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Résumé

Dans cette thèse, nous introduisons et développons une approche mathématiques origi-
nale des techniques d’imagerie biomédicale dites ⌧hybrides�. L’idée et d’appliquer une
méthode d’imagerie mal posée, tout en perturbant le milieu à imager par des déplacements
mécaniques. Ces déplacements provenant d’une équation de type onde élastique perturbent
les mesures e↵ectuées. En utilisant ces mesures perturbées, et profitant du caractère local des
perturbations mécaniques, il est possible d’augmenter considérablement la résolution de la
méthode de base. Le problème direct est donc un couplage d’une EDP décrivant la propaga-
tion utilisée pour la méthode de base et d’une seconde décrivant les champs de déplacement
mécaniques. Dans toutes cette thèse, on fait l’hypothèse d’un milieu mécaniquement ho-
mogène afin d’assurer le contrôle et la géométrie des ondes perturbatrices utilisées.

A partir des mesures perturbées, une étape d’interprétation permet de construire une
donnée interne au domaine considéré. Cette étape nécessite en général l’inversion d’opérateurs
géométriques intégraux de type Radon, afin d’utiliser le caractère localisant des perturba-
tions utilisées. A partir de cette donnée interne, il est possible d’initier une procédure de
reconstruction du paramètre physique recherché.

Dans le chapitre 1, il est question d’un couplage entre micro-ondes et perturbations
sphériques. Dans les chapitres 2, 3 et 4, nous étudions l’imagerie optique di↵use toujours
couplée avec des perturbations sphériques. Enfin dans le chapitre cinq, nous donnons une
méthode originale de reconstruction de la conductivité électrique par un couplage entre
champs magnétique et perturbations acoustiques focalisées.
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Abstract

This thesis aims at developing an original mathematical approach for modeling hybrid
biomedical imaging modalities. The core idea is to run an ill-posed imaging method while
perturbing the medium using mechanical displacements. These displacements described
by an elastic wave equation perturb the collected measurements. Using these perturbed
measurements and taking advantage of the perturbation localizing e↵ect, it is possible to
significantly overcome the resolution of the basic method. The direct problem here is a
coupling between a PDE describing the propagation used for the basic method and a second
one describing the mechanical displacements fields. In the whole thesis, we only consider
mechanically homogeneous medium in order to assure the control and the geometry of the
perturbing wavefronts.

From these perturbed measurements, an interpretation step leads to an internal data
map inside the considered medium. This step usually requires inversion of geometric integral
operators such as Radon transform. This allows to use the geometrical localizing behavior
of the perturbations. From this internal data, one can start a recovering procedure for the
unknown physical parameter. This recovering step involves a new non physical PDE, non
linearly coupled with the main modality equation.

In the first chapter, we study a coupling between micro-waves and spherical perturbations.
In chapter 2, 3 and 4, we propose a model for di↵use optical imaging coupled with spherical
perturbations. In chapter 5, we introduce a new method for imaging the electric conductivity
by a coupling between magnetic field and focused acoustic perturbations.
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Introduction

This thesis aims at developing an original mathematical and numerical framework for mod-
eling biomedical imaging modalities based on mechanical perturbations of the medium.

Many kinds of waves propagate in biological tissues over certain frequency ranges. Each
of them can be used to provide an image of a specific physical parameter. Low-frequency
electromagnetic waves are sensitive to electrical conductivity; optical waves tell about opti-
cal absorption, ultrasonic waves reveal tissue’s density, mechanical shear waves indicate how
tissues respond to shear forces. However, single-wave imaging modalities are known to su↵er
from low specificity as well as intrinsic instabilities and low resolution. These fundamental
deficiencies are impossible to eliminate, unless additional a priori information is incorpo-
rated. Single-wave imaging modalities can only be used for anomaly detection. Expansions
techniques for data analysis, which reduce the set of admissible solutions and the number of
unknowns, allow robust and accurate reconstruction of the location and of some geometric
features of the anomalies, even with moderately noisy data.

One promising way to overcome the inherent limits of single-wave imaging and provide
a stable and quantitative reconstruction of a physical parameters distribution is to combine
di↵erent wave-imaging modalities [3]. A variety of multi-wave imaging approaches are being
introduced and studied. In such approaches, two or more types of physical waves are in-
volved in order to overcome the individual deficiencies of each of them and to combine their
strengths. Because of the way the waves are combined, multi-wave imaging can produce a
single image with the best contrast and resolution properties of the two waves.
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Figure 1: Comparison between Near Infra-Red di↵use light tomography image (1) and a
scanner (X-rays attenuation) image (2) of the same breast tumor. This illustrates the inher-
ent lack of resolution of the di↵use optical tomography method.
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6 INTRODUCTION

Three di↵erent types of wave interaction can be exploited in multi-wave imaging [55]: (i)
the interaction of one kind of wave with tissue can generate a second kind of wave; (ii) a low-
frequency wave that carries information about the desired contrast can be locally modulated
by a second wave that has better spatial resolution; (iii) a fast propagating wave can be used
to acquire a spatio-temporal sequence of the propagation of a slower transient wave.

Multi-wave imaging approaches are particularly useful for obtaining three physical pa-
rameters that until recently have been di�cult to map with satisfactory spatial resolution:
electrical conductivity, optical absorption, and shear modulus.

In this thesis, we introduce a new multi-wave imaging approach. By mechanically per-
turbing the medium we prove both analytically and numerically stability and resolution
enhancement for reconstructing electrical and optical tissue parameters. We show how the
high contrast of the microwave, optical, and electrical tomographies can be coupled to the
high resolution of the acoustic propagation in soft tissues. The use of mechanical perturba-
tions of the medium modeled by acoustics equations in fluids enhance the resolution to the
order of the front width of the acoustic wave, which propagates inside the object.

It is also worth emphasizing that our approach in this thesis is di↵erent from the imaging
by controlled perturbations [3, 6, 13, 17, 43, 58, 110], where local changes of the parameters
of the medium are produced by focalizing an ultrasound beam. Both techniques lead to
resolution enhancements. In imaging by controlled perturbations, the resolution is of order
the size of the focal spot while here it is of the order of the width of the wave front of the
wave propagating in the medium.

The core idea of our approach in this thesis is quite di↵erent from imaging by controlled
perturbations. It is based on taking microwave, optical or electrical boundary measurements
while an acoustic wave is propagating inside the medium and then changing the material
parameter of the medium. We show that by cross-correlating boundary measurements it is
possible to significantly overcome the resolution limits in microwave imaging, optical and
electrical tomographies.

Our purpose is threefold. First, we carefully derive mathematical models for these emerg-
ing multi-wave modalities. Second, we analyze these mathematical models and study im-
portant uniqueness and stability issues of the associated reconstruction problems. Third, we
design image reconstruction algorithms and analytically and numerically investigate their
robustness.

Overview of the thesis

Chapter 1

In this chapter, we develop new mathematical tools and inversion methods to address a new
biomedical imaging modality called acousto-electromagnetic tomography. This method is
based on taking microwave boundary measurements while an acoustic wave is propagating
inside the medium and then changing the electromagnetic parameter of the medium. We
show that by cross-correlating boundary measurements it is possible to significantly overcome
the classical Rayleigh resolution limit in microwave imaging.

For simplicity, we only consider transverse magnetic (TM) waves. For modelling TM-
waves in microwave imaging we use a scalar Helmholtz equation in two dimensions together
with a Sommerfeld radiation condition. The objective is to image the permittivity of a
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dielectric object. The object is confined in a bounded domain ⌦ and is illuminated by a plane
wave of given incidence and the scattered field is measured on the boundary of ⌦. Boundary
measurements are carried out at one given frequency. In the cross-correlation of boundary
measurements, the normal derivatives of the scattered fields are needed. In practice, they
are not measured. However, they can be constructed using the exterior capacity operator
for the domain ⌦; see [93]. Since the electromagnetic waves are propagating in the whole
space, their derivatives on the boundary can be expressed in terms of their traces, i.e., the
boundary measurements. The sources of the acoustic waves are placed on a circle or a sphere
outside the object to be imaged. The medium is supposed to be acoustically homogeneous.

By mechanically perturbing the medium, we show that it is possible to achieve a sig-
nificant resolution enhancement. We provide a new inversion formula for the permittivity
distribution from cross-correlations between the electromagnetic boundary measurements in
the perturbed medium and in the unperturbed one. We present numerical results to illustrate
the resolution and the stability performances of the proposed reconstruction algorithm.

Chapters 2, 3, and ?? are devoted to optical imaging. Di↵use optical tomography is an
emerging biomedical modality that uses di↵use light to probe structural variations in the
optical properties of tissue [27]. The associated inverse problem for di↵use waves consists of
recovering the absorption properties of a medium of interest from boundary measurements
of the light intensity. The most important current applications of di↵use optical imaging are
detecting tumors in the breast and brain imaging [33]. In di↵use optical imaging, the reso-
lution is in general low. The aim of Chapters 2, 3, and ?? is to model a new method, called
ultrasound-modulated di↵use optical tomography, for reconstructing the optical absorption
coe�cient of a medium from boundary measurements.

Chapter 2

In this chapter, we develop an e�cient fixed point reconstruction algorithm for ultrasound-
modulated di↵use optical tomography. In di↵use optical imaging, the resolution is in general
low. By mechanically perturbing the medium, we show that it is possible to achieve a
significant resolution enhancement. When a spherical acoustic wave is propagating inside
the medium, the optical parameter of the medium is perturbed. Using cross-correlations
of the boundary measurements of the intensity of the light propagating in the perturbed
medium and in the unperturbed one, we provide an iterative algorithm for reconstructing
the optical absorption coe�cient. Using a spherical Radon transform inversion, we first
establish an equation that the optical absorption satisfies. This equation together with the
di↵usion model constitutes a nonlinear system. Then, solving iteratively such a nonlinear
coupled system, we obtain the true absorption parameter. We prove the convergence of the
algorithm and present numerical results to illustrate its resolution and stability performances.

Chapter 3

This Chapter aims to generalize the acousto-optic process for inclusions. We tackle the
nonlinear optical reconstruction problem for discontinuous optical distributions. We develop
a mathematical framework for the reconstruction problem in the case where the optical
absorption distribution is a perturbation of a piecewise constant function. We introduce an
iterative reconstructing algorithm of Landweber-type and prove its convergence and stability.
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For doing so, we introduce a weak Helmholtz decomposition and interpret in a weak sense
the cross-correlation measurements.b

Chapter 4

The aim of this chapter is to prove that the algorithm presented in Chapter 2 can be extended
for a very general class of discontinuous absorption maps. Starting from the same di↵erential
boundary measurements

Mv =

Z

⌦

(av � a)��v

where v is the smooth displacement field, � the light fluance and �v. We consider the
case where a has bounded variations and under some additional hypothesis, we understand
the first order term in the asymptotic formula when kvkL1 goes to zero. Look for the
same kind of algorithm than in Chapter 2 we manage to decrease the smoothness of the
unknown absorption to be recovered. We give a new fixed point algorithm proving that the
absorption is the fixed point of a contracting map in Hs(⌦) where s < 1/2. This allows
the reconstruction of a much wider class of absorption maps admitting discontinuities. By
a clever change of variable, we study two coupled linear elliptic PDEs interpreted in the
classical variational point of view. In this chapter, the global Lipschitz stability of the whole
imaging process is proved. We give some numerical examples to illustrate the ability of this
new algorithm.

Chapter 5

In this Chapter, we provide a mathematical analysis and a numerical framework for Lorentz
force electrical conductivity imaging. Ultrasonic vibration of a tissue in the presence of a
static magnetic field induces an electrical current by the Lorentz force. This current can
be detected by electrodes placed around the tissue; it is proportional to the velocity of the
ultrasonic pulse, but depends nonlinearly on the conductivity distribution. The imaging
problem is to reconstruct the conductivity distribution from measurements of the induced
current. To solve this nonlinear inverse problem, we first make use of a virtual potential
to relate explicitly the current measurements to the conductivity distribution and the ve-
locity of the ultrasonic pulse. Then, by applying a Wiener filter to the measured data, we
reduce the problem to imaging the conductivity from an internal electric current density.
We first introduce an optimal control method for solving such a problem. A new direct
reconstruction scheme involving a partial di↵erential equation is then proposed based on
viscosity-type regularization to a transport equation satisfied by the current density field.
We prove that solving such an equation yields the true conductivity distribution as the
regularization parameter approaches zero. We also test both schemes numerically in the
presence of measurement noise, quantify their stability and resolution, and compare their
performance. Our results in this chapter dramatically improve the stability and resolution
of electrical impedance imaging.

The results in Chapers 1, 2, 3 and 5 are published as[8, 9, 18, 19].
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Main notations

BV (⌦) is the set of bounded variation functions in ⌦. See definition 4.1.1.

Cn(⌦) with n 2 N is the set of function n times di↵erentiable in ⌦ ⇢ Rd.

Cn,↵(⌦) with n 2 N, ↵ 2 [0, 1[, ⌦ ⇢ Rd is the set of function f n times
di↵erentiable in ⌦ ⇢ Rd and such that f (n) is ↵-Holder in ⌦.

Cn,↵
S (⌦) is the set of functions of class Cn,↵ in ⌦\S where S is a smooth sur-

face of class Cn+1. It is a model set for piecewise Holder regularity.
See definition 5.4.1.

D(⌦),D0(⌦) respectively the set C1
c (⌦) and its topological dual, the set of dis-

tributions in ⌦.

S(Rd),S 0(Rd) respectively the Schwartz space and its topological dual, the set of
temperated distributions.

E(Rd), E 0(Rd) respectively the set C1(Rd) and its topological dual, the set of
compactly supported distributions.

D is the derivative operator for scalar distributions. The symbol r
will be only used if the derivative belongs to a functional space.

Dl,Dj,Dc respectively the Lebesgue part, the jump part and the Cantor part
of the derivative of a function with bounded variations. See sub-
section 4.1.1.

dx is the Fréchet di↵erential operator with respect to the vectorial
variable x.

@x
i

is the partial derivative operator with respect to the scalar variable
xi.

Hs(⌦), Hs
loc

(⌦) with s � 0, respectively W s,2(⌦) and W s,2
loc

(⌦).

Hs
K(⌦) s 2 R, is the set of distribution supported in the compact K ⇢ ⌦

and with Hs regularity. See subsection 4.6.2.

H↵,H↵
S respectively the Hausdor↵ measure of dimension ↵ > 0 in Rd and

it restriction to a subset S ⇢ Rd. H↵
S(A) = H↵(A \ S).

R, ~R respectively the spherical means Radon transform operator and the
outgoing flow transform operator. See subsection 4.1.3
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SBV (⌦) is the special class of bounded variation functions on ⌦. See defi-
nition 4.1.2.

SBV p(⌦) with p 2 [1,+1]. See definition 4.1.3.

� is the classic surface measure on the considered surface. It is equal
to the Hausdor↵ measure Hd�1 restricted to the considered surface.

| · |TV (⌦)

or | · |BV (⌦)

is the total variations semi-norm of BV (⌦). The real
number |f |TV (⌦)

corresponds to |Da|(⌦) =
R

⌦

|Da|.

W s,p(⌦),W s,p
loc

(⌦) with s � 0 and p 2 [1,+1], respectively the fractional order
Sobolev space and
W s,p

loc

(⌦) := {f 2 Lp
loc

(⌦), 8x 2 ⌦, 9" > 0, f 2 W s,p(B(x, "))}.



Chapter 1

Acousto-microwave tomography, a
model problem

Introduction

The purpose of this first chapter is to illustrate with a first simple model, the di↵erent aspects
of a mathematical study of imaging by mechanically perturbing the medium. The imaging
problem considered here is to reconstruct from boundary measurements the electromagnetic
parameter q(x) involved in the Helmholtz equation

4'+ !2q' = 0 (1.1)

in a bounded domain ⌦ ⇢ Rd, for d = 2, 3, where ! is the operating frequency.
Using controlled mechanical perturbations of ⌦, we define the data as the evaluation of

the outward normal derivative @⌫' on @⌦, which change due to the mechanical perturbations.
Being one of the modern techniques in medicine, microwave tomography (MWT) has

significant advantages over x-rays, computed tomography (CT), and nuclear magnetic res-
onance (NMR) imaging; see [42]. Microwave imaging has good contrast since malignant
anomalies have very di↵erent electric properties than the background healthy tissues. More-
over, it does not require either ionizing radiation or contrast agents and is an inexpensive
and a transportable modality. However, it su↵ers from poor space resolution limited by the
Rayleigh criterion when compared to x-rays, CT or NRM tomography. It is well-known that
the main problem using microwaves in classical tomography methods is that it is impossible
to get a better resolution than half the wavelength. Typically, the operating frequency of
microwaves is between 1 GHz and 200 GHz, and this imposes a wavelength of microwaves
between 1.5 mm and 300 mm. Then, if we want to image small objects or use low-frequency
microwaves for physical or biological reasons, we need a way to increase resolution of classical
methods.

It is shown in this chapter how the high contrast of the microwave tomography can
be coupled to the high resolution of the acoustic propagation in soft tissues. The use of
mechanical perturbations of the medium modeled by acoustics equations in fluids enhance
the resolution to the order of the front width of the acoustic wave, which propagates inside
the object. This chapter aims at developing a mathematical and numerical framework for
a new hybrid imaging technique called acousto-microwave tomography. The resolution and
stability enhancements are illustrated both analytically and numerically.

11
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In order to model this emerging hybrid biomedical technique, we start with time-harmonic
Maxwell’s equations

r⇥
✓

1

µ
r⇥ E

◆

� !2"E = 0, (1.2)

where E is the electric field, " is the electric permittivity, µ the magnetic permeability, and
! the operating frequency. In order to simplify this vectorial equation, we only consider
polarized transverse magnetic waves and arrive at the scalar model

r ·
✓

1

µ
r'
◆

+ !2"' = 0 (1.3)

with ' being the complex amplitude of the electric field. Moreover, we consider nonmagnetic
objects, i.e., with a constant magnetic permeability µ and a variable electric permittivity "
that we want to image. This choice is not crucial because all the following computations
can be done with both µ and " variable. By changing the frequency, we can separate the
information about these two parameters. Moreover, in biological tissues, the permittivity "
is much more contrasted than the permeability µ.

Denote by q(x) = µ"(x). The electric amplitude ' satisfies

4'+ !2q' = 0 in ⌦. (1.4)

In acousto-microwave tomography microwave, we take boundary measurements while an
acoustic wave is propagating inside the medium and then changing the permittivity of the
medium. Our main idea is to cross-correlate boundary measurements in order to significantly
overcome the Rayleigh resolution limit.

Denote by v : ⌦ �! Rd, a displacement field such that |v| < dist(suppv, @⌦). The
permittivity distribution q changes to qv defined implicitly by

qv(x+ v(x)) = q(x), 8x 2 ⌦. (1.5)

The electric field changes to 'v which satisfies

4'v + !2qv'v = 0 in ⌦. (1.6)

Now, multiplying (1.4) by 'v and the conjugate of (1.5) by ' and integrating both identities
by parts, we immediately get the so called cross correlation formula:

Z

@⌦

(@⌫''v � @⌫'v') = !2

Z

⌦

(qv � q)''v. (1.7)

Assuming that the term on the left-hand side can be measured as a boundary integral term,
we have access to the complex number

Mv =

Z

⌦

(qv � q)''v. (1.8)

Now considering that v changes with time (wave traveling), the choice of the source, the
shape of the signal sent, etc, we can measure this quantities in a lot of configurations and
from this knowledge, try to reconstruct the permittivity distribution q.
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⌦

⌦0

Incident plane microwave

EM detector

Acoustic transductor

Incident plane microwave

Acoustic wavefront

Permittivity inhomogeneities

Figure 1.1: The support of v is the blue arc and the di↵erence 'v � ' is generated in the
intersection of the support of permittivity variations and the support of v. The electromag-
netic (EM) detector measures the variations of 'v on @⌦ while the wavefront is traveling
through the object.
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The chapter is organized as follows. In the first section, we discuss inherent di�culties of
well posing the direct problem for the Helmholtz equation. We discuss the choice of working
in free space instead of a bounded domain. Under the assumption of Born approximation, we
give several stability results for the solution to use latter. In the second section we establish
an asymptotic formula for (1.7) and interpret the measurements as an approximation of a
much simpler quantities. In the third section we derive a model for the displacement field v
which is created by a pressure wave traveling in a mechanically homogeneous medium. The
spherical symmetry of the displacement brings a spherical symmetry to the measurement.
The fourth section introduces the spherical means Radon transform and provides asymptotic
formula involving the radial derivative of the Radon transform of q. This formula is first
written for q smooth then extended to the piecewise constant case using the smoothing
properties of the spherical means Radon transform. In the fifth section, we illustrate the
resolution and the stability of the reconstruction through the inversion of the spherical
means Radon transform by a filtered back propagation algorithm. The chapter ends with
some concluding remarks.

1.1 Helmholtz equation in heterogeneous media

We assume that the variations of q is compactly supported in ⌦. In other words, there
exists a positive constant q

0

> 0 and a function s 2 L1(⌦) supported in K ⇢ ⌦ such that
||s||1 < 1 and

q(x) = q
0

(1 + �s(x)), 8x 2 ⌦, (1.9)

where � is a positive constant.
There are two classical frameworks for studying the Helmholtz equation. We can con-

sider a wave propagation problem in ⌦ with several kinds of boundary conditions such as
Dirichlet, Neumann, or Robin boundary conditions. We can also consider a free space propa-
gation problem extending q in Rd\⌦ by q

0

. The choice of the model depends on the physical
constraints about the measurement of the electromagnetic wave. In this chapter, we choose
to deal with the free space propagation problem. The treatment of the bounded problem
with boundary conditions could follow exactly the same arguments and methodology pre-
sented here provided a uniform assumption with respect to the medium changes on the
well-posedness of the Helmholtz equation.

1.1.1 Model problem

Here, we extend q by q
0

in Rd\⌦ and assume that the medium is illuminated by a plane
wave 'I(x) = Ae�ik·x.

We look for solutions to the Helmholtz equation in the form

' = 'I + 'S, (1.10)

where 'S is called the scattered wave and satisfies

4'S + !2q'S = �!2(q � q
0

)'I in Rd, (1.11)

together with the outgoing Sommerlfeld radiation condition at infinity.
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Proposition 1.1.1 Consider f 2 L2

c(Rd) and q 2 L1(Rd) such that 0 < qmin  q and
supp(q � q

0

) ⇢ K compact. Then the problem

8

<

:

4'S + !2q'S = f in Rd

lim
|x|!1

|x| d�1

2

✓

x

|x| ·r� i!
p
q
0

◆

'S(x) = 0 uniformly in x/|x|

has a unique solution in H2

loc(Rd).

Proposition 1.1.2 Define the function � 2 W 1,1
loc (Rd) by

�(x) =

8

>

>

<

>

>

:

i

4
H(1)

0

(!
p
q
0

|x|) if d = 2,

ei!
p
q
0

|x|

4⇡|x| if d = 3,

where H(1)

0

is the first Hankel function. This function is the unique solution of the problem

8

<

:

4�+ !2q
0

� = �
0

in (D0(Rd),

lim
|x|!1

|x| d�1

2

✓

x

|x| ·r� i!
p
q
0

◆

�(x) = 0 uniformly in x/|x|.

Moreover, the unique solution u
0

2 H2

loc(Rd) of

8

<

:

4u
0

+ !2q
0

u
0

= f in Rd,

lim
|x|!1

|x| d�1

2

✓

x

|x| ·r� i!
p
q
0

◆

u
0

(x) = 0 uniformly in x/|x|,
(1.12)

where f 2 L2

c(Rd) can be written as

u
0

= � ⇤ f,
and satisfies the estimate

k'
0

kH1

(B
a

)

 c
�

(2a) kfkL2

(Rd

)

, (1.13)

where Ba is the ball of radius a and c
�

(a) = k�kW 1,1

(B
a

)

.
We have now the tools to establish a stability estimate for the scattered wave 'S. This

would be necessary for establishing the asymptotic formulas in the next sections.

1.1.2 Stability estimate

Consider a function f 2 L2

c(⌦) and assume that q is written as q = q
0

(1+�s) with s 2 L1(⌦),
||s||1 < 1 and supp(s) = K ⇢ ⌦. Denoting u the unique solution in H2

loc(Rd) of the problem

8

<

:

4u+ !2qu = f in Rd

lim
|x|!1

|x| d�1

2

✓

x

|x| ·r� i!
p
q
0

◆

u(x) = 0 uniformly in x/|x|,
(1.14)

the following stability result holds.
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Proposition 1.1.3 For any ! > 0, there exists �
0

> 0 such that, for any 0  � < �
0

, the
solution of (1.14) satisfies the estimate

kukH1

(⌦)

 C kfkL2

(Rd

)

,

where C depends on �
0

and ⌦.

Proof. Let us introduce a positive number a such that ⌦ ⇢ Ba. The solution u satisfies

4u+ !2q
0

u = f � !2q
0

�su,

which by using the Green function representation gives

u = � ⇤ f � !2q
0

�� ⇤ (su) = '
0

+ Tu.

Here, '
0

is the solution of (1.12) with T : H1(Ba) �! H1(Ba) is the continuous operator
given by

Tu = �!2q
0

��! ⇤ (su).
Using the fact that s  1 and supp(s) ⇢ Ba, we have

kTukH1

(B
a

)

 !2q
0

� k�!kW 1,1

(B
2a

)

ksukL2

(Rd

)

 !2q
0

� k�!kW 1,1

(B
2a

)

kskLp

(B
a

)

kukH1

(B
a

)

 CpC�(2a)!
2q

0

�K1/p kukH1

(B
a

)

,

with p > d and Cp the continuity modulus of the Sobolev injection H1(Ba) ,! Lp(Ba). The
operator norm of T is controlled by

kTkL(H1

(B
a

))

 CpC�(2a)!
2q

0

�K1/p.

Let us choose �
0

< �max :=
⇥

CpC�(2a)!2q
0

K1/p
⇤�1

. For any 0  � < �
0

, we have kTkL(H1

(B
a

))

<

1. The solution u can then be written as u = (I � T )�1'
0

. Since L(H1(Ba)) is a Banach
space, we have

(I � T )�1 =
+1
X

k=0

T k,

and then

�

�(I � T )�1

�

�

L(H1

(B
a

))


+1
X

k=0

kTkkL(H1

(B
a

))

=
1

1� kTkL(H1

(B
a

))

=
�max

�max � �
.

Moreover, estimate (1.13) gives

k'
0

kH1

(B
a

)

 C
�

(2a) kfkL2

(Rd

)

.

From
k'SkH1

(B
a

)


�

�(I � T )�1

�

�

L(H1

(B
a

))

k'
0

kH1

(B
a

)

,

the result follows. ⇤
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Let the total field ' = 'I + 'S with 'I(x) = Ae�ik·x and |k| = !
p
q
0

. The function 'S

is the unique solution in H2

loc(Rd) of

8

<

:

4'S + !2q'S = �!2(q � q
0

)'I in Rd,

lim
|x|!1

|x| d�1

2

✓

x

|x| ·r� i!
p
q
0

◆

'S(x) = 0 uniformly in x/|x|.
(1.15)

Write q = q
0

(1 + �s) with s 2 L1(⌦), ||s||1 < 1 and supp(s) = K ⇢ ⌦. The following
estimate holds.

Corollary 1.1.4 For any ! > 0, there exists �
0

> 0 such that, for any 0  � < �
0

, the
scattered field 'S satisfies

k'SkH1

(⌦)

 CA!2�|K|1/2, (1.16)

where C is a constant depending on �
0

and ⌦.

This corollary ensures that if the variations of q are not too large in amplitude and in
support, then the scattered wave is of the order of these variations. In the next section,
we assume that the variations are small and use the fact that 'S = o('I) to develop an
asymptotic formula for the cross-correlation formula (1.7).

1.2 Cross-correlation formula

The direct cross-correlation formula on the boundary between the field ' and the modified
one 'v given by (1.7) is quite di�cult to use. The boundary integral is complicated and from
a physical point of view it is not clear that this quantity is indeed measurable. Moreover, the
right-hand side provides internal information about q but the term ''v is not controlled.
Under the assumption of small variations for q, we provide an asymptotic version of this
identity.

Under the free space framework, using an incident plane wave 'I(x) = Ae�k·x with
|k| = !2q

0

, the electric field ' is decomposed as ' = 'I +'S where 'S is the unique solution
of (1.15) and the displaced electric field 'v is decomposed as ' = 'I +'S,v where 'S,v is the
unique solution of

8

<

:

4'S,v + !2qv'S,v = �!2(qv � q
0

)'I in Rd,

lim
|x|!1

|x| d�1

2

✓

x

|x| ·r� i!
p
q
0

◆

'S,v(x) = 0 uniformly in x/|x|.
(1.17)

An interesting question here is to control how far this modified scattered field 'S,v is from
the original one 'S. The following result is a direct application of Proposition 1.1.3 to the
equation satisfied by the di↵erence 'v � '.

Proposition 1.2.1 For any ! > 0, there exists �
0

> 0 such that for any 0  � < �
0

, the
di↵erence 'S,v � 'S satisfies

k'S,v � 'SkH1

(⌦)

 CA!2�|suppv \K|1/2,
where C depends on �

0

and ⌦
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Theorem 1.2.2 When the contrast � goes to zero, the following approximation holds:

1

A!2

Re



Z

@⌦

eik·x (@⌫ � ik · n) ('�'v)

�

=

Z

⌦

(qv�q)+O
�

!2�2|suppv \K|1/2|K|1/2
�

. (1.18)

Here, the remainder is bounded by C
�

!2�2|suppv \K|1/2|K|1/2
�

with C depending on �
0

(cf.
Proposition 1.1.3) and ⌦.

Proof. Using the decomposition of ' and 'v we write the term on the left-hand side as
Z

@⌦

(@⌫''v � @⌫'v') = ↵ + � + �

with

↵ =

Z

@⌦

(@⌫'I'I � @⌫'I'I) , � =

Z

@⌦

(@⌫'I'S,v + @⌫'S'I � @⌫'I'S � @⌫'S,v'I) ,

� =

Z

@⌦

(@⌫'S'S,v � @⌫'S,v'S) .

We note that

↵ = �
Z

@⌦

ik · ⌫A2 = �iA2

Z

@⌦

k · ⌫ = 0.

Then,

� =

Z

@⌦

⇥

(@⌫'S'I � @⌫'S,v'I)� ik · ⌫('I'S,v + 'I'S)
⇤

.

and so

Re(�) = Re

Z

@⌦

⇥

(@⌫'S'I � @⌫'S,v'I)� ik · ⌫('I'S � 'I'S,v)
⇤

= A Re

Z

@⌦

eik·x(@⌫ � ik · ⌫)('S � 'S,v)(x)Hd�1(dx).

Now calculating the cross correlation between 'S and 'S,v on @⌦, we get

� = !2

Z

⌦

(qv � q)'S'S,v + !2

Z

⌦

(qv � q)'I'S + !2

Z

⌦

(qv � q
0

)('I'S � 'I'S,v).

Then, by using Corollary 1.1.4, it follows that

|Re(�)| CA2!4�2|K|1/2|suppv \K|1/2
�

1 + C!2�|K|1/2
�

+ !2�|K|1/2 kRe('I'S � 'I'S,v)kL2

(⌦)

.

From

|Re('I'S � 'I'S,v)|  |Re('I'S � 'I'S,v)|  |'I'S � 'I'S,v|  A|'S � 'S,v|
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Proposition 1.2.1 yields

|Re(�)|  CA2!4�2|K|1/2|suppv \K|1/2,
where the constant C depends on ⌦ and �

0

.
Next, let us investigate the real part of the term on the right-hand of (1.7), which can

be decomposed as

Re

Z

⌦

(qv � q)''v = Re

Z

⌦

(qv � q)'I'I +

Z

⌦

(qv � q)('I'S,v + Re'I'S + 'S'S,v)

= A2

Z

⌦

(qv � q) + Re

Z

⌦

(qv � q)('I'S,v + 'I'S + 'S'S,v).

From
�

�

�

�

Z

⌦

(qv � q)('I'S,v + 'I'S + 'S'S,v)

�

�

�

�

 CA2!2�2|suppv \K|1/2|K|1/2,

by dividing by A2!2 we get the desired approximation. ⇤

Theorem 1.2.2 gives a meaningful formula linking a simple operator on the boundary
applied on ' � 'v to the quantity

R

⌦

(qv � q). If only ' � 'v is measured on @⌦, then
@⌫('�'v) can be computed using the fact that '�'v satisfies the homogeneous Helmholtz
equation outside ⌦ together with the Sommerfeld radiation condition. Actually, the exterior
capacity operator relates @⌫('S � 'D,v) to ('S � 'S,v)|@⌦; see [93]. In the following, we
assume that the quantity

Mv =

Z

⌦

(qv � q), (1.19)

is known for many given v. The imaging problem is to reconstruct the permittivity distribu-
tion q from Mv[q]. We can notice that formally Mv ⇡ �

R

⌦

rq · v if v is small, so it is clear
that we would assume a certain regularity for q in order to make the reconstruction possible.
We also would need enough displacement functions v in order to invert the problem. As said
in introduction, the functions v are solutions to acoustics equations which model mechanical
waves in fluids. Moreover, we assume that ! is acoustically homogeneous. The aim of the
next section is to find a set of admissible displacements v for solving the imaging problem.

1.3 Spherical acoustic waves

In this section we see how the displacement function v can be created by a short spherical
acoustic wave and what its typical form is. The state of a fluid is characterized by macro-
scopic quantities such as the density, the fluid velocity, the pressure, and the temperature.
The conservation laws of mass and momentum have the form:

8

>

<

>

:

@⇢

@t
+r · (⇢V ) = 0 in R3,

@⇢V

@t
+r · (⇢V ⌦ V ) +rP = 0 in R3,

(1.20)

where ⇢ is the density, V the velocity field, and P the pressure. System (1.20) is comple-
mented by a state equation that gives the pressure as a function of the density and the



20 1.3. SPHERICAL ACOUSTIC WAVES

temperature. When the flow is isentropic, the pressure is a function of the density only,
P = P (⇢). The flow is isentropic if it is adiabatic, which means that no heat is transferred
to or from the fluid, and reversible, that is, the flow conditions can return to their original
values.

