forme réduite. Pour emprunter au langage de la physique, ces modèles
décrivent la cinématique des prix et ne donnent pas de renseignement sur la dynamique, à savoir
les forces et interactions qui donnent naissance à ces prix.

Pour étudier cette dynamique, nous nous tournons donc vers une vision plus microscopique,
au niveau des évènements de carnet d’ordre.

0.2 Processus de Hawkes et clustering

0.2.1 Étude analytique

L’activité de trading observée au niveau du carnet d’ordre est une suite d’évènements
ponctuels irréguliers tels que le placement d’un ordre limite, l’exécution d’un ordre marché ou
l’annulation d’un ordre limite. Les processus ponctuels sont donc l’outil de modèlisation idéal à
ce degré de granularité.

Malheureusement, le processus ponctuel le plus simple, à savoir le processus de Poisson, est
complètement inadéquat pour modèliser ce genre d’évènements. En effet, étant sans mémoire,
ce processus ne capture pas le principal fait stylisé de l’activité de trading, à savoir son
regroupement dans le temps, ou clustering.

Une généralisation consiste à faire dépendre l’intensité du processus ponctuel de ses
réalisations passées. Cela donne les processus de Hawkes, introduits dans (Hawkes, 1971). Quand
la dépendance au passé est portée par un noyau exponentiel, le couple formé du processus de
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saut et de son intensité est un processus de Markov. En régime stationnaire, l’intensité de ce
processus s’écrit alors :

λt = λ∞ +

∫ t

0
αe−βsdNs.

Additionnellement, ce processus a une structure affine, ce qui permet de caractériser
facilement sa fonction génératrice des moments comme fonction exponentiellement affine de ses
variables d’état.

Cette propriété nous permet de calculer différents moments du processus de Hawkes, à
savoir par exemple la moyenne ou la variance du nombre d’évènements sur un intervalle donné
quand le processus a atteint son régime stationnaire. Ceci est faisable en dérivant la fonction
génératrice des moments et en résolvant les équations différentielles qui en découlent. Cette
méthode directe et classique pour les processus affines donne lieu à des calculs fastidieux et
surtout difficilement généralisables en grande dimension. Nous lui préfèrerons une technique
plus simple basée sur la formule de Dynkin.

En effet, pour notre processus de Markov Xt = (Nt, λt), et pour toute fonction f dans le
domaine de son générateur infinitésimal L, nous avons pour s > t la formule de Dynkin:

Et [f (Xs)] = f (Xt) + Et

[∫ s

t
Lf (Xu) du

]

(7)

qui permet de calculer des espérances conditionnelles de fonctions du processus de Markov
Xt = (λt, Nt), en particulier des moments, et qui s’avère très pratique lorsque le terme de droite
est facilement calculable.

C’est par application de cette formule à Nt, N
2
t , N

3
t , N

4
t que nous calculerons la moyenne,

variance, skew et kurtosis du nombre de sauts d’un processus de Hawkes sur un intervalle de
temps de longueur donnée, quand le processus a atteint son régime stationnaire.

La formule la plus importante est certainement l’autocovariance du nombre de sauts sur
des intervalles consécutifs, à savoir Et [(Nt1 −Nt) (Nt3 −Nt2)], où t < t1 < t2 < t3, que nous
obtenons par conditionnements successifs, et qui tire son importance du fait que les processus
de Hawkes sont utilisés justement parce qu’ils permettent ce genre d’autocorrélation.

Centrée et réduite grâce aux moments calculés précédemment, nous trouvons alors la fonction
d’autocorrélation du nombre de sauts sur des intervalles consécutifs de longeur τ :

Proposition. Pour un processus de Hawkes Xt = (λt, Nt) suivant la dynamique présentée plus
haut, la fonction d’autocorrélation du nombre de sauts ayant lieu sur des intervalles de temps de
longueur τ séparés par un lag δ s’écrit :

Acf (τ, δ) =
e−2βτ

(
eατ − eβτ

)2
α(α− 2β)

2
(
α(α− 2β)

(
e(α−β)τ − 1

)
+ β2τ(α− β)

)e(α−β)δ. (8)

Cette autocorrélation est donc positive et décroit exponentiellement avec le lag. La rapidité
de sa décroissance dépend de la différence α − β, ou de manière équivalente du rapport α

β qui
est la norme L1 du noyau, et qui doit être strictement infèrieur à 1 pour garantir la stabilité du
processus. Plus cette norme est élevée, plus la mémoire du processus est importante comme on
s’y attend intuitivement.

0.2.2 Applications

Empiriquement, on observe le phénomène de clustering dans l’activité de trading. Le nombre
de trades ayant lieu sur des intervalles de temps consécutifs (qui ne se chevauchent pas) est

17



positivement autocorrélé et cette autocorrélation décroit avec le lag. Cette propriété n’aurait
pas été observée si l’activité de trading obéissait à un processus de Poissson, et ces observations
empiriques suggèrent donc le processus de Hawkes comme candidat adéquat à la modélisation
de l’activité de trading au niveau des temps d’arivée des ordres.

Classiquement, les processus de Hawkes sont calibrés par maximisation de vraisemblance.
Cette méthode peut être très lente car elle suppose de boucler plusieurs fois sur les évènements à
chaque calcul de la fonction objectif. Les moments calculés jusqu’à présent suggèrent d’utiliser la
méthode des moments ou la méthode généralisée des moments pour l’estimation des paramètres
du processus de Hawkes. Cette méthode a l’avantage d’être instantanée, et indépendante de la
taille de l’échantillon, vu que les évènements sont parcourus une seule fois pour le calcul des
moments empiriques.

Dans un premier temps, nous validons donc la méthode des moments comme bon outil
d’estimation des paramètres du processus de Hawkes en recourant à une expérience Monte
Carlo, où nous simulons un processus de Hawkes, puis essayons de retrouver ses paramètres
par Maximum de vraisemblance et par méthode des moments, en partant du même ensemble
de paramètres initiaux pour les deux (évidemments différents des paramètres objectifs). Cela
valide la méthode et surtout le choix des moments sur lesquels on calibre, et l’on trouve qu’il
est important de calibrer sur la fonction d’autocorrélation pour obtenir de bons résultats.

Une fois cette méthode validée, nous l’utilisons pour calibrer le processus de Hawkes sur
des données réelles de temps d’arrivée de trades. Nous arrivons à reproduire la forme de
l’autocorrélation du nombre de trades observée comme le montre la figure 2. En calibrant tous
les jours, sur un ensemble de données couvrant deux ans, nous remarquons que les paramètres
sont assez stables, et notons aussi que le paramètre λ∞ est de l’ordre du dixième du paramètre
λ dans le cadre Poisson ce qui prouve que le processus de Hawkes explique une large part des
évènements par sa structure de branchement.1
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Figure 2: Autocorrélation empirique du nombre de trades ayant lieu sur des intervalles de temps
de longueur τ = 60 secondes, comparée à l’autocorrélation générée par un processus de Hawkes
calibré sur la journée de trading.

1Le λ Poisson est plutôt proche de l’intensité moyenne induite par le processus de Hawkes, à savoir λ∞β
β−α

, mais
dans notre comparaison nous voulons mettre en valeur la faible contribution du bruit de fond du processus de
Hawkes, porté par λ∞, au total des évènements, ceux-ci étant en majorité générés grâce au branchement.
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Pour mieux quantifier cette structure de branchement, nous calculons une réponse
impulsionnelle qui la caractérise, que nous définissons comme l’espérence du nombre
d’évènements déclenchés par un évènement qui a lieu en t=0 si le processus est indéfiniment
observé. Cette réponse impulsionnelle s’écrit

Nresponse =
α

β − α
. (9)

Estimée sur des données réelles, nous remarquons qu’elle caractérise bien la liquidité : plus
les actifs sont liquides, plus cette quantité est grande.

Ensuite, après calibration du modèle, il est naturel de se poser la question sur sa capacité de
prévision. On veut prévoir l’activité de trading à un horizon de temps donné sachant l’activité
ayant eu lieu dans le passé récent. Nous caractérisons cette activité par le nombre de trades par
intervalles de longueur τ en secondes, divisé par τ . Cela donne donc une quantité yt homogène
à une intensité. L’autocorrélation du nombre de trades sur des intervalles de temps consécutifs
étant positive et décroissant exponentiellement, il est alors naturel de modèliser l’activité de
trading par un processus AR(p). Pour clarifier, l’arrivée des trades (individuellement) étant un
processus de Hawkes, on dit que le nombre de trades par intervalle est un AR(p):

yt = a1yt−1 + a2yt−2 + ...+ apyt−p + ut.

Quand un processus de Hawkes est calibré sur les temps d’arrivée des trades, les coefficients
(a1, . . . , ap)

⊤ sont solutions du système linéaire:









1 Acf[τ, 0] ... ... Acf[τ, (p− 2)τ ]
Acf[τ, 0] 1 Acf[τ, 0] Acf[τ, (p− 3)τ ]
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Acf[τ, (p− 2)τ ] Acf[τ, 0] 1









×









a1
...
...
...
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Acf[τ, 0]
...
...
...

Acf[τ, (p− 1)τ ]









.

(10)
La résolution de cette équation linéaire pour un p suffisemment grand permet de calculer les

coefficients ai et de décider, selon la valeur relative de ces coefficients à quel ordre s’arrêter pour
avoir une bonne précision.

Des tests de prévision “in sample” effectués sur des données réelles nous permettent alors
de montrer la supèriorité de ce procédé de prévision par rapport à une méthode plus simple
consistant à supposer que le processus générateurs des trades est un Poisson, et donc que la
meilleure prévision du nombre de trades sur l’intervalle de temps qui vient est la moyenne
de ce processus de Poisson. Notons toutefois que si l’horizon de prévision est assez grand
(de l’ordre de la demi-heure), les performances de ces deux méthodes de prévision coïncident,
ce qui était attendu vu que l’autocorrélation du nombre de trades s’éteint à cet horizon de temps.

La partie suivante est fortement influencée par l’article fondateur (Bacry et al., 2013a). Nous
cherchons à y connecter l’aspect microscopique de l’activité de trading, qui se manifeste dans
l’aspect discret du mouvement des prix, à son aspect macroscopique, où le prix ressemble à
une diffusion continue. Inspirés par (Bacry et al., 2013a), nous modèlisons les sauts positifs et
négatifs du processus de prix par deux processus de Hawkes indépendants:

St = S0 +
(

Nup
t −Ndown

t

) δ

2
(11)

où δ est la valeur du tick (le facteur 1
2 s’expliquant par le fait qu’un saut positif du bid ou de

l’ask d’un tick, s’accomagne d’un saut positif du mid-price d’un demi tick).
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Les processus Nup
t et Ndown

t sont des processus de Hawkes capturant les sauts positifs et
négatifs du mid-price. Nous les considérons indépendants et ayant les mêmes paramètre pour
éviter une explosion du processus de prix. Leurs intensités respectives s’écrivent donc :

λup
t = λ∞ +

∫ t

0
αe−β(t−s)dNup

s (12)

λdown
t = λ∞ +

∫ t

0
αe−β(t−s)dNdown

s . (13)

Ainsi, nous ne considérons qu’un aspect clustering, contrairement à l’article fondateur
(Bacry et al., 2013a) où seulement un aspect d’excitation mutuelle est considéré.

L’objectif est ici de connecter les paramètres gouvernant l’activité observée en haute
fréquence, aux caractéristiques macroscopiques du processus de prix, comme sa volatilité.
Ce modèle nous permet par exemple d’expliquer le phénomène de signature plot observé sur
certains actifs financiers. Le signature plot est la forme que prend la fonction reliant la volatilité
réalisée estimée par sommation des carrés des rendements, à la fréquence d’échantillonnage de
ces derniers. Rappelons que si les rendements résultaient d’une diffusion Brownienne, alors
la volatilité estimée serait indépendante de la fréquence d’échantillonnage et le signature plot
serait plat.

Dans la pratique, on observe une forme biaisée. Généralement, l’estimation de la volatilité
réalisée augmente avec la fréquence d’échantillonnage. Ceci est dû à l’autocorrélation négative
des rendements à petite échelle de temps, et a été expliqué dans (Bacry et al., 2013a)
en introduisant un modèle de microstructure basé sur des processus de Hawkes s’excitant
mutuellement. Il arrive cependant que l’on observe une forme de signature plot inversée, où
la volatilité estimée diminue quand on augmente la fréquence d’échantillonnage. Ceci est dû à
une autocorrélation positive des rendements à petite échelle, et est observé pour certains actifs
peu liquides ou même certains jours pour des actions liquides. Notre modèle capte bien ce
phénomène. Nous calculons en effet le signature plot induit par notre modèle qui s’avère être
positif et croissant avec la période d’échantillonnage.

Nous obtenons par ailleurs la convergence de ce modèle vers une diffusion Brownienne.
Dans un autre article fondateur de (Bacry et al., 2013b), les auteurs obtiennent des résultats
de convergence plus généraux, notemment avec des noyaux non exponentiels du processus de
Hawkes, en recourant à des méthodes martingales. Nous donnons quand même l’idée d’une
preuve plus simple basée sur une variante du théorème de Donsker pour les séries aléatoires
présentant une dépendance assez faible, et qui s’applique bien dans le cas de processus de
Hawkes avec un noyau exponentiel.

Par ailleurs, nous obtenons grâce à nos calculs faits précédemment l’expression de la volatilité
asymptotique :

σ2 =
δ2

2

λ∞
(

1− α
β

)3 , (14)

où l’on voit clairement que plus l’effet clustering est important (i.e α
β est proche de 1), plus la

volatilité asymptotique est grande, comme on peut s’y attendre intuitivement.

Nous terminons par une comparaison des prévisions de notre modèle et de celles du modèle de
(Bacry et al., 2013a). Nous calibrons dans les deux cas le modèle de microstructure aux données
empiriques, et calculons la volatilité asymptotique induite par ce modèle et la comparons à la
volatilité réalisée observée.
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Les résultats montrent que notre modèle surestime systématiquement cette volatilité, alors
que celui de (Bacry et al., 2013a) la sous estime systématiquement. En effet, en ne modèlisant
que le clustering, notre modèle exagère les mouvements haussiers ou baissiers de l’actif financier,
alors que (Bacry et al., 2013a) qui modèlise seulement le retour à la moyenne, les modère. Cela
indique clairement que la vérité est certainement entre les deux et fait le sujet du prochain
chapitre.

Table 1: Volatilités Asymptotiques
Symbol λ∞ α β σBDHM Empirical σ σClustring

Eurostoxx 0.0184 0.0160 0.0219 12.79% 40.77% 80.64%
Dax 0.0429 0.0226 0.0259 4.80% 25.75% 71.36%
Bund 0.0267 0.0180 0.0261 2.70% 8.25% 14.47%
Bobl 0.0228 0.0187 0.0288 2.45% 6.92% 11.19%

Note. Exemple des différences entre volatilité asymptotique induite par un modèle à la (Bacry et al., 2013a), et une
volatilité asymptotique induite par notre modèle qui ne capte que le clustering contre la volatilité asymptotique
mesurée. La vérité se trouve clairement entre les deux.

0.3 Clustering et retour à la moyenne

0.3.1 Signature plot, corrélation et volatilité asymptotique

L’étude faite précédemment nous pousse donc à considèrer le cadre général. En effet, outre
le clustering précédemment modèlisé, et qui se révèle dans l’autocorrélation des occurrences
d’évènements du même genre, telle que les sauts positifs ou négatifs du prix, ou l’arrivé d’ordres
d’achat ou de vente, on assiste à un phénomène de retour à la moyenne, qui se révèle dans
l’autocorrélation d’évènements contradictoires (achat/vente, hausse/baisse). En empruntant le
langage de (Bouchaud et al., 2004), on voit que là où le clustering mène à une super-diffusion
du prix, le retour à la moyenne mène à une sous-diffusion, et c’est la subtile interaction entre
ces deux phénomènes qui donne le caractère diffusif des prix.

Pour capturer ces deux phénomènes, nous considérons dans ce chapitre des processus de
Hawkes multidimensionnels, présentant de l’auto-excitation ainsi que de l’excitation mutuelle
entre leurs composantes. La formule de Dynkin appliquée précédemment pour le calcul des
moments s’applique ici aussi et donne des formules compactes pour les différents moments du
processus.

Cette structure riche du processus nous permet de considérer un modèle unifiant le modèle
de (Bacry et al., 2013a) et notre modèle simple du précédent chapitre, où les intensités s’écrivent
maintenant :

λu
t = λ∞ +

∫ t

0
αse

−β̄(t−v)dNu
v +

∫ t

0
αme−β̄(t−v)dNd

v (15)

λd
t = λ∞ +

∫ t

0
αme−β̄(t−v)dNu

v +

∫ t

0
αse

−β̄(t−v)dNd
v . (16)

Ce modèle englobe celui présenté dans le précédent chapitre, et englobe aussi le modèle de
retour à la moyenne présenté dans l’article fondateur (Bacry et al., 2013a). Ainsi, la calibration
de ce modèle complet, et la calibration de ses deux cas particuliers nous permettent d’effectuer
des “likelihood ratio tests”. En calibrant sur les données que nous avons sur une large palette
d’actifs, nous arrivons à la conclusion qu’il est généralement impossible de se contenter de la
composante clustering seule, ou de la composante retour à la moyenne seule pour modèliser les
données, chose que nous avons pressentie précédemment.
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Dans ce modèle plus riche, on aboutit à la formule générale du signature plot :

Proposition. Le signature plot C(τ) = E[Ĉ(τ)], où Ĉ(τ) = 1
T

∑T/τ−1
n=0

(
S(n+1)τ − Snτ

)2
, s’écrit:

C(τ) =
ν2

2
Λ

(

κ2 +
(
1− κ2

) (1− e−τγ)

γτ

)

(17)

avec

Λ =
β̄λ∞

β̄ − αs − αm
, κ =

β̄

β̄ + αm − αs
and γ = β̄ + αm − αs.

On voit alors facilement que la forme du signature plot dépend de la différence de l’effet
Clustering par rapport à celui de retour à la moyenne. Si le retour à la moyenne est plus fort,
alors la volatilité estimée augmente avec la fréquence d’échantillonnage, puisque ce fort retour
à la moyenne induit une autocorrélation négative des rendements à petite échelle de temps,
ce qui augmente la volatilité estimée qui capte ces oscillations. Si, par contre, le clustering
l’emporte, la volatilité estimée décroitra avec la période τ d’échantillonnage, cela étant dû à
l’autocorrélation positive des rendements dans ce cas.

En effet, l’autocorrélation des rendements s’écrit dans ce modèle :

CorrStock(τ, δ) = −
e−(δ+2τ)(β̄+αm−αs)

(

eτ(β̄+αm−αs) − 1
)2

(αm − αs)
(
2β̄ + αm − αs

)

2β̄2
(
β̄ + αm − αs

) . (18)

D’un autre côté, le même raisonnement que dans le chapitre précédent permet d’obtenir la
limite diffusive du modèle, et nous aboutissons à une volatilité limite qui s’écrit :

Proposition. Pour le modèle général décrit ci-dessus, la volatilité asymptotique s’écrit :

σ2 =
ν2

2

β̄3λ∞
(β̄ − αs − αm)(β̄ + αm − αs)2

(19)

La même expérince effectuée précédemment, à savoir la comparaison de la volatilité limite
induite par ce modèle de microstructure contre la volatilité réalisée mesurée empiriquement sur
les données, permet de confirmer la nécessité de prendre en compte simultanément le clustering
et le retour à la moyenne comme le prédisaient nos “likelihood ratio tests”.

Table 2: Volatilités Asymptotiques
Symbol λ∞ αs αm β Empirical σ Toy model σ

Eurostoxx 0.0119 0.0474 0.0401 0.1074 24.64% 19.08%
Dax 0.0581 0.0341 0.0491 0.1050 25.75% 23.45%
Bund 0.0136 0.0471 0.0410 0.1081 5.35% 4.62%
Bobl 0.0125 0.0465 0.0396 0.1062 4.45% 4.44%

Note. Exemple de volatilités asymptotiques induites par le modèle général contre la volatilité réalisée observée, à
comparer aux volatilités asymptotiques induites par la modélisation du retour à la moyenne seul ou du clustering
seul.

0.3.2 Market impact dans un modèle simple

Nous terminons ce chapitre par une autre application possible des processus de Hawkes.
Dans le chapitre précédent, nous nous sommes intéressés au clustering des temps des arrivées
des ordres de marché. Ce clustering est aussi observé si nous signons ces ordres, à savoir si nous
les différencions en ordre d’achat et ordre de vente.
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Même si les ordres ne sont pas signés dans les fichiers de données que nous avons, nous
recourons à un algorithme de signature simple, documenté dans (Lee and Ready, 1991). Cela
nous permet d’observer de l’autocorrélation des ordres de même signe (achat ou vente), ainsi
que la corrélation d’ordres de signes différents (les achats provoquant des ventes et inversement).
Les processus de Hawkes sont donc de bons candidats pour la modélisation de ces dynamiques.

En posant NBuy
t and NSell

t le nombre cumulé d’ordres d’achat et de vente respectivement,
nous écrivons leurs intensités respectives comme suit :

λBuy
t = λ∞ +

∫ t

0
αse

−β̄(t−u)dNBuy
u +

∫ t

0
αme−β̄(t−u)dNSell

u

λSell
t = λ∞ +

∫ t

0
αme−β̄(t−u)dNBuy

u +

∫ t

0
αse

−β̄(t−u)dNSell
u .

Suivant (Hewlett, 2006), en considérant comme dans (Bouchaud et al., 2004), que le prix en t
résulte de la superposition des impacts de tous les trades qui ont eu lieu jusqu’à t, nous arrivons
à mesurer l’impact vu en t > 0 d’un trade qui a lieu en t = 0, dans un modèle simple d’arrivée
d’ordre cité plus haut, où tous les trades sont considérés portant sur des quantités unitaires et
où le prix se forme grâce au déséquilibre entre achat et vente dans le modèle simple de Kyle (on
notera λk le facteur d’impact de ce modèle défini dans (Kyle, 1985)). Cet impact s’écrit :

I(t) = λk

(

1 +
(αs − αm)e−β̄t

β̄ + αm − αs

)

, (20)

où l’on voit qu’il se décompose en impact permanent et impact transitoire.

L’impact d’un méta-ordre résultant de l’exécution d’un gros ordre en le décomposant donne
alors la figure suivante familière dans la littérature sur le market impact :
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Figure 3: Impact d’un méta ordre d’achat de 50 actions, exécuté durant 50 secondes, à la vitesse
d’un ordre par seconde. Nous prenons le paramètre d’échelle λk = 1.

Notons que l’obtention de la partie concave de la figure suppose que αs > αm, ce qui est
cohérent avec la décomposition d’un gros ordre, générant un regroupement des exécutions, et
cohérent aussi avec les résultats numériques des calibrations à l’activité d’achat et de vente où
l’on trouve que l’effet clustering domine l’effet retour à la moyenne.
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0.4 Corrélation et lead-lag

0.4.1 Modèle

Les résultats développés précédemment pour des processus de Hawkes multidimensionels
fournissent un cadre adéquat pour l’étude des phénomènes de corrélation entre deux actifs. Pour
ce faire, nous modèlisons les sauts positifs et négatifs de deux actifs par des processus de Hawkes

S1
t = S1

0 +
(

N1,u
t −N1,d

t

) ν1
2
,

S2
t = S2

0 +
(

N2,u
t −N2,d

t

) ν2
2

où ν1 et ν2 désignent la valeur du tick pour chacun des actifs respectivement. Le processus
de Hawkes à 4 dimensions Nt = (N1,u

t , N1,d
t , N2,u

t , N2,d
t )⊤ a pour vecteur intensité λt =

(λ1,u
t , λ1,d

t , λ2,u
t , λ2,d

t )⊤ qui suit la dynamique:

dλt = β(λ∞ − λt)dt+ αdNt

avec:

α =







α1
s α1

m x 0
α1
m α1

s 0 x
y 0 α2

s α2
m

0 y α2
m α2

s







;β =







β̄1 0 0 0
0 β̄1 0 0
0 0 β̄2 0
0 0 0 β̄2







(21)

et λ∞ = (λ1,∞, λ1,∞, λ2,∞, λ2,∞)⊤ ∈ R4
+.

Nous pouvons ainsi contrôler la connexion des deux actifs à travers les paramètres de
couplage dans les sous matrices carrées 2× 2 en haut à droite et en bas à gauche de la matrice
α. Dans la paramétrisation ci-haut, nous avons supposé une corrélation positive. C’est ainsi que
les sauts positifs du deuxième actif provoquent des sauts positifs pour le premier à travers le
paramètre x, et que les sauts positifs du premier actif provoquent des sauts positifs du deuxième
via y.

Dans le cadre de ce modèle, nous reconstruisons l’effet de Epps évoqué plus haut, en calculant
en toute généralité la formule donnant la corrélation estimée en fonction des paramètres du
modèle et de la période d’échantillonnage.

Plus spécifiquement, nous remarquons que le modèle fabrique par construction une corrélation
avec un retard temporel, qui peut être mise à jour si l’évolution des actifs est observée à l’échelle
de temps adéquate, à savoir en haute fréquence.
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Figure 4: Illustration du lead lag dans la formation de la corrélation en haute fréquence. La
figure de droite est un zoom autour de 0 de la figure de gauche.
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Ce temps de retard nécessaire à l’obtention de la corrélation maximale constitue alors un
candidat à la quantification du lead-lag entre deux actifs qui présentent cet aspect.

Les théorèmes limites de (Bacry et al., 2013b) permettent en outre d’obtenir la matrice de
variances/covariances limite du modèle en fonction de ses paramètres:

Proposition. En posant la matrice de variance covariance asymptotique du modèle :

σσ⊤ =

(
σ2
11 σ12

σ12 σ2
22

)

on a:

σ2
11 =

ν21
4

2λ1,∞(β̄1β̄
2
2x

2y + β̄3
1θ2γ

2
2) + λ2,∞β̄2x(β̄

2
2xθ1 + β̄2

1γ
2
2)

(γ1γ2 − xy)2(θ1θ2 − xy)
,

σ12 =
ν1ν2
4

2β̄1yλ1,∞(β̄2
2xγ1 + β̄2

1θ2γ2) + 2β̄2xλ2,∞(β̄2
1yγ2 + β̄2

2θ1γ1)

(γ1γ2 − xy)2(θ1θ2 − xy)
,

σ2
22 =

ν22
4

2λ2,∞(β̄2β̄
2
1y

2x+ β̄3
2θ1γ

2
1) + λ1,∞β̄1y(β̄

2
1yθ2 + β̄2

2γ
2
1)

(γ1γ2 − xy)2(θ1θ2 − xy)

avec γi = β̄i + αi
m − αi

s et θi = β̄i − αi
m − αi

s i ∈ {1, 2}.

où l’on retrouve pour les variances les formules du chapitre précédent si le couplage est annulé.

0.4.2 Étude empirique

La calibration du modèle sur des données réelles permet de rendre compte de sa capacité à
retrouver certains faits stylisés et intuitions, à savoir par exemple qu’un indice est généralement
leader par rapport aux actions comme le montre la figure 5. En outre, l’utilisation de la
quantification du lead lag présentée plus haut permet de mieux interpréter cette relation en
lui attribuant une valeur numérique.
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Figure 5: Séries temporelles des paramètres x et y pour la paire constituée de l’indice Eurostoxx
et de l’action BNP Paribas, où l’on voit clairement que l’indice influence grandement l’action,
tandis que l’impact réciproque est faible.

25



26



Chapter 1

What Drives Option Prices?

Note : A part of this chapter is published in The Journal Of Trading, Volume 7, number 3,
pp. 12-28, 2012, DOI: 10.3905/jot.2012.7.3.012.

Abstract

We rely on high frequency data to explore the joint dynamics of underlying and option markets. In
particular, high frequency data make observable the realized variance process of the underlying,
so its effects on option price dynamics are tested. Empirical results are confronted with the
predictions of stochastic volatility models. The study reveals that while the modelling of stochastic
volatility gives more robust models, the market does not process information on the realized
variance to update option prices.
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Introduction

A huge effort has been made to adapt the Black and Scholes model (Black and Scholes,
1973) in order to explain the observed implied volatility smile phenomenon. Alternative pricing
models have been proposed that correct some biases of Black and Scholes model and relax its
restrictive assumptions, leading for instance to heavy tails and skewness in log returns. Thanks
to nice model properties (such as affinity, as, for example, in Heston Model (Heston, 1993)),
and efficient numerical methods (for instance the Fast Fourier Transform algorithm (Carr and
Madan, 1999)), or closed formula for local volatility model (Dupire, 1994), many models can
be perfectly calibrated to a smooth implied volatility surface. Therefore, they can equally well
capture the marginal distributions of the spot, while predicting different dynamical behavior for
the underlying as well as for the smile itself.

Many empirical studies have established the need for multifactor models to capture the
smile dynamics. Stochastic volatility models or jump diffusion models are from this perspective
judged to be superior to the local volatility one a la Dupire. One of the major drawbacks of
this model, is that it predicts a flattening of the forward smile whereas the formers generate a
persisting smile, as observed in option markets.

Moreover, among the features that one can add to the Black and Scholes framework (jumps,
stochastic volatility, stochastic interest rates ..), stochastic volatility modelling yields the best
dynamical model performance as was established in (Cao et al., 1997).

Consequently, stochastic volatility modelling is the corner stone of option pricing theory.
This modifies the replication paradigm, as, under stochastic volatility models, perfect replication
by dynamic trading in the stock is no longer possible. Another option has to be introduced to
complete the market and the replication now relies on dynamic trading in both the stock and
this option, to the extent that researchers now speak of a volatility delta. A nice exposition of
these ideas can be found in (Wilmott, 2006) and (Rebonato, 2004).

As usual when one deals with option pricing, these stochastic volatility models take an
“implied route” : calibrate model parameters in order to replicate the observed market vanilla
option prices, then use the model with these calibrated parameters to price more exotic options.

What interests us in this chapter is that a stochastic volatility model, besides being an
extrapolation tool between liquid vanilla prices and non quoted exotic option prices, presents
also a scenario of option price formation and evolution. According to stochastic volatility
models, option prices are the result of the processing, by the market, of the information on spot
and variance stochastic processes. We want to know if the data tells the same story.

Fortunately, the availability of high frequency data, and especially of the hardware and
software capabilities allowing practitioners and researchers to deal with them, enhanced the
accuracy of realized variance estimation. One is now able to build very accurate time series of
daily realized variance and even estimate it intra daily, making it a market observable if not
a tradable asset. Econometric literature dealing with this subject is huge. See for example
(Andersen and Benzoni, 2009) and references therein.

A legitimate question is then to reconsider the scenario of option price formation in the light
of this newly available data. Does the scenario presented by stochastic volatility models actually
occur in real markets? As the spot process is revealed, option prices adjust to be consistent with
it, but does the same occur with the variance process that high frequency data allow to reveal?
In other words, are option prices adjusted to be consistent with the realized variance process?
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We attempt here to answer these questions. We explore the relationship between realized
variance time series and option prices, or equivalently, implied volatility. The followed
strategy is to explore the joint dynamics of option and underlying markets. The quadratic
variation process of the underlying being observable, we seek, ex-post, its effects on option prices.

The chapter is organised as a back and forth between theoretical predictions of stochastic
volatility models and data observation.

In section 1, we describe the TRTH (Thomson Reuters Tick History) data we use, as well
as its processing in BNP Paribas. We also present the three stock indices that the study deals
with, and some characteristics of their respective markets.

Section 2 presents the stochastic volatility framework and its implications on the dynamics
of option prices.

In section 3, we conduct an empirical study of the intraday evolution of option prices.
Inspired by the framework presented in the previous section, we isolate the spot component in
option price dynamics and try to explain the residual by the realized variance. We conclude
that the changing intraday underlying variance does not impact the market view of implied
volatility, which can be almost fully explained by the spot dynamics.

In section 4, we compare empirical observations to stochastic volatility predictions, quantified
thanks to the calibration of Heston stochastic volatility model to market data. This reveals a
comparable weight given to the spot component in the option dynamics by the model and data,
but a divergence in the projection of the residual : while the model attributes it to stochastic
variance, the data does not confirm that. Moreover, the intraday study gives a measure of
option price dependence on the spot, which we call the effective delta. This turns out to be a
good hedging parameter, well approximated by the Heston total delta, confirming our method
of assessing the spot part in the option price dynamics, and confirming other studies’ results on
the hedging performance of stochastic volatility models, such as (Cao et al., 1997).

In section 5, armed with the confidence gained through the two last sections that a stochastic
volatility model describes well the cinematics we are observing, even if it does not identify
the same causes, we generalize the study to a daily time scale. Even if an option changes
from day to day (as its maturity is diminished by one day), stochastic volatility models give
us some more tools to identify a maturity and strike independent quantity characterizing the
option price. We study the influence of daily realized variance on the evolution of that quantity.
The result remains unchanged: while the stochastic volatility framework gives a satisfactory
phenomenological description of option markets, its structural interpretation is not observable
in the data. The market does not process information revealed by realized spot variance to fix
option prices. Observation of the realized variance does not improve our predictive power on
option price or implied volatility dynamics, as compared to the observation of the spot process
alone.

Section 6 summarizes the study.

