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Navigation commonly refers to the determination of the position and orientation
of a vehicle with respect to a map, as well as planning the route to its destina-

tion. It historically developed with marine navigation as early sailors daring to go off
the shore needed to find their way back home on the high seas, where no landmarks
were available. The inventions of the compass, of the sandglass, and of the chip log
enabled the integration of heading and velocity measurements from which mariners
could locate themselves. This dead reckoning process was not accurate on the long range
though, and new navigators started to look up at the stars to get position fixes. Por-
tuguese sailors were the first to adapt an astrolabe on board their ships to measure the
latitude using the angular height of the Sun at noon, or that of any known star when
crossing the celestial meridian at night. All these techniques were mastered before the
year 1500, but not until the 18

th century and the precision of the chronometers instead
of sandglasses were the seamen able to determine their longitude by comparing their
reference time to the celestial one calculated from constellations.

Next navigation highlights were pushed by the emergence of the aerospace indus-
try during the course of the 20

th century. Dead reckoning evolved from compasses and
chip logs to Inertial Measurement Units (IMUs), which were first developed for early
rockets. By sensing angular velocities and non-gravitational accelerations, IMUs even-
tually helped landing men on the Moon and they are now employed on any plane,
boat or submarine. Likewise, the use of stars has been replaced by referenced radio
signals to triangulate a position either by finding the directions of those signals or
by analyzing their encoded information. Radio navigation first appeared over North
Atlantic to help steer the ships, but quickly airships and airplanes started querying
position fixes too. The number of terrestrial radio beacons exploded with aerial ac-
tivities, both military and commercial. If they are still in use for instrument landing,
global positioning for both airplanes and ships is now dominated by satellite radio sig-
nals, like the Global Positioning System (GPS), which are more performant in terms
of accuracy, integrity and coverage.

Today, research on navigation is twofold. On the one hand, it seeks to improve
performance over territories navigation has already helped men to conquer: land, air,
Earth orbit and the surface of the seas. In particular, anyone can now enjoy the bene-
fits of having a complete set of navigation sensors inside their pocket with the recent
development of location-based services featured by new smartphones equipped with
GPS antennas, compasses and IMUs. For the providers of such services, better naviga-
tion performance also means more business opportunities. On the other hand though,
some navigation researchers keep trying to figure out ways to explore new spaces
further in the solar system, deep down in underground caves or at the bottom of the
oceans. In this category, this thesis introduces the Lion novel autonomous navigation
system, which aims at landing a robotic probe within 100 m of a surface target on
another planet than Earth. Such a performance is called pinpoint landing and has only
been achieved once in history by commander Alan B. Shepard and lunar module pilot
Edgar D. Mitchell during the Apollo 14 mission to the Moon on February 5

th, 1971.
They landed within 50 meters of the selected target. No unmanned robotic probe has
ever reached this accuracy yet.

Section 1.1 reminds the reader about the goals and strategy of robotic planetary
exploration, previous spacecraft which successfully landed on extraterrestrial worlds
and highlights the benefits of a pinpoint landing capability for future missions.
Section 1.2 explores what makes autonomous precision landing such a navigation
challenge. The lunar south pole reference mission scenario is detailed in Section 1.3.
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Section 1.4 introduces terrain navigation as a solution to pinpoint landing and trades
off various terrain sensors. Eventually, Section 1.5 states the objectives of the thesis
and Section 1.6 provides an overview of its content.

1.1 Robotic exploration of the solar system

1.1.1 Goals and strategy

Modern planetary exploration by robotic vehicles primarily aims at improving our
scientific knowledge of extraterrestrial bodies in the solar system to make discoveries
hopefully also useful here on Earth. Robots may also be sent as scouts for future
human exploration.

The exploration strategy is that first missions to a target object study its surface, as
well as its atmosphere if there is one, safely from orbit. The new maps allow scientists
to detect candidate areas for subsequent surface exploration with instruments placed
on a static lander or on a mobile rover. Some concepts of balloon and airships were
also proposed recently to get in situ atmospheric measurements but none has flown
yet.

Figure 1.1 shows a view from orbit of the Gale crater on Mars. It includes many
signs that water, a key ingredient of life as we know it, flowed over there in the past.
Scientists selected this area as the landing site for the Curiosity rover of the National
Aeronautics and Space Administration (NASA) which landed in August, 2012. This
is a good example of the rationale and the complementarity in the orbit-to-surface
exploration strategy. Mars has been considered as a priority for planetary exploration
since the 1970s and the end of the Apollo program because of its similarities with
Earth. It is a perfect showcase for robotic planetary exploration as it has been visited
by tens of missions and is currently home to three active orbiters1 and two active
rovers2.

1.1.2 Successful landing missions

Luna 1 is the first known attempt to leave the gravitational field of the Earth. It was
launched on January 2

nd, 1959 by the Union of Soviet Socialist Republics (USSR) and
flew by the Moon two days later. In September the same year, Luna 2 impacted our
natural satellite and becomes the first man-made object to ever reach the surface of
another celestial body outside of Earth. These missions marked the start of the expan-
sion of the influence of Man in the solar system. In the context of the Cold War, the
Space Race made both the Soviet Union and the United States try and launch up to 12

missions per year beyond Earth orbit between 1959 and the end of the manned Apollo
program in 1972. This incredible pace then dropped with both budget and the political
interest for manned planetary exploration once the course to prestige had been won
by the United States. Spacefaring nations have kept sending unmanned probes, but
now only addressing scientific goals as there were no future manned mission to pave
the way for. These robotic explorers are our eyes and hands out in the solar system, in
worlds we cannot yet afford to visit technologically and financially.

Entry, Descent and Landing (EDL) is by far the most critical phase of all planetary
exploration missions. It takes a spacecraft travelling at tens of thousands of kilometer

1Orbiters: Mars Odyssey (NASA), Mars Express (ESA), Mars Reconnaissance Orbiter (NASA).
2Rovers: Mars Exploration Rover Opportunity (MER-B, NASA), Mars Science Laboratory Curiosity

(MSL, NASA).
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Figure 1.1 – Gale crater, near martian equator, is viewed from orbit by the THEMIS camera
on board the Mars Odyssey spacecraft. Layers and structures at the base of the central moun-
tain, Mount Sharp, are thought to have been shaped by water-carried sediments on early Mars
(Credit: NASA, JPL, Arizona State University).
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per hour through interplanetary space and lands it softly on the surface of a planet.
It challenges aerodynamics, thermal, mechanical, material, communication, propul-
sion and control engineers all together. This is the price to pay to access the science
opportunity and the inspirational pictures of the landscape at the surface.

Table 1.1 draws up a list of planetary exploration programs which included suc-
cessful soft landing missions, i.e. those in which the spacecraft suffered no damage.
There have been 37 of them up to date, the last one was for the Mars Science Labora-
tory Curiosity rover shown in Figure 1.2.

Table 1.1 – Timeline of successful soft landings. Date intervals are for touchdown between the
first and the last successful mission of each program. Eros and Itokawa are asteroids. Titan is
the largest moon of Saturn. NASA, ESA, ASI and JAXA are respectively the US, European,
Italian and Japanese space agencies.

Program Target Agency / Successful Dates
Country landings

Luna Moon USSR 6 Feb, 1966 - Aug, 1976

Surveyor Moon NASA 5 Jun, 1966 - Jan, 1968

Apollo Moon NASA 6 (manned) Jul, 1969 - Dec, 1972

Viking Mars NASA 2 Jul - Sep, 1976

Venera Venus USSR 8 Dec, 1970 - Mar, 1982

Vega Venus USSR 2 Jun, 1985

Mars Pathfinder Mars NASA 1 Jul, 1997

NEAR Shoemaker Eros NASA 1 Feb, 2001

MER Mars NASA 2 Jan, 2004

Huygens Titan ESA, ASI, NASA 1 Jan, 2005

Hayabusa Itokawa JAXA 1 Nov, 2005

Phoenix Mars NASA 1 May, 2008

MSL Mars NASA 1 Aug, 2012

1.1.3 Landing accuracy

Among all research into improving mission return of surface planetary exploration,
the accurate landing capability may be the most critical technology. To understand
this assertion, one needs to understand the motivations for those missions. They can
split into three categories, not necessarily exclusive:

• Science measurements: The landing site was selected for its scientific interest.
However, the area where relevant in situ science measurements can be made
is limited. Landing out of it would mean mission failure for a static lander, or
would waste valuable time and energy for a rover.

• Engineering constraints: Surface hazards can make a mission fail or significantly
limit its lifetime. For instance, landing on a boulder or on a terrain too much
sloped can damage the lander or make it tip over, shadows can limit or even
prevent the recharge of the battery from solar panels, etc. Unfortunately, sur-
face regions where those hazards can be avoided may be of limited extent. In
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Figure 1.2 – Self-portrait of the Curiosity rover within the Gale crater on Mars. Images were
shot on October 31st, 2012 and show 5-km-high Mount Sharp in the background (Credit:
NASA, JPL, Malin Space Science Systems).
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Section 1.3, we describe the reference mission scenario for this thesis which tar-
gets 100-m wide areas at the lunar south pole that are the only places to offer
continuous periods of sunlight.

• Surface assets: Some missions plan to land in the vicinity of a surface asset previ-
ously landed. In a Mars sample return scenario for example, an ascent vehicle is
landed close to a rover which has already collected the samples. This rover then
brings the samples inside the ascent vehicle so that they can be brought back to
Earth. In those cases, the more accuracy, the less roving time to make the two
vehicles meet, the less risk.

All things considered, improving the precision at landing allows to decrease the
minimum size requirement for science surface targets, makes more regions accessible
from an engineering point of view, and globally limits the risk at mission level.

1.2 Pinpoint planetary landing challenges

A pinpoint landing system is a “collection of elements that together are capable of
landing a spacecraft within 100 m of the target” (Wolf et al., 2004). Some mission
designs already plan for such a capability.

The landing performance depends on that of the Guidance, Navigation and Con-
trol systems (GNC), also called the piloting loop. Guidance is responsible for determin-
ing the reference path from current position to target. Control computes the actuations
needed to achieve this reference trajectory. Both of these systems need at least the
position, velocity, and attitude of the body frame tied to the vehicle with respect to
some reference frame to be operational. Navigation refers the estimation of those three
quantities forming the state vector. The GNC process is illustrated in Figure 1.3. In ad-
dition, Appendix B details the standard GNC architecture, the state vector model, and
provides useful background about sensors and cartographic data relevant to planetary
landing for reader unfamiliar with the domain.

Figure 1.3 – The GNC loop. Navigation estimates the position, velocity and attitude of the
spacecraft so that guidance and control can steer it on the correct trajectory.

Two requirements are set upon the GNC system during the soft landing manoeu-
vre : autonomy and precision.
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1.2.1 Autonomy

Autonomy is a critical asset for any planetary soft landing. From a GNC point of view, it
means that the navigation, guidance and control tasks are all performed automatically
on-board. Mission success must not rely on a real-time communication link with a
remote resource.

The most obvious advantage to any mission is robustness to link failures. In space
exploration missions, link cutoffs happen when the spacecraft goes behind a planet
with respect to Earth if there is no third-party spacecraft relaying data.

But autonomy is also needed to avoid delays. Due to the limited propagation ve-
locity of electromagnetic signals, operations at long range from Earth-based resources
create a lag in the communication loop which prevents any real-time terrestrial re-
mote intervention. For a Mars landing, even at the shortest theoretical distance of 56

million kilometers from Earth, any event is known with a delay of more than three
minutes. Any piloting action is thus applied at least six minutes later than what would
be possible using on-board autonomy. This is enough time for a mission to fail.

In a lunar mission, the communication lag with the Earth is only roughly one
second. This results in a two-second delay for a two-way exchange. It is one of the
few space exploration targets for which communication delay is not such an issue,
even though it causes serious piloting disturbances. However, link failures will happen
when the vehicle is above the far side of the Moon, which concern most of the possible
parking orbits. In order to be robust to any orbit choice, and also to a lesser extent to be
robust to accidental link failures and avoid communication delays, a fully autonomous
GNC loop is thus required to land on the Moon.

1.2.2 Accuracy

Current navigation technology has not changed much since the first landing attempts
in the 1960s: the position and the orientation of the landing vehicle are still estimated
by integration of the specific force3 and angular rate data provided by an IMU with a
similar order of precision. Localization is initialized in orbit from Earth-based range-
rate radar measurements with an accuracy of the order of a kilometer on the Moon
and worse for further planets. The spacecraft then commits to descent but, unlike on
Earth, there are no GPS satellites nor radio beacons available to constrain position
error accumulation due to the integration of noisy and biased inertial data during
dead reckoning. Close to the ground, an embedded radar senses the height and the
horizontal velocity using the Doppler effect to ensure soft landing, but it cannot correct
the horizontal position drift with respect to the targeted landing site (Cheatham and
Bennett, 1968).

Landing accuracy can be modeled at first order by an ellipse centered on the map
point selected as a landing site and which is sized up according to the 3 s values
of a 2D normal probability distribution for touchdown location, with s the standard
deviation over the minor or major axes. On missions flown up to date, the length of
the major axis of the landing ellipse is of the order of a few kilometers on the Moon,
and tens of kilometers on Mars if guided atmospheric entry is performed (Braun and
Manning, 2006). These performances are not sufficient for pinpoint landing.

To reach pinpoint accuracy, intense research is being led on the matching of terrain
sensor data with a map to infer the position of the vehicle. This process is called
absolute terrain navigation and it is the key capability to reduce landing uncertainty.

3Non-gravitational acceleration
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Other GNC contributions to the landing error are due to relative terrain navigation
and control uncertainties, but they arise to less than 3 meters in total (Johnson et al.,
2008). Thus at first order, the 100-m pinpoint landing requirement can be translated
into a 100-m absolute terrain navigation error requirement.

1.3 Reference mission at the lunar south pole

The ESA lunar lander is a future mission, planned by the European space agency,
for which the science objective is to investigate the effects of the south pole envi-
ronment of the Moon for future robotic and human explorers, as well as to look for
resources (Fisackerly et al., 2012; Neal, 2009). This is the first planetary robotic ex-
ploration mission to call for a pinpoint landing. Indeed, this robotic probe can only
survive in daylight using its solar panels as a power source and thus the candidate
landing sites are the few locations at the lunar south pole which are continuously
illuminated for several months. However, these areas are just about 100 m in radius,
hence the requirement for pinpoint landing (Vanoutryve et al., 2010). This mission
was selected as the reference test scenario for vision-based navigation in this thesis.

Up to date, two types of approaches have been used to achieve soft landing on the
Moon. Direct descent was used by NASA’s Surveyor spacecraft between 1966 and 1968.
Descent from parking orbit was inaugurated by the Eagle lunar module on Apollo 11
and was also used later by the Soviet unmanned landers. The first approach is shorter,
so the spacecraft is less exposed to space hazardous conditions before landing. How-
ever, parking in lunar orbit allows system checks to be run and potential failures to be
recovered before committing to descending towards the lunar surface. As surviving
the cislunar environment is better understood nowadays, the opportunity for system
checks offered by the descent from parking orbit is preferred and this scenario is se-
lected in this study. The lander is assumed to be delivered in a circular orbit of radius
100 km, called Low Lunar Orbit (LLO). This altitude is usually chosen in order to be
close enough to the surface without suffering from disturbances due to anomalies in
the gravity field.

Figure 1.4 shows the standard trajectory of the lunar descent scenario. The space-
craft is on LLO at 100 km of altitude when it commits to descent at the Descent Orbit
Insertion burn (DOI). There, it starts coasting along half an ellipse around the Moon
down to a 15-km altitude where Powered Descent is Initiated (PDI). The braking phase
lasts about 10 minutes and aims at cutting the orbital velocity before the Approach
Gate (AG). Most of the approach phase happens between High Gate (HG) and Low
Gate (LG), when the target landing site is visible and can be analyzed for hazards.
The guidance system will proceed to a retargeting if necessary, and command a final
vertical descent at Terminal Gate (TG) above a safe area for TouchDown (TD).

Absolute terrain navigation may be employed from LLO to TG: the longer it works,
the lesser the position error at touchdown. A correct DOI is important as any mistake
made there will insert the spacecraft on a wrong descent orbit which will require
dispersion correction and thus unnecessary fuel loss at PDI. Absolute visual mea-
surements are definitely crucial during the braking phase as the main engines firing
full thrust can quickly move the spacecraft far away if the position estimate is not
accurate. It is also expected that engine vibrations add too much noise to use inertial
measurements only. Finally, map-based terrain measurements may still be used dur-
ing approach, but it might not be necessary as simple frame-to-frame terrain feature
tracking can prevent the error from drifting if the landing site remains visible.



1.4. Terrain sensor selection 11

Figure 1.4 – Lunar landing reference scenario

1.4 Terrain sensor selection

Pinpoint landing requires autonomous and accurate absolute terrain-relative naviga-
tion with a dedicated sensor. In this process, data from the terrain sensor is matched
with an on-board map to determine the pose, i.e. the position and orientation, of the
vehicle with respect to the global frame of the planet {g} defined in Subsection B.1.2.
The following section reviews the different possible terrain sensors and trade them
off. Section B.2 and Section B.3 respectively describe how these sensors work and the
orbital data used to create the maps.

1.4.1 Altimeter

The TERrain COntour Matching technique (TERCOM) has been the first absolute
terrain-relative navigation systems since the late 1950s to provide position fixes along
the planned route of a missile using a radar altimeter to measure the height, and a
barometric altimeter to measure the reference altitude (Siouris, 2004). The difference
of those two figures provides the terrain profile which is compared to a reference
profile stored in memory. The match is obtained by minimizing the sum of squared
differences of the profiles. Based on an active device, TERCOM is independent of
illumination but it can only provide a position fix along a 1D line, the planned route.

Modern filtering technique can solve for the full 3D position but they have to fight
ambiguous cases depending on the terrain topography (Murangira et al., 2012). In any
case, those methods are limited to the maximum operational altitude of an altimeter
at about 25 km and they cannot work over a flat terrain.
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1.4.2 Lidar

Range images provided by lidars sensing the surface can be matched with a reference
orbital Digital Elevation Model (DEM) to solve for absolute navigation.

Hamel et al. (2006) describes various lidar processing techniques. They all detect
features on the range image. Featureness is defined as combination of altitude and
slope, as both of these quantities can be read simply from lidar data. Features from
the online range image and the reference DEM are matched either by correlation
techniques or using geometric descriptors.

Lidar-based methods share the illumination independence with altimeter ones,
and they allow direct 3D pose estimation by fitting the online and reference point
clouds to each other. But like altimeters too, they cannot work over flat terrains and
only offer a 5-km range (Hamel et al., 2006).

1.4.3 Camera

Absolute visual navigation uses a camera on line to sense the terrain and the reference
map is made from an orbital image of the landing area referenced with a DEM. Since
landing missions are planned years in advance, it is anticipated, thought not certain
yet, that orbital imagery with similar illumination conditions to that of the landing
will be available to create the map.

Conte and Doherty (2009) match the whole descent image to orbital one using
cross-correlation, but other methods involve landmark detection and matching using
a radiometric descriptions (Trawny et al., 2007) or a geometric one (Pham et al., 2012).
Landmarks may be detected as generic image features (Lowe, 2004), or specific terrain
structures like craters (Cheng and Ansar, 2005).

Cameras are very lightweight, consume low power and take little place on a space-
craft compared to a lidar. As a passive device, they can work from any distance to the
observed scene. Nevertheless, they can only work if the terrain is illuminated and
motion recovery involves more processing than on active sensors.

1.4.4 Trade-off

Advantages and drawbacks for altimeter, lidar and camera terrain-relative navigation
systems are summarized in Table 1.2.

Table 1.2 – Terrain sensor trade-off

Sensor Advantages Drawbacks

Altimeter Illumination-independent Incompatible with flat terrains
Limited range: 25 km

Lidar Illumination-independent Incompatible with flat terrains
Easier pose estimation Limited range: 5 km

Camera Unlimited range Needs illumination
Lightweight Complex motion recovery

Unlike active sensors such as altimeters or lidars, cameras can work at any dis-
tance from an illuminated terrain. That makes them the only sensor physically able
to provide an absolute terrain-relative navigation output from the 100-km orbit to
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touchdown in the lunar reference scenario of Section 1.3. Cameras are light, cheap,
and they can acquire data whether the terrain is flat or hilly. The illuminated-terrain
requirement is not a constraint as the mission has to land in daylight for solar panels
anyway. Furthermore, the use of a camera for planetary landing was already validated
by NASA for the Mars exploration rovers in 2004 when it replaced the traditional
doppler radar for horizontal velocity estimation (Johnson et al., 2007).

1.5 Objectives and contributions

In this thesis, we propose a full navigation system called Lion which is able to match
details of an image of the surface taken by an on-board camera during a planetary
descent with landmarks from a map created before the mission, so as to infer the
position and orientation of the vehicle in real time. This process is called absolute
visual navigation and the map can be made from DEMs orbital images with similar
illumination conditions as during descent.

Camera images are 2-dimensional data. Even though they can acquire data over
any type of terrain, using them to understand 3D terrain information is not straight-
forward as one dimension is lost in the projection process. However, there are two
key moments of a lunar descent when absolute visual navigation is required but the
scene is 3D: at DOI and at low altitude. The former case is certain as the terrain
appears spheric and not flat in the field of view of a landing camera on orbit. The
latter case is likely, especially with the relief of the lunar south pole illustrated in Fig-
ure 1.5 (Mazarico et al., 2012), if the landing area is not flat. Ultimately, the philosophy
of pinpoint landing is to be able to target any landing site in a mapped area, whatever
its surrounding topography.

Figure 1.5 – Topographic map of the lunar south pole area. Stereographic projection with axes
in kilometers, the original resolution is 10 m per pixel (Mazarico et al., 2012).

This thesis thus aims at designing an absolute vision-based navigation system for
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planetary descent and landing with pinpoint accuracy on any terrain relief. The main
contributions are:

• A generic image-to-map matcher which makes no topography assumption and
can work over any kind of terrain, 2D or 3D,

• An individual management of the image extraction scale for each mapped land-
mark, guided by the navigation filter, in order to significantly improve the quan-
tity and the quality of correct descent image measurements,

• A new lunar-representative optical test bench for navigation, with simple and
cheap ground truth determination,

• Experimental demonstration of the pinpoint landing performance of the image-
to-map matcher integrated in a tight visual-inertial filtering scheme,

• A simple system engineering tool to size the navigation error budgets.

1.6 Thesis overview

A detailed literature review of the filtering architectures, landmark recognition tech-
niques and performance test benches for aerospace applications is provided in Chap-
ter 2. Chapter 3 details the implementation of a visual-inertial tight filtering scheme
compatible with any terrain relief and demonstrates its performances with ideal
image-to-map matching over various topographies for the lunar landing scenario.
Chapter 4 develops the novel 3D-compatible matching algorithm that searches for
each landmark in the image within an area and at a scale predicted by the navigation
filter. Chapter 5 details the design of an indoor lunar-analogue optical test facility. It
also develops navigation error models to evaluate performance observability due to
the limited ground truth accuracy. Chapter 6 assesses the performance of the whole
navigation system over key sequences of a scaled lunar descent flight, and its ro-
bustness to sensor change, tilt, illumination, and spherical topography. Eventually,
Chapter 7 offers a final discussion and concludes over the contributions of this work.
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Absolute visual navigation matches an image taken by an on-board camera with a
terrain map in order to localize the spacecraft in real time. For planetary landing,

that means measuring the state vector xg =
h

qb
g

T vg
gb

T pg
gb

T
iT

made of the attitude

quaternion qb
g representing the rotation from the global frame {g} to the spacecraft

body frame {b}, the velocity vg
gb and the position pg

gb of the body frame with respect
to the global frame, and resolved in the global frame axes. {g} is tied to the map of
the planet in which a landing site was chosen, it is also the frame in which the landing
error is measured. The use of quaternions for attitude representation is presented in
Appendix A. All navigation frames are defined in Section B.1.

Absolute measurements may be aided by inertial and relative visual navigation.
Inertial navigation integrates accelerometer and gyroscope data to measure the change
of pose of the spacecraft with respect to an inertial frame {i}. Relative visual navigation
can retrieve the motion of camera between the images of a sequence with respect to a
local frame {l} fixed with respect to the terrain. For instance, {l} may be the camera
frame at the first image of the sequence, or a frame tied to an observed surface feature
like a rock or a mountain. The fusion architecture of absolute, relative and inertial
measurements is the core of vision-based navigation illustrated in Figure 2.1. Rele-
vant surveys can already be found in the literature. Johnson and Montgomery (2008)
review terrain-relative navigation approaches for pinpoint lunar landing while Bonin-
Font et al. (2008) provide an exhaustive survey of vision-based navigation systems for
mobile robots in general.
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Figure 2.1 – Vision-based navigation framework. Absolute visual navigation may be aided by
relative and inertial measurements through a data fusion scheme.

Table 2.1 summarizes the advantages and drawbacks of absolute, relative and iner-
tial navigations. By providing position fixes directly in the global frame {g}, absolute
navigation is the only solution to bring the error in the estimation of xg down within
the 100-m pinpoint accuracy. However, it operates at a relatively slow rate from 1 to
5 Hz which introduces delay in the control loop and makes rapid motion unobserv-
able. Relative terrain navigation needs shorter processing times and thus can work at
higher rates between 10 and 60 Hz1, but it can only estimates the motion between two
images. As such, it is a dead reckoning process and it can only limit the divergence of
the initial navigation error in {g} but it cannot correct it. Eventually, inertial sensors
provide self-contained measurements which are independent of external conditions.
That is a strong advantage as that means they can back up visual navigation over a
shadowed or textureless area. Their high-bandwidth and nearly-instantaneous esti-
mation capability also enable rapid motion observability and solve the control delay
issues. However, the integration of inertial bias and noise leads to a rapid divergence

1The difference between the maximum rate of 60 Hz for relative navigation and the 100-Hz value for
cameras stated in Subsection B.2.3 comes from data processing.
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of the error observed in missions up to date, even with the aerospace-class IMU per-
formances discussed in Subsection B.2.1.

Table 2.1 – Inertial, relative and absolute navigation trade-off

Navigation type Advantages Drawbacks

Absolute Bounded error Low frequency: 1-5 Hz

Relative High frequency: 10-60 Hz Slow error divergence

Inertial Self-contained measurements Rapid error divergence
Very high frequency: 100-1000 Hz
Nearly instantaneous

The slow update rate of absolute navigation means that another navigation type
will be needed to perform efficient control of the spacecraft trajectory. Both inertial
and relative navigations can solve this slow rate issue. But inertial navigation is the
fastest, and it can also provide a back-up to visual navigation failures and IMUs will
be onboard anyway for the interplanetary navigation phase. Thus the work presented
here is focused on the development of a landing navigation system fusing inertial and
absolute visual measurements. Lion can actually be read as an acronym for Landing
Inertial and Optical Navigation.While similar research is conducted in many different
areas ranging from mobile phone applications to planetary landing, this chapter only
reviews the relevant literature for aerospace applications.

Section 2.1 reviews the critical step of matching the online image with the ter-
rain map in absolute visual navigation. Section 2.2 introduces the inertial navigation
framework commonly used in aerospace systems and surveys data fusion techniques
to integrate absolute and inertial measurements altogether. Lastly, Section 2.3 iden-
tifies the different test setups that were used in the references reviewed throughout
this chapter.

2.1 Absolute image matching

Absolute visual navigation can be divided in two steps:

1. Matching the content of the online image with the content of the map,

2. Estimating the pose of the camera, and thus that of the spacecraft carrying it,
from the geometry of the matches.

The second step about pose estimation is reviewed in Section 2.2 along with data
fusion architectures. This section focuses on the more challenging first step that con-
sists in recognizing the image on the map. To have a chance to do so, the navigation
systems needs a description of the image content in some way. This signature can be
either the image itself through global correlation, photometric information contained
in small patches in the vicinity of specific image features, or the geometric arrange-
ment of those features.
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2.1.1 Full-image correlation

The most straightforward way to identify the descent image on the map is to compare
pixel values with an orbital image. Conte and Doherty (2009) compute the normalized
cross correlation scores of an image taken on board by a nadir-pointing camera over
a research zone within a reference image of the area. The flight image was previously
scaled and oriented using altitude and heading knowledge from a navigation filter.
The height is measured with an altimeter. The location of the maximum score on the
reference image gives the 2D absolute horizontal position on the map. Similar corre-
lation techniques are employed during terminal guidance for cruise missiles (Siouris,
2004). Mourikis et al. (2009) also employs image correlation but using a fast Fourier
transform to get a coarse estimate of the spacecraft position and initialize a navigation
filter. The image is not necessarily shot nadir and is thus rectified using a homog-
raphy planar transform with altitude and attitude knowledge respectively from an
altimeter and a star tracker to correct perspective effect. These approaches have a low
processing cost which makes them well suited for real-time applications and can work
even if the terrain is poorly textured. However, they are very sensitive to differences
between the descent and the orbital images due to changes of viewpoint over non-
planar topography. The two following methods intend to better take 3D information
into account within the full-image correlation framework.

Adams et al. (2008) proposed an approach called APLNav inspired from missile
navigation but using two cameras with orthogonal boresights. The scenes observed
by each of the two cameras are rendered online using the camera pose estimates
propagated by a navigation filter, a DEM, surface reflection, camera and illumination
models within an embedded virtual image generator. One camera can only measure
accurately the 2D position error in a plane perpendicular to its boresight using image
correlation like Conte and Doherty (2009) showed, but the two cameras aligned with a
90-deg offset provide an accurate 3D position fix to update the filter. This approach is
interesting because it does take DEM information into account to virtually predict the
scenes in front of the cameras, even if the terrain is not flat. Though, each correlation-
based measurement happens in 2D within the images and strong difference are still
going to affect them, especially over 3D scenes, due to perspective effects if the pre-
diction error is important. In addition to that, the processing power of current space
computers is far from being able to run virtual image generators in real time.