The acoustic wave equations are obtained by linearizing the fluid dynamics equations for
small disturbances around a fluid at rest. We denote by p

0

and ⇢
0

the unperturbed pressure
and density, with the unperturbed velocity equal to 0 and we consider small perturbations of
the pressure and density. Denoting P = p

0

+ p, ⇢ = ⇢
0

(1 + s), we get the linearized system

8

>

<

>

:

1

K
0

@p

@t
+r · v = 0 in R3,

⇢
0

@v

@t
+rp = 0 in R3,

where K
0

is the bulk modulus of the medium defined in terms of the equation of state

K
0

= ⇢
0

✓

@P

@⇢

◆

(⇢
0

) .

The linearized version of the equation of state P = P (⇢) gives p = K
0

s.
As we are looking for spherical waves, we assume an initial conditions of the form

V (x, 0) = 0, p(x, t = 0) = p
0

(x) =
1

⌘
f

✓

|x|2
⌘2

◆

, (1.21)

where f 2 C1 �Rd,R+

�

satisfying suppf ⇢ [�1, 1] and ⌘ is the support radius of the initial
condition (that will be taken small at the end of the analysis). The solution of the acoustic
wave system has the form

8

>

>

<

>

>

:

p(x, t) =
@

@t



t

4⇡

Z

@B

p
0

(x+ cts)d�(s)

�

,

V (x, t) = � 1

⇢
0

r


t

4⇡

Z

@B

p
0

(x+ cts)d�(s)

�

,

where B is the ball centered at 0 and with radius 1 and c is the speed of sound defined by
c =

p

K
0

/⇢
0

. We have
Z

@B

p
0

(x
0

+ cts)d�(s) =
2⇡

⌘

Z

2

0

f

✓

(|x|� ct)2

⌘2
+

2ct|x|
⌘2

r

◆

dr.

As soon as ct > ⌘, this can be rewritten as follows:
Z

@B

p
0

(x
0

+ cts)d�(s) =
⇡⌘

ct|x|F
✓

(|x|� ct)2

⌘2

◆

,

where

F (r) =

Z 1

r

f
0

(r0)dr0.

Note that F is a smooth function compactly supported in [0, 1]. Therefore, we find that the
velocity field is given by

V (x, t) =
1

4⇢
0

c

x

|x|



2

⌘

|x|� ct

|x| f

✓

(|x|� ct)2

⌘2

◆

+
⌘

|x|2F
✓

(|x|� ct)2

⌘2

◆�

.
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When ct � ⌘, this becomes

V (x, t) ⇡ 1

2⌘⇢
0

c

|x|� ct

|x|2 f

✓

(|x|� ct)2

⌘2

◆

x

up to a term of relative order ⌘2/(ct)2. Remember that V (x, t) is the fluid velocity at position
x. If a particle is at x at time 0, then its position X(x, t) at time t satisfies

@X(x, t)

@t
= V (X(x, t), t) , X(x, 0) = x.

Using the assumption that the amplitude of the displacement is small we can linearize around
the original position and obtain that the position satisfies

@X(x, t)

@t
= V (x, t) or X(x, t) = x+

Z t

0

V (x, t0)dt0,

and it is therefore given by

X(x, t) = x+
⌘

4⇢
0

c2
x

|x|F
✓

(|x|� ct)2

⌘2

◆

.

As the displacement field is written x ! x+ v(x, t), we find

v(x, t) =
⌘

4⇢
0

c2
x

|x|F
✓

(|x|� ct)2

⌘2

◆

.

For instance, if the initial condition is

p
0

(x) = e�|x|2/⌘2 ,

then we get

v(x, t) =
⌘

4⇢
0

c2
x

|x|e
�(|x|� ct)2/⌘2 .

In the previous analysis, the initial condition p
0

was chosen to be centered at 0. If p
0

is
nonnegative-valued, y 2 ⌦ is the center, then the displacement field is given by

vy(x, t) =
⌘

|x� y|w
✓

|x� y|� ct

⌘

◆

x� y

|x� y| ,

and defined for x 2 Rd\{y} and t � ⌘/c. The support of the displacement field can be seen
as a thin spherical shell growing at a constant speed c. This can be approximated up to a
term of order ⌘/(ct) by

vy(x, t) =
⌘

ct
w

✓

|x� y|� ct

⌘

◆

x� y

|x� y| . (1.22)

In this formulation, w is the shape function and is such that w 2 C1(R,R+) and supp(w) ⇢
[�1, 1] and ⌘ is a positive parameter representing the thickness of the wavefront. Note that,
in order to have a wavefront with nonzero thickness, initial conditions of the form (1.21) are
required.
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Posing r = ct and defining the spherical coordinates elements ⇠ 2 Sd�1, ⇢ 2]0,+1[ we
assume that we can use the maps

vy,r,⌘(y + ⇢⇠) =
⌘

r
w

✓

⇢� r

⌘

◆

⇠. (1.23)

For y 2 Y and ⇢ > r
0

> 0. Y will be a smooth manifolds surface the domain of interest
satisfying dist(Y,K) > r

0

. It interesting to notice that even if v is small when ⌘ is small, it
is not the case for its derivative dxv. We make the following assumptions on w:

8

>

>

>

<

>

>

>

:

w 2 C1(R,R+),

supp(w) ⇢ [�1, 1],

w < 1,

w0 > �1.

(1.24)

Proposition 1.3.1 The Jacobian of the map x 7�! x+ v(x) satisfies

det(Id+ dvy,r,⌘(y + ⇢⇠)) = 1 +
1

r
w0
✓

⇢� r

⌘

◆

+ p⌘,r

✓

⇢� r

⌘

◆

with p⌘,r (⌧) 
⌘

r
for all ⌧ 2 [�1, 1].

Proof. The desired identity follows from the fact that dv is explicit and diagonal in the
orthonormal basis (⇠, e

2

, . . . , ed) where (e
2

, . . . , ed) ⇢ ⇠?. ⇤

Although the derivations in this section are in three-dimensions, we will use for the sake
of simplicity the same form of the displacement field in the numerical experiments carried
out in two dimensions.

In the next section we use the typical form of the displacement functions introduced here
to reduce the imaging problem to the inversion of a spherical means Radon transform.

1.4 Recovering the spherical means

For a continuous function f in Rd, we define its spherical means transform

R[f ](y, r) =

Z

Sd�1

f(y + r⇠)d�(⇠), (1.25)

for any y 2 Rd and r > 0. This transform has good properties in terms of invertibility
that we will discus later. The aim of this section is to prove that under some smoothness
assumption on q, its spherical means transform R[q] can be recovered from the measurement
map. For now on, we assume that q is given everywhere in Rd and is measurable on all the
spheres. We define the measurement map as

M⌘(y, r) =

Z

⌦

�

qv
y,r,⌘

(x)� q(x)
�

dx (1.26)

where vy,r,⌘ is defined in (1.23) is such that |vy,r,⌘| < dist
�

supp(q � q
0

), @⌦
�

. Recalling that
qv(x+ v(x)) = q(x), a change of variables gives
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M =

Z

⌦

�

q(x)� q
�

x+ v(x)
��

det(Id+ dv(x))dx

=

Z r+⌘

r�⌘

Z

Sd�1

⇥

q(y + ⇢⇠)� q
�

y + ⇢⇠ + v(y + ⇢⇠)
�⇤

det(Id+ dv(y + ⇢⇠))⇢d�1d⇢d�(⇠)

= ⌘

Z

1

�1

h

R[q](y, r + ⌘⌧)�R[q]
�

y, r + ⌘⌧ +
⌘

r
w(⌧)

�

i



1 +
1

r
w0 (⌧) + p⌘,r (⌧)

�

(r + ⌘⌧)d�1d⌧.

At first order in ⌘/r, it follows that

M⌘(y, r) =

⌘rd�1

Z

1

�1

h

R[q](y, r + ⌘⌧)�R[q]
�

y, r + ⌘⌧ +
⌘

r
w(⌧)

�

i



1 +
1

r
w0 (⌧)

�

d⌧
⇣

1 +O
⇣⌘

r

⌘⌘

.

(1.27)
We are now ready to give asymptotic formulas to link the measurement map M⌘(y, r) to

the spherical mean Radon transform of q. Let us first investigate the smooth case.

1.4.1 Smooth case

If q is smooth then so is R[q] and we can approximate the di↵erence in (1.27) by

�⌘
r
w(⌧)@rR[q](y, r).

From this, we prove the following approximation theorem which allows us to recover R[q] if
q is smooth enough. This result gives us a simple formula to directly recover the spherical
means Radon transform of q from the measurements by integrating over r.

Theorem 1.4.1 Suppose that q 2 C1,↵
�

⌦
�

. Let us fix y 2 ⌦ and let r
0

> 0. Suppose also
that q(x) = q

0

for x 2 B(y, r
0

), where B is the ball of center y and radius r
0

. Then, for all
r > r

0

and ⌘ < r
0

, we have

R[q](y, r) = q
0

� 1

⌘2 kw̃kL1

Z r

r
0

M(y, ⇢)

⇢d�2

d⇢+O(⌘↵), (1.28)

where w̃(⌧) = w(⌧)

✓

1 +
1

r
w0(⌧)

◆

. Here, the remainder O(⌘↵) is bounded by C⌘↵r, where

C depends only on q, r
0

, and kwk1.

Theorem 1.4.1 follows from the following two lemmas.

Lemma 1.4.2 Suppose that q 2 C1,↵(⌦). Let us fix y 2 ⌦. We have for ⌘ < r:

�

�

�

�

M(y, r)

⌘2rd�2

+

Z

1

�1

w̃(⌧)
@R[q]

@r
(y, r + ⌘⌧)d⌧

�

�

�

�

 C
⇣⌘

r

⌘↵

kw̃kL1 ,

where w̃(⌧) = w(⌧)

✓

1 +
1

r
w0(⌧)

◆

and C depends only on q.
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Proof. Let us denote

M̃(y, r) = ⌘rd�1

Z

1

�1

h

R[q](y, r + ⌘⌧)�R[q]
⇣

y, r + ⌘⌧ +
⌘

r
w(⌧)

⌘i

✓

1 +
1

r
w0(⌧)

◆

d⌧,

which satisfies
M(y, r) =

h

1 +O
⇣⌘

r

⌘i

M̃(y, r).

We have
�

�

�

�

M(y, r)

⌘2rd�2

+

Z

1

�1

w̃(⌧)
@R[q]

@r
(y, r + ⌘⌧)d⌧

�

�

�

�

 C
0

⌘

r

�

�

�

�

�

M̃(y, r)

⌘2rd�2

�

�

�

�

�

+

�

�

�

�

�

M̃(y, r)

⌘2rd�2

+

Z

1

�1

w̃(⌧)
@R[q]

@r
(y, r + ⌘⌧)d⌧

�

�

�

�

�


⇣

1 + C
0

⌘

r

⌘

�

�

�

�

�

M̃(y, r)

⌘2rd�2

+

Z

1

�1

w(⌧)
@R[q]

@r
(y, r + ⌘⌧)d⌧

�

�

�

�

�

+ C
0

⌘

r

�

�

�

�

Z

1

�1

w̃(⌧)
@R[q]

@r
(y, r + ⌘⌧)d⌧

�

�

�

�

,

where C
0

is a positive constant depending only on d. Since r 7! R[q](y, r) is a C1 function,
using the finite increment theorem it follows that for all r > 0, ⌘ and for all ⌧ 2 [�1, 1],
there exists � 2 [0, (⌘/r)w(⌧)] such that

R[q]
⇣

y, r + ⌘⌧ � ⌘

r
w(⌧)

⌘

�R[q](y, r + ⌘⌧) = �⌘
r
w(⌧)

@R[q]

@r
(y, r + ⌘⌧ � �).

Then,
�

�

�

�

R[q]
⇣

y, r + ⌘⌧ � ⌘

r
w(⌧)

⌘

�R[q](y, r + ⌘⌧) +
⌘

r
w(⌧)

@R[q]

@r
(y, r + ⌘⌧)

�

�

�

�

 ⌘

r
w(⌧)

�

�

�

�

@R[q]

@r
(y, r + ⌘⌧)� @R[q]

@r
(y, r + ⌘⌧ � �)

�

�

�

�

 
⌘

r
�↵w(⌧)  C

⇣⌘

r

⌘↵+1

kwk↵L1w(⌧),

where
 = ||@rR[q](y, ·)||

C0,↵

�

]0,+1[

�, (1.29)

and the constant C depends only on q. Here, we have used the fact that r 7! R[q](y, r) 2
C1,↵

�

]0,+1[
�

. Now integrating over [�1, 1] we get

�

�

�

�

Z

1

�1



R[q]
⇣

y, r + ⌘⌧ � ⌘

r
w(⌧)

⌘

�R[q](y, r + ⌘⌧) +
⌘

r
w(⌧)

@R[q]

@r
(y, r + ⌘⌧)

�✓

1 +
1

r
w0(⌧)

◆

d⌧

�

�

�

�

 2C
⇣⌘

r

⌘↵+1

kwk↵L1kw̃kL1 ,

i.e.,
�

�

�

�

�

M̃(y, r)

⌘2rd�2

+

Z

1

�1

w̃(⌧)
@R[q]

@r
(y, r + ⌘⌧)d⌧

�

�

�

�

�

 2C
⇣⌘

r

⌘↵

kwk↵L1kw̃kL1 ,
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where C depends only on q. Moreover, since rq is bounded,
Z

1

�1

w(⌧)
@R[q]

@r
(y, r + ⌘⌧)d⌧

is bounded by Ckw̃kL1 and the proof is complete. ⇤

Lemma 1.4.3 Under the same assumptions as in Lemma 1.4.2, the following inequality
holds when ⌘ ⌧ r:

�

�

�

�

M(y, r)

⌘2rd�2

+ kw̃kL1

@R[q]

@r
(y, r)

�

�

�

�

 C⌘�
�

kwk↵L1 + 1
�

kw̃kL1

with C depending only on q.

Proof. From
�

�

�

�

kw̃kL1

@R[q]

@r
(y, r)�

Z

1

�1

w̃(⌧)
@R[q]

@r
(y, r + ⌘⌧)d⌧

�

�

�

�


Z

1

�1

w̃(↵)

�

�

�

�

@R[q]

@r
(y, r)� @R[q]

@r
(y, r + ⌘↵)

�

�

�

�

d↵  ⌘↵
Z

1

�1

w̃(⌧)|⌧ |↵d⌧  ⌘↵kw̃kL1 ,

where  is given by (1.29), Lemma 1.4.2 yields the desired estimate. ⇤

Finally, integrating over r, we deduce Theorem 1.4.1 from the above lemmas.

1.4.2 Piecewise constant case

In medical applications, it may not be realistic to suppose regularity for q. Indeed, human
body is made of di↵erent parts of di↵erent materials like bones, muscles, fat, aqueous fluid,
etc. All of these di↵erent kinds of materials are adjacent to or confined in one another.
Thus, we obviously have to deal with discontinuities of the parameter q. A good model is to
consider q as a piecewise constant function. It is also acceptable to consider that all the parts
where q is constant have a smooth enough boundary. We shall discuss about this model of
piecewise constant distributions later in this thesis.

In this subsection, we suppose that there exists a finite partition (Ai)i2N of ⌦ such A
0

is
Lipschitz and that for all i 2 N⇤, @Ai is C1 and q|A

i

is constant. The question is now to know
how smooth is R[q] for such a piecewise constant q. Is it smooth enough in order to have
the same kind of approximation as in Theorem 1.4.1? Clearly, a pointwise approximation of
@rR[q] is not available. We just have to take a spherical inclusion with constant parameter
q inside and outside to see that R[q] is not di↵erentiable. However, under an acceptable
assumption, we can say that, for almost all y 2 ⌦, r 7! R[q](y, r) is continuous. This
a consequence of the smoothing e↵ect of the operator R that we will discuss later. The
following result gives the continuity of r 7�! R[q](y, r) for almost all y 2 Rd.

The following result is proved in Appendix 1.6.2.

Theorem 1.4.4 Suppose that q satisfies the conditions above. There exists a numerable set
N ⇢ Rd, such that for all y 2 Rd\N , the real function r 7! R[q](y, r) is continuous on
(0,+1).
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With this theorem in hand, we can consider that for any chosen y 2 Rd, the function
r 7! R[q](y, r) is continuous. But as we will see later, this regularity is not su�cient to have
the same approximation as in Theorem 1.4.1. Actually, we need at least a C0,↵-regularity with
some ↵ > 0. If we study the spherical means Radon transform of 1A where A is a C1 bounded
domain and 1A denotes its characteristic function, then it can be proved that if S(y, r

0

), the
sphere of radius r

0

and center y, and @A are not tangent to each other, then the function
r 7! R[1A](y, r) is C1 at r = r

0

. In order to estimate the singularities in the tangent case,
we calculate the behavior of r 7! R[1A](y, r) around r = 1, where A = B(x, c), 0 < c < 1,
x = (c, 0, . . . , 0), and y = (1, 0, . . . , 0). In dimension 2, a straightforward calculation shows
that

R[1A](y, r) ⇠
r!1

�
2

r

c

1� c

p
1� r

and in dimension 3,

R[1A](y, r) ⇠
r!1

�
2⇡

c

1� c
(1� r).

Hence that gives us a C0,1/2-regularity in the two-dimensional case and a C0,1-regularity in
three dimensions. Thus, in the following we will consider that r 7! R[1A](y, r) is C0,↵ for
almost all y 2 ⌦ with 1/2  ↵  1.

Theorem 1.4.5 Suppose that q is piecewise constant and that R[q] 2 C0,↵
�

⌦
�

where 1/2 
↵  1. Let us fix y 2 ⌦ and r

0

> 0. Suppose that q(x) = q
0

for x 2 B(y, r
0

), where B is the
ball of center y and radius r

0

. Then, for all r > r
0

and ⌘ ⌧ r
0

, we have

R[q](y, r) = q
0

� 1

⌘2 kwkL1

Z r

r
0

M(y, ⇢)

⇢d�2

d⇢+O(⌘↵), (1.30)

where the remainder O(⌘↵) is bounded by C⌘↵r2 with C depending only on q, r
0

, and kwkL1.

Proof. By the definition of M , we have

1

⌘2

Z r

r
0

M(y, ⇢)

⇢d�2

d⇢ = (1 +O(⌘)) Ir
0

,⌘(y, r),

where

Ir
0

,⌘(y, r) =
1

⌘

Z

1

�1

Z r

r
0

⇢



R[q]

✓

y, ⇢+ ⌘⌧ � ⌘

⇢
w(⌧)

◆

�R[q](y, ⇢+ ⌘⌧)

�

d⇢d⌧.

Therefore,
|Ir

0

,⌘(y, r) + kwkL1

R[q](y, r)� kwkL1

R[q](y, r
0

)|


Z

1

�1

�

�

�

�

A
⌘
� B
⌘
+R[q](y, r)w(⌧)�R[q](y, r

0

)w(⌧)

�

�

�

�

d⌧

with

A =

Z r

r
0

⇢R[q]

✓

y, ⇢+ ⌘⌧ � ⌘

⇢
w(⌧)

◆

d⇢, B =

Z r

r
0

⇢R[q] (y, ⇢+ ⌘⌧) d⇢.

We introduce the following change of variables ⇢! ✓ = ⇢� ⌘
⇢
w(⌧), i.e.,

⇢ =
1

2

⇣

✓ +
p

✓2 + 4⌘w(⌧)
⌘

= ✓
⇣

1 +
⌘

✓2
w(⌧) +O

�

⌘2
�

⌘

,
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d⇢ =
1

2

✓

1 +
⇣

1 + 4
⌘

✓2
w(⌧)

⌘�1/2
◆

d✓ =
⇣

1� ⌘

✓2
w(⌧) +O

�

⌘2
�

⌘

d✓.

Then,
⇢d⇢ =

�

1 +O
�

⌘2
��

✓d✓.

Using this change of variables, we rewrite

A =

Z r�⌘w(⌧)/r

r
0

�⌘w(⌧)/r
0

�

1 +O
�

⌘2
��

✓R[q] (y, ✓ + ⌘⌧) d✓

and hence,

A� B =

Z r
0

r
0

�⌘w(⌧)/r
0

✓R[q] (y, ✓ + ⌘⌧) d✓ �
Z r

r�⌘w(⌧)/r

✓R[q] (y, ✓ + ⌘⌧) d✓

+O
�

⌘2
�

Z r�⌘w(⌧)/r

r
0

�⌘w(⌧)/r
0

✓R[q] (y, ✓ + ⌘⌧) d✓,

or equivalently,
A� B = C �D + EO

�

⌘2
�

with

C =

Z r
0

r
0

�⌘w(⌧)/r
0

✓R[q] (y, ✓ + ⌘⌧) d✓, D =

Z r

r�⌘w(⌧)/r

✓R[q] (y, ✓ + ⌘⌧) d✓,

and

E =

Z r�⌘w(⌧)/r

r
0

�⌘w(⌧)/r
0

✓R[q] (y, ✓ + ⌘⌧) d✓.

Since R[q](y, r) is continuous, there exist �
1

2 [0, ⌘w(⌧)/r
0

] and �
2

2 [0, ⌘w(⌧)/r] such
that

C = (r
0

� �
1

)R[q] (y, r
0

+ ⌘⌧ � �
1

) ⌘w(⌧)/r
0

,

D = (r � �
2

)R[q] (y, r + ⌘⌧ � �
2

) ⌘w(⌧)/r.

Thus

|C
⌘
�R[q](y, r

0

)w(⌧)|  w(⌧)

�

�

�

�

✓

1� �
1

r
0

◆

R[q](y, r
0

+ ⌘⌧ � �
1

)�R[q](y, r
0

)

�

�

�

�

 |R[q](y, r
0

+ ⌘⌧ � �
1

)�R[q](y, r
0

)|+ ⌘

r2
0

kqkL1 kwkL1

 k⌘↵
kwk↵L1

r↵
0

+ ⌘
kqkL1

r2
0

kwkL1  C⌘↵,

where k := ||R[q](y, ·)||C0,↵

((0,+1))

and C depends only on q, kwk1, and r
0

. Similarly,

|D
⌘
�R[q](y, r)w(⌧)|  C⌘↵

with C depending only on q, kwk1, and r
0

. Moreover,

|E|  kqkL1 r2.
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Finally, it follows that
�

�

�

�

A
⌘
� B
⌘
+R[q](y, r)w(⌧)�R[q](y, r

0

)w(⌧)

�

�

�

�

 C
1

⌘↵ + C
2

r2⌘  Cr2⌘↵,

where C, C
1

and C
2

depend on r
0

, kwk1, and q. Then, integrating over ↵ yields

|Ir
0

,⌘(y, r) + kwkL1

R[q](y, r)� kwkL1

R[q](y, r
0

)|  Cr2⌘↵.

As R[q] is bounded, the estimate above leads to the conclusion. ⇤

1.5 Numerical results

This section illustrates numerically our main findings in this chapter. In particular, we
shall see here the resolution enhancement compared to the Rayleigh criteria, which is the
resolution limit for a purely microwave imaging. Let us choose ⌦ =]� 1, 1[ and q

0

= 1. The
permittivity q is given by the first picture in Figure 1.2. Taking y 2 S1 r

0

= 0.1, r 2]r
0

, 2[
and ⌘ < r

0

, we choose the following simple form for the acoustic displacement

vy,r,⌘(y + ⇢⇠) =
r
0

r
⌘ exp

✓

⌘2

(⇢� r)2 � ⌘2

◆

⇠,

which satisfies conditions (1.23) and (1.24). For any y 2 S1 and r 2]r
0

, 2[ and ⌘ < r
0

we
compute the map vy,r,⌘ and the map qv � q. The we compute the approximated di↵erential
scattered field  v = 'S,v � 'S, that is, the solution to

8

<

:

4 v + !2q
0

 v = �!2(qv � q)'I in Rd,

lim
|x|!1

|x| d�1

2

✓

x

|x| ·r� i!
p
q
0

◆

 v(x) = 0 uniformly in x/|x|

with ! = 1 and 'I(x) = e�ik·x. Note that we use here the Born approximation to replace q
by q

0

. This is just for the simplicity of the computation but does not change significantly
the results for small contrast. Then, using Theorem 1.2.2, we deduce the function M(y, r)
from

M :=

Z

⌦

(qv � q) ⇡ Re

Z

@⌦

eik·x(@⌫ � ik · ⌫) v.

As q is piecewise constant and its spherical means Radon transform R[q] is C0,↵, we apply
Theorem 1.4.1 to obtain R[q] from M using

R[q � q
0

](y, r) ⇡ � 1

⌘2 kwkL1

Z r

r
0

M(y, ⇢)d⇢,

which gives approximately R[q], as shown in the third picture in Figure 1.2.
As we can see the support of R[q � q

0

] does not fit with the one expected due to the
successive approximations and the numerical errors. To fix it, we impose a simple coherence
condition,
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Figure 1.2: From left to right, top to bottom. (1) The permittivity distribution to be recon-
structed in ⌦ =]�1, 1[2. (2) The approximate measurement function M(y, r) with 64 centers
y equidistributed on the unit circle, obtained from simulated boundary measurements. (3)
The uncorrected Radon transform of the permittivity obtained by direct application of for-
mula (1.30). (4) The Radon transform of the permittivity corrected by applying formula
(1.32).

Z

2

0

M(y, ⇢)d⇢ = 0, 8y 2 S1. (1.31)

To do so, we denote M+ = max(M, 0) and M� = �min(M, 0) and introduce a correction
coe�cient by

a(y) =

✓

Z

2

0

M+(y, ⇢)d⇢

◆� 1

2

✓

Z

2

0

M�(y, ⇢)d⇢

◆

1

2

and define the corrected measurement function by

8

<

:

Mcorr(y, r) = a(y)M+(y, r)� 1

a(y)
M�(y, r) if a(y) is defined and a(y) 6= 0,

Mcorr(y, r) = 0 otherwise,
(1.32)
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which satisfies the coherence condition (1.31). In the fourth picture in Figure 1.2, we can see
the approximate spherical means Radon transform computed using the corrected measure-
ment function. Now we just have to invert the operator R using a filtered back projection
algorithm.
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Figure 1.3: Reconstruction of the permittivity with acoustic sources y on the unit circle.
From top to bottom, the wavefront size ⌘ is 0.1, 0.05 and 0.001 and from left to right the
number of acoustic sources is 16, 32, and 128.

It is worth emphasizing that the resolution is much better that what we could have with
purely microwave tomography. Here, the wavelength of the microwave is of order of the
size of ⌦. Our resolution here is fixed by the acoustic pulse size ⌘. As our approximation
in Theorem 1.4.5 is of order ⌘↵ with ↵ 2]0, 1[, it is interesting to numerically estimate this
order. In Figure 1.5, we represent the error with respect to ⌘ and the assumption ↵ = 1/2
in dimension 2 for deriving approximation (1.30) seems to be satisfactory.

To illustrate the stability of the algorithm, we add some white noise to the measurement
functionM ; see (1.4). It seems that the smoothing e↵ect of a large acoustic pulse brings more
stability than for thin pulses. Actually, there is a compromise to find between resolution
and stability as illustrated by Figure 1.5.
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Figure 1.4: Reconstruction of the permittivity from noisy measurements. A white Gaussian
noise is added to the measurements. From top to bottom, the wavefront size ⌘ is 0.1, 0.05
and 0.001 and from left to right, the noise/signal ratio is 0.1, 0.2, and 0.5.

1.6 Appendix

1.6.1 Sperical means Radon transform

For f a piecewise continuous function on Rd and E ⇢ Rd, we can define the spherical means
Radon transform of f over E by

R[f ](y, r) =

Z

Sd�1

f(y + r⇠)d�(⇠) y 2 E, r > 0,

where � is the surface measure over Sd�1. A lot of work has been done over the inversion
problem of the spherical means Radon transform, in particular, when the centers are taken
on a sphere. Let Ba be the ball of center 0 and radius a and Sa = @Ba. If we look at R as
the map

R : D(Ba) �! D
�

Sa⇥]0,+1[
�

f 7�!
✓

(y, r) 7�!
Z

S

f(y + r⇠)d�(⇠)

◆

,
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Figure 1.5: Error of the reconstructed permittivity in L2(⌦) with respect to the wavefront
size ⌘ for 64 acoustic centers. The flat on the top part corresponds to a maximal error when
the reconstructed q is totally di↵erent from the true one. The flat on the bottom part is a
saturation due to others parameters of the simulation such as the number of acoustic centers
used. The bend of the a�ne part is about 0.49.

then we have the following inversion formula for d = 3 [52]:

f(x) =
1

2⇡a
r ·
Z

S
a

y
@
@r
(rR[f ])(y, |x� y|)

|x� y| d�(y), (1.33)

while for d = 2 [53],

f(x) =
1

2⇡a

Z

S
a

Z

2a

�2a

r @
@r
(R[f ])(y, t)

|x� y|� t
dt d�(y). (1.34)

1.6.2 Proof of Theorem 1.4.4

In order to prove Lemma 1.4.4 we need the following result.

Lemma 1.6.1 Let B and S be the unit open ball and the unit sphere of Rd, d = 2, 3. Let �
be the Euclidean surface measure over S. Let A ⇢ B be an open measurable set such that A
is a manifold with boundary. Then, the function f defined by

f(r) =

Z

S

1A(r⇠)d�(⇠), r 2 [0, 1),

satisfies
lim
r!1

�
f(r) = �(A \ S).

Proof. We denote by T = A \ S and its boundary @T = T \ T\S. We have �(@T ) = 0.
We will use the fact that the surface Hausdor↵ measure Hd�1 restricted over S is equal to



CHAPTER 1. ACOUSTO-MICROWAVE TOMOGRAPHY, A MODEL PROBLEM 33

0 0.1 0.2 0.3 0.4 0.5

10�2

10�1.8

10�1.6

10�1.4

10�1.2

Noise ratio

L
2

-e
rr
or

⌘ = 0.1
⌘ = 0.05
⌘ = 0.02
⌘ = 0.01

Figure 1.6: Error of the reconstructed permittivity in L2(⌦) with respect to the relative
white noise on measurements. Each point is obtained by a statistic on 300 realizations of
the noise. The lower and upper bounds of the colored parts represents the lower and upper
decile.

� and then Hd�1(@T ) = 0. For all " > 0, we denote by ⌦"(Rd) the set of open balls of Rd of
diameters smaller than ". For D ⇢ Rd, we let

F"(D) =

(

(Ci)i2I , I ⇢ N, 8i 2 I, Ci 2 ⌦"(Rd), D ⇢
[

i2I

Ci

)

,

and define

Hd�1

" (D) = inf

(

X

i2I

↵d�1

r(Ci)
d�1, (Ci)i2I 2 F"(D)

)

,

where r(Ci) is half the diameter of Ci and ↵d�1

the volume of the d � 1 unit ball. This
quantity converges when " ! 0 and its limit is the d � 1 Hausdor↵ measure of D denoted
Hd�1(D). In our proof, we have here

lim
"!0

Hd�1

" (@T ) = 0.

Let " > 0 and (Ci)i2I 2 F"(@T ). We set V =
S

i2I Ci open and containing @T and
denote U = V \ S. We let T� = T\U and T

+

= T [ U . Note that T� is a closed set and
T� ⇢ T\@T . Write

f(r) =

Z

T�

1A(r⇠)d�(⇠) +

Z

U

1A(r⇠)d�(⇠) +

Z

S\T
+

1A(r⇠)d�(⇠)

= fT�(r) + fU(r) + fS\T
+

(r).
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Now we want to prove that there exists r
0

2]0, 1[ such that for all r 2]r
0

, 1[,

fT�(r) = �(T�), (1.35)

fU(r) 2 [0, �(U)], (1.36)

fS\T
+

(r) = 0. (1.37)

(i) Suppose that (1.35) is false. There exists a sequence (rn) converging to 1 such that
fT�(rn) < �(T�) for all n 2 N. We have �( 1

r
n

A \ T�) < �(T�) and then T�\ 1

r
n

A 6= ;.
Let us take xn 2 T�\ 1

r
n

A. Up to extracting a subsequence, we can say that the sentence
(xn) converges to x 2 T� because T� is closed. Using the definition of T� we can say that
x 2 T\@T . We have x 2 @A. Indeed, on the one hand, x 2 T so that x 2 A, and on the
other hand, x = lim xn with xn 2 ( 1

r
n

A)c, which implies that x 2 Ac. Since x 2 @A and A

is manifold with boundary, there exists ⌘ > 0 such that B(x, ⌘) \A is homeomorphic to Rd

and we can choose ⌘ small enough to ensure B(x, ⌘)\S = B(x, ⌘)\T = B(x, ⌘)\ @A. This
implies that B(x, ⌘) \ (B\A) = ;. The sequence (rnxn) is in rnT�\A ⇢ B\A and converges
to x, which leads to a contradiction.
(ii) Item (1.36) is straightforward.
(iii) Suppose that (1.37) is false. There exists a sequence (rn) converging to 1 such that
fS\T

+

(rn) > 0. This implies that 1

r
n

A \ (S\T
+

) 6= ;. Let us take xn in this set. Up to
extracting a subsequence, we can consider that (xn) converges to x 2 S\T

+

, which is closed.
But (rnxn) is a sequence of A and converges also to x. Thus x 2 S \ A = T , which is a
contradiction since T ⇢ T

+

.
Now we get from (1.35), (1.36), and (1.37) that, for r 2]r

0

, 1[,

�(T�)  f(r)  �(T�) + �(U)

which leads to
�(T )� �(U)  f(r)  �(T ) + �(U).

