N
N

N

HAL

open science

Physical modelling of impurity diffusion and clustering
phenomena in CMOS based image sensors
Zahi Essa

» To cite this version:

Zahi Essa. Physical modelling of impurity diffusion and clustering phenomena in CMOS based image
sensors. Micro and nanotechnologies/Microelectronics. Université Paul Sabatier - Toulouse III, 2013.

English. NNT: . tel-01020497

HAL Id: tel-01020497
https://theses.hal.science/tel-01020497
Submitted on 8 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://theses.hal.science/tel-01020497
https://hal.archives-ouvertes.fr

:

)

(i } 4]
;

1rGtamm

Bl THESE

de Toulouse
En vue de I'obtention du

DOCTORAT DE L’'UNIVERSITE DE TOULOUSE

Délivré par:

Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue par:
Zahi ESSA

Le |undi 25 novembre 2013
Titre:

Physical modelling of impurity diffusion and clustering phenomena in CMOS
based image sensors

ED GEET : Micro et Nanosystémes

Unité de recherche:
Laboratoire d'Analyse et d'Architecture des Systémes

Directeur(s) de These :

Fuccio CRISTIANO, Directeur de These au LAAS/CNRS Toulouse
Pierre BOULENC, Co-encadrant a STMicroelectronics Crolles

Rapporteurs :

Gérard GHIBAUDO, Directeur de Recherche a I'lMEP-LAHC/CNRS Grenoble
Daniel ALQUIER, Professeur a I'Université de Tours

Autre(s) membre(s) du jury:

Pierre MAGNAN, Professeur a I'ISAE Toulouse
Enrico NAPOLITANI, Chercheur au CNR-IMM MATIS Padova ltalie
Frédéric MORANCHO, Professeur a I'Université de Toulouse
Clément TAVERNIER , Manager Equipe TCAD a STMicroelectronics Crolles







Abstract

Over the last years, microelectronics growth was made possible thanks to the innovations occurring in
CMOS (Complementary Metal Oxide Semiconductor) technology, leading to a constant improvement
of device performances. These innovations have to answer the technological challenges related to de-
vices miniaturization, as well as to their continuous diversification. In response to these challenges,
modelling approaches such as TCAD (Technology Computer Aided Design) drastically reduce the
technologies development time and cost. In this context, the thesis deals with TCAD models devel-
opment of several physical mechanisms taking place within advanced process steps. In the first part,
diffusion and activation mechanisms following high-dose dopant implantation were studied, mainly in
the case of plasma implantation, a promising technique for conformal doping in image sensors and Tri-
Gates transistors. In high doping conditions, the observation and modelling of large boron interstitial
clusters (BICs) were carried out. In the second part, the evaluation of chemical species diffusion and
transfer between materials was considered. In particular, Boron dose loss from silicon in spacer stacks
and corresponding diffusion in oxide were studied. In addition, lanthanum diffusion evaluation during
thermal annealing in gate stacks with high-k oxides was investigated. In the last part, the impact
of the different investigated mechanisms on CMOS devices electrical behaviour was finally evaluated,
resulting in the improvement of TCAD models predictability on MOS transistors performances, as
well as FSI (Front Side Illumination) and BSI (Back Side Illumination) CMOS-based image sensors.
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Introduction

Transistors play a key role in modern electronics, and clearly modified our society thanks to innovative
applications with a direct impact on our everyday’s life. Metal oxide semiconductor (MOS) transistors
and related electronic components shrinking size led to the birth of modern microelectronics and the
definition of the famous Moore’s law by Gordon E. Moore in 1965, according to which the number of
transistors on integrated circuits (ICs) doubles approximately every two years [1]. Moore’s prediction
was more or less satisfied during the last fifty years following the miniaturization of MOS transis-
tors thanks to continually increasing research and development efforts of the semiconductor industry.
Miniaturization allowed increasing the number of components in ICs, extending their functionalities.
Nowadays, complementary MOS (CMOS) technology is used in several ICs such as microprocessors,
microcontrollers, memories, image sensors and others. The semiconductor industry markets are there-
fore constantly expanding and diversifying. ICs are currently used in several applications [2]: data
processing (personal computers, laptops, servers and tablets), communications (mobile phones, smart-
phones ... ), consumer electronics (television sets, music players, gaming consoles ...), automotive,
industrial (transport. .. ), military in addition to spatial and medical applications.

According to the International Technology Roadmap for Semiconductors (ITRS) 2011 [3], two
main improvement trends are followed by the different actors of the semiconductor industry:

e Miniaturization, or integration level expressed by Moore’s law related to shrinking CMOS devices
with a direct consequence on cost-per-function decrease. The miniaturization in microelectronics
concerns “More Moore” devices and their corresponding scaling from a technology node to
another '. “More Moore” elements evolution is related to technology node reduction. Currently,
the most advanced CMOS commercially available products use 22 nm technology node and
R&D efforts for 14 nm node are made by the leading semiconductor companies. “More Moore”
elements correspond historically to core CMOS devices such as MOS transistors used in logic
circuits and other memory devices.

e Diversification, corresponding to “More than Moore” elements according to ITRS 2011 [3], which
are an emerging category of devices integrating additional functionalities that do not necessarily
scale according to Moore’s law, but provide additional values and functions in CMOS products.

Therefore, semiconductor industry is facing both miniaturization and diversification challenges and
the latter’s weight is expected to expand over the next years leading to the “pure microelectronics”
interaction with other scientific fields in order to maintain progress and innovation. The example of
modern mobile phones known as smartphones as a final product addressed by semiconductor compa-
nies is quite interesting. Indeed in a smartphone, one can find on one side “More Moore” elements
such as MOS transistors in the processors and other memory devices such as Flash and DRAM. On
another side, “More than Moore” elements can be found, as the image sensors used in up to two

!The term “technology node” used here is defined as the smallest half-pitch of contacted metal-lines on a given CMOS
product [3]. Historically, dynamic random access memory (DRAM) device had the highest integration level among CMOS
devices, and was used for “technology node” definition.
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camera modules in the phone. Microelectromechanical systems (MEMS) can also be found such as
the accelerometer used for screen rotation. Therefore, from the particular example of smartphones,
one can see that semiconductor companies have to solve both miniaturization and diversification chal-
lenges in order to stay competitive.

Among “More than Moore” elements concerned with both miniaturization and diversification is-
sues, image sensors are also a very good example. In fact, image sensors followed the miniaturization
trend which enhanced their electrical performances. In addition, their extra-functionalities would not
have been possible without answering the diversification challenges.

Image sensors market is continually growing and the same trend is expected for the next years [1, 5].
Image sensors cover applications in consumer electronics such as mobile phones, cameras, in addition
to security, surveillance, automotive, medical and spatial applications. Their market includes two
main categories: charge coupled devices (CCD) sensors discovered in 1970 by W. S. Boyle and G.
E. Smith [6], 2009 Nobel’s prize [7] and CMOS image sensors based on CMOS technology, invented
in 1960 by S. R. Morrison [3]. The cost-effectiveness of CMOS image sensors in comparison to CCD
sensors and their easy integration in a CMOS technology scheme gave them a leading role in image sen-
sors market. As a consequence, semiconductor companies quickly became the main actors in this field.

As for core CMOS devices, CMOS image sensors miniaturization is targeted by semiconductor
companies in order to increase their electrical performances. Indeed, a CMOS image sensor is an ar-
ray of pixels, each pixel containing a photo-detector and several MOS transistors in order to convert an
optical image into and electrical signal. Thus, increasing the number of pixels is expected to improve
the image resolution obtained by a CMOS image sensor. However, as for MOS transistors reducing
pixels dimensions leads to several challenges to be solved in order to keep the required CMOS sensor
performances.

In order to answer miniaturization and diversification challenges, CMOS devices processes had to
continually evolve in order to meet technical requirements in terms of high performance, low operating
power and low standby power [9]. Therefore, new materials, new implantation and annealing tech-
niques were developed to answer these challenges and improve overall CMOS devices performances.
The impact of such novel techniques on CMOS devices of both “More Moore” and “More Than Moore”
categories has to be estimated and optimized. In addition to the direct physical effects observed dur-
ing the devices fabrication, remaining undesired chemical species configurations may have a direct
impact on the performances of the final CMOS devices. Therefore, in addition to the development of
such new techniques, their constant evaluation has to be made to avoid devices deterioration. Several
conditions have to be tested before a given process step is chosen following the design and fabrication
of a great number of samples. This approach is unavoidably time and money consuming in the highly
competitive semiconductor industry. In addition, multiplying experimental investigations does not
necessarily lead to a better physical understanding of the benefit or drawback introduced by a new
process technique. To this regard, technology modelling and simulation can be used to study the
physical mechanisms involved by such techniques, therefore making this strategy the best solution
to reduce advanced CMOS development cycle, both in terms of time and cost [10]. Such modelling
methodologies are called Technology Computer Aided Design (TCAD) and cover: process modelling of
the different manufacturing steps and device modelling of the final active devices in their operational
regime (electrical, optical ...).

Over the last two decades, thanks to important European but also worldwide R&D efforts, TCAD
process and device simulations were able to predict with a sufficient accuracy most of the physical
mechanisms occurring in advanced CMOS technologies. With the previously calibrated TCAD models
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for technology nodes above 45 nm, core CMOS devices behaviour can be correctly predicted without
additional model calibration or development efforts. However, the implementation of new process
techniques to improve high performance and low power requirements introduced new physical mecha-
nisms to be accounted for in TCAD simulations. These new concepts referred to both “More Moore”
and “More Than Moore” applications (such as CMOS image sensors) are not sufficiently covered by
TCAD. Therefore, research collaborations between industrial and academic actors have to be estab-
lished for a better understanding of physical mechanisms involved in advanced CMOS processes. The
PhD thesis described in this report was proposed in this context and carried out in collaboration
between STMicroelectronics Crolles and LAAS CNRS Toulouse in the frame of the European project
ATEMOX [11] gathering several European industrial and academic partners. The project deals with
the development of new TCAD models and improvement of existing ones in order to predict the phys-
ical mechanisms involved in advanced process techniques.

In particular, the objectives of my work concern modelling of advanced CMOS devices, answer-
ing both miniaturization and diversification challenges in CMOS technologies with a main focus on
derivative applications of CMOS image sensors. Therefore, TCAD models should be able to reproduce
all these different aspects by improving existing models and developing new models if needed.

The main challenges to be answered by the PhD work are:

e Improving dopants implantation and diffusion modelling in high implant-dose conditions such
as those achieved by the plasma immersion ion implantation technique. In such case, diffu-
sion and electrical activation mechanisms may be strongly influenced by the concurrent dopant
precipitation phenomena, which are not yet well reproduced by existing TCAD physical models.

e Improving diffusion models of chemical species in multi-materials stacks, due to their expected
impact on CMOS devices electrical behaviour. Boron dose loss in nitride/oxide/silicon stacks for
instance, is not well understood on both experimental and modelling parts. The dose loss effect
modifies electrical characteristics of CMOS based devices and its evaluation in TCAD models
becomes mandatory. A second example is lanthanum diffusion in high-k stacks during thermal
annealing leading to a negative threshold voltage shift in n-type MOS transistors.

These challenges were investigated during the PhD and the outline of the research activities pre-
sented in this report, is the following:

e Chapter 1 summarizes advanced CMOS technologies modelling challenges as well as the main
physical concepts that represent the background of the PhD work.

e Chapter 2 deals with implantation-induced defects and their impact on dopant diffusion and
activation mechanisms. In this chapter, plasma immersion ion implantation technique will be
presented and investigated experimentally and using TCAD modelling, focusing on boron pre-
cipitation models for high implantation dose conditions, and corresponding boron diffusion and
electrical activation.

e Chapter 3 considers chemical species diffusion in multi-materials stacks. Two main subjects are
investigated: (i) boron dose loss in nitride/oxide/silicon stacks modifying electrical characteris-
tics of advanced CMOS devices and (ii) lanthanum diffusion in advanced high-k stacks leading
to a negative threshold voltage shift in advanced n-type MOS transistors.

e Chapter 4 deals with TCAD modelling of advanced CMOS devices. The different process mod-
els developed in previous chapters will be evaluated in terms of their impact on the electrical
characteristics of several advanced MOS transistors, including Bulk, FDSOI and TriGate MOS,
but also on FSI and BSI advanced CMOS image sensors.
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Chapter 1

Advanced CMOS technologies
modelling challenges

1.1 Introduction

In this chapter, we will summarize the main concepts of the work activities of the thesis. In section 1.2,
a brief introduction to MOS transistor and CMOS technology will be given. In section 1.3, image
sensors based on CMOS technology will be presented. Considering miniaturization and diversification
challenges of CMOS technology, silicon level TCAD modelling will be presented in section 1.5 with an
identification of possible improvements of existing models and missing ones.

1.2 A brief introduction to MOS transistor

The first pnp point-contact germanium transistor [!] was invented in 1947 by John Bardeen, Walter
Brattain and William Shockley, Nobel laureates in Physics 1956 “for their researches on semicon-
ductors and their discovery of the transistor effect” [2]. The following discoveries in semiconductor
physics and mainly the development of the first silicon npn bipolar junction transistor (BJT) by Mor-
ris Tanenbaum et al. [3] at Bell Laboratories in 1954, clearly reshaped our modern society and the
role played by electronics in everyday’s life. Following the silicon bipolar transistor invention, Dawon
Kahng and Martin M. (John) Atalla also from Bell Laboratories used an older concept of field effect
transistor developed by Julius Edgar Lilienfeld in the 1920s [!] and achieved the first field effect metal
oxide semiconductor (MOS) transistor in 1959 [5]. The ease of fabrication of MOS transistors and
the advances made in fabrication process techniques quickly allowed the inventors to point out the
transistor’s role as a key component in integrated circuits (ICs). Indeed, combining n-type (electrons
conduction) and p-type (holes conduction) MOS transistors, logic functions can be developed in the
frame of CMOS technology, invested by Frank Wanlass at Fairchild Semiconductor in 1963 [6]. CMOS
technology quickly invaded the ICs market replacing the existing transistor-transistor logic (TTL)
based on BJTs. In addition to its high noise immunity and low static power consumption, the main
advantage of CMOS technology is its high density of integration.

MOS transistor is a key element in modern electronics with main applications in digital technolo-
gies. In the frame of CMOS technology [(], a combination of negative type and positive type MOS
(respectively nMOS and pMOS) transistors are implemented in order to preform the different logic
gates in ICs. nMOS and pMOS transistors are based respectively on the transport of negative charges
(or electrons) and positive charges (or holes). In both nMOS and pMOS cases, the MOS transistor
is a three-terminal device where the channel conduction between two of the contacts called source
and drain is controlled by a third terminal called gate [7]. Therefore, MOS transistor can be used
as a switching device, very useful for logic operations in digital circuits. Fig. 1.1 shows the structure
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of both nMOS (left) and pMOS (right) transistors obtained by 2D TCAD simulations. The source
and drain regions have an excess of negative and positive charges respectively for nMOS and pMOS
transistors. For the sake of simplicity and in order to explain MOS operation regimes, we will con-
centrate on the nMOS transistor, the same explanations being valid for pMOS transistor by reverting
the charges sign and applied voltages. In the case of nMOS transistor the n-type source and drain
regions have an excess of electron carriers (obtained by external n doping using specific technological
processes such as ion implantation to be explained in 1.2.3). Source and drain regions are formed on
a p-doped silicon substrate. Therefore, substrate/source and substrate/drain interfaces form two p-n
junctions or diodes. Before going further in MOS transistor understanding, p-n junctions basics are
reminded in sub-section 1.2.1.

V>0 V,<0

e

channel

n
Substrate

Vb=0

Figure 1.1: nMOS and pMOS transistors two dimensional (2D) structures from TCAD simulations
with silicon net doping (red: n-doping, blue: p-doping). Are also given the different terminals voltage
conditions leading to a strong inversion regime (sub-section 1.2.3) with electrons and holes transfer
between source and drain respectively for nMOS and pMOS.

1.2.1 The p-n junction

A p-n junction is a two terminal device, considered as the fundamental element of semiconductor
physics, whose mechanisms are extensively explained in reference manuals such as [7, &]. In the periodic
diamond cubic silicon crystal, energy bands of allowed energy states for electrons form in the reciprocal
space, separated by energy gaps called band gaps [9]. Electrons in silicon are fermions and therefore,
considering Pauli exclusion principle, follow Fermi-Dirac statistics with an energy distribution f(E)
defined by:

f(E) = — (1.1)

E—p

1 + ekBT
where kg is Boltzmann’s constant (~ 1.38 x 10723J.K~!), T is the temperature in Kelvin (K), and p
is the total chemical potential also known as the Fermi level Eg. In a semiconductor such as silicon,
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Er is located in a band gap and the energy band just below Ep is called the valence band with an
energy maximum Evy, and the one just above is called the conduction band with an energy minimum
Ec. The two valence and conduction bands are separated by an energy band gap E, of approximately
1.12 eV at room temperature [10]. Ep depends on temperature and external (or extrinsic) doping.
At finite temperature T, and due to the Fermi-Dirac distribution 1.1, the valence band is almost full
with electrons and some free energy states are available, which leads to the concept of holes (or hole
carriers), corresponding to a missing electron and therefore a positive charge in the valence band.
It should be noticed that a hole is not an actual particle and is only the mathematical opposite of
an electron, introduced for its usefulness in semiconductor physics calculations. From the other side,
the conduction band is almost empty with electrons or full with holes. In the pure crystal at finite
temperature T, thanks to the thermal energy some electrons will leave the valence band to the con-
duction one, contributing in an electron current when an electric field is applied to the material. In
an opposite manner, some holes can leave the conduction band to the valence one, leading to a hole
current in the presence of an electric field.

Electrons or holes conduction in an undoped silicon (also called intrinsic silicon), is related respec-
tively to available free electrons in the conduction band or holes in the valence band. However, in an
intrinsic semiconductor, conductivity control is quite limited and can only be modified by changing
the temperature or using an external energy source such as light.

Doping process in semiconductors was first introduced for germanium in 1944 [11], according to
which an impurity is intentionally introduced in a pure semiconductor in order to modulate its con-
ducting properties. Doping silicon crystal consists of replacing some crystal sites by dopant atoms,
therefore called substitutional atoms. When dopants are introduced in silicon crystal, its periodicity
is altered leading to the formation of allowed energy states within the band gap that are close to the
valence or conduction energy band, therefore called shallow levels whose exact position depends on
the used dopant atoms.

Silicon can be either p or n-doped. In p-doping, periodic table’s group III atoms such as boron
or indium are commonly introduced in silicon. In n-doping, periodic table’s group V atoms such as
arsenic, phosphorus or antimony are commonly introduced in silicon and introduce shallow energy
levels below the conduction band [7]. p and n dopant are called respectively acceptors and donors.
Indeed, when introduced in silicon, thermal energy at room temperature is sufficient to ionize them.
If we concentrate on n doping, group V atoms are used and have an additional electron in comparison
to group IV silicon atoms. In order to recover the four silicon covalent bonds, they can be considered
as positively charged ions in silicon with a free orbiting negative charge or electron in the frame of
the hydrogenic model [12], with the binding energy Ep of the free electron equal to the difference of
the conduction band minimum and the dopant’s shallow energy level. n dopants are therefore called
donors and labelled N(J{ because they “donate” a free electron to silicon when positively ionized.

In the same manner, p dopant are called acceptors and labelled N7 because they “accept” an
additional electron when negatively ionized leading to free hole carriers in silicon.

A p-n junction is simply the association of two oppositely doped silicon regions. In thermal equi-
librium conditions and without external applied voltage on the p-n junction and/or electrical current,
electrons will diffuse from highly n doped region to the p doped region due to the electron den-
sity gradient with a corresponding electron diffusion current. The same mechanism will take place
for holes from the p region to the n region with a corresponding holes diffusion current. In addition,
a conduction current exists for both electrons and holes due to the electric field between n and p region.
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At thermal equilibrium, respective diffusion and conduction currents for electrons and holes cancel
out and corresponding total currents equal respectively zero. The main consequences of the electrons
and holes respective zero currents are a flat Fermi level value across the p-n junction and the formation
of a built-in potential across the p-n junction depending on doping levels in p and n regions. Following
diffusion of electrons and holes respectively from n and p regions, n and p sides of the p-n junction
are respectively depleted of electrons and holes leaving only fixed charged dopant behind, with N
concentration in the p region and Nj concentration in the n region. The depletion region is called
space charge region (SCR) and the potential drop across the depletion region at zero voltage is the
built-in potential. In order to evaluate the extension of the SCR in p and n regions, we will consider
the abrupt junction approximation where dopant concentration changes abruptly from N in p region
to N(Jlr in n region. Poisson equation for the electrostatic potential ¢ in one dimension (1D) is:

Py _ _p

= 1.2
3X2 KRSi€0 ( )

where p is the charge density including the contribution of electrons e, holes h™, ionized acceptors
N, and donors NI. Kg; 18 the silicon relative permittivity of approximately 11.7 and ¢y ~ 8.85 x
1072 F.m~"! is the vacuum permittivity. Associating Poisson equation 1.2 with electrical neutrality

condition at thermal equilibrium in the SCR:

N, Wp,, = NIWp, (1.3)

where Wp , and Wp ,, are respectively SCR extension in p and n regions, one gets from [7]:

2Ks; . Nt
Wiy = | 2800 N4 (1.4)
a  Na(Na +N3)

2K8i€0Wbi Na
W = 1.5
Don \/ q N d (N a T Nd ) ( )

where q is the electron charge of 1.6 x 107 C and 1)1, is the built-in potential in the depletion region.
From equations 1.4 and 1.5, simple calculations show that the higher the doping in a given region,
the lower the SCR extension is in the corresponding region. These conclusions in abrupt junction
approximation are still valid for p-n junctions with arbitrary doping profiles.

When a voltage V is applied to a p-n diode, one can obtain the diode’s current-voltage characteristic
(or the famous Shockley equation for and ideal diode) where the following approximations are made:

e The applied potential on the diodes boundaries, is the same as the one on the depletion region
boundaries. It is equivalent to consider that silicon is neutral outside the p-n junction SCR.

e Maxwell-Boltzmann statistics approximation is considered valid for non-degenerate semiconduc-
tors, where Fermi level Er (equation 1.1) distance from an energy band extremum is much higher
than the thermal energy kgT.

e Low injection hypothesis is considered, where injected minority carriers concentration in a given
region (due to diffusion currents) is much lower than the majority carriers one.

e Generation-recombination currents (to be considered later) are neglected.

With the previous assumptions, it can be demonstrated [7] that the current-voltage I-V character-
istic of the p-n diode follow the Shockley relation [13]:
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(o () 1) 10

V is the voltage applied on the p side of the diode (0 V is applied on the n side) and Ij is the saturation
current in reverse regime for a negative voltage V, depending on doping levels in p and n regions and
minority carriers diffusion current characteristics [7]. From equation 1.6, we can notice that in forward
regime for a positive voltage V, p-n diode current Iy increases exponentially with the voltage with a
q/kpT slope in logarithmic scale. In the ideal diode approximation, Iy is temperature dependent and
is proportional to exp(—Eg/kpT). Equation 1.6 is a good starting point to understand p-n diode I-V
characteristic. However in real diodes, in addition to dopant atoms, several crystal defects may exist
in the p-n junction SCR, introducing deep energy levels located close to silicon mid-gap and leading
to an additional generation-recombination (GR) current in reverse regime. According to Shockley-
Read-Hall (SRH) statistics [14], for a single energy level E; introduced by a given defect (also called
a trap for free carriers), the carriers net transition rate is:

onopVinNe (pn — n12)

On [n + njexp (%)] + 0p [p + njexp (%)}
on and o are respectively the electron and hole capture cross sections, vy, is the carriers thermal
velocity, Ny is the traps density, p and n are respectively holes and electrons densities, n; is the intrinsic
carriers density and E; is the Fermi level in intrinsic conditions which is close to mid-gap. With the
additional GR mechanism of equation 1.7, the reverse current is modified and does not saturate at I
as in equation 1.6 but varies with the negative applied voltage. In the presence of the SRH mechanism,
the reverse current for a given voltage temperature dependence varies as exp(—Eg/2kgT) for mid-gap
levels in the abrupt junction approximation. Therefore, the reverse current integrates both diffusion
and GR currents. In addition, in the forward regime, diode current exponential variation with applied
positive voltage is modified and verifies the following relation [7]:

Ir o exp < av > (1.8)

nkBT

where n is called the ideality factor, equals 1 in the ideal case when the diffusion current dominates
and 2 when the GR current dominates. When diffusion and GR currents values are comparable, n
value is between 1 and 2.

U=

(1.7)

As it will be seen in sub-section 1.2.3, in advanced CMOS technologies, SRH mechanism is due to
undesired silicon defects introduced during the different process steps. SRH GR current leads to an
uncontrolled current in reverse regime called leakage current that can be detrimental for low power
applications. In addition to the SRH GR current, a tunnelling GR current discovered by L. Esaki in
1958 [15], appears in highly doped p-n junctions such as the ones used in source/drain of advanced
MOS transistors (Fig. 1.1). Indeed, when doping levels difference between p and n region is very
high (p*™/n, p/nt or p*/n™ cases) and mainly for abrupt junctions, the electrical field across the
p-n junction is very high (> 7 x 10°V.cm ™! [16]) and leads to an important valence and conduction
bands bending. The potential barrier becomes sufficiently thin and carriers can tunnel across the
Fowler-Nordheim triangular barrier [17] with a transfer of an electron from valence band in p region
to conduction band in n region, leaving a free hole in the p region. Such mechanism is called band to
band tunnelling (BBT) leads to an additional contribution for reverse current, and modifies current-
voltage characteristics in the forward regime. It should be noticed that contrarily to diffusion and
SRH currents and as discussed in [15], BBT current in reverse regime depends mainly on the applied
voltage on the p-n junction and corresponding electric field, and shows very small variations with the
temperature.

Zahi Essa - Physical modelling of impurity diffusion and clustering phenomena in CMOS-based
image sensors



14 CHAPTER 1. ADVANCED CMOS TECHNOLOGIES MODELLING CHALLENGES

In real diodes, a GR current using trap assisted tunnelling mechanism (TAT) may also take place.
TAT current can be considered as a combination of SRH and BBT in the respective presence of a deep
energy level introduced by a given defect and a high electric field. According to the TAT mechanism
in the p-n junction, an electron is transferred from the valence band in p region to a trap level located
in the SCR, and then crosses a Fowler-Nordheim barrier to reach the conduction band in n region as
for the BBT mechanism. Therefore, TAT mechanism in reverse regime has an important temperature
and voltage dependence.

Leakge current Ijg, then includes diffusion, SRH, BBT and TAT contributions:

Lieax = Laitusion + Isru + ItaT + IBBT (1.9)

The different contributions activation energies E, and thus temperature dependence [18] are summa-
rized in table 1.1.

Table 1.1: Summary of the different leakage current contributions in a p-n junction and corresponding
activation energy [18].

Leakage current mechanism | Activation energy
Diffusion Ea ~ Eg
SRH E, ~ Eg/2
TAT E, ~ E;/2
BBT E,~0

The SRH, BBT and TAT mechanisms simplified presentation described above can be explained
microscopically in more details using quantum mechanics methods, which is largely above the scope
of this work. Interested readers can look at [19] for more details and references therein.

After introducing p-n junction main concepts, a first step is established in understanding n and p-
type MOS transistors operation of Fig. 1.1 with n-p junction for nMOS and p-n junction for pMOS in
source/substrate and drain/substrate junctions. However as explained in the beginning of section 1.2,
the switching behaviour of a MOS transistor is due to a transfer of carriers between source and drain
electrodes with electrons for nMOS (Fig. 1.1 left) , holes for pMOS (Fig. 1.1 right), the transfer and
corresponding current being controlled by the applied voltage V, on the gate electrode formed by a
metal /oxide/silicon capacitance. In order to understand how the gate controls the carriers transfer in
MOS transistor, MOS capacitor basics will be reminded in next sub-section 1.2.2.

1.2.2 The metal/oxide/silicon capacitance

The gate electrode controls carriers transfer between source and drain in MOS transistors. It consists
of a metal-oxide-silicon (MOS) capacitor. MOS structure physics and electrical characteristics are
extensively described in [7, &]. In a MOS structure, the silicon semiconductor can be n or p doped. In
the following, we will consider that a voltage V, is applied on the metal side of the MOS capacitance,
the semiconductor being connected to a zero voltage. Depending on the applied voltage V, both
energy band diagram of the MOS structure and the electrostatic potential g at the silicon surface
near oxide/silicon interface are modified with a corresponding charge distribution at the surface.
s = (Eis — Eipuik) /q is classically defined as the difference in Fermi intrinsic level at the surface
(modified with V, voltage) and in bulk silicon far from the surface (un-modified due to zero voltage).
In order to estimate such charges in an ideal MOS capacitance, the following assumptions are made [7]:
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e The only charges in the MOS structure are those located in silicon semiconductor, and those
with equal quantity and opposite sign located in the metal side of the capacitance. No charges
such as interface traps or fixed charges in the oxide are considered.

e No carrier transport is considered in the oxide layer, whose resistivity is assumed to be infinite.

e A zero work function difference ¢ = ¢ — @5 is considered between the metal and the semi-
conductor, where ¢, and ¢4 are respectively the metal and semiconductor work functions. We
remind that in a metal (or semiconductor), the work function is the energy difference between
the Fermi level Ex and the vacuum level.

If we consider a p-type semiconductor with constant doping, Fermi level is constant in the semicon-
ductor. With an applied V, voltage, valence band maximum E, g, conduction band minimum E. ¢ and
intrinsic Fermi level E;¢ near the surface are modified. An important quantity in MOS capacitance
is the Fermi level relatively to the intrinsic level (approximately mid-gap) in the bulk semiconductor
defined as ¢r = E; pux — Er, which is positive for p-type silicon. Therefore, if we take the example of
a p-type silicon, the following regimes are observed for different applied voltage V, and corresponding
surface potential values! [7, §] leading to different charge populations near the surface:

e 15 < 0 or accumulation regime: E.g, E, ¢ and E; s bend upward. The proximity of the valence
band to the Fermi level at the surface leads to an accumulation of holes.

e s = 0 or flat-band condition: in this case no valence or conduction band bending is observed.
Charges populations are the same as the ones observed in bulk silicon far from the surface. It
should be noticed that in a real MOS capacitance, ¢s # 0 and existing charges at the interfaces
and in oxide lead to a non-zero flat-band voltage. In such case, a new potential reference can be
defined according to this flat band voltage and the different MOS capacitance regimes described
here are still valid.

e 0 < s < pr or depletion regime: E.g, Eys and E; s bend downward with E; ¢ still above Fermi
level leading to a depletion of holes for the surface region leaving behind negatively charged
acceptors N, forming a depletion layer or SCR near the interface.

o o < 1) < 2¢F or weak inversion regime: E.g, E, s and E; s downward bending is more important
in this case. E;¢ crosses the Fermi level leading to the formation of an electron minority carriers
inversion layer near the surface with a density higher than the hole majority carriers density at
the surface ng > ps.

e 1)s > 29 or strong inversion regime: E.s, E, ¢ and E; s downward bending is even more impor-
tant than in the weak inversion regime with E; ¢ and E¢ s both crossing the Fermi level, leading
this time to the formation of an electron minority carriers inversion layer near the surface with
a density higher than the hole majority carriers density in the bulk ng > py, where ppykx = N .

The previous regimes are valid for an ideal MOS capacitor. Even though the main operation
regimes are still valid for a real MOS capacitor, some additional significant physical mechanisms may
occur. First of all, as explained previously due to non zero work function difference ¢,,s in addition to
interface charge states and fixed charges in the oxide, flat band voltage is not necessarily zero leading
to changes in the MOS capacitance different regimes and their voltage ranges. Due to interface charge
states and fixed charges in oxide and to the very small thickness of the oxide layer in advanced MOS
structures, the oxide with infinite resistivity assumption is no more verified. For instance SRH GR
mechanisms with interface charge states may take place, in addition to other tunnelling mechanisms

!With a zero work function difference ¢ms between the metal and the semiconductor, Vg = Vox + s where Vo is
the voltage drop across the oxide.
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and quantum effects modifying the ideal capacitance.

Similarly to GR mechanisms in p-n junctions in 1.2.1, microscopic understanding of the fundamen-
tal mechanisms behind the different carriers transfer mechanisms across the oxide is largely above the
scope of this report. Again, interested readers can find the needed information in [19] and references
therein.

