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Gilles BLANCHARD
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Professeur associé à l’École Polytechnique /
examinateur

Patrick PÉREZ
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culture gargantuesque des sciences numériques, et son sens du détail m’a été extrêmement
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Résumé des contributions

Cette section rédigée en français reprend la motivation initiale de la thèse et en
résume les contributions principales. Le manuscrit principal commence à la suite de ce
résumé et est rédigé en anglais.

This section written in French reviews the initial motivation of the thesis work and
summarizes the main contributions. The main part of the manuscript begins after this
summary and is written in English.

Contexte du sujet

L’augmentation du volume des bases de données soulève des problématiques importantes
d’analyse statistique. En effet, de nombreuses tâches nécessitent de pouvoir opérer des
traitements statistiques sur des données volumineuses : parmi les exemples figurent la
recherche par le contenu ou le filtrage collaboratif. Cependant, les méthodes usuelles de
traitement statistique des données sont trop gourmandes en termes de mémoire et/ou de
temps de calcul pour apporter une solution adéquate au problème. L’enjeu est donc le
développement d’algorithmes efficaces de traitement de ces données volumineuses.

Cette économie de ressources matérielles dans le traitement des données est ainsi de-
venu l’objet de beaucoup d’algorithmes et de travaux théoriques au cours des dernières
années. Elle est généralement effectuée en diminuant la taille des données tout en s’efforçant
de pouvoir extraire une bonne approximation des quantités d’intérêt pour effectuer la tâche
désirée en aval.

Parallèlement à cet engouement de la communauté statistique pour les algorithmes
traitant des données volumineuses, la communauté de traitement du signal a connu l’es-
sor d’une technique appelée échantillonnage compressé. Cette dénomination désigne à la
base un ensemble de résultats principalement théoriques sur la reconstruction d’un si-
gnal à partir d’un certain nombre de mesures linéaires. En particulier, la plupart des
résultats énoncent la possibilité théorique de reconstruire précisément toute une classe
de signaux parcimonieux à partir d’un nombre de mesures bien inférieur à la dimension
de ces signaux. De plus, cette reconstruction peut être effectuée par une minimisation
convexe implémentable algorithmiquement. À la suite de ces résultats initiaux, la théorie
s’est étoffée de nombreux théorèmes caractérisant des hypothèses sur les signaux ou des
façons d’effectuer les mesures. Différents algorithmes de reconstruction ont vu le jour,
accompagnés de bornes théoriques encadrant la précision de la reconstruction sous cer-
taines hypothèses. Cette théorie, initialement utilisée sur les vecteurs parcimonieux, s’est
également étendue à des signaux plus généraux. L’échantillonnage compressé permet ainsi
de produire une représentation réduite aisément calculable de toute une classe de signaux,
tout en étant capable de revenir au signal de départ via un algorithme.
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En parallèle, des réductions similaires de dimension tout en gardant l’“information
utile” ont été exploitées dans plusieurs outils de traitement de données à grande échelle
qui opèrent sur les données en réduisant leur taille de façon analogue à ce qui est fait
en échantillonnage compressé. Il semble ainsi que l’échantillonnage compressé ait un réel
potentiel en apprentissage. Le point de départ de la thèse est donc l’exploration de ce
potentiel, en examinant si des méthodes d’échantillonnage compressé peuvent s’appliquer
avec succès à des problèmes d’apprentissage statistique.

La thèse comprend trois contributions principales, faisant chacune l’objet d’un chapitre
du présent manuscrit.

Échantillonnage compressé pour l’estimation de densité

La première contribution est un apport immédiatement relié à la question évoquée précé-
demment : des méthodes d’échantillonnage compressé peuvent-elles s’appliquer dans un
cadre d’apprentissage statistique ? En échantillonnage compressé, on considère généralement
un vecteur x s’écrivant comme combinaison linéaire d’un nombre réduit de vecteurs pris
dans une famille {uj} (la famille étant généralement orthogonale ou composée de vecteurs
quasiment orthogonaux). On cherche alors à reconstruire x à partir de mesures linéaires
Mx, où M est un opérateur linéaire réduisant la dimension.

Or, des modèles analogues de “signaux” apparaissent en apprentissage statistique :
un problème classique d’apprentissage non supervisé est par exemple l’estimation d’un
mélange de densités à partir d’un ensemble de vecteurs. Dans ce cadre, on peut considérer
que les vecteurs sont indépendemment et identiquement distribués selon une loi de proba-
bilité de densité p qui s’écrit comme combinaison linéaire d’un nombre réduit de densités
prises dans une famille {pθ}. Le but de la tâche d’estimation est alors de trouver lesquelles
de ces densités apparaissent dans la décomposition de p et d’estimer les coefficients de
cette décomposition.

La ressemblance entre ces deux cadres de travail suggère que l’on pourrait considérer
le problème d’estimation de paramètres de mélange comme un problème d’échantillonnage
compressé : il suffit en effet de construire un opérateur de mesure M qui, appliqué à une
densité de probabilité p, en calcule une représentation compressée Mp. Le problème d’esti-
mation des paramètres de mélange pourrait alors être interprété comme la reconstruction
de la densité p comme combinaison linéaire des {pθ}.

Dans notre première contribution (Bourrier et al., 2013b,c) :

• Nous proposons un cadre de travail analogue à celui de l’échantillonnage
compressé pour l’estimation de paramètres de mélange.

• Nous identifions des opérateurs M qui permettent de calculer une esti-
mation de Mp à partir d’un ensemble de vecteurs tirés selon p.

• Nous instancions ce cadre de travail sur un exemple simple, où les den-
sités considérées sont des Gaussiennes isotropes et l’opérateur M est un
opérateur d’échantillonnage de la transformée de Fourier. Nous prouvons
qu’un choix judicieux de fraquences assure l’injectivité de l’opérateur de
mesure associé sur l’ensemble des mélanges parcimonieux de Gaussiennes.