We can now control �(U) by

�(U) 
X

i2I

�(Ci \ S)  C
X

i2I

↵d�1

r(Ci)
d�1,

where C is a positive constant. Next, taking the inf over the families (Ci)i2I we obtain that

�(T )�Hd�1

" (@T )  lim inf
r!1

�
f(r)  lim sup

r!1

�
f(r)  �(T ) +Hd�1

" (@T ).

Finally, sending " to zero, we get the result. ⇤

Remark 1.6.2 Lemma 1.6.1 is also true if we take A ⇢ Rd\B, and therefore,

lim
r!1

+

f(r) = �(A \ S).

Corollary 1.6.3 Let A ⇢ Rd be an open measurable set such that A is a manifold with
boundary. If the function

f(r) =

Z

S

1A(r⇠)d�(⇠)

is not continuous at 1, then �(@A \ S) > 0.
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Proof. Let us denote A� = A\B and A
+

= A\B. Lemma 1.6.1 and Remark 1.6.2 lead to

lim
r!1

�
f(r) = �(A� \ S), lim

r!1

+

f(r) = �(A
+

\ S).

Moreover, f(1) = �(A \ S). Now, from A \ S ⇢ A� \ S and A \ S ⇢ A
+

\ S we get

�(A \ S)  �(A� \ S), �(A \ S)  �(A
+

\ S).

Since by assumption these two inequalities cannot both be equalities, we can consider
that �(A\ S) < �(A� \ S) (resp. �(A\ S) < �(A

+

\ S)). So there exists a set ⌦ 2 S open
in S such that ⌦ ⇢ A�\A (resp. ⌦ ⇢ A

+

\A). Hence ⌦ ⇢ @A and thus ⌦ ⇢ @A \ S, which
implies that �(@A \ S) > 0.

⇤

Proof of Theorem 1.4.4. Let y 2 Rd. We suppose that r �! R[q](y, r) is not continuous
at r

0

. The map q is supposed to be defined by

q(x) =
X

i2I

qi1A
i

(x),

with I being finite, qi being constants, and Ai being C1-domains. So there exists i 2 I such
that r 7! R[1A

i

](y, r) is not continuous at r
0

. As Ai is a manifold with boundary, we can use
Corollary 1.6.3 to obtain that �r

0

(@Ai \ Sr
0

) > 0. Therefore, for all (y, r
0

) 2 Rd ⇥ (0,+1)
such that r 7! R[q](y, r) is not continuous at r

0

, there exists i 2 I and V ⇢ @Ai such that
the surface measure of V is positive and the curve center is y. Since I is finite and the
surface measure of @Ai is finite too, it follows that there exists no more than a numerable
set of centers y such that r 7! R[q](y, r) is not continuous. ⇤

1.6.3 Di↵raction tomography

In this section we present a standard reconstruction method from purely electromagnetic
measurements, known as di↵raction tomography, and show the superiority of the acousto-
electromagnetic tomography in terms of resolution.

Let '0
I be given by

'0
I(x) = e�ik0·x,

where k0 satisfies |k0|2 = !2q
0

. Using the Born approximation, one can show that
Z

@⌦

�

@⌫'S'0
I � 'S@⌫'0

I

�

⇡ �!2

Z

⌦

(q � q
0

)(x)ei(k+k0)·x dx, (1.38)

where 'S is the solution of (1.15). Then (1.38) yields the Fourier transform of q�q
0

at k+k0.
If the object is illuminated from many di↵erent directions k/|k| and k0/|k0| varies over the
unit sphere, one can fill up a ball of diameter 2! in the Fourier domain, and therefore, the
reconstructed q � q

0

from (1.38) by direct Fourier inversion is a low pass version of the true
one and the resolution of the reconstructed image is ⇡/!; see [3].

Figure 1.6.3 shows the reconstructed images using di↵raction tomography for the same
phantoms as in Figures 1.2 and 1.4. In order to obtain comparable image resolutions, much
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higher frequencies ! should be used in the case of purely electromagnetic tomography. This
clearly illustrates the superiority of the acousto-electromagnetic process in terms of the
resolution. On the other hand, it should be emphasized that di↵raction tomography uses
many incidence directions while only one direction is enough for acousto-electromagnetic
tomography.
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Figure 1.7: Reconstruction of the permittivity with the classical microwave tomography
framework for frequency ! fixed at 10, 20, 50 and 100. Note that in our method, we work
with ! = 1.

1.6.4 Reconstruction from limited-view data

In this section we show how to modify our approach in the case of limited-view data. Assume
that the electromagnetic measurements can be done only on an open part � of @⌦. Denote
by �c = @⌦ \ �. Let ⌦0 b ⌦ be an open set with C2 boundary and let ⌦ \ ⌦0 be connected.
It is known that the set V of solutions to the Helmholtz equation, �+ !2q

0

, with boundary
data 0 on �c is dense in L2(⌦0) in the set of all solutions; see [25, 26].

Here, to fix ideas, we consider 'S and 'D,u to be the solutions of the Helmholtz equations
with Dirichlet boundary conditions:

(

4'S + !2q'S = �!2q
0

�s'I in ⌦,

'S = 0 on @⌦,
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and
(

4'S,v + !2qu'S,v = �!2q
0

�su'I in ⌦,

'S,v = 0 on @⌦,

and measure @('S � 'S,v)/@n on �. In order to guarantee existence and uniqueness of
solutions to the above equations, one should assume that � is small enough and !2q

0

is not
a Dirichlet eigenvalue for �� on ⌦.

Assume that �s is supported in ⌦0. Let � 2 V be such that ||� � Ae�ik·x||L2

(⌦

0
)

= o(�).
Following the proof of Theorem 1.2.2, one can show that the following approximation holds

1

A!2

Re



Z

�

�
@

@n
('S � 'S,v) d�

�

⇡
Z

⌦

(qu � q). (1.39)

Therefore, from the (weighted) limited-view measurements in the left-hand side of (1.39) one
can reconstruct by exactly the same approach as the one described in this chapter an image
of q = q

0

(1+ �s). To numerically compute the special test function � one can minimize over
 , such that (�+ !2q

0

) = 0 in ⌦, the discrepancy functional

J [ ] := || � Ae�ik·x||2L2

(⌦

0
)

+ µ|| ||2L2

(�

c

)

,

with µ > 0 being a regularization parameter. Note that if the data is collected over a broad
range of frequencies, then the optimal control techniques in the time-domain developed in
[4] can be used.





Chapter 2

Ultrasound-modulated di↵use optical
tomography

Introduction

Di↵use optical tomography is an emerging biomedical modality that uses di↵use light to
probe structural variations in the optical properties of tissue [27]. The associated inverse
problem for di↵use light propagation consists of recovering the absorption properties of a
medium of interest from boundary measurements of the light intensity. The most important
current applications of di↵use optical imaging are detecting tumors in the breast and brain
imaging [33].

Around the red/infrared wavelength, the light is highly scattered in living tissues. At
macroscopic scale, its propagation does not fit with a wave model. A classical approach is
to consider the directional density of light energy L(x, t, ⇠) at position x at time t in the
direction ⇠. This quantity satisfies radiative transfer equation [102]. Define the fluence or
intensity as the average of L over all the direction

�(x, t) =

Z

Sd�1

L(x, t, ⇠)d�(⇠), (2.1)

where Sd�1 is the unit sphere in dimension d.
Under the di↵usion approximation, this quantity is solution of the di↵usion problem

1

c
@t��r · (D�) + µa� = S, (2.2)

where c is the light speed in the void, D =
�

3(µa+µ0
s)
��1

, µa is the absorption coe�cient, µ0
s

the reduced scattering coe�cient, and S represents an eventual light source; see [102]. The
purpose of the di↵use optical tomography is to identify the coe�cient µa and/or µ0

s from
boundary measurements using many di↵erent illuminations.

Let ⌦ be a smooth bounded domain of Rd, for d = 2, 3, representing our domain of
interest. An external illumination is represented by a Robin type boundary condition of the
form

l@⌫�+ � = g on @⌦, (2.3)

39
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where g is the illumination intensity and l > 0 is the extrapolation length computed from
the radiative transfer equation at the boundary. If the illumination is constant with respect
to time, then the light intensity in ⌦ quickly gets its permanent regime because 1/c is very
small compared to D and µa. In this case, the light intensity is a solution of the problem

(

�r · (D�) + µa� = 0 in ⌦

l@⌫�+ � = g on @⌦.
(2.4)

As D and µa belongs to L1(⌦) and are bounded from above and below by positive constants,
it Lax-Milgram theorem shows that this problem is well posed and for any g 2 H1/2(@⌦)
there exists a unique solution in H1(⌦).

For now on, in order to simplify the problem, we assume that the scattering coe�cient
D is constant. Denoting the attenuation rate a = µa/D, we consider the simplified problem

(

�4�+ a� = 0 in ⌦,

l@⌫�+ � = g on @⌦.
(2.5)

This choice is motivated by the fact that in the breast tumor detection problem, the reduced
scattering coe�cient µ0

s is much higher than the absorption µa and it does not variate
much. Due to the high concentration of blood vessels in tumors, the contrast is good on the
absorption coe�cient µa.

The main purpose of this chapter is to recover the coe�cient a in (2.5) from light bound-
ary measurements using acoustic perturbations of the medium. The reconstruction of a from
purely optical measurements is severely ill-posed and lacks certain resolution and stability
properties. Using acoustically-induced perturbations of the domain, it is expected to enhance
both resolution and stability for the reconstruction of the absorption coe�cient a.

In the hybrid method developed in this chapter, only one illumination g is needed. We
introduced an acoustic perturbation whose only e↵ect is to generate a small internal dis-
placement in ⌦. This displacement field will travel in the domain and will perturb the
light measurements on the boundary. The measurement perturbations will bring additional
information about the absorption coe�cient in the support of the displacement.

Consider a small displacement v : ⌦ �! Rd, supported inside ⌦ for simplicity. The
absorption coe�cient become av implicitly defined by

av(x+ v(x)) = a(x) (2.6)

and the light fluence changes to �v satisfying

(

�4�v + av�v = 0 in ⌦

l@⌫�v + �v = g on @⌦.
(2.7)

Now compute the cross correlation between � and �v on @⌦, the following formula

1

l

Z

@⌦

g(�v � �) =
Z

⌦

(av � a)��v (2.8)

holds. Assuming that the variation �v �� can be measured on the boundary, we define the
variational measurement as
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NIR light source

Light detectors

Focused acoustic beam

Acoustic source

Spherical acoustic
pulses

⌦

y

6

Absorbing inclusion

Figure 2.1: Di↵usive optic imaging procedure perturbed by an acoustic displacement field.
Light detectors detect variations of the outgoing light intensity.

Mv =

Z

⌦

(av � a)��v. (2.9)

As in Chapter 1, assume that the medium is mechanically homogeneous and consider a
spherical type perturbation given in spherical coordinates by

v⌘,y,r(y + ⇢⇠) =
⌘

r
w

✓

⇢� r

⌘

◆

⇠, 8(⇢, ⇠) 2]⌘,+1[⇥Sd�1, (2.10)

where y is the center of the pulse, r its radius (proportional to the time) and ⌘ its size. The
function w is the pulse shape supposed to be non negative of class C1 supported in [�1, 1]
and satisfying w < 1 and w0 > �1; see Chapter 1.

Assume that y can be moved around the domain of interest, we show that through an
inversion of the spherical means Radon transform, we can reconstruct the curl-free part
of the vectorial field �2ra. This yields the equation (2.22) for a where the source term
is computed from the data. Hence the functions a and � satisfy the coupled system of
equations (2.23) and (2.24). This nonlinear coupling suggests the iterative algorithm (2.25)–
(2.26) for reconstructing a. One of the main contributions of this chapter is to prove the
convergence of the iterative scheme to the true image a⇤ using the contraction fixed point
theorem. Moreover, the high resolution and the good stability properties of the reconstructed
images are shown.
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The chapter is organized as follows. In Section 2.1, we introduce some preliminary results.
In Section 2.2, we present our reconstruction algorithm. In Section 2.3 we provide a proof of
convergence for the algorithm. In Section 2.4 we illustrate the performance of the proposed
algorithm in terms of resolution and stability. The chapter ends with a short discussion.
Throughout the chapter, C is a universal constant depending only on known quantities and
functions.

2.1 Preliminaries

In this section, we first recall two consequences of well-known regularity results. The proposi-
tions we present here are special cases in those papers but enough for us to study ultrasound-
modulated optical tomography. The reader can find the following result in [76, 80].

Proposition 2.1.1 Suppose that ⌦ is smooth. If a 2 L1(⌦), then any weak and bounded
solution � of the equation

���+ a� = 0, (2.11)

is in C1(⌦) and
k�kC1

(⌦

0
)

 c
1

�

k�kL1
(⌦)

, kakL1
(⌦)

, dist(⌦0, @⌦)
�

for all ⌦0 b ⌦.

The following proposition is from [59, 79].

Proposition 2.1.2 Let D be a bounded smooth domain and �, ⇤, and M be positive con-
stants. If � 2 L1(D) is such that

0 < �  �  ⇤ in D

and if f 2 L1(D) then the solution a of

⇢

r · (�2ra) = f in D,
a = 0 on @D

(2.12)

is in C1

�

D
�

with
kakC1(D)  c

2

(�,⇤,M). (2.13)

Remark 2.1.3 Assume that the constant c
2

in (2.13) is optimal (i.e., c
2

is the infimum of
all of its possible values), then,

c
2

(�,⇤, �M)  �c
2

(�,⇤,M) (2.14)

for all 0 < � < 1. This can be seen by multiplying both sides of (2.12) by �.

We next establish the weak comparison principle and the strong maximum principle for
Laplace equations with the Robin boundary condition under consideration. The main idea of
the proof is based on the weak comparison principle in [82] for Dirichlet boundary conditions,
with some suitable modifications. Although this might be a well-known result, we provide
a proof here for the sake of completeness. Also, our strong maximum principle is somewhat
di↵erent from the classical one.
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Proposition 2.1.4 (weak comparison principle) Let a be a nonnegative measurable func-
tion and assume that � 2 H1(⌦) satisfies

⇢

���+ a� � 0 in ⌦,
@⌫�+ � � 0 on @⌦.

(2.15)

Then � � 0 a.e. in ⌦.

Proof. Using �� = max{0,��} � 0 as a test function in the variational formulation of
(2.15) gives

0 
Z

⌦

r� ·r��dx�
Z

@⌦

@⌫��
�d� +

Z

⌦

a���dx


Z

⌦

r� ·r��dx+

Z

@⌦

���d� +

Z

⌦

a���dx

= �
Z

⌦

|r��|2dx�
Z

@⌦

|��|2d� �
Z

⌦

a|��|2dx.

It follows that �� = 0. Note that �� is admissible to be a test function because it belongs
to H1(⌦) (see [60]). ⇤

Proposition 2.1.5 (strong maximum principle) Let g 6⌘ 0 be a nonnegative smooth
function defined on @⌦. Let D b ⌦ be smooth. For all c > 0, the solution � of

⇢

���+ c� = 0 in ⌦,
@⌫�+ � = g on @⌦,

(2.16)

is bounded and positive in D.

We need the following lemma to prove this strong maximum principle [96].

Lemma 2.1.6 (Hopf lemma) Let � 2 C1

�

⌦
�

\ C2 (⌦) satisfy

���+ c� � 0

on ⌦ where c is a nonnegative constant. If there exists x
0

2 @⌦ such that �(x
0

)  0 and
�(x) > �(x

0

) for all x 2 ⌦, then
@⌫�(x0

) < 0.

Proof. [Proof of Proposition 2.1.5] Since g is nonnegative, so is � because of Proposition
2.1.4. On the other hand, applying Proposition 2.1.4 again for kgkL1

(@⌦) � �, we can see
that �  kgkL1

(@⌦). The boundedness of � in ⌦ and hence D has been verified. In order
to use the Hopf lemma, we show that � 2 C2(⌦). In fact, for all x

0

2 ⌦, let D
1

and D
2

satisfying
D

1

b D
2

b ⌦
be two open neighbourhoods of x

0

. The boundedness of � in the previous paragraph and
Proposition 2.1.1 imply that � belongs to C1(D

2

). On the other hand, Theorem 8.8 in [60]
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helps us to see that � 2 H2(D
2

). Hence, @x
i

�, i = 1, · · · , d, is in H1(D
2

). It also satisfies
the equation

��@x
i

�+ c@x
i

� = 0.

Hence, @x
i

� belongs to C1(D
1

) by Proposition 2.1.1. In other words, � 2 C2(D
1

).
We claim that � > 0 not only inD but also in ⌦. Assume that �(x

0

) = 0 for some x
0

2 ⌦.
Since g is not identically zero, neither is �. Hence, we can find a point x

1

2 ⌦ such that
�(x

1

) > 0. Without loss of generality, we can suppose that B(x
1

, r) ⇢ ⌦ with r = |x
1

� x
0

|
and �(x) > 0 for all x 2 B(x

1

, r). Since � 2 C2(⌦), it belongs to C1(B(x
1

, r))\C2(B(x
1

, r)).
We can apply the Hopf lemma for � in B(x

1

, r) to get

r�(x
0

) · (x
1

� x
0

) < 0.

This is a contradiction because � attains its minimum value at x
0

and r�(x
0

) = 0.

2.2 A reconstruction algorithm

Considering a small displacement field v in the domain ⌦ changing the light absorption a to
av = a � (Id + v)�1, we measure the variation of the light fluence �v � � on @⌦. The aim
is to reconstruct the optical absorption coe�cient a from several measurements generated
by several displacement field with a better resolution and stability than using pure optical
tomography.

In Chapter 1, we have shown that the displacement function v at x caused by a short
diverging spherical acoustic wave generated at y 2 Rd \D is of the form

v⌘,y,r(y + ⇢⇠) =
⌘

r
w

✓

⇢� r

⌘

◆

⇠, 8(⇢, ⇠) 2]⌘,+1[⇥Sd�1, (2.17)

in spherical coordinates centered in y.
Now, by exactly the same arguments as in Chapter 1, it follows that

k�v � �kH1

(⌦)

 ckav � akL2

(⌦)

,

for some positive constant c, and therefore,
Z

@⌦

g(@⌫�� @⌫�v) d� =

Z

⌦

��v(a� av) ⇡ �
Z

⌦

�2ra · v (2.18)

Since @⌫� and @⌫�v can be measured on @⌦, it is possible to evaluate the quantity
R

@⌦
g(@⌫��

@⌫�v) d� for all y, t. This quantity is nothing other than the cross-correlations between the
boundary measurements in the perturbed and unperturbed media.

Next, from (2.18) we establish an equation for a. Using Helmholtz decomposition, we
write

�2ra = �r +r⇥ �. (2.19)

Here, in order to ensure the uniqueness of  and � we assume that ⌦ is simply connected,
� is such that r · � = 0, and supply the boundary conditions @⌫ = ��2@⌫a and �⇥ ⌫ = 0
on @⌦.

Since v takes the radial form (2.17), integration by parts yields
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Z

⌦

r⇥ � · v = 0,

and so, (2.18) can be rewritten as

Z

@⌦

g(@⌫�� @⌫�v) d� ⇡
Z

⌦

r · v dx.

Hence,  can be constructed and considered as the given data by employing the spherical
Radon transform, as is done in Chapter 1. Let

Mv(y, r) :=

Z

@⌦

g(x)
�

@⌫�(x)� @⌫�v(x, y, r/c)
�

d�(x), (2.20)

where vy is given by (2.17).
For f 2 C0(Rd) and E ⇢ Rd, define the spherical Radon transform of f over E by

R[f ](y, r) =

Z

Sd�1

f(y + r⇠) d�(⇠) y 2 E, r > 0,

where d� is the surface measure over Sd�1.
From Chapter 1 the following lemma holds.

Lemma 2.2.1 Fix y 2 ⌦\D and let r
0

> 0. Suppose that a(x) = a
0

for x 2 B(y, r
0

), where
B is the ball of center y and radius r

0

. Suppose also that a 2 C1,�(⌦) and ⌘ is small enough.
Then, for all r > r

0

and ⌘ ⌧ r, we have

R[ ](y, r) ⇡ � 1

⌘2 kwkL1

|Sd�1|

Z r

r
0

Mv(y, ⇢)

⇢d�2

d⇢. (2.21)

Having in hand  from the cross-correlations between boundary measurements using a
spherical Radon transform inversion, we take the divergence of (2.19) to arrive at

�r · (�2ra) = � . (2.22)

This allows us to recover a in D by solving the system of equations for the two unknowns
� and q

⇢

���+ q� = 0 in ⌦,
@⌫�+ � = g on @⌦,

(2.23)

and
⇢

�r · (�2rq) = � in D,
q = a

0

on @D.
(2.24)

This suggests the following algorithm:

1. Define the initial guess q(0) = a
0

.

2. Establish an iterating sequence {q(n)} as follows.
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(a) For n � 1, solve

⇢

���(n) + q̂(n�1)�(n) = 0 in ⌦,
@⌫�(n) + �(n) = g on @⌦,

(2.25)

where
p̂ := min{max{p, q}, q}.

(b) Find q(n) by solving

⇢

�r · ((�(n))2rq(n)) = � in D,
q(n) = a

0

on @D,
(2.26)

and set q(n) = a
0

in ⌦ \D.

3. The convergent function of {q(n)} is the true optical absorption coe�cient a⇤.

Remark 2.2.2 The convergence of {q(n)}, mentioned in Step 3, will be shown by the Banach
fixed point theorem in the next section. This also implies the well-posedness of the system
constituted by (2.23) and (2.24).

Remark 2.2.3 Problem (2.25) is uniquely solvable because we are able to avoid the case
that (�(n))2 approaches 0 or 1 somewhere inside D in the next section; see Lemma 2.3.1.

Remark 2.2.4 We modify q(n�1) by q̂(n�1) in (2.25) because of the obvious inequality

|p̂� a|  |p� a|,

which makes the proof of the algorithm easier and may increase the rate of convergence.

2.3 Iterative algorithm convergence

In this section, we first assume that the Born assumption holds, i.e., the optical coe�cient
a⇤ takes the form

a⇤ = a
0

(1 + �s⇤). (2.27)

Here � is a small constant and s⇤ is a smooth function whose support is D.
Equation (2.22) together with (2.27) implies that

�� = �a
0

r · (�2rs⇤), (2.28)

where � and s⇤ were introduced in (2.27). Assume that a is bounded from below and above
by two known positive constants q and q respectively. Since � solves problem (2.11) with a

replacing p and ⇤, which will be defined later in Lemma 2.3.1, replacing M , its C1(D) norm
is bounded. We assume further that � is small and s⇤ is smooth, with known bound on its
C2(D) norm, to guarantee that k� kL1

(D)

is bounded in the order of �.
Define the open set of L1(⌦),

Q = {p 2 L1(⌦) : q < p < q}, (2.29)
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and the map
F
1

: Q ! H1(⌦)
q 7! F

1

[q] = �,
(2.30)

where � is the solution of (2.23).
We have the following result.

Lemma 2.3.1 For all q 2 Q, F
1

[q] is in L1(⌦). There exists a positive constant ⇤(q, q)
such that

�

�F
1

[q](x)
�

�  ⇤, 8 x 2 ⌦. (2.31)

Moreover, for any D b ⌦, there exists a positive constant �(D, q, q) such that

�  F
1

[q](x), 8 x 2 D. (2.32)

Proof. Let �q and �q be the solutions of (2.16) with c replaced by q and q, respectively. It
follows by Proposition 2.1.4 that

�q  �  �qin ⌦.

On the other hand, we can apply Proposition 2.1.5 to see that

�q > 0 in D.

The lemma is proved by letting � = infD �q and ⇤ = sup
⌦

�q.

Lemma 2.3.2 The map F
1

is Fréchet di↵erentiable. Its derivative at q is given by

DF
1

[q](h) = �, (2.33)

for h 2 L1(⌦), where � solves

⇢

���+ q� = �h� in ⌦,
@⌫�+ � = 0 on @⌦,

(2.34)

with � = F
1

[q]. Moreover, DF
1

[q] can be continuously extended to the whole L2(⌦) by the
same formula in (2.34) with

kDF
1

[q]kL(L2

(⌦),H1

(⌦))

 C⇤, (2.35)

where ⇤ was defined in Lemma 2.3.1.

Proof. Let �0 be the solution of (2.23) with q + h replacing q, assuming khkL1
(⌦)

⌧ 1 so
that q + h 2 Q a.e. in ⌦. Note that �0 � � solves

⇢

��(�0 � �) + (q + h)(�0 � �) = �h� in ⌦,
@⌫(�0 � �) + (�0 � �) = 0 on @⌦.
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Using �0 � � as a test function in the variational formulation of the problem above gives

k�0 � �kH1

(⌦)

 CkhkL1
(⌦)

k�kL2

(⌦)

. (2.36)

On the other hand, since �0 � �� � solves

⇢

��(�0 � �� �) + q(�0 � �� �) = �h(�0 � �) in ⌦,
@⌫(�0 � �� �) + (�0 � �� �) = 0 on @⌦,

we can apply the argument above to obtain

k�0 � �� �kH1

(⌦)

 CkhkL1
(⌦)

k�0 � �kL2

(⌦)

. (2.37)

Combining (2.36) and (2.37) shows that

k�0 � �� �kH1

(⌦)

 Ckhk2L1
(⌦)

k�kL2

(⌦)

,

which implies

lim
khk

L

1
(⌦)

!0

k�0 � �� �kH1

(⌦)

khkL1
(⌦)

= 0.

The first part of the lemma follows.
Because of Lemma 2.3.1 and Proposition 2.1.4, which shows that � 2 L1(⌦), problem

(2.34) is uniquely solvable for all h 2 L2(⌦) and therefore the extension DF
1

[q] : L2(⌦) !
H1(⌦) is well-defined. Its continuity and (2.35) can be deduced, using � as a test function
in the variational formulation of (2.34) and applying Lemma 2.3.1:

k�kH1

(⌦)

 CkhkL2

(⌦)

k�kL1
(⌦)

.

We next introduce another open set of L1(⌦):

P =

⇢

⇢ 2 L1(⌦) :
�

2
< ⇢ < 2⇤ in D

�

. (2.38)

Let

F
2

: P ! H1(⌦)

� 7! F
2

[�] = q,

where q is the solution of (2.24) in D and q = a
0

on ⌦ \D.
The following lemma can be proved in the same manner as Lemma 2.3.2.

Lemma 2.3.3 The map F
2

is Fréchet di↵erentiable. Its derivative at � is given by

DF
2

[�](h) = Q, (2.39)

for h 2 L1(⌦), where Q solves

⇢

�r · (�2rQ) = r · (2�hrq) in D,
Q = 0 on @D

(2.40)
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with q = F
2

[�] being the solution of (2.24) and Q = 0 in ⌦ \D. Moreover, DF
2

[�] can be
extended continuously to L2(⌦) and

kDF
2

[�]kL(L2

(⌦),H1

(⌦))

 2�⇤a
0

�2
c
2

(�,⇤,M), (2.41)

where M is an upper bound of kr · (�rs⇤)kL1
(D)

.

Proof. Since evaluating the derivative of F
2

at � is similar to doing so in Lemma 2.3.2, we
only verify the well-definedness of the extension of DF

2

[�] and (2.41). Since � 2 P , we can
apply Proposition 2.1.2 to see that the solution q of (2.24) is in C1(D) and

kq � a
0

kC1

(D)

 c
2

(�,⇤, �M).

As a consequence, since q = a
0

on ⌦ \D, we deduce that

krqkL1
(⌦)

 c
2

(�,⇤, �M)  �a
0

c
2

(�,⇤,M). (2.42)

Thus, (2.40) is uniquely solvable if h 2 L2(⌦). This shows how to extend DF
2

[�] to L2(⌦).
In order to prove (2.41), we use Q as a test function in the variational formulation of

(2.40) and employ (2.42) to get

�2
Z

D

|rQ|2dx 
Z

D

�2|rQ|2dx

 2⇤krqkL1
(D)

Z

D

|h||rQ|dx

 2�⇤c
2

(�,⇤,M)khkL2

(D)

krQkL2

(D)

.

Therefore,

kQkH1

0

(D)

 2�⇤a
0

�2
c
2

(�,⇤,M),

and the proof is complete. ⇤

The following result holds.

Theorem 2.3.4 Assume that ks⇤kC2

(D)

 M and q, q, and M are given. If � is su�ciently
small then the iteration sequence in the algorithm converges in L2(⌦) to a, the unique solution
of (2.23) and (2.24).

Proof. Introduce the map
F [q] = F

2

� F
1

[q]

defined on Q. Thanks to (2.31) and (2.32), the range of F
1

is contained in the domain of F
2

.
This shows how the definition above makes sense. Considering F as the map P ! L2(⌦),
using the standard chain rule in di↵erentiation and the fact that H1(⌦) ⇢ L2(⌦), we have

DF [q] : L1(⌦) ! L2(⌦)

given by
DF [q](h) = DF

2

[F
1

[q]](DF
1

[q](h)) (2.43)



50 2.4. NUMERICAL SIMULATIONS

is the Fréchet derivative of F . Moreover, by Lemmas 2.3.2 and 2.3.3, DF [q] can be extended
continuously to L2(⌦) with

kDF [q]kL(L2

(⌦),L2

(⌦))

 kDF
1

[q]kL(L2

(⌦),H1

(⌦))

kDF
2

[q]kL(L2

(⌦),H1

(⌦))

 C�.

Recall from the algorithm that q(0) = a
0

is the initial guess for the true coe�cient a⇤ and
for n � 1, define

q(n) = F [Tq(n�1)], n � 1,

where T (p) = min{max {p, q}, q}. Note that for all m,n � 1,

kF [Tq(n)]� F [Tq(m)]kL2

(⌦)

=

�

�

�

�

Z

1

0

DF [(1� t)Tq(n) + tT q(m)](q(m) � q(n))dt

�

�

�

�

L2

(⌦)

 C�kq(m) � q(n)kL2

(⌦)

.

Thus, if � is small enough then

F � T : L2(⌦) ! L2(⌦)

is a contraction map. Let q⇤ denote the fixed point of F � T and hence the convergent point
of q(n). Since a⇤, the true absorption coe�cient, is a fixed point of F and is in the interval
[q, q], it is the fixed point of F � T . Therefore, q⇤ = a⇤ and the proof is complete.

Now we generalize Theorem 2.3.4 behind the Born approximation (2.27). Using exactly
the same arguments as those in the proof of Theorem 2.3.4 we obtain our main result in this
section.

Theorem 2.3.5 If k� kL1
(D)

is su�ciently small, then the iteration sequence in the algo-
rithm converges in L2(⌦) to a, the unique solution of (2.23) and (2.24).

2.4 Numerical simulations

2.4.1 Forward problem

In this section we numerically illustrate the convergence of the fixed point scheme when
�|D| ⌧ |⌦|. In fact, if the support of a⇤�a

0

is small, then � can be taken quite large and we
observe convergence to the true optical distribution behind the Born approximation. Note
that if � is small enough, then one iteration is enough to satisfactory reconstruct the optical
absorption distribution.

As a two dimensional test case, we consider ⌦ =]� 1, 1[2 and a
0

= 1. We set

a(x) = 1 + �
X

i

(ai � 1)1
⌦

i

,

where ⌦i are smooth domains strictly included in ⌦, ai are smooth functions on ⌦i greater
than �1 and � is a positive constant. In this test, we consider the case were the inclusions
⌦i are three disks with a

1

= 1.1, a
2

= 1.2 and a
3

= 1.3 and � = 10; see Figure 2.2 (1).
To solve the direct problem, we use a finite element method implemented in Matlab with

an adaptive mesh (see Figure 2.2 (2)) to fit the variations of the absorption distribution a.
We compute the light fluence � solving the equation
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(

�4�+ a� = 0 in ⌦,

l@⌫�+ � = g on @⌦

with l = 1 and an illumination from the left, i.e., g = 1 on {x = �1} and g = 0 elsewhere.
The solution is represented in logarithmic scale in Figures 2.2 (3) and (4).

For some centers y taken on the unit circle and r 2]0, 2[, we compute a discrete form of
the map

vy,r,⌘(x) =
⌘

r
w

✓

|x� y|� r

⌘

◆

x� y

|x� y| ,

where the wave shape w is defined by

w(t) =

8

<

:

exp

✓

1

t2 � 1

◆

t 2]� 1, 1[,

0 otherwise.

From this map, we compute the displaced absorption as av = a� (Id+v)�1 and the variation
of the fluence �v � �. Its cross correlation on the boundary leads to the measurement

M =

Z

@⌦

(av � a)��v.

Figure 2.2 (5) represents the measurements for 64 centers y equidistributed on the unit circle
and with r 2]0, 2[. Applying the asymptotic formula (2.21), we deduce an approximation of
the spherical means Radon transform R[ ] of the internal data  ; see Figure 2.2 (6).

Using Lemma 2.2.1 and adopting the same numerical approach as in [12], we generate
the data  by inverting the spherical Radon transform. In the case where the number of
sampling points y is small, the total variation regularization-type method developed in [12]
can be used. Problems (2.25) and (2.26) are solved iteratively using a finite element code.
We use a structured mesh with 104 nodes and P1-finite elements.

2.4.2 Inverse problem

From this point, we only keep the interpreted data R[ ] and the a prior knowledge of
a
0

= 1. We don not employ the forward model for the inversion. We choose D = D(0, 0.8)
as a subdomain of interest and invert the spherical mean Radon transform using the filtered
back-projection algorithm; see [12]. We plot this internal data  on a fine uniform mesh on
D; see Figure 2.3.