Janschek et al. (2006) make a more original use of correlation as they divide the
descent image into a dense grid of smaller patches which are subsequently tracked
in the online video sequence. This optical flow allows to reconstruct a 3D model of
the observed surface, which is then scaled using pose predictions from the navigation
filter and matched with the reference DEM map stored in the on-board memory in
similar way to lidar navigation. This approach makes a strong performance as, like
lidars, it is fully compatible with 3D scenes while being robust to large errors. But like
lidars either, it cannot provide any measurement when the terrain is flat.

2.1.2 Photometric landmark description

Modern geometric computer vision tends to process images in terms of feature points
relevant for scene estimation (Hartley and Zisserman, 2003). These points are usually
detected as extrema responses of the image intensity values convolved with some
operator. The surface point associated to a mapped image feature is called landmark.
Photometric description uses intensity values in the neighborhood of a landmark in
the orbital image to retrieve it in the descent image.
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Mourikis et al. (2009) process the descent image and a reference orbital one with
the Harris operator to extract small image patches around intensity corners. These cor-
ners correspond to locally strong intensity changes in all spatial image directions (Har-
ris and Stephens, 1988). On descent data, each template is warped onto the mean plane
of the terrain using the altitude and attitude knowledge from the navigation filter.
Pseudonormalized cross correlation then allows to register the feature patches onto
the orbital image. The orbital image is coregistered with a DEM to obtain the 3D coor-
dinates of these 2D descent image features in the global frame {g}. The 2D/3D pairs
are directly passed to the filter to update the state. This approach benefits from the low
processing cost of patch correlation. Although the processing of feature points instead
of the whole image would in theory allow it to work over complex terrain topography,
the mean plane patch rectification makes correlation fail over non-flat surfaces.

Lowe (2004) proposed the Scale Invariant Feature Transform (SIFT) to extract and
match features in two images of the same scene taken from different viewpoints.
The algorithm is designed to be robust to translation, orientation, and scale differ-
ences between the pair of images. SIFT features are extracted as local extrema of the
difference-of-Gaussian operator over the 3D space containing the image plane and
the scale space. The SIFT descriptor is based on the magnitude and orientation of the
gradients in a neighborhood of the feature, which are computed at its characteristic
extraction scale. This information is compiled into histograms for each feature, which
can then be matched by finding the minimum Euclidean distance of the histogram
with those of the reference image. The Speeded Up Robust Feature algorithm (SURF)
is similar to SIFT but made faster by using integral images (Bay et al., 2008). Trawny
et al. (2007) have tested the use of SIFT for planetary landing navigation by match-
ing features between the descent and the orbital images. We found SIFT had good
performance even with viewpoint changes of more than 40 degrees tested during a
lunar descent with similar illumination between the descent and orbital images. This
viewpoint robustness also makes them able to cope with a significant range of ter-
rain topography. In addition, they are robust to significant navigation errors as the
matching does not need an initial estimate. However, the cost of such robustness is
an extensive and computationally-expensive research for features through the image
scale space. This approach is adapted to situations where no camera pose information
is available before matching. However in planetary landing, an a priori state estimate
is propagated by the filter with some accuracy and could be used to make image
processing more efficient.

2.1.3 Geometric landmark description

The search for efficiency in absolute image matching has seen landmarks being de-
scribed by their geometric distribution rather than by intensity information in their
neighborhood.

Cheng and Ansar (2005) detect craters in images by finding edges correspond-
ing to the same rim using intensity information, and then try to fit an ellipse model
through those edges. Each mapped crater is described by a point in world coordi-
nates, a radius and an orientation vector. Craters are matched two by two with the
descent image using an invariant criterion for a pair of conics. The pose is estimated
by analytically reconstructing the 3D point cloud of the observed crater centroids in
the camera frame, and then by finding the parameters which transforms it to the 3D
cloud map. Singh and Lim (2008) detect craters by fitting ellipses onto neighboring
like-sized dark and light image regions. Assuming nadir pointing, image locations of
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the centroids of the mapped craters are predicted using a priori state estimates from
the navigation filter. A least mean square method is performed to match crater pre-
dictions with those extracted in the descent image. These two approaches imply no
complex image processing and are computationally very efficient. But craters cannot
be detected reliably anywhere, even on the Moon, and that does not make them a
generic-enough landmark for planetary landing.

Pham et al. (2012) proposed to identify Harris corners detected in the orbital image
with their shape context signature. Shape context describes a point using the relative
spatial distribution of its neighbors (Belongie et al., 2000). The resolution of the de-
scent image is first corrected for scale using the altitude estimate from the navigation
filter, then Harris corners are detected. The descent image is rectified to the orbital
image plane using the attitude estimate from the filter. The shape context signatures
of Harris features are computed and compared to those of the orbital landmarks us-
ing the c2 distance to get match candidates. An affine vote finally removes outliers
and delivers the final matches. This approach shares the low processing cost of crater-
based matching methods while using more generic landmarks. Nevertheless, it makes
a flat-world assumption to rectify the descent image through an homography and
match surface landmarks.

2.1.4 Discussion

Table 2.2 summarizes the advantages and drawbacks of the absolute image matching
algorithms reviewed in this section.

Table 2.2 – Absolute image matching literature review summary

Matching type Method Advantages Drawbacks

Raw-image correlation Low processing cost Flat-terrain assumption
(Conte and Doherty, 2009; Works with poor textures
Siouris, 2004;
Mourikis et al., 2009)

Full-image Rendered-image Works over any topography Large error sensitivity
correlation correlation High processing cost

(Adams et al., 2008)
Reconstructed-DEM Works over 3D terrains Not over flat terrains
correlation Robust to large errors
(Janschek et al., 2006)

Patch correlation Low processing cost Flat-terrain assumption
Photometric (Mourikis et al., 2009)
landmark Scale-invariant Works over any topography High processing cost
description local gradient distribution Robust to large errors

(Lowe, 2004; Bay et al., 2008)

Crater-based methods Works over any topography Only with craters
Geometric (Cheng and Ansar, 2005; Low processing cost
landmark Singh and Lim, 2008)
description Shape context Low processing cost Flat terrain assumption

(Pham et al., 2012) Generic landmarks

Out of all the approaches reviewed, five meet the objective of working on any
terrain relief, with no topography assumption, as stated in Section 1.5 (Adams et al.,
2008; Trawny et al., 2007; Bay et al., 2008; Cheng and Ansar, 2005; Singh and Lim,
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2008). Adams et al. (2008) render the expected descent image in a virtual generator
using DEM and a priori state information to correlate the output with the actual
descent image and measure the error. Though, this method cannot cope with large
errors and above all the processing cost of a virtual image generator cannot be afforded
by modern embedded computers. Crater-based methods like that of Cheng and Ansar
(2005) or Singh and Lim (2008) have the lowest processing cost but craters features are
not generic enough to be used reliably as landmarks. The scale-invariant methods left
match generic landmark using the local intensity gradient distribution (Lowe, 2004;
Bay et al., 2008). They can work on any topography and are robust to large errors, but
their processing cost remains high because of an extensive search through the image
scale space which does not make profit at all of the a priori information available from
the filter. In addition, should there be changes of illumination between the orbital
and the descent images, the robustness of photometric descriptors appears limited
compared to that of geometric descriptors (Pham et al., 2012).

Eventually, we chose to focus on developing matching methods using these geo-
metric descriptors to identify generic landmarks while removing the flat-terrain as-
sumption made by Pham et al. (2012). In addition to enhanced illumination robust-
ness, these approaches also appear promising in terms of simplicity and cost efficiency.
Chapter 4 details the various methods designed. It highlights the landmark repeata-
bility issue that led to use scale-invariant properties like Trawny et al. (2007) and Bay
et al. (2008) to solve it. The processing cost is kept low by efficiently using the a priori
information propagated by the navigation filter.

2.2 Data fusion architectures

Data fusion between absolute visual navigation and inertial navigation aims at bene-
fitting from image-based position fixes with respect to the map of the planet to reach
pinpoint accuracy, while profiting from the robustness and high bandwidth of IMUs.
Before discussing this fusion, let us describe how inertial navigation is typically em-
ployed for navigation.

An inertial navigation system estimates the state of the frame tied to the IMU with
respect to a reference frame {r}. It does so by integrating angular rate and specific
force measurements with respect to an inertial frame {i}. In this study, the IMU frame
is considered to be the spacecraft body frame {b}, and the reference is the global
frame {r} = {g}. Inertial navigation has moved from research to common applica-
tion in aerospace systems for decades now. Figure 2.2 illustrates the standard inertial
navigation architecture (Groves, 2008).

Inertial navigation is an iterative process, measuring the change of the state from

the previous iteration. An initial estimate (x̂r)0 =
h

(q̂b
r )0

T
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rb)0
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T
iT

is

thus needed. At each iteration, the angular rate measurements (wb
ib)m are integrated

to get an attitude update q̂b
r . From this, the specific force measurements ( f b

ib)m can be
projected onto the reference frame axes to obtain f̂ r

ib. Adding the acceleration due to
the gravitational force gr

ib which applies on the body frame with respect to the inertial
one, and proceeding to a reference frame change from {i} to {r}, leads to the accel-
eration estimate which can be integrated to update velocity v̂r

rb. A second integration
then provides the updated position estimate p̂r

rb.
Figure 2.1 introduced the global data fusion architecture which is used to fuse

visual and inertial measurements. All fusion schemes reviewed are actually based
on recursive Bayesian estimation, often Kalman filters or its extensions. Section C.1
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Figure 2.2 – Inertial navigation architecture. The angular rate measurements are integrated to
update the attitude of the spacecraft. The specific force measurements can then be projected on
the spacecraft axes and added to the gravitational force to update the velocity and the position
by successive integration.
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and Welch and Bishop (2006) give an introduction to standard and Extended Kalman
Filters (EKF), and a detailed decription of modern optimal filtering techniques was
written by Candy (2009). The nature of the outputs of the inertial, relative2, and abso-
lute navigation blocks which are passed to the filtering block distinguish between two
types of fusion: loose or tight.

2.2.1 Loose integration

In a loosely-coupled integration, each navigation subsystem provides an estimate of

the vehicle state in the global frame x̂g =
h

q̂b
g

T v̂r
gb

T p̂r
gb

T
iT

on its own. This
process is illustrated in Figure 2.3. The sub-navigation with the highest frequency,
often the the inertial navigation, is used in the prediction part of the filter while the
other state estimates are used as measurements in the correcting part.
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Figure 2.3 – Loosely-coupled visual-inertial fusion. Each navigation subsystem computes a
state estimate x̂g on its own. Inertial navigation is often used in the propagation part of the
filter, with visual poses used as updates.

Pham et al. (2012) estimates the absolute camera position from the image-to-map
matches of one camera using least-squares minimization. Both this absolute estimate
and the relative position estimated by a visual odometer can update the inertial pose
propagated by a Kalman filter.

Adams et al. (2008) employ 3D position estimates computed from each of the two
orthogonally-looking cameras to update a navigation filter propagating inertial state
estimates.

Conte and Doherty (2009) use a linear error dynamic model in a Kalman filter. It
mechanizes the inertial measurements to predict the state and performs an altitude
update using a barometric altimeter. The overall fusion architecture is slightly more
complex than that of Figure 2.3 as 2D horizontal position update is achieved using the
output of another dynamic filter, called point-mass filter, which fuses a visual odometer
for relative navigation and the image registration module detailed in Subsection 2.1.1
for absolute navigation. The point-mass filter solves the Bayesian filtering problem on
a discretized grid and is able to handle general distributions of probability, not only
the Gaussian ones.

2.2.2 Tight integration

Unlike loose fusion schemes, tight filters do not receive direct state estimate updates
from the navigation subsystems but are rather fed with a rawer type of measurement

2Although this work is focused on inertial and absolute visual navigation, relative navigation appears
in this section as some data fusion architectures reviewed make use of it.
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from the sensors. For instance in GPS-inertial fusion, the pseudo-range and pseudo-
range rates issued by the ranging processor are used as measurements in the filter.
With absolute visual systems, the tight measurements are the mapped landmark co-
ordinates (u, v) in the image plane, as shown in Figure 2.4. Then the absolute visual
navigation block is only concerned with matching image features to mapped land-
marks and pose estimation is centralized within the navigation filter.
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Figure 2.4 – Tightly-coupled visual-inertial fusion. Relative and visual navigation subsystems
only provide image feature coordinates measurements (u, v) to the filter, where pose estimation
is centralized.

We distinguished between two types of tight visual-inertial fusion schemes
among those reviewed: Simultaneous Localization And Mapping (SLAM) and sliding-
windows filters.

SLAM: state augmentation using feature coordinates

SLAM algorithms estimate the structure of the observed scene, the so-called mapping
part, along with the pose of the camera looking at it (Davison, 2003). The absolute
navigation state is thus estimated by adding the triangulated 3D coordinates pg

glj
in

the global frame {g} of each of the N tracked image features
�

lj
�

j2[1,N]
. The general

SLAM state vector is then

xSLAM =
h

qb
g

T vg
gb

T pg
gb

T pg
gl1

T ... pg
glN

T
iT

. (2.1)

At first, these coordinates have large uncertainties due to the unknown feature depth
in monocular vision. But the motion of the camera allows to reduce the variances of
those coordinates through the sequence. SLAM is intensively used in relative naviga-
tion and building for building local maps on the fly. Absolute navigation rarely uses
SLAM as the 3D coordinates of mapped features are a priori known and thus do not
need to be triangulated. However, one could think of using the triangulated feature
3D coordinates for absolute matching in a similar way to the DEM matching studied
by Janschek et al. (2006).

Flandin et al. (2009) fuses inertial and relative visual measurements using an EKF
SLAM depicted in Figure 2.5. The motion is propagated using IMU measurements
in the predictive part of the filter. Acceleration measurements by the IMU provide
full motion observability so that an altimeter is not required to solve the vision scale
problem. To initialize 3D feature positions, their image coordinates are backprojected
on the mean plane associated to tracked features.

Likewise, Singh and Lim (2008) estimate the position and velocity of a nadir-
pointing vehicle using the inertial coordinates of four tracked crater centroids. The
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Figure 2.5 – Simultaneous Localization And Mapping visual-inertial EKF scheme used
in Flandin et al. (2009). Image features are tracked through the online video sequence to es-
timate their coordinates which are added after the camera pose in the state vector.

states are not propagated with inertial measurements but using a dynamical model of
the planet and of the vehicle along with the commanded thrust. Updates are done us-
ing unitary line-of-sight vector measurements from the camera to the tracked craters
in inertial frame along with an altitude measurement from the altimeter.

Caballero et al. (2008) also implemented an EKF-SLAM. Propagation is done from
visual measurements directly as they estimate from the homography transform be-
tween two images, assuming the terrain is flat.

Sliding windows: state augmentation using camera poses

Alternatively, sliding-windows architectures estimate the state by appending to it
static camera poses

n⇣

qbk�j
g , pg

gbk�j

⌘o

j2[[1;M]]
corresponding to the M previous images

prior to current image k, with
�

bk�j
 

the spacecraft body frame at the acquisition time
of image k� j. These extra states are the so-called sliding windows. The general state
vector of these filters is thus

xSW =
h

qb
g

T vg
gb

T pg
gb

T qbk�1
g

T
pg

gbk�1

T ... qbk�M
g

T
pg

gbk�M

T
iT

. (2.2)

Image feature 3D coordinates are not estimated any more like in SLAM, but instead
the extra static pose states allow the filter to deal with image processing delays and
integrate measurements over more than one image. Image measurements can actually
only directly observe these static pose states and the delayed update of the dynamic
navigation state happens through correlation with the inertial measurements in the
error covariance matrix of the filter. Note that the simplest way to do tight filtering
would be to add no window at all and make the image measurements directly update
the dynamic position and attitude states

⇣

qb
g, pg

gb

⌘

in the filter. However to handle
time delays associated with image processing, at least one static camera pose is always
appended to the dynamic state.

Since there are usually a lot less camera poses than tracked points considered,
based on the Kalman filtering architecture detailed in Section C.1 and for a similar
number of image feature measurements, the computational cost of sliding-windows
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EKF is less than those of SLAM EKF. Furthermore, this cost grows only linearly
with the number of landmarks in sliding-windows, while it grows quadratically with
SLAM.

Mourikis and Roumeliotis (2007) and Simard Bilodeau et al. (2010) integrate rel-
ative visual measurements tightly with inertial motion estimation of the attitude, ve-
locity and position using sliding windows. The architecture is shown in Figure 2.6.
An extended Kalman filter is used for data fusion. Inertial measurements are used
for dynamical propagation part of the filter. Updates are based on the difference be-
tween the predicted image coordinates of a tracked point, and those measured in the
online image. Image features can be either absolute if they are matched with a map
or relative if they are unidentified. However, the processing of relative features need
to solve for their depth. Sibley et al. (2010) have an approach similar to Mourikis and
Roumeliotis (2007) solve this depth problem by initializing the 3D coordinates of the
features through stereo imaging, namely achieving a triangulation using two on-board
cameras.
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Figure 2.6 – Sliding windows visual-inertial EKF scheme used in Mourikis et al. (2009). Pose
parameters of the camera at the times of acquisition of a number k of previous images are added
to the state vector to process absolute or relative measurements.

2.2.3 Discussion

Table 2.3 draws a list of the advantages and drawbacks of the loose and tight fusion
schemes reviewed in this section.

Loose fusion is simple to implement, requires hardly any more computer pro-
cessing than the navigation subsystems already do, and having several stand-alone
solutions for navigation enable back-ups and double-checks between them. However,
loose architectures can meet performance and stability issues when several filters are
cascaded and independent landmark-based visual pose estimation, like that selected
in Section 2.1, can suffer from degenerate surface feature configurations.

Tight fusion enables a finer noise modeling and thus better precision in the filter as
the sensor observation function is the measurement equation of the filter. In degraded
observation conditions, tight-coupled visual filters can also update the state even with
only one measured image landmark contrary to loose schemes. Though, tight systems
have a higher computational cost.
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Table 2.3 – Data fusion scheme trade-off

Fusion type Advantages Drawbacks

Loose Simple implementation Performance and stability issues
Low computational cost Degenerate configurations
Parallel solutions

Tight Precision
Robustness to degraded Higher computational cost
measurements

The finer accuracy of tight filters is especially relevant to pinpoint landing. In ad-
dition, the absence of degenerate configurations and the robustness to degraded ob-
servation conditions loosens the constraints on image processing. The computational
cost, even though higher than for loose schemes, should still fit the planetary landing
requirements and we decided to go with a tight filter for Lion.

Between SLAM and sliding-windows tight filters, SLAM is not adapted to absolute
visual navigation except if 3D reconstruction is needed for absolute image matching.
However even in this case, its has a significantly higher cost than sliding-windows
filter, and it cannot handle image processing time delays. Furthermore all the absolute
image matching methods reviewed in Section 2.1 which made no topography assump-
tion needed no triangulation, thus no SLAM, for recognizing mapped landmarks. We
thus decided to set up a sliding-windows tight absolute visual-inertial navigation fil-
ter for Lion, fully compatible with any terrain topography, and which is described in
Chapter 3 along with the evaluation of its performance on a lunar landing trajectory.

2.3 Performance evaluation

Design of vision-based navigation algorithms for planetary landing is constrained by
the difficulty to access flight-representative data with accurate ground truth for vali-
dation in various conditions. Most landing sites are exploration targets which, like the
Lunar south pole, have never been visited before. For this reason, the absolute image
matching solutions reviewed in Section 2.1 employ either software simulation or hard-
ware experiment in terrestrial planetary analogue environment to test the performance
and robustness of their approach. Table 2.4 classifies different performance evaluation
setups of the literature.

2.3.1 Software simulation

The cheapest way to get planetary descent images is to render them virtually from a
DEM3, camera, surface reflection and illumination models. This is equivalent to what
Adams et al. (2008) plan to do online in APLNav. Such images can be generated with
tools like PANGU developed by Parkes et al. (2004). PANGU includes a planetary
surface generation software based on observed topography, crater and boulder dis-
tribution models. It was used to evaluate landmark constellation matching in lunar
environment by Pham et al. (2012) and DEM reconstruction and matching for a Mer-
cury landing mission by Janschek et al. (2006). These simulations allow to thoroughly

3Not necessarily a true one.
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Table 2.4 – Performance evaluation setups

Evaluation Data type Reference

True planetary images Cheng and Ansar (2005)
Mourikis et al. (2009)

Software Li (2008)
simulation Singh and Lim (2008)

Rendered planetary images Adams et al. (2008)
Pham et al. (2012)
Janschek et al. (2006)

Indoor test bench images de Lafontaine et al. (2008)
Hardware Sibley et al. (2010)
experiment Helicopter flight images Conte and Doherty (2009)

Trawny et al. (2007)
Sounding rocket parachute flight images Mourikis et al. (2009)

test the robustness of navigation methods in different conditions. However, as the dif-
ference between a true image and a virtual one is still noticeable with naked eye, one
can question whether all the optical phenomena happening in a real space camera or
all the planetary terrain properties are well modeled yet.

Another to simulate descent data is to project true planetary images on a virtual
surface, usually a plane or the associated DEM when available, inside a 3D simulation
environment which also includes a camera model to render the descent images. Cheng
and Ansar (2005) used orbital images from Mars Odyssey probe to test their crater
recognition system. Mourikis et al. (2009) analysed the sensitivity of their correlation-
based matching module using imagery of Mars, Europe and the Moon. Real images
from asteroid 433 Eros were employed by Li (2008) to evaluate relative terrain navi-
gation performance. And eventually, Singh and Lim (2008) tested their absolute nav-
igation system for lunar orbit and landing also using the real image database from
the lunar probe Clementine. If orbital images are available, this type of simulation is
the simplest way to obtain realistic descent images with the associated ground truth
to estimate the absolute navigation error. However, it does not allow to vary observa-
tion parameters like terrain illumination as usually there is only one or a few images
available of the same area. The realism also becomes limited over complex surfaces as
the resolution of the true DEMs is often less than that of the images.

2.3.2 Hardware experiment

Sibley et al. (2010) set up a stereo rig on a rail track facing a planetary surface poster to
evaluate their relative visual navigation algorithm performances. A similar robotic test
facility featuring a camera facing a 3D martian planetary mock-up is planned is dis-
cussed by de Lafontaine et al. (2008). These approaches can offer a very representative
environment while demonstrating the performances with actual camera hardware.
However, indoor test benches do not include flight perturbations like vibrations or
atmospheric effects.

Conte and Doherty (2009) and Trawny et al. (2007) both validated their algorithms
with data acquired from a helicopter Unmanned Air Vehicle (UAV) equipped with a
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camera and a differential GPS antenna offering submeter precision as a reference for
error measurement. Likewise, Mourikis et al. (2009) validated their navigation filter
with IMU and camera data from a sounding rocket flight over desert in New Mexico.
These approaches provide representative flight data and trajectories, however visual
data are representative of the Earth and not of another planet.

2.3.3 Discussion

Software simulation is intensively used in early navigation design as it provides a
cheap and handy interface to test a vision-based system in various planetary-like
conditions. However, hardware experimentation is the next step after this to prove
the performance of the system in a physical environment. Only an indoor experiment
configuration with a camera facing a 3D terrain mock-up illuminated in some way is
able to provide various lunar-representative real images and accurate ground truth
with respect to the reference scenario described in Section 1.3. Chapter 5 describes the
design of such a lunar-analogue indoor optical test bench.

Chapter conclusion

This chapter traded off filtering, image processing, and performance evaluation tech-
niques reviewed in the aerospace literature in order to develop a navigation system
fusing inertial and absolute visual measurements to solve the relief-independent pin-
point planetary landing problem raised in this thesis.

Since navigation is above all an estimation problem, Chapter 3 develops a tight
visual-inertial navigation filter based on a sliding-windows architecture which is com-
patible with any topography. The performance is evaluated during the approach phase
of a lunar landing trajectory assuming ideal image measurements over various terrain
topographies. These results set the upper bound of the accuracy which can be reached
later with image processing in the loop.

Chapter 4 details the design of various matching methods using geometric de-
scriptors to match generic landmarks while making no assumption about the terrain
relief and using efficiently the a priori information propagated by the navigation filter
to keep the computational cost down. The performance of the whole navigation sys-
tem with image processing in the loop is evaluated with computer-generated lunar
images.

To push testing one step further, Chapter 5 explains the design of a lunar-analogue
indoor optical test bench which was used to simulate key image sequences of the
whole lunar descent. Hardware results in accuracy and robustness with this setup are
presented in Chapter 6.
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Tight absolute visual-inertial data fusion schemes measure the image locations of
landmarks recognized on a map of the planet in order to update the estimate

of the navigation state xg =
h

qb
g

T vg
gb

T pg
gb

T
iT

propagated with data coming at
high rate from an IMU. Section 2.2 reviewed and traded off tight versus loose fusion
architectures. The finer noise modeling of tight schemes makes them more adapted to
get the most accuracy out of a landing. In addition, the absence of degenerate config-
urations and the robustness to degraded observation conditions, when the number of
matched landmarks is low, are strong advantages with respect to loose fusion. Among
those tight schemes, sliding-windows architectures have a lower computational cost
than SLAM ones and integrate image processing delays in the estimation.

Section 3.1 gives an overview of the extended Kalman filter which has been im-
plemented in Lion to provide an estimation structure for visual-inertial pinpoint
planetary landing navigation, without making any assumption about the terrain
relief. The EKF equations are derived from the propagation and measurement models
in Section 3.2. And eventually Section 3.3 verifies that this navigation filter reaches
a performance compatible with the 100-m accuracy pinpoint landing requirement
independently of terrain relief using point-based simulation during the approach
phase of a lunar descent over different terrain topographical conditions.

3.1 Lion filter overview

The global architecture of the Lion navigation system is illustrated in Figure 3.1.
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Propagation Update

Gyroscopes

Accelerometers
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Estimated
State
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Image k Feature
Points
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Figure 3.1 – Navigation system architecture. The estimate of the state and its error covariance
matrix are propagated using inertial measurements in an EKF. The camera pose associated to the
last image is appended to the state to handle time delays while it is being processed for feature
points which are ultimately matched with the map in order to provide the EKF measurements.

An extended Kalman filter is employed, which is the simplest extension of the
standard Kalman filter to handle non-linearities in the propagation and measurement
models. Kalman filters provide a maximum-likelihood estimate of the state of lin-
ear systems assuming Gaussian noise. Section C.1 recapitulates the general equations
of Kalman and extended Kalman filtering. The EKF in Lion uses a continuous-time
propagation with discrete-time updates for which the models are provided now.



34 Chapter 3. A tight visual-inertial filter for landing on any relief

3.1.1 Inertial propagation

The non-gravitational acceleration and angular rate measurements of the IMU are
used in the propagation part of the filter in Figure 3.1. Inertial navigation equations
allow to propagate the attitude, velocity and position states of the spacecraft in frame
{g} by successive integrations, along with their error covariance matrix. The propa-
gated estimates are assumed to be initialized during the orbital phase using a star
tracker in attitude and Earth-based range-rate radar measurements for position and
velocity.

The system model of the landing vehicle equipped with an IMU was put into
equations as

8
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>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

q̇b
g = 1
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gb)q

b
g

ḃgyr = nbgyr

v̇g
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gb

ḃacc = nbacc

ṗg
gb = vg

gb

. (3.1)

The dynamic navigation state is thus xV =
h

qb
g

T bgyr
T vg

gb
T bacc

T pg
gb

T
iT

. qb
g is

the quaternion describing the rotation from the planet frame {g} to the vehicle body
frame {b}. pg

gb, vg
gb and ag

gb are respectively the position, velocity and acceleration of
{b} with respect to {g}, projected in the axes of {g}. In addition to the standard nav-
igation state, xV also includes the gyroscope bias bgyr and the accelerometer bias bacc
projected {b}, which is assumed to be the same as the IMU frame. Those two quanti-
ties are modeled by a random walk with centered Gaussian white noise, respectively
nbgyr and nbacc. wb

gb is the angular velocity vector with respect to the planet frame and
projected on the vehicle frame. The operator W defined by

W(w) =

"

0 �wT

w � [w^]

#

, (3.2)

where [w^] =
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7

5

. (3.3)

The definition of W in Equation (3.2) depends on the convention presented in Ap-
pendix A and used here for the quaternions: the first component is the scalar part and
the three others are the imaginary parts. The angular velocity and acceleration data
are inferred from the IMU measurements wIMU and aIMU using

wIMU = wb
gb + C(qb

g)w
g
ig + bgyr + ngyr , (3.4)

aIMU = C(qb
g)(ag

gb � gg
b + 2

h

w
g
ig^
i

vg
gb +

h

w
g
ig^
i2

pg
gb) + bacc + nacc . (3.5)

C(.) is the coordinate change matrix associated to a quaternion, w
g
ig is the angular

velocity vector of the planet frame with respect to the inertial frame, gg
b is the local

gravity vector, ngyr and nacc are centered Gaussian white noises.

3.1.2 Tight image measurements

Each time an image is acquired, the current dynamic pose is added as a static state
in the filter as indicated by the state management block in Figure 3.1. Unlike the
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closest approach in the literature depicted in Figure 2.6 (Mourikis et al., 2009), only
one static pose is added to the dynamic state here: that of the last image taken in
order to deal with image-processing time delays. Indeed, there is no need for Lion to
add more than one pose if the accuracy is high enough after evaluation. The image is
processed for feature points which are matched with the map. As shown in Figure 3.1,
the absolute matching algorithm provides the 3D coordinates in global frame pg

glj
of

the point j identified at normalized image coordinates zj = [uj vj]T = [u0j/ f v0j/ f ]T, with
z0j = [u0j v0j]

T the pixel image coordinates and f the focal length in pixels. The EKF
measurement model is then

zj = hj(x) + nj =
1

zc
clj

2

4

xc
clj

yc
clj

3

5+ nj , (3.6)

where pc
clj

=
h

xc
clj

yc
clj

zc
clj

iT
= C(qc

g)(pg
glj
� pg

gc) is the 3D position of the point in
the camera frame and nj is the normalized image measurement noise of covariance
matrix Rj = s2

im I2 due to the uncertainties in the feature extraction process. The EKF
measurements are thus the image positions of the matched landmarks which can be
predicted using their world coordinates recovered from the orbital image coupled to
a DEM of the area, the a priori state estimate and the calibrated camera model. These
landmark measurements are used to update the corresponding static pose and the
dynamic state through correlation. The static state is ultimately removed by the state
management function and a new image is taken to repeat this iterative process.

