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Résumé en français

Résumé de la thèse

Dix ans après sa découverte, le graphène demeure une thématique très en vogue
en physique de la matière condensée et en sciences des matériaux. Cet unique
matériaux, un cristal véritablement bidimensionnel, qui a couté à ses inventeurs
A. Geim and K. Novoselov un Prix Nobel[? ], est considéré comme très prometteur
aussi bien de point de vue fondamental que pratique. La raison pour cela est la
physique des électrons dans le graphène, qui sous certains conditions peuvent être
vu comme des particules relativistes sans masse, décrites par l’équation de Dirac.
Par conséquent, le graphène pourrait servir comme un banc d’essai à état solid
pour des expériences en Électrodynamique Quantique. Des effets mésoscopiques
spécifiques comme l’Effet Hall Quantique non-conventionnel (relativiste) ou anti-
localisation faible sont observés dans le graphène. D’autre part, ce matériaux de-
vrait permettre la fabrication des transistors extrêmement rapides et des électrodes
transparents, ainsi que trouver son application en photovoltäıque. Plusieurs autres
applications sont envisagées.

Physique du Graphène

Le graphène est plus connu sous forme de graphite, qui est tout simplement un
tas des plans de graphène, tenus par les forces de van der Waals. Les atomes de
carbone dans le graphène sont placés sur un réseau hexagonal (ou en nid d’abeilles).
Ce réseau ne constitue pas un réseau de Bravais, faute de sa symétrie et la maille
élémentaire contient deux atomes. Par conséquent, il est d’usage de distinguer
deux sous-réseaux d’atomes A et B (voir fig. 1.a). Le réseau de Bravais dans ce
cas est de type triangulaire avec des vecteurs de base

a1 =
√

3aex and a2 =
√

3a

2
�
ex +

√
3ey

�
. (1)

v
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Figure 1: (a) Réseau hexagonal (ou en nid d’abeilles) du graphène avec deux
sous-réseaux en couleurs différentes, distance interatomique a = 0.142 nm. (b)
La première zone de Brillouin et les points K et K

� (deux seulement sont
inéquivalents).

Le réseau réciproque est engendré par les vecteurs suivants

a∗
1 = 2π

√
3a

�

ex −
ey
√

3

�

and a∗
2 = 4π

3a
ey, (2)

et la première zone de Brillouin est représenté sur fig. 1.b. Deux points particuliers
situés sur les coins de la première zone de Brillouin seront importants dans la suite.
Nous les notons K et K

�, ils sont donnés par les vecteurs

±K = ±
4π

3
√

3a
ex. (3)

Dans l’approximation de liaisons fortes on peut chercher les fonctions d’ondes
propres du système sous forme de combinaison linéaire des fonctions de Bloch de
deux sous-réseaux A et B:

ψk(r) = akϕ
A
k (r) + bkϕ

B
k (r) (4)

Les valeurs propres de l’équation de Schrödinger Hψk = �kψk seront données par
l’équation séculaire1

det


 −εk t · γk
t · γ

†
k −εk



 = 0 (5)

1Ici nous somme dans une approximation qui consiste à restreindre le couplage aux premiers
voisins uniquement et négliger le recouvrement entre les orbitaux atomiques.
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t étant l’intégrale de transfert (t ≈ −3 eV) et γk ≡ 1 + e
−ık·a2 + e

−ık·(a2−a1) est
un préfacteur de phases des premier voisins, venant du fait que chaque atome a
trois premiers voisins, dont deux n’appartiennent pas au même nœuds du réseau
de Bravais que lui-même. Cela donne deux solutions:

ε
±
k = ±t|γk| = ±t

����3 + 2
3�

i=1
cos (k · ai) (6)

Les solutions positives et négatives correspondent aux bandes de Conduction et
de Valence respectivement. Les deux bandes se touchent en deux points de la
première zone de Brillouin déjà mentionné: K et K

�. En particulier, la relation de
dispersion est linéarisables au voisinage de ses deux points. On utilise la notation
suivante: k = ±K + q où le vecteur q est tel que |q| � |K|. Cela résulte en
Hamiltonien effectif linéarisé autour du point K (pour K

� il faut inverser le signe):

�Hq = �vFqσ (7)

avec vF ≡ −
3ta
2� ≈ 1 × 106 m s−1 — vitesse de Fermi and σ ≡ (σx

, σ
y) — vecteur

de matrices de Pauli matrices. Mis sous cette forme, ce Hamiltonien est souvent
appelé le Hamiltonien de Dirac par analogie avec la physique des particules. La
relation de dispersion linéarisée est finalement donnée par:

ε
±
q = ±�vF|q|, (8)

aussi bien pour la linéarisation autour du point K, que autour du point K
�, ce

qui résulte en dégénérescence supplémentaire dite de vallée. Il est courant, en vue
de la forme du Hamiltonien (7), d’employer la notation vectorielle ou d’un spinor
(également par similitude avec la notation en physique des particules) pour décrire
les états du système:

Ψ±
k =

�
a

±
k

b
±
k

�

(9)

où les composantes de ce vecteur sont les facteurs de phase avec lesquelles les deux
sous réseaux contribuent à l’état donné. En particulier, les vecteurs propres du
nouveau Hamiltonien s’écrivent

Ψ±
k = 1

√
2

�
1

±e
ıφk

�

, avec φk = arctan
�

Imγk
Reγk

�

(10)

Cela n’est pas superflu de souligner ici que les caractéristiques extraordinaires
de ce matériau sont surtout déterminées par ces propriétés physiques singulières.
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Transport Mésoscopique dans le Graphène
Dans ce travail, le graphène est examiné du point de vu de la physique mésoscopique,

en particulier le mesures de la conductance et du bruit sont réalisées. Ce champ
de physique de la matière condensée s’intéresse aux systèmes dont la taille car-
actéristique appartient à l’échelle“intermédiaire” entre l’échelle microscopique et
l’échelle macroscopique. La limite inférieure de cette échelle peut être donnée par
la taille d’un atome, alors que la limité supérieur est déterminée par la longueur
de cohérence de phase lφ, la distance maximale sur laquelle la cohérence quantique
de phase des états est préservée. Sous ces conditions les effets quantiques tels que
les fluctuations quantiques, les interférences quantiques et parfois également les
interactions commencent a jouer un rôle important. Afin de briser la cohérence de
phase une diffusion inélastique est nécessaire et à basse température, où le couplage
électron-phonon est faible, celle-ci est due aux interactions électron-électron. En
dessous de lφ on peut également distinguer deux régimes différents. Si en traver-
sant l’échantillon, les électrons subissent un grand nombre de collisions élastiques,
c’est un régime dit diffusif. Alors que, si en traversant l’échantillon ils ne subis-
sent aucun choc, c’est un régime dit balistique. La longueur caractéristique de
transition entre ces deux régimes s’appelle le libre parcours moyen, le.

L’approche le plus rependu de traiter les problèmes à l’échelle mésoscopique
est celle de la théorie de la diffusion proposé par R. Landauer[91, 93, 94, 19, 92] et
développée ensuite par M. Büttiker[19, 20, 92, 16, 17, 18], Y. Imry[72, 19, 20, 73, 141, 74] et
d’autres personnalités. L’idée de cette théorie consiste a relier les propriétés de
transport du système étudié (e.g. conductance, les fluctuations du courant) à
ses propriétés de diffusion, considérées d’être connues à partir des calculs de la
mécanique quantique. Par exemple analysons le cas d’un conducteur à deux ter-
minaux (le gauche et le droit), connecté à deux réservoirs d’électrons (voir fig. 2).
On peut distinguer deux types d’états aussi bien à gauche qu’à droite: les états
incidents sur le conducteur et les états quittant le conducteur vers l’un ou l’autre
réservoir. Le bilan de tous ses états va déterminer les propriétés de transport du
système étudié. La théorie de la diffusion propose donc de calculer la matrice dite
de la diffusion reliant les états incidents aux états quittant le conducteur à gauche
et à droite. Les éléments de cette matrice permettent de parvenir jusqu’aux coef-
ficients de la transmission ou de la diffusion de chaque mode de propagation, Dn

et Rn = 1 − Dn, n étant l’indice de mode (évidemment Dn ≤ 1).
Mentionnons deux principaux résultats de cette théorie. Tout d’abord la con-

ductance d’un conducteur cohérent est donnée par la formule

G = 2e
2

h

�

n

Dn (11)

la quantité 2e2

h , appelée le quantum de conductance, définit la conductance maxi-
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[14] Blanter and Büttiker (1999)

Figure 2: Exemple du problème d’un conducteur à deux terminaux dans la théorie
de la diffusion. Adopté de [14].

male que peux avoir un mode de transmission. Ce résultat est d’une très grande
portée, car il montre que même en absence de toute diffusion la conductance n’est
pas infini, ce qu’un modèle classique n’est pas capable de prédire. En effet, ce
fait est une conséquence à la fois du principe de Pauli et du prince d’incertitude
d’Heisenberg. Le premier limite le nombre d’électrons par état à deux (spin up et
spin down), alors que le dernier défini l’espacement sur l’axe temporel des paquets
d’ondes d’une tranche d’énergie donnée (égale à µL−µR) et ainsi limite la fréquence
d’injection des paquets dans le conducteur.

Le deuxième résultat concerne le bruit de partition. La densité spectrale de
“pur” bruit de partition (i.e. à température nul) s’écrit

SI = 2eI

�
n Dn(1 − Dn)

�
n Dn

(12)

et si le bruit thermique est pris en compte, on obtient

SI = 42e
2

h

�

n

D
2
nkBT + 2e

2e
2

h

�

n

Dn(1 − Dn)V coth
�

eV

2kBT

�

(13)

On introduit alors une quantité qu’on appel le facteur de Fano:

F =
�

n Dn(1 − Dn)
�

n Dn
(14)

La conductance et le facteur de Fano sont les caractéristiques principales d’un
conducteur mésoscopique. Prenons quelques exemples type. Le facteur de Fano
d’un conducteur balistique est évidemment nul, tandis que pour une jonction tun-
nel où tous les coefficients de transmission sont extrêmement faibles, il vaut un.
Le cas d’un conducteur diffusif est plus compliqué, car il n’y est pas possible de
calculer précisément les coefficients de transmission Dn. Seulement la distribution
de probabilités pour ces coefficients de prendre une valeur est calculable. Avec ce
résultat le facteur de Fano égal à 1/3 a été déduit.
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[148] Tworzydlo et al. (2006)

Figure 3: Dépendance en énergie de la conductivité σ (a) et du facteur de Fano F
(b) pour un rapport d’aspects W/L = 5. Le minimum de la conductivité au point
de Dirac correspond au maximum du facteur de Fano. Adopté de [148].

Revenons à présent au graphène. Les propriété du transport cohérent d’un
ruban de graphene idéal ont été calculées par Tworzydlo et al. de façon analytique.
Les coefficients de la transmission sont donnés par la formule suivante

Dn =
�����

kn

kn cos (knL) + ı(µ/�vF) sin (knL)

�����

2

, (15)

où µ est le potentiel électrochimique du conducteur, qn — le moment transversal
du mode n et kn =

�
(µ/�vF)2 − q2

n. À l’aide de cette formule, la conductance (ou
la conductivité σ ≡ G × L/W ) et le facteur de Fano sont calculés. Dans la limite
W/L → ∞ (déjà satisfaite pour W/L � 4) on conclue, que ses quantités au point
de neutralité prennent des valeur universelles:

σ →
4e

2

πh
, F → 1/3, lors que µ = 0 (16)

Les résultats plus complets son présentés sur fig. 3. La conductivité atteint donc
son minimum au même temps que le facteur de Fano atteint son maximum et cela
au point de neutralité (aussi appelé le point de Dirac).

Il est remarquable que dans un ruban de graphène idéal et donc balistique le
facteur de Fano prenne au point de neutralité la valeur 1/3, qui est celle d’un
conducteur diffusif. Ce fait a suscité beaucoup d’intérêt.

D’autre part, pour le graphène diffusif il n’existe pas de modèle analytique et
il n’y pas d’unanimité sur la valeur exacte du facteur de Fano ainsi que de sa
dépendance en potentiel électrochimique et en degré de désordre. Citons quelque
résultats numériques. San-Jose et al. examinent le problème dans le cadre du
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[42] DiCarlo et al. (2008)

[35] Danneau et al. (2008)

Figure 4: Résultats précédents. Mesure par DiCarlo et al. de la résistance (a) et
du facteur de Fano (b). Adopté de [42]. (c) et (d) — mesures des mêmes quantités
par Danneau et al., adopté de [35]

formalisme des matrices de transfert en considérant un potentiel de désordre lisse
uni- et bi-dimensionnel. Ils obtiennent le valeurs F1D = 0.243 et F2D = 0.295 dans
ces deux cas respectifs. Lewenkopf et al. ont utilisé la méthode des fonctions de
Green récursives pour le désordre à longue portée. Ils concluent pour un niveau de
désordre modéré, que le facteur de Fano est situé autour de 0.25−0.29 (en fonction
du degré de désordre), mais également prédisent l’apparition d’un pic au point de
neutralité. Logoteta et al. étudie le facteur de Fano en fonction du potentiel
électrochimique en résolvant l’équation de Dirac par la méthode des fonctions
enveloppes et de Fourier[103]. Pour les rapports d’aspects et les concentrations
d’impuretés qui nous intéresseront, ils trouvent que F oscille autour de 0.25 et
atteint au point de neutralité 0.35.

Finalement, regardons des travaux d’expérimentateurs à ce sujet, présentés
en partie sur la fig. 4. Seulement deux études du bruit dans le graphène ont
été menées précédemment. La première, a été réalisée à l’Université de Harvard
par DiCarlo et al. Leurs échantillons se sont montrés diffusifs et ils ont observé
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le facteur de Fano situé près de 0.35 et pratiquement indépendant du potentiel
électrochimique. Quant à la conductivité au point de neutralité, celle-ci à large-
ment dépassé la valeur 4e2

πh . La deuxième étude réalisée par Danneau et al. à
l’Université de Helsinki montre sur un échantillon que les valeurs universelles de
la conductivité et du facteur de Fano sont atteint, alors que leurs mesures sur
les autres échantillons sont moins concluantes. Il reste donc bien des questions
ouvertes atour de ce sujet.

Présentation de l’approche expérimentale
Nous présentons ici une troisième expérience de bruit quantique dans le graphène,

complétant les deux travaux ci-dessus. Dans notre expérience nous avons eu
recours à un nombre de techniques de mesures de bruit pour ainsi obtenir des
conditions expérimentales les plus favorables et dépasser certaines limitations des
travaux précédents. Notamment dans notre expérience nous appliquons la méthode
de corrélations croisées qui, au prix d’un doublement du nombre des lignes de
détection, permet de réduire significativement l’impacte du système de détection
sur le bruit détecté. De plus, nous faisons une mesure quatre points, qui a des
avantages évidents pour une mesure de conductance mais également pour celle du
bruit, car elle exclut la source parasite de bruit thermique que sont les résistances
de contacte. Utilisation des amplificateurs cryogéniques bas bruit (faits maison)
placés à proximité de l’échantillon et couplés aux circuits résonants (fréquence de
résonance � 3.3 MHz) rendent la détection plus efficace et rapide et la contribution
du bruit en 1/f négligeable. Finalement la chute du potentiel est retrouvée grâce
à deux amplificateurs différentiels (situés à température ambiante), les signaux
sont numérisés par une carte rapide d’acquisition (échantillonnage à 10 MHz) et la
puissance spectrale est calculé par l’ordinateur à l’aide d’un module de transformé
de Fourier rapide. Le principe de notre système expérimental est décrit dans la
sec. 4.2.

Notre échantillon comporte également des avantages (voir subsec. 4.2.1). Prem-
ièrement, il a une géométrie spéciale: nous étudions le transport non pas à travers
toute la couche de graphène, mais seulement à travers une étroite constriction
que possède la couche. La constrictions étant beaucoup plus étroite que le reste
de la couche, ces propriétés vont dominer le transport à travers l’échantillon. Les
problèmes de mauvais contacts entre les réservoirs d’électrons et le conducteur (i.e.
la région étudiée) seront ainsi évités, car les trois font partie de la même couche de
graphène. Finalement, afin d’échapper aux capacités parasites par l’intermédiaire
du substrat nous avons déposé le graphène sur un substrat de silicium non-dopé
et utilisons des grilles latérales à la place de la grille arrière. Toutes les étapes
de fabrication de l’échantillon ont été effectué par l’auteur et uniquement dans
le laboratoire d’origine, elles sont exposées dans le Chapitre 5. Schéma du cir-
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Figure 5: Dessin du dispositif à base de graphène utilisé dans nos expériences:
1 — deux électrodes d’injection du courant, 2 — quatre sondes de tension, 3 —
grilles latérales (déconnectées électriquement du graphène), 4 — nano-constriction,
jouant le rôle d’un conducteur cohérent (proportions ne sont pas conservées pour
meilleure visibilité). L’ensemble est situé sur un substrat de silicium isolant (en
violet), contenant une couche de SiO2 (in bleu claire).

cuit de mesure avec un dessin de l’échantillon au centre: six contacts ohmiques
sont colorés en jaune et les grilles latérales en vert, la constriction est montrée
explicitement et notée Rs. Quatre lignes de mesure de tension identiques sont con-
nectées à l’échantillon, chacune contient un circuit résonant et un amplificateur
cryogénique. A température ambiante elles sont connectées à deux amplificateurs
différentiels NF SA-420F5, ce qui résulte au final en deux canaux de sortie (ch0
et ch1), qui à leur tour sont branchés sur les entrées des différents instruments de
mesure, y compris la carte rapide acquisition (aussi dessinée). Une grande partie
du circuit (délimitée sur le schéma par une ligne de tirets) est située dans une
canne frigorifique, les températures expérimentales possibles sont indiquées.

En revanche, le prix à payer pour les bénéfices remarquables que représente
l’architecture de notre système expérimental est une fabrication des échantillons
extrêmement laborieuse (voir Chapitre 5), mais aussi une calibration du système
expérimental difficile et très subtile, due au fait que les amplificateurs cryogéniques
employés ont un gain ajustable et apriori inconnu. Par conséquent, nous devions
nous assurer d’abord que les quatre lignes de mesure de tension, que nous util-
isons pour la détection du bruit, ont précisément le même gain chacune et ensuite
déterminer ce gain. À la procédure de calibration est consacré le Chapitre 6 de ce
manuscrit.

Présentation des résultats
Avant de passer à la mesure du bruit nous avons mené quelques mesures

préliminaires. La conductance de notre échantillon en fonction de la tension de
grille a été déterminée (voir Chapitre 7). A la base, notre échantillon est dopé en
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trous, mais grâce aux grilles latérales nous pouvons largement dépasser le point de
neutralité et doper notre échantillon en électrons. La comparaison des résultats
de cette mesure avec les prédictions théoriques pour le régime balistique et celui
diffusif nous permet de confirmer le caractère diffusif de notre échantillon (voir
subsec. 7.1.1 et subsec. 7.1.2). Nous avons pu également estimer la mobilité,
le libre parcours moyen, la densité d’impuretés, la longueur de cohérence et cer-
tains autres caractéristiques de notre échantillon, ce que nous décrivons dans la
subsec. 7.1.3.
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Figure 7: La résistance de la constriction en fonction de la tension de grille (vert
et bleu). Les résultats d’ajustement des paramètres en considérant le modèle de
transport diffusif décrit dans le texte (en violet) et une amélioration de ce modèle
(en rouge).

En outre, nous avons sondé les propriété non-linéaires de notre échantillon par
une mesure de conductance différentiel en fonction de la tension DC appliquée
(voir sec. 7.2). Cela nous sert entre autre à relier lors de la mesure du bruit le
courant DC que nous injectons dans l’échantillon et la tension qui se forme au
bord de la constriction.

Une mesure dans le régime d’Effet Hall Quantique a été aussi effectuée, ce que
nous décrivons dans le Chapitre 8. Celle-ci nous a notamment permis de connâıtre
la densité de porteurs de charge en fonction de la tension de grille appliquée.

Finalement, nous avons procédé aux mesures du bruit. Les expériences précé-
dentes nous ont servi de correctement interpréter nos mesures (voir sec. 9.1). A
partir des résultats de celles-ci nous avons conclu, que la température des électrons
dans la constriction dépasse la température du bain d’hélium. Nous avons tenté
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Figure 8: Un graphique couleur de la résistance mesurée avec la combinaison
croisée des sondes de tension (voir le texte) en fonction de ∆VG = VG − VD et du
champ magnétique B. Les courbes du haut montre la variation de la résistance
au champ magnétique maximal B = 7.565 T (courbe rouge) et de la résistance
moyennée sur les lignes (radiales) de facteur de remplissage constant (courbe verte).

d’expliquer ce fait par la dissipation dans un des contacts d’injection du courant,
qui s’est avéré de très haute résistance. Initialement le modèle de propagation
de la chaleur par la diffusion électronique seule a été envisagé (conductance ther-
mique donnée par la loi Wiedemann-Franz, voir subsec. 9.2.1). En utilisant ce
modèle la dépendance de la température électronique du courant injecté a été
déterminée pour l’utiliser dans le modèle du bruit (représenté à température con-
stante par l’équation (13), voir subsec. 9.2.2). De là nous avons extrait le facteur de
Fano et une raisonnable température (proche de celle du bain d’hélium) de l’étage
où l’échantillon est thermiquement ancré. En revanche, le troisième paramètre
ajustable extrait correspondait a une résistance du graphène plus faible que ce
que nous avons estimé. Par conséquent, nous avons évoqué le mécanisme de re-
froidissement d’électrons par le couplage aux phonons décrit dans la subsec. 9.2.3.
Nous avons calculé la distance après laquelle la température électronique sera peu
différente de la température du réseau cristallin. Cette distance caractéristique
est comparable à la distance entre la source de chaleur et la constriction, ce qui
confirme l’efficacité de ce deuxième mécanisme.
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Dans la sec. 9.3 nous nous sommes également intéressé aux irrégularités des
courbes de bruit obtenues. Ces irrégularités sont les fluctuations de la puissance
spectrale du bruit, qui ont le même origine que les fluctuations universelles de la
conductance à savoir les interférences complexes entre les différents chemins de
propagation dans un conducteur diffusif, qui dépendent de l’énergie de la particule
injectée et vont ainsi impacter les coefficients de la transmission. Ce phénomène
a été examiné de façon théorique dans des gazes bidimensionnels d’électrons con-
ventionnels par de Jong and Beenakker, qui ont proposé l’expression suivante pour
les fluctuations de la densité spectrale:

r.m.s. δSII = 2e|Vds|
2e

2

h

�
46

2835 (17)

Applicabilité de cette formule dans le cas du graphène a été vérifiée. Nos résultats
sont montés sur la fig. 9 et exposés de façon plus détallée dans la sec. 9.3. Nous
concluons que (17) est en effet applicable à un coefficient numérique près.

Nos mesures nous fournissent la dépendance du facteur de Fano de la tension
de grille représentée sur la fig. 10. La variation avec la tension de grille est faible,
le facteur de Fano reste proche de ≈ 0.25. En revanche, les fluctuations du facteur
de Fano sont bien prononcées.

Comme il a déjà été noté, notre échantillon est diffusif, le comportement du
facteur de Fano n’est pas décrit par le modèle proposé par Tworzydlo et al. pour



CONTENTS xvii

30 40 50 60 70 80 90
0,0

0,2

0,4

0,6

Fa
no

 F
ac

to
r

VG(V)

Figure 10: Facteur de Fano en fonction de la tension de grille, extrait des données
expérimentales par l’ajustement des trois paramètres, la ligne horizontale en
pointillés correspond à la valeur 1/3. Le point de Dirac se trouve entre 58 et
61 V.

un ruban idéal (balistique) de graphène. En revanche, nos résultats présentent
une forte similitude avec ceux de Danneau et al. pour leur échantillon diffusif
(échantillon E). Quant à DiCarlo et al., il ont mesuré des valeurs ≈ 0.35, de 45%
supérieur par rapport aux nôtres et le facteur de Fano dans leur mesure ne varie
pas du tout avec la tension de grille. Nous attribuons cette disparité entre les
deux résultats aux différences dans le degré du désordre entre deux échantillons.
L’accord avec les résultats théoriques, présentés au début de ce résumé (voir les
travaux de San-Jose et al., Lewenkopf et al., Logoteta et al.) est également bon.
Notamment, le pic au point de neutralité, prédit par Lewenkopf et al. et par
Logoteta et al. est clairement visible sur la fig. 10. Une analyse plus conséquent
de nos résultat se trouve dans la sec. 9.4.
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Introduction

Ten years after its discovery, graphene remains the hottest topic of the con-
densed matter physics and the materials science. This unique, truly two-dimensional
carbon based crystal “costed” their inventors A. Geim and K. Novoselov a Nobel
Prize[? ]. Today, new, more “industrializable” deposition techniques are ready to
replace the micromechanical cleavage, once allowed to isolate the first graphene
layer[114]. These technique (CVD, SiC sublimation, MBE), already employed in
the laboratories, can in a not so far future bring graphene into the everyday life
devices.

So, let us see, what graphene is exactly about. The carbon atoms in graphene
are arranged in a hexagonal or honeycomb lattice as shown in fig. 11.a. Particular
symmetries of this lattice together with the confinement in two-dimensions result
in what became the hallmark of graphene: to some extent, electrons in graphene
are considered to have zero effective mass and obey Dirac Equation, described by
matrix Hamiltonian

Hq = �vF

�
0 qx − ıqy

qx − ıqy 0

�

(18)

where q is the wave vector with respect to one of two very singular points of
graphene Brillouin Zone, called Dirac points and denoted K and K

�. This equation
leads to a linear dispersion relation around each of these two points, known as Dirac
cones or valleys, shown in fig. 11.a, yielding additional two-fold valley degeneracy.
The above-mentioned facts determine most of the singular physical properties of
this unique material. But, why exactly is this material so fascinating?

For the fundamental scientists, graphene appeared attractive promptly after
revealing its potential to turn into a solid-state test bed for the Quantum Electro-
dynamics (QED). Low-energy electronic excitations in graphene, being massless
chiral Dirac fermions with an effective speed of light ≈ c/300[115], hence mimic
their QED counterparts (like neutrino for instance) and could probably allow to
observe in an nanometre-size 2D crystal certain High Energy Physics phenomena,
for which usually atom-smasher-scale facilities are required. In particular, some
relativistic effects, theoretically predicted, but experimentally not yet confirmed,
such as Klein paradox[86] (transmission of particles through a classically forbidden

1
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[158] Williams (2009)

Figure 11: (a) Graphene honeycomb lattice with two sublattices A and B high-
lighted with different colours. Interatomic distance a = 0.142 nm. (b) Dirac cone.
From [158]

region with probability close to one) or Zitterbewegung[133] (jittery motion of a
particle, due to interference between components of its wavefunction belonging to
positive (electron) and negative (positron) energy states), are likely to manifest
themselves in graphene[82, 81].

On the other hand, several singularities of graphene physics present an interest
for a condensed matter physicists, regardless of any QED considerations. To name
only few, unconventional Quantum Hall Effect, observed even at room temperature
thanks to the the large cyclotron energies of electrons in graphene[116], Quantum
Hall Isospin Ferromagnetism, due to its fourfold spin–valley degeneracy and the
strong Coulomb interactions[166] or 2π Berry phase-related weak anti-localization
effect enhancing the classical Drude conductivity[161]. In addition, pronounced am-
bipolar electric field effect and predicted high room-temperature mobilities even
up to 200 000 cm2 V−1 s−1[27] (such mobilities, but at 5 K and in suspended samples
were reported by Bolotin et al.) make of graphene a very appealing material for ex-
perimentalist, but also for microelectronics engineers. Graphene-based high-speed
electronics is among the most promising applications of this material: implemen-
tation of a room-temperature ballistic transistor, operating at THz frequencies
would be a ground breaking achievement of the microelectronics. Recently re-
ported 427 GHz graphene transistor[31] and new graphene-adapted logic circuits
architecture[98] together with latest numerical results[174], make believe that the
idea of large-scale manufacturing of such devices is not just hypothetical. An-
other, more trivial application of graphene in the field of microelectronics are
flexible transparent electrodes.

Microelectronics is not the only sphere of graphene application. Other poten-
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[148] Tworzydlo et al. (2006)

Figure 12: Fermi energy dependence of the conductivity σ (a) and the Fano factor
F (b) at fixed aspect ratio W/L = 5. The conductivity minimum at the Dirac
point corresponds to maximal Fano factor. From [148].

tial application is the photovoltaics. According to the recent study by Tielrooij
et al., in graphene the internal quantum efficiency is enhanced through “hot-carrier
multiplication” cascade-type process. In a nutshell, photoexcited carriers trans-
fer their excess energy to other charge carriers, creating additional electron-hole
pairs, instead of heating the lattice as it is often the case in other materials.
In addition, by placing an appropriate plasmonic nanostructures near graphene
p-n junction, the efficiency can be further enhanced by order of magnitude[46].
Besides, graphene is a very hopeful candidate for the development of Terahertz
domain detectors[79, 154], which is a challenging task of today’s photonics. Finally,
it is also worth citing several other applications as chemical and bio sensors[134],
nanoelectromechanical devices[69], data storage devices[77], supercapacitors[168, 118]

and very efficient membranes[113], the list is not exhaustive.

In the present work we approach graphene from the position of the meso-
scopic physics. This field of condensed matter physics, emerged in early 80s, study
low-dimensional systems of micrometer size in which quantum effects such as fluc-
tuations and interferences are observable (very low temperatures are also generally
required). It is obvious, that graphene, being a standalone two-dimensional sys-
tem, presents an extraordinary opportunity for mesoscopic physicists. Most of
emblematic mesoscopic physics phenomena (e.g. Integer and Fractional Quantum
Hall effects, Shubnikov–de Haas and Aharonov-Bohm effects and many others, see
refs. [173, 41, 166, 164, 145, 160, 45, 147, 29, 10, 122, 162, 89]) were tested in this
system.
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More specific to graphene problem of minimal conductivity and Fano factor2 at
Dirac point was addressed by Tworzydlo et al. in the case of short and large ideal
(ballistic) graphene nano-ribbons. Minimal conductivity is an interesting problem,
since on one hand graphene is a gapless semi-metal and isolator state is not attain-
able in it. On the other hand, precisely at the Dirac point the carrier density is
zero, so one would expect the conductivity going to zero as well. The conclusions
of Tworzydlo et al. were that minimum of conductivity is indeed reached at the
Dirac point, yet its value is not zero but rather 4e2

πh . As for the Fano factor, it
was shown that in contrast to what happens in conventional ballistic systems, at
the Dirac point this quantity is not zero but equals 1/3 (same value is observed
in diffusive systems), tending to zero only far from it. Both results are shown in
fig. 12.

Two experimentalists groups tried to challenge these theoretical predictions.
First group from Harvard University measured shot noise in graphene samples of
several aspect ratios and lengths as well as in a graphene p-n junction, see ref.
[42]. However, these samples turned out to be diffusive, i.e. having mean free
path (≈ 40 nm) much shorter than their length. As a consequence, the observed
behaviour of Fano factor with injection energy was found to be the usual one for
diffusive systems: it took energy independent value, close to 1/3 (≈ 0.35). While
minimum of conductivity was found to significantly overcome the theoretical 4e2

πh .
Second group from Helsinki University (see ref. [35]) have also conducted their
study over an important set of samples and succeeded to measure in one of these
samples the minimal conductivity close to 4e2

πh as well as the predicted Fano factor
variation (although, the quantitative agreement was not reached). As for the other
samples they measured, the results are less obvious to interpret. Hence, based
on these two works (some of the results are shown in fig. 13), no indisputable
conclusion about the validity of the theory in ref. [148] can be drawn and a third
study in this direction could shine light on this question.

In the Nanoelectronics group of SPEC (CEA Saclay) where my PhD work
took place under direction of professor D. C. Glattli, all type of noise measure-
ments is the key skill. Furthermore, a project of Terahertz detector based on the
measurement of Photon-Assisted shot noise in a graphene sample, placed in an
antenna is taking off and an experience in noise measurements in graphene was
necessary. Accordingly, a real necessity of an extra experiment to once again test
the above-mentioned theoretical result together with the availability in the group
of the recognized competences to realize such an experiment and finally interest in
this topic in view of applications for Terahertz detection are motivated the present
work.

On the other hand, for this same reason, i.e. because the midterm goal of this

2quantity characterizing current fluctuations
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[42] DiCarlo et al. (2008)

[35] Danneau et al. (2008)

Figure 13: Previous Results. Measurement by DiCarlo et al. of resistance (a) and
Fano factor (b). From [42]. (c) and (d) — measurement of the same quantities by
Danneau et al., from [35]

project is precisely to attempt to settle up the disagreement between two already
performed experiments, the project is particularly challenging. Namely, this meant
that it was necessary to conceive the samples and the system for noise measure-
ments, taking into account all limitations of above-mentioned studies and, above
all, manage to attain better experimental conditions and thus obtain sufficiently
reliable data to conclude about the results of these studies.



6 CONTENTS

The realization of this project thus dictated the following tasks to be accom-
plished:

• Design and fabricate graphene-based devices for the experiment

• Build up the experimental setup

• Tune, calibrate and test the measurement system

• Investigate the conductance and Fano factor in graphene

To fulfil the above-mentioned requirements it was decided to use pristine exfoli-
ated graphene samples and fabricate an experimental device without the back-gate
(to avoid the capacitive shunt), replacing it by the side-gates. It would also be per-
fect to suspend the graphene layer (since it is the best way to reach high mobilities),
but this was not accomplished due to the technical difficulties. Measurement ap-
proach was also carefully thought over: four-point and cross-correlation techniques
were employed, cryogenic low-noise amplifiers together with band-pass filters were
used for noise detection.

Hence, conductance and Fano factor were successfully investigated in a graphene
sample being in the diffusive regime. Technical difficulties together with time con-
straints prevented us from realizing the same measurements in a ballistic sample,
but the obtained results proved the attainability of the ballistic limit in our sam-
ples as well as the conformity of the characteristics of our experimental setup to
the requirements of the prospected goals.

The results of my work are described in the present manuscript. It is organised
in the following way: the first part provides the brief insight into both graphene and
mesoscopic physics. As for the second part, the details concerning our experimental
approach are clarified in one chapter, while another one is devoted to the device
fabrication. In the last part our own results are presented.



Part I

Overview of Graphene Physics
and Mesoscopic Transport
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Chapter 1

Physical Properties of Graphene

1.1 Crystal Structure of Graphene
Graphene is best known under its graphite form which is simply a stack of

graphene planes, held by van der Waals forces and is the most widespread of
all carbon allotropes. A single carbon atom has a following electronic structure:
1s

22s
22p

2. However, it turns out that, while forming a covalent bonds with other
atoms, it is often energetically favourable to promote one electron from 2s orbital
to 2p orbital, as a resulting bond energy will be lower in that case. Moreover,
one 2s and two 2p orbitals (px and py for example) can hybridize into three sp

2

orbitals with 120° angle between them (see: fig. 1.1.a) as it occurs in graphene.
These hybridized orbitals will form strong covalent in-plane σ bonds between car-
bon atoms, that will therefore condense in a hexagonal (sometimes also called
honeycomb) crystal lattice with interatomic distance a of 0.142 nm. The remain-
ing pz orbitals point out of plane, forming weaker π bonds. It is the π electrons,
delocalized over the whole crystal, that give rise to the valence band states.

Crystalline solid is a type of solid in which atoms are arranged with certain
periodicity in a way that will entail several translational and rotational symmetries.
The common method of representing these symmetries is Bravais lattice, which
is an infinite lattice generated by all such vectors, that will leave the crystal,
if considered as infinite, invariant under translation by any of these vectors. It
usually writes down (in two dimensions) as:

R� = l1a1 + l2a2 (1.1)

with � components l1 and l2 being integer, and a1 and a2 known as primitive vectors
of Bravais lattice or basis vectors. These are the smallest possible translations
which leave the crystal invariant. Crystal symmetries will play an important role
in the band structure calculations, presented in the next section.

9
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Figure 1.1: (a) Graphene honeycomb lattice with two sublattices highlighted with
different colours. Interatomic distance a = 0.142 nm. Also shown primitive vectors
of Bravais lattice a1 and a2 as well as vectors δ1, δ2 and δ3 linking any atom from
A sublattice to its three next neighbours. (b) First Brillouin zone (inner hexagon)
centred at the point noted Γ, while its corners are noted K and K

� (only two are
inequivalent). Reciprocal lattice basis vectors a∗

1 and a∗
2 are also shown.

Besides, honeycomb lattice is not a Bravais lattice and the corresponding Bra-
vais lattice will be a triangular1one with 2 atoms per unit cell, denoted A and B,
yielding two sublattices A and B, as represented in fig. 1.1.a. In that case the
Bravais lattice basis vectors are:

a1 =
√

3aex and a2 =
√

3a

2
�
ex +

√
3ey

�
. (1.2)

The following vectors link any atom from A sublattice to its next neighbours,
which are necessarily atoms from B sublattice (for any atom from B sublattice it
suffices to change the sign):

δ1 = a

2
�√

3ex + ex

�
, δ2 = a

2
�
−

√
3ex + ex

�
, δ3 = −aey. (1.3)

The equivalent of Bravais lattice in the reciprocal space (k-space) is called
Reciprocal Lattice and it is no less important in the band structure calculations. As
Bravais lattice it is generated in two-dimensional reciprocal space by an ensemble
of such vectors:

Kλ = λ1a∗
1 + λ2a∗

2 (1.4)
1In most literature (see [84] for exemple) it is this lattice, that is referred as honeycomb, but

we will use the above-mentioned denomination to avoid confusion.
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that a plane wave of any of these wave vectors Kλ will have the same periodicity
as the initial Bravais lattice. This appears in the following conditions: e

ıKλR� = 1
for any R�, which constrains λi to be integers and gives the following relation for
reciprocal lattice basis vectors a∗

j :

ai · a∗
j = 2πδij

Another consequence is that two waves of wave vectors that differ from each other
by any reciprocal lattice vector Kλ are equivalent. Thus all quantum states of the
system are described by the wave vectors inside the First Brillouin Zone (FBZ)
— a primitive cell consisting of all points of reciprocal space, that are nearer to
the given site of the reciprocal lattice than to all other sites of the lattice.

