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Cette thèse s'articule autour des espaces de modules de représentations de carquois arbitraires, c'est-à-dire possédant d'éventuelles boucles. Nous obtenons trois types de résultats. Le premier concerne la base canonique de Lusztig, dont la définition est étendue à notre cadre, notamment en introduisant une algèbre de Hopf généralisant les groupes quantiques usuels (i.e. associés aux algèbres de Kac-Moody symétriques). On démontre au passage une conjecture faite par Lusztig en 1993, portant sur la catégorie de faisceaux pervers qu'il définit sur les variétés de représentations de carquois.

Le second type de résultats, également inspiré par le travail de Lusztig, concerne la base semicanonique et la variété Lagrangienne nilpotent de Lusztig. Pour un carquois arbitraire, on définit des sous-variétés de représentations semi-nilpotentes Λ(α), et nous montrons qu'elles sont Lagrangiennes. La démonstration repose sur l'existence de fibrations affines partielles entre diverses composantes de Λ(α), contrôlées par une combinatoire précise. Nous définissons une algèbre de convolution de fonctions constructibles sur ⊔Λ(α), et montrons qu'elle possède une base formée de fonctions quasicaractéristiques des composantes irréductibles des Λ(α). La structure combinatoire qui se dégage ici est analogue à celle obtenue sur les faisceaux pervers de Lusztig, et fait apparaître des opérateurs plus généraux que ceux décrits par les cristaux de Kashiwara.

Le troisième thème considéré est celui des variétés carquois de Nakajima, dont l'étude géométrique menée ici permet, conjointement avec ce qui est fait précédemment, de donner une définition de cristaux de Kashiwara généralisés. On définit à nouveau des sous-variétés Lagrangiennes, ainsi qu'un produit tensoriel sur leurs composantes irréductibles, comme fait dans le cas classique par Nakajima.
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Cette thèse s'inscrit dans le cadre de la théorie géométrique des représentations, qui consiste à donner des interprétations géométriques à des objets de théorie de représentations définis a priori algébriquement, et ainsi en donner des propriétés non trivivales, notamment via l'étude d'espaces de modules de représentations.

Ici nous allons nous intéresser aux représentations de carquois, i.e. de graphes orientés Q = (I, Ω) donnés par un ensemble de sommets I et un ensemble de flèches Ω = {h : s(h) → t(h)} entre sommets. Une représentation d'un carquois Q sur une corps k consiste alors en la donnée d'une famille de k-espaces vectoriels V = (V i ) i∈I indexée par I, et une famille d'applications linéaires :

(x h ) h∈Ω ∈ E V = h∈Ω Hom(V s(h) , V t(h) )
indéxée par Ω. Les représentations d'un carquois sur un corps forment une catégorie abélienne k-linéaire. Ces représentations ont gagné une grande importance dans les années 70, notamment via le théorème de Gabriel : Théorème 0.1 (Gabriel, 1972). Les carquois possédant une nombre fini d'isoclasses de représentations indécomposables sont ceux dont le graphe sous-jacent est un diagramme de Dynkin simplement lacé, i.e. de type A n , D n , E 6 , E 7 ou E 8 . Les isoclasses de représentations indécomposables sont alors en correspondance bijective avec les racines positives du système de racines du diagramme de Dynkin concerné.

Ce théorème fait ainsi le lien avec la classification des algèbres de Lie semi-simples complexes de dimension finie. Parallèlement, le cas du carquois de Jordan Ã0 : t ✫✪ ✬✩ ✲ est aussi bien connu : la classification de ses isoclasses de représentations est (tautologiquement) équivalente à celle des classes de conjugaison des matrices à coefficients dans k. En particulier, si k est algébriquement clos, on dispose de la réduction de Jordan et on a une correspondance bijective entre les isoclasses de représentations nilpotentes en dimension n et les partitions de n.

Dans la suite on va voir comment le théorème de Gabriel peut être d'une part amélioré, en utilisant plus en détails la géométrie de variétés de repésentations de carquois pour en tirer des propriétés algébriques en théorie de Lie, et d'autre part étendu, mettant en rapport une plus large classe d'algèbres de Lie avec des carquois plus généraux.

Bases canoniques et semi-canoniques de Lusztig

Lusztig définit dans une série d'articles deux types de bases de la partie positive de l'algèbre enveloppante U + (g), issues de la géométrie des variétés de représentations de carquois, INTRODUCTION et pour des carquois de plus en plus généraux.

La première, dite base canonique, fait intervenir la théorie des faisceaux pervers développée dans [START_REF] Beilinson | Faisceaux pervers[END_REF]. Pour la définir, il réalise la partie positive U + v (g) du groupe quantique comme le groupe de Grothendieck associé à une certaine classe de faisceaux pervers. Elle est définie dans [START_REF] Lusztig | Canonical bases arising from quantized enveloping algebras[END_REF] pour les carquois de type fini, puis dans [START_REF] Lusztig | Quivers, perverse sheaves, and quantized enveloping algebras[END_REF] (et dans [START_REF] Kashiwara | On crystal bases of the Q-analogue of universal enveloping algebras[END_REF], c.f. 0.3) pour les carquois sans boucles de type "infini".

La seconde, dite semi-canonique, fait elle intervenir des fonctions constructibles sur le champ cotangent au champ de modules de représentations du carquois Q, obtenue cette fois seulement pour le paramètre quantique v = 1. Elle est d'abord définie dans [START_REF] Lusztig | Affine quivers and canonical bases[END_REF] dans le cas des carquois de type affine (ou fini), puis généralisée au craquois sans boucles dans [START_REF] Lusztig | Semicanonical bases arising from enveloping algebras[END_REF], mais à l'aide d'un résultat obtenu dans [START_REF] Kashiwara | Geometric construction of crystal bases[END_REF] grâce à la théorie des cristaux (c.f. 0.3).

En particulier dans toute cette section, les carquois considérés sont sans boucles.

Base canonique

Définissons la classe de faisceaux pervers qui nous intéresse. Pour tout vecteur dimension α = i∈I α i i ∈ NI, on commence par fixer un espace vectoriel I-gradué V α de dimension α, et on note E α = E Vα . Soient alors i = (i 1 , . . . , i m ) et a = (a 1 , . . . , a m ) deux suites finies d'éléments de I et N >0 respectivement, telles que 1≤k≤m a k i k = α. On pose :

F i,a = W = ({0} = W 0 ⊂ . . . ⊂ W m = V α ) ∀k, dim W k W k-1 = a k i k E i,a = {(x, W) | x h (W) ⊆ W} ⊆ E α × F i,a .
La première projection fournit un morphisme propre π i,a : E i,a → E α . D'après le théorème de décomposition de Beilinson, Bernstein et Deligne, le complexe π i,a ! 1 est semi-simple (1 désigne le faisceau constant sur E i,a . On note alors : ⊲ G α le groupe i∈I GL((V α ) i ), qui agit naturellement sur E α ; ⊲ M Gα (E α ) la catégorie des faisceaux pervers G α -équivariants sur E α ; ⊲ P α la sous-catégorie pleine de M Gα (E α ) consistant en les sommes de faisceaux pervers simples G α -équivariants apparaissant, éventuellement décalés, comme facteurs directs de π i,a ! 1 pour une certaine paire (i, a) telle que a k i i = α ; ⊲ Q α la categorie des complexes isomorphes à des sommes de décalages d'objets de P α ; ⊲ K α le groupe de Grothendieck de Q α , vu comme un Z[v ±1 ]-module en posant v ±1 [P] = [P[±1]], où l'on note [P] l'isoclasse d'un faisceau pervers P ; ⊲ B α l'ensemble fini des isoclasses des faisceaux simples de P α et B = ⊔ α B.

Définissons maintenant des foncteurs de restriction et d'induction qui permettront de munir K = ⊕ α K α d'une structure d'algèbre de Hopf.

Pour tout sous-espace I-gradué W ⊆ V α de dimension β et codimension γ, muni de deux isomorphismes I-gradués p : W ∼ → V β and q : V α /W ∼ → V γ , on obtient le diagramme suivant :

E β × E γ E α (W ) κ o o ι / / E α où E α (W ) = {x ∈ E α | x(W ) ⊆ W },
κ désigne le fibré vectoriel x → (p * (x W ), q * (x Vα/W )) et ι l'inclusion.

On considère aussi :

E β × E γ E † β,γ p 1 o o p 2 / / E β,γ p 3 / / E α où : E † β,γ =            (x, W, r, r)
x ∈ E α W ⊆ V α est I-gradué et x-stable r :

W ∼ → V β r : V α /W ∼ → V γ            E β,γ = (x, W ) x ∈ E α W ⊆ V α est I-gradué et x-stable .
Ces diagrammes induisent (cf. [Lus10, §9.2]) :

Res β,γ = κ ! ι * : Q α → Q γ ⊠ Q β Ind β,γ = p 3 ! p 2 ♭ p * 1 : Q γ ⊠ Q β → Q α et : Res β,γ = Res α β,γ [(γ, β) -β, γ ] Ind β,γ = Ind α β,γ [(γ, β) + β, γ ] où β, γ = i∈I β i γ i et (γ, β) = h∈Ω γ s(h) β t(h) .
Rappelons aussi brièvement la définition des groupes quantiques, tout du moins celle de leur partie positive. Soit g une algèbre de Kac-Moody, on fixe une décomposition de Cartan g = n -⊕ h ⊕ n + , et on note b + = h ⊕ n + la sous-algébre de Borel positive associée. L'algèbre U v (b + ) est engendrée par des éléments K ±1 i , E i (i ∈ I) sujets aux relations suivantes :

K i K j = K j K i K i E j = v a i,j E j K i t+t ′ =-a i,j +1 (-1) t E (t) j E i E (t ′ ) j = 0
où a i,j désigne l'opposé du nombre d'arêtes de Ω reliant i et j, et

E (t) i = E t i /[t]!, où : [t] = v t -v -t v -v -1 .
On peut munir U v (b + ) d'une structure d'algèbre de Hopf, le coproduit étant donné par :

∆(K i ) = K i ⊗ K i ∆(E i ) = E i ⊗ 1 + K i ⊗ E i .
On notera U + v (g) la sous-algèbre engendrée par les E i , et U + v,Z (g) sa forme intégrale, i.e. la Z[v ±1 ]-algèbre engendrée par les E i construite de manière analogue.

INTRODUCTION

Ces algèbres sont munies de formes de Hopf, dites géométrique pour K, de Drinfeld pour U + v (g).

On obtient alors : Théorème 0.2 (Lusztig,90,91). On a un isomoprhisme d'algèbres de Hopf :

Ψ : U + v,Z (g) → K E (a) i → [π i,a! 1].
Dans cet énoncé, les π i,a! 1 correspondent aux plus 'simples' des faisceaux de Lusztig, obtenus quand i et a sont des suites à un élément. La base canonique est alors définie par :

B = {Ψ -1 (b) | b ∈ B}.

Une conjecture

Dans l'article [START_REF] Lusztig | Tight monomials in quantized enveloping algebras[END_REF], Lusztig se demande dans quelle généralité les classes des faisceaux "monômes" [π i,a! 1] suffisent à engendrer le groupe de Grothendieck K. C'est une conséquence du théorème 0.2 dans le cas des carquois sans boucles, et c'est un résultat classique dans le cas du carquois de Jordan (voir par exemple [START_REF] Schiffmann | Lectures on canonical and crystal bases of Hall algebras[END_REF] et les références qui s'y trouvent). Il donne dans cet article une condition pour que cette propriété soit vraie, qui s'applique notamment aux carquois à un sommet et g ≥ 2 boucles : 

Base semi-canonique

On commence par dédoubler le carquois Q (toujours supposé sans boucles pour l'instant), c'est-à-dire remplacer chaque flèche h de Ω par une paire de flèche de sens opposés (h, h). On obtient un carquois Q = (I, H = Ω ⊔ Ω) qui ne dépend pas de l'orientation de Q et dont l'ensemble de flèches est stable sous l'action de l'involution h → ( h : t(h) → s(h)).

On note cette fois :

ĒV = h∈Ω Hom(V s(h) , V t(h) ),
puis Ēα = ĒVα l'espace des représentations de Q en dimension α. Celui s'identifie au fibré cotangent de E α , et est ainsi équipé d'une forme symplectique :

ω α (x, x ′ ) = h∈H Tr(ǫ(h)x h x ′ h)
préservée par l'action naturelle de G α sur Ēα . L'application moment associée µ α : Ēα → g α = ⊕ i∈I End(V α ) i est donnée par :

µ α (x) = h∈H ǫ(h)xhx h ,
où l'on a identifié g * α et g α via la fonction trace. Le champ cotangent au champ de modules de représentations

[E α /G α ] s'identifie à [µ -1 α (0)/G α ]. Définition 0.4. Un élément x ∈ Ēα est dit nilpotent s'il existe un drapeau I-gradué W = (W 0 = {0} ⊂ . . . ⊂ W r = V α ) de V α tel que x h (W • ) ⊆ W •-1 pour tout h ∈ H. On note : Λ(α) = {x ∈ µ -1
α (0) | x nilpotent}. Remarque 0.5. Pour l'instant les carquois sont sans boucles, donc il est équivalent de demander x h (W • ) ⊆ W • dans la définition ci-dessus. Celle-ci équivaut à demander l'existence d'un rang N tel que pour tout chemin (h 1 , . . . , h r ) de H de longueur r ≥ N , on ait x h 1 • . . . • x hr = 0. Proposition 0.6. La sous-variété Λ(α) ⊆ Ēα est Lagrangienne.

On note M(α) le Q-espace vectoriel des fonctions constructibles Λ(α) → Q, constantes sur les G α -orbites. On pose M = ⊕ α≥0 M(α), qui peut-être munie d'une structure d'algèbre graduée. On note 1 i la fonction qui envoie sur 1 le seul élément de Λ(i), et M • la sous-algèbre de M engendrée par ces fonctions. On a le résultat suivant : Théorème 0.7 (Lusztig,91). On a un isomorphisme :

U + (g) → M • E i → 1 i .
Si de plus Z est une composante irréductible de Λ(α) et f ∈ M(α), on note ρ Z (f ) = c si Z ∩ f -1 (c) est un ouvert dense (i.e. non vide) de Z. On dispose de la proposition suivante : Proposition 0.8. Pour tout composante irréductible Z de Λ(α), il existe une unique fonction

f ∈ M • (α) telle que ρ Z (f ) = 1 et ρ Z ′ (f ) = 0 si Z ′ = Z.
Dans [START_REF] Lusztig | Affine quivers and canonical bases[END_REF], Lusztig prouve qu'en fait la famille libre (f Z ) Z∈Irr Λ , où Irr Λ désigne l'ensemble des composantes irréductibles de ⊔ α Λ(α), est une base de M • . La base semicanonique est définie comme l'image inverse de la famille

(f Z ) par l'isomorphisme U + (g) ≃ M • .
On a finalement :

B ⊂ base Q ⊗ Z K ∼ ←-U + v (g) v→1 -→ U + (g) ∼ -→ M • ⊃ base (f Z ) Z∈Irr Λ
On verra comment ce résultat se généralise à tous les carquois sans boucles dans la section 0.3.

Cristaux de Kashiwara

Les cristaux sont des objects combinatoires associés aux algèbres de Lie, et qui ont des applications dans l'étude des variétés carquois, comme suggérés plus haut. Donnons-en la définition avant de comprendre en quoi ils sont utiles dans la définition des bases canonique et semi-canonique. Les résultats exposés dans cette section sont prouvés pour les carquois sans boucles. INTRODUCTION 0.3.1 Quelques définitions et propriétés Définition 0.9. Soit g une algèbre de Kac-Moody symétrisable, et g = n -⊕ h ⊕ n + une décomposition de Cartan. On note P le réseau de poids associé. On fixe deux bases duales (α i ) i∈I (racines simples) et (h i ) i∈I (coracines simples) de P et P * respectivement telles que les h i , α j soient les coefficients de la matrice de Cartan associée à g. On appelle cristal un ensemble B muni d'applications :

wt : B → P ǫ i : B → Z ⊔ {-∞} φ i : B → Z ⊔ {-∞} ẽi , fi : B → B ⊔ {0}
telles que pour tous b, b ′ ∈ B, les axiomes suivants soient vérifiés :

(A1) φ i (b) = ǫ i (b) + h i , wt(b) ; (A2) si ẽi b = 0 : wt(ẽ i b) = wt(b) + α i ǫ i (ẽ i b) = ǫ i (b) -1 φ i (ẽ i b) = φ i (b) + 1 ; (A3) si fi b = 0 : wt( fi b) = wt(b) -α i ǫ i ( fi b) = ǫ i (b) + 1 φ i ( fi b) = φ i (b) -1 ; (A4) fi b = b ′ ⇔ b = ẽi b ′ ; (A5) φ i (b) = -∞ ⇒ ẽi (b) = fi (b) = 0.
Example 0.10. On peut définir un cristal B i pour tout i ∈ I par :

B i = {b i (n) | n ∈ Z} wt(b i (n)) = nα i φ i (b i (n)) = n , ǫ i (b i (n)) = -n φ j (b i (n)) = ǫ j (b i (n)) = -∞ si j = i ẽi (b i (n)) = b i (n + 1) , fi (b i (n)) = b i (n -1) ẽj (b i (n)) = fj (b i (n)) = 0 si j = i.
On notera simplement b i au lieu de b i (0).

Il existe une notion de morphisme de cristaux : Définition 0.11. Un morphisme de cristaux ψ :

B → B ′ entre deux cristaux B et B ′ est une application B ⊔ {0} → B ′ ⊔ {0} vérifiant pour tous b ∈ B, i ∈ I : ⊲ ψ(0) = 0 ; ⊲ si ψ(b) ∈ B ′ : wt(ψ(b)) = wt(b) , ǫ i (ψ(b)) = ǫ i (b) , φ i (ψ(b)) = φ i (b) ; ⊲ si b ′ = fi (b) et ψ(b), ψ(b ′ ) ∈ B ′ : fi (ψ(b)) = ψ( fi (b)) ẽi (ψ(b ′ )) = ψ(ẽ i (b ′ )).
Un morphisme est par ailleurs dit strict s'il commute à l'action de tous les ẽi et fi , sans restriction. Une morphisme est appelé plongement si l'application induite B⊔{0} → B ′ ⊔{0} est injective, isomorphisme si elle est bijective.

Il est possible d'associer naturellement un cristal B(∞) au groupe quantique U v (g). Ce dernier est obtenu à partir de U + v (g) en rajoutant un jeu de générateurs (F i ) i∈I vérifiant :

K i F j = v -a i,j F j K i t+t ′ =-a i,j +1 (-1) t F (t) j F i F (t ′ ) j = 0
et des relations de Drinfeld, non données ici, reliant les E i et les F i .

Pour définir B(∞), on commence par définir les opérateurs de Kashiwara. On peut montrer qu'il existe des opérateurs e

′ i et e ′′ i de U v (n -) vérifiant, pour tout z ∈ U v (n -) : [E i , z] = K i e ′ i (z) -K -1 i e ′′ i (z) v -v -1
.

Il existe une décomposition :

U v (n -) = n≥0 F (n) i ker e ′ i . Pour z = z 0 + F i z 1 + • • • + F (n) i z n ∈ U v (n -)
, on définit les opérateurs de Kashiwara ainsi :

ẽi (z) = 1≤k≤n F (k-1) i z k fi (z) = 0≤k≤n F (k+1) i z k .
Le cristal B(∞) est finalement donné par :

B(∞) = { fi 1 . . . fir 1 | i 1 , . . . , i r ∈ I}.
On peut de manière analogue associer un cristal B(λ) à tout U v (g)-module simple de plus haut poids V (λ).