Now, we initialize the iterative procedure by computing �
0

the light fluence in the case
of a contrast � = 0 and defining a

1

as the solution of

(

�r · (�2

0

ra
1

) = 4 , in D,

a
1

= a
0

on @D;

see Figure 2.5. At the first iteration, the shapes of two over three inclusions are well re-
constructed. However, a large error in the values of the parameters inside the inclusions
occurs. Therefore, we continue the process using the iterative algorithm, by computing the
illumination �

1

corresponding to a
1

to get a
2

. We define the fixed point sequence:
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Figure 2.2: Numerical simulations for the forward problem. From left to right, top to
bottom: (1) absorption map to be reconstructed with a contrast parameter � = 10; (2)
Adapted mesh for solving the forward problem; (3) Light fluence � solution of (2.5); (4)
Light fluence plotted in log scale: log

10

(�); (5) Measurements on the boundary computed
with formula (2.20); (6) Approximated spherical means Radon transform of  computed
from the measurements by (2.21).
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Figure 2.3: Uniform mesh on D and the internal data  .
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(an+1

,�n+1

) :

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

8

>

<

>

:

r · (�2

nran+1

) = 4 in D,

an+1

= a
0

on @D,

an+1

= a
0

on ⌦\D,
(

�4�n+1

+ an+1

�n+1

= 0 in ⌦,

l@⌫�n+1

+ �n+1

= g on @⌦.

Figure 2.5 represents the iterations a
1

, a
2

, a
5

, and a
10

. Figure 2.6 shows the quadratic error
of a

1

0. As expected, this error is concentrated on the inclusions boundaries. We also notice
an instability located on the right part, which is due to the small value of the light fluence
� in this region.

�0.5 0 0.5

�0.5

0

0.5

a
1

2

4

6

Figure 2.4: First reconstruction of the absorption a given in Figure 2.2 (1).

Remark 2.4.1 Using 4 might seem numerically unstable because it uses two derivatives
of the data. In fact, it only uses one derivative because this term has to be understood in the
weak sense:

h4 ,'iH�1

(D),H1

0

(D)

= �
Z

D

r ·r', 8' 2 H1

0

(D).

Nevertheless, the gradient r has to be stably reconstructed, which is the case here because of
the smoothing e↵ect of the wavefront. We will come back on this important item in Chapter
??, in which we investigate the stability issues in a more general framework.

In this numerical application we distinguish four regimes of convergence depending on
the contrast of the absorption map. The first is the very low contrast case when � ⇡ �

0

and the first iteration a
1

of the fixed point algorithm is the best reconstruction that we can
expect from the internal data. The second regime is characterized by a low contrast when
� ⇡ �

1

and so the second iteration a
2

of the fixed point algorithm is the best reconstruction
that we can expect from the internal data. The third regime is characterized by a high
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Figure 2.5: Iterations of the sequence (an) from the iterative fixed point algorithm.
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absorption contrast and provide a relative slow convergence of the fixed point algorithm.
Finally, the fourth regime is the very high contrast case when the fixed point algorithm does
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not converge. These four regimes are illustrated in Figures 2.7 and 2.8.
When the contrast is too high, some high absorption area creates shadow zones in which

the lack of light fluence inhibits any reconstruction. The minimum error is due to numer-
ical factors (number of acoustic sources to invert the spherical means Radon transform for
example) and the resolution factor ⌘ of the acoustic pulse. When ⌘ goes to zero, we get the
same kind of convergence that the one shown in Chapter 1.
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Figure 2.7: The four di↵erent regimes of convergence. From top to bottom: the contrast
increases, � = 0.1, � = 1, � = 10 and � = 100. From left to right: the light fluence in ⌦ and
the iterations of the reconstructed absorption a
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Chapter 3

Reconstruction of a piecewise smooth
absorption coe�cient by an
acousto-optic process

Introduction

In Chapter 2 we have proposed an original method for reconstructing the optical absorption
coe�cient by using mechanical perturbations of the medium. While taking optical measure-
ments the medium is perturbed by a propagating acoustic wave. Then cross-correlations
between the boundary values of the optical energy density in the medium changed by the
propagation of the acoustic wave and those of the optical energy density in the unperturbed
one are computed. Finally, under some smoothness conditions, the use of a spherical Radon
transform inversion yields a reconstructed image for a⇤, which has a resolution of order the
width of the wave front of the acoustic wave propagating in the medium.

This chapter aims to generalize the acousto-optic process for nonsmooth optical ab-
sorption distributions. We tackle the nonlinear optical reconstruction problem for optical
inclusions. We develop a mathematical framework for the reconstruction problem in the
case where the optical absorption distribution is a perturbation of a piecewise constant func-
tion. We introduce an iterative reconstructing algorithm of Landweber-type and prove its
convergence and stability. For doing so, we introduce a weak Helmholtz decomposition and
interpret in a weak sense the cross-correlation measurements.

To describe our approach, we employ several notations. Each smooth component of a⇤ is
called an inclusion. The background of a⇤ is assumed to be a known positive constant and
denoted by a

0

. Assume further the knowledge of a lower bound a and an upper bound a of
a⇤, both of which are positive. Finally, let D b ⌦ be known and such that

a⇤ = a
0

in ⌦ \D. (3.1)

We next impose some conditions on the unknown inclusions. Let k � 1 denote the number
of inclusions and Ai be occupied by the ith inclusion. Assume:

I
1

. for any i 2 {1, . . . , k}, Ai is a smooth subdomain of ⌦, @Ai is connected;

I
2

. for any j 6= i, Ai \ Aj = ;;

57
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I
3

. [k
i=1

Ai b D.

All of the assumptions above suggest the definition of the class (A) ⇢ L1(⌦), which contains
a⇤.

Definition 3.0.1 The function a is said to belong to class (A) i↵ there exist k � 1,
A

1

, · · · , Ak b D satisfying I
1

, I
2

and I
3

and a
1

, · · · , ak 2 C2(Ai, [a, a]) such that

a =
k
X

i=0

ai1A
i

, (3.2)

where, again, a
0

was introduced in (3.1), A
0

= ⌦\[k
i=1

Ai, and 1A
i

denotes the characteristic
function of Ai.

Our main results in this chapter can be summarized as follows. A spherical acoustic
wave is generated at y outside ⌦. Its propagation inside the medium ⌦ changes the optical
absorption distribution. Due to the acoustic wave, any point x 2 ⌦ moves to its new position
x + v⌘y,r(x), where v⌘y,r is defined by (3.16) with r being the radius of the spherical wave
impulsion. By linearization, the displacement field is approximately v⌘y,r as the thickness ⌘
of the acoustic wavefront goes to zero. Hence, the optical absorption of the medium changed
by the propagation of the acoustic wave is approximately a⇤(x+v⌘y,r), up to an error of order
⌘.

Using cross-correlations between the outgoing light intensities in the medium changed by
the propagation of the acoustic wave and those of in the unperturbed one, we get the data
M⌘(y, r) given by (3.20). In Propositions 3.3.2 and 3.3.3, we show that M⌘(y, r) converges in
the sense of distributions to M(y, r) as ⌘ ! 0. We refer to M(y, r) as the ideal data. Making
use of a weak Helmholtz decomposition, stated in Lemma 3.1.6, we relate in Theorem 3.4.1
the ideal data to the gradient of �2

⇤ra⇤. Since a⇤ is piecewise smooth, ra⇤ can be defined
only in the sense of distributions. Technical arguments and quite delicate estimates are
needed in order to establish the fact that the gradient part of �2

⇤ra⇤ can be obtained from
the cross-correlation measurements using the inverse spherical Radon transform. Based on
this, we propose an optimal control approach for reconstructing the values of a⇤ inside the
inclusions. For doing so, we first detect the support of a⇤� a

0

as the support of the gradient
part of the data �2

⇤ra⇤. In fact, Lemma 3.1.6 shows that the support of the data yields the
support of the inclusions. Their boundaries are detected as the support of the discontinuities
in the data. Proposition 3.5.1 provides a Lipschitz stability result for reconstructing piecewise
constant optical absorption. In contrast with the recent results in [2, 35, 36], Proposition
3.5.1 uses only one measurement but the supports of the inclusions are known. Minimizing
the discrepancy functional (3.37) we obtain the background constant values of the optical
absorption inside the inclusions. Next, in order to recover spatial variations of a⇤ inside
the inclusions, we minimize the discrepancy between the linear forms F [a] and � given by
(3.40) and (3.47), respectively. We prove in Theorem 3.5.3 that the Fréchet derivative of the
nonlinear discrepancy functional is well-defined and establish useful estimates as well. We
introduce an iterative scheme of Landweber-type for minimizing the discrepancy functional
and prove in Theorem 3.5.5 its convergence provided that the optical absorption coe�cient
is in the set K defined by (3.38).
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3.1 Preliminaries

3.1.1 Basic properties

We first recall the following results from Chapter 2.

Proposition 3.1.1 (weak comparison principle) Let a 2 L1(⌦) be a nonnegative func-
tion and assume that � 2 H1(⌦) satisfies

(

���+ a� � 0 in ⌦,

l@⌫�+ � � 0 on @⌦.
(3.3)

We have � � 0 a.e. in ⌦.

Lemma 3.1.2 (Lemma 2.3.1 in Chapter 2) Let D be as in (3.1) and assume that g 2
H1/2(@⌦) is nonnegative and not identically zero. There exist two positive constants � and
⇤ such that for all a 2 (A), the solution � of

(

�4�+ a� = 0 in ⌦,

l@⌫�+ � = g on @⌦,
(3.4)

satisfies
�  �  ⇤ in D. (3.5)

Lemma 3.1.3 (Lemma 2.3.2 in Chapter 2) Let T be the map that sends a 2 (A) into
the unique solution of (3.4). Then, T is Fréchet di↵erentiable. Its derivative at a is given
by

DT [a](h) = �, (3.6)

for h 2 L1(⌦), where � solves
(

���+ a� = �hT [a] in ⌦,

l@⌫�+ � = 0 on @⌦.
(3.7)

Moreover, DT [a] can be continuously extended to L2(⌦) by the same formula given in (3.6)
and (3.7) with

kDT [a]kL(L2

(⌦),H1

(⌦))

 C⇤, (3.8)

where ⇤ is defined in Lemma 3.1.2 and L(L2(⌦), H1(⌦)) is the set of bounded linear operators
from L2(⌦) into H1(⌦).

The following lemma will be helpful to prove the uniqueness of the constructed coe�cient.
We refer to Appendix 3.6.1 for its proof.

Lemma 3.1.4 Let ⌦0 be the union of several subdomains of ⌦ such that ⌦ \ ⌦0 is path
connected. If � is a bounded solution to

(

���+ c� = 0 in ⌦ \ ⌦0,

l@⌫�+ � = 0 on @⌦,
(3.9)

for some nonnegative constant c and @⌫� ⌘ 0 on @⌦, then � ⌘ 0 in ⌦ \ ⌦0.
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Corollary 3.1.5 Let A
0

, A
1

, · · · , Ak be as in Definition 3.0.1 and let a 2 (A) be defined
relative to these sets. Denote by �j, j = 1, · · · , k, the solution of

(

���j + a�j = 1A
j

� in ⌦,

l@⌫�j + �j = 0 on @⌦

with � being the solution of (3.4). Then, the set {@⌫�j|@⌦} is linearly independent.

Proof. Define

� =
k
X

j=1

↵j�j in ⌦,

for some ↵
1

, · · · ,↵k 2 R, and assume that @⌫� = 0 on @⌦. It is obvious that � is the
solution of

8

>

>

<

>

>

:

���+ a� =
k
X

j=1

↵j1A
j

� in ⌦,

l@⌫�+ � = 0 on @⌦,

and, hence, satisfies (3.9) with c = a
0

and ⌦0 = [k
i=1

Ai. Thus, by Lemma 3.1.4, � ⌘ 0 in A
0

.
On the other hand, for each i 2 {1, · · · , k}, � solves

(

���+ ai� = ↵i1A
i

� in Ai,

� = 0 on @Ai.

We can now apply the strong comparison principle (see, for instance, Lemma 3.1 in [82])
and the Hopf lemma to see that @⌫� 6= 0 on @Ai. This contradicts to the fact that � ⌘ 0 in
A

0

. ⇤

3.1.2 Helmholtz decomposition in the sense of distributions

The Helmholtz decomposition plays a crucial role in Chapter 2 when we established a dif-
ferential coupling system for a, where a was supposed to be in C2(⌦). Fortunately, when a
is no longer smooth but �2ra belongs to (H1(⌦)d)⇤ ⇢ H�1(⌦)d for all � 2 C1(⌦), a corre-
sponding Helmholtz decomposition remains true. Note that for all a 2 (A) and � 2 C1(⌦),
�2ra 2 (H1(⌦)d)⇤ in the sense that

h�2ra, vi
(H1

(⌦)

d

)

⇤,H1

(⌦)

d = h�2r(a� a
0

), vi
(H1

(⌦)

d

)

⇤,H1

(⌦)

d

= �
Z

D

(a� a
0

)r · (�2v) dx. (3.10)

The domain of the integral above is written as D instead of ⌦ because a� a
0

= 0 in ⌦ \D,
where D is introduced in (3.1). By the same reason, we do not require the test functions to
vanish on the boundary @⌦. The last equation in (3.10) suggests that it might be su�cient
to impose a 2 C1(Ai), instead of C2(Ai), i = 1, · · · , k, as in Definition 3.0.1. However, we
need the di↵erentiability of a up to second order in each inclusion for some later regularity
and estimation purposes.

The following result holds.
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Lemma 3.1.6 For any U in H2(⌦)d there exist  2 L2(⌦) and  2 H2(⌦)d such that

U = r + 

with r ·  = 0. In particular, if U = �2ra for some a 2 A then  is continuous and
discontinuous at the point where a is, respectively.

Proof. Letting U = (U
1

, · · · , Ud) 2 H�1(⌦)d, we denote by u = (u
1

, · · · , ud) the solution of
⇢

��u = U in ⌦,
u = 0 on @⌦.

(3.11)

The vector u 2 H1

0

(⌦)d is actually the Riesz representation of U in H1

0

(⌦)d. Applying the
classical Helmholtz decomposition for u (see, for instance, [57]), we can find f 2 H1(⌦) and
G 2 H(curl,⌦) := {w 2 L2(⌦)d : r⇥ w 2 L2(⌦)d} such that

u = rf +r⇥G. (3.12)

Here, r ·G = 0 inside ⌦ and
G⇥ ⌫ = 0 on @⌦. (3.13)

Moreover, f is a solution of
(

�f = r · u in ⌦,

@⌫f = 0 on @⌦.
(3.14)

Since u belongs to H1(⌦)d, r · u 2 L2(⌦). By standard regularity results, we see that
f 2 H2(⌦).

In view of (3.11), taking the Laplacian of (3.12) yields

U = r + ,

in the sense of distributions, where  = ��f 2 L2(⌦) and  is divergence free.
We next prove the second statement of the lemma in which U = �2ra for some a 2 (A).

The main tools we use here are the H2- and C1-regularity results. Fix j 2 {1, · · · , d} and
i 2 {0, · · · , k}. Denote by uj the jth component of the vector u, defined in (3.11). Since
uj 2 H1

0

(⌦), it belongs to H1(Ai). The function uj solves

��uj = �
2@x

j

a, (3.15)

in Ai. Applying Theorem 8.8 in [60], we see that uj is in H2(A0
i) for all A0

i b Ai. Hence,
di↵erentiating (3.15) gives

��@x
l

uj = @x
l

(�2@x
j

a)

in A0
i for all l = 1, · · · , d. Since @x

l

uj 2 H1(A0
i) and @x

l

(�2@x
j

a) 2 L2(A0
i), we can apply

the C1-regularity result in [76] to see that @x
l

uj is in C1(A00
i ) for all A00

i b A0
i. This implies

uj 2 C2(Ai). Considering the di↵erential equation in (3.14) in each inclusion and following
the same regularity process, we see that f 2 C2(Ai). Hence  = ��f is continuous in Ai,
which is also the set of continuous points of a. On the other hand, since U = �2ra involves
Dirac distributions supported in [i@Ai, r · u is not continuous across [i@Ai, neither is  .
⇤



62 3.2. THE SET OF MEASUREMENTS

3.2 The set of measurements

In this section, we describe the set of data obtained by the acousto-optic process introduced
in Chapter 2. The basic idea in achieving a resolution enhancement in imaging the opti-
cal absorption distribution is as follows. We generate a spherical acoustic wave inside the
medium. The propagation of the acoustic wave changes the absorption parameter of the
medium. During the propagation of the wave we measure the light intensity on @⌦. The
aim is now to reconstruct the optical absorption coe�cient from such set of measurements.

Let a 2 (A) represent the true coe�cient a⇤. Let Sd�1 be the unit sphere in Rd. Let
µ > 0 and let Sµ = µSd�1, the sphere of radius µ and center 0, be such that ⌦ stays inside
Sµ. We perturb the optical domain ⌦ by spherical acoustic waves generated at point sources
y 2 Sµ. Let r 2 [r

0

, R] be the radius of the spherical wave impulsion, where r
0

and R are
the minimum and maximum radii so that the spherical waves generated at point sources on
Sµ can intersect ⌦. Let ⌘ ⌧ 1 be the acoustic impulsion typical length representing the
thickness of the wavefront. Let the position function P be defined by

P : x 7! x+ v⌘y,r(x), x 2 ⌦,

where

v⌘y,r(x) = ⌘
r
0

r
w

✓

r � |x� y|
⌘

◆

x� y

|x� y| , (3.16)

and w is a smooth function supported on [�1, 1] with kwk1 = 1. Here, k k1 denotes
k kL1

(]�1,1[).
In Chapter 1, we have shown that the displacement function at the point x caused by

the short diverging spherical acoustic wave generated at y is given by

u⌘
y,r(x) = P�1(x)� x, x 2 ⌦. (3.17)

Let C
0

be the cylinder Sµ ⇥ (r
0

, R). For each (y, r) 2 C
0

, au⌘

y,r

(x) denotes a(x+ u⌘
y,r(x))

and �u⌘

y,r

is the optical energy density in the displaced medium, which satisfies

(

�4�u⌘

y,r

+ au⌘

y,r

�u⌘

y,r

= 0 in ⌦,

l@⌫�u⌘

y,r

+ �u⌘

y,r

= g on @⌦.
(3.18)

Physically, the outgoing light intensities @⌫�|@⌦ and @⌫�u⌘

y,r

|@⌦ are measured. We are thus
able to assume the knowledge of the cross-correlation measurements:

1

⌘2

Z

@⌦

g(@⌫�u⌘

y,r

� @⌫�)d�, y 2 Sµ, r > 0. (3.19)

Integration by parts shows that the quantity above is equal to

M⌘(y, r) =
1

⌘2

Z

⌦

(au⌘

y,r

� a)��u⌘

y,r

dx, (3.20)

which is considered as our set of data. Here, the coe�cient 1/⌘2 is put in front of the integral
because both � and �u⌘

y,r

are bounded (Lemma 3.1.2) and

kau⌘

y,r

� akL1

(⌦)

= O(⌘2) as ⌘ ! 0+, (3.21)
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provided that the following technical condition, named as (H), is imposed: there exists C > 0
such that for any y 2 Sµ, r > 0, and i = 1, . . . , k, we have

�
�

@Ai \ ⌃⌘(y, r)
�

 C⌘, (3.22)

with
⌃⌘(y, r) = {z 2 Rd : r � ⌘ < |z � y| < r + ⌘}.

Condition (H) ensures that the spheres centered on Sµ and the boundaries @Ai are not too
close to be tangent. Let

V"(S) = {x 2 Rd, 9y 2 S, |x� y| < "}, (3.23)

for any smooth surface S of Rd, and " > 0. Since S is smooth, the volume of V"(S) satisfies

|V"(S)| = 2�(S)"+O("2).

Hence, condition (H) guarantees that

|Ai4P�1(Ai)|+ |Ai4P (Ai)|  O(⌘2), (3.24)

where 4 denotes the symmetric area di↵erence.
Fix now (y, ⌘) 2 C

0

and write

�

�au⌘

y,r

� a
�

�

L1

(⌦)

=
n
X

i=1

Z

A
i

[P�1

(A
i

)

|au⌘

y,r

� a|dx

=
n
X

i=1

Z

A
i

\P�1

(A
i

)

|au⌘

y,r

� a|dx+

Z

A
i

4P�1

(A
i

)

|au⌘

y,r

� a|dx. (3.25)

As u⌘
y,r is supported on ⌃⌘(y, r) and

�

�u⌘
y,r

�

�

1 = ⌘,
Z

A
i

\P�1

(A
i

)

|au⌘

y,r

� a|dx =

Z

⌃

⌘

\A
i

\P�1

(A
i

)

|au⌘

y,r

� a|dx

 ⌘ kraikL1
(A

i

)

|⌃⌘|
 kraikL1

(A
i

)

�(S(0, R))⌘2,

where �(S(0, R)) is the surface measure of the sphere of center O and radius R. The second
integral in (3.25) is bounded by O(⌘2) because of (3.24) and the boundedness of a.

3.3 Asymptotic formula

Consider the open cylinder C := Sµ ⇥ (0, R) with its standard product topology.
The construction of

M⌘ : C ! R

(y, r) 7! 1

⌘2

Z

⌦

(au⌘

y,r

� a)��u⌘

y,r

dx,

has been described in this previous section. The knowledge of the function is obtained from
those of g, @⌫� and @⌫�u⌘

y,r

on @⌦. In this section, we study the limit of M⌘ as ⌘ ! 0+.
This, together with a weak version of Helmholtz decomposition and the spherical Radon
transform, will help us detect all inclusions.
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Lemma 3.3.1 For any ⌘ > 0, M⌘ is a continuous map on C.

Proof. It is su�cient to consider only the case r > r
0

because M⌘(y, r) = 0 for all r  r
0

and y 2 Sµ. Fix (y, r) 2 Sµ ⇥ (r
0

, R) and let {(yn, rn)}n�1

⇢ Sµ ⇥ (r
0

, R) converge to (y, r).
Noting that a⌘u

y,r

is continuous except on the measure zero set

{x+ u⌘
y,r(x) : x 2 [n

i=1

@Ai},

we have
a(x+ u⌘

y
n

,r
n

(x)) ! a(x+ u⌘
y,r(x))

a.e. in ⌦. On the other hand, since a is bounded,

|a(x+ u⌘
y
n

,r
n

(x))� a(x+ u⌘
y,r(x))|2

is uniformly bounded. Therefore, it follows by the Lebesgue dominated convergence theorem
that

au⌘

y

n

,r

n

! au⌘

y,r

in L2(⌦)

as n ! 1. This implies
�u⌘

y

n

,r

n

! �u⌘

y,r

in both H1(⌦) and L4(⌦). Note that the L4 convergence above is valid because d is either 2
or 3. A direct calculation yields

|⌘2(M⌘(yn, rn)�M⌘(y, r))|

=

�

�

�

�

Z

⌦

[(au⌘

y

n

,r

n

� a)��u⌘

y

n

,r

n

� (au⌘

y,r

� a)��u⌘

y,r

]dx

�

�

�

�


Z

⌦

|au⌘

y

n

,r

n

� a|�|�u⌘

y

n

,r

n

� �u⌘

y,r

|dx+

Z

⌦

|au⌘

y

n

,r

n

� au⌘

y,r

|��u⌘

y,r

dx,

 2ak�kL2

(⌦)

k�u⌘

y

n

,r

n

� �u⌘

y,r

kL2

(⌦)

+kau⌘

y

n

,r

n

� au⌘

y,r

kL2

(⌦)

k�kL4

(⌦)

kk�u⌘

y,r

kL4

(⌦)

.

The lemma follows. ⇤
Lemma 3.3.1 guarantees that M⌘ is measurable. In the case that a is smooth, which has

been studied in Chapters 1 and 2, M⌘(y, r) ⇡
R

⌦

ra ·u⌘
y,r�

2 when ⌘ is small. However, when
a is piecewise smooth, we need to establish a similar approximation in the weak sense. The
following proposition holds. We refer to Appendix 3.6.2 for its proof.

Proposition 3.3.2 Let C = Sµ ⇥ (0, R). Let µ be such that ⌦ b Sµ. For any 0 < ⌘ ⌧ 1,
define the continuous function

M̃⌘(y, r) =
1

⌘2

Z

⌦

(a� a
0

)r · (�2v⌘y,r)dx, (y, r) 2 C, (3.26)

where � is the solution of (3.4). Assume (H) holds and, consequently, (3.24) is valid. Then
there exists c > 0, independent of (y, r), such that

�

�

�

M⌘(y, r)� M̃⌘(y, r)
�

�

�

 c⌘, 8(y, r) 2 C. (3.27)
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It follows from Proposition 3.3.2 that for each (y, r) 2 C,

lim
⌘!0

+

M⌘(y, r) = lim
⌘!0

+

M̃⌘(y, r) := My,r. (3.28)

We cannot expect that M is a smooth function on C because u⌘
y,r/⌘

2, and hence v⌘y,r/⌘
2,

converges to a distribution supported on the circle (or sphere) S(y, r) = {z : |z � y| = r}.
The limit in (3.28) is understood as follows.

Let
G(C) =

�

f 2 L2(C) : @rf 2 L2(C)
 

be a Hilbert space, endowed with the norm

k · kG(C)

= k · kL2

(C)

+ k@r · kL2

(C)

.

Let � be the (continuous) trace operator from C to Sµ ⇥ {0, R} and denote

G
0

(C) = ��1(0) = {f 2 G(C) : �(f) = 0}, G�1(C) = G
0

(C)⇤,

where G
0

(C)⇤ is the dual of G
0

(C). We have the following relations

H1

0

(C) ⇢ G
0

(C) ⇢ L2(C), L2(C) ⇢ G�1(C) ⇢ H�1(C).

Let k k
1

denote k kL1

(]�1,1[). The following is the main result of this section. It is a direct
consequence of Proposition 3.3.2.

Proposition 3.3.3 The function M⌘ converges to the ideal measurements M in G�1(C) as
⌘ ! 0+ with

hM,'i
(C1

0

(C))

⇤,C1
0

(C)

= �r
0

kwk
1

Z

S
µ

Z R

0

Z

Sd�1\⌦
y,r

a(y + r⇠)
@

@r

�

rd�2�2(y + r⇠)'(y, r)
�

d⇠drdy,(3.29)

where

⌦y,r =

⇢

x� y

r
: x 2 ⌦

�

.

Proof. For any ' in G
0

(C), we have

D

M̃⌘,'
E

= �
Z

y2S
µ

Z R

r=0

Z

⌦

(a� a
0

)(x)r ·x
✓

�2(x)
v⌘y,r(x)

⌘2
'(y, r)

◆

dxdrdy

= �
Z

y2S
µ

Z

⌦

(a� a
0

)(x)r ·x
✓

�2(x)

Z R

r=0

v⌘y,r(x)

⌘2
'(y, r)dr

◆

dxdy.

Then by the change of variables x = y + ⇢⇠ we get

v⌘y,r(x)

⌘2
=

r
0

r⌘
w(
⇢� r

⌘
)⇠.
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Hence we can write
D

M̃⌘,'
E

= �
Z

S
µ

Z

Sd�1

Z R

⇢=0

(a� a
0

)(y + ⇢⇠)
@

@⇢

✓

⇢d�1�2(y + ⇢⇠)

Z R

r=0

r
0

r⌘
w

✓

⇢� r

⌘

◆

'(y, r)dr

◆

d⇢d⇠dy

Since
1

⌘
w

✓

⇢� r

⌘

◆

⌘!0�! kwk
1

�⇢,

we deduce that
Z R

r=0

r
0

r⌘
w

✓

⇢� r

⌘

◆

'(y, r)dr
⌘!0�! kwk

1

r
0

⇢
'(y, ⇢),

and then
D

M̃⌘,'
E

⌘!0�!

� kwk
1

r
0

Z

S
µ

Z R

⇢=0

Z

Sd�1

a(y + ⇢⇠)
@

@⇢

�

⇢d�2�2(y + ⇢⇠)'(y, ⇢)
�

d⇢d⇠dy,

as desired. ⇤

3.4 Detecting the inclusions

Using the fact that �2ra 2 (H1(⌦)d)⇤ ⇢ H2(⌦)d, we can employ Lemma 3.1.6 to write that

�2ra = r + , (3.30)

where  is a divergence free field and  2 L2(⌦). Since both �2ra and r are in (H1(⌦)d)⇤,
so is  . Moreover, it follows from the usual integration by parts formula and the boundary
condition (3.13) that

h ,rvi = 0, 8 v 2 C1(⌦). (3.31)

For a distribution f 2 (C1
0

(⌦))⇤, we define its spherical Radon transform R[f ] in the
sense of distributions by

hR[f ],'i
(C1

0

(C))

⇤,C1
0

(C)

= hf,R⇤[']i
(C1

0

(⌦))

⇤,C1
0

(⌦)

,

where

R⇤['](x) =

Z

C

'(y, |x� y|)dy for ' 2 C1
0

(C).

We have the following result.

Theorem 3.4.1 The spherical Radon transform R[ ] of  satisfies the equation

M = r
0

kwk
1

rd�2

@R[ ]

@r
(3.32)

in the sense of distributions.
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Proof. Let ' 2 C1
0

(C), and for a fixed y 2 Sµ we define

Fy(x) = '(y, |x� y|) x� y

|x� y|2 x 2 ⌦.

For any y 2 Sµ, the vector Fy is in H1(⌦)d because |x� y| � r
0

. Equation (3.30) yields

h�2ra, Fyi = hr , Fyi+ h , Fyi
and since Fy is the gradient of the function given by

x 7�!
Z |x�y|

0

'(y, ⇢)

⇢
d⇢,

it follows from (3.31) that h , Fyi = 0. Here, h , i denotes the duality pair between H1(⌦)d

and (H1(⌦)d)⇤. Therefore,
h�2ra, Fyi = hr , Fyi. (3.33)

A simple calculation shows

h�2ra, Fyi =

Z

⌦

ar · (�2Fy)dx

=

Z R

0

Z

Sd�1\⌦
y,r

⇥

ar · (�2Fy)
⇤

(y + r⇠)rd�1d⇠dr,

and hence,

h�2ra, Fyi =
Z R

0

Z

Sd�1\⌦
y,r

a(y + r⇠)
@

@r

⇥

�2(y + r⇠)'(y, r)rd�2

⇤

d⇠dr. (3.34)

Combining (3.29), (3.33), and (3.34) implies

hM,�i = kwkL1

(⌦)

Z

S
µ

hr , Fyidy

= �kwkL1

(⌦)

Z

S
µ

Z

⌦

 r · (Fy)dxdy

= �kwkL1

(⌦)

Z

S
µ

Z R

0

Z

Sd�1\⌦
y,r

[ r · (Fy)] (y + r⇠)rd�1d⇠drdy

= �kwkL1

(⌦)

Z

S
µ

Z R

0

Z

Sd�1\⌦
y,r

 (y + r⇠)
@

@r

⇥

'(y, r)rd�2

⇤

d⇠drdy

= �r
0

kwkL1

(⌦)

Z

S
µ

Z R

0

R[ ](y, r)
@

@r

⇥

'(y, r)rd�2

⇤

drdy

= r
0

kwkL1

(⌦)

hrd�2

@R[ ]

@r
,'i,

and the proof is complete. ⇤

Remark 3.4.2 Theorem 3.4.1 provides the knowledge of the derivative of the spherical
Radon transform of  (see Appendix 3.6.3 for the reconstruction of R[ ] from its deriva-
tive). Note that the function  itself can be reconstructed in a stable way from R[ ] using
an inversion (filtered) retroprojection formula for the spherical Radon transform. From this,
all inclusions are detected by the second statement in Lemma 3.1.6, noticing that @Ai is the
set of discontinuous points of  .
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3.5 A reconstruction algorithm of the true coe�cient

With all inclusions A
1

, A
2

, · · · , Ak in hand, we are able to find an initial guess for a⇤ using the
unique continuation property (Lemma 3.1.4) and then employ a Landweber type iteration
to reconstruct a⇤. As an initial guess, we reconstruct constant values inside each inclusion
by minimizing the discrepancy between computed and measured boundary data. We prove
a Lipschitz stability result for the reconstruction of the optical absorption coe�cient in the
class of piecewise constant distributions provided that the support of the inclusions is known.

3.5.1 The data of boundary measurements and an initial guess

Define

S =

(

k
X

i=0

↵i1A
i

: ↵
0

= a
0

and ↵
1

, · · · ,↵k 2 [a, a]

)

.

Let a
1

and a
2

be in S. Their di↵erence can be written as

a
2

� a
1

=
k
X

i=1

hi1A
i

,

for some h = (h
1

, · · · , hk) 2 B = [a� a, a� a]k. Note that B can be considered as a closed
ball of Rk with respect to the 1�norm of Rk given by

|h| = max{|h
1

|, · · · , |hk|}.

The compactness of B plays an important role in our analysis. Suppose that l 6= 0. Denote
by �

1

and �
2

the optical energy density functions that correspond to a
1

and a
2

. The function
� = �

1

� �
2

solves
8

>

<

>

:

���+ a
1

� =
k
X

i=1

hi1A
i

�
2

in ⌦,

l@⌫�+ � = 0 on @⌦.

(3.35)

Using � as the test function in the variational form of (3.35), we see that
Z

⌦

(|r�|2 + a�2)dx+ l

Z

@⌦

(@⌫�)
2 d�  |h|⇤

Z

⌦

|�|dx,

where ⇤ is defined in Lemma 3.1.2. This implies

k@⌫�kL2

(@⌦)  C|h|

and, therefore, the continuity of the map h 7! @⌫�|@⌦. Since the map h 2 @RkB 7!
k@⌫�kL2

(@⌦) is continuous and nonzero (due to Corollary 3.1.5), we can employ the com-
pactness of @RkB in Rk to see that

c(a
1

) = min
h2@RkB

k@⌫�kL2

(@⌦) > 0.

Identifying S with a compact subset of Rk, we can conclude that

c = inf
a
1

2S
c(a

1

) > 0.
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Properly scaling the inequality
k@⌫�kL2

(@⌦) � c

for all h 2 @RkB, we arrive at the following Lipschitz stability result using only one mea-
surement. Note here that the support of the inclusions is known and only the value of the
optical absorption coe�cient inside each inclusion is to be determined.

Proposition 3.5.1 There exists c > 0 such that for all a
1

, a
2

2 S,

k@⌫�1

� @⌫�2

kL2

(@⌦) � cka
1

� a
2

kL1
(⌦)

, (3.36)

where �
1

and �
2

are the solutions of (3.4) with a replaced by a
1

and a
2

, respectively.