The reciprocal lattice of graphene crystal is spanned by the following vectors:

a∗
1 = 2π

√
3a

�

ex −
ey
√

3

�

and a∗
2 = 4π

3a
ey. (1.5)

The FBZ is represented in fig. 1.1.b. As we will see in the next section, the low-
energy excitations wave vectors belong to the vicinity of the two particular points
K and K

�, situated on the corners of FBZ and represented by the vectors:

±K = ±
4π

3
√

3a
ex. (1.6)

1.2 Graphene Band Structure
In this section we will discuss the electronic properties of graphene, obtained

within the tight-binding approximation. As it was mentioned previously it is π

electrons, that constitute the valence band, therefore the discussion will be reduced
to these states only. In particular, we will consider low-energy excitations, as they
are relevant for instance for mesoscopic transport description.

1.2.1 Basic Principles
Tight-binding model is one of the most basic approaches to electronic band

structure calculation, that carries a certain number of approximations. It is how-
ever sufficiently powerful to describe in the case of graphene the most prominent
aspects of its electronic properties.

This approach considers a solid as a collection of almost isolated, only very few
interacting atoms. In such a vision it is rather natural to take the orbital states
of a single isolated atom as a basis for construction of the electronic states of the
solid. The simplest approximation is to consider only highest occupied (valence)
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level of the atom Ev and its wavefunction χv(r), assuming that in the solid the
energies Ek of the eigenstates ϕk(r) are situated in the very vicinity of Ev, but far
from Ev−1 and Ee — first excited state.

Consider a single particle Hamiltonian for the R� lattice site:

H� = p2
�

2m0
+

N1,N2�

m1=1
m2=1

Vat (r� − Rm) (1.7)

with N1 × N2 — total number of atoms in the crystal. In some cases, we will
also use another representation of the single particle Hamiltonian in which it is
decomposed in sum of a single atomic Hamiltonian H

at
� = p2

�
2m0

+ Vat (r� − R�) and
the residual potential term ∆V = H� − H

at
� .

It is then reasonable to write trial wavefunction for these eigenstates as a Linear
Combination of Atomic Orbitals2:

ϕk(r) = 1
√

N1N2

�

m
ak,mχv (r − Rm) . (1.8)

As it was discussed in the previous section, crystal lattice exhibits several
translational symmetries. Obviously, the trial wavefunctions have to respect these
symmetries. These considerations are formalized by Bloch’s Theorem. This very
important theorem of the solid state physics exploits the following facts. Because
a translation by any Bravais lattice vector R� will leave the physical problem
invariant, the corresponding translational operator TR�

should commute with the
Hamiltonian,

�
TR�

, H

�
= 0. Hence the eigenstates of latter are necessarily also

eigenstates of TR�
. In particular, Bloch’s Theorem stipulates that these eigenstates

are so called Bloch waves, functions that can be written as a product of a plane
wave and a periodic function of the same periodicity as the Bravais lattice. One
can easily check, that the following trial wavefunction fulfills the above-mentioned
requirement, i.e. it is an eigenstate of the translation operator TR�

and moreover,
it can be decomposed in a product of a plane wave and a periodic function:

ϕk(r) = 1
√

N1N2

�

m
e

ıkRmχv (r − Rm) . (1.9)

So the electronic band structure calculations in the next section will be based
on these trial wavefunctions.

2The sum
�

m is a short notation for
�N1,N2

m1,m2
.
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1.2.2 Band Structure Calculations
We now apply the above-presented model to the case of the graphene honey-

comb lattice. As it was already mentioned, lattice symmetry is reflected by Bravais
lattice, while honeycomb lattice can only be generated by a Bravais lattice with
two atoms per unit cell, or in other words by two sublattices each having the same
translational symmetry as the initial lattice. Thus a trial wavefunction, that ex-
hibits the lattice symmetry should in general be described by a linear combination
of Bloch waves of two sublattices:

ψk(r) = akϕ
A
k (r) + bkϕ

B
k (r − δAB) (1.10)

Here, we have chosen the A sublattice sites to coincide with the sites of Bravais lat-
tice, whereas the B sublattice sites are shifted by δAB with respect to them, hence
this component appearance in the second function’s argument. Both functions
ϕ

A
k (r) and ϕ

B
k (r) are given by (1.9), as the atoms of two sublattices are identical,

the A and B indices are put here for pedagogical reason, we will omit them from
now on.

We may now search the solutions of the Schrödinger equation

Hψk = �kψk. (1.11)

with the Hamiltonian H of the form (1.7), but where the ions of both sublattices
contribute to the potential energy. Given that there are two electrons per lattice
site (one from each atom A and B), multiplication of eq. 1.11 by ψ

†
k on the left

leads to a 2 × 2 matrices secular equation:

det [Hk − �kSk] = 0 (1.12)

with

H
ij
k =

�
d2r ϕ

†
k(r)Hϕk(r − δij) and S

ij
k =

�
d2r ϕ

†
k(r)ϕk(r − δij), (1.13)

where δ =
�

0 δAB
−δAB 0

�
and H and S are the Hamiltonian and overlap matrices

respectively.
In the following, in order to simplify the calculations, we will do two approxi-

mations. First, we will neglect the overlaps between atomic orbitals, meaning that
S is just the identity matrix, intention which is quite reasonable, since pz orbitals
have rather limited spatial extension in the xy plane as compared to interatomic
distance a. Second, since tunnelling probability diminishes exponentially with the
distance, we will restrain the hopping integrals to the nearest-neighbours, meaning
that

�
d2r χ

†(r − R�)∆V χ(r ± δAB − Rm) �� 0 (1.14)
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if and only if R� ± δAB − Rm = δ1, δ2 or δ3 from (1.3). Moreover, from symmetry
considerations the value of these integrals must be � and m independent.3 This
value is called hopping amplitude and we denote it as t:

t ≡

�
d2r χ

†(r)∆V χ(r ± δAB). (1.15)

We also introduce for convenience the following constant:

t0 ≡

�
d2r χ

†(r)∆V χ(r). (1.16)

As it can be seen from fig. 1.1.a, any A atom has three next neighbours: B1,
B2, B3, though only one B atom is described by the same Bravais lattice vector R�

as the A atom. The other two B atoms correspond to the lattice vector shifted, in
notations accepted in fig. 1.1.a, by vectors a2 and a3 ≡ a2 − a1. Therefore, they
contribute a phase factors exp (ık · a2) and exp (ık · a3) respectively. So the contri-
bution from a single A atom to the off-diagonal upper (lower) Hamiltonian matrix
element will be4

tγ
(†)
k

�
N1N2, where we have defined the sum of next neighbours

phase factors:

γk ≡ 1 + e
−ık·a2 + e

−ık·a3 (1.17)

Finally, denoting as ε0 the eigenvalue of the atomic Hamiltonian H
at, corre-

sponding to χ(r) orbital, we obtain the secular equation in the following form:

det


ε0 + t0 − εk t · γk
t · γ

†
k ε0 + t0 − εk



 = 0 (1.18)

with two solutions:

ε
±
k = ±t|γk| = ±t

����3 + 2
3�

i=1
cos (k · ai) (1.19)

and we have omitted ε0 + t0 constant, the energy band shift, introduced by it
being physically irrelevant. The energy dispersion, calculated in the approximation

3To verify, whether these approximations are justified, one can perform numerical calcula-
tions of the corrections from the further extension of the hopping integrals to the next-nearest-
neighbours: tnnn, as well as of the corrections from nearest-neighbours orbitals overlap: snn.
Such calculations, done in [126] as well as tight-binding fit to cyclotron resonance experiments
in [39] show that tnnn − snnt � 0.1t (with t ≈ −3 eV), approving the admitted approximations.

4N1 × N2, being the number of A or B atom, and not the total number of atoms as in the
previous section.
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[158] Williams (2009)

[26] Castro Neto et al. (2009)

Figure 1.2: (a) Graphene energy dispersion obtained within the tight-binding ap-
proximation neglecting the next-nearest-neighbours hopping (i.e. tnnn = 0). Right:
Dirac cone — energy band near the K and K

� (Dirac) points. From [158].(b)
Density of states per unit cell as a function of energy (in units of t) also in the
assumption of tnnn = 0. From [26].

that takes into account the nearest-neighbour hopping only (tnnn = 0) is plotted
in fig. 1.2.a. One distinguishes two bands, that touches each other in several
points (though only two of them lay in FBZ and are inequivalent). Lower band
called valence band and upper — conductance band — correspond to ε

−
k and ε

+
k

respectively. Since there are as many states as electrons, furnished by carbon
atoms, but each state can be occupied by two electrons (with a spin-up and a
spin-down) the valence band is completely filled, whereas conductance band is
empty. This means, that the Fermi layer passes through the points of contact of
two bands, which are called Dirac points for reasons, that will become clear in the
next section. From (1.19) it is rather obvious that they correspond to wave-vectors
kD, which satisfy:

ε
+
kD = ε

−
kD = 0 (1.20)

relation, that is itself satisfied only if ReγkD = ImγkD = 0, that leads to solutions:

kD = ±K = ±
4π

3
√

3a
ex (1.21)

in which we recognize two crystallographic points K and K
� situated on the FBZ

corners, already mentioned in sec. 1.1. Note that due to the time-reversal sym-
metry, (ε−k = εk), there are necessarily two inequivalent Dirac points. Therefore,
zero-energy states, and by continuity all low-energy states will be doubly degen-
erate, This degeneracy is referred as valley degeneracy. In the following we will
often restrain the discussion to one of the valleys only, but the extension of the
results to the remaining valley is straight-forward.
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1.2.3 Low-Energy Excitations
For the following discussion it can be useful to rewrite the problem in slightly

different notations. We first introduce effective tight-binding Hamiltonian:

Hk ≡ t



 0 γ
†
k

γk 0



 (1.22)

The eigenstates of this Hamiltonian are 2-components vectors, or spinors:

Ψ±
k =

�
a

±
k

b
±
k

�

(1.23)

The two components a
±
k and b

±
k of these spinors coincide with the probability

amplitudes of the electron to be found on A or B sublattices respectively (the ±

indicator stands for valence and conductance bands). These eigenstates are easily
derivable, taking into consideration the above-found eigenvalues of (1.22):

Ψ±
k = 1

√
2

�
1

±e
ıφk

�

, (1.24)

where we have defined the angle

φk = arctan
�

Imγk
Reγk

�

(1.25)

As expected, since both sublattices are composed of the identical atoms, the
eigenstates correspond to an equal probability for an electron to be found on A
and B sublattices.

We now consider the low energy excitations of the system, that we define as
all states with characteristic energy with respect to the Fermi level being much
smaller than the band width. Its wave-vectors therefore lay in the vicinity of
the Dirac points, so one can expand the dispersion relation around K (−K case
reasonings are analogous) as following: let k = K + q and we take q, that satisfy
|q| � |K| ∼ 1/a, so finally the expansion small parameter will be |q|a � 1 and
we will limit it to the first order in |q|a. The only k dependent parameter of the
effective Hamiltonian and energy dispersion being γk we first expand it:

�γq ≡ γk=K+q =1 + e
ıK·a2e

ıq·a2 + e
ıK·a3e

ıq·a3

�1 + e
ı2π/3

�
1 + ıq · a2 + O(|q|

2
a

2)
�

+ e
ı2π/3

�
1 + ıq · a3 + O(|q|

2
a

2)
�

= −
3a

2 (qx + ıqy)

(1.26)
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here we also took advantage of the fact, that by definition �γ0 ≡ γK = 0, removing
all q independent terms. As a consequence, the linearised effective low-energy
Hamiltonian will be given by:

�Hq = �vFqσ (1.27)

with vF — Fermi velocity defined as:

vF = −
3ta

2� (1.28)

and σ ≡ (σx
, σ

y) — Pauli matrices vector (σ� ≡ (σx
, −σ

y) in the case of K
� valley):

σ
x =

�
0 1
1 0

�

, and σ
y =

�
0 −ı

ı 0

�

. (1.29)

The energy dispersion, therefore, reads (for both valleys):

ε
±
q = ±�vF|q|, (1.30)

which means that the double degeneracy indeed persists also for the low-energy ex-
citations. This result also confirms the equivalence between |q|a � 1 and |εq| � t

conditions, since |εq| = 3ta|q|

�
2 � t.

A very useful quantity for thermodynamical and transport properties calcula-
tions is the Density of States, which allows to switch from discrete summation over
all states to integration over energy spectra. Thus D(ε) dε equals to the number
of states with the energy in the interval between ε and dε. We will calculate it
in the low-energy limit, considering both valleys, so in all we have to append a
factor of 4 to our calculations to take spin and valley degeneracies into account.
The common approach to the density of states calculations is to identify in the
thermodynamical limit:

�

q | εq�ε

� 4 ×
(N1a · N2a)

(2π)2

q(ε)�

0

dq (1.31)

since q vectors in quasi-continuum are spanned by 2π

�
N1a and 2π

�
N1a in x and

y directions. Then5:
�

D(ε) dε = 4 ×
1

(2π)2

�
dq = 4

� 2πq

(2π)2 dq =
� 2|ε|

π(�vF)2 dε (1.32)

5In such a way defined density of states is in fact density of states per unit surface
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where we performed a beforehand integration over all q, corresponding to the same
energy. One obtains directly:

D(ε) = 2|ε|

π(�vF)2 (1.33)

Note that the density of states vanishes linearly at zero energy, this fact has
an important impact on transport properties as it will be seen in the Chapter 3.

The full density of states, extended to higher energies is represented in fig. 1.2.b.
One notice, in particular, the presence of van-Hove singularities due to the sad-
dle points of the energy dispersion at the M points of FBZ (see fig. 1.2.a and
fig. 1.1.a).

For further details on electronic properties of graphene the reader is referred
to [26].

1.3 Properties of Dirac Fermions
The form of the linearised effective Hamiltonian (1.27) strongly reminds the

Hamiltonian from the Dirac Equation — well known in particle physics relativistic
wave equation for spin-1⁄2 particle, formulated by Paul Dirac in 1928[43]6

H = cpσ + mσ
z (1.34)

if we assume the mass m being equal to zero (here c is the speed of light). This
equation predicts in particular the existence of a new kind of particle — positron,
indeed observed for the first time by Carl Anderson in 1932[6]. This similarity
by the way explains the appellation “Dirac Points”. Also, it is rather common in
graphene community to call π-electrons in graphene massless pseudo-relativistic
fermions or simply Dirac Fermions.

Note, that this Hamiltonian acts on the already mentioned 2-components vec-
tors or spinors. In the particle physics, the direction of such vector reflects the
direction of particle spin in the basis of spin up and down states, while in the
case of graphene we will call the related observable pseudo-spin (to distinguish it
from its “proper” counterpart), and the up and down states will correspond to two
sublattices A and B.

In the following we will reveal several curious properties of Dirac equation, that
do not occur in the case of ordinary, non-relativistic Schrödinger equation.

6This is a two-dimensional version of the equation
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1.3.1 Probabilty Current Density
In non-relativistic quantum mechanics the probability current density is calcu-

lated as follows:

j(r, t) = �
2ım

�
ψ

†∇ψ − ψ∇ψ
†
�

. (1.35)

In the relativistic case this quantity is derived in the same manner. From Dirac
equation, making use of Pauli matrices hermicity, we have

∂Ψ
∂t

= −cσ∇Ψ ∂Ψ†

∂t
= −c∇Ψ†σ (1.36)

then the time derivative of probability density is given by

∂ρ

∂t
= ∂

∂t
(Ψ†Ψ) = Ψ† ∂Ψ

∂t
+ ∂Ψ†

∂t
Ψ

= − c

�
Ψ†σ · ∇Ψ + ∇Ψ†

· σΨ
�

= − ∇ ·

�
cΨ†σΨ

�
.

(1.37)

Since from continuity equation

∂ρ

∂t
= −∇ · j(r, t) (1.38)

we finally obtain

j = cΨ†σΨ (1.39)

a result, that is different from (1.35).

1.3.2 Zitterbewegung, Chirality and Klein Tunneling
Another intriguing consequence of Dirac equation, named by Erwin Schrö-

dinger with German term Zitterbewegung[133], in other words jittery or trembling
motion, states that any attempt to localize a relativistic quantum particle will fail,
since it is inevitably accompanied by creation of particle-antiparticle pairs at the
position of localization. Indeed, the momentum uncertainty of a confined rela-
tivistic particle impacts its energy uncertainty, in contrast to the non-relativistic
case, where position-momentum and energy-time uncertainties are unrelated. As
a consequence, such confined particle will be described by a wave-packet contain-
ing both particle (positive energy) and antiparticle (negative energy) components,
which moreover will interfere, causing rapid oscillations of the particle. It is hence
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[82] Katsnelson et al. (2006)

Figure 1.3: (a) Sketch illustrating Klein tunnelling through potential barrier.
On top: energy bands filling (blue) in different regions, energy branches of the
same color are related to the same spin direction. (b) Transmission probability
T through a 100 nm-wide barrier as a function of the incident angle for barrier
heights of 200 meV (red curve) and 280 meV (Fermi energy of incident electrons
≈ 80 meV. From [82].

impossible to measure the coordinates of a relativistic particle. In a condensed
matter system, this phenomena is manifested by the means of special kind of
inter-band transitions with creation of virtual electron-hole pairs.

Before considering the phenomenon of Klein Tunneling, it is expedient to first
introduce one important property of Dirac fermions, namely Chirality or (helic-
ity), defined as the projection of its spin onto the direction of propagation. The
corresponding operator reads

hp = p · σ

p
(1.40)

The eigenvalues of this operator are ±1, and moreover it obviously commute
with the Hamiltonial meaning that the chirality is a constant of motion. The
particle-like eigenstates have eigenvalue +1, while anti-particle-like states have
eigenvalue −1 (in graphene this is the case for K valley, for K

� value it is the
other way round). Dirac particles are thus called chiral. This singular property
of Dirac fermions leads to what is known as Klein Paradox [86], a phenomenon
which can be resumed as the absence of backscattering from a potential barrier.
Consider for simplicity a Dirac particle in a one-dimensional space, which hits a
potential barrier (see fig. 1.3.a). One would naturally suppose the particle to be
scattered back by the barrier. Yet this would mean that the particle have changed
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its propagation direction to the opposite without changing its spin, hence inverting
the chirality. This is however impossible, since the latter is the constant of motion.
As a consequence, such particle penetrates the barrier. Two-dimensional case is a
bit more complicated, the transmission probability depends on the incidence angle,
as it can be seen in fig. 1.3.b. This effect was experimentally observed in graphene
independently by Young and Kim and by Stander et al.
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Chapter 2

Transport in Mesoscopic Systems

By Mesoscopic System (from Ancient Greek µεσος/mesos — middle, intermedi-
ate) one generally understands a condensed matter system of “intermediate” length
scale, i.e. a scale over which quantum phase coherence of states is still preserved.
In this regime three effects start to play an important role: quantum fluctuations,
quantum interferences and in certain conditions also the interactions. Furthermore,
many macroscopic rules do not hold in the mesoscopic regime. Experimental re-
search in this field emerged in early 80s, when the progress in micro-fabrication
achieved by microelectronics industry as well as the advances of very low tem-
perature cryogenics made possible the implementation of experimental conditions
and experimental devices, able to explore the mesoscopic regime. Simultaneously,
Scattering Approach pioneered by R. Landauer [91, 93, 94, 19, 92] and greatly enriched
by M. Büttiker[19, 20, 92, 16, 17, 18], Y. Imry[72, 19, 20, 73, 141, 74] and others, provided a
theoretical tool for comprehensible description of transport phenomena in this
regime. Nowadays with a vast development of various nano-fabrication techniques
more and more ambitious experiments are imagined, able to probe quite intricate
quantum effects.

The present chapter is divided in three sections. In the first section we will
provide a more detailed description of coherent conductors and related phenomena.
In the following section scattering approach is presented and calculations of several
quantities based on this approach are detailed. To a bit more specific quantum
Hall regime a separate section is dedicated.

23
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2.1 Mesoscopic Scale
2.1.1 Classical Discription of Transport

Before going deeper into discussion of electronic transport in mesoscopic con-
ductors, let us recall the classical description of electronic transport in solids, given
by Drude model. This model considers the ensemble of electrons as a ideal gas
of classical particles, moving with randomly distributed velocities and regularly
undergoing collisions (with immobile nuclei, as Drude believed). Moreover, after
each collision an electron acquires a new random velocity totally independent from
the one before collision. In absence of any external force the average velocity is of
course zero, but if, for instance, an electric field is applied, the electrons are ac-
celerated and will drift against its direction. However collisions will prevent them
from developing an infinite drift velocity. As a results, a stationary regime will
be established in which electrons move with a constant average drift velocity, as
we expect from Ohm’s law. This average drift velocity for given electric field E
depends on scattering time τ — average time between two subsequent collisions,
and writes (e and m being electron charge and mass):

vdrift = −eEτ/m = −µE (2.1)

The quantity µ is the electron mobility. Then, if n is the electron density, the
current density is given by j = −nevdrift. Current density is related to E according
to Ohm’s law: j = σE. Thus we obtain the familiar Drude conductivity formula:

σ = e
2
nτ

m
= enµ (2.2)

Despite its extreme simplicity, this model (especially when combined with the
results of quantum theory of solids) is still relevant for transport description in
metals and semiconductors. In return, from quantum theory of solids, we know,
that an ideal immobile lattice of ions will be seen as a perfect background by
a Bloch electron, being by construction an eigenstate of the periodic potential.
Consequently, such ideal lattice can not give rise to any scattering, in contrast to
what Drude believed. So let us see, what are the real mechanisms of the electrons
scattering in solids and compare related characteristic length and time scales.

It is quite obvious that any deviation of the lattice from its perfect order is
able to perturb Bloch wave propagation. For example, displacement of a lattice
ion from its equilibrium position can be seen as an electric dipole on top of the
perfect periodic background, that can interact with an electron. As we know, at
non-zero temperature the ions execute collective vibrational motions around their
equilibrium positions, described by a wave-like modes, known as phonons. Accord-
ingly, an electron can be inelastically scattered from one state to another emitting
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Figure 2.1: (a) Illustration of electron travelling from point A to point B in a diffu-
sive conductor between two inelastic shocks represented by two red stars. Yellow
dots represent elastic scatterers, black arrows indicate the direction of electron
movement after each collision, grey arrows showing the alternative paths allowing
to get from point A to point B. By lel is denoted the elastic scattering length, by
lφ — the coherence length. (b) Illustration of electron travelling through diffusive
(top) and through ballistic (bottom) conductor of length L.

or absorbing a phonon (this inelastic scattering is responsible, for instance, for
the Joule heating). Above Debye temperature, the number of scatterers increase
linearly with temperature T , therefore associated scattering time τe-ph in metals
scales as 1/T (below Debye temperature it scales rather as 1/T

3), explaining the
well-known linear dependence of the resistivity with temperature. Besides, it is
also useful to introduce scattering length corresponding to the average distance by
which an electron travels between two subsequent collisions: le-ph. At low temper-
ature only low frequency and thus long wave-length modes are excited, meaning
that the associated scattering length is also quite large, so the effectiveness of this
mechanism comes to naught.

On the other hand, any lattice defects (e.g. impurities, structural lattice defects,
crystal boundaries, etc.) always present in the crystal, will also break lattice
translational symmetry and cause Bloch electron scattering. However, in contrast
to the previous case this scattering mechanism is elastic, due to the defects’ lack
of degrees of freedom with which electrons can exchange energy, resulting only
in the deflection of trajectory of the electron, attempting to avoid the defect.
Moreover these processes are usually temperature independent and the associated
scattering time τe-d and length le-d rather depend on the defects concentration in
given sample, hence at low temperature scattering on lattice defects will be the
dominant mechanism.
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In addition to the lattice related scattering mechanisms, Coulomb interaction
between electrons can also give rise to electron-electron scattering, which is by the
way inelastic. To have more insight into this mechanism let us compare two energy
scales: typical electron kinetic and potential energies per particle in a three-(two-
)dimensional system with mean distance between electrons d̄ ∝ n

− 1
3 (∝ n

− 1
2 ). We

have Ekin ∝ n
2
3 (∝ n), while Epot � e

2
/d̄ ∝ n

1
3 (∝ n

1
2 ), thus giving the following

result:
Epot
Ekin

∝ n
− 1

3

�
∝ n

− 1
2

�
(2.3)

meaning that the importance of electron-electron interactions diminishes with in-
creasing electron density1. However, in the most cases, this will be a dominant
inelastic mechanism at low temperature. As before, we note corresponding time
and length scales respectively τe-e and le-e.

2.1.2 Quantum Phase Coherent Systems
In certain conditions a physical system manifests properties, that can not be

explained within (semi-)classical framework, introduced in the previous section,
since one has to account for wave-like effects, e.g. interferences, so the quantum
mechanical description should be used. For such regime to be reached, the system
has to be quantum coherent. By that we understand that the quantum phase of
electronic wave-functions is preserved at least on the scale of the system. If we
denote coherence length and time by tφ and lφ, this means that system size L � lφ.

The coherence is lost when the system interacts with the environment (phonons,
other electrons, magnetic impurities, electromagnetic fields, etc.), since this will
result in projection of system eigenstates into corresponding interaction operators
eigenstates, that are not necessarily the formers. Moreover, these are usually
inelastic processes, except in the cases where the environment is modified without
energy transfer (e.g. magnetic impurity’s spin flip). On the other hand, during an
elastic scattering process the phase is modified in a well-defined way, thus quantum
coherence is preserved.

As it was discussed in the previous section, the inelastic scattering rate de-
creases with temperature so, in order to attain such regime experimentally, in ad-
dition to a small size and reduced dimension, a very low temperature is required.
As mentioned before, the main inelastic scattering mechanism at low temperature
is electron-electron interaction. Hence lφ � le-e. Elastic scattering length lel � le-d
is also important since it allows to distinguish between two sub-regimes: diffusive
in which electron propagation through the system is accompanied by many elastic
collisions and ballistic in which electrons propagate without scattering (except the

1Note that, in the case of the Dirac fermions, this ratio is density independent
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Table 2.1: Typical length scales in metallic sysmes, GaAs-heterostructures and
graphene

Metal GaAs/AlGaAs Graphene
λF (nm) ∼ 0.1 ∼ 40 − 50 ∼ 40

lel (µm) ∼ 0.2 10 up to 0.05 up to 1200 − 300
lφ(µm)

∼ 1 idem 1 − 5(T < 1 K)

system boundaries). Typical length-scales in different systems are given in the
table:

Multiple are the devices in which at low temperature quantum coherence is
attained. These are usually based on two-dimensional electron gases obtained at
the interface of two semi-conductors or in graphene, one-dimensional conductors
represented by various nano-wires or carbon nanotubes, quasi-0-dimensional nano-
particles or point defects. In the next section we will give examples of such devices
and related mesoscopic phenomena.

2.1.3 Effects of the Coherence on Transport Properties
In the coherent conductors all transport processes can be described in terms

of electronic waves transmission taking into account eventual interference effects.
Here we will give several examples of the most prominent transport phenomena
that arise in quantum coherent systems. Maybe the best known manifestation of
the quantum effects in transport properties of a coherent conductor is the conduc-
tance quantization. This phenomenon can be observed in Quantum Point Contacts
(QPC) — ingenious devices in which the number of electronic wave propagation
modes can be controlled externally by applying depleting gate voltage. In such
systems, conductance, defined at mesoscopic scale as the sum of electron waves
transmission probabilities over all modes, behaves as a step function of gate voltage
as it can be seen in fig. 2.2.a, each new plateau corresponding to addition of a new
mode to the total transmission. The plateaus are equally spaced by 2g0, where g0
is a value called conductance quantum, defined by fundamental physical quantities
only: g0 = e2

h (the factor of 2 comes from the spin degeneracy). Another situation
in which conductance quantization emerges is Quantum Hall Effect. Both effects
will be detailed in the following sections.

Other very vivid examples of wave interference effects in coherent systems are
Weak localisation and Aharonov-Bohm effect. The first effect manifests itself in
disordered systems and is commonly interpreted in terms of coherent backscat-
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[152] van Wees et al. (1988), [151] van Houten et al. (1986)

[135] Sharvin and Sharvin (1981), [3] Al’tshuler et al. (1981)

Figure 2.2: (a) First observation by van Wees et al. (simultaneously with Wharam
et al.) of the conductance quantization in a GaAs/AlGaAs heterojunction based
QPC. From [152]. (b) Manifestation of weak localisation and its destruction by
temperature in GaAs/AlGaAs heterojunction based narrow channels of width W =
1.5 µm (squares) and W = 0.5 µm (triangles), the channel length L = 10 µm. From
[151]. (c) First observation of Aharonov-Bohm effect in a cylindrical magnesium
film by Sharvin and Sharvin. From [135]. (d) Sketch of the sample used by
Sharvin and Sharvin, suggested by Al’tshuler et al. From [3]. (e) Illustration for
the conventional Aharonov-Bohm ring.

tering. To understand the origin of this effect consider such disordered coherent
system depicted by the sketch of fig. 2.1.a. Then, to calculate the probability PAB

for a particle to travel from point A to point B, one has to account for all pos-
sible trajectories, leading from A to B (shown on the sketch in grey). Moreover,
coherence of the system requires that the calculation of the total probability be
done in terms of probability amplitudes Ai of each classical trajectory, rather than
classical probabilities |Ai|

2:

PAB =
������

�

i

Ai

������

2

=
�

i

|Ai|
2 +

�

i�=j

AiA
∗
j (2.4)

Here the first term corresponds to the classical diffusion probability, while the
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second one reflects the contribution of quantum interferences. Yet, in such diffusive
system the number of trajectories contained in this sum is huge and it is therefore
quite clear, that in most of the cases the interference term will average out. The
exception would be the instance, when the points A and B coincide, i.e. when
we want to calculate the probability for a particle to return to its origin. Indeed,
the probability amplitudes for any two trajectories, related by the time-reversal
symmetry are identical: A

� = A
� ≡ A (which is precisely the consequence of

the time-reversal symmetry) and the backscattering probability |A� + A
�|2 =

4|A|2 is then twice the classical result. This means that apparently the quantum
interferences tend to localize the particle, reducing the diffusion constant and hence
the conductivity. This effect is called weak localization. Figure 2.2.b shows how
the effect of the temperature will destroy the weak localization effect, by reducing
the coherence length: the resistance decreases first, when temperature is increased
and the coherence length falls below the sample length. After the coherence length
is sufficiently reduced, the resistance changes the behaviour and starts to grow as
it is predicted by the classical Drude model. Another way to destroy this effect
is obviously the application of magnetic field that will break the time-reversal
symmetry.

The last mentioned effect has quite similar origin. It can be observed for
example in a micrometer-size metallic ring (see fig. 2.2.e) in which an electron
can follow two distinct paths to arrive from one “end” of the ring to another. Two
possible trajectories of the electron — clockwise and counter-clockwise — will
interfere, leading to the transmission probability T = |t� + t

�|2, where t
� and t

�

are the corresponding transmission coefficients. When magnetic field B is applied,
these coefficients acquire an additional field-dependent phase factors, that read

ψ
� =

�

�

e

�A dl and ψ
� =

�

�

e

�A dl (2.5)

where A is the vector potential, associated with the field B. This yields a field
dependent phase difference

∆ψ(B) = 2π
e

h
Φ (2.6)

Φ being the magnetic flux through the loop. We also introduce the notation
Φ0 = h

e , called flux quantum.
On the other hand, the new, field dependent transmission probability will have

the following form:

T (B) = |t
�

e
ıψ� + t

�
e

ıψ�
|
2 = |t

�
|
2 + |t

�
|
2 + Re

�
t
�

t
�∗

e
ı∆ψ

�
(2.7)

= |t
�

|
2 + |t

�
|
2 + |t

�
||t

�
| cos

�
∆ψ0 + ∆ψ(B)

�
(2.8)
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where ∆ψ0 is the eventual phase difference between two paths in the absence of
magnetic field. The transmission thus oscillates with the period equal to the quan-
tum of flux Φ0. The far reaching consequence of this is that counter-intuitively,
the transmission through the ring is field-dependent even if the magnetic field in
the two arcs of the ring is zero. This effect was observed for the first time by
Sharvin and Sharvin but in a cylindrical magnesium film (see fig. 2.2.d) for which
the period of oscillations is Φ/2. The result of this study is shown in fig. 2.2.c.

Finally, two more experiments spectacularly pointing out the wave-like as-
pect of electrons in coherent systems are electronic Fabry-Perrot[30, 22] and Mach-
Zehnder[163, 76, 128] interferometry, totally inspired by their optical analogue.

2.2 Scattering Approach
In this section we will formulate scattering approach (also referred to as Lan-

dauer approach) to coherent transport, to date prevalent method of the transport
description in mesoscopic regime. Its main idea, concisely, is to relate transport
properties of the studied system (e.g. conductance, current fluctuations) to its
scattering properties, which are assumed to be known from a quantum-mechanical
calculation. We first evoke the general principles of the scattering approach and
then use its results for calculation of several basic macroscopic quantities. More
details about this approach and its consequences can be found for instance in ref.
[14].

2.2.1 Framework, Hypotheses, Formulation
For the sake of simplicity we consider a one-dimensional, two-terminal coherent

conductor to which two reservoirs of fermions — the “left” (L) and the “right”
(R) — are connected and in addition we will omit the spin degree of freedom (the
extension to multi-terminal, multi-mode case with spin being more or less straight-
forward). The system is considered to be in stationary regime and, furthermore,
at thermal equilibrium. Moreover we neglect electron-electron interactions effects.
The reservoirs are infinitely long and much larger than the conductor, they can
be characterized by temperature T and chemical potentials µL(R) and obey Fermi-

Dirac statistics: fL(R)(ε) =
�
exp

�
(ε − µL(R))/kBT

�
+ 1

�−1
. In addition, they are

supposed to be perfect sources and sinks of electrons such that entering particle
looses immediately its phase. From this point of view the specified problem is
irreversible. On the other hand, the coherent conductor can be seen as a kind of
stochastic “frontier guard” transferring the particles from one reservoir to another
with certain (generally energy dependent) probability or otherwise rejecting them
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Figure 2.3: Example of two-terminal scattering problem for the case of one trans-
verse channel. From[14].

back to their reservoir of origin (such transfer processes being of course energy
conservative). Mathematically this is expressed by scattering matrix that we will
introduce soon.

In the following it is convenient to introduce particular creation and annihila-
tion operators for electrons in scattering states of given energy ε: â

†
L(R)(ε), âL(R)(ε)

— incident upon conductor from left (right) reservoir, b̂
†
L(R)(ε) and b̂L(R)(ε) — out-

going from conductor towards left (right) reservoirs. Being fermionic operators,
they obey canonical anticommutation relation and Fermi-Dirac distribution (for
conciseness, the same relations for b operators are omitted):

�
âL(R)(ε), â

†
L(R)(ε�)

�
= δ(ε − ε

�),
�
âL(R)(ε)â†

L(R)(ε�)
�

= fL(R)(ε)δ(ε − ε
�) (2.9)

These operators are related by scattering matrix


 b̂L(ε)
b̂R(ε)



 = S

�
âL(ε)
âR(ε)

�

, where S =
�

r(ε) t
�(ε)

t(ε) r
�(ε)

�

(2.10)

In view of current conservation this matrix has to be unitary, meaning that |t�|2 =
|t|2 = D, |r�|2 = |r|2 = R, with D + R = 1.

We define field operators Ψ̂ and Ψ̂† for instance in the left reservoir (far from
conductor) as

Ψ̂(†)
L (x, t) =

�
dε

�
2π�v(ε)

�
â

(†)
L (ε) exp(ıkx) + b̂

(†)
L (ε) exp(−ıkx)

�
exp

�
−ı

ε

�t

�

(2.11)
with electron wavenumber k =

√
2mε/� and velocity v(ε) = �k/m. If we then

write current operator for the same reservoir (which is equal to current density
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operator in one dimension):

ÎL(x, t) = e�
2ım



Ψ̂†
L(x, t)∂Ψ̂L(x, t)

∂x
− Ψ̂L(x, t)∂Ψ̂†

L(x, t)
∂x





= e

h

�
dε

� dε
e

−ı(ε−ε�)t/�

2
�

v(ε)v(ε�)

×

�

(v(ε) + v(ε�))
�
â

†
L(ε)âL(ε�)eı(k�−k)x

− b̂
†
L(ε)b̂L(ε�)eı(k−k�)x

�

+ (v(ε) − v(ε�))
�
â

†
L(ε)b̂L(ε�)e−ı(k+k�)x

− b̂
†
L(ε)âL(ε�)eı(k+k�)x

� �

�
e

h

�
dε

� dεe
−ı(ε−ε�)t/�

�
â

†
L(ε)âL(ε�) − b̂

†
L(ε)b̂L(ε�)

�

(2.12)

in the last computational step we neglected velocity dependence on energy, which
is reasonable for energies in the viscinity of Fermi level.