1.1 The data

We rely on tick by tick data from TRTH (Thomson Reuters Tick History). The data
consists of trade and quote files timestamped in milliseconds. These files are processed by
BNP-Paribas Equities & Derivatives Quantitative R&D Histo team. Among other things, this
processing consists in storing the data in a special format that saves the necessary disk space,
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and especially makes data requests very efficient.

For this study, we consider three world indices: Eurostoxx 50, Dax 30 and Kospi 200.
These indices have in common a very liquid derivatives market, and are, by other aspects, very
different, as discussed in the sequel.

Kospi 200 options are the most liquid exchange listed derivatives in the world as far as
trading volume is concerned. In 2010, Kospi 200 options traded in Korea accounted for 70%
of the index options volume traded worldwide with more than 3.5 billions contracts1. This
is certainly due to the fact that these contracts are much smaller than those traded on other
exchanges. Most traded options on Kospi 200 are those of next month expiry. Almost all the
trading activity takes place on the exchange. The most actively traded options can register
more than 100000 trade events in one day.

Options on Dax and Eurostoxx are also very actively traded. Their turnover is greater
than that of Kospi 200 options, but due to a bigger contract value for Dax and Eurostoxx
options on the one hand, and to a greater number of traded maturities on the other hand,
the number of trades for any particular option is much smaller than in the Kospi 200 case. In
fact, next month and quarterly maturities up to 18 months are actively traded. Even if a non
negligible proportion of the trades takes place on the OTC markets, the option order books
are very active and quotes are regularly updated (the time scale here is of the order of the second).

By other aspects, these three markets are very different. For example, Dax index is a
total return index, which means that dividends are reinvested, contrary to both other indices.
Additionally, while trading activity on Eurostoxx and Dax derivatives is essentially done by
finance professionals, Korean market presents the curious property that approximately the
third of trading activity on Kospi 200 options is done by individual householders, a fact
unique to this market. Moreover, in the KRX market, options are more liquid than futures.
In fact, in 2010, while the number of traded contracts on options exceeded 3.5 billions, the
number of traded futures contracts is below 100 millions. See http://eng.krx.co.kr for details.

Although the three markets are very different, our investigation gives the same results for all
of them, allowing us to interpret these findings as stylized facts of the joint dynamics of option
and underlying markets.

1.2 Theoretical framework

Under the real world probability measure, we assume that stock price dynamics are given by
a stochastic volatility diffusion as in the equations below :

dSt = µStdt+
√

VtStdW
1
t (1.1)

dVt = νdt+ ζdW 2
t (1.2)

d < W 1,W 2 >t = ρdt, (1.3)

where we make the usual (but not at all trivial) assumption that the price Ct of an option on the
underlying S is a smooth function of time, spot and underlying variance, i.e. Ct = C (t, St, Vt).

Therefore, the Itô formula gives us the dynamics of this option price :

1source : World Federation of Exchanges, 2010 Derivatives Markets Survey Report, http://www.

world-exchanges.org
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dCt =

[
∂C

∂t
+ µSt

∂C

∂S
+

1

2
VtS

2
t

∂2C

∂S2
+ ν

∂C

∂V
+

1

2
ζ2

∂2C

∂V 2
+
√

VtζρSt
∂2C

∂S∂V

]

dt (1.4)

+
√

VtSt
∂C

∂S
dW 1

t

+ ζ
∂C

∂V
dW 2

t .

Stochastic terms dominate drift terms as their order of magnitude is
√
dt whereas it is dt for

the latter. Additionally, we will work with detrended data and assume that this enable us to
ignore the drift term in the above equation, leaving us with the stochastic part only. So we end
with the detrended option price process :

dCt =
√

VtSt
∂C

∂S
dW 1

t + ζ
∂C

∂V
dW 2

t . (1.5)

Option price is then, as expected, governed by two sources of randomness : the spot, and its
stochastic volatility. Notice however that, as this stochastic volatility is itself correlated with the
spot, part of its own randomness can be attributed to the noise governing the spot price itself.
To isolate the pure spot noise one can write :

dCt =

(
√

VtSt
∂C

∂S
+ ζρ

∂C

∂V

)

︸ ︷︷ ︸

pure spot risk

dW 1
t + ζ

√

1− ρ2
∂C

∂V
︸ ︷︷ ︸

pure volatility risk

dZt, (1.6)

where now W 1
t and Zt are independent brownian motions.

Recalling that the detrended spot price is dSt =
√
VtStdW

1
t , we rewrite the above equation

in terms of dSt so as to emphasize the option and spot price dynamics relationship :

dCt =

(
∂C

∂S
+

ζρ√
VtSt

∂C

∂V

)

︸ ︷︷ ︸

Effective delta

dSt + ζ
√

1− ρ2
∂C

∂V
︸ ︷︷ ︸

pure volatility delta

dZt. (1.7)

The so-called effective delta in the above equation carries the total first order sensitivity of
the option price to spot movements in this framework. This is the classical delta ∂C

∂S corrected
by an ajustment factor accounting for the correlation between the spot and its volatility. The
orthogonal term carries the volatility specific noise, hence the name pure volatility delta.

To summarize, we end with a regression relationship between option price and spot price
increments :

dCt = βdSt + αdZt. (1.8)

Obviously, the coefficients of the above regression relationship are time dependent and may
be stochastic. In (Mykland and Zhang, 2008) the authors study the problem of inference of such
an instantaneous β in a generalized one factor framework of implied volatility dynamics and its
implication on option hedging. For our purpose, we assume that the regression coefficients do
not vary a lot within one day, which is the time window that we consider to begin our study.
The regression of option and underlying price increments can then be conducted, quantifying the
underlying spot influence on the option price dynamics. The residual of this regression carries the
pure volatility risk, for which we will explore, if any, the relationship with the realized variance
of the underlying. This is done in the next section.
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1.3 Intraday joint dynamics of option and underlying prices

When dealing with statistical time series analysis, a trade off has to be made between the
stationarity assumption on the one hand, which is necessary for the estimation of different
quantities of interest such as correlations, volatilities, regressions and so on.. and the length of
the data set on the other hand, as this has to be sufficiently long in order to assume that the
estimators have converged.

This problem is harder when we deal with option price time series because an option
fundamentally changes from day to day. For instance, today’s ATM 30-day maturity option
becomes a 15-day maturity option in two weeks, with a non negligible theta effect that may be
hard to quantify without many modelling assumptions. Moreover, the option may no longer be
considered ATM due to the spot movements, which completely changes its characteristics. So,
comparing option prices spanning several days may be misleading as we are not talking about
the same financial product (unlike a stock price which is generally the same from day to day).
Consequently, some care have to be taken in the study of the joint dynamics of option and
underlying prices.

In order to study raw option prices without relying on any modelling assumptions, we look at
intraday dynamics. In the case of intraday price changes, we can consider that the maturity of the
option does not change, and generally, spot movements leave the option in the same moneyness
zone. With high frequency data, we still have long enough price series to get reliable estimations.

However, there is another issue with high frequency data, not specific to option prices. If we
want to make a regression study of two or more price time series, we begin by sampling them at a
given frequency to synchronize them, and then conduct our regression. In an intraday study with
high frequency data, we are then tempted to sample the data at the highest possible frequency
in order to obtain the longest possible time series and ensure a better convergence rate of our
statistical estimators. Unfortunately, the ideal sampling frequency is not necessarily the greatest
possible, because of, among other phenomena, the Epps effect.

1.3.1 Epps effect

Epps effect (Epps, 1979) is the observed decrease of estimated correlation of price time series
as the sampling frequency increases. It is mainly due to the asynchronicity of trading, as well
as discretization effects (Münnix et al., 2010). It is well documented for stock/stock price time
series. We observe the same effect for the asset and its derivative product.

Table 1.1 presents an illustration of this effect. We take trades and quotes data for a
22-day maturity call option on Kospi 200 and the future2 on the same index, both maturing
the same day on March 2008. We consider mid prices for both securities. Estimation of the
daily correlation of price returns, sampled at different time interval lengths, is shown in Table 1.1.

As shown by the confidence intervals of Table 1.1, asymptotic correlation is reached in
few minutes for pairs of index future and option considered. The order of magnitude of the
phenomenon in stock/stock case is of 20 to 30 minutes. This shortening of the time scale can
be explained by delta effect of future’s price on option’s price: this mechanical effect leads to a

2For all our studies in the sequel of the joint dynamics of option and underlying prices, we take the future
price as a proxy for the underlying index. This is a good proxy for many reasons : the future is tradable and
is the main hedging instrument for options on the index. As we are not interested in trends but in the noise
governing the dynamics, we can assume it is the same for the future and for the spot itself. Even if the future
has in general a stochstic interest rate component, this can be ignored as we consider short maturities, enabling
to assume that interest rates are deterministic. In fact, future/index correlations for the maturities we consider
are always greater than 99%.
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fairly fast adjustment of option quotes when future prices move.

Table 1.1: Epps Effect
Sampling period in seconds Estimated correlation 95% Conf interval 99% Conf interval

300 97.10% [95.5% , 98.1%] [94.8% , 98.4%]
180 96.48% [95.0% , 97.5%] [94.5% , 97.7%]
150 95.83% [94.3% , 96.9%] [93.7% , 97.2%]
120 95.19% [93.7% , 96.3%] [93.1% , 96.6%]
90 93.41% [91.6% , 94.8%] [91.0% , 95.2%]
60 93.50% [92.1% , 94.6%] [91.6% , 95.0%]
45 91.56% [90.0% , 92.8%] [89.5% , 93.2%]
30 90.84% [89.5% , 92.0%] [89.1% , 92.3%]
20 87.63% [86.2% , 88.9%] [85.7% , 89.3%]
10 80.57% [79.1% , 81.9%] [78.6% , 82.4%]
5 69.94% [68.4% , 71.4%] [67.9% , 71.8%]
2 52.63% [51.3% , 53.9%] [50.9% , 54.3%]

Note.Correlation versus Sampling period for a 22-day Call option on Kospi 200 and the index future. Confidence
intervals construction relies on the Fisher Transformation of the sample correlation coefficient, as well as a bivariate
normality assumption.

There exist some techniques to deal with asynchronicity of data in covariance estimation.
We can cite (Hayashi and Yoshida, 2005) who propose an unbiased and consistent estimator
of realized covariance of two diffusions observed asynchronously and in discrete time, that does
not require any data pre-processing. Another variance/covariance estimator using all available
data without extra manipulation is proposed in (Mancino and Malliavin, 2002). Tests of the first
estimator with our data give satisfactory results, in accordance with a few minutes data sampling
period. As we will need to conduct regression studies (and even multidimensional regressions),
we rely on time series sampling. Doing that with a period of 5 minutes seems to be a good trade
off between the time needed for the Epps effect to disappear, and the need to retain enough
data for our estimators to give reliable results, as we work in an intraday setting. This 5-minute
sampling allow us also to assume that any other microstructure noise has disappeared.

1.3.2 Regression analysis

As usual in high frequency data, the regression analysis is conducted on price increments of
the option and the future. The regression relationship established in section 1.2 is well observed
in the data. Typical option price versus future price increment plots look like the Figure 1.1.
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Figure 1.1: Evidence of the linear regression relationship of option price increments and future
price increments as observed in the data (here Kospi 200). As expected, the slope is positive for
the Call and negative for the Put.

We perform this regression on our universe of options and futures. Every day, the actively
traded (for kospi 200) or quoted (for Dax and Eurostoxx) options are considered, as well as
the front maturing future. Even if the three markets considered are very different by multiple
aspects -as noticed in the data description- the results are roughly the same: a very good linear
regression relationship (nearly 0 p-values) with a very high coefficient of determination R2.

R2 of option / future increments regression

The observed coefficient of determination R2 is very high, and is most of the time very close
to 1. In Figure 1.2, we plot as an example the calculated R2 for all the options on Eurostoxx
and Dax that we consider. Every point in the graph is the R2 obtained for a 1-day regression of
option price increments on future price increments.
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Figure 1.2: Observed R2 of option/future increments regression for Eurostoxx and Dax.

Even if some of the regressions in the Figure 1.2 reveal a bad quality of fit as shows the
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small R2 value, further investigation allows to discard them. Indeed, we inspect individually
the days and options giving an R2 which is less than 0.5. In all these cases, the individual
investigation reveals the presence of an outlier that highly impacts the regression. In Figure 1.3,
such a situation is presented for a Dax option: in this case, at two different times, errors in the
fed best ask quote were responsible for a large move in the option mid price which feeds our
regression analysis. When these outliers are taken away (and they are generally corrected in the
market data), the R2 takes a very high value, which is clear on the graph.
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Figure 1.3: Example of a poor R2 case : presence of the two outliers largely accounts for the bad
quality of fit denoted by a small R2.

As a conclusion, most of option price variance is explained by the underlying variance, but
an orthogonal factor does exist, hence the strictly less than one R2 value. Motivated by the
stochastic volatility model intuition, we seek this orthogonal factor in the realized variance time
series.

Multiple linear regression on the future and its realized variance

Recall that the purpose of the regression we are conducting is to relate the option price
dynamics to the underlying dynamics, as well as the variance of underlying dynamics, as
suggested by stochastic volatility models. The second step of our intraday study is then to
calculate the intraday realized variance time series. To estimate these variance time series, we
sample the futures price data for the three indices every second, and then use the classical
variance estimator on different time windows, namely 15, 20 and 25 minutes:

Vt = A×
N∑

i=1

ln(
Si+1

Si
)2, (1.9)

where A is the adequate annualization factor for each time window.

This gives us three time series of realized variance, one for each time window considered.
Motivated by the above noted considerations on the Epps effect, we then construct 5-minute
spaced time series of realized variance. For example, for variance time series constructed with
a 25 minute window, begin at 9:30, take the future prices between 9:05 and 9:30 sampled every
second and calculate the above estimator, obtaining V1, then move to 9:35, take the future
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prices between 9:10 and 9:35 sampled every second and compute the same estimation obtaining
V2 and so on and so forth... We pick also the future prices and option prices at the times of
variance calculation to do our regressions.

As an example, in Figure 1.4, we plot the spot of Eurostoxx against its realized volatility
(defined as the square root of variance, and calculated in a 20 minute window here). Notice
the decreasing volatility during the middle of the day due to the decreasing market activity
during lunch time. Notice also the overall negative correlation of volatility movements and price
movements, but near the end of the day, where intense activity before the closing raises the
volatility even if the price goes up.
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Figure 1.4: This figure ensures the plausibility of the realized volatility estimated : observe the
lunch time effect in the middle of the day, and the overall U-shape of daily volatility.

We then make a multiple linear regression of option price increments on spot and variance
increments. Over-all R2 of the total regression remains unchanged compared to the one factor
regression of the preceding subsection, as well as the slope of the spot factor. Moreover, the
regression hypothesis on the realized variance is clearly rejected with p-values exceeding 0.5.

Even if Figure 1.4 advocates the reliability of our realized variance estimator, it can be
argued that our high sampling frequency of future prices used to estimate the realized variance
time series induces spurious autocorrelations of returns that can be due for example to order
splitting, and that inflates the realized variance estimator.

To avoid such pitfalls, we perform the same analysis with another realized variance estimator
that is less sensitive to the market microstructure noise, namely the Garman-Klass variance
estimator (Garman and Klass, 1980):

Vt =
1

2
(ht − lt)

2 − (2ln (2)− 1) (ct − ot)
2 , (1.10)

where ht, lt are respectively the highest and lowest log-price for the considered time window.
And ot (respectively ct) is the opening (respectively the closing) log-price for this time window.

Using this estimator leads to the same results. The intraday realized variance does not have
any effect on the option price dynamics. Option price variance is almost entirely explained by
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the underlying price variance. On some days, their correlation seems to be perfet. Observe for
instance Figure 1.5 graph of a Eurostoxx Put option versus the future:
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Figure 1.5: The anticorrelation of intraday put price and future price seems perfect.

These empirical observations are in total contradiction with the intuition behind stochastic
volatility models. In fact, when one sees Figure 1.5, one wonder if the stochastic volatility is
worth modelling at all! Does an R2 of 0.9 let any place for another factor for modelling the
option price dynamics? How does this quantitatively compare to stochastic volatility model
predictions?

1.4 Stochastic volatility model predictions

1.4.1 implied R
2

We recalled in section 1.2 that the option price dynamics in the stochastic volatility framework
are driven by two factors: one coming from the stock and the second being what we identified
as a pure volatility risk, namely:

dCt =

(
√

VtSt
∂C

∂S
+ ζρ

∂C

∂σ

)

︸ ︷︷ ︸

A

dW 1
t + ζ

√

1− ρ2
∂C

∂V
︸ ︷︷ ︸

B

dZt. (1.11)

Empirical investigation reveals a very high weight of the spot price in the option price
dynamics, which explains the very high observed R2. But what do stochastic volatility models
quantitatively predict? Do they equally spread option price variance over the underlying and
its variance, or do they project the risk on one factor preferably to the other?

To answer this question, we have to quantify the weights (A and B) in Equation (1.11)
relatively to each other. These weights depend on unobservable quantities, such as the volatility
of variance ζ or the underlying/variance correlation ρ. Fortunately, these quantities are not
altered by an absolutely continuous change of probability. So, the calibration of a pricing
model specified under the risk neutral measure should make them observable, giving us orders
of magnitude for the weights governing the spot process and the pure variance process in the
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option price evolution, and allowing us to compare model predictions to the data.

In order to design a benchmark, we choose to calibrate Heston model to the observed option
prices. Under the risk neutral measure, this model writes

dSt = rStdt+
√

VtStdW
1
t (1.12)

dVt = κ (θ − Vt) dt+ ζ
√

VtdW
2
t (1.13)

d < W 1,W 2 >t = ρdt. (1.14)

This choice is naturally explained by the analytical tractability of Heston model. The
model being affine, its charcteristic function is known in closed form and the pricing by FFT as
described in (Carr and Madan, 1999) is straightforward, allowing a fast calibration, pricing and
greeks calculation.

To design the calibration set, we rely on historical data for rate curves (EUR and KRW),
and collect liquid option mid prices for our three indices. This leaves us with the next month
maturity options for the Kospi 2003, and with maturities less than 18 months for the Dax
and Eurostoxx. At the end of every trading day of our three indices (precisely half an hour
before the close), mid-prices of actively traded options are observed for every traded maturity.
Put-Call parity relation enables us to determine the forward price of each index. These markets
being very liquid, this is a reliable method to calculate the forward. Indeed, the values of
the forward we find by applying the relation to different option strikes generally differ by less
than 0.05%, this difference being explained by asynchronicity of price contributions and market
microstructure noise. We then take the median forward given by the Put-Call parity relation
applied to near the money strikes.

We define our objective function as the sum of squared differences between model and
market prices as in (Cao et al., 1997), and conduct the minimisation procedure thanks to
(Lourakis, Jul. 2004).

In Table 1.2, we give mean calibration results and their standard deviations for the three
indices for the period of March to April 2011. Globally, orders of magnitude of the parameters
correspond to what is generally reported in the literature, see for example values in (Gatheral,
2006). The only strange value concerns the κ of Kospi 200: as we have only one smile, the speed
of mean reversion is really huge.

Table 1.2: Heston Model Calibration Results
Index σ0 κ θ ζ ρ

Eurostoxx 0.2255 1.8893 0.0778 0.5739 -0.9072
(0.0289) (0.6072) (0.0066) (0.1653) (0.0847)

Dax 0.2027 1.9887 0.0677 0.68311 -0.7698
(0.0274) (0.6128) (0.0402) (0.2164) (0.0455)

Kospi 200 0.1737 9.5877 0.1990 0.9892 -0.5813
(0.0303) (6.7695) (1.0397) (0.3067) (0.0854)

Note. Mean and standard deviation of the calibrated Heston parameters on the set of actively contributed options
for the months of March and April 2011.

3liquidity is concentrated in contracts with the nearest expiration in the Kospi 200 options market. This can
be explained by the huge proportion of individual investors, which is due to many reasons like the small size of
the contracts and individuals’ appetite and enthusiasm for trading. An analysis done in 2001 but still relevant by
many aspects, can be found here : http://www.futuresindustry.org/fi-magazine-home.asp?a=994
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Recall that our aim is to have orders of magnitude of the weights in Equation (1.11) relative
to each other, so after the calibration of the models, we have to calculate the derivatives of
the price with respect to the spot and to the volatility, to obtain the quantities A and B
of Equation (1.11). These quantities are easily calculated within the Heston model by the
same Fourier transform method leading to the option price, where some algebra is applied to
calculate derivatives of the characteristic function with respect to the spot and to the volatility.
Notice that even a calculation by finite differences is fast enough. The values obtained for A
and B enable us to calculate the ratio A2

A2+B2 which is the ratio of the variance carried by the
underlying dynamics to the total variance of option price increments. It is then the R2 of a
regression of option prices on spot prices implied by our stochastic volatility model.

Figure 1.6 shows a plot of this implied R2. To our surprise, the results are not far from
the really observed ones: the implied R2 in a stochastic volatility framework is still very high
(around 0.9). Individual investigation of poor values reveal poorly calibrated options by the
model and can be safely ignored. The result is therefore in accordance with the empirical finding.
Stochastic volatility model attributes the major part of option price variance to the underlying
price movements, in accordance with observation in the data. Option price variance due to the
underlying volatility dynamics is far smaller in these models.
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Figure 1.6: implied R2 corresponding to the ratio of the variance explained by the spot process
to the total variance of the option price process in a stochastic volatility framework, where we
calibrate a Heston model to the data to calculate values of the different parameters in equation
(1.11).

To push the investigation further, we see in the next section if the model predicts the same
slope as seen in the data in the option/underlying regression relationship.

1.4.2 Regression slope versus model delta

Slopes of the regressions in the previous section are always less than 1 in absolute value and,
as expected, positive for Calls and negative for Puts. Recall that these slopes represent the total
spot sensitivity of the option in our stochastic volatility framework, and were interpreted as
being the effective delta of the option in the regression analysis. If our intuition is correct, these
slopes give a model-free hedge ratio of the option allowing to hedge all the spot dependence.
A legitimate question is then if this model-free delta is a robust hedge ratio, and how does it
compare to the Heston model total delta, namely :
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∆Heston =

(
∂C

∂S
+

ζρ√
VtSt

∂C

∂V

)

(1.15)

Hedging performance of the regression slope

In order to quantify the robustness of this model-free hedge ratio, we perform the following
experiment:

• For every index, we collect the options that have been actively traded for at least 20 days
since their inception. Even if we do not require these days to be consecutive, it is actually
the case in practice, as the option is actively traded when it is relatively near the money,
and virtually disappears when it is deeply IN our OUT of the money, or actually disappears
when it matures, which are the two retained cases for closing the position as explained later.
That leaves us with 975 options on Kospi 200, 527 options on Eurostoxx, 748 options on
Dax, for the period between January 2007 and April 2011.

• For every option, we consider that the trader takes a short position on the first day of
data availability. The retained price C0 is the median of best BID quotes of the last 15
minutes of the trading day sampled every second. At the same time, the trader performs
the regression dCt = βdSt + dZt of option price increments on future price increments
during the trading day and uses the calculated effective delta to enter a future position (on
the front maturing future). The retained price of the futures is the median mid price of the
last 15 minutes of the trading day sampled every second. As the spread on future prices
for such liquid indices is very tight, working with mid price instead of bid or ask price
depending on the sign of the position simplifies the study without impacting the results.
As no cash is needed to enter the futures position, the cash position at inception of the
portfolio consists in C0. Notice also that we take median prices instead of mean prices as
taking the median automatically gets rid of outliers and errors in the data.

• At the end of every trading day, the cash position earns the risk free rate, that we calculate
based on historical Euribor rate curves for Eurostoxx and Dax, and Koribor rate curves
for the Kospi 200. The trader reperforms the regression and updates the delta position,
earning ∆t−1 × (St − St−1) that he adds to his cash position.

• Close the option position if the option goes out the forward moneyness region [0.85, 1.15]
as it will no longer be actively traded, or on the eve of the maturity day, by buying back
the option. The retained price CT for the option is the median of best ASK quotes of the
last 15 minutes of the trading day sampled every second. Closing the option at the eve of
its maturity day avoids us to enter in the subtleties of the regulations of the last trading
day of options and futures. That simplifies the analysis without impacting the conclusions.

• For each option, we obtain then a final PnL, that we transform into a dimensionless number,
by scaling it by the initial investment, i.e. relative pnL = PnL

C0
. This will make comparison

between different options and even between indices easier and allow aggregation of data.

In Table 1.3, we report means and standard deviations of calculated relative PnL for the
three indices under consideration. The three of them are positive, gaining around 20% of the
initial investment. This confirms that the effective delta is actually a good hedging ratio. The
strictly positive sign of the final PnL in the three cases is not at all surprising : banks take
margins! Notice that these margins seem to be greater in Kospi 200 option market. This can be
explained by the great number of non professional agents in this market.
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Table 1.3: Effective Delta Hedging Results
Index mean relative PnL std dev

KOSPI 200 0.2489727 0.4992516
EUROSTOXX 50 0.2057907 0.3349121

DAX 30 0.2141580 0.2456583

Note. Means and standard deviations of the relative PnL of the model-free hedging strategy.

For completeness, we also plot in Figure 1.7 the density of relative realized PnL of this
model-free hedging strategy.
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Figure 1.7: Density of the relative PnL of a model-free-delta-hedged option position.

We conclude that this model-free hedge ratio is robust enough. We compare it in the sequel
to other hedge ratios obtained by pricing models.

model free vs model deltas

The regression analysis of the option price dynamics revealed the option “effective delta”. We
stated in section 1.4.2 that this is actually a robust model-free hedge ratio. In this section, we
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compare this hedge ratio to other model-based deltas. We obtain typically figures looking like
Figure 1.8 :
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Figure 1.8: Comparison of different delta measures on one month Dax options.

Candidate hedge ratios are listed below:

• Nd1 is the delta obtained by simply inverting the Black Scholes formula to obtain the
implied volatility Σ of the option, and then calculating the Black and Scholes delta:
∆ = N(d1) where N is the standard normal cumulative distribution function, and

d1 =
ln( S

K )+(r+Σ2)T
Σ
√
T

.

• Local vol is the delta obtained for a local volatility model a la Dupire that we calibrate
to the observed Dax implied volatility surface.

• BS Delta is the total Black Scholes delta, which takes into account the implied volatility
smile: ∆ = ∂C

∂S + V ega∂Σ
∂S .

• Heston is the local minimum variance hedge ratio in the Heston model : ∆ = ∂C
∂S + ζρ

σS
∂C
∂σ .

• Effective is the regression coefficient of option price increments on future price increments
as in section 1.4.2.

Observe that Local vol delta and BS Delta are close to each other, as both of them take
into account the smile without adding a dynamical part (dependence of the smile itself on the
spot). Heston model yields the closest results to the model-independent effective delta, which
proved to be a robust hedge ratio in the study of section 1.4.2. This is conform to the findings of
(Cao et al., 1997) that modelling stochastic volatility yields the best dynamical model behavior,
i.e. the best hedge performance.

Notice however that practitioners, when using local volatility or Black Scholes volatility,
generally add a dynamical term in the smile, letting the volatility surface move as the spot
moves. In this case, implied volatility surface is parametrized as Σ = Σ(S,m) where m is the
moneyness, say m = K

S .
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The first dependence in S isolates the dynamics of the implied volatility, whereas the second
reflects the mechanical volatility change when the spot moves, changing the moneyness of the
option. We then have:

dΣ =
∂Σ

∂S
dS +

∂Σ

∂m
dm (1.16)

where ∂Σ
∂m is the skew of the smile, and dm = ∂m

∂S dS = − K
S2dS.

So finally :

C = C
(

S,Σ
(
S,m (S)

))

(1.17)

And the total delta writes :

dC

dS
= ∆BS −VegaBS × Skew

K

S2
︸ ︷︷ ︸

static correction

+ VegaBS ×
∂Σ

∂S
︸ ︷︷ ︸

dynamic correction

(1.18)

Comparison, at the end of the trading day, of the total delta with the effective delta
calculated by regression can give an idea of the quality of the dynamical correction. We will
return to these considerations in the sequel.

We conclude from this section that stochastic volatility models do well in capturing
dynamical option price properties. This answers positively the question raised in the previous
section of whether this feature is worth modelling. The answer is fortunately yes, and the
implied R2 study as well as the delta study of this section reinforce the well established results
of empirical research dealing with robust dynamical model performances of stochastic volatility
models.

However, stochastic volatility models tell a different story of option price formation and
evolution than that found in the data in section 1.3. In the model, the underlying stochastic
variance is a factor driving option prices, which could not be observed in the data.

A criticism that can be made to the study in section 1.3 is that of time scales. In fact, small
time scales considered can result in a noisy, or non convergent realized volatility estimator.
Larger time scales, however, will result in a fewer data points within a trading day, making any
intraday statistical study worthless.

Recall that one problem when dealing with options is that the nature of a given option
changes from day to day. Its maturity as well as its moneyness are not the same, and hence,
so are its dynamical properties. In order to be able to enlarge the time scale of the study, we
must rely on a maturity- and moneyness-independent quantity, enabling us to treat it as being
the same financial quantity from day to day. This will be done in the next section.

1.5 Several day analysis : implied volatility perspective

The previous section made us more confident in the stochastic volatility paradigm as a
reduced form description of the option price dynamics. With this regained confidence in this
framework, we push its analysis further in order to come with a quantity that characterizes
option price dynamics, without depending on a maturity nor a moneyness measure.

Recall that in Heston model the instantaneous variance writes

dVt = κ (V∞ − Vt) dt+ ζ
√

VtdWt, (1.19)
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and the expected instantaneous variance in this model obeys a simple first order ODE, whose
solution is

E [VT ] = V∞ + (V0 − V∞) e−κT . (1.20)

The expected total variance from time 0 to time T, which in a deterministic time dependent
volatility model would be the Black Scholes implied variance, as established for example in (Lee,
2005) is:

E

[
1

T

∫ T

0
Vtdt

]

= V∞ + (V0 − V∞)
1− e−κT

κT
. (1.21)

This functional form can then be applied to fit the term structure of the implied volatility.
Implied volatility expansions as in (Lewis, 2000), give us a second order polynomial form of the
smile as a function of the moneyness. We then apply these functional form as well as the term
structure parametrization to fit option smiles.

We end with

ΣK,T = ΣATM + Smile× ln

(
K

S

)

+ Curve× ln

(
K

S

)2

(1.22)

ΣATM =

√

V∞ + (V0 − V∞)
1− e−κT

κT
(1.23)

Notice that in practice, some care is taken to avoid volatility explosions on the wings and
the polynomial parametrization is tweaked for very high and low strikes in order to obey non
arbitrage conditions established in (Lee, 2004).

This is a very pleasant parametrization of the smile that results from stochastic volatility
dynamics. Not only does it describe the smile in a simple polynomial form, but also the
presence of three parameters is coherent with empirical studies of dynamical behavior of
volatility surfaces. For instance, (Cont and da Fonseca, 2002) find that daily variations of
implied volatility surfaces can be satisfactorily explained by three factors. The first of these
factors presents the overall shift in the volatility surface, and accounts for more than 90% of the
variability. This can be read in the quantity V0 of the suggested parametrization. Indeed, V0

characterizes the overall level of the smile surface. Moreover, this is a maturity and moneyness
independent quantity. It is therefore a good candidate for our study.

In (Durrleman, 2008), the author establishes the convergence of at the money implied
volatility to the spot (continuous part) volatility in a general model with a Brownian component
and a jump component of finite variation. In our continuous diffusion setting, this gives a nice
financial interpretation of V0 which is the zero-maturity limit of at the money implied variance,
and then, according to (Durrleman, 2008), the spot variance.

We then translate the question on the dynamics of option prices in terms of this quantity :
what drives V0 dynamics? More precisely, we expect to see a spot component in the dynamics
of V0, and we will seek for a stochastic volatility component as done previously with raw prices.
Independence of V0 with respect to maturity and moneyness will enable us to aggregate several
days of data in our observation. We will not be constrained to estimate realized volatility in
small time windows, circumventing the problem raised about the time scale of the study of
section 1.3.

The first task is to isolate the spot component in the V0 dynamics.
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1.5.1 Spot dependence

V0 is defined in a Heston stochastic volatility setting as the limit of at the money implied
variance for short maturities. As such, it is equivalent to the spot instantaneous variance
according to (Durrleman, 2008). It is naturally a stochastic quantity.

In the Heston model framework, (Gatheral, 2006) gives a formula for the conditional
expectation of the instantaneous variance :

E [Vt|xT ] ≈ V̂T + ρζ
xT
WT

∫ T

0
V̂se

−λ(T−s)ds, (1.24)

where :

xt = ln
St

K
(1.25)

WT = V∞T + (V0 − V∞)
1− e−κT

κ
(1.26)

λ = κ− 1

2
ρζ (1.27)

V̂s =
(

V0 − V∞
κ

λ

)

e−λs + V∞
κ

λ
. (1.28)

The interesting conclusion of these equations is that when V0 is calibrated for K = S0, it
evolves linearly with respect to x = ln S

S0
≈ S

S0
− 1, when S is not far from S0.