• Nous proposons un algorithme inspiré d’une méthode utilisée en échantil-
lonnage compressé permettant d’estimer les paramètres de mélange à
partir de la représentation compressée estimée sur les données.
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• Nous proposons des résultats numériques d’expériences effectuées dans le
cadre cité ci-dessus où les densités sont des Gaussiennes isotropes, et nous
mesurons la qualité de l’estimation par rapport à un algorithme classique.

L’estimation de paramètres de mélange à l’aide de Gaussiennes isotropes peut être
interprété comme un problème classique d’apprentissage non supervisé : le partitionnement
de données. Nos expériences montrent, sur un exemple simple, qu’il est possible d’estimer
des paramètres de mélange de façon précise par rapport à un algorithme d’estimation
classique, tout en travaillant à partir d’une représentation compressée, et donc moins
volumineuse que l’ensemble des données de départ.

Cette analogie entre échantillonnage compressé et estimation de paramètres de mélange
suggère la mise au point d’outils théoriques permettant d’étudier les problèmes inverses
de reconstruction et d’estimation dans un cadre plus général que celui de l’échantillonnage
compressé classique. Il s’agit du point de départ de notre deuxième contribution.

Performances théoriques des décodeurs en grande dimension

En échantillonnage compressé, et plus généralement dans le cadre de problèmes inverses, on
cherche à reconstruire un signal x à partir de mesures Mx, où M est un opérateur linéaire
donné. En toute généralité, et particulièrement si M réduit la dimension, cette “inversion”
ne va être possible qu’à l’aide d’un a priori sur le signal x. L’hypothèse généralement faite
est que x est approximativement parcimonieux, c’est-à-dire proche (au sens d’une certaine
distance) d’un ensemble Σk de signaux parcimonieux (typiquement les signaux qui n’ont
au maximum que k composantes non nulles dans la base canonique).

L’étape de reconstruction du signal est effectuée par un “décodeur” ∆ qui va ser-
vir de pseudo-inverse à l’opérateur M relativement au modèle Σk : on veut décoder
précisément les vecteurs x situés au voisinage de Σk, sans accorder d’importance à la
précision du décodage si x est éloigné de Σk. Dans ce cadre, une propriété usuelle re-
quise pour un décodeur est l’instance optimality : on veut majorer, pour tout signal x,
l’erreur de décodage ‖x−∆(Mx)‖ par un terme de la forme d(x,Σk) représentant la dis-
tance du vecteur au modèle. Ainsi, le décodage sera d’autant plus précis que le signal est
proche du modèle. Des résultats étudiant l’existence de tels décodeurs ont été proposés
pour les modèles de vecteurs parcimonieux et, plus récemment, pour les unions finies de
sous-espaces.

Dans notre deuxième contribution (Bourrier et al., 2013a) :

• Nous proposons un cadre général relaxant plusieurs hypothèses utilisées
dans les travaux précédents sur l’instance optimality. Nous généralisons
dans ce cadre les notions de ces travaux, ainsi que leurs relations entre
elles. Les généralisations effectuées couvrent notamment le cadre où Σ est
un modèle quelconque de signaux et où les mesures sont éventuellement
bruitées.

• Nous généralisons un résultat classique d’instance optimality avec normes
�2, initialement énoncé pour un modèle de vecteurs k-parcimonieux puis
généralisé à des unions de sous-espaces, à un cadre tout à fait quelconque
de modèle. Nous montrons que ce résultat s’applique à de nombreux
modèles classiques utilisés en problèmes inverses.

• Nous proposons une généralisation de la Propriété d’Isométrie Restreinte
(PIR), usuellement utilisée pour majorer l’erreur de reconstruction d’un
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vecteur en échantillonnage compressé, à des modèles généraux. Nous re-
lions cette PIR à l’existence d’un décodeur instance optimal au sens
d’une certaine norme que nous définissons. Nous proposons une majo-
ration de cette norme sous une hypothèse de PIR. Cette majoration est
étudiée dans deux cas classiques, pour lesquels nous prouvons qu’elle est
équivalente à des normes usuelles.

Ce deuxième groupe de contributions fournit ainsi des outils permettant d’étudier la
précision théorique que l’on peut attendre en terme d’instance optimality sur un problème
donné. Le cadre développé englobe notamment le cas où ce que l’on cherche à reconstruire
n’est pas forcément le signal de départ mais une caractéristique du signal Ax, où A
est un opérateur linéaire. L’étude du cas où ce A est non trivial (c’est-à-dire différent de
l’identité) soulève de nombreuses questions ouvertes, englobant l’apprentissage sur données
compressées.

L’apprentissage non supervisé sur données compressées a déjà été évoqué dans la
première contribution, dans laquelle était étudiée une méthode d’estimation de paramètres
de mélange sur une base de données de vecteurs compressée globalement. Un autre moyen,
plus usuel, de compresser des vecteurs est de réduire individuellement leur dimension, tout
en conservant leur nombre. La dernière partie du travail traite de telles méthodes dans le
cadre de la recherche de plus proche voisin, problème courant en analyse statistique.

Plongements explicites pour la recherche de plus proche voi-
sin

En recherche de plus proche voisin, on considère un espace muni d’une distance d et un
ensemble X = {x1, . . . ,xL} d’éléments de cet espace. Étant donné un élément-requête
q, la recherche de plus proche voisin de q consiste à trouver argmin

x∈X
d(x,q). Si L est

grand et/ou si d est une distance dont le calcul est coûteux, le recours à une recherche
approximative est obligatoire. De tels schémas approximatifs de recherche sont nombreux
lorsque d est la distance Euclidienne usuelle, mais sont plus rares si d sort de ce cadre. Or,
des distances fréquemment utilisées pour les données textuelles, sonores ou bien visuelles,
sont des distances définies à partir d’un noyau k, qui ne sont en général pas des distances
Euclidiennes dans l’espace de départ.