2.2.2 Scattering Approach at Work
The obtained result allows us to calculate various quantities, but we will limit

the discussion only to the quantities studied in this work — conductance and noise.

a. Conductance Calculation

Conductance is defined as G = I/V , where I is the average current (I = �IL� =
�IR�) and V — chemical potentials difference (µL − µR = eV ). We can calculate
average current (without neglecting energy dependence of velocity):

�IL� = e

h

�
dε

��
â

†
L(ε)âL(ε)

�
−

�
b̂

†
L(ε)b̂L(ε)

��
(2.13)

using scattering matrix relations and operator’s statistics we finally obtain:

�IL� = e

h

�
dε D(ε)(fL(ε) − fR(ε)) (2.14)

For applied voltages, small as compared to Fermi energy EF, we can, to begin with,
neglect transmission dependence on energy and, moreover, do following approxi-
mation:

�IL� = e

h

�
dε

∂f(ε)
∂ε

D(ε) = e
2

h
D(EF)V (2.15)

We hence obtain the conductance given by:

G = I

V
= e

2

h
D (2.16)
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where we find already mentioned conductance quantum as multiplying pre-factor.
In multi-mode case, taking the spin degeneracy into account, the conductance
reads:

G = 2e
2

h

�

n

Dn (2.17)

b. Noise Power Calculation

We remain in the case of one-dimensional two-terminal conductor. Let us
derive the expression for current noise, that is current fluctuations away from its
average value. We define thereby operators ∆ÎL(R)(t) = ÎL(R)(t) − �ÎL(R)�, that will
allow us to introduce correlation matrix

Sαβ(t − t
�) = 1

2
�
∆Îβ(t�)∆Îα(t)

�
, α, β = L,R. (2.18)

Let us see the properties of this matrix. First of all in the absence of time-
dependent external fields its elements are only t − t

� dependent. Furthermore,
current conservation implies that they satisfy following relations: SL,R = SR,L =
−SL,L = −SR,R. The diagonal elements correspond to autocorrelations in respec-
tive contacts, whereas non-diagonal — to cross-correlations between two contacts.
Henceforth, without loosing generality, we will continue the derivation only for au-
tocorrelation in left reservoir and keep notation
SLL(t − t

�) = S(τ). We define noise power as a Fourier transform of S(τ), that
after some algebra can be written as:

SI(ω) = 2
� �

Î(0)Î(τ)
�

e
ıωτ dτ (2.19)

The results of the first section ( eq. 2.12) allow us to compute this quantity:

SI(ω) =2e
2

h

�
e

ıωτ dτ

�
dε dε

� dε
�� dε

���
e

−ı(ε��−ε���)τ/�

·

��
â

†
L(ε)âL(ε�) − b̂

†
L(ε)b̂L(ε�)

� �
â

†
L(ε��)âL(ε���) − b̂

†
L(ε��)b̂LL(ε���)

��

=2e
2

h

�
dε dε

� dε
��

� �
â

†
L(ε)âL(ε��

− �ω)
� �

â
†
L(ε��)âL(ε�)

�
|t|

4

+
�
â

†
R(ε)âR(ε��

− �ω)
� �

â
†
R(ε��)âR(ε�)

�
|t|

4 +
�
â

†
R(ε)âR(ε��

− �ω)
�

×

�
â

†
L(ε��)âL(ε�)

�
|r|

2
|t|

2 +
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â

†
L(ε)âL(ε��

− �ω)
� �

â
†
R(ε��)âR(ε�)

�
|r|

2
|t|

2
�

(2.20)
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that, after a long calculations that we skip here, leads to

SI(ω) = 2e
2

h

�

2D
2�ωN (ω)+RD

�
(�ω − eV )N (ω − eV/�)

+(�ω + eV )N (ω + eV/�)
�� (2.21)

where N (ω) =
�
exp (�ωkBT ) − 1

�−1 is Bose-Einstein distribution.
In the present work we study so called zero-frequency noise, i.e. noise at such

frequencies, that �ω � eV, kBT . In these conditions eq. 2.21 simplifies to

SI = 4e
2

h
D

2
kBT + 2e

e
2

h
D(1 − D)V coth

�
eV

2kBT

�

(2.22)

As previously, the general expression of zero-frequency noise for multi-mode
two-terminal conductor, taking into account the spin degeneracy, is obtained by
summing up over all propagation modes (with factor of 2 for spin), since the noise,
generated by one mode is supposed to be decorrelated from the other ones:

SI = 42e
2

h

�

n

D
2
nkBT + 2e

2e
2

h

�

n

Dn(1 − Dn)V coth
�

eV

2kBT

�

(2.23)

We can now study different contributions to the total noise in (2.22) by admit-
ting subsequently T and V to be zero (still remaining in one-dimensional config-
uration). At equilibrium, when no voltage or temperature difference is applied to
the reservoirs, the only possible sources of noise are thermal fluctuations of energy
levels population in the reservoirs, weighted by D

2 factor, as well as partitioning
of thermally emitted particles by the conductor, weighted by D(1 − D), resulting
in final expression in D pre-factor2

SI = 4e
2

h
DkBT = 4GkBT (2.24)

This noise is called Johnson-Nyquist noise and its expression can also be obtained
from the Fluctuation-Dissipation theorem. The contribution of this noise to the
output signal is unavoidable.

On the other hand, if we suppose the temperature to be zero and a bias V to
be applied, we recover pure transport partition noise, which is given by

SI = 2e
2

h
D(1 − D)eV = 2eI(1 − D) = 2eIF (2.25)

2Note that as in (2.22) the spin degree of freedom here is again omitted.
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Figure 2.4: (a) Schematic variation of current noise expressed in terms of sample
effective noise temperature Ts, showing the cross over from thermal equilibrium to
pure shot noise. In these convenient units, the asymptote at large bias has a slope
equal to the Fano factor. From [60]. (b) Distribution function of transmission
coefficients for L/lel = 10. From [14].

where we introduced the Fano Factor F, which, in general case of multi-mode
conductor, reads

F =
�

n Dn(1 − Dn)
�

n Dn
(2.26)

This quantity is specific to a given type of conductor and, as it is clear from
(2.26), can take values only between 0 and 1. To illustrate, in a ballistic conductor,
where no scattering is present, Fano Factor is obviously zero. Classical Schottky
formula for noise corresponds to Fano factor of 1 and this result can be attained as
well in coherent conductors with all transmission coefficients Dn very small, e.g.
in a tunnel junction. Another specific case is diffusive and chaotic conductors in
which the transmission coefficients T can be discussed only in terms of probabil-
ity distribution. For instance, a typical distribution for a diffusive conductor of
conductance G (see fig. 2.4.b) was calculated by Dorokhov:

P (T ) = l

2L

1
T

√
1 − T

(2.27)

with L — sample length and l — mean free path, and it leads to Fano factor equal
to 1/3. Fano factor in chaotic cavities was found to be 1/4.

The transition from Johnson-Nyquist noise dominant regime to transport noise
dominant regime is depicted in fig. 2.4.b. One can, in particular, find the sample
temperature very precisely if applied voltage is well known or vice versa, by simply
fitting this curve.
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2.3 Quantum Hall Effect
In this section we will present a somewhat singular though rather widespread

phenomenon in the mesoscopic domain which is Quantum Hall Effect (QHE), more
particularly Integer QHE (IQHE). We will first briefly introduce Landau quantisa-
tion — a necessary tool for QHE understanding and, in what follows, will explain
the mechanisms that lead to Hall conductance quantisation and other related prop-
erties. For further information on this subject the reader is referred to [59] and
more recent [61].

Hall effect, discovered in its classical form by Edwin Hall in 1879, can be
perceived as a result of the Lorentz force, that acts on the charged particles,
moving in magnetic field. This force bends the electron trajectories towards the
conductor’s edges, so that accumulation of charges on each edge but with opposite
sign occurs until the established electric field compensates totally the Lorentz force.
This results in a voltage drop (called Hall voltage) in the direction, perpendicular
to the injected current and the Hall resistance RH can be defined as a ratio between
this transverse Hall voltage and the injected current.

The most convenient way to describe transport properties in the Hall effect
regime is to introduce conductivity and resistivity tensors σµν and ρµν . Note that
in two dimensions the resistance and the resistivity are expressed in the same units
and moreover Hall resistance RH is equal precisely to the non-diagonal component
of resistivity tensor ρxy, Hall resistivity in other words. The resistivity tensor is
defined in a similar way as the usual resistivity (the conductivity tensor being just
its inverse):

E
µ = ρµνj

ν (2.28)

To clarify the origin of the Hall effect let us consider a simple model of two-
dimensional electron gas in xy plane in absence of any defects and with no electric
field applied, whereas a homogeneous magnetic field points in the direction of z

axis. Such a system is invariant under translations so we can switch to a frame
of reference moving with velocity −v relative to the lab frame. In this frame of
reference the electrons appear to move with the opposite velocity, that corresponds
to a current density j = −neev (where −e and ne are electron charge and density
respectively) and to the related to this movement Lorentz force −e v × B, absent
in the lab frame. For that reason, in the moving frame of reference an electric field
in the direction perpendicular to the current has to appear, in order to compensate
exactly the Lorentz force:

E = −v × B = 1
nee

j × B (2.29)
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Figure 2.5: (a) Sketch of a Hall bar. From [61]. (b) First observation of the
Quantum Hall Effect by Klitzing et al. From [88].

Thereof follows, that the resistivity and conductivity tensors can be written as:

ρ = B

nee

�
0 1

−1 0

�

, σ = nee

B

�
0 −1
1 0

�

(2.30)

leading to a classical results for the Hall resistance:

RH = B

nee
(2.31)

In the quantum regime, however, this resistance is quantized, exactly in the
same manner as this can be observed in a quantum point contact:

RH = 1
ν

h

e2 (2.32)

where ν, called filling factor, is integer and corresponds to the filling of Landau
levels, as it will be explained in the next section. The two following sections will
help to understand the reasons of such a peculiar behaviour.
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2.3.1 Landau Quantization
Let us study the quantum description of the electron dynamics in presence

of magnetic field. To begin with, consider one particle Hamiltonian, at first, in
absence of magnetic field

H
0 = p2

2me
(2.33)

me being electron’s effective mass, related to the specific band. Then, in presence
of magnetic field, the Lorentz force effect on electron dynamics can be included
in the Hamiltonian by simply replacing the canonical momentum p with a gauge-
invariant one Π (proportional to the velocity) as follows:

p → Π = p + eA(r) (2.34)

that yields to a Hamiltonian

H
B = [p + eA(r)]2

2me
= 1

2me

�
Π2

x + Π2
y

�
(2.35)

Note that, in contrast to the canonical momentum, the components of the gauge-
invariant momentum no longer commute themselves:3

�
Πx, Πy

�
=e

��
px, Ay

�
−

�
py, Ax

��
= e

�
∂Ay

∂x

�
px, x

�
−

∂Ax

∂y

�
py, y

��

= − ıe�
�

∂Ay

∂x
−

∂Ax

∂y

�

= −ıe�(∇ × A) · ez = −ıe�B

(2.36)

As a consequence, the Hamiltonian (2.35) can be seen as describing one-
dimensional harmonic oscillator in gauge-invariant momentum phase-space. As
usual, in this case we use ladder operators substitution to find eigenvalues of the
Hamiltonian:

a = lB
√

2�
�
Πx − ıΠy

�
, a

† = lB
√

2�
�
Πx + ıΠy

�
(2.37)

where we introduced the magnetic length lB =
�
�/eB — the radius of semi-

classical cyclotron orbit. It is expedient as well, to introduce the cyclotron fre-
quency ωC = �/mel

2
B — the angular velocity of cyclotron precession. These two

3Here we used the relation
�
O0, f(O1, . . . , ON

�
=

N�
j=1

∂f

∂Oj

�
O0, Oj

�
, valid if

��
O0, Oj

�
, O0

�
=

��
O0, Oj

�
, Oj

�
= 0 for any j = 1, . . . , N .
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Figure 2.6: (a) Landau levels as a function of the magnetic field: εn =
�ωC

�
n + 1

2

�
∝ B

�
n + 1

2

�
. From [61]. (b) Density of states (DOS). In a clean

system, the DOS consists of equidistant delta peaks (grey) at the energies εn,
whereas in a sample with a stronger impurity concentration, the peaks are broad-
ened (dashed lines). The continuous black line represents the sum of overlapping
peaks, and EF denotes the Fermi energy. From [61].

quantities provide the characteristic length and energy scales of the system in pres-
ence of magnetic field. The Hamiltonian can thus be written under the customary
form

H
B = �ωC

�

a
†
a + 1

2

�

, (2.38)

giving directly the energy eigenvalues

εn = �ωC

�

n + 1
2

�

(2.39)

The far reaching conclusion of this result is that in presence of magnetic field
the spectrum consists of discrete energy levels, referred as Landau levels, so elec-
tron kinetic energy can not be varied in a continuous way, which means, as we
know, that electric conductance is impossible. Nevertheless, this is a result one
can expect, combining the fact of localization of particles on cyclotron orbits by
magnetic field with the Heisenberg principle which counterbalances any spatial
localization by momentum and thus kinetic energy quantization.

Now let us assess the degeneracy of a single Landau level. Following considera-
tions can help finding the answer. First of all, it seems reasonable that application
of magnetic field should not change average density of states if taken over suf-
ficiently large energy range. Initially average DOS was equal to me/2π�2 times
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sample area S, whereas when split into Landau levels it is simply 1/�ωC. It follows
that the degeneracy of a Landau level is given by

N = �ωC(S m

2π�2 ) = BS

h/e
(2.40)

Here again the result is rather curious, since it argues that any Landau level
contains the number of states N equal to the number of flux quanta h/e penetrating
the sample or, in other terms, each state from any Landau level captures one
quantum of flux. The Landau levels are thus massively degenerate.

Finally, the eigenstates form depends on the gauge choice, which is often re-
lated to the symmetry or geometry considerations. In the next section we will
mostly deal with a long and narrow system, in which the translation invariance
is preserved, but in one direction only. As a consequence the choice of Landau
gauge is the most appropriate, so here we illustrate the eigenstates form in this
gauge only. However, in general other geometries can require other gauge choices
(e.g. symmetrical gauge for Corbino geometry). Landau gauge is represented by
vector potential A(r) = −yBex and, as it can be easily seen, indeed preserves the
translation invariance in the x direction. In this particular case the momentum
px = �k is a good quantum number. The Hamiltonian (2.35) then reads

H
B =

p
2
y

2m
+ 1

2mω
2
C(y − y0)2

, where y0 = kl
2
B (2.41)

so we can separate the variables and write the wavefunction of the n-th Landau
level eigenstate in the form

ψk,n(x, y) = exp(ıkx) × φn(y − y0) (2.42)

where φn(y) is the n-th oscillator state wavefunction, which exact form is irrelevant
for the following discussion. Note, that y0 plays a role of oscillator center in y

direction, whereas in the x direction the state is spread over the whole sample
length.

2.3.2 Integer Quantum Hall Effect
The situation in real samples is somehow different from the ideal one described

above. First of all, because of the disorder, always present in real samples. In ad-
dition, in the following we will consider long and narrow geometry, hence we have
to include the lateral confinement into discussion. The experimental results prove
however, that Hall resistance quantization is independent of the given geometry or
disorder configuration. To anticipate, these two ingredients: the obligatory pres-
ence of disorder and of the sample edges of arbitrary shape, but yet the robustness
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of the phenomena against these factors, are crucial for the understanding of the
mechanisms of the QHE, as it will become clear soon.

To begin, let us consider a long, narrow sample without disorder, as before,
connected to two reservoirs on the left and on the right. The lateral confinement
can be expressed in terms of a confinement potential Vc(y) such that, it is zero in
the bulk, but rapidly increases near the sample edges. Besides, for simplicity we
assume that on the scale of magnetic length this potential varies smoothly. Note
also, that a potential of this form will not break translation invariance in the x

direction. We then develop the confinement potential around the oscillator center
y0 = kl

2
B

Vc(y) � Vc(y0) − eE(y0)(y − y0) + O

�
∂

2
V

∂y2

�

, (2.43)

where we introduced the local electric field E. Neglecting second-order terms in
E yields to Hamiltonian

H
B =

p
2
y

2m
+ 1

2mω
2
C(y − y

�
0)2 + Vc(y�

0) (2.44)

with y
�
0 = y0 + eE(y0)/mω

2
C, and energy spectrum

εn,y0 = �ωC

�

n + 1
2

�

+ Vc(y0) (2.45)

Here we can omit the prime, since the variation of confinement potential between
y0 and y

�
0 is of the second order in E.

We infer from this result that the Landau levels structure is preserved under
confinement, with the exception of the fact that the energy of a given state now
depends on the confinement potential value at its center position y0.

We can now calculate the current of the n-th Landau level in x direction

I
x
n = −

e

Lx

�

k

�n, k |vx| n, k� (2.46)

Matrix elements are easily evaluated

�n, k |vx| n, k� = 1
�

∂εn,k

∂k
(2.47)

and one notice straight away that, due to the form of the confinement potential
Vc(y) which is zero everywhere apart near the sample edges, the only non-zero ma-
trix elements are those of so called edge states[64], i.e. the states having their centres
y0 situated within narrow bands near the edge, in which confinement potential is
not constant. The concept of edge states plays a key role in QHE theory. Moreover,
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[61] Goerbig (2009)

Figure 2.7: (a) Potential landscape of an electrostatic potential in a sample. The
metallic contacts are described by the chemical potentials µL and µR for the left
and right contacts, respectively. The sample is confined in the y-direction between
ymax and ymin. The thin lines indicate the equipotential lines. When approaching
one of the sample edges, they become parallel to the edge. The green lines indicate
the electronic motion with the guiding centre moving along the equipotential lines.
The electron turns clockwise around a summit of the potential landscape, which
is caused e.g. by a negatively charged impurity (−), and counter-clockwise around
a valley (+). At the sample edges, the equipotential lines due to the confinement
potential connect the two contacts on the left and on the right hand side. From
[61]. (b) The Landau levels are bent upwards when approaching the sample edge,
which may be modeled by an increasing confinement potential. One may associate
with each Landau level n a maximal value y

n
max of the y-component where the

Landau level crosses the chemical potential µmax. From [61].

it is clear, that the derivative in (2.47) is of the opposite sign for upper and lower
edges, meaning that the current flow direction is also opposite on the two edges,
as though the current was circulating around the sample. This property is called
chirality and is of huge consequence, because it so to say forbids the backscattering
in the edge channels[17], since the only states of the opposite propagation direction
into which an electron can be scattered are situated on the opposite edge, that is
macroscopically far. Furthermore, the absence of backscattering implies also the
absence of dissipation in the edge channels, that was by the way experimentally
confirmed[85]. Indeed, the longitudinal resistance was measured to be zero when-
ever the Hall resistance draws a plateau, but rise up to several order of magnitude
at the moment of transitions between plateaus.

We now switch from continuous to discrete derivative using wave vector quan-
tisation condition km = 2πm/Lx, with m integer obtaining

�n, km |vx| n, km� = Lx

2π�
∆εn,m

∆m
= Lx

h
(εn,m+1 − εn,m) (2.48)
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Thus the total current of n-th Landau level reads

I
x
n = −

e

Lx

�

m

L

h
(εn,m+1 − εn,m) = −

e

h
(εn,N − εn,0) (2.49)

since all intermediate terms cancel out. N and 0 indices correspond to states
centred near upper and lower edge of the sample (N also being the degeneracy of
a Landau level). This means that the transmitted current is given by the balance
of counter-propagating edge currents on both edges, each of them depending on
the given edge’s chemical potential. Thus the current is non-zero only if there
is a difference in chemical potentials between two edges. This difference can be
identified with Hall voltage: −eVH = µLy − µ0, leading to

I
x
n = −

e
2

h
VH (2.50)

From the obtained relation it appears that each Landau level contributes one
quantum of conductance g0 to the total conductance G that is therefore given in
the case of ν filled levels by

G = ν
e

2

h
(2.51)

Now let us examine in short how the disorder affects the transport in quantum
Hall regime. As it was already mentioned above, Hall resistance quantisation not
seem to depend on the specific configuration or magnitude of disorder. This can
be understood in the following way. Note first, that arbitrary disorder correspond
to an arbitrary potential, that will break translation invariance also in x direction.
This potential will have “pits” and “hills” and the density of states of a Landau level
will be significantly enlarged, such that the kinetic energy is not reduced to a single
value any more even in bulk, although most of states are still localized. Indeed,
increasing of filling factor will result first in filling by the electrons of potential
pits and thus formation of localized states in spatially separated zones. These
zones become more and more extended with increasing filling until eventually
zones connecting both edges are formed, when average filling is reached. If so, the
backscattering becomes possible and the longitudinal resistance rises sharply, while
transition between plateaus occurs in Hall resistance. If we continue to increase
the filling factor, electrons will fill the potential hills, hence, similarly, zones of
localized states will be formed and backscattering is again suppressed. At the
same time a new edge channel is opened and a new plateau will be drawn. This
is a percolation vision of QHE.
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Chapter 3

Mesoscopic Transport in
Graphene

3.1 Conducance and Shot Noise in Graphene
In this section we examine conductance and noise properties of coherent graphene

conductor. These calculations were done by Tworzydlo et al. and also partially by
Katsnelson.

Consider a simple model of ideal, quite narrow graphene strip of length L and
width W , connected to two reservoirs. For the sake of simplicity, we consider a
confinement potential in transversal direction to be smooth on the scale of the
lattice spacing, since in this case two valleys are decoupled. Hence in the low
energy excitation limit, that we discuss here, we can operate with a two-component
wavefunction Ψ = (Ψ1, Ψ2), taking into account valley (and spin) degeneracy in
our calculations. Besides, the usual electrostatic potential confinement term is not
applicable in the framework of Dirac equation for massless particles, because of
the existence of anti-particles band and absence of gap between two bands, and a
mass confinement approach is used instead. Consider the following Dirac equation

�
vF p · σ + v

2
FM(y)σz + µ(x)

�
Ψ(r) = εΨ(r) (3.1)

as it can be seen, it follows from the σz matrix diagonality, that the mass term
induces a gap in the graphene spectrum. Therefore, an infinite mass term in Dirac
equation is equivalent to infinite potential term in non-relativistic case, so we take
M(y) to be zero inside the strip and to go to infinity outside it. As for electrostatic
potential energy term µ(x), it is used to account for carriers density in the strip,
varied by gate voltage: µ(x) = µ for 0 < x < L, as well as to model the reservoirs.
Indeed, the reservoirs by definition are assumed to contain a much larger number
of modes than the conductor, so putting µ(x) = µ∞, with |µ∞| � |µ| in the
reservoirs (x < 0 and x > L), this condition is satisfied.

45
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The infinite mass confinement correspond to the boundary condition [12]:

Ψ1

����
y=0

= Ψ2

����
y=0

, Ψ2

����
y=W

= − Ψ2

����
y=W

(3.2)

and following transversal momenta quantisation

qn = 1
W

π(n + 1
2), n = 0, 1, 2 . . . (3.3)

To calculate the transmission probabilities of each mode as a function of electro-
static potential energy µ in the strip, we use textbook approach of modes matching
at the interfaces between the strip and the reservoirs (x = 0 and = L). However,
once again in the relativistic case there is a slight difference one should be aware
of. As it follows from density current conservation

j(r) = evFΨ†(r)σΨ(r) (3.4)

the only matching condition is the continuity of two components of Ψ.
An eigenstate of the system is described by two quantum numbers: one con-

tinuous — longitudinal wave vector k and one discrete — n, related to the quan-
tized transversal momentum. The transversal wave vectors qn depend only on
the boundary conditions, assumed to be the same in the conductor and in the
reservoirs and the eigenenergy in different parts of the system reads

εn =






µ∞ ± �vF

�
k2 + q2

n, x < 0 and L < x

µ ± �vF

�
k̃2 + q2

n, 0 < x < L

(3.5)

with k real and k̃ that can be both real and imaginary. Plus and minus signs
stand for conductance and valence bands respectively. It follows from this discus-
sion, that the transmission and reflection processes, being elastic, will not mix the
modes and, as previously, separate transmission probabilities for each mode can be
defined: Dn = |tn|2, where tn are transmission amplitudes, obtained from modes
matching calculations.

For the details of these calculations one is referred to the Appendix A in [149].
They yield the transmission probabilities Dn, that in the limit of |µ∞| → ∞ are
given by

Dn =
�����

kn

kn cos (knL) + ı(µ/�vF) sin (knL)

�����

2

, (3.6)

with kn =
�

(µ/�vF)2 − q2
n.

In a model QPC modes are subsequently “opened”, i.e. their transmission be-
comes perfect, when Fermi level position is changed progressively, while transmis-
sions of “unopened” modes — those above Fermi level — is negligible most of the
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time, giving rise to step-like transitions in the conductance. As it can be seen
from eq. 3.6, this is not what we expect in a graphene strip (at least in the limit
of W/L, N → ∞, N being the total number of modes in the reservoirs), since in
that case, in the opposite to the situation with a model QPC, a great number of
modes above Fermi level have a transmission different from zero.

This aspect ratio constraint, i.e. the necessity for the conductor to be short and
large, can be easily understood by considering a simple one-dimensional barrier
tunnelling problem. Transmission probability decreases exponentially with both
barrier length and height. Barrier length obviously corresponds to the strip length
L, while barrier height is given by the energy difference between the Fermi level
and the given unopened mode. This quantity is proportional to the transversal
momentum quantum, which decreases itself as ∝ 1/W . Therefore, in order for the
above discussed condition of a great number of unopened modes with transmission
different from zero to be accomplished, suitable aspect ratio is required.

So let us see, what do the described form of transmission probabilities imply in
particular in terms of the conductance G and the Fano factor F. These quantities
can be calculated in a straight forward manner, using already discussed expressions
(2.17) and (2.26) (note, however, that the conductance quantum pre-factor g0 now
equals 4e2

h in order to account for spin and valley degeneracies).
Besides, the details of calculations of transmission probabilities for other bound-

ary conditions can be found within the same reference. The resulting conductance
and Fano factor are nevertheless identical for any type of boundary conditions, at
least in the limit of W/L → ∞, condition which is satisfied already for moderate
aspect ratios W/L � 4. There the authors also compare the analytical calcula-
tions with numerical tight-binding model simulations, which confirm the analytical
results.

In the indicated aspect ratio range these can be summarized as

σ → g0/π, F → 1/3, at µ = 0 (3.7)

with conductivity σ ≡ G × L/W . Furthermore, at µ = 0, i.e. at Dirac point, the
Fano factor exhibits maximum, whereas the conductance exhibits minimum. This
is in fact, the most notable results of the presented calculation, that we tend to
verify experimentally in our work.

The dependence on the aspect ratio of the conductivity σ and Fano factor F at
Dirac point (µ = 0) are plotted in fig. 3.1. Both quantities reach the W/L → ∞

limit indeed very quickly. In the opposite limit, the disparity of the behaviour for
different boundary conditions can be attributed to the distinctions in the energy
spectra. This limit actually reflects the situation, similar to one in a model QPC,
discussed above, and therefore, “smooth edge” boundary condition, for instance,
for which no modes are present at the Dirac point, leads to zero conductance and
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[148] Tworzydlo et al. (2006)

Figure 3.1: Conductivity σ and Fano
factor F at the Dirac point (µ = 0),
as a function of the aspect ratio of
the graphene strip. The curves are
calculated for two different bound-
ary conditions: smooth edge (solid
curves) using eq. 3.6 and “metallic
armchair” edge (dashed curves, equa-
tion not specified in the text). The
limit W/L → ∞ (dotted lines) corre-
sponds to expressions from eq. 3.7,
regardless of the boundary condition.
The data points for the armchair
edge are the result of a numerical so-
lution of the tight-binding model on
a hexagonal lattice. From [148].

[148] Tworzydlo et al. (2006)

Figure 3.2: Fermi energy dependence
of the conductivity σ and the Fano
factor F at fixed aspect ratio W/L =
5 for the case of a smooth edge (solid
curves) or metallic armchair edge
(dashed curves). The conductivity
minimum at the Dirac point corre-
sponds to maximal Fano factor. The
oscillations signal the appearance of
propagating modes in the graphene
strip with increasing potential. From
[148].
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Fano factor equal to one (QPC closed), just as “metallic armchair edge” boundary
condition, for which the spectrum contains exactly one mode at the Dirac point,
leads to zero Fano facto and the conductance equal to g0 (QPC with transmission
one).

Figure 3.2 shows the dependence of the conductivity and of the Fano factor on
Fermi level position. One sees clearly, that the values in (3.7) are corresponding
minimum and maximum of the conductance and the Fano factor. On the other
hand, far from the Dirac point, step-like oscillations around classical tendency of
the conductance, similar to what can be seen when comparing QPC conductance
and classical conductivity, show up. As for the Fano factor, it decreases rapidly if
Fermi level move away of the Dirac point and one notices a near-ballistic behaviour,
i.e. near zero Fano factor. This is yet not surprising, since in this limit, most of
the modes are perfectly transmitting and only few contribute to the partitioning.

It is remarkable, that at the Dirac point the Fano factor attains the value 1/3,
which is characteristic for disordered metal conductors (see discussion on diffusive
transport in Chapter 2), although the studied graphene strip is defectless. One
notes a mathematically similar 1/ coth dependence of the transmission probabili-
ties for both cases, that explains the quantitative result. Qualitatively, however,
it is difficult to establish any physical analogy between these two very distinct
phenomena. In [148] the authors argue, that the result can be attributed to the
effect of Zitterbewegung, which would be similar to classical diffusive dynamics.
Yet, there was no explicit evidence of this phenomenon in graphene up to now, so
such parallels are to be treated with care.

3.2 Quantum Hall Effect in Graphene
Quantum Hall Effect in graphene, referred as relativistic in some literature,

arises from the same mechanisms as its non-relativistic counterpart. Yet, few
differences have to be pointed out. The main distinction, which is moreover at the
origin of all others, is Landau levels structure. If one follows the same approach
as in the sec. 2.3 of the previous chapter, substitution (2.34) yields

H
B
D = vF

�
0 Πx − ıΠy

Πx + ıΠy 0

�

=
√

2�vF

lB

�
0 a

a
† 0

�

(3.8)

and as previously we introduce the cyclotron frequency, which however this time
reads in a different manner: ω

�
C =

√
2vF/lB. Like before, the eigenstates of rela-

tivistic Hamiltonian are denoted with two-component vectors or 2-spinors

ψn =
�

un

vn

�

(3.9)
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[61] Goerbig (2009)

Figure 3.3: (a) Mass confinement for relativistic Landau levels. Whereas the
electron-like Landau levels (plus sign in eq. 3.12) are bent upwards when approach-
ing the sample edge (ymax), the hole-like Landau levels (plus sign in eq. 3.12) are
bent downwards. The fate of the n = 0 Landau level depends on the valley (parity
anomaly) – in one valley (K), the level energy decreases, whereas it increases in
the other valley (K �). From [61]. (b) Filling of the bulk Landau levels at ν = 0.
All electron-like Landau levels are unoccupied whereas all hole-like Landau levels
are completely filled. The n = 0 Landau level is altogether half-filled. From [61].

and the eigenvalue equation leads to the relation

a
†
a vn =

�
ε

�ω�
C

�2

vn (3.10)

whereas the first component of the vector is related to vn by the expression
�ω

�
Ca vn = εnun. It is clear from eq. 3.10, that vn is the eigenfunction of number

operator n = a
†
a, namely vn ∼ |n� (and un ∼ avn ∼ |n − 1�), while the eigenvalues

satisfy ε
2
n = (�ω

�
C)2

n. This yields eigenvectors

ψn=0 =
�

0
|0�

�

and ψn�=0 = 1
√

2

�
|n − 1�

± |n�

�

(3.11)

and eigenvalues
εn = ±�ω

�
C

√
n = ±vF

√
�eBn (3.12)

where plus and minus signs as always stand for conductance and valence bands
respectively. Hence, in contrast to non-relativistic case, where Landau level energy
is linear in magnetic field and level index, in the relativistic case it disperses as
a square root both of these quantities (see fig. 3.3.b). Moreover, particle anti-
particle parity is conserved in magnetic field and the Landau levels sequence is
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[173] Zhang et al. (2005)

Figure 3.4: Hall resistance (black) and magnetoresistance (orange) as a function of
gate voltage at fixed magnetic field B = 9 T, measured at 1.6 K. The upper inset
shows a detailed view of high-filling-factor plateaus measured at 30 mK. From
[173].

symmetric about zero of energy. This particular Landau level structure is in fact
the reason of all distinctions between conventional integer QHE and relativistic
QHE, as it will be briefly demonstrated in the next few paragraphs.

To begin, consider as previously, a conductor of long and narrow geometry, the
problem is treated in Landau gauge. We again use the substitution y0 = kl

2
B, with

y0 — the oscillator center in y direction. After a calculation, that can be found
for example in [61], one obtains the following expression for energy eigenvalues

εn,y0 = ±

����M2(y0) + 2�
2v2

F

l2
B

n, (3.13)

represented in fig. 3.3.a. Note first, that edge channels persist in the relativistic
case, meaning that the transport mechanism remains the same. In return, there
is a Landau level at zero energy, leading to a peak in longitudinal resistance and
absence of plateau for Hall resistance at Dirac point. In addition, Landau levels
degeneracy is doubled as compared to a simple situation of spin-associated two-
degeneracy. These two elements reveal the main feature of relativistic QHE: the
Hall resistance quantization is observed at the fillings

ν = ±2(2n + 1) (3.14)

yielding a sequence of plateaus represented in fig. 3.4.
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[42] DiCarlo et al. (2008)

Figure 3.5: The schematics of the experimental setup used by DiCarlo et al..

3.3 Experimental Results
The relativistic Quantum Hall Effect in graphene was quickly validated exper-

imentally. The evidence of the specific sequence of Hall plateaus (3.14), predicted
by the above theory, was provided by Novoselov et al. and by Zhang et al. very
soon after graphene was discovered. The square root dependence (3.12) of the Lan-
dau levels on the magnetic field was demonstrated in the epitaxial graphene by
Sadowski et al. Furthermore, observation of the Quantum Hall Effect in graphene
at room temperature was reported in [116]. Since then, several experimentalist
groups actively studied Quantum Hall Effect in graphene, see refs. [171], [159],
[170], [164], [105], [9], [166] for example, all confirming the results described in
the previous section. Even the Fractional Quantum Hall Effect was observed in
graphene by Dean et al. (on boron nitride), by Feldman et al. and by other groups.
For more complete review of the experimental (and theoretical) works in this field
reader is referred to [37] for instance.

The situation is rather different with another theoretical results, presented
in this chapter. The conclusions of the evanescence modes model proposed by
Tworzydlo et al., that we discussed in the sec. 3.1 raised a great interest in the
mesoscopic physics community. An empirical confirmation of the predicted effects
could serve a robust prove of that graphene pseudo-relativistic physics is indeed
attainable for experimentalists. Despite the difficulties of such experimental task,
for instance fabrication of ballistic graphene samples or proper measurement of the
shot noise, two groups have succeeded to investigate the shot noise in graphene-
based devices. However, the results of these two studies lead to somewhat contra-
dictory conclusions as it will be shown in what follows.

One study was carried out by DiCarlo et al. Samples of various aspect ratios
and lengths were examined: W×L � 2 µm×350 nm, 1.8 µm×1.3 µm, 2 µm×300 nm,
1.8 µm×1 µm (presumably multi-layer) and a graphene p-n junction device. The
conclusions of this study are that the ballistic regime was not attained, samples in
the diffusive regime show Fano factor ≈ 0.35, which however does not vary with
gate voltage (up to carrier densities of about 1 × 1012 cm−2, which the used setup
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allow to attain). Only the multi-layer sample demonstrated the variation of the
Fano factor with gate voltage, which decreased from .33 at the neutrality point to
0.25 at ns ∼ 6 × 1012 cm−2. The universal value of the minimal conductivity 4e2

πh
was not observed, instead measurements showed a multiplicity of values depending
on the sample. Main results of this study are presented in fig. 3.6. In short, this
experiment does not provide a clear evidence of the evanescence modes theory,
without disapproving it completely.

The key points of this study are:

• The noise was measured with the cross-correlation technique, cryogenic low-
noise amplifiers (calibrated with Johnson-Nyquist thermometry) together
with resonant circuits were used for noise detection at 1.5 MHz.

• The lowest measurement temperature was 0.3 K.
• Independent measurements in the Quantum Hall regime (however in a sep-

arate cryostat) were used to determine carrier density dependence on gate
voltage. From that, the mean free path was estimated, varying between
∼ 25 and 40 nm depending on the sample. Hence a clear evidence of diffu-
sive transport in all samples was presented.

As drawbacks can be considered the following elements:

• Two-point approach was used for conductance and noise measurements,
meaning that in both experiments contact resistance was not avoided.

• The samples were not checked in Raman spectroscope in order to confirm
their monolayerness and probably not annealed.

• The effects of the eventual capacitive back-gate shunt at MHz frequency was
not discussed in this work.

In the other study carried out by Danneau et al. also samples of various as-
pect ratios and lengths were examined: W × L � 4.8 µm×200 nm, 2 µm×200 nm,
900 nm×300 nm, 1 µm×500 nm, 4 µm×950 nm (considered to be in the diffusive
regime), 900 nm×500 nm (with non-parallel leads). The conclusions of this study
are more promising, the variation of the Fano factor was observed in most of their
samples. In particularly, one sample showed the minimal conductivity very close
to 4e2

πh and Fano factor � 1/3 at the neutrality point, decreasing when the carrier
density increases. In another two samples with large aspect ratio however, the
neutrality point was not attained experimentally, but the variation of the Fano
factor was still observed (see fig. 3.9). Moreover, the Fano factor in the sample
considered to be in the diffusive regime also manifested a variation with the gate
voltage. In short, although the results of this study attest the conclusions of the
evanescence modes theory, several emphasized issues suggest that a new study
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[42] DiCarlo et al. (2008)

Figure 3.6: Some results of the work by DiCarlo et al.. For Sample A1, wide and
short (2 µm×350 nm) differential resistance (a) and Fano factor (b) as a function
of the back gate voltage at electron temperature Te = 0.3 K are shown. For
Sample A2, more squared (1.8 µm×1.3 µm, patterned on the same graphene sheet
as A1) are shown differential resistance and conductance (c) as well as Fano factor
(d) as a function of the back gate voltage at two electron temperatures (Te =
0.3 K and 1.1 K). For Sample D, presumably multi-layer (1.8 µm×1 µm) are shown
differential resistance and conductance (e) as well as Fano factor (f) as a function
of the back gate voltage at the same two electron temperatures. From [42].
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[35] Danneau et al. (2008)

Figure 3.7: The schematics of the experimental setup used by Danneau et al..

could shine more light on the validity of this theory.

The key points of this study are:

• Noise measurement at very high frequency (600-850 MHz), without any 1/f

noise contributions. Use of cryogenic low-noise amplifiers, independent cali-
bration with a tunnel junction (see fig. 3.7).

• Large temperature range: 4.2-30 K

As drawbacks can be considered the following elements:

• Use of the auto-correlation technique and two-point geometry for the noise
(and conductance for latter) measurements. (Avoiding the contact resistance
contribution to the measurement is particularly important in the case of the
minimal conductivity determination).