Equation (3.6) is a simple pinhole projection model but it makes no assumption at
all about the terrain topography. Coupled with the 3D knowledge of the DEM use to
build the map, it is the key to enable Lion to work over any type of terrain relief.

3.2 Filter implementation

This section derives the actual EKF equations implemented in Lion from the iner-
tial propagation and tight image measurement models. Some parts of the complete
demonstration are included in Section C.2 and are referred to in the following.

3.2.1 State propagation

The estimate of the state x̂V = E[xV ] is the expected value of xV and can be propagated
through time by applying the expectation operator E to the terms on each side of
System (3.1):
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where â = aIMU � b̂acc and ŵ = wIMU � b̂gyr � C(q̂b
g)w

g
ig.

These equations are simply integrated using the first-order trapezoidal rule given
the high data rate f IMU = 100 Hz of the IMU.
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3.2.2 Covariance propagation

The System of equations (3.1) can be modeled by a nonlinear function fV such that

ẋV = f V(xV , nIMU) (3.8)

with nIMU =
h

ngyr
T nbgyr

T nacc
T nbacc

T
iT

the IMU process noise of covari-
ance matrix QIMU . The function f V depends on inertial measurements that change
through time, thus it is not stationary.

In an EKF scheme, f V is linearized with respect to the estimated state vector x̂V
and one can write the state estimation error dxV = xV � x̂V as

ḋxV = FVdxV + GVnIMU , (3.9)
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and GV =
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The derivation of FV and GV is detailed in Subsection C.2.1. The dynamic error state

vector dxV =
h

dqb
g

T
dbgyr

T dvg
gb

T
dbacc

T dpg
gb

T
iT

includes 15 components. In-
deed, the error quaternion dq is defined by q = q̂⌦ dq, with ⌦ the quaternion product.

Using the small angle approximation, one can write dq '
h

1 1
2 dqT

iT
and thus dq

is a correct minimal representation of the error quaternion.
In practice for a sliding-windows architecture with only one window, the static

pose error of the camera for the last image dxS =
h

dq
ck�1
g

T
dpg

gck�1

T
iT

is appended

to the error state vector dx =
h

dxV
T dxS

T
iT

which then contains 21 components.
Frame {ck�1} is that attached to the camera at the acquisition time tk�1 of image k� 1.
The addition of this static pose allows to deal with image processing delays.

The error covariance matrix at time tk�1 can be divided in four blocks

P(tk�1) =

"

PVV(tk�1) PVC(tk�1)

PVC(tk�1)T PCC(tk�1)

#

. (3.12)

PVV(tk�1) 2 R15⇥15 represents the covariance of the dynamic error state vector,
PCC(tk�1) 2 R6⇥6 that of the pose of {ck�1}, and PVC(tk�1) 2 R15⇥6 is the matrix of
the covariances between the dynamic and static error states. The creation of PCC(tk�1)
and PVC(tk�1) during state augmentation is detailed in Subsection 3.2.4.
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PVV(t) is propagated through the standard continuous-time Kalman covariance
propagation of Equation (C.5) :

ṖVV(t) = FVPVV(t) + PVV(t)FT
V + GVQIMUGT

V . (3.13)

PCC(t) remains constant through time as it represents the static states. The propaga-
tion of PVC(t) between tk�1 and t is derived as

PVC(t) = E
h

dxV(t)dxS(t)T
i

, (3.14)

where dxS(t) = dxS(tk�1) and, from Equation (C.2),

PVC(t) = eFV(t�tk�1)E[dxV(tk�1)dxS(tk�1)
T] (3.15)

PVC(t) = eFV(t�tk�1)PVC(tk�1) . (3.16)

3.2.3 Filter update

The measurement can be predicted from this model, the knowledge of pg
glj

and the a
priori state estimate x̂V as

ẑj = hj(x̂) =
1

ẑc
clj

2

4

x̂c
clj

ŷc
clj

3

5 (3.17)

with p̂c
clj

=
h

x̂c
clj

ŷc
clj

ẑc
clj

iT
= C(q̂c

g)(pg
glj
� p̂g

gc).
The innovation dzj = zj � ẑj can then be linearized as shown in Subsection C.2.2

to update the EKF

dzj ' H jdx + nj = H j,qdqc
g + H j,pdpg

gc + nj , (3.18)

with H j,q =
1

ẑc
clj

h

I2 �ẑj

i h

C(q̂c
g)(pg

glj
� p̂g

gc)^
i

, (3.19)

H j,p =
1

ẑc
clj

h

I2 �ẑj

i

C(q̂c
g) , (3.20)

and H j =
h

02⇥15 H j,q H j,p

i

. (3.21)

By concatenating in columns all the innovations dzj and the Jacobian matrices
of the measurements H j for each point j, one can work out the overall innovation
dz = Hdx + n. After computing the Kalman gain, this innovation allows to update the
state and covariance estimated by the EKF.

From Equation (3.18), one can note that the innovation dzj only depends on the

static state error dxS =
h

dqc
g

T dpg
gc

T
iT

. The ability of the measurement to update
the dynamic state xV is only due to the fact that the correlation matrix PVC(t) is not
null.
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3.2.4 State management

After each filter update, the old camera error attitude estimate dq̂
ck�1
g and error position

estimate dp̂g
gck�1 are removed from the EKF error state vector, thus bringing it back to

15 components. The corresponding lines and columns of the error covariance matrix
are also removed. Immediately, a new image is acquired and the new static camera
error pose estimates dq̂

ck
g and dp̂g

gck are appended to form the state vector with 21

components again.
At each image acquisition, the computation of the new camera pose estimate from

the vehicle pose estimate is done using the known position and orientation of the
camera frame {c} with respect to {b} :

q̂c
g = q̂b

g ⌦ qc
b (3.22)

p̂g
gc = p̂g

gb + C(qb
g)

T pb
bc (3.23)

Based on these two equations and as demonstrated in Subsection C.2.3, the Jaco-
bian matrix J allows to augment the error covariance matrix from R15⇥15 to R21⇥21

P(t) 
"

I15

J

#

P(t)

"

I15

J

#T

(3.24)

J =

"

C(qc
b) 03⇥9 03⇥3

�C(qb
g)

T ⇥pb
bc^
⇤

03⇥9 I3

#

. (3.25)

3.3 Point-based software simulation tests

This section investigates the performance of the Lion navigation filter in a point-based
software simulation where ideal image-to-map matching is assumed: measurements
are still corrupted by the extraction noise nj from Equation (3.6) but there are no
outlier matches. This flawless environment allows to verify if the tight absolute visual-
inertial estimation structure of Lion can meet the 100-m pinpoint landing accuracy
requirement over any terrain topographical conditions, before implementing image
processing in the loop.

3.3.1 Simulation environment

The trajectory generated corresponds to that of an approach phase for a Moon land-
ing. It lasts 80 seconds, starts at a 2-km altitude and ends 10 m above the ground (De-
laune et al., 2010). Guidance is based on that of Apollo lunar module (Sostaric and
Rea, 2005). Inertial data are generated through an IMU model calibrated to match the
aerospace-class performances expected on planetary landing missions of this kind and
presented in Subsection B.2.1. The lunar surface is modeled by a cloud of points, which
are the assumed visual navigation landmarks used here. These points are distributed
randomly according to a continuous uniform distribution within a 2D sampling grid
horizontally, and vertically within a specified elevation range. To test robustness of
the filter to various topographical conditions, three surfaces with elevation ranges of
0, 100 or 1000 m were created. Figure 3.2 shows the final part of the descent camera
trajectory in this point-based simulation environment.

1024⇥ 1024 descent images were generated by projecting the surface points onto
the focal plane of a pinhole camera model covering a 70-deg field of view and then
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Figure 3.2 – Trajectory of the camera in the point-based simulation environment. The lunar
surface is modeled by a cloud of points randomly sampled within a 2D horizontal grid and over
various elevation ranges.
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adding the Gaussian normalized image measurement noise nj of Equation (3.6) with a
standard deviation equivalent to 1 pixel. The acquisition rates are 1 Hz for the camera
and 100 Hz for the IMU

3.3.2 Performance

100 Monte Carlo simulations were run over each of the three simulated terrain to-
pographies. The error on the state of the system is initialized on each axis using zero-
mean Gaussian distributions with 3 s values of 1 deg in attitude, 10 m.s-1 in velocity,
and 100 m in position at the 2-km start altitude, where s is the standard deviation.
These values are regarded as representative of the error distribution at this stage of a
pinpoint landing attempt.

Table 3.1 shows the results in terms of dispersion error at touchdown. The total
dispersion of a vector estimate can be evaluated by the Root Mean Square (RMS)
value of the vector difference with respect to the mean vector estimate. Complete
details about navigation error statistics can be found in Section B.4. Whatever the
terrain topography, the 3-RMS value for total dispersion is always below 22 m in
position, 1.4 m.s-1 in velocity and 0.4 deg in attitude. The mean errors are below
0.8 m, 0.05 m.s-1 and 0.04 deg respectively, which are negligible with respect to the
corresponding dispersions. These dispersions are of the same order of magnitude with
the flat surface and the one with 100-m elevation range, about 20 m in position (3
RMS). They actually improve with the 1000-m elevation range surface down to about
2 m (3 RMS). The better performance in this latter case can directly be related to the
number landmarks visible during the descent and plotted in Figure 3.3. In the point-
based simulation, the landmark altitudes were scattered between -500 m and +500 m.
Thus when touchdown happens at 0 m, there are still many landmarks visible with
1000-m elevation range while there might be only a few for the 100-m case and none
for the flat terrain. Eventually, all those performances are largely below the 100-m
pinpoint landing requirement and show the compatibility of the Lion EKF to handle
any terrain topography.

Figure 3.4, Figure 3.5, and Figure 3.6 show the evolution of the estimation error
and the 3 s values propagated by the filter for each axis over the terrain with the 100-
m elevation range, respectively for the attitude, velocity and position of frame {b}
tied to the vehicle with respect to the planet frame {g}. Note that on these plots the
3s envelope is that of the run which had the largest final standard deviation, it is
displayed for illustration purposes only. These plots show that the dispersion of the
error is actually minimal around tV = 4030 s, thus about 30 s before touchdown, and
later starts to rise up again. The explanation is that because of the limited landmark
density, less and less of them are visible as the lander progresses down its trajectory, as
illustrated in Figure 3.3. After tV , there are not enough absolute image measurements
to correct the inertial drift, this is the end of the so-called visual phase and the error
keeps increasing until touchdown. This phenomenon is somewhat limited with the
1000-m elevation range because enough landmarks remain visible in our point-based
simulation as mentioned earlier, but it is very representative of what happens during
a real mission as the limited resolution of orbital images also limits the maximum
landmark surface density and less and less of them are visible when the lander goes
down. The actual performance at the end of the visual phase at tV are presented in
Table 3.2. The performances before the inertial drift is significantly better than the
performance at touchdown, with 3-RMS value for total dispersion below 2.2 m in
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Table 3.1 – Dispersion of the navigation error at touchdown with various point-based ter-
rain elevation ranges. The dispersion over each axis is measured with the 3 s value for scalar
components, where s is the standard deviation. The total dispersion of the vector quantities is
measured with the 3-RMS value.

Elevation range 0 m 100 m 1000 m

dqb
g,x (roll, deg) 0.2 0.3 0.1

dqb
g,y (pitch, deg) 0.2 0.2 0.1

dqb
g,z (yaw, deg) 0.1 0.1 0.03

dqb
g (total, deg) 0.3 0.4 0.2

dvg
gb,x (downrange, m.s-1) 0.8 1.0 0.3

dvg
gb,y (crossrange, m.s-1) 0.6 0.9 0.2

dvg
gb,z (height, m.s-1) 0.5 0.4 0.1

dvg
gb (total, m.s-1) 1.1 1.4 0.4

dpg
gb,x (downrange, m) 13.4 16.3 2.2

dpg
gb,y (crossrange, m) 10.3 13.4 0.9

dpg
gb,z (height, m) 6.9 6.1 1.4

dpg
gb (total, m) 18.3 22.0 2.7
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Figure 3.3 – Evolution of the number of absolute measurements over the point-based terrain
for the different surface elevation ranges.
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position, 0.7 m.s-1 in velocity and 0.4 deg in attitude. Only in the case with the 1000-m
elevation range is the inertial drift negligible less important.

Table 3.2 – Dispersion of the navigation error at the end of the visual phase with various point-
based terrain elevation ranges. The dispersion over each axis is measured with the 3 s value
for scalar components, where s is the standard deviation. The total dispersion of the vector
quantities is measured with the 3-RMS value.

Elevation range 0 m 100 m 1000 m

dqb
g,x (roll, deg) 0.2 0.3 0.2

dqb
g,y (pitch, deg) 0.2 0.2 0.1

dqb
g,z (yaw, deg) 0.1 0.1 0.04

dqb
g (total, deg) 0.3 0.4 0.2

dvg
gb,x (downrange, m.s-1) 0.3 0.4 0.3

dvg
gb,y (crossrange, m.s-1) 0.3 0.5 0.5

dvg
gb,z (height, m.s-1) 0.3 0.3 0.3

dvg
gb (total, m.s-1) 0.5 0.7 0.6

dpg
gb,x (downrange, m) 1.1 1.4 1.5

dpg
gb,y (crossrange, m) 0.9 1.1 1.3

dpg
gb,z (height, m) 0.6 0.8 0.9

dpg
gb (total, m) 1.6 1.9 2.2

Chapter conclusion

This chapter developed the implementation of the tight absolute visual-inertial EFK
used in the Lion navigation system. It keeps the pose estimate at the acquisition time
of the last image as an additional static state to take into account time delays associ-
ated with absolute image matching. We implemented it in a point-based simulation
assuming ideal absolute measurements, and testing the final part of the trajectory over
surface elevation ranges from 0 to 1000 m. The dispersion was below 22 m (3-RMS) at
touchdown on all topographies and there was no apparent link between the surface
elevation range and the quality of the estimation, which appears more affected by the
number of landmark measurements. Indeed, the dispersion actually fell down to 2.2
m (3-RMS) at the end of a so-called visual phase, before fewer if any mapped land-
marks were left visible and a final inertial drift started to increase the navigation error.
The most important result is that the Lion EKF estimation architecture is capable to
reach pinpoint landing accuracy whatever the terrain structure.

From these ideal results, Chapter 4 now tackles the issue of processing actual
images to recognize mapped landmarks in them and intends to keep the same level of
performance. It details the design of several new absolute geometric image matching
methods and compares their performances with image processing in the loop.
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Figure 3.4 – Attitude estimation error during 100 Monte Carlo runs over the point-based
terrain with 100-m elevation range. The red dotted line shows the 3 s bounds propaged by the
EKF for the run which had the largest final standard deviation.
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Figure 3.5 – Velocity estimation error during 100 Monte Carlo runs over the point-based
terrain with 100-m elevation range. The red dotted line shows the 3 s bounds propaged by the
EKF for the run which had the largest final standard deviation.
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Figure 3.6 – Position estimation error during 100 Monte Carlo runs over the point-based
terrain with 100-m elevation range. The red dotted line shows the 3 s bounds propaged by the
EKF for the run which had the largest final standard deviation.
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Visual landmark recognition aims at matching surface features imaged by a descent
camera with a map stored in the computer memory on board the spacecraft. In

Lion, no assumption about the topography of the terrain shall be made in this recog-
nition step either so that the 2D/3D absolute pairings between the image and the
physical world can be used to update the filter independently of the terrain relief.
Absolute visual navigation should also be performant at low altitude to delay the
blindness phenomenon and the associated inertial error drift noticed in Chapter 3

and imposed by the limited resolution of the orbital images. After reviewing the
state of the art in Section 2.1, we narrowed down our focus on matching methods
using geometric descriptors to identify generic landmarks. These approaches are very
promising indeed in terms of simplicity, cost efficiency, and enhanced illumination
robustness.

Section 4.1 describes the software simulator using computer-generated lunar im-
ages which was designed to assess the performance of the whole navigation system
with image processing in the loop. Two geometric matching methods using standard
Harris feature points as landmarks are then described and evaluated in Section 4.2.
By using a landmark reprojection step aided by the navigation filter, they manage
to avoid the planar rectification often met in literature and the associated flat-world
assumption. Though, both these methods suffer from a low landmark repeatability
problem highlighted in the analysis of performance. We thus evaluate in Section 4.3
the benefit of using a scale-invariant extractor instead of the classical Harris operator
in terms of repeatability rate. More remarkably we also show that the scale of a land-
mark can be used as an additional descriptor to match it with the map, in similar way
to the radius for craters. Based on these results, Section 4.4 designs a new geometric
landmark matching method based on scale-invariant Harris-Laplace orbital image
landmarks. The navigation filter is efficiently used to predict the image region and
scale in which to search for each landmark, followed by a selection process to identify
the non-ambiguous ones suitable for matching.

4.1 Image-based software simulation environment

Realistic descent and orbital lunar images have been rendered using the PANGU plan-
etary scene generator described in Subsection 2.3.1. The DEMs made with the altime-
try data collected by the NASA Lunar Reconnaissance Orbiter (LRO) spacecraft which
has been orbiting the Moon since 2009 were used as a DEM base in PANGU (Smith
et al., 2010). Their horizontal resolution was scaled down to avoid seeing the DEM
artefacts and the elevation range was scaled up to obtain two height variation cases
of 100 m and 500 m so as to perform a preliminary robustness test to 3D terrain to-
pography. These DEM bases were augmented with higher-resolution artificial DEMs
through a system of layers to keep the images realistic when approaching the surface.
On each additional layer, new craters are scattered using lunar distribution models.
An image extracted from the generated descent sequence is shown in Figure 4.1. It
covers a field of view of 70 degrees with 1024⇥ 1024-pixels on an 8-bit sensor. Each
image pixel is disrupted with a zero-mean Gaussian noise of 1 intensity level. These
parameters match those of planetary landing cameras discussed in Subsection B.2.3.
The simulated orbital images were taken from a 50-km altitude with 5064⇥ 5064 sen-
sor behind a lens providing a 2.85-degree field of view to simulate the Narrow Angle
Camera (NAC) on-board LRO which images all areas at polar latitudes. The same
DEM used for image generation is used for map-building, with a resolution of 1 m,
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and there is no misalignment error between the orbital image and the DEM yet at this
stage for preliminary testing. The elevation of the Sun above the horizon at the tar-
geted landing site was 15 degrees, and a 20-deg azimuth difference was implemented
between the orbital and descent conditions as a preliminary test to illumination ro-
bustness.

Figure 4.1 – Descent image generated with PANGU

An 80-second lunar landing approach trajectory starting at 2 km of altitude and
based on the Apollo guidance scheme was implemented, like in Section 3.3. Likewise
too, inertial data were simulated by software through an IMU model calibrated to
match the aerospace-class performances discussed in Subsection B.2.1. The acquisition
rates are 1 Hz for the camera and 100 Hz for the IMU.

4.2 Landmark recognition using image reprojection

In this section we propose two robust image-to-map matching algorithms based on
a common core architecture for generic landmarks using geometric descriptors and
making no assumption about the topography of the terrain. Both methods employ
Harris corner features to process both the descent and the orbital images. Unlike
craters, these corners are generic enough to be detected on any planetary terrain with
textures. Furthermore, they have already shown robust performance for a wide spread
of computer vision problems (Szeliski, 2011).

4.2.1 Offline map

Both algorithms make use of a map stored in the on-board memory and which con-
sists in the 3D lunar coordinates

n

pg
glj

o

j2[[1;N]]
in {g} of the N Harris landmarks ex-
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tracted in the orbital image. Knowing the position and attitude of the satellite which
took the images in {g} as well, along with the calibration matrix of its camera, one
can determine the 3D rays going from the optical center of the camera to each land-
mark (Hartley and Zisserman, 2003). The intersections of these rays with the DEM
mesh is recovered through 2D interpolation. The overall map-building process is il-
lustrated in Figure 4.2. The map is thus simply a N ⇥ 3 matrix which contains only
the 3D coordinates of each landmark.

Figure 4.2 – Map generation process. The 3D landmark coordinates are recovered by trac-
ing the rays back-projected from the Harris features extracted in the orbital image, and then
interpolating them with the DEM.

4.2.2 Online image processing

The online part of each algorithm goes in four steps:

1. Online extraction of Harris corners,

2. Projection of the 3D map points onto the focal plane predicted by the filter,

3. Putative matching process,

4. Robust matching based on the RAndom Sample Consensus algorithm
(RANSAC).

There are actually two steps of matching, 3 and 4. Step 4 is called robust because a
RANSAC scheme is implemented and aims at detecting the false putative matches
of step 3, based on the calibrated camera model (Fischler and Bolles, 1981). Those
putative matches are first obtained by searching for similarities between two sets of
image features. The first set is obtained in step 1 through the extraction of Harris
corners in the actual descent image. The second set is an image prediction aided by
the filter through a reprojection of the map landmarks onto the focal plane of the
camera using the a priori pose estimate in the EKF. The difference between the two
algorithms happens in step 3, where putative matches can be obtained either through
a projected shape context or a generalized Hough transform.

Compared to the homography-based rectification made in Pham et al. (2012) which
is based on a planar assumption, the landmark reprojection of step 2 uses the topog-
raphy description contained in the DEM of the terrain and thus brings the robustness
to 3D surfaces.
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3D model projection

Using the a priori camera pose estimate
⇣

q̂c
g, p̂g

gc

⌘

propagated with the inertial mea-
surements in the filter, and the known camera calibration model, the 3D map land-
marks

n

pg
glj

o

stored in memory can be projected onto the expected focal plane of the
image to get a prediction of the online image feature point locations

�

ẑj
 

. Along with
the Harris features {zk} extracted in the actual descent image, this eventually leads
to two sets of image features, one measurement and one prediction, which shall be
matched. The complexity of the matching can be imagined from Figure 4.3, which yet
shows the two sets in the ideal case of a null estimation error. Some points are not
repeated, i.e. they were detected in the orbital image but not in the descent image.
Oppositely, some other are false alarms which appear in the descent image where
nothing was detected in the orbital data. Even for the landmarks which seem success-
fully repeated, the measured and predicted locations appear slightly different due to
image extraction noise. This low repeatability issue is the most significant difference
compared to the ideal point-based simulation of Section 3.3 the algorithms have to
adapt to.

Figure 4.3 – Harris image features extracted online and predicted by the filter. The descent
feature measurements are the green dots and the reprojected filter predictions are the yellow
circles.

Putative matching with projected shape context

Out of all the possible match combinations between the image features and the map,
the putative matching process aims at identifying the most promising ones. Following
the Shape Context (SC) description for object recognition introduced by Belongie et al.
(2000) and first applied to planetary landing by Pham et al. (2009), we characterize
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each feature point by the geometric distribution of its neighbours in terms of distance
and polar angle, as shown in Figure 4.4. The number of neighbours in each quadrant
is counted within a region comprised between a minimum radius br and maximum
radius pr, and stored into an histogram.

Figure 4.4 – Shape context signature (Pham et al., 2009)

Signatures of the descent features are compared one to one with that of the re-
projected feature predictions within an image uncertainty area derived from the state
covariance in the filter. The minimized criterion for comparison is the c2 distance. All
pairs of features between the descent and predicted set for which the c2 distance is
below a certain threshold are considered as putative matches.

Putative matching with generalized Hough transform

As an alternative to SC, we can approximate the image error between the descent
features and their predictions by a single global translation within the image plane.
This is not rigorously true because of perspective distortion effects in the image but
should the translation be searched within quantized grid with a quantization step
large enough, a voting accumulation effect will happen to highlight the correct trans-
lation. This approach is known as Generalized Hough Transform (GHT) in the object
recognition field (Eric and Grimson, 1991) and makes the basis of operational real-time
infrared missile guidance systems (Duclos et al., 2009).

The matching process is designed as follows:

1. Each possible match between a measured descent feature and a predicted one
defines a possible 2D translation;

2. Accumulate all translations:

• for which the norm is below a certain threshold r derived from the camera
pose covariance,

• after quantization with a step length s derived from the expected perspec-
tive distortion effects;

3. Select the peak of the accumulator: it yields the estimated discrete translation;

4. Shift the landmark predictions according to the estimated translation and match
them with the closest descent point.
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Figure 4.5 – GHT accumulation grid in both the correct and ambiguous cases. Ambiguity
happenss when very close to the ground and not enough map landmark information is available
to create the accumulation effect.

5. Accept the match if the distance to this closest point is not above a threshold.

The quantized grid in which translation votes are accumulated can lead to two
cases shown in Figure 4.5: a correct or an ambiguous accumulation. The ambiguous
case happens when the camera is so close to the ground that not enough orbital
landmark information is available in the field of view to create the accumulation effect,
or when the parameters r and s are badly chosen.

RANSAC-based robust matching

Fischler and Bolles (1981) introduced the RANSAC algorithm which aims at fitting a
model to experimental data and providing the associated set of inliers and outliers to
this model. It is now a proven technique in real-time visual odometry for terrestrial
robotics. In our case, the model used in RANSAC is the full 3⇥ 4 camera projection
matrix (Hartley and Zisserman, 2003), and the experimental data taken as inputs are
the potential 2D/3D putative matches. The calibrated camera projection matrix can be
computed in a closed form from a minimal set of 3 matches as shown in Fischler and
Bolles (Fischler and Bolles, 1981) too. Three correspondences actually bring multiple
solutions, but we select that for which camera position is the closest to the a priori
position estimate in the filter. The aim of this final step is to get the set of matches
which correspond to camera projection matrix with the highest number of inliers, and
exclude the outliers from the filter update. Let us emphasize that with the tight visual-
inertial integration scheme described in Chapter 3, Lion does not use the estimate of
the state which is computed within RANSAC but only the associated set of inliers for
the EKF update.

The RANSAC-based implementation in Lion operates as follows from a set S of N
2D/3D putative matches.

1. A set s of 3 matches is randomly selected from S.

2. If there is any degenerated configuration, for instance if the three points are
aligned (Hartley and Zisserman, 2003), in the 2D points of s, then do step 1

again.

3. Compute the possible camera projection matrices associated to s.



4.2. Landmark recognition using image reprojection 53

4. Select the matrix for which the position is closest to the filter estimate. One
additional benefit of filtering is to help choosing among the multiple analytical
camera solutions.

5. Determine the inliers for the projection matrix selected in step 4. Namely, inliers
among putative matches are those for which the 3D landmark image reprojection
is within a certain image distance threshold of the associated descent feature.
The image threshold is selected as 3 sim, where sim is the standard deviation of
image noise.

6. If the number of inliers is greater than the previous reference, then store the
associated inlier vector as the new reference.

7. Back to step 1 until the maximum set of iteration is reached.

The maximum number of iterations in step 7 is determined adaptively to ensure
with a probability p = 0.99 that at least one of the set s is free from outliers (Hartley
and Zisserman, 2003). Once the maximum number of iterations is reached, the last
inlier vector stored in step 6 is outputted as final matches to update the navigation
filter. It corresponds to the camera projection matrix having the largest number of
inliers.

4.2.3 Navigation performance

Putative matching method comparison

Both the SC and GHT methods introduced earlier to get putative matches between
the descent image features and the map were compared to select the most performant
one to work with the Lion EKF scheme described in Chapter 3. Based on the software
simulation environment presented in Section 4.1, the on-board map was generated
from a mosaic of orbital images covering the 16⇥ 16 km2 area seen during the descent
trajectory. 4000 landmarks were extracted in the whole orbital mosaic, and 4000 others
in the orbital image covering the surroundings of the landing site which will be visible
during the last part of the trajectory. 250 features are extracted per descent image. The
parameters of the SC signature, shown in Figure 4.4, are a minimum radius br = 10
pixels, a maximum radius pr = 100 pixels, 10 rings and 20 wedges. For the GHT,
a circular grid of radius = 100 pixels and discretized in squares with a step length
s = 10 pixels was used.

Even though the performance of SC method appeared promising in the early
point-based simulation tests (Delaune et al., 2011), it turned up to be very complex
to tune its parameters to process successfully actual images. Such difficulty can only
be due to the low landmark repeatability issue which locally affects the SC signatures
of all landmarks within the radius pr from a false alarm or a non-repeated landmark.
Figure 4.6 actually compares the number of landmarks outputted by the RANSAC ro-
bust matching step for SC and GHT, with the best achievable tuning for SC. The GHT
method clearly achieves more matches than SC with 45 against 15 in average along the
descent. These matches are also more distributed across the image, which improves
the accuracy of the pose measurement process done in the filter. As a consequence, the
convergence of the filter was empirically noticed to be a lot more stable and fast with
the GHT rather than with SC. Thus, the GHT method is chosen for further statistical
performance evaluation in the following.
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Figure 4.6 – Putative matching method comparison. The GHT method achieves more matches
than SC with 45 against 15 in average.

GHT navigation performance

The results are obtained through a Monte Carlo performance analysis of the whole
navigation filter with GHT putative matching. 200 Monte Carlo runs were performed
first over the terrain with the 100-m relief variation. Like in Section 3.3, the initial
errors were sampled according to independent zero-mean Gaussian distribution on
each axis, with 3 s values equal to 1 degree in attitude, 10 m.s-1 in velocity, and 100 m
in position at the 2-km start altitude.

Figure 4.7, Figure 4.8, and Figure 4.9 show the Monte Carlo results for the esti-
mation error and the 3s bound from the filter over each axis respectively for attitude,
velocity and position of frame {b} tied to the vehicle with respect to the global frame
{g} tied to the planetary surface. Figure 4.10 shows the evolution of matched land-
marks with time.