Pour de telles distances, des méthodes approximatives de recherche de plus proche
voisin ont été dérivées, par analogie avec le cas Euclidien. La majorité s’appuie sur des
méthodes de hachage, ou plus généralement d’indexation : chaque vecteur xi est compressé
en une représentation s(xi), bien moins volumineuse que celle de départ. Cette compres-
sion est typiquement faite de façon à conserver les voisinages, et donc faire en sorte que
deux voisins “proches” aient des images par s similaires tout en s’assurant que des voisins
“éloignés” aient des images différentes. La recherche de plus proche voisin se fait alors de
manière moins coûteuse dans l’espace compressé : la requête q est également réduite en
une représentation s(q), que l’on compare ensuite aux quantités s(xi). La recherche de
plus proche voisin se fait donc dans le domaine compressé des signatures s(xi), potentiel-
lement de façon bien plus économe en terme de mémoire et de temps de calcul : d’une
part les représentations utilisées sont plus compactes que celles de départ, d’autre part
la distance entre signatures est généralement plus efficace à calculer que la distance de
départ. Cette recherche approximative permet d’identifier un certain nombre de voisins
proches potentiels. La recherche se termine usuellement par un réordonnancement de ces
voisins approchés.
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En particulier, plusieurs méthodes de hachage binaire visant à conserver les voisinages
au sens d’une distance dérivée d’un noyau ont été proposées.

Dans notre troisième contribution (Bourrier et al., 2012) :

• Nous proposons, pour la recherche de plus proche voisin au sens d’une
distance dérivant d’un noyau, de s’appuyer sur une approximation Eu-
clidienne du noyau, typiquement appelée plongement explicite. De telles
méthodes sont éprouvées, notamment l’Analyse en Composantes Princi-
pales (ACP) à noyaux, qui a fait l’objet de travaux à la fois théoriques
et pratiques sur la précision et la réduction de la complexité de calcul de
l’approximation.

• L’approximation via l’ACP à noyaux nous permet de dériver un schéma
de recherche exacte de plus proche voisin pour les noyaux normalisés,
s’appuyant sur l’inégalité de Cauchy-Schwarz bornant la précision de l’ap-
proximation. Nous proposons des résultats montrant le gain de cette ap-
proche dans un cas particulier, et ses limites en général. Nous évoquons
une relaxation possible de l’inégalité permettant d’apprendre des bornes
théoriques de précision de l’approximation en général.

• Suite à cette étape de plongement explicite, il est également possible d’ap-
pliquer, si l’on veut effectuer une recherche approximative, un schéma de
compression adapté à la distance Euclidienne. En particulier, nous mon-
trons à l’aide d’expériences que la combinaison de l’ACP à noyaux et d’un
hachage Euclidien offre de meilleurs résultats que des méthodes usuelles
de hachage à noyaux. Il est en outre possible, à l’aide de la méthode pro-
posée, d’appliquer suite à l’étape de plongement explicite un schéma de
compression offrant une meilleure précision que le hachage binaire : la
Quantification Produit.

Utiliser un plongement explicite afin de se ramener au cas Euclidien semble donc être
une étape utile, permettant notamment de dériver des schémas de recherche approxima-
tive plus précis que les méthodes de hachage existantes. Les algorithmes de recherche de
plus proche voisin devraient ainsi se comparer à cette succession d’étapes simples afin de
mesurer le réel apport de l’algorithme en question.
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Introduction

For more than a decade, numerical sciences have known a fast evolution, reflecting the
growing need for data processing tools. Practical interests for such tools are numerous:
some examples of general tasks where statistical learning on data is critical are content-
based search, automatic classification of data, or collaborative filtering. This type of
general tasks is addressed by many software or online services.

The gain in interest for such tools in the past years is tied to several phenomena,
which led to a large increase in the size of available data, especially concerning the Inter-
net. This increase in the number of sources and in the volume of content contributed to
the elaboration of databases comprised of billions of elementse, and on which traditional
statistical analysis tools cannot apply, principally because of hardware constraints, imply-
ing the computers or servers cannot cope with memory or computation time requirements
of these algorithms on such voluminous data.

Particular statistical processing methods of such data have therefore arisen, principally
consisting in a volume reduction of the data and/or in an approximative but faster way
of dealing with computations. At the theoretical level, the compromise between computa-
tional time, precision of the statistical analysis and data size has also been studied.

In parallel to this evolution in data processing, has been developed in the signal pro-
cessing community a theory of compressed sensing, a technique ensuring that under certain
hypotheses on a signal, it is possible to reconstruct it precisely from a number of mea-
sures which is a priori far smaller than the dimension of the signal. Compressed sensing
theory has developed with both theoretical results controlling the necessary and sufficient
hypotheses on the signal for such a reconstruction to be possible, and practical algorithms
to perform such a reconstruction, as well as additional results on the precision of the
reconstruction provided by these algorithms.

Interestingly, analogous ideas to those used in compressed sensing have been success-
fully applied for statistical analysis of voluminous data. The goal was principally to reduce
the size of the considered data (similarly to the measurement step in compressed sensing),
thus reducing the memory and/or computational time required for an algorithm to per-
form, while still being able to approximately extract the desired information (similarly to
the reconstruction step). Therefore, compressed sensing seems to have a genuine potential
for statistical analysis of voluminous data.

The starting point of the Ph.D. thesis presented in this manuscript is therefore the
study of the potential of compressed sensing for learning on data. More precisely, we will
consider unsupervised learning, in which the considered data is not divided into categories
before processing.

The document layout is the following: Chapter 1 provides a more thorough description
of the notions and ideas at the source of this work. In particular, it draws links between
compressed sensing and some techniques which have been proposed in the learning com-

eDatabases built from Facebook or Flickr image data can comprise 1011 elements.

xvii



xviii INTRODUCTION

munity. Then come three chapters, each one presenting a main contribution of the thesis.
These chapters all begin by a quick review of the state of the art relative to the correspond-
ing contribution. Then come a summary of the contributions relative to the corresponding
chapter. Finally, the contributions are described.