Une notion cruciale est celle de produit tensoriel de cristaux : 

INTRODUCTION Définition 0.12. Le produit tensoriel B ⊗ B ′ = {b ⊗ b ′ | b ∈ B, b ′ ∈ B ′ } de deux cristaux B et B ′ est défini par : wt(b ⊗ b ′ ) = wt(b) + wt(b ′ ) ǫ i (b ⊗ b ′ ) = max{ǫ i (b), ǫ i (b ′ ) -e i , wt(b) } φ i (b ⊗ b ′ ) = max{φ i (b) + e i , wt(b ′ ) , φ i (b ′ )} ẽi (b ⊗ b ′ ) = ẽi (b) ⊗ b ′ si φ i (b) ≥ ǫ i (b ′ ) b ⊗ ẽi (b ′ ) si φ i (b) < ǫ i (b ′ ); fi (b ⊗ b ′ ) = fi (b) ⊗ b ′ si φ i (b) > ǫ i (b ′ ) b ⊗ fi (b ′ ) si φ i (b) ≤ ǫ i (b ′ );
3. ǫ i (b 0 ) = 0 pour tout i ∈ I ; 4. ǫ i (b) ∈ Z pour tous b ∈ B, i ∈ I ; 5. pour tout i ∈ I il existe un plongement strict Ψ i : B → B ⊗ B i ; 6. Ψ i (B) ⊂ B × { f n i (b i ) | n ≥ 0} ; 7. Pour tout b ∈ B \ {b 0 }, il existe i ∈ I, n > 0 et b ′ ∈ B tels que Ψ i (b) = b ′ ⊗ f n i (b i ) ; Alors B est isomorphe à B(∞).

Application aux variétés carquois

Pour comprendre comment la théorie des cristaux peut être reliée à la base semicanonique, il faut revenir à [START_REF] Lusztig | Quivers, perverse sheaves, and quantized enveloping algebras[END_REF], et à la preuve du caractère Lagrangien des variétés Λ(ν) ou cette fois le vecteur dimension ν = i∈I ν i α i est vu comme un élément de P . On notera Irr Λ(ν) l'ensemble (fini) de leurs composantes irréductibles. Lusztig définit des stratifications de ces variétés (i ∈ I) :

Λ(ν) = l≥0 Λ(ν) i,l où : Λ(ν) i,l =        x ∈ Λ(ν) | codim h∈H t(h)=i Im x h = l        , qui induisent des bijections (i ∈ I, l > 0) : ẽi,l : Irr Λ(ν) i,l ∼ ↔ Irr Λ(ν -lα i ) i,0 : fi,l : .
Kashiwara et Saito se servent de ce jeu de bijections pour définir une structure de cristal sur Irr Λ en posant pour toute composante Z ∈ Irr Λ(ν) i,l :

wt(Z) = -ν ǫ i (Z) = l ẽi (Z) = 0 si l = 0 ẽi,l fi,l-1 (Z) sinon fi (Z) = ẽi,l fi,l+1 (Z).
Ils montrent alors que ce cristal vérifie les hypothèses de la proposition 0.13. En particulier, par définition de B(∞), on obtient l'égalité suivante :

dim U + v (g)[ν] = | Irr Λ(ν)|
qui permet à Lusztig de généraliser sa définition de la base semi-canonique à tous les carquois dans [START_REF] Lusztig | Semicanonical bases arising from enveloping algebras[END_REF].

Liens avec les variétés carquois de Nakajima

Les variétés varquois de Nakajima, définies au début des années 90, ont eu de nombreuses applications en théorie géométriques des représentations. Elles permettent en particulier de réaliser géométriquement de nombreux objets algébriquement, via des techniques cohomologiques ou de K-théorie. On va voir dans la suite comment elles ont notamment permis des interprétations géométriques des cristaux associés aux modules de plus haut poids, et des produits tensoriels de ces cristaux.

Dans la suite les réulstats sont donnés dans le cadre des algèbres de Kac-Moody symétriques.

Réalisation géométrique de B(λ)

On commence par rappeler quelques définitions. Soient (Λ i ) i∈I les poids dominants, i.e. vérifiant h i , Λ j = δ i,j . On commence par fixer w = i∈I w i Λ i et un espace I-gradué W de dimension (w i ) i∈I . On notera (x, f, g) = ((x h ) h∈H , (f i ) i∈I , (g i ) i∈I ) les éléments de l'espace suivant :

E(V, w) = Ē(V, V ) ⊕ i∈I Hom(V i , W i ) i∈I Hom(W i , V i ) défini pour tout espace I-gradué V . Pour tout v = i∈I v i α i , on pose E v,w = E(V v , w
). C'est l'espace de représentation en dimension (v, w) du carquois Γ obtenu à partir de Q en dédoublant les sommets et en rajoutant une paire de flèches de sens opposés entre chaque sommet de I et son double. Par exemple :

INTRODUCTION Q = • • • • • • • ⇓ Q = • • • • • • • ⇓ Γ = • • • • • • • • • • • • • • L'espace E v,w est muni d'une forme symplectique : ω v,w (x, f, g), (x ′ , f ′ , g ′ ) = h∈H Tr(ǫ(h)x h x ′ h) + i∈I Tr(g i f ′ i -g ′ i f i )
préservée par l'action naturelle de G v . Cette fois, l'application moment associée µ v,w :

E v,w → g v = ⊕ i∈I End(V v ) i est donnée par : µ v,w (x, f, g) = g i f i + h∈H:s(h)=i ǫ(h)xhx h i∈I . Définition 0.14. Soit χ : G v → C * , (g i ) i∈I → i∈I det -1 g i . On note : M • (v, w) = µ -1 v,w (0)/ /G v M(v, w) = µ -1 v,w (0) 
/ χ G v les quotients géométrique et symplectique de µ -1 v,w (0) par G v (par rapport à χ). On note L(v, w) la fibre au-dessus de 0 du morphisme projectif M(v, w) → M • (v, w).

Dans [START_REF] Nakajima | Quiver varieties and Kac-Moody algebras[END_REF], Nakajima définit des stratifications analogues à celles de Lusztig (i ∈ I) :

L(v, w) = l≥0 L(v, w) i,l
qui induisent à nouveau des bijections :

L(v, w) i,l ∼ → L(v -lα k , w) i,0 ,
sous la condition l + h i , wv ≥ 0, qui permettent notamment de montrer le caractère Lagrangien de L(v, w) ⊆ M(v, w). Elles permettent aussi à Saito dans l'article [START_REF] Saito | Crystal bases and quiver varieties[END_REF] de prouver, avec des techniques analogues à celles de [START_REF] Kashiwara | Geometric construction of crystal bases[END_REF], le résultat suivant : Théorème 0.15. Il existe une structure de cristal isomorphe à B(w) sur les composantes irréductibles de L(w) = ⊔ v L(v, w).

Réalisation géométrique du produit tensoriel de cristaux

Dans [Nak01], Nakajima construit une variété Lagrangienne Z(v, v ′ ) ⊂ M(v + v ′ , w + w ′ ) telle que :
⊲ il existe une bijection :

Irr Z(v, v ′ ) ∼ → Irr L(v, w) × Irr L(v ′ , w ′ ) ; (0.16) ⊲ si l'on note Z(v) = ⊔ v+v ′ =v Z(v, v ′ ), il existe encore une stratification (i ∈ I) : Z(v) = l≥0 Z(v) i,l
qui induit les bijections suivantes (i ∈ I, l > 0) :

Irr Z(v) i,l ∼ → Z(v -lα i ) i,0 .
À nouveau, ces bijections permettent de donner une structure de cristal à Irr Z. Le résultat suivant donne alors une interprétation géométrique au produit tensoriel de cristaux : Théorème 0.17. Via 0.16, le cristal Irr Z est isomorphe au produit tensoriel de cristaux Irr L(w) ⊗ Irr L(w ′ ).

Ce théorème, associé à un résultat de Joseph (c.f. [START_REF] Joseph | Quantum groups and their primitive ideals[END_REF]), permet en fait de retrouver le réulstat de Saito 0.15. Avant de le donner, voyons quelques nouvelles définitions relatives aux cristaux. Définition 0.18. Un cristal B est dit normal si pour tout b ∈ B on a : On peut alors donner la caractérisation suivante : Théorème 0.21 (Joseph). Si {D(λ) | λ ∈ P + } est une famille close de cristaux normaux de plus haut poids, alors, pour tout λ ∈ P + , D(λ) est isomorphe à B(λ) en tant que cristal.

ǫ i (b) = max{k ≥ 0 | ẽk i (b) = 0} φ i (b) = max{k ≥ 0 | f k i (b) = 0}.
On retrouve donc bien 0.15. En effet, d'après 0.17, la famille {Irr L(w) | w ∈ P + } est fermée. Il n'est par ailleurs pas compliqué de prouver que les Irr L(w) sont normaux de plus haut poids (où b w est le seul élément de Irr L(0, w)), d'où le résultat.

Dans cette thèse

Le travail exposé dans ce manuscrit consiste à étudier la géométrie des variétés de représentations des carquois arbitraires, comportant d'éventuelles boucles, et d'en déduire une généralisation des groupes quantiques et cristaux de Kashiwara. Dans cette généralité, la matrice de Cartan est remplacée par une matrice dite de Borcherds-Cartan, dont les coefficients diagonaux sont égaux à : c i,i = 2 -2(nombre de boucles de Ω en i) ∈ {2, 0, -2, -4, . . .}.

Du point de vue de Lusztig, deux approches sont possibles : celle utilisant les faisceaux pervers, et celle utilisant les fonctions constructibles sur certaines sous-variétés Lagrangienne.

Des sous-variétés Lagrangiennes pour généraliser les cristaux

Cette thèse commence par aborder le point de vue des sous-variétés Lagrangiennes. Dans le cas général, le cas du carquois de Jordan suffit à montrer qu'il ne suffit pas de considérer des sous-variétés de µ -1 (0) de représentations nilpotentes, celles-ci étant trop petites. En fait, on sait dans ce cas qu'il faut considérer des représentations semi-nilpotentes du carquois double de Ã0 :

t ✫✪ ✬✩ ✲ ✫✪ ✬✩ ✛ V x x
i.e. telles qu'il existe un drapeau de V stable par x et x, x seulement agissant de manière nilpotente. Cette définition se généralise ainsi : Définition 0.22. Une représentation x est dite semi-nilpotente s'il existe un drapeau I-gradué W • stable par x tel que x h (W • ) ⊆ W •-1 pour h boucle de Ω. On note Λ(α) la sous-variété des éléments semi-nilpotents de µ -1 α (0).

Si on considère par exemple :

Q = 1 2 3 4 5 h 12 h 23 h 43 h 52 b 1 b ′ 1 b 3 alors : Q = 1 2 3 4 5 h 12 h12 h 23 h23 h 43 h43 h 52 h52 b 1 b ′ 1 b1 b′ 1 b 3 b3 
Ici, les représentations x = (x h ) h∈H sont semi-nilpotentes s'il existe un drapeau W • tel que :

⊲ x h (W • ) ⊆ W • si h est du type h ij ou hij , ce qui équivaut, puisqu'alors h n'est pas une boucle (voir 0.5), à x h (W • ) ⊆ W •-1 ; ⊲ x h (W • ) ⊆ W •-1 si h est du type b i ou b ′ i ; ⊲ x h (W • ) ⊆ W • si h est du type bi ou b′ i .

Le premier résultat obtenu est le suivant :

Théorème A. Dans le cas du carquois à un sommet et plus de deux boucles, Λ(α) ⊆ Ēα est Lagrangienne, et ses composantes irréductibles sont paramétrées par les compositions de α.

On sait que dans le cas du carquois de Jordan, les composantes sont paramétrées par les partitions. On peut ensuite utiliser les résultats connus des carquois à un sommet pour obtenir le théorème suivant concernant les carquois généraux : Théorème B. Pour tous i ∈ I et α ∈ NI, il existe une stratification :

Λ(α) = ⊔ l≥0 Λ(α) i,l
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induisant un jeu de bijections :

Irr Λ(α) i,l ∼ → Irr Λ(α -li) i,0 × Irr Λ(li).
De plus, la sous-variété Λ(α) ⊆ Ēα est Lagrangienne.

On peut alors obtenir un théorème strictement analogue à 0.8. Les bijections obtenues dans le théorème B montrent déjà que les opérateurs de Kashiwara usuels ne sont pas suffisants pour décrire la combinatoire des carquois à boucles puisque Irr Λ(li) peut-être non trivial. L'étude des variétés carquois de Nakajima peut alors donner une intuition plus précise de la définition des cristaux généralisés. On commence par définir des sous-variétés d'éléments semi-nilpotents L(v, w) ⊆ M(v, w), et on obtient :

Théorème C. Pour tous i ∈ I et v ∈ NI, il existe une stratification : L(v, w) = ⊔ l≥0 L(v, w) i,l
induisant un jeu de bijections :

Irr L(v, w) i,l ∼ → Irr L(v -li, w) i,0 × Irr Λ(li)
sous les conditions usuelles s'il n'y a pas de boucle en i, sinon sous la condition :

w i + (h:i→j =i)∈H v j > 0.
De plus, la sous-variété L(v, w) ⊆ M(v, w) est Lagrangienne.

On peut aussi définir un produit tensoriel géométrique de composantes irréductibles. On définit une sous-variété Z(v, v ′ ) ⊂ M(v + v ′ , w + w ′ ) telle que : Théorème D. Il existe une bijection :

⊗ : Irr L(v, w) × Irr L(v ′ , w ′ ) ∼ → Irr Z(v, v ′ ) (X, X ′ ) → X ⊗ X ′ , et si l'on note Z(v) = ⊔ v+v ′ =v Z(v, v ′ ), il existe une stratification (i ∈ I) : Z(v) = l≥0 Z(v) i,l
qui induit les bijections suivantes (i ∈ I, l > 0) :

Irr Z(v) i,l ∼ → Irr Z(v -lα i ) i,0 × Irr Λ(li)
sous les mêmes conditions qu'au théorème C.

On peut dores et déjà définir ǫ i via le diagramme suivant :

Irr Z(v) i,l / / ǫ i & & L L L L L L L L L L Irr Z(v -lα i ) i,0 × Irr Λ(li) pr 2 u u k k k k k k k k k k k k k k Irr Λ(li)
où Irr Λ(li) est un singleton, l'ensemble des partitions de l ou l'ensemble des compostions de l suivant que i est sans boucles, avec une boucle ou avec plus de deux boucles. Si l'on définit de manière analogue ǫ i sur Irr L(w) grâce au théorème C, on obtient le théorème suivant : Théorème E. Soit i un sommet présentant une ou plusieurs boucles, et (X, X ′ ) ∈ Irr L(v, w) × Irr L(v ′ , w ′ ). On a :

ǫ i (X ⊗ X ′ ) =      ǫ i (X ′ ) si w ′ i + (h:i→j =i)∈H v ′ t(h) > 0 ǫ i (X) sinon.
Tous ces résultats donnent assez de rigidité pour définir une version généralisée des cristaux de Kashiwara en fin de première partie, ainsi qu'un produit tensoriel.

Des faisceaux pervers et la conjecture de Lusztig

Dans une seconde partie, on commence par démontrer la conjecture 0.3 de Lusztig évoquée plus haut, en étendant les résultats connus dans le cas des carquois sans boucle et des carquois à un sommet et plusieurs boucles. On utilise, comme dans le cas classique, une récurrence sur α. Ici l'initialisation peut cependant être non triviale dans le cas α = li s'il y a une ou plusieurs boucles en i. Cependant ces cas sont connus, comme expliqué plus haut. La difficulté se situe en fait dans l'étude des foncteurs de restriction du type Res α-li,li , quand i présente une ou plusieurs boucles. On introduit une notion d'invariance adaptée à cette fin, et une notion de régularité permettant une étude précise des supports des faisceaux considérés. On prouve ainsi le théorème suivant, analogue au théorème B : Théorème F. Pour tous i ∈ I et α ∈ NI, il existe une stratification :

P α = ⊔ l≥0 P α,i,l
induisant un jeu de bijections :

B α,i,l ∼ → B α-li,i,0 × B li .
La conjecture de Lusztig est un corollaire de ce théorème.

Toutes les études géométriques faites permettent alors de définir une algèbre de Hopf généralisant les groupes quantiques usuellement associés aux carquois sans boucles.

On définit U + v par un générateur E i à chaque sommet réel i (i.e. sans boucles), et une famille (E i,l ) l>0 à chaque sommet imaginaire i (i.e. avec boucle(s)), et on pose deg(E i,l ) = li. En plus des relations de Serre usuelles, on impose des relations de Serre de plus haut ordre :

t+t ′ =-la i,j +1 (-1) t E (t) j E i,l E (t ′ ) j = 0
pour tout sommet réel j et tout sommet imaginaire i. D'après le cas du carquois de Jordan, on impose aussi :

[E i,l , E i,k ] = 0
s'il n'y a qu'une boucle en i.

On peut alors prouver plusieurs propriétés intéressantes de cette algèbre, notamment un analogue du théorème de Gabber-Kac à propos de la non-dégénérescence des formes de Hopf sur U + v (via la définition notamment d'une quasi-R-matrice et d'un opérateur de Casimir). On peut alors obtenir : INTRODUCTION Théorème G. On a un isomorphisme d'algèbres de Hopf :

U + v ∼ → K.
En particulier, on remarque que B li est l'ensemble des compositions de l si i présente plusieurs boucles. Ce résultat permet de généraliser la base canonique. À ce stade, il n'est par contre pas possible de généraliser la base semi-canonique, faute de résultats analogues à ceux obtenus dans [START_REF] Kashiwara | Geometric construction of crystal bases[END_REF], s'appuyant sur une étude fine de la théorie des cristaux, pas réalisée dans cette thèse. On a cependant une surjection :

U + (g) ։ M • ⊃ libre (f Z ) Z∈Irr Λ et l'existence d'une famille libre (f Z ) Z∈Irr Λ vérifiant
les mêmes hypothèses que dans 0.8. On verra en conclusion comment résoudre ce problème, et de manière plus générale, comment étudier les nouveaux cristaux définis en fin de première partie, en s'appuyant notamment sur le groupe quantique généralisé défini dans la seconde. 

Première partie

Quivers with loops and Lagrangian subvarieties

A generalization of crystals

Introduction

Lusztig defined in [START_REF] Lusztig | Quivers, perverse sheaves, and quantized enveloping algebras[END_REF] Lagrangian subvarieties of the cotangent stack to the moduli stack of representations of a quiver associated to any Kac-Moody algebra. The proof of the Lagrangian character of these varieties was obtained via the study of some natural stratifications of each irreducible component, and then proceeding by induction. This particular structure on the set of irreducible components made it possible for Kashiwara and Saito in [START_REF] Kashiwara | Geometric construction of crystal bases[END_REF] to relate this variety to the usual quantum group associated to Kac-Moody algebras, via the notion of crystals. This later led Lusztig in [START_REF] Lusztig | Semicanonical bases arising from enveloping algebras[END_REF] to define a semicanonical basis of this quantum group, indexed by the irreducible components of these Lagrangian varieties.

There are more and more evidences of the relevance of the study of quivers with loops. A particular class of such quivers are the comet-shaped quivers, which have recently been used by Hausel, Letellier and Rodriguez Villegas in their study of the topology of character varieties, where the number of loops at the central vertex is the genus of the considered curve (see [START_REF] Hausel | Mixed Hodge polynomials of character varieties[END_REF] and [START_REF] Hausel | Arithmetic harmonic analysis on character and quiver varieties II[END_REF]). We can also see quivers with loops appearing in a work of Nakajima relating quiver varieties with branching (see [START_REF] Nakajima | Quiver varieties and branching[END_REF]), as in the work of Okounkov and Maulik about quantum cohomology (see [START_REF] Maulik | Quantum groups and quantum cohomology[END_REF]).

Kang, Kashiwara and Schiffmann generalized these varieties in the framework of generalized Kac-Moody algebra in [KKS09], using quivers with loops. In this case, one has to impose a somewhat unnatural restriction on the regularity of the maps associated to the loops.