Because of the limited resolution of orbital images, the visual measurement phase
ends at t = tV = 4040 s when not enough landmarks are visible to update the filter,
and the inertial drift begins until touchdown at t = tTD = 4065 s.

A run is said to be convergent when the navigation error for any state is within
the 3 s boundaries computed by the filter for this state. Convergence can be observed
on the figures for 93.5 % of the runs. The performance was found quite sensitive to
parameter choices for r and s. The overall statistics, including divergent runs, are given
in Table 4.1. Position dispersion at the end of the visual phase falls below 67 meters on
each axis and 89 m in total. The position error increases then until touchdown up to
156 m accuracy due to inertial drift. Like in Section 3.3, the mean errors are negligible.
These results are not compliant with the 100-m accuracy requirement for pinpoint
landing but they include the runs which diverge. That led to position errors of up to
400 m in one case, which alter the performance statistics strongly. Considering only
the 93.5 % of runs which did converge, the statistics tremendously improve as shown
in Table 4.2. Position errors falling below 8 meters on each axis at the end of the visual
phase, 10 m total, and below 22 meters at touchdown, 26 m total. That means that if
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Figure 4.7 – GHT attitude estimation error during 200 Monte Carlo runs in image-based
simulations. The red dotted line shows the 3 s bounds propaged by the EKF for the run which
had the largest final standard deviation.

Table 4.1 – Dispersion of the navigation error with GHT at the end of the visual phase (V) and
at touchdown (TD) for all runs on image-based simulations. The dispersion over each axis is
measured with the 3 s value for scalar components, where s is the standard deviation. The total
dispersion of the vector quantities is measured with the 3-RMS value.

Time tV tTD

dqb
g,x (roll, deg) 0.7 0.3

dqb
g,y (pitch, deg) 0.7 0.4

dqb
g,z (yaw, deg) 0.3 0.2

dqb
g (total, deg) 1.0 0.5

dvg
gb,x (downrange, m.s-1) 1.7 1.7

dvg
gb,y (crossrange, m.s-1) 0.7 0.9

dvg
gb,z (height, m.s-1) 1.3 1.1

dvg
gb (total, m.s-1) 2.2 2.2

dpg
gb,x (downrange, m) 66.3 120.5

dpg
gb,y (crossrange, m) 26.8 50.4

dpg
gb,z (height, m) 52.0 85.2

dpg
gb (total, m) 88.4 155.9
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Figure 4.8 – GHT velocity estimation error during 200 Monte Carlo runs in image-based
simulations. The red dotted line shows the 3 s bounds propaged by the EKF for the run which
had the largest final standard deviation.
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Figure 4.9 – GHT position estimation error during 200 Monte Carlo runs in image-based
simulations. The red dotted line shows the 3 s bounds propaged by the EKF for the run which
had the largest final standard deviation.
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Figure 4.10 – Evolution of the number of absolute measurements during 200 Monte Carlo runs
in image-based simulations. The red line shows the total number of landmarks in the field of
view.
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we manage to find the origin of the diverging runs and solve the related issue, the Lion
navigation system can provide very promising performances for pinpoint landing.

Table 4.2 – Dispersion of the navigation error with GHT at the end of the visual phase (V)
and at touchdown (TD) for converging runs only on image-based simulations. The dispersion
over each axis is measured with the 3 s value for scalar components, where s is the standard
deviation. The total dispersion of the vector quantities is measured with the 3-RMS value.

Time tV tTD

dqb
g,x (roll, deg) 0.6 0.3

dqb
g,y (pitch, deg) 0.6 0.3

dqb
g,z (yaw, deg) 0.3 0.2

dqb
g (total, deg) 0.9 0.5

dvg
gb,x (downrange, m.s-1) 0.4 0.7

dvg
gb,y (crossrange, m.s-1) 0.2 0.3

dvg
gb,z (height, m.s-1) 0.7 0.4

dvg
gb (total, m.s-1) 0.8 0.9

dpg
gb,x (downrange, m) 7.4 21.8

dpg
gb,y (crossrange, m) 4.5 7.0

dpg
gb,z (height, m) 4.6 10.8

dpg
gb (total, m) 9.8 25.3

Robustness to 3D topography

Lion was tested over rugged terrains with stronger 3D topographies using the DEM
with the 500-m terrain elevation amplitude by comparing the performance of the ver-
sion of Lion presented here versus an alternative version where a flat world hypothesis
was made like in Conte and Doherty (2009), Mourikis et al. (2009), and Pham et al.
(2012). In the flat-hypothesis version, the 3D map projection was not used but instead
a homography transformed the feature points extracted in the orbital image geome-
try onto the expected descent camera focal plane (Hartley and Zisserman, 2003). This
transformation assumes the observed scene is planar. Convergence only occured in
16.6 percents of a 700-run Monte Carlo analysis whereas Lion could still maintain a
79.3-percent convergence rate, thus showing a significantly increased robustness to 3D
terrains.

4.2.4 Discussion: the repeatability issue

As highlighted in Figure 4.3, both methods presented in this section have to face one
major issue which is that the feature points extracted in the descent image are not nec-
essarily also detected, or repeated, in the orbital image. There are some non-detections,
but also some false alarms with descent points which had not been detected in the
orbital image. The fact that geometric descriptors are relying on no other description
than the spatial distribution of landmarks makes the accuracy and the reliability of the
extraction step crucial in matching, and the repeatability issue affects them strongly.
The problem appears even under similar illumination conditions and can only be due
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to differences between the images in distance to the ground, viewpoint, sensor res-
olution or noise. In image-based software simulation, these differences led SC to fail
to give enough correct matches even only for the filter to converge. GHT does a lot
better because it is a voting process and it is designed to cope with lower feature point
repeatability rate. In the 200-run Monte Carlo simulation, 93.5 % of the runs are con-
verging and have a landing accuracy compatible with pinpoint landing. Nevertheless,
6.5 % of the GHT runs are still diverging, even after the outlier removal step. Para-
doxically, the same voting process which is the greatest strength of the GHT method
in low repeatability environments can also turn out to be its main weakness with re-
spect to diverging runs. Indeed when an incorrect global image translation is voted
for, not only one landmark measurement is wrong but all of them are. That causes the
estimation error leaps visible in Figure 4.9 and leading to divergence.

Our educated guess to make this convergence rate 100 % was to improve the
repeatability rate of landmarks by testing different extraction methods than the simple
Harris operator. Structured features like craters are interesting because they are not
only characterized by their terrain location but also by other geometric parameters like
their radiuses for instance. This provides additional information to detect and match
them. But craters are ruled out here as they cannot be reliably detected anywhere,
even on the Moon. We nevertheless investigated if no useful additional information,
equivalent to crater radius, could also be found for generic feature points like Harris
or SIFT. A deeper look at their extraction process highlights a fundamental extraction
parameter which appears relevant for landmark matching purposes: the image scale.

4.3 Repeatability improvement through landmark scale man-
agement

The image scale of an object in the observed scene can be defined as its apparent size
in pixels. For a given object size, it is determined by the distance between the camera
and the object, the focal length of the lens, and the sensor resolution. Scale may thus
be predicted from camera calibration and the estimation of the pose parameters done
by the filter. Figure 4.11 shows a typical scaling issue with a crater being imaged by
the same camera but at two different altitudes. It illustrates the fact that from an image
point of view, a change in scale is equivalent to a change in pixel resolution. The same
crater has a scale of 70 pixels in the higher image shot at 260 km of altitude, compared
to 350 pixels at 50 km. The level of detail which can be perceived is totally different
from one image to the other. The small-scale structures appearing in the 50-km image
on the right cannot be seen any more in the higher image. This phenomenon may
cause repeatability issues similar to those face by the GHT method in Section 4.2 if it
is not properly handled by the image processing navigation software. During a lunar
landing, the descent camera images the terrain at altitudes ranging from 100 km down
to a few meters. This section investigates how to properly process image scale in order
to improve the landmark repeatability all along the trajectory.

4.3.1 Scale-space model

Figure 4.11 illustrates the fact that changing the image resolution is equivalent to
smoothing it. A smoothing can be modeled by a convolution operation ⇤ of the refer-
ence image array I with a Gaussian kernel G as shown in Equation (4.1). Lindeberg
formalized the set of images L obtained by smoothing I under the notion of scale-
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Figure 4.11 – Scale change illustration: the same crater is imaged by the same camera at 260
km of altitude (left), or 50 km (right).

space (Lindeberg, 1994).

L(x, y, s) = G(x, y, s) ⇤ I(x, y) (4.1)

x and y are the 2D image coordinates. The Gaussian kernel can be written

G(x, y, s) =
e� 1

2 (x2+y2)/s2

2ps2 . (4.2)

The new image scale s is defined as the standard deviation of the Gaussian function.

4.3.2 Scale-invariant extractor selection

Scale-invariant feature detectors select not only a location but also a characteristic scale
for each image feature. By browsing the scale space for a pair of images of the same
scene, they aim at matching common features between them, even if their apparent
sizes in pixels are significantly different.

Lowe uses a Difference-of-Gaussian (DoG) detector to select SIFT features (Lowe,
2004). The DoG operator basically computes the difference between two smoothed
images at nearby scales separated by a multiplicative constant k:

D(x, y, s) = (G(x, y, ks)�G(x, y, s)) ⇤ I(x, y) . (4.3)

SIFT features are the local extrema of the D function within its 3-dimensional defini-
tion domain.

Mikolajczyk and Schmid (2004) proposed the Harris-Laplace detector, inspired
from the classical Harris detector, to detect image corners at different scales. It is based
on the scale-adapted second moment matrix µ. If Li(x, y, sD) is the image derivative
in direction i after a Gaussian filtering at scale sD, then this matrix has the form
shown on Equation (4.4). It represents the local gradient distribution after averaging
the derivatives through another Gaussian kernel at scale1 sI .

µ(x, y, sI , sD) = sD
2 G(x, y, sI) ⇤

"

Lx(x, y, sD)2 Lx(x, y, sD)Ly(x, y, sD)

Lx(x, y, sD)Ly(x, y, sD) Ly(x, y, sD)2

#

(4.4)
A corner is defined as a strong intensity change in all spatial image directions. From
Equation (4.4), the image point of coordinates (x, y) is thus said to be a corner at scale

1sD = 0.7 sI gives good results.
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sI if µ has two large eigenvalues of the same order of magnitude. To avoid eigenvalue
computation, the Harris detector actually selects the local maxima of the cornerness
measure of Equation (4.5) in an image neighborhood sized according to scale.

C(x, y, sI , sD) = det(µ(x, y, sI , sD))� a tr(µ(x, y, sI , sD))
2 (4.5)

a is usually experimentally set in the interval [0.04; 0.15]. Note that in the original Har-
ris extractor, sI is simply chosen so as to smooth image noise (Harris and Stephens,
1988). The Harris-Laplace extractor computes Harris corners over a chosen range
of scales but subsequently keeps only those corresponding to an extremum of the
Laplacian-of-Gaussian (LoG) operator shown in Equation (4.6) over scale space. The
identified maximum sets the characteristic image scale of the feature when several
Harris corners are identified within the same image neighborhood at different scales.

| LoG(x, y, sI) |= sI
2 | Lxx(x, y, sI) + Lyy(x, y, sI) | (4.6)

Mikolajczyk and Schmid (2004) tested the repeatability rates of both DoG and
Harris-Laplace extractors under scale change. The Harris-Laplace operator was shown
to have better performance with a computation time of the same order of magnitude.
Based on this result, we chose it as the baseline scale-invariant extractor for this thesis.

4.3.3 Scale reprojection formula

Image features can be associated to actual terrain features in the scene that the camera
is observing. In the case of planetary landing, the scene features are called landmarks
and they are selected from the orbital image. With scale-invariant extractors, a charac-
teristic terrain scale s can thus be defined for any landmark based on its characteristic
scale on the orbital image sorb. This orbital scale can reprojected onto the image plane
of the descent camera to predict the scale of the landmark in the descent image sreproj,
for instance using a priori pose estimates.

The geometry of this reprojection is illustrated in Figure 4.12. For camera i, di is
the physical distance between the optical center Ci and the landmark, bi is the field of
view, si is the sensor resolution in pixel, ai is the offset angle between the landmark
direction and the optical axis.

By applying Thales’ theorem for each camera within the plane containing the land-
mark and the optical axis, one can write

sorb
s

=
forb/cos(aorb)

dorb
(4.7)

sreproj

s
=

fdsc/cos(adsc)

ddsc
(4.8)

where

forb =
sorb

2 tan (borb/2)
(4.9)

fdsc =
sdsc

2 tan (bdsc/2)
(4.10)

are the focal lengths, each equal to the distance from the optical center to the image
plane. From this, one gets

sreproj = sorb
dorb fdsc cos (aorb)
ddsc forb cos (adsc)

(4.11)
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Figure 4.12 – Scale reprojection geometry

and eventually

sreproj = sorb
dorb tan (borb/2) sdsc cos (aorb)
ddsc tan (bdsc/2) sorb cos (adsc)

. (4.12)

This reprojection model is based on a few assumptions which are discussed below.
None of them is mandatory to derive a scale reprojection formula, they just make the
formula simpler.

Isotropic orbital feature gradient

A corner is defined as locally strong intensity changes in all spatial image directions.
We assume the intensity gradient is the same in every direction so that it can be simply
modeled by a circle of radius sorb in the orbital image.

Flat level world at feature scale

The terrain is assumed to be flat and level within the back-projected landmark scale
footprint. This flatness assumption is only local around the landmark and did not
happen to be a problem during our tests over terrains with strong 3D topography.
Should it become one in other tests, knowledge of the DEM could still be used to get
rid of this assumption, but at the cost of extra complexity.

Orbital camera orientation

The orbital camera is assumed to be pointing nadir since most orbital images are taken
this way. The landmark scale circle on the orbital image can then be projected onto a
characteristic terrain circle of radius s.
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No affine distortion on descent camera at feature scale

Affine distortion is a simpler model of image perspective distortion often valid at fea-
ture level in computer vision. An affine transform turns the characteristic landmark
terrain circle into an ellipse in the descent image. Equation (4.12) actually gives the
semi-major axis length sreproj of this ellipse, which defines the reprojected descent
scale of the landmark. The affine transform may alter the intensity gradient distri-
bution around the landmark in such a way that a corner in the orbital image is not
necessarily one in the descent image, even with scale correction. That is actually an-
other source of repeatability issues. Affine-invariant extractors do exist but usually
have worse robustness to scale-only change, which is our main concern here (Miko-
lajczyk and Schmid, 2004). Since a significant part of the descent image is seen with
a low incidence angle within the large field of view employed for descent cameras,
affine distortion is neglected and we assume a corner in the orbital image corresponds
to one in the descent image. This is equivalent to assuming the characteristic landmark
terrain circle is projected not into an ellipse but into a characteristic circle of radius
sreproj in the descent image.

4.3.4 Comparison of repeatability rates

The repeatability rates between the descent and the orbital images are compared with
and without using a scale-invariant technique for image feature extraction.

Test setup

Within the image-based software simulation environment of Section 4.1, two naviga-
tion maps were created. The first one was made by extracting regular Harris corners
in the orbital image, and interpolating the back-projected rays with the DEM to get
the 3D landmark coordinates. This is the same map as that used for the methods de-
scribed in Section 4.2. The second map is made the same way but with Harris-Laplace
features instead, and it includes their characteristic scales too. With the Harris map,
descent images are processed with the same Harris extractor as for the orbital im-
age. With the Harris-Laplace map, each descent image is processed with a multi-scale
Harris extractor. It extracts Harris features over the whole reprojected scale range of
landmarks computed from the scale reprojection formula of Equation (4.12). The scale
range is discretized by a multiplicative constant sstep = 1.4, such that sn = s0 sstep

n.

Definitions

In each simulated descent image sequence, since the true camera trajectory is known,
the exact image positions of mapped landmarks are computed to assess the repeata-
bility of the descent image feature extractor. One landmark, be it Harris or Harris-
Laplace, is said to be repeated if a descent image feature is found within 10 pixels. This
10-pixel value was empirically set for 1024⇥ 1024-pixel descent images. One Harris-
Laplace landmark is said to be repeated with scale if a descent image feature is found
within 10 pixels and at a similar scale. A reprojected landmark scale sreproj is said to be
similar to a descent feature scale sdsc if it satisfies Inequation (4.13) which characterizes
the discretization domains in scale space.

Similarity,
max(sreproj, sdsc)

min(sreproj, sdsc)
 psstep (4.13)
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Lastly, the orbital repeatability rate is defined as the ratio of the number of repeated
landmarks over the total number of landmarks within the field of view.

Results

0200400600800100012001400160018002000
10

20

30

40

50

60

70

80

90

100

Altitude (m)

R
ep

ea
ta

bi
lit

y 
ra

te
 (%

)

 

 
Harris
Harris−Laplace
Harris−Laplace & scale

Figure 4.13 – Repeatability rate comparison between the single-scale feature extractor Harris
and the multi-scale Harris-Laplace.

Figure 4.13 compares the orbital repeatability rates between the standard Harris
and the Harris-Laplace approaches at various altitudes during the visual measure-
ment phase, namely at altitudes where absolute image measurements were available
in Subsection 4.2.3. The Harris-Laplace operator achieves a repeatability rate signif-
icantly better than Harris all along the descent. At 685 m of altitude for instance,
repeatability is 95.8 % with Harris-Laplace, while it is only 13.5 % with Harris. Yet,
the most interesting result in this test is that more than half of the repeated land-
marks are so at the scale computed by reprojecting that from the orbital image with
Equation (4.12), and always at a better rate than regular Harris. We will now try to
integrate these enhanced repeatability performances in Lion by using the a priori state
estimate from the filter to predict the descent image scales of landmarks and use them
as an additional description for matching. The next section introduces a new landmark
matching method which was designed to take this scale information into account.

4.4 Landmark recognition using scale-augmented image repro-
jection

The new matching algorithm uses the a priori EKF state and covariance estimates to
predict the scale and the research area for each landmark in the descent image. It
then runs a selection process to retains only landmarks which are considered non-
ambiguous for matching.
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4.4.1 Offline map

The map building process is identical to that described in Subsection 4.2.1 except
landmarks are extracted using the Harris-Laplace method in the orbital image instead
of the standard Harris operator. The map is eventually a N⇥ 5 matrix which contains
for each landmark its 3D position in {g}, its characteristic scale sorb in the orbital
image, and its Harris cornerness score at that scale defined in Equation (4.5).

4.4.2 Online image processing

The online part of the algorithm is divided in four main steps which are detailed in
the following:

1. Landmark prediction,

2. Landmark selection,

3. Descent image measurement,

4. RANSAC-based outlier removal.

Landmark prediction

The position of a landmark in the descent image, its image scale, and search area, are
computed from the EKF estimates of the state of the lander.

The image position zj of landmark j is predicted using the associated projection
function hj, an a priori estimate of the state x̂, and its global coordinates pg

glj
like in

Equation (3.17).
The predicted descent scale sreproj is computed from Equation (4.12) using the

known orbital image parameters and the descent state predictions propagated by the
navigation filter.

Finally at first order, the descent image position covariance matrix PI
j of the land-

mark is derived from the state covariance matrix P propagated in the filter by

PI
j = H jPH j

T + R , (4.14)

where H j is the Jacobian matrix of the landmark projection function from Equa-
tion (3.21) and R is the covariance of the image extraction noise. Equation (4.14) allows
to compute a 3 s elliptical area in the image within which the landmark is located with
a Gaussian probability of more than 97 % (Gura and Gersten, 1970). Equation (4.14)
and the resulting Gaussian distribution of the image position of the landmark are
based on a linearization of the projection function.

Landmark selection

Not all the landmarks visible in the descent image are considered suitable for match-
ing. If the elliptical research area of a landmark is not overlapped by another, then it
is directly selected for matching. However when several ellipses cross each other, only
that corresponding to the landmark with the higher Harris characteristic score is se-
lected. The characteristic score of a Harris-Laplace feature is defined as the cornerness
score at its characteristic scale. This selection process is illustrated in Figure 4.14.
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C

A

B

D

Figure 4.14 – Landmark selection process. Research ellipses of landmarks A and B are not
overlapped, they are both selected. Landmark C and D overlap each other, only C is selected
since it has the highest Harris characteristic score.

Descent image measurement

For each landmark selected, the Harris cornerness criterion of Equation (4.5) is calcu-
lated within the research ellipse with sI = sreproj the predicted reprojection scale. The
position of the pixel with the maximum value is chosen as the 2D image match for
that landmark.

Outlier removal

The set of image-to-map landmark matches is verified to eliminate outliers, i.e. mis-
matches, using the same RANSAC implementation as that described in Subsec-
tion 4.2.2. The associated inliers form the final set of matches which is fed directly
as a measurement to the tight Lion navigation filter of Chapter 3.

4.4.3 Navigation performance

A Monte Carlo analysis over 100 runs has been performed to evaluate the perfor-
mance of the whole navigation system using the absolute landmark matching method
presented in this section. We tested the most challenging DEM with the terrain re-
lief variation of 500 m. Like previous simulations, the initial navigation errors were
according to independent zero-mean Gaussian distribution on each axis, with 3 s val-
ues equal to 1 degree in attitude, 10 m.s-1 in velocity and 100 m in position at the 2-km
start altitude. The Harris-Laplace extraction in the orbital images browsed through 25

different scales between 1 and 80 pixels with a multiplicative factor of 1.2 between
each. Only Harris corners with scores above 0.2 times that of the image maximum
were selected at each scale.

Figure 4.15, Figure 4.16, Figure 4.17 show the results of the estimation error and
the largest 3 s bound from the filter over each axis respectively for attitude, velocity
and position. The most significant result is that all the runs are now converging and
the 7 % divergent cases previously found with the GHT method are now eliminated.

Figure 4.18 shows the evolution of the number of matches fed to the filter with
respect to time. The switch between the visual measurement phase and the inertial
drift occurs at t = tV = 4040 s with the current map extraction density settings, which
corresponds to an altitude of 80 m. The statistics of all the Monte Carlo runs are
provided in Table 4.3.

The 3-RMS dispersion of the position error at touchdown is 53.8 m which largely
meets the 100-m accuracy requirement for pinpoint landing. This value is even smaller
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Figure 4.15 – Lion attitude estimation error during 100 Monte Carlo runs in image-based
simulations. The red dotted line shows the 3 s bounds propaged by the EKF for the run which
had the largest final standard deviation.

Table 4.3 – Dispersion of Lion navigation error at the end of the visual phase (V) and at
touchdown (TD) for all runs on image-based simulations. The dispersion over each axis is
measured with the 3 s value for scalar components, where s is the standard deviation. The total
dispersion of the vector quantities is measured with the 3-RMS value.

Time tV tTD

dqb
g,x (roll, deg) 0.9 0.9

dqb
g,y (pitch, deg) 0.7 0.4

dqb
g,z (yaw, deg) 0.5 0.5

dqb
g (total, deg) 1.2 1.1

dvg
gb,x (downrange, m.s-1) 0.7 1.2

dvg
gb,y (crossrange, m.s-1) 0.8 1.2

dvg
gb,z (height, m.s-1) 0.9 0.9

dvg
gb (total, m.s-1) 1.4 1.9

dpg
gb,x (downrange, m) 12.9 35.3

dpg
gb,y (crossrange, m) 11.8 32.9

dpg
gb,z (height, m) 10.1 23.9

dpg
gb (total, m) 20.2 53.8
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Figure 4.16 – Lion velocity estimation error during 100 Monte Carlo runs in image-based
simulations. The red dotted line shows the 3 s bounds propaged by the EKF for the run which
had the largest final standard deviation.

at the moment of the last landmark matching since it falls down to 20.2 m before
inertial drift, more than four times more accurate than GHT in Table 4.1. Here again,
the mean errors are negligible. Based on these promising results, we can proceed to
further testing of Lion for pinpoint landing.
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Figure 4.17 – Lion position estimation error during 100 Monte Carlo runs in image-based
simulations. The red dotted line shows the 3 s bounds propaged by the EKF for the run which
had the largest final standard deviation.

3980 3990 4000 4010 4020 4030 4040 4050 4060 4070
0

5

10

15

20

25

Landmark matches

Time (s)

N
u
m

b
e
r 

o
f 
m

a
tc

h
e
d
 l
a
n
d
m

a
rk

s

 

 

Matched Landmarks

Figure 4.18 – Evolution of the number of absolute measurements during 100 Monte Carlo runs
in image-based simulations.
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Chapter conclusion

In this chapter, three geometric image-to-map matching techniques for generic land-
marks have been proposed, implemented along with the tight navigation filter, and
evaluated in image-based software simulations representative of the approach phase
of a lunar landing. All of them are compatible with any terrain topography, whether
it is flat or not, through an efficient use of the camera projection function and a priori
information available from a Bayesian filter instead of a planar rectification. Landmark
repeatability issues met by most geometric methods, and troublesome on landing tra-
jectories due to significant altitude change, led to completely rethink the way image
scale is used in the algorithm. While other algorithms in the literature only proceed
to global image scale corrections if ever, we show scale can be efficiently used as an
individual descriptor for each landmark in a new method which was selected as the
baseline for Lion. Based on Harris-Laplace orbital landmarks, it raises the repeatability
rates significantly and improves the accuracy down to 20.2 m at the end of the visual
phase and 53.8 m at touchdown (3 RMS), with a 20-deg illumination change. These
performances are largely below the 100-m accuracy requirement for pinpoint landing
and were obtained with significant 3D terrain relief, namely surface heigh variations
of 500 m on a lunar landing approach phase trajectory starting at 2 km.

The next chapter will focus on the design of a lunar-analogue indoor optical test
bench, in order to prove that Lion can estimate the pose of real camera in a physical
environment representative of the Moon.
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Visilab is a hardware test bench for vision-based navigation algorithms in condi-
tions representative of lunar descent and landing. It has been designed, built,

and integrated indoor in a lab at ESA-ESTEC. After software simulation in Chapter 4,
hardware experimentation aims at demonstrating the performance of Lion on real im-
ages of a physical environment. Visilab includes a lunar-analogue planetary mock-up,
a camera mounted on a robotic arm, a sun-representative illumination system, and a
set of methods to determine the ground truth pose of the camera with respect to the
reference mock-up frame.

Section 5.1 derives the list of hardware requirements which was used to ensure
Visilab is mission-representative. Based on these requirements, Section 5.2 presents
the full design process of the lunar mock-up, its support platform in the lab, the cam-
era support platform, and the selection of the camera and illumination hardware. The
operations of Visilab are described in Section 5.3, in terms of how to acquire images at
a position and orientation specified by their coordinates with respect to the reference
mock-up frame. Section 5.4 computes the camera pose uncertainties, or ground truth
accuracy, in the operation of the bench and proposes a new model to evaluate the
observability of the absolute navigation error in Visilab. A visual refinement process
for ground truth is tested in Section 5.5 to improve the observability of the absolute
navigation error below the 100-m pinpoint landing requirement at scale.

5.1 Lunar-representative requirements analysis

Table 5.1 shows a list of preliminary hardware requirements which ensures that Visilab
provides mission-representative lunar flight images and inertial data to test Lion on.
Hardware aspects to be accounted for includes a camera, an IMU, a planetary surface
model, motion capability of the camera support, and an illumination system.

Table 5.1 – Visilab hardware requirements

Hardware Requirements

Camera 1024⇥ 1024-pixel sensor
70-deg field of view

IMU Software-simulated

Planetary surface model Lunar DEM from NASA LRO mission
Real data only

Motion capability 4 degrees of freedom: 3 translations, pitch rotation

Illumination White light
Parallel rays
Uniform flux

The 1024⇥ 1024 camera sensor resolution and the 70-degree Field of View (FoV)
were chosen since they are representative of current state of the art in European hard-
ware discussed in Subsection B.2.3.

No flight-representative inertial data can be obtained by fixing an IMU to the cam-
era support in Visilab because the signal-to-noise ratio cannot be scaled up correctly to
a lunar mission. Indeed, specific forces and angular rates sensed in the lab would be
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much smaller than in the actual flight while the noise and bias would be of the same
order of magnitude. Actually, noise and bias might even be larger than in a real space
flight because a much lower-class IMU would be used in the lab. The inertial data thus
had to be generated by software. Noise and bias representative of aerospace-class IMU
performances discussed in Subsection B.2.1 were added to the ground truth trajectory.

Planetary surface mock-ups can be manufactured from a DEM at input. A machine
mills the DEM profile line by line to get the final 3D terrain out of a block of reinforced
resin. In Visilab, the DEM was selected from the altimetry dataset of the NASA LRO
spacecraft. It was decided to only use DEMs with no or little need for post-processing
so as to obtain a terrain model as representative of the true Moon as possible.

The lunar descent trajectory shown in Section 1.3 is almost in a vertical plane with
respect to a surface reference frame. Two degrees of freedom in translation are thus
needed for the camera in Visilab to simulate lunar descent: altitude and downrange.
A third translation axis, equivalent to crossrange, is included in the requirement so
the camera can cover the whole plan parallel to the mock-up for the acquisition of
orbital images. Attitude mostly varies about the pitch axis during the descent so Visilab
requires only one degree of freedom in rotation. In total, the requirement thus asks
for 4 degrees of freedom: 3 translations, and 1 rotation about the pitch axis. A camera
platform had to be designed to provide this motion capability. This design could
rely on the initial equipment available in the lab and shown in Figure 5.1, namely a
motorized translation table with a 92-cm course. The translation table was designed
within ESA and can be controlled to a 0.1-mm position accuracy along the axis. It is
mounted on an optical table which is 2.5 m long and 1.2 m wide (Melles Griot, 2012).