In order to check in the data if this linear approximation is plausible, we fit every five minutes
our parametrized implied volatility model to option mid quotes, then we plot the so obtained pairs
(S, V0). The Figure 1.9 shows a typical kind of graph, here obtained for Eurostoxx. Modelling
linearly the response of V0 to the spot movements is clearly a good approximation. Unsurprisingly,
the slope of the regression is negative, reflecting the leverage effect of spot movements in implied
volatility dynamics. That was clear in the equations above, as the slope is proportional to the
spot/volatility correlation ρ of Heston model, which is usually a negative parameter (as found in
our estimations).
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Figure 1.9: Graph of intradaily calibrated V0 versus spot (for Eurostoxx, on April 12th 2011) :
Evidence of the linear relationship as a good approximation.
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Therefore :

V0 = V 0
0 + β × ln

S

S0
where V 0

0 = V0 (S0)

Thus, the fixed strike volatility parametrization (near the money, to avoid arbitrage problems
on the wings) becomes :

ΣK,T = ΣATM (S) + Smile× ln

(
K

S

)

+ Curve× ln

(
K

S

)2

(1.29)

ΣATM (S) =

√

V∞ +

(

V 0
0 + β × ln

S

S0
− V∞

)
1− e−κT

κT
. (1.30)

Notice also that now, the option delta writes

∆ =
dC

dS
(1.31)

=
∂C

∂S
+

∂C

∂Σ

∂Σ

∂S
(1.32)

= ∆BS +VegaBS ×
(
∂ΣATM (S)

∂S
− Smile

S
− Curve× 2

S
× ln

(
K

S

))

, (1.33)

where VegaBS × ∂ΣATM (S)
∂S accounts for the before mentioned dynamical correction of the

delta.

1.5.2 Pure volatility effect on V0

In order to isolate the spot effect in V0, we have to come with an estimate of β.

β is itself stochastic and depends on market conditions. A careful look at the implied
volatility parametrization reached so far tells us that a zero β indicates a pure sticky delta
regime. We can also calculate a value β (S) for which the smile would be sticky strike4. For our
parametrization this can not be fully achieved and these are rather good news, as a fully sticky
strike smile is arbitrable as established in (Daglish et al., 2007). So finally β characterizes the
regime of volatility which depend on market conditions, as described in (Derman, 1999).

An exhaustive analysis is then conducted :

• The smile is calibrated to a market snapshot every 5 minutes, giving us series of V0.

• The β process is given by a daily β estimation.

All this preparation enable us to study the spot orthogonal component of V0. Recall that
our purpose is to seek if realized volatility has an effect on the dynamics of option prices that
we capture here thanks to V0.

In order to seek this effect, we calculate the daily realized volatility. We estimate it thanks
to the quadratic variation estimator as in section 1.3. We then estimate the following regression :

V close
0 − V open

0 − Slope× ∆S

S
︸ ︷︷ ︸

spot effect

= α× (realizedV ol − V open
0 )

︸ ︷︷ ︸

orthogonal movement

On the right left hand side of the above equation is the daily evolution of V0 from which we
substracted the spot effect as explained by the β. In the right hand side, the algebraic quantity

4it is the value of β for which ∂Σ(K,T )
∂S

= 0

46



(realizedV ol − V open
0 ) captures the realized volatility effect. It is written as a difference between

actually realized volatility, and V0 at the open of the market. The intuition behind that is
that V0 being an implied volatility, it is the guess of market agents of future realized volatility.
We are therefore asking the question if market agents, at the end of the day, update their
new volatility guess (V close

0 ) based on the volatility that was actually realized, raising it when
realized volatility raises, and decreasing it in the opposed case.

Figure 1.10 and in Figure 1.11 are scatter plots illustrating this regression relationship. The
graphics do not exhibit a clear linear dependence. Even if we plotted a regression line, its slope
is very close to 0.
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Figure 1.10: Effect of Realized Volatility on V0 dynamics for the DAX.
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Figure 1.11: Effect of Realized Volatility on V0 dynamics for the EUROSTOXX.
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The criticism made to the intraday study that realized variance estimator may not have
converged cannot be made here, as we estimate realized variance on the whole day. There is no
dependence of option prices on realized quadratic variation in the data. All is in the spot, and
even if a second factor is needed to capture dynamical properties of option prices, the realized
quadratic variation does not help to predict it.

1.6 Conclusion

As a conclusion, we see that while there is a great temptation to see the stochastic volatility
models as structural ones, deducing option prices and their dynamics from fundamental market
quantities (which are the spot and its instantaneous variance, with the latter made observable
thanks to the availability of high frequency data and estimation models), the reality of the
option markets completely denies that.

Stochastic volatility models are just reduced form models. They meet a lot of success in the
description of the overall market behavior, but do not give the structural mechanism governing
option price formation and its evolution.

Price and volatility time series analysis conducted so far does not give satisfactory results
when it comes to price formation mechanisms. In order to study these latter, we need a greater
zoom on the picture in the microscopic level. We will then deal with order book events.

Electronic order books feed intra day databases with detailed information on every single
event affecting them, therefore revealing the trading process. At this granularity level, the
trading process consists of a collection of irregular point occurrences of events along the time
axis, such as limit order arrivals, market order arrivals and cancellations. This naturally leads
to the use of point processes as principal modelling tool to deal with such phenomena.

The simplest model for a point process is the homogeneous Poisson Process. Unfortunately,
it is inadequate for modelling of order book events. The reason is that one striking characteristic
of these events is their clustering in time, a feature that the completely random and memoryless
homogeneous Poisson Process is unable to capture.

Therefore, in the next chapter, we turn our attention to Hawkes processes. They present an
adequate and versatile framework for order book events modelling.
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Chapter 2

Hawkes Process : Fast Calibration,
Application to Trade Clustering and
Diffusive Limit

Note : A part of this chapter is published in Journal of Futures Markets, Volume 34, Issue
6, pages 497-606, June 2014.

Abstract

In this chapter, we provide explicit formulas for the moments and the autocorrelation function
of the number of jumps over a given interval for a self-excited Hawkes process. These
computations are possible thanks to the affine property of this process. Using these quantities,
an implementation of the method of moments for parameter estimation that leads to a fast
optimization algorithm is developed. The estimation strategy is applied to trade arrival times for
major stocks that show a clustering behaviour, a feature the Hawkes process can effectively handle.
As the calibration is fast, the estimation is rolled to determine the stability of the estimated
parameters. A forecasting test underlining the advantages of the Hawkes process as a modelling
framework is performed. Lastly, the analytical results enable the computation of the diffusive
limit in a simple model for the price evolution based on the Hawkes process. This determines the
connection between the parameters driving the high frequency activity and the daily volatility.
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Introduction

Trading activity leads to time series of irregularly spaced points that show a clustering
behaviour. This stylized property suggests the use of the Hawkes process, a point process
mathematically defined by (Hawkes, 1971), which is an extension of the classical Poisson process
that possesses this clustering property. It explains the large number of works on trading activity
and more generally high-frequency econometrics based on this process as a modelling framework.
To name only a few let us quote (Hewlett, 2006), (Bowsher, 2007), (Large, 2007), (Bacry et al.,
2013a) or (Muni Toke and Pomponio, 2012)1.

There are other stochastic processes possessing this clustering property, they are often more
sophisticated than the Hawkes process in the sense that their dynamic involves several lags and
strong nonlinearities. They are actively studied in the econometrics literature, see (Hautsch,
2012) for a general overview. As opposed to these sophisticated stochastic processes the Hawkes
process has a likelihood function which is known in closed-form. As a consequence, most of the
existing literature focuses on the estimation of the dynamics. However, despite or because of its
simplicity the Hawkes process has several advantages from an analytical point of view, that we
will develop in this chapter, that allow for very interesting applications.

First, we show how to compute in closed-form the moments of any order of the number of
jumps over a given time interval. This analytical tractability even extends to the autocorrelation
function of the number of jumps. As such, we can develop an estimation strategy based on
these quantities which, compared with the likelihood estimation strategy, is extremely fast. This
aspect is crucial when it comes to applications such as high frequency trading activity which
requires a fast estimation procedure. The maximization of the likelihood function, that can take
several minutes, cannot be used in real applications. What is more, with the estimation being
immediate, we can roll the estimation procedure and study the parameter stability which is an
essential aspect in practice.

Second, thanks to its analytical tractability we can explicitly compute the impulse function
of the Hawkes process and therefore the trading activity, modelized by this process, can easily
be analysed.

Third, we can easily perform some forecast analysis and specify the horizon beyond which
the Hawkes process does not perform better than a very simple model.

Fourth, within a simple toy model for a stock based on the Hawkes process we compute the
diffusive limit for the asset and therefore make the link between the microscopic activity (i.e. the
trading activity at high frequency) to the macroscopic activity (i.e. the daily volatility as used
in the Black-Scholes model) explicit. To perform such analysis the analytical tractability of the
Hawkes process turns out to be essential and underlines the advantages related to the simplicity
of this process. This work falls in a new trend of the literature developed by (Cont et al., 2010),
(Cont and De Larrard, 2011), (Cont and De Larrard, 2012), (Bacry et al., 2013a), (Abergel
and Jedidi, 2013a), (Bacry et al., 2013b), (Kirilenko et al., 2013), (Abergel and Jedidi, 2013b)
aiming at connecting these two scales (the high frequency quantities and the daily quantities).

The structure of this chapter is as follows. In the first section, we describe the analytical
framework which comprises the basic properties of the Hawkes process as well as the Dynkin
formula that will be our main mathematical tool. Using these results, the computation of the
moments and the autocorrelation function of the number of jumps over a given time interval

1For non financial applications see (Vere-Jones, 1970), (Veen and Schoenberg, 2008), (Lewis and Mohler, 2011)
and (Mohler et al., 2011).
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is provided. This section also contains the usual optimization algorithms used in the literature
and the method of moments based on the analytical results. In a second part, we present the
data, various estimation results and an impulse response analysis allowed by the model, as well
as a forecasting experiment. This second part is completed with a toy model for a stock for
which we derive the limit properties. Finally, we conclude and provide some useful results in the
appendix.

2.1 The Analytical Framework

2.1.1 Dynamics and affine structure of the moment-generating function

The Hawkes process was defined in (Hawkes, 1971) and is a self-excited point process whose
intensity depends on the path followed by the point process. More precisely, the point process
is determined by the intensity process (λt)t≥0 through the relations:

P [Nt+h −Nt = 1|Ft] = λth+ o (h) (2.1)

P [Nt+h −Nt > 1|Ft] = o (h) (2.2)

P [Nt+h −Nt = 0|Ft] = 1− λth+ o (h) , (2.3)

where (Ft)t≥0 is a filtration on the underlying probability space (Ω,F ,P) containing the
filtration generated by (Nt)t≥0.

The intensity follows the dynamic:

dλt = β (λ∞ − λt) dt+ αdNt. (2.4)

A jump of Nt at a given time will increase the intensity which increases the probability of
another jump thanks to equation (2.1) and justifies the use of the term “self-exciting” to qualify
this process. The jumps tend to cluster but the process does not blow up because the drift
becomes negative whenever the intensity is above λ∞ > 0 (β is by hypothesis positive) and
prevents any explosion. Furthermore, applying Ito’s lemma to eβtλt yields:

λt = e−βt (λ0 − λ∞) + λ∞ +

∫ t

0
αe−β(t−s)dNs. (2.5)

From (2.5) we also observe that the impact of a jump on the intensity dies out exponentially
as time passes. For the existence and uniqueness results we refer to chapter 14 of (Daley and
Jones, 2008) and references therein, of particular interest is (Brémaud and Massoulié, 1994).

As t gets larger the impact of λ0, the initial value for the intensity, vanishes leaving us with:

λt ∼ λ∞ +

∫ t

0
αe−β(t−s)dNs.

Our presentation differs slightly from the usual one found in the literature where the Hawkes
intensity is written as:

λt = λ∞ +

∫ t

−∞
αe−β(t−s)dNs. (2.6)

The equation (2.6) leads to a stochastic differential equation similar to (2.4), the process
starts infinitely in the past and is at its stationary regime. In our case we have a dependency
with respect to the initial position λ0 in equation (2.5) but, as mentioned above, for t large
enough its impact will vanish.
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Our presentation for the Hawkes process follows closely (Errais et al., 2010) and is motivated
by the fact that we want to perform stochastic differential calculus.

The process Xt = (λt, Nt) is a Markov process in the state space D = R+ ×N. This is a key
property that will give us very powerful tools to investigate the distributional properties of the
process. Among these tools is the infinitesimal generator.

Consider a sufficiently regular function f : D → R, the infinitesimal generator of the process,
denoted L, is the operator acting on f such that:

Lf (x) = lim
h→0

Ex
t [f (Xt+h)]− f (x)

h

with Ex
t [.] = Ex [.|Ft] and Xt = x (E0 [.] = E [.]).

In the case of a Hawkes process, this writes:

Lf (x) = β (λ∞ − λt)
∂f

∂λ
(x) + λt

[

f (λt + α,Nt + 1)− f (x)
]

. (2.7)

For every function f in the domain of the infinitesimal generator, the process:

Mt = f (Xt)− f (X0)−
∫ t

0
Lf (Xu) du

is a martingale relative to its natural filtration (see for example Proposition 1.6 of chapter VII
in (Revuz and Yor, 1999)), thus for s > t we have:

Et

[

f (Xs)−
∫ s

0
Lf (Xu) du

]

= f (Xt)−
∫ t

0
Lf (Xu) du

by the martingale property and we finally obtain the important Dynkin formula:

Et [f (Xs)] = f (Xt) + Et

[∫ s

t
Lf (Xu) du

]

. (2.8)

This formula allows the computation of conditional expectations of functions of the Markov
process (λt, Nt) which turns out to be very useful when the expectation on the right hand side
can be easily calculated. In the following subsection we will rely heavily on this formula to
compute some distributional properties of Hawkes process.

As underlined in (Errais et al., 2010) the process Xt = (λt, Nt) is a Markov process which is
affine. A Markov process is said to be affine if its drift, covariance matrix and jump intensities
are affine functions of the state vector. The Markov process Xt = (λt, Nt) that we consider
here obviously satisfies this definition. A thorough treatment of affine processes is given in
(Duffie et al., 2003), and a more detailed and accessible treatment can be found in (Duffie, 2007).

The main ingredient of the analytical tractability of affine Markov processes is that their
conditional Laplace transform is exponentially affine with respect to the present state variables
of the process. This can be shown to be an equivalent definition of affinity, see for instance
(Duffie, 2007). Therefore, a closed-form solution for the moment-generating function of our
process is available.

Let u = (u1, u2)
⊤ ∈ R2, the conditional moment-generating function of XT = (λT , NT ) is

defined as f (t,Xt) = Ex
t

[

eu
⊤XT

]

= Ex
t

[
eu1λT+u2NT

]
. Clearly, f (t,Xt) must be a martingale

and the function f satisfies:
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∂f

∂t
(t,Xt) + Lf (t,Xt) = 0 (2.9)

with boundary condition f (T,XT ) = eu
⊤XT . As Xt = (λt, Nt) is a Markov affine point process

we guess the solution of (2.9) is an exponential affine form of the state variable, that is to say:

f(t,Xt) = ea(t)+b(t)λt+c(t)Nt . (2.10)

Setting this guess into equation (2.9) we obtain the system of ordinary differential equations:

∂a

∂t
= −βλ∞b(t) (2.11)

∂b

∂t
= βb(t) + 1− eαb(t)+c(t) (2.12)

∂c

∂t
= 0 (2.13)

with terminal conditions a(T ) = 0, b(T ) = u1 and c(T ) = u2.

The above system of ODE fully characterizes the moment-generating function and the
Laplace transform of the process which completely determines its distribution. However, an
explicit solution for the equation (2.12) is usually not available. From the moment-generating
function (2.10) we can retrieve the moments of the process after differentiating it with respect
to u1 or u2, depending on which variable is considered, and evaluating the resulting function for
(u1, u2) = 0. This computation leads to the differentiation of the system of ODE with respect
to u1 or u2. Therefore, we can compute the different moments of the number of jumps by
successively differentiating the system of ordinary differential equations. In our particular case
(i.e. for a one-dimensional Hawkes process) the computations are feasible and allow to calculate
all the moments of the process.

Lastly, the computation of the autocovariance function of the number of jumps increments,
that is to say:

E
x
t [(Nt4 −Nt3)(Nt2 −Nt1)] (2.14)

with t < t1 < t2 < t3 < t4 can be obtained from (2.10) by performing successive conditioning. In
that case it will introduce the intensity process, which appears on the right hand side of (2.10),
and implies that the joint moment-generating function (i.e. (λt, Nt)) has to be evaluated. The
resulting system of ODE and its differentiation become more complicated. Because the quantity
(2.14) is essential, it carries the clustering property of the Hawkes process, we need to develop a
simpler approach to perform the computation.

In (Errais et al., 2010), the authors rely on this approach to compute the expected number of
jumps, as well as the expected intensity and its variance in the stationary regime. Computations
become rapidly tedious for higher moments. The computational difficulties obviously increase
with the dimension of the process. Having this generalization in mind, we prefer then to rely on an
alternative approach based on the Dynkin formula, that we present here with the one-dimensional
Hawkes process to illustrate the method on this simple case. We will then take advantage from its
power in the next chapter when we will come to multivariate Hawkes processes. For completeness,
we provide in the appendix the detailed calculations based on the moment generating function,
showing the difficulties raised by this method in our case.

2.1.2 Computing the moments and the autocovariance function

Our aim in this section is to compute the moments of the process Xt = (λt, Nt) and also
the autocovariance of the number of jumps over a period τ . To achieve this, we rely on the
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infinitesimal generator of the process given by (2.7) and Dynkin’s formula (2.8). In order to
obtain the expected number of jumps and the expected intensity we use the following lemma:

Lemma 2.1. Given a Hawkes process Xt = (λt, Nt) with dynamic given by (2.4) then the expected
number of jumps E[Nt] and the expected intensity E[λt] satisfy the set of ODE:

dE [Nt] = E [λt] dt (2.15)

dE [λt] = (βλ∞ + (α− β)E [λt]) dt. (2.16)

Proof. We apply Dynkin’s formula (2.8) to f ≡ Nt and taking into account the fact that:

Lf (Xt) = λt

we obtain:

E [Nt] = N0 + E

[∫ t

0
λsds

]

.

Using Fubini-Tonnelli’s theorem we have:

E [Nt] = N0 +

∫ t

0
E [λs] ds. (2.17)

Differentiating this integral equation gives (2.15).

This equation could have been obtained by recalling that Nt −
∫ t
0 λsds is a martingale, by

definition of the intensity of a point process, as explained in (Brémaud, 1981). We nevertheless
quote the Dynkin formula method as the same reasoning will prove useful for other functions as
well.

To obtain the ODE (2.16) we rely again on Dynkin’s formula. Following (Errais et al., 2010),
let f ≡ λt in (2.7) then as we have:

Lf (Xt) = β (λ∞ − λt) + αλt.

Dynkin’s formula leads to:

E [λt] = λ0 + E

[∫ t

0
(β (λ∞ − λs) + αλs) ds

]

= λ0 + βλ∞t+ (α− β)

∫ t

0
E [λs] ds

where, as before, we used Fubini-Tonnelli’s theorem to swap the integration and expectation
operators. Taking the differential with respect to t yields the ordinary differential equation
satisfied by the expected intensity (2.16).

Note that (2.16) can be explicitly computed and once obtained another integration leads to
the expression for E[Nt]. If these quantities are known, a similar procedure will give higher order
moments as we have:

Lemma 2.2. Given a Hawkes process Xt = (λt, Nt) with dynamics given by (2.4) then E[λ2
t ],

E[λtNt] and E[N2
t ] satisfy the set of ODE:

dE[N2
t ] = 2E[λtNt]dt+ E[λt]dt (2.18)

dE[λtNt] = βλ∞E[Nt]dt+ (α− β)E[λtNt]dt+ E[λ2
t ]dt+ αE[λt]dt (2.19)

dE[λ2
t ] = (α2 + 2βλ∞)E[λt]dt+ 2(α− β)E[λ2

t ]dt. (2.20)
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Proof. For function f ≡ N2 the equation (2.7) gives:

Lf (Xt) = 2λtNt + λt

and Dynkin’s formula (2.8) results in:

E[N2
t ] = N2

0 + 2

∫ t

0
E[λuNu]du+

∫ t

0
E[λu]du (2.21)

and differentiating this equation with respect to t leads to (2.18).

Following the same procedure for f ≡ λN and f ≡ λ2 give the ODE (2.19) and (2.20),
respectively.

These two lemmas allow the computation of different quantities useful to perform the
estimation of the process. In fact, we have:

Proposition 2.3. Given a Hawkes process Xt = (λt, Nt) with dynamics given by (2.4) then we
have the following equalities:

lim
t→∞

E [Nt+τ −Nt] =
βλ∞
β − α

τ = Λτ (2.22)

with Λ = λ∞

1−α/β (the stationary regime expected intensity) gives the long run expected value
of the number of jumps during a time interval of length τ . The variance is:

V(τ) = lim
t→∞

E
[
(Nt+τ −Nt)

2
]
− E [Nt+τ −Nt]

2

= Λ

(

τκ2− +
(
1− κ2−

) (1− e−τγ−)

γ−

)

(2.23)

where:

Λ =
λ∞

1− α/β
, κ− =

1

1− α/β
and γ− = β − α.

The covariance is given by:

Cov (τ, δ) = lim
t→∞

E [(Nt+τ −Nt)(Nt+2τ+δ −Nt+τ+δ)]− E [(Nt+τ −Nt)]E [(Nt+2τ+δ −Nt+τ+δ)]

=
λ∞βα(2β − α)

(
e(α−β)τ − 1

)2

2(α− β)4
e(α−β)δ (2.24)

for δ > 0.

Proof. Taking into account the initial condition E [λ0] = λ0, a constant variation technique
allows to find the solution of (2.16) which writes:

E [λt] = λ∞β
e(α−β)t − 1

α− β
+ e(α−β)tλ0. (2.25)

Notice that we easily recognize in the above equation the stability condition of our self-exciting
Hawkes process, namely α

β < 1 . Using the above result in equation (2.17) yields the expression
for the mean number of jumps:

E [Nt] = N0 +
λ∞β

(
−1 + e(α−β)t − (α− β)t

)

(α− β)2
+

(
−1 + e(α−β)t

)

α− β
λ0.

We are interested in the expected number of jumps during an interval of length τ . Using the
previous computation we conclude that it is given by:
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E [Nt+τ −Nt] =
−λ∞βτ

α− β
+et(α−β)

(
−λ∞β + e(α−β)τλ∞β − αλ0 + e(α−β)ταλ0 + βλ0 − e(α−β)τβλ0

)

(α− β)2
.

(2.26)
The equation (2.26) depends on λ0 the initial value for the intensity which is unknown. To

eliminate this value we take the limit t → ∞ and under the stability condition α
β < 1 we obtain

(2.22).

We need to compute the second moment of the number of jumps during a given interval,
namely:

I = E
[
(Nt2 −Nt1)

2
]
= E

[
Et1

[
N2

t2

]
− 2Nt1Et1 [Nt2 ] +N2

t1

]
. (2.27)

Using the ODE (2.18) it results that:

Et1 [N
2
t2 ] = N2

t1 + 2

∫ t2

t1

Et1 [λuNu]du+

∫ t2

t1

Et1 [λu]du (2.28)

and when inserted in the previous equation leads to:

I = 2

∫ t2

t1

E[λuNu]du+

∫ t2

t1

E[λu]du− 2E

[

Nt1

∫ t2

t1

Et1 [λu]du

]

. (2.29)

The first integral of (2.29) can be computed thanks to (2.19) and it gives:

I1 =

∫ t2

t1

E[λuNu]du

=

∫ t2

t1

e(α−β)(u−t1)E[λt1Nt1 ]du+

∫ t2

t1

∫ u

t1

e(α−β)(u−s){βλ∞E[Ns] + E[λ2
s] + αE[λs]}dsdu

whilst for the third term of (2.29) is:

I2 = E

[

Nt1

∫ t2

t1

Et1 [λu]du

]

= E

[

Nt1

(∫ t2

t1

e(α−β)(u−t1)λt1du+

∫ t2

t1

∫ u

t1

e(α−β)(u−r)βλ∞drdu

)]

=

∫ t2

t1

e(α−β)(u−t1)duE[Nt1λt1 ] +

∫ t2

t1

∫ u

t1

e(α−β)(u−r)drduβλ∞E [Nt1 ] .

As we have E[Ns] = E[Nt1 ] +
∫ s
t1
E[λr]dr we arrive after substitution and simplification to:

I =

∫ t2

t1

E[λu]du+ 2

∫ t2

t1

∫ u

t1

e(α−β)(u−s)

{

βλ∞

∫ s

t1

E[λr]dr + E[λ2
s] + αE[λs]

}

dsdu.

We can therefore calculate the time t expected second moment of the number of jumps
occurring during an interval of length τ , by first conditioning on Ft, obtaining Et

[
(Nt+τ −Nt)

2
]
,

which is an expression depending only on the expectations E[λt] and E[λ2
t ]. These last two

terms depend on λ0 but by letting t → ∞ we obtain their stationary regime value and get an
expression independent of the initial intensity. As a result we have the second moment of the
number of jumps over a time interval of length τ .
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To specify further the result, we note limt→∞ E[λt] = Λ, limt→∞ E[λ2
t ] = Λ2 and taking the

limit on the expression for I we reach:

lim
t→+∞

E
[
(Nt+τ −Nt)

2
]
= lim

t→+∞
τΛ + 2

∫ t+τ

t

∫ u

t
e(α−β)(u−s)

∫ s

t
drdsduβλ∞Λ

+ 2

∫ t+τ

t

∫ u

e(α−β)(u−s)dsdu{Λ2 + αΛ}

where the integral expressions are given by:

∫ t+τ

t

∫ u

t
e(α−β)(u−s)

∫ s

t
drdsdu = −(α− β)−1 τ

2

2
− (α− β)−2τ + (α− β)−3(e(α−β)τ − 1)

∫ t+τ

t

∫ u

t
e(α−β)(u−s)dsdu = −(α− β)−1τ + (α− β)−2(e(α−β)τ − 1).

The equation (2.23) is deduced using the above equation and (2.22).

To compute the autocovariance function of the number of jumps during different time intervals
we need to determine Et [(Nt1 −Nt) (Nt3 −Nt2)], where t < t1 < t2 < t3. In order to simplify
notations we consider the variables ∆1 = t1 − t, ∆2 = t3 − t2 and δ = t2 − t1. By performing
successive conditionings we get:

E [(Nt1 −Nt) (Nt3 −Nt2)] = E [Et [Et1 [Et2 [(Nt1 −Nt) (Nt3 −Nt2)]]]] .

The innermost conditional expectation is:

Et2 [(Nt1 −Nt) (Nt3 −Nt2)] = (Nt1 −Nt)×
[

λ∞β
(
−1 + e(α−β)∆2 − (α− β)∆2

)

(α− β)2
+

(
−1 + e(α−β)∆2

)

α− β
λt2

]

thanks to calculations done for the first moment. Then, conditioning down by Ft1 , one has to
compute:

Et1 [λt2 ] = λ∞β
e(α−β)δ − 1

α− β
+ e(α−β)δλt1 . (2.30)

This results in an expression depending on Nt1λt1 and Ntλt1 . Further conditioning down
with respect to Ft, one has to calculate :

Et [λt1 ] = λ∞β
e(α−β)∆1 − 1

α− β
+ e(α−β)∆1λt.

Lastly, the quantity Et [λt1Nt1 ] is already known from the previous computations. Collecting
all results together we determine the autocovariance of the process and to simplify the final
expression we suppose ∆1 = ∆2 = τ , so that we obtain:

lim
t→∞

E [(Nt+τ −Nt)(Nt+2τ+δ −Nt+τ+δ)] =
λ∞βα(2β − α)

(
e(α−β)τ − 1

)2

2(α− β)4
e(α−β)δ +

λ2
∞β2

(α− β)2
τ2.

(2.31)
If we subtract the mean value we obtain the expression (2.24).

The strategy of taking the limit to simplify the dependency of the results with respect to the
initial value of the process, which is unknown, is borrowed from (Aït-Sahalia et al., 2010) who
used the Hawkes process for modelling contagion effects between stocks. These results require
the stability condition α

β < 1 which allows us to put the process in its long run stationary regime.
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The autocovariance function contains information regarding the self-exciting or clustering
property of the Hawkes process but it is more convenient to derive the autocorrelation function.
We do not provide a proof for the following result as it is straightforward to obtain from the
previous proposition.

Proposition 2.4. Given a Hawkes process Xt = (λt, Nt) with dynamics given by (2.4) then the
autocorrelation function of the number of jumps over a given interval τ is:

Acf (τ, δ) = lim
t→∞

E[(Nt+τ −Nt)(Nt+2τ+δ −Nt+τ+δ)]− E[(Nt+τ −Nt)]E[(Nt+2τ+δ −Nt+2τ+δ)]
√

var(Nt+τ −Nt)var(Nt+2τ+δ −Nt+τ+δ)

=
e−2βτ

(
eατ − eβτ

)2
α(α− 2β)

2
(
α(α− 2β)

(
e(α−β)τ − 1

)
+ β2τ(α− β)

)e(α−β)δ (2.32)

where the lag is δ.

The above expression is always positive when α < β, which is the stability condition of
the process, and decays exponentially with the lag δ. The half-life depends on the difference
α− β, or, said differently, on α

β , which is the L1-norm of the kernel. As intuitively expected, the

greater is the L1-norm of the kernel (providing it remains less than unity), the greater is the
process memory, and hence the autocorrelation function.

Notice also that the background intensity λ∞ is not involved in the autocorrelation, a
property that could have been expected.

For completeness, we provide in the appendix the complete expressions for the third and
fourth moments.

The computation performed above allows us to determine the moments up to the second order
of (Xt)t≥0 as well as the autocorrelation function for the number of jumps over an interval τ .
Following this approach we can compute higher order moments. The key ingredient underlying
the computations is the stability of the polynomial functions with respect to the infinitesimal
generator of the Hawkes process. More precisely, the expected value of a polynomial function
of the process (Xt)t≥0 (i.e.

∑

i≤nj≤m aijx
ixj) can be expressed as a function of polynomial

functions of same or lower degree. This property is a consequence of the affine structure of the
Hawkes process and has been used for the classical standard affine model of (Duffie and Kan,
1996) in (Cuchiero et al., 2012) and (Filipović et al., 2013). To be more precise, if we denote

Zt =
(
E[λt],E[Nt],E[λ

2
t ],E[λtNt],E[N

2
t ]
)⊤

then using the ODE obtained above the vector Zt

satisfies the ODE:
dZt

dt
= AZt +B (2.33)

with:

A =









α− β 0 0 0 0
1 0 0 0 0

α2 + 2βλ∞ 0 2(α− β) 0 0
α βλ∞ 1 α− β 0
1 0 0 2 0









B =









βλ∞
0
0
0
0









.

The solution of this ODE is given by:

Zt = eAtZ0 +

∫ t

0
eA(t−s)Bds (2.34)

where the exponential of the matrix is computed using classical algorithms, see (Golub and
Van Loan, 1996).
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2.1.3 Inference strategies

In this subsection, we first present the classical Maximum Likelihood approach usually
used to calibrate the Hawkes process and underline the numerical difficulties. Then, using the
explicit expression for the moments and the autocorrelation function computed in the previous
subsection, we develop a method of moment estimation strategy whose computational speed
appears to be very fast compared to the existing alternatives.

Maximum likelihood estimation

Let (Xt)t≥0 be a simple point process on [0, T ] and t1...tNT
denote a realization of (Nt)t≥0 over

[0, T ], then, as established in proposition 7.2.III of (Daley and Jones, 2002), the log-likelihood of
(Xt)t≥0 is of the form:

L =

∫ T

0
(1− λs) ds+

∫ T

0
ln (λs) dNs

=

∫ T

0
(1− λs) ds+

NT∑

i=1

ln (λti).

In the case of a Hawkes process we have:

L =

∫ T

0

(1− λt) dt+

∫ T

0

ln (λt) dNt

=

∫ T

0

(

1− λ∞ +

∫ t

0

αe−β(t−s)dNs

)

dt+

∫ T

0

ln

(

λ∞ +

∫ t

0

αe−β(t−s)dNs

)

dNt

= T − Tλ∞ +

NT∑

i=1

∫ T

0

αe−β(t−ti) × 1{t≥ti}dt+

NT∑

i=1

ln



λ∞ +
∑

tj≤ti

αe−β(ti−tj)





and simplifying the above integral

∫ T

0
αe−β(t−ti) × 1{t≥ti}dt =

[

−α

β
e−β(t−ti) × 1{t≥ti}

]T

0

−
∫ T

0
−α

β
e−β(t−ti) × δ{t=ti}dt

=
α

β
− α

β
e−β(T−ti)

we end with:

L = T − Tλ∞ −
NT∑

i=1

α

β

(

1− e−β(T−ti)
)

+

NT∑

i=1

ln (λ∞ + αA(i)) (2.35)

where A(i) =
∑

tj≤ti
e−β(ti−tj).

The estimation requires a non linear optimization algorithm such as Nelder-Mead to find
the maximum of this function. We stress that for each set of parameters the evaluation of this
function requires a loop over the observations which for the problem at hand, trade clustering,
is very large.