In this article we define a generalization of such Lagrangian varieties in the case of arbitrary quivers, possibly carrying loops. As opposed to the Lagrangian varieties constructed by Lusztig, which consisted in nilpotent representations, we have to consider here slightly more general representations. That this is necessary is already clear from the Jordan quiver case. Note that our Lagrangian variety is strictly larger than the one considered in [START_REF] Kang | Geometric construction of crystal bases for quantum generalized Kac-Moody algebras[END_REF] and has many more irreducible components. Our proof of the Lagrangian character is also based on induction, but with non trivial first steps, consisting in the study of quivers with one vertex but possible loops. From our proof emerges a new combinatorial structure on the set of irreducible components, which is more general than the usual crystals, in that there are now more operators associated to a vertex with loops, see 1.14.

Then, we consider, following [START_REF] Lusztig | Semicanonical bases arising from enveloping algebras[END_REF], a convolution algebra of constructible functions on our varieties, and construct a family of constructible functions naturally attached to the irreducible components. In [START_REF] Bozec | Quivers with loops and perverse sheaves[END_REF], we relate this convolution algebra to some explicit "Kac-Moody type" algebra, generalizing the notion of semicanonical basis.

In a second section, we construct Lagrangian subvarieties of Nakajima quiver varieties, still in the case of quivers with loops. In particular we get a geometric intuition of the way the tensor product of our generalized crystals should be defined (see section 3).
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Lusztig quiver varieties

Let Q be a quiver, defined by a set of vertices I and a set of oriented edges Ω = {h : s(h) → t(h)}. We denote by h : t(h) → s(h) the opposite arrow of h ∈ Ω, and Q the quiver (I, H = Ω ⊔ Ω), where Ω = { h | h ∈ Ω} : each arrow is replaced by a pair of arrows, one in each direction, and we set ǫ

(h) = 1 if h ∈ Ω, ǫ(h) = -1 if h ∈ Ω.
We denote by Ω(i) the set of loops of Ω at i, and call i imaginary if ω i = |Ω(i)| ≥ 1, real otherwise. Denote by I im (resp. I re ) the set of imaginary vertices (resp. real vertices). We work over the field of complex numbers C.

For any pair of I-graded C-vector spaces V = (V i ) i∈I and V ′ = (V ′ i ) i∈I , we set :

Ē(V, V ′ ) = h∈H Hom(V s(h) , V ′ t(h) ).
For any dimension vector α = (α i ) i∈I , we fix an I-graded C-vector space V α of dimension α, and put Ēα = Ē(V α , V α ). The space Ēα = Ē(V α , V α ) is endowed with a symplectic form :

ω α (x, x ′ ) = h∈H Tr(ǫ(h)x h x ′ h)
which is preserved by the natural action of

G α = i∈I GL α i (C) on Ēα . The associated moment map µ α : Ēα → g α = ⊕ i∈I End(V α ) i is given by : µ α (x) = h∈H ǫ(h)xhx h .
Here we have identified g * α with g α via the trace pairing.

Definition 1.1. An element x ∈ Ēα is said to be seminilpotent if there exists an I-graded flag

W = (W 0 = {0} ⊂ . . . ⊂ W r = V α ) of V α such that : x h (W • ) ⊆ W •-1 if h ∈ Ω, x h (W • ) ⊆ W • if h ∈ Ω. We put Λ(α) = {x ∈ µ -1 α (0) | x seminilpotent}. Lemma 1.2. The variety Λ(α) is isotropic.
Proof. We proceed as in [KKS09, 2.1], using the following general fact :

Proposition 1.3. Let X be a smooth algebraic variety, Y a projective variety and Z a smooth closed algebraic subvariety of X × Y . Consider the Lagrangian subvariety

Λ = T * Z (X × Y ) of T * (X × Y ). Then the image of the projection q : Λ ∩ (T * X × T * Y Y ) → T * X is isotropic.
We apply this result to X = ⊕ h∈Ω End(V α s(h) , V α t(h) ), Y the I-graded flag variety of V α and :

Z = {(x, W) ∈ X × Y | x(W • ) ⊆ W •-1 }.
In this case, we get :

T * X = Ēα T * Y = {(W, ξ) ∈ Y × g α | ξ(W • ) ⊆ W •-1 } Λ =    (x, W, ξ) ξ = h∈H ǫ(h)xhx h ∀h ∈ Ω, x h (W • ) ⊆ W •-1 and xh(W • ) ⊆ W •    Im q = x ∈ Ēα µ α (x) = 0 and there exists W ∈ Y such that ∀h ∈ Ω, x h (W • ) ⊆ W •-1 and xh(W • ) ⊆ W •
hence Λ(α) ⊆ Im q, which proves the lemma.

The case of the Jordan quiver

This case is very well known. For α ∈ N, we have :

Λ(α) = {(x, y) ∈ (End C α ) 2 | x nilpotent and [x, y] = 0} = λ T * O λ (End C α ),
where O λ is the nilpotent orbit associated to the partition λ of α. Therefore Λ(α) is a Lagrangian subvariety of (End C α ) 2 , and its irreducible components are the closures of the conormal bundles to the nilpotent orbits.

The case of the quiver with one vertex and g ≥ 2 loops

For α ∈ N, Λ(α) is the subvariety of (End C α ) 2g with elements (x i , y i ) 1≤i≤g such that :

⊲ there exists a flag W of C α such that x i (W • ) ⊆ W •-1 and y i (W • ) ⊆ W • ; ⊲ 1≤i≤g [x i , y i ] = 0.
We will often forget the index 1 ≤ i ≤ g in the rest of this section, which is dedicated to the proof of the following theorem :

Theorem 1.4. The subvariety Λ(α) ⊆ (End C α ) 2g is Lagrangian. Its irreducible components are parametrized by the compositions c = (0 = c 0 < c 1 < . . . < c r = α) of α. Notations 1.5. For (x i , y i ) ∈ Λ(α), we define W 0 (x i , y i ) = C α , then by induction W k+1 (x i , y i ) the smallest subspace of C α containing x i (W k (x i , y i )
) and stable by (x i , y i ). By seminilpotency, we can define r to be the first power such that W r (x i , y i ) = {0}. Although r depends on (x i , y i ) we don't write it explicitly. We also set

W k (x i , y i ) = W r-k (x i , y i ). Let : c(x i , y i ) = (0 = c 0 (x i , y i ) < c 1 (x i , y i ) < . . . < c r (x i , y i ) = α)
denotes the tuple of dimensions associated to the flag W • (x i , y i ). For every composition c = (0 = c 0 < c 1 < . . . < c r = α) of α, we define a locally closed subvariety :

Λ(c) = {(x i , y i ) ∈ Λ(α) | dim W • (x i , y i ) = c} ⊆ Λ(α).
Then, if δ = (δ 1 , . . . , δ r-1 ) ∈ N r-1 , let Λ(c) δ ⊆ Λ(c) be the locally closed subvariety defined by :

dim 1≤i≤g ker X → y (k+1) i X -Xy (k) i 1≤k≤r-1 = δ,
where :

y (k) i ∈ End W k (x i , y i ) W k-1 (x i , y i )
is induced by y i and :

X ∈ Hom W k (x i , y i ) W k-1 (x i , y i ) , W k+1 (x i , y i ) W k (x i , y i ) .
Set l = c rc r-1 , then :

Λ(c) δ =      (x i , y i , X, β, γ) (x i , y i ) ∈ Λ(c) δ W r-1 (x i , y i ) ⊕ X = C α β : W r-1 (x i , y i ) ∼ → C c r-1 and γ : X ∼ → C l      ,
and :

π c,δ Λ(c) δ → Λ(c -) δ -× (End C l ) g (x i , y i , X, β, γ) → (β * (x i , y i ) W r-1 , γ * (y i ) X ))
where c -= (c 0 < c 1 < . . . < c r-1 ) and δ -= (δ 1 , . . . , δ r-2 ). Let finally (Λ(c -) δ -× (End C l ) g ) c,δ denotes the image of π c,δ .

Proposition 1.6. The morphism π c,δ is smooth over its image, with connected fibers of dimension

α 2 + (2g -1)l(α -l) + δ r-1 whenever Λ(c) δ = ∅. Proof. Let (x i , y i , z i ) ∈ (Λ(c -) δ -× (End C l ) g ) c,δ .
Let W and X be two supplementary subspaces of C α such that dim X = l, together with two isomorphisms :

β : W ∼ → C c r-1 and γ : X ∼ → C l .
We identify x i , y i and z i with β * (x i , y i ) and γ * z i , and define an element (X i , Y i ) in the fiber of (x i , y i , z i ) by setting :

(X i , Y i ) W = (x i , y i ) (X i , Y i ) X = (0, z i ) (X i , Y i ) |W |X = (u i , v i ) ∈ Hom(X, W) 2g .
Then :

µ α (X i , Y i ) = 0 ⇔ φ(u i , v i ) = g i=1 (x i v i + u i z i -y i u i ) = 0,
and, for X ∈ Hom(W, X) :

∀(u i , v i ), Tr(Xφ(u i , v i )) = 0 ⇔ ∀i, ∀u i , Tr(X(u i z i -y i u i )) = 0 ∀i, ∀v i , Tr(Xx i v i ) = 0 ⇔ ∀i, ∀u i , Tr((z i X -Xy i )u i ) = 0 ∀i, ∀v i , Tr(Xx i v i ) = 0 ⇔ ∀i, z i X = Xy i ∀i, Xx i = 0 ⇔ W 1 (x i , y i ) = W r-2 (x i , y i ) ⊆ ker X ∀i, z i X (r-1) = X (r-1) y (r-1) i
where X (r-1) denotes the map W/W r-2 (x i , y i ) → X induced by X. Since (x i , y i , z i ) is in the image of π c,δ , then the image of φ is of codimension δ r-1 , and thus its kernel is of dimension

(2g -1)l(α -l) + δ r-1 .
Moreover, if we denote by u

(r-1) i the map X → W/W r-2 (x i , y i ) induced by u i , W 1 (X i , Y i ) = W if
and only if the space spanned by the action of (y

(r-1) i ) i on i Im u (r-1) i is W/W r-2 (x i , y i ).
This condition defines an open subset of ker φ.

We end the proof noticing that the set of elements (W, X, β, γ) is isomorphic to GL α (C).

Proposition 1.7. The variety Λ(c) 0 is not empty.

Proof. Fix W of dimension c and define x 1 such that

x 1 (W • ) ⊆ W •-1 x 1 |W k /W k-1 |W k+1 /W k = 0.
We define inductively an element y 1 stabilizing W such that :

⊲ the action of y 1 (k) on Im x 1 |W k /W k-1 |W k+1 /W k spans W k /W k-1 ; ⊲ Spec y 1 (k) ∩ Spec y 1 (k-1) = ∅.
We finally set x 2 = -x 1 , y 2 = y 1 and x i = y i = 0 for i > 2. This yields an element

(x i , y i ) in Λ(c) 0 . Corollary 1.8. For any c= (0 = c 0 < c 1 < . . . < c r = α), Λ(c) 0 is irreducible of dimension gα 2 .
Proof. We argue by induction on r.

If c = (0 = c 0 < c 1 = α), we have Λ(c) 0 = Λ(c) = (End C α ) g which is irreducible of dimension gα 2 .
For the induction step, 1.6 and 1.7 ensure us that Λ(c) 0 is irreducible of dimension :

α 2 + (2g -1)l(α -l) + dim(Λ(c -) 0 × (End C l ) g ) c,0 = α 2 + (2g -1)l(α -l) + g(α -l) 2 + gl 2 since (Λ(c -) 0 × (End C l ) g ) c,0 is a non empty subvariety of Λ(c -) 0 × (End C l ) g , irreducible of dimension g(α -l) 2
+ gl 2 by our induction hypothesis. Moreover,

Λ(c) 0 → Λ(c) 0
being a principal bundle with fibers of dimension α 2 -l(α-l), we get that Λ(c) 0 is irreducible of dimension

α 2 + (2g -1)l(α -l) + g(α -l) 2 + gl 2 -α 2 + l(α -l) = gα 2 .
Lemma 1.9. Let V and W be two vector spaces, and k ≥ 0. For any (u, v) ∈ End V ×End W , we set :

C(u, v) = {x ∈ Hom(V, W ) | xu = vx} (End V × End W ) k = {(u, v) ∈ End V × End W | dim C(u, v) = k}.
Then we have

codim(End V × End W ) k ≥ k.
Proof. The restrictions of an endomorphism a to a generalized eigenspace associated to an eigenvalue η will be denoted by a η = η id +ã η . As usual, the nilpotent orbit associated to a partition ξ will be denoted by O ξ . We have :

codim(End V × End W ) k = codim{(u, v) | α,β dim C(u α , v β ) = k} = codim{(u, v) | α∈Spec u∩Spec v dim C(u α , v α ) = k} = codim{(u, v) | α dim C(ũ α , ṽα ) = k} = codim (u, v) (ũ α , ṽα ) ∈ O λα × O µα α j (λ ′ α ) j (µ ′ α ) j = k Thus, codim(End V × End W ) k ≥ k ⇔ α (codim O λα + codim O µα -1) ≥ α j (λ ′ α ) j (µ ′ α ) j ⇔ α ( j (λ ′ α ) 2 j + j (µ ′ α ) 2 j -1) ≥ α j (λ ′ α ) j (µ ′ α ) j which is clear. Proposition 1.10. If δ = 0, we have dim Λ(c) δ < gα 2 .
Proof. It's enough to show that if δ r-1 > 0, we have :

dim(Λ(c -) δ -× (End C l ) g ) c,δ + δ r-1 < dim(Λ(c -) 0 × (End C l ) g ).
This is a consequence of the previous lemma (recall that g ≥ 2). Indeed, if we set :

((End V ) g × (End W ) g ) k = {(u i , v i ) | dim ∩ i C(u i , v i ) = k},
we have :

((End V ) g × (End W ) g ) k ⊆ g i=1 (End V × End W ) k i
for some k i ≥ k, and thus :

codim((End V ) g × (End W ) g ) k ≥ i codim(End V × End W ) k i ≥ i k i ≥ gk > k.
The following proposition concludes the proof of theorem 1.4 :

Proposition 1.11. Every irreducible component of Λ(c) is of dimension larger than or equal to gα 2 .
Proof. We first prove the result for the following variety :

Λ(c) = {((x i , y i ), W) ∈ Λ(α) × Y c | x i (W • ) ⊆ W •-1 and y i (W • ) ⊆ W • }
where Y c denotes the variety of flags of C α of dimension w. We use the following notations, analogous to 1.2 :

X = {(x i ) 1≤i≤g ∈ (End C α ) g } Z = {((x i ) 1≤i≤g , W) | x i (W • ) ⊆ W •-1 } ⊆ X × Y c .
We get :

T * X = {(x i , y i ) 1≤i≤g ∈ (End C α ) 2g } T * Y c = {(W, K) ∈ Y c × End C α | K(W • ) ⊆ W •-1 }
and :

T * Z (X × Y c ) =    ((x i , y i ), F, K) 1≤i≤g [x i , y i ] = K x i (W • ) ⊆ W •-1 and y i (W • ) ⊆ W •    which is a pure Lagrangian subvariety of T * (X × Y c ), of dimension gα 2 + dim Y c . Since T * Y c is irreducible of dimension 2 dim Y c , the irreducible components of the fibers of T * Z (X×Y c ) → T * Y c
are of dimension larger than or equal to gα 2 -dim Y c . We denote by ΛW the fiber above (W, 0), and by P the stabilizer of W in G α . Since G α and P are irreducible, we get that the components of :

Λ(c) = G α × P ΛW are of dimension larger than or equal to dim Y c + (gα 2 -dim Y c ) = gα 2 .
We extend this result to Λ(c), noticing that :

Λ(c) ֒→ Λ(c) (x i , y i ) → (x i , y i , W • (x i , y i ))
defines an open embedding.

The general case

For every α, β ∈ N I and j ∈ I, we put :

(α, β) = h∈Ω α s(h) β t(h) α, β = i∈I α i β i e j = (δ i,j ) i∈I .
Definition 1.12. For every subset A ⊆ I, and every x ∈ Λ(α), we denote by I A (x) the subspace of V α spanned by the action of x on ⊕ i / ∈A V i . Then, for l = (l i ) i∈A , we set :

Λ(α) A,l = {x ∈ Λ(α) | codim I A (x) = l}.
In the case where A is a singleton {i}, l is of the form (δ i,j l) j∈I and we write Λ(α) i,l instead of Λ(α) {i},l .

Remark 1.13. By the definition of seminilpotency, we have :

Λ(α) = i∈I,l≥1 Λ(α) i,l .
Indeed, if x ∈ Λ(α), there exists an I-graded flag (W 0 . . . W r = C n ) such that (x, W) satisfies 1.1. Therefore there exists i ∈ I and l > 0 such that W r /W r-1 ≃ V le i , and thus x ∈ Λ(α) i,l .

Proposition 1.14. There exists a variety Λ(α) A,l and a diagram : 

Λ(α) A,l q A,
Λ(α) A,l Λ(α -l) A,0 × Λ(l)
such that p A,l and q A,l are smooth with connected fibers, inducing a bijection :

Irr Λ(α) A,l ∼ → Irr Λ(α -l) A,0 × Irr Λ(l).
Proof. In this proof we will denote by I(V, V ′ ) the set of I-graded isomorphisms between two I-graded spaces V and V ′ of same I-graded dimension. We set :

Λ(α) A,l =      (x, X, β, γ) x ∈ Λ(α) A,l X I-graded and I A (x) ⊕ X = V α β ∈ I(I A (x), V α-l ) and γ ∈ I(X, V l )     
and :

p A,l Λ(α) A,l → Λ(α -l) A,0 × Λ(l) (x, X, β, γ) → (β * (x I A (x) ), γ * (x X )).
We study the fibers of p A,l : take y ∈ Λ(α -l) A,0 and z ∈ Λ(l) and consider I and X two supplementary I-graded subspaces of V α such that dim X = l, together with two isomorphisms :

β ∈ I(I, V α-l ) and γ ∈ I(X, V l ).
We identify y and z with β * y and γ * z, and we define a preimage x by setting x

|I |I = y, x |X |X = z and x |I |X = η ∈ Ē(X, I).
In order to get µ α (x) = 0, η must satisfy the following relation for every i ∈ I :

φ i (η) = h∈H:s(h)=i ǫ(h)(yhη h + ηhz h ) = 0.
We need to show that φ = ⊕ i∈I φ i is surjective to conclude. Consider ξ ∈ ⊕ i∈I Hom(I i , X i ) such that for every η :

i∈I Tr(φ i (η)ξ i ) = 0.
Then we have for every edge h such that s(h) = i, t(h) = j and for every η h :

Tr(yhη h ξ i ) -Tr(η h zhξ j ) = 0.
But the member of the left is equal to :

Tr(η h ξ i yh) -Tr(η h zhξ j ) = Tr(η h (ξ i yh -zhξ j )), hence ξ i yh = zhξ j and therefore ker ξ is stable by y. Moreover, X i = {0} if i / ∈ A so ker ξ i = I i if i / ∈ A.
As codim I A (y) = 0, we get ξ = 0, which finishes the proof.

We can now state the following theorem, which answers a question asked in [Li] :

Theorem 1.15. The subvariety Λ(α) of Ēα is Lagrangian.

Proof. Since this subvariety is isotropic by 1.2 we just have to show that the irreducible components of Λ(α) are of dimension (α, α). We proceed by induction on α, the first step corresponding to the one vertex quiver case which has already been treated : we have seen that Λ(le i ) is of dimension (le i , le i ).