Figure 5.1 – Initial equipment available in the lab

The illumination system for Visilab should be as representative of the Sun as possi-
ble. This converts into requirements for white light, parallel rays, and a uniform light
flux density over the mock-up surface.
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5.2 Test bench design

After analyzing the requirements, this section describes how Visilab was designed to
meet them. Except for the planetary model which was tailored to our request by the
German Aerospace Center (DLR), all the equipment is commercial off the shelf.

5.2.1 Camera and lens

The camera selected for Visilab has a 1280⇥ 1024 monochromatic CMOS sensor, which
is enough for the 1024⇥ 1024 image resolution requirement. It offers a global-shutter
mode, an 8-bit resolution depth and it works with standard C-mount lenses (Imaging
Development Systems, 2012).

The dimensions l ⇥ w of the sensor specified on the camera data sheet are l =
6.784 mm and w = 5.427 mm. The width, smaller, is the driving parameter to obtain
the FoV a = 70 deg required for Visilab images. Figure 5.2 shows the pinhole camera
model with the optical center C. The optical distortions are not considered since they
will be estimated during camera calibration and corrected by software. The principal
point P is the intersection of the camera optical axis Z with the sensor plane. With
short focal lengths used to obtain a large FoV, the lens is focused at infinity during the
experiment. Thus the focal plane of the lens will be located on the sensor plane, and
the distance f between C and P is the focal length. The choice of the focal length f of
the lens thus drives the field of view according to

f =
w/2

tan (a/2)
. (5.1)

To observe a field of view a � 70 deg, f then must be such that f  3.875 mm.

Sensor

α

w
C

f

ZP

Figure 5.2 – Optical lens sizing

A 3.5-mm lens by Goyo Optical Inc. (2011) was selected to offer a FoV ac = 75.6 deg
which is slightly above the 70-degree requirement for Visilab and thus considered
compliant. Table 5.2 sums up the main characteristics of the {camera+lens} set which
is shown in Figure 5.3.

An additional 4.5-mm lens by Goyo Optical Inc. (2013) was also used for data
acquisition on some tests. It only gives a FoV of 62.2 deg but this is tolerated as on
the other hand optical distortions are also visibly lower than on the 3.5-mm lens and
we were initially concerned this might be an issue for Lion. The camera and lenses
in Visilab have been preferred to other equivalent models meeting the requirements
since they were cheap and available for preliminary testing at ONERA.
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Table 5.2 – Main parameters of the camera mounted with the 3.5-mm C-mount lens. The
minimum distance of focus was measured manually.

Resolution 1280 x 1024

Image acquisition Global shutter
Resolution depth 8 bits
Sensor size 6.784 x 5.427 mm2

Field of view 78.4 x 75.6 deg2

Minimum distance of focus 6 cm

Figure 5.3 – Visilab camera and lens mounted on a tripod head
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5.2.2 Planetary surface model

Dimensions and milling resolution

Within the budget allowed for Visilab, several manufacturing options were available
for the mock-up and are shown in Table 5.3.

Table 5.3 – Mock-up manufacturing options

Option Size (m⇥m) Milling strip resolution (mm) Maximum depth (mm)

1 1⇥ 1 0.5 100
2 2⇥ 1 0.5 50
3 2⇥ 2 1 50

Option 1 offers the largest depth range of 100 mm. However, the lunar DEMs we
scaled down for the mock-up always led to height ranges below 5 cm at scale. Thus
the depth gain of option 1 was not necessary and it has been discarded right away.

As discussed in Section 1.3, the lunar landing trajectory is mostly planar. Thus the
longer the mock-up, the longer part of the trajectory can be simulated. Both options
2 and 3 offer a maximum length of 2 m, but option 2 has a finer horizontal milling
resolution and was eventually selected. Machining was achieved with a 6-mm milling
tool. The 2⇥ 1 m2 mock-up was manufactured as two independent tiles of 1 m2 each.

DEM selection

Source The NASA LRO mission and its laser altimeter LOLA have been providing
measurements which NASA used to create DEMs of the Moon with vertical accuracy
of about 1 m due to the combination of uncertainties in laser measurements and space-
craft navigation (Mazarico et al., 2011). All data could be downloaded from the LOLA
archive website http://imbrium.mit.edu/LOLA.html at the time of writing. We
focused on those DEMs centered on the lunar south pole. They come up as height ma-
trices using a polar-stereographic projection with horizontal resolution ranging from
5 to 400 meters per pixel (Smith et al., 2010).

Scaling issues Several approaches have been considered for scaling the DEM of the
mock-up in Visilab. First, terrain data were scaled by matching the minimum altitude
during the last part of the braking phase going from 14 km down to 2 km above the
surface with the minimum distance of focus of 6 cm in Visilab from Table 5.2. Unfor-
tunately at scale, the 0.5-mm mock-up horizontal milling strip resolution required to
use the 20-m resolution DEM provided by NASA and on which many artefacts are
visible. These artefacts are trenches, peaks and holes due to false measurements of
the laser altimeter and which are thus not representative of the true terrain. Image
processing techniques such as Gaussian, median and mean filtering were applied on
the DEM image to try and smooth out the artefacts. Unfortunately though, the level of
filtering required for the artefacts not to be visible any more also caused a huge loss
of real terrain details. To make sure the mock-up remained realistic, we thus decided
not to use any such post-processing filtering techniques but only raw NASA data. Not
seeing the artefacts thus became the sizing driver for the DEM resolution. The 400-m
DEM resolution is the one at which artefacts are least visible. It is shown in Figure 5.4
and was used as a basis for the final mock-up DEM to be prepared from.

http://imbrium.mit.edu/LOLA.html
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Figure 5.4 – NASA DEM of the lunar south pole selected as a basis to prepare the final mock-up
DEM in Visilab. The white rectangle show the area covers by Figure 5.5.
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Selection of the lunar area Candidate sites for the ESA lunar lander mission are all
in the vicinity of the south pole. They are shown in Figure 5.5, which covers the area
within the white rectangle at the center of Figure 5.4. It is interesting for Visilab to have
topography representative of planetary exploration targets by including these landing
sites in the mock-up DEM. As a consequence, a requirement is to pin the south pole
down in the middle of one of the two 1 m2 tiles forming the mock-up, 0.5 m away
from the closest edges. The problem was then to orient and scale the rectangle of the
mock-up DEM on the basis NASA DEM.

Figure 5.5 – Candidate landing sites near the lunar south pole for the ESA lunar lander
mission (Vanoutryve et al., 2010).

A lunar approach will most likely be made above the near-side of the Moon to
enjoy direct-to-Earth communication. Near-side corresponds to the longitude interval
[270 deg! 0 deg! 90 deg], i.e. the top half of Figure 5.4. Orientation was thus con-
strained to have the mock-up DEM rectangle within this part of the image. Eventually,
we decided to constrain the orientation of the main axis of the mock-up along the 0-
deg longitude, since it appears to have the highest crater density and the most various
craters in diameter. That could indeed be of interest if Visilab is to be used for crater
detection algorithms in the future.

With the orientation constrained and the position of the South Pole pinned down
on the mock-up, only the scaling problem remains. It should be clear that due to the
length of a complete lunar landing trajectory from the de-orbit burn to touchdown,
fitting it within the 2-m-long mock-up would result in an extremely low altitude at
scale and the limited 0.5-mm horizontal milling resolution would be apparent and the
images not realistic. Thus in Visilab, the images do not show exactly what a true lunar
lander camera would see but only something representative of it. Scaling was first
tackled by sizing the data so that the maximum elevation difference fits within the 5-
cm depth of the mock-up. This approach was called vertical sizing. Unfortunately here
again artefacts were visible. An example of artefacts rendered is shown in Figure 5.6,
they appear as trenches mainly at the bottom left. The image was rendered with the
PANGU planetary image generator.

Since the data artefacts appeared to threaten so much the realism of the mock-up,
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Figure 5.6 – DEM artefacts are visible at the bottom left with the vertical sizing approach

it was eventually decided it should have the largest possible terrain footprint on the
original NASA DEM so as to make those artefacts least visible. The final cropped
DEM selection goes from below the south pole to the top of the basis DEM in Fig-
ure 5.4. This sizing limits the artefact enhancement effect associated to the vertical
sizing approach where DEM data were being oversampled. However with this new
scaling, the maximum elevation difference of the mock-up was of only 1.5 cm. We
decided to distort the mock-up in vertical dimension to make it fit the 5-cm height
range. Although this makes the terrain different from the true Moon, it prevents the
detail smoothing effect that would happen if the height range was too small because
of the discrete altitude step of the milling tool. As shown in Figure 5.7, the terrain
keeps looking lunar-like with this distortion. This figure is rendered in PANGU only
using the input DEM for Visilab manufacturing and does not take into account milling
tool effects. It was used to verify that when putting the camera at a 6-cm height above
it, no major artefacts was observed. 6 cm is the minimum focus distance of the camera
mentioned in Table 5.2.

Mock-up summary

Table 5.4 recaps the characteristics of the Visilab mock-up and of its DEM. It also shows
the dimensions of the associated true terrain on the Moon.

Figure 5.8 shows the manufactured planetary mock-up in its container box when
it was delivered in ESA-ESTEC premises.

5.2.3 Mock-up platform

The most practical configuration to accommodate the planetary surface model in Visi-
lab was found to have it stand vertically with the camera mounted on a robotic arm
and looking at it horizontally from the side.
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(a) Tilted view of Visilab DEM (b) Nadir view of Visilab DEM

(c) Tilted view of the initial NASA DEM (d) Nadir view of the initial NASA DEM

Figure 5.7 – PANGU-rendered views of the Visilab DEM versus the initial DEM of the same
area in similar illumination conditions. Visilab DEM is enlarged about three times vertically to
make it fill the 5-cm elevation range available for manufacturing the mock-up.

Table 5.4 – Characteristics of Visilab mock-up and DEM

Exact mock-up dimensions 980⇥ 1960 mm2

Milling horizontal line step 0.5 mm
Height range 50 mm
DEM resolution 1960⇥ 3920
DEM resolution depth 16 bits
Lunar dimensions 960⇥ 1920 km2

Lunar DEM pixel footprint 490 m
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Figure 5.8 – Planetary surface mock-up being delivered in Visilab

A support platform thus had to be constructed to host the mock-up in the lab.
The final design of this platform, its configuration in the lab and how the mock-up
is assembled with it is shown in Figure 5.9. The support was built with a commer-
cial aluminum extrusion system (KANYA, 2012). There is a 25-cm long extension of
the platform on the left of the mock-up in order to accommodate an aluminum plate
where to pin a camera calibration pattern to compute the camera pose later. The sup-
port platform is integrated between two optical tables in Visilab. The whole working
area of the table in front of the vertical mock-up, i.e. 2.40⇥ 1.15 m2, will be used by
the robotic arm supporting the camera so it must be left free. Horizontal beams are
attached to the back panel of the mock-up to enforce the coplanarity constraint with
the back of the calibration pattern plate. Three slanted beams prevent the assembly
from falling forward or backward.

5.2.4 Camera platform

The motorized linear translation table initially present in Visilab and shown in Fig-
ure 5.1 was transformed into a simple robotic arm to support the camera. It was
built with the same aluminum extrusion system as the mock-up platform and it is
presented in Figure 5.10. This new camera robotic platform offers the 3 degrees of
freedom required in translation, along with full rotation about the pitch axis for the
camera thanks to the use of the tripod head of Figure 5.3 which is attached at the edge
of the arm. Only the downrange translation axis is motorized. The positions on the al-
titude and crossrange axes are set manually using a ruler taped directly along the axis.
The altitude axis is equipped with an endless screw. It can be upgraded by attaching
it to an extra stepper motor to get both the downrange and altitude axes automatized.
There is no direct reading for the pitch angle. It needs to be set approximately by hand
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(a) Support platform (b) Platform integrated on the optical tables

(c) Mock-up assembly (back view) (d) Mock-up assembly (front view)

Figure 5.9 – Support platform and mock-up assembly in Visilab
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first and then checked through optical pose estimation using the calibration pattern
at the left of the mock-up. Limited motion is possible about the roll and yaw axes for
the camera. Course ranges for this robotic platform are presented in Table 5.5.

Figure 5.10 – Camera robotic platform in front of the camera calibration pattern at the left of
the mock-up in Visilab

5.2.5 Illumination system

Strictly fulfilling the requirement calling for parallel rays of white light spread with a
uniform flux over the surface of the mock-up would require to have at least 1-m-wide
Fresnel lens in the lab along the shorter side of the mock-up to collimate a light beam
with the appropriate flux pattern coming from a white source. Such an option would
not fit in the lab though. In addition, it does not exist off-the-shelf from commercial
illumination providers so a complete optical system would have to be designed from
scratch which is out of the scope of this study and was thus discarded.

LED lamps were first considered because of their low-divergence beams and their
nearly-uniform flux. However, the beamwidth appeared too small for our application:
it was only about 30 cm wide at a 2-meter distance while the mock-up is 1-m wide.
The solution consisting in assembling together several LED lamps in a grid network to
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Table 5.5 – Course ranges of the camera robotic platform in Visilab

Axis Course Range

Downrange 900 mm
Crossrange 658 mm
Altitude 717 mm
Pitch 170 deg

create a wider beamwidth appeared expensive, impractical, and would create higher-
flux areas where the individual beams overlap.

The solution advised by the commercial illumination providers contacted was to
look into cinema and theater spot lamps. The optical principle of those is simple: a
halogen lamp is placed behind a Fresnel lens which outputs a low-divergence beam.
However, we noticed that a simple retroprojector is based on the same optical scheme.
In addition, the lower lamp power of those devices is more adapted to our use at
short distance in Visilab than an expensive cinema-class lamp. As test images looked
realistic, we decided to use a standard 500-W retroprojector as the illumination system
in Visilab. Example images are shown in Figure 5.11.

(a) Sun elevation: 10 deg (b) Sun elevation: 30 deg

Figure 5.11 – Example images of the same area in Visilab with different illumination conditions

Analysing the fitness of the retroprojector solution with respect to mission-
representative requirements, we first reckon that the light rays are not strictly parallel
in Visilab as they can be assumed to originate from a point source located close to the
reflectors of the retroprojector which is not at an infinite distance like the Sun, but a
low-divergence beam is as good as we can get in the lab. Furthermore, the light beam
divergence in terms of shadow pointing directions is not noticeable at naked eye. As
of the white light criterion, halogen lamps are incandescence devices and thus provide
a continuous light spectrum which was judged white enough for Visilab. Eventually,
the least representative aspect which can be pointed out in these images is the surface
flux decrease from right to left due to the fact that light rays are not parallel. Actu-
ally with the point source model mentioned earlier for the retrojector, the illumination
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flux decreases as an inverse quadratic function of the distance to the point source,
hence the surface flux variation on the mock-up plane. This default is obviously not
representative of the true lunar conditions but it does not matter so much for Lion as
it is based on feature points using local intensity gradient information whereas the
non-uniformity of the flux is only noticeable at global image scale.

It shall be noted that the shadow cast by the camera and its support platform on
the mock-up is another non-representative phenomenon in Visilab. However, it was
only visible for light elevation angles above 45 deg while our test sequences were
acquired with a maximum 30-deg angle, representative of lighting conditions for a
lunar landing at the south pole.

5.3 Test bench operations

A test bench needs to be operated carefully in order to acquire workable experimental
data. A view of Visilab during this data acquisition process is shown in Figure 5.12.
Evaluating the performance of a vision-based navigation system requires to acquire
an image sequence for which the pose of the camera with respect to a reference nav-
igation frame attached to the observed scene is measured with other means at each
acquisition time in order to evaluate the navigation error. This reference pose is called
ground truth throughout this thesis. This section first describes the image acquisition
process and then ground truth determination.

Figure 5.12 – The Visilab test bench during data acquisition at ESA-ESTEC
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5.3.1 Image acquisition

1024⇥ 1024 grayscale images were obtained after cropping the 1280⇥ 1024 raw frames
acquired through the USB interface of the camera connected to a laptop running Linux
in the lab.

Optical lens setting

The optical aperture and the focus of the lens must be set before data acquisition.
Focus determines the distance at which objects appear sharp in the image. In practice
with the limited sensor resolution, this distance of focus is spread over an interval
which is called the depth of field. Aperture sets the amount of light entering the optics
and it needs to be set first as it impacts the depth of field: the smaller the aperture,
the larger the depth of field.

Aperture In Visilab, the largest depth of field was preferred as it allows the camera
to work over a greater range of altitudes. That led to set the aperture at the lowest
possible value for which the image quality did not suffer from either light diffraction
at the edge of the lens when the iris is too closed, or from the blur effect due to vi-
brations accumulating over the longer numerical exposure times needed with smaller
apertures.

Focus With the aperture fixed, the focus ring can be adjusted the get sharp images.
In practice with the lenses used in Visilab, setting the focus at • was the best solution
as it allowed to get sharp images from 6 cm to an infinite distance, and no images were
acquired below 6 cm as no lunar-representative surface details are visible at such low
altitudes.

Camera calibration

A camera images the world through a projection transformation which can be repre-
sented as a 3⇥ 4 matrix P in the pinhole camera model and decomposed as

P = K [ R | t ] . (5.2)

P transforms a 3D physical world point into a 2D image point, which are characterized
respectively by a 4-vector and a 3-vector of homogeneous coordinates (Hartley and
Zisserman, 2003). The 3 ⇥ 3 matrix R and the 3-vector t respectively describe the
rotation and translation from the world frame to the camera frame, they are called
the extrinsic parameters of the camera for each image. Their proper estimation is the
objective of vision-based navigation. The 3⇥ 3 matrix K contains the so-called internal
parameters necessary to convert the direction of a ray in the camera frame into a
pixel position on the sensor, or vice versa. There are five internal parameters: the focal
length in terms of pixel dimensions in the x and y directions, the skew which denotes
if the pixel angles are right or not, and the 2D pixel coordinates of the principal point.

Equation (5.2) is equivalent to the Lion EKF measurements model of Equation (3.6)
with no noise. K transforms normalized image coordinates into pixel ones and must
be known and determined before the mission in practice since navigation systems
use the geometry of rays traced from pixel positions to infer back the pose of the
camera. The estimation of K is called calibration and it must be performed before each
data acquisition in Visilab. In practice, calibration also needs to estimate the optical
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distortions which add non-linear effects into Equation (5.2). In Visilab, raw images are
processed to remove the distortions before being sent to Lion thanks to the model
estimated during calibration. As can be seen in Figure 5.11, radial distortions are
indeed quite present in Visilab images with the 3.5-mm lens. The estimation of the
6

th order of radial distortion and the skew had to be taken into account to get best
calibration performances.

5.3.2 True pose computation

Ground truth, i.e. the true pose of the camera frame with respect to the reference
navigation frame is computed using additional intermediary frames in Visilab.

Visilab frames

The mock-up reference navigation frame {r} in Visilab is aligned with the bottom
right corner at the back of the mock-up panel. It is equivalent to the lunar surface-
fixed frame {g} employed in planetary landing. To determine the pose of the camera,
a dedicated calibration pattern was stuck on the aluminium plate at the left of the
mock-up. The position and orientation of the frame {p} tied to this pattern are known
with respect to the reference frame. Before operating in Visilab, the user must initialize
the position and orientation of the camera facing this pattern, corresponding to the
pose of frame {c}, using a standard 2D/3D visual pose determination algorithm and
the known pattern grid coordinates (Szeliski, 2011). The camera can then be trans-
lated to its final working pose {w} for which the final position is measured relatively
to {c} directly onto the axes. The orientation cannot be changed after initialization
between {c} and {w} during an acquisition sequence though. Figure 5.13 shows the
configuration of Visilab and the associated frames when the camera is in initialization
pose in front of the calibration pattern. The origin and axis orientation of each frame
is defined in Appendix D.

Transformations between frames

The rigid frame transformation from the camera in working pose to the mock-up
reference navigation frame provides the ground truth and can be written as the com-
position of three sub-transformations between the four Visilab frames:

1. Camera working frame {w}
f 1�! Camera calibration frame {c},

2. Camera calibration frame {c}
f 2�! Calibration pattern frame {p},

3. Calibration pattern frame {p}
f 3�! Mock-up frame {r}.

A rigid transformation can be represented minimally as 6-vector f such that
f =

⇥

rT tT ⇤T which transforms a point x into a point y in 3D Euclidean space ac-
cording to

y = r ? x + t . (5.3)

? is the rotation operator. r = qn is the rotation vector between the axes of the two
frames, with q the rotation angle and n the unit axis of the rotation. t is a translation
vector. We choose to use this transformation as a coordinate change such that injecting
x = 0 in Equation (5.3) makes y the position coordinates of the origin of the initial
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Figure 5.13 – Visilab frames with the camera in initialization pose facing the calibration pat-
tern. Only the frame {w} is not visible here, it represents the working pose of the camera when
it is translated over the mock-up to acquire navigation test images after initialization.

frame in the axes the final frame, e.g. the coordinates of the optical center of the
camera in the axes of the mock-up reference frame for ground truth.

Using this rigid body model, ground truth can thus be computed for each acquired
image as the composed transformation f such that

f = f 3 � f 2 � f 1 (5.4)

where the composition of f A =
⇥

rA
T tA

T ⇤T by f B =
⇥

rB
T tB

T ⇤T is defined as

g = f B � f A =
rB � rA

rB ? tA + tB
. (5.5)

5.4 Absolute navigation error observability

The computation of the true pose of the camera frame relies on measurements which
have a limited precision. In this section, we investigate the uncertainties in the de-
termination of the ground truth and we propose a new model to evaluate how this
limited accuracy impacts the absolute navigation error observable in Visilab.

5.4.1 Manual ground truth accuracy

The manual ground truth determination process proposed in Subsection 5.3.2 involves
a composition of three frame-to-frame rigid transformations for which the uncertain-
ties have been measured and are reported in Table 5.6. This subsection describes how
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these measurements have been obtained and eventually derives the overall manual
ground truth accuracy in Visilab.

Table 5.6 – Frame-to-frame pose uncertainties in Visilab. The dispersion over each axis is
measured with the 3 s value for scalar components, where s is the standard deviation. The total
dispersion of the vector quantities is measured with the 3-RMS value.

Transformation f 1 f 2 f 3

drx (deg) 0.1 0.1 0.05
dry (deg) 0.1 0.1 0.05
drz (deg) 0.2 0.2 0.05
Total dr (deg) 0.2 0.3 0.1

dtx (mm) 1.4 0.9 0.3
dty (mm) 0.2 0.9 0.3
dtz (mm) 0.3 0.3 0.7
Total dt (mm) 1.4 1.4 0.8

Transformation f 1: {w} ! {c}

Two phenomena introduce uncertainty in the transformation from the camera in work-
ing pose to camera in calibration pose: the internal deformations of the support plat-
form structure when the camera is translated, and the misalignments between the
optical table and the back panel the mock-up. Transformation f 1 can thus be decom-
posed into two virtual sub-transformations and Table 5.6 actually shows the uncer-
tainty of their composition.

The first virtual transformation involves no motion but only the uncertainties as-
sociated to camera support platform structure deformation. To evaluate it, the camera
was moved randomly from the calibration pose and brought back at the calibration
pose 30 times. More samples would make the estimation more statically relevant but
are practically time-consuming in Visilab. After each iteration, the new pose of the
camera in front of the calibration pattern was computed using the same 2D/3D vi-
sual pose determination algorithm as in ground truth determination. Table 5.7 shows
the uncertainties of the camera pose parameters due to structure deformations of the
camera support platform.

The second virtual transformation only implies first-order uncertainty in trans-
lation which are due to the angular misalignments of the optical table with respect
to the mock-up. These misalignments were measured within the 0.1-deg accuracy of
the inclinometer available in Visilab for the vertical xm axis, and within 0.25-mm ruler
precision over the 2-m length of the optical table for the horizontal ym axis, which is
equivalent to atan(0.25/2000) ⇤ 180/p ⇠ 0.01 deg. Misalignments create translation
uncertainty through a lever arm effect, which was assumed at 1-m over each axis due
to camera translation range. The manufacturing flatness uncertainty of the table over
the remaining zm axis are neglected.

Transformation f 2: {c} ! {p}

The uncertainties of the rigid frame transformation from the camera in calibration
pose to the calibration pattern which are reported in Table 5.6 were computed us-
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Table 5.7 – Uncertainty due to the deformation of the camera support platform in Visilab. The
dispersion over each axis is measured with the 3 s value for scalar components, where s is the
standard deviation. The total dispersion of the vector quantities is measured with the 3-RMS
value.

drx (deg) 0.1
dry (deg) 0.1
drz (deg) 0.2
Total dr (deg) 0.2

dtx (mm) 0.2
dty (mm) 0.2
dtz (mm) 0.2
Total dt (mm) 0.3

ing the dispersion of the image reprojection errors of the 36 calibration pattern grid
points in the 2D/3D visual pose determination algorithm used for ground truth de-
termination and the Jacobian matrix of the camera projection function based on Equa-
tion (3.19) and Equation (3.21) (Hartley and Zisserman, 2003).

Transformation f 3: {p} ! {r}

A DEM of the mock-up was realized by DLR after it was milled from the input DEM.
To create it, each of the two 1-m-wide square tiles forming the mock-up was laid
down on a granite table for laser scanning. The granite table employed was flat within
a 10�5-m error tolerance off the plane. This can also be assumed to be the flatness
accuracy of the back panel of the tiles, where the origin of the mock-up frame {r} is
located. After individual scanning, the two tiles were connected to each other while
leaning on the granite table and terrain strips at the junction were re-scanned to de-
termine alignment errors and construct the global DEM. A picture of the scanning
process on the granite table is displayed in Figure 5.14.

The aluminum bars attached to the back panels of the mock-up and visible in
Figure 5.9 were also employed to attach the aluminum plate on which the calibration
pattern defining the origin of frame {p} is. The bars are screwed into threaded holes
in the back panels of the tiles. Because the mock-up assembly was not constrained
during scanning and appears quite elastic, the screwing of the bars was achieved with
the requirement that the mock-up shall not be deformed with respect to its resting-free
shape so that the DEM remains intrinsically valid. After screwing, the bars appeared
to lay flat in contact over the back-panel of the left edge of the mock-up, on the side
where the calibration plate is mounted. A flatness deviation tolerance of 0.7 mm over
1 m is specified in the data sheet of the aluminum bars (KANYA, 2012). The tolerance
was assumed equivalent to a 3s dispersion and conservatively we kept it at the 0.7-
mm value for the translation dispersion along the zr axis over the 25 cm which can
separate the origin of {p} from the left edge of the mock-up. The flatness tolerance
of the granite table is about tens of micrometers, thus order of magnitude less than
the bars and its effect was consequently neglected here. The ruler precision used to
position the calibration pattern is 0.3 mm both on xr and yr. The attitude uncertainties
are also dominated by the flatness tolerance of the bar over the 1-m height of the
mock-up leading to atan(0.7/1000) ⇤ 180/p = 0.05 degree about the axes.
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Figure 5.14 – Mock-up lying on the granit table and being scanned for DEM at DLR
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Frame transfer covariance composition

Pennec and Thirion (2004) studied the propagation of uncertainty for rigid motions.
The uncertainty of a rigid transformation characterized by a 6-vector g is described
by 6⇥ 6 covariance matrix P. When g is a composition of frames ( f A, PA) by ( f B, PB)
like in Equation (5.5), its covariance is determined at first order by

P = JA PA JT
A + JB PB JT

B , (5.6)

with the JA and JB Jacobian matrices defined as

JA =
∂( f B � f A)

∂( f A)
=

"

∂(rB�rA)
∂(rA)

0
0 RB

#

, (5.7)

JB =
∂( f B � f A)

∂( f B)
=

" ∂(rB�rA)
∂(rB)

0
∂(rB⇤tA)

∂(rB)
I3

#

, (5.8)

and RB the rotation matrix associated to rB.
Alternatively, the error covariance matrix containing the uncertainties of a com-

posed transformation can be approached without a first order assumption by running
Monte Carlo simulations if the distribution model of random processes causing the
uncertainties are known.

Both methods were tested in Visilab to determine the covariance matrix of the
composed transformation f in Equation (5.4) which represents the ground truth. They
led to similar accuracy results of 4.5 mm in position and 0.5 deg in attitude (3 RMS).
The results obtained with the covariance matrices P1, P2 and P3 of the frame-to-frame
transformations made from the measurements in Table 5.6.

Table 5.8 details the ground truth accuracy results for the camera in a test-
representative pose in Visilab with respect to the mock-up axes. These figures cor-
respond to 20,000 runs of Monte Carlo simulation and assuming Gaussian error dis-
tributions.

Table 5.8 – Manual ground truth accuracy in Visilab expressed along the mock-up axes. The
dispersion over each axis is measured with the 3 s value for scalar components, where s is the
standard deviation. The total dispersion of the vector quantities is measured with the 3-RMS
value.

drx (deg) 0.3
dry (deg) 0.3
drz (deg) 0.3
Total dr (deg) 0.5

dtx (mm) 3.1
dty (mm) 2.7
dtz (mm) 1.7
Total dt (mm) 4.5

5.4.2 Observable absolute navigation error model

Errors made in the determination of the true pose of the camera concern both descent
and orbital images acquired in Visilab. As a consequence, the ground truth accuracy
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evaluated in the previous subsection may eventually affect significantly the absolute
navigation error observed during the hardware tests, even if the map-based state es-
timation performed in Lion works flawlessly. This effect needs to be modeled and
evaluated as well.

Figure 5.15 illustrates the different frames employed to derive a new model of the
absolute navigation error observable in Visilab with limited ground truth accuracy.
In black is represented the true configuration of the lab. {r} is the mock-up reference
frame. {cdsc} and {corb} are respectively the true descent and orbital camera frames, of
which the knowledge is limited by ground truth accuracy. In blue, {ĉdsc} is the descent
camera frame estimated by Lion, which depends on absolute navigation accuracy.
Eventually in red, {r̄} is the misaligned reference frame due to the ground truth error
made on {corb}. Due to this misalignment, a perfect map-based navigation algorithm
would estimate the camera pose not in {cdsc} but in {c̄dsc}. We assume the internal
coherence of the map is not corrupted by this misalignment though, which is plausible
with the ground truth accuracy determined earlier.

dsc

{r}

{r}

{c}
orb

{c}
dsc

{c}
dsc

{c}

Figure 5.15 – True and estimated frames used to derive the absolute navigation error model in
Visilab.