• The correspondence between gate voltage and carrier density was not deter-
mined separately, this is also the case for the mobility and mean free path.
Hence the assumption of ballistic regime was not verified independently.

• Quantitative agreement with the theory was not obtained even for the best
measurement, factor ∼ 9 discrepancy between gate capacitance estimated
from the evanescence modes theory and the one estimated from a simple two
plane capacitor model.
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[35] Danneau et al. (2008)

Figure 3.8: Some results of the work by Danneau et al.. For Sample A
(4.8 µm×200 nm): (a) differential resistance (in green, left axis) and conductance
(in blue, right axis) as a function of the back gate voltage, (b) Fano factor as
a function of the back gate and the bias voltages at T = 8.5 K. For Sample D
(1 µm×500 µm): (c) differential resistance (in green, left axis) and conductance (in
blue, right axis) as a function of the back gate voltage, (d) Fano factor as a func-
tion of the back gate and the bias voltages at T = 5 K. For Sample E, presumably
in diffusive regime (4 µm×950 nm): (e) differential resistance (in green, left axis)
and conductance (in blue, right axis) as a function of the back gate voltage, (f)
Fano factor as a function of the back gate and the bias voltages at T = 12 K. From
[35].

[35] Danneau et al. (2008)

Figure 3.9: Fano factor for samples A (blue dots), B (orange dots) and C (green
dots), all having W/L ≥ 3, as a function of δV = VG − VD, VG being the back gate
voltage and VD — its value at which the Dirac point is reached. From [35].
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• Neutrality point is not reached experimentally in two samples, claimed to
be in ballistic regime (estimated gate voltage values corresponding to the
neutrality point are 145 and 100 V).

• Only in one sample, where the neutrality point was attained experimentally,
the correct value of the minimal conductivity was observed.

• Samples probably not checked in Raman spectroscope for monolayerness and
probably not annealed.

• High voltage used for the sample biasing (up to 50 mV)
• The effects of the eventual capacitive back-gate shunt at almost GHz fre-

quency was not discussed in this work.

On the whole, two experimental works tried to validate the evanescence modes
theory proposed by Tworzydlo et al. Two works disagree in several points, quan-
titative agreement with this theory was not obtained in both cases. As far as we
know, no other experiments were performed in this subject, while the question
remains opened. This fact motivated the need to design a new experiment, even-
tually free of the above-mentioned drawback elements. This is the purpose of this
work, that we present in what follows.
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Chapter 4

Measurement System Principle

4.1 Experimental Requirements and Techniques
4.1.1 Typical Scales

We start with an overview of the typical scales observed in graphene samples
on SiO2. At the end we will also touch upon the suspended graphene and graphene
on hBN.

Typical graphene samples, obtained by mechanical exfoliation, are usually p-
doped. To be able to vary the carrier density, in particular to reach the Dirac
point, one usually gates the graphene sample. Back-gate is often preferred because
of the relative simplicity of fabrication. Carrier densities as high as 1 × 10−13 cm−2

are attained. It is important to have an estimate of the sample resistance, when
conceiving a measurement system. The resistivity of graphene is very low at
high carrier density (hundreds of ohms), while at the Dirac point it reaches its
maximum. In ballistic samples it is predicted to be πh

4e2 ≈ 20 k�. For samples in
diffusive regime, a very extensive study by Tan et al. reports on 19 samples which
maximum resistivity lay between 2 k� and 5 k� with one sample however showing
much higher resistivity of � 13 k�. Higher values were also reported in refs. [111]
and [42].

The aim of our experiment is to probe coherent transport properties in graphene.
The key quantity for that is the phase coherence length, given by lφ =

�
Dτφ, with

D — diffusion constant and τφ — the time of phase decoherence. D on its turn
depends on the elastic mean free path lel: D = 1

2vFlel, while τφ is temperature and
carrier density dependent. The crucial requirement for our samples is thus that
their effective dimensions remain beyond the phase coherence length at tempera-
tures we want to conduct our measurements, i.e. at 4 K. This quantity in graphene
on SiO2 was investigated by several groups. Berezovsky et al. found lφ � 500 nm
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at 4 K with lel � 50 nm (by the way these same values were observed by Eless
et al. but in graphene grown on SiC), Morozov et al. reports lφ � 1 µm at the
same temperature. Other studies done at � 250 mK find phase coherence length
of about 1 µm[29] and 3 − 5 µm[108]. Interestingly, investigation of phase coherence
length in a graphite wire (7±1 layers) on SiO2 was carried out by Graf et al., which
obtained lφ � 2 µm at 4 K. Finally, another quite surprising result was published
by Minke et al., who studied coherence length in very narrow graphene ribbons
(40 nm × 1 µm), for the conclusion was that lφ in such particular systems is much
shorter that in “bulk” graphene: ≈ 75 nm at 4 K.

Second crucial requirement we are supposed to fulfil, namely ballistic regime, is
characterized by elastic mean free path. This quantity is carrier density dependent
so we will consider it for densities ∼ 1−10 × 1012 cm−2. Some values, encountered
in literature were already mentioned. In the work by Tan et al. one finds lel ranging
from 10 nm to 500 nm for most of the numerous samples they studied and for most
carrier density ranges, while Morozov et al. reports lel � 80 nm. However, values
indicated in ref. [108] are even higher: lφ � 0.5 − 1 µm.

Now let us see, how these values can be improved. One technique consists in
placing a hexagonal boron nitride (hBN) layer between substrate and graphene.
This material is quite similar to graphene: it is also a two-dimensional crystal
with a hexagonal lattice of close lattice constant, except that each sublattice is
occupied by different kinds of atoms, Boron and Nitrogen, making of it a large
band gap semiconductor. Thus hBN partially protects graphene from the effect
of SiO2 substrate, without modifying its electronic properties. In the work by
Dean et al. mobilities about 60 000 cm2 V−1 s−1 are reported for graphene on hBN,
corresponding to the mean free path varying from 200 nm to 700 nm. More recent
work by Calado et al., in which graphene synthesised by chemical vapour deposition
on copper foil and then transferred on top of a hBN layer on SiO2 is studied,
reports lφ � 200 − 400 nm. But the most efficient way to obtain high mobility
graphene remains fabrication of suspended samples by etching the substrate under
the graphene layer or by placing the graphene layer over a trench prepared on
the substrate beforehand. In this case mean free paths as long as 1.2 µm can be
attained[15].

Given these facts, it seems justified to consider typical values of coherence
length lφ to lay between 500 nm and 1 µm and elastic mean free path ≈ 200 nm
attainable. As for the minimal resistivity, it is fixed around ≈ 20 k� in ballistic
systems, while in diffusive systems the dispersion is quite significant. Nevertheless
values between 4 k� and 6 k� seem reasonable.
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4.1.2 Noise Measurement Techniques
In this section we will treat various techniques of noise measurement at zero

frequency (i.e. �ω � eV )1. In this limit, the common approach is to measure
the voltage noise across the sample SV = SI/G

2 (G being its conductance) which
echoes the current noise, generated by the sample. The final step of Power Spectral
Density calculation is usually done by a commercial spectrometer or by an analog-
to-digital conversion PC card together with a software FFT2 bloc. Just as for
the conductance measurement, four-point technique is preferred, since otherwise
contribution to the detected noise of the thermal noise generated by the contact
resistances will be hard to separate. The most challenging issue is however the
noise, added by the detection system itself.

Hereafter, we note as S
s the sample (voltage) noise (the noise, one tends to

detect) and as S
d — the noise due to the detection system or the detection noise.

This latter is in the most cases much stronger than the sample noise: S
s � S

d,
and it is extremely difficult to eliminate its contribution from the result of the
measurement S

m = S
s +S

d. Furthermore, S
s often represents a too weak signal to

be measured directly, and an amplification is then required, being the main source
of additional noise. Therefore, the amplifier performance is very important and the
amplifier’s voltage and current noise characteristics S

a
V and S

a
I (referred to the input

of the amplifier) become as relevant as such parameters as its gain or bandwidth.
In some rare situations, the detector noise S

d can be measured separately, and then
subtracted from the final result, but since S

d � S
s the uncertainty of obtained

result δS
m will still be much greater than the S

s. These fluctuations usually have
a Gaussian statistics and thus by averaging of the spectra over an acquisition time
τm this uncertainty can be reduced according to the relation

δS
m =

√
2 S

m
√

∆fτm
�

√
2 S

d
√

∆fτm
(4.1)

where ∆f is a measurement bandwidth. The efficiency of this approach is however
limited by the amplifiers gain fluctuations and the required precision may not be
attained.

Commercial room-temperature low noise amplifiers of acceptable performance
exist, but their usage has an important drawback: the low to room temperature
connection is usually done with long coaxial cables, yielding a significant capaci-
tance to the ground. The sample impedance often being quite high as well, this
leads to a notable bandwidth reduction, as a consequence of the RC-cut. 1/f

noise defines the lower limit of the useful bandwidth. In order to overcome these
limitations a cryogenic amplifier can be placed in the proximity of the sample,

1More exhaustive survey about the noise measurement techniques can be found in [60].
2FFT — Fast Fourier Transform
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Figure 4.1: Schematic representation of the voltage noise measurement (a) and of
an amplifier with its voltage and current noise sources, g designating the amplifier
gain (b). On (c) is displayed the principle of cross-correlation measurement with
all noise sources explicitly shown, the sample of conductance G being in the center.

therefore reducing the connecting cables length and corresponding capacitance. If
however, this is still not sufficient e.g. 1/f noise is too high within the measure-
ment bandwidth, adding a RLC resonant circuit to the amplification chain can
be a solution. Such circuit shifts the passband to higher frequencies, allowing to
attain the regime in which the 1/f noise becomes negligible. The resulting pass-
band has a Lorentzian shape of width 1/2πRC and is centred at the frequency
fres = 1/2π

√
LC, with R, L and C — respectively resistance, inductance and

capacitance of the resonant circuit. The circuit capacitance can not be reduced
below the one of the coaxial cables, just as the resistance is limited by the sample
resistance. The inductance is hence the only “free” parameter to control the res-
onant circuit characteristics. Note also, that the skin effect increases the resistive
losses of the inductor, modifying the parameters of the resonant circuit at high
frequency.

Yet, the most powerful method remains the cross-correlation detection, rep-
resented schematically in fig. 4.1.b. Although, as one notices, a duplication of
the detection system is required, at this price one gets a remarkable advantage —
such a way of detection directly suppresses the contribution to the measurement
results of the detection system voltage noise and in some cases even the current
noise contribution is suppressed.

Let us see, how does this method work. First of all, recall that the total
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fluctuations at the i-th amplifier input read

δVi = δV
ai + G

−1(δI
a1 + δI

a2) + G
−1

δI
s (4.2)

yielding the following expression for the autocorrelation noise (referred to input)

SVi ∝

�
δV

2
i

�
=

�
(δV

ai)2
�

+ G
−2

�
(δI

a1)2
�

+ G
−2

�
(δI

a2)2
�

+ G
−2

�
(δI

s)2
�

, (4.3)

while the cross-correlation noise is given by

SV1V2 ∝ �δV1δV2� = G
−2

�
(δI

a1)2
�

+ G
−2

�
(δI

a2)2
�

+ G
−2

�
(δI

s)2
�

(4.4)

As it can be seen, the voltage fluctuations term disappears from the expression (4.4)
for the cross correlation. Indeed, the cross-correlation measurement contains only
the information mutual to both detectors. While the noise currents, generated
by the both amplifiers, will run through the sample and the produced voltage
noise will be detected also by the both amplifiers, voltage noise of each amplifier,
considered uncorrelated, will be detected only by the corresponding amplifier and
will not be contained in the cross-correlation. It is then clear, that using of a
sample in which the signal propagation is non-reciprocal, like in QHE regime, or
separation of the amplifiers from the sample using several resistors will provide a
configuration, in which even the amplifiers current noise term is absent.

In return, the uncertainty on the detected noise spectral density will still de-
pend on the detection noise:

δS
m

�
S

d
√

∆fτm
(4.5)

even though a speed-up by a factor 2 (for a fixed uncertainty) is apparent due to
twice as much information detected by two independent measurement lines.

All presented methods were integrated in the measurement system used in this
work.

4.2 Technical Realisation
In the following we aim to illustrate the technical aspects of our experimental

setup and to justify the technical solutions we opted for in view of the conclusions
of the previous section. We start the section with the discussion of the device
“architecture”. We then explain the principle of the measurement system and
present a brief analysis of the corresponding electrical circuit, while the cryogenic
amplifiers concept is detailed in a separate paragraph at the end of the section.
The description of the cryogenic inset, carrying the measurement circuit, and the
noise detection system, based on the rapid analog-to-digital conversion PC card,
are both transferred into the Appendices B.1 and B.2 respectively.
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4.2.1 Device Design
The graphene-based device is the essential component of the experimental setup

and, by the way, its fabrication discussed in details in the next chapter, also
presents a great piece of work.

The figure 4.2 shows the sketch of the device. The core element of the device is a
graphene sample of particular form, connected to six strip electrodes. The device is
thus designed to allow 4-point cross-correlation measurement, that offers a number
of obvious advantages (although having as a drawback the difficulty of fabrication).
Two additional electrodes (electrically disconnected from the graphene layer) are
the side gates, used to vary the carrier density in the graphene layer. The back gate,
despite its greater efficiency, was avoided in this design, because of the related shunt
capacitance, that can be comparable to the graphene resistance at the frequencies
the noise measurements are done, allowing a part of current fluctuations to sink
through it. For the same reason, the device substrate material is the intrinsic Si
with SiO2 layer on top.

Figure 4.2: Sketch of the graphene-based device: 1 — two current injection elec-
trodes, 2 — four voltage probes, 3 — side-gates (electrically disconnected from
the graphene), 4 — nano-constriction, which plays a role of coherent conductor
(proportions are not conserved for better visibility). Everything is situated on top
of an insulating silicon substrate (in purple), containing a SiO2 capping layer (in
light blue).

The truly critical point, that deserves our special attention is however the
shape of the graphene sample. Recall from the previous chapter, that our inten-
tion is to study a ballistic graphene conductor of particular aspect ratio, namely
width/length above 3.5. Such aspect ratio, way above one, is quite uncommon,
so a specific approach is required. Indeed, in subsec. 4.1.1 we specified the value
≈ 200 nm as a target mean free path value to count on, yielding the optimal di-
mensions, length×width of about 200 nm × 800 nm. Yet, conductor having such
peculiar orientation with respect to the current direction, it would be extremely
difficult to reliably contact six electrodes to it. For these reasons, the following
solution was suggested.
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As it can be seen on the sketch the graphene layer has a constriction in the
middle. An essential detail to understand is that in our device what plays a role
of the coherent conductor which transport properties we probe, is the zone of the
constriction, i.e. this very narrow strip of graphene, whereas the two wide parts of
graphene on the both sides correspond to the model reservoirs. Hence, the required
dimensions of the conductor can be easily attained, while its contacting remains
relatively feasible. On the other hand, the constriction, being much narrower, than
the rest of the graphene layer, the transport properties of the latter will be entirely
defined by the physics in the constriction. Besides, in that case the two reservoirs
are defined as two parts of graphene on both sides of the coherent conductor of
length lφ, i.e. phase coherence length. In other words, the reservoirs are everywhere
except the segment of length lφ in the middle of the layer.

In addition, such geometry presents second important advantage: the con-
ductor and the reservoirs being a part of the same graphene crystal, the contact
between them is perfect, that is extremely difficult to achieve with usual metal
deposition technique. The contact resistance between the metallic electrodes
and graphene sample is yet still present but at distance from the constriction
greater than the phase coherence length, therefore playing no role in the electronic
transport through the constriction. Hence, any Fabry-Pérot-type resonances or
Coulomb blockade-type effects are avoided.

It is true that within this approach the real dimensions of the coherent conduc-
tor are hard to identify, first of all because the fabrication process limits precision
for the resulting constriction dimensions and second, because it is difficult in prac-
tice to define where the conductor ends and the reservoirs start. On the other
hand, we know that the phase coherence length in the exfoliated graphene on SiO2
ranges between 0.5 µm and 1 µm (see subsec. 4.1.1) giving us the approximate idea
of conductor’s size. Furthermore, the constriction, because of its high resistance,
delimits the effective conductor much better, than simply the distance between
the voltage probes. We will anyway keep in mind, that at least the intended
length×width dimensions are 200 nm × 800 nm.

4.2.2 Measurement System
Let us start with an overview of the main elements of the system. The schemat-

ics of the measurement circuit is given in fig. 4.3. The device design already gives
the idea of the required circuitry: two separate lines for current injection and
sinking, four identical voltage probe lines, one line to apply the gate voltage (two
branches of the side-gates are already shorted in the device). Two 50 k� resistors,
placed near the device and separating it from current injection and sinking lines
will be particularly useful for current biasing of the device at high frequency. In
addition, the setup is equipped with two thermometers and two heaters, placed in
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Figure 4.3: Schematics of the measurement circuit with a sketch of the device in
the center: six ohmic contacts are coloured in yellow and side-gates are coloured
in green, constriction resistance is explicitly shown and denoted Rs. Four identical
voltage probing lines are connected to the sample and contain each a resonant cir-
cuit and a cryogenic amplifier. They are then connected to two room-temperature
differential amplifiers NF SA-420F5 resulting in two output channels (ch0 and
ch1) that are in their turn connected to different instruments, including analog-
to-digital conversion PC card, also sketched. All low temperature connections,
except those of the voltage probing lines were realized with standard commercial
cryogenic Lakeshore coaxial cables. Major part of the circuit is situated inside a
low temperature inset (on the schematics delimited with a dashed line) and the
possible experimental temperatures are indicated.
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different locations (not shown on the schematics).
Now, let us see in details the key component of the measurement system,

namely the voltage probe lines. An ideal voltage measurement supposes an infinite
input impedance of the voltage probe instrument. To approach at best to these
ideal conditions and reduce as possible the current leakage through the voltage
probe lines, the 30 k� resistors were added at the inputs of each probe followed by
40 k� resistor to the ground (see schematics), giving the total DC input impedance
of 70 k�, to be compared with the constriction resistance, varying between 1 and
8 k�. At high frequency the resistance to the ground is governed by the resistive
part of the inductor (see the end of this section), that yields total input impedance
at 3 MHz of about 51.5 k�. Note that such resistors configuration causes signal
loss, unravelling why we limited ourself to these values of resistances. Additionally,
for the reasons displayed in the previous section, each line contains also a resonant
circuit, followed by a cryogenic amplifier (see sec. 4.2.3). Finally, the lines are
plugged into corresponding inputs of two room-temperature differential amplifiers
NF SA-420F5 (voltage gain 46 dB). The signals on the outputs of each differential
amplifier (to which from here on we will refer as channel 0 and channel 1) are then
proportional to the voltage drop across the sample and should be identical up to
detection noise component.

In these last paragraphs we will present the characteristics of the resonant
circuits. The most basic resonant circuit contains an inductor and a capacitor
as well as a resistor (intrinsic resistance of the inductor or additional one). In
our circuit, each resonator includes coaxial cables capacitance of about 100 pF,
previously mentioned 40 k� resistor and 22 µH inductor (Coilcraft 1812CS, without
magnetic core). Thanks to additional 20 nF capacitor such circuit provides a low-
frequency band as well as high-frequency one centred around 3 MHz, allowing to
measure in both regimes. The high frequency response of all four lines is plotted
in fig. 4.4. One notice a certain disparity between lines, that can be explained by
differences in resonant circuits components: differences in lengths of connecting
coaxial cables will result in different capacitances, intrinsic resistance of inductors
can also vary from one specimen to another. Besides, due to the skin effect that
makes the high frequency current flow mostly through a thin surface layer of the
conductor, the effect of the inductor’s intrinsic resistance on the resonant circuit
properties can become significant.

We analysed the resonant circuits with the LTSpice simulations software. The
corresponding analytical model is presented in the Appendix B.3. The obtained
curves fit well the experimental ones (see fig. 4.4), except for the line B1, for
which the behaviour couldn’t be completely understood. The resulting values of
circuit elements are presented in table 4.1. We denote C — total capacitance, r

— intrinsic series resistance of the inductor, R — equivalent to it resistance in
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Figure 4.4: High frequency response of the each resonant circuit in arbitrary units
(normalized to vary between 0 and 1), in red experimental data, in green the result
of simulations with the software LTSpice.

parallel, R//40 k� — total equivalent resistance to the ground, fres — resonant
frequency, fcut — eventual cut frequency, due to the circuitry after the cryogenic
amplifiers. The resistance R represents a resistance, which when put in parallel
with the ideal inductor L would result in the same total impedance as the resistance
r, put in series with the same inductor. In the limit of r � ωL, it is simply given
by R = L

2
ω

2
/r.

4.2.3 Cryogenic Amplification System
The cryogenic amplification system was developed within the Nano-electronics

group during my PhD work and is used in several experimental systems, including
the setup for measuring the shot noise in graphene. Here we explain the principle
of this system.
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Table 4.1: Values of different components of resonant circuits for each measurement
line.

Line C (pF) r(Ω) R (kΩ) R//40 (kΩ) fres (MHz) fcut (MHz)
A0 103.95 8 57.5 23.6 3.34 5.7
B0 106.55 16 28.5 16.6 3.3 3.8
A1 109.1 11 41 20.2 3.27 8
B1 107.3 7.5 60.7 24.1 3.29 > 10

The core element of the amplifier is the High Electron Mobility Transistor
(HEMT) — a field effect transistor (FET) based on semiconductor heterostructure.
A FET is a crafty device, with non-linear and moreover gate voltage dependent
current-voltage characteristics. One distinguishes two regimes of FET operation:
linear and saturation one. In saturation regime the drain-source current IDS is
practically independent of the drain-source voltage VDS but strongly depends on
the gate-source voltage VGS. This dependence can be considered as linear in the
limit of small variations vGS and iDS:

gm = iDS

vGS
(4.6)

The above quantity, called transconductance, is an important characteristics of any
FET.

Now consider the circuit, represented in fig. 4.5.a and suppose that we add a
small modulation vi to the voltage on its input (gate) terminal. Let us calculate
the AC response of the circuit, i.e. the alternative voltage that such modulation
produces on the output (drain) terminal. We note VG and ID — the DC components
of the gate voltage and of the drain-source current (here, for simplicity, the source
terminal is grounded). We then have the voltage at the output terminal equal to

VD = VDD − RD(iD + ID), where iD = gmvi (4.7)

Its AC component vo is obviously given by −RDgmvi, meaning that the output
signal is simply proportional to the input signal and thus when RDgm > 1 ampli-
fication regime is attained.

Based on this property, an amplification system can be built. For our goals
five criteria have to be fulfilled:

• the HEMT as well as the passive components should operate at T � 4 K and
be temperature stable.

• the HEMT should have low voltage and current noise characteristics (referred
to the input)
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Figure 4.6: Photography of the main circuit board with both resonant circuit
(which also includes the coaxial cable capacitance not shown) and two HEMTs
(highlighted with yellow colour) cryogenic amplifier, enclosed with green end red
dashed lines respectively. Input and output are indicated.

• the HEMT dissipated power should be enough low to avoid the device heating

• simultaneous measurements at several MHz and near DC should be possible

• amplification system should be isolated as good as possible from outside
electromagnetic interferences

The amplification system can be divided into amplification and polarisation
blocks, the two being connected via a special board, called Splitter. Amplification
block, as it can be seen in fig. 4.5.b, includes two ATF-34143 HEMTs Q1 and Q2
put in parallel and also several passive components mounted on a circuit board
made of machined Copper/Dielectric/Copper (35 µm/50 µm/35 µm) substrate en-
rolled over a massive copper plate and bolted to it, resonant circuits are situated
on the same board (see fig. 4.6). Putting two transistors in parallel presents the
following interest. It can be shown[80], that the current noise of N HEMTs in
parallel adds linearly, i.e. equals to N times the current noise of a single HEMT,
while the voltage noise of N HEMTs in parallel adds like resistances in parallel,
i.e. equals to the voltage noise of a single HEMT, divided by N . Since the voltage
noise of the used HEMTs is in principle more significant than the current noise
even for such quite high input impedances as we have, this allows to improve the
signal-to-noise ratio. Extra discrete capacitors, distributed along the strip lines
of the circuit board (shown as a single symbols in the fig. 4.5.b) were added for
stability to damp eventual resonances in the GHz range.

Polarisation block serves to power the amplification block. To isolate the am-
plification system from the power network and to avoid additional ground loops,
rechargeable batteries are used as a power source. The rest of the polarisation
circuit is shielded and is separated from the batteries (non-shielded) by Murata
filters, which reject all parasitic AC components, induced to the non-shielded part
of the circuit by the environment. Voltage regulators are used to accurately tune
the working polarisation voltage. Finally, the splitter board (see fig. 4.5.b) serves
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to separate the output signal from the DC polarisation voltage VDAC, thus avoiding
an extra line from room temperature for transistor supply.

The realized amplification system can be characterised by its gain as well as
voltage and current noise characteristics. However, an accurate insitu measure-
ment of these characteristics in our experimental setup was not possible or ex-
tremely difficult. For these reasons, we refer ourselves to the results obtained by
Jullien in a very similar system carrying a QPC, which allows an accurate analysis
of amplifier’s characteristics thanks to the well defined conductance plateaus on
which the QPC conductance and the Fano factor are well known. In this exper-
iment the amplifiers’ current and voltage noise at 3 MHz (referred to the input)
were determined to be 15 fA/

√
Hz and 0.22 nV/

√
Hz respectively. The found gain

≈ −4.6 V/V is higher that what we could estimate for our system (below −3 V/V).
The dissipated power was estimated to be of the order of 2.2 µW to be compared to
� 133 pW, the Joule heating produced at the constriction of the graphene-based
device at its maximum resistance (at the Dirac point) with voltage drop across the
constriction of 1 mV.



Chapter 5

Device Fabrication

In the present chapter we discuss the methods and related fabrication pro-
cesses that were adopted in order to produce the graphene nano-structure devices
on which the conductance and noise experiments were then carried out. These
devices were conceived and developed during my PhD work and their elaboration
took an important place in this work. All of them are “home-made” on SPEC
nano-fabrication facility that includes among other tools 10 000 class clean room,
optical and electron beam lithography systems and various thin-film deposition
equipments.

This chapter is organized in the following way. First section provides a sum-
mary of methods generally required for the fabrication of a typical graphene-based
device and for each method an insight into its physical origins is given. In partic-
ular, at the beginning of this section principal techniques of graphene obtaining
are reviewed. The first section is thus recommended to a reader only superfi-
cially familiar with such kind of methods, whereas the next section could rather
attract an advanced reader, concerned with the refinement of his own processes
of graphene-based devices fabrication. That section gives a detailed description
of all processes, that were worked out for the fabrication of our devices. Besides,
one can find the exact recipes for this section in Appendix A.1. Both chapters
can be useful to a reader that starts his activities in this field. In addition, for an
outline of common nano-fabrication techniques (lithography, thin-film deposition
etc.) one is referred to Appendix A.3.

75
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[8] Bennaceur (2011)

Figure 5.1: Photography of a skotch-tape with exfoliated graphite. From [8].

5.1 Methods
5.1.1 Obtaining Graphene

In this section we propose a brief review of the principal techniques that allow
to obtain mono-layer graphene samples. We start with the discussion of the Me-
chanical Exfoliation technique, that was historically the first technique that proved
the possibility of obtaining one-atom thick graphene layers[114]. This is also the
only technique we used while fabricating our graphene-based devices. Next, we
present other approaches and discuss their advantages and drawbacks.

a. Mechanical exfoliation

Mechanical exfoliation is the technique, that allowed the very first reported iso-
lation of a single layer graphene sheet. It was developed at the University of Manch-
ester (UK) and at the Institute of Microelectronics Technology (Chernogolovka,
Russia) by Andre Geim and Kostya Novoselov and a Nobel prize was awarded
to them in 2010 for “ground-breaking experiments regarding the two-dimensional
material graphene”[? ].

This technique consists of a mechanical cleavage of highly oriented pyrolytic
graphite (HOPG). Since the graphite represents a stack of graphene layers held
by rather weak van der Waals forces (interlayer spacing is of 0.335 nm) it is easily
peeled off using only scotch-tape. Hence by peeling more and more layers one
can eventually obtain a single layer of graphene. Although this technique is easily
implemented in laboratory conditions and despite its low cost and the outstanding
characteristics in terms of mobility[15, 45], structural defects concentration[140, 75]

etc. of the in such a way obtained samples, this method remains a quite arty-
crafty and largely uncontrollable process and is not appropriate for industrial ap-
plications. This technique was used in present work to obtain graphene flakes
for subsequent devices fabrication, since our experiment necessitates high electron
mobility graphene.
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[155] Viculis et al. (2005)

Figure 5.2: Schematic diagram showing the intercalation and exfoliation process.
From [155].

Later, another approach to mechanical exfoliation, known as sonification[32],
was suggested where graphite is dispersed in a liquid medium, subjected to an
ultrasound treatment. As a consequence graphite is exfoliated and , non-exfoliated
pieces are eventually separated from graphene by centrifugation. However, this
method also has its obvious limitations in terms of fabrication scalability.

b. Chemical exfoliation

The radically different manner of graphite layers separation is intercalation of
molecules between adjacent layers to enlarge the interlayer spacing and thereby
lower the van der Waals forces. The following step is to rapidly evaporate he inter-
calated material at elevated temperature, that will result in graphene exfoliation[155, 124, 120].
This process can be further enhanced by combining it with sonification or ball
milling. However, in order to obtain a single-layer graphene flakes, this proce-
dure has to be repeated several times eventually with different intercalants. Even
though, it is difficult to control the number of layers for thus obtained films, this
technique is scalable and may be eventually adopted for some specific applications.

Another approach to graphene fabrication is its growth on various substrates.
As it implies deposition on large surfaces it is necessarily scalable and moreover
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compatible with conventional techniques of semiconductors based devices manu-
facturing.

c. SiC sublimation

The advantage of SiC sublimation technique[11, 65] is that the graphene is di-
rectly obtained on a wide-gap semiconducting substrate (≈3 eV gap for 6H-SiC
polytype).

This technique is based on the following principle. Energy of Si-atoms sublima-
tion is lower than the one of C-atoms, so while heated the silicon atoms leave the
surface, whereas carbon atoms stay and reorganize themselves into graphene hon-
eycomb lattice. Often this process of graphitisation is performed under Ultra High
Vacuum (UHV) conditions, but additionally an argon atmosphere can be used to
slow down the Si sublimation[48]. Because the carbon atoms density in graphene
is approximately three times higher than the one in the single atomic plane of a
SiC crystal, the Si sublimation over at least three atomic planes is necessary for
graphene formation. This is however quite arduous to achieve as Si and C diffusion
from bulk to surface is very slow even at temperatures customary to graphitisation
process. Moreover the graphitic layer nearest to the bulk SiC is tightly bound to it:
it is approximately 0.2 nm distant from the bulk against 0.34 nm distance between
graphene sheets in crystalline graphite. Thus this first layer plays a role of a buffer
on which graphene layers are formed. The reason, why one is allowed to consider
so obtained one-atom thick carbon layer as a mono-layer graphene is that thanks
to the buffer layer it is only weakly coupled to the rest of the substrate and even
if several graphene layers are formed, the coupling between them is enough weak
(interlayer distance 0.39 nm), so that each layer can in certain degree be considered
as an independent single layer graphene[137].

Besides, SiC crystal has Si- and C-terminated faces and the growth of graphene
and its physical properties differ with the chosen face type (see ref. [138] for com-
parison of the growth on two faces). For instance, on Si-face the graphitisation
process is slow with easier controllable graphene layers number and a single orienta-
tion of graphene lattice in regard to the SiC crystal is possible (rotated by 30°)[65].
In contrast, the graphitisation on C-face is very fast and various orientations of the
graphene lattice are possible[66], that makes the control of the number of graphene
layers difficult and also results in a formation of crystalline domains of different
orientations. Unfortunately (and maybe astonishingly) the Si-face grown samples
show a much lower electron mobility than their C-face grown counterpart[127, 83].

As a conclusion, an industrial fabrication process based on this technique can
be implemented for applications that doesn’t require high electron mobility.
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[172] Zhang et al. (2013)

Figure 5.3: Sketch of the CVD-grown graphene layer transfer process. From [172].

d. Chemical Vapour Deposition on metal

Chemical Vapour Deposition (CVD) is a technique of thin film deposition,
which consists of usage of gaseous precursors that will decompose on the substrate
surface to form the desired deposit.

Graphene CVD on metal substrate is often considered as the most promising
technique from the point of view of fabrication scalability[172, 106]. The metallic
substrate plays a role of catalyst, which when exposed to a continuous flow of
carbon contained molecules at elevated temperature (for example CH4 or C2H2)
will activate their decomposition and will absorb the produced carbon atoms on
the surface or into bulk. At certain conditions a graphene layer is formed on the
metal surface. This layer can then be transferred to any substrate as follows: the
metal is first coated with polymer on the side, containing the graphene layer, it
is then dissolved while the graphene layer remains on the polymer surface. The
polymer with attached graphene is then placed on desired substrate and the former
is finally also dissolved (see fig. 5.3).

Different metals were studied as a potential catalysing substrates: nickel[153, 150],
cobalt[49], ruthenium[143], rhenium[123], platinum[142], iridium[34], stainless steel[78]

and copper (see [106] and [172] and the references therein), latter usually regarded
as the most hopeful. Further improvements to the standard CVD process are
possible, such as DC[5] or microwave plasma[102, 169] enhanced CVD or so called
hot-wire CVD[136, 68], in which heated tungsten wires, installed in front of the gas
inlet, will decompose directly incoming molecules into reactive species.

e. Other techniques

Among alternative graphene deposition techniques now studied there are molec-
ular beam epitaxy from a graphite source[110, 175, 57], growth from metal-carbon
melts[4], in which carbon is dissolved in a molten metal and then precipitated out
at a lower temperature or similar to it carbon ions implantation in metallic grains,
with subsequent heating and slow cooling causing carbon diffusion and graphene
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formation[56] and reduction of graphite oxide powder to graphene flakes[100], the
list is not exhaustive.

5.1.2 Making Graphene Visible
One of the most spectacular properties of the graphene is that these one-atom-

thick flakes can still be visible with an eye, having only an optical microscope as a
tool. This property has certainly played its role in the graphene discovery, making
an optical detection of mono- and few-layer graphene possible and even relatively
rapid and convenient[58].

Graphene film has a quite high opacity for its thickness: in vacuum it absorbs
2.3% of the incident light. On a silicon substrate with an oxide capping layer
(SiO2/Si) the contrast produced by graphene with respect to an empty wafer can
be considerable in certain conditions, as it can be seen in fig. 5.4.a. Indeed,
the difference in optical paths in the presence of a graphene flake corresponds in
general to a different, compared to a pristine SiO2, interference color. Moreover,
this change in color can be tuned with the thickness of the latter, as it will be
illustrated in following. Therefore an appropriate choice of the oxide layer thickness
and of the color filter is capital if one wants to render graphene flakes visible.

A simple Fresnel-law-based model from [13] provides an explanation for this
remarkable fact and the following calculations furnish the optimal conditions for
the graphene observation. In their model Blake et al. consider a normal light
incidence from air (refractive index n0 = 1) onto a trilayer structure of graphene,
SiO2 and semi-infinite Si bulk (see fig. 5.4.b). The SiO2 and Si refractive indices
n2(λ) and n3(λ) are wave-length dependent. As for the graphene refractive index
n1, the one of the graphite was assumed to well describe the system. Then relative
indices of refraction are introduced as:

r1 = n0 − n1
n0 + n1

r2 = n1 − n2
n1 + n2

r3 = n2 − n3
n2 + n3

,

(5.1)

as well as phase shifts due to changes in optical path:

Φ1 = 2π ·
d1

λ/n1

Φ2 = 2π ·
d2

λ/n2
.

(5.2)
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[13] Blake et al. (2007)

Figure 5.4: (a) Optical microscope picture of mono- (enclosed with dotted line)
and multi-layer graphene on the SiO2/Si wafer, showing the color contrast between
graphene of different thickness and the wafer. (b) Sketch of the interference model
considered by Blake et al. (c) Obtained color plot of the contrast as a function of
wavelength and SiO2 thickness according to eq. 5.4. The color scale on the right
shows the expected contrast. From [13].

The reflected light intensity is written as:

I(n1) = Iinc

������
r1eı(Φ1+Φ2) + r2e−ı(Φ1−Φ2) + r3e−ı(Φ1+Φ2) + r1r2r3eı(Φ1−Φ2)

eı(Φ1+Φ2) + r1r2e−ı(Φ1−Φ2) + r1r3e−ı(Φ1+Φ2) + r2r3eı(Φ1−Φ2)

������

2

(5.3)

Finally the contrast is defined as the relative intensity of reflected light in the
presence (n1 �= 1) and in the absence of graphene (n1 = n0 = 1):

C = I(n1 = 1) − I(n1)
I(n1 = 1) (5.4)

The results of the numerical simulations based on this model are presented in
fig. 5.4.c. They allow to eliminate the thickness below 30 nm as well as the

thickness ≈150 nm. The optimal thickness are found to be of 90 and 280 nm. The
wafers we used have the thickness between 280 and 300 nm.
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[101] Malard et al. (2009)

Figure 5.5: (a) Raman spectra of pristine (top) and defected (bottom) graphene.
The main peaks are labelled. From [53]. (b) Calculated phonon dispersion relation
of graphene showing the iLO, iTO, oTO, iLA, iTA and oTA phonon branches.
From [101].

5.1.3 Raman Spectroscopy of Graphene
Raman spectroscopy was found to be a very powerful tool for graphene char-

acterization, since, in particular, it affords a dependable mean of distinguishing
between mono- and multilayer flakes, that was first reported by Ferrari et al.