Chapter 2 contains the first contribution: a parameter estimation method for probabil-
ity density mixtures on compressed data, in a similar way as what is done in compressed
sensing, and which can be interpreted as a generalized compressed sensing problem. We
propose to compress data to a fixed-size representation called a sketch, then derive an
algorithm to induce mixture parameters from this sketch. We provide numerical experi-
ments evaluating the experimental performance of this compressed framework in the case
of isotropic Gaussian mixture estimation.

Chapter 3 describes the second contribution : a generalization of results relative to
the theoretical performance of reconstruction methods in compressed sensing, and more
generally in inverse problems, to models beyond the models to which the previous results
apply. More particularly, we provide necessary and sufficient conditions to the existence
of an instance optimal reconstruction function, which is optimal in a certain sense with
respect to the model. We study this instance optimality property in a general case and
link it with a generalized Restricted Isometry Property, which is a widely-used property
in compressed sensing.

Finally, Chapter 4 presents the third main contribution: an approximate nearest neigh-
bor search of a certain element with respect to certain distances, relying on the approxima-
tion of these distances by a Euclidean distance. We provide a simple framework combining
two existing dimension-reducing techniques: explicit embedding and Product Quantization.
We provide experiments showing that these frameworks allow a better precision than hash-
ing techniques designed to work with kernels.



Chapter 1

Motivation

We introduce in this section the underlying motivation to the thesis work depicted in the
present manuscript. The initial idea is to make a parallel between two a priori different
domains: on the one hand, inverse problems, and more particularly the recent theory
of compressed sensing, which are typically used in signal processing; on the other hand,
somewhat general data analysis methods which exploit ideas similar to the paradigms of
compressed sensing.

We will first, in Section 1.1, give a review of inverse problems with a particular focus
on compressed sensing, describing the ideas at the core of this concept. Then we will talk,
in Section 1.2, about some data processing methods related to statistical learning and
relying on analogous schemes to those used in compressed sensing. This will suggest links
between compressed sensing and learning, which will be developed in our first contribution
in Chapter 2.

1.1 Inverse problems and Compressed sensing

1.1.1 Sparse signal representations

The linear abstraction of signal processing. Physical signals typically obey linear
partial differential equations. Thanks to this linear behavior, the abstract linear algebra
framework is particularly well-suited for signal processing. In this sense, a signal is typically
represented:

• either as a function defined on an infinite domain (typically spatial or temporal),
and belonging to a space of functions sharing a certain regularity property;

• or more frequently as a quantized signal, i.e., a finite-dimensional vector of Rn or
Cn, where each entry represents the value of a quantization cell (in time for audio
signals or in space for images for instance).

Many transformations undergone by signals can be modeled by linear operators, such
as convolution operators. This allows the usage of powerful mathematical tools to model
signal data and derive algorithms to process it.

Sparsity of a signal. The “canonical” representation of a finite-dimensional signal as
a vector, such as the representation of an image as a concatenation of pixel values, is not
necessarily well-suited for processing. An interesting property on the representation of a
signal in a certain basis is sparsity (Elad, 2010; Mallat, 2008). When linearly decomposing

1
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a signal x on a certain basis B = {b1, . . . ,bn}, we generically say that its representation is
sparse if the decomposition involves only a few nonzero coefficients, that is x =

∑n
i=1 xibi

with xi = 0 for most subscripts i.

In this case, the basis B is well-suited to represent x: it provides a compact representa-
tion (the set of couples {(i, xi) : xi �= 0} fully describes the signal), and can give a simple
interpretation by describing the signal with only a few components. This sparse represen-
tation of the signal x also allows quick linear computations, and the a priori knowledge
that x is sparse when decomposed on B allows one to solve linear inverse problems, as will
be discussed in the following.

Classical sparsity-inducing bases. In signal processing, given a specific task, one
usually considers a certain model of signals, which can contain very specific signals or on
the contrary a wide range of them. To efficiently exploit sparsity, a desirable property
is that there exists a basis B which provides an approximately sparse decomposition for
every vector of the considered model. Such a basis B allows one to precisely approximate
all (or most of) the signals in the considered model by sparse vectors.

Such classical “sparsity-inducing” bases used in signal processing include many trigono-
metric-based families, initially proposed by Fourier at the beginning of the XIXth century
for periodic functions (Fourier, 1808). Indeed, natural signals often present a form of pe-
riodicity associated to particular frequencies, which will be the frequencies around which
the energy of the Fourier decomposition will be concentrated. Over the years, this type
of frequency decomposition has been applied to other linear objects like nonperiodic func-
tions or discrete vectors. Such trigonometric families are typically denoted as Fourier, or
frequential, bases.

The main drawback of Fourier representations is the so-called Gibbs phenomenon,
which designates their difficulty to adequately represent a discontinuity in the signal. To
circumvent this difficulty, another family of functions is widely used as a representation
basis for signals: the wavelet functions (Mallat, 2008), which typically are piecewise regular
functions with localized discontinuities or strong variations. With such wavelet bases, the
decomposition of a large class of natural signals, such as natural images, is concentrated
on a small subset of vectors in the family, while the rest of the decomposition involves
small coefficients.

Both Fourier and wavelet families, which include many different variants, are usually
well-structured sets of vectors, which allows one to derive efficient algorithms to compute
the corresponding decomposition of a vector.

More recently, other sparsity-inducing families of vectors have been considered and
are denoted as dictionaries. They are typically families of vectors learned from a data
set to adaptively provide a sparse decomposition on data which is similar to the training
set. Unlike Fourier and wavelet families, orthogonality or even linear independence is
not usually required, hence their usual denomination of redundant dictionaries. This
type of representation, while being potentially much better suited for specific data than
a nonadpative family of vectors, suffers from harder learning and decomposition steps
compared to the previously mentioned representations, which is mainly due to the less-
structured form of the family.