Using compositions of rigid body transformations like in Subsection 5.3.2, these
frames enable to break down the absolute navigation error f obs measured in Visilab
defined as the rigid frame change from the estimated to the true descent camera
frame, according to the following model

f obs = f cdsc
ĉdsc

= f cdsc
r � f r

corb
� f corb

r̄ � f r̄
ĉdsc

. (5.9)

f cdsc
r and f r

corb
are respectively the descent and orbital camera ground truth poses,

f corb
r̄ is a zero-uncertainty intermediary transformation, and f r̄

ĉdsc
is the map-based

navigation estimate from Lion.
This model is a useful system engineering tool to size navigation error bud-

gets, which can be analyzed at various levels of decomposition. For instance,
f r

r̄ = f r
corb
� f corb

r̄ represents the frame transfer from the misaligned reference frame
back-projected from the orbiter camera to the true reference frame. This specific frame
transfer correspond to the so-called map-tie errors in planetary landing literature.

By injecting the 4.5-mm and 0.5-deg ground truth accuracy determined earlier, we
have been able to compute the Visilab contribution to the observable error, namely
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the f cdsc
r � f r

corb
� f corb

r̄ term in Equation (5.9): 8.6 mm in position, 1 deg in orientation
(3 RMS). That corresponds to the error which would be measured if the tested nav-
igation algorithm had a perfect output with a zero-mean error and null covariance
matrix. With the scales defined for the test scenarios in Chapter 6, 8.6 mm is equiv-
alent to at least 72.6 m on the Moon. This could be sufficient to prove a navigation
system can converge within 100 m of pinpoint landing precision, but evaluation would
gain from more observability of the proper navigation performance. Since this Visilab
contribution to the observable error depends essentially on ground truth accuracy, we
designed a new method to make it finer.

5.5 Visual ground truth refinement

This section describes the visual ground truth refinement algorithm for Visilab and
computes the new contribution to the observable error .

5.5.1 Method

Without external sensors available in the lab to measure the pose of the camera, we
refined the ground truth pose estimation for Visilab images using a vision-based algo-
rithm working as follows.

1. The image is virtually rendered using the pose of the camera measured with the
manual ground truth procedure, the DEM of the mock-up, and similar illumi-
nation conditions.

2. SIFT feature points are matched between the virtual image and the real image
acquired by the camera (Lowe, 2004).

3. The 3D surface coordinates of the 1000 best matches are computed by back-
projecting the rays from the virtual image focal plane and interpolating them
with the DEM.

4. The matches between these 3D points and the associated 2D features points on
the Visilab image are used to solve a Perspective-n-Point problem (PnP) within
a RANSAC framework (Fischler and Bolles, 1981). Camera poses are computed
from random selections of 6 points using the EPnP algorithm (Moreno-Noguer
et al., 2007).

5. The pose with most inliers is re-evaluated minimizing the reprojection error with
the Gauss-Newton algorithm.

The image generation tool used is PANGU. SIFT was an easy choice for the matcher
as the scene had similar illumination and orientation in the two images. The output
of the algorithm is a refinement of the camera ground truth pose.

5.5.2 Performance

The accuracy of this new ground truth determination method was evaluated using
the 2D reprojection errors of the 1000 points within the image plane. At first order,
the covariance matrix of the pose can be estimated using the Jacobian matrix of the
camera projection function (Hartley and Zisserman, 2003) and provides the visual
ground truth accuracy results of Table 5.9. The new ground truth accuracy is 0.65 mm
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in position and 0.05 deg in attitude (3 RMS). Table 5.10 compares the manual and
visual ground truth accuracies in Visilab.

Table 5.9 – Visual ground truth accuracy in Visilab expressed along the mock-up axes. The
dispersion over each axis is measured with the 3 s value for scalar components, where s is the
standard deviation. The total dispersion of the vector quantities is measured with the 3-RMS
value.

drx (deg) 0.04
dry (deg) 0.04
drz (deg) 0.01
Total dr (deg) 0.05

dtx (mm) 0.5
dty (mm) 0.5
dtz (mm) 0.1
Total dt (mm) 0.65

Table 5.10 – Summary of ground truth accuracies in Visilab (3 RMS)

Parameter Attitude (deg) Position (mm)

Manual ground truth 0.5 4.5
Visual ground truth 0.05 0.65

After injecting this new ground truth accuracy in the observable absolute naviga-
tion error model of Subsection 5.4.2, the new Visilab contribution to the error is now
2.3 mm in position and 0.12 deg in attitude (3 RMS). This now scales up to 19.3 m
on the Moon with the lowest test scenario scaling and makes the performance much
more observable than with manual ground truth for the 100-m precision criterion.

Chapter conclusion

In this chapter, we derived a set of lunar-representative requirements for the Visilab in-
door navigation test bench. Visilab aims at assessing the performance of Lion in realistic
hardware conditions. It may also be used to evaluate any type of optical navigation:
absolute or relative, active or passive. We designed and built the hardware along with
operation procedures. A key performance criterion of a navigation test bench is the
accuracy of the ground truth. The manual operations of Visilab led to a ground truth
accuracy of 4.5 mm in position (3 RMS), evaluated using a rigid body transformation
framework. A new budget error model was derived to evaluate the contribution of the
test bench itself to the measured absolute navigation error due to the limited ground
truth accuracy. With manual ground truth, it showed that Visilab engenders a 72.6-
m position estimation dispersion (3 RMS), even with perfect navigation. To provide
better observability of the navigation performance with respect to the 100-m pinpoint
accuracy criterion, a new vision-based ground truth determination system was de-
veloped and enhanced the ground truth accuracy down to 0.65 mm (3 RMS), with a
Visilab contribution of now only 19.3 m (3 RMS) to the absolute navigation error.
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The next chapter evaluates the performance of Lion in Visilab during a complete
lunar descent, from orbit to touchdown. In addition, it verifies its robustness to tilt,
illumination or sensor change between the orbital and descent data, and terrain to-
pography.





6
Hardware performance

evaluation

Contents

6.1 Accuracy tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.1.1 NASA LRO orbital data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.1.2 Scalings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1.3 Nominal descent accuracy evaluation . . . . . . . . . . . . . . . . . . . . 103

6.2 Robustness tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2.1 Camera sensor change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2.2 Off-nadir descent camera inclination . . . . . . . . . . . . . . . . . . . . . 107

6.2.3 Illumination change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2.4 Non-flat terrain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

99





6.1. Accuracy tests 101

Evaluation of the performance of Lion on the lunar-representative hardware test
bench Visilab was achieved through two types of tests:

1. a dynamic scaled lunar landing sequence to test navigation accuracy,

2. static sequences to test the robustness to various parameters.

In the dynamic accuracy tests discussed in Section 6.1, visual and inertial data at scale
for key sequences of the lunar descent flight were generated. Orbital data resolution
and accuracy are representative of the NASA LRO mission. Section 6.2 deals with
static robustness tests with respect to the parameters which might vary in a real mis-
sion: camera sensor change between descent and orbital conditions, off-nadir descent
camera inclination, illumination change between descent and orbital conditions, and
non-planar terrain topography. In all tests, the images were corrected for distortions
prior to being processed in the standard way. Complete result tables for each test can
be accessed in Appendix E.

6.1 Accuracy tests

The accuracy of Lion absolute visual-inertial tight navigation filter was tested on five
30-second sequences at key altitudes of the lunar descent: 100km, 50 km, 15 km, 10

km and from 5 to 3 km. We assumed an image processing time of 1 second, thus a
1-Hz frame rate provides a new image each time the previous one has been processed.
The 30-second duration of each sequence is approximately the convergence time ob-
served in the software simulations of Subsection 4.4.3. Table 6.1 provides mission-
representative navigation error requirements at each altitude, in terms of dispersion
of the position estimate with respect to the true lander position.

Table 6.1 – Position error dispersion requirements at lunar descent key altitudes

Altitude (km) 3-RMS position error requirement (m)

100 1500
50 1500
15 500
10 500
5-3 100

6.1.1 NASA LRO orbital data

The onboard map used as reference in Lion is made from orbital images and DEMs
acquired by an orbiter prior to the mission. The recent NASA LRO spacecraft has the
LROC camera and the LOLA laser altimeter on board (Chin et al., 2007). LROC is made
of a set of two Narrow-Angle Cameras (NAC) and one Wide-Angle Camera (WAC).
The NACs provide 0.5-m-per-pixel image resolution of all areas above 85.5 degrees of
latitudes, or equivalently within 136 km from each pole. The WAC provides a 100-m-
per-pixel image resolution over the whole Moon.

Using Earth-based radio tracking, altimetric cross-overs from LOLA and a gravity
model, Mazarico et al. (2011) managed to determine the orbit with a ground truth
accuracy of about 60m (3 RMS). This map-tie error affects the co-registration of the
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orbital images with respect to the DEM grid. Although current available DEMs still
suffer from visible artefacts as discussed in Subsection 5.2.2, we assume possible to
build DEMs with resolution of the order of the 3-RMS ground truth accuracy over the
whole Moon, thus 60 m. Actually, due to the high density of altimetry measurements
close to the poles, Mazarico et al. (2012) even managed to get consistent DEMs with
10-m pixel resolution. Table 6.2 summarizes the orbital data assumed available either
globally on the whole Moon or at the poles.

Table 6.2 – NASA LRO orbital data summary

Coverage Camera Image resolution DEM resolution Ground truth accuracy
(m per pixel) (m per pixel) (3 RMS, m)

Global WAC 100 60 60
Polar NAC 0.5 10 10

6.1.2 Scalings

Due to the small size of the mock-up in Visilab, three different lunar scalings based on
altitude considerations had to be derived to realize the five sequences. Table 6.3 shows
which sequence belongs to which scaling, and the associated parameters. A scaling is
only representative of a lunar mission with respect to absolute navigation if the orbital
image resolution, DEM resolution, and orbital ground truth accuracy altogether scale
up to realistic mission values.

Table 6.3 – Scaled parameters for each sequence acquired in Visilab

Parameter Visilab Scaling 1 Scaling 2 Scaling 3

Altitude (km) 84.7⇥ 10�5 - 41.3⇥ 10�5 100 - 50 15 - 10 5! 3
Scale 1 8.5⇥ 10�6 4.1⇥ 10�5 1.2⇥ 10�4

Coverage N/A Global Global - Polar Polar
LR image resolution (m per pixel) 1.2⇥ 10�2 - 8.5⇥ 10�4 100 100 100
HR image resolution (m per pixel) 5.9⇥ 10�5- 2.0⇥ 10�5 N/A 25.0 6.25
DEM resolution (m) 0.5⇥ 10�3 59.0 12.1 4.2
GT accuracy (3 RMS, m) 0.65⇥ 10�3 76.7 15.7 5.5

The coverage parameter describes if the sequences associated to a given scaling
benefit from the global or polar LRO data specifications of Table 6.2. The resolution
of the so-called Low Resolution (LR) orbital image was adapted to be 100 m like that
LRO WAC for each scenario. Close to the pole where the LRO NAC is available, we
used respectively a 25-m and 6.25-m High Resolution (HR) image for scenarios 2 and
3. This is worse than the actual 0.5-m resolution of the NAC but anyway even at the
lowest altitude of 3 km, the descent camera resolution could not see such details. For
DEM resolution and orbital Ground Truth (GT) accuracy, we simply scaled up the
Visilab data specification since it led directly to LRO-representative values, as shown
in Table 6.3.

The trajectory was scaled down for each sequence from a full computer-based
lunar descent simulation to get the representative camera pose for each image. 100-
Hz inertial data were virtually generated by interpolating between the refined ground
truth pose estimates. Bias and noise were added representatively of the areospace-
class IMU performance discussed in Subsection B.2.1. The descent camera is always
pointing nadir. Illuminations of the descent image and the map are similar.
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6.1.3 Nominal descent accuracy evaluation

100 Monte Carlo runs were performed for each of the five sequences, acquired with the
4.5-mm lens in Visilab. The initial state errors with respect to the Visilab reference frame
were randomly sampled over each axis according to zero-mean Gaussian distribution
and 3 s values per axis of

• 5 % of the start altitude in position, e.g. 5 km on the 100-km orbit,

• 5 m.s�1 in velocity,

• 0.5 deg in attitude,

with s the standard deviation. The position uncertainty at initialization is rather large
and more a proof of robustness as Earth-based systems would likely be able to initial-
ize the position within 1 km in lunar orbit. Star trackers can initialize very accurately
the orientation with respect an inertial frame. This is negligible compared to the orien-
tation error of 0.5 deg with respect to a terrain frame due to the position uncertainty
itself, hence the attitude error initialization.

Figure 6.1 and Figure 6.2 show the performance in terms of mean and dispersion
of the error versus time for each sequence. For the 10-km sequence and the 5-to-3 km
one in Figure 6.2, results are provided both for the LR map and the HR one.

A general result is that the dispersion of the error decreases within each sequence,
showing the ability of the filter to converge towards a value which is always less than
150 m in mean, whatever the altitude. At 100 km from an initial error dispersed over
8660 m (3 RMS), the final error mean is 139.1 m for a 3-RMS dispersion of 979.6 m.
At 15 km, the mean error is 74.6 m dispersed over 176.2 m. Finally at 3 km with the
HR, the error goes down to 4 m in mean and 47.2 m of dispersion (3 RMS), which is
already well within the 100-m touchdown requirement of pinpoint landing.

These results obviously include the navigation error associated to Lion, but also
that due only to Visilab only and discussed in Section 5.4. Figure 6.3 scales up the po-
sition error environmental contributions of Visilab, computed in Section 5.5, and com-
pares them to the final navigation dispersion values measured in the tests. Beyond the
limited absolute navigation error observability in Visilab, the actual navigation per-
formance of Lion may be significantly better than measured here in a real mission
as for instance the 3-RMS dispersion was measured at 47.2 m at the 3-km altitude,
while in parallel we determined 19.3 m dispersion (3 RMS) due to the test bench only.
We demonstrated the accuracy of Lion in Visilab and its ability to converge from a large
initial navigation error in orbit down to error values largely below the 100-m pinpoint
landing requirement at low altitudes. Furthermore, this performance includes a Visi-
lab-related error contribution due to the descent camera limited ground truth accuracy
which will not matter in an actual landing. We can now proceed to a robustness anal-
ysis in order to evaluate the variation of performance when some descent parameters
vary.

6.2 Robustness tests

We evaluated the robustness of Lion to various parameters: camera sensor change
between descent and orbital conditions, off-nadir descent camera inclination, illumi-
nation change between descent and orbital conditions, and non-planar terrain topog-
raphy. These tests were static, running Lion filter updates iteratively 10 times on each



104 Chapter 6. Hardware performance evaluation

0 5 10 15 20 25 30
0

100

200

300

400

500

600

Time (s)

M
ea

n 
po

si
tio

n 
er

ro
r (

m
)

Mean position error vs. time

 

 
100km − LR
50km − LR
15km − LR

(a) Mean error norm

0 5 10 15 20 25 30
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Time (s)

3−
R

M
S 

po
si

tio
n 

er
ro

r d
is

pe
rs

io
n 

(m
)

3−RMS position error dispersion vs. time

 

 
100km − LR
50km − LR
15km − LR

(b) 3-RMS dispersion

Figure 6.1 – Position estimation errors at high altitude with the low resolution map (LR)
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Figure 6.2 – Comparison of position estimation errors at low altitude with both the low and
high resolution maps (LR and HR, respectively).
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Figure 6.3 – Contribution of Visilab environmental error to final position dispersion

image to assess its ability to converge in each situation. Results from this section can-
not be compared directly to those of Section 6.1 as different scalings were used.

Using the 3.5-mm lens, Monte Carlo position and orientation errors were initial-
ized randomly using centered Gaussian distributions respectively at 5 % of the alti-
tude and 0.15 deg (3 s) per axis. All images were acquired at altitudes ranging from
20 to 90 km at scale.

6.2.1 Camera sensor change

The cameras employed to acquire the descent and the orbiter images will most likely
be different ones in a real mission. For instance, a mission flying five years from now
might be still be using NASA LRO data which have already been acquired. It is thus
relevant to evaluate the performance of Lion facing a camera sensor change between
the orbital and the descent images. Unfortunately, only one camera was available
in Visilab but we have been able to generate virtual images using PANGU in order
to simulate data from another camera sensor. An example of a Visilab image and a
PANGU one for the same area is shown in Figure 6.4. The shadow projections are
very similar, however as mentioned in Subsection 5.2.5 the mean light flux varies from
left to right in Visilab while it is constant in PANGU. Nevertheless, that should not
matter so much for Lion as it is based on feature points using local intensity gradient
information whereas the non-uniformity of the flux is only noticeable at global image
scale. We can also notice a sharpness decrease at the edges of the Visilab image due to
the correction of optical distortions.

Figure 6.5 compares the Lion performance in Visilab when using a map based on
Visilab images or one from PANGU images. 200 Monte Carlo runs were performed in
each case.

Results show that Lion was able to process data from different sensors, one real
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(a) Visilab (b) PANGU

Figure 6.4 – Real image from the Visilab camera sensor and virtual image of the same area by
PANGU.

and one virtual, with similar navigation performances. While the mean error increases
from 80 to about 110 m at high altitudes with the PANGU map, it actually reduces the
dispersion at all altitudes, e.g. from 143 m to 82 m (3 RMS) at a 20 km of altitude.
Although we could argue that the PANGU images have perfect ground truth accuracy
and thus are advantaged, our observable absolute navigation error model from Sub-
section 5.4.2 could not explain such differences. One possible explanation could be
that the absence of distortions on PANGU images made the maps more accurate.

6.2.2 Off-nadir descent camera inclination

In the accuracy tests of Section 6.1, the camera was pointing nadir. However depend-
ing on mission scenario and on the camera configuration on the vehicle, the optical
axis might be tilted with respect to the local vertical. We tested the robustness to tilt
angles varying from 20 to 60 degrees for the descent camera. Results are shown in
Figure 6.6. 120 Monte Carlos were run for each inclination angle.

Lion was found to be affected by tilt angles of 40 degrees or more. Indeed, position
initialization had to be reduced from 5 % of the altitude to 2 % for the 40 and 60-
deg inclination, otherwise no matches could be found. This prevents the use of such
inclinations when navigation uncertainties are high. But luckily such angles might
only appear during the approach phase late in the descent when the lander is pitching
up for the terminal vertical maneuver. This is long after absolute navigation has been
turned on and it should already show good enough convergence. Apart from the
reduced initialization envelope, mean error converges below 130 m in all cases with
no visible influence of the tilt. Dispersion globally increases with tilt. This could be
expected as due to the inclined view angle, the footprint a descent camera pixel on
the mapped terrain is larger.
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Figure 6.5 – Comparison of estimated position error with a Visilab or a PANGU map
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Figure 6.6 – Comparison of estimated position error for different camera tilt angles
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6.2.3 Illumination change

We evaluated Lion performance variations when the illumination at the time of land-
ing varies with respect to that of the map. The azimuth light angle was varied up to
180 deg and the elevation angle within a 20-deg range from a 30-deg elevation ref-
erence. 63 Monte Carlos were run for each illumination case. Maps were built from
PANGU images as the illumination angle range was not sufficient in Visilab, descent
images are still real ones though. Figure 6.7 shows the results with azimuth being
changed while Figure 6.8 shows the influence of an elevation change.

The first significant results is that in all illumination cases the filter converged and
improved the initial estimation error. Even with a 90-deg azimuth light change at 20

km of altitude, the system brought the initial 3-RMS 1700-m dispersion down to 680 m,
which is more than twice less. Globally, the error mean and dispersion increase with
the illumination difference. Performances are more severely affected above 10 deg
of elevation change, and 20 deg of azimuth. These angle ranges may be considered
as the illumination domain for which pinpoint landing can be considered with Lion.
In addition to Visilab hardware results, we also remind the reader that the pinpoint-
class software-based performances of Subsection 4.4.3 were obtained with a 20-deg
illumination azimuth change.

The evolution of the performance Lion with illumination changes is evaluated for
robustness purposes but we anticipate that such a mission is planned years in advance
and that orbital imagery with illumination conditions similar to that of the landing
can be used to create the map. In addition for the Moon, another significant result is
that we demonstrated in Subsection 6.2.1 that information from the DEM can be used
to generate a virtual orbital image with illumination conditions similar to the descent
to build the map.

6.2.4 Non-flat terrain

Lion was designed to be fully compatible with any terrain topography, whether it is flat
or not. 3D terrains might appear at low altitudes on the Moon depending on the local
relief at the landing site selected. We showed robustness to these cases in software in
Chapter 4, where the terrain had a 500-m irregular height variation and the trajectory
was from 2 km high to touchdown. However, there is an easier-to-characterize 3D
phenomenon which is visible for sure on orbit around the Moon: the sphericity of its
surface. We compared the performance of the Lion system with respect to a modified
version making the flat-world assumption discussed in Section 2.1 and often met in
literature.

Because the Visilab mock-up is globally flat, we could not test the robustness to
spherical terrains in hardware directly. Though, we did apply a spheric correction
on the Visilab DEM to simulate the lunar radius. The new DEM is illustrated in Fig-
ure 6.9. It was used in PANGU to render virtual descent images based on the actual
Visilab mock-up topography modified to take into account lunar sphericity at alti-
tudes varying from 50 to 200 km. Such altitudes correspond to orbital or final planet
approach phases. 100 runs Monte Carlo were performed at each altitude and for each
version of the algorithm. Results are displayed in Figure 6.10.

Lion significantly outperforms its counterpart assuming a flat world which appears
clearly biased. At the 100-km parking orbit planned for the ESA lunar lander, the
mean error is 23 m for Lion versus 1379 m for the flat version, and 3-RMS dispersion
is 347 m versus 674 m. Table E.8 actually shows the mean error is nearly-exclusively
distributed over the local vertical axis, perpendicular to the plane assumed by the flat-
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Figure 6.7 – Comparison of estimated position error for azimuth light change with respect to
the map.
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Figure 6.8 – Comparison of estimated position error for elevation light change with respect to
the map.
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Figure 6.9 – Visilab DEM modified with a spherical distortion in order to evaluate the nav-
igation consequences of the flat-terrain assumption in orbit. The height scale is in meter in
Visilab.

world version. This version paradoxically shows similar performance in terms of error
mean and dispersion between 50 and 100 km of altitude, whereas the sphericity effect
should be less important at 50 km. We noticed that a strong peak lies at the center
of the DEM shown in Figure 6.9, right down under the camera location. At scale for
the 50-km image, the camera actually stands virtually 13 cm over the peak for which
the height difference with respect to its immediate neighborhood is 4 cm. This rough
30% ratio between surface height variation and the altitude suggests that the 3D relief
effects associated to the peak keeps degrading the performance while the effect of the
curvature decreases.

Chapter conclusion

We ran a scaled lunar descent test in the Visilab test bench and demonstrated the
accuracy of the estimation of Lion at various key altitudes of a lunar landing with a
nadir-looking camera. The 4-m mean and 47-m 3-RMS dispersion at 3 km of altitude
are compatible with the pinpoint landing requirements. Lion was not affected by a
change of camera sensor between the orbital and descent images and it still managed
to converge with off-nominal variations of illumination or tilt, although performance
decreases and was strongly affected over respectively 20 deg and 10 deg of azimuth
and elevation light difference, or tilt angles over 40 deg. Eventually, we confirmed
the significant performance gain of Lion at high altitudes with respect to navigation
systems making a flat-terrain assumption when the Moon actually appears spheric.
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Figure 6.10 – Comparison of estimated position error at orbital altitudes with and without
planar terrain assumption.
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Lion is a full absolute visual-inertial navigation system which is able to match de-
tails of an image of the surface taken by an on-board camera during a planetary

descent with landmarks from a map created before the mission, so as to infer the
position and orientation of the vehicle. This chapter summarizes the work done and
discusses it to offer perspectives.

7.1 Main contributions

Lion is based on a tight absolute visual-inertial EFK fusion architecture which keeps
the pose estimate at the acquisition time of the last image as an additional static state
to take into account time delays associated with absolute image matching. We as-
sessed the navigation performance of this EKF in a point-based simulation assuming
ideal absolute measurements, and testing the final part of the trajectory over surface
elevation ranges from 0 to 1000 m. The dispersion was below 22 m (3-RMS) at touch-
down on all topographies and there was no apparent direct link between the surface
elevation range and the quality of the estimation, which appears more affected by
the number of landmark measurements. Indeed, the dispersion actually fell down to
2.2 m (3-RMS) at the end of a so-called visual phase, before fewer if any mapped
landmarks were left visible and a final inertial drift started to increase the navigation
error. The most important result is that with ideal measurements the Lion EKF estima-
tion architecture is capable to reach pinpoint landing accuracy whatever the terrain
structure.

From these results in ideal point-based simulation conditions, the issue of process-
ing actual images in order to recognize mapped landmarks in them was tackled and it
intends to keep a similar level of performance. Three geometric image-to-map match-
ing techniques for generic landmarks have been proposed, implemented along with
the tight navigation filter, and evaluated in image-based software simulations repre-
sentative of the approach phase of a lunar landing. All of them are compatible with
any terrain topography, whether it is flat or not, through an efficient use of the camera
projection function and a priori pose mean and covariance information available from
the filter instead of a planar rectification. Landmark repeatability issues met by most
geometric methods, and troublesome on landing trajectories due to significant altitude
change, led to completely rethink the way image scale is used in the algorithm. While
other algorithms in the literature only proceed to global image scale corrections if ever,
we show scale can be efficiently used as an individual descriptor for each landmark
in a new method which was selected as the baseline for Lion. Based on Harris-Laplace
orbital landmarks, it raises the repeatability rates significantly and improves the accu-
racy down to 20.2 m at the end of the visual phase and 53.8 m at touchdown (3 RMS),
with a 20-deg illumination change. These performances are largely below the 100-
m accuracy requirement for pinpoint landing and were obtained with significant 3D
terrain relief, namely surface heigh variations of 500 m on a lunar landing approach
phase trajectory starting at 2 km.

A lunar-analogue indoor optical test bench called Visilab was designed in order
to prove that Lion can estimate the pose of real camera in a physical environment
representative of the Moon. The representativity is ensured by a set of requirements.
Although Visilab aims at assessing the performance of Lion in realistic hardware con-
ditions, it may also be used to evaluate any type of optical navigation: absolute or
relative, active or passive. We designed and built the hardware along with operation
procedures. A key performance criterion of a navigation test bench is the accuracy
of the ground truth. The manual operations of Visilab led to a ground truth accuracy
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of 4.5 mm in position (3 RMS), evaluated using a rigid body transformation frame-
work. A new budget error model was derived to evaluate the contribution of the test
bench itself to the measured absolute navigation error due to the limited ground truth
accuracy. With manual ground truth, it showed that Visilab engenders a 72.6-m po-
sition estimation dispersion (3 RMS), even with perfect navigation. To provide better
observability of the navigation performance with respect to the 100-m pinpoint accu-
racy criterion, a new vision-based ground truth determination system was developed
and enhanced the ground truth accuracy down to 0.65 mm (3 RMS), with a Visilab
contribution of now only 19.3 m (3 RMS) to the absolute navigation error.

We eventually ran a scaled lunar descent test in the Visilab test bench and demon-
strated the accuracy of the estimation of Lion at various key altitudes of a lunar land-
ing with a nadir-looking camera. The 4-m mean and 47-m 3-RMS dispersion at 3 km
of altitude are compatible with the pinpoint landing requirements. Lion was not af-
fected by a change of camera sensor between the orbital and descent images and it
still managed to converge with off-nominal variations of illumination or tilt, although
performance decreases and was strongly affected over respectively 20 deg and 10 deg
of azimuth and elevation light difference, or tilt angles over 40 deg. Eventually, we
confirmed the significant performance gain of Lion at high altitudes with respect to
navigation systems making a flat-terrain assumption when the Moon actually appears
spheric.

7.2 Perspectives

Two types of future works would be relevant to pursue the assessment of Lion as a
navigation system: further validation activities, and implementing new extensions.

7.2.1 Validation

The use of Harris-Laplace features in Lion is motivated by the fact that they are generic
enough to be detected on any type of textured terrains, whatever the celestial body
explored. Since Lion was only tested in lunar conditions in this thesis, it would be
interesting to get test data representative of another environment. In addition, testing
on real flight data would allow to test the robustness of the image processing to vibra-
tions and validate the inertial propagation model since a real IMU could not be used
at scale in Visilab. All these aspects can be tested through an helicopter UAV terrestrial
flight experiment which was run in February, 2013 on the Caylus site near Toulouse.
The orthoimage and the DEM are at a 20-cm resolution (Sanfourche et al., 2012). The
trajectory shown in Figure 7.1 involved several horizontal passes at different altitudes
to test robustness to scale changes, another low altitude manual flight over houses
was done to test robustness to 3D terrains. Testing Lion on these data is planned as a
follow-on work at ESA-ESTEC. It can be related to previous absolute visual navigation
UAV flight experiments by Trawny et al. (2007) and Conte and Doherty (2009).

Because of the limited processing capability of space computers, Lion was devel-
oped with the objective to make the computational cost as low as possible. The tight
association between the online Harris feature extraction process and the a priori infor-
mation from the filter through the scale management allows to solve the repeatability
issue met by geometrical methods while being more efficient than standard scale-
invariant operators which have to browse through the scale space (Mikolajczyk and
Schmid, 2004; Lowe, 2004). A first step is to embed Lion in a space computer repre-
sentative of a planetary exploration mission to evaluate the absolute image-to-map
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Figure 7.1 – Helicopter UAV test flight trajectory over the Caylus site near Toulouse
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matching processing time. Next, the navigation accuracy tests of Chapter 6 should
be reevaluated with the new absolute navigation update rate. This real-time version
will also allow to trade off the navigation benefits of some extensions which could be
brought to Lion with respect to additional computational time required.