After introducing the basics of p-n junction in sub-section 1.2.1 and of MOS capacitance in this
sub-section, we can now have an understanding of MOS transistors shown in Fig. 1.1 to be presented
in next sub-section 1.2.3

1.2.3 MOS transistor and CMOS technology
1.2.3.1 MOS transistor operation regimes

As mentioned in the beginning of section 1.1, MOS transistor is a three terminal device (four terminal
device if the bulk, or substrate, voltage is taken into account)?. The carriers flux between source and
drain electrodes is controlled by the gate electrode and its corresponding MOS capacitance. Before
detailing MOS transistor fabrication process in advanced CMOS technologies, different MOS transis-
tor operation regimes will be given.

In equilibrium condition all MOS transistors terminals are set to zero: Vg = V3 =Vy =V}, =0. In
all our discussion V}, = 0 and therefore source, drain and gate voltages will be considered in reference
to the bulk potential. We will also consider the nMOS case (Fig. 1.1 left) with n-type source and
drain regions and p-type substrate. The same mechanisms can be explained for pMOS transistor by
reverting the adequate physical quantities. In order to guarantee a carrier transfer between source
and drain, a positive voltage Vq > 0 is applied at the drain electrode. In these conditions, nMOS
transistor has the following operation regimes:

e For zero gate voltage Vy = 0, no current flow is observed between source and drain which corre-
sponds to two n-p junctions (source/bulk and drain/bulk) connected back to back. In this case,
the nMOS transistor is said to be in Off state.

e When a negative voltage is applied at the gate electrode V, < 0, from 1.2.2 the MOS capacitance
is in accumulation regime and hole carriers accumulate in the region near the surface between
source and drain called the channel. As in equilibrium condition, no current flow is possible
between source and drain regions and the nMOS transistor is in Off state

e When a positive voltage is applied at the gate electrode V, > 0, from 1.2.2, the MOS capacitance
will reach successively depletion, weak inversion and strong inversion regimes. For a sufficient
positive gate voltage in strong inversion regime, a thin electron inversion layer will form in the
channel region and carriers flow from source to drain thanks to the applied positive drain voltage.
Therefore, in nMOS transistor strong inversion regime, the n-channel conductance is modulated
by the gate voltage. Within the charge-sheet model [20], and assuming a constant electrons
mobility py in the nMOS channel , drain current Iq as a function of gate and drain voltages can
be calculated [7]:

2In Fig. 1.1, a zero voltage is applied at the bulk electrode Vi,=0. However in some advanced CMOS technologies,
bulk electrode can be as important as gate electrode for MOS operation as in fully depleted silicon on insulator (FDSOI)
transistors.

Zahi Essa - Physical modelling of impurity diffusion and clustering phenomena in CMOS-based
image sensors



1.2. A BRIEF INTRODUCTION TO MOS TRANSISTOR 17

Iy = LEIU‘DCOX { (Vg — Vi, — 2¢F — %) Vaq — EM |:(Vd + 2@F) 8/2 _ (2@F) 3/2}
g 3 Cox

(1.10)
where W is the transistor width in the horizontal direction perpendicular to the channel direction,
Lg is the gate length related to the metal gate dimension in the channel direction, Cox is the
oxide capacitance and Vg, is the flat-band voltage (needed gate voltage Vg in order to get flat
valence and conduction bands). In strong inversion condition, the nMOS transistor is said to be
in On state. In On state, depending on the drain voltage positive value, the following regimes

can be distinguished:

— Linear regime: for small Vg values, Ig increases linearly with V4 and the nMOS channel
region behaves like a simple resistor. This regime is also called the ohmic regime and can
be verified using equation 1.10.

— Saturation regime: when increasing V4 voltage, the difference between source (Vg = 0) and
drain voltages will lead to a non uniform inversion layer distribution along the channel region
with a thicker channel near the source region in comparison to the drain one. Therefore,
when increasing Vq, the I current linear increasing with Vg is no more verified. At a given
V4 voltage, the inversion layer thickness on the drain side equals zero. In this condition,
the transistor is in the saturation regime with a corresponding drain voltage Vqgat. This
regime can also be verified using equation 1.10.

The MOS transistor regimes presented above and summarized by equation 1.10 are valid for an
ideal long channel MOS transistor with ideal p-n junctions and MOS capacitance as discussed respec-
tively in 1.2.1 and 1.2.2. In a real transistor even with a high gate length value Lg, some non ideal
effects are observed, even though the main transistor regimes are preserved. Analysing all the non
ideal mechanisms is above the report’s scope, and we will discuss some of them when needed all along
the report.

For instance in Fig. 1.2, we show I4q (V) current-voltage characteristics for nMOS and pMOS
transistors based on the same CMOS technology node of MOS transistors presented in Fig. 1.1 with a
gate length Ly = 3um in both linear for V4 = 25mV and saturation regime for Vq = Vgqq = 1.2V using
2D TCAD device simulations [21]. Vg4q is the power-supply voltage, corresponding to the maximum
voltage that can be applied on gate and/or drain electrodes. Vgq has different values depending on
the technology node (decreasing with advanced technology node for power consumption reduction)
and on the type of application such as high performance (HP) or low power (LP) ICs. From Fig. 1.2,
one can see that as expected, Iq (V) current is higher in saturation regime in comparison to linear
one for both nMOS ans pMOS transistors. In addition, contrarily to nMOS transistor, gate voltage is
negative for pMOS transistor operation.

MOS transistors exhibit many electrical features that can be optimized in a given CMOS technol-
ogy, the main ones being:

e The threshold voltage V;: defined as the gate voltage necessary for electrons conduction in the
MOS channel to take place or more specifically to reach strong inversion regime. Vi voltage is
quite difficult to estimate both theoretically and experimentally. From the theoretical side, Vi
expression depends on the approximation made for I (V) calculation, with different extracted
values depending on the chosen technique. From the experimental side, several techniques can be
used for Vi, also leading to different values depending on the experimental approach. Therefore,
one has to use the same reference experimental approach when comparing Vi values from different
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transistors. When dealing with extracting Vi from modelling as in TCAD, the model used has
to be as close as possible to the experimental approach. In this report, our reference for Vi
calculation is a simple and fast method used in parametric testing of MOS transistors, according
to which Vi is the voltage needed to reach a given threshold current in Iq (V) characteristics
depending on the technology node and type of device (core MOS, Flash, SRAM ...). It should
be noticed that Vi can be defined both in linear and saturation regimes, labelled respectively

Vt,lin and Vt,sat-

e The On current I,,: defined as the drain current when MOS transistor is On when V4 = Vgq4.
As in the case of Vi, I, can be estimated in linear and saturation regimes, labelled respectively
Ion,lin and Ion,satt-

e The Off current I,g: from Fig. 1.2, it can be seen that I (Vg =0) # 0. Indeed in the real
transistor, even for a zero gate voltage, a small current can be observed in the drain called the
Off current and is due to different leakage currents [18, 22], the main ones being:

— p-n junctions leakage current and mainly the drain/bulk junction leakage current due to
the different GR mechanisms discussed in 1.2.1.

— Subthreshold leakage detailed in [22] observed in weak inversion regime for V, < Vi and
due to a small diffusion current of minority carriers between source and drain near the
surface. In subthreshold regime, the subthreshold slope parameter can be defined from

I4 (Vg) characteristics:
g, — dloglold -1 (1 11)
T av, '

St is generally measured in mV/decade and typical values for silicon based planar MOS
transistors are in the 70-120 mV /decade range [22]. S; indicates the effectiveness of turning
off the MOS transistor and thus, it is desirable to have low S; values.

— Gate leakage current across the oxide layer with the different possible mechanisms discussed
in 1.2.2. Gate induced drain leakage (GIDL) may also be observed when V, =0 and
V4 =Vada. The high electric field in the drain/bulk junction near the surface, leads to
enhanced GR mechanisms in the junction’s SCR, such as BBT, TAT but also TAT with
the help of interface states due to the proximity of the oxide/silicon interface.

I, can also be defined in linear and saturation regime, labelled respectively Iog 1in and Iog sat-

1.2.3.2 MOS transistor miniaturization

MOS transistor down scaling has always been the main objective of the semiconductors industry.
The fundamental shrinking dimension is the gate length Ly of MOS transistors continually reduced
and leading to the total transistor surface divided by two for a new technology node as expected by
Moore’s law [23]. The goal of miniaturization is reobtain a higher number of transistors on the same
silicon surface leading to a better performance and lower cost of ICs. Therefore, transistors with
small gate length have to be designed in order to keep the same behaviour of transistors from older
technology nodes with higher gate length. However, size reduction leads to several additional and
correlated physical mechanisms modifying MOS transistors behaviour. In the frame of this work, we
will discuss mainly the following scaled parameters: gate oxide thickness toy, junction depth X; and
junction electrical activation level.

When decreasing Lg, source/bulk and drain/bulk junctions SCR regions dimensions become com-
parable to the channel dimension, and several effects, labelled short channel effects (SCEs) may occur.
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Figure 1.2: nMOS and pMOS 14 (V) characteristics in linear and saturation regimes from TCAD
device simulations [21] for the transistors presented in Fig. 1.1 with a gate length Ly = 3pm.

First of all, for a short channel, a direct contact between the two SCR regions of source and drain can
be reached. This effect is called punch-through and leads to an undesired leakage current between
source and drain when a high drain voltage is applied. The origin of this effect is the lowering of
the energetic barrier for the carriers near the source region referred to as the drain-induced barrier
lowering (DIBL). The DIBL can be extracted from I4q (V) characteristics in linear and saturation
regimes (Fig. 1.2) and is defined by:

DIBL = Vi jin — Vi sat (1.12)

One way to avoid punch-through effect is to increase channel doping in order to limit source and
drain junctions SCR extension in the channel region according to equations 1.4 and 1.5. However,
increasing channel doping will require a higher gate voltage to obtain strong inversion regime, and
therefore a higher threshold voltage V. Vi cannot be increased indefinitely due to power consumption
issues and to fixed supply voltage V4q. Knowing that Vi varies inversely with oxide capacitance Cy,
reducing oxide thickness tqy allows to control Vy value. However, as discussed in 1.2.2 and 1.2.3.1,
reducing gate oxide thickness leads unavoidably to gate leakage currents harming transistor perfor-
mance and increasing I,g and power consumption. One solution is the use of a gate insulator with a
dielectric constant higher than silicon dioxide, called high-k dielectric resulting in a higher equivalent
SiOs thickness, which will be discussed in detail in chapter 3. It should be noticed that increasing Cy
allows also to increase On current from equation 1.10.

In addition to DIBL, other SCEs may take place regardless of drain voltage, and leading to a
decrease in threshold voltage Vi for short channels, known as roll-off (or roll-down) effect observable
on V¢ (Lg) characteristics. The main explanation is that the increased extension of source and drain
SCR for a short channel leads to a smaller channel region to be controlled by gate electrode and to
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be inverted to reach the On regime of MOS transistor. Therefore, a smaller gate voltage is needed
in order to reach strong inversion, and consequently a smaller Vi. A useful first order estimation of
SCEs in both linear and saturation regimes for a short channel length L, is:

AVy (Lg) = Vi (Lg) — Vi (Lg = 00) (1.13)

where Ly = oo corresponds to a given long channel transistor. It can be demonstrated that AV in-
creases with Xj [7], the junction depth of source/bulk or drain/bulk junctions. Therefore one way to
avoid SCEs is to reduce X;. However, let us remind the sheet resistance formula for a thin semicon-
ductor doped layer:

1
fQXj q:U'(X)N(X)dX
where p(x) is the depth dependent majority carrier mobility and N(x) is the depth dependent dop-

ing concentration. From equation 1.14, a simple approximation of constant mobility p and doping
concentration Ny, shows that in the case of source and drain junctions:

(1.14)

1

Rsource7 Rdram X NdopXj (115)
Therefore, the drawback of X; decrease for SCEs reduction is a higher parasitic source and drain sheet
resistance, reducing On current of MOS transistor and its overall performance. In order to limit this
effect, from relation 1.15, the junction doping is increased in order to reduce sheet resistance. There-
fore, following miniaturization, highly doped and very shallow junctions are used in advanced CMOS
technologies and labelled as ultra shallow junctions (USJs) in literature. Advanced doping and USJs
fabrication techniques will be presented in 1.4.

1.2.3.3 CMOS technology process

The fabrication process solutions found on the fundamental devices level in silicon CMOS technologies
to be integrated in the different ICs addressed by the microelectronics industry, include two main parts
in the following order:

1. Front-end-of-line (FEOL) processing refers to the formation of transistors and other elemental
active devices (diodes, capacitors ...) directly in the initial crystalline silicon substrate in a
wafer form.

2. Back-end-of-line (BEOL) processing refers to the formation of the physical interconnections
between the active devices manufactured during FEOL process. Interconnections use several
levels of metal lines depending on the technology node and integration density. BEOL also
include the formation of bonding sites for subsequent packaging operations.

Both FEOL and BEOL processes benefit from photolithography advances, used in microelectronics
in order to pattern some parts of silicon substrate and other overlying layers and form the different
active devices. The geometric patterns are formed thanks to a combination of a mask and a light-
sensitive photoresist. Therefore, improving photolithography resolution is mandatory for technology
node evolution.

CMOS technology FEOL part includes several process fabrication steps in order to design the
different MOS transistors regions including source and drain junctions in addition to the gate stack.
Different process schemes can be used to achieve MOS structures depending on the semiconductor
company and on the technology node, with an increasing complexity for the latest technology nodes
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for both FEOL and BEOL parts. In the following, we will give a short summary of main process
steps of a CMOS technology using heavily doped polycrystalline silicon as a metal for the gate MOS
capacitance, close to what can be found in technology nodes above 45 nm. The major CMOS process
steps for both nMOS and pMOS fabrication are the following:

1.

Starting Wafer: the initial silicon substrate generally used in CMOS technologies is crystalline
silicon substrate with (100) orientation lightly p-doped with boron. It should be noticed that in
advanced CMOS technologies, the substrate’s orientation may be changed in order to increase
the carriers mobility in transistors channel and improve On current.

Trenches isolation: trenches can be made in some silicon regions thanks to a specific lithogra-
phy/etch process. The etched regions are then filled with oxide to isolate electrically adjacent
devices such as nMOS and pMOS transistors. Shallow trench isolation (STI) with approximately
300 nm depth, and deep trench isolation (DTI) with few microns depth can be made depending
on the device application.

Wells doping: in order to integrate both nMOS and pMOS transistors on the same silicon wafer
the substrate doping type has to be opposite to that of the source and drain regions. However,
the initial substrate doping is p-type and some additional steps are needed for both nMOS and
pMOS integration. Therefore, well doping by ion implantation is used in order to place dopant
atoms at a sufficient depth in silicon. Several doping strategies can be used depending on the
type of applications and needed devices protection. The most common way is to start with a
deep n-type well doping on the whole substrate, followed by subsequent shallow well doping of
two different regions using two separate masks: n-type well doping for pMOS transistors and p-
type well doping for nMOS transistors. Implanted ions for well doping are electrically activated
using a high temperature anneal.

. Gate Stack: following well doping, a very pure thermal oxide is grown on the silicon substrate

as part of the gate oxide of MOS transistor. Using adequate masking, polycrystalline silicon is
deposited on the gate oxide to act as the metal contact of the gate. Polysilicon is then etched in
well-defined regions forming the gate electrodes and leaving remaining silicon regions in order
to define source and drain junctions.

Extensions, pockets and source/drain doping: Prior to source and drain doping, extension and
pocket (or halo) implants are made. Extensions doping, commonly labelled lightly doped drain
(LDD) is a shallow doping with lower concentration in comparison to source and drain. Using
the direct masking effect of the already manufactured gate electrode, LDDs of the same doping
type of source/drain are introduced near the surface in order to get more gradual and less abrupt
doping in the transition region between source or drain and the channel. The smaller gradient
minimizes series resistance in the source or drain/channel region, but also reduces the electric
field in this region decreasing field enhanced leakage mechanisms. Pockets doping is used in
addition to LDDs. Pockets use a high concentration doping, of opposite type of the LDDs
and source/drain, and are introduced deeper in comparison to LDDs, not closer to the channel
region. According to equations 1.4 and 1.5, pockets are used in order to limit source and drain
SCR extension in the channel, and reduce SCEs effects. After LDDs and pockets for SCEs
improvement, a spacer material is added. The spacer material is generally formed by oxide and
nitride isotropic deposition followed by anisotropic etching in order to form two walls on the
sides of the gate electrodes. Such side walls called spacers are used in order to limit source and
drain doping lateral extension in the channel region due to dopant diffusion during activation
annealing (section 1.4). Source and drain doping is achieved by ion implantation, and thanks to
the spacers, the dopant atoms are introduced away from the channel region. It should be noticed
that in some technologies, several spacer levels can be used in addition to the source/drain ones.
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For instance, before the LDD step, a spacer level can be used to limit specifically the LDDs
lateral extension. Finally, it should be noticed that the metallic behaviour of the polysilicon
used as gate material is due to the LDDs and source/drain high concentration doping. The
polysilicon becomes degenerate and behaves like a metal. In addition, depending on the MOS
type, polysilicon doping has the same type as the source/drain one (Fig. 1.1).

6. Activation anneal: the final step after LDDs, pockets and source/drain doping is the electrical
activation of introduced atoms in order to get a functional device. A high temperature short
time thermal anneal (to be detailed in 1.4) is used in order to achieve the highest activation level
and the lowest diffusion in silicon for USJs requirements.

1.3 CMOS image sensors

Previous section 1.2 dealt with MOS transistors and miniaturization challenges as defined by the
ITRS [24] within “More Moore” domain. In this section, we will focus on the example of CMOS
image sensors, considered as derivative elements from the “More than Moore” category [24] facing
both miniaturization and diversification challenges as discussed in the introduction chapter .

CMOS image sensors cover a large range of applications where the sensors required performances
are not the same. This strategy called diversification for CMOS image sensors [24] leads to new
challenges depending on the type of application and its corresponding targeted features. Therefore,
after introducing CMOS image sensors and their main operation regimes in 1.3.1, their features will
be presented in 1.3.2. CMOS image sensors FEOL process is the same as the general CMOS process,
however includes some additional steps which will be presented in 1.3.3. Some remarks on BEOL part
of CMOS image sensors will also be given in 1.3.3.

1.3.1 CMOS image sensors operation regimes

A CMOS image sensor is an electro-optical module consisting of an IC containing an array of active
pixel sensors (APS) converting photons from a given scenery into an electrical digital signal. The
different operation steps of a CMOS image sensor are the following:

1. Emitted photons from a light source are partially reflected by a given scenery.

2. Reflected photons reach the CMOS sensor and are focused on the silicon matrix thanks to an
optical system. After crossing the optical system, photons reach an infra-red (IR) filter, due to
silicon sensitivity to near IR electromagnetic waves (~ 1.1 pm) and in order to capture only
visible light photons. Photons will then cross an anti-aliasing (AA) filter in order to avoid high
spatial frequency signals and obtain an image resolution achievable by the image sensor. A
diagram showing these different parts is given in Fig. 1.3.

3. Due to optical crosstalk (detailed below), photons are focused towards the APS array thanks to
a micro-lenses array (Fig. 1.3). Adding a micro-lenses system allows to reduce optical crosstalk
effect. After crossing the micro-lenses, photons reach an array of colour filters based on a Bayer
filter mosaic [25] (Fig. 1.3). In order to mimic human’s eye response to light and its high
sensitivity to green colour, a Bayer system uses a red filter, a blue filter and two green filters
periodically disposed above the pixels array. Corresponding pixels are therefore called blue (B),
red (R), green blue (GB) for the green pixel next to a blue one and green red (GR) for the green
pixel next to a red one.

4. Chromatically filtered photons can now reach the active silicon surface of the pixels. Depending
on the illumination strategy (to be described in 1.3.3), the photon may have to cross (or may not)
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the different BEOL metal lines before reaching the active silicon surface of the pixel (Fig. 1.3).
The pixel consists of a photo-detector, generally a photodiode transforming light to an electrical
signal treated and amplified by additional transistors in the pixel.

_ OPTICAL
~ SYSTEM

IR FILTER

BEOL

FEOL

crosstalk

Electronic
crosstalk

Figure 1.3: Diagram of a FSI CMOS image sensor different parts, crossed by photons including
successively the optical system, the IR and AA filters, the array of pixels BEOL part (micro-lenses,
Bayer filters and metal levels) and FEOL part. Are also highlighted in this diagram, optical crosstalk
in the BEOL part and electronic crosstalk in the FEOL part.

Depending on the required features of CMOS image sensors, the following elements shown in
Fig. 1.4 can be found in each pixel [20]:

e A photodiode that converts photons into an electrical signal. Generally, in n-type CMOS im-
age sensors, the photodiode is a n-p junction consisting of an n-doped region surrounded by
a p-doping also called pinned photodiode. The SN is first reset and the photodiode is fully
depleted. Then during light detection, the photons reach the fully depleted photodiode and
generate electron-hole pairs that are stored inside the photodiode. As shown in Fig. 1.4 right,
in order to avoid the n-type photodiode electrical contact with top oxide/silicon interface and
corresponding leakage currents, a p-type implant, called pinning implant is made. In addition,
high p™ pinning doping is preferred in order to avoid the photodiode SCR extension in the p™
region near the surface interface. It should be noticed that CMOS image sensors photodiodes
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are also investigated on the industrial level with very promising performances in high radiation
environments [27].

e A sense node (SN) n-doped in n-type photodiode pixels consists of an n-p diode in association
with the photodiode. During an integration time, the SN receives the charges stored in the
photodiode, through a transfer gate (TG). By inverting the channel below the TG, the electrons
in the photodiode are transferred to the SN whose potential is modified.

e A reset transistor (RST) allows to empty the SN from electrons and initializes its potential after
an integration time.

e A source follower (SF) transistor whose role is to amplify and convert the electrons of the SN
into a voltage that is the output to the column bus of the pixels array.

o A row select (RS) transistor that allows to connect the pixel’s output to the column bus in order
to be read.

All the pixels elements are detailed in Fig. 1.4, where we present on the left two Bayer patterns with
eight pixels of 1.4 pum pitch manufactured at STMicroelectronics with their main elements (photodiode,
SN, TG, RST, SF and RS transistor). Electrical isolation between the pixels is established thanks to
DTIs ( 1.2.3.3) which will be more detailed in 1.3.3. On Fig. 1.4 right, one pixel’s doping is highlighted
with the corresponding doping of the photodiode and the SN [28].

10pum

Figure 1.4: Left: two Bayer patterns with eight pixels of 1.4 pum pitch manufactured at STMicro-
electronics with their main elements including the photodiode, the sense node (SN), the transfer gate
(TG) in addition to the Reset (RST), Source Follower (SF) and Read Select (RS) transistors, the
different pixels being isolated thanks to DTIs (more details in 1.3.3). Right: one pixel’s doping is
highlighted thanks to 3D TCAD simulations where the photodiode n-doped region can be evidenced
in addition to the substrate p and surface p* pinning doping [25].

1.3.2 CMOS image sensors features

CMOS image sensors have to meet some requirements in terms of geometric, electrical and electro-
optical features depending on the type of application. In practice, trade-off among the different
requirements is necessary to minimize the undesired effects. The main features are detailed below:
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e Geometric features:

— Resolution: this is the total number of horizontal and vertical pixels in a CMOS image
sensor. By increasing this value for a given pixel size (or pitch defined below), the image
resolution is improved.

— Pixels array size: depending on the type of application, the pixels array size may be modi-
fied. While the array’s size is expected to be small in mobile phone applications, it can be
much more higher in medical and spatial applications.

— Pitch: is a fundamental parameter in image sensors corresponding to the dimension of a
square pixel. For a same CMOS imager size, reducing the pixel’s pitch allows to increase
the number of pixels and therefore the resolution.

— Filling factor: is the ratio between the photosensitive area and the total area of a pixel.
Some strategies where neighbouring pixels share several transistors allow to improve the
filling factor as in Fig. 1.4 left where 7 transistors (= 4 x TG + RST + SF + RS) are shared
by 4 pixels of a Bayer pattern.

e FElectrical features:

— Saturation charge Qsat: defined as the maximum charges number that can be collected
by the pixel’s photodiode. Qgut is an important feature whose increase improves the image
sensor dynamic range, and mainly depends on the photodiode doping and spatial extension:

Qsat = / n(7)d7 (1.16)
photodiode

where 1 is the electron density in cm™3 and the integration is carried out on 7 3D space
vector.

— Photodiode potential: the doping inside the photodiode induces a potential well allowing
the storage of the photo-generated electrons. For three dimensional photodiodes struc-
tures as the one shown in Fig. 1.4 right, the photodiode potential estimation can be quite
complicated and 3D simulations are needed.

— Lag: after the electrons transfer from the photodiode to the SN during an integration step,
some of them may remain in the photodiode and are not integrated in the pixel’s signal,
which is called the lag. The remaining electrons may lead to some additional noise in the
image. Therefore, several complex engineering strategies can be used to reduce the lag
on the design level but also on the 3D doping extension and corresponding electrostatic
potential level in order to improve the electrons transfer

— Dark current Iy, k: represents the charges collected by the pixel’s output during an inte-
gration cycle, when the pixel is not exposed to light, thus in “the dark”. Ig.. is one of the
main features to be minimized in CMOS image sensors and depends on several factors:

* Oxide/silicon interfaces surrounding the photodiode (pixel surface, DTIs, or box oxide
to be detailed in 1.3.3). The different interface states lead to leakage mechanisms such
as the ones described in 1.2.2 on MOS capacitance and contribute to the dark current.

x Process induced defects, that introduce deep energy levels in the SCR of the photodiode
as described in 1.2.1. The defects can be formed during implantation and annealing
process steps but can also consist of metal contaminants randomly distributed in the
pixel and in the sensor’s matrix [29].

* Tunnelling mechanisms in the photodiode SCR region (cf. section 1.2.1).

« Transfer gate leakage mechanisms such as GIDL (cf. section 1.2.3.1).
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e Electro-optical features:

— Quantum efficiency QE()): a major wavelength dependent feature of CMOS image sensors,
defined as the ratio of collected charges by a given pixel on the number of incident photons
reaching the pixel. QE()) is a dimensionless parameter allowing to account for the different
signal losses for a given wavelength in both the FEOL and BEOL parts of the CMOS image
sensor. Quantum efficiency versus wavelength is defined by:

~ Ng-he
Goting A

where N~ is the number of photo-generated electrons, h is the Planck constant (~ 6.63 X
10734].s), c is the light’s velocity in vacuum (~ 3 x 108m.s™!), ¢ is the incident optical
power in W and A is the wavelength in nm. QE()) characteristics are measured for each
pixel of a Bayer pattern and the mean quantum efficiency can be defined as:

QEB + QEgr + QEgB + QERr
4

QE(X)

(1.17)

QEmean =

(1.18)

— Crosstalk: for a given pixel, it represents the parasitic signal from neighbouring pixels.
Due to pixels miniaturization, crosstalk is an important feature in image sensors with
two main components. Optical crosstalk is due to photons crossing the different BEOL
parts including micro-lenses, colour filters and metal lines, and landing in a wrong pixel
as highlighted in Fig. 1.3. Electronic crosstalk is due to photo-generated charges transfer
between neighbouring pixels. Electronic crosstalk can be reduced thanks to DTIs as shown
in Fig. 1.4.

1.3.3 CMOS image sensors process

CMOS image sensors fabrication process is based on CMOS technology already detailed in 1.2.3.3 for
MOS transistors. However, in comparison to a “classical” core CMOS process some additional steps
are introduced in the FEOL and BEOL parts of CMOS image sensors as it will be detailed in the
following sections.

1.3.3.1 CMOS image sensors FEOL process

In addition to the different process parts detailed in 1.2.3.3, CMOS image sensors FEOL process
includes the following additional steps:

e DTIs: similarly to STIs used to isolate MOS transistors in core CMOS, several microns deep
trenches are etched in silicon. After silicon etching, several implantations are made throughout
the DTIs with a doping opposite to the photodiode’s one, followed by trenches filling with
silicon oxide. The additional DTIs doping avoids the photodiode SCR extension on the DTIs
oxide/silicon interfaces, which can be a source of additional dark current. DTIs are used as
physical boundaries between the different pixels of the CMOS image sensor as already shown in
Fig. 1.4. The main advantage of DTTs is an electrical isolation between the pixels which reduces
electronic crosstalk.

e Photodiode doping: this is achieved using an additional mask and implants before spacer and
source/drain steps. The photodiode is called planar when its doped region is close to the flat
horizontal surface as shown in Fig. 1.4 right. With pixels miniaturization, the photosensitive
region of the pixel is reduced, thus the number of photo-generated charges, directly influencing
Qgsat and the image sensor dynamics. In order to increase the collection region, photodiodes
with vertical and deep doping extension are designed [30, 31] as the one shown in Fig. 1.5
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modelled in [28]. In addition, as expected by Beer-Lambert’s law [32], a vertical and deep
doping distribution allows a better collection of photo-generated charges through the visible
light spectrum.

e Pinning implant: for a photodiode with a given doping and in order to avoid the extension of the
SCR outside the photodiode, additional doping opposite to the photodiode’s one is used. For
instance, for a planar photodiode as in Fig. 1.4, a p™ surface doping is added for the n-doped
photodiode. Pinning p™ implants are also made in the DTIs to vertically pin the photodiode’s
potential, as in Fig 1.5.

Figure 1.5: Left: Bayer pattern with four pixels of 1.4 pm pitch with a vertical photodiode manufac-
tured at STMicroelectronics, and their main transistors including the TG, the RST and the SF, the
different pixels being isolated thanks to DTIs. Right: one pixel’s doping is highlighted thanks to 3D
TCAD simulations [28] where the vertical photodiode n-doped region can be evidenced in addition to
the vertical and surface p* pinning doping [31].

1.3.3.2 CMOS image sensors BEOL process

Following FEOL process steps of the image sensor presented in 1.3.3.1, BEOL steps are performed
including metal levels for the different pixels elements connections, colour filters and micro-lenses array
fabrication already mentioned in 1.3.1. In the BEOL process, depending on the different image sensors
parts crossed by the light before reaching the photosensitive area of the pixel, two approaches can be
distinguished:

e Front Side Illumination (FSI): in this approach, colour filters and micro-lenses are directly im-
plemented on the silicon active region and overlying metal levels. In this case after micro-lenses
and colour filters, the light has to cross the different metal levels before reaching the silicon
photsensitive region. Therefore, light reflections on the different metal levels before reaching sil-
icon can both decrease QE and increase optical crosstalk presented in 1.3.2, deteriorating pixels
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performances. It should be noticed that these effects are increased with pixels size reduction
due to an increasing metal lines density.

e Back Side Illumination (BSI): for small pixels, due to QE reduction and optical crosstalk increase,
FSI approach becomes limited. In back side illumination approach, a silicon on insulator (SOI)
substrate obtained by the Smart Cut™ technique [33, 34] is used. The FEOL part of the image
sensor is carried out on the SOI active silicon on top of the SOI oxide and followed by the
metal levels of the BEOL part. The wafer is then flipped, and a silicon substrate thinning is
made until reaching the SOI oxide, above which the colour filters and micro-lenses array are
manufactured. Therefore, the light only needs to cross micro-lenses and colour filters before
reaching silicon active region, and the reflections on metal lines are avoided, improving QE
and reducing optical crosstalk. In order to increase the pixels performances, the SOI oxide is
replaced by a nitride/oxide/nitride (ONO) stack acting as an anti-reflective layer and improving
light collection [31, 35].

1.4 Advanced process techniques

In CMOS based devices, such as MOS transistors and CMOS image sensors, doping is a fundamental
step in FEOL processes for the formation of the electrically active silicon regions.

Doping consists of two main steps:

1. Dopant introduction in silicon using an implantation technique.

2. Electrical activation of the dopant using a thermal anneal.

The need for highly doped and /or ultra-shallow junctions with low leakage currents leads to several
R&D efforts on the process techniques for both implantation and thermal annealing. In addition,
several physical mechanisms may take place during these process steps and their control is necessary
for functional devices development. Therefore, physical mechanisms occurring during implantation
and annealing process steps will be presented in 1.4.1. Considering these physical mechanisms, we will
present in sections 1.4.2 and 1.4.3 the different available techniques to meet the advanced junctions
requirements in terms of high doping and/or shallowness and low leakage that can be used during
implantation step.