Remark 3.5.2 Inequality (3.36) guarantees the uniqueness of the reconstruction for a⇤ 2 S
if @⌫�⇤|@⌦ is considered as the data given. It, moreover, implies the stability in the sense
that small noise does not cause large error.

Proposition 3.5.1 suggests us to minimize the quadratic misfit functional:

J(a) =
1

2
k@⌫�� @⌫�⇤k2L2

(@⌦), (3.37)

where a varies in S and �⇤ is the true optical energy density. This is possible since S is
identical with a compact subset of Rk. By (3.36), the function aI = argmin J is close to
a⇤ provided that a⇤ is a perturbation of a constant on each inclusion Ai. Therefore, aI can
be considered as the background constant optical absorption distribution in the inclusions.
For simplicity, we propose the following exhaustion method: for each fine partition P of the
interval [a, a], try all values of ↵i such that ↵i equals each element of P , and finally choose
the k�tuple (↵

1

, · · · ,↵k) that gives the smallest k@⌫�� @⌫�⇤kL2

(@⌦).

3.5.2 Internal data map and its di↵erentiability

Recall that the true optical absorption coe�cient a⇤ is of the form (3.2). Suppose that
a⇤ = (a⇤

1

, · · · , a⇤k) belongs to

K := {a 2
k
Y

j=1

W 1,4
0

(Aj) : a  ai  a and kraikL4

(A
j

)

 ✓, i = 1, · · · , k}, (3.38)

where ✓ will be determined later in (3.42). It is obvious that K is closed and convex in H
where H =

Qk
j=1

H1

0

(Aj) is a Hilbert space with the usual inner product

hu, viH =
k
X

i=1

Z

A
j

ruj ·rvjdx

for all u = (u
1

, · · · , uk) and v = (v
1

, · · · , vk) in H.
Now, let the map F : K ! H⇤ with H⇤ being the dual of H be defined as follows. For

all (a
1

, · · · , ak) 2 K, let

a =
k
X

i=0

ai1A
i

, (3.39)
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and

F [a](v) =
k
X

j=1

Z

A
j

T [a]2raj ·rv for all v 2 H, (3.40)

where T [a] was defined in Lemma 3.1.3. Note that from the acoustic-optic measurements
we can construct F [a⇤], where a⇤ is the true optical absorption coe�cient. We call F the
internal data map.

Theorem 3.5.3 The map F is Fréchet di↵erentiable in K and

DF [a](h, v) =
k
X

i=1

Z

A
i

(2T [a]DT [a](h)rai + T [a]2rhi)rvidx (3.41)

for all a = (a
1

, · · · , ak) 2 K, h = (h
1

, · · · , hk) 2
Qk

j=1

W 1,4
0

(Aj) \ L1(Aj) and v =
(v

1

, · · · , vk) 2 H. Assume further

0 < ✓ <
C
⌦

0�2

⇤2

, (3.42)

where ⌦0 = [k
j=1

Aj and C
⌦

0 is the norm of the embedding map of H1(⌦0) into L4(⌦0),
multiplied with the constant in (3.8). Then, DF [a] is well-defined on H and there exists a
positive constant C such that for all h 2 H,

kDF [a](h)kH⇤ � CkhkH . (3.43)

Here, DF [a](h) : v 2 H 7! DF [a](h, v).

Remark 3.5.4 The term DT [a](h) in (3.41) is understood as DT [a] acting on the function
that is equal to 0 in A

0

and to hj in Aj, j = 1, · · · , k.

Proof of Theorem 3.5.3. The Fréchet di↵erentiability of F and the expression (3.41) of DF
can be deduced from Lemma 3.1.3 and the standard rules in di↵erentiation. We only prove
(3.43). In fact, for all h 2 H,

DF [a](h, h) =
k
X

j=1

Z

A
j

�

T [a]2|rhj|2 + 2T [a]DT [a](h)rajrhj

�

dx

�
k
X

j=1

"

Z

A
j

�

T [a]2|rhj|2
�

dx�
Z

A
j

|2T [a]DT [a](h)rajrhj|dx
#

� �2
 

khk2H �
k
X

j=1

⇤

�2
kDT [a](h)kL4

(A
j

)

krajkL4

(A
j

)

krhjkL2

(A
j

)

!

.

It follows from the continuous embedding of H1(⌦0) into L4(⌦0) and (3.8) that

DF [a](h, h) � �2
✓

1� C
⌦

0⇤2✓

�2

◆

khk2H .

Therefore, the bilinear form DF [a] : (h, v) 2 H ⇥H 7! DF [a](h, v) is coercive, which shows

that inequality (3.43) holds true with C = �2(1� C
⌦

0⇤2✓

�2

). ⇤



CHAPTER 3. RECONSTRUCTION OF A PIECEWISE SMOOTH ABSORPTION COEFFICIENT BY
AN ACOUSTO-OPTIC PROCESS 71

We now make use of Theorem 3.5.3 in order to prove a local Landweber condition which
guarantees the convergence of the reconstruction algorithm [64].

Let a and a0 be in K. We can find t 2 [0, 1] such that

kF [a]� F [a0]kH⇤ = kDF [ta+ (1� t)a0](a� a0)kH⇤ � Cka� a0kH (3.44)

by (3.43). Hence, if ka�a0kH is small enough, then F satisfies the local Landweber condition:

kF [a]� F [a0]�DF [a](a� a0)kH⇤  ⌘kF [a]� F [a0]kH⇤ (3.45)

for some ⌘ < 1

2

.

3.5.3 Landweber iteration

Going back to equation (3.30), we have

r · �2ra = � (3.46)

in the sense of distributions. However, the equation above can be understood in the classical
sense in each inclusion Ai. This observation plays an important role in reconstructing the
true coe�cient from the initial guess given in Subsection 3.5.1.

Considering � as an element of H⇤ defined by

�� (v) =
k
X

j=1

Z

A
j

r ·rvjdx, (3.47)

for all v = (v
1

, · · · , vk), we rewrite (3.46) as

F [a] = � . (3.48)

Recalling thatK is closed and convex inH, we can employ the classical Hilbert projection
theorem to define the projection from H onto K as

P : H 3 h 7! argmin{kh� akH : a 2 K}. (3.49)

It is not hard to verify that
kP (h)� akH  kh� akH (3.50)

for all a 2 K.
We next solve (3.48) using the Landweber method to minimize

I(a) =
1

2
kF [a]�� k2H⇤ ,

where a varies in K with the initial guess aI = (↵
1

, · · · ,↵k), obtained in Subsection 3.5.1.
The corresponding guess for the coe�cient is

aI =
k
X

i=1

↵i1A
i

.
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There is a gap if we minimize I by the classical Landweber sequence given by

a(0) = aI ,
a(n+1) = a(n) � µDF [a(n)]⇤(F [a(n)]�� )

because a(1) may not belong to K and F [a(1)] is not well-defined. Motivated by (3.50), which
implies P (a(n)) is closer to a⇤ than a(n) is, we modify this formula as

a(n+1) = P (a(n))� µDF [P (a(n))]⇤(F [P (a(n))]�� ) (3.51)

with µ > 0 being a relaxation parameter. We have the following convergence result.

Theorem 3.5.5 Suppose that the true optical distribution a⇤ belongs to K and µ is su�-
ciently small. Let a(n) be defined by (3.51) with a(0) being the initial (piecewise constant)
guess obtained as the minimizer of (3.37). Then the sequence a(n) converges in H to a⇤ as
n ! 1.

Noting that F satisfies the local Landweber condition (see (3.45)), we can repeat the
proof of Proposition 2.2 in [64] to see that

ka(n+1) � a⇤k2H + (1� 2⌘)kF [P (a(n))�� ]k2H⇤  kP (a(n))� a⇤k2H .

This and (3.50) imply

kP (a(n+1))� a⇤k2H � kP (a(n))� a⇤k2H  (2⌘ � 1)kF [P (a(n))�� ]k2H⇤  0. (3.52)

It follows that
1
X

i=1

kF [P (a(n))]�� k2H⇤ 
1

1� 2⌘
ka⇤k2H ,

and hence
F [P (a(n))] ! � in H⇤ as n ! 1. (3.53)

On the other hand, we can see from (3.52) that the sequence (P (a(n)))n�1

is bounded
in H. Assume that P (a(n)) converges weakly to a0 for some a0 2 H. Since K is closed and
convex, it is weakly closed and therefore a0 2 K. Passing to a subsequence if necessary, this
sequence converges to a0 a.e. and also converges strongly to a0 in

Qk
j=1

L2(Aj). So, T [P (an)]
converges to T [a0] in H1(⌦) and hence in L4(⌦). For all v 2 H, we have

k
X

j=1

Z

A
j

(T [P (a(n))]2rP (a(n))� T [a0]2ra0)rvdx

=
k
X

j=1



Z

A
j

(T [P (a(n))]2 � T [a0]2)rP (a(n))rvdx+

Z

A
j

T [a0]2(rP (a(n))�ra0)rvdx

�

,

which goes to 0 by the dominated convergence theorem and the weak convergence of P (a(n))
to a0 in H. We have obtained F [a0] = � = F [a⇤]. Using (3.43) gives a0 = a⇤.

In summary, if the true coe�cient a⇤ is a perturbation of a constant on each inclusion
then the coe�cient aI obtained in Section 3.5.1 is quite closed to a⇤. Moreover, the misfit
between the initial guess aI and the true distribution a⇤ can be properly corrected by the
sequence in (3.51).
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3.6 Appendix

3.6.1 Proof of Lemma 3.1.4

The boundedness of � together with the assumption that � ⌘ 0 on @⌦ imply by standard
regularity results that � 2 C1(@⌦[⌦\⌦0

). Arguing similarly to Proposition 2.1.4 in Chapter
1, we see that � 2 C2(⌦ \ ⌦0

). Define

U = {x 2 ⌦ \ ⌦0
: u(x) 6= 0}.

The continuity of � shows that U is open. Assume, on contrary, that U is nonempty.
Noting that U can be decomposed as the union of its connected open subsets. Denote by

O the connected component of U , which is closest to @⌦. Without loss of generality, assume
that � > 0 in O. Let

� = dist(O, @⌦).

The distance above is understood as the length of the shortest curve, contained in ⌦ \ ⌦0

and connecting O and @⌦.
In the case that � = 0, @O and @⌦ have a common point x

0

. Applying the Hopf lemma
for the equation

(

���+ c� = 0 in O,

� > 0 on @O,

gives @⌫�(x0

) < 0, which is impossible.
When � > 0, it is easy to see that � ⌘ 0 in a neighborhood of @⌦. Assume that such a

neighborhood and O have a common boundary point x
0

. Noting that r�(x
0

) = 0, we can
apply the Hopf lemma again to get the contradiction. ⇤

3.6.2 Proof of Proposition 3.3.2

For simplicity, we write u and v when referring to u⌘
y,r and v⌘y,r, respectively. Using (3.24)

and the same arguments when estimating kav � akL1

(⌦)

in the previous section yields

kau � akL2

(⌦)

 O(⌘).

This, together with standard H2-regularity results (see, for instance, [60, Theorems 8.8 and
8.12]) and the embedding of H2(⌦) into L1(⌦), gives

k�v � �kL1
(⌦)

 O(⌘).

Hence, it follows from (3.21) that

�

�

�

�

Z

⌦

(av � a)��vdx�
Z

⌦

(av � a)�2dx

�

�

�

�


Z

⌦

�|av � a||�v � �|dx

 k�kL1
(⌦)

kav � akL1

(⌦)

k�v � �kL1
(⌦)

 c⌘3. (3.54)



74 3.6. APPENDIX

The constant c depends only on a = max a and a = min a, both of which are assumed to be
known. The independence of c on ||�||L1

(⌦)

can be deduced from Lemma 3.1.2. Now, note
that the second integral in the left hand side of (3.54) can be rewritten as

Z

⌦

(av � a)�2dx =
n
X

i=1

Z

A
i

[P (A
i

)

(av � a)�2dx

=
n
X

i=1



Z

A
i

\P (A
i

)

(av � a)�2dx+

Z

A
i

4P (A
i

)

(av � a)�2dx

�

,

and that the integral in (3.26) is equal to

Z

⌦

(a� a
0

)r · (�2v)dx =
n
X

i=1

Z

A
i

(a� a
0

)r · (�2v)dx

=
n
X

i=1



Z

@A
i

(ai � a
0

)�2v · ⌫id� �
Z

A
i

�2ra · vdx
�

=
n
X

i=1



Z

@A
i

(ai � a
0

)�2v · ⌫id�

�
Z

A
i

\P (A
i

)

�2ra · vdx�
Z

A
i

\P (A
i

)

�2ra · vdx
�

.

Therefore, we have

�

�

�

�

Z

⌦

(av � a)�2dx�
Z

⌦

(a� a
0

)r · (�2v)dx

�

�

�

�


n
X

i=1

�

�

�

�

Z

A
i

\P (A
i

)

(av � a+ra · v)�2dx

�

�

�

�

+

�

�

�

�

Z

A
i

\P (A
i

)

�2rai · vdx
�

�

�

�

+

�

�

�

�

Z

A
i

4P (A
i

)

(av � a)�2dx�
Z

@A
i

(ai � a
0

)�2v · ⌫id�
�

�

�

�

.

Denote by ↵i, �i and �i the last three quantities in the inequality above. We need to
prove that they all are bounded by O(⌘3) to complete the proof.

(i) Since for all i = 1, · · · , k, ai 2 C2(Ai) and kD2aikL1
(A

i

)

are bounded by some known
constants, we can find a constant c such that

�

�

�

�

Z

A
i

\P (A
i

)

(av � a�ra · u)�2dx

�

�

�

�

 k�k2L1
(A

i

)

�

�D2a
�

�

L1
(A

i

)

⌘2|⌃⌘|  ci
1

⌘3.
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On the other hand, using the classical substitution method in integration gives
�

�

�

�

�

Z

A
i

\P (A
i

)\⌃
⌘

ra · (u+ v)�2dx

�

�

�

�

�


�

�

�

�

Z

S(y,r)

(�2ra)(⇠) ·
Z ⌘

�⌘

(1A
i

(u+ v))
⇣

(1 +
⇢

r
)⇠
⌘

d⇢d⇠

�

�

�

�

+

�

�

�

�

Z

S(y,r)

Z ⌘

�⌘

h

(�2ra)
⇣

(1 +
⇢

r
)⇠
⌘

� (�2ra)(⇠)
i

. (1A
i

(u+ v))
⇣

(1 +
⇢

r
)⇠
⌘

d⇢d⇠

�

�

�

�

 0 + 2⌘2
�

�@r(�
2ra)

�

�

L1
(A

i

)

|⌃⌘|
 c⌘3.

The quantity ↵i is bounded from above by O(⌘3) because

↵i 
�

�

�

�

Z

A
i

\P (A
i

)

(av � a�ra · u)�2dx

�

�

�

�

+

�

�

�

�

�

Z

A
i

\P (A
i

)\⌃
⌘

ra · (u+ v)�2dx

�

�

�

�

�

.

(ii) The fact that �i  O(⌘3) can be deduced from the boundedness of the integrand and
(3.24).

(iii) The main point of the proof is the estimate of �i. In order to deal with the integral
over Ai4P (Ai), we introduce a change of parametrization involving @Ai. Let us first
define the set

E = {(z, t) 2 @Ai ⇥ [0, ⌘[, v(z) 6= 0, t < |v(z)|}
and then the map

� : E �! Ai4P (Ai)

(z, t) 7�! z + tṽ(z),

where ṽ(z) = v(z)/|v(z)|. This map is well-defined for ⌘ small enough. For any
x 2 Ai4P (Ai), we call z the intersection between [y, x] and @Ai. The whole segment
[z, z+v(z)] is included in Ai4P (Ai) and there exists a unique t such that x = z+tṽ(z).
Hence, this map is a bijection. We denote T (z) the tangent plane to @Ai in z, in a
basis adapted to the decomposition Rd = T (z) � Rṽ(z), the derivative of � take the
form:

d�(z, t) =



Id�1

+ tdṽ(z) 0
⇤ 1

�

and, as ṽ(z) = (z � y)/|z � y|, the operator dṽ(z) does not depend on ⌘ and tdṽ(z) =
O(⌘) with a constant depending on r

0

. Then,

det(d�(z, t)) = 1 + t r · (ṽ)(z) +O(⌘2) = 1 +O(⌘).

As B(z) is not orthonormal, the di↵erential volume written with the variables (z, t)
depends on the angle between ṽ(z) and ⌫(z) called ✓(z). This volume at the point
z + tṽ(z) is (1 +O(⌘)) cos(✓(z))dtdz. We denote by

(@Ai)
± = {z 2 @Ai, ±✓(z) > 0}
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and write

Z

P (A
i

)\A
i

(av � a)�2dx =

Z

(@A
i

)

+

Z |v(z)|

0

(av � a
0

)�2(z + tṽ(z))(1 +O(⌘))

⇥ cos(✓(z))dtdz

and, as ai and � are C1(Ai), we can write that for any z 2 (@Ai)+, and t 2 [0, |v(z)|],

|(av � a
0

)�2(z + tṽ(z))� (ai � a
0

)�2(z)|  O(⌘).

Then,

�

�

�

�

�

Z |v(z)|

0

(av � a
0

)�2(z + tṽ(z))(1 +O(⌘))dt� (ai � a
0

)�2(z)|v(z)|
�

�

�

�

�

 O(⌘2).

Now, noticing that cos(✓)|v(z)| = v(z) · ⌫(z) and that �((@Ai)+ \ ⌃⌘), the surface measure
of (@Ai)+ \ ⌃⌘, is of order O(⌘), we have

�

�

�

�

Z

P (A
i

)\A
i

(av � a)�2 �
Z

(@A
i

)

+

(ai � a
0

)�2v · ⌫
�

�

�

�

 O(⌘3).

We also get
�

�

�

�

Z

A
i

\P (A
i

)

(av � a)�2 �
Z

(@A
i

)

�
(ai � a

0

)�2v · ⌫
�

�

�

�

 O(⌘3)

by the same arguments. ⇤

3.6.3 Construction of R[ ] from formula (3.32)

In order to constructR[ ] from formula (3.32), we need to invert the operator @
@r

: L2(C) �!
G�1(C) and prove the stability of the inversion. For any f 2 L2(C), by Fubini’s theorem,
the function F (y, r) =

R r

0

f(y, ⇢)d⇢ is well-defined and in G(C) but not in G
0

(C). Since this
operator is acting on distributions which are zero on Sµ⇥]0, r

0

[, we introduce

p : L2(C) �! G
0

(C)

' 7�!


(y, r) 7! �
Z r

0

✓

'(y, ⇢)� R

r
0

�
]0,r

0

[

(⇢)'(y, ⇢R/r
0

)

◆

d⇢

�

and its dual
p⇤ : G�1(C) �! L2(C). (3.55)

The following result holds.

Proposition 3.6.1 For all f 2 L2(C) such that f = 0 on Sµ⇥]0, r
0

[, we have the inversion
formula

p⇤[
@f

@r
] = f.
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Proof. For any ' 2 L2(C), we have @
@r
p['] = �' on Sµ ⇥ [r

0

, R[ and therefore,

Z

C

p⇤


@f

@r

�

' =

⌧

@f

@r
, p[']

�

G�1

(C),G1

0

(C)

= �
Z

C

f
@

@r
p['] =

Z

C

f',

which yields the claimed result. ⇤

Proposition 3.6.2 For all u 2 M :=
�

v 2 G�1(C) : supp(v) ⇢ Sµ ⇥ [r
0

, R[
 

,

kp⇤ukL2

(C)

 kukG�1

(C)

.

Proof. We first note that p⇤[u] = 0 on Sµ⇥]0, r
0

[. Then, for any ' 2 L2(C), we get

�

�

�

�

Z

C

p⇤ [u]'

�

�

�

�

=

�

�

�

�

Z

C

p⇤ [u]�
[r

0

,R[

'
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�

�

�

 kukG�1
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�

�p[�
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0

,R[

']
�

�

G1

0

(C)

 kukG�1

(C)

�

�

�

�

@

@r
p[�

[r
0

,R[

']

�

�

�

�

L2

(C)

 kukG�1

(C)

�

��
[r

0

,R[

'
�

�

L2

(C)

 kukG�1

(C)

k'kL2

(C)

,

and the proof is complete. ⇤
Finally, we deduce the following result.

Corollary 3.6.3 From formula (3.32), we have

R[ ] =
1

r
0

kwk
1

p⇤(rd�2M).

Moreover, for ⌘ small, if R[ ⌘] =
1

r
0

kwk
1

p⇤(rd�2M⌘), then

kR[ �  ⌘]kL2

(C)

 Rd�2

r
0

kwk
1

kM �M⌘kG�1

(C)

,

which ensures the stability of the construction of R[ ] from the measurements M⌘.





Chapter 4

Reconstruction and stability in
acousto-optic imaging for absorption
maps with bounded variation

Introduction

In Chapters 2,1, and 3, an original mathematical and numerical framework for modeling
biomedical imaging modalities based on mechanical perturbations of the medium is devel-
oped. The objective is to enhance the resolution and stability of tissue property imaging.

Many kinds of waves propagate in biological tissues over certain frequency ranges. Each
one of them can be used to provide an image of a specific physical parameter. Low-frequency
electromagnetic waves are sensitive to electrical conductivity; optical waves tell about optical
absorption, ultrasonic waves reveal tissue’s density, mechanical shear waves indicate how
tissues respond to shear forces. However, single-wave imaging modalities are known to su↵er
from low specificity as well as intrinsic instabilities and low resolution; see [3, 105]. These
fundamental deficiencies are impossible to eliminate, unless additional a priori information
is incorporated. Single-wave imaging modalities can only be used for anomaly detection.
Expansions techniques for data analysis, which reduce the set of admissible solutions and
the number of unknowns, allow robust and accurate reconstruction of the location and of
some geometric features of the anomalies, even with moderately noisy data.

One promising way to overcome the inherent limits of single-wave imaging and provide a
stable and quantitative reconstruction of a distribution of physical parameters is to combine
di↵erent wave-imaging modalities; see [3, 105]. A variety of multi-wave imaging approaches
are being introduced and studied. In such approaches, two or more types of physical waves
are involved in order to overcome the individual deficiencies of each one of them and to
combine their strengths. Because of the way the waves are combined, multi-wave imaging
can produce a single image with the best contrast and resolution properties of the two waves.

Three di↵erent types of wave interaction can be exploited in multi-wave imaging [55]: (i)
the interaction of one kind of wave with tissue can generate a second kind of wave; (ii) a low-
frequency wave that carries information about the desired contrast can be locally modulated
by a second wave that has better spatial resolution; (iii) a fast propagating wave can be used
to acquire a spatio-temporal sequence of the propagation of a slower transient wave.

In Chapters 2 and 3, by mechanically perturbing the medium we prove both analytically
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and numerically the stability and resolution enhancement for reconstructing optical tissue
parameters. We show how the high contrast of optical tomography [27] can be coupled
to the high resolution of the acoustic propagation in soft tissues. The use of mechanical
perturbations of the medium modeled by acoustics equations in fluids enhance the resolution
to the order of the front width of the acoustic wave, which propagates inside the object. It
dramatically increases the low resolution of optical tomography [102].

This chapter is a continuation and an extension of the work started in Chapters 2 and 3.
We keep here the same models for the di↵usive light propagation [38] and for the acoustic
perturbations. Our aim is to extend the reconstruction algorithm developed in Chapter 2
to a large class of non smooth functions taken in a subclass of BV(⌦), the set of functions
with bounded variation.

The reconstruction and the stability of the inversion are shown in this general case.
Such an extension is essential for applying the proposed hybrid method to biological tissues.
Indeed, the physiologic parameters that we want to recover cannot be considered smooth or
piecewise smooth as assumed in Chapter 3.

Under this natural assumption, new mathematical di�culties rise to prove that the
acousto-optic data contain enough information for reconstructing the absorption map. The
lack of smoothness also causes di�culties to ensure the stability of the algorithm. This
chapter resolves these challenging issues. It provides both an original reconstruction formula
and a new stability result in the general setting. As far as we know, together with the recent
work [91], it is the first work in imaging discontinuous parameter distributions from internal
measurements.

Throughout this chapter, we denote by S the space of Schwartz and by S 0 its dual. We
use the notation Hs for the usual Sobolev spaces and set D to be the set of C1 compactly
supported functions.

As in Chapters 2 and 3, we consider a smooth bounded domain ⌦ of Rd, for d 2 {2, 3},
and a light fluence field defined as the unique solution of the di↵usion equation

(

�4�+ a� = 0 in ⌦,

l@⌫�+ � = g on @⌦,
(4.1)

where a 2 L1(⌦) satisfying a � a > 0 and supp(a� a
0

) ⇢ ⌦ is the absorption parameter to
be recovered; see [27, 102]. The extrapolation length l, and the bounds a and a

0

are known
positive constants. The incoming illumination g 2 H1/2(@⌦) is a non negative non zero map
and is also supposed to be known.

The acoustic perturbations are assumed to be generated by spherical pressure waves.
Let ⌘ be the front width of the acoustic wave and let w be the wave shape. The acoustic
perturbations take the form:

vy,r,⌘(x) =
⌘

r
w

✓

|x� y|� r

⌘

◆

x� y

|x� y| , 8 x 2 Rd\{y}, (4.2)

where y 2 Y ⇢ Rd, ⌘ > 0 and r 2]⌘,+1[; see Chapter 1. Here, Y ⇢ ⌦ is a smooth surface.
Moreover, the map w 2 D(R) is non negative and satisfies supp(w) ⇢ [�1, 1], w0 > �1 and
kwkL1 = 1. This last assumption ensures that the map x 7�! x+ v(x) is a di↵eomorphism.

The e↵ect of the displacement v on the absorption map is assumed to be only a shifting
e↵ect, that is, to say that a becomes av implicitly defined on ⌦v = (Id+ v)(⌦) by
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av(x+ v(x)) = a(x), 8 x 2 ⌦v, (4.3)

or equivalently, by the formula av = a � (Id+ v)�1. We introduce the displaced light fluence
as the unique solution of

(

�4�v + av�v = 0 in ⌦,

l@⌫�v + �v = g on @⌦,
(4.4)

by extending av by a
0

if necessary. Computing now the cross-correlation on the boundary
@⌦ between � and �v it follows that

1

l

Z

@⌦

(�� �v)g =

Z

⌦

(av � a)��v. (4.5)

Assume that the term in the left-hand side of the above identity can be measured. We define
the measurement as the real quantity given by

Mv =
1

⌘2

Z

⌦

(av � a)��v. (4.6)

Throughout this chapter, we assume that Mv is known for any displacement field v given by
(4.2).

For a smooth surface Y ⇢ ⌦ and ⌘ > 0, we assume that we are in possession of

M⌘(y, r) =
1

⌘2

Z

⌦

(av
y,r,⌘

� a)��v
y,r,⌘

, 8 (y, r) 2 Y⇥]⌘,+1[. (4.7)

The imaging problem considered in this chapter is to reconstruct a from the measurement
data M⌘ given by (4.7). The aim is to prove that the reconstruction algorithm from acousto-
optic di↵erential measurements presented in Chapter 2 can be extended for a very general
class of discontinuous absorption maps. For doing so, we start from the same di↵erential
boundary measurements (4.7) and consider the case where a has bounded variations. Under
some additional hypothesis, we correctly interpret the first order term in the asymptotic
formula when kvkL1 goes to zero. Then, by giving a weak definition of the spherical means
Radon transform R, we show how the internal data  satisfying

�2Da = D +r⇥G,

can be reconstructed stably in Hs(D) with s < 1/2 and D being a smooth domain. This is
done through a stable reconstruction of R[ ] in H(d�1)/2+s. Here, Da and D are defined
by (4.8).

The second part is to show that a stable reconstruction of the absorption map a is possible
from this internal data  . We give a system of two coupled elliptic equations solved by (a,�)
and prove that a can be found as a solution of a fixed point problem. As the system depends
on  , we show that the solution depends continuously on  in order to verify the global
stability of the reconstruction.

Finally, we present numerical illustrations to substantiate the potential of the proposed
method. We consider the imaging of a highly discontinuous absorption map, chosen from a
real biological tissue data.
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4.1 Preliminaries

In order to work with a wide set of discontinuous functions, we introduce BV (⌦) and several
subspaces of BV (⌦).

4.1.1 Some subclasses of functions with bounded variation

Definition 4.1.1 A function u 2 L1(⌦) is with bounded variation if its weak derivative Du
is a finite Radon measure. For any ' 2 C1

c (⌦)
d, we have

Z

⌦

u(x)r · '(x)dx = �
Z

⌦

'(x) · Du(dx).

A Radon measure can be uniquely decomposed into three singular measures as follows:

Du = Dlu+Dju+Dcu, (4.8)

which are respectively called the Lebesgue part, the jump part, and the Cantor part of Da.
The Lebesgue part is absolutely continuous with respect to the Lebesgue measure and is
identified to Dlu 2 L1(⌦)d, which is called the smooth variation of u. The jump part Dju is
such that there exists a set S ⇢ ⌦ of Hausdor↵ dimension d � 1, rectifiable admitting the
existence of a generalized normal vector ⌫S(x) for almost every x 2 S. The jump part is
written Dju = [u]S⌫S · Hd�1

S , where [u]S 2 L1(S,Hd�1

S ) is called the jump of a over S and
Hd�1

S is the Hausdor↵ measure on S. The cantor part Dcu is supported on a set of Hausdor↵
dimension less that d� 1, which means that its d� 1 Hausdor↵-measure is zero; see [1].

In many cases it is very di�cult to deal with such a general measure derivative. We
introduce the special class of functions of bounded variation SBV (⌦). This class stays a
very large set of discontinuous functions.

Definition 4.1.2 A function u 2 BV(⌦) is in the special class of bounded variation if
Dcu = 0. We denote by

SBV (⌦) = {u 2 BV(⌦), Dcu = 0} .

In some cases, we shall work in some specific Lp framework. Hence, we use the following
spaces.

Definition 4.1.3 For any p 2 [1,+1], we define

SBV p(⌦) =
�

u 2 SBV (⌦) \ Lp(⌦), Dlu 2 Lp(⌦)d, [u]S 2 Lp(S,Hd�1

S )
 

.

Roughly speaking, a function u 2 SBV p(⌦) is a function of class W 1,p admitting surface
discontinuities. In the following, we state some Sobolev regularity results for functions of
bounded variation. The classic embedding rule for BV (⌦) in the Sobolev spaces is that this
space behaves like W 1,1(⌦).

Proposition 4.1.1 (BV (⌦) embedding in Sobolev) For any s 2 R+, p � 1, ifW 1,1(⌦) ,!
W s,p(⌦) continuously, then BV (⌦) ,! W s,p(⌦) continuously.
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If a function is in SBV 1(⌦) we can expect a better Sobolev regularity. We give the
following embedding result.

Proposition 4.1.2 For any 0  ↵ < 1

2

, SBV 1(⌦) ,! H↵(⌦).

Proof. Consider u 2 SBV 1(⌦). Du = Dlu + [u]S⌫SHd�1

S where S is a rectifiable surface,
Dlu 2 L1(⌦)d and [u]S 2 L1(S,Hd�1

S ). We introduce a continuous trace operator �S :
H1�↵(⌦) �! L2(S) and consider a test function ' 2
DD(⌦)d to write

hDu,'iD0
(⌦)

d,D(⌦)

d

=

Z

⌦

Dlu · '+

Z

S

[u]S⌫S · 'Hd�1

S

�

�

�

hDu,'iD0
(⌦)

d,D(⌦)

d

�

�

�

 kDlukL1
(⌦)

k'kL2

(⌦)

+ k[u]SkL1
(S) k'kL2

(S)

 k�SkL(H1�↵

(⌦),L2

(⌦))

⇣

kDlukL1
(⌦)

+ k[u]SkL1
(S)

⌘

k'kH1�↵

(⌦)

.

This proves that Du 2 H↵�1(⌦)d and so, u 2 H↵(⌦). ⇤

4.1.2 The light fluence operator

The light fluence � associated to the absorption a is defined as the solution of
(

�4�+ a� = 0 in ⌦,

l@⌫�+ � = g on @⌦,
(4.9)

where g 2 H1/2(@⌦) is non negative and non zero. This problem is well posed if a 2 L1(⌦)
and admits a positive lower bound. Throughout this chapter, we assume that there exist
three constants 0 < a  a

0

 a < +1 such that a  a  a in ⌦ and supp(a � a
0

) ⇢ D.
Under this condition, the light fluence � is uniquely determined in H2(⌦). We define the
set of the admissible absorption maps by

A
0

=
�

a 2 L2(⌦), a  a  a, supp(a� a
0

) ⇢ D
 

(4.10)

and the light fluence operator as follows.

Definition 4.1.4 Let the light fluence operator F be given by

F : A
0

�! H2(⌦)

a 7�! �,

where � is the unique solution of (4.9).

As in dimensions 2 and 3, H2(⌦) ,! L1(⌦) we define the following two quantities in R

� = inf
a2A

0

inf
x2⌦

F [a](x),

� = sup
a2A

0

sup
x2⌦

F [a](x).
(4.11)

The following result is from Chapter 2.
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Proposition 4.1.3 The quantity � is finite and depends only on g, l, ⌦ and a. Moreover,
if g � 0 and g 6= 0 in @⌦, then � > 0 and depends only on g, l, ⌦, and a.

The following proposition is a direct application of standard elliptic regularity results [60]
on the equation satisfied by F [a]� F [a0].

Proposition 4.1.4 The operator F is Lipschitz continuous from A
0

to H2(⌦) in the sense
that there exists a constant C > 0 depending only on ⌦ such that for any a and a0 in A, we
have

kF [a]� F [a0]kH2

(⌦)

 C� ka0 � akL2

(⌦)

.