Next, consider C ∈ Irr Λ(α) for some α. By 1.13, there exists i ∈ I and l ≥ 1 such that

C ∩ Λ(α) i,l is dense in C. Let Č = (C 1 , C 2 )
the couple of irreducible components corresponding to C via the bijection obtained in 1.14 in the case A = {i} and l = le i :

Irr Λ(α) i,l ∼ → Irr Λ(α -le i ) i,0 × Irr Λ(le i ).
We also know by the proof of 1.14 that the fibers of p A,l are of dimension :

α, α + (α -l, l) + (l, α -l) -l, α -l . Since q A,
l is a principal bundle with fibers of dimension α, α -l, α -l , we get :

dim C = dim Č + (α -l, l) + (l, α -l) = dim Č + (α -le i , le i ) + (le i , α -le i ). But Λ(α -le i ) i,0 is open in Λ(α -le i )
, so we can use our induction hypothesis and the first step to write :

dim Č = (α -le i , α -le i ) + l 2 (e i , e i )
and thus obtain :

dim C = (α -le i , α -le i ) + l 2 (e i , e i ) + (α -le i , le i ) + (le i , α -le i ) = (α, α).
1.4 -Constructible functions

Constructible functions

Following [START_REF] Lusztig | Semicanonical bases arising from enveloping algebras[END_REF], we denote by M(α) the Q-vector space of constructible functions Λ(α) → Q, which are constant on any G α -orbit. Put M = ⊕ α≥0 M(α), which is a graded algebra once equipped with the product * defined in [Lus00, 2.1].

For Z ∈ Irr Λ(α) and f ∈ M(α), we put ρ Z (f ) = c if Z ∩ f -1 (c) is an open dense subset of Z.
If i ∈ I im and (l) denotes the trivial composition or partition of l, we denote by 1 i,l the characteristic function of the associated irreducible component Z i,(l) ∈ Irr Λ(le i ) (the component of elements x such that x h = 0 for any loop h ∈ Ω). If i / ∈ I im , we just denote by 1 i the function mapping to 1 the only point in Λ(e i ).

We have 1 i,l ∈ M(le i ) for i ∈ I im and 1 i ∈ M(e i ) for i / ∈ I im . We denote by M • ⊆ M the subalgebra generated by these functions.

Lemma 1.16. Suppose Q has one vertex • and g ≥ 1 loop(s). For every Z ∈ Irr Λ(α) there

exists f ∈ M • (α) such that ρ Z (f ) = 1 and ρ Z ′ (f ) = 0 for Z ′ = Z.
Proof. We denote by Z c the irreducible component associated to the partition (resp. composition) c of α ig g = 1 (resp. g ≥ 2). By convention, if g = 1, Z c will denote the component associated to the orbit O c défined by :

x ∈ O c ⇔ dim ker x i = 1≤k≤i c k ,
where we see now compositions as (non ordered) tuples of N >0 . If g ≥ 2, we remark that by trace duality, we can assume that Z c is the closure of Λˇc defined by :

(x i , y i ) 1≤i≤g ∈ Λˇc ⇔ dim K i = 1≤k≤i c k
where we define by induction K 0 = {0}, then K j+1 as the biggest subspace of ∩ i x -1 i (K j ) stable by (x i , y i ). From now on, c = (c 1 , . . . , c r ) will denote indistinctly a partition or a composition depending on the value of g. We define an order by : c c ′ if and only if for any i ≥ 1 we have

1≤k≤i c k ≤ 1≤k≤i c ′ k .
Therefore, setting 1c = 1 cr * • • • * 1 c 1 , where 1 l = 1 •,l , we get :

x ∈ Z c , 1c ′ (x) = 0 ⇒ c ′ c.
For c = (α) we have 1c = 1 α which is the characteristic function of Z c , and we put 1 c = 1c in this case. Then, by induction :

1 c = 1c - c ′ ≺c ρ Z c ′ ( 1c )1 c ′
has the expected property.

Notations 1.17.

⊲ From now on, if c corresponds to an irreducible component of Λ(|c|e i ), we will note 1 i,c the function corresponding to 1 c in the previous proof.

⊲ For Z ∈ Irr Λ(α) i,l , we denote by ǫ i (Z) ∈ Irr Λ(le i ) the composition of the second projection with the bijection obtained in 1.14 in the case (A, l) = (i, l). We also set |ǫ i (Z)| = l.

Proposition 1.18. For every Z ∈ Irr Λ(α), there exists

f ∈ M • (α) such that ρ Z (f ) = 1 and ρ Z ′ (f ) = 0 if Z ′ = Z.
Proof. We proceed as in [Lus00, lemma 2.4], by induction α. The first step consists in 1.16. Then, consider Z ∈ Irr Λ(α). There exists i ∈ I and l > 0 such that Z ∩ Λ(α) i,l is dense in Z.

We know proceed by descending induction on l. There's nothing to say if l > α i .

Otherwise, let (Z ′ , Z c ) ∈ Irr Λ(α -le i ) i,0 × Irr Λ(le i ) be the pair of components corresponding to Z, then, by induction hyopthesis on α, there exists

g ∈ M • (α -le i ) such that ρ Z ′ (g) = 1 and ρ Y (g) = 0 if Z ′ = Y ∈ Irr Λ(α -le i ).
Then we set f = 1 i,c * g ∈ M • (α), and get :

• ρ Z ( f ) = 1, • ρ Z ′ ( f ) = 0 if Z ′ ∈ Irr Λ(α) \ Z satisfies |ǫ i (Z ′ )| = l, • f (x) = 0 if x ∈ Λ(α) i,<l so that ρ Z ′ ( f ) = 0 if |ǫ i (Z ′ )| < l. If |ǫ i (Z ′ )| > l,
we use the induction hypothesis on l : there exists

f Z ′ ∈ M • (α) such that ρ Z ′ (f Z ′ ) = 1 and ρ Z ′′ (f Z ′ ) = 0 if Z ′′ ∈ Irr Λ(α)\Z ′ .
We end the proof by setting :

f = f - Z ′ :|ǫ i (Z ′ )|>l ρ Z ′ ( f )f Z ′ .

Nakajima quiver varieties

Fix an I-graded vector space W of dimension w = (w i ) i∈I . For any dimension vector v = (v i ) i∈I , we still fix an I-graded C-vector space

V v = ((V v ) i = V v i ) i∈I of dimension v.
We will denote by (x, f, g) = ((x h ) h∈H , (f i ) i∈I , (g i ) i∈I ) the elements of the following space :

E(V, w) = Ē(V, V ) ⊕ i∈I Hom(V i , W i ) i∈I Hom(W i , V i )
defined for any I-graded space V , and put E v,w = E(V v , w) for any dimension vector v. This space is endowed with a symplectic form :

ω v,w (x, f, g), (x ′ , f ′ , g ′ ) = h∈H Tr(ǫ(h)x h x ′ h) + i∈I Tr(g i f ′ i -g ′ i f i )
which is preserved by the natural action of

G v = i∈I GL v i (C) on E v,w . The associated moment map µ v,w : E v,w → g v = ⊕ i∈I End(V v ) i is given by : µ v,w (x, f, g) = g i f i + h∈H:s(h)=i ǫ(h)xhx h i∈I .
Here we have identified g * v with g v via the trace pairing. Put :

M • (v, w) = µ -1 v,w (0). Definition 2.1. Set χ : G v → C * , (g i ) i∈I → i∈I det -1 g i .
We denote by :

M • (v, w) = µ -1 v,w (0)/ /G v M(v, w) = µ -1 v,w (0)/ χ G v
the geometric and symplectic quotients (with respect to χ).

Proposition 2.2. An element (x, f, g) ∈ M • (v, w) is stable with respect to χ if and only if the only x-stable subspace of ker f is {0}. Set :

M(v, w) = {(x, f, g) ∈ M • (v, w) | (x, f, g) stable}.
Definition 2.3. An element (x, f, g) ∈ E v,w is said to be seminilpotent if x ∈ Ēv is, according to 1.1. We put :

L • (v, w) = {(x, f, 0) ∈ M • (v, w) | x seminilpotent} ⊆ M • (v, w)
and define L(v, w) ⊆ M(v, w) in the same way. Finally set :

L • (v, w) = L • (v, w)/ /G v L(v, w) = L • (v, w)/ χ G v = L(v, w)/ /G v .
We will simply denote by (x, f ) the elements of L • (v, w).

Lemma 2.4. The variety L(v, w) is isotropic.

Proof. Analogous to 1.2.

A crystal-type structure

For every v, v ′ ∈ N I and j ∈ I, we put :

(v, v ′ ) = h∈Ω v s(h) v ′ t(h) v, v ′ = i∈I v i v ′ i e j = (δ i,j ) i∈I .
Definition 2.5. For every subset i ∈ I, and every (x, f, g) ∈ M • (v, w), we denote by I i (x, f, g) the subspace of V v i spanned by the action of x ⊕ g on (⊕ j =i V j ) ⊕ W i . Then, for l ≥ 0, we set :

M • (v, w) i,l = {x ∈ M • (v, w) | codim I i (x, f, g) = l}.
We define M(v, w) i,l , L • (v, w) i,l and L(v, w) i,l in the same way. The quantity codim I i (x, f, g) being stable on G v -orbits, the notations M • (v, w) i,l , M(v, w) i,l , L • (v, w) i,l and L(v, w) i,l make also sense.

Remark 2.6.

-By the definition of seminilpotency, we have :

L • (v, w) = i∈I,l≥1 L • (v, w) i,l . Indeed, if (x, f ) ∈ L • (v, w)
, there exists an I-graded flag (F 0 . . . F r = V ) such that (x, F ) satisfies 1.1. Therefore there exists i ∈ I and l > 0 such that F r /F r-1 ≃ V i , and thus

(x, f ) ∈ L • (v, w) i,l . -Note that L • (le i , 0) = Λ(le i ).
Proposition 2.7. There exists a variety M• (v, w) i,l and a diagram :

M• (v, w) i,l q i,l w w o o o o o o o o o o o p i,l * * U U U U U U U U U U U U U U U U M • (v, w) i,l M • (v -le i , w) i,0 × M • (le i , 0) (2.8)
such that p i,l and q i,l are smooth with connected fibers, inducing a bijection :

Irr M • (v, w) i,l ∼ → Irr M • (v -le i , w) i,0 × Irr M • (le i , 0).
The dimension of the fibers of p i,l is :

(le i , v -le i ) + (v -le i , le i ) + v, v -le i , v -w -le i .
Proof. In this proof we will denote by I(V, V ′ ) the set of I-graded isomorphisms between two I-graded spaces V and V ′ of same I-graded dimension. We set :

M• (v, w) i,l =          (x, f, g, X, β, γ) (x, f, g) ∈ M • (v, w) i,l X I-graded and I i (x, f, g) ⊕ X = V v β ∈ I(I i (x, f, g), V v-le i ) γ ∈ I(X, V le i )         
and :

p i,l M• (v, w) i,l → M • (v -le i , w) i,0 × M • (le i , 0) (x, f, g, X, β, γ) → (β * (xf, g) I i (x,f,g) , γ * (x, f, g) X ).
We study the fibers of p i,l : take (x, f, g) ∈ M • (v -le i , w) i,0 and (z, 0, 0) ∈ M • (le i , 0) and consider I and X two supplementary I-graded subspaces of V v such that dim X = le i , together with two isomorphisms :

β ∈ I(I, V v-le i ) and γ ∈ I(X, V le i ).
We identify (x, f, g) and z with β * (x, f, g) and γ * z, and we define a preimage (X, F, G) by setting (X, F, G)

|I⊕W |I⊕W = (x, f, g), X
|X |X = z and :

(X, F ) |I⊕W |X = (η, θ) ∈ Ē(X, I) ⊕ Hom(X i , W i ).
In order to get µ v,w (X, F, G) = 0, (η, θ) must satisfy the following relation :

ψ(η, θ) = h∈H:s(h)=i ǫ(h)(yhη h + ηhz h ) + g i θ i = 0.
We need to show that ψ is surjective to conclude. Consider ξ ∈ Hom(I i , X i ) such that Tr(ψ(η, θ)ξ) = 0 for every (η, θ). Then we have for every edge h ∈ H such that s(h) = i = j = t(h) and for every η h :

Tr(xhη h ξ) = 0,
where the member of the left is equal to Tr(η h ξxh). Hence ξxh = 0 and Im xh ⊆ ker ξ. We also have Tr(g i θ i ξ) = 0 for every θ i , so we similarly get Im g i ⊆ ker ξ. Now consider a loop h ∈ H at i. We have for every η h :

Tr(xhη h ξ) -Tr(η h zhξ) = 0.
Here the member of the left is equal to :

Tr(η h ξxh) -Tr(η h zhξ) = Tr(η h (ξxh -zhξ)),
hence ξxh = zhξ and therefore ker ξ is stable by xh. We finally get :

I i (x, f, g) ⊆ ker ξ ⊕ (⊕ j =i V v j ). Since (x, f, g) ∈ M • (v -le i , w) i,0
, we get ξ = 0, which finishes the proof.

Corollary 2.9. We also have a bijection :

l • (v, w) i,l : Irr L • (v, w) i,l ∼ → Irr L • (v -le i , w) i,0 × Irr L • (le i , 0).
Proof. The image of a seminilpotent element by p i,l is a pair of seminilpotent elements, and the fiber of p i,l over a pair of seminilpotent elements consists in seminilpotent elements.

Extension to the stable locus

Notations 2.10. Consider an inclusion of vector spaces E ⊆ V , F any subset of E, and (u j ) 1≤j≤r ∈ (End V ) r . We write :

(u j ), F = E if E is the smallest (u j )-stable subspace of V containing F .
We will often use the following well-known fact :

Lemma 2.11. Consider y ∈ End I and z ∈ End X such that Spec y ∩ Spec z = ∅. If y, v = I and z, v ′ = X for some v ∈ I and v ′ ∈ X, then y ⊕ z, v ⊕ v ′ = I ⊕ X.
Notations 2.12. Let i be imaginary and put

Ω(i) = {b 1 , . . . , b ω i }. For every (x, f ) ∈ L • (v, w), we set σ i (x) = t xb 1 .
Lemma 2.13. With the same notations, for every C ∈ Irr Λ(le i ), there exists x ∈ C such that :

∃ν ∈ t V le i , σ i (x), ν = t V le i .
Proof. It's a consequence of sections 1.1 and 1.2. If ω i = 1 and λ is a partition of l, denote by µ the conjugate partition of λ. Let x ∈ O λ be defined in a base : e = (e 1,1 , . . . , e 1,µ 1 , . . . , e r,1 , . . . , e r,µr ) by :

t x b 1 =        J µ 1 0 0 0 0 0 0 J µr        and t xb 1 =        t 1 I µ 1 + J µ 1 0 0 0 0 0 0 t r I µr + J µr       
where the t i are all distinct and nonzero, and :

J p =       0 1 0 0 0 0 1 0 0 0       .
It is enough to consider ν with nonzero coordinates relatively to (e 1,µ 1 , . . . , e r,µr ) to get

σ i (x), ν = t V le i . If ω i ≥ 2,
we use the proof of 1.7 : in any irreducible component we can define x such that there exists v such tat xb 1 , v = V le i (xb i corresponds to y i in the aforementioned proof, x b i to x i ). We get the result by duality.

Remark 2.14. Note that the case ω i = 1 is very well known since it corresponds to the case of the Hilbert scheme of points in the plane. Notations 2.15. Denote by a i,j the number of edges of Ω such that s(h) = i and t(h) = j, and denote by : C = (δ i,j -a i,j -a j,i )

the Cartan matrix of Q. Note that :

(v -le i , le i ) + (le i , v -le i ) = le i , (2I -C)(v -le i ) .
Set also

H i = {h ∈ H | i = s(h) = t(h)}.
Definition 2.16. Set :

L(w) := v L(v, w) ⊆ v L • (v, w) =: L • (w),
and define B(w) as the smallest subset of Irr L • (w) containing the only element of Irr L • (0, w), and stable by the l • (v, w) -1 i,l (-, Irr Λ(le i )) for v, i, l such that :

-e i , w -Cv ≥ -l if i ∈ I re , -w i + h∈H i v t(h) > 0 if i ∈ I im .
Lemma 2.17. For every i ∈ I im , we write Ω(i) = {b i,1 , . . . , b i,ω i }. For every C ∈ B(w), there exists (x, f ) ∈ C such that :

(x, f ) stable ∀i ∈ I im , ∃φ i ∈ t W i ⊕ (⊕ h∈H i t V v t(h) ), σ i (x), Σ i (x, f )(φ i ) = t V v i (2.18)
where

Σ i (x, f ) = t f i + h∈H i t x h .
Proof. We proceed by induction on v, with first step consisting in the case of C ∈ B(w) ∩ Irr L • (le i , m) for some l > 0. If i / ∈ I im , we have l ≤ w i by definition of B(w), hence we can find (x, f ) ∈ C such that 2.18 since it's equivalent here to f injective. If i ∈ I im , we have m i > 0 by definition of B(w), and we can use 2.13. Now consider C ∈ B(w) ∩ Irr L • (v, w) i,l for some v and l > 0, and set (C 1 , C 2 ) = l • (v, W) i,l (C). First assume that i / ∈ I im . Thanks to the induction hypothesis, we can pick ((x, f ), z) ∈ C 1 × C 2 such that (x, f ) satisfies 2.18. Following the notations used in the proof of 2.7, we build an element of C satisfying 2.18 by chosing (η, θ) such that θ + h∈H i η h is injective with values in a supplementary of Im(f i + h∈H i x h ) in W i ⊕ ker( h∈H i xh) : it's possible since l + e i , w -Cv ≥ 0 by definition of B(w).

If i ∈ I im , take (x, f ) ∈ C 1 satisfying 2.18 and z ∈ C 2 such that :

Spec xb i,1 ∩ Spec zb i,1 = ∅ ∃ψ ∈ t V le i , σ i (z), ψ = t V le i ,
which is possible, thanks to 2.13. Still following the notations of the proof of 2.7, we build an element of C mapped to ((x, f ), z) by considering (η, θ) such that :

t θ + h∈H i t η h (φ i ) = ψ where φ i ∈ t W i ⊕ (⊕ h∈H i t V v t(h) ) satisfies σ i (x), Σ i (x, f )(φ i ) = t I (we use the induction hypothesis), which is possible even if I = {0} since we have t W i ⊕ (⊕ h∈H i t V v t(h) ) =
{0} by definition of B(w). Put η b i,j = ηb i,j = 0 for every j ≥ 2, so that :

ψ i (η, θ) = 0 ⇔ xb i,1 η b i,1 -η b i,1 zb i,1 = h∈H i ǫ(h)(xhη h + ηhz h ).
Hence we can chose η b i,1 in order to satisfy the right hand side equation since :

Spec xb i,1 ∩ Spec zb i,1 = ∅ ⇒ (η b i,1 → xb i,1 η b i,1 -η b i,1 zb i,1 ) invertible.
Thanks to 2.11, (X, F ) ∈ C satisfies :

σ i (X), Σ i (X, F )(φ i ) = t V v i .
We finally have to check the stability of (X, F ) to conclude. Consider S ⊆ ker F stable by X. We have S ∩ I = {0} by stability of (x, f ), thus S ≃ S i and we see S as a subspace of ker F ∩ (∩ h∈H i ker X h ). But then t S is stable by σ i (X) and contains Im t F + h∈H i Im t X h , and thus φ i . Hence t S = V v i , and S = {0}. Proposition 2.19. We have B(w) = Irr L(w).

Proof. Thanks to 2.17, we have B(w) ⊆ Irr L(w). Consider C ∈ Irr L(v, w) i,l \B(w) for some l > 0. We know (c.f. [Nak98, 4.6]) that if i ∈ I re , we necessarily have l + e i , v -Cw ≥ 0, and thus, by definition of B(w) :

l • (v, w) i,l (C) ∈ Irr L(v -le i , w) \ B(w) × Irr Λ(le i ).
If i ∈ I im , C ∈ Irr L(v, w) i,l necessarily implies w i + h∈H i v t(h) > 0, and we get to the same conclusion. By descending induction on v, we obtain that the only irreducible component of L(0, w) doesn't belong to B(w), which is absurd.

Corollary 2.20. Take i ∈ I im and assume Irr L(v, w) i,l ⊆ B(w). We have the following commutative diagram :

Irr L(v, w) i,l ∼ l(v,w) i,l / / ∼ Irr L(v -le i , w) i,0 × Irr Λ(le i ) ∼ Irr L(v, w) i,l ∼ l(v,w) i,l / / Irr L(v -le i , w) i,0 × Irr Λ(le i ).
(2.21) Proof. By definition of stability, the action of G v on L(v, w) is free.