1.4.1 Physical mechanisms during implantation and thermal annealing

Ton implantation has been used since the 1960s, following the need for a better control of dopant
profiles spatial extension in silicon based devices. During ion implantation, the dopant atoms in
an ion form are introduced in silicon following an electrical field induced acceleration. A summary
of modern ion implantation techniques with a focus on USJs can be found in [36]. The main ion
implantation techniques currently used in semiconductor industry are:

e “Conventional” beam-line implantation where dopant atoms are ionized in a plasma source
and introduced in silicon following an electrical field acceleration and a magnetic field mass
selection. In the ion implantation process, several parameters can be fixed such as the ion
energy determining the implanted depth of dopant atoms and the mean value of their spatial
distribution also known as the projected range R,. Dopant total quantity can also be defined
by the implantation dose (in cm~2) and finally the tilt angle with respect to silicon surface can
also be fixed.
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e Plasma immersion ion implantation (PIII) is a very promising alternative to traditional beam-
line for applications where highly-doped or shallow or conformal junctions are needed. PIII will
be presented in detail in chapter 2 on both experimental and modelling level, where we will see
that the dopant is located at the surface with a peculiar shape of the dopant distribution defined
by the plasma acceleration voltage.

When a dopant atom is introduced in silicon either by beam-line implantation or PIII, its initial
energy when entering the silicon crystal will unavoidably lead to the creation of additional interstitial
and vacancies called point defects. Thus during implantation, the silicon crystal can be severely dam-
aged and even amorphized for high energy (or acceleration voltage for PIII) and dose conditions.

After implantation, silicon is far from equilibrium and the crystal is highly super-saturated with
silicon interstitial and vacancy point defects. In such non-equilibrium conditions, a point defect super-
saturation is defined as:

X
X
where X and X* are respectively the point defect X concentration in implanted silicon and in silicon
at thermal equilibrium.

Sx (1.19)

Point defects play a major role on dopant dynamics during thermal annealing, where several com-
plex physical mechanisms summarized in [37], may take place.

During thermal annealing, dopants diffuse in silicon by forming pairs with point defects [37, 38].
Considering a dopant A and point defect X, the diffusing species can be Al (dopant-interstitial) or AV
(dopant-vacancy) for respectively interstitial and vacancy mediated diffusion. Consequently, dopant
A diffusion mediated by AX pair increases with the point defect X supersaturation Sx. It should be
noticed that AX diffusing pairs may exist in different charge states leading to a diffusion dependent
with the Fermi level and therefore silicon background doping. Diffusion in AX form also depends on
the stress field in the silicon material.

In addition to pairs formation, dopant atoms A and point defects X can aggregate forming A, X,
clusters with n dopant atoms A and m point defects X. Such clusters are generally immobile and do
not diffuse, even though some small clusters can be mobile at high doping concentration [39]. Dopant
defect clusters are electrically inactive and explain the different deactivation mechanisms taking place
in highly doped silicon.

Point defects resulting from implantation may also aggregate to form pure point defect clusters
or other extended defects. For instance vacancy point defects may form clusters V, that have been
investigated experimentally and theoretically in literature [10—12]. However, main literature studies
on point defects aggregates concern interstitial clusters and extended defects. Indeed, during the first
steps of thermal annealing, in addition to AX pairs diffusion and A,X,, clusters formation, intersti-
tial I and vacancy V atoms will recombine. The I-V recombination will leave an excess of silicon
interstitial atoms in crystalline implanted regions (in amorphous region I =V = 0), with a concen-
tration corresponding to the implanted dopants concentration. Thus, an interstitial supersaturation
St is mainly obtained after the implant leading to the formation of interstitial extended defects I,,.
Interstitial extended defects grow following an Ostwald ripening mechanism detailed in [13]. Indeed,
the interstitials super-saturation in equilibrium with a defect of size n is given by:

St (n) = exp [Ef (“)} (1.20)
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where Eg (n) is the formation energy of a defect of size n. Given that the formation energy decreases
with the defect size n [13], interstitials super-saturation is higher around small defects in compari-
son to big ones, leading to an interstitials flux from small to big defects, in agreement with Ostwald
ripening mechanism. With increasing defects size and decreasing formation energy the following de-
fects can be formed: small interstitial clusters (ICs) for small n values, {113} rod-like defects, (111)
faulted circular Frank dislocation loops (FDLs) and (111) perfect elongated loops (PDLs). For a non
amorphizing implant, interstitials extended defects form at the implanted dopant projected range R,,.
For an amorphizing implant, excess interstitials are located below the amorphous/crystalline (A/C)
interface, and therefore extended defects will form in this region and are labelled end of range (EOR)
defects.

After an implantation step, excess interstitials are in small ICs form leading to a high interstitial
super-saturation according to equation 1.20 and [13] for formation energy versus size dependence. For
dopant diffusion mediated by interstitials, an important and transient diffusion takes place at the be-
ginning of annealing following an implantation step. Such mechanism is known as transient enhanced
diffusion (TED) in literature, and was one of the major challenges in USJs realisation. TED can be
reduced by using high temperature and short time thermal anneals, in order to quickly reduce Sp
forming big size extended defects. Advanced annealing techniques presented in 1.4.3 allow to answer
TED challenges.

Extended defects presented above introduce deep energy levels in the silicon bandgap and are
responsible for junction leakage currents when located in the SCR of advanced junctions. Several
literature studies showed the direct correlation between EOR defects following amorphizing implants
and junction leakage currents [18, 44-16]. It should be noticed that deep energy levels introduced
by extended defects can be either discrete, or correspond to a continuum energy band in the silicon
band gap, depending on the local environment of the extended defect as defined by Schréter et al. [17].

We mainly described physical mechanisms taking place in silicon material during thermal anneal-
ing. However, dopant but also other chemical species present in CMOS based devices can diffuse from
one material to overlying (or underlying) ones and segregate at the different materials interfaces. In
such case, the chemical species diffusion has a multi-materials aspect, requiring dedicated experimen-
tal investigation. Chemical species transfer from a material to neighbouring ones may have an impact
on electrical performances of CMOS based devices.

1.4.2 Implantation advanced solutions

In order to answer the different challenges of advanced junctions in terms of high electrical activation,
shallowness and low leakage currents for low power applications, several solutions already exist at
the implantation process [36]. The solutions considered here concern mainly conventional beam-line
implantation while PIII advantages will be detailed in 2. The following approaches are currently used
in advanced CMOS technologies:

e Amorphization pre-implant: an amorphizing pre-implant, generally germanium ions, can be used
in order to improve dopant diffusion and activation, following a thermal anneal. Indeed, dur-
ing thermal annealing, amorphous silicon phase will recrystallize thanks to solid phase epitaxial
regrowth (SPER) mechanism [18]. A better dopant electrical activation is generally obtained
during SPER [19]. However after SPER, activated dopant atoms are in a metastable state,
and subsequent thermal annealing may lead to dopant deactivation as observed in [50, 51] for
boron. However, due to the high doses used in pre-amorphization implants, EOR defects will
unavoidably form, and their location has to be carefully adjusted in order to avoid leakage cur-
rents. In addition, the free interstitials gradient between EOR defects and surface oxide/silicon
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interface with a corresponding diffusion from EOR defects to the surface is responsible of dopant
deactivation for thermal anneals subsequent to SPER [51].

e Molecular implants: for USJs applications in the sub-keV implantation energy regime, using
traditional beamline implantation becomes very limited and mainly for light ions such as boron.
Therefore, molecular implants are used in advanced technologies where an ionized molecule
containing the dopant atom is implanted in silicon, in order to benefit from the molar mass ratio
scaling factor Mion/Mpolecule leading to a lower ion implantation energy. For instance, BFq,
BigHao or C3B1gHj2 (carborane) molecules can be used for boron implantation in silicon.

e Cold implantation: traditionally ion implantation is carried at room temperature. As mentioned
in 1.4.1, I-V recombinations take place during the implantation step which is known in literature
as dynamic annealing. Therefore, interstitials and vacancies initial concentrations after the
implant depend on the dynamic annealing mechanisms. Recently, several results showed that
ion implantation performed at low temperature below 0°C is quite interesting in order to reduce
post-implants excess interstitials concentration. At low temperature, I-V recombinations that are
thermally activated are highly reduced leading to a higher damage accumulation in comparison
to room temperature implants and consequently a deeper A/C interface. Therefore, excess
interstitials concentration below the A/C interface is lowered, EOR defects density is lowered
leading to lower deactivation for thermal anneals subsequent to SPER and reduced junction
leakage currents [52-51].

e Impurities co-implants: in order to reduce interstitials super-saturation introduced by dopant
implants, additional non doping impurities can be implanted or co-implanted. Such impurities
form stable clusters with both interstitials and vacancies and act as traps for these point defects.
Therefore by capturing free interstitials (or vacancies), the co-implanted impurities allow to
reduce dopant diffusion and improve their activation by avoiding the formation of stable dopant-
defect clusters. For instance, carbon [55, 56], fluorine [57, 58] and nitrogen [59, 60] can be used
in order to reduce interstitials super-saturation and therefore boron diffusion in silicon.

1.4.3 Thermal annealing advanced solutions

Both dopant diffusion and electrical activation mechanisms are thermally activated, with a higher
activation energy for the latter [(1]. Therefore, high temperatures are used in advanced process
techniques (1000°C) due to their much higher beneficial effect on dopants electrical activation, in
comparison to their diffusion. Short times are used in USJs applications in order to reduce dopant
diffusion and mainly TED for USJs applications. A summary of advanced annealing techniques can
be found in [62, (63]. Here, we will present the different annealing approaches found on the industrial
level in terms of temperature and time characteristics:

e Rapid thermal processing (RTP) anneals: also called rapid thermal anneals (RTA) are the most
common in semiconductors industry. In RTPs, a thermal anneal includes a temperature ramp-
up, plateau and ramp-down performed thanks to high intensity lamps such as halogen or infra-red
lamps providing fast and uniform heating. Ramp-ups can vary from 20°C/s to 400°C/s which is
interesting to reduce TED [64]. Ramp-downs are however more limited on the order of 80°C/s.
The plateau part temperature can reach 1300°C and last several seconds or minutes, leading to
what is commonly called “soak” anneals. RTAs with very short plateau time of several fractions
of a second to few seconds are called “spike” anneals and are generally used for source/drain
USJs activation in advanced CMOS technologies.

e Flash anneals: in flash lamp anneals (duration in millisecond range [65, (0]), a xenon lamp
electrical discharge is generally used allowing thermal anneals up to 1300°C with ramp-up
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reaching 10°°C/s and ramp-downs from 50 to 400°C/s leading to interesting junctions char-
acteristics in terms of shallowness (due to ms times) and electrical activation (due to high
temperature) [67, 65]. However, it was also observed [68] that EOR dissolution following their
interaction with oxide/silicon surface is slower for flash anneals in comparison to RTP ones. In-
deed, despite the high temperature used, flash anneals are not long enough to remove or decrease
the residual EOR defects.

Laser thermal anneals (LTA) can currently be considered as the most advanced industrial an-
nealing approach in terms of short times (nanosecond range) and high temperatures exceeding
sometimes silicon melting temperature (1412°C). Excimer laser annealing is generally used with
UV wavelength and pulses in the nanosecond range, where a pulsed laser beam scans a silicon
wafer surface leading to a local nanosecond annealing of silicon surface. However, contrarily
to RTP and flash anneals, LTA is highly non-uniform leading to a temperature field in silicon
depending on the scanned surface nature [69]. In addition, depending on the laser fluence (in
J/cm?), but also on the number of laser pulses, local temperature at the silicon surface may
exceed the melting one [62]. Therefore in LTA, two main regimes can be distinguished:

— Sub-melt regime: where local temperature in silicon is high (~ 1300°C) but below melting
point. In this regime, due to very short times of annealing, no profile diffusion is observed
and diffused profile is almost identical to the as-implanted one. In addition, due to the high
temperatures used in this regime, dopant can be electrically activated with an activation
rate depending on the laser characteristics such as pulse duration, fluence or number of
pulses.

— Melt regime: where local temperature exceeds melting point leading to a corresponding sili-
con melting during the anneal also depending on melting characteristics. However, physical
mechanisms are more complex in melting regime. During the anneal, silicon melt is localized
near the surface, while silicon substrate is at room temperature and followed by a regrowth
through a liquid phase epitaxy (LPE). During LPE, and similarly to what is observed in
SPER, higher dopant activation can be achieved in comparison to the sub-melt regime due
to faster interface regrowth velocity (4-5 m/s) [70]. In liquid silicon, dopant diffusivity is
almost 10% times greater than in solid silicon. The combination of high dopant diffusiv-
ity and LPE regrowth velocity leads to highly activated uniform, abrupt and box-shaped
dopant profiles, the box dimension being determined by the molten silicon depth.

Both sub-melt and melt regimes are useful for localized anneals where very low dopant diffusion
is needed. High activation levels can be obtained in the melt regime and when increasing the
pulses number in the sub-melt regime [62]. For BSI CMOS image sensors applications, LTA
is an interesting technique for localized dopant activation in the pixel backside region at the
SOIT oxide/silicon interface without frontside dopants diffusion. Backside doping is used in order
to avoid vertical photodiode (Fig. 1.5) SCR extension near the interface, leading to a dark
current reduction. However as for flash annealing, one of LTAs drawbacks is the short time
used, insufficient for extended defects dissolution. Thus, LTA conditions can be chosen in order
to avoid extended defects formation in the SCR. region of p-n junctions.

1.5 Silicon level TCAD modelling

As we have seen in previous section, several complex doping techniques in terms of implantation and
thermal activation can be used for advanced CMOS devices manufacturing. Therefore, modelling
methodologies such as TCAD can drastically reduce CMOS technologies development cycle time and
cost. In the frame of this PhD thesis, the industrial software Synopsys Sentaurus TCAD was used,
including two main parts:
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e Sentaurus process (SProcess) [71]: where the FEOL part processes for CMOS based devices
can be carried out including mainly implantation and thermal annealing steps in addition to
topographic operations such as deposition and etching. Simulations can be performed in 1D, 2D
and 3D.

e Sentaurus device (SDevice) [21]: following the process simulations of SProcess, CMOS based
devices electrical simulations can be carried out thanks to SDevice, also in 1D, 2D and 3D.

Thanks to several literature results to be detailed below and within previous European projects
[72, 73], TCAD models are able to predict complex doping profiles in advanced CMOS technologies and
corresponding electrical characteristics (Iq (Vg), Vi (Lg), QE(X) ...) of core CMOS devices. State-of-
the-art TCAD models already available at the beginning of the PhD thesis will be presented in 1.5.1.
TCAD models considered here will deal mainly with dopant implantation and diffusion for process
modelling part in 1.5.1.1 and junction leakage currents for device modelling part in 1.5.1.2. Missing
models will be identified and discussed in 1.5.2 and will allow us to define the goals of this work.

1.5.1 State-of-the-art TCAD models
1.5.1.1 Advanced process models

For silicon TCAD process modelling, two main modelling approaches are available:

e Continuum: this approach is based on partial differential equations (PDE) for the different
diffusion and reaction mechanisms taking place during an annealing step. PDEs based equations
for point defects, dopant, and other dopant defect complexes are discussed in details in [37, 3]
and references therein. The PDEs numerical resolution is based on finite element methods
(FEM). Therefore, CPU (Central Processing Unit) time depends on the meshing characteristics,
and generally increases with the number of PDEs but mainly when several PDEs are coupled due
to non-linear effects. It should be noticed that continuum models concern the thermal annealing
part. The implantation step previous to the annealing one can be simulated with two methods:

— Analytical: where dopant analytical tables are simply loaded during an implantation step
depending on the implantation characteristics (energy, dose, tilt, ...). In this approach,
crystal damage (= Interstitials + Vacancies) is calculated thanks to the Hobler model [74].
Due to its low CPU time, this approach is very attractive for large 3D structures including
several transistors as in CMOS image sensors.

— Monte Carlo (MC): this statistical approach allows the calculation of dopant ion penetration
in silicon and corresponding damage generation using the binary collision approximation
[75=77]. MC approach is more physical than the analytical one and indeed, analytical tables
are generally calibrated using Monte Carlo implants simulations [74]. The MC method can
be highly CPU consuming, however can easily benefit from parallelization techniques due
to its statistical character.

e Kinetic Monte Carlo (KMC): this approach is both atomistic and probabilistic and uses Monte
Carlo methods. Details on the KMC technique applied to silicon material can be found in
[71, 78, 79]. In this approach all silicon defects can be modelled (point defects, dopant, clusters,
EOR defects ...). Every physical effect such a diffusion or reaction mechanism, corresponds
to a random event with a well-defined frequency. KMC can also be used in association with
the implantation simulation where dynamic annealing can be taken into account, which can
be suitable for cold implants and other dose rate (in cm?.s™!) dependent implants simulations.
KMC simulations are generally CPU consuming. However, CPU time becomes equivalent to
continuum approaches for nanometric devices, while similarly to MC implants, KMC can also
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benefit from parallelization. Finally, a KMC version with silicon lattice atoms can be considered
and is called lattice KMC (LKMC). LKMC technique is generally used in some particular process
steps such as SPER.

The PhD work mainly focused on continuum approach discussed above, and therefore only state-
of-the-art process models using this approach [71] will be presented below.

First of all, the majority of advanced diffusion models in silicon use the five-stream model [30, 81]
where dopants diffuse by forming a pair with point defects. Five equations are therefore needed to
model diffusion mechanisms: one for dopant atoms, two for point defects (interstitials and vacancies),
one for dopant-interstitial pairs and one for dopant-vacancy pairs. It should be noticed that point de-
fects and dopant-point defects charge states are also taken into account in advanced five-stream models.

Considering point defects interstitial complexes, several small interstitial clusters (ICs) can be
considered (Iz, I3 and Iy in SProcess) among the different small ICs I, with n < 10 studied in lit-
erature [32]. {311} and FDLs extended defects are modelled using moments approach [33-85] with
two moments generally considered: the concentration of interstitials (in cm™3) in the defects and the
density of defects (in cm™3).

Dopant activation and deactivation mechanisms during thermal annealing are modelled using small
dopant-point defect clusters [30], as for example in SProcess: boron clusters (Bg, Bal, Bals, Bsl, B3l
and Bsls) and arsenic clusters (Asy, AsaV, Asg, AssV, Asy and AsyV). Another possible cause of
dopant deactivation is their interaction with interstitial EOR defects as already observed for boron
trapping at the boundaries or EOR defects ({311}s and FDLs) [87, 88].

As already discussed in 1.4.2, in association with dopant implantation, non-doping impurities
co-implantation can be carried out in order to reduce point defect super-saturation and limit their dif-
fusion. For instance carbon interstitial clusters reduce interstitials super-saturation and corresponding
dopant TED [55, 56, 89]. Fluorine-vacancy and fluorine-interstitial clusters [58, 90] have also the same
effect on interstitials super-saturation reduction.

1.5.1.2 Junction leakage current models

Considering leakage currents modelling, the different GR mechanisms are included in advanced device
simulators [21]. Details on advanced GR models can be found in [19] and references therein.

First of all, SRH GR mechanisms can be modelled, where minority carriers lifetimes can be both
dopant concentration [91, 92] and temperature dependent [93]. Within the SRH mechanism, traps
deep energy level(s), nature (donor, acceptor, trap or GR center) and cross section capture rates can
be defined. In addition, the exact spatial localization of traps can be defined using for instance a
process simulation field such as EOR defects concentration.

BBT GR mechanisms are modelled in highly doped and abrupt p-n junctions. In order to in-
clude the field assisted BBT GR mechanism, a simple field dependent GR term can be added [94],
and phonon assisted tunnelling can also be included for more complex models [19, 95]. For highly
doped 2D and 3D junctions, with direction dependent tunnelling mechanisms, non local tunnelling
models [96] can also be used.

Similarly, TAT can be modelled taking into account the field effect [94] but also the phonons in
more advanced models [19, 97]. Non local tunnelling can also be included in the TAT models.
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1.5.2 Beyond state-of-the-art

Following the short summary of state-of-the-art process and junction leakage current TCAD models
presented respectively in 1.5.1.1 and 1.5.1.2, several missing models were identified. The development
of the new models is the goal of the PhD thesis. The main objective to extend the capabilities of
TCAD models to the prediction of alternative doping processes and corresponding leakage currents.
Our results are expected to increase TCAD predictability for core CMOS devices such as short channel
MOS transistors and mainly for CMOS derivatives such as advanced CMOS image sensors with both
FSI and BSI schemes.

The different modelling challenges can be summarized in two main research activities:

1. Alternative USJs formation techniques: advanced CMOS technologies and mainly BSI CMOS
image sensors require the use of alternative doping techniques on both implantation and anneal-
ing parts in order to improve their electrical features such as reducing dark current sources. The
first challenge concerns doping at the different oxide/silicon interfaces of CMOS image sensors
in order to reduce Ign. Concerning oxide/silicon interfaces, a 3D conformal doping is needed
for DTIs. PIII is the main industrial technique that is currently available for conformal doping.
In addition to modelling the conformal aspect of PIII, the resulting dopant profile leads to high
dopant concentrations near the surface region, largely above dopant solubility limits. Therefore,
new high dopant and point defects concentrations mechanisms may occur and lead to addi-
tional modelling efforts presented in chapter 2. The second challenge is modelling LTA processes
( 1.4.3) used in BSI image sensors, where a dopant activation is required at the backside of the
image sensors, while preserving the integrity of frontside active regions already present in the
structure. Several physical mechanisms have to be taken into account during the LTA, such as
the temporal and spatial temperature field evolution, LPE, but also dopant diffusion in liquid
and its segregation at the liquid/solid interface.

2. Chemical species diffusion in multi-materials stacks: in addition to classical dopant diffusion
taking place in silicon, additional dopant but also other chemical species diffusion and transfer
between neighbouring materials may take place during annealing. These diffusion and transfer
mechanisms have an impact on devices electrical behaviour and therefore cannot be neglected
for predictive TCAD simulations. In chapter 3, two different PhD results on such mechanisms
will be presented. The first example concerns a dopant species boron and its diffusion in ni-
tride/oxide/silicon stacks used for instance in spacer materials ( 1.2.3.3) or in ONO SOI of BSI
CMOS image sensors ( 1.3.3.2). The second example concerns a non doping species lanthanum
and its diffusion in advanced high-k stacks following thermal annealing, which has an impact on
V; shifts in n-MOS transistors.

The different challenges identified above resulted in several new models developed in the frame of
ATEMOX project [98]. The PhD thesis carried out in association with STMicroelectronics Crolles and
LAAS CNRS Toulouse France mainly focused on these challenges. The resulting set of models was
tested on device structures of MOS transistors, FSI and BSI CMOS image sensors used in advanced
CMOS technologies, and corresponding process and device simulation results will be presented in
chapter 4.

1.6 Conclusion

The aim of this chapter was to introduce the needed background for the PhD results. The MOS tran-
sistor was introduced, including its main components: p-n source/drain junctions and MOS capaci-
tance. Different MOS transistor operation regimes were presented followed by its main miniaturization
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challenges in the frame of advanced CMOS technology processes. In addition to MOS transistors con-
sidered as core CMOS “More Moore” elements, CMOS image sensors belonging to derivative elements
from “More than Morre” category were presented. After reminding CMOS image sensors main op-
eration regimes and features, both FEOL and BEOL process parts of CMOS image sensors were
detailed. Following MOS transistors and CMOS image sensors description, the need for advanced
process techniques was identified for both miniaturization and diversification requirements for CMOS
based devices. Considering doping techniques, after a summary of main physical mechanisms occur-
ring during ion implantation and thermal annealing, process solutions existing on the industrial level
were given for the implantation part and thermal annealing part. In the frame of advanced CMOS
technologies challenges and corresponding fabrication process solutions, TCAD modelling becomes
mandatory for technologies development cost and time reduction. Silicon level TCAD modelling was
presented, with a reminder of state-of-the-art TCAD models available at the beginning of the PhD
thesis, including process models and leakage current models. This TCAD models listing allowed us
to evidence the main missing models for predictive CMOS based devices modelling including MOS
transistors, but also FSI and BSI CMOS image sensors. In the frame of the PhD thesis and ATE-
MOX European project, two main modelling challenges were identified: alternative USJs formation
techniques and chemical species diffusion in multi-materials stacks. Therefore, PIII alternative doping
technique and its resulting physical mechanisms due to high doping concentrations will be presented
in chapter 2. Two examples of chemical species diffusion in multi-layer materials stacks such as MOS
transistors gate stacks or ONO SOI stack in BST CMOS image sensors, will be presented in chapter 3.
Finally the different new models developed in the frame of the PhD will be evaluated in chapter 4 on
CMOS based devices, including MOS transistors, FSI and BSI CMOS image sensors.
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Chapter 2

Implantation-induced defects and their
impact on dopant diffusion and
activation

2.1 Introduction

The race for highly doped ultra-shallow junctions (USJs) in advanced CMOS technologies and the
need for both ultra low energy (sub-keV) and high implantation doses (> 10 ¢cm~2) quickly showed
the limits of traditional beam-line implantation. In the frame of ATEMOX project [!], several al-
ternative doping techniques like plasma immersion ion implantation (PIII), cocktail implants, laser
annealing and low-temperature implantation were studied, including experimental investigation and
modelling. These doping techniques have very interesting applications in both core CMOS more Moore
applications and diversified CMOS derivatives "more than Moore” applications [2], as defined by the
International Technology Roadmap for Semiconductors (ITRS) 2011.

In the first part of this chapter, we will emphasize the work on plasma implantation during the
PhD thesis. After reminding the PIII technique in section 2.2, we will describe the investigation of
BF3 plasma implanted p*/n USJs dedicated experiments and the corresponding simulations using
default advanced process models [3] in section 2.3. These experiments will result in the observation
of large boron interstitial clusters (BICs) lying in (001) crystalline plane for the different annealed
samples whose description is mandatory for a correct modelling of diffusion and activation in high dose
implanted samples. Thus, section 2.4 will be dedicated to the development of a large BICs (LBICs)
continuum model based on moments approach. The model will be calibrated thanks to dedicated
traditional beam-line implants and then tested on other beam-line implanted samples and on the BF3
PIII annealed samples.

2.2 Plasma Immersion Ion Implantation (PIII)

PIII technique is a promising alternative for highly doped USJs where contrarily to beam-line implan-
tation, the ions plasma source is directly in contact with the implanted sample [1]. Different plasmas
are used for implantation in industrial applications such as AsHj (arsenic) or PH3 (phosphorus) for n
doping and ByHg (boron) or BF3 (boron) for p doping [5]. BF3 is currently used in p™/n USJs and
will be investigated in this chapter using the PULSIONYY plasma doping tool [0, 7] from Ion Beam
Services (IBS) in Rousset France. The doping tool is a classical PIII one described in details in [6—5]
and will be presented in this section.
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Let us remind that plasma is the fourth state of matter in addition to solid, liquid and gas and is
by far the most commonly observed state in the universe. Plasmas are typically composed of ionized
atoms or molecules and electrons, but may also include neutral species or non-matter particles such
as photons. Plasmas can be found in a huge variety of natural and artificial physical systems with
variations in electronic density n,- and temperature T- of several orders of magnitude. Microelec-
tronics industry is mainly interested in non-equilibrium plasma discharges for materials processing
generally used for etching, deposition or PIII operations. A complete review of the physics of these
plasma discharges is given in [9] and they are characterized by low pressure (p ~ 1 mTorr to 1 Torr)
and electronic density (n,- ~ 10%-10'® cm~3). In addition, the electronic temperature is in the 1-10
eV (10%-10° K) range, much higher than the ions temperature T; (To- > T;).

In Fig. 2.1, a very simplified version of the plasma doping tool is presented. The plasma tool has
a 4 m? surface [¢] with a chamber under vacuum where the ions are to be implanted. Depending on
the desired species to be implanted, different gases are introduced in the top of the chamber as we
can see for the BF3 plasma in our case (Fig. 2.1a). The sample or wafer to be implanted is localized
in the center of the chamber, positioned on a sample holder and completely immersed in the plasma
environment of the chamber. The BF3 precursor gas is ionized and the BF3 plasma is formed thanks
to a radio frequency (RF) generator at the top gas entry of the chamber (not shown here) which allows
forming high electronic density n.- plasmas (> 10'* em~3). Once the plasma is created, different ions
are formed in the chamber. In order to implant the ions in the sample, negative bias pulses V are
applied on the sample holder or cathode as shown in Fig. 2.1b. Positive ions in the plasma are thus at-
tracted to the sample holder. In the meantime, electrons resulting from the different species ionization
are attracted to the top walls of the plasma chamber or anode. Given the lower mass of electrons in
comparison to positive ions, electrons velocity is higher than the positive ions one in the vicinity of the
sample surface. While ions are localized in the region near the sample surface, this same region will be
depleted from electrons and a plasma sheath with a given thickness containing a uniform distribution
of positive ions is formed around the sample. The electrical field in the plasma sheath accelerates
the ions, which are then implanted in the sample. Following this implantation step, positive ions
density within the sheath is reduced and thus the plasma sheath thickness increases in the direction
of the anode. Other ions from the top of the chamber are then attracted to the sample and the cycle
with the negative bias pulse can be repeated as much as needed depending on the desired dopant dose.

Anode 0 IW‘ 0

BF, GAS 1 ZBF3 PLASMA 1
L

e (=1

"B TBEC T BR T BR T

e LTI

Boron doping
Si substrate (100) Si substrate (100)
N-doped: Phosphorus N-doped: Phoesphorus
(5-20 Q.cm) (5-20 Q.cm)
[ Cathode | 0 [ Cathode | V,

(a) (b)

Figure 2.1: PULSION ® plasma doping tool characteristics: (a) at zero voltage and (b) with applied
negative voltage Vg at the cathode connected to the sample holder.
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In comparison to beam-line implantation, PIII has specific characteristics to be kept in mind as
we will see in next section 2.3:

e Multi-species implant: while in traditional beam-line implantation, the mass selection leads to a
unique ion implantation in the sample, when ionizing a BF3 gas, several ionized species present
in the plasma (BT, BFT, BFy' and BF3™) will be implanted in silicon [10]. This multi-species
aspect of plasma implants makes their modelling quite difficult and some assumptions have to be
made in order to reproduce BF3 as implanted SIMS profiles as we will see in sub-section 2.3.1.

e Multi-energetic implant: when the plasma ions are accelerated within the sheath (Fig. 2.1b),
they will undergo several collisions and thus an important fraction of the ions will be implanted
at an energy lower than the one applied between the anode and the cathode. In addition, sheath
dynamics during the implant leads to an energy distribution of implanted species. This is valid
in collision-less sheath [11] where ions mean free path is higher than the sheath thickness, but
also in highly collisional plasma sheath [12]. This multi-energetic aspect of plasma implants can
also be due to the neutrals formed following the different ions collisions within the sheath [13].

e Multi-angle implant: increasing the pressure in the plasma chamber (1072 to 1 Torr) leads
to more ions collisions within the plasma sheath. Thus, the different ions collisions and the
corresponding ions direction modification and energy exchange lead to an angular distribution
of the ions. This aspect can be used for three dimensional conformal doping as we will see in
chapter 4.

Following the short description of PIII in this section, we will present our experimental and mod-
elling investigation of BF3 plasma implanted p+/n USJs in the frame of the PhD work and the
ATEMOX project [1] in next section 2.3.

2.3 Experimental investigation and modelling of BFj3; plasma im-
planted p+/n USJs

In this section, we present our experimental and modelling investigation of dedicated BFj3 plasma
implanted p+/n USJs. In 2.3.1, details of the different experiments will be given. Sub-section 2.3.2
will deal with the investigation of implantation and amorphization when using BF3 PIII followed
by the investigation of dopant diffusion and electrical activation during subsequent thermal anneals
(sub-section 2.3.3).

2.3.1 BF; PIII dedicated samples

Dedicated BF3 plasma implanted samples were designed in order to investigate the specific charac-
teristics of PIII and their TCAD modelling including implantation, amorphization, dopant diffusion
and electrical activation. The starting samples are several 300 mm silicon wafers with an n-type
phosphorus doping (5-20 Q.cm) and (100) crystalline orientation. The samples were implanted by a
BF3 plasma using PULSION® plasma doping tool [7] shown in Fig. 2.1. Two negative voltages V|
(Fig. 2.1b) of 0.5 kV (low energy) and 10 kV (high energy) were used, each one with two doses of 5.10
(medium dose) and 5.10'® cm~2 (high dose). We should notice that in these experiments and as for tra-
ditional beam-line implantation, the dose was calculated by integrating the total implantation current.