In the following, we will suppose that a is in SBV 1(⌦) and get from that a little Sobolev
regularity enhancement due to Proposition 4.1.2. We have a 2 Hs(⌦) for s 2]0, 1

2

[. For such
number s, we define a new admissible set for the absorption map:

As =
n

a 2 A
0

\Hs(⌦), kakHs

(⌦)

 RA
s

o

, (4.12)

where RA
s

is a positive real number called the radius of As. This gain of regularity for a
implies a gain of regularity for � = F [a].

The following result is easy to prove. It follows immediately from standard regularity
estimates.

Proposition 4.1.5 Assume that g 2 H1(@⌦). Then for any s 2]0, 1
2

[ and any a 2 As,
F [a] 2 H2+s(⌦). Moreover, the map

F : As �! H2+s(⌦)

is Lipschitz continuous in the following sense: There exists a constant C > 0 depending only
on ⌦ and s such that, for any a and a0 in As, we have

kF [a]� F [a0]kH2+s

(⌦)

 C(�+ ||r�||L1) ka0 � akHs

(⌦)

.

4.1.3 Spherical means Radon transform

Here, we introduce the spherical means Radon transform R and the normalized spherical
flow operator ~R. We extend their definition to tempered distributions in order to deal with
derivative of non smooth functions. We also give several useful properties of these operators.
We denote by ⌃ = Y⇥]0,+1[.

Definition 4.1.5 (Spherical means Radon transform) For any function f 2 C0(Rd),
we define its spherical means Radon transform R[f ] 2 C0(Y⇥]0,+1[) by

R[f ](y, r) =

Z

Sd�1

f(y + r⇠)�(d⇠), 8 (y, r) 2 ⌃,

where � is the surface measure of the unit sphere. To extend this definition to distributions,
we introduce the dual operator R⇤ : S(⌃) �! S(Rd) defined for any ' 2 S(⌃) by
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R⇤['](x) =

Z

Y

'(y, |x� y|)
|x� y|d�1

�(dy).

Then, for any tempered distribution u 2 S 0(Rd), we define its spherical mean Radon trans-
form R[u] 2 S 0(⌃) as follows:

hR[u],'iS0
(⌃),S(⌃) = hu,R⇤[']iS0

(Rd

),S(Rd

)

, 8 ' 2 S(Rd).

Injectivity and invertibility issues for R have been studied in several works; see, for instance,
[94]. In [94, Corollary 6.4], the continuity of R and its inverse is proved. The following result
holds.

Theorem 4.1.6 Consider s 2 R and suppose that for some ↵ < s and any u 2 H↵(⌦)
compactly supported, R[u] = 0 implies u = 0. Then there exist two positive constants c

1

and
c
2

such that

kukH↵

(⌦)

 c
1

kR[u]k
H↵+

d�1

2

(⌃)

 c
2

kukH↵

(⌦)

.

In the following, we always suppose that we are in the context where this theorem applies.
Injectivity issues are essentially controlled by the set of centers Y ; see, for instance, [97].

Definition 4.1.6 (Spherical flow operator) For any function F 2 C0(Rd)d, we define its
normalized flow through the sphere S(y, r), ~R[F ] 2 C0(Y⇥]0,+1[) by

~R[F ](y, r) =

Z

Sd�1

f(y + r⇠)�(d⇠), 8 (y, r) 2 ⌃,

where � is the surface measure of the unit sphere. To extend this definition to distributions,
we introduce the dual operator R⇤ : S(⌃) �! S(Rd) defined for any ' 2 S(⌃) by

~R⇤['](y, r) =

Z

Y

'(y, |x� y|)
|x� y|d (x� y)�(dy).

Then, for any tempered distribution U 2 S 0(Rd)d, we define its normalized flow through the
sphere S(y, r) denoted by ~R[U ] 2 S 0(⌃) as

D

~R[u],'
E

S0
(⌃),S(⌃)

=
D

u, ~R⇤[']
E

S0
(Rd

),S(Rd

)

, 8 ' 2 S(Rd),

~R[F ](y, r) =

Z

Sd�1

F (y + ⇢⇠) · ⇠�(d⇠), 8 (y, r) 2 ⌃. (4.13)

The following result holds.

Proposition 4.1.7 For any u 2 S 0(Rd), U 2 S 0(Rd)d, we have the following identities in
the sense of distributions:

~R[ru] = @rR[u], (4.14)

~R[r⇥ U ] = 0, (4.15)
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R[r · U ] =
1

r
@r
⇣

r ~R[U ]
⌘

, (4.16)

and

R[4u] =
1

r
@r
�

r@rR[u]
�

. (4.17)

4.2 Recovering the internal data

The aim of this section is to recover the internal data  with enough stability in order to
use it in the next section to recover the absorption map a. The section is divided into five
steps.

In the first step, we prove that when a belongs to SBV 1(⌦), the approximation

M⌘(y, r) = � 1

⌘2

Z

⌦

�2(x)vy,r,⌘(x) ·Da(dx) +O
⇣

⌘
d�1

2d

⌘

holds as ⌘ goes to zero. In the second step, we link the approximated measurement to
~R[�2Da] through the exact formula:

1

⌘2

Z

⌦

�2(x)vy,r,⌘(x) ·Da(dx) =
⇣h

~R[�2Da]
i

⇤
⇥

rd�2w⌘

⇤

⌘

(y, r),

where ⇤ is the convolution product with respect to the variable r and w⌘(r) =
1

⌘
w(r/⌘). In

the third step, we give a weak Helmholtz decomposition of

�2Da = D +r⇥G,

where  2 Hs
loc(Rd) with s 2 [0, 1/2[ and is of class C1 outside of supp(Da) and satisfies

 |Y = 0. In the fourth step, we prove that its spherical means Radon transform R[ ]
is stably approximated in the space H(d�1)/2(⌃) in order to satisfy the assumptions of the
Palamodov theorem. We conclude by proving the stable reconstruction of  in L2(D), where
D is a smooth subdomain of interest containing supp(Da) and is such that Y ⇢ @D.

4.2.1 Step 1: From physical to ideal measurements

Definition 4.2.1 (Ideal measurements) We call the ideal measurement function associ-
ated to the absorption a 2 SBV 1(⌦) the function defined on ⌃ by

M̃⌘(y, r) = � 1

⌘2

Z

⌦

�2(x)vy,r,⌘(x) · Da(dx). (4.18)

In order to prove that M⌘ is close to M̃⌘ when ⌘ goes to zero, we need several definitions.

Definition 4.2.2 (Wrap condition) We say that the surface Y satisfies the wrap condi-
tion around ⌦0 if there exists a constant C > 0 such that for any x 2 ⌦0 ⇢ ⌦, � ⇢ Sd�1

measurable, we have
� (Y \ Cone(x,�))  C � (�) ,

where Cone(x,�) = {x+ t⇠, ⇠ 2 �, t 2 R+}.
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Theorem 4.2.1 Let a 2 SBV 1(⌦) and let ⌦0 be such that dist(⌦0, Y ) � r
0

> 0. Suppose
that Y satisfies the wrap condition around ⌦0. Then, there exists a constant C > 0 depending
on ⌦, �, |Y |, |Da|(⌦), r

0

and the wrap constant such that
�

�

�

M⌘ � M̃⌘

�

�

�

L2

(⌃)

 C⌘
d�1

2d ,

and
�

�

�

P [M⌘]� P [M̃⌘]
�

�

�

H1

(⌃)

 C⌘
d�1

2d ,

where P is the operator defined by

P ['](y, r) = �
Z r

0

'(y, ⇢)

⇢d�2

d⇢.

To prove this result, we need several lemmas. The first one is a spherical density result
for the Radon measure |Da|. Its proof uses some measure density results and is given in
Appendix 4.6.1.

Lemma 4.2.2 Consider a 2 SBV 1(⌦) constant out of the subdomain D ⇢ ⌦ and let the

mollifier sequence w⌘(r) =
1

⌘
w
⇣

1

⌘

⌘

, where w is given by (4.2). Suppose that Y satisfies the

wrap condition around D. Then, the sequence of functions defined on ⌃ by

'⌘(y, r) =

Z

⌦

w⌘(|x� y|� r)|Da|(dx)

satisfies

k'⌘kL2

(⌃)

 C⌘�
1

2d

with C depending on |Da|(⌦), |Y |, and the wrap constant.

In the next lemma, we rewrite the measurement map M⌘.

Lemma 4.2.3 For any (y, r) 2 ⌃, we have

M⌘(y, r) = � 1

⌘2

Z

⌦

T [vy,r,⌘](x, y)vy,r,⌘(x) · Da(dx),

where

T [v](x, y) =

Z

1

0

(��v) (x+ tv(x))

✓

1 + t
|v(x)|
|x� y|

◆d�1

dt.

Proof. Since we fix y (supposed to be zero) r > r
0

and ⌘ > 0, we will not write the
dependence with respect to these variables. We first introduce an approximation sequence
of (a")">0

such that supp(a" � a
0

) ⇢ ⌦0 and a" ! a in L2(⌦). Note that its derivative ra"

converges to Da for the H�1(⌦)d norm.
We define now a flow '(x, t) = x+ tv(x), ' 2 C1�Rd⇥ [0, 1],Rd

�

. The condition w0 > �1
ensures that this flow is invertible in the sense that there exists a flow '�1(x, t) of class C1
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such that '('�1(x, t), t) = '�1('(x, t), t) = x for all (x, t) 2 Rd ⇥ [0, 1]. In particular, it
satisfies for any x 2 Rd, '�1(x, 0) = x and '�1(x, 1) = (Id+ v)�1(x). For all x 2 Rd, " > 0,
we have

a" � (Id+ v)�1(x)� a"(x) =

Z

1

0

ra"('�1(x, t)) · @t'�1(x, t)dt

Z

⌦

(a"v � a")p =

Z

⌦

Z

1

0

ra"('�1(x, t)) · @t'�1(x, t)p(x)dtdx

Z

⌦

(a"v � a")p =

Z

1

0

Z

⌦

ra"('�1(x, t)) · @t'�1(x, t)p(x)dxdt,

where p = ��v.
Hence, using the change of variables x 7! '(x, t), we get

Z

⌦

(a"v � a")p =

Z

1

0

Z

⌦

ra"(x) · @t'�1('(x, t), t)p � '(x, t) det(dx'(x, t))dxdt

= �
Z

⌦

F ·ra",

where

F (x) = �
Z

1

0

@t'
�1('(x, t), t)p � '(x, t) det(dx'(x, t))dt.

As p 2 H2(⌦), the function F belongs to H1(⌦)d. Passing to the limit when " goes to zero in
the previous equation, the term in the left-hand side goes to

R

⌦

(au�a)p and as F 2 H1(⌦)d

and supp
�

ra"
�

⇢ ⌦0 ⇢⇢ ⌦, the right-hand side converges to
R

⌦

F (x) · Da(dx). Hence, the
formula

M =

Z

⌦

(av � a)p = �
Z

⌦

F (x) ·Da(dx)

holds. In order to simplify the writing of F , we recall two useful properties satisfied by '
and '�1. Deriving the identity '�1('(x, t), t) = x with respect to t and x, we get

dx'
�1('(x, t), t)@t'(x, t) + @t'

�1('(x, t), t) = 0,

dx'
�1('(x, t), t)dx'(x, t) = Id.

We recall that dx'(x, t) = Id+ tdv(x). Now noticing that @t'�1('(x, t), t) = �(Id+ tdv(x)),
we rewrite F as follows:

F (x) = �
Z

1

0

p
�

x+ tv(x)
�

det
�

Id+ tdv(x)
��

Id+ tdv(x)
��1

v(x)dt.

Fortunately, dv(x) is diagonal in the spherical orthonormal basis B = (⇠, e
2

, · · · , ed), where
⇠ = x/|x| and (e

2

, · · · , ed) is an orthonormal basis of ⇠?, the hyperplane orthogonal to ⇠. Its
matrix in this basis is given by

matB(dv(x)) =

"

r
0

r
w0
⇣

|x|�r
⌘

⌘

0

0 |v(x)|
|x| Id�1

#

.
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Then,

matB(Id+ tdv(x)) =

2

4

1 + t r0
r
w0
⇣

|x|�r
⌘

⌘

0

0
⇣

1 + t |v(x)||x|

⌘

Id�1

3

5 ,

and from this matrix we deduce that

det
�

Id+ tdv(x)
�

=



1 + t
r
0

r
w0
✓

|x|� r

⌘

◆�

1 + t
|v(x)|
|x|

�d�1

�

Id+ tdv(x)
��1

v(x) =
v(x)

1 + t r0
r
w0
⇣

|x|�r
⌘

⌘ .

Therefore,

F (x) =

Z

1

0

p
�

x+ tv(x)
�



1 + t
|v(x)|
|x|

�d�1

dt v(x).

Replacing |x| by |x � y| and rewriting the dependence in y, r, and ⌘, we finally get the
expected formula. ⇤

The next result shows that the shifted absorption map av stays close to a in L1(⌦) if
⌘ is small. The key result is optimal in the sense that it requires that a to be of bounded
variation. In fact, it shows that any reconstruction would be impossible without this minimal
regularity.

Proposition 4.2.4 Consider a 2 A
0

\ BV (⌦) and let the internal displacement v be given
by (4.2). We have the following estimate:

kav � akL1

(⌦)

 C|Da|(⌦)⌘
with C depending only on the space dimension d.

Proof. Let us consider an approximation sequence (a")e>0

⇢ C0(⌦) such that supp(ae�a) ⇢
D and ka" � akL1

(⌦)

 ". Now, we define the flow ' 2 C1�Rd⇥[0, 1]
�

by '(x, t) = x+tv⌘(x).
The condition w0 > �1 ensures that this flow is invertible in the sense that there exists a flow
'�1(x, t) of class C1 such that '('�1(x, t), t) = '�1('(x, t), t) = x for all (x, t) 2 Rd⇥ [0, 1].
In particular, it satisfies for any x 2 Rd, '�1(x, 0) = x and '�1(x, 1) = (Id+ v⌘)�1(x).

For all x 2 Rd, " > 0, we get

a"v
⌘

(x)� a"(x) = a" � '�1(x, 1)� a" � '�1(x, 0) =

Z

1

0

ra" � '�1(x, t)@t'
�1(x, t)dt

�

�

�

a"v
⌘

(x)� a"(x)
�

�

�

L1

(⌦)


Z

1

0

Z

⌦

�

�ra" � '�1(x, t) · @t'�1(x, t)
�

� dxdt


Z

1

0

Z

⌦

�

�ra"(x) · @t'�1('(x, t), t)
�

� | det dx'(x, t)|dxdt.

A similar computation to the one in the proof of (4.2.3) leads to

|@t'�1('(x, t), t) det dx'(x, t)| 
✓

1 +
d(d� 1)

2

◆

|v⌘(x)|
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and so,

�

�

�

a"v
⌘

(x)� a"(x)
�

�

�

L1

(⌦)


✓

1 +
d(d� 1)

2

◆

⌘

Z

⌦

|ra"|.

Passing now to the limit when " goes to zero, we get the expected result. ⇤

As a consequence of Proposition 4.2.4, we deduce that the modified light fluence �v is
close to � in H2(⌦) when ⌘ is small.

By combining (4.2.4) and (4.1.4), the following result holds.

Corollary 4.2.5 Consider a 2 A
0

\BV (⌦) and the internal displacement v given by (4.2).
We have the following estimate:

k�v � �kH2

(⌦)

 C�(a� a)
1

2 |Da|(⌦) 1

2⌘
1

2 ,

where C depends on d and ⌦.

Lemma 4.2.6 Consider a subdomain ⌦0 ⇢ ⌦ such that dist(⌦0, Y ) � r
0

> 0. There exists
a constant C > 0 depending on ⌦, � and a such that

�

�T [vy,r,⌘](., y)� �2

�

�

L1
(⌦

0
)

 C⌘
1

2 .

Proof. For fixed ⌘ > 0 and (y, r) 2 ⌃, for t 2 [0, 1] and x 2 ⌦0,

|(��v)(x+ tv(x))� �2(x)|  |�2(x+ tv(x))� �2(x)|+ |(��v)(x+ tv(x))� �2(x+ tv(x))|
 2�|�(x+ tv(x))� �(x)|+ �|(�v(x+ tv(x))� �(x+ tv(x))|
 2� k�k

C0,

1

2 (⌦)
⌘

1

2 + �C
1

⌘
1

2

 C⌘1/2.

Recalling that for x 2 ⌦0, |x � y| � r
0

, we use the previous inequality in (4.19) to get the
desired result. ⇤

Now, we are ready to prove Theorem 4.2.1.

Proof. (of Theorem 4.2.1) For any (y, r) 2 ⌃,

|M⌘ � M̃⌘|(y, r) 
Z

⌦

|T [vy,r,⌘](x, y)� �2(x)| |vy,r,⌘(x)|
⌘2

|Da|(dx)


�

�T [vy,r,⌘]� �2

�

�

L1
(⌦

0
)

Z

⌦

w⌘(|x� y|� r)|Da|(dx).

Applying Lemmas 4.2.6 and 4.2.2, we get the first inequality,
�

�

�

M⌘ � M̃⌘

�

�

�

L2

(⌃)

 C⌘
d�1

2d .

Next, taking the derivative with respect to the variable y, it follows that

dy(M⌘ � M̃⌘)(y, r) =

Z

⌦

dy

✓

�

T [vy,r,⌘](x, y)� �2(x)
� vy,r,⌘(x)

⌘2

◆

·Da(dx)
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with

dy

✓

�

T [vy,r,⌘](x, y)� �2(x)
� v⌘(x, y, r)

⌘2

◆

= dvT [vy,r,⌘](x, y) · dyvy,r,⌘(x)
vy,r,⌘(x)

⌘2

+
�

T [vy,r,⌘](x, y)� �2(x)
� dyvy,r,⌘(x)

⌘2

+ dyT [vy,r,⌘](x, y)
vy,r,⌘(x)

⌘2
.

The vector field vy,r,⌘ satisfies

dyvy,r,⌘ = @rvy,r,⌘ + |vy,r,⌘|B(y, r, x),

where B(y, r, x) is a matrix uniformly bounded with respect to all variables. Moreover,

dyT [vy,r,⌘](x, y) = O(⌘)

with reminder uniform with respect to all variables. Thus we write

dy

✓

�

T [vy,r,⌘](x, y)� �2(x)
� v⌘(x, y, r)

⌘2

◆

= @r

✓

�

T [vy,r,⌘](x, y)� �2(x)
� vy,r,⌘(x)

⌘2

◆

(x� y)T

|x� y|

+R(y, r, x)
|vy,r,⌘(x)|

⌘2
,

where the reminder R(y, r, x) = O(⌘1/2) uniformly with respect to all variables. Here, T
denotes the transpose.

Using this identity, we can integrate by parts with respect to r to get

Z r

0

1

⇢d�2

dy

✓

�

T [v⌘(y, ⇢)](x, y)� �2(x)
� v⌘(y, ⇢)(x)

⌘2

◆

d⇢

=
1

rd�2

✓

�

T [vy,r,⌘](x, y)� �2(x)
� vy,r,⌘r(x)

⌘2

◆

(x� y)T

|x� y|

+ (d� 2)

Z r

0

1

⇢d�1

✓

�

T [v⌘(y, ⇢)](x, y)� �2(x)
� v⌘(y, ⇢)(x)

⌘2

◆

d⇢
(x� y)T

|x� y|

+

Z r

0

R(y, ⇢, x)
|v⌘(y, ⇢)(x)|

⌘2
d⇢.

Finally, we integrate over ⌦ and use Lemma 4.2.2 in order to control these three terms. We
control all of these by ⌘

d�1

2d . ⇤

4.2.2 Step 2: Linking the measurement and �2Da

In the previous subsection, we have shown that the measurement M⌘ is approximated by
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M̃⌘(y, r) = � 1

⌘2

Z

⌦

�2(x)vy,r,⌘(x) ·Da(dx)

in a certain sense when ⌘ goes to zero. We propose here a rewriting of M̃⌘ using the spherical
operators defined in subsection 4.1.3. As Da is a finite measure compactly supported, it is
a tempered distribution on Rd. Since � 2 C0

�

⌦
�

, the vector field �2Da is a tempered
distribution on Rd defined by

⌦

�2Da,'
↵

S0
(Rd

)

d,S(Rd

)

d

=

Z

⌦

�2' ·Da.

The following result holds.

Proposition 4.2.7 For any a 2 A, ⌘ > 0 we have the formula

M̃⌘ = �1

r

h⇣

rd�1 ~R[�2Da]
⌘

⇤ w⌘(�.)
i

in ⌃, (4.19)

where ⇤ is the one dimensional convolution product with respect to the variable r and w⌘(r) =
1

⌘
w

✓

r

⌘

◆

.

Proof. Consider a test function ' 2 S(⌃). We have

�
Z

⌃

M̃⌘' = �
Z

Y

Z 1

0

M⌘(y, r)'(y, r)�(dy)dr

=
1

⌘2

Z

⌦

�2(x)

✓

Z

Y

Z 1

0

vy,r,⌘(x)'(y, r)�(dy)dr

◆

·Da(dx)

=

Z

⌦

�2(x)

✓

Z

Y

Z 1

0

1

r
w⌘ (|x� y|� r)'(y, r)dr

x� y

|x� y|�(dy)
◆

·Da(dx)

=

Z

⌦

�2(x)

✓

Z

Y

✓

w⌘ ⇤
'(y, .)

r

◆

(|x� y|) x� y

|x� y|�(dy)
◆

·Da(dx)

=

Z

⌦

�2(x) ~R⇤


rd�1

✓

w⌘ ⇤
'(y, .)

r

◆�

(x) ·Da(dx)

=

⌧

�2Da, ~R⇤


rd�1

✓

w⌘ ⇤
'(y, .)

r

◆��

S0
(Rd

),S(Rd

)

=

⌧

~R[�2Da], rd�1

✓

w⌘ ⇤
'(y, .)

r

◆�

S0
(⌃),S(⌃)

=

⌧

1

rd�1

~R[�2Da], w⌘ ⇤
'(y, .)

r

�

S0
(⌃),S(⌃)

=

⌧

1

r

⇣

rd�1 ~R[�2Da]
⌘

⇤ w⌘(�.),'

�

S0
(⌃),S(⌃)

.

⇤
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4.2.3 Step 3: Helmholtz decomposition of �2Da

Since �2Da is a tempered distribution, we can consider its Fourier transform. As a 2 Hs(⌦)
with s 2 [0, 1/2[ and Da is compactly supported, it follows that Da 2 Hs�1

K (⌦)d. Moreover,
as �2 is in H2(⌦), we also have that �2Da 2 Hs�1

K (⌦)d. From Appendix 4.6.2, we deduce

that \�2Da belongs to L1

loc(Rd)d and satisfies

Z

Rd

�

�

�

\�2Da
�

�

�

2

(⇠)
�

1 + |⇠|2
�

(s�1)

d⇠ < +1.

Let the Sobolev space H↵+1

curl

(Rd)d be defined by

H↵+1

curl

(Rd) :=
�

A 2 H↵(Rd)d, r⇥ A 2 H↵(Rd)d
 

.

The following proposition gives a generalization of the Helmholtz decomposition for some
compactly supported distributional vector fields.

Proposition 4.2.8 Consider ↵ 2 R and U 2 H↵
K(⌦)

d, where K is a compact of ⌦. There
exists u 2 H↵+1(Rd) and A 2 H↵+1

curl

(Rd) such that

U = Du+r⇥ A

in the sense of distributions.

Proof. As U 2 H↵
K(⌦), bU 2 L1

loc(Rd)d. We define now bu =
bU ·⇠
i|⇠|2 2 L1

loc(Rd) and bA =
bU^⇠
i|⇠|2 2 L1

loc(Rd)d. We have the decomposition bU = ibu⇠ + i⇠ ^ bA. As ibu⇠ is the Fourier trans-
form of ru where u is the inverse Fourier transform of bu and has the same integrability than
bU , we deduce that u 2 H↵+1(Rd) and A, the inverse Fourier transform of bA, is in H↵+1

curl

(Rd).⇤

Using this last result, we write

�2Da = D +r⇥G (4.20)

with  2 Hs(Rd) and therefore, we get

~R[�2ra] = @rR[ ] (4.21)

in the sense of distributions. Using this last identity in (4.19) we obtain that

M̃⌘ = �1

r

⇥�

rd�1@rR[ ]
�

⇤ w⌘(�.)
⇤

in ⌃. (4.22)

The proof is then complete. ⇤
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4.2.4 Step 4: Approximating R[ ]

We can show now that from the previous identity, the quantity R[ ] can be approximated

up to a function depending only in y in H
d�1

2 (⌃) in order to apply Palamodov’s theorem
(see [94]).

Theorem 4.2.9 Let s 2
⇤

1

3

, 1
2

⇥

and ↵ > 0 and consider a 2 As+↵. Then P [M̃⌘] converges

to R[ ]� g in H
d�1

2

+s(⌃) where g is a function depending only on y. More precisely, there
exists a constant C depending on d, s, ↵ and ⌃ such that

�

�

�

P [M̃⌘]�R[ ] + g
�

�

�

H
d�1

2

+s

(⌃)

 C⌘
↵

↵+1 k kHs+↵

(⌃)

.

Proof. Starting from (4.22) and integrating by parts, we write

M̃⌘(y, r) =

Z

R
R[ ](y, ⇢)@⇢

✓

1

r
w⌘(⇢� r)⇢d�1

◆

d⇢.

Now, applying P to M̃⌘, we get

P [M̃⌘](y, r) = �
Z

R
R[ ](y, ⇢)@⇢

✓

Z r

r
0

w⌘(⇢� s)
⇢d�1

sd�1

ds

◆

d⇢.

Let us develop the test function

@⇢

Z r

r
0

w⌘(⇢� s)
⇢d�1

sd�1

ds = w⌘(⇢� r
0

)
⇢d�1

rd�1

0

� w⌘(⇢� r)
⇢d�1

rd�1

� ✓⌘(⇢, r)

with

✓⌘(⇢, r) = (d� 1)

Z r

r
0

w(⇢� s)(s� ⇢)
⇢d�2

sd
ds.

which satisfies k✓⌘kH1

(]0,R[

2

)

 C⌘1/2 with C depending on r
0

, R, and d. Finally, we write

P [M̃⌘](y, r) =
1

rd�1

Z R

0

⇢d�1R[ ](y, ⇢)w⌘(⇢� r)d⇢� 1

rd�1

0

Z R

0

⇢d�1R[ ](y, ⇢)w⌘(⇢� r
0

)d⇢

+

Z R

0

R[ ](y, ⇢)✓⌘(⇢, r)d⇢.

Using Lemma 4.6.3, we bound the H
d�1

2 (⌃) norm of the third term by C⌘
1

2 kR[ ]k
H

d�1

2

(⌃)

.

Moreover, using Lemma 4.6.4, we say that as R[ ] 2 H
d�1

2

+s+↵(⌃), the first term converges

to R[ ] for the norm of H
d�1

2

+s(⌃) with an error controlled by ⌘
↵

↵+1 kR[ ]k
H

d�1

2

+s+↵

(⌃)

.

Using the same argument, the second term goes to g(y) = R[ ](y, r
0

) in the same manner.
We finally obtain that

�

�

�

P [M̃⌘]�R[ ] + g
�

�

�

H
d�1

2

+s

(⌃)

 C⌘
↵

↵+1 kR[ ]k
H

d�1

2

+s+↵

(⌃)

,

where C depends on d and the manifold ⌃. ⇤
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4.2.5 Step 5: Approximating  

We recall here that we have assumed the invertibility of the spherical means Radon transform.
We apply R�1 to the inequality given in Theorem 4.2.9 to get

�

�

�

R�1 � P [M̃⌘]� +R�1[g]
�

�

�

Hs

(D)

 ⌘
↵

↵+1 k kHs+↵

(⌃)

. (4.23)

The problem that we have here is that we do not know the map h = R�1[g]. Nevertheless,
this function is harmonic because @rR[h] = 0 and so using Proposition 4.1.7, R[4h] = 0
we get 4h = 0. We can change  to  ̃ =  � h in the Helmholtz decomposition of �2Da.
Indeed, rh is divergence-free and there exists a smooth vector field A such that rh = r⇥A.
We write

�2Da = D +r⇥G,

�2Da = D( � h) +r⇥ (G� A),

�2Da = D ̃+r⇥ G̃,

where  ̃ can be approximated in Hs(D) and satisfies  ̃|Y = 0.

To summarize the five steps of this section, we state the following theorem.

Theorem 4.2.10 Consider a 2 A
0

\ SBV 1(⌦) satisfying supp(Da) ⇢ D ⇢ D ⇢ ⌦ and
assume that Y satisfies the wrap condition around D. Then there exists  2 Hs(Rd) with
s 2]0, 1/2[ and of class C1 outside of supp(Da) satisfying  |Y = 0 and

�2Da = D +r⇥G, (4.24)

where G 2 Hs
curl(Rd)d and � = F [a]. Moreover, R�1 � P [M⌘] converges strongly to  in

Hs(D) when ⌘ goes to zero at a speed bounded by O
⇣

⌘
1

4

⌘

.

This map  will be now the starting point of the reconstruction procedure. In the next
section, we assume that  is known in Hs(D) up to a small error in Hs(D). We will see
how to approximate the absorption parameter a from this data.

4.3 Stable reconstruction of the absorption map

In this section, we assume that the assumptions of Theorem 4.2.10 are satisfied and suppose
in addition that Y = @D. As a consequence, we assume the knowledge of  2 Hs(D) of
class C1 in a neighborhood of @D, which satisfies  |@D = 0. The goal of this section is to
present a method to estimate the absorption map a from the knowledge of  . We choose
s such that Hs+1(⌦) is embedded in L1(⌦) in dimensions 2 and 3. This is true for any
s 2]1/3, 1/2[.

Let us take the divergence of (4.24) in the sense of distributions to get

r · (�2Da) = 4 ,
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which looks like an elliptic equation with unknown a. There are two di�culties here. The first
one is that we do not have enough regularity to deal with this equation using a variational
approach. To do so, we should have  in H1(D) and look for a solution a in H1(D).
The second di�culty is that the di↵usion term �2 is unknown here and depends on a by
�2 = F [a]2, where F is the light fluence operator.

Finally, we recall the definition of the set of admissible absorption distributions:

As =
n

a 2 A
0

\Hs(⌦), kakHs

(⌦)

 RA
s

o

and define
Bs =

�

� 2 W 1,1(D), �  ��, kr�kL1  RB
s

 

,

where RB
s

= supa2A
s

krF [a]kL1
(D)

. Note that F maps As into Bs.

4.3.1 The change of function argument

The main idea is to introduce a new variable:

ã = a� a
0

�  

�2

, (4.25)

which is well defined in Hs(D) since � � �.

Proposition 4.3.1 For all a 2 As and � = F [a], we have ã 2 H1

0

(D) .

Proof. In the sense of distributions, we have

Dã = Da� D 

�2

+ 2 
r�
�3

,

�2Dã = �2Da�D + 2 r log�,

r · (�2Dã) = r · (2 r log�),

�24ã = r · (2 r log�)�r(�2) ·Dã,

4ã =
1

�2

r · (2 r log�)� 2r(log�) ·Dã.

Consider a test function ' 2 D(D) and using the fact that r� 2 L1(D), which follows from
the fact that � 2 H2+s(⌦), we have

⌧

1

�2

r · (2 r log�),'

�

D0
(D),D(D)

=
D

r · (2 r log�),
'

�2

E

H�1

(D),H1

0

(D)

= �2

Z

D

 

�2

r(log�) · (r'� 2'r(log�))

 2

�3

k kL2

(D)

kr�kL1
(D)

✓

kr'kL2

(D)

+
2

�
kr�kL1

(D)

k'kL2

(D)

◆

 C k'kH1

0

(D)

and so 1

�

2

r · (2 r log�) 2 H�1(D). We also have
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h2r(log�) ·Dã,'iD0
(D),D(D)

= hDã, 2r(log�)'iH�1

(D),H1

0

(D)

= �2

Z

D

ã
�

'4(log�) +r(log�) ·r'
�

= �2

Z

D

ã

✓

a'� |r�|2
�2

'+r(log�) ·r'
◆

 2 kãkL2

(D)

 

a k'kL2

(D)

+
kr�k2L1

(D)

�2

k'kL2

(D)

+
kr�kL1

(D)

�
kr'kL2

(D)

!

 C k'kH1

0

(D)

and so 2r(log�) · Dã 2 H�1(D). Finally, since 4ã 2 H�1(D) and ã is smooth in a neigh-
borhood of @D and satisfies ã|@D = 0, it follows from the standard regularity theory that
ã 2 H1

0

(D). ⇤

From the previous computation, it follows that ã is defined as the unique solution of

(

r · (�2rã) = r · (2 r log�) in D,

ã = 0 on @D.
(4.26)

This system allows us to define an operator

G̃
 

: Bs �! H1

0

(⌦)

� 7�! ã
(4.27)

and the one which gives a from �,

G
 

: Bs �! Hs(⌦)

� 7�!

8

<

:

a
0

+ G̃
 

[�] +
 

�2

in D,

a
0

in ⌦\D.

(4.28)

The global problem that we have to solve now is to find a pair (ã,�) 2 H1(D)⇥Bs such
that

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

�4�+

✓

a
0

+ ã+
 

�2

1D

◆

� = 0 in ⌦,

r · (�2rã) = r · (2 r log�) in D,

l@⌫�+ � = g on @⌦,

ã = 0 on @D,

ã = 0 in @⌦\D.
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4.3.2 Fixed point algorithm

We look for a solution a as the fixed point of the map G
 

� F : As �! Hs(⌦). In order to
cycle this operator, we introduce the truncation operator

T : Hs(⌦) �! Hs(⌦)

a 7�! max
�

min(a, a), a
�

and look for a fixed point of the operator T �G
 

� F : As �! Hs(⌦).

Theorem 4.3.2 Consider  in Hs(D). The operator T � G
 

� F : As �! Hs(⌦) is Hs-
Lipschitz and, for any a, a0 2 A, we have

kT �G
 

� FkLip(Hs

(⌦))

 c(s, d,⌦,�,�, RB
s

) k kHs

(⌦)

and if k kHs

(⌦)

is small enough, T �G
 

� F is a contraction from As into As and admits a
unique fixed point in As called a

 

.