This spectroscopy method relies on so called Raman scattering of monochromatic
light on the studied matter[125, 95]. In contrast to Rayleigh scattering process in
which photons are elastically scattered by the matter, Raman scattering is in-
elastic and results in an energy exchange between photons and vibrational (and
rotational) degrees of freedom of the nucleus. A brief introduction to this phenom-
ena is given in the Appendix A.2. By Raman spectra one commonly understands
the intensity of scattered light as a function of the difference between incident
and scattered photon energy, the so called Raman shift. Raman spectra provides
the knowledge about the material constituents and their state, that makes of it a
powerful tool for materials investigation.

In general, a Raman spectrometer contains a laser source and a confocal micro-
scope that allows to focalize the laser beam on a sample. The back-scattered light
is then filtered in order to removed the much more intense Rayleigh component
and the Raman shift spectra is measured by conventional spectrometry techniques.

The Raman spectras of carbon-based materials are studied since many years
and are well characterized and understood (see references 5–19 in [101] for in-
stance). Although all these materials have only few significant peaks in their
Raman spectra, their shapes, intensities, and positions provide structural and
electronic information about studied carbon allotrope.
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[101] Malard et al. (2009)

[53] Ferrari and Basko (2013)

Figure 5.6: The measured G� Raman band with 2.41 eV laser energy for (a) mono-
layer, (b) bi-layer, (c) tri-layer, (d) four-layer graphene (e) HOP graphite. The
multiple Lorentzian fits as well as the individual Lorentzian components are also
shown for each case. From [101]. Inset: sketch of the in-plane phonon mode E2g.
From [53].

In graphene, for instance, Raman spectroscopy is used to ascertain the number
of layers, examine the doping[24, 36] and disorder[52, 129, 23] as well as quality and
type of edge[165, 63, 33, 25]. The Raman spectra of graphene, as seen in fig. 5.5.a for
pristine (top) and defected (bottom) graphene sample, consist of several peaks,
certain features appearing only in samples with defects. Figure 5.5.b shows
phonon dispersion in graphene, which contains three acoustic (A) and three optic
(O) branches with four in-plane (i) and two out-of-plane (o) modes (L and T stand
for longitudinal and transverse modes respectively). The most prominent peaks
are so called G and G� (sometimes also called 2D) peaks. Another important
features, which are related to disorder of the sample, are D and D� peak. The
transitions that generate these peaks are shown in fig. 5.7.

The only peak that originates from non-resonant first order (only one phonon
is created) transition is the G one. Due to the fundamental Raman selection rule
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[53] Ferrari and Basko (2013)

Figure 5.7: Sketches representing different Raman transitions in graphene, denoted
with the corresponding peaks’ labels. From [53].

(phonon wave vector q ≈ 0, see [54]), solely the high-frequency in-plane optical
phonons modes of E2g symmetry around Brillouin zone center (Γ point) are excited
(see inset of fig. 5.6).

The G� peak on the contrary is the result of a double (two phonons are cre-
ated) resonance transition, producing two in-plane optical phonons of opposite
wave vectors (thus the selection rule is satisfied) near K and K

� points, which
will connect the electronic states from different valleys. This type of transition
is therefore called intervalley. This peak is highly sensitive to the number of
graphene layers and allows to discern between mono-, bi- and multi-layer samples,
as its shape, width and position vary significantly when moving from mono-layer
graphene to graphite[51]. The G� peak of mono-layer graphene can be fitted by a
single Lorentzian. Since for multi-layer graphene each energy band splits in two
with different splitting for electrons and holes, several processes at slightly differ-
ent frequencies are possible, giving rise to a peak of different shape. For instance
the G� peak of bi-layer graphene has four Lorentzian components whereas the one
of the graphite has two components, as seen in fig. 5.6.

The last two peaks, D and D�, originate from double resonance transition as well
(intervalley for former, intra-valley for latter), though with a different mechanism
behind: one-phonon defect-assisted scattering process (see corresponding sketches



5.2. PROCESSES 85

in fig. 5.7). More particularly, the corresponding scattering process consist of
one elastic scattering by a defect and one inelastic scattering with emission of
an in-plane optical phonon near K (K �) point. Besides, these peaks are strongly
dispersive with excitation frequency[121].

5.1.4 Graphene Oxygen Plasma Etch
Plasma cleaning is commonly used in the research as well as in the industry

especially to remove the contaminants in order to obtain a pristine surface of a
material. Thus, graphene mono- and multi-layers can be easily etched by oxygen
plasma. In general, plasma mainly affects the surface layer and its action can be
divided into three types: heating, sputtering (mechanical action, the particles have
to be accelerated by an applied electric field) and etching (based on the chemical
reaction). Since graphene is a very thin material its etching necessitates no heating
or electric field application.

The process is usually performed at room temperature and low pressure (∼100 torr):
air is pumped out and a weak flow of the oxygen is supplied. The plasma is cre-
ated by a high frequency (commonly used is the 13.56 MHz frequency) excitation.
Though during the process active species are generated, that then react with the
surface layer of the material to be etched (e.g. graphene) and finally the products
of the reactions are removed from the surface by pumping. The activated species
are atoms, molecules, ions, electrons and so called vacuum UV-photons (VUV),
created by other species deexcitation. First VUV photons break the existing or-
ganic bonds (C−C, C−−C, C−O, C−H). Then different oxygen species (O±

2 , O,
O±, e–) enter onto reaction having as products water and carbon oxide and dioxide.
These products are volatile and are rapidly evacuated by the pump.

5.2 Processes
In this section we list in order all stages of the devices fabrication process. The

exact recipes used can be found in Appendix A.1. The approach we proposed is
to first deposit a graphene flake on the substrate, then contact it using common
nano-fabrication techniques and finally give a specific shape to the flake using
oxygen plasma etching.

5.2.1 Wafers Preparation
The substrates we used are standard commercial 2 inch, 280 µm-thick, intrinsic

(undoped) Si wafers with 280 to 300 nm oxide layer. So, prior to graphene device
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Figure 5.8: Photography of coordinate marks with indication of the coordiante.

fabrication it is crucial to prepare the substrate for the subsequent handling and
clean its surface utterly well.

a. Coordinate system marks

As a very first step, we do a sort of improvement to the pristine wafers: for more
commodity we furnish them with a coordinate system. The coordinate system
represents a grid of special (metallic) marks, for each second one with indication
of its coordinates (in arbitrary units), that we deposit on each wafer. Doing that
we purpose two aims. First of all, we should be able to easily locate the place
where the given graphene flake is situated on the wafer. Another point is that
we have to precisely align the wafer while performing electron beam lithography.
These two conditions determine the characteristics of the coordinate marks we use.

The coordinate (or alignment) marks are metallic double squares, the form that
is perfect for position and angle alignment (see fig. 5.8). The size of a square is
5 µm × 5 µm, the distance between two marks is 86 µm. The choice of the inter-
marks distance is related to the size of the smallest working field (96 µm × 96 µm)
we use in the electron beam lithography process. Thus, we can have up to four
alignment marks in the working field, which provides us a necessary alignment
precision (about 50 nm).

In the following the procedure of the coordinate marks deposition is detailed.
We pattern the grid of alignment marks by the conventional method of optical
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lithography (for the lithography principle see: subsec. A.3.1, A.3.2). The wafers
are spin-coated with an UV-sensible positive resist (Microposit S1813 ), after what
they are exposed to the UV radiation through a specially fabricated optical mask
in the Karl Süss MJB4 mask aligner (alignment accuracy below 1 µm). Finally the
wafers are immersed in Microposit MF 319 for resist development. We then deposit
a golden thin-film (about 100 nm) in the Joule evaporator (see subsec. A.3.3). In
order to have a better adhesion of the gold film to the wafer surface we embed a
∼5 nm chrome layer in between.1 Finally, after lift-off is done we obtain a grid of
golden marks.

Before the next fabrication stage, for convenience, we divide the round wafers
into four pieces each. Here and in other steps where we need to cleave the wafers,
we use a conventional scribing and breaking technique and Karl Süss HR-100
scriber.

b. Surface treatment

As it was already mentioned above we thoroughly clean the substrate surface
before transferring the graphene flakes on it as it is a necessary condition for the
flakes to firmly stick to the wafer surface, otherwise the flakes become too fragile to
handle. Therefore we perform a wet etching of surface contaminants by putting the
wafers in Piranha solution (H2SO4/H2O2 in the ratio 1/5). Alternative approach
is oxygen plasma etching, although this approach has several disadvantages: it is
less efficient and creates dangling bonds in the silicon oxide, that can dramatically
decrease the electron mobility in the graphene[112].

5.2.2 Graphite Deposition
We obtain graphene flakes by graphite exfoliation method using special electro-

static discharge safe scotch-tape. We first pill pristine graphite bulk with scotch
and then transfer obtained single- and multi-layer flakes to the beforehand cleaned
wafer pieces. We usually perform this step for several wafer quarters at the time
as the process is rather cumbersome and time consuming.

a. Exfoliation with scotch tape

It is not desirable to manipulate bulk graphite in the clean room as its powder,
which can be easily spread around by electrostatic repulsion, will contaminate the

1As it will be described later in the text we use titanium instead of chrome for the same
purpose, while depositing the microcircuits. The reason for this difference is that in the next
step of fabrication we will clean the wafer surface in an acid solution before transferring the
graphene onto it. The acid we use reacts with titanium but not with chromium, so if former
were used, acid would deteriorate the adhesion layer and hence the alignment marks.
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atmosphere of the clean room. However, doing it under an extraction hood is still
suggested to avoid dust deposition onto the scotch-tape.

To pill graphite we put a certain amount of it onto a large piece of scotch-tape
and fold and unfold it for several times. While doing that we also tend to distribute
the flakes on the scotch surface rather uniformly to reduce their superposition
probability. It is also important to use an optimal quantity of graphite otherwise
if too few graphite is put, this will decrease the total amount of flakes and hence
the probability of finding single-layer flakes. In the opposite case, if too much
graphite is put, big graphite cakes will pollute the wafer surface and provoke certain
difficulties during the lift-off. If there are still big graphite cakes on the scotch-
tape, it is advised to try to remove them (e.g. with tweezers) without spoiling
the neighbourhood flakes. Afterwards we transfer the flakes from the large scotch-
tape to a smaller individual scotch-tape segments, specially prepared for each wafer
piece. Then we fold these tapes to protect the adhesive surface from dust.

The next step is done in the clean room as graphite flakes are not mobile any
more and will not pollute the clean room.

b. Transfer to the wafer

The transfer of the graphene flakes on the cleaned wafer is performed in the
clean room. The folded scotch-tapes are opened slowly, while the wafers are took
out from the “Piranha” solution, rinsed in distilled water and kept under N2 blow
inside the extraction hood to avoid dust deposition until the scotch-tapes are
brought into contact with the wafer surface and refolded over it. The scotch is
then flatted with the finger. It is very important to have a perfect adhesion of the
scotch-tape to the wafer surface and to avoid the creation of air bubbles inside.

Furthermore, the wafers with scotch can be put under press during a couple
of days to promote a better adhesion of the flakes to the wafer surface. For this
purpose we use lead bricks, that we put over the wafers protected by a layer of
paper or rubber. This is a standard recipe used in the group. However it was
noticed that one obtains a very good results without applying pressure and even
the advantage of the latter method is that fewer graphite “dirt” stay on the wafer
after the scotch is removed, probably because the weight is rather applied to the
big cakes that are much higher and play a role of piles. The last samples were
obtained with the latter approach.

Finally the scotch is removed in the clean room. This also has to be done very
slowly (∼1 cm/min) to separate scotch from the flakes in the right way: flakes stay
on the wafer and not on the scotch without being damaged. Afterwards, wafers
are cleaned in hot acetone in order to remove scotch glue residues as well as the
unstable flakes that will not support the following fabrication stages anyway.
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5.2.3 Graphene Flakes Detection
It is of high importance to be able to efficiently and reliably detect the mono-

layer flakes on wafers. This task is far from being obvious as the typical size of
a flake is 5 µm × 10 µm whereas the searching zone is a quarter of a 2 inch wafer.
Moreover, one usually finds not more than five to eight mono-layer flakes per wafer
quarter over a huge quantity of multi-layer flakes and graphite cakes. Our approach
is to combine optical and Raman spectroscopy methods. Optical detection method,
meaning finding the flakes with one’s eyes using only an optical microscope as a
tool, has proven it efficiency, even if, to become as efficient it necessitates a certain
experience in that exercise. Raman spectroscopy, on the other hand, is an utterly
reliable method if one needs to precisely distinguish between mono- and multi-layer
flakes, the task that the optical method is not able to fulfil, so it completes the
latter one from this point of view. To summarize, the optical method is exploited
for the detection in the strict sense, whereas the Raman spectroscopy provides a
mean to verify the “monolayerness” of the found flakes.

a. Wafer scanning with optical microscope

Optical detection supposes a complete scanning of the wafer with optical mi-
croscope. We usually used an objective with the magnification ×10 (field diameter
∼ 2400 µm). The very direct approach is to search for the most translucent flakes,
taking into account only those which dimensions are sufficient to be used for de-
vice fabrication, and to note their coordinates. It is noticed that usually the areas
with the highest probability to find a mono-layer flake are those with the highest
flakes density. When the wafer is scanned and the coordinates of all flakes, likely
to be mono-layer, are noted we check whether this is indeed the case with Raman
spectroscope (see next section). Usually we find 10 to 15 candidates and between
5 and 8 flakes are then confirmed to be mono-layer.

b. Raman spectroscopy of flakes

For Raman spectras acquisition we used Jobin-Yvon’s LabRam Aramis spectro-
scope. This instrument is equipped with a CCD camera, that allows to optically
scan the wafer, moving the motorized stage on which it is situated. Hence we first
optically find the flake, as we know its coordinates, and then perform the spec-
troscopy. Often it is enough to probe spectra in a one or two points of the flake
only. Indeed, the presence on the flake of the regions with different numbers of
graphene layers is rather easily recognizable by eye since the disparity in contrasts
(even for the difference of one layer in thickness) is sufficiently visible when the
regions to compare are situated next to each other. Otherwise, if necessary, the
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Figure 5.9: Raman spectra of the sample, studied in this work (note the detector
saturation at 6.3 × 104 counts for 2D peak).

spectroscopy can be done in several points or even the whole flake can be scanned
with the mapping function of the instrument.

Additionally LabRam Aramis spectrometer has a high-speed scanning mode,
that provides a relatively fast generation of Raman spectra maps over large surfaces
(e.g. over the whole wafer quarter). In this way created maps are supposed to
simplify the searching of graphene flakes and even could allow to skip the stage of
optical detection. However, while creating such wide maps, the spectrometer moves
the stage over macroscopic distances, thus this movement should be extremely
precise, otherwise there will be errors in the correspondence between physical
coordinates and the coordinate scale on the map. Besides, the configuration of the
map color scale, that would make the very rare and small graphene mono-layer
flakes stand out against a background of silicon and graphite, can be a tough task.

To summarize, the combination of the optical detection method with local
Raman spectroscopy was found to be the most efficient approach for graphene
detection.

5.2.4 Microcircuit Deposition
During the following stage a microcircuit (one per graphene flake) will be de-

posited on the wafer. This microcircuit will be contacted to the graphene flake in
different points and it will also contain gate electrodes that are electrically discon-
nected from the flake (the principle of the device design is discussed in Chapter 4).
In such a way obtained chip can then be contacted to the macroscopic sample
holder by the common wire bonding technique to, in the end, be connected to the
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measurement system.
The basic structure of the microcircuit is the same from one sample to another.

However, since the shape of each flake is unique and the surrounding flakes are
distributed arbitrary, each time we need to adapt the microcircuit pattern in or-
der to take into account flake geometry as well as to avoid surrounding flakes that
can cause disconnection of the circuit strips or shorts between two strips. In that
situation the optical lithography is inappropriate for microcircuit patterning as dis-
cussed in Appendix A.3.2. Moreover the pattern itself requires a higher resolution
and alignment precision, than this type of lithography can provide. Accordingly,
the microcircuit is patterned by electron beam lithography (see description in the
same Appendix).

In the two following sections we will first reveal the microcircuit design and
then give some more details on the fabrication processes.

a. Patterns design

The lithography patterns were designed with AutoCAD software and then con-
verted to GDSII — conventional format of most e-beam lithography softwares. We
use graphene flake image as a background layer in order to conceive a suitable pat-
tern, adapted to each case. This image is created by superposition of photos with
different magnification in order to have flake image in high resolution as well as a
global view on the wafer and position of other flakes. The alignment marks on the
image allow to define the scale and horizontal correctly in the CAD design.

The microcircuit design was gradually improved during the development period
until we obtained an optimal one giving a reproducible output. The main techno-
logical constraint was the proximity effect due to the tightness of the microcircuit
having a great number of electrodes near the flake, thus all important improvement
concerned the finest parts of the pattern. Various designs schemas, satisfying the
device principles, discussed in subsec. 4.2.1 of Chapter 4, were tested. As an
example, initially, a design with large side-gates (see fig. 5.11.a), that were sup-
posed to be more efficient and less local, was tried unsuccessfully. They were then
replaced by local side-gates. Apart form several geometry optimisations, two con-
ceptual improvements were added to the design during development stage. First
one consists in additional voltage probes, that can be used if primary ones have
lost contacts. Another improvement — supplementary alignment marks, patterned
during the same process as graphene contacting electrodes, concerns the following
stage of graphene etch, so their utility will be explained in the next chapter.

The device in its final version is sketched in fig. 5.10.a and the SEM micrograph
of a similar device can be seen in fig. 5.11.b. The current injection electrodes (in
yellow) are large and have notched ends to increase the effective perimeter of
contact, since the charges enter especially through this one-dimensional interface.
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Figure 5.10: (a) Device lithography pattern: two large electrodes for current injec-
tion (in yellow), four voltage probes (in blue), four spare probes (in light blue) and
two side-gates (in green). Graphene layer with a constriction cut out is shown in
grey, dashed line showing the initial layer geometry. The constriction is highlighted
with red colour. (b) The blow-up of the region near the constriction.

The eight thin electrodes are voltage probes: four primary (in blue) and four spare
probes (in light blue). The two local side-gates (in green) will be disconnected
from graphene afterwards by plasma etching. The optical photo of the part of
the device containing the graphene layer (before plasma etch) is displayed in
fig. 5.12.b, while in fig. 5.12.a the picture shows the macroscopic part of the
circuit (different sample). As one can see, each electrode strip is terminated by a
large (150 µm × 150 µm) contact pad to which wires then can be bonded.

b. E-beam lithography and metal deposition

The microcircuit deposition is a quite intensive and, at the same time, delicate
process and it is recommended to follow the same scenario and implement the
same recipe each time in order to avoid any unexpected result. As it was men-
tioned above the structure of the pattern favours the proximity effect to overdose
the pattern and expose spacings between pattern strips. In these conditions it is
imperative to find and keep an exact combination of irradiation dose and devel-
opment time (the obtained sharpness of the pattern also depends on development
time).

We start with cleaning the wafer surface in acetone and spin-coating it with
250 nm of Polymethyl Methacrylate (Microchem PMMA) — electron-sensible pos-
itive resist. The wafer is now ready for the lithography routine, performed in
Philips/FEI XL30S Scanning Electron Microscope (SEM) controlled by Elphy
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Figure 5.11: (a) False-colour SEM micrograph of one of the first device designs
tried. (b) False-colour SEM micrograph of a device similar to the one measured
in this work. Colour code of fig. 5.10 was preserved in both pictures.

Quantum lithography software. Note that, the beam pre-configuration and wafer
pre-alignment being rather time-consuming, we prefer, if the wafer quarter con-
tains several graphene flakes, to pattern all microcircuits at a time. Moreover,
since the pattern contains elements of different scale the irradiation of the resist
is done in several steps, each step with different magnification and working area2,
from highest to lowest magnification factor. The utterly precise alignment of the
wafer, prior to the exposure, is essential in this process, preserving the graphene
touching electrodes from being displaced away from the flake.

As soon as the exposure is completed, we develop the pattern in diluted Methyl
Isobutyl Ketone (MIBK) and optically check the position of the pattern as well as
the development quality. We then evaporate 7 nm-thick titanium adhesion layer
with 50 nm-thick gold film on its top. We conclude this stage with the lift-off pro-
cess: we dissolve the resist in hot acetone and then, using a pipette, blow away the
golden film, floating over the substrate surface. Prior to removing the wafer from
the acetone we check in the stereo microscope if no gold film remained gripped
between two strips and, if necessary, repeat the operation with a pipette until a
proper result is obtained. The wafer is then rinsed in isopropanol and dried with
compressed nitrogen.

Before proceeding to the following stage we verify that the minimal required
number of contacts are working using one of two possible test set-ups (see sub-
sec. 5.2.6), otherwise we will ought to restart the fabrication process from the
beginning.

2The working area — the area, the SEM beam can attain without moving the stage, it
obviously depends on magnification factor
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Figure 5.12: (a) Optical microscope picture of a chip with microcircuit. Chip
dimensions are about 3 mm × 3 mm. (b) Blow-up of the microcircuit near the
graphene flake, picture of the device used in this work.

5.2.5 Nano-Constriction in Graphene
Graphene etch is the last fabrication step. It has the following goals: first

of all, according to the requirements of the device design, it is necessary to cut
out a constriction in the graphene flake, that should also electrically disconnect
side-gates from the flake. Furthermore, we have to remove all other flakes that
produce shorts in the microcircuit and that we weren’t able to avoid while designing
the microcircuit pattern. We design the lithography pattern for this step taking
into account two above-mentioned points. Besides, the constriction pattern has
a convergent form but its effective size (200 × 800 nm) is defined by two small
rectangular cut-outs on each side (see fig. 5.10.b). The sharpness of the real
constriction is limited by lithography resolution.

The approach is again to use PMMA with a lithographed pattern as a mask
to protect the graphene flake from the effect of the oxygen plasma and let plasma
act only on the uncovered regions of the surface. However, one should be cautious
while using oxygen plasma cleaning process together with PMMA mask, since
PMMA is equally subject to plasma action (etching rate ∼ 100 nm/min), so the
precise timing of this process is of huge importance.

The new pattern is designed in AutoCAD and it is lithographed with electron
beam as the required precision and subtlety of the pattern are even higher than
on the stage of the microcircuit deposition. Indeed, the new pattern has to be
precisely aligned with the previous, microcircuit pattern, otherwise by etching in
the wrong spots we can cut the graphene flake into two separate parts or disconnect
it from one or several contacts or, in the opposite way, fail to remove the electric
connection between the flake and the side-gates. To sum up, the alignment is a
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crucial moment of this process.
Still, the electron beam positioning is limited and even though during each

lithography an alignment of the wafer is done, the beam is always slightly shifted
in arbitrary direction. Thus, the total mismatch between two successive litho-
graphy processes can be up to double of the typical beam shift, which is not
acceptable for our purposes. To overcome this obstacle we add to the microcir-
cuit pattern supplementary alignment marks, already mentioned above. These
marks, patterned within the same lithography process as the electrodes, will be
shifted exactly in the same way as the latter. Hence the wafer alignment using
these marks during the second lithography can sufficiently reduce the alignment
mismatch between two patterns. Eventually, we can optically check if the pattern
is correctly placed, directly after developing it in MIBK, and restart the operation
if the shift is unacceptable. Besides, prior to developing the patterns, we usually3

cut out each microcircuit from the wafer quarter, obtaining in this way several
(∼ 3 × 3 mm) chips (see fig. 5.12.a), that can be handled separately and suit the
sample holder dimensions.

Finally we perform the etching in SPI Plasma-Prep II machine. We expose
the chip to the oxygen plasma during two minutes (5 minutes if it contains thicker
flakes). At this point as well, one can optically check whether the thick flakes were
successfully removed, if necessary, repeat etching process and only afterwards,
dissolve the resist. The chip is now ready for tests and usage in the experiment.

5.2.6 Device Test
After fabrication is finished we perform basic electrical tests on the device to

check if it still has all required contacts for carrying out shot noise experiment.
At first, the fabricated devices regularly retained only too few working contacts.
But after all, we managed to establish a process, allowed to fabricate devices that
had practically all contacts working, otherwise spare voltage probes could also be
used. For these tests we had choice between two setups, described below.

a. Probe station

The advantage of a probe station is that it allows to directly (i.e. without bond-
ing the microcircuit) test the device by placing the probe needles on the electrodes
pads. However, conventional DC resistance tests with an ordinary ohmmeter are in
practice not very safe for such fragile devices as ours. For this reason we equipped
a conventional probe station with a lock-in detection system, that provides a pos-
sibility to use very low excitations to probe the resistance. It is also safer to apply

3In some cases we cut the wafer already before microcircuit pattern developing
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current biased excitations, since in a voltage biased device the dissipated power
diverges as the inverse of the resistance. For the device safety we also ground the
probes each time, before placing them on the pads, to avoid applying a voltage
pulse to the device. Nevertheless, the probe station doesn’t allow to do more
sophisticated tests than a simple two point resistance measurement.

b. Test insert

Test insert allows more advanced studies to be carried out. It has twelve
measurement lines that make four point measurement as well as simultaneous
gate voltage application possible. Moreover, the sample holder with a device,
when connected4 to the insert, is kept inside a leak-proof chamber from which the
atmosphere can be pumped out, hence, it is also appropriate for measurements in
a dewar with liquid nitrogen or helium. Although simple contacts tests can also be
done with this setup, it requires the bonding of the device to the sample holder, so
it is usually more reasonable to do such kind of tests with the probe station before
and to use the test insert to measure the response of the device to the gate voltage
and to study the effect of the low temperature on the contacts quality. In this
setup we also use lock-in detection system with low, current-polarized excitation.

5.2.7 Difficulties and Solutions
In this section we summarise the difficulties we encountered during devices

fabrication and solutions proposed to overcome them. First of all, an excessive
quantity of graphite used during exfoliation process can result in deposition on
the wafer of big graphite cakes (putting the wafers under press (boosts even more
this effect). This has several drawbacks: first, it becomes difficult to avoid these
cakes while designing the microcircuit pattern and, furthermore, it is very hard
to remove such cakes with oxygen plasma, since the PMMA mask will be totally
etched before the cakes. Second, these cakes are usually thicker than the PMMA
mask for the microcircuit deposition and the resist will not cover them completely.
This will hinder from a correct lift-off, as the metallic film will remain gripped to
the cakes.

Once again, due to the proximity effect, finding the optimal combination of ir-
radiation dose and development time wasn’t a straight-forward task. The pattern
geometry optimisation was also required to attain highly reproducible results, al-
beit occasional deviations in the equipment operation (e.g. SEM, plasma machine)
make the complete reproducibility impossible. The beam positioning precision

4Note that for the device safety, it is essential to have all measurement lines grounded, while
connecting the sample holder to the insert.
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was a limiting factor as well, in particular when trying to superpose two succes-
sive lithographies. As it was explained our solution was to add supplementary
alignment marks to the first pattern.

Still, the most stubborn issue was undoubtedly the control on the quality of the
device contacts, for, quite often, at the end of the fabrication process the device had
most of its contacts with graphene flake lost, making it unusable. So, furnishing the
microcircuit with additional voltage probes was indeed useful. Unfortunately, the
reason of the contact quality degradation is rarely evident. Yet, we could identify
few possible reasons: foremost, due to flake fragility any mechanical or electrostatic
shock can damage the contacts or even completely destroy the device. Hence, the
devices at any fabrication stage are to be handled with care. It is also suggested
to use electrostatic discharge safe chip box for storing and transporting devices.
Besides, the constriction makes the flake even more fragile, although an appropriate
shape allows to shrink the mechanical strain: the borders should be rounded and
the right angles are not recommended. We equally noticed, that plasma action
on uncovered part of electrode (even far from the flake) can significantly worsen
the contact quality. Thus, it is important to mind to always keep electrodes strips
covered by the mask. Moreover, one should remember, that plasma also etches
the mask. By the way, rising of the oxygen pressure in the chamber will increase
the etching rate and can even solidify the PMMA, that becomes hardly removable
then.
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Chapter 6

Measurement System Calibration

Recall that our system is designed with the goal of conducting four-point cross-
correlation voltage fluctuations measurements. The indicated approach presents
several remarkable advantages (e.g. contact resistance contribution is avoided, de-
tection noise is suppressed). Furthermore, the use of cryogenic amplifiers and of a
high frequency measurement band (within which the 1/f noise is weak), available
thanks to resonant circuits, allow a tremendous gain in the measurement duration.
At the same time, this approach revealed itself to be also extremely challenging,
because of the complications with the device fabrication as well as with, discussed
in this chapter, measurement system calibration.

As it was explained in Chapter 4, our measurement system contains four
measurement lines, and each of them consists of a resonant circuit and cryogenic
amplifier and leads to one of the inputs of two room-temperature differential am-
plifiers. The gain of commercial amplifiers is assumed to be fixed and well known,
that is not the case for cryogenic amplifiers. The gain of a cryogenic amplifier
depends on polarisation voltage (see subsec. 4.2.3 for details) and, moreover, at
given polarisation voltage, the gain of any two HEMTs is not necessarily the same.
In addition, the gain varies with the temperature and after each cooling, the gain
characteristics can slightly change as well. That is why after each cooling one has
to adjust amplifiers gain and calibrate it. Besides, from time to time, we also
checked for eventual drift of the gain and readjusted it if required. Note also, that
the electric circuit of each measurement line contains a combination of resistances
(including eventual contact resistances a priori unknown), that will form a voltage
divider. Its effect is obviously to reduce the signal amplitude, but by a factor,
which in not necessarily well-known.

It is clear, that at the output of each measurement line we will detect a signal,
which is proportional to the voltage at the point on the sample to which the voltage
probe of the given measurement line is connected. Hence, to be able to measure
in a correct way the voltage drop between any two such points on the sample, it is

101
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obviously essential to have identical gain on each measurement line. However the
gains of the measurement lines depend not only on amplifiers’ gain, but also on
the exact properties of voltage dividers, that are not always well-known and are
not accurately identical for all lines. As a consequence, our main task is to adjust
the amplifiers’ gains (more exactly the polarisation voltages), in the way, that the
gains of all four lines were identical, although this doesn’t necessarily mean, that
such tuning will result in identical gain of all four amplifiers, because of eventual
differences in the voltage dividers for instance, as it was explained. Moreover, it is
not possible to determine separately the amplifiers’ gains and the losses factors due
to the voltage dividers. We present below the approach we used for measurement
lines tuning.

First of all note, that the voltage, measured by two voltage probes, situated
on the same side with respect to the constriction (e.g. V

0
A and V

1
A ), is necessarily

the same, and so should be for the corresponding output voltages. This gives
the first indication of how to adjust the gains. In addition, we use a following
trick. By applying the same voltage but of the opposite sign on each side of the
sample, we force all current injected into the device through one current electrode
to sink essentially through the other current electrode, without skipping along
alternative paths, for instance through voltage probes, connected to the ground
via several resistances. Hence, ideally the middle of the constriction will be at the
ground potential, whereas two voltage probes, situated on different sides of the
constriction (e.g. V

0
A and V

0
B ) will see the voltage of the opposite sign, but of the

same magnitude as well, that will allow us to adjust all four lines.
As it will be explained in more details in the dedicated section, the equivalent

circuits of measurement lines at low (far from resonant frequency, below RC cut)
frequency and at high (near resonant) frequency are different, so it is not guar-
anteed, that the adjustment, done at low frequency, will hold at high frequency.
The noise measurements, as we know, are done at resonant frequency, i.e. at high
frequency, thus the system should be tuned at this frequency above all. Yet the
measurements at high frequency are far from been obvious, because the signal
phase is easily shifted by all capacitances, present in the circuit. For these rea-
sons we first perform tuning and calibration at low frequency and, after having
well understood and experimentally confirmed this method at low frequency, we
reproduce it at high frequency.

At low frequency we also do a two-point measurement without involving the
voltage measurement lines. This has the advantage to be independent of measure-
ment lines’ gain, but has obvious yet important drawback: the result of the mea-
surement contains contact resistances. However this measurement is unavoidable
and provides one of the elements of the calibration, while the contact resistance
value can be established independently, as it will be explained.
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From these measurements, constriction resistance and its dependence on the
gate voltage can be obtained. Moreover, at high frequency, some measurements al-
lowing to determine the current through the system (which is otherwise unknown)
is done.

This chapter is spread into two sections: first one is dedicated to low frequency
calibrations, while the last section is dedicated to high frequency calibrations.

6.1 Low Frequency Calibration
In this section we review the measurements, done at low frequency (between

100 and 250 Hz) with the purpose to test our approach of measurement system
tuning and calibration.

6.1.1 Lines Tuning
We start with adjustment of measurement lines, as it was explained in intro-

duction. We use Phase Sensitive Detection technique to obtain a required signal to
noise ratio. The excitation signal is generated by two synchronized lock-ins, with
π phase shift between them, in order to apply on each side of the device a voltage
of opposite sign. Moreover, it is current biased thanks to the 10 M� resistances,
as shown in the circuit scheme of fig. 6.1. This simplifies the interpretation of the
output signal, measured by the lock-ins, since the current injected in the device
is independent of constriction resistance. As a result, the output signal is just
proportional to RS //70 k�: the constriction resistance RS in parallel with 70 k�
— total input independence of the voltage probing system (see fig. 6.1). The
derivation of RS is then straightforward.

Figure 6.2.a shows the result of lines tuning. As it can be seen, the agreement
is quite well. However, all four curves differ by the noise-like variations around
the common average value. These are the Universal Conductance Fluctuations
— reproducible features, related to the precise configuration of the impurities in
the sample. At mesoscopic scale, the particles absorbed by a given voltage probe
didn’t follow exactly the same path as those absorbed by another voltage probe
and thus didn’t come across the same impurities. This explains, why the Universal
Conductance Fluctuations differ for each measurement line.

Figure 6.2.b shows the resulting curve of output signals (proportional to the
voltage drop across the constriction, see fig. 6.1 as well as fig. 4.3) measured
by the both channels (outputs of two differential amplifiers, indexed 0 and 1),
that we note V

0/1 = V
0/1

A − V
0/1

B (index A/B stands for one side and another with
respect to the constriction), and thus to RS//70 k�. In the following we will explain
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Figure 6.1: Schematics of the low frequency setup, equivalent circuit at corre-
sponding frequency: fLF = 137Hz. Inside the dashed rectangle: low temeperature
part with the device in the middle and cryogenic amplifiers, outside of the dashed
rectangle: and room temperature part with differential amplifiers omitted. This
setup was equally used to measure at low frequency the differential resistance as
a function of the bias voltage.

how, from the output voltage signal, it is possible to figure out the constriction
resistance value. But for that, additional measurements are required.

6.1.2 Two-point Measurement
Another measurement, that is necessary for the experimental system calibra-

tion is a direct (without passing through amplifiers) two-point one. The setup
schematics is shown in fig. 6.3. The result of such measurement will obviously
contain contacts resistances RC, A and RC, B of current injection electrodes, but will
provide us exact, gain invariant value of constriction resistance variation, that we
can then compare to the variation of the output voltage in order to obtain the
conversion coefficient between output voltage and constriction resistance.
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Figure 6.2: Output of all four measurement lines after gain tuning (a) and output
differential signal from two channels (b).

We again use the Phase Sensitive Detection technique, and measure the voltage
drop V across RM = 50 k�, that will allow to find the current through the setup:
Ve−V
RM

= I = 2 Ve
Rtot

, where by Rtot we obviously noted the total resistance of the
circuit. As seen from the circuit schematics total resistance reads

Rtot = 2 × RM + 2 × 50 k� + RC, A + RC, B + Rs//70 k� (6.1)

so, since RM is known, the measurement provides us R = RC, A + RC, B + Rs//70 k�
as a function of gate voltage VG, that we plotted in fig. 6.4.a. Let us define
∆R as a variation of R on the interval of gate voltages between −20 V and 60 V:
∆R = R(60 V)−R(−20 V). Then ∆R = ∆(Rs//70 k�), since with a certain degree
of approximation we can consider that RC, A + RC, B is gate voltage independent1.

6.1.3 Calibration
It is clear that since V

0/1 = η × Rs //70 k�, the variation of this value on the
interval between −20 V and 60 V will be ∆V

0/1 = η × ∆(Rs//70 k�), where ∆(Rs//
70 k�) on the other hand we know from two-point measurement. By combining
these two measurements we can in principle find η. In return, we should mind the
eventual offsets in the output signal of the four-point measurement, that gives us a
second parameter to find out. To do that in an independent manner, we make use
of the linear dependence of conductivity on the charge density σ ∝ nel ∝ ∆VG =

1Contact resistance is usually due to Schottky barrier formed between the metal and semicon-
ductor and indeed depends on charge density, proportional to the gate voltage. However, we can
assume that the effect of the side-gates is of reduced extension and doesn’t influence the local
charge density near current electrode/graphene interface, which is not the case, for instance, for
the contact resistances of voltage probes, situated in the proximity of the local gates.
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Figure 6.3: Schematics of the equivalent circuit for the two-point low frequency
measurement setup (fLF = 137Hz), measurement resistance RM = 50 k�.

VG − VD, with VD — gate voltage, corresponding to the Dirac point, since at the
Dirac point the charge density is zero. This can be rewritten as

R ∝
1

∆VG
→ 0, when ∆VG → ∞ (6.2)

Then, if what we measure is a certain resistance R
∗ = R + ROFFS, where ROFFS

is a constant offset resistance,

R
∗
����
∆V −1

G →0
−→ ROFFS (6.3)

meaning that by extrapolating the curve R
∗

�
∆V

−1
G

�
to zero we will find ROFFS. In

the four-point measurement, the ROFFS will correspond to a certain measurement
artefact (VOFF/η), whereas in the two-point measurement, this will be the contact
resistance RC, A + RC, B.

Such ideal classical behaviour will appear mostly far from Dirac point, since at
weak charge density appearance of the electron-hole puddles involves more com-
plicated processes. Hence, on the signal versus [VG − VD]−1 plot the curve becomes
linear only near zero (see fig. 6.5.a for instance). We perform linear fit of each
branch of the curve and the offset is given by the intercept of obtained straight
lines. Two lines should obviously have the same intercept and VD was used as a
free parameter to obtain this. Note that this plot is not symmetric relative to
zero, that is not completely unusual, as we do not expect the same dependence of
conductivity on charge density for holes and for electrons.