Theorem 2.22. The subvariety L(v, w) ⊂ M(v, w) is Lagrangian.

Proof. Thanks to 1.2, we just have to prove that every irreducible component of L(n, m) is of dimension 1 2 n, 2m -Cn . We proceed by induction, thanks to 2.20. Take C ∈ Irr L(v, w), thanks to 2.6, there exist i ∈ I and l ≥ 1 such that C ∩ L(v, w) i,l is dense in C. Consider (C 1 , C 2 ) = l(v, w) i,l (C). Thanks to 2.8 and 2.21, we have :

dim C + dim G v + d q = (dim C 1 + dim C 2 ) + dim G v-le i + d p ,
where d p and d q denote the dimensions of the fibers of p i,l and q i,l in 2.8. Moreover, we know from sections 1.1 and 1.2 that :

dim C 2 = dim Λ(le i ) = ω i l 2 = 1 2 le i , (2I -C)(le i ) .
Hence, we get :

dim C + 2 v, v -le i , v -le i = dim C 1 + 1 2 le i , (2I -C)(le i ) + v -le i , v -le i + le i , (2I -C)(v -le i ) + v, v -le i , v -w -le i . As L(v -le i , w) i,0 is open in L(v -le i , w)
, we can use the induction hypothesis to write :

dim C = 1 2 v -le i , 2w -C(v -le i ) + 1 2 le i , (2I -C)(le i ) -le i , v + le i , w + (I -C)(v -le i ) = 1 2 v -le i , 2w -C(v -le i ) - 1 2 le i , C(le i ) + le i , w -C(v -le i ) = 1 2 v -le i , 2w -C(v -le i ) + 1 2 le i , C(le i ) + 1 2 le i , 2w -Cv - 1 2 v, C(le i ) [since C is symmetric] = 1 2 v, 2w -Cv
which ends the proof.

Tensor product on Irr L

Another Lagrangian subvariety

Embed W in a w + w ′ -dimensional I-graded vector space, and fix a supplementary subspace W ′ of W . We still denote by I(X, Y ) the set of I-graded isomorphisms between two I-graded spaces X and Y .

For every v ∈ N I , denote by Z • (v) ⊆ M • (v, w + w ′ ) of elements (x, f, g) such that there exists an I-graded subspace of V v satisfying :

1. x(V ) ⊆ V ; 2. f (V ) ⊆ W ; 3. g(W ⊕ W ′ ) ⊆ V ; 4. g(W ) = {0},
and denote by V (x, f, g) the larger x-stable subspace of f -1 (W ) containing Im g. We will then denote by Z • (v) ⊂ Z • (v) the subvariety of elements (x, f, g) such that :

(x, f ) |V ×W |V ×V and (x, f ) |(Vv/V )×(W ⊕W ′ /W ) |(Vv/V )×(Vv/V )
are seminilpotents where we have written V instead of V (x, f, g). We get a stratification of Z • (v) by setting, for any

v, v ′ such that v + v ′ = v : Z • (v, v ′ ) = (x, f, g) ∈ Z • (v + v ′ ) | dim V (x, f, g) = v .
Define the following incidence variety :

Ž• (v, v ′ ) =      (x, f, g, V ′ , α) (x, f, g) ∈ Z • (v, v ′ ) V (x, f, g) ⊕ V ′ = V v+v ′ α ∈ I(V (x, f, g), V v ) × I(V ′ , V v ′ )      .
By definition of V (x, f, g) (again denoted by V hereunder), we have :

(x, f, g) ∈ Z • (v) ⇒ (x, f ) |(Vv/V )×(W ⊕W ′ /W ) |(Vv/V )×(Vv/V ) stable,
hence the following application is well defined :

T • Ž• (v, v ′ ) → L • (v, w) × L(v ′ , w ′ ) (x, f, g, V ′ , α) → (α × β) * (x, f ) |V ×W |V ×V , (x, f ) |V ′ ×(W ⊕W ′ /W ) |V ′ ×V ′
Proposition 2.23. The map T • is smooth with connected fibers of dimension :

v + v ′ , v + v ′ + w ′ , v -v, Cv ′ + v ′ , w + v, v ′ .
Proof. Let (x, f ) and (x ′ , f ′ ) be elements of L • (v, w) and L(v ′ , w ′ ) and take I-graded spaces V and V ′ of dimensions v and v ′ . Define (X, F, G, V ′ , α) in the fiber T -1 • ((x, f ), (x ′ , f ′ )) by :

1. α ∈ I(V, V v ) × I(V ′ , V v ′ ) ; 2. G = 0 ⊕ ν where : ν ∈ ⊕ i∈I Hom(W ′ i , V i ); 3. X = α * x ⊕ (α * x ′ + η) : V ⊕ V ′ → V ⊕ V ′ where : η ∈ ⊕ h∈H Hom(V ′ s(h) , V t(h) ); 4. F = α * f ⊕ (α * f ′ + θ) : V ⊕ V ′ → W ⊕ W ′ where : θ ∈ ⊕ i∈I Hom(V ′ i , W i ); such that µ v+v ′ ,w+w ′ (X, F, G) = 0.
Lemma 2.24. This equation is linear in the variables (ν, η, θ), and the associated linear map is surjective.

Proof. We first identify x, x ′ , and f ′ with α * x, α * x ′ , and α * f ′ . Then the linear map ζ = (ζ i ) we're interested in is given by :

ζ i (ν, η, θ) = ν i f ′ i + h∈H:s(h)=i ǫ( h)(xhη h + ηhx ′ h ). Take L ∈ ⊕ i∈I Hom(V i , V ′ i ) such that for every (ν, η, θ) : i∈I Tr(ζ(ν, η, θ)L i ) = 0.
Then for every edge h such that s(h) = i, t(h) = j, we have for every η h :

Tr(xhη h L i ) -Tr(η h x ′ hL j ) = 0. But Tr(η h L i xh) -Tr(η h x ′ hL j ) = Tr(η h L i xh -η h x ′ hL j ) = Tr(η h (L i xh -x ′ hL j )) Hence L i xh = x ′
hL j , and thus Im L is stable by x ′ . Moreover : ∀i, ∀ν i ,

Tr(ν i f ′ i L i ) = 0 ⇒ ∀i, f ′ i L i = 0 ⇒ Im L ⊂ ker f ′ ,
hence the lemma comes from the stability of (x ′ , f ′ ).

We have to check that V = V (X, F, G). It is easy to see that V ⊂ V (X, F, G). Moreover :

F -1 (W ) = {v + v ′ ∈ V ⊕ V ′ | f (v) + θ(v ′ ) + f ′ (v ′ ) ∈ W } = V ⊕ ker f ′ , hence, if Y is an X-stable subspace of F -1 (W ), Y /V is an x ′ -stable subspace of ker f ′ . Since (x ′ , f ′ ) is stable, we have Y ⊂ V , and thus V = V (X, F, G).
We have proved that the fiber T

-1 • ((x, f ), (x ′ , f ′ )) is isomorphic to : G v+v ′ × C w ′ ,v +(v ′ ,v)+ v ′ ,w -v ′ ,v
and thus is connected. Since (v, v ′ ) = 2 v, v ′v, Cv ′ , its dimension is :

d T = v + v ′ , v + v ′ + w ′ , v + 2 v, v ′ -v, Cv ′ + v ′ , w -v ′ , v = v + v ′ , v + v ′ + w ′ , v -v, Cv ′ + v ′ , w + v, v ′ . Lemma 2.25. Consider (x, f, g) ∈ Z • (v, v ′
) and V = V (x, f, g). Then :

(x, f, g) stable ⇔ (x, f ) |V ×W
|V ×V stable and we denote by Z(v, v ′ ) the subvariety of stable points of Z • (v, v ′ ), and :

Z(v, v ′ ) = Z(v, v ′ )/ /G v+v ′ .
Proof. The equivalence is a consequence of the following facts :

-the restriction of a stable point is stable ; -the extension of a stable point by a stable point is stable ; -the point (x, f )

|(V v+v ′ /V )×(W ⊕W ′ /W ) |(V v+v ′ /V )×(V v+v ′ /V )
is stable.

Theorem 2.26. We have the following bijection :

Irr L(v, w) × Irr L(v, w ′ ) ⊗ ∼ / / Irr Z(v, v ′ ).
Moreover, the subvariety

Z(v, v ′ ) ⊂ M(v + v ′ , w + w ′ ) is Lagrangian. Proof. Define Ž(v, v ′ ) as the variety of stable points of Ž• (v, v ′ ).
We have the following diagram :

Ž(v, v ′ ) T / / L(v, w) × L(v ′ , w ′ ) Z(v, v ′ ) T / / L(v, w) × L(v ′ , w ′ )
where the rightmost vertical map is juste the free quotient by G v × G v ′ . The leftmost map being a principal bundle with fibers isomorphic to :

G v × G v ′ × Grass I v,v ′ (v + v ′ ) × G v+v ′
, we get our bijection thanks to 2.23 and 2.25. Moreover :

dim Z(v, v ′ ) + dim{G v × G v ′ × Grass I v,v ′ (v + v ′ ) × G v+v ′ } = dim{L(n, m) × L(n ′ , m ′ )} + dim G n + dim G n ′ + d T
where d T is the dimension of the fibers of T. Thanks to 2.25, this dimension is the same as the dimension of the fibers of T • . Hence, by 2.23 and 2.22 :

dim Z(v, v ′ ) + v, v + v ′ , v ′ + v, v ′ + v + v ′ , v + v ′ = 1 2 v, 2w -Cv + 1 2 v ′ , 2w ′ -Cv ′ + v, v + v ′ , v ′ + v + v ′ , v + v ′ + w ′ , v -v, Cv ′ + v ′ , w + v, v ′ Finally (c.f. C symmetric) : dim Z(v, v ′ ) = 1 2 v + v ′ , 2(w + w ′ ) -C(v + v ′ ) .
The Lagrangian character is now a consequence of 2.4.

The results of the section 2.2 can be adapted to prove the following result (the case ω i = 0 being treated in [Nak01, §4]) : Proposition 2.27. Consider i such that ω i > 0 and l > 0. If :

w + w ′ + h∈H i v t(h) > 0,
we have a bijection :

Irr Z(v) i,l ∼ → Irr Z(v -le i ) i,0 × Irr Λ(le i ).

Comparison of two crystal-type structures

Notations 2.28. For every X ∈ Irr Z(v) i,l , we will denote by ǫ i (X) ∈ Irr Λ(le i ) the composition of the second projection with the bijection obtained in 2.27, and |ǫ i (X)| = l. Note that if (X, X ′ ) ∈ Irr L(v, w) × Irr L(v ′ , w ′ ), the quantity ǫ i (X ⊗ X ′ ) makes sense thanks to 2.26 and 2.27. We will write Ω(i) = {b i,j } 1≤j≤ω i for i imaginary, or Ω(i) = {b j } 1≤j≤ω i if it is not ambiguous.

Lemma 2.29. Let i be an imaginary vertex and assume h∈H i n t(h) > 0. For every C ∈ Irr L(v, w), there exists (x, f ) ∈ C, v ∈ Im h∈H i xh such that :

xb 1 , v = I i (x, f ).
Proof. We proceed by induction on v i , the first step being trivial. For the inductive step, we can immediatly conclude if C ∈ Irr L(v, w) i,l for l > 0. Otherwise, C ∈ Irr L(v, w) i,0 , but C ∈ Irr L(v, w) j,l for some j ∈ I and l > 0. There exists a minimal chain (j k , l k , C k ) 1≤k≤s of elements of I × N >0 × Irr L(-, w) such that :

-

(j 1 , l 1 , C 1 ) = (j, l, C) ; -C k+1 = pr 1 l(v -l 1 j 1 -• • • -l k j k , w) j k ,l k (C k )
where pr 1 is the first projection ; j s = i. We necessarely have j s-1 adjacent to i, and by induction hypothesis, the proposition is satisfied by C s , and thus by C s-1 . But then, thanks to 2.11 and 2.13, the proposition is also satisfied by C s-2 for a generic choice of ηh (using the notations of the proof of 2.17 where i is replaced by j s-1 ). Hence it is also satisfied by C = C 1 .

Proposition 2.30. Let i be an imaginary vertex and consider (X,

X ′ ) ∈ Irr L(v, w) × Irr L(v ′ , w ′ ). Assume |ǫ i (X ′ )| < v ′ i or 0 < w ′ i .
Then we have :

ǫ i (X ⊗ X ′ ) = ǫ i (X ′ ). Proof. Put (Y, C) = l(n, m) i,l (X) where l = |ǫ i (X)|. Take ((x, f ), (x ′ , f ′ )) ∈ X × X ′ .
Consider the equation ζ i = 0 used in the proof of 2.24 :

ν i f ′ i + h∈H:s(h)=i ǫ( h)(xhη h + ηhx ′ h ) = 0.
Note η b j = η j , x b j = x j and xb j = xj (and the same with x ′ ), take ηb j = 0 so that our equation becomes :

ν i f ′ i + h∈H i ηhx ′ h = 1≤j≤ω i (x j η j -η j x′ j ) = x1 η 1 -η 1 x′ 1
if we also set η j = 0 for j ≥ 2 (if any). Then, we set :

x ′ = f ′ i + h∈H i x ′ h : V v ′ i → W ′ i ⊕ h∈H i V v ′ t(h) η = ν i + h∈H i ǫ( h)ηh : W ′ i ⊕ h∈H i V v ′ t(h) → V v i x = h∈H i ǫ( h)xh : h∈H i V v t(h) → V v i η = h∈H i η h : V v ′ i → h∈H i V v t(h)
and our equation finally becomes :

ηx ′ + ηx = x1 η 1 -η 1 x′ 1 .
Consider the open subvariety of X × X ′ where :

1. there exists v ∈ V v i such that its image v ∈ V v i /I i (x, f ) satisfies : x1|Vv i /I i (x,f ) , v = V v i /I i (x, f ); 2. x′ 1 , x1|I i (x,f
) and x1|C n i /I i (x,f ) have disjoint spectra ; 3. there exist v and v ′ such that w = h∈H i xh(v) and w ′ = h∈H i x ′ h(v ′ ) satisfy :

x1 ⊕ x′ 1 , w ⊕ w ′ = I i (x, f ) ⊕ I i (x ′ , f ′ )
; which is nonempty, thanks to 2.13, 2.29 and 2.11. Take :

-

η = ν i and v ∈ Im ν i if w ′ i > 0 ; -η such that η(v ′ ) = v if v ′ i > |ǫ i (X ′ )| (possible since v ′ = 0
). From 2.11, we get (with the notations used in the proof of 2.23) :

Xb 1 , Im h∈H i Xh = V v i ⊕ I i (x ′ , f ′ ).
We have to check that we can chose η such that the equations ζ t(h) = 0 are satisfied for every

h ∈ H i (if w ′ i > 0 and η = ν i , just take η = 0). It suffices to set η h x ′ h(v ′ t(h) ) = -x h ηh(v ′ t(h) ) (possible since v ′ i > |ǫ i (X ′ )| and since we may assume that v ′ t(h) = 0 if x ′ h(v ′ t(h) ) = 0
) and to set η and η equal to zero on supplementaries of Cw ′ and Cv ′ respectively. We can finally chose η 1 such that ηx

′ + ηx = x1 η 1 -η 1 x′ 1 (possible since Spec x′ 1 ∩ Spec x1 = ∅). Since : codim I i (x, f ) ≥ |ǫ i (X ′ )|,
for every (x, f ) ∈ X ⊗ X ′ , the subvariety of X ⊗ X ′ defined by :

codim I i (x, f ) = |ǫ i (X ′ )|,
is open, and we have shown it is non empty, hence the theorem is proved.

Proposition 2.31. Assume w ′ i = 0, |ǫ i (X ′ )| = v ′ i and h∈H i v ′ t(h) > 0. Then we still have ǫ i (X ⊗ X ′ ) = ǫ i (X ′ ).
Proof. Thanks to the previous proof, the result is clear if there exists an imaginary vertex j adjacent to i : the choice of xb j,1 and x ′ bj,1 with disjoint spectra enables to use η b j,1 for ζ j = 0 to be satisfied (with the usual notation Ω(j) = {b j,1 , . . . , b j,ω j }).

Assume that every neighbour of i is real. Following the previous proof, assume η = ηh is of rank 1 for some h : i → j. We have to check that ζ j = 0 can be satisfied. It is clear if f ′ j = 0 : just chose ν j such that ν j f ′ j = -ǫ(h)x h ηh and η p = 0 = η p if p ∈ H j \ { h}, so that ζ j = 0 is satisfied. Otherwise, there necessarily exists an edge q

: j → k = i such that x ′ q = 0 (if not, V ′ v ′ i ⊕ V ′ v ′ j
⊆ ker f ′ would be x ′ -stable, which is not possible for every vertex j adjacent to i since h∈H i v ′ t(h) > 0). Hence it is possible to chose η q so that ǫ(q)η qx ′ q = -ǫ(h)x h ηh and η p = 0 = η p if p ∈ H j \ { h, q}, and thus get ζ j = 0 satisfied.

We have proved the following : Theorem 2.32. Let i be an imaginary vertex and consider (X, X ′ ) ∈ Irr L(v, w) × Irr L(v ′ , w ′ ). We have :

ǫ i (X ⊗ X ′ ) =    ǫ i (X ′ ) if w ′ i + h∈H i v ′ t(h) > 0 ǫ i (X) otherwise.

A generalization of crystals

Notations 3.1. Put C i,l = Irr Λ(le i ) i.e. the singleton {l} if i ∈ I re , the set of partitions if

ω i = 1 (denoted by λ = (λ 1 ≤ • • • ≤ λ r ))
, the set of compositions otherwise (denoted by c = (c 1 , . . . , c r )), and set C i = ⊔ l≥0 C i,l . If c ∈ C i , we write c \ c 1 for (c 2 , . . . , c r ). Denote by P the free Z-lattice spanned by the family (e i ) i∈I . We will also note α i instead of Ce i .

Definition 3.2. We call Q-crystal a set B together with maps :

wt : B → P ǫ i : B → C i φ i : B → N ⊔ {+∞} ẽi , fi : B → B ⊔ {0} i ∈ I re ẽi,l , fi,l : B → B ⊔ {0} i ∈ I im , l > 0 such that for every b, b ′ ∈ B : 1. e i , wt(b) ≥ 0 if i ∈ I im ; 2. wt(ẽ i,l b) = wt(b) + lα i if ẽi,l b = 0 ; 3. wt( fi,l b) = wt(b) -lα i if fi,l b = 0 ; 4. fi,l b = b ′ ⇔ b = ẽi,l b ′ ;
since e i , α i ≤ 0 for every i ∈ I im , hence φ i ( fi,l (b)) = +∞. By definition of the tensor product, we get

ǫ i ( fi,l (b) ⊗ b ′ ) = ǫ i ( fi,l (b)). But ǫ i (b ⊗ b ′ ) = ǫ i (b) in this case, hence the axiom (6) is satisfied if φ i (b) = +∞. Otherwise φ i (b) = 0,
and, by definition of the tensor product :

ǫ i ( fi,l (b ⊗ b ′ )) = ǫ i (b ⊗ fi,l (b ′ )) = ǫ i ( fi,l (b ′ )). Since ǫ i (b ⊗ b ′ ) = ǫ i (b ′
), the axiom ( 6) is still satisfied. The fact that the axiom ( 5) is satisfied can be proved in an analogous way.

Notations 3.6. From 1.14, we have the following bijections :

Irr Λ(α) i,l ∼ k i,l / / Irr Λ(α -le i ) i,0 × C i,l
where α ∈ P , i ∈ I, l > 0. Set, for c ∈ C i,l : where fi,(l,λ) = 0 if ω i = 1 and l > λ 1 .

Irr Λ i,l = α∈P Irr Λ(α) i,l Irr Λ(α) i,c = k -1 i,l (Irr Λ(α -le i ) i,0 × {c}) Irr Λ i,c = α∈P Irr Λ(α) i,c
It is obvious from the definitions that we have :

Proposition 3.7. The set Irr Λ is a crystal with respect to wt : b ∈ Irr Λ(α) → -Cα, ǫ i the composition of ⊔ l>0 k i,l and the second projection, and ẽi,l , fi,l the maps defined above.