1.1.2 Inverse problems

The concision and interpretability given by sparse representations make them useful for
many signal processing tasks. A common considered framework in signal processing is the
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case where a vector s∗ ∈ Rn undergoes the action of a linear operator M, with a possible
additional noise e. This results in a vector Ms∗ + e, from which one would want to
recover s∗. This framework applies to multiple problems, among which appear denoising,
deconvolution or super-resolutiona.

In general, the operator M will not be invertible, so that even in the absence of noise,
the problem of recovering s∗ from the quantity y = Ms∗ + e is ill-posed: several vectors
can indeed have the same image by M, impeding from recovering the correct preimage.
To correctly define the problem, one must impose additional constraints on s∗. One of
the typical considered constraints is that s∗ has a sparse linear representation in a certain
basis, or more generally a certain dictionary D. This assumption implies that the vector
s∗ can be written as Dx∗, where D is a matrix containing the vectors of D as columns,
and x∗ is a sparse vector containing an unknown but “small” number of nonzero entries.

In this case, the problem of “inverting” the observation y = MDx∗ + e to find x∗

can be expressed as the search for the sparsest vector x such that MDx is close to the
observation y in a certain sense. More precisely, the problem can be formulated as:

argmin
x

‖x‖0, subject to ‖y −MDx‖2 ≤ σ, (1.1)

where ‖x‖0 is the pseudo-norm counting the number of nonzero entries of x, and σ is the
estimated order of magnitude of the noise e, which is typically taken in the �2-norm sense.

Note that there may be multiple solutions to the problem (1.1), so that it may be
considered as ill-posed. However, if σ = 0, there exist sufficient conditions so that the
solution is unique. In this case, the problem is expressed as the search for the sparsest
vector of the affine space {x ∈ Rn : MDx = y}. If x∗ is sparse enoughb, then the solution
to (1.1) is unique (Chapter 2 of (Elad, 2010)).

If σ > 0, uniqueness is never achieved (unless in the trivial case where x∗ = 0): indeed,
if x is a solution of (1.1), the continuity of the operator associated to MD ensures that
any vector sufficiently close to x is also solution. Since there exists an infinite number of
vectors with the same sparsity as x and arbitrarily close to x, there is an infinite number
of solutions to (1.1). Therefore, in this case where σ > 0, one simply aims at finding one
of the many solutions of (1.1) (Chapter 5 of (Elad, 2010)).

However, even when the problem (1.1) has a unique solution, it is in general NP-hard
to solve it (Natarajan, 1995; Davis et al., 1997), therefore the problem is asymptotically
intractable. Two main approaches can be considered to try and solve this problem ap-
proximately:

• Greedy approaches : Since one searches for a sparse vector x such that y ≈ MDx,
y will be similar to a linear combination of a few columns of MD. Therefore, one
can find columns of this matrix which are well-correlated with y, so that there is a
linear combination of these columns which approximately yields y, hopefully leading
to a good solution of the problem. The research for such columns can be done in
one step by finding the most correlated columns (Gribonval et al., 2007), or in an
iterative fashion with a pursuit algorithm (Mallat and Zhang, 1993; Tropp, 2004)
which updates at each step a sparse approximate solution by adding a nonzero entry
corresponding to a column of MD which is well-correlated with the residual.

aWe consider real vectors for simplicity, but all considered results can easily be applied to complex
vectors.

bNamely, if ‖x∗‖0 is less than half the spark of the matrix MD, the spark being the minimal number
of linearly dependent columns of a matrix.
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Even if these approaches can yield an exact solution of the problem (1.1) in particular
cases, the conditions are usually very restrictive and not satisfied in practice (Chapter
4 of (Elad, 2010)). Nonetheless, these greedy algorithms can still perform well in
practice and yield a good approximate solution (Chapter 3 of (Elad, 2010)).

• �1 relaxation: One can replace in (1.1) the term ‖x‖0 by the convex term ‖x‖1. The
problem then becomes

x∗ = argmin
x

‖x‖1, subject to ‖y −MDx‖2 ≤ σ. (1.2)

This formulation is typically known as Basis Pursuit (Chen et al., 1998) and can
be solved using standard optimization techniques by casting it as a linear program
(Chapters 13 and 14 of (Nocedal and Wright, 2006)) or a second order cone program
(Chapter 4 of (Boyd and Vandenberghe, 2004)). They can typically be solved using
interior point methods. When σ = 0, under stronger assumptions on M, D and
‖x∗‖0 than in the ‖ · ‖0 formulation, it has been proven that the solution to the
problem (1.2) is unique and the same as problem (1.1) (Donoho and Huo, 2001;
Donoho, 2004). When σ > 0, there also exist robustness results upper bounding the
discrepancy between the solutions of (1.1) and (1.2) (Donoho et al., 2006).

Both types of methods therefore provide feasible alternatives to the intractable problem
(1.1), as well as theoretical results controlling the precision of the approximate solutions
with respect to the solutions of the initial problem under certain conditions.

We have introduced inverse problems in the case where the operator M is fixed and
one aims at reconstructing a signal from its (possibly corrupted) measure by M. For
such inverse problems, one looks for an adequate model and/or an adequate optimization
formulation in order to perform the inversion. The next section focuses on another way of
considering inverse problems, leading to the theory of compressed sensing.

1.1.3 Compressed sensing paradigms

Motivation for compressed sensing. Typically, the acquisition of a signal is per-
formed by sampling it at regularly spaced points. In this framework, the Nyquist-Shannon
theorem is a well-known result precising the number of regular measurements one needs
to be able to theoretically recover the signal. It states more precisely that if a function f
has a low-frequency spectrum, that is the Fourier transform of f is contained in a segment
[−ω, ω], then f can be (theoretically) perfectly recovered from a discrete regular sampling
of period π

ω . In this case, the reconstruction process is a simple convolution step with a
sinc function.