The result of the application of this method to two-point measurement situation
can be seen in fig. 6.4.b. We find RC, A + RC, B = 296.75 k� and VD = 59.5 V,
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Figure 6.4: Two-point resistance Rs//70 k�+RC, A +RC, B (smoothed) as a function
of gate voltage (a) and as a function of inverse charge density with linear fit in
green (b).

meaning at least � 150 k� per contact, which is quite high value for contact
resistance.

As for four-point measurement with amplifiers, since we are using Phase Sen-
sitive Detection technique, we do not expect any significant offset in our measure-
ments. As seen from the plot in fig. 6.5.a, we indeed obtain an offset of ≈ 0.28 mV
which is not more than 5% of the signal. The output signal with corrected off-
set is plotted in fig. 6.5.b. The Dirac point was found to be at VD = 60.5 V
which is slightly different from the previous result. The position of Dirac point
depends essentially on impurities configuration over and under graphene, which
could slightly evolve with time and because of other measurements performed on
the device. Since there indeed was a long delay between two measurements, such
slight disparity is considered as usual. In addition, because of the disorder puddles
at low density, the Dirac point position is only locally well defined, the fact that
also explains the plateau formation around the Dirac point.

We now know Rs//70 k� from two-point measurement and can determine the
proportionality factor η that allows to convert the output signal of four-point mea-
surements to resistance units. Note first, that on the interval for the gate voltage
between −20 and 60 V the constriction resistance varies by 5.75 k�, whereas on
the same interval the output signal varies by 6 mV, leading to η � 5.75/6 k� mV−1.

We can finally calculate and plot together the Rs, obtained from the two- and
four-point measurements, as the function of VG in fig. 6.6. The achieved agreement
seem fully convincing. These curves will be analysed in a separate chapter.
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Figure 6.5: Average of output signals of two channels (smoothed) as a function of
inverse charges density with linear fit (a) and the output signal of both channels
and their average (all smoothed) with corrected offset as a function of gate voltage
(b).

6.2 High Frequency Calibration
6.2.1 Lines Tuning

From the studies we performed at low frequency we concluded that our tuning
and calibration approaches work well. We next applied these same approaches
at frequencies, at which we intended to perform noise measurements, i.e. around
3 MHz. More precisely, we chose measurement frequency to be 3.33 MHz, which is
the frequency on which the cross-correlation response passband is centred. Inas-
much as our main goal is to measure noise with cross-correlation method, the choice
of this frequency for tuning and calibration of the measurement system seems ex-
pedient. Once again, the previous tuning will not necessarily hold when passing
from hundred Hertz to several MHz — two frequency ranges at which quite a few
circuit parameters could differ — and a separate tuning and calibration are indeed
required. Probably the most important difference to point out between these two
ranges is due to the variation with the frequency of the intrinsic resistance of the
inductors, expected from the well known skin effect. Also, a capacitive shunt of
certain circuit elements is possible. On the other hand, with the increase of the
frequency, the measurements become more and more tricky and the appropriate
techniques have to be applied. Hence, here we do not detail anew the basic prin-
ciples of the used approach, being unchanged, but rather discuss some technical
details that differ it from the previous case and then directly present the results.

Now let us see, what distinguishes measurement approach used here from the
low frequency case. First of all, use of high resistances for current polarisation is
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Figure 6.6: Constriction resistance obtained from two-point measurement (in red)
and from four-point measurements with amplifiers (in blue) as a function of gate
voltage.

not appropriate, since this leads to a cut frequency2, much lower, than the working
frequency. In return, our system already contains 50 k� resistors near the device
and, moreover, as we saw, the contact resistance of current leads is very high as
well, hence, adding high resistances at room temperature is not necessary to have a
current polarized excitation. Next, since the commercial lock-ins, adapted for this
frequency range were not available, we used for the Phase Sensitive Detection two
synchronized high frequency generators, but, as before, with a difference in phase of
π, combined with a home-made lock-in, that we built up from our analog-to-digital
conversion card (see. sec. B.2) and that we tested beforehand by comparing it to a
commercial lock-in. The schematics of the measurement is shown in fig. 6.7. One
can also notice the −30 dB attenuators on each side, which are required simply
because the minimal power the voltage generators can deliver is too strong, so
that otherwise it could be unsafe for the device. Finally, at these frequencies, the
parasitic capacitances become non-negligible and the signal arrives in some sense
with an arbitrary phase to the detector. Moreover, we noticed that the output
signal contains an important offset, which is probably due to the cross-talk between
the measurement lines via inductive coupling for instance. As a consequence, in

2The low temperature part of the setup is connected to the high temperature part via special
coaxial cables of about 2.5 m, that in addition have high capacitance. Their capacitance is thus
estimated to be about 400 pF. If we use for example a 1 M� resistors, the resulting cut frequency
will be given by fc = 1/2πRC ≈ 400 Hz
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this situation the absolute value of the resulting signal is not a representative
quantity any more and a treatment of the signal is required, which consists in
following. We numerically adjust the phase of the signal in order to transfer all
variation of the signal to the real part, whereas the imaginary part then remains
practically constant. So if we note by X

∗
OUT and Y

∗
OUT the real and imaginary parts

of the measured signal, mathematically this corresponds to applying the formula
below

XOUT = Y
∗

OUT sin(θ + π) − X
∗
OUT cos(θ + π)

YOUT = Y
∗

OUT sin θ − X
∗
OUT cos θ

with θ such that the above condition is satisfied. In addition for the convenience,
we shift all curves to begin at the same value (we choose zero). We now can
consider the real part XOUT only and tune the lines by requiring, as previously, a
perfect superposition of all curves. The result of this operation is shown in fig. 6.8.

The next step is to find and subtract the offset and thus obtain the true phys-
ical signal coming from the device, that we can then convert to the constriction
resistance. To do that we apply exactly the same method as described in the
previous section (see subsec. 6.1.3 and eq. 6.2 and 6.3 there). However, one de-
tail should be mentioned. As one could already notice, the response of the lines
VA0 and VB0 at VG ≈ 75 V start to deviate from the symmetric regime we ob-
serve with the lines VA1 and VB1 and that we also observed at low frequency
with all four lines. Indeed the sample was probably slightly damaged between two
measurements, that introduced a supplementary contact resistances to the voltage
probes of lines VA0 and VB0, which moreover vary with gate. The corresponding
model will be exposed in another section, but for the moment what matters, is
that the method from subsec. 6.1.3 can not be applied for the channel 0, since the
required hypotheses become inaccurate in this case. Nevertheless we consider that
all four lines can be well tuned, using only the parts of the curves below the Dirac
point, whereas the offset can be determined from the correctly working channel,
i.e. channel 1. As for the channel 0, it is supposed to have the same offset. Fur-
thermore, it is clear, that our method can still be applied to the part of the data
from the channel 0 below Dirac point, and we obviously obtain the same result as
with the channel 1. The resulting offset equals −6.85 mV as seen from fig. 6.9.a.
Figure 6.9.b shows the corrected outputs of both channels, i.e. without the offset.

This finally provides us all necessary elements to derive the constriction re-
sistance Rs from the measurements at high frequency. An important remark to
be done is, that at high frequency the resistance in parallel with the constriction,
coming from the measurement lines, is reduced to ≈ 51.5 k�, due to the skin effect
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(see subsec. 4.2.2 of Chapter 4 for details). Hence, the output signal is propor-
tional to Rs //51.5 k�, the quantity, which can be calculated from the previous
measurements (we suppose that the constriction resistance didn’t change from one
measurement to another). Then, as before, since VOUT = η × Rs //51.5 k�, the
same is true for the variation of these quantities on the interval of gate voltages
between −20 and 60 V: ∆VOUT = η × ∆Rs//51.5 k�. If that is the case, to find out
the proportionality coefficient η, it is again cautions to, instead of comparing the
quantities themselves, compare their variation on the above mentioned interval,
thus avoiding any offset related drawbacks. This becomes the only constraint we
apply, whereas the offset is obtained independently. We then calculate Rs and its
comparison with the previous results, as seen in fig. 6.10, convinces us that the
result in the fig. 6.9.b indeed contains no offset. This confirms once again the
relevancy of our method. Note however, that near the Dirac Point, the orange
curve (measurement at high frequency with channel 1) is slightly larger than the
reference one in blue (measurement at low frequency, average of channels 0 and
1). This is probably due to the evolution that the device has undergone between
the two measurements. All these curves will be discussed in details in Chapter 7.

6.2.2 Current Measurement
As it was already mentioned, in low frequency measurements we used high

resistances to generate a current polarized excitation. These resistances dominated
the remaining resistances of the system, making the current calculation easy. At
high frequencies however this approach was not appropriate and we considered
the two 50 k� resistances, situated near the device, together with the current
leads contact resistances be sufficient to obtain the current source, independent
of the constriction resistance. In that case, yet, a straight-forward calculation of
the current is not possible, since not all resistances are known and, in addition,
eventual capacitive shunt can also interfere. Though, it is still very important to
know the exact value of the current, passing through the device. For this reason
we do a new independent measurement, that will allow to calculate the current.
The setup schematics is represented in fig. 6.11.

We now will explain its principle: the non-linearity of the device conductance
can be of a great use. For instance, if we measure the differential resistance as
a function of the DC bias voltage, with gate voltage being fixed, the response
will not be a constant function, but rather something of the type, one can see in
fig. 7.9 (green curve). By the way, in this measurement we will use low frequency
detection system, since in practice, the fact that the setup is not tuned to work at
low frequencies is not a problem, as it will be seen. Now, if we replace the DC bias
by the high frequency excitation (while the differential resistance measurement is
still done at low frequency), the non-linearities should still manifest themselves
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in the response. If we manage to relate the non-linear response to the DC bias
and the one to the high frequency excitation, by comparing the two we will be
able to find the current at high frequency, because the corresponding DC current
is well known. In short, we first measure the system response, proportional to
the differential resistance, at different bias voltages VB, while no high frequency
excitation is applied: V

HF = 0. We then measure the same response, but at zero
bias voltage and with high frequency excitation of different amplitudes (we know
only the RMS voltage applied to the entire system, but not the voltage across
the constriction). Finally, thanks to the relation below, the result of the first
experiment allows us to calculate the response that we are supposed to detect
during the second experiment for any given AC current. Matching the outcome of
these calculations with the results of the second experiment, will provide us the
sought correspondence between the RMS value of the high frequency excitation
V

HF and the AC current IAC, which it generates.
Let us see, how these two experiments are related. We first note as Rd(I) the

differential resistance, which depends on the current, passing through the device.
This dependence is known from the first experiment (DC current can be calcu-
lated in the straight-forward manner: I = VB/10 M�). We also know that during
the second experiment this value was obviously time dependent according to the
expression Rd

�
IAC sin(ωt)

�
(ω being the excitation angular frequency). Yet, since

the detection is done at low frequency, i.e. f
LF � f

HF, the measured signal will
correspond to a certain time average of the previous expression Rd

�
IAC sin(ωt)

�
.

In order to calculate these averages of the differential resistance Rd for different
AC current amplitudes IAC, we make use of the results of the first experiment (with
the DC current). It is however clear, that a sinusoidal excitation will not vary the
device resistance regularly, but instead the resistance will obviously remain more
time near Rd(IAC) or Rd(−IAC) values, than near Rd(0), meaning that a kind of
weighted average should be used in such calculation. To account for that, we take
the values of Rd interpolated on the sinusoidal grids of the time-varying current for
each amplitude IAC. It is evident, that a usual average over such irregularly spaced
array of values is equivalent to the mentioned weighted average. As a result, we
obtain the response we are supposed to detect with our system when a given AC
current is injected into the device. If the same response was indeed detected during
the second experiment (with the HF excitation), this same current was injected
into the device, hence allowing us to relate high frequency voltage and current.
Note, that we use RMS values in all our measurements, so the AC current values
are also converted to these units (dividing by

√
2).

Both experiments were done at VG = 55 V, the results of the procedure we have
just discussed are presented in fig. 6.12. Experimental and numerical results are
plotted with independent scales, but in the way that the two ensembles of points
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are superimposed. Two scales are thus related, just as are the voltage and the
current. The RMS value of the full high frequency excitation, that we applied to
the circuit (2V

HF) in all other measurements is 200 mV. Our method yields the
corresponding RMS value of the high frequency current ≈ 16.7 nA, when calculated
using the measurement with channel 0, and ≈ 16 nA, when calculated using the
measurement with channel 1. For the following calculations, we take the average
value of 16.35 nA (RMS) and will keep in mind 4.5% error that we will include in
the error bar henceforth.

Besides, this result is confirmed by a straight-forward calculation of the injected
AC current. Indeed, the RMS value of the full high frequency excitation after the
−30 dB attenuators is 200 mV × 10−3/2 � 6.32 mV, the total contact resistances as
we saw in subsec. 6.1.2 is RC, A + RC, B � 300 k�. Taking into account the two
series 50 k� resistors, the AC current reads: 6.32 mV/400 k� � 15.8 nA (RMS).
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Figure 6.7: Schematics of the high frequency setup, equivalent circuit at corre-
sponding frequency: f

HF = 3.33 MHz. Inside the dashed rectangle: low tem-
perature part with the device in the middle and resonant circuits replaced by
equivalent resistances, determined in subsec. 4.2.2 of Chapter 4. Outside of the
dashed rectangle: room temperature part with differential amplifiers omitted. The
20 nF capacitors serve to protect the 50 � high frequency generators from direct
currents. This setup was equally used to measure at high frequency the differential
resistance as a function of the bias voltage.
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Figure 6.8: Real (a) and imaginary (b) parts of the output signal after phase
correction for all four measurement lines, result of the tuning.
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Figure 6.9: Real part of the output signal (channel 0 in red and channel 1 in blue,
both smoothed) after phase correction plotted versus the inverse charges density
(a). Linear fit intercept (in green) points out the offset of the signal. On the figure
(b) the offset is subtracted from the signals (smoothed) plotted versus the gate
voltage.
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Figure 6.10: Constriction resistance RS obtained with different methods: in red
2-point measurement, in blue 4-point measurement at low frequency (average be-
tween two channels) and in green and orange 4-point measurement at high fre-
quency through channels 0 and 1 respectively.

Figure 6.11: Schematics of the circuit with the device in the center. Measurement
lines as well as −30 dB attenuators are omitted, ±V

LF/HF notation is used to em-
phasize the π phase discrepancy between corresponding sources. V

LF = 50 mVRMS,
V

LF is variable, used frequencies are f
LF = 137 Hz and f

HF = 3.33 MHz respec-
tively.
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Chapter 7

Conductance Measurements at
Zero Magnetic Field

7.1 Conductance at Zero Bias
In this section we try to establish a theoretical basis for the results of con-

ductance measurements by verify different hypotheses one after another. This is
also the way this section is organized: we dedicate a separate subsection to each
theoretical model and afterwards provide arguments, confirming one of them.

But before going deeper into the subject, remember that in the previous sec-
tion we indicated several divergences in the device behaviour due to its evolution
in time. In the last subsection we will present a model giving the possible sce-
nario of this evolution (see section 7.1.4), which we consider to be extrinsic to the
constriction conductance properties. Therefore the broad analysis of the device
conductance that we present here will concern exclusively the curves, that seem
not to have any extrinsic issues. These are the curves provided by the 4-point mea-
surement at low frequency as well as by the measurement of the same principle,
but at high frequency and using only channel 1.

These curves are shown in the fig. 7.1.a (while the curves with altered behaviour
are shown in fig. 7.1.b). First important aspect, visible on all curves, is that the
Dirac Point is shifted to about 60 V, in other words, the graphene sample is highly
p-doped, which is expected for an unbaked pristine graphene on SiO2 substrate
and after all nano-fabrication steps. Moreover one notices that the sample does
not reach the minimal conductivity in one point but rather saturates on a certain
range of gate voltages. By the way, the curves are also symmetric about the
neutrality point. The saturation value of the resistance is about 7.5 k� while on
the flanks of the curve the resistance shows excellent ∝ 1/∆VG behaviour, where
∆VG = VG − VD with VD � 61 V, almost attaining a value of 1 k� at −20 V of gate

119
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Figure 7.1: Results of the conductance measurements with different setups: in
blue — four-point measurement at low frequency (average of two channels), in
green — four-point measurement at high frequency with the channel 1, in red —
two-point measurement at low frequency, in yellow — four-point measurement at
high frequency with the channel 0. The curves in figure (a) are considered to not
to have any extrinsic issues as opposed to those in figure (b).

voltage.
Now let us confront this data to several theoretical models.

7.1.1 Ballistic Regime Hypothesis
First of all we would like to test the ballistic model presented in Chapter 3,

because the original intention of our work was to probe transport properties in
this regime. Although, it is not likely that the ballistic regime was attained, since
the device has not been baked, and because for the calibration we already noted
the variation of the resistance ∝ 1/∆VG.

We estimate the aspect ratio of the constriction, using the relations (3.7).
Indeed, the conductivity value at the Dirac point in ballistic regime is universal
and reads

σ = G ×
L

W
→

4e
2

h

1
π

, (7.1)

with G — constriction conductance and W and L — its width and length respec-
tively. This corresponds to constriction resistance

Rs →
L

W

π

2
h

2e2 = L

W

π

2 · 12.9 k� (7.2)

Taking into account the saturation value of the differential resistance � 7.5 k�,
(7.2) yields aspect ratio W

L � 2.7, that is much less than intended 4 value and even
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less than 3.5, aspect ratio after which the Fano factor converges to the universal
value 1/3. The conductance at this aspect ratio is, however, already very close
to the universal value, as it can be seen in fig. 3.1.a, that allows the application
of the relations above. We now have two free parameters. The first one is the
constriction width, that we nevertheless fix to W = 800 nm — the value given by
the lithography design and that does not suppose to vary more than by ±20%.
Yet the main free parameter is the one that relates the gate voltage relative to
the Dirac point ∆VG with the Fermi energy εF in the constriction. Here two cases
are possible. In the total absence of screening the electrostatic potential and thus
the Fermi energy in the constriction is entirely defined by the gate voltage that
is ∆VG ∝ εF. This case is however not very realistic in particular for the high
carrier density. On the other hand, in the presence of screening the charges in the
conductor shield the gates’ field and the better way to describe the effect of the
gates is to consider the conductor-gates system as a capacitor, that means that it
is the number of carriers and thus their surface density ns that are proportional to
the gate voltage ∆VG. From (1.32) the carrier density depend on the Fermi energy
as follows

ns = ε
2
F

π(vF�)2 (7.3)

We note the conductor-gates capacitance per unit area as C, i.e. C = ens/∆VG.
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Then the relation between the Fermi energy and the gate voltage reads

∆VG = e ε
2
F

πC(vF�)2 (7.4)

namely ∆VG ∝ ε
2
F, a relation totally different from the previous one. Of course,

only one of these two incompatible assumptions will allow to describe correctly
the experimental curves. It is not very hard to guess that, since the experimental
conductance has linear dependence on the gate voltage far from the Dirac point,
which is also the case for the theoretical conductance, which is however linear with
the Fermi energy (see fig. 3.2.a), the assumption ∆VG ∝ εF will be confirmed.
Performing a numerical fit of the conductance curves, with both assumptions we
conclude that this is indeed the case (see fig. 7.2). Moreover the fit obtained in
the assumption of no screening is surprisingly perfect. Hence, based on the results
of this fit, we can evaluate the parameter β relating the Fermi energy with the
gate voltage and defined as εF[eV] = β∆VG. It equals ≈ 2.8 × 10−4.

To conclude, the hypothesis of ballistic transport seems to hold only when the
screening in the conductor is weak, which is not very realistic. A more exhaustive
discussion about this subject will be presented in the subsec. 7.1.3.

7.1.2 Diffusive Regime Hypothesis
Most of the studies of the graphene transport properties reported on samples in

the diffusive regime. It is quite obvious, that the transport properties of such one
atom-thick layer are easily affected by the underlying substrate and by the surface
residues which are difficult to remove totally. Ideally, suspended sample, thor-
oughly baked is required to probe the ballistic regime. Several common features
were observed in these studies: conductance, at first linear with the carrier density,
saturates to its minimal value on a certain range of carrier densities around the
Dirac point. Some studies suggested universality of the minimal conductivity even
in the diffusive regime, but this early assumption was latter rejected. Yet, conduc-
tance saturation at finite value when the carrier density is low can seem somehow
puzzling because it can not be taken into account by a naive Drude transport
theory, since in the intrinsic graphene the carrier density (to which the Drude
conductivity is proportional) simply vanishes at the Dirac point. This in particu-
lar means, that whenever the Dirac point is reached, the Drude-type transport is
impossible.

However, this is not what was observed experimentally. The explanation for
this inconsistency is quite simple: charged impurities in the substrate generate
carrier density fluctuations, often referred to as puddles in the literature, making
the ubiquitous cancellation of carrier density experimentally inaccessible in avail-
able samples. These density puddles were indeed observed using Scanning Single
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Electron Transistor by Martin et al. On the other hand, Adam et al. developed a
self-consistent theory for graphene transport in the diffusive regime, starting from
puddles hypothesis. This work combines Random Phase Approximation(RPA) and
Boltzmann Equation formalisms and provides quite exhaustive picture of transport
that handles pretty well both high and low carrier density limits.

a. RPA Model for Diffusive Conductance

The main results of the model proposed by Adam et al. can be formulated as
follows

σ(ns − n̄) =






20e2

h
n∗

nimp
if ns − n̄ < n

∗
,

20e2

h
ns

nimp
if ns − n̄ > n

∗ (7.5)

Here, ns is the surface carrier density, nimp is the impurities density, n
∗ is the

residual carrier density — value below which the carrier density becomes highly
inhomogeneous so that it is not possible to define it as a global quantity, n̄ is
the gate voltage offset related to the sample doping, expressed in terms of carrier
density: n̄ = αVD, α being conversion coefficient.

Note that this model in particular allows to estimate the impurities density.
The charged impurities in this model are supposed to be situated in oxide at the
distance d away from the graphene plane and to be arbitrary distributed. Knowing
n

∗ one can also estimate d.
In order to obtain this result, first the scattering time τ was calculated as

follows
�

τ(k) = nimp
4π

�
dq

�
V (q)
�(q)

�2

[1 − cos2
θ]δ(εk+q − εk), (7.6)

where V (q) = 2πe
−qd

e
2
/(κq) is the Fourrier transform of bare Coulomb potential,

κ being the dielectric constant of the surrounding material (SiO2 and air), θ is
the angle between k and k + q and � is RPA graphene dielectric function. Its
approximate expression reads

�(q) =




1 + qTF/q if q < 2kF

1 + πrs/2 if q > 2kF

, (7.7)

where qTF = 4e2

�
kF
κ — Thomas-Fermi wave-vector and rs = e2

�vFκ ≈ 0.81 is the
interaction parameter which in graphene is carrier density independent. Charged
impurities-induced electrostatic potential fluctuations can also be calculated:

δV 2 = nimp

� d2
q

(2π)2



2πe
2
e

−qd

κq�(q)




2

= 2πnimp

�
e

2

κ

�2

C0(rs, a = 4kFd) (7.8)

1Calculated for graphene on the SiO2 substrate (κ = (3.9 + 1)/2)
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where
C0(rs, a) = − 1 + 4E1(a)

(2 + πrs)2 + 2e
−a

rs
1 + 2rs

+
�
1 + 2rsa

�
e

2rsa

�

E1
�
2rsa

�
− E1

�
a(1 + 2rs)

�� (7.9)

with E1(z) =
∞�
z

t
−1

e
−t dt — exponential integral function.

Finally, the residual density can be related to the impurity density (self-consistently)
by admitting that the chemical potential fluctuations magnitude ε2

F = �2
v

2
Fπn

∗

should equal to the electrostatic potential fluctuations induced by the charged
impurities δV 2, yielding

n
∗

nimp
= 2r

2
s C0(rs, a = 4d

√
πn∗) (7.10)

b. Numerical Simulations

We used this model (in particular the eq. 7.5), to fit our experimental data.
Two free parameters were required to obtain the fit shown in fig. 7.3 (in light
violet): the impurities density nimp and the residual carrier density n

∗, while other
quantities were determined independently. The aspect ratio, allowing to relate the
resistance and the per square conductivity, was estimated from the lithography
design. Note, that this model deals with the classical diffusion of charges and
the area of the whole region between voltage probes (including the wider parts on
both sides of the constriction) should be considered for the per square conductivity
calculation. This leads to the aspect ratio L

W � 1.35. Another quantity — α,
relating carrier density and the gate voltage as following ns = αVG, can be found
from the separate measurement in Hall Effect regime (see Chapter 8 for details).
This yields α = 2.53 ± 0.07 × 1010 cm−2 V−1, corresponding to the capacitance per
unit area of Cgate ≈ 4 nF cm−2.

This model is very useful, since it provides us several important quantities and
takes into account both regimes: at low and at high carrier density. However, as
one notices, the cross-over between these two regimes is not taken into account
in a very accurate manner, leading to the fit curve, that deviates quickly from
the experimental data, matching it only at its maximum and on the flanks. It is
obvious that in the reality this switchover is progressive. To account for that we
exploit the ansatz, formulated in [107]

ns =
�

n∗2 +
�
α(VG − VD)

�2 (7.11)
and the conductance then reads

σ = 20e
2

h

ns
nimp

(7.12)
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Figure 7.3: The results of the fit using the conclusions of the diffusive model:
direct application of the eq. 7.5 (in violet) and σ ∝

�
(ns − n̄)2 + n∗2 (in light

red). The experimental data is plotted in green and blue.

With (7.12) we obtain the curve plotted in red in the fig. 7.3. The fit is
now much better, although we had to modify only very slightly the fit parameters
(given in table 7.1 between parenthesis).

7.1.3 Discussion
We now review these two incompatible hypothesis in order to settle, which one

should be considered a the correct. Let us first discuss the assumption of weak
screening in our graphene layer. The only reason for non-capacitive behaviour
in such low-dimensional systems is the limited density of states, which in some
cases makes the energy cost of adding new particles to the system higher, than
the induced by applied field change in the potential energy of the particles al-
ready present in the system. The convenient quantity to evaluate this effect is the
quantum capacitance, defined as CQ = e

2 ∂ns
∂µ = e

2
D(µ), where µ is the chemical

potential and D(µ) is the density of states. In the graphene the density of states
is given by the expression (1.33), which yields

CQ = e
2 2
π

µ

(�vF)2 (7.13)

Using the coefficient β ≈ 2.8 × 10−4 defined in one of the previous subsections
we can calculate the quantum capacitance at the given gate voltage. The result is
shown in the fig. 7.4
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Figure 7.4: Quantum capacitance of a graphene layer as a function of the gate
voltage in the assumption of no screening.

The effect of the gate is then modeled by the series capacitance of the geometric
and quantum capacitance. The estimated values of the quantum capacitance are
of several hundreds of nF cm−2. While the geometric capacitance ( certainly esti-
mated in different assumptions in the previous subsection, yet this value is quite
realistic) equals 2.56 nF cm−2, which is some orders of magnitude smaller. Two
values become comparable only ±1 V around VD. Hence, the total capacitance is
entirely defined by its geometric compound which contradicts the weak screening
assumption.

In addition to that, the energy scale, deduced from the experiment with non-
zero bias presented in the sec. 7.2 does not agree with the energy scale estimated
using the ballistic fit. The results of the experiment at non-zero magnetic field also
strongly attest the capacitive behaviour of carrier density with the gate voltage.
All that means, that we should rather trust the results of the analysis in which we
considered our device to be in the diffusive regime.

Let us discuss the quantities, provided by this analysis and shown on the ta-
ble 7.1. First of all note, that the mean free path le (see fig. 7.5(b)), estimated
using the Drude conductivity formula, even at high carrier density is only about
50 nm � 200 nm — the constriction length, confirming the diffusive regime hy-
pothesis. The found impurities concentration 1.33 × 1012 cm−2 seems to be a typ-
ical value for a quite dirty sample (the hierarchy proposed in ref. [2] is from
2 × 1011 cm−2 — very clean to 3.2 × 1012 cm−2 — very dirty) and is close to the
largest values obtained in the similar work by [144]. The parameter n

∗ is basi-
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Table 7.1: Quantities extracted from the result of the fit (approximative values).
We denoted as le the mean free path and as τ the elastic scattering time of
fig. 7.5.b, as µ the mobility of fig. 7.5.a and as σmin the minimal conductivity
(appearing at the Dirac point).

Parameter Value (approx.)
nimp 1.33 (1.41) × 1012 cm−2

n
∗ 3.1 (3.25) × 1011 cm−2

le 30 to 60 nm
τ 30 to 60 fs

σmin 4.65 e2

h
µ 3660 cm2 V−1 s−1

d 1.27 nm

cally related to nimp via the distance at which the impurities are situated in the
oxide (see eq. 7.10). The found value n

∗ � 3.1 × 1011 cm−2, corresponding to the
smearing energy bandwidth of ε

∗
F � 81 meV is not far from the one reported in

[104] and yields d � 1.27 nm that is also rather reasonable (value considered in
the literature is ≈ 1 nm). Estimated mobility µ � 3660 cm2 V−1 s−1, shown in the
fig. 7.5(a), is also similar to the values found in [144] for one of their samples. The
minimal conductivity σmin � 4.65 e2

h is close to 4 e2

h , mistaken in the early works
for a universal value, but rather explained by the poor samples quality used in
these works. Adam et al. affirm that for very clean samples (nimp ≈ 2 × 1010 cm−2

) value 8 e2

h is attained, according to their calculations. More recent experiments
indeed revealed larger magnitudes and larger spread of σmin even in the samples
on SiO2, for example Tan et al. find values between 5e2

h and 10e2

h . Measurements
in graphene samples on boron nitride carried out by Dean et al. yielded σmin � 6 e2

h
but also n

∗ ≈ 10 × 109 cm−2 and most notably µ � 60 000 cm2 V−1 s−1 which is a
great improvement of samples quality. Du et al. performed a comparative study of
the transport properties of suspended and not suspended graphene samples. In this
work they claim approaching the ballistic regime, obtaining in the suspended sam-
ples σmin � 1.7σ0, where σ0 = 4e2

πh is the ballistic, “truly” minimal conductivity2.
The obtained mobility is of the order of 120 000 cm2 V−1 s−1, n

∗ � 4 × 109 cm−2.
In their non suspended samples in return, σmin � 6 e2

h , µ � 20 000 cm2 V−1 s−1 and
n

∗ � 6 × 1010 cm−2. Comparing these values with those derived in our experi-
ment, we conclude that the quality of our sample is not especially great, that is
not surprising since our sample was not annealed.

2Remember that the result σ0 = 4e
2

πh
was obtained by Tworzydlo et al. for aspect ratios

W/L � 4. In the work by Du et al. the discussed ballistic sample has length L = 0.5 µm and
width W = 1.4 µm.
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Figure 7.5: Calculated mobility (a) and mean free path/elastic scattering time (b)
as a function of the carrier density in our sample. The analysis is only valid for
densities below �−4 × 1011 cm−2 and above �4 × 1011 cm−2.

7.1.4 Model for the “altered” Curves
In this section we will develop a simple model, that tends to explain the dif-

ference in the responses of the channel 0 and channel 1, and which is also valid in
the case of the two-point measurement.

To begin, let us have a look on the curves we plotted in fig. 7.6. They show
the response of each measurement line as a function of the gate voltage. Two
details can be discerned on these curves. First of all, up to gate voltage of about
45 V the signals of all four lines follow one another quasi-perfectly and (with few
exceptions) reproduce the all UCF-related structures in details. Next, on the span
of gate voltages between 45 and 65 V, four curves seem to have more or less the
same average value, which moreover do not vary much with the gate voltage. On
the other hand, the fluctuations around this average value are much stronger, than
what we see on the left part of the curves. At the gate voltage value of about 65 V
the signal of the line V

1
A starts to decrease quicker, than the others, while the

response of the line V
1

B keeps following the lines V
0

A and V
0

B until VG � 72 V when
it passes above them to join the V

1
A line at VG � 80 V. The same reproducible UCF

structures, however, are still present in all four responses, the peaks at the gate
voltages of approximately 69, 72.5, 78, 84, 92 and 103 V attest it. The question to
address is: what can be the reason for the lines V

0
A and V

0
B to measure the higher

voltage than their two other counterparts?
The most apparent explanation is that the corresponding resistance is also

higher, because of some additional resistances in series with the constriction, that
moreover appear only above the Dirac Point and are detected exclusively by the
probes of channel 0. We argue that these resistances appear when a p-n junction
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Figure 7.6: Real part of the output signal as a function of gate voltage for each
measurement line after phase correction and arbitrary offset subtraction. Mea-
surements done at high frequency. Note the difference in the behaviour of the blue
and red curves comparing to the orange and green ones.

is formed between the n-doped constriction and the specific locations at which
the voltage is probed, latter still being p-doped in the case of the lines V

0
A and

V
0

B . Below the Dirac Point this junction is obviously absent, since all area of the
graphene sample is p-doped and no distinctions in the response of the probes arise.
The expected scenario is sketched in fig. 7.7.

Note that unlike to what is shown on these idealistic sketches, from our mea-
surement it seems that the n-region attains the probe V

1
A slightly before V

1
B . This

can be simply explained by the dissymmetry in the position of two probes with
respect to the side gates, possibly the result of the lithography process lack of
precision. On the other hand, the responses of the lines V

0
A and V

0
B were initially

similar to the one of V
1

A and V
1

B , but changed with time: the response of V
0

A changed
first, and after several measurements the line V

0
B followed (here we presented only

the last measurements). As a consequence, the difference in responses can not be
explained by the position of the probes V

0
A and V

0
B . We consider two options to

explain what is keeping the n-region from propagating until these probes. First
explanation is that some residues could change their position and come near the
probes hence screening the field of the gates. The second option is that cracks
appeared between these probes and the constriction in the graphene layer, mean-
ing that the points at which the voltage is really probed were shifted towards the
“bulk” part of the layer. Finally, it is also straightforward to see that in a two-point
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Figure 7.7: Illustration of the side-gates effect on the local carrier density. Dif-
ferent possibilities are shown, lower right sketch proposes a potential reason for
the divergences of the V

0
A and V

0
B probes behaviour. Density puddles, occurring

on the interval of gate voltages between 45 V and 65 V, are not shown on the
corresponding sketch.

measurement an additional p-n junction resistance is unavoidable.

7.2 Conductance Spectroscopy
It is often interesting to study the dependence of transport properties on the

energy of injected electrons. Such study can reveal several useful quantities. First
of all, it provides a reliable energy scale for the system. Some quantities become
more recognizable as it is the case for the UCF. Last but not least, the results of
this experiment allow us to derive the non-linear current-voltage characteristics of
the system. This information will be essential for us during the analysis of the
shot noise data.

The schematics of the experimental setup is shown in the fig. 6.7, the principle
of this measurement is the following: a DC current I = VB/10 M� is injected into
the device, resulting in a voltage drop Vds across the constriction. In addition,
this voltage drop is modulated by a small AC excitation Vexc. The response of the
device to this modulation for a given DC current, i.e. the differential resistance,
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is observed as always using Phase Sensitive Detection at 3.33 MHz. Besides, in
order for the differential resistance measurement to remain in the linear regime,
independent on the Vexc value, the latter should verify eVexc � kBT, eVds. On the
other hand, when the drain-source bias exceeds the thermal energy (eVds > kBT ),
the mesoscopic conductance may depend on Vds itself (but not on Vexc since it is
too small), manifesting the non-linearities.

Several reasons can give rise to a non-linear behaviour of the conductor. First,
a DC bias Vds applied to the conductor shifts the energy of the electrons in one
reservoir above the electrochemical potential by Vds, changing the number of prop-
agating modes which contribute to the total transmission. As a consequence the
conductance is enhanced. In that sense, the effect of the bias voltage on the dif-
ferential conductance is similar to the effect of the gate voltage, except that eVds
exactly equals to the energy shift of the electrons providing us a relevant energy
scale. Under other conditions, the shift of the energy at which the carriers are
injected modifies their coherence length and thus the distance over which the phe-
nomena such as weak localization take place. As a consequence, the differential
conductance increases with Vds, since the effect of weak localization decreases.

Besides, one particularity of our experimental setup should be pointed out,
before we start analysing the data. Indeed, if one glances at the circuit schematics
of the fig. 6.7, one will note that the device in our setup is biased in some unusual
way: the application of voltage +VB/2 and −VB/2 to two 5 M� resistors situated
on each side of the device leads to the “drain” voltage Vd = Vds/2, and the “source”
voltage Vs = −Vds/2, instead of the more conventional Vds and 0 values. Obviously,
the voltage drop across the constriction is still Vds, the injected DC current is
still VB/10 M�, but the voltage of the constriction middle is zero (relative to the
ground).

The main reason for such particular biasing technique is to reduce the effect
of applied DC voltage on the gain of the cryogenic amplifiers. As it was explained
in subsec. 4.2.3, the gain of these amplifiers depends on their transconductance,
which itself is FET’s gate-source voltage dependent. Yet, a shift of the voltage of a
probe and as a consequence of the FET’s gate will modify the amplifier gain. Our
approach allows to reduces significantly the voltage by which each individual probe
is shifted3 and thus the impact of the above mentioned effect on the measurement
result.