Notations 3.8. From 2.20, we have the following bijections :

Irr L(v, w) i,l ∼ l i,l / / Irr L(v -le i , w) i,0 × C i,l
where v, w ∈ P , i ∈ I, l > 0. Set, for w ∈ P and c ∈ C i,l : induced by l i,l . Then, for every l > 0, we define :

Irr L(w) i,l = v∈P Irr L(v, w) i,l Irr L(v, w) i,c = k -1 i,l (Irr L(v -le i , w) i,0 × {c}) Irr L(w) i,c = v∈P Irr L(v, w) i,c Irr L(w) = v∈P Irr L(v,
ẽi,l = c∈C i δ c 1 ,l fi,c\c 1 ẽi,c : Irr L(w) → Irr L(w) ⊔ {0} fi,l = fi,(l) ⊔ c∈C i fi,(l,c) ẽi,c : Irr L(w) → Irr L(w) ⊔ {0}
where fi,(l,λ) = 0 if ω i = 1 and l > λ 1 .

The following result is straightforward :

Proposition 3.9. The set Irr L(w) is a crystal with respect to wt : b ∈ Irr L(v, w) → w -Cv, ǫ i the composition of ⊔ l>0 l i,l and the second projection, and ẽi,l , fi,l the maps defined above.

Remark 3.10. Thanks to 2.19 and the classical case, we have, for every i ∈ I :

φ i (b) = max{|c| ∈ N | fi,c (b) = 0}
where fi,c = fi,c 1 . . . fi,cr (=

f |c| i if i real).
In an analogous way, one can equip Irr Z with a structure of crystal, thanks to 2.27, and get :

Theorem 3.11. The crystal structure on Irr Z coincides with that of the tensor product Irr L(w) ⊗ Irr L(w ′ ).

Proof. This is essentially 2.32. Note that for b ∈ Irr L(v, w), it is impossible to have v i > 0 and w i + h∈H i v t(h) = 0, hence :

w i + h∈H i v t(h) > 0 ⇔ e i , w -Cv > 0.

Introduction

Lusztig defined in [START_REF] Lusztig | Quivers, perverse sheaves, and quantized enveloping algebras[END_REF] a canonical basis of the quantum group attached to any quiver without loop. This definition was possible thanks to an isomorphism between this quantum group and the Grothendieck group of a category of perverse sheaves, generated by the socalled Lusztig sheaves. Lusztig endowed this Grothendieck group with a structure of Hopf algebra, by means of restriction and induction functors. These functors made it possible for him to perform induction proofs via a nice stratification of his category. This construction yielded a combinatorial structure on the canonical basis which would later be recognized as a Kashiwara crystal. There are more and more evidences of the relevance of the study of quivers with loops. A particular class of such quivers are the comet-shaped quivers, which have recently been used by Hausel, Letellier and Rodriguez-Villegas in their study of the topology of character varieties, where the number of loops at the central vertex is the genus of the considered curve (see [START_REF] Hausel | Mixed Hodge polynomials of character varieties[END_REF] and [START_REF] Hausel | Arithmetic harmonic analysis on character and quiver varieties II[END_REF]). We can also see quivers with loops appearing in a work of Nakajima relating quiver varieties with branching (see [START_REF] Nakajima | Quiver varieties and branching[END_REF]), as in the work of Okounkov and Maulik about quantum cohomology (see [START_REF] Maulik | Quantum groups and quantum cohomology[END_REF]).

Kang and Schiffmann generalized Lusztig constructions in the framework of generalized Kac-Moody algebra in [START_REF] Kang | Canonical bases for quantum generalized Kac-Moody algebras[END_REF], using quivers with loops. In this case, one has to impose a somewhat unnatural restriction on the definition of a category of perverse sheaves, considering only those attached to complete flags on imaginary vertices.

In this article we consider the general definition of Lustig sheaves for arbitrary quivers, possibly carrying loops. We therefore follow the definition given in [START_REF] Lusztig | Tight monomials in quantized enveloping algebras[END_REF], and use the results obtained in this article for quivers with one vertex and multiple loops. Note that the category hence considered is bigger than the one considered in [START_REF] Kang | Canonical bases for quantum generalized Kac-Moody algebras[END_REF], as one may already see in the case of the Jordan quiver. We prove a conjecture raised by Lusztig in [START_REF] Lusztig | Tight monomials in quantized enveloping algebras[END_REF], asking if the more "simple" Lusztig perverse sheaves are enough to span the whole Grothendieck group considered. A partial proof was given in [START_REF] Li | Canonical bases of Borcherds-Cartan type[END_REF]. Our proof is also based on induction, still with the help of restriction and induction functors, but with non trivial first steps, consisting in the study of quivers with one vertex but possible loops. We also need to consider regularity conditions on the support of our perverse sheaves to perform efficient restrictions at imaginary vertices. From our proof emerges a new combinatorial structure on our generalized canonical basis, which is more general than the usual crystals, in that there are now more operators associated to a vertex with loops, as in [START_REF] Bozec | Quivers with loops and Lagrangian subvarieties[END_REF] (see 1.13).

In a second part, we construct and study a Hopf algebra which generalizes the usual quantum groups. The geometric study previously made leads to a natural definition, which includes countably infinite sets of generators at imaginary roots, with higher order Serre relations and commutativity conditions imposed by the Jordan quiver case. We prove that the positive part of this algebra is isomorphic to our Grothendieck group, thanks to the study of a nondegenerate Hopf pairing. In a final section, we try to build a bridge with the Lagrangian varieties studied in [START_REF] Bozec | Quivers with loops and Lagrangian subvarieties[END_REF], using our new Hopf algebra, as the classical case suggests (see [START_REF] Lusztig | Quivers, perverse sheaves, and quantized enveloping algebras[END_REF]).
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1 Quiver Varieties

Preliminaries

Let Q be a quiver, with vertex set I and oriented edge set Ω = {h : s(h) → t(h)}. We will denote by Ω(i) the set of loops at i, and call i imaginary if ω i = |Ω(i)| ≥ 1, real otherwise.

Lusztig perverse sheaves

For every α = i∈I α i i ∈ NI, we fix an I-graded vector space V α of graded dimension α. For every I-graded vector space X, we set :

E X = h∈Ω Hom(X s(h) , X t(h) ),
and E α = E Vα . We also denote by G α the group i∈I GL(V α i i ), naturally acting on E α . Take m > 0 and two sequences i = (i 1 , . . . , i m ) and a = (a 1 , . . . , a m ) of I and N >0 . We write (i, a) ⊢ α if 1≤k≤m a k i k = α. We set :

F i,a = W = ({0} = W 0 ⊂ . . . ⊂ W m = V α ) ∀k, dim W k W k-1 = a k i k E i,a = {(x, W) | x h (W) ⊆ W} ⊆ E α × F i,a
so that we get a proper morphism π i,a : E i,a → E α induced by the first projection.

Following [START_REF] Lusztig | Introduction to quantum groups[END_REF], we will denote by M G (X) the category of G-equivariant perverse sheaves on an algebraic variety X equipped with an action of an algebraic connected group G.

Thanks to the decomposition theorem of Beilinson, Bernstein and Deligne (see [START_REF] Beilinson | Faisceaux pervers[END_REF]), the complex π i,a ! 1 is semisimple. Denote by P α ⊆ M Gα (E α ) the additive category consisting of sums of G α -equivariant simple perverse sheaves appearing (possibly with a shift) in π i,a ! 1 for some (i, a) ⊢ α. Here 1 stands for the constant perverse sheaf on E i,a .

Denote by Q α the category of complexes isomorphic to sums of shifts of sheaves of P α .

Let K α be the Grothendieck group of Q α , seen as a Z[v ±1 ]-module by setting v ±1 [P] = [P[±1]], [P] denoting the isoclass of a perverse sheaf P. We will finally denote by B α the finite set of isoclasses of simple perverse sheaves in P α , and we set B = ⊔ α B α .

Restriction and Induction functors

For every I-graded subspace W ⊆ V α of dimension β and codimension γ, equipped with two I-graded isomorphisms p : W ∼ → V β and q : V α /W ∼ → V γ , we have the following diagram :

E β × E γ E α (W ) κ o o ι / / E α where E α (W ) = {x ∈ E α | x(W ) ⊆ W }, κ : x → (p * (x W ), q * (x Vα/W
)) and ι is the inclusion. Note that κ is a vector bundle.

We will also consider :

E β × E γ E † β,γ p 1 o o p 2 / / E β,γ p 3 / / E α
where :

E † β,γ =            (x, W, r, r) x ∈ E α W ⊆ V α is I-graded and x-stable r : W ∼ → V β r : V α /W ∼ → V γ            E β,γ = (x, W ) x ∈ E α W ⊆ V α is I-graded and x-stable .
These diagrams induce (cf. [Lus10, §9.2]) :

Res β,γ = κ ! ι * : Q α → Q γ ⊠ Q β Ind β,γ = p 3 ! p 2 ♭ p * 1 : Q γ ⊠ Q β → Q α and : Res β,γ = Res α β,γ [d 1 -d 2 -2 β, γ ] Ind β,γ = Ind α β,γ [d 1 -d 2 ]
where d 1 and d 2 denote the dimensions of the fibers of p 1 and p 2 , and β, γ = i∈I β i γ i . These functors endow K = ⊕ α K α with a Hopf algebra structure (see [START_REF] Lusztig | Quivers, perverse sheaves, and quantized enveloping algebras[END_REF]10]). Setting (γ, β) = h∈Ω γ s(h) β t(h) , observe that :

d 1 -d 2 = (γ, β) + β, γ d 1 -d 2 -2 β, γ = (γ, β) -β, γ .

The geometric pairing

Let α be a dimension vector, and P, Q be two G α -equivariant semisimple complexes on E α . Following [START_REF] Grojnowski | A comparison of bases of quantized enveloping algebras[END_REF], consider an integer m ≥ 1 and a smooth irreducible algebraic variety Γ with a free action of G α such that

H j (Γ, C) = 0 if 1 ≤ j ≤ m. The diagonal action of G α on Γ × E α allows us to define Γ E α = G\(Γ × E α ).
Consider the following diagram, where the maps are the obvious ones :

E α Γ × E α s o o t / / Γ E α .
We can define two semisimple complexes Γ P and Γ Q on Γ E α by setting :

s * P = t * Γ P s * Q = t * Γ Q.
By definition, we have :

H j Gα (P ⊗ Q, E α ) = H 2 dim(G\Γ)-j ( Γ P ⊗ Γ Q, Γ E α )
which is independant of Γ and m > > 0. Define the geometric pairing by :

{P, Q} = j dim H j Gα (P ⊗ Q, E α )v -j .
The following is true :

Proposition 1.1. Assume P and Q are simple. We have :

{P, Q} ∈ 1 + v -1 N[[v -1 ]] if Q is isomorphic to the Verdier dual of P, {P, Q} ∈ v -1 N[[v -1 ]]
otherwise.

Recall that the Verdier dual keeps fixed any simple perverse sheaf in P α .

Study of an imaginary sink

Let i be an imaginary sink, and (i, a) ⊢ α. Take a i = (a k 1 , . . . , a kr ) where k j < k j+1 and

{k j } 1≤j≤r = {k | i k = i}. For x ∈ E α , we set x (i) = (x h ) h∈Ω(i) and x ⋄ = (x h ) h / ∈Ω(i) .
Then, we define :

E (i) i,a = {(x, W (i) ) | x (i) (W (i) ) ⊆ W (i) } ⊆ E α × F (i) a i E ⋄ α = {x ∈ E α | x (i) = 0}
where

F (i)
a i denotes the variety of flags of V α i i of dimension a i . We have the following diagram :

E i,a ψ π i,a % % π ′ i,a / / E (i) i,a Va i π ′′ i,a / / E α E ⋄ i,a φ / / E ⋄ α × F (i) a i (1.2)
where

E ⋄ i,a = {(x, W) ∈ E i,a | x (i) = 0}.
Note that ψ and V a i are vector bundles.

A notion of regularity

Put :

E i,rss α = {x ∈ E α | x h is regular semisimple if h ∈ Ω(i)}.
For any constructible subsets

X ⊆ E α , Y ⊆ E i,a and Z ⊆ E (i)
i,a , we put :

X i,rss = X ∩ E i,rss α Y i,rss = Y ∩ π -1 i,a (E i,rss α ) Z i,rss = Z ∩ π ′′ i,a -1 (E i,rss α ).
We also write ρ α : E i,rss α ֒→ E α for the open inclusion.

Proposition 1.3. Let P be any simple element of P α . Then P = ρ α! * ρ * α P, i.e. if P = IC(Y, L) for some smooth irreducible subvariety Y ⊆ E α and some local system L on Y , then Y i,rss = ∅.

Proof. By definition, P appears as a simple summand of π ′′ i,a! Q for some simple component

Q ⊆ π ′ i,a! 1. Since in 1.2 ψ is a vector bundle and the square is cartesian, Q ⊆ V * a i φ ! 1, and thus Q is of the form IC(X, K) where X = V -1 a i (Y ) for an irreducible smooth subvariety Y ⊆ E ⋄ α × F (i)
a i , and K = V * a i L for an irreducible local system L on Y . In the lemma below, we call quasismall a map of algebraic varieties π : X → Y satisfying the following property : there exist stratifications X = ⊔ j∈J X j , Y = ⊔ j∈J Y j over a finite set J containing an element 0 such that :

1. X 0 and Y 0 are dense ;

2. π |X j : X j → Y j is a locally trivial fibration of fiber F j if j = 0 ;

3. π |X 0 : X 0 → Y 0 is a finite morphism ; 4. 2 dim F j < codim Y Y j if j = 0.
Lemma 1.4. Let S be a smooth irreducible subvariety of E ⋄ α × F (i) a i . Put S = V -1 a i (S) and S = π ′′ i,a ( S). Then the map π ′′ i,a| S : S → S is quasismall.

Proof of the lemma. Put S 0 = S i,rss , which is a nonempty open dense subset of S. Moreover, the restriction of π ′′ i,a to S 0 is a finite morphism since a regular semisimple element x h for h ∈ Ω(i) stabilizes only finitely many flags of subspaces of V α i i . Put T = S \ S 0 . To prove that π ′′ i,a| S : S → S is quasismall, it now suffices to check that :

dim( T × Eα T ) < dim S.
Let z = (z h,k ) be a r×r-matrix of nonnegative integers such that h z h,k = a k , k z h,k = a h , and set :

( S × Eα S) z = (x, W, W ′ ) ∀h, k dim W h ∩ W ′ k W h-1 ∩ W ′ k + W h ∩ W ′ k-1 = z h,k .
This yields a finite stratification S × Eα S = ⊔ z ( S × Eα S) z . We use the same notations for S × E ⋄ α S and T × Eα T . The fibers of V a i | S : S → S being the same as those of E i,a i → F (i)

a i , we have for any z as above :

dim( S × Eα S) z -dim(S × E ⋄ α S) z = dim( E i,a i × E α i i E i,a i ) z -dim(F (i) a i × F (i) a i ) z (1.5) and : dim( T × Eα T ) z -dim(S × E ⋄ α S) z = dim( E i,a i × U α i i E i,a i ) z -dim(F (i) a i × F (i) a i ) z
where

U α i i = E α i i \ E i,rss α i i . If ω i = 1
, it is very well known that the map E i,a i → E α i i is quasismall, with E i,rss α i i being the only relevant stratum. Indeed, it is true if a i = (1 α i ), and we have the following commutative diagram :

E i,(1 α i ) f / / g # # F F F F F F F F E α i i E i,a i h = = { { { { { { { {
where g is projective, hence f quasismall implies h quasismall. It follows that :

dim( E i,a i × U α i i E i,a i ) z < dim E i,a i . (1.6) 
By [START_REF] Lusztig | Tight monomials in quantized enveloping algebras[END_REF], this strict inequality is also true if ω i ≥ 2. Indeed, the large inequality is true for any z if we replace U α i i by E α i i , and, since dim

U α i i < dim E α i i : dim( E i,a i × U α i i E i,a i ) z < dim( E i,a i × E α i i E i,a i ) z ≤ dim E i,a i ,
hence 1.6 is still satisfied. But then :

dim S -dim( T × Eα T ) z = dim S -dim(S × E ⋄ α S) z + dim(S × E ⋄ α S) z -dim( S × Eα S) z = dim S -dim(S × E ⋄ α S) z -dim( E i,a i × E α i i E i,a i ) z + dim(F (i) a i × F (i) a i ) z [use 1.5] > dim S -dim(S × E ⋄ α S) z -dim E i,a i + dim(F (i) a i × F (i) a i ) z [use 1.6] = dim S -dim(S × E ⋄ α S) z -dim F (i) a i + dim(F (i) a i × F (i) a i ) z [use 1.5 with z diagonal] = codim ((E ⋄ α ×F (i) a i )× E ⋄ α (E ⋄ α ×F (i) a i ))z (S × E ⋄ α S) z -codim E ⋄ α ×F (i) a i S ≥ 0,
the last inequality being true thanks to the following diagram :

(S × E ⋄ α S) z / / X / / E ⋄ α × (F (i) a i × F (i) a i ) z id ×pr 1 S / / E ⋄ α × F (i) a i
The lemma is proved.

End of proof of proposition 1.3. For any stratum S ⊆ Y for IC(Y, L), the subvariety S = V -1 a i (S) is a stratum for Q. By 1.4, the restriction of π ′′ i,a to each of these strata is quasismall. By an argument identical to that in [START_REF] Kang | Addendum to "Canonical bases for quantum generalized Kac-Moody algebras[END_REF]1], it follows that π ′′ i,a! Q is a perverse sheaf, and that moreover any simple summand of π ′′ i,a! Q is an intermediate extension to E α of a simple direct summand of π ′′ i,a! (V * a i (L) | S 0 ) for some irreducible local system L on a stratum S. In particular, it is of the form IC(R, J) where R is an open subset of π ′′ i,a ( S 0 ) for some S, and J is an irreducible local system on R. The proposition follows from the fact that, by construction, π ′′ i,a ( S 0 ) ⊆ E i,rss α .

A notion of invariance

For any x ∈ E α , put V ⋄ α = ⊕ j =i V α j j and I i (x) = C x .V ⋄ α , i.e. the smallest subspace of V α stable by x and containing V ⋄ α . Definition 1.7. Let us write x ∼ i x ′ if the following holds :

1. x ⋄ = x ′⋄ ; 2. I i (x) ⊆ ∩ h∈Ω(i) ker(x h -x ′ h ) ; 3. h∈Ω(i) Im(x h -x ′ h ) ⊆ I i (x). Lemma 1.8. ∼ i is an equivalence relation.
Proof.

-Reflexivity is obvious. x) . This implies x ′ ∼ i x.

-Symmetry : if x ∼ i x ′ , then I(x ′ ) = I(x) since C x ′⋄ .V ⋄ α = C x ⋄ .V ⋄ α ⊆ I i (x) and since x (i) |I i (x) = x ′(i) |I i (
-Transitivity : if x ∼ i x ′ and x ′ ∼ i x ′′ , we have x) , and if h ∈ Ω(i) :

I i (x) = I i (x ′ ) = I i (x ′′ ), x (i) |I i (x) = x ′(i) |I i (x) = x ′′(i) |I i (
Im(x h -x ′′ h ) ⊆ Im(x h -x ′ h ) + Im(x ′ h -x ′′ h ) ⊆ I i (x). Hence x ∼ i x ′′ .
Observe that equivalence classes are affine spaces. If x ∈ E α , then the equivalence class of x is of dimension equal to ω i γ(α i -γ) where ω i = |Ω(i)| and γi = codim Vα I i (x).