Some authors, such as (Ozaki, 1979), pointed out that A(i) used in (2.35) satisfies a recursive
relation. Indeed, defining A(1) = 0 then for i ≥ 1, A(i+1) = e−β(ti+1−ti) × (1+A(i)), simplifies
the calculation of the likelihood function and speeds up evaluation. However, the calibration still
takes a few minutes and a large number of function calls are performed. Any simplification of
the calibration procedure is therefore of interest.
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Fast Hawkes process calibration

Even with the improvement previously presented the parameter estimation procedure based
on the maximum likelihood function is still very time consuming. Having computed explicitly
the moments as well as the autocorrelation function for the Hawkes process a natural estimation
strategy is the generalized method of moments, see (Hall, 2004) for an exhaustive treatment,
and (Bollerslev and Zhou, 2002) and (Bollerslev and Zhou, 2004) for an application to finance.

The inference problem now writes:

θ̂ = argmin
{

(M − f (θ))⊤W (M − f (θ))
}

(2.36)

where M is the vector of empirical moments (eventually related to the autocorrelation function),
f (θ) is the vector of corresponding theoretical moments and W is a symmetric positive definite
weighting matrix.

This method of estimation is known to be consistent and asymptotically normal. It
can also be shown that with a suitable choice of the weighting matrix W , the estimator is
asymptotically efficient in the sense that it has the smallest covariance matrix. Intuitively, the
optimal weighting matrix will attribute less weight to the noisier moments, and more weight to
moments that are easiest to estimate with better accuracy. It turns out indeed that the optimal
weight matrix is the inverse variance-covariance matrix of the error terms, so in our notation

Wopt = E

[(

M − f
(

θ̂
))

×
(

M − f
(

θ̂
))⊤

]−1

, with θ̂ being the true parameter value. As this

true parameter value is unknown we rely on Hansen’s two-step method (Hansen, 1982) to obtain
the optimal weighting matrix:

• Let W be the identity matrix and estimate the parameters. This gives a consistent estimate
θ0.

• Update the weight matrix as : Wopt = E

[

(M − f (θ0))× (M − f (θ0))
⊤
]−1

, finding θ1,

and iterate this step until convergence, i.e θk+1 ≈ θk.

As we are primarily interested in speed we fix ex-ante this matrix W to reduce the
discrepancies between the components of the vector involved in the objective function,
sacrificing optimality of the estimator for the estimation speed2. In that case the optimization
problem turns out to be the simple least squares method (LS in the sequel) that can be solved
very quickly by Levenberg-Marquardt algorithm (we use the implementation provided by
(Lourakis, Jul. 2004)). Some numerical experiments lead us to the following conclusions: the
optimization problem (2.36) based on the mean and variance of number jumps during an interval
τ (i.e. equations (2.22) and (2.23)), and autocorrelation function (2.32) gives good results if
calibration quality and speed are taken into account. Computation time remains negligible and
is faster than the MLE. If speed is not of concern, this fast computation can be done to feed the
MLE with a good first guess of the parameters.

From a numerical point of view we found it simpler and more robust to work with normalized
quantities, in which case the optimization problem is:

θ̂ = argmin

{(

1− f (θ)

M

)⊤
W

(

1− f (θ)

M

)}

(2.37)

where the components of the vector (1 − f(θ)
M ) are (1 − fi(θ)

Mi
) and involve the relative ratio of

the theoretical moment to its empirically estimated counterpart. This is made possible because
2A similar scaling appears in (Aït-Sahalia et al., 2010) where the authors use the matrix W to control the

discrepancies between the moments.
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all the considered moments are different from zero. In that case we can choose for W the
identity, thus simplifying the specification of this matrix tremendously. Let us emphasize that
the evaluation of the empirical moments is only made once during the optimization procedure
which explains why this estimation strategy is intrinsically faster than the MLE.

This gives us a very appealing estimation procedure. Not only is it instantaneous and
this point is crucial if the objective is to apply a model to a high-frequency problem (optimal
execution, price impact analysis of a trade), but it also has the advantage of being robust
against data pollution, an aspect which is very common in such data and this point was already
underlined in (Bacry et al., 2013a).

For instance, many data vendors round timestamps of market events to a certain precision
(millisecond in the case of our data, or even up to one second for other data providers). In this
case, only one timestamp will be considered in the likelihood procedure, whereas a least squares
procedure will consider the actual number of events, even if they have the same timestamp.

Robustness check of the fast calibrations

To assess the quality of our estimation procedure we perform the following Monte Carlo
experiment. We randomly generate the parameters λ∞, α and β, with β > α. We choose them
in the interval [0 , 1] because these are the values obtained in our empirical study. We simulate a
Hawkes process for a duration of T = 8 hours, corresponding to a trading day, using the thinning
algorithm as presented in (Ogata, 1981). We carry out a calibration using both the MLE and
the LS estimators. For the MLE, calibration is conducted using Nelder-Mead algorithm as
implemented in the open-source library NL-opt3. The LS estimations are conducted using the
Levenberg-Marquardt algorithm provided by (Lourakis, Jul. 2004). The initial guess for the
parameters is their true value multiplied by a uniform random variable on the interval [0.5 1.5]
(both algorithms have the same starting point). The estimation test is performed 25000 times
for each algorithm.

Table 2.1 contains the results. The mean relative error value expressed in percent is reported
for each parameter. For the standard deviation we compute the root mean squared relative error
value that we also express in percent.

Table 2.1: Estimation Strategies Comparison
MLE Fast Calibration I Fast Calibration II

λ∞ α β λ∞ α β λ∞ α β

mean 0.33 0.16 0.23 0.68 -0.26 -0.23 0.18 0.07 0.25
Std. dev. 5.74 7.13 6.69 8.39 10.66 11.04 4.41 7.47 7.69

Note. A Monte Carlo experiment comparing the MLE and fast calibration estimation strategies. Fast calibration
I is an LS estimation based on the first, second moments and the autocorrelation function computed for several
lags. Fast calibration II is a LS estimation based on the autocorrelation function computed for several lags (λ∞

is then deduced using (2.22)). For each method and each parameters we report the mean relative error value and
the corresponding standard deviation (both expressed in percent).

We perform two fast calibrations. The first is based on the least squares optimization
problem (2.37) with W the identity, the first two moments given by (2.22) and (2.23) computed
with τ = 60 seconds as well as the autocorrelation function (2.32) with τ = 60 seconds and
lags ranging from 0 to 600 seconds (by step of 60 seconds). For the second fast calibration,
the objective function (2.37) only depends on the autocorrelation function (2.32) with τ = 60
seconds and lags ranging from 0 to 600 seconds (by step of 60 seconds). To obtain λ∞, because

3See http://ab-initio.mit.edu/wiki/index.php/NLopt
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the autocorrelation function does not depend on it, we use (2.22) with τ = 60 seconds. That is,
we suppose this equation is satisfied without error.

The MLE leads to a relative error of 0.33% for λ∞ and similar magnitudes for α and β as
we have 0.16% and 0.23%, respectively. What we call relative error is the difference between the
estimated parameter and the true parameter, rescaled by the value of the true parameter. For
example, the difference between the estimated λ∞ and the true λ∞ is 0.33% of the true value of
λ∞ that we used to generate the process.

Overall, the estimation procedure is satisfactory as mean values and standard deviations are
small. For the first fast calibration, the results are reported in column titled “Fast calibration
I”, the mean values are also small, they are comparable to those obtained with the MLE, and
the standard deviation values are roughly 1.5 times those for the MLE but remain acceptable.
In conclusion, the fast calibration algorithm performs well and the computational cost is much
lower. For the second fast calibration (i.e. column “Fast calibration II”) similar conclusions are
obtained. Namely, the mean values and the standard deviations are small. Notice also that for
this second method we obtain the smallest fit errors for the background noise carried by λ∞ and
the branching structure carried by α. The fit error on β is similar for the three methods.

2.2 Applications

2.2.1 Data

We rely on tick-by-tick data from TRTH (Thomson Reuters Tick History). The data consist
of trades and quotes files timestamped in milliseconds. We study two stocks in particular: BNP
Paribas and Sanofi, as well as the futures on the Eurostoxx and the Dax. For each studied day
we consider the futures with the shortest maturity date. The data cover the period between
2010/01/01 to 2011/12/31.

All the trading days begin at 9:00 and end at 17:30. We neglect the first and last 15 minutes
in order to avoid the open and close auctions. We end with 8 trading hours per day, between
9:15 and 17:15.

Most of our study deals with trade time arrivals and statistics on the number of trades
occurring on intervals of fixed length. As stated before, the fact that the timestamps have a
bounded precision, the millisecond in our case, is another appealing feature of our method of
estimation. Indeed, many trades will have the same time to the nearest millisecond even if they
did not take place at the same time. This millisecond will count as a unique entry in the ML
estimation procedure, whereas in the LS based inference all the trades will be taken into account
when computing the moments. This, among other reasons, will make the method of moments
more robust to data imprecision, a fact typical to high frequency data.

2.2.2 Trade clustering

As outlined in the introduction, trading activity is not a completely random and memoryless
process. Consequently, the Poisson process is not suitable for modelling trade arrival times. As
shown in Figure 2.1, a qqplot of inter arrival times of trades against an exponential distribution
clearly rejects the Poisson process as the data generating process for the order flow.
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Figure 2.1: QQplot of inter-trade durations against exponential distribution. Inter arrival trade
times are clearly not exponential. Graph for Eurostoxx futures trades on 2011/03/03 for the first
trading hour.

In fact, trades tend to cluster and an illustration is given in Figure 2.2 where we plot an
histogram of the number of trades occurring every minute during a trading day for the Eurostoxx.
The clustering is graphically clear.
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Figure 2.2: Number of trades by time intervals of 1 minute: presence of clusters is graphically
apparent. Graph for Eurostoxx futures trades on 2011/03/03.

Numerous reasons can explain this clustering of trade arrival times, among them liquidity
takers splitting their orders so as to minimize their market impact, or insider traders reacting
rapidly to take advantage from information they have before it is widespread in the market:
these justify a one sided trade clustering (i.e. either buy or sell initiated trades). On the other
hand, heterogeneity of market participants is responsible for the two-sided trade clustering. A
complete study can be found in (Sarkar and Schwartz, 2006).

To quantify this clustering in time we compute the correlation of the number of trades
occurring during different time intervals of fixed length separated by a time lag. A plot of this
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autocorrelation as a function of the lag gives information about the degree of clustering. If the
data were generated by a Poisson process this autocorrelation would be equal to zero.

We want to compute:

C(τ, δ) =
E[(Nt+τ −Nt)(Nt+2τ+δ −Nt+τ+δ)]− E[(Nt+τ −Nt)]E[(Nt+2τ+δ −Nt+τ+δ)]

√

var(Nt+τ −Nt)var(Nt+2τ+δ −Nt+τ+δ)
. (2.38)

To this end, we count the number of trades occurring during two sliding non overlapping
intervals of length τ = 60 seconds separated by a certain time lag δ. We change this time
lag δ from 1 second to 20 minutes by a step of 1 second. This gives 1200 number of trades
autocorrelation points for the function δ → C(τ, δ) that we report in Figure 2.3 for different time
intervals τ for a given symbol (in that case the Eurostoxx). We clearly see that the autocorrelation
is positive and significant and that it decreases with the time lag. It is also remarkable that this
is true for all the time interval lengths considered, and that independently from τ this memory
effect seems to take around 10 minutes to become negligible.
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Figure 2.3: Empirical autocorrelation function δ → C(τ, δ), given by (2.38), of the number of
trades occurring on consecutive intervals of length τ separated by a time lag δ as a function of the
lag δ. In the four plots, we change the length of the time interval τ considered. (a) corresponds
to τ = 20 seconds, (b) τ = 30 seconds, (c) τ = 60 seconds and (d) τ = 90 seconds. The shape of
the function remains identical, even if the plot is noisier when the time interval length decreases.
The data are Eurostoxx futures trades on 2010/01/07.

Figure 2.4 confirms that the same phenomenon is observed for all the tested symbols. The
absolute value of the autocorrelation is higher for the two futures, which are far more liquid than
the stocks, but the same decreasing shape is observed and the time life of this autocorrelation
seems to be very close for all the symbols.
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Figure 2.4: Empirical autocorrelation function δ → C(τ, δ) of the number of trades with τ = 60
seconds for Eurostoxx, Dax, BNPP and Sanofi, averaged every day for the month January 2010.

Overall, these stylized facts justify the use of the Hawkes process as modelling framework.

Thanks to the closed-form solutions of the previous section we estimate the parameters using
the fast calibration algorithm presented in the inference subsection. Precisely, we rely on the
method called “Fast calibration II” in the Monte Carlo experiment of the previous section and
that proved to be efficient. Based on Figure 2.5 we choose to fit the autocorrelation function
(2.32) for τ = 60 seconds and δ ranging from 0 to 600 seconds by step of 60 seconds because
Figure 2.4 convinces us that this choice is suitable for all the analyzed stocks. For each symbol
we perform a daily calibration using the two-year sample described in the data subsection. In
Table 2.2 we report the mean and median estimated values as well as the standard deviations.
The table also contains in column “Poisson-λ” the intensity that we obtain if a Poisson process
is calibrated.
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Figure 2.5: Number of trades empirical autocorrelation. The number of trades are computed for
an interval τ = 60 seconds and the lag δ is now measured in minutes. The symbol is Eurostoxx
on 2010/10/26.
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Table 2.2: Calibration Results
Symbol Measure Poisson-λ λ∞ α β

Eurostoxx Mean 1.4480 0.0625 0.0869 0.0911
Std. dev. 0.6283 0.0209 0.0229 0.0237
Median 1.3343 0.0593 0.0843 0.0882

Dax Mean 1.7814 0.0664 0.0993 0.1034
Std. dev. 0.7322 0.0249 0.0218 0.0226
Median 1.6214 0.0609 0.0988 0.1028

BNPP Mean 0.8627 0.0556 0.0760 0.0819
Std. dev. 0.3923 0.0231 0.0192 0.0219
Median 0.7438 0.0508 0.0724 0.0772

Sanofi Mean 0.6704 0.0453 0.0747 0.0806
Std. dev. 0.1873 0.0213 0.0212 0.0240
Median 0.6087 0.0414 0.0700 0.0758

Note. Calibration results for two years of data. We calibrate daily a Hawkes process to the trade arrival times
for each symbol. For comparison, we put the Poisson equivalent λ, defined as the mean number of trades per
second for every day. For every measure, we put mean, standard deviation and median values for the calibrated
parameters.

A striking fact is that λ∞ is much smaller than the Poisson-λ as the former amounts to only
5% to 10% of the latter. Even if the Poisson-λ have to be compared (and is indeed very close) to
the long term expected intensity Λ = λ∞

1−α/β , as stated in Proposition 2.3, we find it interesting
to compare the Hawkes process background intensity to a Poisson equivalent intensity, as
this gives information on the part of the process that is attributed to the background noise,
compared to that attributed to the branching structure. Our results suggest that the fraction
of events due to the background process activity is small in comparison of the part due to the
branching structure of the process (i.e. the self-exciting property captured by α). Note also that
the stability condition (α < β) is satisfied although the optimization algorithm is performed
without constraints.

The quality of the fit can be assessed graphically as reported in Figure 2.6. It suggests that
the Hawkes process captures well the empirical property of trade arrival times.
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Figure 2.6: Empirical autocorrelation of the time series of the number of trades occurring
during τ = 60 seconds versus the theoretically fitted one. For the Dax, estimated parameters are:
λ∞ = 0.0326806, α = 0.0431643 and β = 0.0486235 and for Eurostoxx, estimated parameters
are: λ∞ = 0.033282, α = 0.04259 and β = 0.0446049.
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For robustness, we also conduct calibrations of the model on a variety of traded assets
ranging from interest rate futures to commodity, energy and foreign exchange futures. Results
are reported in Table 2.3.

Table 2.3: Calibration Results for Other Assets

Symbol Measure Poisson λ λ∞ α β Nresponse

Bund Mean 1.2742 0.0671 0.0956 0.1013 19.683
Std. dev. 0.4434 0.0244 0.0218 0.0232 8.359
Median 1.2063 0.0645 0.0934 0.0983 18.256

Bobl Mean 0.6699 0.0546 0.0816 0.0894 13.236
Std. dev. 0.1705 0.0216 0.0225 0.0257 6.455
Median 0.6173 0.0498 0.0790 0.0858 11.329

Schatz Mean 0.6245 0.0473 0.0877 0.0952 14.896
Std. dev. 0.1397 0.0209 0.0211 0.0236 7.452
Median 0.5712 0.0440 0.0835 0.0903 13.556

JPY Mean 1.6023 0.0536 0.1130 0.1173 29.737
Std. dev. 0.7144 0.0172 0.0207 0.0215 11.123
Median 1.5510 0.0518 0.1133 0.1178 29.139

EURO Mean 4.1955 0.0788 0.1220 0.1245 53.526
Std. dev. 1.7419 0.0271 0.0192 0.0194 18.999
Median 4.1956 0.0770 0.1258 0.1282 52.045

GOLD Mean 2.3191 0.0852 0.1104 0.1149 27.716
Std. dev. 0.8824 0.0290 0.0237 0.0244 10.472
Median 2.1555 0.0815 0.1175 0.1212 25.743

Crude Oil Brent Mean 2.0453 0.0550 0.1243 0.1279 37.528
Std. dev. 0.7018 0.0154 0.0143 0.0147 12.877
Median 1.9787 0.0535 0.1255 0.1302 36.860

Natural GAS Mean 1.4524 0.0688 0.1177 0.1241 21.170
Std. dev. 0.4362 0.0181 0.0156 0.0166 8.465
Median 1.3653 0.0680 0.1168 0.1246 18.532

Sugar Mean 0.8082 0.0434 0.1213 0.1289 19.964
Std. dev. 0.3214 0.0196 0.0174 0.0190 11.930
Median 0.6869 0.0382 0.1272 0.1351 18.539

CORN Mean 1.0338 0.0626 0.1069 0.1146 17.348
Std. dev. 0.4563 0.0213 0.0332 0.0334 9.400
Median 0.9563 0.0537 0.1226 0.1312 17.333

WHEAT Mean 1.1562 0.0639 0.1119 0.1193 18.807
Std. dev. 0.4334 0.0242 0.0215 0.0227 8.951
Median 1.0926 0.0594 0.1182 0.1244 17.372

Note. Calibration results for two years of data (2010 and 2011) and for different asset classes (interest rates, foreign
exchange, metal commodities) to assess the robustness of the model. Schatz, Bobl and Bund are respectively the
2-year, 5-year and 10-year futures on German government bonds. For each asset class we take for daily data the
front maturing futures to perform the calibration. The last column Nresponse will be defined in subsection 2.2.3

For all the assets, the standard deviation values are small compared to the mean parameter
values and the similarity between the mean and median values, denoting the relative stability of
the calibration and absence of outliers, confirm the ability of the Hawkes process to fit the data.
As for the four previous assets all the calibrations lead to solutions that satisfy the stability
constraint α < β, albeit no constraints were used during the optimization procedure. Lastly, let
us underline the fact that α − β controls the decreasing shape of the autocorrelation function
as it is clear from equation (2.32) and quantifies to which extent the data generating process
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departs from a Poisson process.

2.2.3 Branching structure of trading activity

An interesting property of the Hawkes process is its branching structure. Indeed, the
occurrence of a jump increases the intensity of the process, thereby the probability to observe
another jump. As pointed out by (Hewlett, 2006), this results in a direct and indirect impulse
response of the process intensity to a jump event. Denoting the expected increase of the process
intensity at time t as a response to a jump occurring at time 0 by f(t), we have the following
decomposition:

• Direct response: an increase of the intensity by α that will decay exponentially as time
passes, thus leading to an increase of the intensity at time s of αe−βs.

• Indirect response: at any time s between 0 and t, the direct increase of the intensity by
αe−βs leads to an indirect increase of the expected number of jumps at time t which equals
to αe−βsdsf(t − s); we then need to integrate over the range [0; t] to obtain the total
indirect effect.

As a consequence, the expected direct and indirect increase of the intensity at time t caused by
a jump at time 0 writes as:

f(t) = αe−βt +

∫ t

0
αe−βsf(t− s)ds.

The solution of this integral equation is given by:

f(t) = αe−(β−α)t.

Therefore, the Nresponse which is the expected number of jumps triggered by one jump
occurring at time 0 if the process is observed indefinitely (the impulse response) is:

Nresponse =

∫ ∞

0
f(s)ds =

α

β − α
. (2.39)

We use our daily calibrations on real data of the Hawkes process to measure an average
Nresponse for the studied assets and report the results in Table 2.4.

Table 2.4: Market Liquidity Indicator
Symbol Average Nresponse

Dax 26
Eurostoxx 22
BNPP 14
Sanofi 10

Note. Nresponse as a characteristic of market liquidity. Symbols are ranked from the most liquid to the less liquid.

We clearly observe a difference between futures, given by the symbols Dax and Eurostoxx,
and the stocks represented by BNPP and Sanofi. This points towards considering this number
as an indicator of liquidity and trading activity. Formula (2.39) suggests the ratio α

β as the key
quantity to evaluate the impulse response value and the numbers are consistent with the fact
that futures are more actively traded than the stocks due to a stronger branching structure
(controlled by α and β).

A robustness check was also performed for other assets in Table 2.3. According to this
measure a trade on the Bund triggers more other trades than does a trade on the Bobl. The
Euro currency, and to a lesser extent the JPY, seem to be more reactive markets than the others.
Among the commodities, the Crude Oil Brent dominates the Natural Gas, Sugar, Corn and the
Wheat.
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2.2.4 Forecasting

Once the model is calibrated, one is naturally interested in its forecasting power. In our
case, as stressed in the preceding section, the model essentially captures the autocorrelation
of the number of trades occurring in consecutive time intervals. The shape of this function,
exponentially decreasing function to zero, naturally suggests to model the number of trades
occurring in fixed time intervals as an autoregressive process.

Given a set of moments t0 < t1 < t2 < . . . < tN with ti − ti−1 = τ , we define yti =
1
τ (Nti − Nti−1) and denote yt with t ∈ {t1, . . . , tN}. For simplicity, we work with the centered
version of yt and consider the autoregressive model:

yt = a1yt−1 + ut

where ut is a random variable, independent of yt with 0 mean. Then, in the case of a Hawkes
model, the parameters of the AR model for the number of trades can be computed. Indeed, from
the previous results we have

Et−1[y
2
t ] = a1Et−1[ytyt−1] + Et−1[ytut]

leading to

a1 =
Et−1[ytyt−1]

Et−1[y2t ]
=

Cov(τ, 0)
V(τ)

= Acf(τ, 0)

where the autocovariance and variance functions are known.

The same reasoning can be done if one considers an AR(p) model :

yt = a1yt−1 + a2yt−2 + ...+ apyt−p + ut

then for every i ∈ {1, .., p}, multiplying the above equation by yt−i and taking the expectation
yields p linear equations with coefficients ai :

C(τ, δ = (i− 1)× τ) = V (τ)ai +

p
∑

j=1,j 6=i

ajC(τ, δ = (|i− j| − 1)× τ)

therefore the (a1, . . . , ap)
⊤ is the solution of the linear system:









1 Acf[τ, 0] ... ... Acf[τ, (p− 2)τ ]
Acf[τ, 0] 1 Acf[τ, 0] Acf[τ, (p− 3)τ ]

...

...
Acf[τ, (p− 2)τ ] Acf[τ, 0] 1









×









a1
...
...
...
ap









=









Acf[τ, 0]
...
...
...

Acf[τ, (p− 1)τ ]









.

(2.40)

Solving this equation for a sufficiently large first guess of p allows the calculation of the
ai coefficients and to decide the length of the autoregressive process by discarding the small
coefficients.

We conduct the forecast experiment by daily calibrating the Hawkes process and use the
parameters of each calibrated day as forecast parameters for the following day. In order to assess
the quality of this prediction, we calculate the residues of our forecast and compare them to
the residues of a forecast that relies on a Poisson process. Results are summarized in Table 2.5.
They show a superior forecasting power for the Hawkes process.
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Nevertheless, both models give exactly the same results when the forecast horizon is
sufficiently large (half an hour in our case). As an illustration, notice that in Figure 2.7, the
standard deviation of Hawkes forecast residues converges to that of the Poisson residues when the
forecast horizon increases. Moreover, as illustrated by Figure 2.8, both distributions of residues
converge when the forecast horizon is sufficiently large. This is an expected result as the Hawkes
forecast method relies on the autocorrelation of the number of trades falling in consecutive
intervals, which is significant for small time lags, but disappears after twenty to thirty minutes
as previously shown in the paper.
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Figure 2.7: Standard deviation of residues of Hawkes and Poisson forecasts versus forecast time
horizon.

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

(a)

Residue

D
en

si
ty

−3 −2 −1 0 1 2 3

Hawkes

Poisson

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

(b)

Residue

D
en

si
ty

−3 −2 −1 0 1 2 3

Hawkes

Poisson

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

(c)

Residue

D
en

si
ty

−3 −2 −1 0 1 2 3

Hawkes

Poisson

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

(d)

Residue

D
en

si
ty

−3 −2 −1 0 1 2 3

Hawkes

Poisson
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We also notice that the most accurate forecasts are obtained with a number of lags around
4 or 5 as is clear in Table 2.6 presenting the distribution of the number of lags necessary for the
prediction. This is in accordance with the fact that the memory effect does not last for a very
long time. Hence, the system (2.40) has to be solved for moderate values of p, which can be done
very efficiently.

Table 2.6: Frequency Of Optimal Number Of Lags
Symbol p = 1 p = 2 p = 3 p = 4 p = 5 p = 6

Eurostoxx 0.0020 0.0122 0.0446 0.3681 0.5691 0.0040
Dax 0 0.0020 0.0100 0.1896 0.7944 0.0040
BNPP 0 0.0123 0.1284 0.6403 0.2190 0
Sanofi 0.0021 0.0576 0.1725 0.6350 0.1328 0

Note.For every symbol, we present the frequency of the number of lags that were necessary to make the forecast
in the AR(p) model of the number of trades occurring over a time interval. The system (2.40) is solved for a
sufficiently large dimension. We consider p to be the rank from which the autoregressive coefficients become non
significant. We considered a cut off absolute value of 0.001.

2.2.5 Diffusive limit and signature plot

In all the preceding sections we dealt with the trading process from a microscopic point
of view, that is to say at transaction level. In the classical High-Frequency literature, mainly
developed by econometricians, most of the studies are carried out at this time scale and aim
at explaining the price formation process. Many models encompass the subtle interactions of
the many components of the trading process such as order flow, order signs, volumes and other
quantities to achieve a microscopic foundation of the price process. For instance, the ACD
models, as proposed in (Engle and Russell, 1998), fall in this trend of research. For an overview
of models and techniques we refer to (Hautsch, 2012) and references therein.

In this chapter, we consider a simpler framework focusing only on the order flow. Obviously,
this simplification comes at the cost of neglecting important aspects of the price formation
process, such as the volume for example, but it allows us to address the important question
of connecting the microscopic price formation process observed at transaction level to its
macroscopic properties at a coarser time scale. In other words, we connect the stochastic
differential equations used to model an asset price evolution at a daily frequency, such as
in the Black-Scholes model which relies mainly on the continuous Brownian motion, to the
discontinuous point process describing individual transactions. The Hawkes process, thanks to
its strong analytical tractability, enables us to relate these two time scales.

In recent years, many authors developed this bottom-up point of view in price modelling,
establishing connections between order-book level price formation mechanisms and statistical
macroscopic price properties. Among other references let us mention (Abergel and Jedidi,
2013a) whose model for the order book is based on a multidimensional Markov chain with
independent Poissonian order arrival times. Within their framework they prove the convergence
of the price process to a Brownian motion, thus bridging the gap between high frequency and
low frequency quantities. They generalize this approach to Hawkes process arrivals in (Abergel
and Jedidi, 2013b). In (Cont and De Larrard, 2011) and (Cont and De Larrard, 2012), the order
book is described as a Markovian queuing system for which the authors establish a diffusive
limit and calculate some quantities of interest such as volatility. In (Kirilenko et al., 2013), the
authors use this same idea of different time scales and relate microscopic causes to macroscopic
effects, they study the influence of high frequency traders on asset volatility.

Our work is greatly influenced by the seminal article of (Bacry et al., 2013a) in which the
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authors introduce a model for microstructure price evolution based on mutually exciting Hawkes
processes. They connect the signature plot of volatility and Epps effect of asset correlations to
the model parameters driving the price process. Also of great interest is (Bacry et al., 2013b)
where the authors establish diffusive limits for such kind of models.

In this subsection, we consider the modelling framework proposed by (Bacry et al., 2013a)4

and develop a toy model for the movements of the mid price of a traded asset using the Hawkes
processes presented in the analytical part. The mid price is the mean of the best ask price and
the best bid price in the order book. As the best ask price or the best bid price moves up (down)
by one tick the mid price will move up (down) by half a tick. Despite its simplicity, the model
captures the essential features of the price process.5. The model writes:

St = S0 +
(

Nup
t −Ndown

t

) ν

2
(2.41)

where ν is the tick value. The Nup
t and Ndown

t are Hawkes processes capturing the up and down
jumps of the mid price. Both of them follow a dynamic of the form (2.4). We consider them
independent and with the same parameters in order to avoid price explosion. In the stationary
regime their intensities are given by:

λup
t = λ∞ +

∫ t

0
αe−β(t−s)dNup

s (2.42)

λdown
t = λ∞ +

∫ t

0
αe−β(t−s)dNdown

s . (2.43)

Later, we provide the specification of (Bacry et al., 2013a)’s model and explain the
differences. In order to relate this high frequency description for the price to its low frequency
description behaviour we need a limit theorem. We know thanks to (Bacry et al., 2013b) that
the above specified model converges to a Brownian diffusion. Moreover, the authors rely on the
martingale theory and limit theorems for semi-martingales to prove stability and convergence
results for a general model with mutually exciting processes and a generic kernel6.

With an exponential kernel, our case is simpler. We then sketch an alternative proof of the
convergence result7. Moreover, the quantities calculated before will allow to establish easily the
limit volatility of the diffusion.

With an exponential kernel for the considered Hawkes processes, the process Xt =
(
Nup

t , λup
t , Ndown

t , λdown
t

)
is a Markov process. Its infinitesimal generator writes:

Lf (x) = β (λ∞ − λup
t )

∂f

∂λup
(x) + β

(

λ∞ − λdown
t

) ∂f

∂λdown
(x)

+ λup
t

[

f
(

Nup
t + 1, λup

t + α,Ndown
t , λdown

t

)

− f (x)
]

+ λdown
t

[

f
(

Nup
t , λup

t , Ndown
t + 1, λdown

t + α
)

− f (x)
]

.

4We might use the symbol “BDHM” which stands for Bacry, Delattre, Hoffmann, and Muzy.
5For instance, the so-called trade-throughs (Pomponio and Abergel, 2013) (i.e. trades consuming many

successive limits and then moving the best quote by more than one tick) can be regarded in this model as
successive one-tick movements occurring very closely in time.

6The function g(t) = αe−βt is called the kernel of the Hawkes process. Other forms are possible but this choice
leads to the most tractable Hawkes process.

7Recall that the result is known in full generality thanks to (Bacry et al., 2013b). We simply present other
ideas that can be applied in the simple exponential kernel case, and that may shed some light on the result as we
consider it from another perspective.
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The explicit form of the infinitesimal generator allows us to apply Foster-Lyapounov techniques
in order to establish stability results. We refer to (Meyn and Tweedie, 2009) for a detailed
exposition on such techniques as well as stochastic stability concepts. For instance, ergodicity of
the process Xt, that is to say its convergence to a stationary regime, can be easily established
thanks to the Foster-Lyapounov test function criterion. In our case, we define the function
V (x) = λup+λdown

2λ∞
, then a simple calculation yields the geometric drift condition:

LV (x) ≤ (α− β)V (x) + β. (2.44)

As α < β this condition ensures the mean reversion of the process and thanks to Theorems 6.1
and 7.1 in (Meyn and Tweedie, 1993) (and especially (CD3)), the V-uniform ergodicity of the
process Xt.

Let us then write unit-time price increments:

ηi =
[

(Nup
i −Nup

i−1)− (Ndown
i −Ndown

i−1 )
]

× ν

2

and consider the random sums:

Sn =
n∑

i=1

ηi

with {ηi; i = 1 . . . n} being the price increments (note that E[ηi] = 0). We focus on the asymptotic
behaviour of the rescaled price process:

S̄n
t =

S⌊nt⌋√
n

.

The V-uniform ergodicity and Theorem 16.1.5 in (Meyn and Tweedie, 2009) allows us to conclude
that the increments are geometrically mixing and Theorem 19.3 of (Billingsley, 1999) proves that
S̄n
t converges to a Brownian motion in the sense of Skorokhod topology:

S̄n
t ⇒ σWt.

The same proof technique was used in (Abergel and Jedidi, 2013a) with a more feature-rich
model. The underlying problem is the same: one considers the rescaled sums of random
variables and wants to apply the Functional Central Limit Theorem, known as Donsker’s
theorem that establishes the convergence of the rescaled Random Walk to the Brownian Motion.
This theorem cannot be used here as the increments are correlated, (for the Random Walk the
increments are independent). However, it can be extended to the case of “weak dependence”.
The “degree” of dependence has to be controlled in order for the convergence to hold. A manner
to control this degree of dependence is to show that the random variables are geometrically
mixing. The relationships between geometric mixing and V-uniform ergodicity is thoroughly
treated in (Meyn and Tweedie, 2009).