7.2.2 Extending Lion

Now there are a few extensions which could be added to the current version of Lion,
or simply compared to it.

The non-linearities of the inertial propagation and image measurement models de-
scribed in Chapter 3 are processed through a linearization assumption by the EKF of
Lion. We showed that, though simple, this assumption enables accuracy performances
down to 2.2 m (3-RMS) at the end of the visual performance on a lunar landing trajec-
tory with ideal image measurements, which is far enough for the 100-m accuracy re-
quirement. The accuracy difference from 2.2 m to the 20.2 m figure (3-RMS) measured
with actual image-to-map matching in Chapter 4 led us to focus on improving this
latter step in order to bridge the gap from ideal to real landmark-matching. Though,
comparing the ability of an Unscented Kalman Filter (UKF), or of a Particular Filter
(PF), to converge with real measurements would be interesting and original in the
future (Candy, 2009). Nevertheless, we suggest this comparison takes place once the
real-time version of Lion is available in order to take of the extra computational cost
of UKF and PF.

The Harris-Affine image features defined by Mikolajczyk and Schmid (2004) could
be compared to Harris-Laplace for orbital landmarks. Although the authors’ test seem
to indicate a lesser robustness to scale change, the improved affine robustness could
increase the performance under tilted descent camera angles happening at low alti-
tudes during the approach phase. That would require to enhance the map building
and online landmark reprojection processes with new information though.

We think that improving robustness to illumination changes between the reference
map and the flight data is another interesting path of research too, especially for
terrestrial applications of the algorithm. Unfortunately geometric descriptors are very
sensitive to this, but one could think of building maps using images from several
illumination angles, and only keeping stable and non-ambiguous features. As simpler
alternative for illumination robustness for lunar landing, craters can be extracted like
in Cheng and Ansar (2005) or Singh and Lim (2008) and processed in exactly the same
way as Harris-Laplace landmarks by Lion, replacing the landmark image scale by the
apparent crater radius in the orbital image.

From a more general standpoint about the filter, integrating relative visual navi-
gation like Mourikis et al. (2009) would enable to limit the inertial drift at the end of
the visual phase to increase touchdown accuracy. Nevertheless, our 53.8 m accuracy at
touchdown demonstrated in Chapter 4 showed that it is not imperative with respect
to the 100-m pinpoint landing requirement.

Finally, Kalman-based estimators are iterative processes which required an initial
estimate with some accuracy. Although acquiring this initial estimation accuracy is
not problematic on close planetary exploration targets like the Moon or Mars using
Earth-based orbit estimation resources, it could be one for further destinations, or for
terrestrial applications like urban UAV flight, where GPS is not accurate enough, or
model-based augmented reality. The ground truth pose refinement algorithm detailed
in Section 5.5 could actually be used for initialization. Affine-robust variations of SIFT
can be used instead of SIFT for extreme viewpoint change (Morel and Yu, 2009), and
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we had successful early tests of mutual information-base techniques for landmark
matching under important illumination changes (Viola and Well, 1997).
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Quaternions are commonly used to represent the orientation, or attitude, of one
frame with respect to another. They avoid the gimbal lock singularity problem

met by Euler angles while being more compact and more adapted to numerical
simulations than rotation matrices. This appendix is an introduction to quaternions
which derives the properties employed in the thesis. Trawny and Roumeliotis (2005)
and Llibre (2009) provide a more complete description. Shuster (1993) surveys the
various attitude representations.

Section A.1 and Section A.2 respectively define the quaternions and their multiplica-
tion. The relationship of quaternions with rotation matrices is derived in Section A.3,
and their time derivative in Section A.4.

A.1 Definition

A quaternion q is defined as

q = q0 + q1i + q2j + q3k (A.1)

where q0, q1, q2, q3 2 R and i, j, k are hypercomplex numbers such that

i2 = j2 = k2 = ijk = �1 . (A.2)

This is the standard Hamilton convention, from which we can derive all the products

ij = �ji = k (A.3)
jk = �kj = i (A.4)
ki = �ik = j . (A.5)

The set of quaternions is 4-dimensional euclidean vector space over the real numbers.
Quaternions are usually represented as a vector q 2 R4

q =
h

q0 q1 q2 q3

iT
=

"

q0

qv

#

, (A.6)

where q0 is the real or scalar part, and qv is the imaginary or vector part. They inherit
the addition and the scalar multiplication laws from R4.

If a quaternion verifies

q =

2

6

6

6

6

4

cos (q/2)

ux sin (q/2)

uy sin (q/2)

uz sin (q/2)

3

7

7

7

7

5

, (A.7)

then q is called a quaternion of rotation and can model the rotation of angle q along

the unit vector axis u =
h

ux uy uz

iT
. For a small rotation dq, the small angle

approximation yields cos (dq/2) ' 1 and sin (dq/2) ' dq
2 , thus posing dq = dq u we have

dq '
h

1 1
2 dqT

iT
. (A.8)
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A.2 Multiplication

The quaternion multiplication ⌦, also called the Hamilton product, is defined as

q⌦ p = (q0 + q1i + q2j + q3k) (p0 + p1i + p2j + p3k) (A.9)
q⌦ p = q0 p0 � q1 p1 � q2 p2 � q3 p3 + (q1 p0 + q0 p1 � q3 p2 + q2 p3) i

+ (q2 p0 + q3 p1 + q0 p2 � q1 p3) j + (q3 p0 � q2 p1 + q1 p2 + q0 p3) k (A.10)

q⌦ p =

2

6

6

6

6

4

q0 p0 � q1 p1 � q2 p2 � q3 p3

q1 p0 + q0 p1 � q3 p2 + q2 p3

q2 p0 + q3 p1 + q0 p2 � q1 p3

q3 p0 � q2 p1 + q1 p2 + q0 p3

3

7

7

7

7

5

(A.11)

q⌦ p =
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. (A.12)

If we define the matrix notation for the cross product in R3 using the skew-symmetric
matrix operator [qv^] as

[qv^] =

2

6

4

0 �q3 q2

q3 0 �q1

�q2 q1 0

3

7

5

, (A.13)

then we can write

q⌦ p =

"

q0 �qv
T

qv q0I3 + [qv^]

# "

p0

pv

#

(A.14)

=

"

q0 p0 � qv
T pv

p0qv + q0 pv + [qv^] pv

#

(A.15)

=

"

p0q0 � pv
Tqv

q0 pv + p0qv � [pv^] qv

#

(A.16)

=

"

p0 �pv
T

pv p0I3 � [pv^]

# "

q0

qv

#

. (A.17)

The neutral quaternion qI with respect to multiplication is

qI =
h

1 0 0 0
iT

(A.18)

and for any q it verifies

q⌦ qI = qI ⌦ q = q . (A.19)

The inverse of a quaternion q is the quaternion q�1 such that

q⌦ q�1 = q�1 ⌦ q = qI . (A.20)



A.3. Relationship with rotation matrices 127

For quaternions of rotations, the inverse quaternion1 is equal to the quaternion conju-
gate q⇤

q�1 = q⇤ =

"

q0

�qv

#

=

"

cos (q/2)

�u sin (q/2)

#

=

"

cos (�q/2)

u sin (�q/2)

#

. (A.21)

A.3 Relationship with rotation matrices

Let pv be a vector of R3 and let p be the associated pure quaternion

p =

"

0
pv

#

. (A.22)

If pa
v, pb

v 2 R3 respectively represent the components of pv in two different frames {a}
and {b}, and if qb

a describes the rotation from {a} to {b}, then

pb
v = C(qb

a)pa
v (A.23)

where C(qb
a) is the coordinate change matrix from {a} to {b}. It is orthogonal, thus

C(qb
a)
�1

= C(qb
a)

T.In terms of quaternions, as demonstrated in Llibre (2009), this is
equivalent to

"

0
pb

v

#

= (qb
a)
�1 ⌦

"

0
pa

v

#

⌦ qb
a . (A.24)

Hence, using a third frame {c}, we can derive the relationship between the composi-
tion of quaternions and the compositions of rotations

C(qc
a) = C(qb

a ⌦ qc
b) = C(qc

b)C(qb
a) . (A.25)

Let us now develop Equation (A.24) using Equation (A.14). To make reading easier,
1Which models the inverse rotation.
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we note q = qb
a =
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=

"

0
q0

2 pa
v � 2q0 [qv^] pa

v + qvqv
T pa

v + qvqv
T pa

v � pa
vqv

Tqv

#

(A.32)

From Equation (A.7),

kqk2 = q0
2 + qv

Tqv (A.33)

= (cos (q/2))2 + (sin (q/2))2 �ux
2 + uy

2 + uz
2� (A.34)

= (cos (q/2))2 + (sin (q/2))2 (A.35)
= 1 . (A.36)

Thus we can write
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=
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2q0
2 � 1

�

I3 � 2q0 [qv^] + 2qvqv
T

#
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v , (A.38)

and by identification

C(q) =
�

2q0
2 � 1

�

I3 � 2q0 [qv^] + 2qvqv
T . (A.39)

In small angle approximation, dq '
h

1 1
2 dqT

iT
and at first order

C(dq) = I3 � [dq^] . (A.40)

As an extension to Equation (A.39), we can derive for any quaternion p

q�1 ⌦ p⌦ q =

"

1 01⇥3

03⇥1 C(q)

# "

p0

pv

#

. (A.41)
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A.4 Time derivative

Let qb(t)
a be the quaternion which describes the rotation from a reference frame {a} to

a dynamic frame {b(t)} changing through time. Its time derivative is defined as

q̇b(t)
a = lim

Dt!0

1
Dt

⇣

qb(t+Dt)
a � qb(t)

a

⌘

(A.42)

= lim
Dt!0

1
Dt

⇣

qb(t)
a ⌦ qb(t+Dt)

b(t) � qb(t)
a ⌦ qI

⌘

, (A.43)

where the small angle approximation can be applied to qb(t+Dt)
b(t)

qb(t+Dt)
b(t) '
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2 dq
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(A.44)
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. (A.45)

Since by definition, limDt!0
dq
Dt = wb(t)

ab(t) where wb(t)
ab(t) is the angular velocity vector of

frame {b(t)} with respect to {a} and projected in {b(t)}, we have

q̇b(t)
a =

1
2

qb(t)
a ⌦
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0
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#

. (A.46)

From Equation (A.17), this leads to

q̇b(t)
a =
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q̇b(t)
a =

1
2

W(wb(t)
ab(t))q

b(t)
a , (A.48)

where the operator W is defined for all w 2 R3 by

W(w) =

"

0 �wT

w � [w^]

#

. (A.49)
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The standard GNC architecture is detailed in Figure B.1. The navigation system
estimates the position, velocity and attitude of the spacecraft. These quantities

form a state vector which is fed to the guidance and control systems to achieve a
reference trajectory. Navigation uses measurement signals coming from sensors along
with cartographic data stored in the on-board memory as inputs.

Figure B.1 – Detailed GNC architecture. The inputs and outputs of the navigation system
are highlighted in red. Navigation computes an estimate of the state vector using measurement
signals coming from the sensors and the cartographic data stored in the on-board memory.

Section B.1 defines the reference frames relevant for planetary landing. Sensor and
cartographic data inputs are respectively presented in Section B.2 and Section B.3.
Only the frames, states, sensors and cartographic data relevant to planetary landing
are discussed here. Eventually, Section B.4 defines the statistical indicators used to
characterize the navigation performance in Monte Carlo tests.

B.1 Navigation frames

Coordinate frames involved in navigation classically consist in an origin point and a
set of three axes. The axis unit vectors form an orthogonal right-handed basis set. Nav-
igation is a multiple coordinate frame problem in which the position and orientation
of an object frame is determined with respect to a reference frame.

B.1.1 Inertial frame

An inertial frame is defined as one that does not accelerate or rotate with respect to
the rest of the Universe. There is a multitude of them then. The inertial frame {i}
considered in this study is illustrated in Figure B.2 and is a planet-relative variant of
the J2000 frame used for Earth-centered navigation problems. The origin at the centre
of mass of the planet, and the axes are fixed with respect to distant stars. Technically
speaking, this is not a true inertial frame since any planet is experiencing translational
and rotational accelerations as it orbits around the Sun. However, the approximation
is accurate over the timescale of a descent and landing trajectory.

The zi axis points along the spin axis of the planet from the origin to the north pole.
The xi axis is defined as the direction from the origin to the Sun at spring equinox in
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Figure B.2 – Inertial frame

year 2000, namely when the Sun goes from the southern to the northern hemisphere.
The yi axis completes the orthogonal right-handed set. The xi and yi axes lie in the
equatorial plane and do not rotate with the planet.

B.1.2 Global frame

The global frame {g} has the same origin and z axis as {i}. However, the xg and yg
axes follow the planetary rotation. The xg axis points from the origin to intersect the
surface at the 0-degree longitude. The yg axis completes the orthogonal right-handed
set as shown in Figure B.3. This is not an inertial frame, but this is the one tied to the
on-board maps. The landing site is initially defined by its coordinates in {g}, thus the
navigation solution is also expressed in it.

O
g

z
g

y
gx

g

0° 90°E

Figure B.3 – Global frame

B.1.3 Body frame

The body frame {b} is tied to the lander vehicle and comprises its position and orien-
tation information. The origin is the one point of the vehicle the navigation solution
is sought for. The configuration used in our simulations is shown in Figure, the zb
axis points upwards along the thrust axis, namely opposite the engine thrust vector.
The xb axis is defined orthogonal to the zb axis, such that the xb-zb plane contains the
camera optical axis. The yb axis completes the orthogonal right-handed set.
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zb 

yb xb 

Figure B.4 – Body frame

B.1.4 Local frame

A local frame {l} is any one fixed with respect to the terrain, with its origin above or
on the surface. This type of frame is used in relative terrain navigation. Most often, it
corresponds to the body frame at a previous time step with respect to which the pose
of current body frame is determined, as illustrated in Figure B.5.
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Figure B.5 – Body and local frames

B.2 Sensor input

Measurement signals coming from the on-board sensors are the only source of online
information for an autonomous navigation system. This section reviews the various
sensing devices which are mentioned in the planetary navigation literature.

B.2.1 Inertial measurement unit

Inertial sensors include any type of accelerometers or gyroscopes (gyros). An IMU is
made of accelerometers and gyros. Three of each are deployed, one per axis, to pro-
duce 3D measurements of specific force ( f b

ib)m and angular rate (wb
ib)m of the body

frame with respect to the inertial frame {i}. The specific force measured by accelerom-
eters is the non-gravitational acceleration of the body frame. Attitude, velocity, and
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position estimates can be obtained by integrating the IMU signals at rates ranging
from 100 to 1000 Hz. The reference IMU is an aerospace-class model by Northrop
Grumman (2010). Its precision is characterized by an uncertainty of 300 µg (s) over
each accelerometer measurement and of 0.5 deg.hr-1 (s) over the gyro measurements,
s is the standard deviation.

B.2.2 Star tracker

Stellar sensors measure the line-of-sight vectors of known stars to get an attitude fix
(qb

i )m with respect to the inertial axes. A strapdown star tracker, also known as a star
imager, is a digital camera device using integrated software to match observed stars
with those of an embedded catalogue. It can provide accurate attitude estimation in
orbit or initialization for terrain-relative navigation using another attitude estimation
system. Star trackers can deliver data at a rate from 1 to 20 Hz, with a pointing
accuracy of the order of 0.01 deg (s) (EADS Sodern, 2010).

B.2.3 Terrain sensors

Altimeter

Both radar and laser altimeters can be used for planetary landing applications. An
electromagnetic signal is emitted downward and the height (h)m is computed by mea-
suring the time elapsed for the reflected signal to be received. Radar altimeters work
with radio signals, while laser devices make use of ultraviolet, visible or near-infrared
frequencies. True altitude, with respect to a reference surface level, can be computed if
an height database is stored on-board and if longitude and latitude estimates are avail-
able. Measurements are usually available from heights below 50 km at rates from 1 to
70 Hz and with an accuracy of 10 cm (s) (Smith et al., 2010). In addition to height mea-
surement, it should be noted that some radars can use the Doppler effect to provide
ground-relative velocity measurements with an accuracy below 10 cm.s-1 (s) (Pollard
and Sadowy, 2005).

Lidar

The term LIDAR is acronym for LIght Detection And Ranging. Due to the smaller
beamwidth of the laser range finders employed compared to radar devices, they can
be used to build up a 3D profile below the vehicle. Such a profile is called a range
image and it is the output a lidar device. There exist scanning and flash LIDARs.

A scanning lidar sends one tightly-collimated laser pulse at a time for each point
in a grid spanning across the field of view. The range image is constructed by post-
processing the data to take into account vehicle motion between each ranging mea-
surement. A flash lidar uses only one laser pulse to build the whole range image. The
pulse is optically diffused across the field of view and the time delay is measured in
each direction by one of the pixel of the detector array. Flash devices are very inter-
esting for EDL as nearly-instantaneaous data collection makes post-processing much
easier than in scanning. They can offer a 256⇥ 256-pixel range image measurements
at a rate of 30 Hz and with a range accuracy of 5 cm (s) within 5.5 km of the target
terrain(Weinberg et al., 2009).
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Camera

Like commercial digital cameras, those used for planetary landing consist in opti-
cal lenses coupled with flight-qualified image sensors. They output intensity images
which can be processed to detect surface features. Only cameras operating in the visi-
ble part of the spectrum are considered in the literature. As a passive device, cameras
can operate at any distance and provide bearing-only information, with a ground
resolution varying with altitude as shown in Figure B.6. They can acquire images at
a rate from 1 to 100 Hz but suffer from radial distortions and a zero-mean Gaus-
sian intensity noise with a standard deviation of 1 intensity level on an 8-bit image,
thus leading a Signal-to-Noise Ratio (SNR) of about 250 (s). The resolution of current
European sensors available for planetary landing, notably the baseline for the ESA
lunar lander mission, is 1024⇥ 1024 pixels, covering a field of view of 70 deg (Fischer
et al., 2012; Flandin et al., 2009). For optimal navigation performances, one would
want these two parameters to be as high as possible. Indeed, a higher sensor reso-
lution allows for more precise direction determination of the imaged terrain features
while a larger field of view makes the estimation of orientation and position along the
optical axis more accurate. However, due to the limited bandwidth of current Flexible
Programmable Gate Array (FPGA) boards used in space hardware and which have to
transmit an image to the navigation system at a given frequency, the maximum sen-
sor resolution is constrained. Likewise, the field of view is limited by the maximum
optical distortion level tolerated in the output image.
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Figure B.6 – Pixel footprint of the descent camera images as a function of altitude during a
lunar descent. In comparison, the green and the red horizontal lines show the footprint respec-
tively for the Wide-Angle Camera (WAC) and the Narrow-Angle Camera (NAC) onboard the
NASA-LRO spacecraft.

B.2.4 Summary

The type of measurement signals outputted by the different sensors reviewed is sum-
marized in Table B.1.
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Table B.1 – Sensor signals and update rates

Sensor Measurement signal Update rate (Hz) Accuracy (s)

IMU Specific force ( f b
ib)m 100-1000 300 µg

Angular rate (wb
ib)m 100-1000 0.5 deg.hr-1

Star tracker Attitude quaternion (qb
i )m 1-20 0.01 deg

Altimeter Height (h)m 1-70 10 cm
Lidar Range image 1-30 5 cm
Camera Intensity image 10-100 SNR ' 250 (s)

B.3 Terrain map data source

The only way to obtain pinpoint accuracy for the global state estimate x̂g in planetary
landing is to identify terrain landmark from terrain sensors by matching them with
reference maps stored in the on-board memory. These maps are usually created from
two types of orbital data acquired prior to the landing mission: images and digital
elevation models.

B.3.1 Orbital image

On planets considered as landing targets, visible image databases are available with
resolution which can vary from a hundred meters to below one meter. Each image is
referenced in terms of position and orientation of the camera with respect the global
coordinate frame {g}. They can be used to detect descent landmarks for the landing
camera.

B.3.2 Digital elevation model

The surface topography of a planet can be represented by a DEM. It is built from
altimetry profile measurements or by stereo imaging. The information of a DEM can
be put as a 3-row table: longitude, latitude, and elevation with respect to a reference
level. Map quality is affected by horizontal and vertical resolution and by the terrain
topography itself.

B.4 Error statistics

The performance of a navigation system is characterized by the mean and the disper-
sion of the state estimation error probability distribution. Such systems are usually
tested through Monte Carlo simulations, in which they are run an important number
of times N while randomly sampling the uncertain parameters.

Let x =
h

x y z
iT

be the real vector value of a 3-dimensional state which could
be the position at some time instant of the trajectory for instance. The values of this
state estimated by the navigation system throughout the N Monte Carlo simulations
are included in Table B.2.
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Table B.2 – Monte Carlo test estimates

x y z

x̂1 ŷ1 ẑ1
...

...
...

x̂N ŷN ẑN

B.4.1 Mean

The mean navigation error may be expressed as a scalar value over each axis with
8

>

<

>

:

µx = 1
N ÂN

i=1(x̂i � x)
µy = 1

N ÂN
i=1(ŷi � y)

µz = 1
N ÂN

i=1(ẑi � z)
, (B.1)

or as a vector quantity with

µ =

2

6

4

µx

µy

µz

3

7

5

. (B.2)

The norm kµk =
q

µx2 + µy2 + µz2 evaluates the magnitude of the mean error.

B.4.2 Dispersion

The statistical dispersion is a measure of how stretched the error distribution is with
respect to the mean error. It is measured over one axis using the standard deviation

sx =
q

1
N ÂN

i=1(x̂i � µx)2

sy =
q

1
N ÂN

i=1(ŷi � µy)2

sz =
q

1
N ÂN

i=1(ẑi � µz)2

. (B.3)

If a scalar random variable x follows a Gaussian distribution, then it verifies
P(µx � 3sx < x < µx + 3sx) ' 0.9973. This 3 s envelope is often used to illustrate the
uncertainty area of a variable, even if it is not Gaussian, but in this latter case it has no
strict statistical meaning. The equivalent of the standard deviation for vector quantities
is the covariance matrix

2

6

4

sx
2 sxy sxz

syx sy
2 szy

szx szy sz
2

3

7

5

, (B.4)

where non-diagonal terms are correlation coefficients.
To get a quicker grasp of dispersion for vector quantities, the Root Mean Square

(RMS) measure of the norm of the vector difference with respect to the mean provides
a scalar indicator defined by

RMS =

v

u

u

t

1
N

N

Â
i=1
kx̂i � µk2 , (B.5)
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which can actually be related to the various standard deviations as

RMS =

v

u

u

t

1
N

N

Â
i=1

⇣

(x̂i � µx)
2 +

�

ŷi � µy
�2

+ (ẑi � µz)
2
⌘

(B.6)

RMS =

v

u

u

t

1
N

N

Â
i=1

(x̂i � µx)
2 +

1
N

N

Â
i=1

�

ŷi � µy
�2

+
1
N

N

Â
i=1

(ẑi � µz)
2 (B.7)

RMS =
q

sx2 + sy2 + sz2 . (B.8)

Similarly to the 3 s envelope, the 3-RMS measure is used as a scalar indicator of the
uncertainty area of the vector variable.
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Kalman optimal filtering aims at estimating recursively the state model of an
uncertain linear model from a measurement perturbed by a noise. The estimate

is optimal with respect to the sum of the variances of the state vector components,
which it minimizes (Alazard, 2011). It is widely used in GNC systems for mobiles
vehicles, especially aircraft and spacecraft.

Section C.1 introduces the process and the equations of the Kalman and extended
Kalman filters. The actual equations of the Lion filter are derived in Section C.2.

C.1 Kalman and extended Kalman filtering

This section summarizes the general equations of the Kalman filter for linear systems,
and its extension to nonlinear systems with the extended Kalman filter. The derivation
of these equations can be found in Alazard (2011). Candy (2009) or Idier et al. (2004)
provide alternative demonstrations for discrete-time systems. Another introduction to
both Kalman and extended Kalman filtering can be found in Welch and Bishop (2006).

Nowadays, all calculators are digital so one may either choose to integrate the
continuous-time equations numerically or to use directly the discrete-time equations.
Lion actually does both as it uses a continuous-time propagation model with discrete-
time updates.

C.1.1 Continuous-time Kalman filter

Let us consider a continous-time linear state-space model
(

ẋ(t) = Fx(t) + Gw(t)
z(t) = Hx(t) + v(t)

(C.1)

where :

• x(t) 2 Rn is the state vector of the system,

• w(t) 2 Rq is the process noise which models the uncertainty of the system
through the matrix G 2 Rn⇥q,

• z(t) 2 Rm is measurement vector,

• v(t) 2 Rm is the measurement noise.

F, G and H matrices can be constant1 or change through time. w(t) and v(t) are
centered Gaussian white noises with respective power spectral densities W and V .

Integrating the state equation leads to the general solution :

x(t) = eF(t�t0)x(t0) +
Z t

t0

eF(t�t)Gw(t)dt . (C.2)

1Stationary case
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Propagation

An initial Gaussian estimate of the state of mean x̂(t0) of covariance matrix P(t0) can
be propagated through time by applying the expectation operator to the state equation
in the System (C.1) or to Equation (C.2) :

˙̂x�(t) = Fx̂�(t) (C.3)

x̂�(t) = eF(t�t0) x̂(t0) . (C.4)

The covariance matrix P(t0) can be propagated using the linear differential equation

Ṗ�(t) = FP�(t) + P�(t)FT + GWGT . (C.5)

Update

The updated Kalman filter state estimate x̂+(t) can be defined as a new dynamic
system with the measurement vector z(t) at input trough a gain matrix K(t)

˙̂x+(t) = F 0 x̂+(t) + K(t)z(t) . (C.6)

The estimate x̂+(t) can be shown to be unbiased if and only if F 0 = F � K(t)H, then

˙̂x+(t) = Fx̂+(t) + K(t)(z(t)� Hx+(t)) . (C.7)

The first term corresponds a propagation like in Equation (C.3) while the second
term is equivalent to a correction : the so-called update. Among all the possible gain
matrices, the Kalman one is derived as that minimizing the sum of the variances of
the state, thus the trace of the covariance matrix P+(t) :

K(t) = P+(t)HTV�1 . (C.8)

The continous-time Kalman covariance update follows the Riccati equation

Ṗ+
(t) = FP+(t) + P+(t)FT � P+(t)HTV�1HP+(t) + GWGT . (C.9)

C.1.2 Discrete-time Kalman filter

Likewise, a discrete-time linear state-space model can be defined by the stochastic
difference and measurement equations

(

xk+1 = Fxk + Gwk

zk = Hxk + vk
(C.10)

where wk and vk are centered Gaussian white noises with respective covariance ma-
trices W and V .

Propagation

The propagation step of an initial Gaussian estimate of the state x̂0 and of its covari-
ance P0 now gives the equations :

x̂�k+1 = Fx̂k (C.11)

P�k+1 = FPkFT + GWGT (C.12)
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Update

The updated Kalman filter state estimate x̂+k+1 can be obtained with

x̂+k+1 = x̂�k+1 + Kk+1(zk+1 � Hx̂�k+1) (C.13)

using the discrete Kalman gain

Kk+1 = P�k+1HT(HP�k+1HT + V)�1 . (C.14)

The discrete-time Kalman covariance is updated by

P+
k+1 = (In � Kk+1H)P�k+1 . (C.15)

C.1.3 Extended Kalman filter

Unfortunately, most real systems are not linear. Models like that of System (C.1) in
continuous time, or that of System (C.10) in discrete time, are then not valid any more
and the standard Kalman filtering framework discussed cannot be applied.

Let us consider the continuous-time nonlinear state-space model
(

ẋ(t) = f (x(t), w(t))
z(t) = h(x(t)) + v(t)

. (C.16)

where f and h are two nonlinear functions of the state x(t) 2 Rn. The process noise
w(t) 2 Rq and the measurement noise v(t) 2 Rm are centered Gaussian white noises
with respective power spectral densities W and V .

f allows to propagate a state estimate, and h to predict the measurement from it.
Though, the error covariance matrix cannot be propagated like in Kalman, neither an
optimal update.

The extended Kalman filter linearizes the System (C.16) about the current estimate
x̂(t) using multivariable Taylor series expansion

(

ẋ(t) = f (x̂(t), 0) + F J(x(t)� x̂(t)) + G Jw(t)
z(t) = h(x̂(t)) + H J(x(t)� x̂(t)) + v(t)

(C.17)

with the Jacobian matrices F J =
∂ f
∂x

�

�

�

x=x̂(t),w=0
, G J =

∂ f
∂w

�

�

�

x=x̂(t),w=0
and H J =

∂h
∂x

�

�

�

x=x̂(t)
.

Let dx = x(t)� x̂(t) be the estimation error and dz = z(t)� ẑ(t) = z(t)� h(x̂(t)
the measurement prediction error. The System (C.17) then becomes

(

ḋx = F Jdx + G Jw(t)
dz = H Jdx + v(t)

. (C.18)

The estimation error dx thus follows an observable linear state-space model with cen-
tered Gaussian white noises, on which the standard Kalman framework of Subsec-
tion C.1.1 can be applied. The state estimate is not mathematically optimal due to
the linearization, but the EKF empirically works well and provides near-optimal re-
sults when the system is not too nonlinear over the error range. This subsection only
discussed the continuous-time case but the EKF can also be derived in discrete time.
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C.2 Derivation of Lion EKF equations

This section demonstrates the equations used in the Lion EKF and discussed in Sec-
tion 3.2. The notations are identical.