There is a stratification E α = ⊔ γ≥0 E α,i,γ where :

E α,i,γ = {x ∈ E α | codim Vα I i (x) = γi}.
Note that E α,i,γ is a union of ∼ i -equivalence classes. This can be made more precise as follows. Fix γ ≤ α i and W ⊆ V α an I-graded subspace of codimension γi. Let E α,i,γ (W ) = E α,i,γ ∩ E α (W ) be the closed subvariety of E α of elements x ∈ E α such that

I i (x) = W . Then, if P = Stab Gα (W ), E α,i,γ = G α × P E α,i,γ (W ),
hence the inclusion ι 0 : E α,i,γ (W ) ֒→ E α,i,γ induces an equivalence of categories of perverse sheaves :

ι * 0 [-d] : M Gα (E α,i,γ ) → M P (E α,i,γ (W ))
where d = dim(G α /P ). Observe also that E α,i,γ (W ) is itself a union of ∼ i -equivalence classes. Here ι 0 is a restriction of the inclusion ι introduced in 1.1, with γi in place of γ. Now, as in 1.1, fix I-graded isomorphisms W ≃ V α-γi and V α /W ≃ V γi . We have a natural vector bundle map :

κ 0 : E α,i,γ (W ) → E α-γi,i,0 × E γi
whose fibers are precisely the ∼ i -equivalence classes in E α,i,γ (W ). Again, κ 0 is a restriction of the vector bundle κ introduced in 1.1, with γi in place of γ. There is a fully faithful embedding :

κ * 0 [ω i d] : M G α-γi ×G γi (E α-γi,i,0 × E γi ) → M P (E α,i,γ (W )).
We say that a perverse sheaf

P ∈ M Gα (E α,i,γ ) is σ-invariant (at i) if ι * 0 [-d](P) belongs to the essential image of κ * 0 [ω i d]
. Definition 1.9. Let P α,i,≥γ ⊆ P be the set of perverse sheaves supported on E α,i,≥γ . The notation P α,i,>γ is defined likewise, and we set P α,i,γ = P α,i,≥γ \ P α,i,>γ . The terms P α,i,≤γ , P α,i,<γ are defined similarly.

We will need the following technical result : Proposition 1.10. Let P be any simple element of P α,i,γ . Let m : E α,i,γ ֒→ E α,i,≥γ be the open embedding. The perverse sheaf m * P ∈ M Gα (E α,i,γ ) is σ-invariant at i.

Proof. The proof follows closely that of 1.3, whose notations we keep. In particular P = IC(R, J) where R is an open subset of π ′′ i,a ( S 0 ) for some G α -invariant stratum S ⊆ E ⋄ α × F (i) a i . Moreover P appears in some complex :

R = j * ! π ′′ i,a! (V * a i L) | S 0
where j : π ′′ i,a ( S 0 ) ֒→ E α is the inclusion and where L is a certain G α -equivariant local system on S. It suffices to show that R is σ-equivariant.

Consider a stratification S = ⊔ k S(k) where :

S(k) = {(x ⋄ , W) ∈ S | Im(x ⋄ ) ∩ V α i i ⊆ W k but Im(x ⋄ ) ∩ V α i i ⊆ W k-1 }.
Let k be maximal such that S(k) = ∅. Then S(k) is open and dense in S. Denote by S = ⊔ l S(l) the induced stratification of S. Then S(k) is also open and dense in S. Finally, set :

S(k) = {(x, W) ∈ S(k) i,rss | I i (x) = W k }.
It is easy to see that S(k) is open and dense in S(k), hence in S.

Put γ =

l>k a il so that γ = codim V α i i W k for any W ∈ F (i) a i . Let W an I-graded subspace of V α of codimension γi with fixed identifications W ≃ V α-γi and V α /W ≃ V γi . Consider the following diagram :

S(k) S(k) Va i o o π ′′ i,a / / E α,i,γ S(k, W ) ? ῑ0 O O S(k, W ) ? ι0 O O κ0 Va i o o π ′′ i,a
/ / E α,i,γ (W )

? ι 0 O O κ 0 Ξ ∃θ f f M M M M M M M M M M M M M π ′′ / / E α-γi,i,0 × E γi (1.11)
where :

-

S(k, W ) = {(x ⋄ , W) | W k = W } ∩ S(k) ⊆ S(k) ; -S(k, W ) = {(x, W) | W k = W } ∩ S(k) ⊆ S(k) ; - ῑ0 
, ι0 and κ0 stand for maps induced by ι 0 and κ 0 ; π ′′ i,a and V a i (improperly) stand for maps induced by π ′′ i,a and V

a i ; -Ξ = κ( S(k, W ) ) ⊆ E (i) i ′ ,a ′ × E (i)
i ′′ ,a ′′ where (i ′ , a ′ ) ⊢ α-γi and (i ′′ , a ′′ ) ⊢ γi are naturally induced by (i, a) and k. Note the existence of an inclusion θ making commutative the triangle appearing in the diragram. π ′′ is the restriction of π ′′ i ′ ,a ′ × π ′′ i ′′ ,a ′′ to Ξ. Observe that the two rightmost squares are cartesian. This is obvious for the top square. For the bottom square, this follows from the fact that for x ∈ E α,i,γ , a flag W ∈ F (i)

a i satisfying W k = I i (x) is x-stable if and only if it is x ′ -stable for any x ′ ∼ i x.
Because S(k) is open and dense in S 0 and π ′′ i,a| S 0 is finite, we have :

R = j ′ * ! π ′′ i,a! (V * a i L) | S(k)
where j ′ : π ′′ i,a ( S(k) ) ֒→ E α is the inclusion. Note that by construction R is a direct sum of objects in P α,i,γ . We have :

m * R = j ′′ * ! π ′′ i,a! (V * a i L) | S(k)
where now j ′′ and m denote the inclusions defined by the following commmutative diagram :

π ′′ i,a ( S(k) ) j ′′ , ι * 0 m * R = ι * 0 j ′′ * ! π ′′ i,a! (V * a i L) | S(k) = j ′′ (W ) * ! ι * 0 π ′′ i,a! (V * a i L) | S(k) [since ι * 0 is an equivalence of categories] = j ′′ (W ) * ! π ′′ i,a! (V * a i L) | S(k,W ) [the highest rightmost square in (1.11) being cartesian] = j ′′ (W ) * ! π ′′ i,a! κ * 0 θ * L |S(k,W ) [the triangle being commutative in (1.11)] = j ′′ (W ) * ! κ * 0 π ′′ ! θ * L |S(k,W ) [the lowest rightmost square in (1.11) being cartesian] = κ * 0 λ * ! π ′′ ! θ * L |S(k,W )
where λ : π ′′ (Ξ) ֒→ E α-γi,i,0 × E γi is the inclusion (recall that κ 0 is a vector bundle). It follows that m * R is σ-invariant as wanted. The proposition is proved.

A crystal type structure on B

We keep the same notations. In particular, i is an imaginary sink and W is an I-graded subspace of V α of codimension γi, with stabilizer P ⊆ G α . We also denote by U the unipotent radical of P . Proposition 1.12. Set d = dim(G α /P ).

(1) Consider A ∈ P α-γi,i,0 ⊠ P γi . For every n we have :

supp(H n Ind α-γi,γi A) ⊆ E α,i,γ .
If n = 0, we have :

supp(H n Ind α-γi,γi A) ∩ E α,i,γ = ∅.
Otherwise, the sum of the simple components of H 0 Ind α-γi,γi A belonging to P α,i,γ is nontrivial, and we denote it by ξ(A).

(2) Consider B ∈ P α,i,γ . If n = -2ω i d, we have :

supp(H n Res α-γi,γi B) ∩ E α-γi,i,0 × E γi = ∅.
Otherwise, the sum of the simple components of H -2ω i d Res α-γi,γi B belonging to P α-γi,i,0 ⊠ P γi is nontrivial, and we denote it by ρ(B).

(3) The functors ξ and ρ are equivalences of categories inverse to each other.

Proof. We will use the following diagram :

G α × P E α,i,γ (W ) p 0 ∼ / / m 0 E α,i,γ m E α,i,γ (W ) ι 0 o o κ 0 / / E α-γi,i,0 × E γi µ G α × P E α (W ) p=p 3 / / E α,i,≥γ E α (W ) ι o o κ / / E α-γi × E γi 1.3 -A crystal type structure on B
To prove (1), we denote by à the perverse sheaf p

2 ♭ p * 1 A[(ω i + 1)d]. Therefore Ind α-γi,γi A = p ! Ã[-(ω i + 1)d],
and thus the support of Ind α-γi,γi A is included in the image of p, equal to E α,i,γ . The following sheaf :

m * Ind α-γi,γi A = m * p ! Ã[-(ω i + 1)d] = p 0! m * 0 Ã[-(ω i + 1)d]
is perverse since m 0 is an open embedding, and since p 0 is an isomorphism. The support of H n Ind α-γi,γi A being included in E α,i,γ for all n, we get for n = 0 :

m * H n Ind α-γi,γi A = H n m * Ind α-γi,γi A = 0 which proves (1) since Ind α-γi,γi A[(ω i + 1)d] = Ind α-γi,γi A.
To prove (2), we use the fact that m * B is σ-equivariant, which implies that

κ 0! ι * 0 m * B[-(ω i + 1)d] is perverse. But : κ 0! ι * 0 m * B[-(ω i + 1)d] = µ * κ ! ι * B[-(ω i + 1)d] = µ * Res α-γi,γi B[-(ω i + 1)d], hence µ * Res α-γi,γi B[-2ω i d] is perverse. Since µ is an open embedding, we have, for n = -2ω i d : µ * H n Res α-γi,γi B = H n µ * Res α-γi,γi B = 0
which ends the proof of (2).

We have the following diagram :

E α,i,γ (W ) _ G α ×E α,i,γ (W ) pr 2,0 o o π P 0 / / _ G α × P E α,i,γ (W ) _ E α (W ) κ G α ×E α (W ) π U pr 2 o o π P / / G α × P E α (W ) E α-γi × E γi G α × U E α (W ) p 2 5 5 l l l l l l l l l l l l l l p 1 o o where κpr 2 = p 1 π U by definition of p 1 , hence pr * 2 κ * = π U * p * 1 , then π U ♭ pr * 2 κ * = p * 1 , then p 2♭ π U ♭ pr * 2 κ * = p 2♭ p * 1 
and thus :

π P ♭ pr * 2 κ * = p 2♭ p * 1 since p 2♭ π U ♭ = π P ♭ . From the proof of (2) we have µ * ρ(B) = κ 0! ι * 0 m * B[-(ω i + 1)d],
from which we get :

m * 0 ρ(B) = m * 0 p 2 ♭ p * 1 ρ(B)[(ω i + 1)d] = m * 0 π P ♭ pr * 2 κ * ρ(B)[(ω i + 1)d] = π P 0♭ pr * 2,0 κ * 0 µ * ρ(B)[(ω i + 1)d] = π P 0♭ pr * 2,0 κ * 0 κ 0! ι * 0 m * B = π P 0♭ pr * 2,0 ι * 0 m * B.
But if we denote by a, b : G α ×E α,i,γ → E α,i,γ the action of G α on E α,i,γ and the second projection, we have :

π P 0♭ pr * 2,0 ι * 0 m * B = π P 0♭ (id Gα ×ι 0 ) * b * m * B = π P 0♭ (id Gα ×ι 0 ) * a * m * B [by G α -equivariance of B] = π P 0♭ π P * 0 p * 0 m * B [by definition of p 0 ] = p * 0 m * B.
From the proof of (1), we also have m * ξ(A) = p 0! m * 0 Ã, from which we get :

µ * ρ(ξ(A)) = κ 0! ι * 0 m * ξ(A)[-(ω i + 1)d] = κ 0! ι * 0 p 0! m * 0 Ã[-(ω i + 1)d] = κ 0! ι * 0 p 0! π P 0♭ pr * 2,0 κ * 0 µ * A
but we have seen earlier that for G α -equivariant sheaves we have pr * 2,0 ι * 0 = π P * 0 p * 0 , hence ι * 0 p 0! = pr 2,0! π P * 0 , and thus :

µ * ρ(ξ(A)) = κ 0! κ * 0 µ * A = µ * A but also : m * ξ(ρ(B)) = p 0! m * 0 ρ(B) = p 0! p * 0 m * B = m * B.
We finally get (3). Proposition 1.13. With the same hyoptheses and notations :

1. Let B be a simple object of P α,i,γ . We have :

Res α-γi,γi B ≃ (A ⊠ C) ⊕ (⊕ j∈Z L j [j])
where A is a simple object of P α-γi,i,0 , C a simple object of P γi , and L j is the tensor product of an element of P α-γi,i,>0 and an element of P γi for all j.

2. Let (A, C) be a pair of simple objects of P α-γi,i,0 × P γi . We have :

Ind α-γi,γi (A ⊠ C) ≃ B ⊕ (⊕ j∈Z L ′ j [j])
where B is a simple object of P α,i,γ and L ′ j ∈ P α,i,>γ for all j. 1) and ( 2) are inverse bijections between B α,i,γ and B α-γi,i,0 × B γi .

The maps [B] → ([A], [C]) and ([A], [C]) → [B] induced by (

Proof. As in [Lus10, 10.3.2], the proof relies on 1.12, using the Fourier-Deligne transform (the result [Lus10, 10.3.1] remains true in our setting).

We are now able to answer a question asked by Lusztig in [START_REF] Lusztig | Tight monomials in quantized enveloping algebras[END_REF]7]. We put 1 ai = π i,a ! 1 :

Proposition 1.14. The elements [1 ai ] generate K (i ∈ I, a ∈ N ≥1 ).

Proof. We proceed by induction on α. Let B be a simple object of P α . Using the Fourier-Deligne transform, we may assume that there is a sink i such that B ∈ P α,i,γ for some γ > 0 (see [START_REF] Lusztig | Quivers, perverse sheaves, and quantized enveloping algebras[END_REF]7.2]). We then proceed by descending induction on γ. If i is real, we can conclude as in [START_REF] Lusztig | Quivers, perverse sheaves, and quantized enveloping algebras[END_REF]7.3]. If i is imaginary, the second part of 1.13 together with the one vertex quiver case enable us to conclude. Indeed, the case of the Jordan quiver is well known (see e.g. [START_REF] Schiffmann | Lectures on canonical and crystal bases of Hall algebras[END_REF]), and the case of the quiver with one vertex and multiple loops is treated in [START_REF] Lusztig | Tight monomials in quantized enveloping algebras[END_REF].

2 A generalized quantum group

Generators

Let (-, -) denote the symmetric Euler form on ZI : (i, j) is equal to the opposite of the number of edges of Ω between i and j for i = j ∈ I, and (i, i) = 2 -2ω i . We will denote by I re (resp. I im ) the set of real (resp. imaginary) vertices, and by I iso ⊆ I im the set of isotropic vertices : vertices i such that (i, i) = 0, i.e. such that ω i = 1. We also set

I ∞ = (I re × {1}) ∪ (I im × N ≥1 ), and (ι, j) = l(i, j) if ι = (i, l) ∈ I ∞ and j ∈ I. Definition 2.1. Let F denote the Q(v)-algebra generated by (E ι ) ι∈I∞ , naturally NI-graded by deg(E i,l ) = li for (i, l) ∈ I ∞ . We put F[A] = {x ∈ F | |x| ∈ A} for any A ⊆ NI,
where, for convenience, we denote by |x| the degree of an element x.

For α = α i i ∈ ZI, we set : ⊲ ht(α) = α i its height ; ⊲ v α = v α i i if v i = v (i,i)/2
. We endow F ⊗ F with the following multiplication :

(a ⊗ b)(c ⊗ d) = v (|b|,|c|) (ac) ⊗ (bd).
and equip F with a comultiplication δ defined by :

δ(E i,l ) = t+t ′ =l v tt ′ i E i,t ⊗ E i,t ′
where (i, l) ∈ I ∞ .

Proposition 2.2. For any family (ν ι ) ι∈I∞ , we can endow F with a bilinear form -, -such that : We put E i,c = j E i,c j , ν i,c = j ν i,c j , and |c| = c j .

⊲ x, y = 0 if |x| = |y| ; ⊲ E ι , E ι = ν ι for all ι ∈ I ∞ ; ⊲ ab, c = a ⊗ b, δ ( 

Relations

Proposition 2.4. Consider (ι, j) ∈ I ∞ × I re . The element :

t+t ′ =-(ι,j)+1 (-1) t E (t) j E ι E (t ′ ) j (2.5)
belongs to the radical of -, -.

Proof. Analogous to [Lus10, Proposition 1.4.3] or [START_REF] Michael | Quantum Serre relations[END_REF].

Remark 2.6. Some higher order Serre relations are studied in [Lus10, Chapter 7], where some conditions are given to belong to the radical. However the proofs cannot be directly adapted to our setting.

The following definition is motivated by the previous proposition and our knowledge of the Jordan quiver case, which is related to the classical Hall algebra (see e.g. [START_REF] Schiffmann | Lectures on Hall algebras[END_REF]). We know that the commutators [E i,l , E i,k ] lie in the radical if i is isotropic. Definition 2.7. We denote by Ũ + the quotient of F by the ideal spanned by the elements 2.5 and the commutators [E i,l , E i,k ] for every isotropic vertex i, so that -, -is still defined on Ũ + . We denote by U + the quotient of Ũ + by the radical of -, -. Definition 2.8. Let Û be the quotient of the algebra generated by K ± i , E ι , F ι (i ∈ I and ι ∈ I ∞ ) subject to the following relations :

K i K j = K j K i K i K - i = 1 K j E ι = v (j,ι) E ι K j K j F ι = v -(j,ι) F ι K j t+t ′ =-(ι,j)+1 (-1) t E (t) j E ι E (t ′ ) j = 0 (j ∈ I re ) t+t ′ =-(ι,j)+1 (-1) t F (t) j F ι F (t ′ ) j = 0 (j ∈ I re ) [E i,l , E i,k ] = 0 (i ∈ I iso ) [F i,l , F i,k ] = 0 (i ∈ I iso ).
We extend the graduation by |K i | = 0 and |F ι | = -|E ι |, and we set K α = i K α i i for every α ∈ ZI.

We endow Û with a comultiplication ∆ defined by :

∆(K i ) = K i ⊗ K i ∆(E i,l ) = t+t ′ =l v tt ′ i E i,t K t ′ i ⊗ E i,t ′ ∆(F i,l ) = t+t ′ =l v -tt ′ i F i,t ⊗ K -ti F i,t ′ .
We extend -, -to the subalgebra Û ≥0 ⊆ Û spanned by (K ± i ) i∈I and (E ι ) ι∈I∞ by setting xK i , yK j = x, y v (i,j) for x, y ∈ Ũ + .

We use the Drinfeld double process to define Ũ as the quotient of Û by the relations :

a (1) , b (2) ω(b (1) )a (2) = a (2) , b (1) a (1) ω(b (2) ) (2.9)
for any a, b ∈ Ũ ≥0 , where ω is the unique involutive automorphism of Û mapping E ι to F ι and K i to K -i , and where we use the Sweedler notation, for example ∆(a) = a (1) ⊗ a (2) .

Setting x -= ω(x) for x ∈ Ũ , we define -, -on the subalgebra Ũ -⊆ Ũ spanned by (F ι ) ι∈I∞ by setting x, y = x -, y -for any x, y ∈ Ũ -. We will denote by U -(resp. U ) the quotient of Ũ -(resp. Ũ ) by the radical of -, -restricted to Ũ -(resp. restricted to Ũ -× Ũ + ). where m denotes the multiplication, ǫ denotes the counit, which is equal to 1 on U 0 , and 0 on U -× U + , and ∆ op denotes the composition of ∆ and op : U ⊗ U → U ⊗ U , x ⊗ y → y ⊗ x. We also know that S op = S -1 .