The different implanted samples are summarized in table 2.1. After the plasma implants and in
order to investigate diffusion and electrical activation related physical phenomena when using a PIII,
samples from high energy/high dose category (BF3 10 kV, 5.10!® ¢cm~2) were cut and annealed at
different temperatures and times. A high energy was chosen in these studies in order to localize the
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junction far from the surface silicon/oxide interface and therefore minimize its impact on the junction
electrical activation. The high dose was chosen in order to be closer to high boron doping required
in advanced USJs. The thermal anneals used a rapid thermal anneal (RTA) system from Fraunhofer
IISB'. The temperature/gas flow process of these anneals is the following:

1. Cleaning step during 5 min at room temperature in a Ny ambient with a 15 1(Liters)/min gas
flow.

2. Pre-heat step with a ramp-up from room temperature to 400°C in a Ng ambient with a 5 1/min
gas flow.

3. Heat-up step using a temperature ramp-up in a Ny ambient with a 4 1/min gas flow with the
following characteristics for the different annealed samples summarized in table 2.1:

e 400 to 800°C ramp-up during 18 s for the 800°C 10 s , 1 and 10 min samples.
e 400 to 900°C ramp-up during 24 s for the 900°C 10 s , 1 and 10 min samples.
e 400 to 1065°C ramp-up during 32 s for the 1065°C 1s sample

4. Plateau step with a constant temperature and a given duration in a No ambient with a 3 1/min
gas flow, depending on the considered sample.

5. Cooling down steps with a ramp-down that is the exact opposite of the heat-up step in Ny
ambient with a 3 1/min gas flow, followed by a second ramp-down from 400 to 350°C in a Ny
ambient with a 15 1/min gas flow.

All as-implanted and annealed samples of table 2.1 were characterized by SIMS at Probion Anal-
ysis? using a 1 keV Oy tilted beam on 200 x 200 ym samples in order to extract boron and fluorine
total concentrations versus depth in silicon by measuring the intensities of 1Bt and ''BT positively
charged isotopes for boron and the 'F* positively charged isotope for fluorine. Transmission electron
microscopy in cross section view were made on the different as-implanted samples of table 2.1 in order
to extract amorphization depths generated by the different BF3 plasma implants. Considering the
annealed samples, cross section and plan view images were carried out in order to evaluate the EOR
defects survival following the different thermal budgets (excluding 800°C 10 s and 1 min). Finally, in
order to investigate the electrical activation in BF3 PIII following the different thermal budgets, Hall
effect measurements described in [14, 15] were made and sheet resistance values in addition to Hall
mobility and active boron dose were extracted on the p+/n BF3 USJs. The different experiments on
the PIII samples are summarized in table 2.1.

The results relative to these experiments were studied and published in [16, 17], as we will see in
next sub-sections 2.3.2 and 2.3.3 where we will present respectively our results on implantation-induced
amorphization and dopant diffusion-electrical activation in BFg PIII.

2.3.2 Implantation and amorphization in BF; PIII

SIMS implanted profiles of table 2.1 for boron and fluorine following the BFs PIII at 0.5 and 10
kV negative voltage Vg acceleration are shown respectively in Fig. 2.2a and 2.2b. Typical triangular
profiles (in log scale) of plasma implants are observed for both boron and fluorine leading to very
high concentrations (> 10?° cm~3) near the silicon/oxide interface. Triangular shapes are due to the
ions energy distribution and depend on the plasma sheath dynamics during the negative voltage Vy

!Fraunhofer Institute for Integrated Systems and Device Technology IISB Schottkystrasse 10, 91058 Erlangen, Ger-
many
2Probion Analysis 37 rue de Fontenay 92220 Bagneux, France
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Table 2.1: Summary of the different BF3 PIII samples and corresponding experimental measurements
presented in this chapter.

Sample SIMS Hall effect measurements TEM
BF;5 0.5 kV 5.10'* cm ™2 X X
BF3 0.5 kV 5.10"® ¢cm™2 X X
BF3 10 kV 5.10'* cm—2 X X
BF; 10 kV 5.10' c¢cm™2 X X
BF;3 10 kV 5.10" ¢cm~2 - 800°C 10 s X X

BF3 10 kV 5.10'® cm™2 - 800°C 1 min X X

BF; 10 kV 5.10 ¢cm™2 - 800°C 10 min X X X
BF;5 10 kV 5.10" ¢cm~2 - 900°C 10 s X X

BF3 10 kV 5.10'® cm™2 - 900°C 1 min X X X
BF3 10 kV 5.10 ¢cm™2 - 900°C 10 min X X X
BF;5 10 kV 5.10" ¢cm~2 - 1065°C 1 s X X X

pulse (Fig. 2.1b). The majority of ions are implanted at low energies [18]. Depending on the plasma

conditions, deposition and sputtering may also occur leading to high concentrations at the surface. In
addition to the multi-energetic aspect of BF3 plasma implants already presented in section 2.2, the
multi-species aspect was already observed by Godet et al. [10] where in their plasma implantation
conditions, several species are implanted during BF3 PIII, with a main BFo* component. In our case,
the different species distributions during the BF3 PIII were not measured. Thus for simplification,
we will assume the implantation of a single BF3™ positive ion. The multi-angular aspect of plasma
implants cannot be evaluated on these one dimensional (1D) structures. In chapter 4 we will give
some examples of devices were plasma conformal doping is used.

T T
Boron 10 kV
Fluorine 10 kV
Boron 10 kV
Fluorine 10 kV

aoao

Concentration (cﬁf‘)
Concentration (cﬁf‘)

0 20 40 60 80 100 120 140 160
Depth (nm) Depth (nm)
(a) Vo = 0.5 kV (b) Vo =10 kV

Figure 2.2: SIMS as implanted profiles for (a) 0.5 kV BF3 plasma acceleration voltage for boron at
5.10'* ¢cm~2 and boron and fluorine at 5.10'% cm~2 and (b) for 10 kV BF3 plasma acceleration voltage
for boron and fluorine at 5.10'* and 5.10'% cm—2.

Modelling BF3 PIII on these 1D SIMS structures has to include both the multi-energetic aspect
and multi-species aspect. We used the commercial TCAD tool SProcess [3] for our simulations. The
implanted profiles were simulated using the implantation Monte Carlo code Sentaurus Monte Carlo
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(MC) [3, 19]. BF3* ionized molecule implantation is not included in the simulator and thus simple
boron BT and fluorine FT ions were implanted separately in our simulations in order to reproduce the
BF3 PIII profiles. Mass correcting factors in front of the plasma implant acceleration voltage were
added with the respective values of M(B)/M(BF3™) and M(F)/M(BF3™") where M is the molar mass
of the corresponding species.

When we started our work on plasma implantation modelling, the only available energy distribution
in SProcess within Sentaurus MC code was a simple Gaussian energy distribution [3] given by:

f(E) = JExl/ﬂe‘é(EvEEﬂ (2.1)

where Eg = V| is the mean energy of the plasma implant considering the acceleration voltage Vy,
og the standard deviation of the Gaussian distribution and f the probability distribution verifies the
normalisation condition fooo f(E) = 1. However, the Gaussian energy distribution of equation 2.1 is
a simplistic approximation to model plasma implants and is in contradiction with main literature
experimental and theoretical results [10-13]. In the frame of the ATEMOX project, Burenkov et
al. [20] considered a more realistic double exponential (2-exp) energy distribution developed in the
Monte Carlo code MCSIM [21]:

f(E) = Ae™F 4 B~PE (2.2)

where A, B, a and b are the four calibration parameters of the 2-exp energy distribution with
A/a+ B/b =1 in order to verify the normalization condition. The energy distribution of equation 2.2
allows to modulate the low and high energy parts of the plasma implanted ions and successfully re-
produces BF3 plasma implants with 6.5 kV applied voltage and doses ranging form 1.10'® to 1.10'7
ecm~2 [20]. Indeed, boron and fluorine as-implanted profiles can be easily reproduced when using the
2-exp distribution whether considering a single species implant (BF3™ in our case) or multi-species
implants. It can be argued that the 2-exp energy distribution is non-physical due to the extension of
exponential functions to infinite energies. However, the exponential functions quickly vanish in the
high energy part following adequate choice of calibration parameters. Burenkov et al. also considered

a more physical energy distribution [22] where implanted ions energy is lower than Eg = qjon Vo where
Qion 1S the ion electrical charge. The corresponding energy distribution extracted from [23] is the
following;:
5 E -1/6
f(E)= — | =— ,Ee|0,E 2.3
® -5 () 0.5 (2.3

Energy distribution in equation 2.3 is defined for E € [0, E¢] and also verifies normalization condition.
In our simulations, we will use the 2-exp energy distribution of equation 2.2 with a simple BF3™ ion
implantation.

In order to integrate the 2-exp energy distribution in SProcess, we used the inverse cumulative
distribution function (CDF) method [24]. Inverse CDF uses the following procedure in order to
generate random energies following a given probability distribution f:

e Consider an energy probability distribution f(E)

e Calculate the primitive F(E) of f(E) known as the CDF and given by: F(E) = fOE f(E)dE. In the

case of the 2-exp energy distribution of equation 2.2, F(E) = % (1 — e_aE) + % (1 — e_bE).

e F(E) is a continuous and monotonous (increasing) function of E and thus has an inverse function
F~Y(E) called inverse CDF. In addition the CDF has the following property: F(E) = 1
— 00
(probability distribution normalization).
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e It can be mathematically demonstrated [21] that the CDF F follows a uniform probability
distribution U(0,1) between 0 and 1: F(E) = U = E = F~!(U) where U is a random number
generated with the uniform law U(0,1). Thus in order to generate energy values with a given
distribution f(E) (2-exp distribution in our case), the following two steps have to be carried out:

1. Generate a random number u using a uniform distribution U(0, 1)

2. Calculate a random energy of the f(E) distribution using the inverse CDF: E = F~1(u). In
the case of the 2-exp energy distribution considered in our case, inverse CDF cannot be
calculated analytically, and thus 15 order Newton method was used in order to calculate
the random energy using the following iterative procedure for steps n and n + 1 (n integer):

F(En)

En :En_/i:En_
i F'(En)

F(En)
f(En)

(2.4)

where the derivative of the CDF is F = f. Iterative equation 2.4 is to be repeated in the
code until a given integer rank N where |F(Ex) — y| < € where € is a fixed error.

3. The calculated energy En follows the 2-exp energy distribution f.

e The previous steps are repeated for each particle in Sentaurus MC code with energies randomly
distributed using the 2-exp distribution f. By increasing the number of particles Nyt and the
corresponding randomly generated energies, the statistical accuracy of the simulated plasma
implanted profiles is enhanced.

In our case, inverse CDF method described above has an interesting simulation accuracy/time
trade-off and was applied to the 2-exp energy distribution that was calibrated for boron and fluorine
implants data of table 2.1. The parameters values are given in table 2.2 for boron and fluorine and
resulted in a good agreement for the different samples as shown in Fig. 2.3. For instance,in Fig. 2.4,
we give energy distributions for the BF3 10 kV 5.10'% cm™2 PIII for Ny, = 100000 particles for both
boron and fluorine, using inverse CDF method described above with the set of parameters of table 2.2.

Table 2.2: Boron and fluorine calibrated parameters of the 2-exp energy distribution of equation 2.2
with Eg the ion energy corresponding to the acceleration voltage V.

Parameter a b A/a | B/b
Boron 1.8/(M(B)Eo /M(BF3 7)) | 0.95/(M(B)Eo/M(BF57)) | 0.88 | 0.12
Fluorine 9.7/ (M(F)Eo /M(BF3 7)) | 0.15/(M(F)Eo /M(BF57)) | 0.88 | 0.12

Sentaurus MC plasma implantation simulations used cascades mode [3] in order to model damage
generation by both boron and fluorine implanted atoms. The BF3™ implanted species considered in
our simulations is however not implemented in the simulator we use. Thus, in order to reproduce the
damage generated by the BF3™ ionized molecule, the boron damage multiplication factor d(B) has
been increased using the following formula:

4(B) = alon) 7

where d'(B) is the modified damage multiplication factor and a(¢p) = (¢p + 5.10')/5.10™ is a fitting
formula depending on the implant dose ¢ for boron. A good agreement was found between TEM
measured amorphous depths shown in Fig. 2.5 and TCAD simulations.

d(B) (2.5)
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Figure 2.3: SIMS versus TCAD as implanted profiles using 2-exp energy distribution of equation 2.2
with the set of parameters of table 2.2 for 0.5 kV BF3 plasma acceleration voltage for (a) boron, (b)
fluorine and for 10 kV BF3 plasma acceleration voltage for (c) boron and (d) fluorine.

12000 T T T
Boron 2-exp energy distribution——
Fluorine 2-exp energy distribution

10000 R
n
Q
S sooof .
@
- 5 2
w— -
5 cooof BF; Plll, 10 kV 5.10° cm :
[
o
g 4000 1 E
z h

il
2000 "'__ E
o WL T e .
0 2 4 6 8 10

Energy (keV)

Figure 2.4: 2-exp energy distributions for the BF3 10 kV 5.10' ¢cm~2 PIII for Npart = 100000 particles
for both boron and fluorine using inverse CDF method and the set of parameters of table 2.2.
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Figure 2.5: Amorphous depth from TEM measurements and TCAD simulations for the different PITI
samples of table 2.1.

Once we successfully modelled implantation and amorphization in BFg PIII samples, thermally
annealed samples of table 2.1 were investigated in order to study dopant diffusion and electrical
activation mechanisms. Corresponding results are given in next sub-section 2.3.3.

2.3.3 Dopants diffusion and electrical activation in BF; PIII

Following implantation and amorphization simulations, BF3 PIII diffused profiles were investigated.
Boron SIMS profiles of the BF3 annealed samples at 800°C 10 min, 900°C 10 min and 1065°C 1 s of
table 2.1 are given in Fig. 2.6. Two main phenomena occur during anneal in all observed samples:
boron tail diffusion and the formation of a boron peak below the post-implant A/C interface at 12
nm. The boron peak concentration is higher than boron equilibrium solubility in silicon at the given
temperature [25] and is in an inactive precipitated form. In addition, a slight decrease of the peak
concentration is observed when increasing the thermal budget at 1065°C 1 s with a corresponding
boron diffusion tail.

In order to investigate boron diffusion profiles in BF3 PIII including boron peak below the A/C
interface, we modelled SIMS profiles of Fig. 2.6 using state-of-the-art TCAD diffusion and activation
models in SProcess [3]. Diffusion models included boron and fluorine five-stream diffusion models [26].
Activation and precipitation models included small boron interstitial clusters [27], fluorine-interstitial
and fluorine-vacancy clusters [28] and EOR defects models for small interstitial clusters [29], {311}
and (111) [30] dislocation loops (DLs). Suspecting that boron peak below the A/C interface is due
to a decoration of EOR {311} and (111) DLs by boron atoms, we also used boron trapping by EOR
defects model [31]. Corresponding TCAD simulated results are given in Fig. 2.7. From Fig. 2.7a,
a good agreement is found between SIMS and TCAD for the low thermal budget at 800°C 10 min.
However, simulations at high thermal budgets do not reproduce neither boron peak below the A/C
interface, nor diffusion tail. Boron detailed profile is given in Fig. 2.7b, where boron diffusion tail is
correctly reproduced, while boron peak below the A/C interface is not captured. With the process
models used above, boron inactive peak below the A /C interface has three possible sources investigated
in Fig. 2.7b for the 900°C 10 min anneal:

e Boron trapping by {311} rod-like defects: no {311} defects were observed in our simulations
for the 900°C 10 min anneal, which is in agreement with literature results on interstitial EOR
defects [32].

e Boron trapping by (111) DLs: boron decorating DLs concentration is shown in Fig. 2.7b and
is very low to explain the boron peak below the A/C interface. This low boron concentration
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Figure 2.6: Boron SIMS profiles following a BF3 PIII at 10 kV 5.10'% cm~2 annealed at 800°C 10 min,
900°C 10 min and 1065°C 1 s. A boron peak below the A/C interface is observed for the different
thermal anneals.

decorating (111) DLs is expected given the low perimeter to surface ratio of dislocation loops [31],
and its corresponding low capturing efficiency.

e Boron in small BICs: from our simulations in Fig. 2.7b, small BICs are localized near the
oxide/silicon interface at the BF3 plasma as-implanted surface peak (Fig. 2.2b) and thus cannot
explain boron peak below the A/C interface.

From simulation results shown in Fig. 2.7, default advanced TCAD models cannot explain boron
peak below the A/C interface. Therefore, the annealed samples at 800°C and 900°C 10 min of ta-
ble 2.1 were investigated by cross-section and plan-view TEM analysis [17, 33] shown in Fig. 2.8. From
cross section TEM images of Fig. 2.8a, no {311} defects were observed which is in agreement with our
TCAD simulations of Fig. 2.7b. In addition to (111) DLs, several (001) DLs were observed below the
A /C interface at the position of the B peak of SIMS results in Fig. 2.6. From literature results [31-30],
such (001) DLs have been observed in experimental conditions where silicon is highly super-saturated
(> 10%° em™—3) with both boron and silicon interstitials atoms. These defects are called large boron
interstitial clusters (LBICs) consisting of precipitates with hundreds to thousands of both boron and
silicon interstitial atoms. The defects were also observed in plan view TEM with a [400] diffracting
vector g as shown in Fig. 2.8b.

In order to investigate the details of defects populations in the 800°C and 900°C 10 min annealed
samples, additional plan-view weak beam dark field (WBDF) TEM analysis were carried out for dif-
ferent diffracting vectors g and both positive and negative deviation parameters. Three EOR defects
categories investigated in [37] and summarized in table 2.3 could thus be extracted: D001 category
with [001] Burgers vector corresponding to (001) crystalline plane LBICs, D101 category with four
different Burgers vectors combinations corresponding to LBICs with a habit plane close to (001) but
also to {111} interstitial perfect dislocation loops (PDLs) and D111 category corresponding to classical
{111} interstitial dislocation loops. Even though the D001 defects were clearly identified as LBICs,
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Figure 2.7: (a) Boron SIMS versus TCAD profiles using state-of-the-art SProcess models [3] following
a BF3 PIII at 10 kV 5.10'® cm~2 annealed at 800°C 10 min, 900°C 10 min and 1065°C 1 s, and (b)
details of boron concentration including total boron, active boron, boron in (111) DLs and small BICs
for the 900°C 10 min anneal.

the TEM investigation carried out here cannot distinguish LBICs from {111} interstitial PDLs within
the D101 family. However, despite the ambiguity within the D101 family, LBICs presence is clearly
confirmed with not less that 20% of LBICs for the 900°C 10 min annealed sample. The different defects
categories densities are given in Fig. 2.9 and a total defect density decrease is observed in agreement
with Ostwald ripening mechanism. In the meantime and as expected the defect size projected on
(001) plane increases from approximately 14 to 15 nm for D101 defects and from 12 to 19 nm for D111
defects for the respective 800 and 900°C 10 min anneals.

» *800°C 10 min ,900°C 10 min

800°C 10 min 900°C 10 min

(a) Cross section TEM (b) Plan view TEM

Figure 2.8: TEM (a) cross-section where (001) DLs corresponding to LBICs are observed below the
A/C interface and (b) plan-view images with a [400] diffracting vector g of the BF3 PIII samples at
10 kV 5.10% cm™2 and annealed at 900°C and 900°C 10 min.

Current TCAD process models do not integrate LBICs forming during thermal anneals in high
boron and silicon interstitials super-saturated silicon. Therefore, a clear disagreement between SIMS
and TCAD results is observed for high thermal budgets, where TCAD misses both boron peak below
the A/C interface and the diffusion tail. In addition, sheet resistance values extracted from Hall effect
measurements were compared to simulations using boron’s dependent mobility formula of Masetti et
al. [38]. Boron active concentration included in the mobility formulas were obtained from TCAD
simulations shown in Fig. 2.7. Corresponding results are shown in Fig. 2.10 where a disagreement
is observed between Hall effect measurements and TCAD. Therefore, LBICs have to be included in
TCAD models in order to reproduce both SIMS diffused profiles (Fig. 2.7) and electrical activation
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Table 2.3: Observed EOR defects using TEM in the PIII BF3 at 10 kV 5.10'® cm ™2 annealed at 800°C
and 900°C during 10 min, including defect category, Burgers vectors and defect nature.

Category Burgers vector b o’
D001 [001] i
= [101] [101] [011] [011] [110] [110] close to (001) LBICs or {111} interstitial PDLs
D111 [111] [111] [T11)[111] {111} interstitial dislocation loops
1
10t : . D001 defects-------
D101 defects
D111 defects-a-
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Figure 2.9: Defects density measured from TEM WBDF images for BF3 PIII at 10 kV 5.10'® cm—2
annealed at 800°C and 900°C 10 min including D001, D101, D111 defects(table 2.3) and total EOR
defects.
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extracted from Hall effect measurements (Fig. 2.10). Next section 2.4 will deal with the investigation
of LBICs and the strategy built in order to develop a LBICs continuum TCAD model.
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Figure 2.10: p+/n PIII BF3 junctions sheet resistance extracted from Hall effect measurements for
different thermal anneals of table 2.1 compared to TCAD state-of-the-art process models.

2.4 High boron and interstitials super-saturation and large boron-
interstitial clusters

In sub-section 2.3.3, LBICs were evidenced both from SIMS measurements with the boron peak below
the A/C interface (Fig 2.6) and TEM cross section and plan view images showing (001) DLs (Fig 2.8).
In sub-section 2.4.1, we will give the different literature data on LBICs in addition to current TCAD
models for boron and silicon interstitials interactions, showing the need to develop a new LBICs TCAD
model. LBICs continuum modelling will be presented in sub-section 2.4.2, where the model was eval-
uated thanks to simple high dose boron beam-line implants. Finally, the new model will be evaluated
on the BF3 PIII data of section 2.3.

2.4.1 Introduction to large BICs

The use of high doses in boron implanted silicon raises several fundamental questions on the boron
precipitation mechanisms in silicon. In such conditions observed using beam-line or plasma implan-
tation, followed by thermal annealing, silicon is highly super-saturated with both boron and silicon
interstitials concentrations exceeding 10%° cm™3. The development of new characterization techniques
such as APT and field ion microscopy [39, 10] led to new ways to observe boron in silicon at the
atomic scale, improving the understanding of boron-silicon interactions. In addition, according to the
ITRS, highly doped systems are among the modelling challenges for CMOS technology nodes beyond
14 nm [11].
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In these conditions, largely above boron solid solubility limit in silicon [25], large boron precipitates
containing boron and silicon interstitial atoms will form [34-30] following thermal annealing used for

dopants activation. In several cases, these large boron precipitates also called in literature large BICs
(LBICs) are (001) dislocation loops with hundreds to thousands of both boron and silicon interstitial
atoms as observed by TEM [35, 37, 12], where it was seen that LBICs growth is similar to an Ostwald
ripening mechanism. In addition to the density and size of LBICs investigated by TEM and thanks
to recent advances in the APT technique [39], it is now possible to measure the chemical composition
of the large BICs [13, 14]. Recent experimental results [15, 16] also showed that for sufficiently high
thermal budgets, boron precipitates close to the stoichiometric stable boride phases such as SiBs and
SiBy4 [17] seen in APT measurements may also form, corresponding to the (001) large BICs observed
by TEM. The stability of these LBICs is in agreement with a previous study [/&] showing that two
BICs dissolution mechanisms take place during a thermal anneal: a fast mechanism associated to
small boron clusters and a slow one associated to more complex clusters believed to be more stable.

Historically, the formation of small BICs with few boron and interstitial atoms already observed
below boron solubility limit were the first clusters to be evidenced in literature from boron immobile
peak on SIMS profiles [19]. Modeling the thermal evolution of such BICs and their corresponding
boron deactivation was already carried out using a continuum approach [27, 50] with small BICs sizes
and more recently [12] using a KMC approach. However, current models including small BICs models
and EOR defects decoration by boron atoms [31] are not able to reproduce the formation of LBICs
in conditions of high boron and silicon interstitials super-saturation as observed in our results on
high dose BF3 plasma implantation [17]. Modeling all LBICs sizes in process TCAD simulators is
quite expensive in terms of calculation time. Thus, in this work a large BICs continuum model [51]
based on a moments approach already used for silicon end of range extended defects [30, 52], and
more recently for voids modeling in helium implanted silicon [53] will be used in order to evaluate
(001) large BICs evolution following thermal anneals. The model is integrated as add-on for a TCAD
commercial simulator [3] in association with previous small BICs, small interstitial clusters (ICs) and
EOR defects models.

2.4.2 Large BICs continuum modelling in silicon

When dealing with precipitates of different sizes ranging from two to thousands atoms, modeling all
precipitates sizes can be very expensive from a computational aspect. Thus, moments approach based
on low order moments can be an interesting and computationally efficient alternative. In previous
applications of this method, precipitates exchange only one species: interstitials in the case of {311}
defects and (111) dislocation loops [30, 52] and vacancies in the case of voids [53]. Precipitates interact
with the mean super-saturation field surrounding them. The diffusion of the given species between the
precipitates and the super-saturation field leads to the growth of large precipitates at the expense of
smaller ones following an Ostwald ripening mechanism. In the case of (001) LBICs, a behavior close
to an Ostwald ripening mechanism has also been verified [35, 51]. However, contrarily to previous
examples, two different species, boron and silicon interstitial atoms, contribute to the precipitation
mechanism in this case. The following three moments (in cm~3) will be considered in our model:

e Boron content in the LBICs:

Cg,LBICs = Z nByly, (2.6)
e Silicon interstitials content in the LBICs:
Cr,LBICS = Z mB, I, (2.7)
e [BICs density:
Dipics = Z Bnlm (2.8)
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Following a high dose implantation step, silicon is highly super-saturated with boron and silicon
interstitial atoms. At the end of the implantation and beginning of anneal step, several small ICs [55]
and BICs are formed. In the same way as small ICs are the precursors for the formation of interstitial
EOR defects [29, 30], small ICs and BICs are the precursors for the formation of LBICs. In this model,
we chose Iy for small ICs and Bsl for small BICs. LBICs of different sizes and composition are then
formed from the reaction of the precursors with diffusing free interstitials, I, and boron interstitial
pairs, BI, as follows:

I, + Bl — Bl (2.9)
Bsl +1 — B3l (211)

It should be noticed that the choice of the small clusters precursors is arbitrary and changing the
precursors (such as I3 or Bol) would lead to the same simulation results after adequately calibrating
the model’s parameters. Also, we limit ourselves to two precursors in order to simplify the model’s
equations.

Fig. 2.11 is an atomistic view diagram describing boron and silicon interstitials interactions. In
Fig. 2.11a, the diagram presents default TCAD SProcess models including small BICs formation and
boron trapping by a (111) DL, where boron decorates only the boundaries of the defect. In Fig. 2.11b,
the LBICs formation is represented with the different corresponding moments Cg 1p1cs, C1,1.B10s and

DiBics-

LBICs are assumed to be disk-shaped dislocation loops, with a circular section and a fixed thickness
(corresponding to an additional (001) Si plane inserted in the lattice, in agreement with previous
experimental observations [35, 15, 51]). The (001) LBICs grow and increase in radius Rypics following
the diffusion and reaction of I and BI at the loop periphery as shown in Fig. 2.11b. Contrarily to
boron trapping at the boundaries of EOR defects (Fig. 2.11a), LBICs have equivalent content of boron
and silicon interstitial atoms as observed experimentally [15] and as shown in Fig. 2.11b.

Following the same formalism used for (111) interstitial DLs [30], the different fields of the moment’s
model verify the following equations:

dC A

—LLBIGs _ op(BI) BIBsI + 2D(I) 1.B31 + 3D(BI)

dt Rest BI, B3l eff |1 B3I eff
+kprLpics- 27 RepicsD(BI)(BI — Ch1Lpics)DLBICS

+kr Lpics- 272 Rpros DI (I — forecCl LB1cs)PLBICS  (2.12)

BIL.I,
BILI,

dC
BLBICs _ 4py(Br) BLB3I + 3D(I) LB3I + D(BI) BLI,
dt Regt BI,Bsl eff |1 B3I eff |BI I,
+kpr,Lics-2m° ResicsD(BI) (B — Cgp 1pres)Dusics  (2.13)
dD
_313105 = D(BD) & BLB;I + D(I) L.B31 + D(BI) BLI,
eff | BI, B3l eff |1 B3I eff |BII,
. D
—kI,LBICs-QWQRLBICSD(I)CLLBICS ﬁDLBICs
s S
. D
—kBLLBICs-QWQRLBICSD(BI)CBLLBICSCLLCSDLBICS (2.14)
B,LBICs
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Figure 2.11: Diagram showing boron interaction with silicon interstitial atoms in (a) default advanced
continuum TCAD models and (b) using the LBICs model based on moments approach [51]. The
atomistic view shown here is explanatory and only continuum simulations were carried out in our
work.
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Equation 2.12 is the temporal evolution of the silicon interstitial atoms in the LBICs Cippics.
D(BI) and D(I) are respectively the fixed diffusion coefficients of boron interstitial pairs B~I" and
neutral interstitials 1°3. However, it should be noticed that diffusing species charge state will be
neglected in our model. LBICs form following reactions 2.9, 2.10 and 2.11 leading to an increase

in the number of interstitials in the LBICs as given in the three first right hand side (rhs) terms of

equation 2.12. In these terms, RAH is a free parameter and corresponds to the capturing efficiency
off |X)Y

of a mobile species X (I or BI) by a given cluster (Ip for BI and Bl for I and BI) representing the
ratio between the cross section of cluster Y on its effective radius as already used in literature for
small ICs [56, 57]. The evolution of larger LBICs is governed by the balance between their capture
and emission of free I and BI rhs terms 4 and 5 of equation 2.12. For I species, the capture is defined
by the reaction constant kyypics a free parameter in our model, the LBICs mean radius Rygics and
the respective difference between the free interstitial concentration and the equilibrium concentration
in the vicinity of the LBIC defect Cf | picg- In the same manner for BI species, the capture is defined
by the reaction constant kgp r.Bics (aiso a free parameter in the model), the mean radius Rypics, and
the respective difference between the free boron interstitial pairs BI concentration and equilibrium
concentration in the vicinity of the LBIC defect CiLBICS. The free parameter fpec in front of C’ﬂLBICS
of rhs term 4 of equation 2.12 is introduced in order to reproduce the formation of stable boride phases
such as SiB3 and SiB4 at very high concentration by enhancing the emission of interstitials from the
LBICs:

¢ - { 1 if CB,LBICS < 7.10%%c¢m™3 (2 15)

prec = CB,LBICs/7-1020 if Cp BICS > 7.10%%m™3 )

As for equation 2.12 for Cj 1,Bics field, a similar behaviour is verified by Cg 1,B1cs field in equation 2.13.
Equation 2.14 gives the temporal evolution of the LBICs density whose first three rhs terms are similar
to those of the respective equation 1 and 2 for Cyrpics and Cprpics. The last two terms of equa-
tion 2.14 model the LBICs density reduction following their content increase with interstitials and

boron thanks to the respective factors 2LBICs for [ and —LBIC for BI emission.
C1,LBICS CB,LBICs

As described above, in order to determine the volume growth and density decrease of the LBICs,
the mean radius Ripics evolution should be evaluated. The theoretical formula used for disk-shaped
DLs mean radius extracted from [58] is:

dRy,BI1CS

T . T .
1 = kp1,LBICS <—> D(BI)(BI — Cgy 1p1cs) + ki,LBICs <—> DI - Cipics)  (2:16)
t noo1 n

001

where ngo; is the surface density of two (001) crystalline planes equal to 1.36 x 10cm™2. However
convergence issues were encountered when implementing Ry grcs formula of equation 2.16 in the LBICs
model. Therefore, a more simplified formula was used for the mean radius calculation:

Crpics + CB,LBICS
n,mDrBICs

CrLics + Cp,LBICs = NaTRE1csDrpics = Ripics = \/ (2.17)
The term under the square root of equation 2.17 is inspired from an identical formula used in TEM
statistical analysis of interstitials (111) DLs [59]. The respective equilibrium concentrations Cj pic
and C*BLLBICS of I and BI in the vicinity of the LBICs of mean radius Rrpics will be calculated 7using
the minimization of the LBICs. The total energy of a (111) DL of silicon interstitials [60] is generalized
to (001) DLs of radius Rypics containing both silicon and boron atoms:

3.57(eV) 1.77(eV)

_ 3.57(eV) _L.77(eV)
SD(1%) =1.746 x e 8T and D(B7I") =51 xe  *8T in SProcess database [3].
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b2R S 8R S
E(Repics) = Rigresy + £ LBICs <1H <ﬂ> - 1>

2(1 —v) b
R2...b Cy RZ e b Cr
— TOLBICS 2y Ty (o —LBICs ) TELBICS 2y iy (g —BLBICs ) (9 )
o Cr Qpr Chr

First rhs term of equation 2.18 is the DL interface energy where v is the internal energy associated
with the stacking fault which we fixed to the one already used for the (111) DLs of 70 mJ/m? [61].
Second rhs term is the strain energy of the circular dislocation loop where b ~ %(001) is the Burgers
vector [37], p is the shear modulus of 63.28 x 10! dyne/cm? and v is the silicon Poisson ratio set to
0.28. Third and fourth rhs terms of equation 2.18 are the chemical potentials associated respectively
with I and BI pairs with kg the Boltzmann constant and T the temperature. €21 and {2g; are respec-
tively the volume per silicon interstitial atom I and BI pair and it will be assumed: Qp = Qg = €2,
where € is the volume per silicon atom of 2 x 10723 cm®. 71 and vpy are respectively the activity
coefficients for non-ideal solutions [62] of I and BI and will be set to unity in our simulations. C} and
Cgp are respectively I and BI bulk silicon equilibrium concentrations. Available interstitials at thermal
equilibrium are the limiting factor for BI pair equilibrium concentration and therefore BI equilibrium
concentration cannot exceed the interstitials one in boron free silicon. Consequently, we will consider
Cgp = Cf, where C7 is the intrinsic interstitial equilibrium concentration in silicon used in the process
simulator [3].