C.2.1 Linearized propagation model

Result

The state estimation error dxV = xV � x̂V allows to linearize the EKF inertial propagation
model with respect to the estimated state vector x̂V

ḋxV = FVdxV + GVnIMU , (3.9)

where FV =

2

6

6

6

6

6

6

6

4

� [ŵ^] �I3 03 03 03

03 03 03 03 03

�C(q̂b
g)

T
[â^] 03 �2

h

w
g
ig^
i

�C(q̂b
g)

T �
h

w
g
ig^
i2

03 03 03 03 03

03 03 I3 03 03

3

7

7

7

7

7

7

7

5

(3.10)

and GV =

2

6

6

6

6

6

6

4

�I3 03 03 03

03 I3 03 03

03 03 �C(q̂b
g)

T 03

03 03 03 I3

03 03 03 03

3

7

7

7

7

7

7

5

. (3.11)

Proof

Each component of ḋxV =
h

ḋqb
g

T
ḋbgyr

T ˙dvg
gb

T
ḋbacc

T ˙dpg
gb

T
iT

can be expressed
linearly as a function dxV and nIMU .

The biases of the gyroscopes are non-static and modeled by a random walk pro-
cess, then

ḋbgyr = ḃgyr � ˙̂bgyr (C.19)
= nbgyr (C.20)

= 03⇥15dxV +
h

03 I3 03⇥6

i

nIMU . (C.21)

Likewise for the biases of the accelerometers:

ḋbacc = ḃacc � ˙̂bacc (C.22)
= nbacc (C.23)

= 03⇥15dxV +
h

03⇥9 I3

i

nIMU . (C.24)

By definition, the attitude quaternion can written be as

qb
g = q̂b

g ⌦ dqb
g (C.25)

q̇b
g = ˙̂qb

g ⌦ dqb
g + q̂b

g ⌦ ḋqb
g . (C.26)
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From Equation (A.46), q̇b
g = 1

2 qb
g ⌦

"

0
wb

gb

#

thus

1
2

qb
g ⌦

"

0
wb

gb

#

=
1
2

q̂b
g ⌦

"

0
ŵb

gb

#

⌦ dqb
g + q̂b

g ⌦ ḋqb
g (C.27)

q̂b
g ⌦ ḋqb

g =
1
2

 

qb
g ⌦

"

0
wb

gb

#

� q̂b
g ⌦

"

0
ŵb

gb

#

⌦ dqb
g

!

. (C.28)

A left multiplication by
⇣

q̂b
g

⌘�1
on each side yields

ḋqb
g =

1
2

 

dqb
g ⌦

"

0
wb

gb

#

�
"

0
ŵb

gb

#

⌦ dqb
g

!

. (C.29)

The gyroscope measurement model of Equation (3.4) can be written

wb
gb = wIMU � C(qb

g)w
g
ig � bgyr � ngyr (C.30)

ŵb
gb = wIMU � C(q̂b

g)w
g
ig � b̂gyr . (C.31)

Since qb
g = q̂b

g ⌦ dqb
g, from Equation (A.25) we have C(qb

g) = C(dqb
g)C(q̂b

g) and

wb
gb = wIMU � C(dqb

g)C(q̂b
g)w

g
ig � bgyr � ngyr . (C.32)

Using small angle approximation C(dqb
g) = I3 �

h

dqb
g^
i

from Equation (A.40) gives

wb
gb = wIMU � C(q̂b

g)w
g
ig +

h

dqb
g^
i

C(q̂b
g)w

g
ig � bgyr � ngyr (C.33)

= wIMU � C(q̂b
g)w

g
ig �

h

C(q̂b
g)w

g
ig^
i

dqb
g � bgyr � ngyr (C.34)

= ŵb
gb � dbgyr � ngyr �

h

C(q̂b
g)w

g
ig^
i

dqb
g . (C.35)

By substituting this result in Equation (C.29), we get
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(C.36)
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+ o(dkxk) . (C.37)
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Writing the quaternion product as in Equation (A.14) and Equation (A.17) leads to
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g =

1
2

0

@

2

4

0 �ŵb
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ḋqb
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The gyro noise ngyr is equivalent to a first-order term, hence

ḋqb
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(C.42)

which leads to the result by linearization:

ḋq
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dqb
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As of the error velocity vector, by definition

˙dvg
gb = v̇g

gb � ˙̂vg
gb (C.44)

˙dvg
gb = ag

gb � âg
gb (C.45)
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Since qb
g = q̂b

g ⌦ dqb
g, from Equation (A.25) we have C(qb

g) = C(dqb
g)C(q̂b

g) and
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Using small angle approximation C(dqb
g) = I3 �

h

dqb
g^
i

from Equation (A.40), and
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h

dqb
g^
iT

= �
h

dqb
g^
i
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The accelerometer noise nacc is equivalent to a first-order term, hence
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which leads to the result by linearization:
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And finally for the error position vector we get

˙dpg
gb = ṗg
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gb (C.52)
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gb (C.53)

= dvg
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C.2.2 Linearized measurement model

Result

The innovation dzj = zj � ẑj can be linearized as

dzj ' H jdx + nj = H j,qdqc
g + H j,pdpg

gc + nj , (3.18)

with H j,q =
1

ẑc
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ẑc
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g) , (3.20)

and H j =
h
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i

. (3.21)
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Proof

dzj = zj � ẑj = hj(x)� hj(x̂) + nj (C.56)

From Equation (3.6) and Equation (3.17), we have
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By definition pg
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Using small angle approximation C(dqc
g) = I3 �
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from Equation (A.40) yields
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ẑc

clj

zc
clj

ẑc
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and at the denominator, the depth of the landmark along the optical axis of the camera
zc

clj
turns into

zc
clj

=
h

0 0 1
i

C(dqc
g)C(q̂c

g)(pg
glj
� p̂g

gc � dpg
gc) (C.61)

zc
clj

=
h

0 0 1
i

C(q̂c
g)(pg

glj
� p̂g

gc)�
h

0 0 1
i

C(q̂c
g)dpg

gc

�
h

0 0 1
i h

dqc
g^
i

C(q̂c
g)(pg

glj
� p̂g

gc � dpg
gc) (C.62)
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with A =
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This can be simplified into
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By applying the Taylor theorem to f : x! 1
1+x in 0, we get
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This can be reinjected into Equation (C.66) and gives
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After linearization

dzj ' H j,qdqc
g + H j,pdpg

gc + nj . (3.18)

C.2.3 State augmentation

Result

The Jacobian matrix J allows to augment the error covariance matrix from R15⇥15 to R21⇥21
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Proof

Let us write dx 2 R15 the error state vector just before augmentation
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and dx0 2 R21 the augmented error state vector
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We seek the function g such that dx0 = g(dx). To do so, let us first determine the
subfonctions gq and gp such that respectively dqc

g = gq(dx) and dpg
gc = gp(dx).
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Using Equation (A.41), we can write
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Then, by identification:
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Likewise for gp:
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Using small angle approximation C(dqb
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Hence, the function g is linear and we have
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Let us note P(t) 2 R15⇥15 the covariance matrix just before augmentation and
P0(t) 2 R21⇥21 the augmented one.
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D.1. Mock-up 157

Camera true pose determination is required in order to acquire workable images for
navigation testing in Visilab. This process was discussed in Subsection 5.3.2 and

involves a series of four frames for which the origin and the orientation of the axes are
defined in this appendix. The horizontal plane and the vertical axis are respectively
defined by the mean plane of the optical table on which the camera support platform
is set up, and by its normal axis.

D.1 Mock-up

The mock-up frame {r} is the reference navigation frame in Visilab in which the DEM
is defined. It is equivalent to the lunar surface-fixed frame {g} employed in planetary
landing.

• Origin Or: on the bottom right corner of the mock-up when facing it, on the back
panel.

• xr axis: vertical upwards.
• yr axis: horizontal leftwards.
• zr axis: horizontal towards the front of the mock-up.

D.2 Calibration pattern

A calibration pattern is stuck on an aluminium plate located at the left of the mock-up
when facing it and screwed on the same longitudinal bars the mock-up is attached to.
The associated frame {p} is used as an intermediary one to compute the pose of the
camera with respect to the mock-up.

• Origin Op: on the front surface of the aluminum plate, the exact position depends
on the square corner chosen for optical pose computation.

• xp axis: vertical upwards.
• yp axis: horizontal leftwards.
• zp axis: horizontal towards the front of the mock-up.

D.3 Camera Calibration

The calibration pose and its frame {c} were defined to compute the orientation of
the camera with respect to the mock-up, and to enable the computation of the final
working position. The camera shall be oriented with the desired attitude as close as
possible to the calibration pattern so that it appears as big as possible in the image.
The wider the pattern in the image, the more accurate the camera calibration pose
estimation.

• Origin Oc: optical center of the camera in calibration pose.
• xc axis: line axis of the array on the sensor, towards the right when facing the

observed scene.
• yc axis: completes the direct trihedron.
• zc axis: along the optical axis, towards the observed scene.
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D.4 Working camera

The working pose of the camera at frame {w} is the one in which the final image
used by the navigation system is acquired, and for which ground truth is required.
The position is computed from the known displacement between from the calibration
pose while the orientation must remain the same.

• Origin Ow: optical center of the camera in working pose.
• xw axis: line axis of the array on the sensor, towards the right when facing the

observed scene.
• yw axis: completed the direct trihedron.
• zw axis: along the optical axis, towards the observed scene.
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E.1. Accuracy evaluation 161

Detailed result tables for the hardware tests of Lion performed in Visilab and
discussed in Chapter 6 are included in this appendix. The reference navigation

frame for all these tests is the mock-up frame {r} in Visilab, defined in Appendix D.
As explained in Subsection 6.1.2, the ground truth trajectory of the body frame {b}
was interpolated between the refined ground truth camera working pose estimates
{w}.

Section E.1 contains the results of the navigation accuracy tests over the dynamic
scaled lunar landing sequence while Section E.2 deals with the robustness tests over
the static sequences.

E.1 Accuracy evaluation

E.1.1 Nominal descent accuracy

Table E.1 – Lion navigation performance during lunar coasting phase with the low resolution
map. The errors are represented by a couple (µ, 3s). µ is the mean error. s denotes the dispersion
either as the standard deviation over one axis or as the RMS value for the total error.

Lunar altitude 100 km 50 km 15 km

dqb
r,i (per axis, deg) (0, 0.5) (0, 0.5) (0, 0.5)

Total dqb
r (deg) (0, 0.9) (0, 0.9) (0, 0.9)

Initial errors dvr
rb,i (per axis, m.s-1) (0, 5) (0, 5) (0, 5)

Total dvr
rb (m.s-1) (0, 8.7) (0, 8.7) (0, 8.7)

dpr
rb,i (per axis, m) (0, 5000) (0, 2500) (0, 750)

Total dpr
rb (m) (0, 8660) (0, 4330) (0, 1299)

dqb
r,x (deg) (0.04, 0.4) (�0.1, 0.6) (0.2, 0.4)

dqb
r,y (deg) (0.03, 0.3) (0.1, 0.3) (0.01, 0.4)

dqb
r,z (deg) (�0.03, 0.04) (�0.02, 0.04) (0.1, 0.1)

Total dqb
r (deg) (0.1, 0.5) (0.1, 0.7) (0.1, 0.6)

dvr
rb,x (crossrange, m.s-1) (3.7, 5.7) (3.3, 5.5) (0.6, 5.1)

Final errors dvr
rb,y (downrange, m.s-1) (3.9, 5.2) (9.5, 5.6) (0.3, 4.6)

dvr
rb,z (height, m.s-1) (�0.002, 7.0) (0.9, 5.9) (0.6, 4.2)

Total dvr
rb (m.s-1) (5.4, 10.4) (10.1, 9.8) (0.9, 8.0)

dpr
rb,x (crossrange, m) (128.9, 634.3) (57.8, 228.6) (74.2, 131.8)

dpr
rb,y (downrange, m) (�26.3, 712.2) (35.3, 193.6) (7.6, 104.5)

dpr
rb,z (height, m) (�45.1, 224.0) (54.4, 136.4) (�0.5, 52.7)

Total dpr
rb (m) (139.1, 979.6) (86.8, 329.2) (74.6, 176.2)
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Table E.2 – Lion navigation performance during braking phase with the Low Resolution (LR)
and High Resolution (HR) maps. The errors are represented by a couple (µ, 3s). µ is the mean
error. s denotes the dispersion either as the standard deviation over one axis or as the RMS
value for the total error.

Lunar altitude 10 km LR 10 km HR 5-3 km LR 5-3 km HR

dqb
r,i (per axis, deg) (0, 0.5) (0, 0.5) (0, 0.5) (0, 0.5)

Total dqb
r (deg) (0, 0.9) (0, 0.9) (0, 0.9) (0, 0.9)

Initial errors dvr
rb,i (per axis, m.s-1) (0, 5) (0, 5) (0, 5) (0, 5)

Total dvr
rb (m.s-1) (0, 8.7) (0, 8.7) (0, 8.7) (0, 8.7)

dpr
rb,i (per axis, m) (0, 500) (0, 500) (0, 250) (0, 250)

Total dpr
rb (m) (0, 866) (0, 866) (0, 433) (0, 433)

dqb
r,x (deg) (0.1, 0.7) (�0.005, 0.4) (0.4, 1.4) (�0.03, 0.5)

dqb
r,y (deg) (�0.1, 1.0) (0.01, 0.3) (�0.4, 1.0) (0.1, 0.4)

dqb
r,z (deg) (�0.03, 0.2) (�0.01, 0.1) (�0.8, 0.6) (�0.0006, 0.1)

Total dqb
r (deg) (0.2, 1.3) (0.01, 0.5) (0.9, 1.8) (0.1, 0.6)

dvr
rb,x (crossrange, m.s-1) (�0.7, 4.0) (�0.4, 2.6) (�0.6, 2.8) (�0.2, 1.4)

Final errors dvr
rb,y (downrange, m.s-1) (�1.6, 3.0) (�1.6, 3.6) (�0.3, 3.9) (�0.4, 1.0)

dvr
rb,z (height, m.s-1) (0.04, 4.6) (0.04, 3.4) (�0.2, 4.0) (�0.1, 2.0)

Total dvr
rb (m.s-1) (1.8, 6.8) (1.6, 5.7) (0.7, 6.2) (0.5, 2.6)

dpr
rb,x (crossrange, m) (45.4, 200.6) (1.6, 67.5) (61.4, 82.2) (3.9, 29.5)

dpr
rb,y (downrange, m) (31.0, 146.2) (�16.1, 88.7) (60.6, 102.6) (0.2, 32.1)

dpr
rb,z (height, m) (�13.4, 85.7) (�0.05, 43.0) (10.3, 89.3) (�0.6, 18.0)

Total dpr
rb (m) (56.6, 262.6) (16.2, 119.4) (86.9, 158.9) (4.0, 47.2)

E.1.2 Contribution of Visilab environmental error

Table E.3 – Contribution of Visilab environmental error to 3 s final position dispersion. s
denotes the dispersion either as the standard deviation over one axis or as the RMS value for
the total error.

Lunar altitude 100 km - LR 50 km - LR 15 km - LR 10 km - HR 5-3 km - HR

dpr
rb,x (crossrange, m) 634.3 228.6 131.8 67.5 29.5

Total dpr
rb,y (downrange, m) 712.2 193.6 104.5 88.7 32.1

errors dpr
rb,z (height, m) 224.0 136.4 52.7 43.0 18.0

Total dpr
rb (m) 979.6 329.2 176.2 119.4 47.2

dpr
rb,x (crossrange, m) 163.9 163.9 33.6 33.6 11.7

Environmental dpr
rb,y (downrange, m) 140.9 140.9 28.9 28.9 10.0

errors dpr
rb,z (height, m) 163.6 163.6 33.5 33.5 11.6

Total dpr
rb (m) 271.1 271.1 55.6 55.6 19.3
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E.2 Robustness evaluation

E.2.1 Camera sensor change

Table E.4 – Lion navigation robustness to camera sensor change (Visilab/Moon
scale ⇡ 1.1⇥ 10�5). The errors are represented by a couple (µ, 3s). µ is the mean error. s
denotes the dispersion either as the standard deviation over one axis or as the RMS value for
the total error.

Lunar altitude 20 km 43 km 67 km

Initial errors dpr
rb,i (per axis, m) (0, 1000) (0, 2150) (0, 3350)

Total dpr
rb (m) (0, 1732) (0, 3724) (0, 5802)

dpr
rb,x (crossrange, m) (�2.6, 48.3) (11.9, 86.2) (8.1, 175.9)

Regular dpr
rb,y (downrange, m) (�5.7, 91.1) (0.9, 146.1) (�10.6, 211.7)

map dpr
rb,z (height, m) (12.9, 99.4) (�3.3, 112.9) (�79.6, 344.1)

Final errors Total dpr
rb (m) (14.3, 143.3) (75.0, 203.7) (75.8, 440.6)

dpr
rb,x (crossrange, m) (2.2, 49.9) (12.2, 103.9) (34.7, 205.5)

Virtual-image dpr
rb,y (downrange, m) (�7.0, 36.6) (19.5, 108.1) (9.8, 199.0)

map dpr
rb,z (height, m) (8.5, 53.6) (53.5, 90.5) (�148.7, 217.0)

Total dpr
rb (m) (11.2, 81.8) (109.2, 175.2) (115.5, 359.0)

E.2.2 Off-nadir descent camera inclination

Table E.5 – Lion navigation robustness to off-nadir descent camera inclination (Visilab/Moon
scale ⇡ 1.1⇥ 10�5). The errors are represented by a couple (µ, 3s). µ is the mean error. s
denotes the dispersion either as the standard deviation over one axis or as the RMS value for
the total error.

Lunar altitude h h < 40 km 40 km < h < 70 km 70 km < h

Initial dpr
rb,i (per axis, m) (0, 1500) (0, 2750) (0, 4000)

errors Total dpr
rb (m) (0, 2598) (0, 4763) (0, 6928)

20-deg off nadir dpr
rb,x (crossrange, m) (�1.0, 47.4) (11.3, 92.4) (�2.2, 155.4)

Final dpr
rb,y (downrange, m) (�4.8, 58.3) (�6.9, 130.4) (�31.2, 215.2)

errors dpr
rb,z (height, m) (�11.9, 40.6) (�52.8, 45.3) (150.9, 163.8)

Total dpr
rb (m) (12.9, 85.4) (82.0, 166.1) (84.2, 311.9)

Initial dpr
rb,i (per axis, m) (0, 600) (0, 1100) (0, 1600)

errors Total dpr
rb (m) (0, 1039) (0, 1905) (0, 2771)

40-deg off nadir dpr
rb,x (crossrange, m) (35.4, 107.2) (18.0, 144.1) (17.8, 207.1)

Final dpr
rb,y (downrange, m) (�6.6, 112.6) (45.6, 233.5) (�3.1, 235.7)

errors dpr
rb,z (height, m) (2.4, 113.4) (45.6, 334.9) (15.4, 379.7)

Total dpr
rb (m) (36.1, 192.5) (47.0, 432.9) (67.5, 492.5)

Initial dpr
rb,i (per axis, m) (0, 600) (0, 1100) (0, 1600)

errors Total dpr
rb (m) (0, 1039) (0, 1905) (0, 2771)

60-deg off nadir dpr
rb,x (crossrange, m) (22.9, 103.8) (30.9, 197.1) (3.1, 211.9)

Final dpr
rb,y (downrange, m) (3.6, 173.6) (34.5, 225.6) (�38.7, 515.3)

errors dpr
rb,z (height, m) (�10.8, 121.9) (56.2, 213.9) (�21.6, 823.6)

Total dpr
rb (m) (25.6, 236.2) (124.7, 368.2) (39.3, 994.3)
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E.2.3 Illumination change

Table E.6 – Lion navigation robustness to light azimuth change (Visilab/Moon
scale ⇡ 1.1⇥ 10�5). The errors are represented by a couple (µ, 3s). µ is the mean error. s
denotes the dispersion either as the standard deviation over one axis or as the RMS value for
the total error.

Lunar altitude 20 km 43 km 67 km

Initial errors dpr
rb,i (per axis, m) (0, 1000) (0, 2150) (0, 3350)

Total dpr
rb (m) (0, 1732) (0, 3724) (0, 5802)

dpr
rb,x (crossrange, m) (2.2, 49.9) (12.2, 103.9) (34.7, 205.5)

Reference dpr
rb,y (downrange, m) (�7.0, 36.6) (19.5, 108.1) (9.8, 199.0)

illumination dpr
rb,z (height, m) (8.5, 53.6) (53.5, 90.5) (�148.7, 217.0)

Total dpr
rb (m) (11.2, 81.8) (109.2, 175.2) (115.5, 359.0)

dpr
rb,x (crossrange, m) (�3.1, 90.0) (�32.8, 660.0) (�171.7, 1568.4)

20-deg dpr
rb,y (downrange, m) (�14.3, 81.7) (2.3, 193.2) (49.8, 675.7)

azimuth change dpr
rb,z (height, m) (13.3, 96.0) (�101.5, 295.1) (�224.6, 508.6)

Total dpr
rb (m) (19.8, 154.9) (183.1, 748.3) (252.5, 1781.9)

dpr
rb,x (crossrange, m) (11.1, 304.8) (�29.7, 1512.1) (184.2, 2977.2)

Final errors 45-deg dpr
rb,y (downrange, m) (�53.7, 344.4) (�109.6, 860.0) (�86.0, 1728.4)

azimuth change dpr
rb,z (height, m) (61.6, 469.5) (106.4, 2074.1) (�112.3, 2673.1)

Total dpr
rb (m) (82.5, 657.2) (391.1, 2707.0) (467.8, 4358.5)

dpr
rb,x (crossrange, m) (�61.0, 246.5) (15.5, 1405.5) (�142.1, 1631.7)

80-deg dpr
rb,y (downrange, m) (14.5, 417.4) (109.8, 1145.7) (86.6, 1395.0)

azimuth change dpr
rb,z (height, m) (97.9, 474.9) (�27.1, 1107.8) (�234.2, 2241.9)

Total dpr
rb (m) (116.3, 678.6) (175.0, 2124.9) (327.3, 3103.9)

dpr
rb,x (crossrange, m) (�26.3, 155.9) (�7.5, 199.4) (�68.5, 648.2)

180-deg dpr
rb,y (downrange, m) (1.4, 200.3) (23.2, 129.8) (�78.1, 1094.4)

azimuth change dpr
rb,z (height, m) (2.5, 416.9) (�34.1, 262.2) (�252.2, 1409.3)

Total dpr
rb (m) (26.4, 488.1) (334.2, 354.1) (374.2, 1898.4)
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Table E.7 – Lion navigation robustness to light elevation change (Visilab/Moon
scale ⇡ 1.1⇥ 10�5). The errors are represented by a couple (µ, 3s). µ is the mean error. s
denotes the dispersion either as the standard deviation over one axis or as the RMS value for
the total error.

Lunar altitude 20 km 43 km 67 km

Initial errors dpr
rb,i (per axis, m) (0, 1000) (0, 2150) (0, 3350)

Total dpr
rb (m) (0, 1732) (0, 3724) (0, 5802)

dpr
rb,x (crossrange, m) (2.2, 49.9) (12.2, 103.9) (34.7, 205.5)

Reference dpr
rb,y (downrange, m) (�7.0, 36.6) (19.5, 108.1) (9.8, 199.0)

illumination dpr
rb,z (height, m) (8.5, 53.6) (53.5, 90.5) (�148.7, 217.0)

Total dpr
rb (m) (11.2, 81.8) (109.2, 175.2) (115.5, 359.0)

dpr
rb,x (crossrange, m) (�19.1, 588.1) (�104.4, 617.1) (�61.6, 3361.6)

-20-deg dpr
rb,y (downrange, m) (�6.6, 360.6) (62.2, 715.7) (54.2, 2685.2)

elevation change dpr
rb,z (height, m) (126.8, 1110.5) (�91.4, 884.7) (23.0, 1814.5)

Total dpr
rb (m) (128.4, 1307.3) (184.7, 1294.6) (176.7, 4669.4)

dpr
rb,x (crossrange, m) (�7.1, 58.8) (�1.7, 111.9) (7.4, 218.2)

Final errors -10-deg dpr
rb,y (downrange, m) (�21.2, 69.3) (�3.7, 109.6) (�59.1, 245.5)

elevation change dpr
rb,z (height, m) (5.3, 88.4) (�63.2, 148.6) (�125.7, 483.0)

Total dpr
rb (m) (22.9, 126.8) (181.5, 215.9) (186.5, 584.1)

dpr
rb,x (crossrange, m) (�9.1, 150.2) (�6.0, 115.8) (�33.2, 226.3)

+10-deg dpr
rb,y (downrange, m) (�12.0, 61.7) (37.5, 102.9) (6.0, 231.6)

azimuth change dpr
rb,z (height, m) (�0.2, 250.0) (�53.5, 120.8) (�238.1, 204.2)

Total dpr
rb (m) (15.1, 298.0) (176.6, 196.5) (187.6, 382.8)

dpr
rb,x (crossrange, m) (31.4, 503.1) (101.7, 1135.9) (9.02, 1179.4)

+20-deg dpr
rb,y (downrange, m) (85.7, 727.2) (16.4, 148.5) (51.1, 2013.8)

azimuth change dpr
rb,z (height, m) (17.6, 826.8) (106.1, 2223.3) (�115.5, 1835.4)

Total dpr
rb (m) (92.9, 1210.6) (594.5, 2501.1) (229.7, 2969.0)
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E.2.4 Non-flat terrain

Table E.8 – Lion navigation robustness to non-flat terrain (Visilab/Moon scale ⇡ 3.3⇥ 10�6).
The errors are represented by a couple (µ, 3s). µ is the mean error. s denotes the dispersion
either as the standard deviation over one axis or as the RMS value for the total error.

Lunar altitude 50 km 100 km 200 km

Initial errors dpr
rb,i (per axis, m) (0, 2500) (0, 5000) (0, 10000)

Total dpr
rb (m) (0, 4330) (0, 8660) (0, 17321)

dpr
rb,x (crossrange, m) (8.6, 166.7) (8.5, 269.7) (182.0, 610.5)

Flat-terrain dpr
rb,y (downrange, m) (�46.3, 200.1) (�81.8, 269.7) (�690.6, 747.0)

assumption dpr
rb,z (height, m) (1310.8, 630.9) (1376.2, 556.0) (9334.0, 3201.9)

Final errors Total dpr
rb (m) (1311.7, 682.8) (1378.7, 674.2) (9361.3, 3344.1)

dpr
rb,x (crossrange, m) (�17.7, 134.5) (16.9, 250.7) (72.0, 354.6)

No terrain dpr
rb,y (downrange, m) (14.6, 114.7) (11.4, 237.3) (84.2, 479.7)

assumption dpr
rb,z (height, m) (�70.6, 44.6) (10.8, 36.8) (�11.6, 215.5)

Total dpr
rb (m) (74.2, 182.2) (23.1, 347.1) (111.4, 634.3)
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Title Vision-Based Navigation for Pinpoint Planetary Landing on any Relief

Abstract This thesis introduces Lion, a vision-aided inertial navigation system for
pinpoint planetary landing. Lion can fly over any type of terrain, whatever its topog-
raphy, flat or not. Landing an autonomous spacecraft within 100 meters of a mapped
target is a navigation challenge in planetary exploration. Vision-based approaches at-
tempt to pair 2D features detected in camera images with 3D mapped landmarks to
reach the required precision. Lion tightly uses measurements from a novel image-to-
map matcher in order to update the state of an extended Kalman filter propagated
with inertial data. The image processing uses the state and covariance predictions
from the filter to determine the regions and extraction scales in which to search for
non-ambiguous landmarks in the image. The individual image scale management
process per landmark greatly improves the repeatability rate between the map and
descent images. We also designed a lunar-representative optical test bench called Visi-
lab to test Lion on. The observability of absolute navigation performances in Visilab
is evaluated with a novel error budget model. Finally, the system performances are
evaluated at the key altitudes of a lunar landing, in terms of accuracy and robustness
to sensor or illumination changes, off-nadir camera angle, and non-planar topogra-
phy. We demonstrate error convergence down to a mean of 4 meters and a 3-RMS
dispersion of 47 meters at 3 kilometers of altitude in hardware conditions at scale.

Keywords Navigation - Vision - Inertial - Landing - Moon - Precision

Titre Navigation visuelle pour l’atterrissage planétaire de précision indépendante
du relief

Résumé Cette thèse présente Lion, un système de navigation utilisant des informa-
tions visuelles et inertielles pour l’atterrissage planétaire de précision. Lion est conçu
pour voler au-dessus de n’importe quel type de terrain, plat ou accidenté, et ne fait pas
d’hypothèse sur sa topographie. Faire un atterrir un véhicule d’exploration planétaire
autonome à moins de 100 mètres d’un objectif cartographié est un défi pour la naviga-
tion. Les approches basées vision tentent d’apparrier des détails 2D détectés dans une
image avec des amers 3D cartographiés pour atteindre la précision requise. Lion utilise
de façon serrée des mesures venant d’un nouvel algorithme d’appariement image-
carte afin de mettre à jour l’état d’un filtre de Kalman étendu intégrant des données
inertielles. Le traitement d’image utilise les prédictions d’état et de covariance du filtre
dans le but de déterminer les régions et échelles d’extraction dans l’image où trou-
ver des amers non-ambigus. Le traitement local par amer de l’échelle image permet
d’améliorer de façon significative la répétabilité de leur détection entre l’image de de-
scente et l’image orbitale de référence. Nous avons également conçu un banc d’essai
matériel appelé Visilab pour évaluer Lion dans des conditions représentatives d’une
mission lunaire. L’observabilité des performances de navigation absolue dans Visilab
est évaluée à l’aide d’un nouveau modèle d’erreur. Les performances du systèmes
sont évaluées aux altitudes clés de la descente, en terme de précision de navigation et
robustesse au changement de capteurs ou d’illumination, inclinaison de la caméra de
descente, et sur différents types de relief. Lion converge jusqu’à une erreur de 4 mètres
de moyenne et 47 mètres de dispersion 3 RMS à 3 kilomètres d’altitude à l’échelle.

Mots-clés Navigation - Vision - Inertiel - Atterrissage - Lune - Précision
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