2.3

The case of the quiver with one vertex and multiple loops Lemma 2.11. We have E i,|c| , E i,c = v k<j c k c j i ν i,c . Proof. By induction, using the definitions. Proposition 2.12. Let i ∈ I be a nonisotropic imaginary vertex. Assume that for every l ≥ 1 we have :

E i,l , E i,l ∈ 1 + v -1 N[[v -1 ]].
(2.13)

Then, for any compositions c and c',

E i,c , E i,c ′ ∈ δ c,c ′ + v -1 N[[v -1 ]].
Proof. For clarity, we forget the indices i in this proof. Notice that by definition of δ, of the multiplication on F ⊗ F, and since (i, i) < 0, we already have :

E c , E c ′ ∈ N[[v -1 ]].
Hence, we can work modulo v -1 , and then, setting c = (c 1 , . . . , c r ), c ′ = (c ′ 1 , . . . , c ′ s ), c = (c 2 , . . . , c r ) and c′ = (c ′ 2 , . . . , c ′ s ), we get :

E c , E c ′ = E c 1 ⊗ E c, 1≤j≤s δ(E c ′ j ) = E c 1 ⊗ E c, 1≤j≤s (E c ′ j ⊗ 1 + 1 ⊗ E c ′ j ) mod v -1 = 0 mod v -1 if c ′ 1 = c 1 E c, E c′ mod v -1 otherwise
the second equality coming from the definition of δ, and from (i, i) < 0 ; the last equality coming from the definition of the multiplication on F ⊗ F, from (i, i) < 0, from 2.11, and from the hypothesis of the proposition. We end the proof by induction.

Corollary 2.14. Under the assumption 2.13, the restriction of -, -to F[Ni] is nondegenerate.

Remark 2.15. Under the same assumption, we know that if i is isotropic, the radical is exactly the ideal spanned by the commutators [E i,l , E i,k ]. Hence in the sequel, we will assume 2.13 is satisfied for any imaginary vertex. Notations 2.16. We denote by C i,l the set of compositions c (resp. partitions) such that |c| = l if (i, i) < 0 (resp. (i, i) = 0).

Quasi R-matrix

Proposition 2.17. For any imaginary vertex i and any l ≥ 1, there exists a unique element a i,l ∈ F[li] such that, if we set b i,l = a - i,l , we get : 1. E i,l | l ≥ 1 = a i,l | l ≥ 1 and F i,l | l ≥ 1 = b i,l | l ≥ 1 as algebras ; 2. a i,l , z = b i,l , z -= 0 for any z ∈ E i,k | k < l ; 3. a i,l -E i,l ∈ E i,k | k < l and b i,l -F i,l ∈ F i,k | k < l ; 4. āi,l = a i,l and bi,l = b i,l ; 5. ∆(a i,l ) = a i,l ⊗ 1 + K li ⊗ a i,l and ∆(b i,l ) = b i,l ⊗ K -li + 1 ⊗ b i,l ; 6. S(a i,l ) = -K -li a i,l and S(b i,l ) = -b i,l K li .

Proof. The properties 2 and 3 enable us to define a i,l uniquely, and imply the other ones.

Notations 2.18. Consider i ∈ I im and c ∈ C i,l . We set τ i,l = a i,l , a i,l , a i,c = j a i,c j , and τ i,c = j τ i,c j . Notice that {a i,c | c ∈ C i,l } is a basis of F[li]. Definition 2.19. We denote by δ i,c , δ i,c : F → F the linear maps defined by : Proposition 2.20. The maps δ i,c and δ i,c preserve the radical of -, -.

δ(x) = c∈C i,l
Proof. First consider the case where i is isotropic and x is a commutator [E i,l , E i,k ], then we have δ(x) = 0, and thus δ i,c (x) = δ i,c (x) = 0. Thus, we can assume that -, -is nondegenerate on F Lemma 2.21. We have :

1. a i,l , a i,c = δ (l),c τ i,l ; 2. a i,l y, z = τ i,l y, δ i,l (z) for any y, z ∈ F ; 3. ya i,l , z = τ i,l y, δ i,l (z) for any y, z ∈ F.

Proof. The first point is a direct consequence of the definition of the a i,l , and the rest comes from it.

Definition 2.22. Let U ⊗U be the completion of U ⊗ U with respect to the following sequence (t ≥ 1) : ⇔ ∀z ∈ U + , τ i,l K -li δ i,l (z) + b i,l z = τ i,l δ i,l (z)K li + zb i,l which matches (2.9) -with a, b = a i,l , z.

F t = U + U 0 |α|≥t U -[α] ⊗ U + U ⊗ U -U 0 |α|≥t U + [α] .
Remark 2.24. As in [Lus10, 4.1.2], one can prove that Θ is the only element satisfying Θ 0 = 1 ⊗ 1 and ∆(u)Θ = Θ ∆(u) for all u ∈ U . 

Casimir operator

K i Ω = ΩK i K -li a i,l Ω = K li Ωa i,l b i,l K li ΩK li = Ωb i,l
for any i ∈ I and l ≥ 1.

Proof. The computations are strictly analogous to those in [Lus10, 6.1.1], thanks to the definition of a i,l and b i,l (see 2.17). Definition 2.27. For any α ∈ ZI, we define a Verma module :

M (α) = U ι∈I∞ U E ι + i∈I U (K i -v (i,α) ) ∈ C.
Proposition 2.28. Under the assumption 2.13, we have Ũ -≃ U -.

Proof. The proof follows [START_REF] Victor | Infinite-dimensional Lie algebras[END_REF], [START_REF] Lusztig | Introduction to quantum groups[END_REF] and more specifically [SVDB01, Proposition 2.4].

The maximal degrees of the primitive elements of the kernel of the map Ũ -→ U -are the same as those of the primitive elements of :

ker (i,l)∈I∞
• b i,l :

(i,l)∈I∞ M (-li)→M [START_REF]In particular, if φ i (b)[END_REF] .

By maximality, if α is such a degree, we get (α, i) ≥ 0 for any vertex i. Indeed, [SVDB01, §2, properties 1.,2.,3.,4.] are still satisfied in our case, in particular the second one, thanks to the higher order Serre relations.

Let C denote the Q(v)-linear map defined on M = ⊕ (i,l)∈I∞ M (-li) by :

Cm = v f (α) Ωm if m ∈ M α ,
where f (α) = (α, α + 2ρ) and ρ is defined by (i, 2ρ) = (i, i) for every i ∈ I. Notice that :

f (α -li) -f (α) + 2l(i, α) = l(l -1)(i, i).

For any (i, l) ∈ I ∞ , since Ωb i,l = b i,l ΩK 2li , we get :

Cb i,l m = v f (α-li) Ωb i,l m = v f (α-li) b i,l ΩK 2li m = v f (α-li)+2l(i,α) b i,l Ωm = v f (α-li)+2l(i,α)-f (α) b i,l Cm = v l(l-1)(i,i) b i,l Cm if i ∈ I im b i,l Cm if i ∈ I re .
Hence, if m is a primitive vector of the kernel of the map ⊕ (i,l)∈I∞ M (-li)→M (0) with |m| = α ∈ -NI, we have :

f (α) = 1≤k≤r l k (l k -1)(i k , i k ) (2.29)
where i∈I im α i i = 1≤k≤r l k i k . Since (α, i) ≥ 0 for any real vertex i, we also have : l k (l k -1) .

(α, α + 2ρ) = i∈I α i (i, α + i) = i∈I re α i (i,
Since i k =i l k = -α i , we have :

α i (α i + 1) - i k =i l k (l k -1) = |α i |(|α i | -1) - i k =i l k (l k -1) ≥ 0.
But we also have α i ≤ 0, (i, j) ≤ 0 when i = j, and (i, i) ≤ 0 when i is imaginary, hence :

2 i∈I re α i + i∈I im j =i α i α j (i, j) + i∈I im (i, i) α i (α i + 1) - i k =i l k (l k -1) ≤ 0.
Finally every term in the sum is equal to 0, and -α is a sum of pairwise othogonal imaginary vertices. Since the restriction of -, -to Ũ -[-Ni] is nondegenerate for any imaginary vertex i, the proof is over.

Theorem 2.30. We have an isomorphism of Hopf algebras Ψ : U + Z ∼ → K defined by :

E i,a → [1 ai ] if i ∈ I im E (a) i → [1 ai ] if i ∈ I re
and mapping -, -to the geometric form {-, -}.

Proof. First, Ψ is defined. Indeed, we know from the Jordan quiver case that the elements (1 ai ) a≥1 commute if i is isotropic. Moreover the higher order Serre relations are satisfied for real vertices (see [START_REF] Lusztig | Introduction to quantum groups[END_REF]7]), and, applying the Fourier transform on the imaginary vertices, we can assume that we are working with nilpotent representations. Hence we have 1 ai = Q l{0 a} as if there were no loops, and the higher order Serre relations are still satisfied. For the same reason, we know that :

{1 ai , 1 ai } ∈ 1 + v -1 N[[v -1 ]].
Hence, setting E i,a , E i,a = {1 ai , 1 ai }, -, -is nondegenerate (thanks to 2.12). Therefore Ψ is injective, and since Ψ is also surjective by 1.14, we get the result.
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  la suivante : Conjecture 0.3. Les classes de faisceaux pervers [π i,a! 1] (i ∈ I, a > 0) suffisent à engendrer K quelque soit le carquois considéré Q.
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 020 Soit une famille {D(λ) | λ ∈ P + } de cristaux normaux D(λ) de plus haut poids λ, contenant un élément b λ vérifiant les conditions de la précédente définition. Cette famille est dite fermée si pour tous λ, µ le sous-cristal de D(λ) ⊗ D(µ) engendré par b λ ⊗ b µ est isomorphe à D(λ + µ).
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  and denote by ẽi,c and fi,c the inverse bijections : ẽi,c : Irr Λ i,c / / Irr Λ i,0 : fi,c o o induced by k i,l . Then, for every l > 0, we define : ẽi,l = c∈C i δ c 1 ,l fi,c\c 1 ẽi,c : Irr Λ → Irr Λ ⊔ {0} fi,l = fi,(l) ⊔ c∈C i fi,(l,c) ẽi,c : Irr Λ → Irr Λ ⊔ {0}

  w) and denote by ẽi,c and fi,c the inverse bijections : ẽi,c : Irr L(w) i,c / / Irr L(w) i,0 : fi,c o o

  c) for all a, b, c ∈ F. Proof. Strictly analogous to [Lus10, Proposition 1.2.3] or [Rin96, 3]. Notations 2.3. Take i ∈ I im and c a composition (i.e. a tuple of positive integers) or a partition (i.e. a decreasing tuple of positive integers).

Proposition 2 .

 2 10.[START_REF] Xiao | Drinfeld double and Ringel-Green theory of Hall algebras[END_REF] We can define S, S op : U → U op (the antipode and the skew antipode) such that :m(S ⊗ 1)∆ = m(1 ⊗ S)∆ = ǫ1 m(S op ⊗ 1)∆ op = m(1 ⊗ S op )∆ op = ǫ1,

  δ i,c (x) ⊗ a i,c + obd δ(x) = c∈C i,l a i,c ⊗ δ i,c (x) + obdwhere "obd" stands for terms of bidegree not in NI × Ni in the former equality, Ni × NI in the latter one.

  [Ni]. Consider x in the radical of -, -. If |c| = l, we have, for all y ∈ F :0 = x, ya i,c = δ(x), y ⊗ a i,c = |c ′ |=l δ i,c ′ (x) ⊗ a i,c ′ , y ⊗ a i,c = |c ′ |=l δ i,c ′ (x), y a i,c ′ , a i,c .The result comes from the nondegeneracy of the restriction of -, -to F[Ni].

Proposition 2 .

 2 23. For any α ∈ NI, let B α be a basis of U + [α] = {x ∈ U + , |x| = α}, and {b * |b ∈ B α } the dual basis with respect to -, -. Set :Θ α = b∈Bα b -⊗ b * .Then, the element Θ = Θ α ∈ U ⊗U satisfies :∆(u)Θ = Θ ∆(u) for all u ∈ Uwhere ∆(u) = ∆(u) if u → u denotes the unique involutive Q-morphism of U stabilizing E ι and F ι , and mapping K i to K -i , and v to v -1 .Proof. It's enough to check the relation on generators. For those of real degree, the proof is identical to the one of [Lus10, Theorem 4.1.2]. Consider i ∈ I im and l ≥ 1. We have :∆(a i,l )Θ = Θ ∆(a i,l ) ⇔ b∈B {a i,l b -⊗ b * + K li b -⊗ a i,l b * -b -a i,l ⊗ b * -b -K -li ⊗ b * a i,l } = 0 ⇔ ∀z ∈ U + , b∈B {a i,l b -b * , z + K li b -a i,l b * , z -b -a i,l b * , z -b -K -li b * a i,l , z } = 0 ⇔ ∀z ∈ U + , b∈B {a i,l b -b * , z + K li b -τ i,l b * , δ i,l (z) -b -a i,l b * , z -b -K -li τ i,l b * , δ i,l (z) } = 0 ⇔ ∀z ∈ U + , a i,l z -+ τ i,l K li δ i,l (z) -= z -a i,l + τ i,l δ i,l (z) -K -liwhich is the relation (2.9) with a, b = a i,l , z. The equivalence before the last one comes from 2.21. The computations are the same for U ≤0 :∆(b i,l )Θ = Θ ∆(b i,l ) ⇔ b∈B {b i,l b -⊗ K -li b * + b -⊗ b i,l b * -b -b i,l ⊗ b * K li -b -⊗ b * b i,l } = 0 ⇔ ∀z ∈ U + , b∈B { a i,l b, z K -li b * + b, z b i,l b * -ba i,l , z b * K li -b, z b * b i,l } = 0 ⇔ ∀z ∈ U + ,b∈B {τ i,l b, δ i,l (z) K -li b * + b, z b i,l b * -τ i,l b, δ i,l (z) b * K li -b, z b * b i,l } = 0
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 22 25. We denote by C the category of U -modules satisfying :1. M = ⊕ α∈ZI M α where M α = {m ∈ M | ∀i, K i m = v (α,i) m} ; For any m ∈ M ,there exists p ≥ 0 such that xm = 0 as soon as x ∈ F[α] and ht(α) ≥ p. Proposition 2.26. Set Ω ≤p = m(S ⊗ 1)( ht(α)≤p Θ α ), and M ∈ C. Then, for every m ∈ M , the value of Ω(m) = Ω ≤p (m) does not depend on p for p large enough, and we have the following identities of operators on M :

  (l k -1)(i k , i k ) ≤ 2

	Combining with 2.29, we get :	
				α i +	α i (i, α + i)
			i∈I re	i∈I im
			= 2	α i +	α i (α i + 1)(i, i) +	α i α j (i, j)
			i∈I re	i∈I im	i∈I im j =i
	and thus :			
	0 ≤ 2	α i +	α i α j (i, j) +	(i, i) α i (α i + 1) -
	i∈I re	i∈I im j =i		i∈I im	i k =i

α) + 2 i∈I re α i + i∈I im α i (i, α + i) ≤ 2 i∈I re α i + i∈I im α i (i, α + i).

1≤k≤r l k

Remerciements

if ẽi,l b

where, for i ∈ I re , we write ẽi,1 , fi,1 instead of ẽi , fi and ẽi,l , fi,l instead of ẽl i,1 , f l i,1 . Remark 3.3. Note that this definition of φ i already appears in [START_REF] Jeong | Crystal bases for quantum generalized Kac-Moody algebras[END_REF]. 

denotes the inclusion induced by

Relation with constructible functions

We denote by h : t(h) → s(h) the opposite arrow of h ∈ Ω, and Q the quiver (I, H = Ω ⊔ Ω), where Ω = { h | h ∈ Ω} : each arrow is replaced by a pair of arrows, one in each direction, and we set ǫ

For any pair of I-graded C-vector spaces V = (V i ) i∈I and V ′ = (V ′ i ) i∈I , we set :

For any dimension vector α = (α i ) i∈I , we fix an I-graded C-vector space V α of dimension α, and put Ēα = Ē(V α , V α ). The space Ēα = Ē(V α , V α ) is endowed with a symplectic form :

which is preserved by the natural action of G α on Ēα . The associated moment map µ α : Ēα → g α = ⊕ i∈I End(V α ) i is given by :

Here we have identified g * α with g α via the trace pairing. Definition 3.1. An element x ∈ Ēα is said to be seminilpotent if there exists an I-graded flag W = (W 0 = {0} ⊂ . . . ⊂ W r = V α ) of V α such that :

The following is proved [Boz13a] :

Theorem 3.2. The subvariety Λ(α) of Ēα is Lagrangian.

Following [START_REF] Lusztig | Semicanonical bases arising from enveloping algebras[END_REF], we denote by M(α) the Q-vector space of constructible functions Λ(α) → Q, which are constant on any G α -orbit. Then, we set M = ⊕ α≥0 M(α) which is a graded algebra once equipped with the product * defined in [Lus00, 2.1].

If i ∈ I im and (l) denotes the trivial composition or partition of l, we denote by 1 i,l the characteristic function of the associated irreducible component Z i,(l) ∈ Irr Λ(le i ) (the component of elements x such that x h = 0 for all h ∈ Ω(i)). If i / ∈ I im , we just denote by 1 i the function mapping to 1 the only point in Λ(e i ).

We have 1 i,l ∈ M(le i ) for i ∈ I im and 1 i ∈ M(e i ) for i / ∈ I im . We denote by M • ⊆ M the subalgebra generated by these functions.

The following was proved in [START_REF] Bozec | Quivers with loops and Lagrangian subvarieties[END_REF] :

Proposition 3.4. There exists a surjective morphism Φ : U + v=1 → M • defined by :

Proof. The morphism is well defined : first, the higher order Serre relations are mapped to 0. Indeed, they are for real vertices (see [START_REF] Lusztig | Quivers, perverse sheaves, and quantized enveloping algebras[END_REF]12.11] and [Lus10, chapitre 7]), and we work with semi-nilpotent representations. Hence they are still satisfied by definition of Z i,(l) ∈ Irr Λ(le i ) (x such that x h = 0 for all h ∈ Ω(i)). On the other hand, the commutators

are also mapped to 0 if i is isotropic, thanks to the following lemma :

Lemma 3.5. Let Q be the Jordan quiver. We set I = {•} and

Proof. Consider (x, y) ∈ Λ(n + m), and set V = C n+m . We have :

This is equal to 0 except if x ∈ O λ , where λ = (λ 1 ≥ λ 2 ). Then :

where ¯stands for the quotient by Im x. Also :

dim kerx, we get the result by duality :

Finally, the surjectivity comes from the definition of M • .

We conjecture that Φ is an isomorphism, which should be proved by comparing the two "crystal" structures on K and M • given by the following sets of bijections :

the latter being obtained in [START_REF] Bozec | Quivers with loops and Lagrangian subvarieties[END_REF]. To that end, the notion of crystal should be generalized, and results analogous to those obtained in [START_REF] Kashiwara | Geometric construction of crystal bases[END_REF] should be proved.

Conclusion

Si une étape vers la dernière conjecture formulée passe par une définition généralisée des cristaux, comme proposée en fin de première partie (section 3), il faudrait d'abord étudier la catégorie O associée à notre groupe quantique généralisé U v , comme entamé dans la preuve de la non-dégénérescence de la forme de Hopf associée. En particulier, l'étude des modules de Verma M (λ), définis de manière analogue au cas usuel :

et des modules simles de plus haut poids V (λ) généralement obtenus comme quotients des modules de Verma doit être menée.

Ensuite, il faudrait suivre un programme analogue à celui de Kashiwara, en commençant par définir des bases cristallines B(λ) (en oubliant abusivement le réseau associé) sur les U v -modules V (λ) de plus haut poids λ, ainsi qu'une base cristalline B(∞) de la partie positive U + v , grâce à des opérateurs de Kashiwara généralisés (qui devraient être donnés par les fonctions δ i,l et δ i,l définis en seconde partie).

Quelques résultats techniques sur les cristaux et leurs produits tensoriels devraient alors permettre d'obtenir des résultats généralisant ceux décrits en introduction, qui, couplés aux résultats géométriques de cette thèse, pourraient ensuite avoir plusieurs applications, notamment la définition d'une base semi-canonique. Mieux, on devrait obtenir des isomorphismes de cristaux : B Perv ≃ B(∞) ≃ Irr Λ où B Perv désigne le cristal des isoclasses de faisceaux pervers simples de Lusztig.