Moreover, calculations done before for the moments of the Hawkes process increments lead
to a very simple expression for the volatility. In fact, we have:

σ2 = lim
n→∞

Var(Sn)

n

= 2
ν2

4

(
E[(Nup

1 −Nup
0 )2]− E[Nup

1 −Nup
0 ]2

)

+ 4
ν2

4

∞∑

i=1

E[(Nup
1 −Nup

0 )(Nup
1+i −Nup

i )]− E[Nup
1 −Nup

0 ]E[Nup
1+i −Nup

i ]

=
ν2

2

(

V (1) + 2
∞∑

k=0

Cov(1, k)

)
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where thanks to (2.24) Cov(1, k) writes:

Cov(1, k) =
λ∞βα(2β − α)

(
e(α−β) − 1

)2

2(α− β)4
e(α−β)k.

Then, summing up with the expression of the variance and after some simplifications we
obtain:

Proposition 2.5. The asymptotic volatility of the toy model 2.41 writes:

σ2 =
ν2

2

λ∞
(

1− α
β

)3 . (2.45)

Notice that the stationarity and ergodicity of the increments ηi, together with the convergence
of the series σ2 = E[η20] + 2

∑∞
n=0 E[η0ηn] established in the above proposition are sufficient to

conclude that S̄n
t converges to a Brownian motion in the sense of Skorokhod topology thanks to

theorem 19.1 in (Billingsley, 1999).

Note the dependence of the asymptotic volatility on the ratio α
β . The larger this ratio is, the

larger the volatility is (under the hypothesis of stability α < β). An upward (downward) shock
is more likely to trigger another upward (downward) chock if this ratio is large and therefore it
induces a positive autocorrelation for the mid price and a more persistent path with the effect
of increasing asset’s volatility.

Besides giving a framework that allows the connection of the microscopic price formation
mechanism to its macroscopic behaviour, as shown above, the Hawkes process can reproduce
some stylized facts across time scales. Among these stylized facts is the volatility signature plot
which depends on the realized variance over a period T calculated by sampling the data by time
intervals of length τ . Within the toy model (2.41) we have:

Ĉ(τ) =
1

T

T/τ−1∑

n=0

(
S(n+1)τ − Snτ

)2

=
1

T

T/τ−1∑

n=0

((
N

up
(n+1)τ −N

up
nτ

)
−

(
N

down
(n+1)τ −N

down
nτ

))2 ν2

4

=
1

T

T/τ−1∑

n=0

(
N

up
(n+1)τ −N

up
nτ

)2 ν2

4
+

1

T

T/τ−1∑

n=0

(
N

down
(n+1)τ −N

down
nτ

)2 ν2

4

− 2
1

T

T/τ−1∑

n=0

(
N

up
(n+1)τ −N

up
nτ

)(
N

down
(n+1)τ −N

down
nτ

)
ν2

4
.

By definition, the mean signature plot is the expectation of the above quantity and can be
computed explicitly as we have (we omit the proof as it is straightforward):

Proposition 2.6. The mean signature plot, defined by C(τ) = E[Ĉ(τ)], is given by:

C(τ) = E[Ĉ(τ)]

=
ν2

2τ
V (τ)

=
ν2

2
Λ

(

κ2− +
(
1− κ2−

) (1− e−τγ−)

τγ−

)

where:

Λ =
λ∞

1− α/β
, κ− =

1

1− α/β
and γ− = β − α.
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We eventually refer to the signature plot instead of the mean signature plot. Notice that
when τ becomes larger the above expression converges to the asymptotic diffusive variance of
the model calculated in (2.45). The mean signature plot is an increasing function with respect
to τ (or equivalently the signature plot is decreasing with the sampling frequency) and this is
due to the positive serial autocorrelation of the returns. This captures situations as the one
observed in Figure 2.9.
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Figure 2.9: Signature Plot for Eurostoxx futures and BNPP stock on 2011/04/01, computed on
mid prices to eliminate bid-ask bounce.

Lastly, within our simple toy model we can determine the autocorrelation function of the
price increments computed over intervals of size τ and lagged by δ, it is given by:

CorrStock(τ, δ) =
E [(St+τ − St) (St+2τ+δ − St+τ+δ)]

√

E [(St+τ − St)]E [(St+2τ+δ − St+τ+δ)]
(2.46)

which thanks to the closed-form formula obtained in the analytical section leads to:

e−2βτ+δ(α−β)
(
eτβ − eτα

)
2α (2β − α)

2β2 (β − α)
. (2.47)

The stability condition (i.e. α < β) ensures the positiveness of this serial autocorrelation
and it confirms the intuition developed above. Moreover, the decay of the autocorrelation as a
function of the lag depends on the parameter α which tends to reduce the decaying behaviour
of this function.

In order to compare our results to (Bacry et al., 2013a) let us briefly recapitulate their main
findings. In (Bacry et al., 2013a), the authors propose a model similar to (2.41) but with Hawkes
processes that are mutually-excited and not self-excited as in our case. To be more precise the
dynamics for the intensities are given by:

λup
t = λ∞ +

∫ t

0
αe−β(t−s)dNdown

s (2.48)

λdown
t = λ∞ +

∫ t

0
αe−β(t−s)dNup

s . (2.49)
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Notice that an up jump increases the down intensity that increases the probability of a down
jump and if this one occurs it will increase the up jump intensity. The process is purely mutually
excited and possesses a mean reversion behaviour. These dynamics are significantly different
from those driving the toy model. The diffusive limit for this model is:

σ2
BDHM =

ν2

2

λ∞
(

1− α
β

)(

1 + α
β

)2 (2.50)

and the mean signature plot is:

C(τ) =
ν2

2
Λ

(

κ2+ + (1− κ2+)
1− e−τγ+

τγ+

)

with:

Λ =
λ∞

1− α/β
, κ+ =

1

1 + α/β
and γ+ = α+ β.

In (Bacry et al., 2013a)’s model an upward shock will increase the down intensity and trigger
a downward shock on the mid price, thereby leading to a mean reverting behaviour for the mid
price. Therefore, as a function of the sampling period the signature plot is decreasing with
respect to τ (or equivalently the signature plot is increasing with the sampling frequency) because
of this negative serial autocorrelation of the returns. In (Andersen et al., 1999) the authors define
the signature plot as "the patterns of bias injected in realized volatility as underlying returns
are sampled progressively more frequently". This bias can lead to a decreasing or increasing
volatility as a function of the sampling period. The decreasing pattern is the most frequent but
inverted pattern is also possible and can be found in data, even for liquid stocks, as illustrated
in Figure 2.9. BDHM model is compatible with a decreasing pattern whilst the toy model
is compatible with an increasing pattern8. Due to the positive (negative) autocorrelation of
the returns in the toy (BDHM) model we have, for a given pair (α, β), the inequality σ > σBDHM.

Within the specification (2.48) and (2.49) the autocorrelation function (2.46) can be computed
and is given by:

− e−(δ+2τ)(β+α)
(
eτ(β+α) − 1

)2
α (2β + α)

2β2 (β + α)
. (2.51)

This quantity is negative and this confirms the intuition. Also, the decay of the autocorrelation
as a function of the lag depends on parameter α, now controlling the mutual excitation property
of the process, and this parameter increases the decaying behaviour of the function.

Notice that both models produce different asymptotic volatility formulas. In order to assess
their plausibility, we calibrate a Hawkes process to the mid price up-jumps and calculate the
asymptotic volatilities for the two models; the toy model given by (2.45) and (Bacry et al.,
2013a)’s specification (2.50). For the toy model the parameter estimation is performed as in
the previous subsection. We use only the autocorrelation function with τ = 60 seconds and δ
ranging from 0 to 600 seconds by step of 60 seconds and λ∞ is deduced thanks to (2.22) with
τ = 60 seconds (it corresponds to the “Fast calibration II”). For (Bacry et al., 2013a)’s model we
use the MLE algorithm9.

8Let us stress that these figures are based on mid price sampling so that any noise due to bid-ask bounce is
eliminated. Also, whether the signature plot is an increasing or decreasing function of the sampling frequency
depends on the market conditions. Some liquid stocks (or indexes) can display both, BNPP is an example, and
understanding the determinants of this functional dependency remains an open question.

9For this model we only report the volatility value σBDHM.
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Results are reported in Table 3.2 (apart from the asymptotic volatilities we only report the
estimated parameters for the toy model). We rescaled the obtained volatilities by the spot value
in order to obtain the more usual Black-Scholes volatility corresponding to a lognormal model.
One can clearly see that our model systematically overestimates volatility whereas (Bacry
et al., 2013a)’s model systematically underestimates it. Qualitatively, this is because our model
magnifies up and down movements, thus inflating the realized volatility, whereas (Bacry et al.,
2013a)’s model moderates up and down movements thanks to its mean reversion mechanism,
thus underestimating the volatility.

Table 2.7: Asymptotic Volatility Values
Symbol λ∞ α β σBDHM Empirical σ Toy model σ

Eurostoxx 0.0184 0.0160 0.0219 12.79% 40.77% 80.64%
Dax 0.0429 0.0226 0.0259 4.80% 25.75% 71.36%
BNPP 0.0379 0.0481 0.0569 5.36% 41.86% 72.24%
Sanofi 0.0279 0.0488 0.0587 4.00% 30.30% 45.37%
Bund 0.0267 0.0180 0.0261 2.70% 8.25% 14.47%
Bobl 0.0228 0.0187 0.0288 2.45% 6.92% 11.19%
Schatz 0.0257 0.0223 0.0372 1.38% 2.63% 5.39%
JPY 0.0313 0.0659 0.0764 1.98% 9.89% 29.88%
EURO 0.0474 0.0648 0.0725 4.87% 16.76% 112.25%
GOLD 0.0728 0.0775 0.0868 3.77% 24.48% 71.64%
Crude Oil Brent 0.0474 0.0472 0.0528 6.22% 41.25% 126.29%
Natural GAS 0.0548 0.0931 0.1090 11.24% 58.65% 150.30%
Sugar 0.0410 0.0556 0.0758 10.58% 51.37% 73.30%
CORN 0.0419 0.0552 0.0694 9.34% 43.73% 75.94%
WHEAT 0.0451 0.0626 0.0763 10.59% 57.17% 94.53%

Note. Values for the asymptotic volatilities as given by our toy model (2.45) and the (Bacry et al., 2013a) model
(2.50) as well as the realized volatility of the day. We also put median estimated values for the Hawkes processes
in the toy model (2.41), (2.42) and (2.43). Both models give plausible values. σBDHM volatility underestimates
systematically the realized volatility, whereas our toy model systematically overestimates it.

Our results suggest a more general specification allowing for both self and mutual excitations.
The particularly simple approach we adopted in our calculations based on the infinitesimal
generator and Dynkin’s formula may be generalized to a multidimensional setting and may
lead to tractable results. It would allow for both effects, that were underlined in the empirical
literature (see (Hautsch, 2012)), on the price dynamic and provide a deeper understanding of
how the volatility measured at a macroscopic level (at a daily or low frequency) depends on the
trading activity observed at a microscopic level (at high frequency).

2.3 Conclusion

In this chapter we explicitly compute the moments and the autocorrelation function of
the number of jumps over an interval for the Hawkes process. Using these quantities we
develop a method of moments estimation strategy which is extremely fast compared with the
usual maximum likelihood estimation strategy. This aspect is essential as we are interested
in the trade clustering activity observed in high frequency data or if we wish to apply the
model in real time. We use our estimation framework to calibrate the Hawkes process on
trades for four stocks over a two-year sample. The Hawkes process can cope with the trade
clustering effect thanks to its autocorrelation structure. As our calibration is fast we roll
the daily estimation over two years to analyze the parameters stability, and they are found

78



to be reasonably stable. We perform a robustness check on other assets and obtain similar results.

Thanks to the analytical tractability of the Hawkes process we explicitly compute the
impulse response associated with the process which determines the market impact of a trade.
We use this as a measure of liquidity and the estimated parameters lead to reasonable conclusions.

Then, a forecast experiment allows to assess the superiority to the Hawkes framework with
respect to a simpler model.

Lastly, within a simple model based on the Hawkes process we explicitly compute the
diffusive limit for the price process. This allows us to connect the microscopic dynamic, that is
to say the high frequency dynamic, to the macroscopic dynamic, the volatility computed at a
daily frequency (with the Black-Scholes volatility being the most well-known quantity).

Our work points towards several extensions. First, we computed the diffusive limit under
the restrictive hypothesis that the Hawkes processes are only self excited whereas in (Bacry
et al., 2013a), on which we heavily rely, the Hawkes processes are only mutually excited. The
reality should lie between the two and requires Hawkes processes that are both self and mutually
excited. To this end we would need to perform the computations in the multidimensional case.
The next chapter will deal with this more general problem.
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2.4 Appendix

Computing the moments by derivation of the moment-generating function

Let u = (u1, u2)
⊤ ∈ R2, the conditional moment-generating function of XT = (λT , NT ) is

defined as f (t,Xt) = Ex
t

[

eu
⊤XT

]

= Ex
t

[
eu1λT+u2NT

]
. Clearly, f (t,Xt) must be a martingale

and the function f satisfies:

∂f

∂t
(t,Xt) + Lf (t,Xt) = 0 (2.52)

with boundary condition f (T,XT ) = eu
⊤XT . As Xt = (λt, Nt) is a Markov affine point process

we guess the solution of (2.52) is an exponential affine form of the state variable, that is to say:

f(t,Xt) = ea(t)+b(t)λt+c(t)Nt . (2.53)

Setting this guess into equation (2.52) we obtain the system of ordinary differential equations:

∂a

∂t
= −βλ∞b(t) (2.54)

∂b

∂t
= βb(t) + 1− eαb(t)+c(t) (2.55)

∂c

∂t
= 0 (2.56)

with terminal conditions a(T ) = 0, b(T ) = u1 and c(T ) = u2.
Choosing u1 = 0 in our Laplace transform, the moment-generating function for Nt which

writes if we take u2 = u:
E
x
t

[
euNT

]
= ea(t)+b(t)λt+uNt .

Expressed in terms of τ = T − t the expectation and the system of ordinary differential
equations are given by:

E
x
t

[

eu(Nt+τ−Nt)
]

= ea(τ)+λtb(τ) (2.57)

with:

∂a

∂τ
= βλ∞b(τ), (2.58)

∂b

∂τ
= −βb(τ)− 1 + eαb(τ)+u (2.59)

and a(0) = b(0) = 0.

Expected number of jumps

We start by the expression of the Laplace transform:

E

[

eu(Nt+τ−Nt)|Ft

]

= ea(τ)+λtb(τ) (2.60)

Taking the derivatives at u = 0 yields :

E [Nt+τ −Nt|Ft] =
∂

∂u
ea(τ)+λtb(τ)|u=0

= (au(τ) + λtbu(τ)) e
a(τ)+λtb(τ)|u=0, (2.61)

where bu = ∂ub and au = ∂ua, and with initial condition au(0) = bu(0) = 0.

Let us now calculate the derivatives of (2.58) and (2.59) with respect to u taken in u = 0.
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∂τ bu|u=0 = −βbu(τ) + (αbu(τ) + 1) eαb(τ)|u=0 (2.62)

∂τau|u=0 = βλ∞bu(τ)|u=0 (2.63)

For u = 0, one solution to the system of equations (2.58) and (2.59) is a(τ) = b(τ) = 0 and it
turns out to be unique. Putting that in the preceding equations gives :

∂τ bu = − (β − α) bu(τ) + 1 (2.64)

∂τ bu = βλ∞bu(τ) (2.65)

So finally, for u = 0 :

bu(τ) =
−1

β − α

(

e−(β−α)τ − 1
)

(2.66)

au(τ) =
βλ∞

(β − α)2

(

e−(β−α)τ − 1
)

+
βλ∞
β − α

τ (2.67)

Recalling from (2.61) that :

E [Nt+τ −Nt|Ft] = au(τ) + λtbu(τ) (2.68)

we end with :

E [Nt+τ −Nt|Ft] =
βλ∞

(β − α)2

(

e−(β−α)τ − 1
)

+
βλ∞
β − α

τ − λt

β − α

(

e−(β−α)τ − 1
)

. (2.69)

Notice that the above conditional expectation still depends on the unobservable variable λt

and is therefore unusable in practice as it is. To circumvent this dependence on a latent variable,
we further take the expectation of the above expression. This will remove the conditioning
at the left hand side of the equation, and replace λt on the right hand side by its previously
calculated expectation.

Finally, letting t → ∞ gives the stationary regime value of the expected number of jumps
during an interval of length τ :

E [Nt+τ −Nt] =
βλ∞
β − α

τ, (2.70)

Notice that for α = 0 we have E [Nτ ] = λ∞τ as expected.

Variance of number of jumps over a time interval

The same method as previously allows to calculate the second moment of the number of
jumps during a time interval of length τ , namely E[(Nt+τ −Nt)

2|Ft].

Taking the second derivative of (2.57) at u = 0, we get

E
[
(Nt+τ −Nt)

2|Ft

]
=
[

(au(τ) + λtbu(τ))
2 + au2(τ) + λtbu2(τ)

]

ea(τ)+λtb(τ)|u=0, (2.71)

where bu2 = ∂u2b and au2 = ∂u2a.

Recalling that for u = 0, a = 0 and b = 0 are the unique solutions of equations (2.59) and
(2.58), we have :

E
[
(Nt+τ −Nt)

2|Ft

]
=
[

(au(τ) + λtbu(τ))
2 + au2(τ) + λtbu2(τ)

]

|u=0, (2.72)
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where the only unknowns are bu2 and au2 .

Then, taking derivatives of equations (2.59) and (2.58) we get the EDO’s for bu2 and au2

evaluated at u = 0

∂τ bu2 = −(β − α)bu2 + (αbu + 1)2 (2.73)

∂τau2 = βλ∞bu2 (2.74)

with boundary condition bu2(0) = au2(0) = 0.

Recalling that bu was previously calculated in equation (2.66), the first equation gives

bu2(τ) =

∫ τ

0
e−(β−α)(τ−s)(αbu(s) + 1)2ds (2.75)

=

∫ τ

0
e−(β−α)(τ−s)

(

α
1− e−(β−α)s

β − α
+ 1

)2

ds (2.76)

= −−e2τ(α−β)α2 + β2 + eτ(α−β)(α− β)(α+ β + 2ταβ)

(α− β)3
(2.77)

A direct integration gives au2(τ)

a2u =
λ∞β

(
α2 + e2τ(α−β)α2 − 4αβ − 2β2 − 2ταβ2 + 2τβ3 + 2eτ(α−β)

(
β2 + 2αβ(1 + τβ)− α2(1 + 2τβ)

))

2(α− β)4

(2.78)
Putting all that together in equation (2.72) gives the expression of the conditional second

moment.

As noticed in the case of the first moment, the obtained expression still depends on the
unobservable variable λt. Getting the expected value of the conditional second moment allows
to get rid of this dependence, as λt is then replaced by its expectation which has been previously
calculated in the text.

That done, calculation of the variance of the number of jumps during a time interval is
straightforward by application of the formula :

V = E
[
(Nt+τ −Nt)

2
]
− E [(Nt+τ −Nt)]

2 (2.79)

As before, to obtain the long run, stationary regime value of this variance, we let t → ∞ in
the so obtained expression, ending with :

V = Λ

(

τκ2− +
(
1− κ2−

) (1− e−τγ−)

γ−

)

(2.80)

where:

Λ =
λ∞

1− α/β
, κ− =

1

1− α/β
and γ− = β − α.
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Autocorrelation function

Our aim in this paragraph is to calculate the autocorrelation function of the number of
jumps during different time intervals. The key quantity to be calculated here is the uncentered
covariation : E[(Nt1 −Nt)(Nt3 −Nt2)|Ft], where t < t1 < t2 < t3.

In order to simplify notations for the sequel, consider the variables ∆1 = t1 − t, ∆2 = t3 − t2
and δ = t2 − t1.

The main idea for this calculation, is to start from the expression :

E[eu(Nt1−Nt)+v(Nt3−Nt2 )|Ft]. (2.81)

It is then clear that taking the mixed derivative of the above function of the dummy variables
u and v with respect to both of them in the point u = v = 0 yields the desired covariation.

The calculation will be conducted by successive conditioning with respect to t2, t1 and
finally t.

To begin with, calculate :

Et2 [e
v(Nt3−Nt2 )] = ea(∆2)+b(∆2)λt2 , (2.82)

where

∂τ b = −βb− 1 + eαb+v (2.83)

∂τa = βλ∞b

b(0) = 0

a(0) = 0,

thanks to the study made in the preceding paragraphs.

Then, consider the Laplace transform of λt2 conditionally to Ft1 . The same reasoning as
precedently, relying on the affine structure of the Markov process Xt = (λt, Nt), gives the
following expression for the Laplace transform of λt2 :

Et1 [e
b(∆2)λt2 ] = ea1(δ)+b1(δ)λt1 , (2.84)

where

∂τ b1 = −βb1 − 1 + eαb1 (2.85)

∂τa1 = βλ∞b1

b1(0) = b(∆2)

a1(0) = 0,

and finally
Et[e

u(Nt1−Nt)+b1(δ)λt1 ] = ea2(∆1)+b2(∆1)λt (2.86)

where

∂τ b2 = −βb2 − 1 + eαb2+u (2.87)

∂τa2 = βλ∞b2

b2(0) = b1(δ)

a2(0) = 0.
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The final solution is then

E[(Nt1 −Nt)(Nt3 −Nt2)|Ft] = ea(∆2)+a1(δ)+a2(∆1)+b2(∆1)λt . (2.88)

Now, take the derivatives with respect to u then v at the point u = v = 0.

It is clear that ∂ua = ∂ub = ∂ua1 = ∂ub1 = 0, so we have to calculate

(∂uva2(∆1)+∂uvb2(∆1)λt)+(∂ua2(∆1)+∂ub2(∆1)λt)(∂va(∆2)+∂va1(δ)+∂va2(∆1)+∂vb2(∆1)λt)
(2.89)

As was done in the preceding sections, these derivatives with respect to u and v will be
calculated simply by taking the derivatives of the preceding systems of ODE’s with respect to
those variables. Indeed, taking the derivatives of the system (2.83) with respect to v yields :

∂τ bv = −βbv + (αbv + 1)eαb (2.90)

∂τav = βλ∞bv

bv(0) = 0

av(0) = 0.

Knowing that for v = 0 we have b = 0 that is the unique solution of the
system (2.83), we conclude that a = 0 and bv(τ) =

∫ τ
0 e(α−β)(τ−s)ds = I1(τ) so

av(τ) = βλ∞
∫ τ
0 I1(s)ds = βλ∞I2(τ).

Then, take the derivatives of the system (2.85) with respect to v, knowing that for v = 0 we
have b = 0 and b1 = 0 that are the unique solutions of, respectively, systems (2.83) and (2.85):

∂τ b1v = (α− β)b1v (2.91)

∂τa1v = βλ∞b1v

b1v(0) = bv(∆2)

a1v(0) = 0,

therefore b1v(τ) = bv(∆2)e
(α−β)τ et a1v(τ) = βλ∞bv(∆2)

∫ τ
0 e(α−β)s = βλ∞bv(∆2)I0(τ).

Then, taking further the derivative of the system (2.91) with respect to v yields :

∂τ b2v = (α− β)b2v (2.92)

∂τa2v = βλ∞b2v

b2v(0) = b1v(δ)

a2v(0) = 0.

Consequently b2v(τ) = b1v(δ)e
(α−β)τ et a2v(τ) = b1v(δ)I0(τ).

Additionally, second derivative of system (2.87), with the now usual trick that for u = v = 0
we have b1 = 0 that is the unique solution of (2.85) and then b2 = 0 is the unique solution of
(2.87), we have :

∂τ b2u = (α− β)b2u + 1 (2.93)

∂τa2u = βλ∞b2u

b2u(0) = 0

a2u(0) = 0,
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thus b2u(τ) = I1(τ) et a2u(τ) = βλ∞I2(τ).

Now, taking the mixed derivative of (2.87) with respect to u and v in the point u = v = 0
yields :

∂τ b2uv = (α− β)b2uv + (αb2u + 1)(αb2v + 1) (2.94)

∂τa2uv = βλ∞b2uv

b2uv(0) = 0

a2uv(0) = 0,

which solutions are :

b2uv(τ) =

∫ τ

0
e(α−β)(τ−s)(αb2u(s) + 1)(αb2v(s) + 1)ds

a2uv(τ) = βλ∞

∫ τ

0
b2uv(s)ds

Now, putting all the calculation results together, we are able to calculate the conditional
uncentered covariance of the number of jumps during time intervals of length ∆1 = ∆2 = τ with
a time lag δ.

E[(Nt+τ −Nt)(Nt+2τ+δ −Nt+2τ+δ)|Ft] (2.95)

As with the calculation of the variance, this quantity still depends on t. We take further its
expectation to get rid of the conditioning and we let t → ∞ to get its stationary regime value,
yielding :

1

2(α− β)4
× λ∞β

(

2α2 − e(α−β)δα2 − 2e(α−β)τα2 + 2e(α−β)(δ+τ)α2 − e(α−β)(δ+2τ)α2

− 2αβ + 2e(α−β)δαβ + 2e(α−β)ταβ − 4e(α−β)(δ+τ)αβ

+ 2e(α−β)(δ+2τ)αβ + 2α2βτ − 4αβ2τ + 2β3τ

)

1

2(α− β)4
λ2
∞β
(

2α2βτ2 − 4αβ2τ2 + 2β3τ2
)

.

Further centering and norming this quantity with the long run mean and variance of jump
numbers during intervals of length τ yields the autocorrelation function of jump number between
intervals of length τ with a lag δ :

Acf (τ, δ) = limt→∞
E[(Nt+τ −Nt)(Nt+2τ+δ −Nt+2τ+δ)]− E[(Nt+τ −Nt)]E[(Nt+2τ+δ −Nt+2τ+δ)]

√

var(Nt+τ −Nt)var(Nt+2τ+δ −Nt+2τ+δ)

=
e−2βτ

(
eατ − eβτ

)2
α(α− 2β)

2
(
α(α− 2β)

(
e(α−β)τ − 1

)
+ β2τ(α− β)

)e(α−β)δ (2.96)

As a conclusion, calculations are still feasable by relying on the moment generating function
method, but they become very tedious. We do not see any manner to easily generalize them for
the multidimensional case. Hence our preference for the Dynkin formula method exposed in the
text.
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Expression for the skewness

It is more easily obtained by the Dynkin formula method. By application of the infinitesimal
generator operator to adequate functions, one has the following ordinary differential equations:

dE[N3] = E[λt]dt+ 3E[λtNt]dt+ 3E[λtN
2
t ]dt

dE[λtN
2
t ] = E[λ2

t ]dt+ 2E[λ2
tNt]dt+ αE[λt]dt+ 2αE[λtNt]dt+ (α− β)E[λtN

2
t ]dt+ βλ∞E[N2

t ]dt

dE[λ2
tNt] = E[λ3

t ]dt+ 2αE[λ2
t ]dt+ 2(α− β)E[λ2

tNt]dt+ α2
E[λt]dt+ (α2 + 2λ∞β)E[λtNt]dt

dE[λ3
t ] = 3(α− β)E[λ3

t ]dt+ 3
(
α2 + λ∞β

)
E[λ2

t ]dt+ α3
E[λt]dt.

The stationary regime third moment then writes:

lim
t→∞

E
[
(Nt+τ −Nt)

3
]
=

1

2(α− β)6
λ∞β

[

− e2(α−β)τα2(2α− 3β)(α− β)

+ 2e(α−β)τα
(
α3 − 4α2β + 3αβ2 + 6β3 + 3(λ∞ + α)(α− 2β)(α− β)βτ

)

+ β

(

3α
(
α2 − αβ − 4β2

)

+ 2(−α+ β)
(
3λ∞α(α− 2β) + β2(2α+ β)

)
τ

+ 6λ∞(α− β)2β2τ2 + 2λ2
∞β(−α+ β)3τ3

)]

.

Expression for the kurtosis

Similarly to the preceding paragraph, we have the following ordinary differential equations:

dE[N4] = E[λt]dt+ 4E[λtNt]dt+ 6E[λtN
2
t ]dt+ 4E[λtN

3
t ]dt

dE[λtN
3
t ] = E[λ2

t ]dt+ 3E[λ2
tNt]dt+ 3E[λ2

tN
2
t ]dt+ αE[λt]dt+ 3αE[λtNt]dt+ 3αE[λtN

2
t ]dt

+ (α− β)E[λtN
3
t ]dt+ λ∞βE[N3

t ]dt

dE[λ2
tN

2
t ] = E[λ3

t ]dt+ 2E[λ3
tNt]dt+ 2αE[λ2

t ] + 4αE[λ2
tNt]dt+ 2αE[λ2

tN
2
t ]dt+ α2

E[λt]dt

+ 2α2
E[λtNt]dt+ (α2 + 2λ∞β)EλtN

2
t ]dt− 2βEλ2

tN
2
t ]dt

dE[λ3
tNt] = E[λ4

t ]dt+ 3αE[λ3
t ]dt+ 3(α− β)E[λ3

tNt]dt+ 3α2
E[λ2

t ]dt+ 3(α2 + λ∞β)E[λ2
tNt]dt

+ α3
E[λt]dt+ α3

E[λtNt]dt

dE[λ4
t ] = (4α− 4β)E[λ4

t ]dt+
(
6α2 + 4λ∞β

)
E[λ3

t ]dt+ 4α3
E[λ2

t ]dt+ α4
E[λt]dt.

The stationary regime fourth moment of the process writes:
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lim
t→∞

E
[
(Nt+τ −Nt)

4
]
=

1

6(α− β)8
×

λ∞β

[

− 2e3(α−β)τα3(3α− 4β)(α− β)(2α− β)

+ 3e2(α−β)τα2

(

6α4 + 6(λ∞ − 3α)α2β + 3α(−8λ∞ + α)β2

+ 6(4λ∞ + 5α)β3 − 18β4 + 4(λ∞ + 2α)(2α− 3β)(α− β)2βτ

)

− 6e(α−β)τα

(

α5 + 6λ∞α3β − 3α4β − 24λ∞α2β2 − α3β2

+ 24λ∞αβ3 + 20α2β3 − 45αβ4 − 14β5

+ 2(λ∞ + α)(α− β)β
(
2α3 − 8α2β + 3αβ2 + 18β3

)
τ

+ 6(λ∞ + α)2(α− 2β)(α− β)2β2τ2

)

+ β

(

α
(
2α4 + 18λ∞α(α− 2β)2 + 15α3β + 22α2β2 − 216αβ3 − 84β4

)

+ 6β(−α+ β)
(
6λ∞α3 + 6α(−6λ∞ + α)β2 + 8αβ3 + β4

)
τ

+ 6λ∞(α− β)2β
(
6λ∞α(α− 2β) + β2(8α+ 7β)

)
τ2 + 36λ2

∞β3(−α+ β)3τ3 + 6λ3
∞(α− β)4β2τ4

)]
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Chapter 3

Clustering and Mean Reversion in a
Hawkes Microstructure Model

Note : A part of this chapter will be published in Journal of Futures Markets, DOI:
10.1002/fut.21676.

Abstract

This chapter generalizes the preceding one. We provide explicit formulas for the first and second
moments and the autocorrelation function of the number of jumps over a given interval for the
multivariate Hawkes process. These computations are possible thanks to the affine property of
this process. We unify the stock price models of the preceding chapter, both of them based on
the Hawkes process, one having a mean reverting behaviour whilst the other has a clustering
behaviour, and build a model having these two properties. We compute various statistics as well
as the diffusive limit for the stock price that determines the connection between the parameters
driving the high frequency activity to the daily volatility.
Additionally, we differentiate market activity by signing the market orders (buy or sell). Modelling
this activity as a multivariate Hawkes process, we compute the market impact of a trade as well
as a collection of trades. We obtain the usual concave-form function documented in the empirical
literature.
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Introduction

Our study of the self-exciting Hawkes process in the preceding chapter allowed us to
experiment with models capturing the clustering property of the market microstructure and
compare them to models taking into account only the mean reversion behaviour. The end of the
preceding chapter strongly suggests to take into account both self and cross correlation effects
in the market microstructure, a property that is handled by multivariate Hawkes processes
presenting simultaneously self and mutual excitation.

The purpose of this chapter is then to generalize the results obtained in the preceding one
to the multivariate case, and calculate analytically some moments of the n-dimension Hawkes
process in closed form. The Dynkin formula approach used previously will then prove to be very
efficient.

We use these analytical results to understand the statistical properties of a stock price that
is expressed as a function of a Hawkes process with both self and mutual excitation, unifying
the models presented in the previous chapter. For instance, we compute explicitly the general
form of the signature plot and explain the different patterns that it can take. It turns out
that depending on the parameter values, the microscopic stock returns have a dominant mean
reverting or clustering behaviour, resulting in a decreasing or increasing signature plot pattern.
Also, we compute the diffusive limit associated with the stock dynamics as well as its asymptotic
volatility and connect these to its microscopic dynamics.

Additionally, whereas in the preceding chapter we considered market activity, i.e. market
order arrival times as a whole, uncovering and studying its clustering property, we differentiate
in this chapter between buy and sell activities. Using a model for buy and sell order arrival
times based on the multivariate Hawkes process, we compute the market impact of a trade.
Extension of the result to a set of orders allows to recover the usual concave shape function of
meta order impact as presented in the literature.