Cf Lpics and CF; 1 gics are calculated following the minimization of the total energy of equation 2.18
with correspondence to R pics:

_dE (2.19)
dRrBICS '
which leads after simplifications to:
CfLBlcs CELLBICS — ox Q2 ox ofl (2.20)
¢ )\ Ty PAbkeT ) P \ Dkp TRiprcs '

with o =

2
ub” 1y SRLfICS From equation 2.20, it can be noticed that no unique equation can

4 (1—v)
be extracted for both CiLBICs and C*BI,LBICS' Knowing that after an implantation step and at the
beginning of an anneal, silicon super-saturation with interstitials is much higher than the super-
saturation with BI pairs, we will therefore consider that in its vicinity, the LBIC defect behaves like a

pure interstitials defect. From literature results for pure interstitial DLs [58] and using equation 2.20,
the following relations are verified:
* * fYQ 2"
C =C — —_— 2.21
I,LBICs I €Xp <kaT> €Xp <kaTRLBICs> ( )
BrLBICs = ChI (2.22)

The set of equations 2.12, 2.13, 2.14, 2.21 and 2.22 summarize the LBICs model with the four following

calibration parameters described previously: ﬁ

Y’ k1 LBICs, kBr,LBICs and fprec.

)

Even though LBICs were observed in BF3 PIII samples of sub-section 2.3.3, these samples cannot
be used for the LBICs model calibration. First of all, BF3 plasma implants are very shallow and
therefore the LBICs thermal evolution is impacted by silicon/oxide surface interface. Moreover, in
addition to boron and silicon interstitials high super-saturation after the implant, very high fluorine
concentrations are also present (> 10%° cm™3) which may lead to inaccuracies in LBICs evolution due
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to the fluorine effect. Consequently, simple boron implants with no additional fluorine, are needed in
order to calibrate the LBICs model.

Three literature references using simple beam line implants were considered for LBICs model cali-
bration. The results and their corresponding process conditions are summarized in table 2.4. The first
reference is of Cristiano et al. [35, 54, (3], where LBICs were observed by TEM following a shallow
boron implant at 0.5 keV 1.10'® cm™2, annealed at 650°C for 2, 10, 40 and 160 s. The 650°C 10 s
annealed sample, was also subsequently spike annealed in order to study possible dissolution mecha-
nisms of the LBICs [63]. In this reference LBICs density and mean diameter were measured by TEM.
In the second reference of Cojocaru-Mirédin et al. [15], a higher boron implantation energy at 10 keV
5.10" cm™2 was used in order to localize the implant projected range R, far from the silicon/oxide
interface. Following the implant, several anneals were made including 600, 800 and 900 °C 1 h and
900 °C 5 h. In these experiments, boron and silicon content in the LBICs in addition to their mean
size were investigated using APT measurements. The most recent reference of Blavette et al. [16] used
even higher implantation energy and dose where boron implants at 27 keV 1.10'7 cm™2
followed by thermal anneals at 500, 750 and 1000°C during one hour.

were used

The LBICs model was first calibrated on the complete data set of [15] from table 2.4. The LBICs

model free parameters were calibrated and corresponding values are given in table 2.5. RAE was
off | XY

set to 3.10"cm which is in the range of literature values for interstitials capture efficiency by small
ICs [57]. ki r.Bics and kprrpics are the respective dimensionless reaction constants of I and BI pairs
with the LBICs and were calibrated using this set of experimental data. Cj (and Cf;) bulk intrinsic
equilibrium concentration in silicon was fixed to its default value already implemented in the process
simulator [3].

Table 2.4: Summary of literature experimental results used for LBICs continuum model calibration.

Reference Implantation Anneal Experiment
Cristiano et al., || 0.5 keV, 1.10'® em™2 | 650°C - 2, 10, 40 and 160 s + | TEM
Hebras et al. [35, Spike anneal 800 to 1050°C

, 03] (step 50°C)
Cojocaru-Mirédin || 10 keV, 5.10 cm=2 | 600, 800 and 900 °C 1 h and | APT, SIMS
et al. [15] 900 °C 5 h
Blavette et al. [10] || 27 keV, 1.10'" cm~2 | 500, 750 and 1000 °C 1 h APT, SIMS

Table 2.5: LBICs model parameters [51] calibrated using the experimental data of 2.4.

RI:H y (cm) | krppics (no unit) | kprrics (no unit) | fprec (no unit)
. 0.14(cV)
3.1077 6.44 x 10~ te ®BT 1.0 Equation 2.15

In Cojocaru-Mirédin el al. experiments and thanks to APT technique, several LBICs were anal-
ysed and the number of boron and silicon atoms in each precipitate were extracted. In this manner,
histograms of number of LBICs versus boron (or silicon) content in the LBICs can be built for the
different thermal anneals. Corresponding results are given in Fig. 2.12 for the different thermal an-
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neals with the following mean boron content from [15]: 9% for 600°C 1 h, 12% for 800°C 1 h, 21% for
900°C 1 h and 44% for 900°C 5 h. Every bin in the histogram corresponds to the number of LBICs
with a given boron content. Are also shown in Fig. 2.12 the kernel density estimation (KDE) of the
LBICs distribution which is more accurate for estimating the LBICs distribution than a histograms
representation [64]. In every graph of Fig. 2.12, we added a small graph representing the number
of B and Si atoms in the different LBICs analysed by the APT method. From the histograms and
the number of atoms in the LBICs, we can see that both boron content and number of atoms (and
therefore size) of the LBICs increase when increasing the thermal budget. For the highest thermal
budget in Fig. 2.12d, some LBICs are in the SiBs and SiBy4 stable phases [17].

Boron content in the precipitation region is defined by:

B J CB,LBICS
| Cg.LBics + CrLBICS

Frac(B) (2.23)
and was first investigated in our simulations. Corresponding results compared to APT data are given
in Fig. 2.13a. Our model reproduces correctly APT data and as expected, when increasing the thermal

anneal of Fig. 2.13a, the LBICs are enriched with boron due to the formation of a stable boride phase
SiBg.

With the set of calibrated parameters of the LBICs model obtained from Cojocaru-Mirédin et al.
experimental data, our models predictability was evaluated on high boron dose implanted samples
from Blavette et al. work [10]. In these experiments, an extremely high boron implantation dose at
27 keV 1.107cm ™2 (table 2.5) was used. APT measurements were also carried out on these data and
the following mean boron content was obtained: 30%, 37% and 75% for respectively 500, 750 and
1000°C 1 h of anneal. In the 1000°C 1 h case, the formation of SiBs and SiB4 boride phases is clearly
confirmed. The APT data were perfectly reproduced by our LBICs model and simulation results are
given in Fig. 2.13b.

Our model was also evaluated on older literature results from Cristiano et al. [35, 63] and Hebras
et al. [51] (Fig. 2.14) obtained from samples fabricated using typical p*/n USJs conditions. The first
point in Fig. 2.14 (sample without spike post anneal) corresponds to the LBICs density calculated
using the LBICs model after the initial 650°C 10 s thermal anneal. The simulated density of 8.3 x 102
cm~2 is in agreement with the experimentally observed one (~ 10'3 cm~2 [35, 37, 54]). When adding
a subsequent thermal anneal from 800 to 1050°C with a 50°C step, TEM analysis [03] indicated that
the LBICs density progressively decreases, until their complete dissolution at temperatures of 1000°C
and higher. This result is different from the others discussed above, where LBICs are found to become
more stable at higher thermal budget and is due to the surface proximity to the silicon self-interstitial
distribution in the USJ case (centered at ~ 3 nm for a 0.5 keV B* implant). The simulation results
shown in Fig. 2.14 clearly show that the decrease in LBICs density and the final dissolution above
1000°C (calculated density below the TEM detection limit) are perfectly captured by the LBICs model
and confirm its predictability for highly boron doped USJs.

In addition to the APT data of the 10 keV 5 x 10> cm™2 boron implants, SIMS results were also
investigated. As expected and due to a low boron diffusion, boron SIMS results at 600°C and 800°C
during one hour were easily reproduced and are shown in Fig. 2.15a. For the 900°C for 1 and 5 h
samples, an interesting effect is observed where a boron profile narrowing is clearly evidenced in the
LBICs precipitation region (> 10?** cm~3). In addition to profile narrowing, the boron peak value
is slightly increased with respect to the as-implanted profile following the two 900°C anneals. This
apparent uphill diffusion effect, not reproduced by our simulations, might be due to a real negative
diffusion due to the spinodal decomposition during precipitation of the binary system composed of
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Figure 2.13: Boron content in the LBICs from APT measurements and LBICs model simulations
following a boron implant at (a) 10 keV 5.10'%cm ™2, annealed at 600, 800 and 900°C 1 h and 900°C 5
h from Cojocaru-Mirédin et al. work [45] and (b) 27 keV 1.10!7cm ™2 annealed at 500, 750 and 1000°C

1 h from Blavette et al. work [1(].
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Figure 2.14: LBICs density evolution using the LBICs model for a shallow boron implant at 0.5
keV 5.10%cm~2 from Cristiano et al. work [35, 63] annealed at 650°C 10 s (None) and followed by
subsequent spike anneals at 800, 850, 900, 950, 1000 and 1050°C.

the dilute boron in bulk silicon phase and boron in the precipitated LBICs phase [16]. Such mech-
anism would result in an overall boron negative diffusion coefficient. Alternatively, the boron profile
narrowing might be due to a nucleation-growth mechanism and the corresponding increase in boron
fraction in the precipitation region.

Given all these uncertainties on the origin of apparent uphill diffusion, our boron diffused profiles
simulations at 900°C 1 and 5 h in Fig. 2.15b could not reproduce boron narrowing effect as well as
the kink concentration separating the immobile region from the diffusing tail, although the slope of
the latter is correctly reproduced. Moreover, using a negative diffusion coefficient quickly leads to
convergence issues when using classical numerical resolution methods such as finite difference time
domain (FDTD) or finite elements method (FEM) used in our simulations.

Negative diffusion effects have already been observed and extensively studied in binary systems
in geology examples [65]. The particular case of boron negative diffusion evidenced in Fig. 2.15b by
profile narrowing has already been seen in older literature results [66, (7], even though the authors did
not comment the profile narrowing aspect. For instance boron profile narrowing is quite noticeable
in Hofker et al. [66] work following boron implants at 70 keV 1.10'”cm™2 annealed at 1000°C during
1x,2x and 3x35 minutes. In the work of Cowern et al. [(7], a profile narrowing was also observed
following an implant of 25 keV 5.10'%cm ™2 annealed at 900°C during 10 h. The previous literature re-
sults show that boron profile narrowing in the precipitation region is enhanced when increasing boron
implantation dose. Indeed, when using even higher implantation dose such as in the work of Blavette
et al. [16] of table 2.4, the profile narrowing due to the LBICs precipitation is even more pronounced.
In Fig. 2.16, we present SIMS profiles of the boron 27 keV 1.10'7cm ™2 as implanted and annealed at
500, 750 and 1000°C during one hour. In these results, boron profile narrowing in the precipitation
region is very pronounced at 1000°C and is already visible for the lower temperature anneals at 500
and 750°C.
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Figure 2.15: Boron 10 keV 5.10'cm~2 annealed at (a) 600°C and 800°C during 1 hour and (b) 900°C
during 1 and 5 hours from SIMS results [15] and using our LBICs model. Boron profile narrowing is
observed experimentally in the precipitation region for the two 900°C anneals.

In any case, this apparent boron diffusion against concentration gradient should not be confused
with boron uphill diffusion effect near silicon/oxide interface in case of pre-amorphization, already ob-
served in literature [68], due to existing interstitials flux from EOR defects band to the silicon/oxide
interface during thermal anneals. Indeed, these point-defect diffusion related mechanisms are already
included in our model but are not able to reproduce the observed results.

To conclude, a LBICs continuum model based on moments approach was developed in order to
reproduce boron precipitation mechanisms in high boron dose implanted samples. Model parameters
calibration presented in [51] was carried out thanks to recent literature results including boron content
in the LBICs extracted from APT data. Using this set of calibrated parameters, predictive modelling
of different literature experimental results could be obtained, including the evolution during thermal
annealing of boron content in the LBICs from APT data and LBICs density evaluated by TEM.
Possible dissolution or stabilization of LBICs depending on boron implantation conditions in terms
of dose and energy are also captured by the model. Finally, an apparent uphill diffusion against the
concentration gradient in very high dose boron implanted samples and annealed at high temperatures,
was evidenced experimentally from boron peak narrowing in SIMS profiles.

The LBICs model shown here will be applied in next sub-section 2.4.3 on BFg PIII samples of
sub-section 2.3.3.

2.4.3 Large BICs model applied to BF; PIII

In previous sub-section 2.4.2, the LBICs model was applied to beam-line simple boron implantation
with very high doses in order to better understand the evolution of LBICs during thermal anneals.
Using the set of the LBICs model calibrated parameters shown in table 2.5 of sub-section 2.4.2, TCAD
boron annealed profiles at 800°C 10 min, 900°C 10 min and 1065°C 1 s were compared to BF3 PIII
SIMS data of Fig. 2.6. Corresponding results described in [(69] are shown in Fig. 2.17a. A good
agreement between SIMS and TCAD boron diffused profiles is observed, mainly for high thermal
budgets, including boron peak below the A/C interface and its slow dissolution when increasing the
thermal anneal. Fig. 2.17b shows boron detailed profile following thermal anneals at 900°C 10 min and
1065°C 1 s including active boron and boron in the LBICs extracted from the Cp 1,Bics field within the
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Figure 2.16: Boron 27 keV 1.107cm ™2 as implanted and annealed at 500, 750 and 1000°C during
one hour SIMS profiles [16]. Boron profile narrowing in the precipitation region is observed for the

different thermal anneals and is very pronounced for the 1000°C anneal.

LBICs model. As expected from recent results of Cojocaru-Mirédin et al. [15], LBICs slowly dissolve
at high thermal budgets leading to a deeper diffusion tail for the 1065°C 1 s anneal.

In addition to SIMS results, junctions sheet resistance already presented in Fig. 2.10 using default
process models, were simulated using the LBICs model. Corresponding sheet resistance values are
given in Fig. 2.18 and show that contrarily to previous results shown in Fig. 2.10, the LBICs model
is able to reproduce boron activation for the different BF3 plasma implanted and annealed samples,
with an electrical activation improvement when increasing the thermal budget.

2.5 Conclusion

In this chapter on implantation related defects and their relative challenges, we gave a small in-
troduction on plasma immersion ion implantation (PIII), a promising technique for advanced CMOS
technologies. Its different characteristics in comparison to traditional beam-line implantation in CMOS
technologies were also presented. Dedicated experiments using BF3 PIII with different implantation
energies and doses were studied and modelled using a Monte Carlo implantation code and a double
exponential (2-exp) energy distribution. A good agreement was obtained between SIMS and TCAD
simulation results.

In order to investigate implantation defects evolution during thermal anneals, the BF3 PIII at 10
kV 5.10cm~2 was intentionally chosen and annealed at different times and temperatures in order
to localize the defects far from the oxide/silicon interface and reduce its impact. SIMS and TEM
measurements on the annealed samples confirmed the presence of (001) dislocation loops behind the
A /C interface of the implant corresponding to large BICs already observed in literature. As expected,
state-of-the-art default TCAD process models were not able to reproduce boron diffused tail and peak
behind the A/C interface due to the absence of a LBICs model.

A new continuum CPU efficient TCAD model based on moments approach was developed. The
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Figure 2.18: p+/n PIII BF3 junctions sheet resistance extracted from Hall effect measurements for
different thermal anneals of table 2.1 and compared to TCAD simulations using previous TCAD
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three moments within the model include LBICs density, concentration of boron in the LBICs and
concentration of silicon interstitials in the LBICs. The model was tested on several literature data with
traditional boron beam-line implants at very high doses where LBICs were observed by TEM and APT.
The model parameters were successfully calibrated thanks to one particular data set. Following the
calibration step, the model predictively reproduced other literature data with different experimental
conditions. For the very high dose implanted samples, an interesting boron apparent uphill diffusion
against the concentration gradient in the precipitation region was observed and still needs further
theoretical and experimental investigation. However, for shallower implantation energies such as the
one used in BF3 PIII presented in this chapter, the model resulted in good agreement between SIMS
and TCAD simulations. Contrarily to previous state-of-the-art TCAD process models, the LBICs
model was able to reproduce both boron diffused tail and peak behind the A/C interface in BFg PIIL
In addition, electrical activation in BFg PIII was correctly modelled thanks to the LBICs model, where
boron activation improvement when increasing the thermal budget was correctly captured.
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Chapter 3

Chemical species diffusion in
multi-materials stacks

3.1 Introduction

In previous chapter, implantation induced defects in silicon were studied. However, the use of USJs
required by miniaturization shortens the distance between the USJs in silicon and overlying materials
such as those used in advanced gate stacks of MOS transistors described in chapter 1. Consequently,
taking into account the interactions between the different materials of CMOS devices in TCAD models
becomes mandatory. The chemical species diffusion in such stacks including diffusion in the different
materials and transfer from a material to neighbouring ones can no more be ignored because of their
impact on advanced devices electrical performances. In the frame of ATEMOX project [1], two main
chemical species diffusion mechanisms in multi-materials stacks were considered during the PhD:

e Boron out-diffusion in nitride/oxide/silicon stacks like pMOS spacer stacks leading to a boron
dose loss in silicon modifying electrical characteristics, shown in Fig. 3.1 in the green framed
region of the pMOS transistor.

e Lanthanum diffusion in advanced high-k stacks leading to negative threshold voltage Vi shifts
in advanced nMOS transistors, white framed in Fig. 3.1 on the right.

The two diffusion mechanisms lead to two corresponding diffusion models for boron dose loss in
nitride/oxide/silicon stacks and lanthanum diffusion in high-k stacks described respectively in sec-
tions 3.2 and 3.3.

3.2 Boron dose loss modelling in nitride/oxide/silicon stacks

In this section, boron dose loss in nitride/oxide/silicon stacks will be investigated. A small introduction
to boron out-diffusion mechanisms and impact on electrical characteristics will be given in 3.2.1.
Dedicated experiments using a BFy 1 keV 5.104cm ™2 shallow implant, annealed at 1000°C during
2 min with different nitride/oxide combinations followed by SIMS measurements were designed in
order to evaluate the stack’s dependent dose loss. The experiments will be described in 3.2.2. Using
this experimental investigation, a boron dose loss TCAD model, based on B. Pelletier PhD’s previous
work [2] was developed and will be presented in 3.2.3.

3.2.1 Introduction to boron dose loss

CMOS transistors miniaturization must ensure the control of the electrical properties of USJs together
with the short channel effects (SCE) induced by the USJs. For instance, an important region for SCE
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Figure 3.1: Diagram of the different materials (silicon, oxide, nitride, high-k, TiN metal gate and
silicide) and interfaces between materials of a pMOS transistor (left) where we show the LDD and
source/drain boron (B) doped regions (green square) in silicon relatively to the position of the spacer
stack and corresponding boron dose loss from silicon to be presented in section 3.2 and a nMOS
transistor (right) gate stack region (white square) with the interfacial oxide, the high-k and the TiN
metal gate where lanthanum diffusion will take place as it will be presented in section 3.3.

control on CMOS devices is the LDD region where the use of new materials allows to keep the re-
quired electrical performances. However, this leads to different interactions between the materials
such as segregation of chemical species at the interfaces and/or transfer of species from a material to
neighbouring ones. This is the case of boron in nitride/oxide/silicon stacks such as spacer stacks and
corresponding boron dose loss from silicon. According to the ITRS [3], predictive segregation and dose
loss models are among modelling challenges for technology nodes above 14 nm. In microelectronics
industry, nitride/oxide/silicon stacks are mainly found in spacer stacks of MOS transistors with nitride
and oxide, used in order to separate LDD and source/drain from the channel and control effective
electrical gate length Leg. However, nitride/oxide/silicon stacks can also be found in other CMOS
based devices such as CMOS image sensors with a back side illumination (BSI) scheme, as we will see
in chapter 4.

In the particular case of pMOS transistors, several literature results [1—7] demonstrated that the
oxide and nitride layers used in spacer stacks modulate boron diffusion from silicon to oxide during
the thermal anneals subsequent to the spacer process step. This out-diffusion effect can lead to an
important boron dose loss from silicon to oxide affecting electrical characteristics of CMOS devices
such as the LDD extension sheet resistance Reyxt and the threshold voltage Vi of pMOS transistors.
On the left of Fig. 3.1, we show a diagram of the different materials and interfaces between materials,
present in advanced pMOS transistors and more particularly in the spacer stack region where boron
out-diffusion will take place. In the out-diffusion mechanism, boron dose loss is controlled by the
transfer of boron from silicon to oxide and by the diffusivity of boron in oxide. Therefore, for an
identical oxide/silicon interface, the higher the diffusion in oxide, the more important is the dose loss.

Boron out-diffusion literature investigations were first carried out on thermally grown oxides. It
was shown by Fair et al. [8] that boron diffusion in oxide is monitored by the SiO bonds called
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Peroxy-Linkage-Defects (PLDs) following the reaction:

B+=Si-0-0-Si=+—=S1-0-B-0-S8Si= (3.1)

with an activation energy E, p1,p for the diffusion mechanism by PLDs of 3.56 eV [8]. However, this
activation energy led to low values of boron effective diffusivity that cannot explain the boron diffused
profiles in gate oxides and therefore the role played by hydrogen in the oxide was suspected. Indeed,
several results [¢—10] showed that thermal anneals in a Hy ambient enhance boron diffusion in the oxide
leading to a higher boron dose loss in silicon. With the presence of hydrogen in oxide, in addition to
Si-O bonds, energetically favoured O-H bonds will also form and are called hydrogen related defects
(HRDs) [8]. As for reaction 3.1, boron diffusion by HRDs used the following reaction:

B+=Si-0:..H-0-8Si=+—=S1-0:..H-B-0-Si= (3.2)

with an activation energy E, yrp for the diffusion mechanism by the HRDs of 3.12 eV [3] lower than
Eaprp and explaining the enhancement of boron diffusion in oxide in the presence of hydrogen.

Since the advent of the 65 nm technology node, spacer oxide and nitride layers are deposited at low
temperatures using chemical vapor deposition (CVD) and are hydrogen rich [l 1-13]. Hydrogen and
more specifically HRDs content in the oxide will depend on the specific oxide CVD process. In order
to account for the dependence of boron diffusivity in oxide on OH bonds (or HRDs) concentration,
Chakravarthi et al. [141] used a modified boron diffusivity:

OH \"
D (B) sio, = Do(B) (1 + OHref) (3.3)
Dy(B) is the boron diffusivity in a OH bonds free oxide. OH and OH,¢ are respectively the OH
(HRDs) concentrations in the given oxide and in a reference oxide, n is a fitting parameter. It should
be noticed that the diffusivity of equation 3.3 depends on the total hydrogen concentration, while
in Fair et al. work [8], boron diffusion is favoured by OH bonds, and therefore the formulation of
equation 3.3 is chosen here. In equation 3.3, boron diffusion in oxide depends on the initial OH con-
centration. However, the evolution of OH concentration during a thermal anneal is not considered. In
the meantime, even though no boron diffusion was observed in nitride in literature [/—(], nitride layer
can indirectly influence the out-diffusion mechanism by injecting hydrogen in the oxide during ther-
mal anneals subsequent to the nitride deposit, modifying OH concentration in the oxide. Nitride can
also act as a capping layer responsible for hydrogen retention in the oxide limiting thermal degassing
during thermal anneals and consequently increasing boron out-diffusion [6].

In order to study rigorously boron out-diffusion in nitride/oxide/silicon spacer stacks during ther-
mal annealing, hydrogen related species physical characteristics and evolution in both nitride and ox-
ide should be monitored, in addition to the oxide boron diffusion dependence on the hydrogen related
species concentrations. The correlation between hydrogen related species and boron dose loss will be
carried out using full sheet boron implanted and annealed samples with different nitride/oxide/silicon
stacks. These samples have been analysed by SIMS and are described in 3.2.2. Following the experi-
mental part description, modelling boron dose loss will be shown in 3.2.3 including hydrogen reaction
and diffusion dynamics in oxide and nitride, and corresponding boron out-diffusion modelling using

SIMS data.

3.2.2 Dedicated boron dose loss experiments

The samples were prepared on (001)-oriented p-type silicon wafers according to the experimental plan
presented in table 3.1 (S’; to S’4). We first performed a 1 keV 5.10' ¢cm™ BFy implantation step
similar to the low doped drain (LDD) condition used in electrical lots. Four different material stacks
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have been studied by combining two different oxides (OA and OB) and three different nitrides (NA,
NB and NC) which present different hydrogen characteristics. OA oxide was deposited at 625°C
by low pressure chemical vapour deposition (LPCVD) using a liquid tetraethyl orthosilicate (TEOS)
liquid precursor. OB oxide is an un-doped silicon glass (USG) film deposited at 400°C by plasma en-
hanced chemical vapour deposition (PECVD) using the reaction between SiH4 and N2O compounds.
NA and NC nitride layer were deposited by PECVD using a SiH4/NH3/Ns chemistry at 480°C and
400°C, respectively. NB nitride was deposited at 590°C by LPCVD using a hexachlorodisilane (HCD),
ammonia (NH3) and ethylene (CoHa) as precursors. The samples were then subjected to an anneal
process at 1000°C during 2 min by using a rapid thermal annealing (RTA) tool in a Ny ambiance
at the atmospheric pressure, under a controlled oxygen atmosphere (radiance chamber from Applied
Materials). The four nitride/oxide combinations of stack considered in this study have been charac-
terized by Secondary Ion Mass Spectrometry (SIMS) using a 1 keV 45° tilted Og beam. A specific
calibration was carried out in order to quantify the boron concentration as function of the depth in
oxide and silicon.

Table 3.1: Summary of the samples used in this study.S’; to S’4 are the nitride/oxide/silicon samples
for boron SIMS measurements with the 1 keV 5.10'* cm=2 BF, LDD implant, annealed at 1000°C
during 2 min. A reference S’5 similar to S’y but not annealed has also been preferred for the sake of
comparison.

Sample S’l S’Q 8’3 S’4 S’5
BF5 implant X X X X X
OA LPCVD X X X
OB PECVD X X

NA PECVD X

NB LPCVD X X X
NC PECVD X
Anneal (1000°C, 2 min) || x x x X

The boron SIMS profiles for samples S’ to S’s are given in Fig. 3.2. First of all, in presence of
a nitride cap during the anneal we observe a substantial boron diffusion in silicon after anneal as
compared to S’s. In addition, boron has diffused in the oxide whereas no dopant has been detected
in the nitride cap. Qualitatively, the higher the boron dose is in oxide, the lower it is in silicon in
agreement with the boron out-diffusion mechanism. Two different types of behavior are observed:
sample S’y and S’9, with the same oxide layer OA (LPCVD TEOS) show a higher boron dose loss in
the oxide and a shallower diffusion in silicon. Conversely samples S’s and S’y made with oxide OB
(PECVD USG) result in a higher dose and diffusion depth in silicon and lower boron out diffusion in
the oxide.

Some remarks can then be drawn concerning the impact of the nitride. For the same OA oxide,
NA/OA spacer exhibits slightly higher out-diffusion than NB/OA spacer, which suggests in first order
a higher SiNHj initial concentration of NA in comparison to NB nitride. These results are in agree-
ment with the out diffusion literature which have demonstrated the impact of the nitride cap on the
loss of boron in the oxide during anneal [1—(]. They will be discussed in the next section.

Another interesting effect that can be seen in Fig. 3.2 concerns boron diffused profiles in oxide
having a shape with an exponential tail (straight line in log scale). While the resolution of Ficks 214
law diffusion equation [15] with a boron emission from the oxide/silicon interface to the oxide leads to
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classical complementary error functions (erfc) shaped profiles, in our case exponential shaped boron
diffused profiles are observed. The exponential diffusion behaviour suggests that boron diffusion in the
oxides used in our experiments could be mediated by intermediate mobile species and will be discussed
later in the paper. We can also see that boron diffusivity in oxide correlates with the exponential tails
steepness corresponding to different hopping lengths.
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Figure 3.2: Boron SIMS results for samples S’; to S’4 (table 3.1) with different nitride/oxide/silicon
spacer stacks annealed at 1000°C 2 min, in addition to NB/OA S’5 reference sample before annealing.

3.2.3 Boron dose loss modelling

SIMS results have emphasized in Fig. 3.2 the boron dose loss from silicon into the oxide as function of
the spacer stack. Given the relation between boron diffusion in oxide and hydrogen related species con-
tent in both oxide and nitride, hydrogen related species dynamics in the spacer stack is first discussed
in sub-section 3.2.3.1. Then we present models of boron diffusion modelling in sub-section 3.2.3.2 by
using two different diffusion mechanisms through fixed and mobile chemical traps respectively.

3.2.3.1 Dynamics of hydrogen related species

Boron dose loss observed for the different spacer stacks of Fig. 3.2 can be understood following the
investigation of hydrogen related species dynamics in both oxide and nitride. The three nitrides NA to
NC used in the samples S’; to S’4 of table 3.1 were analysed using coupled mechanical stress/thermal
desorption spectroscopy (TDS) measurements described by Morin et al. in [16] and corresponding
hydrogen related species chemical characteristics were extracted. In the nitrides deposition conditions
used in our work, hydrogen can be incorporated in nitride by forming SiH or NH bonds [12] in the
SiN lattice. The hydrogen species concentration in the nitride is strongly dependent on the process
conditions and therefore some differences are expected for the nitrides under consideration. During a
thermal anneal, hydrogen bonds can be broken thus releasing free diffusing hydrogen H atoms [17]:

(SIN)=Si—H +— (SiN)=Si + H (3.4)
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(SIN) =N-—H «— (SiN) =N + H (3.5)

The released hydrogen from reactions 3.4 and 3.5 can also react with other present SiH and NH bonds
releasing a free diffusing dihydrogen Hy molecule:

(SiN)=Si—H + H +— (SiN)=Si + H, (3.6)

(SiN)=N-H + H +— (SiN) =N + H, (3.7)

The released hydrogen species (H in reactions 3.4 and 3.5, Hy in reactions 3.6 and 3.7) can freely
diffuse in nitride, but also be transferred to adjacent materials such as oxide or air in the annealing
chamber for samples S’y to S’4. As a consequence, reaction mechanisms 3.4 to 3.7 and the diffusion of
released H and Hs species should be characterized in order to evaluate the hydrogen species evolution
in the nitride during a thermal anneal. Chemical kinetics of the different hydrogen reactions are
then analysed by TDS using a thermal anneal for each nitride under consideration. However, the TDS
technique cannot distinguish between the atomic and molecular desorbed hydrogen species. Therefore,
the following assumptions are made in our study:

e H and Hsy can both diffuse in the nitride and will be considered as one group of species called H.
e The released H species cannot be re-absorbed by the nitride SiN lattice.

e Hydrogen bonds in SiN (NH and SiH) will be labelled SiNH and their initial concentration before
annealing is SiNHj.

e No free diffusing H species are present in nitride before annealing.