In some practical acquisition cases of a signal, there are benefits to reducing the number
of measurements, even if this causes the reconstruction step to be more costly. For instance,
in medical imaging, the number of measurements should be minimal to avoid a negative
impact on the patient. Another example where a reduced number of measurements would
be beneficial is when sensing a signal using a device with limited energy, such as a mobile
device or a satellite.

This objective of reducing the number of measurements allows one to look at linear
inverse problems under another angle. One now considers a given model Σ ⊂ Rn, which
is a set of signals of interest. Given these particular signals, one aims at finding linear
operators M : Rn → Rm, with m “small” (hopefully way smaller than n) and such that
for any x ∈ Σ, one can recover x from measurements Mx with an algorithmic procedure
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(typically numerical optimization). As well as in the usual inverse problem discussed
previously, one can also study a noisy case where the measurements are corrupted with a
noise e, and where one aims at approximately recovering x from measurements Mx+ e.

The somewhat recent but already well developed theory of compressed sensing (Ku-
tyniok, 2012; Qaisar et al., 2013) gives interesting and surprising answers to this measure-
ment reduction objective.

The initial compressed sensing setup. Early works in the compressed sensing theory
(Donoho, 2006; Candès and Tao, 2006) mainly consider the noiseless recovery of sparse
vectors in the canonical basis of Rn. Let’s denote by Σk the set containing the k-sparse
vectors:

Σk = {x ∈ Rn : ‖x‖0 ≤ k} . (1.3)

In this compressed sensing framework, the goal is to find operators M satisfying several
conditions:

• Dimension reduction: The operators must map Rn in a low-dimensional space Rm,
that is m < n, and hopefully m 
 n.

• Theoretical recovery of Σk: The operators must yield theoretical noiseless recovery of
all vectors in Σk. As we have seen in the previous section, the typical linear inverse
problem way of casting the recovery of a signal x∗ ∈ Σk from y = Mx∗ is as

argmin
x∈Rn

‖x‖0, subject to Mx = y, (1.4)

which is the problem (1.1) reformulated in the case where D is the identity matrix
of dimension n and σ = 0. The problem (1.4) should have x∗ as a unique solution
for the theoretical recovery condition to be satisfied.

• Practical recovery of Σk: The operators must yield practical noiseless recovery of
all vectors in Σk. We have seen that the problem (1.1) is practically intractable in
general. Therefore, an additional practical recovery condition is that this problem
can be recast as an equivalent problem, which is easier to solve and still yields the
same solution. This equivalent problem is typically the �1 relaxation

argmin
x∈Rn

‖x‖1, subject to Mx = y. (1.5)

An optional extra constraint is to enforce that problems (1.4) and (1.5) yield precise
reconstruction (in a certain sense) of approximately sparse vectors x∗, that is vectors which
are close to Σk in a certain sense. This additional constraint comes from the fact that
practical signals are not usually exactly sparse but rather have fast decaying coefficients
in specific basis: they are therefore approximately sparse and not exactly sparse, and the
“precise recovery” property should encompass these signals.

Early results of compressed sensing. Initial results of compressed sensing have been
stated in a quick succession of papers from 2004 to 2006, and many theoretical results have
kept on being found ever since. In the next few sections, we propose to summarily unknot
the braid of this dense succession of fundamental papers, presenting the main flavor of the
results in the approximate order they were proposed.

All the initial papers about compressed sensing mainly give examples of linear operators
M satisfying the conditions mentioned in the previous section. The proposed operators
have two aspects in common, even if there are slight variations between the results:
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• Drastic dimension reduction: The results prove that there are a lot of operators M
which drastically reduce the initial dimension n while satisfying the other compressed
sensing prerequisites. More precisely, the exact reconstruction of Σk is usually pos-
sible with m = O(k ln(n)), which is negligible with respect to n when n goes to
infinityc. Moreover, still with m = O(k ln(n)), the reconstruction error of certain
approximately sparse vectors x∗ is upper bounded by the �2 distance from x∗ to Σk,
that is the residual �2-norm if one approximates x∗ by its best k-term approximation.

• Randomized choice of the operator: Interestingly, the proposed operators are not
constructed in a deterministic manner. Instead, all the works consider a simple
class M of operators, supplied with a probability distribution. The operator used
to perform compressed sensing is randomly drawn in M, and theoretical results
prove that with “high probability” on the drawing of M in M, M will satisfy the
compressed sensing constraints. The term “high probability” usually refers to the
fact that when n → ∞, if m is chosen as O(k ln(n)), then the probability that M
satisfies the reconstruction conditions is 1-O(n−α), where α is a parameter depending
on the considered signals, the model M and the desired reconstruction guarantees.

In particular, the considered classes M of operators, along with the corresponding
probability distributions leading to compressed sensing guarantees, were:

• In (Candès et al., 2006), the authors considered the case where M was a submatrix
of the Fourier matrix F, defined by

Fr, s =
1√
n
exp

(
−2πi

(r − 1)(s− 1)

n

)
. (1.6)

M was obtained by uniformly extracting m different lines of F. In this case, the
authors proved the theoretical and practical recovery of Σk with high probability
provided m = O(k ln(n)).

• The even more groundbreaking papers (Donoho, 2006) and (Candès and Tao, 2006)
prove similar results, and are often viewed as the founding works in compressed
sensing. They consider the reconstruction of vectors of Rn with coefficients obeying a
power-law decay, that is signals x∗ for which the qth largest entry is upper bounded by
Cq−α with C,α > 0. They prove that if m = O(k ln(n)), then with high probability
on the drawing of the linear operator M, which will be detailed in the following, a
signal x∗ belonging to this class of signals can be reconstructed up to a precision
of the order of the best k-term approximation of x∗. The reconstruction can once
again be cast as a �1 minimization problem (1.5).