The structure of this chapter is as follows. In the first section, we show empirical evidences
of mean reverting and clustering behaviours in high frequency data. In the second section, we
describe the analytical framework which comprises the basic properties of the Hawkes process
as well as the Dynkin formula that will be our main mathematical tool. Using these results,
the computation of the moments and the autocorrelation function of the number of jumps over
a given time interval is provided. In the third section, we develop two applications. The first
application is a toy model for the stock price based on a multivariate Hawkes process for which
we compute different statistical properties and the diffusive limit for the stock. The second
application is a toy model for buy and sell order arrival times enabling us to compute in closed
form the market impact of a meta order.

3.1 Empirical Evidences

We define the clustering as the strong autocorrelation in the occurrence frequency of a
certain event. The mean reversion is the strong correlation in the occurrence of two opposite
events, such as buy and sell order arrivals or up and down price movements. Both clustering
and mean reversion are important characteristics of many aspects of the trading activity. The
random walk nature of the price process observed on a coarse time scale is the result of their
subtle interaction on a microscopic time scale. Borrowing the language of (Bouchaud et al.,
2004), we can say that clustering (persistence), leads to super diffusion whereas mean reversion
(anti-persistence) leads to sub-diffusion, the overall effect being the diffusive aspect of the price
process.
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For example, time series of the number of up mid price jumps during consecutive time intervals
of length τ are highly autocorrelated. This correlation persists for several lags as is clear in Figure
3.1. The same is true for down mid price jumps. The same phenomenon is observed daily and
for any choice of τ .
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Figure 3.1: Autocorrelation of the up (left) and down (right) mid price jumps occurring on
consecutive, non overlapping time intervals of length τ = 60 seconds. We take average values of
September 2011. The same plots can be observed for other values of τ . The dashed line presents
the significance threshold of the estimated correlations at a 99% confidence level.

Additionally, if one considers time series of buy and sell order arrivals1, the same phenomenon
is observed as is clear in Figure 3.2.
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Figure 3.2: Autocorrelation of the number of buy trades (left) and sell trades (right) occurring
on consecutive, non overlapping time intervals of length τ = 60 seconds. We take average values
of September 2011. The same plots can be observed for other values of τ . The dashed line
presents the significance threshold of the estimated correlations at a 99% confidence level.

1Adequate algorithms have to be applied to raw trade data to sign the trades, i.e to differentiate buy and sell
trades. This will be explained later.
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Conversely, cross correlation functions between the number of occurrences of opposite
phenomena during a time interval also present the same property. Up mid price jumps seem
then to trigger down jumps inducing a mean reversion of price returns. The correlation is also
significant and persists for several lags as can be seen in Figure 3.3.
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Figure 3.3: Cross correlation of up and down jumps of the mid price, where in the left figure
down jumps are lagged, whereas in the right figure up jumps are lagged. Lags are measured in
seconds and the intervals can overlap. Time interval length is τ = 60 seconds. We take average
values of September 2011.

Buy orders seem also to trigger sell orders, which in turn trigger other buy orders, as is clear
in Figure 3.42.
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Figure 3.4: Cross correlation of the number of buy and sell trades, where in the left figure
sell trades are lagged, whereas in the right figure buy trades are lagged. Lags are measured in
seconds and the intervals can overlap. Time interval length is τ = 60 seconds. We take average
values of September 2011.

2Notice that persistence of this phenomenon is less for Sanofi which is the less liquid among the considered
assets.
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Therefore, the clustering effect is compensated by a mean reversion phenomenon as
illustrated in the cross correlation functions. This rich interaction in the micro structure level
results macroscopically in a price trajectory for which the efficient market hypothesis as well as
the Brownian diffusion approximation seem to be reasonable.

Clearly, Hawkes processes present a versatile mathematical framework allowing us to deal
with such phenomena. Precisely, we need to consider multivariate Hawkes process presenting
self excitation as well as mutual excitation between their components. We analytically study
these processes in the next section and calculate some of their distributional properties.

3.2 Mathematical Framework

3.2.1 The multivariate Hawkes process

In the multivariate case, the Hawkes process can also be defined thanks to the stochastic
differential equation satisfied by its intensity which writes in the matrix form :

dλt = β(λ∞ − λt)dt+ αdNt (3.1)

with β, α two n× n real matrices and λ∞ a vector of Rn
+. Applying Ito’s lemma to eβtλt yields:

λt = e−βt (λ0 − λ∞) + λ∞ +

∫ t

0
e−β(t−v)αdNv. (3.2)

From (3.2) and under the hypothesis that β has positive eigenvalues we observe that the impact
on the intensity of a jump dies out exponentially as time passes. Also, as the intensities must
be positive notice that the matrix α has to be component-wise positive. For the existence and
uniqueness results we refer to Chapter 14 of (Daley and Jones, 2008) and references therein, of
particular interest is (Brémaud and Massoulié, 1994).

As t gets larger the impact of λ0, the initial value for the intensity, vanishes leaving us with:

λt ∼ λ∞ +

∫ t

0
e−β(t−v)αdNv.

As in the monovariate case, Xt = (λt, Nt) is a Markov process in the state space D = Rn
+×Nn.

The infinitesimal generator of the diffusion is given by

Lf = (β(λ∞ − λ))⊤∇⊤f + λ⊤







f(λ+ αe1, Nt + e1)− f
...
...

f(λ+ αen, Nt + en)− f







(3.3)

for f : D → R, where ∇f = (∂λ1f, ..., ∂λnf) is a 1× n vector and (ei)i=1..n is the canonical basis
of Rn (⊤ stands for the matrix transpose).

And we have the Dynkin formula:

E [f (Xs) |Ft] = f (Xt) + E

[∫ s

t
Lf (Xv) dv|Ft

]

. (3.4)

This gives a very convenient way to calculate conditional expectations of functions of the
Markov process Xt = (λt, Nt) when the expectation of the right hand side of the preceding
equation can be easily computed.
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The infinitesimal generator of the diffusion leads, thanks to Feynman-Kac’s formula, to the

computation of the moment-generating function. Denoted by φ(t, z, u) = E

[

ez
⊤λt+u⊤Nt

]

for

z ∈ Rn and u ∈ Nn, this function solves the partial differential equation with initial condition:

{
∂tφ = Lφ
φ(0, z, u) = ez

⊤λ0+u⊤N0 .

The model being affine we look for a solution of the form eat+b⊤t λ+u⊤N with at ∈ R and bt ∈ Rn.
It leads to a set of ordinary differential equations:

{
∂ta = b⊤βλ∞
∂tb = −β⊤b+ h− 1

with initial conditions a0 = 0, b0 = z, and 1 = (1, . . . , 1)⊤ whilst the function h is defined as:

h =





eb
⊤αe1+u⊤e1

. . .

eb
⊤αen+u⊤en .



 .

From a numerical point of view it is always possible to simulate the ODE but explicitly
computing the solution is difficult. Also, if we are interested in the moments of the process
then we need to derive the solution with respect to the parameter z which in turn leads to the
computation of the derivative with respect to this parameter of the ODE. Although the first
moment can be easily computed, higher moments remain a challenge. To the extent that we are
interested only in the moments we rely on the simpler computation strategy based on Dynkin’s
formula (3.4).

3.2.2 Computing the moments and autocorrelation function

Our aim in this section is to compute the moments of the process Xt = (λt, Nt) and also
the autocovariance of the number of jumps over a period τ . To achieve this we rely on the
infinitesimal generator of the process given by (3.3) and Dynkin’s formula (3.4). In order to
obtain the expected number of jumps and the expected intensity we use the following lemma.

Lemma 3.1. Given a Hawkes process Xt = (λt, Nt) with dynamic given by (3.1) then the expected
number of jumps E[Nt] and the expected intensity E[λt] satisfy the set of ODE:

dE[λt] = β(λ∞ − E[λt])dt+ αE[λt]dt (3.5)

dE[Nt] = E[λt]dt. (3.6)

These equations can be integrated explicitly as we have:

E[λt] = (α− β)−1
(

e(α−β)t − I
)

βλ∞ + e(α−β)tλ0

= c0(t)λ0 + c1(t) (3.7)

and

E[Nt] = N0 + (α− β)−1
(

e(α−β)t − I
)

λ0 +
((

(α− β)−1
)2
(

e(α−β)t − I
)

βλ∞ − (α− β)−1βλ∞t
)

= N0 + c2(t)λ0 + c3(t). (3.8)

Proof. The formulas (3.3) and (3.4) can be extended to a function f with values in Rn by
applying these equations to each component of f .
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Then, as in the preceding chapter, applying the Dynkin formula to f ≡ Nt, and then
differentiating the obtained integral equation yields (3.6), and the same reasoning applied to
f ≡ λt yields the ordinary differential equation satisfied by the expected intensity (3.5).

Thanks to the expressions (3.7) and (3.8) we can compute the following asymptotic
expectations:

Lemma 3.2. Given a Hawkes process with dynamic given by (3.1) then long term expected
intensity is given by:

lim
t→+∞

E [λt] = λ̄∞ = −(α− β)−1βλ∞ (3.9)

whilst the long term expected number of jumps over an interval τ is:

lim
t→+∞

E [Nt+τ −Nt] = −(α− β)−1βλ∞τ

= λ̄∞τ. (3.10)

Establishing (3.9) requires that α−β has negative eigenvalues, which is the classical stability
condition of the multivariate Hawkes Process as stated in (Hawkes, 1971). Therefore, from now
on we will suppose this property satisfied. The computation of the second order moments leads
to the following lemma:

Lemma 3.3. Given a Hawkes process Xt = (λt, Nt) with dynamic given by (3.1) then the
functions E

[
NtN

⊤
t

]
, E
[
λtN

⊤
t

]
and E

[
λtλ

⊤
t

]
solve the set of ODE:

d

dt
E

[

NtN
⊤
t

]

= E

[

λtN
⊤
t

]

+ E

[

Ntλ
⊤
t

]

+ diag(E[λt]) (3.11)

d

dt
E

[

λtN
⊤
t

]

= βλ∞E

[

N⊤
t

]

+ (α− β)E
[

λtN
⊤
t

]

+ E

[

λtλ
⊤
t

]

+ αdiag(E[λt]) (3.12)

d

dt
E

[

λtλ
⊤
t

]

= βλ∞E

[

λ⊤
t

]

+ E[λt]λ
⊤
∞β⊤ + (α− β)E

[

λtλ
⊤
t

]

+ E

[

λtλ
⊤
t

]

(α− β)⊤ + αdiag(E[λt])α
⊤

(3.13)

and the long term covariance matrix for the intensity Λ∞ = limt→+∞ E
[
λtλ

⊤
t

]
solves the algebraic

matrix equation:

(α− β)Λ̄∞ + Λ̄∞(α− β)⊤ + αdiag(λ̄∞)α⊤ = 0 (3.14)

with Λ̄∞ = Λ∞ − λ̄∞λ̄⊤
∞ where λ̄∞ is given by (3.9).

Proof. The proof follows the same steps at the proof of Lemma 3.1 with computations slightly
more involved.

Using the previous lemmas we can compute second order moment as well as the
auto-covariance function of the number of jumps over a given time interval. We have the following
lemma

Lemma 3.4. The long term second order moment of the number of jumps over a given interval
τ > 0 is:

Cov(τ) = lim
t→+∞

E

[

(Nt+τ −Nt)(Nt+τ −Nt)
⊤
]

− E [(Nt+τ −Nt)]E
[

(Nt+τ −Nt)
⊤
]

= J1 + J⊤
1 + τdiag(λ̄∞) (3.15)

with J1 = c5(τ)(Λ̄∞ + αdiag(λ̄∞)) and

c5(τ) = −(α− β)−1τ + (α− β)−2(e(α−β)τ − I).
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Proof. We start with:

I1 = E

[

(Nt+τ −Nt)(Nt+τ −Nt)
⊤
]

= E

[

Nt+τN
⊤
t+τ

]

− E

[

Nt+τN
⊤
t

]

− E

[

NtN
⊤
t+τ

]

+ E

[

NtN
⊤
t

]

(3.16)

= 2E
[

NtN
⊤
t

]

+

∫ t+τ

t
E

[

λsN
⊤
s

]

+ E

[

Nsλ
⊤
s

]

+ diag(E [λs])ds− E

[

Nt+τN
⊤
t

]

− E

[

NtN
⊤
t+τ

]

(3.17)

where from (3.16) to (3.17) we used (3.11). Moreover, we have:

I2 =

∫ t+τ

t
E

[

λsN
⊤
s

]

ds

=

∫ t+τ

t
e(α−β)(s−t)

E

[

λtN
⊤
t

]

ds+

∫ t+τ

t

∫ s

t
e(α−β)(s−u)

{

βλ∞E

[

N⊤
u

]

+ E

[

λuλ
⊤
u

]

+ αdiag(E [λu])
}

duds

=

∫ t+τ

t
e(α−β)(s−t)

E

[

λtN
⊤
t

]

ds+

∫ t+τ

t

∫ s

t
e(α−β)(s−u)

{

βλ∞E

[

N⊤
t

]

+ βλ∞

∫ u

t
E

[

λ⊤
r

]

dr

}

duds

(3.18)

+

∫ t+τ

t

∫ s

t
e(α−β)(s−u)

{

E

[

λuλ
⊤
u

]

+ αdiag(E [λu])
}

duds (3.19)

where we used successively (3.12) and (3.8). The fifth term of (3.17) is, after using the ODE for
E [Nt] and conveniently conditioning, equal to:

I3 = E

[

Nt+τN
⊤
t

]

= E

[(

Nt +

∫ t+τ

t
(c0(s− t)λt + c1(s− t))ds

)

N⊤
t

]

. (3.20)

The first term of (3.20) will cancel with the first term of (3.17), the second term of (3.20)
with will cancel with the first term of (3.18) whilst the last term of (3.20) with the second term
of (3.17) when t → +∞. Therefore, for t large we have

I1 =

∫ t+τ

t

∫ s

t
e(α−β)(s−u)

{

βλ∞

∫ u

t
E

[

λ⊤
r

]

dr + E

[

λuλ
⊤
u

]

+ αdiag(E [λu])

}

duds

︸ ︷︷ ︸

K1

(3.21)

+K⊤
1 +

∫ t+τ

t
diag(E [λs])ds. (3.22)

Replacing in K1 the expectations involving λt by their long term values we obtain:

K1 = c4(τ)βλ∞λ̄⊤
∞ + c5(τ)(Λ∞ + αdiag(λ̄∞)) (3.23)

c4(τ) = −(α− β)−1 τ
2

2
− (α− β)−2τ + (α− β)−3

(

e(α−β)τ − I
)

(3.24)

c5(τ) = −(α− β)−1τ + (α− β)−2(e(α−β)τ − I). (3.25)

As c4(t) is related to c5(τ) through:

c4(τ) =

(
τ2

2
− c5(τ)

)

(−(α− β)−1), (3.26)
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K1 can be rewritten as:

K1 =
τ2

2
λ̄∞λ̄⊤

∞ + c5(τ)(Λ̄∞ + αdiag(λ̄∞)).

Taking into account:

lim
t→∞

E [Nt+τ −Nt]E
[

(Nt+τ −Nt)
⊤
]

= τ2λ̄∞λ̄⊤
∞

we deduce the result.

As we are interested in the autocorrelation structure of the process the following quantity
proves to be essential

Lemma 3.5. Given t1 < t2 ≤ t3 < t4 with t2 − t1 = τ1, t4 − t3 = τ2 and t3 − t2 = δ we have:

Cov1(τ1, τ2, δ) = lim
t1→+∞

E

[

(Nt4 −Nt3)(Nt2 −Nt1)
⊤
]

− E [(Nt4 −Nt3)]E
[

(Nt2 −Nt1)
⊤
]

= c2(τ2)c0(δ)c2(τ1)
(
Λ̄∞ + αdiag(λ̄∞)

)
(3.27)

with Λ̄∞ given by (3.14) and λ̄∞ by (3.9).

Proof. We need to determine:

I4 = E

[

(Nt4 −Nt3)(Nt2 −Nt1)
⊤
]

= E

[

Et3 [(Nt4 −Nt3)] (Nt2 −Nt1)
⊤
]

(3.28)

= E

[

(c2(τ2)λt3 + c3(τ2))(Nt2 −Nt1)
⊤
]

(3.29)

= c2(τ2)c0(δ)E
[

λt2(Nt2 −Nt1)
⊤
]

+ c2(τ2)c1(δ)E
[

(Nt2 −Nt1)
⊤
]

+ c3(τ2)τ1λ̄
⊤
∞ (3.30)

where from (3.28) to (3.29) we used (3.8), and from (3.29) to (3.30) we used (3.7) as well as
(3.10). Taking into account that:

E

[

λt2(Nt2 −Nt1)
⊤
]

= E

[

λt2N
⊤
t2

]

− E

[

λt2N
⊤
t1

]

= e(α−β)τ1E

[

λt1N
⊤
t1

]

+

∫ t2

t1

e(α−β)(t2−s)
{

βλ∞E

[

N⊤
s

]

+ E

[

λsλ
⊤
s

]

+ αdiag(E [λs])
}

ds

−
(

c0(τ2)E
[

λt1N
⊤
t1

]

+ c1(τ2)E
[

N⊤
t1

])

.

The first term of the last equation simplifies with last-but-one term. Replacing E
[
N⊤

s

]
by

its integral given by (3.8) allows us to simply the last term of the equation and we are left with

E

[

λt2(Nt2 −Nt1)
⊤
]

=

∫ t2

t1

e(α−β)(t2−s)

{

βλ∞

∫ s

t1

E

[

λ⊤
u

]

du+ E

[

λsλ
⊤
s

]

+ αdiag(E [λs])

}

ds.

Taking the long term values for the expectations (involving only the process λt) we get:

E

[

λt2(Nt2 −Nt1)
⊤
]

= c5(τ1)βλ∞λ̄⊤
∞ + c2(τ1)

(
Λ∞ + αdiag(λ̄∞)

)
. (3.31)

As c5(τ) is related to c2(τ) through:

c5(τ) = (τ − c2(τ)) (−(α− β)−1) (3.32)
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when used in conjunction with (3.31) in (3.30) leads to, after taking into account (3.10) for the
second term and the definition for λ̄∞ given by (3.9), to the following expression for I4:

I4 = c2(τ2)c0(δ)
{

τ1λ̄∞λ̄⊤
∞ + c2(τ1)

(
Λ̄∞ + αdiag(λ̄∞)

)}

+ c2(τ2)c1(δ)λ̄
⊤
∞τ1 + c3(τ2)τ1λ̄

⊤
∞.

Taking into account the equalities c3(τ) = (τ − c2(τ))λ̄∞ and c1(δ) = (I − c0(δ))λ̄∞ then if we
subtract to I4 the following quantity:

lim
t1→∞

E [Nt4 −Nt3 ]E
[

(Nt2 −Nt1)
⊤
]

= τ2τ1λ̄∞λ̄⊤
∞

we obtain the result.

It is possible to relax the assumption of overlapping intervals made in the previous lemma.
In fact, we have

Lemma 3.6. Given t1 < t3 ≤ t2 < t4 with t2 − t1 = τ1, t4 − t3 = τ2 and t3 − t1 = δ (note the
difference with the previous lemma), then:

Cov2(τ1, τ2, δ) = lim
t1→+∞

E

[

(Nt4 −Nt3)(Nt2 −Nt1)
⊤
]

− E [Nt4 −Nt3 ]E
[

(Nt2 −Nt1)
⊤
]

= Cov1(τ1, τ2 − (τ1 − δ), 0) + Cov(τ1 − δ) + Cov1(δ, τ1 − δ, 0). (3.33)

Proof. Under the hypothesis of the lemma we can decompose the expectation as:

I5 = E[(Nt4 −Nt3)(Nt2 −Nt1)
⊤]

= E[((Nt4 −Nt2) + (Nt2 −Nt3)) (Nt2 −Nt1)
⊤]

= E[(Nt4 −Nt2)(Nt2 −Nt1)
⊤] + E[(Nt2 −Nt3)(Nt2 −Nt1)

⊤]

= E[(Nt4 −Nt2)(Nt2 −Nt1)
⊤] + E[(Nt2 −Nt3)(Nt2 −Nt3)

⊤]

+ E[(Nt2 −Nt3)(Nt3 −Nt1)
⊤].

Similarly, if we decompose the product E[Nt4 − Nt3 ]E[(Nt2 − Nt1)
⊤] then using Lemma 3.5 we

obtain the announced result.

The expression for the autocovariance function leads naturally to the autocorrelation function
of the number of jumps over a given time interval denoted as Corr(τ, δ) which is a function of:

lim
t→+∞

E

[

(Nt+τ −Nt)(Nt+τ+δ −Nt+δ)
⊤
]

− E [Nt+τ −Nt]E
[

(Nt+τ+δ −Nt+δ)
⊤
]

(3.34)

where, depending whether δ ≥ τ or not, we use either (3.27) or (3.33) for the centered
autocovariance, and the square root of the diagonal terms of the matrix Cov(τ) in order to
rescale by the variances.

The lemma 3.5 leads to the following useful result whose proof is straightforward

Lemma 3.7. Given the covariance matrix Cov1(τ1, τ2, δ) defined by (3.27) then we have:

Σ̄ =

∞∑

j=0

Cov1(1, 1, j)

= (α− β)−2(I − eα−β)(Λ̄∞ + αdiag(λ̄∞)). (3.35)

A last lemma which eases significantly the computation is given by:
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Lemma 3.8. We suppose a two-dimensional Hawkes process Xt = (λt, Nt) with values in D =
R2
+ × N2. Given the matrix Σ̄ of (3.35), the covariance matrix Cov(1) defined by (3.15) and

define M = Cov(1) + 2Σ̄ then:

M11 +M22 −M12 −M21 = M̃11 + M̃22 − M̃12 − M̃21 (3.36)

with:

M̃ = J̃1 + J̃⊤
1 + diag(λ̄∞) (3.37)

J̃1 = −(α− β)−1(Λ̄∞ + αdiag(λ̄∞)). (3.38)

The numerical consequences of the previous lemma are important because the left hand side
of (3.36) involves exponential of matrices, through c5 of Lemma 3.4, whereas the right hand
side involves no exponentiation.

These lemmas provide the main equations that will be involved in the applications developed
in this paper.

3.3 Applications

3.3.1 Data Description and Estimation Algorithm

We rely on tick-by-tick data from TRTH (Thomson Reuters Tick History). We deal with
futures on indices such as Dax and Eurostoxx, as well as some other commodity, interest rates
and forex futures. The data covers the period between 2010/01/01 to 2011/12/31. It consists
of quote files recording quote changes (bid/ask prices and quantities) timestamped up to the
millisecond, as well as trade files recording the transactions (prices and quantities) timestamped
up to the millisecond.

For some of our empirical investigations, we need to infer the sign of the trades and to this
purpose we rely on the Lee and Ready algorithm as introduced in (Lee and Ready, 1991).

The estimation algorithm relies on maximum likelihood method3. From Proposition 7.2.III
of (Daley and Jones, 2002), the log-likelihood of a point process (Nt)t≥0 writes up to an additive
constant:

L = −
∫ T

0
1⊤λtdt+

∫ T

0
ln (λt)

⊤ dNt

= −
∫ T

0
1⊤
(

λ∞ +

∫ t

0
e−β(t−s)αdNs

)

dt+

n∑

i=1

Nj
T∑

j=1

ln
(

λi
tj

)

So that, the log-likelihood of the multidimensional Hawkes process is the sum of the
log-likelihoods generated by the observation of each coordinate process:

L =
n∑

m=1

Lm.

3Note that as was done in the monovariate case, another estimation algorithm can be developed using the
moments and the autocorrelation function. We implemented it and made a Monte Carlo experiment as was
done in the preceding chapter in order to assess its quality. It turns out to be very efficient especially in terms of
computation speed. We will be interested here in likelihood ratio calculations, therefore we rely on MLE algorithm
only.
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This takes a particularly simple form if we consider a diagonal structure for the β matrix, that
is β = diag(β̄1, ..., β̄n), we obtain thanks to (Ogata, 1981):

Lm = −λm
∞T −

n∑

i=1

N∑

j=1

αmi

β̄m

(

1− eβ̄i(T−tj)
)

+

NT∑

j=1

ln

[

λm
∞ +

n∑

i=1

αmiR
mi(j)

]

,

where:

Rmi(1) = 0,

Rmm(j) = e−β̄m(tmj −tmj−1)(1 +Rmm(j − 1)),

Rmi(j) = e−β̄m(tmi −tmj−1)Rmi(j − 1) +
∑

k:tmj−1≤tik<tmj

e−β̄m(tmk −tij) for i 6= m.

These recursive equations enable a very efficient calculation of the likelihood function.

3.3.2 Generalized Bacry-Delattre-Hoffmann-Muzy model

Model specification

In this section, we closely follow the spirit of Bacry, Delattre, Hoffmann, and Muzy (2013a).
Our purpose is to build a model for the evolution of the mid price with both clustering and mean
reversion in the asset microscopic returns. The model writes:

St = S0 +
(

Nu
t −Nd

t

) ν

2
, (3.39)

where ν is the tick value. The Nu
t and Nd

t are Hawkes processes capturing the up and down
jumps of the mid price. We consider that both processes are self exciting as well as mutually
exciting. In the stationary regime, the intensities write:

λu
t = λ∞ +

∫ t

0
αse

−β̄(t−v)dNu
v +

∫ t

0
αme−β̄(t−v)dNd

v (3.40)

λd
t = λ∞ +

∫ t

0
αme−β̄(t−v)dNu

v +

∫ t

0
αse

−β̄(t−v)dNd
v , (3.41)

and within our original notations this translates to:

α =

(
αs αm

αm αs

)

;β =

(
β̄ 0
0 β̄

)

where αs stands for the self excitation parameter, αm stands for the mutual excitation
parameter, and the two intensities lead to a two-dimensional vector λt = (λu

t , λ
d
t )

⊤ whilst the
two jump processes give the vector Nt = (Nu

t , N
d
t )

⊤.

Notice that α is component-wise positive, that is to say αs > 0 and αm > 0. As a result,
we exclude any inhibitory effects (i.e. a jump in one component of the process decreasing the
probability of jump for the other component)4.

A stability condition for the bivariate Hawkes process used in the above model is that the
matrix α − β has eigenvalues with negative real parts. An intuitive manner to see that is that

4Strictly speaking, in order to implement inhibitory effects with negative α components, one has to ensure that
the overall intensity remains positive. This can be done by taking the exponential of the parametrized intensity,
or by implementing a threshold to its possible values (Bowsher, 2007).
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time t expected intensity calculated in (3.7) involves the expression e(α−β)t.

The eigenvalues of the matrix α− β are:

x1 = αs − β̄ − αm (3.42)

x2 = αs − β̄ + αm. (3.43)

so that the stability condition translates to:

x1 < 0 ⇔ β̄ − αs + αm > 0 (3.44)

x2 < 0 ⇔ β̄ − αs − αm > 0. (3.45)

We choose to consider perfectly symmetric processes so that the resultant price is balanced
(i.e. it possesses the martingale property). This property will be necessary in order to derive the
asymptotic volatility. Note that this asymptotic result can be obtained for more general matrices
α and β so long as some constraints are satisfied. For example, if we consider a non symmetric
setting we can still ensure the martingale property of the price. For instance, considering:

α =

(
α11 α12

α21 α22

)

;β =

(
β̄1 0
0 β̄2

)

,

the formula for the first moment allow us to show that for the price to be a martingale, that is
in order for the up jumps to completely offset the down jumps on average, the above variables
have to satisfy:

α11 + α12

β̄1
=

α21 + α22

β̄2
.

We nevertheless stick with our simpler setting as the aim here is to highlight clustering and
mean reversion interactions. Considering a non-symmetric setting uncovers asymmetries in such
interactions but we leave that interesting problem for a future research.

Calibration to empirical data

Using the data described in the data subsection we build the best bid and ask changes
timestamped up to the millisecond. This allows us to produce time records of up and down mid
price jumps corresponding to the bivariate Hawkes process (Nt) of our framework. Parameter
estimation is conducted using the maximum likelihood estimator with the likelihood function
computed as described in the previous subsection. The optimization is performed with the
Nelder-Mead algorithm5. We estimate the model daily over a 2-year sample. After the first
estimation, we use the obtained parameters as a first guess for the next calibration day. Results
are reported in Table 3.1, where they appear to be very stable.

The model encompasses the (Bacry et al., 2013a) model as well as our toy model of the
preceding chapter as particular cases. It is then of interest to determine whether modelling both
the clustering and mean reversion in really needed. To that end, we conduct a likelihood ratio
test and report the results in Table 3.16. The values suggest that both clustering and mean
reversion are needed to produce an accurate description of mid-price dynamics. Note that for
some days for the Eurostoxx and the German bonds (Bobl, Bund and Schatz) the mean reversion
effect alone might be sufficient.

5We used the open source library NL-opt, see http://ab-initio.mit.edu/wiki/index.php/NLopt
6When we compare the different models, with and without self excitation/mutual excitation, the starting

points for the optimization algorithm have the same values for the common parameters. Let us underline the
fact that for the Eurostoxx we had ten days for which the calibration was problematic so that these days were
excluded.
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Table 3.1: Calibration Results

Symbol Measure λ∞ αs αm β Clustering Mean Reversion

Eurostoxx Mean 0.0175 0.0062 0.0698 0.0958 1364.29 2.07
Std. dev. 0.0065 0.0082 0.0242 0.0252 415.88 37.51
Median 0.0156 0.0044 0.0624 0.0902 1270.00 0.00

Dax Mean 0.0661 0.0347 0.0500 0.1019 673.07 404.00
Std. dev. 0.0286 0.0102 0.0158 0.0221 319.35 299.83
Median 0.0581 0.0341 0.0491 0.1050 708.50 406.00

BNPP Mean 0.0495 0.2685 0.1792 0.4660 3394.05 12359.29
Std. dev. 0.0220 0.1241 0.0841 0.1919 2612.05 13150.40
Median 0.0439 0.2451 0.1648 0.4335 2944.00 8542.50

Sanofi Mean 0.0345 0.1941 0.1572 0.3691 2969.66 7086.07
Std. dev. 0.0188 0.1182 0.0902 0.1968 2123.99 6553.23
Median 0.0301 0.1583 0.1363 0.3199 2230.00 4505.00

Bund Mean 0.0250 0.0189 0.0792 0.1180 1179.34 68.45
Std. dev. 0.0123 0.0115 0.0226 0.0275 245.24 82.22
Median 0.0213 0.0181 0.0767 0.1154 1187.50 59.00

Bobl Mean 0.0172 0.0138 0.0673 0.1009 1259.34 5.82
Std. dev. 0.0073 0.0108 0.0226 0.0215 277.01 81.47
Median 0.0147 0.0126 0.0607 0.0979 1207.00 18.50

Schatz Mean 0.0153 0.0196 0.0662 0.1056 1480.55 27.34
Std. dev. 0.0047 0.0124 0.0210 0.0224 385.31 79.29
Median 0.0147 0.0172 0.0621 0.1003 1423.00 31.00

JPY Mean 0.0449 0.2516 0.2420 0.5089 4410.78 4780.38
Std. dev. 0.0174 0.1029 0.0941 0.1800 2085.32 2892.44
Median 0.0434 0.2375 0.2294 0.4863 3973.00 4271.50

EURO Mean 0.0622 0.3733 0.3550 0.7360 8956.69 10563.86
Std. dev. 0.0240 0.1255 0.1145 0.1922 4041.59 5433.36
Median 0.0596 0.3878 0.3682 0.7593 8669.00 9646.00

GOLD Mean 0.0902 0.4080 0.3109 0.7300 3486.06 9290.28
Std. dev. 0.0266 0.1481 0.1248 0.2288 2418.24 7088.23
Median 0.0913 0.4243 0.3487 0.7866 3237.00 7333.00

Crude Oil Brent Mean 0.0865 0.4506 0.2411 0.7068 7224.19 13651.24
Std. dev. 0.0265 0.1407 0.0755 0.1838 5580.90 8525.66
Median 0.0872 0.4628 0.2437 0.7267 4468.00 11025.00

Natural GAS Mean 0.0614 0.3503 0.3044 0.6683 3766.40 6345.64
Std. dev. 0.0194 0.1120 0.1121 0.1943 1563.27 2623.62
Median 0.0608 0.3553 0.3038 0.6914 3707.00 6101.00

Sugar Mean 0.0373 0.1998 0.1766 0.3932 1440.07 1868.66
Std. dev. 0.0118 0.0877 0.0861 0.1625 1353.06 1546.63
Median 0.0342 0.1689 0.1471 0.3379 938.50 1389.50

CORN Mean 0.0337 0.1879 0.1803 0.3861 1521.93 1704.87
Std. dev. 0.0130 0.0609 0.0618 0.1166 762.05 781.92
Median 0.0317 0.1831 0.1744 0.3681 1374.00 1563.00

WHEAT Mean 0.0473 0.2370 0.2104 0.4659 1698.37 2221.75
Std. dev. 0.0168 0.0952 0.0843 0.1644 1220.72 1486.22
Median 0.0448 0.2196 0.2002 0.4365 1417.00 1808.00

Note. Calibration results for two years of data. We calibrate daily a bivariate Hawkes process to the up and
down mid price jump times for each symbol. The column Clustering presents the likelihood ratio statistic when
we consider only clustering. The column Mean reversion presents the likelihood ratio statistic when we consider
only mean reversion. For the likelihood ratio test as the difference between the models is one parameter the ratio
has a χ2(1) distribution, if X ∼ χ2(1) then we have P(X > 3.84) = 0.05.
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Statistical properties

Having specified the dynamics for the up and down price jumps, we can analyze the
statistical properties of the asset returns in this toy model. Thanks to the computations carried
out in the analytical section many of these properties can be explicitly expressed in terms of the
parameters driving the Hawkes processes.