Following the previous assumptions, H and SiNH concentrations in nitride can be modelled using
the following equations in a one dimensional (1D) system along x direction:

aHnit o 32Hnit .
5t = DM —5 5 + K (H),; SINH (3.8)
iNH
as(l% — —K (H),,, SiNH (3.9)

D (H),;, is the H diffusivity in nitride in cm?.s™! and K (H);, is the H desorption constant in s™'.

Both D (H),,, and K (H),;, are extracted from coupled stress/TDS measurements [16] and follow Ar-
rhenius laws that are temperature dependent with an exponential pre-factor and an activation energy.
Stress and TDS measurements were fitted numerically using equations 3.8 and 3.9 and K (H) ;. and
D (H),,;, were extracted for nitrides NA and NC. Corresponding results are given in table 3.2 with the
corresponding pre-exponential factors, activation energies and values at 1000°C (in italic).

From table 3.2, we can observe that hydrogen effective diffusivity in NC nitride is much higher
than the one in NA nitride, which can be explained by the difference in density of NA and NC
nitrides respectively of 2.65 and 2.15 g.cm ™2 (table 3.2). These results are in agreement with litera-
ture data [18-20] where a hydrogen diffusivity increase with a nitride density decrease was observed.
K (H),;; could not be deduced for NB nitride from stress/TDS measurements. However from table 3.2,
we can see that NC density of 2.52 g.cm™3 is close to NA density of 2.65 g.cm™ and therefore we

_0.01(eV)
assume that hydrogen effective diffusivity in NC nitride is 1.05 x 1074 x e~ T cm?.s7!, equal to

the one in NA nitride and of the same order of magnitude as the one observed in literature at 1000°C
for LPCVD nitride (5x10~cem?.s~! in [21]). Considering this diffusivity value for NC nitride, the
reaction constant K (H) ;. at 1000°C was deduced from simulations using equations 3.8 and 3.9 and
is given in table 3.2. Finally, NA, NB and NC nitrides density and their corresponding approximate
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initial SiNHy bonds concentrations measured by Fourier transform infrared spectroscopy (FTIR) are
given in table 3.2.

Table 3.2: Summary of physical parameters of the different materials used in this study: K (H),;, and
D (H),;, (equations 3.8 and 3.9) extracted from coupled stress/TDS measurements [16] for nitrides
NA to NC, initial SiNH bonds concentration SiNHy and OH bonds concentration OHy extracted from
FTIR measurements for nitride NA to NC and oxide OA and OB. Nitrides density p was obtained by
simple weighing. Values at 1000°C are in italic.

K(H) , (s71) D (H) ; (cm?s7 1) SiNHp(cm=3) | OHp(ecm=3) | p(g.cm™3)
— 0.82(eV) — 0.01(eV)
NA 5.71e” k8T 1.05 x 1074 x ¢ ®BT ~ 1023 2.65
3.27 x 1073 9.59 x 10715
—0.01(eV)
NB 1.05 x 107 x ¢ ®BT ~ 1022 2.52
9.0 x 10~* 9.59 x 10715
— 1.22(eV) —0.23(eV)
NC | 6.34 x 10% ~*8T 4.07 x 10710 x ¢ " ®BT ~ 1023 2.15
9.58 x 1071 5.02 x 10711
OA ~ 1021
OB ~ 1020

In order to characterize hydrogen related species in oxides OA and OB, samples S’y to S’ will be
used. In the deposited oxides of this study, hydrogen is mainly in the SiH and OH bonds form [1 1, 13],
the latter corresponding to HRDs already seen in reaction 3.2 and enhancing boron diffusion in the
oxide. However, coupled stress/TDS method cannot be used for oxides as for nitrides [10] in order
to extract hydrogen related species characteristics, mainly because deposited oxides are rich with
water HoO molecules [22], and many indistinguishable chemical reactions can lead to the formation of
HRDs [23]. Thus, hydrogen related species characteristics in oxides OA and OB will be determined
indirectly using boron SIMS profiles in silicon and oxide of Fig. 3.2, as it will be shown in 3.2.3.2.
As for nitride and in order to model hydrogen related species in oxide, the following assumptions are
made:

All the hydrogen diffusing species in oxide will be considered as one group of species called H.

OH bonds (or HRDs) are considered as the only hydrogen bonds in oxide and their initial
concentration before annealing is OHjy.

No free diffusing H species are present in oxide before annealing.

Contrarily to the SiINH bonds in nitride (equations 3.8 and 3.9), OH bonds can both absorb and
desorb H species respectively from and into the oxide.

Given the previous assumptions, H and OH concentrations in the oxide can be modelled using the
following equations in a one dimensional (1D) system along x direction:

OHoy 0°Hox
5 =D () % K, (H)  Hox + Ko (H),,, OF (3.10)
OOM — K (H),, Hox — Ko (H),,, OH (3.11)
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D (H),, is the H effective diffusivity in oxide in cm?.s™1, K, (H),, and Kq (H),, are respectively the
hydrogen absorption and desorption constants for OH bonds in s!.

In summary, equations 3.8, 3.9, 3.10 and 3.11 model diffusion and reaction mechanisms of hydrogen
related species in nitride and oxide materials. Considering the transfer of free hydrogen from nitride to
oxide at the nitride/oxide interface, it can be modelled by a simple segregation model, with the flux j
of hydrogen between the two materials and 7 the vector normal to the interface. The corresponding
boundary condition is:

TH)H =k (Hmt — H:") (3.12)

where k (in s7!) and s (no unit) are respectively the transfer and segregation parameters. Hy;; and Hoy
are respectively hydrogen concentration at nitride side and oxide side of the nitride/oxide interface.
In order to model hydrogen degassing during the thermal anneal, a recombination boundary condition
was defined for hydrogen at air/nitride interface:

7(H)ﬁ = krecHnit (313)

where kyee (in s71) is the recombination constant. It should be noticed that the same boundary con-
dition is fixed at the air/oxide interface in order to allow hydrogen degassing in a simple oxide/silicon
stack and reproduce nitride capping layer effect when comparing it to a full nitride/oxide/silicon
stack [0].

Considering hydrogen related species, in addition to experimentally extracted parameters of ta-
ble 3.2, K, (H),, and K4 (H)_ for free hydrogen absorption and desorption by SiO bonds, are extracted
from boron SIMS results of Fig. 3.2 in samples S’; to S’y to be shown in 3.2.3.2. Finally as for SiINH
bonds, OH bonds concentrations in oxides OA and OB are extracted from FTIR measurements and
given in table 3.2.

Before modelling temporal evolution of boron and hydrogen related species densities, we will give
a detailed analysis of equations 3.8, 3.9, 3.10 and 3.11. As a first approximation, if we consider an
independent conservative (no recombination at interfaces) nitride system with an initial homogeneous
SiNH bonds concentration SiNHy to be extracted from table 3.2, a zero initial homogeneous (no
diffusion) hydrogen concentration, solving analytically 15¢ order differential equations 3.8 and 3.9
leads to:

i (t) = SiNHy (1 - e—K(Hmt) (3.14)

SiNH(t) = SiNHg.e ™Kt (3.15)

With parameters values from table 3.2, we show in Fig. 3.3 the corresponding SiNH and hydrogen dose
(in cm~2) temporal evolution during the 1000°C anneal for NA, NB and NC nitrides 55 nm thick. As
expected from the simple analytical temporal solutions 3.14 and 3.15, Fig. 3.3 shows that the higher the
reaction constant K (H) .., the higher is the dissolution of SINH bonds and formation of free hydrogen.

Now if we consider oxide, assuming an independent conservative (no recombination at interfaces)
oxide system with an initial homogeneous OH bonds concentration OHy to be extracted from table 3.2,
a zero initial homogeneous (no diffusion) hydrogen concentration, solving the system of the two first
order differential equations 3.10 and 3.11 leads to:

Hox(t) — Kd (H)OX OHO _ Kd (H)OX OHO e* (Ka(H)OX+Kd(H)0X)t (316)

Ka (H)ox + Kd (H)ox Ka (H)ox + Kd (H)ox
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Figure 3.3: Temporal evolution of SiNH bonds (lines) and hydrogen (lines + symbols) density for
homogeneous isolated nitrides NA, NB and NC during the 1000°C 2 min anneal using the analytical
solutions 3.14 and 3.15.

OH(t) = Ko (H),, OH

Kq (H),, OHg
Ka (H)ox + Kd (H)ox

ei (KE(H)OX+Kd(H)Ox)t
Ka (H)ox + Kd (H)ox

(3.17)
. Ka(H),, OHo
From equations 3.16 and 3.17: He(0) = 0, OH(0) = OHg, Hox(c0) =7 and OH(oo) =
Ka(H)OXOHO ox ox
Ka(H)OX+Kd(H)OX ’

With parameters values from table 3.2, K, (H) , fixed at 0.01 s~! for both oxides
and Kq (H),, fixed respectively at 0.8 and 0.6 s~! respectively for oxides OA and OB, we show in
Fig. 3.4 the corresponding OH and hydrogen dose (in cm~2) temporal evolution during the 1000°C
anneal for OA and OB 40 nm thick oxides. From Fig. 3.4, we can observe that oxides OA and OB
have the same behaviour with slight differences due to different Kq (H)

ox Values for the two oxides.
We can also notice that constant equilibrium densities Hox(00) and OH(oo) are achieved respectively
for hydrogen and OH bonds after approximately 10 s of anneal.

Fig. 3.3 and 3.4 showed temporal evolution of hydrogen related species during thermal anneal-
ing where oxide and nitride material were considered independently. However, in the real systems
of nitride/oxide/silicon stacks, hydrogen is mobile, diffuses in both oxide and nitride and can be

transferred to neighbouring materials as suggested by conditions 3.12 and 3.13. Therefore, hydrogen
related species temporal evolution in the real system will be given in 3.2.3.2 in association with boron
out-diffusion modelling.

3.2.3.2 Boron out-diffusion modelling

After the presentation of the model that drive the hydrogen dynamics in oxide and nitride stack, we
address the boron diffusion here introducing first the diffusion through fixed traps and then trough
mobile traps.
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Figure 3.4: Temporal evolution of OH bonds (lines) and hydrogen (lines + symbols) density for homo-
geneous isolated oxides OA and OB during the 1000°C 2 min anneal using the analytical solutions 3.16
and 3.17.

Regarding previous remarks, we first considered boron diffusion in oxide as a function of OH bonds,
modelled using diffusion constant in equation 3.3, where boron diffusivity depends on the OH bonds
concentration. The following boron diffusion equation is considered in the oxide:

OBy OH \" 0*Box
=De(B) (1 3.18
o~ Do(B) < + OHref> 0 (3.18)
The set of advanced models of SProcess simulator [24] was used and hydrogen related species equations

were integrated using Alagator scripting language [24]. Boron transfer from oxide to silicon for out-
diffusion modelling used a three phase segregation boundary condition at the oxide/silicon interface
[25, 26], the three phases being oxide, silicon and oxide/silicon interface defined by the following system
of equations in a 1D system:

8Box si 2
T/ = DO,ox/siaa% + Fox + Fy
Fox = Tox (Cmax - Box/si) Box - on (B?)X - Box) Box/si (319)

Fg =Tg (Cmax - Box/si) Bsi — Esi (B:1 - BSi) BOX/Si

First line equation of system 3.19 is boron diffusion in oxide/silicon interface B, /st where Dy oy /i is the
diffusion constant, Fg, and Fy; are respectively boron fluxes to oxide and to silicon where the different
parameters in 2" and 3'4 lines of equation 3.19 are: By and By the respective boron concentration at
oxide and silicon sides of the oxide/silicon interface, BS, and Bg, the respective boron solubility limit
in oxide and silicon, Ty and Tg; the trapping rates from oxide and silicon, Eqy and Eg; emission rates
to oxide and silicon and Cy,ax maximum density of traps for boron at the oxide/silicon interface.

From SIMS results of Fig. 3.2 showing different dose loss for samples S’; to S’4, a set of model
parameters for OH and boron was chosen in order to reproduce boron profiles in silicon. The different
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parameters values at 1000°C are given in table 3.3, where we can see that all the OH and boron
parameters from equations 3.10, 3.11 and 3.18 are identical for both OA and OB oxides, except for
the hydrogen desorption constant Kq (H),, which is higher for OA oxide (0.8) in comparison to OB
oxide (0.6).

TCAD process simulations of boron diffused profiles for the different stacks using tables 3.2 and 3.3
model parameters for OH bonds, hydrogen and boron in oxide, SiINH bonds and hydrogen in nitride,
are given in Fig. 3.5 and compared to SIMS results. From Fig. 3.5, a good agreement between
SIMS and simulation results is obtained for boron diffused profiles in silicon. However, even though
the out-diffusion mechanism is qualitatively reproduced in oxide with an effective diffusion in oxide
increasing with the dose loss in silicon, we can see that as discussed previously, boron diffused profiles
in oxide have an erfc shape in agreement with Fick’s second law of equation 3.18. In addition, it
should be noticed that the general trend given in the legend of percentage dose loss defined by the
ratio of the integrated dose in silicon after diffusion on the BFy implanted dose (5.10'* cm™2) is the
same between SIMS and TCAD simulations. However, some differences are observed between the
two values probably due to boron peak SIMS uncertainties at the oxide/silicon interface. Combining
equation 3.18 for boron diffusion [I14] with hydrogen related species temporal evolution of our set of
equations 3.8, 3.9, 3.10 and 3.11, we are able to reproduce boron dose loss from silicon for the different
stacks.

Table 3.3: Summary of model parameters for OH and boron species related to equations 3.10, 3.11
and 3.18 for OA and OB oxides in order to match boron SIMS profiles in silicon from Fig. 3.2. Different
values between oxides OA and OB are in italic.

‘ Ka (H)ox(sil) ‘ Kd (H)ox(sil) ‘ DO(B)(Cm?Sil) ‘ OHI‘Ef(Cmizs) ‘ n
OA ‘ 0.01 ‘ 0.8 ‘ 3.07 x 10718 ‘ 2.20 x 1016 ‘ 1.0

OA 0.01 0.6 3.07 x 10718 2.20 x 106 | 1.0

Boron diffusion equation 3.18 models correctly boron dose loss in silicon as a function of OH bonds
concentration in oxide after simulating the different hydrogen related species temporal evolution in
both nitride and oxide. Qualitatively, boron out-diffusion mechanism is captured with a correlation
between boron dose loss and diffusivity in oxide. However, boron diffused profiles in oxide are not
correctly reproduced as we can see in Fig. 3.5. Typical Fick’s law based erfc diffused profiles are ob-
served in our simulations, while exponential profiles are obtained experimentally, suggesting a boron
diffusion using a migrating species form before recombining and forming immobile species. In this
case, boron is suspected to diffuse using a long hop mechanism with a characteristic length A, defined
as the mean projected path length for mobile B between its formation and recombination [27]. From
SIMS results and previous simulations of Fig. 3.5, it was observed that boron diffusion in oxide is a
function of OH bonds concentration. However, from SIMS results of Fig. 3.2, it is also observed that
the exponential tails in oxide have different slopes with a decreasing slope from sample S’; to S'y4.
Consequently, we have different hopping lengths for the different samples suggesting that not only
boron diffusivity depends on OH concentration but also the hopping length A.

Regarding previous remarks, let us remind that in silicon, long hop mechanism has already been
studied by Cowern et al. [28] where boron diffusing species are boron interstitial pairs BI and the
immobile one is substitutional boron Bg,,. Diffusion in silicon takes place with a kick-out mechanism
[29]. As discussed in details previously, Fair et al. [3] showed that boron diffuses in oxide using HRDs
(or OH bonds) as shown in reaction 3.2. Therefore, by adapting the boron diffusion mechanism of
Cowern et al. [28], we consider in the case of oxide, that boron is in two forms: an immobile species
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Figure 3.5: Boron SIMS versus TCAD results for samples S’ to S’4 (table 3.1) using equation 3.18
for boron diffusion in oxide, in association with equations 3.8, 3.9, 3.10 and 3.11 for hydrogen related
species temporal evolution. Final percentage of boron dose loss in silicon after anneal is also given in
the legend.

B such as substitutional boron in silicon, and diffusing species BOH via OH HRDs such as BI pair
in silicon formed following the reaction of immobile B and an OH bond (reaction 3.2). The following
two equations are consequently set for B and BOH in oxide:

OB OH \?
OBOH OH \ §?BOH OH \?
=(D(B — — BOH B.OH .21
ot < ( )ox OHref> Ox2 (I'O (OHO) ) OH + g O (3 )

In equations 3.20 and 3.21, we can see that BOH is the diffusing species, and as in equation 3.18, BOH
diffusivity D (B),, O%I:Ie - is enhanced with the OH concentration using the multiplying factor in front
of the 15 right hand side (r.h.s.) of equation 3.21 with a reference OH concentration OH,e¢. After
a diffusion step with a characteristic length A\, BOH will recombine and form and immobile boron

2
atom B. The recombining factor rg <g—§0> in 1%t and 2" r.h.s terms of the respective equations 3.20

and 3.21 depends on OH concentration in oxide and the two fitting parameters ro (in s~!) and OHg
(in em™3). As for kick-out mechanism for BI pairs in silicon, BOH can also be generated following
the reaction between B and OH (reaction 3.2) with a generation constant g (in cm™3.s7!) in 2°¢ and
3" terms of equations 3.20 and 3.21.

It should be noticed that in addition to absorption and desorption constants K, (H) , and Kq (H),,,
boron diffusion model in oxide of equations 3.20 and 3.21 has five different calibration parameters:
D (B),.; OH,et, rg, OHg and g. Therefore, given the number of experimental conditions with four spacer
stacks S’1 to S’4, the set of parameters values found in our simulations of SIMS results, and even the
formulation for the recombination constant dependence with the square of the OH concentration are
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certainly not unique. However, the aim of this work is to show for the first time that boron diffusion
in oxide can be modelled using a long hop mechanism in order to reproduce the boron exponential
tails clearly observed experimentally. The different model parameters of equations 3.20 and 3.21 are
given in table 3.4. K, (H),, absorption constant from table 3.4 was modified from 0.01 to 0.008 for
oxide OB. Kq4 (H),, desorption constant from table 3.4 was modified form 0.8 to 3.8 and 0.6 to 3.6
respectively for oxides OA and OB.

Table 3.4: Summary of diffusion model parameters at 1000°C for boron in both oxides OA and OB
including the long hop mechanism from equations 3.20 and 3.21.

| D(B),, (cm®s™!) | OHye (em™3) | OHp (em™®) | 19 (s7!) | g (em™3s71)
Oxide |  3.07x 1077 | 7.02x10% | 9.02x10™ | 250 x107% | 1.42 x 1075

With the set of parameters of table 3.2 and 3.4, boron diffused profiles for samples S’; to S’y are
shown in Fig. 3.6. A good agreement between SIMS and TCAD simulated results is obtained for boron
diffused profiles in the different samples, including boron profiles in silicon and exponential shaped
profiles in oxide. Boron dose loss from silicon is qualitatively reproduced (legends Fig. 3.6) with slight
differences again due to SIMS artefacts at the oxide/silicon interface.

NB/OA (S’5) SIMS: 48.3%
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Figure 3.6: Boron SIMS versus TCAD reults for samples S’; to S’4 (table 3.1) using equations 3.20
and 3.21 for boron diffusion in oxide with the long hop mechanism, in association with equa-
tions 3.8, 3.9, 3.10 and 3.11 for hydrogen related species temporal evolution. Final percentage of
boron dose loss in silicon after anneal is also given in the legend.

In association with boron dose loss models of equations 3.20 and 3.21, hydrogen related species
temporal evolution can be evaluated thanks to equations 3.8, 3.9, 3.10 and 3.11. Samples S’ and S’4
of Fig. 3.6 showing respectively the lowest and highest boron dose loss will be compared. Hydrogen
related species temporal evolution in oxide and nitride during the thermal anneal is shown in Fig. 3.7.
SiNH bonds temporal evolution in nitride is shown in Fig. 3.7a. Knowing that SiNH bonds simply
dissolve by emitting free hydrogen and do not react with neighbouring materials it is not surprising
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that the SiINH density temporal evolution of Fig. 3.7a is the same as the one shown in Fig. 3.3 using
analytical equation 3.15. Hydrogen density versus time in both nitride and oxide is shown in Fig. 3.7b,
which as expected is quite different from the results using the approximations of Fig. 3.3 and 3.4. In-
deed, in addition to different OH bonds absorption and desorption constants K, (H) , and Kq (H)_,
in oxide in comparison to results shown in Fig. 3.3 and 3.4, in these full simulations, hydrogen can
diffuse in both oxide and nitride and can be transferred from nitride to oxide (and vice versa) and
finally can be degassed by recombining at the air/nitride interface.

Sample S’4 with NC nitride and OB oxide, is interesting in these simulations. From desorption
reaction constant in nitride K (H);, (9.53 x 107! s7! table 3.2), it is expected that hydrogen concen-
tration in nitride quickly reaches its maximum concentration as seen for NC nitride using the simplified
assumptions in Fig. 3.3. However, in the full simulations, hydrogen diffusivity in NC nitride D (H)
at 1000°C equals 5.02 x 107! em?.s7! (table 3.2) and is almost four orders of magnitude higher than
the one for NA and NB nitrides of 9.59 x 107'% cm?.s~! (table 3.2). Consequently, given these high
values of both K (H),;, and D (H),;,, hydrogen will quickly desorb from the SiNH bonds and recom-
bine at the nitride/air interface. This will lead to a complete degassing of hydrogen from nitride, a
transfer of hydrogen from oxide to nitride due to the resulting densities gradient between oxide and
nitride. Hydrogen will then degas from oxide to nitride to air and OH bonds in oxide will completely
desorb which can be seen from hydrogen and OH bonds fast density decrease respectively in Fig. 3.7c
and 3.7d. In sample S’4, nitride does not have a capping effect for hydrogen and is almost transparent
for hydrogen degassing. S’4 stack behaves like a simple oxide/silicon stack where hydrogen degassing
reduces significantly boron out-diffusion [6]. Finally, OH bonds density is correlated to boron dose loss
from silicon. Indeed, from Fig. 3.7c, OH bonds density decreases from samples S’ to S’y leading to a
boron dose loss decrease from S’y to S’y as observed on Fig. 3.7d of boron dose temporal evolution in
oxide and silicon for the different samples.

Boron out-diffusion model developed here and also described in [30], is also able to reproduce
nitride capping effect already observed in literature [6]. In the case of a simple oxide/silicon stack,
we considered that the air/oxide interface boundary condition is the same as the air/nitride bound-
ary condition of equation 3.13. Therefore, if the oxide is directly in contact with air, hydrogen will
degas and OH bonds concentration will decrease in oxide leading to a lowering of boron dose loss.
In Fig. 3.8, we compare boron diffused profiles simulation results for S’; (NA/OA), S’s (NB/OA)
and a simple oxide/silicon stack with OA oxide and its corresponding OH bonds density temporal
evolution. Thus from Fig. 3.8 for the simple oxide/silicon case OA, boron dose loss is lower than S’
and S’ nitride/oxide/silicon stacks due to a degassing of hydrogen and a decrease in OH bonds density.

Following boron out-diffusion modelling in Fig. 3.6, it should be noticed that induced dose loss in
silicon for the different stacks S’y to S’4 is expected to have an influence on electrical characteristics
of CMOS based devices as it will be seen in chapter 4. A first investigation of this aspect will be
given here by modelling boron layer sheet resistance Rg of samples S’ to S’y in addition to the simple
oxide/silicon stack OA of Fig. 3.8. Corresponding Rg temporal evolution is given in Fig. 3.9. Sheet
resistance calculations used Masetti et al. formulas [31] and from Fig. 3.9, we can see that the higher
the dose loss the higher is Rs. This behaviour is expected because Ry decreases when dopant activated
dose and junction depth increase. Therefore, from these sheet resistance results, boron dose loss is
expected to impact electrical performances of CMOS based devices as it will be observed in chapter 4.

3.3 Lanthanum diffusion in high-k stacks

The results of previous section, but also chapter 2 concentrated on dopant atoms and mainly boron
diffusion in silicon and oxide materials. Such diffusion mechanisms impact electrical behaviour of
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Figure 3.7: TCAD temporal evolution of (a) SiNH bonds density in nitride, (b) hydrogen density in
nitride and oxide, (¢) OH bonds density in oxide and (d) boron density in oxide and silicon for samples

S’1 and S’4 during the 1000°C 2 min anneal using equations 3.8, 3.9, 3.10 and 3.11 for hydrogen related
species and equations 3.20 and 3.21 for boron diffusion in oxide.
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Figure 3.8: Boron TCAD results for the two nitride/oxide/silicon stacks S’; and S’y, in comparison
to a simple oxide(OA)/silicon stack showing the capability of the model in reproducing the capping
effect of nitride on hydrogen degassing during the 1000°C 2 min thermal anneal. Final percentage of
boron dose loss in silicon is also given in the legend.
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Figure 3.9: TCAD temporal evolution of sheet resistance Ry for samples S’; to S’y (table 3.1) and the
simple oxide(OA) /silicon stack (Fig. 3.8) during the 1000°C 2 min thermal anneal.
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CMOS devices. However, it should be noticed that diffusion of other non conventional chemical
species in multi-materials stacks following thermal annealing may also have an impact on electrical
characteristics of CMOS based devices. In the frame of the PhD and ATEMOX project [1], one
particular species used in advanced high-k stacks for nMOS transistors was investigated: lanthanum
(La). After an introduction in 3.3.1 to high-k dielectrics and La use in advanced nMOS transistors, we
will present in 3.3.2 our dedicated experimental structures consisting of TiN/LasO3/HfSiON/SiO2/Si
high-k stacks in order to investigate La diffusion. These experiments will be used for the development
of a La diffusion model in TiN/LapO3/HfSiON/SiO2/Si high-k stacks [32] to be presented in 3.3.3.

3.3.1 Introduction to high-k stacks and the use of lanthanum

In order to reduce power consumption in the sub-32 nm CMOS technologies, high-k dielectric materials
are used in association with metal gate materials [33]. Indeed, the MOS or more generally a metal
insulator silicon (MIS) capacitance is defined by:

KegA
t

where k is the dielectric constant or relative permittivity of the dielectric material used in the MIS
structure, € is the free space permittivity of 8.85 x 1073 fF/um, A the area of the capacitance and t
the thickness of the dielectric. Following miniaturization, the classical oxide dielectric thickness t was
reduced in order to increase the gate capacitance of MOS transistors and keep the required electro-
static control of the channel of MOS transistor [33]. However, the main drawback of oxide thickness
reduction is an increase in gate leakage currents and consequently in overall power consumption.

C=

(3.22)

The capacitance expression 3.22 can be rewritten in terms of equivalent oxide thickness (EOT)
teq Of dielectric constant kox >~ 3.9. Therefore, for a given dielectric with a dielectric constant «, the
EOT teq is the theoretical thickness of SiO2 oxide required to have the same capacitance 3.22 as the
dielectric. In order to increase the physical thickness of a given dielectric, its dielectric constant has
to be as high as possible, and therefore such dielectrics are labelled high-k. The following relation is
verified for the high-k [33]:

teq _ thigh—k Khigh—k

= ——— = thigh-k =

t 3.23
Rox Khigh—k Rox o« ( )

where thigh—k and kpign—k are respectively the high-k thickness and dielectric constant.

Over the last years, hafnium oxides such as HfO-, HfSiO5 and HfSiON deposited on a thin pedestal
SiOg (or SiON) interfacial layer (IL) were used in microelectronics industry and became a serious al-
ternative to classical SiOq dielectrics [34, 35]. In association with the use of high-k dielectric as a
MOS capacitance insulator, metal gate (MG) materials are used. MG materials eliminate the de-
pletion effect increasing the EOT, observed for polycrystalline silicon (polysilicon) gates in classical
gate schemes. However, while tuning the poly-silicon doping allows modifying the gate effective work
function (EWF) and to provide adequate threshold voltages (Vi) for both nMOS and pMOS transis-
tors, the use of MGs does not allow a simple modification of the EWF. Therefore, a solution to this
problem was to introduce a thin capping layer of a rare-earth oxide between the MG and the high-k
dielectric [36, 37]. Several rare-earth oxides can be used in nMOS and pMOS transistors depending on
the desired positive or negative Vi shift. In the case of a nMOS transistor, lanthanum oxide (LagOs3)
is used to provide a negative shift in the Vi. The physical mechanism behind the shift is that in a
gate first approach, the high-k and MG are deposited before the fast high temperature spike anneal
for source, drain and extensions dopant activation. During the anneal, lanthanum diffuses from the
LagO3 capping layer through the high-k material and forms lanthanum silicates that are typically La-
Si0 bonds at the high-k/IL interface [38-10]. The LaSiO bonds are believed to form electrical dipoles
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at the high-k/IL interface, which from literature results are responsible of the Vy shift [37, 11, 12].

Therefore, in regards of these literature results, the Vi shift is expected to be related to the
number of LaSiO dipoles resulting from La diffusion in the high-k and the LaSiO formation after
reaching the high-k/IL interface. In the meantime, technology relevant nMOS MG-high-k stacks
such as the TiN/LagO3/HfSiION/SiO5/Si stack to be studied here use ultra-thin high-k and IL with
thicknesses not exceeding 3 nm. Such low thickness makes difficult a precise study of La diffusion
and reaction mechanisms described above, even though some very interesting results already exist in
literature on that subject combining electron loss spectroscopy, X-ray photoelectron spectroscopy and
high resolution TEM [40]. In the work to be presented in 3.3.2 and 3.3.3, dedicated TiN/LayOg/high-
k/IL/Si gate stack structures with thick high-k and IL were intentionally designed in order to have a
reliable investigation of the physical mechanisms taking place during La diffusion in the high-k stack.
The corresponding experiments will be first described in 3.3.2 before being used to build a La diffusion
model [32] described in 3.3.3.

3.3.2 Experimental investigation of lanthanum diffusion in high-k stacks

The dedicated structures TiN/LayO3/HfSiON/SiO5/Si stacks were prepared using a gate-first ap-
proach on 300 mm Si (100) wafers. In order to study diffusion and reaction mechanisms of La in the
high-k and IL, two series of samples summarized in table 3.5 were designed: (i) ”thick” high-k (15
nm) on ”thick” IL (10 nm) corresponding to samples 1 to 8 in table 3.5 and (ii) "thin” high-k (2.5
nm) on "thicker” IL (20 nm) corresponding to samples 9 to 16 in table 3.5. Series (i) and (ii) samples
allow us to study the diffusion mechanisms, respectively in the HfSION high-k and the SiO5 IL. Initial
silicon substrate was cleaned using a hydrofluoric acid solution. A rapid thermal oxidation of the
silicon substrate at 1100°C and 1150°C was used to grow respectively a 10 nm for series (i) and 20
nm for series (ii) thick silicon oxide SiOg layer. The 2.5 nm HfSiON layer of series (ii) was deposited
by metal organic chemical vapour deposition (MOCVD) of HfSiO followed by a decoupled plasma
nitridaton (DPN) for 90 s in order to inject nitrogen N in the high-k layer. For series (i) samples
of 15 nm HfSiON high-k layer, the HfSiO MOCVD and DPN steps were repeated 6 times. In order
to homogenize the N density in the HfSiION, a post nitridation anneal was carried for both thin and
thick high-k samples. Following the high-k step, a thin LasO3 1 nm thick capping layer was formed by
physical vapour deposition (PVD) followed by the titanium nitride TiN MG 6.5 nm thick deposition
by PVD. Finally thermal anneals made in a RTA system at different times and temperatures including
1000°C/50 s and {1040 and 1080}°C/{10, 30 and 50}s were made in order to study the La diffusion
and reaction mechanisms in the stack.