Even if their choices of operators is similar, there are slight differences between the
two papers. In (Donoho, 2006), the author considers a set M of m×n matrices with
unit-norm columns, provided with uniform distribution. In (Candès and Tao, 2006),
the authors again consider Fourier subsampling matrices, as well as matrices with
entries drawn i.i.d. either from a symmetric Bernoulli distribution (taking values
±1 with probability 1

2) or from a normal distribution.

These surprising results show that compressed sensing is feasible with particular di-
mension reducing operators. As has been mentioned, all these operators share in common

cHere and in the following, O(f(n)) is a quantity which is upper bounded by Af(n), where A is a
positive constant, for n large enough.
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the interesting property of being chosen randomly among a certain family. In (Candès and
Tao, 2006), the authors also precise some common properties shared between the different
considered families M of operators, which pins down the reason why they are well-suited
for compressed sensing. These conditions will then be simplified into a powerful property
described in the next section.

The Restricted Isometry Property The direct legacy of the aforementioned founding
results is a series of two papers (Candès and Tao, 2005; Candès et al., 2006) which mainly
introduce a simple sufficient condition on an operator M for it to satisfy the compressed
sensing constraints (and even more). This property is called the Restricted Isometry
Property (RIP) which is a property concerning a certain sparsity level t. This RIP states
that for all t-sparse vectors x,

(1− δ)‖x‖22 ≤ ‖Mx‖22 ≤ (1 + δ)‖x‖22 (1.7)

for a certain 0 < δ < 1. The RIP therefore says that even if M is a highly dimensional-
reducing operator, so that the column vectors which appear in M are highly linearly
dependent, any subfamily of t such column vectors is nonetheless approximately orthog-
onal, so that M acts approximately as an isometry on t

2 -sparse vectors (supposing t is
even), hence the name “Restricted Isometry”.

This property was first precised and used in (Candès and Tao, 2005) in a noncompres-
sive setting, then applied to compressed sensing in (Candès et al., 2006). The success of
the recovery procedure in a usual compressed sensing setting can be linked to the RIP:

• The previously mentioned random matrices asymptotically satisfy the RIP with high
probability: this includes Gaussian, Bernoulli and Fourier subsample matrices.

• A matrix M satisfying some kind of RIP is well-suited for compressed sensing. In-
tuitively, let’s suppose that M satisfies the RIP on the set of 2k-sparse vectors. If
x and y are k-sparse vectors, then the distances ‖x − y‖2 and ‖Mx − My‖2 will
be close: the ratio between the two distances will be between 1− δ and 1 + δ. This
makes intuitively understandable the recovery of k-sparse vectors: if δ is small, two
k-sparse vectors cannot be mixed up in the compressed domain.

This intuitive power of the RIP is theoretically justified: the results of (Candès
et al., 2006) prove that if M satisfies certain RIPs, it satisfies the previously men-
tioned compressed sensing conditions, and moreover permits reconstruction from
noisy measurements. Indeed, under some assumptions on RIP constants, if x∗ ∈ Σk

and y = Mx+ e is a noisy measurement with ‖e‖2 ≤ σ, the minimization problem

argmin
x∈Rn

‖x‖1, subject to ‖y −Mx‖2 ≤ σ (1.8)

yields a solution x# such that ‖x∗ − x#‖2 ≤ Cσ, that is the reconstruction error is
of magnitude similar to the noise of the measurement. Moreover, the reconstruction
error of an approximately sparse vector with noisy measurements can also be upper
bounded under RIP assumptions.

The main advantages of the RIP are its simplicity and the fact that it separates the
probabilistic choice of an operator from the theoretical implications of the choice of a
well-suited operator. Because of this, it has been widely used in the compressed sensing
theory to prove theoretical reconstruction results. The simplicity of this property is par-
ticularly well illustrated in (Candès, 2008), where the author concisely proves noiseless
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and noisy compressed reconstruction bounds for approximately sparse vectors under RIP
assumptions.

Note that more recently, compressed sensing has been considered directly in a proba-
bilistic framework, allowing one to get reconstruction results under “RIPless” conditions
on M (Candès and Plan, 2011). The corresponding results directly give conditions on a
family of operators M and on the random choice of these operators for compressed sensing
to be feasible with high probability.

The importance of randomness. The main characteristic of compressed sensing is
the random choice of the measurement operator. Indeed, even if the previously mentioned
results prove the existence of multiple well-suited operators for compressed sensing, they
do not provide a way to construct them in a deterministic way. There is actually no known
deterministic way of building compressed sensing operators in polynomial time which have
guarantees comparable to those obtained in a probabilistic manner.

The random choice of the operator, although strange at first glance, is a good way of
finding a suitable operator for the initial purpose of compressively acquiring the signal: it
is fairly useless to really aim for an operator which will be guaranteed to work, and one can
instead pick randomly an operator among a simple model in which most of the elements
are suitable. This good behavior of randomly drawn operators is theoretically linked to the
concentration of measure phenomenon, which designates a collection of results underlying
the fact that when a large number of random variables is drawn, the variability of a wide
range of statistical quantities computed from these variables will be very low, so that the
observed statistics will very likely be close to their expected value.

This idea of picking an element at random instead of struggling to find the “optimal”
element while still having theoretical guarantees will be discussed in the next section,
through examples of methods used in statistical analysis or optimization and aiming at
reducing complexity and/or memory usage for different tasks.

1.2 “CS-like” techniques in statistical analysis

In parallel to the development of compressed sensing, and actually before, the idea of using
randomness to save computational time or memory has been exploited in techniques more
related to statistical analysis than signal processing.

We give some examples of such techniques, shedding some light on the similarities
with compressed sensing. Apart from the following mentioned techniques, sketch-based
methods share common points with compressed sensing and some of them will be discussed
in Chapter 2.

1.2.1 Locality-Sensitive Hashing

Databases are often comprised of vectors living in the same vector space. When statistically
manipulating a database, one often needs to perform a similarity search among these
vectors, i.e., looking for the nearest neighbors of a certain vector in the database. When
the dimension and/or the number of vectors is large, it may become compulsory to rely
on approximate but faster schemes. To this end, hashing can be exploited.