Within this simple model we can compute the autocovariance function of the price increments.
To this end we consider the expected covariance of price increments over two non-overlapping
time intervals of length τ and with lag δ, it is defined as:

CovStock(τ, δ) = E [(St+τ − St) (St+2τ+δ − St+τ+δ)]

= E
[(
(Nu

t+τ −Nu
t )− (Nd

t+τ −Nd
t )
) (

(Nu
t+2τ+δ −Nu

t+τ+δ)− (Nd
t+2τ+δ −Nd

t+τ+δ)
)] ν2

4
.

For the model considered this quantity can be explicitly computed as we have:

Proposition 3.9. The autocovariance function CovStock(τ, δ) is given by:

CovStock(τ, δ) =
ν2

4
(M11 +M22 −M12 −M21) (3.46)

where M = Cov1(τ, τ, δ) is given by (3.27) in Lemma 3.5.

For intensities following the dynamics (3.40) and (3.41). The above equation leads to the
expression for the autocorrelation function of price increments:

CorrStock(τ, δ) = −e−(δ+2τ)(β+αm−αs)
(
eτ(β+αm−αs) − 1

)2
(αm − αs) (2β + αm − αs)

2β2 (β + αm − αs)
. (3.47)

We can then see that if αm = 0 and αs > 0 then the above correlation is positive. An up
jump increases the mid price and the up intensity (without affecting the down intensity) which
increases the likelihood of another up jump. As a result, there is a positive autocorrelation
of the stock returns and a clustering of jumps in the same direction. On the contrary, if
αs = 0 and αm > 0 the above correlation is negative. An up jump increases the mid price
and the down intensity which increases the likelihood of a down jump and a decrease of the
mid price. This leads to a mean reverting behaviour of the mid price. Whenever αs = αm

the above autocorrelation is equal to zero because the two opposite effects offset each other.
In all cases, the autocorrelation of returns vanishes as the time lag increases because we have
β+αm−αs > 0 which is a stability condition of the model as stated before. Moreover, the decay
of the autocorrelation as a function of the lag increases with αm whilst αs has the opposite effect.

Having a better understanding of the clustering and mean reverting behaviour in this model
we can analyze its impact on the signature plot. The use of high-frequency data leads to
the estimation of the volatility from returns sampled at possibly different frequencies. The
dependency of the resulting volatility on the sampling frequency is called the signature plot
and is of tremendous importance in practice. Within the toy model this effect can be explicitly
analyzed. Indeed, the realized variance over a period T calculated by sampling the data with
time intervals of length τ can be written as:

Ĉ(τ) =
1

T

T/τ−1∑

n=0

(
S(n+1)τ − Snτ

)2
=

1

T

T/τ−1∑

n=0

((
N

u
(n+1)τ −N

u
nτ

)
−

(
N

d
(n+1)τ −N

d
nτ

))2 ν2

4

=
1

T

T/τ−1∑

n=0

(
N

u
(n+1)τ −N

u
nτ

)2 ν2

4
+

1

T

T/τ−1∑

n=0

(
N

d
(n+1)τ −N

d
nτ

)2 ν2

4

− 2
1

T

T/τ−1∑

n=0

(
N

u
(n+1)τ −N

u
nτ

) (
N

d
(n+1)τ −N

d
nτ

)
ν2

4
.

103



The mean signature plot, or more simply signature plot, is the expectation of the above
quantity and is explicitly given by:

Proposition 3.10. The signature plot C(τ) = E[Ĉ(τ)] is:

C(τ) =
ν2

4τ
(M11 +M22 −M12 −M21) (3.48)

=
ν2

2
Λ

(

κ2 +
(
1− κ2

) (1− e−τγ)

γτ

)

(3.49)

where M = Cov(τ) in (3.48) is the second moment matrix (3.15) in Lemma 3.4 whilst (3.49) is
the expression when the intensities follow the dynamics (3.40) and (3.41) with the parameters:

Λ =
β̄λ∞

β̄ − αs − αm
, κ =

β̄

β̄ + αm − αs
and γ = β̄ + αm − αs.

Proof.
The computations are analytically tractable as we have explicit formulas for the inverse and

exponential of a 2× 2 symmetric matrix:

M =

(
a b
b a

)

(3.50)

eM =
ea−b

2

(
1 + e2b −1 + e2b

−1 + e2b 1 + e2b

)

(3.51)

and the inverse of M writes:

M−1 =
1

a2 − b2

(
a −b
−b a

)

(3.52)

yielding:

M11 +M22 −M12 −M21 = 2Λ

(

κ2τ +
(
1− κ2

) (1− e−τγ)

γ

)

so that the expected signature plot is given by:

E[Ĉ(τ)] =
ν2

4τ
(M11 +M22 −M12 −M21)

which leads to the announced result.

Notice that αs = 0 enables us to retrieve (Bacry et al., 2013a)’s results, that is to say the
case with intensities which are only mutually excited. If αm = 0 then we recover the result of
the preceding chapter addressing the case of self-excitation only. Also, whenever the clustering
and mean reversion effects are equal (i.e. αm = αs) the signature plot is flat and the volatility
estimated at every time resolution is equal to ν2

2 λ∞, there is no bias due to mean reversion or
clustering because these two effects perfectly offset each other. Lastly, taking the limit τ to
infinity leads to the asymptotic volatility as it will be proven in the following propositions.

The shape of the expected signature plot depends on the imbalance between clustering and
mean reversion effects. If the mean reversion aspect is stronger, then the estimated volatility
will increase with the sampling frequency, or said differently, the estimated volatility will be a
decreasing function of τ which is the sampling period. Qualitatively, a strong mean reversion
effect induces a negative autocorrelation of the returns at a smaller time scale and, therefore,
a higher estimated volatility. When the estimation is done with a larger sampling period,
returns are aggregated, and their oscillations tend to offset each other resulting in a smaller
estimated volatility. On the contrary, if the clustering effect dominates, the autocorrelation
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of the returns is positive and therefore smaller time scales do not introduce oscillations which
results in a smaller estimated volatility, and larger time scales aggregate positively correlated
returns inflating the estimated volatility.

Let us now focus on the computation of the diffusive limit associated with the stock dynamic.
It allows the determination of the connection between the microscopic price formation process
observed at transaction level to its macroscopic properties at a coarser time scale. In other
words, we connect the stochastic differential equations used to model an asset price evolution
at a daily frequency, such as in the Black-Scholes model which relies mainly on the continuous
Brownian motion, to the discontinuous point process describing individual transactions. The
Hawkes process, thanks to its strong analytical tractability, enables us to relate these two time
scales.

To fulfil this objective a limit theorem is needed. In (Bacry et al., 2013b), the authors rely
on martingale theory and limit theorems for semi-martingales to prove stability and convergence
results for a general model with mutually exciting processes and a generic kernel. As we have done
in last chapter, we sketch a simpler proof which may shed some light on the process dynamics
in this simpler case with exponential kernels. The process Xt =

(
Nu

t , λ
u
t , N

d
t , λ

d
t

)
is a Markov

process and its infinitesimal generator writes:

Lf (x) = β̄ (λ∞ − λu
t )

∂f

∂λu
(x) + β̄

(

λ∞ − λd
t

) ∂f

∂λd
(x)

+ λu
t

[

f
(

Nu
t + 1, λu

t + αs, N
d
t , λ

d
t + αm

)

− f (x)
]

+ λd
t

[

f
(

Nu
t , λ

u
t + αm, Nd

t + 1, λd
t + αs

)

− f (x)
]

.

Ergodicity of the process Xt, that is to say its convergence to a stationary regime, can be
easily established thanks to the Foster-Lyapounov test function criterion. In our case, define the
function V (x) = λu+λd

2λ∞
, then a simple calculation yields the geometric drift condition:

LV (x) ≤ −(β̄ − αm − αs)V (x) + β̄, (3.53)

which grants, thanks to Theorems 6.1 and 7.1 in (Meyn and Tweedie, 2009) (and especially
(CD3)), the V-uniform ergodicity of the process Xt.

Let us then write unit-time price increments:

ηi =
[

(Nu
i −Nu

i−1)− (Nd
i −Nd

i−1)
]

× ν

2
,

and consider the random sums

Sn =

n∑

i=1

ηi,

where {ηi; i = 1 . . . n} denotes a set of price increments (note that E[ηi] = 0). We are interested
in the asymptotic behaviour of the price process

S̄n
t =

S⌊nt⌋√
n

.

The V-uniform ergodicity and Theorem 16.1.5 in (Meyn and Tweedie, 2009) allows us to conclude
that the increments are geometrically mixing and Theorem 19.3 of (Billingsley, 1999) proves that
S̄n
t converges to a Brownian motion in the sense of Skorokhod topology:

S̄n
t ⇒ σWt
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with the volatility is given by:

σ2 = lim
n→∞

Var(Sn)

n
.

The closed-form formulas obtained in the analytical part enable the explicit computation of
this volatility as we have the following proposition:

Proposition 3.11. The volatility σ2 is given:

σ2 =
ν2

4
(M11 +M22 −M12 −M21) (3.54)

with

M = Cov(1) + 2Σ̄ (3.55)

where the two matrices in (3.55) are given by (3.15) and (3.35), respectively.

Proof.

The volatility is given by:

σ2 = lim
n→∞

Var(Sn)

n

=
ν2

4
E[
(

(Nu
1 −Nu

0 )−
(

Nd
1 −Nd

0

))2
]

+ 2
ν2

4

∞∑

n=1

E[
(

(Nu
1 −Nu

0 )−
(

Nd
1 −Nd

0

))((
Nu

1+n −Nu
n

)
−
(

Nd
1+n −Nd

n

))

]

=
ν2

4
(Cov(1)11 + Cov(1)22 − Cov(1)12 − Cov(1)21)

+ 2
ν2

4

(
Σ̄11 + Σ̄22 − Σ̄12 − Σ̄21

)
.

Define M = Cov(1) + 2Σ̄ then we obtain the result.

Notice that the stationarity and ergodicity of the increments ηi, together with the convergence
of the series σ2 = E[η20] + 2

∑∞
n=0 E[η0ηn] established in the above proposition are sufficient to

conclude that S̄n
t converges to a Brownian motion in the sense of Skorokhod topology thanks to

theorem 19.1 in (Billingsley, 1999).

To evaluate this asymptotic volatility, the Lemma 3.8 is useful. This expression is valid for a
general dynamic but for the particular choice made in this work the volatility turns out to have
a very simple expression as the next proposition shows:

Proposition 3.12. If intensities follow the dynamics (3.40) and (3.41) the volatility (3.54) has
the expression:

σ2 =
ν2

2
Λκ2

=
ν2

2

β̄3λ∞
(β̄ − αs − αm)(β̄ + αm − αs)2

with:

Λ =
β̄λ∞

β̄ − αs − αm
, κ =

β̄

β̄ + αm − αs
.
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As expected, increasing the self excitation parameter αs, and hence the clustering effect,
increases the volatility as this leads to positive autocorrelation of the returns. On the contrary,
increasing the mutual excitation parameter αm decreases the overall volatility because of the
negative autocorrelation of the returns. Obviously, these parameters have to remain in the
region β̄ −αs −αm > 0 in order for the stability condition to be satisfied. Also, taking the limit
τ → +∞ in (3.49) leads to an equality between the signature plot and the asymptotic volatility.

In (Bacry et al., 2013a) the authors consider a mean reversion effect only, and obtain the
same formula as above with αs = 0, whereas in the previous chapter we consider clustering
alone and obtain the same formula as above with αm = 0. In the previous chapter, calibration
was done on real data for both models (clustering only or mean reversion only), and empirical
results showed that considering only one effect leads to a systematically underestimated or
systematically overestimated realized volatility.

We conduct here the same realized variance experiment for the generalized model. Results
are reported in Table 3.2. They clearly show that calibrating the clustering as well as mean
reversion effects result in a better fit of the realized volatility.

Table 3.2: Asymptotic Volatilities
Symbol λ∞ αs αm β Empirical σ Toy model σ

Eurostoxx 0.0119 0.0474 0.0401 0.1074 24.64% 19.08%
Dax 0.0581 0.0341 0.0491 0.1050 25.75% 23.45%
BNPP 0.0739 0.5287 0.2311 0.7798 56.43% 55.31%
Sanofi 0.0658 0.3503 0.3543 0.7246 31.42% 31.47%
Bund 0.0136 0.0471 0.0410 0.1081 5.35% 4.62%
Bobl 0.0125 0.0465 0.0396 0.1062 4.45% 4.44%
Schatz 0.0108 0.0360 0.0484 0.1044 2.01% 1.86%
JPY 0.0520 0.3320 0.3295 0.6814 10.74% 10.67%
EURO 0.0169 0.1007 0.1017 0.2224 5.49% 5.65%
GOLD 0.0677 0.3168 0.3561 0.6929 14.28% 14.35%
Crude Oil Brent 0.0359 0.1394 0.1394 0.2989 14.04% 14.09%
Natural GAS 0.0495 0.2752 0.2801 0.5744 48.84% 48.70%
Sugar 0.0315 0.1702 0.1642 0.3544 61.24% 61.21%
CORN 0.0591 0.3160 0.2855 0.6215 58.16% 58.08%
WHEAT 0.0642 0.2819 0.2884 0.5903 59.49% 59.46%

Note. Median values of asymptotic volatilities as calculated by the general toy model, compared to the realized
volatilities of the day. We also put median values of Hawkes model parameters.

The analytical results enable us to further develop the model properties. In fact, wa can
analyze the price impact of a quote-moving trade, i.e. a trade resulting in an up or down price
jump. We illustrate the impact of an “up” move but similar results apply to a “down” move.

Proposition 3.13. Given τ and δ two positive real numbers, the impact of an “up” move on the
stock returns computed over a time interval of length τ is:

imp(τ, δ) = lim
t→+∞

E[St+τ+δ − St+δ|dNu
t = 1] (3.56)

=
ν

2λ̄u∞
(M11 −M12) (3.57)

= −ν
e−τ(β+αm−αs)e−δ(β+αm−αs)

(
eτ(β+αm−αs) − 1

)
(αm − αs) (2β + αm − αs)

4 (β + αm − αs) 2
(3.58)

with M = c2(τ)c0(δ)(Λ̄∞ + αdiag(λ̄∞)).
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Proof.
Given τ0, τ and δ the following quantity needs to be computed:

E[(St+τ+δ − St+δ)(N
u
t+τ0 −Nu

t )] =
ν

2
E[(Nu

t+τ+δ −Nu
t+δ)(N

u
t+τ0 −Nu

t )] (3.59)

− ν

2
E[(Nd

t+τ+δ −Nd
t+δ)(N

u
t+τ0 −Nu

t )]. (3.60)

As we have:

I1 = E[(Nu
t+τ+δ −Nu

t+δ)(N
u
t+τ0 −Nu

t )]

=
∞∑

i=0

E[Nu
t+τ+δ −Nu

t+δ|Nu
t+τ0 −Nu

t = i]× P[Nu
t+τ0 −Nu

t = i]× i.

As we have:

P[Nu
t+τ0 −Nu

t = 1|Ft] = λtτ0 + o(τ0)

P[Nu
t+τ0 −Nu

t > 1|Ft] = o(τ0)

P[Nu
t+τ0 −Nu

t = 0|Ft] = 1− λtτ0 + o(τ0),

then taking the limit τ0 → 0 and for t large we deduce that:

lim
τ0→0

I1
τ0

∼ E[Nu
t+τ+δ −Nu

t+δ|dNu
t = 1]λ̄u

∞.

Moreover, as we have:

E[(Nu
t+τ+δ −Nu

t+δ)(N
u
t+τ0 −Nu

t )] = (Cov1(τ0, τ, δ))11,

we obtain:

E[Nu
t+τ+δ −Nu

t+δ|dNu
t = 1] =

1

λ̄u∞
(c2(τ)c0(δ)(Λ̄∞ + αdiag(λ̄∞)))11.

Similar computations can be carried out for (3.60) and the announced result is obtained.

It might be convenient to consider the stock evolution over an infinitesimal interval. From
the previous proposition it is straightforward to deduce:

Proposition 3.14. Given the price impact function (3.56) then the infinitesimal price impact
function is given by:

imp(δ) = lim
τ→0

imp(τ, δ)

τ
(3.61)

=
ν

2λ̄u∞
(M11 −M12) (3.62)

= −ν
e−δ(β+αm−αs) (αm − αs) (2β + αm − αs)

4 (β + αm − αs)
(3.63)

with M = c0(δ)(Λ̄∞ + αdiag(λ̄∞)).

It is often meaningful to consider the cumulative impact of a trade7 on the stock return which
to integrate with respect to δ the above quantity. Simple computations give:

7Notice that we call trade here an up or down jump of the mid price.
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Proposition 3.15. Given the function imp(δ) of Proposition 3.14 then the cumulative price
impact of trades up to a given time t is:

cimp(t) =

∫ t

0
Imp(δ)dδ (3.64)

=
ν

2λ̄u∞
(M11(t)−M12(t)) (3.65)

= −ν

(
1− e−t(β+αm−αs)

)
(αm − αs) (2β + αm − αs)

4 (β + αm − αs) 2
(3.66)

with M(t) =
∫ t
0 c0(δ)dδ(Λ̄∞ + αdiag(λ̄∞)).

Note that if αs > αm then the function is increasing and concave and in that case the shape
is similar to the one obtained in Figure 1 of (Dufour and Engle, 2000). This condition denotes
a clustering of trades coming from the split of a large order.

Clearly, a limitation of the above formulas is that we consider only quote-moving trades,
which is rarely the case compared to the whole market activity as can be seen in (Pomponio and
Abergel, 2013). Market impact has then to be studied in a more general setting and we do this
in next section.

3.3.3 Market Impact in a Buy-Sell Toy Model

As stated before, another aspect of the trading activity presenting both clustering and mean
reversion effects is the sell and buy order arrivals. Time arrivals of buy and sell orders can then
be modelled by a bivariate Hawkes process. Let NBuy

t and NSell
t be the cumulated number of

buy and sell orders respectively, and let their respective intensities obey:

λBuy
t = λ∞ +

∫ t

0
αse

−β̄(t−u)dNBuy
u +

∫ t

0
αme−β̄(t−u)dNSell

u

λSell
t = λ∞ +

∫ t

0
αme−β̄(t−u)dNBuy

u +

∫ t

0
αse

−β̄(t−u)dNSell
u .

The model is mathematically the same as before in the sense that the matrices α and β in
(3.1) have very particular forms. Namely, they are given by:

α =

(
αs αm

αm αs

)

;β =

(
β̄ 0
0 β̄

)

where αs stands for the self excitation parameter and αm stands for the mutual excitation
parameter. The two intensities lead to a two-dimensional vector λt = (λBuy

t , λSell
t )⊤ whilst the

two jump processes give the vector Nt = (NBuy
t , NSell

t )⊤.

Although the model is similar to the previous one we do not focus on the same phenomena.
Here, we work at a more microscopic level than the mid price up and down jumps of the
previous subsection because we are now interested in market orders (that might not lead to a
mid-price move).

Notice that we choose symmetric processes in order for the price buy and sell pressures to
be equal. As stated previously, this balance can be achieved even with some asymmetry in the
parameters but we prefer to remain in the simplest possible setting.

In order to estimate the parameters of our model with real data we need to preprocess the
TRTH files to build records of Buy and Sell transaction time arrivals. In fact, transaction files
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of TRTH do not contain any flag specifying the sign of the transaction. We then take trade
and quote files for the data as well as transaction files and apply the Lee and Ready algorithm
(Lee and Ready, 1991) to sign trades, thus obtaining records of buy and sell order arrival times
corresponding to our bivariate Hawkes process Nt = (NBuy

t , NSell
t ). Calibration is done using

the MLE as before. We conduct a daily calibration over a 2-year data sample and we restrict
our study to futures on Eurostoxx and Dax and two stocks: BNPP and Sanofi.

Results are reported in Table 3.3, where they seem to be stable and where likelihood ratio
tests clearly reject the hypothesis of clustering only or mean reversion only.

Table 3.3: Calibration Results for Buy and Sell Orders
Symbol Measure λ∞ αs αm β Clustering Mean Reversion

Eurostoxx Mean 0.0907 0.5674 0.1395 0.7233 3367.51 52672.29
Std. dev. 0.0229 0.1433 0.0598 0.1738 2047.06 22999.03
Median 0.0908 0.5807 0.1410 0.7484 3396.00 49070.00

Dax Mean 0.0938 0.5929 0.1588 0.7663 3496.19 47232.60
Std. dev. 0.0235 0.1408 0.0613 0.1708 3054.18 20459.51
Median 0.0952 0.6155 0.1695 0.8087 3666.00 43388.00

BNPP Mean 0.0427 0.3383 0.0707 0.4263 2006.10 34381.42
Std. dev. 0.0172 0.1358 0.0456 0.1672 1826.07 19204.96
Median 0.0388 0.3129 0.0593 0.3888 1746.50 29710.00

Sanofi Mean 0.0264 0.2063 0.0484 0.2738 1318.24 19197.74
Std. dev. 0.0096 0.0814 0.0368 0.1099 1133.54 8615.12
Median 0.0244 0.1918 0.0407 0.2494 1024.00 17409.50

Note. Calibration results for two years of data. We calibrate daily a bivariate Hawkes process to the time
arrivals of buy and sell orders. The column Clustering presents the likelihood ratio statistic when we consider
only clustering. The column Mean reversion presents the likelihood ratio statistic when we consider only mean
reversion. For the likelihood ratio test as the difference between the models is one parameter the ratio has a χ2(1)
distribution, if X ∼ χ2(1) then we have P(X > 3.84) = 0.05.

As the primary interest of order book events modelling is the price dynamics, let us consider
a model of price formation based on buy and sell order arrival times. To remain simple, we
suppose that every trade has a unit quantity. Following (Kyle, 1985), the long run price return
is assumed to depend linearly on the imbalance between buy and sell trades. More precisely, we
denote by Ft = NBuy

t −NSell
t the cumulated buy and sell orders imbalance at time t, the price

at t writes:

Pt = Et[P∞] = P0 + λkEt[F∞], (3.67)

where we noted λk the coefficient of linear dependence of price return on buy-sell order
imbalance. This coefficient is known as the Kyle’s Lambda. We closely follow (Hewlett, 2006),
where the author uses two independent univariate Hawkes processes for NBuy

t and NSell
t and

obtains a simple expression for the market impact function which specifies how a buy/sell order
affects the stock price.

In order to calculate this market impact, and following (Bouchaud et al., 2004), we consider
that the price at time t results from the superposition of market impacts of all the trades that
took place prior to t. The market impact of a trade is attenuated as time passes. Formally, we
have:

Pt = P0 +

∫ t

0
I(t− u)dFu. (3.68)
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The function I(t), called the propagator, quantifies how buy and sell order imbalances impound
into price and is the key element to determine the stock dynamic. Equating (3.67) and (3.68)
we obtain:

λkFt + λkEt[F∞ − Ft] =

∫ t

0
I(t− u)dFu. (3.69)

Additionally, we have:

Et[F∞ − Ft] =

∫ ∞

t
Et[λ

Buy
u − λSell

u ]du.

From (3.7) the expected intensity is equal to:

Et[λu] = (α− β)−1(e(α−β)(u−t) − I)βλ∞ + e(α−β)(u−t)λt

where λt is the vector of buy and sell intensities (i.e. λt = (λBuy
t , λSell

t )⊤). Using this equality
as well as the closed-form formulas for the matrix exponential and matrix inverse for the model
considered we arrive at8

Et[F∞ − Ft] =

∫ ∞

t
e−(β̄+αm−αs)(u−t)(λBuy

t − λSell
t )du (3.70)

=
λBuy
t − λSell

t

β̄ + αm − αs
. (3.71)

Combining (3.69) and (3.71) we deduce an integral representation for the propagator given by:
∫ t

0
I(t− u)dFu = λkFt + λkEt[F∞ − Ft]

= λkFt + λk

λBuy
t − λSell

t

β̄ + αm − αs

= λk(N
Buy
t −NSell

t ) + λk

λBuy
t − λSell

t

β̄ + αm − αs
.

Knowing that:

λBuy
t = λ∞ +

∫ t

0
αse

−β̄(t−u)dNBuy
u +

∫ t

0
αme−β̄(t−u)dNSell

u

and

NBuy
t =

∫ t

0
dNBuy

u ,

as well as similar computations for the sell side we are led to:
∫ t

0
I(t− u)dFu = λk(

∫ t

0
1 +

(αs − αm)e−β̄(t−u)

β̄ + αm − αs
(dNBuy

u − dNSell
u ))

= λk(

∫ t

0
1 +

(αs − αm)e−β̄(t−u)

β̄ + αm − αs
dFu).

Therefore, the propagator which gives the impact of a single trade executed at time 0 as seen at
time t is:

I(t) = λk

(

1 +
(αs − αm)e−β̄t

β̄ + αm − αs

)

, (3.72)

8It is indeed easy to establish that for the matrix α− β considered we have:

(α− β)−1 =
(
α
2
m −

(
β̄ − αs

)2)
(

β̄ − αs αm

αm β̄ − αs

)

e
(α−β)t =

1

2
e
−t(β+αm−αs)

(
1 + e2tαm

−1 + e2tαm

−1 + e2tαm 1 + e2tαm

)
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where one can see that this impact decomposes into a permanent impact effect and a transient
effect.

This result enables us to study the impact of a large order that is executed by splitting it
into consecutive single-share executions. We have the following result whose proof is omitted:

Proposition 3.16. Denote by I(T ) the price impact at time T of a continuum of orders executed
over the interval [0; t] then by definition this function is given by:

I(T ) =
∫ t

0
I(T − s)ds (3.73)

where the function I is (3.72). For the model considered the integral leads to:

I(T ) =







λk

(

T + (αs−αm)

(β̄+αm−αs)β̄
(1− e−β̄T )

)

T ≤ t

λk

(

t+ (αs−αm)

(β̄+αm−αs)β̄
(e−β̄(T−t) − e−β̄T )

)

T ≥ t.

We graphically illustrate this function, Figure 3.5 presents a plot of the market impact of an
order to buy 50 shares of stock, executed during 50 seconds at the rate of 1 stock per second. One
clearly sees that the impact increases during the execution time of the order, and then decreases
steadily to attain the permanent impact.
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Figure 3.5: Market impact of an order to buy 50 shares of stock, executed during 50 seconds at
the rate of 1 stock per second. We took the scaling parameter λk = 1.

Notice that in order to obtain the concave shape during the execution phase, we must
have αs > αm. Not only is this coherent by a clustering of orders during this phase, due to
the executing agent, but it is also coherent with market activity in general where clustering
systematically dominates mean reversion when it comes to buy/sell activity modelling as is clear
from Table 3.3.

The assumption of unit share individual executions can be relaxed by introducing the notion
of execution profile as defined for example in (Moro et al., 2009).

We define the execution profile as a function of time f with support on the interval [0; t] with
∫ t
0 f(s)ds = Q which is the total quantity to be executed. With this definition, the impact of

the meta order writes in integral notation:
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I(T ) =
∫ T

0
I(T − s)f(s)ds

which is just the convolution of the execution profile and market impact.

Finally, let us notice that after developing models for market microstructure (first application
in this section) and market impact (second application in this section), one wants to unify these
dynamics in one model. This was recently done in a seminal article by (Bacry and Muzy, 2013).
What is more, the authors rely on Hawkes processes with generic kernels and identify, among
other things, feedback effects of price changes on trading activity. We think that this new point
of view will greatly influence our (and other’s) research in the subject.

3.4 Conclusion

In this chapter we explicitly compute the first and second moments and the autocovariance
function of the number of jumps over a given time interval of a multivariate Hawkes process.
These computations are possible thanks to the affine property of the process and the use of the
Dynkin formula.

Using these quantities we compute several statistical properties for a stock dynamics based
on the Hawkes process. It allows us to unify the pioneering model of (Bacry et al., 2013a)
with the model developed in the previous chapter. The first one possesses a mean reverting
behaviour whilst the second one has a clustering behaviour. We explicitly compute the signature
plot and analyze the impact of the parameters on the shape of this function. Furthermore, we
compute the diffusive limit which enables the connection of the parameters driving the price
at high-frequency with the parameter driving the stock price a low frequency (i.e. the daily
Black-Scholes volatility). Lastly, we explicitly compute the impulse response function which
quantifies the impact of a quote-moving trade on the stock price. For all these results we can
analyze the impact of the mean reverting and clustering parameters and find results consistent
with intuition.

We further exploit the results by analyzing the price impact of a trade in a Buy and Sell
toy model based on the Hawkes process. We provide an explicit expression for this function and
extend the results by computing the impact of a collection of trades. This allows us to recover
the typical concave-shape/relaxation pattern of the execution impact function of a meta order.

Although some of the formulas are derived for a specific choice of the matrix parameters
most of the results are valid for general matrices (to the extent that some stability conditions are
satisfied). Within this framework it is possible to consider other important market microstructure
problems. As an example, we investigate in the next chapter the correlation and the lead-lag
relationship between two assets and analyze them through the lenses of Hawkes processes.
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Chapter 4

Correlation and Lead-Lag Relationships
in a Hawkes Microstructure Model

Abstract

Our aim in this chapter is to develop a multi-asset model based on the Hawkes process describing
the evolution of the assets at high frequency and to study the correlation as well as the lead-lad
relationships between the stocks within this framework. Thanks to the strong analytical tractability
allowed by the use of Hawkes process, several statistical quantities are explicitly computed and
some insight is given on the impact of the model parameters on these quantities. Furthermore, we
compute the covariance matrix associated with the diffusive limit of the model so that the relation
between the parameters driving the assets at high and low frequencies is explicit. We illustrate
our results using index futures and stocks quoted in the Eurex market, for which the model proves
efficient in capturing the existing lead-lag relationships between the assets.
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Introduction

The interaction between stocks is an important aspect of financial theory. From optimal
portfolio choice to basket option pricing, one of the key ingredients is the modelling of the
dependence between stocks. The correlation appears to be the natural mathematical concept
to handle the interaction and in fact underlies many financial models. The correlation provides
information on contemporaneous evolutions but in the markets this simultaneousness can be too
stringent. A concept that relaxes this hypothesis is the lead-lag relationship which has also been
extensively studied in the literature, among many others let us mention (Herbst et al., 1987).
More recently, the availability of high-frequency data also triggered research on this subject as
the works of (de Jong and Nijman, 1997) and (Huth and Abergel, 2012) attest.

The purpose of this work is to develop a multi asset model for stocks based on the Hawkes
process and to study the correlation and lead-lag relationships within this framework. The
model specifies the high-frequency dynamics for the stocks. Our work heavily relies on the
dynamics proposed by (Bacry et al., 2013a). In the particular case of exponential kernel for
the Hawkes process, which allows for very explicit computations, we develop a model for which
many of the statistical properties of the stocks can be computed. Using the theoretical results
of (Bacry et al., 2013b) we compute the diffusive limit for the stocks thereby connecting the
model driving the assets at high frequency with the covariance matrix driving the assets at low
frequency (i.e., daily). Within this framework we analyze the correlation as well as the lead-lag
relationships between the stocks and provide some expansions to better understand the impact
of the model parameters on different financial quantities. We then perform an empirical analysis
on two index futures and four major stocks quoted on the Eurex market to illustrate the model.
Lastly, within our framework extracting a lead-lag relationship between stocks at low frequency
is problematic and confirms the results of (Huth and Abergel, 2012).

The structure of this chapter is as follows. In the first section, we describe the analytical
framework giving a dynamic for two stocks based on the Hawkes process and derive various
statistical quantities as well as the expression for the diffusive limit associated with the two
stocks. In the second section, an empirical analysis is performed to illustrate the capabilities of
the model.

4.1 The Bacry-Delattre-Hoffmann-Muzy Model

4.1.1 The stock dynamics

As in the previous chapters, we adopt the modeling framework proposed by (Bacry et al.,
2013a) to describe the evolution of the mid price of two traded assets:

S1
t = S1

0 +
(

N1,u
t −N1,d

t

) ν1
2
,

S2
t = S2

0 +
(

N2,u
t −N2,d

t

) ν2
2

where ν1 and ν2 are the tick values for the first stock and second stock, respectively. Let, N1,u
t

and N1,d
t be the Hawkes processes capturing the up and down jumps of the mid price for the

first stock and N2,u
t and N2,d

t the corresponding equivalent for the second stock.

In this work the four dimensional Hawkes process Nt = (N1,u
t , N1,d

t , N2,u
t , N2,d

t )⊤ and λt =

(λ1,u
t , λ1,d

t , λ2,u
t , λ2,d

t )⊤ follow a dynamic of the form (3.1) with:
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α =







α1
s α1

m x 0
α1
m α1

s 0 x
y 0 α2

s α2
m

0 y α2
m α2

s







;β =







β̄1 0 0 0
0 β̄1 0 0
0 0 β̄2 0
0 0 0 β̄2







(4.1)

and λ∞ = (λ1,∞, λ1,∞, λ2,∞, λ2,∞)⊤ ∈ R4
+.