Proof. Reconsidering the Lipschitz estimate of the system 4.9 with a 2 Hs(⌦) and taking
into account that H2+s(⌦) is embedded in W 1,1(⌦) we can deduce that F : Hs(⌦) �!
W 1,1(D) is Lipschitz and obtain that

kFkLip(Hs

(⌦),W 1,1
(D))

 c(s, d,⌦)
�

RB
s

+ �
�

.

Consider now � and �0 in Bs, then

|r log��r log�0|  1

�
|r(�� �0)|+ |r�0|

�2

|�� �0|,

and so

kr log��r log�0kL1
(⌦)

 1

�

✓

1 +
RB

s

�

◆

k�� �0kW 1,1
(⌦)

.

This inequality proves that G̃
 

: Bs �! H1

0

(⌦) is Lipschitz and that

�

�

�

G̃
 

�

�

�

Lip(W 1,1
(D),H1

0

(⌦))
 1

�3

✓

1 +
RB

s

�

◆

k kL2

(D)

.

We can now control the Lipschitz norm of G
 

. Noticing that

�

�

�

�

1

�2

� 1

�02

�

�

�

�

W 1,1
(D)

 1

�3

 

2 + 3
RB

s

�

✓

�

�

◆

2

!

k�� �0kW 1,1
(D)

,

we get

kG
 

��G
 

�0kHs

(⌦)


�

�

�

G̃
 

�� G̃
 

�0
�

�

�

H1

0

(⌦)

+ k kHs

(⌦)

�

�

�

�

1

�2

� 1

�02

�

�

�

�

W 1,1
(D)

 1

�3

"

3 + 3
RB

s

�

 

1 +

✓

�

�

◆

2

!#

k kHs

(⌦)

k�� �0kW 1,1
(D)
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and finally,

kG
 

kLip(W 1,1
(D),Hs

(⌦))

 1

�3

"

3 + 3
RB

s

�

 

1 +

✓

�

�

◆

2

!#

k kHs

(⌦)

.

The truncation operator T : Hs(⌦) �! Hs(⌦) satisfies

kTkLip(Hs

(⌦),Hs

(⌦))

= 1.

The proof is then complete. ⇤

In the case of a contraction map, the iterative algorithm converges exponentially to the
fixed point a

 

and yields a map

I : Hs(D) �! As

 7�! a
 

.

From the Lipschitz continuity of G̃
 

with respect to  , the following stability result
holds.

Proposition 4.3.3 For all  , 0 2 Hs(D) such that G
 

� F and G
 

0 � F are contractions,
we have

kI[ ]� I[ 0]kHs

(D)

 Ck � 0kHs

(D)

for some positive constant C.

Proof. Consider  , 0 2 Hs(D) such that G
 

�F and G
 

0 �F are contractions and call a
 

and a
 

0 their fixed points. We have for any � 2 Bs,

kG
 

[�]�G
 

0 [�]kHs

(⌦)


�

�

�

G̃
 

[�]� G̃
 

0 [�]
�

�

�

Hs

(⌦)

+

�

�

�

�

 � 0

�2

�

�

�

�

Hs

(⌦)

.

Remarking that u := G
 

[�]�G
 

0 [�] satisfies

(

r · (�2ru) = 2r · [( � 0)r log�] in D,

u = 0 on @D,

it follows that

�

�

�

G̃
 

[�]� G̃
 

0 [�]
�

�

�

Hs

(⌦)

 2RB
s

�3

k � 0kL2

(⌦)

and so

kG
 

[�]�G
 

0 [�]kHs

(⌦)

 4RB
s

�3

k � 0kHs

(⌦)

.

We can now estimate
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ka
 

� a
 

0kHs

(⌦)

= kG
 

� F [a
 

]�G
 

0 � F [a
 

0 ]kHs

(⌦)

 kG
 

� F [a
 

]�G
 

0 � F [a
 

]kHs

(⌦)

+ kG
 

0 � F [a
 

]�G
 

0 � F [a
 

0 ]kHs

(⌦)

 kG
 

�G
 

0kHs

(⌦)

+ kG
 

0 � F [a
 

]�G
 

0 � F [a
 

0 ]kHs

(⌦)

 4RB
s

�3

k � 0kHs

(⌦)

+ kG
 

0 � FkLip(Hs

(⌦))

ka
 

� a
 

0kHs

(⌦)

.

Let  := kG
 

0 � FkLip(Hs

(⌦))

< 1. It follows that

ka
 

� a
 

0kHs

(⌦)

 4RB
s

�3(1� )
k � 0kHs

(⌦)

,

which completes the proof. ⇤

4.4 Numerical simulations

In this section, we show how this new technique allows a very good reconstruction of highly
discontinuous absorption map. We consider here a realistic absorption map taken from a
blood vessels picture.

4.4.1 Forward problem

As we said in introduction, the main application of this acousto-optic method would be the
imaging of red light absorption which has high contrast in tumors due to the high level of
vascularization.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

1

1.2

1.4

1.6

1.8

Figure 4.1: Realistic biological light absorption map. (1) A real picture of living membrane by
transparency. (2) The absorption map chosen for the numerical experiments. The resolution
is about 132k pixels.

In the following, the domain is fixed to ⌦ =]0, 1.6[⇥]0, 1[ and we consider the absorption
map a given by Figure 4.1 (2). We define our domain D as a disk strictly included in ⌦
represented by the red circle in Figure 4.2.
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Figure 4.2: Absorption map in ⌦ and the domain of interest D := D
�

(0.8, 0.5), 0.48
�

in red.

Using the same method than for the numerical simulation in Chapter 2 we compute the
forward problem in order to generate virtual measurements. For some centers y taken on
Y := @D, r > 0 and ⌘ = 10�4 fixed, we compute a discrete form of the map

vy,r,⌘(x) =
⌘

r
w

✓

|x� y|� r

⌘

◆

x� y

|x� y| ,

where the wave shape w is defined by

w(t) =

8

<

:

exp

✓

1

t2 � 1

◆

t 2]� 1, 1[,

0 otherwise.

From this map, we compute the displaced absorption as av = a� (Id+v)�1 and the variation
of the fluence �v � �. Its cross correlation on the boundary leads to the measurement

M⌘(y, r) =

Z

⌦

(av
y,r,⌘

� a)��v
y,r,⌘

,

represented in Figure 4.3 (1). From that, we apply Theorems 4.2.1 and 4.2.9 to get an
approximation of R[ ] up to a function depending only on y.

The non vertical visible lines on the illustration of R[ ] are due to the presences of blood
vessels. The vertical lines are just numerical artifacts due to the integration. As we only
need to know R[ ] up to a function depending only on y to theoretically reconstruct the
absorption, this last numerical issue is not important. Now, from numerical spherical means
Radon transform inversion, we compute the internal data map  inside D.

As we can observe the blood vessels in the representation of the map  , we shall confirm
that there is a good information about the absorption map. If we try the algorithm presented
in Chapter 2, we take the derivative of the data map  in order to compute the source
term 4 which destroys the information due to the numerical noise. It is even worse with
additional measurement noise. Here, we use the fixed point algorithm proposed in Theorem
4.3.2. We compute the fixed point sequence (an,�n)n2N defined by
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Figure 4.3: Computed measurement M⌘(y, r) and the deduced approximation of R[ ]. We
used 128 acoustic centers on @D.
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Figure 4.4: Internal data map  computed inside the domain of interest D.
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0

= g on @⌦,
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and

8 n 2 N, (an+1

,�n+1

) :

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ãn+1

:

8

<

:

r · (�2

nrãn+1

) = 2r · ( r log�n) in D,

ãn+1

= �  

�2

n

on @D,

an+1

:

8

<

:

1 +
 

�2

n

+ ãn+1

in D,

1 in ⌦\D,

�n+1

:

(

�4�n+1

+ an�n+1

= 0 in ⌦,

l@⌫�n+1

+ �n+1

= g on @⌦.

After few iterations of this sequence, we get a good reconstruction of the absorption map a.
To fix the ideas, let us say that the variational information about a is in the map  /�2. We
correct it with a smooth function ã in order to reach the map a. The di↵erence of these two
functions gives an approximation of a� 1 at each iteration.
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Figure 4.5: The map  /�2 where the blood vessels are visible and the map ã after 10
iterations of the fixed point algorithm.

Remark 4.4.1 The power of this algorithm is that we avoid the derivation of the data map
 and we only solve elliptic equation for smooth solutions �n and ã. This provides a good
reconstruction of the discontinuities of the absorption map a and illustrates the fixed point
Theorem 4.3.2 which works for functions in Hs(⌦) with s < 1/2.

Remark 4.4.2 Our finest reconstruction is given in Figure 4.6 (4). Even if the vessels
are easy to recognize, two problems occur. The first one is that the reconstructed solution
is lightly attenuated. This is due to the approximation made using the asymptotic formula
given in Theorem 4.2.9. A nice improvement would be to solve a deconvolution problem
instead of the asymptotic formula. The second problem is the strong attenuation close to the
boundary @D. This phenomenon is normal and is due to the fact that the measurements
have no sense for small radius r. In the mathematical part, we have supposed that a = a

0
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Figure 4.6: Reconstruction of the absorption map after 10 iterations of the fixed point
sequence. (1) The true absorption. (2) Reconstruction using uniform mesh of 5k triangles.
(3) Reconstruction with non uniform mesh of 13k triangles. (4) Reconstruction with non
uniform mesh of 106k triangles.

in a neighborhood of @D. In this numerical example, this hypothesis is not respected and the
consequence is that the reconstruction is not valid close to @D. Nevertheless, the inside part
of the reconstruction is quite satisfying.

4.5 Concluding remarks

In this chapter we have introduced for the first time a mathematical and numerical framework
for reconstructing highly discontinuous contrast distributions from internal measurements.
The framework yields stable and accurate reconstructions. We have illustrated our approach
on a highly discontinuous absorption map, chosen from a real biological tissue data. Many
challenging problems are still open. It would be very interesting to develop an optimal
control scheme for reconstructing highly discontinuous contrast distributions and prove its
convergence, starting from a good initial guess. Another challenging problem is to estimate
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the resolution of the developed approach in terms of the signal-to-noise ratio in the data.

4.6 Appendices

4.6.1 Spherical density of Da

Lemma 4.6.1 Consider a 2 SBV 1(⌦) constant out of the convex < D ⇢ ⌦ and the

mollifier sequence w⌘(r) =
1

⌘
w
⇣

1

⌘

⌘

. Suppose that Y satisfies the wrap condition around D,

then the sequence of functions defined on ⌃

'⌘(y, r) =

Z

⌦

w⌘(|x� y|� r)|Da|(dx)

satisfies

k'⌘kL2

(⌃)

 C⌘�
1

2d ,

where C depends on |Da|(⌦), |Y |, and the wrap constant.

Proof. We develop k'⌘k2L2

(⌃)

norm as

k'⌘k2L2

(⌃)

=

Z

⌃

Z

⌦

Z

⌦

w⌘(|x� y|� r)w⌘(|x0 � y|� r)|Da|(dx)|Da|(dx0)dydr

=

Z

Y

Z

⌦

Z

⌦

Z R

0

w⌘(|x� y|� r)w⌘(|x0 � y|� r)dr|Da|(dx)|Da|(dx0)dy

=

Z

Y

Z

⌦

Z

⌦

w⌘(|x� y|� |x0 � y|)|Da|(dx)|Da|(dx0)dy,

where

w⌘(r) =

Z

R
w⌘(r � ⇢)w⌘(�⇢)d⇢

satisfies supp(w⌘) ⇢ [�2⌘, 2⌘], kw⌘kL1

(R)  1 and w⌘  1

⌘
. Let us fix " > 0 and define

Z" = {(x, x0) 2 ⌦2, |x� x0|  "}. First, we have

Z

Y

Z

Z
"

w⌘(|x� y|� |x0 � y|)|Da|(dx)|Da|(dx0)dy  1

⌘
|Y |
Z

⌦

Z

B(x,")

|Da|(dx0)|Da|(dx)

 1

⌘
|Y |
Z

⌦

|Da|(B(x, "))|Da|(dx).

Using the fact that a 2 SBV 1(⌦), the Radon measure |Da| can be decomposed as

|Da| = |rla|Ld + |[a]S|Hd�1

S ,

where |rla| 2 L1(⌦) and |[a]S| 2 L1(S). Thus, we can control the upper (d-1)-densities of
|Da| using that for any x 2 ⌦0



106 4.6. APPENDICES

1

"d�1

|Da|(B(x, "))  krlakL1
(⌦)

!d"+ k[A]SkL1
(S)

1

"d�1

Hd�1(S \ B(x, ")).

In fact, [?, Theorem 6.2] says that for any x 2 S,

lim sup
"!0

1

"d�1

Hd�1(S \ B(x, "))  2d�1 a.e. on S,

lim sup
"!0

1

"d�1

Hd�1(S \ B(x, ")) = 0 a.e. on ⌦0\S,

which implies for |Da| that

lim sup
"!0

1

"d�1

|Da|(B(x, "))  k[A]SkL1
(S) 2

d�1 a.e. on S,

lim sup
"!0

1

"d�1

|Da|(B(x, ")) = 0 a.e. on ⌦0\S.

Using Fatou lemma, it follows that

lim sup
"!0

Z

⌦

0

1

"d�1

|Da|(B(x, "))|Da|(dx) 
Z

⌦

0
lim sup

"!0

1

"d�1

|Da|(B(x, "))|Da|(dx)

 k[A]SkL1
(S) 2

d�1Hd�1(S).

That simply shows that the left-hand integral is bounded when " goes to zero. We finally
arrive at

Z

Y

Z

Z
"

w⌘(|x� y|� |x0 � y|)|Da|(dx)|Da|(dx0)dy  C
1

"d�1

⌘
, (4.29)

where the constant C
1

depends on |Da|(⌦) and |Y |. The second integral that we have to
control is

Z

Y

Z

⌦

02\Z
"

w⌘(|x� y|� |x0 � y|)|Da|(dx)|Da|(dx0)dy.

For that, we define for any (x, x0) 2 ⌦2 the set

Y⌘(x, x
0) = {y 2 Y, ||x� y|� |x0 � y||  2⌘} .

As Y satisfies the wrap condition around ⌦0, a computation leads to

Hd�1 (Y⌘(x, x
0))  2C

2

⌘

"
8 (x, x0) 2 ⌦02\Z",

where C
2

is the wrap constant relative to Y and ⌦0. We can now control the second term,
Z

Y

Z

⌦

02\Z
"

w⌘(|x� y|� |x0 � y|)|Da|(dx)|Da|(dx0)dy  1

⌘

Z

⌦

02
Hd�1 (Y⌘(x, x

0)) |Da|(dx)|Da|(dx0)

 C
2

"
|Da|(⌦)2.

(4.30)
Finally, putting together (4.29) and (4.30), we obtain

k'⌘k2L2

(⌃)

 C
1

"d�1

⌘
+ 2

C
2

"
|Da|(⌦)2,
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which is true for any choice of " > 0. So, we fix it at the best choice " = ⌘1/d to obtain

k'⌘k2L2

(⌃)

 (C
1

+ 2C
2

|Da|(⌦)2)⌘� 1

d ,

which concludes the proof. ⇤

4.6.2 Sobolev spaces with fractional order and Helmholtz decom-
position

On the smooth open domain D of Rd, for any ↵ � 0 the Sobolev space H↵(D) is defined as
usual. We shall also consider the space of functions of H↵(D) supported in a compact K
denoted H↵

K(D). As the functions of H↵
K(D) can be extended by zero outside of D, we can

define their Fourier transform and use the following characterization,

Definition 4.6.1 For any ↵ � 0, K ⇢ D compact we define

H↵
K(D) =

⇢

f 2 L2(D), supp(u) ⇢ K,

Z

Rd

|bu|2(⇠)(1 + |⇠|2)↵d⇠ < +1
�

and for any f 2 H↵
K(D) we will denote

kfkH↵

(D)

=

✓

1

(2⇡)d

Z

Rd

|bu|2(⇠)(1 + |⇠|2)↵d⇠
◆

1

2

.

We define now H�↵
K (D) by duality.

Definition 4.6.2 For any ↵ > 0, K ⇢ D compact we define

H�↵
K (D) = {u 2 H↵(D)0, supp(u) ⇢ K}

endowed with the continuity norm.

Fortunately, these spaces have also a Fourier characterization. For any u 2 H�↵
K (D), u is a

compact supported distribution i.e. an element of E 0(D) which naturally embeds in S 0(Rd).
So the Fourier transform bu is defined in S 0(Rd).

Proposition 4.6.2 For any ↵ > 0, K ⇢ D compact,

H�↵
K (D) =

⇢

u 2 E 0(D), supp(u) ⇢ K, bu 2 L1

loc

�

Rd
�

,

Z

Rd

|bu|2(⇠)(1 + |⇠|2)�↵d⇠ < +1
�

Proof. Let us take u 2 H�↵
K (D). As u 2 S 0(Rd), we take bu 2 S 0(Rd), ' 2 S 0(Rd) and we

compute

�

�

�

⌦

(1 + |⇠|2)�↵/2
bu,'

↵

S0
(Rd

),S(Rd

)

�

�

�

=

�

�

�

�

D

u, \[(1 + |x|2)�↵/2']
E

S0
(Rd

),S(Rd

)

�

�

�

�

 kukH↵

(D)

0

�

�

�

\[(1 + |x|2)�↵/2']
�

�

�

H↵

(D)

 (2⇡)d/2 kukH↵

(D)

0 k'kL2

(D)

,
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which proves that (1 + |⇠|2)�↵/2
bu 2 L2(Rd) and

✓

1

(2⇡)d

Z

Rd

|bu|2(⇠)(1 + |⇠|2)�↵d⇠

◆

1/2

 kukH↵

(D)

0 .

Conversely, if u satisfies these conditions, we show that it is in H↵(D)0 and that

kukH↵

(D)

0 
✓

1

(2⇡)d

Z

Rd

|bu|2(⇠)(1 + |⇠|2)�↵d⇠

◆

1/2

.

Then the proof is complete. ⇤

We can now define the Helmholtz decomposition of a distribution vectorial field in the
Sobolev sense for fractional order greater than �1. This allows to precise the regularity of
 depending on the regularity of a.

4.6.3 Kernel operators in Sobolev spaces of fractional order

In this appendix, we give two useful results about some kernel operators acting on one
variable of a function. These results are given for functions defined in Rd in order to use the
Fourier transform. They stay valid for functions defined on any manifold isomorphic to an
open domain of Rd up to a multiplicative constant depending on the isomorphism.

Lemma 4.6.3 Consider a kernel ✓ 2 L2(R2) and the operator T : L2(Rd) �! L2(Rd)
defined by

T [f ](x) =

Z

R
f(t, x̃)✓(t, x

1

)dt

for a.e. x 2 Rd with x̃ = (x
2

, . . . , xd). If, for s > 0, f 2 Hs(Rd) and ✓ 2 Hs(R2), then
T [f ] 2 Hs(Rd) and we have

kT [f ]kHs

(Rd

)

 k✓kHs

(R2

)

kfkHs

(Rd

)

.

Proof. Let us compute the Fourier transform of T [f ],

dT [f ](⇠) =

Z

R

Z

R

Z

Rd�1

f(t, x̃)✓(t, x
1

)e�ix
1

⇠
1e�ix̃·˜⇠dx̃dx

1

dt

=

Z

R

x̃

bf (t, ⇠̃)
x
1

b✓ (t, ⇠
1

)dt

so

|dT [f ]|2(⇠) 
Z

R
|
x̃

bf (t, ⇠̃)|2dt
Z

R
|
x
1

b✓ (t, ⇠
1

)|2dt.

Then, using Plancherel theorem,

Z

R
|
x̃

bf (t, ⇠̃)|2dt = 1

2⇡

Z

R
| bf(⇠)|2d⇠

1
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and
Z

R
|
x
1

b✓ (t, ⇠
1

)|2dt = 1

2⇡

Z

R
|b✓(⌧, ⇠

1

)|2d⌧.

Hence,

|dT [f ]|2(⇠)  1

(2⇡)2

Z

R
| bf(⇠)|2d⇠

1

Z

R
|b✓(⌧, ⇠

1

)|2d⌧

|dT [f ]|2(⇠)
�

1 + |⇠|2
�s  1

(2⇡)2

Z

R
| bf(⇠)|2

⇣

1 + |⇠̃|2
⌘s

d⇠
1

Z

R
|b✓(⌧, ⇠

1

)|2
�

1 + ⇠2
1

�s
d⌧

1

(2⇡)d

Z

Rd

|dT [f ]|2(⇠)
�

1 + |⇠|2
�s
d⇠ 

1

(2⇡)d

Z

Rd

| bf(⇠)|2
�

1 + |⇠|2
�s
d⇠

1

(2⇡)2

Z

R2

|b✓(⌧, ⇠
1

)|2
�

1 + ⇠2
1

+ ⌧ 2
�s
d⌧d⇠

1

,

which completes the proof. ⇤

In the case where the kernel is approaching a delta function, it is useful to understand
how the operator is approaching the identity.

Lemma 4.6.4 Consider w 2 C1
c (R) supported in [�1, 1], non negative and satisfying kwkL1

(R) =

1. For any ⌘ > 0, t 2 R we denote w⌘(t) =
1

⌘
w
⇣

t
⌘

⌘

. Let us consider the sequence of operator

T⌘ : L2(Rd) �! L2(Rd) defined by

T⌘[f ](x) =

Z

R
f(t, x̃)w⌘(x1

� t)dt.

For all ↵ � 0 and ⌘ > 0, T⌘ is continuous operator T⌘ : H↵(Rd) �! H↵(Rd) and for all
� > 0, f 2 H↵+�(Rd), T⌘[f ] converges to f in H↵(Rd). More precisely,

kT⌘[f ]� fk
(H↵

(Rd

)

 2⌘
�

�+1 kfkH↵+�

(Rd

)

.

Proof. Let us compute the Fourier transform of T [f ],

dT [f ](⇠) =

Z

R

Z

R

Z

Rd�1

f(t, x̃)w⌘(x1

� t)e�ix
1

⇠
1e�ix̃·˜⇠dx̃dx

1

dt

=

Z

R

Z

R

Z

Rd�1

f(t, x̃)w⌘(u)e
�iu⇠

1e�it⇠
1e�ix̃·˜⇠dx̃dudt

= bf(⇠)cw⌘(⇠1),

where cw⌘  1. This proves that kT⌘[f ]kH↵

(Rd

)

 kfkH↵

(Rd

)

. Now consider � > 0 and

f 2 H↵+�(Rd), we have

⇣

dT [f ]� bf
⌘

(⇠) = f(⇠)

Z

R
w⌘(t)(e

�it⇠1 � 1)dt,

�

�

�

[T⌘[f ]� bf
�

�

�

2

(⇠)  | bf |2(⇠)
Z

R
w⌘(t)|e�it⇠

1 � 1|2dt



110 4.6. APPENDICES

by convexity, and we write,

�

�

�

[T⌘[f ]� bf
�

�

�

2

(⇠) = | bf |2(⇠) sup
|t|⌘

|e�it⇠
1 � 1|2.

A study of the function ⇠
1

7! sup|z|⌘ |e�iz⇠
1 � 1|2 gives us that

sup
|t|⌘

|e�it⇠
1 � 1|2  4⌘

2�

�+1

�

1 + |⇠|2
��

,

and we finally get
Z

Rd

�

�

�

[T⌘[f ]� bf
�

�

�

2

(⇠)
�

1 + |⇠|2
�↵

d⇠  4⌘
2�

�+1

Z

Rd

| bf |2(⇠)
�

1 + |⇠|2
�↵+�

d⇠,

which is equivalent to

kT⌘[f ]� fkH↵

(Rd

)

 2⌘
�

�+1 kfkH↵+�

(Rd

)

.

Hence, the proof is complete. ⇤



Chapter 5

Acoustically induced Lorentz force
electric impedance tomography

Introduction

Ultrasonic imaging is currently used in a wide range of medical diagnostic applications. Its
high spatial resolution, combined with a real-time imaging capability, lack of side e↵ects,
and relatively low cost make it an attractive technique. However, it can be di�cult to
di↵erentiate soft tissues because acoustic impedance varies by less than 10% among muscle,
fat, and blood [62]. In contrast, electrical conductivity varies widely among soft tissue
types and pathological states [56, 88] and its measurement can provide information about
the physiological and pathological condition of tissue [16]. Several techniques have been
developed to map electrical conductivity. The most well known is electrical impedance
tomography, in which electrodes are placed around the organ of interest, a voltage di↵erence
is applied, and the conductivity distribution can be reconstructed from the measurement of
the induced current at the electrodes [3, 24, 45]. This technique is harmless to the patient if
low currents are used. However, the ill-posed character of the inverse problem results in lower
spatial resolution than that achieved by ultrasound imaging, and any speckle information is
lost.

The Lorentz force plays a key role in acousto-magnetic tomographic techniques [99].
Several approaches have been developed with the aim of providing electrical impedance in-
formation at a spatial resolution on the scale of ultrasound wavelengths [14, 63, 78, 84,
87, 99, 100, 109]. These include Hall e↵ect imaging, magneto-acoustic current imaging,
magneto-acoustic tomography with magnetic induction, and ultrasonically-induced Lorentz
force imaging. Acousto-magnetic tomographic techniques have the potential to detect small
conductivity inhomogeneities, enabling them to diagnose pathologies such as cancer by de-
tecting tumorous tissues when other conductivity imaging techniques fail to do so.

In ultrasonically-induced Lorentz force method (experimental apparatus presented in
Figure 5.1) an ultrasound pulse propagates through the medium to be imaged in the presence
of a static magnetic field. The ultrasonic wave induces Lorentz’ force on the ions in the
medium, causing the negatively and positively charged ions to separate. This separation of
charges acts as a source of electrical current and potential. Measurements of the induced
current give information on the conductivity in the medium. A 1 Tesla magnetic field and
a 1 MPa ultrasonic pulse induce current at the nanoampere scale. Stronger magnetic fields
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and ultrasonic beams can be used to enhance the signal-to-noise ratio [63].
This chapter provides a rigorous mathematical and numerical framework for ultrasonically-

induced Lorentz force electrical impedance tomography. We develop two e�cient methods
for reconstructing the conductivity in the medium from the induced electrical current. As
far as we know, this is the first mathematical and numerical modeling of the experiment
conducted in [63] to illustrate the feasibility of ultrasonically-induced Lorentz force electri-
cal impedance tomography. Earlier attempts to model mathematically this technique were
made in [14, 74]. The ultrasonically-induced Lorentz force electrical impedance tomography
investigated here can be viewed as a new hybrid technique for conductivity imaging. It has
been experimentally tested [63], and was reported to produce images of quality comparable
to those of ultrasound images taken under similar conditions.

The chapter is organized as follows. We start by describing the ionic model of conduc-
tivity. From this model we derive the current density induced by an ultrasonic pulse in
the presence of a static magnetic field. We then find an expression of the measured cur-
rent. The inverse problem is to image the conductivity distribution from such measurements
corresponding to di↵erent pulse sources and directions. A virtual potential used with sim-
ple integrations by parts can relate the measured current to the conductivity distribution
and the velocity of the ultrasonic pulse. A Wiener deconvolution filter can then reduce the
problem to imaging the conductivity from the internal electric current density. The internal
electric current density corresponds to that which would be induced by a constant voltage
di↵erence between one electrode and another with zero potential. We introduce two re-
construction schemes for solving the imaging problem from the internal data. The first is
an optimal control method; we also propose an alternative to this scheme via the use of a
transport equation satisfied by the internal current density. The second algorithm is direct
and can be viewed as a PDE-based reconstruction scheme. We prove that solving such a
PDE yields to the true conductivity distribution as the regularization parameter tends to
zero. In doing so, we prove the existence of the characteristic lines for the transport equation
under some conditions on the conductivity distribution. We finally test numerically the two
proposed schemes in the presence of measurement noise, and also quantify their stability
and resolution.

5.1 Electric measurements from acousto-magnetic cou-
pling

Let a physical object to be imaged occupy a three-dimensional domain ⌦ with a smooth
boundary @⌦. Assume that this body is placed in a constant magnetic field B in the direction
e
3

where {e
1

, e
2

, e
3

} denotes the standard orthonormal basis of R3. We are interested in
recovering the electrical conductivity of this body � 2 L1(⌦) with the known lower and
upper bounds:

0 < �  �  � < 1.

An acoustic transducer sends a short acoustic pulse from y 2 R3 in the direction ⇠ 2 S2,
with S2 being the unit sphere, such that ⇠ · e

3

= 0. This pulse generates the velocity field
v(x, t)⇠ with v(x, t) taking the following form:

v(x, t) = w
�

z � ct
�

A
�

z, |r|
�

, (5.1)
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⌦

�
1

�
2

�
0

�
0

y

⇠

⌧

support of the acoustic beam

I(t)

Be
3

e
1

e
2

e
3

Figure 5.1: Basic experiment scheme. An acoustic transducer in y sends focal acoustic pulses
in the direction ⇠. While the pulse is traveling in the electrolytic medium embedded in a
constant magnetic field Be

3

, a small current is detected and measured in the wire between
the two electrodes �

1

and �
2

.

where

z = (x� y) · ⇠ and r = x� y � z⇠ 2 ⌥⇠ := {⇣ 2 R3 : ⇣ · ⇠ = 0}.

Here, w 2 C1
c

�

R
�

, supported in ] � ⌘, 0[, is the ultrasonic pulse profile; A 2 C1�R ⇥ R+

�

,
supported in R+ ⇥ [0, R], is the cylindrical profile distribution of the wave corresponding to
the focus of the acoustic transducer; and R is the maximal radius of the acoustic beam.

5.1.1 The ionic model of conductivity

We describe here the electrical behavior of the medium as an electrolytic tissue composed
of ions capable of motion in an aqueous tissue. We consider k types of ions in the medium
with charges of qi, i 2 {1, . . . , k}. The corresponding volumetric density ni is assumed to be
constant. Neutrality in the medium is described as

X

i

qini = 0. (5.2)

The Kohlrausch law defines the conductivity of such a medium as a linear combination
of the ionic concentrations

� = e+
X

i

µiqini, (5.3)

where e+ is the elementary charge, and the coe�cients µi denote the ionic mobility of each
ion i; see, for example, [87, 95].
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5.1.2 Ion deviation by Lorentz force

We embed the medium in a constant magnetic field B with direction e
3

, and perturb it
mechanically using the short, focused, ultrasonic pulses v defined in (5.1). The motion of
the charged particle i inside the medium is deviated by the Lorentz force

Fi = qiv⇠ ⇥ B. (5.4)

This force accelerates the ion in the orthogonal direction ⌧ = ⇠ ⇥ e
3

. Then, almost immedi-
ately, the ion reaches a constant speed given by

v⌧,i = µi|B|v
at the first order; see [87, 95] for more details. Finally, the ion i has a total velocity

vi = v⇠ + µi|B|v⌧.

The current density generated by the displacement of charges can be described as follows:

jS =
X

i

niqivi =

 

X

i

niqi

!

v⇠ +

 

X

i

niµiqi

!

|B|v⌧.

Using the neutrality condition (5.2) and the definition of � in (5.3), we get the following
simple formula for jS:

jS =
1

e+
|B|�v⌧, (5.5)

which is in accordance with the formula used in [14].
This electrolytic description of the tissue characterizes the interaction between the ul-

trasonic pulse and the magnetic field through a small deviation of the charged particles
embedded in the tissue. This deviation generates a current density jS orthogonal to ⇠ and
to B, locally supported inside the domain. At a fixed time t, jS is supported in the support
of x 7! v(x, t). This current is proportional to �, and is the source of the current that we
measure on the electrodes placed at @⌦. In the next section, a formal link is substantiated
between jS and the measured current I.

5.1.3 Internal electrical potential

Because the characteristic time of the acoustic propagation is very long compared with the
electromagnetic wave propagation characteristic time, we can adopt the electrostatic frame.
Consequently, the total current j in ⌦ at a fixed time t can be formulated as

j = jS + �ru, (5.6)

where u is the electrical potential. It satisfies

r · (jS + �ru) = r · j = 0. (5.7)

Figure 5.2 shows the configuration under consideration. Let �
1

and �
2

be portions of the
boundary @⌦ where two planner electrodes are placed. Denote �

0

= @⌦ \ (�
1

[ �
2

).
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Figure 5.2: Imaging system configuration. An ultrasonic wave propagates in a medium of
electrical conductivity � comprised between electrodes �

1

and �
2

.

As we measure the current between the two electrodes �
1

and �
2

, the electrical potential
is the same on both electrodes, and can be fixed to zero without loss of generality. Further,
it is assumed that no current can leave from �

0

. The potential u can then be defined as the
unique solution in H1(⌦) of the elliptic system

8

>

<

>

:

�r · (�ru) = r · jS in ⌦,

u = 0 on �
1

[ �
2

,

@⌫u = 0 on �
0

.

(5.8)

Throughout this chapter @⌫ denotes the normal derivative. Note that the source term jS
depends on the time t > 0, the position of the acoustic transducer y 2 R3, and the direction
⇠ 2 S2. The electrical potential u also depends on these variables.

The measurable intensity I is the current flow through the electrodes. Integrating (5.8)
by parts gives

Z

�

1

�@⌫u+

Z

�

2

�@⌫u = 0,

which is the expression of current flow conservation. We define the intensity I by

I =

Z

�

2

�@⌫u. (5.9)

5.1.4 Virtual potential

In order to link I to �, we introduce a virtual potential U 2 H1(⌦) defined as the unique
solution of

8

>

>

>

<

>

>

>

:

�r · (�rU) = 0 in ⌦,

U = 0 on �
1

,

U = 1 on �
2

,

@⌫U = 0 on �
0

.