The different samples were analyzed by time-of-flight secondary ion mass spectrometry (ToF-SIMS)
using a 0.5 keV 45°tilted Oy beam and La™, HfO', Sit and Ti" positively charged species signals
versus depth were detected. La intensity quantification was carried using a reference sample analysed
by APT as in [13]. Knowing that etch rates during ToF-SIMS measurements are different for the
stack’s different materials, a depth calibration based on the process thickness was made for the thick
HfSiON 15 nm layer of series (i). Other materials thickness may have slight inaccuracies, however
this does not impact La diffusion evaluation in HfSiON high-k. From another side, series (ii) samples
with a thin high-k of 2.5 nm on a thicker IL of 20 nm, SIMS results interpretation is more difficult. In
this case, LaSiO lanthanum silicates formation after anneal may be important due to the proximity
of the high-k/IL interface from the LasOg capping layer forming a thin LaSiO layer and complicating
La depth and concentration calibration. Moreover, following the HfSION thin layer etch by the SIMS
beam, it was observed that a part of the Hf atoms form a metallic aggregate at the HfSION/SiOq
interface, causing a lower etch rate of the SiOs material and consequently leading to a more difficult
SIMS calibration and interpretation for series (ii) samples.
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Table 3.5: Deposit and anneal details of the samples designed in order to study La diffusion in
TiN/LagO3/HfSiON/SiO2/Si high-k stacks.

Samples 1 2 3 4 5 6 7 8|9 10 11 12 13 14 15 16
Si0O4 layer (10 nm) X X
Si04 layer (20 nm)
HfSiON layer (15 nm) |x X X X X X X X
HfSiON layer (2.5 nm)
LagO3 layer (1 nm)
TiN layer (6.5 nm)
poly-Si layer (20 nm)
No Anneal

1000°C - 50 s X X

1040°C - 10 s X X

1040°C - 30 s X X

1040°C - 50 s X X

1080°C - 10 s X X

1080°C - 30 s X X
1080°C - 50 s X X
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Series (i) thick high-k/thick IL samples were first analysed by SIMS. Corresponding results for La™,
Ti™ and HfO™ clusters intensities versus depth for the as-deposited sample are given in Fig. 3.10. In
the intensities versus depth profiles of Fig. 3.10, the 0 position on x-axis corresponds to the silicon
surface on which the different layers are deposited. We can clearly distinguish the positions and thick-
nesses of the different layers of the high-k stack. The different species profiles are slightly spread in
neighbouring layers, which is due to SIMS resolution artefacts at the different interfaces. The real
intensity profiles are closer to rectangular ones with constant concentrations.

The annealed La SIMS profiles are shown in Fig. 3.11. Isochronal anneals (50 s) between 1000°C
and 1080°C shown in Fig. 3.11a indicate that La diffusion increases in the temperature range under
consideration, suggesting a thermally activated La diffusion mechanism. Previous literature results
[39, 441] showed that La diffusion in the high-k is source limited depending on the concentration of
La in the LasOg3 capping layer. Indeed, this effect was observed in our samples where we noticed a
slight decrease (not shown here) in La concentration in the LasO3 capping layer following the thermal
anneals. However in addition to this LasO3 source effect and according to La annealed profiles in our
experiments, the thermally activated La transport in the high-k cannot be ignored. From another
side, isothermal anneals at 1040°C and 1080°C are shown in Fig. 3.11b. For both temperatures, we
observe in Fig. 3.11b that La diffusion exhibits a transient behaviour and stops after approximately
30 s. This La diffusion saturation with time in this case is due to a chemical reaction kinetic effect.
Indeed, as mentioned above, La reacts with SiO bonds at the high-k/IL interface forming lanthanum
silicates LaSiO in a stable phase, probably stopping La diffusion and explaining the overlapping of 30
and 50 s curves in Fig. 3.11b. Therefore, in the frame of SIMS results of Fig. 3.11a and 3.11b, two
mechanisms both in agreement with literature results [38—10] are identified:

e A diffusion mechanism of La atoms that is thermally activated.

e A kinetic reaction mechanism explaining the diffusion saturation versus time due to LaSiO
silicates formation at the high-k/IL interface.

Zahi Essa - Physical modelling of impurity diffusion and clustering phenomena in CMOS-based
image sensors



94 CHAPTER 3. CHEMICAL SPECIES DIFFUSION IN MULTI-MATERIALS STACKS

X7 -
e /
¥l
22°

TiN(6.5 nm)
SiO,(10 nm)

Intensity (a.u.)

La,O5(1 nm)

Depth (nm)

Figure 3.10: SIMS profiles for Lat, Ti* and HfO" in the as-deposited (non annealed) sample of
table 3.5 for the HfSION(15 nm)/SiO2(10 nm) stack.
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Figure 3.11: La SIMS profiles for thermal anneals at (a) 1000, 1040 and 1080°C during 50 s where we
can see that the La diffusion in HfSiON is thermally activated and (b) 1040 and 1080°C during 10, 30
and 50 s for each temperature where La diffusion saturation versus time is observed.
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Thin high-k/thicker IL samples of series (ii) (table 3.5) were also analysed. Figure 3.12 shows
that La diffuses after thermal anneals in the HfSION material compared to the as deposited sample.
However as explained previously, SIMS resolution limits on these thin high-k/thick IL samples were
not resolved. Given that uncertainties on the positions and depths of the different materials in the
stack persisted, no further modelling of these data in sub-section 3.3.3 was possible. In addition, in
series (ii) samples, given the thickness of the HfSION (2.5 nm) and the proximity of the high-k/IL
interface from the LasO3 capping layer, the La diffusion saturation takes place probably faster forming
a thin LaSiO layer between the high-k and the IL, even after 10 s of anneal.

= high-k/IL interface not
well defined 1

HfSION(15 nm|

La as deposited—=—
La 1000°C - 50s—e—
La 1040°C - 10s
La 1040°C - 30s——
La 1040°C - 50s
La 1080°C - 30s—=—
La 1080°C - 50s

Intensity (a.u.)

Depth (nm)

Figure 3.12: La SIMS profiles for series (ii) samples (table 3.5) with a thin HfSiON (2.5 nm) high-k
and a thick SiO2 (20 nm) IL.

Given SIMS results of this section and profiles uncertainties for series (ii) samples (table 3.5), next
sub-section 3.3.3 on lanthanum diffusion modelling in TiN/LagO3/HfSiON/SiO2/Si high-k stacks will
focus on series (i) samples with a 15 nm thick HfSION high-k layer.

3.3.3 Lanthanum diffusion modelling in high-k stacks

In the following, we will concentrate on the evaluation and modelling of La diffusion in the thick
high-k/ thick IL series (i) samples in order to get a better understanding of the La diffusion in the
TiN/LagO3/HfSiON/SiO2/Si stack. In sub-section 3.3.2,we assumed that the La diffused profiles can
be explained by two mechanisms: a thermally activated diffusion mechanism allowing the La atoms
to reach the high-k/IL interface and a kinetic reaction mechanism due to LaSiO dipoles formation at
the high-k/IL interface that blocks the diffusion mechanism and explains diffusion saturation versus
time of anneal observed in Fig. 3.11b. The simulations to be carried in this sub-section will allow us to
check the validity of these assumptions. The TCAD diffusion model developed here was implemented
in SProcess using the scripting language Alagator [24] used to define the species and their different
related equations in the HfSiON material and at the LayO3/HfSiON interface. Fig. 3.13 is a synthetic
diagram not to scale of the different materials and interfaces in the stack with their related equations.

Our model mainly deals with La diffusion in the HfSION material and therefore the La diffusion
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Poly Si TiN La,0; HfSiON | SiO, Silicon
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No boundary ~ No bourldary Dirichlet No boundary No boundary
condition conditjon boundary condition condition
condition
(infinite source
of La from
La,0;)

Figure 3.13: Diagram of the different materials and interfaces in the TiN/LasO3/HfSiON/SiO2/Si
stack and their related equations.

equation is considered only in this material. We already noticed from SIMS results in 3.3.2 that La
concentration in the 1 nm LasOg3 layer is almost unaltered after the different thermal anneals. There-
fore, a Dirichlet boundary condition [15] is considered at the LayOs/HfSiON interface, according to
which the LagsOj3 layer is an infinite source emitting La in the HfSION high-k. A constant La concen-
tration is considered in the LagOgs layer, adjusted to the one measured by SIMS at the LayO3/HfSiON
for the as-deposited sample. Considering La diffusion in the high-k, the simplest diffusion equation
that can be used is Fick’s second law [15] described by:

0%La
ox2

JLa

e (3.24)
where La is the concentration of lanthanum in cm™3 and D is the La diffusivity in cm?.s™1. It should
be noticed that equation 3.24 assumes an isotropic diffusion which is quite simplistic and implies that
the high-k is amorphous. However, it has already been shown [16] that for thick high-k layers, some
partial crystallisation may take place after the thermal anneal leading to the formation of crystalline
regions within the amorphous high-k layer. In this case, La diffusion can be monitored by differ-
ent complexes, clusters and grain boundaries formed during the thermal anneal and consequently
leading to an anisotropic diffusivity. Therefore, if this partial crystallisation is confirmed, the diffusiv-
ity D in equation 3.24 has to be considered as an effective diffusivity in our one dimensional structures.

Fig. 3.14 shows the TCAD simulation results using equation 3.24 for samples annealed at 1040°C
for 10, 30 and 50 s, with D fixed at 6 x 1071 cm?.s7!. As expected when using Fick’s second law of
equation 3.24, the longer the anneal time, the more La diffuses. These simulations results are not in
agreement with SIMS experimental results of Fig. 3.11b indicating La diffusion saturation versus time
of anneal.

La reaction from the LasO3 capping layer with SiO bonds from the HfSiON high-k and the SiOs IL
discussed previously are quite complex and related to the LayO3.5i09 binary system [17]. Therefore,
we simplify the different chemical reactions described in [17] and leading to the LaSiO formation at
the high-k/IL interface using the following reaction:

La + Si0 -5 LaSio (3.25)
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Figure 3.14: La SIMS versus TCAD profiles for thermal anneal at 1040°C during 10, 30 and 50 s,
using equation 3.24 where La diffusion saturation versus time of anneal is not reproduced.

where k; is the forward LaSiO formation reaction constant. Reaction 3.25 is used to limit the diffusion
of La in the HfSiON and in order to further simplify our model, we consider that the reaction takes
place in all the material and not only at the high-k/IL interface. Knowing that a Dirichlet boundary
condition was considered at the LagO3/HfSiON interface, the LasOg is an infinite source of La and
consequently La is not a limiting factor for reaction 3.25. Consequently, SiO bonds follow the first
order differential equation:

dSiO
dt

whose analytical solution is SiO(t) = SiO(t = 0).e™**, where SiO(t = 0) is the concentration of SiO
bonds at the beginning of the anneal. Thus, defining S(t) as the unitless function:

= kSiO (3.26)

SiO(t
S(t): i 1 ( ) :efkft
SiO(t = 0)
one can reproduce the diffusion saturation versus time taking into account reaction 3.25 by modifying
La Fick’s second law diffusion equation 3.24:

(3.27)

OLa 0’La

From equation 3.27, we should notice that S(t =0) =1 and S(t) . 0 and thus the effective dif-
—00

fusivity D.S(t) will tend towards O versus time, which will block the diffusion mechanism and will
reproduce the diffusion saturation versus time. The La diffusion model represented by equations 3.26
to 3.28 was therefore calibrated thanks to the different SIMS data of Fig. 3.11 and the best agreement

1.04(eV)

was obtained with D fixed at 1.25 x 107% "®T  cm?.s™! and k¢ at 0.15 s~'. The results of the
corresponding TCAD simulations are shown in Fig. 3.15. It can be seen from Fig. 3.15a that equa-
tion 3.28 allows a correct modelling of the diffusion saturation versus time at 1040°C. In addition,
diffusion saturation versus time at 1080°C (not shown here) was also correctly modelled, validating
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our assumption on the kinetic effect in La diffusion due to the formation of LaSiO bonds. On the
other side, the diffusivity D follows an Arrhenius law versus temperature, and the thermally activated
diffusion mechanism discussed earlier is also verified. The thermally activated diffusion mechanism
in Fig. 3.15b is correctly captured by TCAD in comparison to SIMS measurements and mainly in
the tails of the La diffused profiles. However, a less good agreement between SIMS and TCAD was
observed near the LasO3/HfSiON interface.

Indeed, we can observe that near the LagO3/HfSiON interface, where the La concentration is high,
La diffusion is stronger than far from the interface where La concentration is lower. In addition, we
can observe that La diffusivity for high La concentration increases with temperature. Therefore, in
order to reproduce this effect, the following improved La diffusion equation was used:

OLa La\ 0%La
S =D (S(t) + L—a0> v (3.29)

with S(t) already defined in equation 3.27 and Lag a fitting parameter. Equation 3.29 parameters have
been also calibrated using the SIMS data: k¢ kept the same value 0.15 s~!, D has been slightly changed

10 _ 1.04(eV) 9 N ) 1 2.92(eV)
to 1.2 x 107%e T cm .s7 and the Lag fitting parameter has been fixed at 1.91 x 10*“e kBT

cm 3. Corresponding TCAD simulations results are shown in Fig. 3.16. Fig. 3.16a shows that the La
diffusion saturation effect is again correctly modelled using equation 3.29 for 1040°C (not shown here)
and 1080°C as we have already seen in Fig. 3.15a using equation 3.28. The La thermally activated
diffusion mechanism is correctly modelled in the tail of the profiles, but also near the LasO3/HfSiION
interface thanks to the La/Lag term enhancing the La diffusion in the high La concentration region and
at high temperatures. Therefore, from Fig. 3.16b, a very good agreement between experimental and
simulated results is observed. The three versions of our diffusion model presented respectively using
equations 3.24, 3.28 and 3.29 with their related calibrated parameters are summarized in table 3.6.

Table 3.6: Summary of the different models used in this work, and their related parameters and
characteristics.

Model Parameters Characteristics
% = D% (equation 3.24) D =6 x 10~ cm?.s7!(at Fick’s 2" law, no diffusion
1040°C) saturation.
oLa ket 9°La R . 10 ond
G = De " h o3 (equa- D =1.25 x 107" kBT Improved Fick’s 2"¢ law, cor-
tion 3.28) em?s™! ky = 0.15571 rect diffusion saturation vs.
time and thermally activated
diffusion.
oLa ket La | La 10, e 2 1 1o ond
SE=D <e 4 L—ao) R D=12x10""e kT cm”s Improved Fick’s 2™* law, cor-
(equation 3.29) ke = 0.15s71 rect diffusion saturation vs.
2.92(eV) . . .
Lag = 1.91 x 10'2¢ T cm~3 time, thermally activated dif-

fusion and La diffusion en-
hancement at high La concen-
tration.

The La diffusion model in HfSiION high-k described in [32] and summarized by equation 3.29 gives
very good agreement with experimental SIMS data. Several comments given in [18] can be drawn
considering these experimental and simulation results. First of all, it should be noticed that the La
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Figure 3.15: La SIMS versus TCAD profiles for thermal anneals at (a) 1040°C during 10, 30 and 50
s using equation 3.28 where La diffusion saturation is correctly reproduced and (b) at 1000, 1040 and
1080°C during 50 s using equation 3.28 where La thermally activated diffusion is correctly reproduced,

except near the LagO3/HfSiON interface with a high La concentration.
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Figure 3.16: La SIMS versus TCAD profiles for thermal anneals at (a) 1040°C during 10, 30 and 50
s using equation 3.29 where La diffusion saturation is correctly reproduced and (b) at 1000, 1040 and
1080°C during 50 s using equation 3.29 where La thermally activated diffusion is correctly reproduced,
including near the LapsO3/HfSiON interface with a high La concentration.
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diffusion model calibration is based on a limited set of data with a thick HfSiON layer. Indeed,
different additional effects may intervene for other hafnium oxide based high-k layers :

e For thin high-k layers (< 2.5 nm), such as the ones used in series (ii) samples of table 3.5, a
predominance of the reaction mechanism and the formation of a lanthanum silicates LaSiO layer
between the high-k and the IL may be observed. Therefore, the La diffusion model shown here
for thick high-k should be supplemented by a growth reaction model as in [19] for the formation
of LaSiO layer at the high-k/IL interface. Indeed, from SIMS profiles of series (ii) samples of
table 3.5 with a thinner 2.5 nm HfSiON high-k, very small differences in La annealed profiles
were observed probably due to the formation of a lanthanum silicates layer with constant La
concentration.

e Thin high-k layers may have different crystallinity from the thick layers used in series (i) with a
possible impact on La diffusion depending on the crystalline state of the high-k.

e For thin layers, the electrical potential difference between silicon and TiN metal gate may be very
important causing a drift diffusion mechanism of La charged species, requiring a drift-diffusion
equation for La.

e Different stoichiometry and chemistry in the high-k such as the presence of nitrogen in the
hafnium oxide high-k may change diffusion mechanism.

The calibration performed here used a small temperature range between 1000 and 1080°C, and one
could expect that the model covers only this limited temperature range. However, for low temperature
anneals, La profiles at 700 and 800°C (not shown here) gave almost no diffusion and were below SIMS
resolution limits. For higher temperature anneals, such as the ones used in flash or us sub-melt laser
anneals, an accuracy identical to the one shown in Fig. 3.16b is expected. Considering the parameter
k¢ for lanthanum silicates reaction 3.25, no temperature dependence was observed. However, for a
larger temperature range, a temperature dependence would be expected in order to avoid that S(t)
function vanishes quickly at room temperature or during a typical RTA ramp-up anneal including
some hold times at low temperature.

As discussed in 3.3.1, lanthanum diffusion in the high-k is expected to impact Vi shifts in nMOS
transistors. Within ATEMOX project [I, 18], Hackenberg et al. [50] investigated this correlation
between La diffusion and V; shifts in nMOS capacitance using the same gate stack as the one used
in series (i) samples of table 3.5 with different thermal anneals. In these results, no linear correlation
was observed between Vi values and La concentration at the high-k/IL interface. From literature
results [37, 41, 42], a linear dependence between the Vi shift and the La atoms creating electrical
dipoles at the high-k/IL interface is observed. Therefore, in these experiments, the Vi shift cannot
be explained by La induced dipoles formation at the high-k/IL interface. However when drawing the
V; as a function of the total density of La in the high-k layer, a linear correlation was observed by
Hackenberg et al. [50]. Therefore, the corresponding Vi shifts in these annealed high-k samples may
have two origins discussed in [18, 50]:

e La atoms form simple fixed charges inside the HfSION bulk material causing the observed Vi
shifts after thermal anneals.

e La atoms form simple electrical dipoles inside the HfSION bulk material with a non-random
dipoles orientation possibly due to the La concentration gradient or to the electric field across
the gate stack leading to the formation of electrical dipoles in a preferential direction.

In the frame of these explanations, additional material analysis such as the one carried out in [10]
and additional Vy shifts measurements for different HfSiON and SiO, IL thicknesses are mandatory
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for a more complete understanding of the Vi shift mechanism. Once this mechanism understood, the
one dimensional La diffusion model of equation 3.29 can be easily extended to 2D and 3D and coupled
with a device dipole model in order to predict Vy shifts in technology relevant nMOS transistors.

3.4 Conclusion

In the frame of ATEMOX project, two main chemical species diffusion in multi-materials stacks were
investigated experimentally and using TCAD modelling:

e Boron out-diffusion in nitride/oxide/silicon stacks and corresponding boron dose in silicon in-
vestigated in section 3.2.

e Lanthanum diffusion in advanced high-k stacks of nMOS transistors and corresponding threshold
voltage Vi shifts presented in section 3.3

In the first section 3.2, boron dose loss modelling in nitride/oxide/silicon stacks following thermal
anneals is due to a boron out-diffusion mechanism from silicon to oxide related to boron diffusivity
increase in oxide depending on hydrogen related species content and mainly OH bonds. Using SIMS
measurements of a 1 keV 5.10 cm~2 BFy implant annealed at 1000°C during 2 min, in addition to
coupled TDS/stress and FTIR measurements, hydrogen related species characteristics were extracted
in both oxide and nitride for four different nitride/oxide/silicon stacks. Using these physical charac-
teristics, a first version of a boron TCAD diffusion model in oxide was developed. The first version of
this model uses a linear dependence with OH bonds of the boron diffusivity in oxide. Boron diffused
profiles in silicon and corresponding dose loss were correctly reproduced using this model. However,
in order to reproduce the exponential-shaped boron diffused profiles in oxide, the simple Fick’s law
based boron diffusion model in oxide was extended to a long hop mechanism with two mobile and
immobile boron species. This improved model also allowed to reproduce nitride capping effect for
hydrogen, already observed experimentally in literature. The impact of boron out-diffusion on the
temporal evolution of the sheet resistance of the silicon boron doped layer in the different stacks was
monitored, showing a clear impact of boron dose loss on this electrical characteristic. Therefore boron
dose loss is expected to have an impact on electrical performances of MOS transistors and CMOS
image sensors as it will be seen in chapter 4.

In the second section 3.3 of this chapter, dealing with lanthanum diffusion in advanced high-
k stacks, dedicated TiN/LayOs/HfSION/SiO2/Si high-k structures used in nMOS transistors were
designed and processed at high temperature anneals. La diffusion in the HfSiON high-k is followed by
the formation of LaSiO dipoles at the HISION/SiOs interface explaining negative Vy shifts in advanced
nMOS transistors. In our study, SIMS profiles on high-k stacks with thick high-k and IL, annealed at
different temperatures and times were made in order to evaluate La diffusion in the different materials
of the stacks. Thanks to the thick high-k/thick IL SIMS data, we observed two mechanisms explaining
the La diffused profiles: a thermally activated diffusion mechanism leading to the migration of La from
the LayOg capping layer to HISiION/SiOs interface and a kinetic reaction mechanism due to the LaSiO
dipoles formation at this interface and explaining the La diffusion saturation versus time. Using SIMS
results, a La TCAD diffusion model was developed and allowed to confirm and reproduce successfully
these two mechanisms. In the frame of ATEMOX project, additional data [50] showed that Vi shifts
in nMOS capacitors with the same high-k schemes, correlate with the total content of La in the high-k.
Therefore, several assumptions [18, 50] may explain this effect and further experimental investigations
are still needed in order to confirm or infirm these assumptions.
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Chapter 4

TCAD modelling of advanced CMOS
devices

4.1 Introduction

In previous chapters 2 and 3, we presented the different TCAD process models developed during the
PhD. Chapter 2 dealt with implantation induced defects and their impact on dopant diffusion and
activation, focusing on PIII technique modelling for BF3 with its main characteristics (shallowness
and conformality). High doping conditions used in PIII generate large BICs modifying boron dif-
fusion and electrical activation. Large BICs evolution during thermal annealing was thus evaluated
thanks to dedicated beam-line experiments correlated to TEM, APT and SIMS data, and led to the
development of a continuum large BICs model. Chapter 3 was dedicated to chemical species diffu-
sion in multi-materials stacks and in particular to the development of a boron dose loss model in
nitride/oxide/silicon stacks and lanthanum diffusion in high-k stacks. In this chapter, these models
will be tested on real advanced device structures used in CMOS technologies. The models conse-
quences on advanced devices electrical features will also be evaluated.

In section 4.2, advanced MOS transistors with different miniaturization schemes will be evaluated
using process and device simulations. pMOS transistors of 45 and 28 nm bulk technology nodes will
be modelled in 4.2.1 mainly focusing on boron dose loss in spacer materials. Boron high doping and
induced precipitation mechanisms will be evaluated in 4.2.2 on p-type fully depleted SOI (FDSOTI)
MOS transistors, using using different implantation conditions. PIII conformality effects will be tested
for TriGate n-MOS transistors where AsHs (n-type doping) is used for extensions implants and com-
pared to classical arsenic multi-tilt beam-line implants.

Section 4.3 deals with the modelling of FSI CMOS image sensors with 1.4um pitch pixels, including
the evaluation of boron dose loss close to the TG of CMOS image sensors in 4.3.1 and the use of PIII
in the DTTs of FSI CMOS image sensors in 4.3.2.

In section 4.4, BSI CMOS image sensors with 2 pym pitch pixels will be modelled. In these simula-
tions, we will focus on diffusion mechanisms occurring in the backside ONO stack of the sensors, and
their corresponding effects on electrical characteristics. Simulations include boron dose loss modelling
at the backside 4.4.1 and the evaluation of LTA also used for backside boron doping in 4.4.2.

Lanthanum diffusion effect on nMOS transistor electrical characteristics will not be investigated

in this chapter due to a lack of a complete set of experimental data for thin high-k layers used in
advanced MOS transistors technology.
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4.2 MOS transistors modelling

4.2.1 Boron dose loss in advanced bulk pMOS transistors

As already discussed in 3.2, boron dose loss in nitride/oxide/silicon stacks was first observed in spacer
materials of pMOS transistors. In order to evaluate boron dose loss effect on the electrical charac-
teristics of pMOS transistors, the boron dose loss model presented in 3.2 was used for 2D process
simulations of bulk pMOS transistor. Two different technology nodes manufactured at STMicroelec-
tronics with two respective nominal gate lengths of 45 and 28 nm, were therefore investigated. The
2D process simulations [1] of 45 and 28 nm gate length pMOS transistors with their corresponding
doping profiles after a 1000°C spike anneal are represented respectively in Fig. 4.1a and 4.1b. The
LDD region where boron out-diffusion is expected to occur is white framed. Some differences exist
between the two technology nodes. The main one is a higher distance and lower interaction between
the boron-doped LDD region and the spacer for the 45 nm technology node transistor (Fig. 4.1a) when
compared to the 28 nm transistor (Fig. 4.1b). We can also notice the integration of a metal gate and
a high-k dielectric in the gate stack of the 28 nm transistor (Fig. 4.1b), whereas the 45 nm transistor
exhibits a classical p-type doped polycrystalline silicon gate (Fig. 4.1a). However, the high-k/metal
gate stack used here has no influence on the boron dose loss mechanisms.

Simulations with and without boron dose loss model were carried using an S’; like spacer stack
and its corresponding OA oxide and NA nitride (table 3.1). The results obtained with the boron dose
loss model included, are shown in Fig. 4.1¢ (boron), 4.1d (free H) and 4.1e (OH bonds).

486417
. OEs21

m— Spacer Oxide
Spacer Nitride
— Gate Oxide
e High K
Metal Gate
e P-doped poly-silicon

Figure 4.1: 2D process simulations after a 1000°C spike anneal with a S’; (table 3.1) sample based
spacer stack of (a) 45 nm and (b) 28 nm technology node pMOS transistor with the corresponding
doping profiles in silicon. The boron doped LDD region is white framed. The 2D concentration profiles
of boron, free hydrogen and OH bonds contained in the black framed region of the 28 nm transistor
(b) are shown in (c), (d) and (e), respectively.

The 2D doping profiles were injected in the device simulator SDevice [2] in order to study the impact
of boron out-diffusion on the electrical characteristics of the pMOS transistors with gate lengths L,
between the nominal length and 1 pm. The following electrical parameters extracted from I4 (V)
characteristics were investigated as a function of the transistor gate length [3]: AV i and AV gat
respectively in linear and saturation regimes (equation 1.13) with a reference long transistor with
Ly = 1pm, DIBL (Lg) (equation 1.12) and On current in saturation regime Iy sat (Lg). The results are
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presented respectively in Fig. 4.2. From these characteristics, boron dose loss effect is quite noticeable
mainly for short gate lengths in both 45 and 28 nm technology nodes. In the 45nm case, typical roll
up-roll down effect is observed for AVy jin (Lg) and AV gt (Lg) characteristics (Fig. 4.2a and 4.2b) due
to nT pocket implants used below the LDD region. For the 28 nm, dose loss effect is more important
on AVyjin (Lg) and AVy gt (Lg) characteristics due to the higher interaction between boron in the
LDD region and the spacer stack. From DIBL (L,) characteristics in Fig. 4.2c, we can observe that
boron dose loss reduces SCE due to shallower LDD junctions with a much more noticeable effect in the
28 nm case than in the 45 nm one. This can be explained by the higher spacer-LDD region interaction
in the 28 nm case. However, when modelling boron dose loss, we can observe from Fig. 4.2d that lower
on currents in the saturation regime I,y ¢t are observed for short transistors lengths. In figure 3.9,
it was observed that Ry increases with the dose loss due to a lower available active boron after the
anneal and a shallower junction. Thus knowing that I, sar varies inversely with the LDD extension
sheet resistance Ry, lower Iy ¢a¢ values are obtained when boron dose loss is included.
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Figure 4.2: 45 nm and 28 nm technology node pMOS transistors electrical characteristics versus gate
length including (a) AV jin (Lg), (b) AV gat (Lg), (¢) DIBL (Lg) and (d) Ion sat (Lg) following 2D device
simulations with and without boron dose loss model.

4.2.2 Boron precipitation in FDSOI pMOS transistors

Among the silicon based solutions to continue MOS transistors downscaling, fully depleted silicon on
insulator (FDSOI) transistors can be used. In comparison to bulk transistors, FDSOI transistors are
manufactured using SOI wafers with a thin silicon top layer (< 30 nm) where source and drain junc-
tions are made. In FDSOI, the junction depth is thus defined by the top silicon film thickness Tg;. In
addition, the channel region is fully depleted with no need for channel doping leading to an improved
electrostatic control, SCEs, mobility and devices variability [1, 5]. The feasibility of extremely thin
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SOI (ETSOI) transistors was also demonstrated in [6], where silicon film was scaled down to 3.5 nm
making SOI devices a promising solution for technology nodes below 16 nm.

In addition to electrical characteristics improvement, FDSOI transistors are quite interesting for
dopant diffusion reduction and electrical activation enhancement. Indeed, the silicon active layer in
FDSOI transistors is surrounded by two silicon oxides: the buried oxide (BOX) and the surface ox-
ide. During thermal annealing, Si self interstitials generated by implants recombine at the available
silicon/oxide interfaces [7]. Therefore, in FDSOI devices interstitials recombination is enhanced when
compared to bulk Si, reducing boron TED and EOR defects formation [3, 9].

In this section, we will investigate boron precipitation mechanisms in 28 nm technology node
pMOS FDSOI transistors manufactured at STMicroelectronics. Indeed as in bulk technologies, fol-
lowing extensions and source drain implantations, boron and silicon interstitials concentration exceed
10%° ecm~3 and large BICs may form as already observed in 2.4. The effect of source/drain implantation
conditions on FDSOI transistors with lengths between 28 nm and 1 um were therefore investigated.
Experimental Vi jin (Lg), Vigsat (Lg) and Iongat (Lg) characteristics were extracted. For source and
drain regions, BFy implants are used and led to the investigation of three conditions summarized in
table 4.1. A reference sample C; was used with a given BFs implantation energy and dose, spike
annealed at 1040°C. Sample Cy has the same dose as C; and was annealed at 1050°C and Cg has two
times C; dose also spike annealed at 1050°C (table 4.1).

Table 4.1: Summary of the different BFy source/drain implantation conditions investigated experi-
mentally on FDSOI pMOS transistors with gate lengths between 28 nm and 1 pum.

Source/drain BF, implantation || C; Cy Cj
Dose(Cy) X X
2xDose(Cy) X
Spike 1040°C X

Spike 1050°C X X

2D TCAD process simulations using the large BICs continuum model presented in 2.4.2 were
carried out and corresponding electrical characteristics from device simulations were compared to ex-
perimental data. C; condition 2D profiles for boron active concentration B,.;, boron in the LBICs
Cp,1BIcs and LBICs density Dypics for 28 nm gate length FDSOI pMOS transistor are presented in
Fig. 4.3. From Fig. 4.3, we can notice that following thermal annealing, Cg1Bics (Fig. 4.3b) and
Dipics (Fig. 4.3c) fields concentrations are low in comparison to active boron field concentration.
Indeed, as already noticed in [3, 9] for classical interstitials EOR defects, the proximity of both surface
and BOX oxide to high boron and silicon interstitials concentration region in FDSOI pMOS transis-
tors leads to an interstitials recombination reducing boron content in the LBICs and LBICs density,
already observed in [10]. In addition, the salicidation for electrical contact of source and drain regions
consumes silicon material as observed in Fig. 4.3, also decreasing the LBICs population in source/drain
highly doped regions.

The different process simulated transistors of table 4.1 using the LBICs continuum model, were
injected in SDevice simulator in order to model electrical Iq(Vg) characteristics. Corresponding
AVijin (Lg), AVigat (Lg), DIBL (Lg) and Iongat (Lg) were extracted and compared to experimental
data respectively in Fig. 4.4a, 4.4b, 4.4c¢ and 4.4d. Using the LBICs model, the dose effect between Cy
and Cs observed experimentally on the electrical characteristics is well reproduced. The LBICs model
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Figure 4.3: 2D process simulations using large BICs continuum model on FDSOI pMOS transistor
of 28 nm gate length using BFy implantation condition C; of table 4.1 including (a) boron active
concentration, (b) boron in the LBICs concentration Cg 1pics and (c¢) LBICs density Dypics.
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correctly predicts boron dose effect and corresponding activation mechanisms in advanced pMOS FD-
SOI transistors.