The connection between the two stocks is controlled through the 2 × 2 upper-right and
lower-left sub-matrices (called coupling submatrices in the sequel). Here, we supposed that
the two stocks have an overall positive correlation, hence our parametrization. Notice that if
x = y = 0 then the two stocks move independently.

For x > 0, an up move of the second stock, through a jump of N2,u
t , induces an increase of

the intensity λ1,u
t which increases the probability of a jump of N1,u

t over the next time period
and therefore an up move of the first stock. Similar reasoning applies to a down move. As
a consequence, the movements of the second stock will be reproduced by the first stock. By
construction these related evolutions are not simultaneous, and will lead to lead lag relationship
when observed at the adequate time scale. In the specific case where x > 0 and y = 0, the
second asset leads the first asset and we can qualify as a positive lead-lag relationship, as the
stocks will move in the same direction and that their overall correlation will be positive.

We restrict ourselves to a very particular form for the coupling submatrices matrices in order
to make as much as possible explicit the dependency between the stocks. For example, the 2× 2
upper-right matrix of α could be replaced with:

(
x1 0
0 x2

)

, (4.2)

then the impact of an up move of the second stock on the first one will be different from the
impact of a down move (of the second asset on the first asset). A priori this is an appealing
feature because linkages between stocks are indeed different in bear and bull markets. However,
to keep the analytical expressions simple we restrict this study to the symmetric model (i.e.,
x1 = x2).

If we wish to consider negative lead-lag relationship of the second stock on the first one, that
is to say a resulting negative correlation, then the 2× 2 upper-right sub-matrix of α should be:

(
0 x
x 0

)

, (4.3)

also with the possibility to differentiate up and down moves.

Similar considerations apply to 2×2 lower-left sub-matrix of α that controls the transmission
of the shocks affecting the first stock to the second stock. Also, it is worth underlining the
possibility of disymmetric effects between the two stocks in the sense that the impact of the first
stock on the second one need not to be equal to, nor in the same direction of the impact of the
first stock on the second. This strongly contrasts with the usual correlation which by definition
is a reflexive relation. Although the model allows for a disymmetric relationship between the
stocks it seems to us natural to choose the upper-right matrix consistently with the lower-left
matrix. For the choice made for the 2× 2 upper-right matrix of α in (4.1) the natural choice is
the one made for the lower-left sub-matrix whereas in the case of (4.3) then the natural choice
is: (

0 y
y 0

)

. (4.4)
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It would be even tempting to choose x = y so that the lead-lag relationship would be
reflexive. However, there are some practical cases where allowing for some disymmetry, that is
to say different values for x and y, is particularly relevant; the most well-known example being
the relation between a futures on an index and a stock.

Following (Bacry et al., 2013a) we will be interested in the diffusive limit for St = (S1
t , S

2
t )

⊤

associated with the dynamics (4.1). In order to perform such a limit computation the matrices
α and β in (4.1) are such that E[N1,u

t ] = E[N1,d
t ] = E[N2,u

t ] = E[N2,d
t ], this ensures the

martingale property for the stocks. This martingale property can be obtained for more general
matrices α and β but we restrict this study these particular forms to keep the expressions simple.

Thanks to the computations made in the previous chapter, we know that the matrix α − β
must have negative eigenvalues for the multivariate Hawkes process to be stable, which translates
to:

γ1 + γ2 ±
(
(γ1 + γ2)

2 − 4(γ1γ2 − xy)
) 1

2 > 0, (4.5)

θ1 + θ2 ±
(
(θ1 + θ2)

2 − 4(θ1θ2 − xy)
) 1

2 > 0 (4.6)

with γi = β̄i + αi
m − αi

s, θi = β̄i − αi
m − αi

s for i ∈ {1, 2}. Conditions ensuring these inequalities
are γ1γ2 > xy and θ1θ2 > xy that, from now on, we suppose satisfied.

4.1.2 Statistical properties

Having sprecified the dynamics for the stocks we focus on the computation of various
statistical properties associated with the assets. The use of high-frequency data enables the
computation of the realized volatility and the estimator, for data sampled using time intervals
of length τ , is written as:

Ĉ1(τ) =
1

T

T/τ−1∑

n=0

(
S

1
(n+1)τ − S

1
nτ

)2
=

1

T

T/τ−1∑

n=0

((
N

1,u
(n+1)τ −N

1,u
nτ

)
−

(
N

1,d
(n+1)τ −N

1,d
nτ

))2 ν2
1

4

=
1

T

T/τ−1∑

n=0

(
N

1,u
(n+1)τ −N

1,u
nτ

)2 ν2
1

4
+

1

T

T/τ−1∑

n=0

(
N

1,d
(n+1)τ −N

1,d
nτ

)2 ν2
1

4

− 2
1

T

T/τ−1∑

n=0

(
N

1,u
(n+1)τ −N

1,u
nτ

)(
N

1,d
(n+1)τ −N

1,d
nτ

)
ν2
1

4
.

The mean signature plot, or more simply signature plot, is the expectation of the above quantity
and is explicitly given by:

Proposition 4.1. The signature plot for the first asset C1(τ) = E[Ĉ1(τ)] is:

C1(τ) =
ν21
4τ

(M11 +M22 −M12 −M21) (4.7)

where M = Cov(τ) is the second moment matrix calculated in Lemma 3.4.

The volatility of the second stock is obtained by the same calculations:

C2(τ) =
ν22
4τ

(M33 +M44 −M34 −M43) . (4.8)

Such a quantity was calculated in the previous chapter when a stock was modeled alone.
Nevertheless, it remains interesting to calculate it here, within a multi-asset model. For instance,
let S1

t be a stock and S2
t be an index future that captures the overall market evolution. It can

then be interesting to assess the part of stock volatility that can be explained by market activity
through the coupling parameters x and y. We will make this more clear in the sequel.
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As we deal with a multi-asset model, the covariance between the two stocks is the quantity
of interest and can be obtained by the usual estimator:

ĈovS(τ) =
1

T

T/τ−1∑

n=0

(
S

1
(n+1)τ − S

1
nτ

) (
S

2
(n+1)τ − S

2
nτ

)

=
1

T

T/τ−1∑

n=0

[ (
N

1,u
(n+1)τ −N

1,u
nτ

)(
N

2,u
(n+1)τ −N

2,u
nτ

)
−

(
N

1,u
(n+1)τ −N

1,u
nτ

)(
N

2,d
(n+1)τ −N

2,d
nτ

)

−

(
N

1,d
(n+1)τ −N

1,d
nτ

)(
N

2,u
(n+1)τ −N

2,u
nτ

)
+

(
N

1,d
(n+1)τ −N

1,d
nτ

)(
N

2,d
(n+1)τ −N

2,d
nτ

) ]
ν1ν2

4
.

This estimator along with the analytical results, mainly the second moment of Lemma 3.4, lead
to an explicit expression for the covariance as the following proposition shows:

Proposition 4.2.

CovS(τ) =
ν1ν2
4τ

[

M13 −M14 −M23 +M24

]

=
ν1ν2
4τ

[

M31 −M41 −M32 +M42

]

(4.9)

with the matrix M = Cov(τ) given by (3.15) of Lemma 3.4. The last equality in (4.9) stands
from the symmetry of the matrix M .

Rescaling by the above calculated volatilities of the stocks, one obtains an estimator of the
correlation as a function of the sampling period τ , and retrieves the well known Epps effect.
Recall that this effect materializes in the decrease of the estimated correlation when the sampling
frequency increases. An illustration in this model is given in Figure 4.1.
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Figure 4.1: Illustration of the Epps effect reconstruction. We considered perfectly symmetric
stocks, with αs = αm = 0.004 and considered two values for the coupling coefficients x and y.
Notice that when these latter are halved, the asymptotic correlation is always roughly halved.
Notice also that the time taken to attain the asymptotic correlation does not depend on the
coupling coefficients.

Beyond the correlation between the two stocks is the lead-lag relationship. The estimator of
the lagged covariance between the two stocks if we consider S2 as the leader is:

L̂2→1(τ, δ) =
1

T

T/τ−1∑

n=0

(
S

1
(n+1)τ+δ − S

1
nτ+δ

) (
S

2
(n+1)τ − S

2
nτ

)

=
1

T

T/τ−1∑

n=0

[ (
N

1,u
(n+1)τ+δ −N

1,u
nτ+δ

)(
N

2,u
(n+1)τ −N

2,u
nτ

)
−

(
N

1,u
(n+1)τ+δ −N

1,u
nτ+δ

)(
N

2,d
(n+1)τ −N

2,d
nτ

)

−

(
N

1,d
(n+1)τ+δ −N

1,d
nτ+δ

)(
N

2,u
(n+1)τ −N

2,u
nτ

)
+

(
N

1,d
(n+1)τ+δ −N

1,d
nτ+δ

)(
N

2,d
(n+1)τ −N

2,d
nτ

) ]
ν1ν2

4
.
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for δ > 0. Conversely, if the first stock is taken as the leader the estimator becomes:

L̂1→2(τ, δ) =
1

T

T/τ−1∑

n=0

(
S

2
(n+1)τ+δ − S

2
nτ+δ

) (
S

1
(n+1)τ − S

1
nτ

)
.

These two estimators combined with the results developed in the analytical part of previous
chapter give the following proposition:

Proposition 4.3. Given the two estimators defined above then estimated lagged covariances,
depend on which asset is chosen as leader, write as:

L2→1(τ, δ) =
ν1ν2
4τ

[

Cov(τ, δ)13 − Cov(τ, δ)14 − Cov(τ, δ)23 + Cov(τ, δ)24
]

, (4.10)

L1→2(τ, δ) =
ν1ν2
4τ

[

Cov(τ, δ)31 − Cov(τ, δ)32 − Cov(τ, δ)41 + Cov(τ, δ)42
]

(4.11)

for τ > 0 and δ > 0 whilst Cov(τ, δ) stands for Cov1(τ, τ, δ) or Cov2(τ, τ, δ) (these two quantities
given by (3.27) and (3.33)) depending on how δ compares with τ .

From these two quantities we can define a lead-lag correlation between the two stocks for
(τ, δ) ∈ R+ × R as:

C(τ, δ) =







L2→1(τ,δ)√
C1(τ)C2(τ)

if δ > 0,

L1→2(τ,−δ)√
C1(τ)C2(τ)

if δ < 0.

An illustration of the lagged correlation is given in Figure 4.2.
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Figure 4.2: Illustration of the asymmetry of the correlation induced by a Hawkes process. We
considered perfectly symmetric stocks, with α1

s = α2
s = α1

m = α2
m = 0.004 and considered two

values for the coupling coefficients x and y. The figures report δ → C(τ, δ) for δ ∈ R with the
function C defined in Proposition 4.3 for two pairs of values for (x, y); the first one is (0.001, 0.01)
and gives the blue-bullet curve, the second one is (0.01, 0.001) and gives the red-triangle curve. In
the right figure, a zoom around zero lag is performed to help to visualize the fact that maximum
correlation is achieved for a certain lag.

Suppose that x > 0 and y = 0 then an up jump of the second asset will induce an increase of
λ1,u
t which increases the probability of an up jump of the first asset that will occur, if it occurs,

with a delay. As a result, the function δ → C(τ, δ) should be increasing at the vicinity of 0+.
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Conversely, if x = 0 and y > 0 then an up move of the first asset will imply an increase of λ2,u
t

which increases the probability of an up jump of the second asset that will occur, if it occurs,
with a delay. In that case the function δ → C(τ, δ) will be decreasing at 0−. Clearly, the function
δ → C(τ, δ) should converge to zero for |δ| large and we expect a humped shape. If the effect
provoked by x dominates then the maximum of δ → C(τ, δ) should be for δ > 0, and in that case
the second asset leads the first one, whereas if the y effect dominates we expect the opposite, that
is to say, a maximum for δ negative and in that case the first asset is the leader. Lastly, the two
effects can cancel each other and it leads to a centred function, none of the assets leads the other.

These equations enable to numerically compute the different statistics but if we wish to
develop a better understanding of the model then an expansion with respect to the parameters
can be performed. This task is carried out in the next subsection.

Expansion with respect to coupling parameters

As we are primarily interested in the interaction between the two stocks the expansion will
be the done with respect to x and y, that we qualify as coupling or lead-lag parameters. We first
focus on the impact of the coupling parameters on the signature plot of the assets, the following
proposition, which proof is postponed to the Appendix, explains the dependency with respect to
these parameters:

Proposition 4.4. Given the signature plot for the first asset of Proposition 4.1 then we have
the following first order Taylor expansion:

C(τ) = C0(τ) + xCx(τ) + yCy(τ) (4.12)

where:

C0(τ) =
ν21
2
Λ1

(

κ21 +
(
1− κ21

) (1− e−τγ1)

γ1τ

)

,

Cx(τ) =
ν21
2

Λ2

θ1

(

κ21 +
(
1− κ21

) (1− e−τγ1)

γ1τ

)

,

Cy(τ) = 0

and

Λi =
β̄iλi,∞
θi

, κi =
β̄i
γi
, (4.13)

with θi and γi defined for i ∈ {1, 2} were previously defined.

The expression of C0(τ) appears in the previous chapter. Note that Cy(τ) = 0. Of
importance is the fact that the functions τ → C0(τ) and τ → Cx(τ) have the same shape
which implies that the coupling parameter does not alter the shape of the signature plot. It
will be decreasing in the purely mutually excited case, i.e. α1

s = 0 as in Bacry et al. (2013a), or
increasing in the pure clustering case, i.e α1

m = 0 as in our second chapter, or could be even flat
if α1

s = α1
m.

Having computed the expansion of the signature plot similar computations give the expression
for the expansion of the covariance as we have:

Proposition 4.5.

Cov(τ) =
ν1ν2
4

(Cov0(τ) + xCovx(τ) + yCovy(τ)) (4.14)
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where:

Cov0(τ) = 0

Covx(τ) =
2Λ2

τγ21γ
3
2(γ1 + γ2)

(

(α2
m − α2

s)(β̄2 + γ2)γ
2
1 − (1− τγ1)β̄

2
2γ2(γ1 + γ2)

)

+
Λ2

τγ21γ2(γ1 + γ2)

(

2γ1γ2 + 2β̄2γ2 + (α2
m − α2

s)
2
)

e−γ1τ

− Λ2(β̄2 + γ2)(α
2
m − α2

s)

τγ21γ
3
2(γ1 + γ2)

(

γ22 + 2γ1(γ1 + γ2) + τγ22(γ1 + γ2)
)

e−γ2τ

Covy(τ) =
2Λ1

τγ31γ
2
2(γ1 + γ2)

(

(α1
m − α1

s)(β̄1 + γ1)γ
2
2 − (1− τγ2)β̄

2
1γ1(γ1 + γ2)

)

+
Λ1

τγ1γ22(γ1 + γ2)

(

2γ1γ2 + 2β̄1γ1 + (α1
m − α1

s)
2
)

e−γ2τ

− Λ1(β̄1 + γ1)(α
1
m − α1

s)

τγ31γ
2
2(γ1 + γ2)

(

γ21 + 2γ2(γ1 + γ2) + τγ21(γ1 + γ2)
)

e−γ1τ .

Remark 4.6. It is of interest to expand the lead-lag relation given by Proposition 4.3 but it leads
to equations far too large.

4.1.3 The diffusive limit behaviour

In order to compute the diffusive limit of the model we use the important Corollary 1 of
Bacry et al. (2013b) which gives a central limit theorem:

Proposition 4.7. Let Nt the four-dimensional Hawkes process then for t ∈ [0; 1]

Nnt√
n

−
√
ntλ̄∞ (4.15)

converge in law for the Skorohod topology to

(β − α)−1βΣ
1
2Wt (4.16)

with {Wt; t ≥ 0} a Brownian motion and Σ the diagonal matrix with the ith element given by
((β − α)−1βλ∞)i.

Let us then write unit-time price increments for the first asset as similar results apply to the
second asset:

η1i =
[

(N1,u
i −N1,u

i−1)− (N1,d
i −N1,d

i−1)
]

× ν1
2
,

and consider the random sums

S1
n =

n∑

i=1

η1i ,

Denote by

S̄1,n
t =

S1
⌊nt⌋√
n

.

and let S̄n
t = (S̄1,n

t , S̄2,n
t )⊤ the vector of the two stocks. Thanks to Proposition 4.7 we obtain

the diffusive limit for the stocks as we have:

Proposition 4.8. The vector S̄n
t converge in law to the vector S̃t = (S̃1

t , S̃
2
t )

⊤ whose dynamic is
given by:

dS̃1
t =

ν1
2

4∑

j=1

(m1j −m2j)dW
j
t ,

dS̃2
t =

ν2
2

4∑

j=1

(m3j −m4j)dW
j
t
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with m the matrix appearing in equation (4.16).

The stock price increments follow a Gaussian distribution, in the literature this model is
usually referred to as the Bachelier model. From this result we deduce the covariance matrix of
the assets

Proposition 4.9. Let the 2× 2 covariance matrix of the assets such that:

σσ⊤ =

(
σ2
11 σ12

σ12 σ2
22

)

then we have:

σ2
11 =

ν21
4

4∑

j=1

(m1j −m2j)
2, (4.17)

σ12 =
ν1ν2
4

4∑

j=1

(m1j −m2j)(m3j −m4j), (4.18)

σ2
22 =

ν22
4

4∑

j=1

(m3j −m4j)
2 (4.19)

that are explicitly given by

σ2
11 =

ν21
4

2λ1,∞(β̄1β̄
2
2x

2y + β̄3
1θ2γ

2
2) + λ2,∞β̄2x(β̄

2
2xθ1 + β̄2

1γ
2
2)

(γ1γ2 − xy)2(θ1θ2 − xy)
, (4.20)

σ12 =
ν1ν2
4

2β̄1yλ1,∞(β̄2
2xγ1 + β̄2

1θ2γ2) + 2β̄2xλ2,∞(β̄2
1yγ2 + β̄2

2θ1γ1)

(γ1γ2 − xy)2(θ1θ2 − xy)
, (4.21)

σ2
22 =

ν22
4

2λ2,∞(β̄2β̄
2
1y

2x+ β̄3
2θ1γ

2
1) + λ1,∞β̄1y(β̄

2
1yθ2 + β̄2

2γ
2
1)

(γ1γ2 − xy)2(θ1θ2 − xy)
(4.22)

with γi = β̄i + αi
m − αi

s and θi = β̄i − αi
m − αi

s i ∈ {1, 2}.

Remark 4.10. Note that when x = y = 0 then σ12 = 0 and σ2
11 =

ν21
2 Λ1κ

2
1 as was proved in the

preceding chapter.

Remark 4.11. From Proposition 4.1 we can retrieve the diffusive limit for the volatility
by considering the limit limτ→+∞C(τ) in equation (4.7), it leads to the computation of
limτ→+∞ 1

τ Cov(τ) with Cov(τ) given by equation (3.15). Taking into account the form of c5(τ)
this limit is given by:

lim
τ→+∞

1

τ
Cov(τ) = J̃1 + J̃⊤

1 + diag(λ̄∞) (4.23)

with J̃1 = −(α− β)−1(Λ̄∞ + αdiag(λ̄∞)).

Similar remark applies to the covariance between the stocks given in Proposition 4.2,
considering limτ→+∞ CovS(τ) leads to the same limit equation.

Remark 4.12. Taking the limit with respect to τ in (4.10) and (4.11) gives limτ→+∞ L1,2(τ, δ) =
limτ→+∞ L2,1(τ, δ) = 0. Hence, we cannot extract lead-lag relationship in the diffusive case or
equivalently at low frequency (i.e., daily) a fact already underlined by Huth and Abergel (2012)
and Bacry et al. (2013b).

From equation (4.21) we conclude that if x = y = 0 then σ12 = 0 which is expected. Due to
sign constraints on the parameters if x > 0 and/or y > 0 we also conclude that σ12 > 0 which
is also consistent with the dynamic for the stocks. If in the matrix α of (4.1) the upper-right
matrix is given by (4.3) and lower-left matrix is given by (4.4) then the volatilities σ2

11 and σ2
22

will still be given by (4.20) and (4.22) whilst the covariance σ12 will be minus the term (4.21).
Hence, a negative correlation will be achieved and it is consistent with the dynamic in that case.
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4.2 Empirical Analysis

4.2.1 Data description and estimation methodology

We rely on tick-by-tick data from TRTH (Thomson Reuters Tick History). We deal with
futures on indices such as Dax and Eurostoxx (respectively noted FDX and STXE in the
tables), as well as some other stocks: Renault, Peugeot, Société Générale and BNP Paribas
(respectively RENA.PA, PEUP.PA, SOGN.PA and BNPP.PA). The data covers the period
between 2010/01/01 to 2011/12/31. It consists of quote files recording quote changes (bid/ask
prices and quantities) timestamped up to the millisecond. For every considered day, we took the
front maturing future for the indices, i.e the future with nearest maturity, which is generally the
most traded one. For every considered asset, we neglect the first and last 15 minutes in order
to avoid the open and close auctions.

We estimate the model as described in (4.1) thanks to maximum likelihood method. For
MLE maximisations, we rely on the Nelder Mead algorithm as implemented in the open source
library NL-opt1. Notice that at every optimisation step, we check the stability condition of the
priocess as specified in (4.5) and (4.6).

4.2.2 Estimation results

Results are gathered in Table 4.1. The table gives means, median and standard deviations
of the parameters of the process, calibrated daily to the data.

We are naturally primarily interested in the coupling parameters x and y. We give them a
closer look by plotting the time series of these pairs. In Figure 4.3, one can see that for the pair
(SOGN.PA,BNPP.PA), x and y take heterogeneous values. There are some periods where the one
clearly dominates the other, and some other periods where these values are not so far. The leader
and lagger roles in this pair of large French banks seem to change their role from period to period.

As for the pair formed by the (STXE, BNPP.PA), different roles are well determined. The
future on the index clearly leads the stock.
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Figure 4.3: We plot time series of the daily calibrated parameters x (blue-bullet points) and y
(red-triangle points) for the pairs (SOGN.PA, BNPP.PA) on the left and (STXE,BNPP.PA) on
the right, illustrating the evolution of the respective lead lag relationships in time. Notice that
the index systematically leads the stock as is clear on the right figure. The relationship between
Société Générale and BNP Paribas is more mitigated, even that beginning April 2011, the two
stocks began a bearish period, where Société Générale is clearly the leader.

1http://ab-initio.mit.edu/wiki/index.php/NLopt
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In Figure 4.4, one can see that for the pair of stocks (RENA.PA, PEUP.PA), things are not
as for the pair of banks. In fact, x clearly dominates y, and then Peugeot seems to influence
Renault more than the inverse. This can be explained by two facts: first, Peugeot stock is
cheaper than Renault (average price in the considered period: 24 Eur for Peugeot versus 35 Eur
for Renault). Therefore, bets on the automotive industry will be taken preferably in Peugeot
rather than Renault, as Peugeot will ensure a better leverage. The french state being one of
the principal stock holders in Renault tends also to attract automotive industry speculators to
Peugeot in the first place.

And finally, the Eurostoxx, the index of Euro zone stocks, naturally leads the DAX German
index.
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Figure 4.4: We plot time series of the daily calibrated parameters x (blue-bullet points) and y
(red-triangle points) for the pairs (RENA.PA, PEUP.PA.PA) on the left and (STXE,FDX) on
the right, illustrating the evolution of the respective lead lag relationships in time. The European
index systematically leads the German index, while Peugeot systematically leads Renault, even
if the feedback effect is here more pronounced than in the case of the indices.

These lead-lag relationships can also be expressed in terms of time. Indeed, we have seen
in Figure 4.2 that the correlation induced by a Hawkes framework, when x and y are different,
reaches its maximum value when returns are calculated during two (overlapping) periods with a
certain lag. This lag can be used to characterise the lead relationship. Indeed, for a pair (A,B),
if x > y, and then B influences A, the maximum correlation is achieved with a positive lag, and
vice versa. Once our models are calibrated, we can calculate this optimal lag daily, which gives
the Table 4.2.

Table 4.2: Lead Times
Pair Mean Median Std. dev.

STXE,SOGN.PA -2.39 -2 3.06
STXE,BNPP.PA -3.38 -3 3.53
STXE,RENA.PA -3.04 -3 2.90
STXE,PEUP.PA -3.89 -3 4.05
STXE,FDX -9.56 -9 4.55
SOGN.PA,BNPP.PA 0.14 0 2.12
RENA.PA,PEUP.PA 4.23 3 4.66

Note. Mean, median and standard deviation of lead times. A negative value t indicates that maximum correlation
between the components of the pair is attained if we measure the increments of the second pair component t

seconds after those of the first componnet.
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4.3 Conclusion

In this chapter we develop a multi-asset model using Hawkes process in the spirit of Bacry
et al. (2013a). Within that framework we compute various statistical properties such as the
signature plot, the covariance and the lagged covariance between the stocks. This enable us
to precisely analyze the lead-lag relationship between the stocks, this is an important quantity
that was, and still is, well studied within other frameworks (e.g. de Jong and Nijman (1997)).
We perform some Taylor expansions for these quantities in order to gain a better understanding
of the impact of the parameters on these key quantities. We also compute the diffusive limit
associated with the model thereby connecting the parameters driving the high-frequency
dynamic with the low frequency (i.e., daily) evolution of the stocks. We find that it is not
possible to capture this lead-lag relationship at low frequency, a result that confirms previous
works (e.g., Huth and Abergel (2012)).

We estimate the model using a two-year sample of high-frequency data for two index futures
and four major stocks quoted on the Eurex market. We find that the Eurostoxx leads all the
stocks which is a somewhat expected result as it is the largest European index. For the same
reasons we find that the Eurostoxx also leads the DAX. For the two stocks in the banking
sector when averaged over all the sample none of them clearly leads the other. However, when
the lead-lag relationship is analysed at a daily frequency we find some periods during which
one stock clearly leads the other. For the two stocks of the automotive industry one of the
stock systematically leads the other and it is consistent with the shareholder structure of these
companies (one of them is partially state owned). Overall, the results are consistent with financial
intuition.

127



4.4 Appendix

Proof. of Proposition 4.4
To perform the expansion we need to differentiate the function 3.15.

Let us define αx = dα
dx , αy = dα

dy α0 = αx=0,y=0. Starting from I = α−1α and taking into
account the fact that β does not depend on x and y we deduce:

(α−1)x = −α−1αxα
−1

((α− β)−1)x = −(α− β)−1αx(α− β)−1

(these equations will be evaluated for α = α0) and similarly:

(α−2)x = −α−2(αxα+ ααx)(α
2)−1

= −α−2αxα
−1 − α−1αxα

−2.

For example, from the previous equation we deduce that:

((α− β)−2)x = −(α− β)−2αx(α− β)−1 − (α− β)−1αx(α− β)−2.

From the equation λ̄∞ = −(α− β)−1βλ∞ we define:

λ̄0
∞ = −(α0 − β)−1βλ∞

λ̄0
x,∞ =

(
dλ̄∞
dx

)

x=0

=
(
(α0 − β)−1αx(α

0 − β)−1
)
βλ∞

with similar equation for λ̄0
y,∞. We expand Λ̄∞ solution of:

(α− β)Λ̄∞ + Λ̄∞(α− β)⊤ + αdiag(λ̄∞)α⊤ = 0

in the form Λ̄∞ = Λ̄0
∞ + xΛ̄0

x,∞ + yΛ̄0
y,∞ with:

(α0 − β)Λ̄0
∞ + Λ̄0

∞(α0 − β)⊤ + α0diag(λ̄0
∞)(α0)⊤ = 0

and

(α0 − β)Λ̄0
x,∞ + Λ̄0

x,∞(α0 − β)⊤ = −αxΛ̄
0
∞ − Λ̄0

∞αx
⊤ − αxdiag(λ̄0

∞)(α0)⊤

− α0diag(λ̄0
x,∞)(α0)⊤ − α0diag(λ̄0

∞)α⊤
x

with a similar equation for Λ̄0
y,∞.

We need to differentiate Cov(τ) given by (3.15) which leads to differentiate c5(τ) (3.25). We
denote c05(τ) the function evaluated for x = y = 0 and the derivative is just:

∂xc5(τ)|x=y=0
= ∂xc

0
5(τ)

= (α0 − β)−1αx(α
0 − β)−1τ + τ(α0 − β)−2αxe

(α0−β)τ

−
(

(α0 − β)−2αx(α
0 − β)−1 + (α0 − β)−1αx(α

0 − β)−2

)

(e(α
0−β)τ − I).

Lastly, the expansion of J1 is:

J1 = J0
1 + xJ0

1,x,

J0
1 = c05(τ)(Λ̄

0
∞ + αdiag(λ̄0

∞)),

J0
1,x = ∂xc

0
5(τ)(Λ̄

0
∞ + α0diag(λ̄0

∞)) + c05(τ)(Λ̄x,∞ + αxdiag(λ̄0
∞) + α0diag(λ̄0

x,∞)).

Therefore, we have the expansion for Cov(τ) given by:

Cov(τ) = J0
1 + (J0

1 )
⊤ + τdiag(λ̄0

∞)

+ x
(

J0
1,x + (J0

1,x)
⊤ + τdiag(λ̄0

x,∞)
)

+ y
(

J0
1,y + (J0

1,y)
⊤ + τdiag(λ̄0

y,∞)
)

from which we deduce the expansion of the signature plot.
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General Conclusion and Outlooks

In this thesis, we have been interested in some price formation and market microstructure
mechanisms. We have dealt with these issues mainly by relying on Hawkes processes which
proved to be a powerful and versatile tool. A lot remains to be done and the Hawkes process
framework constitutes certainly the build block to many other applications beyond the ones
that we develop in this thesis.

One first direction of research is to relate the first and last chapters of the thesis. In fact, the
joint dynamics of an option and its underlying investigated in the first chapter can be modeled
in the 4-dimensional Hawkes framework developed in the last chapter.

St = S0 +
(

N1,u
t −N1,d

t

) ν1
2
,

Ct = C0 +
(

N2,u
t −N2,d

t

) ν2
2

where ν1 and ν2 are the tick values for the first stock (St) and the option (Ct) respectively. If
we deal with a Call option, we take the usual parametrisation of α and β matrices driving the
4-dimensional Hawkes process as following:

α =







α1
s α1

m x 0
α1
m α1

s 0 x
y 0 α2

s α2
m

0 y α2
m α2

s







;β =







β̄1 0 0 0
0 β̄1 0 0
0 0 β̄2 0
0 0 0 β̄2







and λ∞ = (λ1,∞, λ1,∞, λ2,∞, λ2,∞)⊤ ∈ R4
+.

The coupling parameters x and y of the Hawkes dynamics will then carry the delta effect of
the underlying on the option, and a feed back effect of the option dynamics on the underlying.

Notice that without any further developments, and thanks to the computations done in the
last chapter, we can calculate the effective delta defined in the first chapter as the slope of the
regression of option price increments on those of the underlying. In this model, asymptotic values
of the stock variance and the stock/option correlation write:

σ2
S =

ν21
4

2λ1,∞(β̄1β̄
2
2x

2y + β̄3
1θ2γ

2
2) + λ2,∞β̄2x(β̄

2
2xθ1 + β̄2

1γ
2
2)

(γ1γ2 − xy)2(θ1θ2 − xy)

Cov(S,C) =
ν1ν2
4

2β̄1yλ1,∞(β̄2
2xγ1 + β̄2

1θ2γ2) + 2β̄2xλ2,∞(β̄2
1yγ2 + β̄2

2θ1γ1)

(γ1γ2 − xy)2(θ1θ2 − xy)

with γi = β̄i + αi
m − αi

s and θi = β̄i − αi
m − αi

s i ∈ {1, 2}.
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Then the effective delta is:

∆effective =
Cov(S,C)

σ2
S

=
ν2
ν1

2β̄1yλ1,∞(β̄2
2xγ1 + β̄2

1θ2γ2) + 2β̄2xλ2,∞(β̄2
1yγ2 + β̄2

2θ1γ1)

2λ1,∞(β̄1β̄2
2x

2y + β̄3
1θ2γ

2
2) + λ2,∞β̄2x(β̄2

2xθ1 + β̄2
1γ

2
2)

When dealing with options, one wants to take the option strike into account, which
complicates the problem by increasing its dimension. One then wants ideally to come with a
sufficiently rich model taking into account this strike dimension, and remaining analytically
tractable.

Another research direction is to take into account the volume aspect of the trading process.
In fact, the Hawkes model used in this thesis deals only with arrival time of orders, and not
with their volumes. This is clearly a restrictive assumption as volumes are heterogeneous in real
order books. A solution would be to rely on marked Hawkes processes, where the marks would
account for the order quantities. Moreover, it seems reasonable to give more weight to trades
with larger volumes and vice versa. An effort in this direction was made by (Shek, 2010). A lot
remains to be done on the analytical side as well as asymptotic results.

To end with, notice that computations made in this thesis relyed heavily on the Markov
property of the Hawkes process, which results from the exponential form of the kernel. In
(Bacry et al., 2012), the authors estimate a non-parametric kernel and find that it is slowly
decaying, suggesting a stronger memory effect than that induced by an exponential kernel. A
trade off between these two approaches would be to parametrise the kernel with a power law
decaying function instead of the rapidly decaying exponential function, in the hope of being
closer to reality, while remaining analytically tractable.
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