(5.10)

Then we multiply (5.8) by U and integrate by parts. Assuming that the support of v does
not intersect the electrodes �

1

and �
2

, we obtain

�
Z

⌦

�ru ·rU +

Z

�

2

�@⌫u =

Z

⌦

jS ·rU.

From the property of U in (5.10) and the definition of I in (5.9), the above identity becomes

I =

Z

⌦

jS ·rU.

The above identity links the measured intensity I to an internal information of � using the
expression of jS in (5.5):

I =
|B|
e+

Z

⌦

v(x, t)�(x)rU(x)dx · ⌧.
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According to (5.1), v depends on y, ⇠, and t, so does I. We define the measurement function
as

My,⇠(z) =

Z

⌦

v(x, z/c)�(x)rU(x)dx · ⌧(⇠) (5.11)

for any y 2 R3, ⇠ 2 S2 and z > 0. We assume the knowledge of this function in a certain
subset of R3 ⇥ S2 ⇥ R+ denoted by Y ⇥S⇥]0, zmax[. We will discuss later the assumptions
we have to impose on this subset in order to make the reconstruction accurate and stable.

5.2 Construction of the virtual current

For simplicity, let us restrict ourselves to the two dimensional case where both the conduc-
tivity � and the virtual potential U do not change in e

3

-direction. For convenience, the same
notations will be used as in the three dimensional case.

In order to obtain the information of � contained in My,⇠, we need to separate the con-
tribution of the displacement term v from this measurement function. Using the cylindrical
symmetry of this integration we write for any z 2]0, zmax[,

My,⇠(z) =

Z

R

Z

⌥

⇠

w(z � z0)(�rU)(y + z0⇠ + r)A(z0, |r|)drdz0 · ⌧(⇠),

=

Z

R
w(z � z0)

Z

⌥

⇠

(�rU)(y + z0⇠ + r)A(z0, |r|)drdz0 · ⌧(⇠),

= (W ? �y,⇠) (z) · ⌧(⇠),

(5.12)

where W (z) = w(�z), ? denotes the convolution product, and

�y,⇠(z) =

Z

⌥

⇠

�(y + z⇠ + r)A(z, |r|)rU(y + z⇠ + r)dr.

As will be shown in section 5.5, through a one dimensional deconvolution problem that
can be stably solved using, for instance, a Wiener-type filtering method, we get access to
the function �y,⇠ · ⌧(⇠). Now the question is about the reconstruction of � from �y,⇠ · ⌧(⇠).
We can notice that �y,⇠ is a weighted Radon transform applied to the virtual current field
�rU . The weight A(z, |r|) is critical for the choice of the method that we can use. Closer
this weight is to a Dirac mass function, better is the stability of the reconstruction. In
this case, if the field �rU does not have too large variations, we can recover a first-order
approximation; as discussed in the rest of this section.

In order to make the reconstruction accurate and stable, we make two assumptions on
the set of parameters Y ⇥D⇥]0, zmax[. For any x 2 ⌦, we define

Sx =

⇢

⇠ 2 S : ⇠ =
x� y

|x� y| for some y 2 Y

�

.

The first assumption is

(H1) 8x 2 ⌦, 9 ⇠
1

, ⇠
2

2 Sx s.t. |⇠
1

⇥ ⇠
2

| 6= 0,

and the second one reads

(H2) 8x 2 ⌦, 8⇠ 2 Sx, 9 unique y 2 Y s.t. ⇠ =
x� y

|x� y| .
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From the assumption (H2), we can define a distance map |x� y| as a function of x and
⇠. We will denote dY (x, ⇠) = |x� y|. By a change of variables, we rename our data function
⌃ as

 (x, ⇠) = �y,⇠

�

dY (x, ⇠)
�

· ⌧(⇠)

=

Z

⌥

⇠

(�rU)(x+ r)A
�

dY (x, ⇠), |r|
�

dr · ⌧(⇠). (5.13)

Now if we denote by

�(x, ⇠) =

Z

⌥

⇠

A
�

dY (x, ⇠), |r|
�

dr ⌧(⇠), (5.14)

then we expect that
 (x, ⇠) ⇡ (�rU)(x) · �(x, ⇠),

provided the supp(A) is small enough and �rU does not vary too much. The following
lemma makes this statement precise.

Lemma 5.2.1 Consider a fixed direction ⇠ 2 S and consider the domain covered by the
pulses of direction ⇠ defined by ⌦⇠ = {x 2 ⌦ : ⇠ 2 Sx}. Suppose that the virtual current
�rU has bounded variations, then

k (·, ⇠)� �rU · �(·, ⇠)kL1

(⌦

⇠

)

 cRk�rUkTV (⌦)

2 ,

where R is the maximum radius of the cylindrical support of the envelope A and c > 0
depends on the shape of A. Here, k kTV (⌦)

2 denotes the total variation semi-norm.

Proof. For a.e. x 2 ⌦⇠, we have

| (x, ⇠)� (�rU)(x) · �(x, ⇠)| 
Z

⌥

⇠

|(�rU)(x+ r)� (�rU)(x)|A
�

dY (x, ⇠), |r|
�

dr,

and so
k (·, ⇠)� �rU · �(·, ⇠)kL1

(⌦

⇠

)


Z

⌥

⇠

Z

⌦

⇠

|(�rU)(x+ r)� (�rU)(x)|A
�

dY (x, ⇠), |r|
�

dxdr

 k�rUkTV (⌦)

2

Z

⌥

⇠

|r| sup
0<z<z

max

A(z, |r|)dr

 2⇡Rk�rUkTV (⌦)

2

Z

R+
sup

0<z<z
max

A(z, ⇢)d⇢.

⇤

Note that in the most interesting cases, �rU has bounded variations. For example, if �
has a piecewise W 1,1 smoothness on smooth inclusions, then �rU has bounded variations.
This also holds true for � in some subclasses of functions of bounded variations. In the
following, we make the assumption, as in Lemma 5.2.1, that �rU has bounded variations.
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In conclusion, our data approximates the quantity (�rU)(x) · �(x, ⇠) for any x 2 ⌦,
⇠ 2 Sx where the vector �(x, ⇠) is supposed to be known. To get the current (�rU)(x),
we simply consider data from two linearly independent directions. Using assumption (H1),
for a fixed x 2 ⌦, there exist ⇠

1

, ⇠
2

2 Sx such that det(⇠
1

, ⇠
2

) 6= 0. We construct the 2 ⇥ 2
invertible matrix

�(x, ⇠
1

, ⇠
2

) =



�(x, ⇠
1

)?

�(x, ⇠
2

)?

�

,

and the data column vector

 (x, ⇠
1

, ⇠
2

) =



 (x, ⇠
1

)
 (x, ⇠

2

)

�

.

We approximate the current �rU(x) by the vector field

V (x, ⇠
1

, ⇠
2

) = �(x, ⇠
1

, ⇠
2

)�1 (x, ⇠
1

, ⇠
2

).

Indeed, for any open set e⌦ ⇢ ⌦⇠
1

\ ⌦⇠
2

, the following estimate holds:

kV (·, ⇠
1

, ⇠
2

)� �rUkL1

(

e
⌦)

2

 sup
x2e
⌦

�

��(x, ⇠
1

, ⇠
2

)�1

�

�

L(R2

)

 

2

X

i=1

k (·, ⇠i)� �rU · �(·, ⇠i)kL1

(⌦

⇠

i

)

!

1/2

 cRk�rUkTV (⌦)

2 .

It is worth mentioning that if more directions are available, then we can use them to
enhance the stability of the reconstruction. The linear system becomes over-determined and
we can get the optimal approximation by using a least-squares method.

5.3 Recovering the conductivity by optimal control

In this section we assume that, according to the previous one, we are in the situation where
we know a good approximation of the virtual current D := �rU in the sense of L1(⌦)2. The
objective here is to provide e�cient methods for separating � from D.

For a < b, let us denote by L1
a,b(⌦) := {f 2 L1(⌦) : a < f < b} and define the operator

F : L1
�,�(⌦) �! H1(⌦) by

F [�] = U :

8

>

>

>

<

>

>

>

:

r · (�rU) = 0 in ⌦,

U = 0 on �
1

,

U = 1 on �
2

,

@⌫U = 0 on �
0

.

(5.15)

The following lemma holds.

Lemma 5.3.1 The operator F is Fréchet di↵erentiable and for any � 2 L1
�,�(⌦) and h 2

L1(⌦) such that � + h 2 L1
�,�(⌦) we have
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dF [�](h) = v :

8

>

<

>

:

r · (�rv) = �r · (hrF [�]) in ⌦,

v = 0 on �
1

[ �
2

,

@⌫v = 0 on �
0

.

(5.16)

Proof. Let us denote by w = F [� + h]� F [�]� v. This function is in H1(⌦) and satisfies
the equation

r · (�rw) = �r · (hr(F [� + h]� F [�]))

with the same boundary conditions as v. We have the elliptic global control:

krwkL2

(⌦)

 1

�
khkL1

(⌦)

kr(F [� + h]� F [�])kL2

(⌦)

.

Since
r · (�r(F [� + h]� F [�])) = �r · (hrF [� + h]),

we can also control F [� + h]� F [�] with

kr(F [� + h]� F [�])kL2

(⌦)

 1

�
khkL1

(⌦)

krF [� + h]kL2

(⌦)

.

Then, there is a positive constant C depending only on ⌦ such that

krF [� + h]kL2

(⌦)

 C
�

�
.

Finally, we obtain

krwkL2

(⌦)

 C
�

�3

khk2L1
(⌦)

.

⇤

We look for the minimizer of the functional

J [�] =
1

2

Z

⌦

|�rF [�]�D|2 . (5.17)

In order to do so, we compute its gradient. The following lemma holds.

Lemma 5.3.2 For any � 2 L1
�,�(⌦),

dJ [�] = (�rF [�]�D �rp) ·rF [�],

where p is defined as the solution to the adjoint problem:

8

>

<

>

:

r · (�rp) = r · (�2rF [�]� �D) in ⌦,

p = 0 on �
1

[ �
2

,

@⌫p = 0 on �
0

.

(5.18)
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Proof. As F is Fréchet di↵erentiable, so is J . For � 2 L1
�,�(⌦) and h 2 L1(⌦) such that

� + h 2 L1
�,�(⌦), we have

dJ [�](h) =

Z

⌦

(�rF [�]�D) · (hrF [�] + �rdF [�](h)).

Now, multiplying (5.18) by dF [�](h), we get
Z

⌦

�rp ·rdF [�](h) =

Z

⌦

(�2rF [�]� �D) ·rdF [�](h).

On the other hand, multiplying (5.16) by p we arrive at
Z

⌦

�rp ·rdF [�](h) = �
Z

⌦

hrF [�] ·rp,

and therefore,

dJ [�](h) =

Z

⌦

h(�rF [�]�D �rp) ·rF [�].

⇤

Lemma 5.3.2 allows us to implement a numerical gradient descent method in order to
find �. A regularization term can also be added to J [�] in order to avoid instability. As
we are seeking discontinuous � with smooth variations out of the discontinuity set, a good
choice would be the minimization of the regularized functional:

J"[�] =
1

2

Z

⌦

|�rF [�]�D|2 + "||�||TV (⌦)

, (5.19)

where " > 0 is the regularization parameter.

5.4 The orthogonal field method

In this section, we present an alternative direct method to optimal control for reconstructing
the conductivity � from the internal data �rU . It is based on solving a transport equation.
The following approach may be extended to the three dimensional case. However, several
proofs would need to be revisited.

Given a vector field D = �rU which is parallel to rU everywhere, we may construct
the vectorial field F = (D

2

,�D
1

)T which is everywhere orthogonal to D. Here, T denotes
the transpose. The flow of F may define the level sets of U . Assuming that the variations of
the conductivity � are far enough from �

0

, we can assume that U(x) = x
2

on this boundary
part. Then U is a solution of the following transport equation:

(

F ·ru = 0 in ⌦,

u = x
2

on @⌦.
(5.20)

In the case where (5.20) is well posed and can be solved, we can reconstruct the virtual
potential U . The conductivity � is deduced from U and D by the following identity

� =
D ·rU

|D|2 . (5.21)
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Despite to its very simple form, this first-order equation is really tricky. Existence and
uniqueness are both di�cult challenges in the general case. Our main di�culty here is due
to the fact that F is discontinuous. As the function U that we are looking for is a natural
solution of this equation, we are only concerned here with the uniqueness of a solution to
(5.20).

5.4.1 Uniqueness result for the transport equation

The uniqueness of a solution to (5.20) is directly linked to the existence of outgoing charac-
teristic lines defined by the dynamic system:

(

X 0(t) = F (X(t)), t � 0,

X(0) = x, x 2 ⌦, (5.22)

which usually needs the continuity of F . As � is in general not continuous, F is not contin-
uous, which makes the classical existence results useless. Nevertheless, under some assump-
tions on �, we can insure the existence of the characteristic lines.

Definition 5.4.1 For any k 2 N, ↵ 2]0, 1[, for any curve C of class C1,↵ such that ⌦\C is a
union of connected domains ⌦i, i = 1, 2, · · ·n, we define Ck,↵

C
�

⌦
�

to be the class of functions
f : ⌦ �! R satisfying

f |
⌦

i

2 Ck,↵
�

⌦i

�

8i = 1, · · ·n.

Definition 5.4.2 A conductivity � is said to be admissible if there exists a constant ↵ 2]0, 1[
and a curve C of class C1,↵ such that � 2 C0,↵

C
�

⌦
�

\ L1
�,�(⌦) and

inf
⌦\C

�rF [�] · e
2

> 0.

If � is admissible and belongs to C0,↵
C
�

⌦
�

, then the solution U of (5.10) belongs to C1,↵
C
�

⌦
�

and the field F = (�rU)? satisfies

F 2 C0,↵
C
�

⌦
�

and inf
⌦\C

F · e
1

> 0.

Moreover, as F is orthogonal to �rU , we can describe the jump of F at the curve C.
Defining the normal and tangential unit vectors ⌫ and ⌧ and also the local sides (+) and (-)
with respect to ⌫, we can write F on both sides as

F+ = �+@⌫U
+⌧ + �+@⌧U

+⌫,

F� = ��@⌫U
�⌧ + ��@⌧U

�⌫

with the transmission conditions, �+@⌫U+ = ��@⌫U� and @⌧U+ = @⌧U�. Finally, we
characterize the discontinuity of F by

[F ] = [�]@⌧U⌫,

where [ ] denotes the jump across C.
With all of these properties for the field F , we can prove the existence of the characteristic

lines for (5.22).
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Theorem 5.4.1 (Local existence of characteristics) Assume that F 2 C0,↵
C
�

⌦
�

with C of
class C1,↵ for ↵ 2]0, 1[. Assume that the discontinuity of F on C satisfies

F+ = f⌧ + �+g⌫,

F� = f⌧ + ��g⌫

with f, g, �+, �� 2 C0,↵(C) where �+, �� are positive and g is locally signed. Then, for any
x
0

2 ⌦, there exists T > 0 and X 2 C1

�

[0, T [,⌦
�

such that t 7! F (X(t)) is measurable and

X(t) = x
0

+

Z t

0

F (X(s))ds, 8t 2 [0, T [.

Proof. If x
0

/2 C, then F is continuous in a neighborhood of x
0

and the Cauchy-Peano
theorem can be applied.

If x
0

2 C, then we choose a disk B ⇢ ⌦ centered at x
0

. The oriented line C separates
B in two simply connected open domains called B+ and B�. For ease of explanation, we
may assume that C \ B is straight line (since we can flatten the curve using a proper C0,↵-
di↵eomorphism).

Assume that g(x
0

) > 0. Up to rescaling B, we can assume that g(x) > 0 for all x 2 C\B.
We extend F |B+ to a continuous field F̃ 2 C0(B) by even reflection. The Cauchy-Peano
theorem insures the existence of T > 0 and X 2 C1

�

[0, T [,⌦
�

such that X(0) = x
0

and

X 0(t) = F̃ (X(t)) for all t 2 [0, T [. As g(x
0

) > 0, we have X 0(0) · ⌫(x
0

) > 0 and X(t) 2 B+

in a neighborhood of 0. Thus, for a small enough t, X 0(t) = F (X(t)). If g(x
0

) < 0, then we
apply the same argument by interchanging B� and B+.

Suppose now that g(x
0

) = 0. The field F is now tangent to the discontinuity line.
If f(x

0

) = 0, then X(t) = x
0

is a solution. We assume here that f(x
0

) > 0. As g is
assumed to be locally signed, we can suppose that g � 0 in a small sub-curve of C satisfying
(x�x

0

)·⌧(x
0

) > 0. Again, we extend F |B+ to a continuous field F̃ 2 C0(B) by even reflection
and use the Cauchy-Peano theorem to show that there exists T > 0 and X 2 C1

�

[0, T [,⌦
�

such that X(0) = x
0

and X 0(t) = F̃ (X(t)) for all t 2 [0, T [. In order to complete the proof,
we should show that X(t) belongs to B+ for t small enough. If not, there exists a sequence
tn & 0 such that X(tn) 2 B�. By the mean value theorem, there exists t̃n 2 (0, tn) such
that F (X(t̃n)) · ⌫(x0

) = X 0(t̃n) · ⌫(x0

) < 0. Thus, X(t) belongs to B+ and X 0(t) = F (X(t))
for t small enough.

Note that the local monotony of g is satisfied in many cases. For instance if C is an-
alytic and � is piecewise constant, then rU is analytic on C and hence, g is locally signed. ⇤

It is worth mentioning that existence of a solution for the Cauchy problem (5.22) has
been proved in [40] provided that F · ⌫ > 0 on C. Here, we have made a weaker assumption.
In fact, we only need that F · ⌫ is locally signed.

Corollary 5.4.2 (Existence of outgoing characteristics) Consider F 2 C0,↵
C (⌦) satisfying

the same conditions as in Theorem 5.4.1 and the condition

inf
⌦\C

F · e
1

� c,
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where c is a positive constant. Then for any x
0

2 ⌦ there exists 0 < T < T
max

where

T
max

=
1

c
diam(⌦) and X 2 C0

�

[0, T [,⌦
�

satisfying

X(t) = x
0

+

Z t

0

F (X(s))ds, 8t 2 [0, T [,

lim
t!T

X(t) 2 @⌦.

This result means that from any point x
0

2 ⌦, the characteristic line reaches @⌦ in a finite
time.

Proof. Let x
0

2 ⌦ and X 2 C0

�

[0, T [,⌦
�

a maximal solution of (5.22). Using F · e
1

� c we
have that X 0(t) · e

1

� c and so X(t) · e
1

� x
0

· e
1

+ ct and as X(t) 2 ⌦ for all t 2 [0, T [, it
is necessary that T < T

max

. As F 2 C0,↵
C (⌦), F is bounded, X is Lipschitz, and the limit

of X(t) when t goes to T exists in ⌦ and is called X(T ). Let us show that X(T ) 2 @⌦.
Suppose that X(T ) 2 ⌦, then applying Theorem 5.4.1 at X(T ), we can continuously extend
X on [T, T +"[ for some positive " which contradicts the fact that X is a maximal solution.⇤

Corollary 5.4.3 (Uniqueness for the transport problem) Consider F 2 C0,↵
C (⌦) satisfying

the same conditions as in Corollary 5.4.2 and consider u 2 C0

�

⌦
�

\ C1C
�

⌦
�

. If u is a
solution of the system

(

F ·ru = 0 in ⌦,

u = 0 on @⌦,
(5.23)

then u = 0 in ⌦.

Proof. Consider x
0

2 ⌦ and a characteristic X 2 C0

�

[0, T [,⌦
�

satisfying

X(t) = x
0

+

Z t

0

F (X(s))ds, 8t 2 [0, T [,

lim
t!T

X(t) 2 @⌦.

We define f 2 C0

�

[0, T ],R
�

by f(t) = u(X(t)). We show that f is constant. Let us define
I = X�1(C) then f is di↵erentiable in [0, T ]\I and f 0(t) = ru(X(t)) · F (X(t)) = 0. Let
us take t 2 I. If t is not isolated in I, using the fact that @⌧u+ and @⌧u� are locally
signed, F (X(t)) is parallel to C and for an " > 0, X(s) 2 B+ (or B�) for s 2 [t, t + "[.
Then, f(s) = u(x(s)) is di↵erentiable on [t, t + "[ with f 0(s) = ru+(X(s)) · F (X(s)). This
proves that f is right di↵erentiable at t and (f 0)+(t) = 0. By the same argument, f is
left di↵erentiable at t and (f 0)�(t) = 0 and so f is di↵erentiable at t with f 0(t) = 0.
Finally, except for a zero measure set of isolated points, f is di↵erentiable on [0, T ] and
f 0 = 0 almost everywhere. This is not enough to conclude because there exists continuous
increasing functions whose derivative is zero almost everywhere. Since for all t, s 2 [0, T ],

|f(t)� f(s)|  sup |ru||X(t)�X(s)|  sup |rU | sup |F ||t� s|,
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f is Lipschitz and thus absolutely continuous which implies, since f 0 = 0 a.e., that f is
constant on [0, T ]. We finally have u(x

0

) = f(0) = f(T ) = u(X(T )) = 0. ⇤

Hence we conclude that if � is admissible, then U is the unique solution to (5.20) and we
can recover � by (5.21).

Remark 5.4.4 The characteristic method can be used to solve the transport problem. How-
ever, it su↵ers from poor numerical stability which is exponentially growing with the distance
to the boundary. To avoid this delicate numerical issue, we propose a regularized approach
for solving (5.20). Our approach consists in forming from (5.20) a second-order PDE and
adding to this PDE a small elliptic term of order two.

5.4.2 The viscosity-type regularization

In this subsection we introduce a viscosity approximation to (5.20). Let " > 0. We regularize
the transport equation (5.20) by considering the well-posed elliptic problem

(

r ·
⇥�

"I + FF T
�

ru"

⇤

= 0 in ⌦,

u" = x
2

on @⌦.
(5.24)

The main question is to understand the behavior of u" when " goes to zero. Or more precisely,
whether u" converges to the solution U of the transport equation (5.20) for a certain topology.
The following result holds.

Theorem 5.4.5 The sequence (u" � U)">0

converges strongly to zero in H1

0

(⌦).

Proof. We first prove that the sequence (u" � U)">0

converges weakly to zero in H1

0

(⌦)
when " goes to zero. For any " > 0, ũ" := u" � U is in H1

0

(⌦) and satisfies

r ·
⇥�

"I + FF T
�

rũ"

⇤

= �"4U in ⌦. (5.25)

Multiplying this equation by ũ" and integrating by parts over ⌦, we obtain

"

Z

⌦

|rũ"|2 +
Z

⌦

|F ·rũ"|2 = �"
Z

⌦

rU ·rũ" (5.26)

and so,

kũ"k2H1

0

(⌦)


Z

⌦

|ru ·rũ"|  kUkH1

(⌦)

kũ"kH1

0

(⌦)

.

Then kũ"kH1

0

(⌦)

 kUkH1

(⌦)

. The sequence (u")">0

is bounded in H1

0

(⌦) and so by Banach-

Alaoglu’s theorem, we can extract a subsequence which converges weakly to u⇤ in H1

0

(⌦).
Multiplying (5.25) by u⇤ and integrating by parts, we get

Z

⌦

(F ·rũ") (F ·ru⇤) = �"
Z

⌦

rU ·ru⇤ � "

Z

⌦

rũ" ·ru⇤.

Taking the limit when " goes to zero,

kF ·ru⇤kL2

(⌦)

= 0.
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So u⇤ is a solution of the transport equation (5.23), and by Corollary 5.4.3, u⇤ = 0 in ⌦.
Actually, there is no need for the extraction of a subsequence to get the weak convergence
result. Indeed, zero is the only accumulation point for u" for the weak topology. Consider
a subsequence u�("). It is still bounded in H1

0

(⌦). Therefore, using the same argument as
above, zero is an accumulation point of this subsequence.

Now, we are ready to prove the strong convergence. From (5.26) we get that
Z

⌦

|rũ"|2  �
Z

⌦

rU ·rũ",

and as ũ" * 0 in H1

0

(⌦), the term in the right-hand side goes to zero when " goes to zero.
Hence, kũ"kH1

0

(⌦)

! 0. ⇤

Finally, using Theorem 5.4.5 we define the approximate resistivity by

1

�"
=

D ·ru"

|D|2 ,

which strongly converges to
1

�
in L2(⌦).

5.5 Numerical results

In this section we first discuss the deconvolution step. Then we test both the optimal control
and the orthogonal field reconstruction schemes.

5.5.1 Deconvolution

In this subsection, we consider the problem of recovering �y,⇠ from the measurements My,⇠ in
the presence of noise. From (5.12), it is easy to see that this can be done by deconvolution.
However, deconvolution is a numerically very unstable process. In order to render stability
we use a Wiener filter [83]. We assume that the signal My,⇠(.) is perturbed by a random
white noise:

fMy,⇠(z) = My,⇠(z) + µ(z), (5.27)

where µ is a white Gaussian noise with variance ⌫2. Equation (5.27) can be written as

fMy,⇠(z) = (W ? �y,⇠) (z) + µ(z).

Denote by S(⌃) =
R

R |F(�y,⇠)(!)|d! the mean spectral density of ⌃, where F is the Fourier
transform. The Wiener deconvolution filter can be written in the frequency domain as

bL(!) =
F(W )(!)

|F(W )|2(!) + ⌫
S(⌃)

.

The quotient ⌫/S(⌃) is the signal-to-noise ratio. So, in order to use the filter, we need to
have an a priori estimate of the signal-to-noise ratio. We then recover ⌃ up to a small error
by

e⌃y,⇠ = F�1

⇣

F(fM)bL
⌘

.
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5.5.2 Conductivity reconstructions

In the numerical simulations, we choose ⌦ =]0, 2[⇥]0, 1[. Figure 5.3 (1) shows the true
conductivity map in the medium. The simulations are done using a PDE solver. The data
is simulated numerically on a fine mesh. For the orthogonal field method, in order to solve
(5.24), we use a coarse mesh. Then we reconstruct an initial image of the conductivity. Based
on the initial image, an adaptive mesh refinement for solving (5.24) yields a conductivity
image of a better quality. Figure 5.3 (2) shows the used meshes for solving the viscosity
approximation.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

2

4

6

8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

�1

�0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1

1.5

2

2.5

3

3.5

Figure 5.3: From left to right, top to bottom. (1) The conductivity map � to be recon-
structed. (2) The adapted mesh used to solve the direct problem. (2) the first component
of the virtual current �rU . (3) the second component of the virtual current �rU .

The optimal control method

The minimization procedure gives a decent qualitative reconstruction. The main interfaces
are easy to see, yet this method, due to its regularizing e↵ect, fails to show details in weaker
contrasts zones.

Transport equation method.

To find the solution of problem (5.24), we fix " = 10�3, and solve the equation on a uni-
form mesh on ⌦. We reconstruct an approximation of �, and adapt the mesh to this first
reconstruction. We do this procedure several times in order to get refined mesh near the
conductivity jumps. We can see that besides being computationally lighter than the mini-
mization method, the orthogonal field method allows a quantitative reconstruction of � and
shows details even in the low contrast zones. It is relatively stable with respect to mea-
surement noise. Figures ??, ??, and ?? show the reconstruction with di↵erent measurement
noise levels. Figure ?? shows the L2 norm of the error with respect to measurement noise,
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Figure 5.4: Reconstruction of the conductivity by optimization method. (1) The true conduc-
tivity. (2) Reconstruction after 5 iteration, (3) after 10 iterations and (5) after 20 iterations.

with " fixed at 10�3. A smaller " increases the noise sensibility at higher noise levels, but
also improves the details and reduces the smoothing e↵ect of the "� term in (5.24).

5.6 Concluding remarks

In this paper we have provided the mathematical basis of ultrasonically-induced Lorentz force
electrical impedance tomography. We have designed two e�cient algorithms and tested them
numerically. The resolution of the reconstructed images is fixed by the ultrasound wavelength
and the width of the ultrasonic beam. The orthogonal field method performs much better
than the optimization scheme in terms of both computational time and accuracy. In a forth-
coming work, we intend to generalize our approach for imaging anisotropic conductivities by
ultrasonically-induced Lorentz force [107]. We will also propose an algorithm to find �rU
from the data function  using (5.13) and correct the leading-order approximation (5.14).
This will enhance the resolution of the reconstructed conductivity images. Another chal-
lenging problem under consideration is to interpret the high-frequency component of My,⇠

in terms of speckle conductivity contrasts.
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Figure 5.5: Reconstruction of the conductivity � using the transport equation method with
a viscosity parameter " = 10�3. To get a good resolution without any a priori informations
about �, we used an iterative mesh adaptation algorithm which refine the mesh around
the highest variation of �. Here is the reconstruction without mesh adaptation, with one
adaptation and after three adaptations.
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Figure 5.6: Reconstruction of the conductivity � using the transport equation method with
a viscosity parameter " = 10�3 and an adaptative mesh algorithm. (1) The original picture.
(2) The reconstruction after one iteration. (3) After two iteration. (4) after five iterations.
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130 5.6. CONCLUDING REMARKS

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

�4

�2

0

2

4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

0

5

10

15

Figure 5.8: Reconstruction of the conductivity � using the transport equation method with
a viscosity parameter " = 10�3 with an additive medium noise. From left to right, top
to bottom. (1) The reconstruction without noise. (2) The medium noise added to the
internal current. (3) The reconstruction with a relative noise of 0.05. (4) The reconstruction
with a relative noise of 0.1. (5) The reconstruction with a relative noise of 0.2. (6) The
reconstruction with a relative noise of 0.5.



Concluding remarks

In this thesis, we have introduced new electrical and optical multi-wave imaging approaches.
By mechanically perturbing the medium we have proved both analytically and numerically
stability and resolution enhancement for reconstructing electrical and optical tissue param-
eters.

In Chapter 1 we have presented a mathematical framework and an e�cient reconstruction
technique based on spherical means Radon transform inversion for acousto-electromagnetic
imaging. The Born approximation has been used. Both the analytical and numerical results
illustrate the significant resolution enhancement in reconstructing the dielectric permittivity
of the medium. Note that if we have at our disposal cross-correlation measurements for source
points y on part of the unit circle only, then the inversion of formula (1.4.5) needs to be
regularized. As shown in [12], a regularization with a total variation term is well adapted to
smooth solutions with front discontinuous. The variant of Beck and Teboulle [34] accelerates
the convergence of the inversion algorithm [12]. We have assumed that the acoustic wave
propagates in a homogeneous medium and the amplitude of the background solution is
constant. It would be interesting to exploit both the dielectric and elastic contrasts for
enhancing specificity, specially in imaging tumors. Another important problem is to extend
the mathematical framework to the case where the Born approximation is not valid or/and
the amplitude of the background solution is constant.

In Chapter 2 we have presented a new algorithm for ultrasound-modulated optical di↵use
tomography. The modulation of light is due to the propagation of spherical acoustic waves.
It leads to a coupled system of equations. Iteratively solving such a system yields a resolved
image for the optical absorption coe�cient under the Born approximation. The algorithm
has good stability properties. Its performance depends on the boundary data. In order to
obtain optimal images in the sense of resolution and stability, the boundary data has to be
chosen in such a way that the interior of the domain is illuminated.

The result of Chapter 2 can be extended to acousto-electromagnetic tomography devel-
oped in Chapter 1. In Chapter 1, the background solution, being a plane wave, has constant
amplitude. Even though there is no maximum principle for the Helmholtz equation, the
present approach applies to acousto-electromagnetic tomography if one can explicitly check
that the amplitude of the background solution has a positive lower bound in the domain.
This is the case, for example, when the background solution is a spherical wave emitted at
a point outside the domain or in its boundary.

In Chapter 3 we have introduced a Landweber scheme for reconstructing piecewise smooth
optical absorption distributions from opto acoustic measurements and proved its conver-
gence. Because of the jumps in the absorption coe�cient, we have used weak formulations
for the Helmholtz decomposition for �2

⇤ra⇤ and the relation between the spherical Radon
transform of its gradient part  and the cross-correlation measurements M⌘(y, r). The res-
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olution of the acousto-optic images is of order of ⌘, the thickness of the acoustic wavefront.
An interesting and challenging problem is to prove statistical stability of the proposed re-
construction with respect to a measurement noise by combining Fourier techniques together
with statistical tools [17]. The magnitude of the additive noise should be much smaller than
⌘2. This yields a resolution limit for the acousto-optic process.

Note that we can enrich the set of data as follows. For f 2 L2(@⌦) such that f � 0 a.e.
on @⌦, compute instead of (3.19) the quantity

M f,g
⌘ (y, r) =

1

⌘2

Z

@⌦

(f@⌫�
g
u⌘

y,r

� g@⌫�
f ) d�, y 2 Sµ, r > 0.

Similarly to (3.20), integration by parts yields

M f,g
⌘ (y, r) =

1

⌘2

Z

⌦

(au⌘

y,r

� a)�f�g
u⌘

y,r

dx, (5.28)

where �f is the solution of (3.4) with g replaced by f . Note that the auxiliary data set is
measured without medium perturbation.

The enriched data (5.28) may be used in order to generalize our approach to the case of
measurements of the outgoing light intensities on only part of @⌦ by choosing f supported
only on the accessible part of the boundary.

In Chapter ?? we have extended the reconstruction and stability results of Chapters 2
and 3 to a very general class of optical absorption distributions.

In Chapter 5 we have provided the mathematical basis of ultrasonically-induced Lorentz
force electrical impedance tomography. We have designed two e�cient algorithms and tested
them numerically. The resolution of the reconstructed images is fixed by the ultrasound
wavelength and the width of the ultrasonic beam. The orthogonal field method performs
much better than the optimization scheme in terms of both computational time and accuracy.
A challenging problem is to generalize our approach for imaging anisotropic conductivities
by ultrasonically-induced Lorentz force [107]. A second one is to propose an algorithm to
find �rU from the data function  using (5.13) and correct the leading-order approximation
(5.14). This will enhance the resolution of the reconstructed conductivity images. A third one
is to interpret the high-frequency component of My,⇠ in terms of speckle-type conductivity
contrasts.
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