The thermal anneal effect on electrical characteristics when comparing C; and C, is qualitatively
reproduced. However, this effect is stronger in the experiments in comparison to our simulations.
The spike anneals carried out for these simulations include ramp-up and ramp-down steps, leading to
temperature range probably not covered by our LBICs model calibration of chapter 2 and explaining
the differences between experiments and TCAD simulations.
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Figure 4.4: 28 nm technology node FDOSI pMOS transistors electrical characteristics versus gate
length with different process conditions of table 4.1 including (a) AVyjin (Lg), (b) AVigat (Lg), (c)

DIBL (Lg) and (d) Ionsat (Lg) following 2D device simulations using LBICs continuum model developed
in 2.4.2.

4.2.3 PIII in TriGate nMOS transistors

In 4.2.1 and 4.2.2, we evaluated our models on planar MOS transistors technologies: bulk with 45 and
28 nm nodes and FDSOI with 28 nm node. Planar FDSOI transistors technology is a promising alter-
native for 20 nm CMOS technology node and below [5, (]. However, for more aggressive technology

nodes below 16 nm, silicon based planar devices even with a SOI scheme show several limits in terms
of electrostatics control, low power and SCEs.

To this aspect, three dimensional transistors (fabricated on bulk or SOI substrates) have already
been proposed to replace planar devices for deep sub-micron transistors, solving several miniatur-
ization challenges. Multi-gates are used in these 3D transistors including: fin field effect transistors

(FinFET) with a channel control by two vertical and facing gates [11, 12], TriGate transistors with a
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three sided gate [13], 2-gate and gate all around (GAA) nanowires [14, 15]. Among the different multi-
gate transistors, main semiconductor industrial groups recent R&D efforts concentrated on TriGate
devices [106, 17]. TriGate nMOS transistors are investigated in this sub-section using TCAD modelling.

Fig. 4.5a shows a 3D simulation of a nMOS TriGate FinFET transistor with its main dimensions:
gate length Lg, lateral dimension Wy, and vertical dimension Hg, at the TriGate side-walls. Contrarily
to planar MOS transistors, electrons current between source and drain regions in TriGates takes place
in both horizontal and vertical planes. As a consequence, source/drain and extensions 3D doping
has to be conformal in order to obtain the same electrons conduction in all directions and benefit
from the TriGates 3D structure. Conformal 3D TriGates doping can be obtained by two implantation
approaches:

e Multi-tilt beam line implants where several beam-line implantation steps with different tilts are
carried out in order to obtain the desired 3D conformal doping. In this approach, shadowing
effects have to be carefully taken into account, and the conformal aspect is improved by mul-
tiplying the number of tilts. In addition, the chosen implant energy and dose depend on the
geometrical characteristics of the TriGates (dimensions, rounding ...). For these reasons, the
beam-line approach for TriGate 3D conformal doping can be quite complex and costly.

e PIII, where the 3D conformal doping is achieved thanks to the “built-in” angular distribution
of the implanted ions in the plasma sheath, as already detailed in 2.2. This approach is both
faster and cheaper than the multi-tilt beam-line one and does not depend on the geometrical
characteristics of the TriGates. Precise conformal doping has been demonstrated using PIII
[18, 19]. In addition to cost/time advantages, careful choice of PIII conditions results in better
devices characteristics for both p-type [20] and n-type [21] TriGate FinFETs.

In this work, n-type Tri-Gate MOS transistors with gate length L, between 20 and 100 nm,
Wgn = 100nm and Hg,, = 40nm are simulated using beam-line implantation and PIII conditions. Ex-
tension doping using beam-line multi-tilt implants (0°, 20°and 45°) and PIIT and their corresponding
effects on electrical characteristics of nMOS TriGate are investigated. The same source/drain im-
plants, pocket implants and laser sub-melt activation anneals were used in both conditions. Extension
beam-line and PIII conditions were adjusted in order to get highly doped USJs, when using the two
techniques. Monte Carlo method was used in TriGate 3D simulations for extensions arsenic multi-tilt
beam-line implants. Before PIII 3D simulation, a first 1D calibration was carried out. As for p-type
BF3 PIII presented in 2.3.2, the 2-exp energy of equation 2.2 was used and calibrated on AsHg PIII
SIMS profiles. A simple approach using Monte Carlo method was then used here in order to reproduce
the conformal doping of PIII [22]. In this simple approach, implanted ions can be launched along the
simulated structure interface with the ambient. If this interface is not flat and has a 3D structure, a
resulting 3D conformal doping will be obtained.

Beam-line implants and PIII results are respectively shown in 3D arsenic profile of Fig. 4.5b
and 4.5¢. From these process simulations conditions, the 3D conformal aspect of PIII in comparison
to multi-tilt beam-line implants can be noticed. Of course, beam-line implantation can also be opti-
mized in order to reach similar conformal doping as for the PIII case. Thus, the aim of this section is
to investigate the effect of conformal doping, obtained in our simulations using PIII in comparison to
a less conformal doping strategy using a particular set of multi-tilt beam-line implants.

The effect of the conformality of the doping will be monitored on the electrical characteristics of
n-type TriGate transistors extracted from 3D device simulations. Electrical characteristics include:
DIBL (Lg) (Fig. 4.6a), sub-threshold slope in linear and saturation regimes S jin (Lg) and St gat (Lg)
(Fig. 4.6b), On current in saturation regime Ioy gat (Lg) (Fig. 4.6¢) and Off current in saturation regime
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Lo sat (Lg) (Fig. 4.6d). Simulation results show that when using PIII, better DIBL (Fig. 4.6a), sub-
threshold slope in saturation regime S¢ga (Fig. 4.6b) and Off current in saturation regime Iog gat
(Fig. 4.6d) are obtained for short channels TriGate transistors, in comparison to beam-line implanta-
tion. In the meantime, similar sub-threshold slope in linear regime S jin (Fig. 4.6b) and On current
in saturation regime Iy s (Fig. 4.6¢) are obtained in both beam-line implantation and PIII tech-
niques. Given the cost/time advantages in comparison to beam-line implantation, PIII is a promising
technique for sub-20 nm TriGate transistors. Our electrical simulations are in agreement with re-
cent experimental results showing better electrical performances for TriGate FinFETSs when using
PIII [20, 21].

Figure 4.5: 3D process simulations of (a) n-type TriGate transistor with Ly = 20nm, Wg, = 100nm
and Hg, = 40nm. 3D arsenic profiles following extension implantation obtained using multi-tilt (0°,
20°and 45°) beam-line arsenic implants (b) or AsH3 PIII (c) where the conformal aspect of the implant
can be noticed.

4.3 FSI CMOS image sensors modelling

4.3.1 Boron dose loss in TG of FSI CMOS image sensors

As discussed in chapter 1 (Fig. 1.4 and 1.5), boron p* pinning implants are used in n-type photodiodes
of CMOS image sensors to avoid SCR extension to the surface oxide/silicon interface and corresponding
dark current. In the particular case of frontside imagers, the boron p™ region is in contact with the
spacer stack of the TG of the pixel. Therefore, similarly to the case of spacers in simple MOS
transistors, boron dose loss is expected in the p™ pinning region of FSI pixels. In addition, boron
dose loss may also take place above the photodiode region far from the TG, where boron from p™
implant is directly in contact with an oxide/nitride stack used for silicon protection during electrical
contacts process, also called “Si protect stack”. Boron dose loss effects on electrical characteristics
of the 1.4 pym pixels shown in Fig. 1.4 are investigated here. 3D coupled process and electro-optical
device simulations (detailed in [23, 24]) were carried out in order to monitor the following electrical
characteristics:

o (Qs.i: evaluated for a given pixel after completely depleting the photodiode and artificially en-
hancing electron-hole pairs generation in the photodiode until simulated integrated electrons
density (in cm™3) in the photodiode reaches a saturation value.

e QE ()): evaluated for the different pixels (R, GR, GB and B) of a four pixels Bayer pattern
with periodic boundary conditions. QE for a given pixel and a given wavelength is defined by
the ratio of the number of photogenerated electrons collected by the photodiode on the number
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Figure 4.6: N-type TriGate transistors electrical characteristics versus gate length for extensions
beam-line arsenic implantation and AsHg PIII including (a) DIBL (Lg), (b) S in (Lg) and S¢gat (Lg),
(¢) Tonsat (Lg) and (d) Iog sat (Lg) following 3D device simulations.
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of incident photons extracted from optical simulations [23]. The number of photogenerated
electrons is calculated by integrating the electron density in the photodiode during an integration
time t;,4=66.7 ms corresponding to 15 captured images/second in a real image sensor.

Tgark: calculated from experimentally calibrated GR currents resulting from the traps at the
different interfaces in the pixel: silicon/STIs oxide, silicon/DTIs oxide, silicon/gate oxide, sil-
icon/spacer oxide and silicon/Si protect stack. Given the process conditions of the pixel, no
implantation-induced EOR defects are expected to form in the SCR region of the n-type photo-
diode. In addition, we assume that no metal contaminants can be found in the SCR region of
the photodiode. Therefore, no silicon volume defects are responsible for GR mechanisms con-
tributing to the dark current calculation. Due to the different trap energy levels at the various
interfaces of the pixel, electrons are generated, then collected by the photodiode and their con-
centration increases linearly with time in the dark without any external source of light. In this
linear regime, the electrons density volume integral, or number of electrons in the photodiode is
plotted versus time and the slope of the curve corresponds to the dark current:

Ae~
Tdark = At (4.1)

lin

Electrons transfer and lag in the photodiode: where electrons transfer from the photodiode to
the SN is evaluated. In such simulations [25], the following transfer steps are modelled:

1. Ilumination: the pixel is illuminated using a monochromatic laser optical source. During
the step of 10 us, the photodiode is filled with photo-generated electrons. All along the
simulation, a positive voltage is applied on the SN while TG is in Off state

2. TG ramp-up: in this step the TG voltage is ramped up from an Off value to an On value
during 0.3 ps in order to create an inversion layer between the photodiode and the SN
allowing the electrons transfer from the photodiode to the SN.

3. TG On plateau: a TG On value is kept during 1 us in order to allow electrons transfer
from the photodiode to the SN for image integration. During this step, the photodiode is
emptied of its electrons.

4. TG ramp-down: as for the TG ramp-up step, TG voltage is ramped down from the On
value to an Off value during 0.3 us. Following this step, no electrons are expected to be
left in the photodiode. Actually, they are supposed to have been transferred during the
TG ramp-up and On plateau steps. However, depending on the photodiode’s 3D doping
extension, some electrons may remain in the photodiode even after the ramp down. Such
effect of remaining electrons corresponds to what is called lag discussed in 1.3.2.

The previous image sensors electrical features were evaluated with and without boron dose loss

model developed in 3.2. Corresponding 3D process simulations are shown in Fig. 4.7 including net
doping concentration in Fig. 4.7a and 4.7b, and boron concentration in Fig. 4.7c and 4.7d. From the
simulations, we can notice that when boron dose loss is modelled in Fig. 4.7d, boron concentration
level in the pinning implant region is lower than in Fig. 4.7c where no boron dose loss is included.

Following 3D process simulations with and without boron dose loss model, electro-optical simula-

tions were carried out and are shown in Fig. 4.8.

In saturation regime very small differences are observed in Qg,t simulations from Fig. 4.8a leading

to Qgat = 3251 electrons with the dose loss model, only 44 electrons higher that without dose loss
where Qgat = 3207 electrons. Due to boron dose loss, boron concentration near the surface interface is
lower leading to a higher extension of the photodiode SCR near the interface, slightly increasing the
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Figure 4.7: 3D process simulations of 1.4 ym FSI pixels including (a) net doping concentration without
and (b) with boron dose loss model. Is also shown boron concentration (c¢) without and (d) with boron
dose loss model.

number of collected charges in saturation regime when the dose loss is included. The linear regime of
photodiode filling with electrons is also presented in Fig. 4.8a. In this case, the number of electrons
characteristic is the same with and without boron dose loss model.

Indeed, from Fig. 4.8b, no difference is observed on QE (\) characteristics simulated in linear
regime. This result can be expected because p™ implant extension with and without boron dose loss
shown in Fig. 4.7a and 4.7b does not modify significantly the n-type photodiode extension in the
region where the photons are collected. The p™ pinning implant/n photodiode junction is the same in
both cases and differences in terms of SCR, extension mainly occur close to the surface region below
the Si protect stack/silicon interface, which has no impact on QE characteristics carried out in linear
regime for different wavelengths.

SCR region is closer to the surface interface when dose loss is included, and mainly above the pho-
todiode region at the Si protect stack/silicon interface. GR mechanisms in this region are expected
to be more important when the dose loss is included. Indeed, from simulations of Fig. 4.8¢c, we can
notice that dark current almost doubles when boron dose loss is included.

Finally, and as explained above, electrons lag following a transfer cycle can be modelled and
corresponding results are presented in Fig. 4.8d, where almost no electrons lag is observed when boron
dose loss is taken into account, while 137 electrons remain without the dose loss model. Due to a
higher SCR extension near the interface when the dose loss is included, a better transfer is obtained.
Electrons have to overcome an energy barrier due to p-doping below the spacer region of the TG in
order to be transferred to the SN. When the boron dose loss model is included, the energy barrier is
lowered leading to better transfer.

4.3.2 PIII in DTIs of FSI CMOS image sensors

In previous section, the p™ surface pinning implant is used in order to avoid the SCR extension at
the surface interface. We observed that when boron dose loss is included, the SCR is closer to the
surface interface due a lower boron concentration, which leads to a higher dark current from Fig. 4.8c.
In the same manner, in order to avoid the n-type photodiode SCR lateral extension, and its contact
with DTIs oxide/silicon interfaces (also source of dark current) additional p-type multi-tilt implants,
generally using BFy are carried out in the DTIs region before filling them with oxide. It should be
noticed that these BFy multi-tilt beam-line implants have already been used in the simulations of 4.3.1
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Figure 4.8: Electro-optical device simulation results for 1.4 pym FSI pixels without and with boron
dose loss model of 3.2 including (b) Qsat, (a) QE (A) characteristics, (c¢) Igak and (d) electrons lag.

Zahi Essa - Physical modelling of impurity diffusion and clustering phenomena in CMOS-based
image sensors



4.3. FSI CMOS IMAGE SENSORS MODELLING 119

summarized in Fig. 4.7 and 4.8. For better dark current performances, conformal doping along the
DTIs seems quite adequate. As already noticed in 4.2.3 on n-type TriGate transistors extension con-
formal doping, PIII can be used in this case for DTIs.

Two PIII conditions Py (BF3 2 kV 3.8x10'3 cm~2) and Py (BF3 3 kV 9.2x10 cm~2) for DTIs
implants were therefore investigated and compared to a reference beam-line condition By using multi-
tilt BFy implants. Corresponding 3D doping boron profiles along the DTIs are shown in Fig. 4.9 in
addition to 1D cuts (black dashed lines in Fig. 4.9) of boron profiles presented in Fig. 4.10. The 1D
boron profiles show that a higher DTIs oxide/silicon interface concentration can be obtained when
using PIII conditions in comparison to beam-line condition, which is beneficial in order to avoid the
n-ytpe photodiode SCR extension near the interface.

Boron (cm?3)

. 1.0E+19

1.6E+18
’ 2.5E+17
ﬁ 4.0E+16
6.3E+15
1.0E+15

Figure 4.9: 3D boron profiles following simulations of 1.4 ym FSI pixels including (a) PIII Py condition
(BF3 2 kV 3.8x10 cm™2) (b) PIII Py condition (BF3 3 kV 9.2x10'® ¢cm™2) and (c) reference multi-
tilt beam-line implantation By condition. A 1D cut (black dashed line) is made on the different 3D
structures and corresponding boron profiles are shown in Fig. 4.10.

Electrical features Qgat and Iy, of the different DTIs implantation conditions are given in ta-
ble 4.2, where equivalent values are obtained for the three implantation conditions. As for TriGate
transistors conformal doping in 4.2.3, PIII is an interesting alternative in terms of cost and time for
DTIs implantation leading to electrical performances similar to the ones obtained using beam-line
implantation.

However, considering dark current simulations of table 4.2, similar traps characteristics (energy
levels, capture cross section, surface density) were assumed at the DTIs oxide/silicon interface for both
PIII and beam-line implantation. In our simulations, the dark current small differences between the
three conditions is only due to differences in terms of boron doping at the DTIs oxide/silicon interfaces.
Due to the high sensitivity of dark current to interface traps, the two implantation techniques may
lead to different dark current levels.
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Figure 4.10: Boron 1D profiles following the 1D cut of 3D simulated structures shown in Fig. 4.9 for
implantation conditions PIII P, PIII Py and beam-line implantation B1.

Table 4.2: Electrical features including Qsat and Igar obtained from 3D simulations for the different
DTIs implantation conditions of 1.4 um FSI pixels, assuming identical interface traps.

DTIs implantation || Qgat (electrons) | Iqax (e7/s)
PIIT Py 3201 39
PIII Py 3091 38
Beam-line B, 3237 40
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4.4 BSI CMOS image sensors modelling

As presented in chapter 1 (cf. section 1.3.3.2), BSI image sensors have been developed over the last
years in order to improve QE and crosstalk features. In the BSI scheme, the pixels performances can
be enhanced when replacing the backside SOI oxide by a nitride/oxide/nitride (ONO) stack acting as
an anti-reflective layer for higher light collection [26, 27]. In addition, with pixel size reduction, the
surface of a planar photodiode collection region is reduced, and consequently the number of photo-
generated charges and Qg,t value decrease. To solve this problem, photodiodes with vertical and deep
doping extensions (already presented in Fig. 1.5) have been recently designed [26, 28].

When a vertical photodiode is used in association with a SOI box oxide or ONO stack, the pho-
todiode SCR extension may reach the box oxide/silicon backside interface, therefore increasing dark
current if interface carriers are present. For n-type photodiodes, a boron backside implant is therefore
required mainly to recombine electrons generated by interface traps, but also to avoid the n photodi-
ode SCR contact with the backside oxide/silicon interface.

The boron back-side implant can be realized out using two main strategies:

1. Before the pixel active regions process: in this case, starting from a SOI wafer with an ONO
stack and a thin silicon film, a boron (or BF3) beam-line implant is carried out in order to
locate the boron profile R;, at the backside oxide/silicon interface in order and achieve a high
boron concentration at this interface. Following this step, a silicon epitaxy on the thin silicon
film is made, after which the different process steps of the pixel’s active regions (STIs, DTIs,
photodiode, TG) are performed. Within this strategy, boron implanted at the backside interface
is electrically activated thanks to the different thermal anneals used in the pixel’s active regions
process steps. In this configuration, backside boron is in contact with an ONO stack and thus,
boron dose loss in the ONO stack is expected. The effect of boron dose loss in the ONO stack
following the pixel thermal anneals is investigated in section 4.4.1 on 2 um BSI pixels.

2. After the pixel active regions process: in this case, the pixel active region process is initially
carried out on a silicon substrate. The wafer is then flipped and the silicon substrate is thinned
from the backside until reaching the DTIs region. Following this step, boron back-side implant
is made. In order to electrically activate the backside implanted boron without modifying the
pixel active regions doping due to undesired diffusion or deactivation, an LTA is used thanks
to its ultra-fast and spatially localized characteristics. Following the LTA, the ONO stack is
processed on the backside, and no dose loss takes place in this case due to the low thermal
budget of the deposition steps of the ONO stack. The effect of the LTA energy on boron profile
and corresponding electrical performances will be investigated in section 4.4.2 on 1.1 pm BSI
pixels. It should be noticed that the ONO stack process steps used in this case are generally not
the same as the one used in the first approach without LTA described above.

4.4.1 Back side boron dose loss in BSI CMOS image sensors

BSI pixels with 2 pm pitch and n-type photodiode, a boron backside implant and an ONO stack are
investigated here using 3D TCAD process and electro-optical device simulations. In order to reduce
process simulations CPU time of the Bayer structure simulations, boron backside profile diffusion and
interaction with the backside ONO stack were simulated in 1D with all the process steps of the 3D
simulations. The corresponding 1D diffused profile at the end of the fabrication process was injected
in the 3D simulated structures for further device simulations. Fig. 4.11 is a diagram of backside boron
dose loss in the ONO stack. It should be noted, that the oxide directly in contact with the boron
backside implant, is thermally grown and therefore very low concentrations of hydrogen related species
are expected in this oxide before the annealing steps. However, remaining nitride and oxide layers are
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deposited using CVD techniques (similar to MOS transistors spacer materials). In our simulations,
these nitride and oxide layers are respectively of NA and OA type with their corresponding hydrogen
related species characteristics detailed in tables 3.2 and 3.4 of section 3.2. During thermal annealing,
hydrogen can be transferred from NA nitride and OA oxide to thermally grown oxide, enhancing
backside boron dose loss from silicon to the thermal oxide of the ONO stack.

Hydrogen rich
materials

Vertical

Photodiode

Boron backside Thermally grown
implant oxide

Figure 4.11: Diagram presenting the 1D system of backside boron dose loss in the ONO stack. The
oxide directly in contact with boron is thermally grown. Remaining nitride and oxide layers are
deposited using CVD techniques. SCR of n-type vertical photodiode is also presented.

Boron 1D profiles with and without boron dose loss are given in Fig. 4.12 where approximately
one order of magnitude lower boron concentration at the backside silicon/oxide interface is observed
when boron dose loss model is included. The 1D profiles of Fig. 4.12 were then injected in the 3D
Bayer structure of 2 um BSI pixels and QE () characteristics, shown in Fig. 4.13, were extracted from
electro-optical device simulations. From QE () characteristics, we can observe that QE maxima for
the different Bayer pixels are lower when boron dose loss is included. The boron profile collapse at
the backside interface, observed in Fig. 4.12 probably induces a potential well for electrons preventing
their collection by the n-photodiode and reducing QE; this effect is more pronounced for the blue
pixel. Indeed, according to Beer-Lambert’s law [29], blue photons are generated near the backside
interface where boron dose loss occurred. Some of the generated electrons get trapped by the backside
potential well and possible SiO2/Si recombination centers.

4.4.2 Back side LTA in BSI CMOS image sensors

Backside implant can also be performed out after the silicon active regions process steps as described
above. Thermal activation of boron in this case is achieved using LTA in order to localize the anneal
at the boron doped backside and avoid eventual modification of the pixels active regions doping. In
this case, the anti-reflective (AR) backside stack, which can be different from the ONO stack described
in 4.4.1, is fabricated after the LTA anneal.

The LTA anneal for backside dopant activation can be used in both sub-melt and melt regime.
Melt regime is preferred due to higher activation levels and a better control of the backside junction
depth defined by the liquid/solid interface depth X; /s- Within the liquid region, high dopant diffusivity
takes place, leading to box-shaped dopant profiles after the anneal.

BSI pixels with 1.1 gm pitch, a boron backside implant and different LTA anneals are investigated
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Figure 4.12: Boron 1D profiles at the backside interface with the ONO stack without and with boron
dose loss model.
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Figure 4.13: QE (\) characteristics of a 3D Bayer structure of 2 pm BSI pixels with and without
backside boron dose loss in the ONO stack.
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here using 3D TCAD process and electro-optical device simulations. The LTA for boron activation
was modelled using the melting laser anneal (MLA) model developed by our partners within the ATE-
MOX project and implemented in the latest versions of SProcess [22]. The model details are described
in SProcess manual and references therein [22]. Using the calibrated parameters for the MLA model,
and following a shallow boron backside implant, three LTA conditions were used with the following
laser energy density: 1.9 J.cm™2 for L; condition, 2.1 J.cm™2 for Ly condition and 2.3 J.cm™2 for Lg
condition. Corresponding 1D boron dopant profiles and melting depths X, are shown on Fig. 4.14.
From the 1D simulations, the melting depth X increases with the laser energy density, determining
boron profile extension. As expected, a boron plateau is observed for the different conditions due to
the high diffusivity in liquid, in addition to a segregation peak at the liquid/solid interface, whose
origin is investigated in [30].
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Figure 4.14: Boron 1D profiles at the backside interface with the AR stack following LTA anneales
using 1.9 (Ly), 2.1 (Lg) and 2.3 (L3) J.cm™2 laser energy density with corresponding melt depth Xi/s-

The 1D profiles for the three LTA condition of Fig. 4.12 were injected in 3D electro-optical simu-
lations of 1.1 um BSI pixels with n-type vertical photodiode. Iy, values were extracted from these
simulations and are summarized in table 4.3. Dark current simulations included backside interface
traps and junction tunnelling GR mechanisms. From table 4.3, comparable dark current levels are
observed for the three LTA conditions. A slightly lower I, value is obtained for L; condition with
1.9 J.cm™2, and can be explained by the higher boron doping concentration at the backside interface
in comparison to Lo and L3 conditions.

Even though the MLA model developed in the frame of ATEMOX is able to simulate backside
LTA, experimental data are still missing in order to confirm our simulations results for Iq, of 1.1 um
BSI pixels using different LTA conditions.
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Table 4.3: Electrical features including Qgat and Iga obtained from 3D simulations for the different
backside boron LTA conditions of 1.1 ym BSI pixels.

LTA Tgark (e_/s)
L; (1.9 J.em™2) 7.4
Lo (2.1 J.em™2) 8.5
Ls (2.3 J.em™2) 8.4

4.5 Conclusion

The process models developed during the PhD were evaluated in this chapter on real CMOS based
devices manufactured at STMicroelectronics corresponding to the latest MOS transistors and CMOS
image sensors technologies. The models allowed to improve TCAD predictability for new physical
phenomena introduced by advanced process solutions, required by miniaturization and diversification
challenges.

Boron dose loss modelling in spacer stacks has a clear impact on bulk 45 and 28 nm pMOS tran-
sistors electrical behaviour. High source/drain doping conditions in 28 nm FDSOI pMOS transistors
unavoidably leads to the formation of large BICs, whose density can be reduced thanks to adequate
high temperature spike annealing. This effect is correctly reproduced by our model and is in agreement
with literature results. Corresponding TCAD electrical characteristics using the LBICs model match
well experimental data. Conformal aspect of PIII in comparison with beam-line implantation was
evaluated on 20 nm TriGate nMOS transistors where higher electrical performances were obtained,
also in agreement with recent literature results.

After the first evaluation of our models on advanced MOS transistors, CMOS image sensors were
investigated. Considering FSI 1.4 um pitch pixels, it was observed from 3D simulations, that p™
implant boron dose loss in the top surface region has a clear impact on dark current values. There-
fore, boron dose loss can no longer be ignored in the surface pinning region of advanced pixels with
n-type photodiodes. Thanks to our simulations mainly concentrating on the doping aspects, we also
demonstrated that similar FSI 1.4 um pixels performances can be obtained when doping the DTIs
with BF3 PIII or multi-tilt beam-line BFy implants. However, the DTIs interface traps effect on dark
current and eventual differences between the two implantation techniques was not investigated in our
simulations due to a lack of experimental characterization.

Backside boron doping for n-type photodiode in 2 um BSI pixels, and boron dose loss in the ONO
stack can also be reproduced thanks to our model, with a clear effect on QE () characteristics, mainly
for the blue pixels. Finally, LTA model developed by our partners in ATEMOX project was evaluated
on different laser conditions used in backside doping thermal activation of 1.1 um BSI pixels.
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Conclusion

The aim of this PhD work was to improve TCAD process models of impurity diffusion and clustering
phenomena in advanced CMOS based devices, with a particular focus on CMOS image sensors, where
both miniaturization and diversification requirements are challenging.

The background of the PhD was first introduced where MOS transistor and CMOS image sen-
sors in the frame of CMOS technology processes were presented. A summary of advanced process
techniques and corresponding physical mechanisms allowed to identify strategies and improve existing
TCAD models, as well as developing new ones in high-dose doping conditions and for chemical species
diffusion in multi-materials stacks.

High dopant implantation doses used in advanced CMOS technologies lead to physical mechanisms
not well understood or correctly modelled on the TCAD level. In this frame, the PIII technique was
studied. Dedicated BF3 plasma implanted experiments were designed and led to a successful mod-
elling of both implantation doping profiles and amorphization depth. Annealed samples brought out
the formation of LBICs, which strongly influence dopant diffusion and activation. Due to the lack
of LBICs TCAD models, a continuum model based on moments approach was developed which re-
produced several literature experimental data on simple boron beam-line implants. When applied to
BF'3 PIII, the LBICs model clearly improved the prediction of boron diffusion and electrical activation.

Chemical species diffusion between materials in multi-materials stacks becomes of paramount im-
portance in CMOS devices, due its consequence on the devices electrical characteristics. Among the
modelling challenges covered during the PhD, boron dose loss in nitride/oxide/silicon stacks found
in MOS transistors spacers or CMOS image sensors AR layer, was investigated. Our study led to a
boron dose loss model with boron diffusion in oxide depending on hydrogen related species dynamics
inn both oxide and nitride.

Non dopant species diffusion in multi-materials stack has also an impact on devices electrical be-
haviour. Thus, lanthanum diffusion in high-k stacks was investigated and a lanthanum diffusion model
in HfSiON high-k was developed for the first time. Our results showed a thermally activated diffusion
mechanism with a diffusion time saturation, that is assumed to be due to the formation of lanthanum
silicates. These silicates are supposed to be responsible for electrical characteristics shifts through the
formation of dipoles.

With the exception of lanthanum diffusion in high-k stacks, all the process models developed dur-
ing the PhD were tested on real CMOS devices. Advanced MOS transistors were first investigated.
Boron dose loss model effect on bulk pMOS transistors was evaluated with a noticeable effect of the
model on the transistors electrical characteristics. LBICs model was then tested on FDSOI pMOS
transistors and allowed to reproduce experimental data where boron dose and spike activation anneal
were varied. TriGate n-type MOS transistors simulations showed that higher electrical performances
can be obtained in such 3D devices when extension doping is high and conformal as in PIII.

129



130 CONCLUSION

The models were then evaluated on CMOS image sensors. Boron dose loss in the TG spacer region
of frontside pixels with planar photodiode was studied showing a clear impact on dark current and
lag characteristics. Assuming equal traps characteristics at the different interfaces, similar saturation
charge and dark current were obtained for the frontside pixels when using PIII or beam-line implants.
Boron dose loss simulations in the ONO stack of BSI pixels with vertical photodiode showed a mod-
ification of QE characteristics mainly for the blue pixel at low wavelengths. We also demonstrated
that LTA simulations can also be carried out in BSI pixels thanks to a LTA model developed by our
partners in the frame of the ATEMOX project.

The process models developed in the PhD allowed to improve TCAD predictability for advanced
CMOS devices and mainly image sensors. Yet, several open questions remain:

e In heavy doped silicon, apparent uphill boron diffusion against concentration gradient was ob-
served in several literature results. Modelling this uphill diffusion effect is a big challenge both
from the physical side (ie. to understand the origin of the phenomenon), but also from the
numerical side due to convergence issues.

e Concerning PIII, conformal doping is simulated using a simple geometric approach in TCAD.
Such an approach is not predictive enough and additional experimental and theoretical investi-
gations are needed in order to correctly model this effect.

e Only boron dose loss was investigated in this thesis. However, other dopant species such as
phosphorus or arsenic may also exhibit out-diffusion in multi-material stacks, with an impact on
nMOS transistors or pixels with p-type photodiode.

e Lanthanum diffusion was investigated in a thick high-k layer during the PhD. However, different
diffusion mechanisms may occur for thin layers with an impact on the electrical behaviour of
nMOS transistor.

e A difficult challenge in CMOS image sensors is dark current simulations where several volume
and surface defects may contribute to this parasitic signal. In addition, with pixels size reduction,
the photodiode distance to the different interfaces is reduced, therefore increasing the interfaces
contribution to dark current. The main difficulty is the design of dedicated experiments to
separately investigate the different contributions, and also understand the variation of a given
contribution with process conditions.

From this conclusion and the different remaining challenges, it is clear that the time is long past
when TCAD process and device modelling development could mainly focus on the physical mechanisms
occurring in the “bulk” silicon only. Devices are smaller and the interfaces are closer to the active
regions, increasing the interactions between silicon and neighbouring materials. For the next years,
we therefore believe that TCAD modelling can no longer be predictive without taking into account
this multi-materials aspect.
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