3Indeed, in that case the induced voltage shift is only of ±Vds/2 for the respective probes. On
the other hand, the conventional approach would consist in shorting to the ground potential of
one of the room-temperature inputs, used for the device biasing. As seen from the schematics 6.7,
these are separated from the device by 50 k� resistors as well as by eventual contact resistances.
Hence, in that case the induced voltage shift would be equal to Vds + I(RC + 50 k�) and I(RC +
50 k�) for the respective probes. Since the constriction resistance Rs � RC+50 k�, the advantage
of our approach is evident.
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By the way, from the transmission viewpoint, such approach is rather equivalent
to the application of the bias Vds in the usual way, simultaneous to the electrostatic
potential shift by Vds/2 in the opposite direction. Hence, the resulting transmission
enhancement arises only from the half of the applied drain-source voltage. To
derive this relation in a more rigorous way, let us first calculate the DC current
through the sample, when a bias Vds is applied in such a peculiar way. Since the
total transmission vary on this energy range, the current reads

I = 4e

h

eVds/2�

−eVds/2

T (ε + µG) dε (7.14)

where T (ε) is the total transmission (T = �
Tn) at the energy ε and by µG we

denoted eventual gate induced shift of the electrostatic potential. From that

dI

dVds
= 4e

2

h

�
1
2T (eVds/2 + µG) + 1

2T (−eVds/2 + µG)
�

(7.15)

and at the Dirac point, where µG = 0, this yields simply

dI

dVds
= 4e

2

h
T (eVds/2) (7.16)

since from symmetry considerations T (ε) = T (−ε).
The measured conductance value is indeed dI

dVds
, because the AC excitation is

applied in the same way as the DC voltage (i.e. dVds = Vexc, not 2Vexc). So if
we denote by dVds

dI

���
VG,Vds

the value of the differential resistance at bias and gate
voltages equal to VG and Vds respectively, the case when dVds

dI

���
VG,0

= dVds
dI

���
0,Vds

corresponds to the energies relation µG = eVds/2.
Next, since what we control in the experiment is the injected DC current I and

since we expect the device resistance to be non-linear, the drain-source voltage
(DC voltage drop across the constriction) should be calculated as following

Vds =
I�

0

dI

�
dVds
dI //51.5 k�

�
(7.17)

(the current injected into the device also passes through the measurement lines).
The carrier density, on its turn, is calculated as ns = α∆VG, with α = 2.53 ±

0.07 × 1010 cm−2 V−1 obtained from the independent measurement in the Quantum
Hall regime.

Finally, we extract the differential resistance dVds
dI from the detected signal

using the approach, presented in sec. 6.2. This approach allows in particular to
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determine the non-physical offset (that we then subtract) by extrapolating the
resistance curves to infinite carrier densities, where the resistance tends to zero.
This is equivalent to focus on ∆V

−1
G → 0 limit, where the Dirac voltage VD is the

free parameter such as offset values obtained from electrons and holes branches
of the curve coincide. In the present case, this condition should be fulfilled for
any Vds. The obtained value from channel 1 data analysis is VD = 61.75 V (the
average deviation is less than 0.1%). The channel 0 data does not allow to estimate
VD, since above the Dirac point the measurement result includes the additional
resistance of the p-n junction. For that reason we take the same value of VD as in
the case of channel 1 and determine the offset using only the holes branch of the
resistance curve.

In addition, despite our effort, the effect of the DC voltage on the amplifiers
gain is still not negligible. This results in an extra slope of the differential resistance
curves for a fixed gate voltage. To get rid of this artefact, we symmetrize these
curves

dVds
dI

∗ �����
Vds

= 1
2

dVds
dI

�����
Vds

+ 1
2

dVds
dI

�����
−Vds

(7.18)

We now can plot the differential resistance as a function of parameters, con-
trolling the transport properties of the system: carrier density in the conductor
and the energy of injected particles. We also performed the numerical simulations
in the both assumptions: of ballistic and diffusive regimes, combining the results
of zero-bias simulations with the relation (7.15). The quantity µG used in this re-
lation can be found in the ballistic regime assumption with the help of previously
determined coefficient β, whereas in the diffusive regime assumption with the help
of coefficient α and relation (7.3). Figure 7.8 shows the experimental (a and b)
and numerical (c and d) results.

First, to understand the color plots, recall that what we control is the injected
current, that we sweep always over the same values. Since the device differential
resistance decreases with the carrier density, the generated voltage drop Vds is
swept over lower values at higher carrier density. Note that both channels show
very similar behaviour with the bias voltage for ns > 0. Above this value channel
0 deviates from channel 1, as it was seen at zero-bias. Besides, if we increase bias
voltage at fixed carrier density, the differential resistance in general drops rather
quickly until the value Vds ∼4 mV is reached and then saturates, i.e. varies very
little with the bias. At this same value of Vds the fluctuations are also smeared.
On the other hand, the variation of the differential resistance with carrier density
around the neutrality point differs at low bias and at high bias (Vds �4 mV). At low
bias it is quite pronounced, similar to what is observed in zero-bias experiment.
Whereas at high bias this variation is very weak and the differential resistance
seems to saturate around the neutrality point, as it was predicted by Adam et al..
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Figure 7.8: Differential resistance as a function of carrier density and drain-source
voltage (DC voltage across the constriction) extracted from the measurements with
channel 0 (a) and channel 1 (b) or calculated in the hypotheses of ballistic (c) and
diffusive (d) regime using the parameters, extracted from the fits at zero bias.
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Figure 7.9: Differential resistance as a fuction of the bias voltage across the con-
striction at VG = 61 V. Ballistic and diffusive simulations (red and blue) and the
experimental results (in green).

Let us now examine the results of the simulations and compare them to what
we detect experimentally. We start with the ballistic regime assumption. It is
quite striking, how strongly the differential resistance drops with bias voltage. In
addition, at high carrier density (electrons or holes) a sort of coulomb diamonds
(although slightly bent) can be distinguished. These are simply more pronounced
manifestation of the oscillations that are already quite noticeable at high carrier
density in the zero bias conductance graph 3.2 of the Chapter 3. So when combined
with the relation (7.15), these oscillations form aforementioned bent diamonds, to
which the relation

If we look at the results of another simulations, in diffusive regime assumption,
we see that at fixed ns the differential resistance is quasi-constant with Vds, while
at fixed Vds the variation with ns is sharp for any Vds, in the opposite to what
we observe experimentally. Yet, the obtained color plot is exactly what we would
naively expect when combining diffusive model from subsec. 7.1.2 with the ex-
pression (7.15). This suggests that in our model not all phenomena are taken into
account.

For the sake of visibility we plotted the variation of the differential resistance
with bias voltage at VG = 61 V. It is clear that the differential resistance, cal-
culated with ballistic model, does not show any saturation behaviour and drops
continuously, thus disagreeing with the experiment. This fact confirms that this
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assumption is wrong. On the other hand the differential resistance, calculated
with diffusive model, does not show the peak between −4 and 4 mV and remains
constant over the whole range of drain-source voltages. Such inconsistency may
seem a bit puzzling from the first glance, yet another phenomena already discussed
in subsec. 2.1.3 of the Chapter 2, namely the weak localization, was not taken
into account up to now.

Let us see if the peaks in the differential resistance at zero bias can indeed be
explained by the effect of the weak localization. First of all, we spread the total
conductivity σ into the classical, Drude component and the component originating
from the weak localization correction:

σ = σDrude + δσloc (7.19)

Latter can be written as[7]

δσloc = −2 e
2

πh
ln

�

1 + τφ

τe

�

� −2 e
2

πh
ln

�
τφ

τe

�

, when τφ � τe (7.20)

where τφ is the phase coherence time, τe — elastic scattering time and the 2 pre-
factor comes from valley degeneracy. Then, if we denote as σ

0 (δσ
0
loc) and σ

1

(δσ
1
loc) the total conductivity (the weak localization correction) at Vds = V

0
ds and

V
1

ds respectively, considering σDrude and τe to be drain-source voltage independent,
we have

σ
1

− σ
0 = δσ

1
loc − δσ

0
loc = e

2

πh
ln



τ
0
φ

τ
1
φ



 . (7.21)

It is now clear, that if we are able to calculate the phase coherence time at
different drains-source voltages, we can try to fit our data. The phase coherence
time will depend essentially on the electronic temperature Te and δε — the quasi-
particle energy with respect to the Fermi level at which it is injected. Calculations,
done for graphene by Li and Das Sarma using GW and random phase approxima-
tions, show that the temperature-dependent phase coherent time can be written
as

1
τ

temp
φ

� −
π(kBTe)2

4�εF



ln
�

kBTe
8εF

�

+ 1.08387


 (7.22)

while the injection energy-dependent phase coherence time reads

1
τ

energy
φ

� −
δε

2

4π�εF



ln
�

δε

8εF

�

+ 0.5


 (7.23)

The total phase coherence time is obviously given by
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Figure 7.10: (a) – (d) τ
0
φ/τφ as a function of Vds for VG = 30, 81, 54 and 69 V

respectively. Blue dots show experimental data, red line — fit curve. Used param-
eter Te, electronic temeprature is indicated on correponding graph.

1
τφ

= 1
τ

temp
φ

+ 1
τ

energy
φ

(7.24)

(in this simple approximation we consider the temperature to be bias independent).
We can now fix V

0
ds = 0 V and plot τ

0
φ/τφ

4, extracted from our experimental
data, as a function of Vds and fit it using the above formulas (7.22 – 7.24) having
the electronic temperature as the only free parameter. Note that fixing V

0
ds = 0 V

yields τ
0
φ = τ

temp
φ . Here the following remark is however necessary: because of the

disorder induced “puddles”, the description of transport at the Dirac point VD can
be rather complex and not well described by our simple model. For this reason
we limit our study to the points rather far form VD ≈ 58 V − 61 V. The obtained

4We therefore omit the 1 superscript index over τφ henceforth.
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agreement for several gate voltages is shown on fig. 7.10. Note the expected
saturation of the phase coherence time at Vds above ±4 mV for the data nearest to
the Dirac point (VG = 54 and 69 V). The resulting electronic temperature at zero
DC bias Te ranges between � 7.2 K and 7.8 K, which is higher, than the helium
bath temperature, but consistent with the values, we extracted from the noise
measurement when the Joule heating was not taken into account. This suggests
that the heating effects should be included in our model. One also sees that the
condition from the eq. 7.20 is satisfied, since τφ is of the order of 10 ps, while τe is
of the order of 50 fs (see subsec. 7.1.3). The phase coherence length at zero bias
is estimated to be ≈ 600 − 800 nm which is in agreement with the values found in
the literature[111, 10].



Chapter 8

Conductance in the Magnetic
Field

In this chapter we present the results of the conductance measurements in
the magnetic field. Although our experimental system does not allow to attain
high magnetic field values, required for the appearing of several Quantum Hall
plateaus, these measurements can still be useful providing the information about
carrier density in the sample for instance. Strong disorder, revealed in our samples,
makes the observation of the usual magneto-transport signatures as Shubnikov-
de-Haas oscillations difficult. Another obstacle we faced in this experiment is
the inhomogeneity of the electrostatic doping of the graphene sheet by the side-
gates, which leads to the formation of the regions with different filling factors,
hence complicating the analysis of the data. However, as it will be shown, the
plateaus formed by the Hall resistance of the constriction can be observed if the
right combination of the voltage probes is chosen. For other combinations of the
voltage probes, specific data treatment can be applied in order to confirm the
corresponding values of the filling factor. The derivation of the filling factor in the
constriction as a function of the gate voltage and the magnetic field is the main
purpose of these measurement, since this allows to establish the correspondence
between the gate voltage and the carrier density in this region.

8.1 Measurement Principle
In this experiment we used the setup, described in the sec. 7.2 (measurement

frequency 3.33 MHz), except that no finite DC bias is applied, and we swept the
gate voltage and the magnetic field.

As one can see, in such setup three different types of voltage probes combination
are possible. If we refer ourselves to the notations of fig. 8.1, we can discern the
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Figure 8.1: Sketch of a Hall bar with a constriction and three regions with different
filling factors νA, νB and νc.

combination V
1

A − V
1

B , i.e. the longitudinal one, the combination V
0

A − V
1

A — the
transversal one, and finally the combination to which we refer as crossed: V

1
A −V

0
B .

Other possible probes combinations are obviously equivalent to one of these three.
Note, that on the sketch the direction of the chiral current in the edge channels
is shown for a given magnetic field direction and carriers’ sign. For the opposite
magnetic field direction or for the opposite carriers’ sign, just permute 0 and 1
indices of probes on the sketch. If both parameters are changed for their opposite
values, the sketch will remain valid without changes.

In the case of an ideal Hall bar the longitudinal and the transversal probe
combinations correspond to the measure of the longitudinal Rxx and Hall RH resis-
tances respectively. Yet, our device can not be considered as an ideal Hall bar for
the following reason: the carrier density induced by the field effect of the side-gates
depends on the distance from the latter. As a consequence, the carrier density and
thus the filling factor is different near the probes and in the constriction. This
has a peculiar effect on the measured voltages: for instance the transversal com-
bination of probes will measure the Hall voltage, which is defined by the filling
factor value between the probes, not by the one of the constriction. In addition, we
should have in mind that since the input impedance of the voltage probe lines can
in some cases be comparable with the measured resistance, the current can sink
through them yielding an additional voltage drop (which is however quite difficult
to take into account).

Let us now address the problem of spatial variation of the filling factor in a Hall
bar, by dividing it into three regions with a different filling factor each, as sketched
in the fig. 8.1 (here, we neglect the effects of the current sinking through voltage
probes). Such model can seem too simplistic, but it helps to build up an intuition
about the measured quantities. We can relate the voltage measured by any probes
pair to the filling factors with the help of the Landauer-Buttiker relations for the
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multi-terminal devices (see [16]):

Ip = e
2

h

�

q

[Tq←pµp + Tp←qµq] (8.1)

where p and q are the indices of terminals, Ip — the current, which enters the
terminal p and µp is the electrochemical potential of this terminal, Tq←p is the
transmission from the terminal p to the terminal q.

We use the notation of the sketch 8.1: by νA and νB we note the filling factors in
the proximity of the probes V

0
A /V

1
A and V

0
B /V

1
B respectively and by νc — the filling

factor in the constriction. The injected current is denoted by I and we chose the
terminals 1 and 4 to be at the voltage V and 0 for the simplicity (this obviously
will not change the result). According to (8.1) we can write

I1 = I = e
2

h

�
νAV − νAV

0
A

�
(8.2)

I2 = 0 = e
2

h

�
νAV

0
A − νcV

0
B − (νA − νc) V

1
A

�
(8.3)

I3 = 0 = e
2

h

�
(νc + νB) V

0
B − 0

�
(8.4)

I4 = −I = e
2

h

�
0 − νBV

1
B

�
(8.5)

I5 = 0 = e
2

h

�
νBV

1
B − νcV

1
A − νBV

0
B

�
(8.6)

I6 = 0 = e
2

h

��
νc + (νA − νc)

�
V

1
A − νAV

�
(8.7)

These equations lead to the following results:

V = h

e2νc
I (8.8)

V
1

A − V
0

A = h

e2νA
I (8.9)

V
1

B − V
0

B = h

e2νB
I (8.10)

V
0

A − V
0

B =
�

h

e2νc
−

h

e2νA

�

I (8.11)

V
1

A − V
1

B =
�

h

e2νc
−

h

e2νB

�

I (8.12)

V
1

A − V
0

B = h

e2νc
I (8.13)

V
0

A − V
1

B =
�

h

e2νc
−

h

e2νA
−

h

e2νB

�

I (8.14)
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One sees that the probes pairs V
1

A −V
0

A and V
1

B −V
0

B will indeed sense the filling
factors in the proximity of the corresponding electrodes, νA and νB respectively,
while, less obviously, the crossed combination of probes V

1
A − V

0
B will sense the

filling factor in the constriction νc. Furthermore, the longitudinal combinations
of probes V

0
A − V

0
B and V

1
A − V

1
B , in the opposite to what one would intuitively

expect, will not measure no voltage drop each time the Hall resistance of the
constriction shows a plateau. Instead it will have a more complicated behaviour
depending both on νc and νA (νB), which is less straight-forward for the analysis.
Aforementioned behaviour, due to the spatial variation of the filling factor, is well-
known and was previously observed in other systems, namely in GaAs/AlGaAs
heterostructures, see ref. [67] for example. What differs graphene from these
systems is that formation of the regions with opposite polarities of charge carriers
is possible. In such p-n-p junction, the edge states counter-circulate in the p-
and n-regions and at the interface between regions a full equilibration arises. A
p-n-p system can thus be seen simply as three conductors in series. Here we do
not consider this unusual situation due to its complexity in the case of four point
device, but the reader can refer to the work by Özyilmaz et al., where graphene
p-n-p junctions under magnetic field are studied in two point geometry and the
filling factor in different regions is controlled by independent top- and back-gates.
Other theoretical and experimental results on Quantum Hall Effect in graphene
p-n junctions can be found in refs. [1, 160, 70].

In this work we performed the analysis of all probes combinations at the max-
imum field (� 7.5 T). The study of the system response to the gate voltage and
magnetic field sweep was done with the V

1
A − V

0
B and V

1
A − V

1
B voltage probes

combinations. These experiments are presented in the next section.

8.2 Results and Discussion
Here we show the results of the experiment in which both the gate voltage and

the magnetic field were swept and the voltage was measured with the crossed and
longitudinal probes combinations V

1
A − V

0
B and V

1
A − V

1
B . We represented them on

the color plots displayed in the fig. 8.2. Here we chose the notation for the gate
axis, that seemed us the most appropriate for this representation: ∆VG = VG − VD

, where VD = 61 V is the voltage required to attain the neutrality point. Besides,
it should be emphasized, that the shown color plots contain two parts, that can
be distinguished by the sign of the charge carriers: for ∆VG < 0 these are holes (p-
region), while ∆VG > 0 these are electrons (n-region). Yet, recall from the previous
discussion, that changing of the carriers’ sign is equivalent to the permutation of
0 and 1 indices. This means that for example in the fig. 8.2a, the electrons part
is described by the formula (8.13), while for the holes part by the formula (8.14).
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In addition, near ∆VG = 0 formation of p-n-p junction is probable. One should
always keep in mind these subtleties, while analysing the plots below.

As one could remember from the theoretical description of magneto-transport
(see sec. 2.3), the transport properties of the system, for enough high magnetic
fields, are in general determined by the filling factor ν = ns

eB/h and should remain
unchanged under the variation of parameters that preserves the filling factor con-
stant. This condition is satisfied if the ratio ns/B remains constant, which on the
color plot corresponds to radial lines going from zero magnetic field and carrier
density. Hence, in a conventional system, Shubnikov-de-Haas oscillations of the
longitudinal resistance or step function of the Hall resistance produce a fan-shaped
picture (e.g. [166]). In our system, however, step like transitions appear only for
the crossed combination of probes and when carriers are electrons (i.e. ∆VG > 0),
where fan-shaped picture is indeed observed. In the case of the longitudinal com-
bination of probes, two filling factors enter into the competition, see (8.11) and
(8.12), bluing the picture. Nevertheless, we believe that, since this measurement
presents the superposition of two plots of the same type, fan-shaped structures
should still manifest themselves at least partially.

Besides, if the data is plotted as a function of the gate voltage (and not carrier
density) and of the magnetic field, the appearance of the radial lines on the color
plot, would strongly confirm the good screening assumption according to which
∆VG ∝ ns. As it can be readily observed, the radial lines indeed show up in the
color plots 8.2. As a consequence, we can infer that the hypothesis of ballistic
regime in our device is incorrect.

Moreover, since the radial lines are constant filling factor lines, and the mea-
sured resistance is supposed to depend only on the filling factor(s), averaging along
the radial lines would simply give the resistance value with fluctuations removed.
We performed this operation between 6 and 7.565 T. We add on top of the color
plots the resistance curves at 7.565 T (in red) and the results of the averaging along
the radial lines at corresponding filling factors (in green).

On the other hand, the color plots obviously should allow us to find out the
coefficient α, already defined previously as ns = α∆VG. For that, however, we
should be able to attribute to any or at list to certain radial lines the value of cor-
respondent filling factor. Then, according to the previous formulas, this constant
will be defined by the relation

α = eB

h

ν

∆VG
(8.15)

The filling factor in the constriction can be easily determined in the electrons
part of the fig. 8.2a, where the plateaus are observed (see also the top graph). As
it was explained in sec. 3.2, the Hall resistance in graphene manifests plateaus at
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Figure 8.2: Color plots of the resistance measured with the crossed (a) and longi-
tudinal (b) probes combinations as a function of ∆VG = VG −VD and magnetic field
B. Top graphs show the variation of the resistance at maximum magnetic field
B = 7.565 T (red curves) as well as the values of the resistance, averaged along the
constant filling factor lines, at the same filling factor (green curves). Black dotted
lines, marking the boundaries of plateaus that appear in the electron part of the
figure (a), were also transposed in the holes part and on the figure (b). White
dashed constant filling factor lines correspond to the filling factors −6, −2, 2, 6,
black ones to the centers of the Landau Levels −1, 0, 1.
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filling factors given by

ν = ±2(2n + 1), i.e. ν = 2, 6, 10, 14 . . . (8.16)

From that we can conclude, that the plateaus we observe correspond to νc = 2
and νc = 6. Furthermore, the difference between the values of resistance on the
two plateaus equals ≈ 8.6 k�. This value is exactly h

2e2 −
h

6e2 — difference between
the plateaus with νc = 2 and νc = 6, confirming this hypothesis. Our data hence
contains ≈ 3 k� offset, that we were not able to explain.

It is reasonable to expect that the complete filling of a Landau level is attained
at the middle of a Hall plateau. Thus with a certain degree of precision we can
claim that the bisectors of radial lines limiting the Hall plateaus (shown in the
fig. 8.2a by black dotted lines) are the lines of filling factor 2 and 6 for the first
and the second plateau respectively. These bisectors are shown in the fig. 8.2a.
by the white dashed lines. We also transposed both types of lines to the holes part
of the plot (using symmetry considerations) and to the fig. 8.2b.

The α coefficient can be obtained from the bisector slope θ using the formula

α = νc
tan θ

e

h
(8.17)

leading to α values � 2.6 × 1010 cm−2 V−1 and � 2.46 × 1010 cm−2 V−1 obtained
for filling factors 2 and 6 respectively. We take average of this value: α � 2.53 ±

0.07 × 1010 cm−2 V−1.
Note that even though, no plateaus are observed on the holes part of the

color plot, one is still able to recognize the zones of different colors, separated
by the same radial lines (black dotted lines), limiting the Hall plateaus on the
electrons part. This can be understood by looking on the formula (8.14), that
demonstrates, that the measured signal is a combination of Hall resistances of
all three regions. When one of these resistances exhibits a step transition from
one plateau to another, this is necessarily reflected on the color plot. Here the
transitions of the Hall resistance of the constriction are especially recognizable.
This is also the case for the measurement with the longitudinal combination of
probes V

1
A − V

1
B , see fig. 8.2b. Nevertheless, we can not give a clear explanation

for the measured values.
In order to enhance the visibility of these transitions, we plotted the derivative

of the data along the gate voltage direction in the fig. 8.3. First, note that the
radial translational symmetry of our data is seen even better on these graphs.
Furthermore, it is quite clear, that the result of the analysis of Hall plateaus from
the electrons part of the plot fig. 8.2a holds in both of new color plots.

Finally, using the results of the averaging along the radial lines, described
above, we reconstructed the color plots, replacing all values on given radial line by
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Figure 8.3: Color plots of the absolute values of the resistance derivative along the
gate voltage direction measured with the crossed (a) and longitudinal (b) probes
combinations as a function of ∆VG = VG − VD and magnetic field B. Top graphs
show the variation of the derivative at maximum magnetic field B = 7.565 T.
Black dotted lines, transposed from the fig. 8.2, mark the boundaries of plateaus.
White dashed constant filling factor lines correspond to the filling factors −6, −2,
2, 6.
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Figure 8.4: Color plots reconstructed with the results of the averaging along the
radial lines, replacing all values on given radial line by its average, for crossed (a)
and transversal (b) probes combinations as a function of ∆VG = VG −VD and mag-
netic field B. Top graphs show the values used for the color plots reconstruction.
Black dotted lines, transposed from the fig. 8.2, mark the boundaries of plateaus.
White dashed constant filling factor lines correspond to the filling factors −6, −2,
2, 6, black ones to the centers of the Landau Levels −1, 0, 1.
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its average. The outcome is shown in fig. 8.4. This is the most appropriate way
of data smoothing in such kind of experiments.

To conclude, the study of the transport properties of our device in the magnetic
field helped us to confirm the hypothesis of diffusive regime and good screening
evoked in subsec. 7.1.2 as well as determine the α coefficient, required for the
conversion between gate voltage and carrier density. Nevertheless, we do not have
a complete understanding of all the results and several questions remain open.



Chapter 9

Shot Noise in Graphene

In this chapter we get to the heart of the matter: in the following we will present
the result of the noise measurements on our graphene-based device. The main
purpose of this experiment is to determine the Fano factor and study its possible
variation with Fermi energy (i.e. carrier density). We first discuss the measurement
principle and explain how the current noise spectral density was extracted from the
acquired data. Next, we expose the obtained results and confront them with the
conclusions of previous experiments as well as with numerical simulations, found
in the literature.

9.1 Measurement Principle
The principle of this measurement was already presented in the sec. 4.2 of the

chapter Measurement System Principle (see in particular the fig. 4.3). Here we
propose a brief reminder of employed method. First, the present study is based on
four-point and cross-correlation noise measurement technique. This is attained in
the following way: a DC current is injected into the device via separate electrodes,
the fluctuations of this current due to the transmission properties of the sample
result in the fluctuations of the voltage drop across the constriction. These voltage
fluctuations are detected by two pairs of voltage probes situated on both sides of
the constriction (see fig. 4.2) and the cross-correlation approach is used. This
method is certainly more challenging than a conventional two-point current noise
measurement, but allows to get rid of the contact resistance related issues and
partially of the parasitic noise appended to the signal by the detection system.

Let us see how these principles were implemented technically. In fact, the
used setup is somehow similar to the one described by the schematics 6.7. The
device is current biased by applying a DC voltage to two 5 M� resistors placed
before and after the device, the double detection of the voltage fluctuations across

149
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the constriction is done with the help of four voltage probes, connected to four
cryogenic amplifiers and the difference between corresponding signals is taken by
two room-temperature differential amplifiers. The RLC filters, added to each
detection circuit serve to shift the pass-band to frequencies at which 1/f -noise is
negligible. The two obtained signals are then digitized by the two-inputs analog-
to-digital conversion board Spectrum at 10 MSamples/s into a 215 Samples buffer
(thus a 1 MHz band contains 6553 or 6554 points). Finally, the FFT is performed
by the software module, developed for this purpose and the crosscorrelation as well
as the autocorrelation of each signal are calculated. The crosscorrelation contains
real and imaginary part, in our calculations we take the absolute value of it.

In addition, to reduce the uncertainty on the noise, the spectra were aver-
aged over 40 000 acquisitions each and the noise at zero bias was subtracted,
yielding what is called the excess noise. This was done in order to remove all
bias-independent parasitic contributions (which is usually the case for parasitic
electromagnetic peaks appearing due to the ground loops unavoidable in complex
measurement systems). The still persisting peaks were removed numerically. Fi-
nally, the best fit of the bandpass filtered signal was done in order to extract the
filter independent noise level. The Autocorrelation spectra were fitted with a single
Lorentzian-type function:

S
A(f) = S

A
0

1 + (f 2 − f
2
0 )2/(fΓ)2 (9.1)

where f0 is the resonance frequency. We obtain that two channels have slightly dif-
ferent resonant frequencies: f1 ≈ 3.29 MHz for the channel 0, while f2 ≈ 3.36 MHz
for channel 1, yielding ∆f ≈ 70 kHz, to be compared to the bandwidths of the
respective channels: Γ1 ≈ 158 kHz and Γ2 ≈ 164.5 kHz. Therefore, the cross-
correlation was fitted with a double Lorentzian-type function:

S
C(f) = S

C
0

1 + Γ2
2(f2−f2

1 )2+Γ2
1(f2−f2

2 )2

f2Γ2
1Γ2

2
+ (f2−f2

1 )2(f2−f2
2 )2

f4Γ2
1Γ2

2

(9.2)

(the derivations of both formulas are given in the Appendix B.3). A typical excess
noise crosscorrelation spectra and its fit are shown in fig. 9.2.

The clearest way to understand how the Fano factor was extracted from the
obtained data is to consider the equivalent electric circuit, shown in fig. 9.1. The
capacitors C0 on the schematics represent the capacitances of coaxial cables used
for device DC biasing and estimated to be � 300 pF. These, compared to the
adjacent 50 k� resistors, can be neglected at frequencies of about 3 MHz, giving
the simplified variant of the circuit shown on the right of the figure. Here Z0
depicts the total impedance of the voltage probes and Z1 depicts the impedance
of the part of the circuit used for injection of the DC and AC currents. However,
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Figure 9.1: Main: Equivalent electric circuit for the noise measurement, C0 —
capacitances of coaxial cables, RC, A/B — contact resistances. Inset: simplified
variant of the same circuit.

in sec. 6.1 we saw that the total series contact resistance RC, A + RC, B � 300 k�,
which is also the case at 3 MHz. Hence the impedance Z1 which is essentially the
contact resistance in series with two 50 k� resistors is negligible in parallel with
Rd and Z0.

Now recall, that our data corresponds to the voltage noise spectral density at
the output of the amplifiers so we need first to find the corresponding noise at
the input of the measurement circuit and then convert voltage noise to current
noise. Our method consists of the following steps. Let us note by K0 and K1
the gain coefficients of the both measurement channels, and by S

OUT
VV and S

IN
VV

the crosscorrelation voltage noise referred to the output and to the input of the
measurement channels respectively. Then the following relation holds:

S
OUT
VV = K0K1S

IN
VV (9.3)

Moreover if Rd is the differential resistance of the constriction the current noise is
given by SII = S

IN
VV/(Rd//Z0)2, which leads to

SII = S
OUT
VV

K0K1(Rd//Z0)2 (9.4)

On the other hand, the gain coefficients are simply given by the ratio of the
output and input voltages, i.e. K0,1 = V

OUT
0,1 /V

IN. From the measurements de-
scribed in sec. 7.2, we know V

OUT
0,1 , while V

IN = IACRd //Z0, where Z0 = 51.5 k�
at measurement frequency (3.33 MHz). The differential resistance as well as the
AC excitation current IAC are both known. All this means that the precise knowl-
edge of gain coefficients is not necessary, since the current noise spectral density
is expressed as

SII = S
OUT
VV

V
OUT

0 V
OUT

1
× I

2
AC (9.5)



152 CHAPTER 9. SHOT NOISE IN GRAPHENE

and, to remain in the same experimental conditions, we obviously should take the
value of S

OUT
VV at 3.33 MHz that we know from the best fit of the spectra.
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Figure 9.2: Measured crosscorrelation spectra of the excess voltage noise S
OUT
VV (blue

and green with suppressed peaks) around resonance frequency near the Dirac point
(at gate voltage VG = 60 V) and at drain-source voltage VDS � −7 mV. Thickness
of the best fit line (red) reflects the standard error of the fit.

Calculation of the exact DC current through the constriction is also straightfor-
ward. Let IDC be the DC current, injected in the device and Vds — corresponding
drain-source voltage, that was calculated as a function of IDC for all gate voltages
in sec. 7.2 of Chapter 7 (see (7.17) in particular). The part of the current passing
through the constriction (drain-source current) is given by IDS = IDC − Vds/70 k�,
since at low frequency Z0 equals 70 k�, while Z1 is almost infinite.

Finally, note that thanks to the use of the 4-point approach together with
the cross-correlation detection, the contribution of the thermal noise of different
resistances present in the measurement circuit can be neglected. The exception can
be made for the series contact resistance (RC, A + RC, B � 300 k�), which is grater
than the remaining part of the impedance Z1. This means that a part of the current
fluctuations generated by this contact will pass through the constriction and thus
will be detected by our measurement system despite the use of the cross-correlation
technique. Nevertheless, this parasitic contribution remains very small1.

1If we assume about 3/4 of these current fluctuations to pass through the constriction, this
will lead to the contribution Spar = 3kBTe/(RC, A + RC, B) ≈ 1.4 × 10−26 A2 Hz−1 at Te � 100 K,
maximum temperature we expect at the contact (at maximum DC current, see subsec. 9.2.3).
This rather lavish estimate correspond to 10 to 15% of the total detected noise at the same value
of DC current.
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9.2 Shot Noise in Presence of Joule Heating
We thus obtain the noise curves, shown in fig. 9.4 (red dots). Estimation of

the electron temperature Te using the Johnson-Nyquist to shot noise crossover,
eV = 2kBTe, V being the intercept of the pure shot noise asymptote with the
drain-source voltage axis (in the case of the excess noise), yields values ranging
mostly between 7 and 9 K (see fig. 9.5.a, green squares).

In that way estimated electron temperature is clearly well above 4.2 K — the
temperature of the helium bath. One possible reason for such elevated temperature
could be the insufficient thermal anchoring to the helium bath of the cryogenic
amplifiers, which dissipation will raise the temperature of the stage where the
device is situated. This situation being possible, it is however quite difficult to
provide any quantitative estimation of this effect. Still, the obtained temperature
range appears too high.

Another possibility is the dissipation in the device itself. In that case the
electron temperature will depend on the injected DC current IDC as well as on how
good this heat can sink from the device. The most important source of dissipation
in the device is certainly the high contact resistance between graphene and one
(or both) of the injection electrodes, which is � 300 k�. The impact of such high
resistance should unavoidably be seen in the measurement. On the other hand,
the coldest points are situated near the metallic electrodes in which the electrons
are well coupled to the phonons. The electrons in the metal are hence considered
to be at the temperature of the stage T0. By the way, there is an important
detail to be reminded here: as it was explained in Chapter 5, our device has four
additional (spare) probes (electrically disconnected from the measurement system)
obviously also at the stage temperature T0, which contribute to the heat sink as
well. Remember moreover, that only half of the heat, dissipated by � 300 k�
resistance goes to the sample, while another half is returned to the bath directly.

9.2.1 Cooling by Electron Diffusion
The quantitative estimation of this effect can be obtained by writing the heat

balance. To begin, let us consider only the heat transport due to the electron
diffusion in the graphene. In that case the thermal conductivity κe is given by the
Wiedemann-Franz relation:

κe = L
Te
ρ

, where L = π
2

3

�
kB

e

�2

(9.6)

where Te is the local electron temperature, while ρ is the local electrical resistivity
and L is called Lorentz number. In this problem, many parameters are unknown,
especially the resistances between the hot points and the cold ones. For this reason,
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Figure 9.3: Schematics for the simplest heat transfer problem. The hottest area
in the device in which the dissipation takes place is marked with red colour, the
coolest areas (at the temperature T0 of the stage where the device is situated) is
marked with blue colour. The blue wire below symbolizes the phononic bath.

we simplify our model as much as possible by doing the following assumptions.
First of all, the heat generation takes place in one location only, which is the �

300 k� contact resistance between the metal and the graphene layer. Next, because
of its high resistance the heat flow through the constriction is very weak, hence
the electrons on its right can be seen as thermally isolated from their counterparts
on the left of the constriction: TR = T0. Finally, since near the current injection
electrodes, the side gates are weakly efficient, the graphene layer is strongly hole-
doped between the current injection electrode and the spare probes. For the sake
of simplicity, we consider the sheet resistance in this region to be constant and
denote it as r�,1, while between the principal probes and the constriction, the
sheet resistance r�,2 is also put to be constant. The latter region is obviously more
resistive, it is reasonable to take r�,2/r�,1 � 3. The different aspect ratios can
be roughly estimated from the lithography design (see fig. 5.10). This yields the
picture represented by the schematics, shown in fig. 9.3.

The temperature TL in this simplistic model can be found from the following
equation[131]

Q̇ = π
2

3

�
kB

e

�2
T

2
L − T

2
0

2
1

r�,2/4 , Q̇ = 1
2300 k� × I

2
DC

r�,1
r�,1 + 4.5r�,2

(9.7)

with Q̇, the fraction of the heat, that did not sink through the spare probes. This
equation leads to the expression:

TL =
�

300 k� × I
2
DC

25 nW γ + T
2
0

�1/2

, γ = r�,1r�,2
4r�,1 + 18r�,2

(9.8)
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9.2.2 Data Fit
We can now embed this calculation into the formula describing the excess

noise dependence on the drain-source voltage and try to fit our data using the new
relation. At constant temperature the former reads

S
e
II(Vds) = 2eR

−1
d FVds coth

�
eVds
2kBT

�

− 4R
−1
d FkBT (9.9)

Besides, since TL can be very different from TR = T0, we take the electron tem-
perature in the constriction Tc to use with (9.9) given by Tc = TL+TR

2 , that finally
yields, when latter depends on the drain-source voltage Vds:

S
e
II =2eR

−1
d FVds coth

�
eVds

2kBTc(Vds)

�

+ 4R
−1
d (1 − F) kBTc(Vds) + 4R

−1
d kBT0

(9.10)

We thus perform the numerical fit of all curves using (9.10), having the Fano
factor F, stage temperature T0 and γ as free parameters. Choosing the parameter
γ � 10 � we succeed to fit the excess noise curves (see fig. 9.4), with the stage
temperature T0, ranging mostly between 4.8 and 5.5 K as shown in fig. 9.5.a (blue
triangles), i.e. only slightly above 4.2 K, what can be attributed to the external
sources of heat as, for instance, already discussed cryogenic amplifiers dissipation.
The dependence of the electron temperature in the constriction on the bias DC
current IDC estimated at VG = 55 V is displayed in fig. 9.5.b. By the way, note that
the temperature near the contact, at which the dissipation takes place, may be
very high, the thermal noise of the contact will have only minor contribution to the
noise we measure, that would not hold in case of a simple two-point measurement.
This demonstrates once again the advantage of our method.

Besides, note from (9.8), that the temperature Tc at high drain-source voltages
will be proportional to Vds and its variation with the latter quantity will contribute
to the increase of the noise power in addition to the shot noise component. As a
consequence, the Fano factor extracted from the fit with (9.10) will be lower than
the apparent one, obtained simply from the slope of the linear part of the noise
curve.

The value of the parameter γ (if we hold to our assumption r�,2/r�,1 � 3)
corresponds to r�,1 ≈ 200 � and r�,2 ≈ 600 �, which is about factor of 3 − 6 lower
as compared to what we could estimate from our measurements of the device
resistance. Recall yet, that our model was intentionally greatly simplified to allow
for a simple analytical solution. For that reason, it may eventually underestimate
the sheet resistances r�,1 and r�,2, that give rise for the variation of Tc, shown on
fig. 9.5.b. In addition, another possible mechanism of the heat transfer was not
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Figure 9.4: Excess current noise S
e
II through the constriction for different gate

voltages (red circles, their size exceeds the standard error) as a function of the
drain-source voltage and the three-parameters best fit (green solid curve).
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Figure 9.5: (a) T0, estimate of the temperature of the stage to which the device
is thermalized as a function of the gate voltage. Green squares: estimated from
the Johnson-Nyquist and the shot noise crossover, without taking the heating
into account. Blue triangles: extracted from the excess noise fit, that includes the
heating. (b) Electron temperature in the constriction Tc at VG = 55V as a function
of the DC bias current IDC.

considered so far: the cooling by phonon emission, that we discuss in the next
section.

9.2.3 Cooling by Phonon Emission
At low temperature, only the coupling to longitudinal acoustic phonons is rele-

vant. We also assume that the energy transfer between the lattice and the substrate
is much stronger than the electron-phonon energy exchange rate, so that the lat-
tice is at the temperature of the substrate and hence of the stage: Tp = T0. As
a consequence, the heat flux is out of plane and is proportional to the effective
surface. Per unit area, it is typically given by the relation

Q̇ep = Σep
�
T

δ
e − T

δ
p

�
(9.11)

The parameter δ was predicted to equal to 4 in the clean graphene[90, 156] or, what
is equivalent, at temperatures well above the disorder temperatures Tdis = h

kB
s
le

[28],
with s = 2 × 104 m s−1 the sound velocity and le the electronic mean free path.
Below the disorder temperature and in the assumption of weak screening δ is
reduced to 3[28]. The quantity Σep is the electron-phonon coupling constant, which
within two latter hypothesis reads[28]

Σep = 2ζ(3)
π2

εF

v3
FρM

D
2
k

3
B

�4les2 (9.12)
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where ρM ≈ 7.26 × 10−7 kg m−2 is the graphene mass per unit area and D is the
deformation potential. There still a debate about the magnitude of the deformation
potential and values between 10 and 30 eV can be found in the literature (see Refs.
[71, 28] and the references therein). Besides, this prediction (including δ = 3) was
experimentally confirmed by Fong et al., that studied different mechanisms of the
heat transfer in disordered graphene using the Johnson-Nyquist thermometry.

The local electron temperature now obeys the equation (written here for a
constant sheet resistance r�):

−
∂

∂x

�
L

r�
Te

∂Te
∂x

�

+ Σep
�
T

3
e − T

3
0

�
= 0 (9.13)

The relation (9.13) does not allow for a simple analytical result in the case of
our system, but we can still estimate the effectiveness of the cooling due to the
electron-phonon coupling mechanism. For instance, let us consider the charac-
teristic distance λ, above which the electron temperature starts to approach the
lattice temperature T0. In our system the dissipated power is important and it is
reasonable to assume Te � T0. Then, λ can be found by taking an approximate
solution of (9.13), with the term T

3
0 neglected, of the form

Te(x) = Tm
1

�
1 + x/λ

�2 (9.14)

Tm being the temperature of the hottest point. This yields

λ =
�

L

r�

10
Σep

�1/2

T
−1/2
m (9.15)

At low DC currents another regime is established, when Te − T0 � T0. The
electron temperature decreases exponentially in that case, while the characteristic
length reads

λ̃ =
�

L

3r�

1
Σep

�1/2

T
−1/2
0 (9.16)

Now note that when this length becomes of the order of the distance between
the hottest point of the sample and the cold metallic contacts, the transition
from electron diffusion (Wiedemann-Franz) dominated to electron-phonon cou-
pling dominated regimes is observed: in that situation the electrons start to be
more efficiently thermalized by exchanging their energy with the phonons than by
diffusing until the metallic contacts. Fong et al. indeed observed a cross-over be-
tween two regimes of the heat transfer, when measuring the thermal conductance
with varied temperature.
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We express the thermal length λ taking an intermediate value of the deforma-
tion potential D � 20 eV, by the way close to the value considered by Hwang and
Das Sarma in their calculation and also to what was estimated experimentally by
Fong et al. for their device D1 (which has similar characteristics as our device).
We start by writing the coupling parameter in the following form

Σep � 0.09 W m−2 K−3
√

ns[1012cm−2]�
le

40 nm

� (9.17)

where ns[1012cm−2] is the carrier density in the units of 1012cm−2. Above expression
together with Lorentz number value L � 2.44 × 10−8 W � K−2 lead to

λ �
1645 µm�1/2K1/2

√
r�

1
T

1/2
e

�
le

40 nm
1

(ns[1012cm−2])1/4 (9.18)

Let us evaluate λ in our system, when the current IDC injected into the device
equals to 1 µA, which is the near-maximum current we applied in this experiment2.
We first estimate the electron temperature at the hottest point of the device (we
take r�,2/r�,1 � 3 with r�,1 � 1.5 k�, T0 � 5 K):

Tm =
�

300 nW
25 nW

9r�,1r�,2
2r�,1 + 18r�,2

+ T
2
0

�1/2

=
�
12 · 750 � + (5 K)2

�1/2
� 100 K

(9.19)

and then, using 1 × 1012 cm−1 as the order of magnitude for the carrier density,
40 nm as a typical mean free path and assuming the average sheet resistance to be
∼ 3 k��, we get at Tm � 100 K

λ ≈ 3 µm (9.20)
and at T0 � 5 K

λ̃ ≈ 2.5 µm (9.21)
which are both actually comparable to the distance between the hottest point and
the constriction.

This result proves the importance of the electron-phonon coupling mechanism
in the heat transfer in our system. Indeed, as one can see, in that case the char-
acteristic thermal length λ starts to approach the distance between the hottest
point and the constriction, while the electron temperature near constriction starts
to approach the lattice (and thus the stage) temperature. In the previous section
we found the variation of the electron temperature in the constriction Tc, that

2The maximum applied current equals to 1.2 µA.
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allowed us to fit our noise curves with (9.10) yielding a reasonable temperatures of
the stage. Assuming only the Wiedemann-Franz mechanism of heat transfer such
variation of Tc leads to the sheet resistances of the graphene much lower, than
what we estimate from the conductance measurement (see discussion at the end of
subsec. 9.2.2). It is clear from above, that if the electron-phonon exchange mech-
anism is included into the heat balance equation, this variation of Tc will result in
the sheet resistances of higher value, probably much closer to our estimations.

9.3 Noise Power Fluctuations
In this section we draw reader’s attention to the apparent fluctuations of

the measured noise power around mean value, represented by the fit curves (see
fig. 9.4). The noise power fluctuations in disordered systems is something known
and these are of the same origin as the Universal Conductance Fluctuations. In a
disordered conductor the electronic waves interferences, that obviously depend on
the injected particles energy, impact the corresponding transmission coefficients.
This is reflected in the reproducible fluctuations of the conductance (already men-
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Figure 9.6: Study of noise power fluctuations at three gate voltage values, accord-
ing to the relation (9.23). The theoretical value corresponds to 1 in the graph,
α =
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2835 .

tioned in Chapter 6), but also in the fluctuations of another transmission coeffi-
cients dependent quantity, the Fano factor. The former fluctuations are produced
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(approximately) by the opening or closing of an additional electronic channel over
the total N channels, yielding the magnitudes of the order of conductance quan-
tum. In return, the impact of this process on the Fano factor is less straight-
forward.

The phenomenon of the noise power fluctuations in conventional diffusive con-
ductors was studied theoretically by de Jong and Beenakker within the framework
of the random-matrix theory. They obtain (for the conductors that however must
be much longer than wide) the root-mean-square fluctuations of the noise power
given by[38]:

r.m.s. δSII = 2e|Vds|
2e

2

h

�
46

2835 (9.22)

Just as it is for the UCF, the magnitude of these fluctuations is independent of
the conductor size, particular disorder configuration or number of channels and
by analogy with the formers may be called “universal noise fluctuations”[38]. Note
that in the case of graphene, in addition to the spin degeneracy related 2 pre-factor,
the same pre-factor accounting for the valley degeneracy has to be added.

We are not aware of any theoretical or experimental work reported on this
subject in graphene. Nevertheless, we are going to verify whether this prediction
can be confirmed by our data. It is clear that for the graphene

r.m.s. dδSII

dVds
= 8e

3

h

�
46

2835 (9.23)

In fig. 9.6 this quantity is plotted in units of 8e3

h

�
46

2835 for three values of gate
voltages (for a given gate voltage the root-mean-square value was calculated over
all points of the noise curve laying out of thermal noise domination region and then
plotted against a fixed Vds range for clearness, the theoretical value being equal to
1 in these units). As one can notice, the results obtained at VG = 40 and 67.5 V
show very similar values, and moreover are approaching the theoretical value, in
the opposite to what is observed at VG = 50 V, closer to the Dirac point, where the
electron-hole “puddles” are formed. It is thus obvious that the relation (9.23) is
not completely confirmed by our data and a deeper theoretical and experimental
investigation of this phenomena is required. The reasons, why the result by de Jong
and Beenakker does not seem to completely hold in graphene, might be for instance
the effects related to the pseudo-relativistic nature of the quasi-particles in this
material or to the already mentioned electron-hole “puddles”, but other reasons are
also possible (without mentioning that the graphene conductor we study is large
and short, while the above result was obtained for long and narrow conductors).
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9.4 Results and Discussion
The resulting dependence of the Fano factor on the gate voltage, that we found

in subsec. 9.2.2, is depicted in fig. 9.7. Markedly, the Fano factor varies only
slightly with the gate voltage, remaining near value ≈ 0.25 and the behaviour
predicted by Tworzydlo et al. and shown in fig. 3.2 is not seen on this graph.
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Figure 9.7: Fano Factor as a function of gate voltage extracted from the three-
parameter fit of the experimental data with (9.10), horizontal dashed line corre-
sponds to the value 1/3. The Dirac point is estimated to lay between 58 and
61 V.

Such inconsistency with the evanescent modes model is although not so surpris-
ing, since these predictions were obtained for an ideal, ballistic graphene ribbon,
while our sample, as it was established in Chapter 7, has a significant level of disor-
der and the electron transport in it is believed to be diffusive. To settle the doubt,
see that VG � 30 V on our graph corresponds to carrier density ns � 7 × 1011 cm−2,
which on its turn corresponds to energies of about 97 meV. In the units of fig. 3.2
and for W = 800 nm this gives � 120 which is greatly far away from the region in
this figure, where the variation of the Fano factor is weak (±5 units).

As a consequence, we will compare our data with other experimental results
by Danneau et al. (in particular with their Sample E, presumably diffusive, see
fig. 3.8.f on page 56) and by DiCarlo et al., rather than with the conclusions of
Tworzydlo et al. Furthermore, several theoretical and numerical studies were done
on the subject of current fluctuations and Fano factor in disordered graphene. We
will see the conclusions of these works as well.
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Let us have a look once again on our data. On the holes part of the curve the
Fano factor is quasi-constant down to VG � 40 V, after what it starts to diminish.
On the electrons part, in return, the fluctuations are significant and the Fano
factor seems to diminish already for the gate voltages above � 65 V. However,
because of the fluctuations, it is quite difficult to see, when the mean value of the
Fano factor starts to decrease. Finally, near the Dirac point (VG � 58 V), the Fano
factor reaches its maximum ≈ 0.32, showing a pretty pronounced peak to which
one should equally draw attention.

Now, if we make a comparison with the results by Danneau et al. discussed in
Chapter 3, our data obviously disagree with what is represented in fig. 3.8.b (see
page 56), which is however expected, since this graph displays the behaviour of a
ballistic sample. On the other hand, fig. 3.8.f of the page 56 shows the behaviour
of a diffusive sample so such comparison is absolutely pertinent. Our data indeed
agree in several aspects with the above-mentioned result. Even though, the Fano
factor behaviour, observed in this work is more stable, i.e. no fluctuations can
be noticed, apart from that the two graphs are qualitatively similar: the Fano
factor is constant over a large plateau, and decreases outside of it. Moreover, the
Fano factor in fig. 3.8.f seems to reach its maximum near the Dirac point, as it
is the case for our data, although the variation is smooth without a pronounced
peak. The values measured by Danneau et al. are however lower, ≈ 0.19 − 0.2
as compared to ≈ 0.24 − 0.25 that we found, and the Fano factor decrease they
observe is also sharper.

Besides, it would be interesting to check, if our data remains constant within
the same limits as the one in fig. 3.8.f. However, without knowing the corre-
sponding carrier densities (or alternatively back-gate capacitance of the Sample
E), it is difficult to estimate the extent of the plateau. Considering the plateau to
persist up to VD ± 10 V and taking the values of capacitance, mentioned for the
Sample A (Cgate ∼ 12 aF µm−2 and 115 aF µm−2, depending on hypothesis3) we ob-
tain corresponding carrier density � ±0.85 × 1011 cm−2 and � ±7.2 × 1011 cm−2

respectively for the two mentioned values, while in our case VG = 40 V corresponds
to ns � 5 × 1011 cm−2. Hence, if we believe the second hypothesis, the two results
agree. Good agreement with the results of this study is an encouraging sign.

The results reported by DiCarlo et al. on their turn differ from our data in
some details. In particular, they found rather constant behaviour of the Fano
factor around ≈ 0.35, 45% higher, than what we measured, which in addition
seems more stable, with weaker fluctuations. On the other hand, at least in
fig. 3.6.b ( Chapter 3, page 54), one distinguishes a peak near the Dirac point,

3The first value was obtained as a free parameter in the fit by the theoretical predictions of
the data for Sample A, while the second value was obtained from the two infinite plane capacitor
model.
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[132] San-Jose et al. (2007)

Figure 9.8: Top figures: sketches of two types of disorder realisations considered
in the work by San-Jose et al.: one-dimensional disorder (a) and two-dimensional
disorder, i.e. charge puddles (b). Under each sketch the result of corresponding
simulation of the Fano factor dependence on the graphene sheet length to typical
size of charge puddles ratio. The Fano factor saturates to the system independent
values in both cases: F1D = 0.243 and F2D = 0.295, for large system sizes. From
[132].

while in fig. 3.6.d the fluctuations look more important on the electrons side
than on the holes side, as it is also the case for our data. Finally, the result for
Sample D ( fig. 3.6.f), presumably multi-layer, has to be discussed. The Fano
factor, measured at Te = 1.1 K in this sample certainly approaches the values we
also observed (maximum ≈ 0.27) and in addition varies with the gate voltage.
Yet, this variation is much slower (remember that the back-gate in this sample is
almost three times more efficient than the side-gates of our device). It is hence
hard to speak about agreement between two results.

Such disparity between our data and the conclusions of the work by DiCarlo
et al. can be attributed to the difference in the degree of disorder of the samples
used in two experiments. This is confirmed by the numerical results, as it will
be explained in what follows. In return, the mean free path, reported in [42] is
≈ 40 nm, very close to what we could estimate, suggesting a similar degree of
disorder.

In the following we present a brief review of theoretical and numerical works
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[96] Lewenkopf et al. (2008)

Figure 9.9: Results of the work by Lewenkopf et al. Average Fano factor as
a function of carrier density for several disorder strengths and ξ = 2a0. The
number of realizations ranges from 100 to 5000. (a) Square sheets (W/L = 1)
with L/ξ = 40. (b) Rectangular sheets (W/L = 3.1) with L/ξ = 26. The dashed
lines represent F=1/3. From [96].

investigating the current fluctuations in diffusive graphene and compare the con-
clusions of these works with our results. The first study by San-Jose et al. examines
current fluctuation in disordered graphene within the transfer matrix formalism.
Considering a smooth puddle disorder of two types — one-dimensional and two-
dimensional (see fig. 9.8) — they conclude that in both cases, when the char-
acteristic system length L becomes much greater, than the range of the disorder
potential ξ (typical size of charge puddles) the Fano factor saturates to the uni-
versal value, but different for two cases: F1D = 0.243, while F2D = 0.295. The
dependence of the Fano factor on system length is shown in fig. 9.8 for the both
cases. Note, that the average value of the Fano factor we observe is very close to
F1D, yet the case of 2D disorder seems more realistic. Different type of disorder
could also explain the disparity between our results and the results of DiCarlo
et al.

Another work by Lewenkopf et al. used the recursive Green’s function method
for studying transport properties of a graphene sample having a long-range dis-
order. In this work was introduced a special dimensionless parameter K0, char-
acterizing the disorder strength. This parameter is defined as a pre-factor of the
impurity potential correlation function and from the quantitative point of view
expresses the magnitude of the disorder fluctuations. In addition, within Born
approximation, this parameter can be related to le, the mean free path far from
the Dirac point, according to

le = 2λF/(πK0) (9.24)
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with λF — Fermi wavelength. Considering the values of le obtained in subsec. 7.1.3
of the previous chapter, see in particular fig. 7.5.b, we estimate that in our case
this parameter ranges from 0.5 to 1. The results of the simulations can be seen in
fig. 9.9. First point to note is that the values of Fano factor obtained in this work
are situated around 0.25 − 0.29 for the same values of the disorder parameter K0.
What is more remarkable is that the simulations of Lewenkopf et al. predict the
appearance of a peak at the neutrality point in the case of a moderate disorder,
that we also observe.

The last work we discuss was accomplished by Logoteta et al. The authors
investigate the dependence of Fano factor on the energy of injected electrons by
the means of envelope function approach and Fourier-based method used to solve
numerically the Dirac equation[103]. The simulations are done for two impurities
concentrations nimp = 5 × 1011 cm−2 and 5 × 1013 cm−2 (this same quantity in our
system is � 1.35 × 1012 cm−2) and for various disorder amplitude ranges δ (see [99]
for more details). Three aspect ratios of the graphene sheet were studied. Some
results the authors obtained are presented in fig. 9.10. Note by the way, that the
energy range considered in these simulations almost coincides with the one in our
experiment.

For the aspect ratio and impurity concentration, relevant for our study (W =
200 nm, L = 40 nm and nimp = 5 × 1011 cm−2, see blue solid curve in fig. 9.10.a)
Fano factor exhibits the values, oscillating around 0.25 with a rather prominent
peak at the Dirac point, reaching 0.35 value, which is consistent with our data (the
asymmetry of the theoretical curve with respect to zero energy is due to the use
in the simulations of non-infinite potential energy in the contacts, compare refs.
[148] and [99] for this detail). In addition, for the positive energies the oscillations
are rapidly damped (it is however not very clear, whether this is not due to the
same reasons as the global asymmetry of the curve). Whether or not the Fano
factor manifests a decrease far from the Dirac point is also less apparent. Yet, it is
difficult, to know if the disorder amplitude ranges δ used in these simulations are
appropriate in the case of our system. Besides, the simulations for other aspect
ratios (the same figure, graphs (b) to (d) ) show higher values of the Fano factor
(0.3−0.4), than what we measured, but on the other hand, especially in fig. 9.10.c,
a peak at zero energy is clearly seen as well as the strong fluctuations at positive
energies. As a consequence, an important point is that this study also confirms
the appearance of a peak at the neutrality point, that we observe.

In summary, our results confirm to some extent the existing theories for current
fluctuations in the diffusive graphene as well as the experimental result by Danneau
et al. for their diffusive sample and also indirectly the one by DiCarlo et al. On the
other hand, they are not able to confirm or refute the results by Tworzydlo et al.
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just as it is for the results by Danneau et al. for their ballistic samples, because
they were obtained for a different transport regime. Finally, the remarkable peak
in the Fano factor at the Dirac point observed in the numerical simulations and in
our data would deserve further investigation both theoretically and experimentally.
Its elucidation would certainly provide an important insight in the nature of the
transport through “puddles” region near the Dirac point.
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[99] Logoteta et al. (2013)

Figure 9.10: Fano factor in graphene as a function of the injection energy, de-
termined by Logoteta et al. (a) Simulations for a ribbon with W = 200 nm and
L = 40 nm in the absence of potential disorder (red dotted curve), or in the pres-
ence of disorder with nimp = 5 × 1011 cm−2 and an amplitude range δ = 0.2 eV (blue
solid curve), or with nimp = 5 × 1013 cm−2 and an amplitude range δ = 0.02 eV
(green dashed curve), the horizontal dotted line correspond to the value 1/3.
(b) Simulations for a rectangular sheet with W = 200 nm and L = 600 nm,
nimp = 5 × 1011 cm−2 and with δ equal to 0.5 eV. (c) and (d) Simulations for
a square sheet with W = 200 nm and L = 200 nm, nimp = 5 × 1011 cm−2 and with
δ equal to 0.16 eV and 0.5 eV respectively. From [99].



Conclusion

This thesis investigates transport properties of mono-layer graphene samples,
namely conductance ( Chapter 7) and quantum shot noise ( Chapter 9), which is
actually the main purpose of this study. Conductance in the in-plane magnetic
field is also studied ( Chapter 8).

The starting point, that initially motivated this work, were the evanescence
wave theory proposed by Tworzydlo et al. together with two experimental works
by DiCarlo et al. and Danneau et al., attempted to verify this theory, since the
conclusions of the two latter studies suggested, that a further investigation of this
question is required.

In our experiment we intended to improve the experimental conditions of the
noise measurement, by applying several techniques, that we describe in Chapter 4.
In particular, we use four-point voltage measurement and cross-correlation method,
that allow to significantly reduce the contributions of the measurement system
to the detected signal. In addition, home-made cryogenic low-noise amplifiers
together with band-pass filters were used in this experiment to further improve
the experimental conditions.

Following our intentions, a specific graphene-based experimental device, meet-
ing the principles of our measurement approach, was conceived and fabricated.
The major originality of this device is the constriction in the center of graphene
layer as well as the use of side-gates instead of back-gate, both elements dictated
by the ideology of our measurement approach. Device architecture presentation
can be found in the section 4.2 of Chapter 4, while its fabrication is described
in Chapter 5. Also, the experimental setup was built-up and then the measure-
ment system was thoroughly tuned and calibrated, which however, appeared to be
rather difficult.

All these points made the experiment preparation very challenging and time-
consuming. As a result, some experiments were left for future research. Never-
theless, quite extensive study of the conductance properties of our sample were
carried our at near DC and high frequency (≈ 3 MHz) in order to well characterize
them. In particular, it was shown that transport regime in our sample is diffusive
and not ballistic as required. The investigation of noise in this regime is however
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not without interest and, as far as we know, no experimental works in this regard
except the already mentioned[42, 35] were reported. We thus continued working on
this sample and performed noise measurements in order to investigate the Fano
factor behaviour as a function of the particles energy.

Although our results answer the initial question only partially, since the ballistic
regime was not reached in the present experiment, they are nevertheless of great
interest by themselves: they are consistent with the conclusions of Danneau et al.
and DiCarlo et al., and moreover shows a good agreement with the theoretical
calculations of Fano factor in diffusive graphene. In particular, the peak at Dirac
point, predicted by Lewenkopf et al., was observed and merits further investigation.
Besides, our data of conductance measurement is also confirmed by the previous
results reported in literature.

In addition to that, we demonstrated the importance of the Joule heating in
our device. We argued, that the reason for that is dissipation in one of the contacts
and evoked different mechanisms of heat transfer in graphene.

Finally, our results proved the advantage of our approach and the conformity of
our noise measurement systems to the requirements of the experiment. The prin-
cipal direction for further development of this project is the improvement of the
samples quality first by means of a special very careful annealing and especially by
suspending the central part of the graphene layer, containing the constriction. Im-
provement of amplifiers calibration procedure is also desirable. Also, investigation
of noise in Quantum Hall Regime is very attractive kind of experiment.



Appendices

171





Appendix A

Device Fabrication

A.1 Recipes

A.2 Introduction to Raman scattering
The full description of the Raman scattering process requires a quantum-

mechanical treatment. Yet a classical interpretation can also be helpful as it
provides a physical intuition for this complex phenomena.

The electric field will polarize the atoms of the matter that will result in a
microscopic dipole moments µ which depend on the matter’s polarizability α:

µ(t) = α(t)E(t) (A.1)

where E(t) is time varying electromagnetic field. In the case of an isotropic medium
and if we consider the nucleus frozen, α is just a constant. Thus, an incident
electromagnetic wave of angular velocity ωi will induce dipoles, oscillating at the
same angular velocity and re-emitting an electromagnetic wave of this angular
velocity in an arbitrary direction. This leads to an elastic scattering process,
commonly referred as Rayleigh scattering.

If instead we take into account the nucleus vibration, the polarizability can
not be considered as a time-independent constant any more because it varies with
a bond length. Indeed, electrons experience a stronger interaction when tightly
surrounded by short-bond nucleus and hence are less perturbed by the electromag-
netic field. On the other hand if bonds are long electrons are more easily displaced
by the electromagnetic field. Note that the heavy nucleus will not respond to the
rapidly changing electromagnetic field.

Given these facts and assuming the motion of nucleus to be that of a classical
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[54] Ferrari and Basko (2013)

Figure A.1: Rayleigh and Raman scattering in resonant and non resonant condi-
tions. From [54].

harmonic oscillator, we can write:

Q(t) = Q0

�
e

ıωnt+ıφ + c.c.

�
(A.2)

for the coordinate Q of the nucleus oscillating with angular velocity ωn.
Furthermore, in the presence of nuclear modes, the electronic polarizability α

can be expressed in terms of the nuclear coordinate Q, and expanded in a Taylor
series as follows:

α(t) = α0 +
�

δα

δQ

�������
t=0

Q(t) + . . . (A.3)

With the incident electromagnetic wave of angular velocity ωi written as E(t) =
Ae

−ıωit + c.c., the dipole moment is found as:

µ(t) = α0Ae
−ıωit + A

�
δα

δQ

�������
t=0

Q0

�
e

−ı(ωi−ωn)t+ıφ + e
−ı(ωi+ωn)t−ıφ

�
+ c.c. (A.4)

Thence, according to this result the dipole moment will oscillate at several
frequencies. The first term on the right-hand side describes the above mentioned
elastic Rayleigh scattering, whereas the last term expresses inelastic Raman scat-
tering which as we see shifts the re-emitted radiation frequency to ωi + ωn and
ωi − ωn, called Stokes and anti-Stokes, contributions respectively.

The detailed quantum-mechanical description of this phenomena exploit the
perturbation theory and is beyond the scope of this work. In a nutshell, the
perturbation induced by the photon of energy �ωi increases the energy of the
system by the same amount. The new energy level does not necessarily correspond
to a stationary state of the system, that is then said to be in a virtual state with
a considerably short lifetime. As a result, the system rapidly returns to a new
stationary state emitting a photon of different energy �ωs, while the remaining
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energy goes to create (annihilate) one or several vibrational excitations of the
system.

The process accompanied by an increase of total energy of the system is referred
as Stokes transition, whereas the process of an opposite outcome is referred as
anti-Stokes one, additionally the number of created or annihilated phonons gives
the order of transition. In thermodynamic equilibrium at low and intermediate
temperatures the exited vibrational states are less populated (∼0.7%) than the
ground state, so the transition from exited to ground state (anti-Stokes) is of much
weaker probability than the opposite Stokes transition. Besides Raman scattering
is said to be non-resonant if the system is excited by the incident photon to a
virtual (non-stationary state), otherwise it is called resonant.

A.3 Common Nano-fabrication Techniques
In this section conventional micro- and nano-fabrication processes, used in this

work are presented.

A.3.1 Microlithography Principle
Lithography is a technique used in micro- and nano-fabrication for transferring

patterns onto substrate. Patterns are first transferred to polymer film, commonly
referred as resist, that will play a role of a mask in the following step, during
which the desired process is performed (thin film deposition, chemical or plasma
etching, ion implantation etc.) and finally the polymer film as well as eventual
excess materials are removed.

Resist is a material, that is sensitive to light of certain wavelength interval or
to electron beam, i.e. when exposed to it the resist becomes soluble in a special
solution called developer (in analogy with photographic developer, the procedure is
hence called development) and is removed, whereas unexposed portion of the resist
remains insoluble. In this case the resist is called positive. If on the contrary, it is
the unexposed portion that is removed by developer and the exposed one remains
on the substrate, the resist is called negative.

In order, the wafer surface is first cleaned and dehydrated. Next, it is coated
with the resist by high speed rotation of the wafer with a small amount of liquid
resist, spread over its surface by centrifugal force (spin-coating process) and baked
to evaporate the resist solvent. The desired pattern is then exposed on the resist
and the resist is developed. As a result one obtains a mask that covers the wafer
surface and will protect it during the following process. For instance, during
etching such a mask will protect underlying film from etchant action, so only the
desired pattern will be removed from substrate surface. Just as during a thin film
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deposition the mask will protect the substrate from the film sticking on its surface
separating it from the film so that the resist removal will also result in removal of
the film on its top (a process called lift-off ) and only the desired pattern of thin
film will remain on the substrate. Of cause, the resist mask must be much thicker
than the thin film for a correct result. The resist is usually removed at the end
rather easily in a solvent.

A.3.2 Optical and E-Beam lithography
Optical or UV (ultraviolet) lithography as well as electron beam (e-beam)

lithography were both used in present work for samples fabrication.
UV lithography is widely used in laboratories and for industrial processes. This

is a stencil technique, it consist of illuminating the UV-sensible resist through an
optical mask that corresponds to a desired pattern. The resolution of the UV
lithography (in terms of the minimum feature size) is limited by the wavelength of
the used light as well as by the process-related factors and is typically under 1 µm,
the most advanced tools claiming minimum feature size down to 50 nm. Exposure
systems also allow to align the mask with the wafer to precisely place the pattern.
The advantage of this technique is its throughput and relative ease of operation,
it is extremely handy for transferring the same pattern several times. However its
minimal resolution and alignment precision can be a limitation in certain cases and
it is absolutely not suitable if one needs to modify the pattern from one exposure
to another, for a new mask has to be manufactured each time.

E-beam lithography allows a much lower resolution than optical one and has
a higher alignment precision. Moreover it does not require any physical mask and
is hence suitable for tasks with often pattern modification. Yet its throughput
is very low as compared to optical lithography, that also makes it vulnerable to
beam drift or instabilities during wide area exposures which usually take a long
time. The electron beam is produced by field electron emission from a heated
filament and focused on sample by several magnetic and electrostatic lenses, while
the stage, controlled by a special software, is displacing the sample to produce a
desired pattern. Even though the beam width of such a system is mostly limited by
the electron optics abilities, the pattern resolution is limited by incident electrons
scattering in the resist, that will enlarge the effect of the beam on the resist,
whereas the minimal distance between two features is limited by so called proximity
effect. This effect is due to the secondary electrons created by inelastic scattering
of the incident electrons. Secondary electrons can propagate far from the irradiated
area in any direction, thus the effect of secondary electrons from two neighbouring
areas can be sufficient to affect the resist separating them. This effect can be
important depending on resists and on incident electrons energy on the distances
between 30 nm and 100 nm. So one should beware of this effect while designing
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dense patterns.

A.3.3 Thin Films Deposition
In present work only metallic thin films deposition was required and Physical

Vapour Deposition (PVD) technique was used for this purpose. The principle of
this technique, which involves purely physical processes, is that the source ma-
terial (target) is evaporated at high temperature and in high vacuum conditions
and subsequently condensed on the desired surface. Various methods are possible
for transforming the target material into the gaseous phase, including laser pulse
(ablation) or plasma discharge (sputtering). In our case Joule heating and electron
beam methods were used. In the former case, the target is heated by passing a high
current through a resistive crucible, in which it is contained, whereas in the latter
the target material is heated by electron bombardment, that allows deposition at
very low (as low as 1 nm/min) and much better controlled deposition rates.

Besides, not all materials stick enough well to the substrate surface, so in order
to reinforce the adhesion an intermediate thin layer is used. For instance, for gold
deposition on Si\SiO2 substrate titanium or chromium adhesion layer is commonly
used.
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Appendix B

Measurement System

B.1 Cryogenic Inset
In our experiment, the device, as well as a part of the measurement system

are situated inside the Variable Temperature Inset, placed in He4 bath, provided
thanks to Oxford dewar, which is also equipped by a magnet allowing to obtain
magnetic fields up to � 7.5 T. Inside the inset vacuum can be attained or exchange
gas (He4) can be used to accelerate the thermal exchange with the bath while
cooling or with the room atmosphere, while returning to the room temperature.
In addition, the inset has a 1 K pot that can cool the device down to ≈ 1.5 K (not
used in this work). Another important elements of the inset are:

• 4 K thermalization board, thanks to which most of the cryogenic coaxial
cables (manufacturer Lakeshore) are thermalized. The cryogenic amplifiers
outputs are connected to the room temperature through the stainless sill
rigid coaxial cables.

• Separate thermalization board on which the amplifiers are placed

• Low temperature stage, connected directly to the 1 K pot, on which the
sample holder with the device is placed.

• Two thermometers (Cernox resistors, temperature range: from 1.4 K to
420 K.

B.2 Data Acquisition Module
The data acquisition module is based on two channels Spectrum M2i.3011-

exp analog-to-digital conversion board and allows to perform the phase sensitive
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Figure
B.1:
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Table B.1: Technical characteristics of the Spectrum M2i.3011-exp board.

Resolution 12 bit
Number of Channels 2

Maximum Sampling Rate 40 MSamples/s
Input impedance 50 �/1 M� 1

On-board Memory 1024 Mbytes
Min/Max Input Ranges ±0.1 V/ ± 1 V

detection (with an external AC source) as well as the noise power spectral density
measurement (auto- and crosscorrelation). The main technical characteristics of
the board are given on table B.1.

The graphic user interface, realized in the LabView environment, allows to
configure the acquisition parameters, such as the number of operating channels,
sampling rate, number of samples per block, input range or impedance. All other
instruments, used in the experiment, are also controlled through this interface.
The board configuration, data acquisition and transfer to the PC memory are all
done by the external DLL2. For the noise power spectral density measurement
this DLL was specially modified and the auto-/crosscorrelation calculation based
on the FFTW package as well as the running spectra averaging were added to
optimize the measurement speed.

Phase Sensistive Detection with the A/D Board. Excitation signal is gen-
erated by an external source and is detected by the A/D board directly at the
source output (reference signal). Simultaneously, the response of the circuit con-
taining the sample to the excitation driven through it is detected by the remaining
channel of the A/D board (response signal).

We note reference signal as VR cos(ωt) (zero phase is thus defined), response
signals as VM cos(ωt + δφ), δφ being the phase shift, introduced by the circuit. In
addition, the response signal is eventually accompanied by the noise δV (often
much stronger than the former).

1Can be selected via the software
2Dynamic Link Library
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Following time averages are calculated:

A0 =
��

VR cos(ωt)
�2�

= V
2

R

2
�
1 + cos(ωt)

�
(B.1)

A1 =
�
VR cos(ωt) ×

�
VM cos(ωt + δφ) + δV

��

=VRVM

2
��

cos δφ + cos(2ωt + δφ)
��

+
�
VR cos(ωt)δV

� (B.2)

A2 =
�

VR cos(ωt + π

2 ) ×
�
VM cos(ωt + δφ) + δV

��

=VRVM

2
��

sin δφ + sin(2ωt + δφ)
��

+
�
VR sin(ωt)δV

� (B.3)

(π
2 phase shift is done numerically). It is clear that the oscillating terms as well

as the noise terms average out and only constant terms remain. From A0 the
reference signal amplitude can be found (or confirmed), while two other averages
yield

δφ = arctan
�

A2
A1

�

(B.4)

that also allows to determine VM from above relations.

Noise Spectral Density Calculation. The measured fluctuations δV0 and δV1
are detected by the two channels of the A/D board and are sampled by it at the
sampling rate fs into two blocks of N samples each. The FFT of each block δṼ0
and δṼ1 is computed using the FFTW package. The autocorrelation of each signal
is then calculated as

S00 = 2|δṼ0|
2
/(Nfs) and S11 = 2|δṼ1|

2
/(Nfs) (B.5)

as well as the crosscorrelation (which eventually can contain also a non-zero imag-
inary part):

S01 = 2(δṼ
∗

0 δṼ1)/(Nfs) (B.6)
The data blocks are thus processed one after another and the running average

of S00, S11 and S01 are calculated until the required precision is reached.

B.3 RLC-Filter Pass-Band Calculation
Let us fist examine the problem of the inductor series resistance. Despite the

skin effect this resistance is usually still very weak even at high frequencies of the
order of several tens of ohms. Consider two circuits presented on fig. B.2. Our
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goal is to find the value of R at which the impedances of both circuits are equal.
We write

RıωL

RıωL
= ıωL + r (B.7)

We equalize the real and the imaginary parts separately

r = Rω
2
L

2

R2 + ω2L2 ,
R

2

R2 + ω2L2 = 1 (B.8)

The second equation can only be satisfied if R
2 � ω

2
L

2 or in other terms ω
2
L

2 �

r
2, which is indeed the case for a 22 µF inductor at 3 MHz (impedance of 200 �)

with typical series resistance r = 10 �.

Figure B.2: (a) Original series circuit (right) and equivalent parallel circuit (left) of
the same impedance for derivation of the equivalent resistance R. (b) Equivalent
circuit for RLC filter response calculation, impedance Z stands for parallel inductor
and capacitor.

In the following we calculate the response of a RLC filter, presented on ??.
First, obviously the following relations hold

VOUT

VIN
= RZ

R�(R + Z) + RZ
, Z = ıωL

1 − ω2LC
(B.9)

These relations yield

VOUT

VIN
= R

R + R�
1

1 − ı
RR�

R+R� C
�
1/(LC) − ω2�

/ω

=A
1

1 + ı(ω2 − ω
2
0)/(ωΓ)

(B.10)

with
A = R

R + R� , Γ = R + R
�

RR�C
, and ω0 = 1/

√
LC (B.11)
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if we go back to the notation used in Chapter 9. When squared, this leads to

VOUT

VIN
= A

2

1 +
�
ω2 − ω

2
0
�2

/(ωΓ)2
(B.12)

Now if the cross-correlation of two signals V
1

OUT and V
2

OUT after two filters with
different parameters ω1, Γ1 and ω2, Γ2 is calculated, we have to take (asterisk
stands for the complex conjugate):
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[17] M. Büttiker. Absence of backscattering in the quantum Hall effect in
multiprobe conductors. Physical Review B, 38(14):9375–9389, November
1988. ISSN 0163-1829. doi: 10.1103/PhysRevB.38.9375. URL http:
//link.aps.org/doi/10.1103/PhysRevB.38.9375.
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[19] M. Büttiker, Y. Imry, and R. Landauer. Josephson behavior in small normal
one-dimensional rings. Physics Letters A, 96(7):365–367, 1983. URL http:
//www.sciencedirect.com/science/article/pii/0375960183900117.
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