Hashing for approximate neighbor search. The core idea of hashing for computa-
tional savings is to replace the initial vectors xi, belonging to a metric space with metric
d, by shorter signatures h(xi) belonging to a simpler space with a metric d′ which is easier
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x1 . . . xL

Initial vectors ∈ (Rn, d)

Hashed vectors ∈ (Sk, d′)

h1(x1)

...

hk(x1)

. . .

h1(xL)

...

hk(xL)

= h(x1) = h(xL)

H

Hash functions : Rn → S

h1

hk

...

(drawn i.i.d. )

Figure 1.1: Core idea of LSH. Each initial vector is mapped to a signature for which each
entry corresponds to the image of the vector by a randomly drawn hash function.

and faster to compute. Even though there is no immediate link between d and d′, the
hash functions are chosen so that d′ approximately preserves neighborhoods: if x and y
are “close neighbors” in the initial space, we should have h(x) ≈ h(y) and conversely, if
they are far apart, so should h(x) and h(y) be.

Locality Sensitive Hashing (LSH) (Indyk and Motwani, 1998; Gionis et al., 1999; Datar
et al., 2004b) is a particular hashing scheme which was introduced to provide a fast ap-
proximate similarity search method for distances corresponding to the p-norm in dimension
n:

‖x‖p =

(
n∑

i=1

|xi|p
) 1

p

. (1.9)

LSH relies on a familyH of elementary hash functions mapping the initial space Rn to a
finite set of elements S. The signature of a vector x is a k-tuple h(x) = (h1(x), . . . , hk(x)) ∈
Sk, where the hj are elements of H drawn i.i.d. with respect to a certain probability
distribution on H. This general framework is illustrated in Figure 1.1.

For the signature to be well-designed, the family H should be locality-sensitive, i.e.,
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for any couple of vectors of Rn, the probability that they are mapped to the same element
in S (with respect to the drawing of the hash function) should be high if the vectors are
close to one another, and low if they are far apart. More precisely, this property is usually
stated as follows: for all x,y ∈ Rn,

• If d(x,y) ≤ r1, then P(h(x) = h(y)) ≥ p1.

• If d(x,y) ≥ r2, then P(h(x) = h(y)) ≤ p2. (1.10)

Here, r1, r2, p1 and p2 are parameters of the locality sensitive property and P denotes
the probability with respect to the drawing of the hash function h among the family H.
Obviously, for this property to have a true meaning, one must have r1 < r2 and p1 > p2.
To make a parallel with compressed sensing, one may compare this property to the RIP:
indeed, several hashing families satisfy this property, which is useful in showing theoretical
guarantees for algorithms which use LSH, as we will mention in the following.

Among the families which satisfy this locality-sensitive property appears a family of
binary functions hθ indexed on θ ∈ Rn, with values in {0, 1} and defined as hθ(x) = 1 if
〈θ,x〉 ≥ 0 and hθ(x) = 0 otherwise (Goemans and Williamson, 1995; Charikar, 2002a).
This family will be further discussed in Chapter 4, in a more general hashing setting.
Other usually considered hash functions families are comprised of projections on a line
followed by partitioning into segments (Datar et al., 2004b).

Note that LSH, and more generally hashing techniques aimed at reducing complexity,
can be used in two different ways. The first basic way is to compute a single signature of
respectable size for every database vector, then compute a full nearest neighbor search in
the signature space, getting a list of nearest neighbors. This yields an easily implementable
research scheme. This first way of exploiting hashing will be used in Chapter 4. On the
other hand, one may compute several smaller signatures for a vector, each belonging to
a different bucket. In this second case, a lot of vectors may have similar signatures in a
given bucket. The nearest neighbor list of a “query” vector is computed by identifying
the vectors which have similar signatures as the query in most buckets. This method
relies on a harder implementation to be efficient, but can yield sublinear research times
(Datar et al., 2004b; Andoni and Indyk, 2008). This second framework is usually the
considered framework when one aims at proving theoretical guarantees for approximate
nearest neighbor search.

In both cases, when a list of probable nearest neighbors is formed, an additional step
of reranking is performed, where the true distances between the query and the considered
vectors are computed in order to better identify the true nearest neighbors.

Theoretical results about LSH can be proved: if a family H satisfies the locality-
sensitive property stated above, the main result one can obtain is that with suitable choices
for the number of buckets and the dimension of the hashed vectors, LSH can be used to
efficiently solve (with high probability on the drawing of the hash functions) the so-called
ε-nearest neighbor search problem, that is given a query q and its nearest neighbor x in a
database X , find a vector y ∈ X such that

d(q,y) ≤ (1 + ε)d(q,x). (1.11)

Similarity with compressed sensing. Even though the frameworks of compressed
sensing and LSH are very different, there are interesting similarities in the procedures
and the theoretical study: in both cases, one randomly draws a dimension reduction
operator among a certain model, and it can be proven that in suitable conditions, with
high probability on the drawing of the operator, the compressed representation can be
used to precisely perform a certain task.
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1.2.2 Compressed methods for matrix decomposition

Complexity of matrix decompositions. Linear algebra is a core tool in statistical
analysis. In particular, data can often be represented as a set of vectors of the same
dimension, concatenated into a matrix. Typically, each column represents an individual
and each line is a feature, which is a numerical quantity characterizing some aspect of the
individual. When considering such a matrix, it is often useful to simplify its representation
through a certain decomposition. One of the most commonly considered decomposition in
the Singular Value Decomposition (SVD), which provides optimal low-rank decompositions
in the Frobenius sense.

SVD and other matrix decompositions are numerically performed by iterative algo-
rithms. They typically require extensive access to the matrix, so that the matrix should
be small enough to fit in main memory. Moreover, if the matrix is of size m×n, the usual
complexity of the decomposition of the matrix is O (mnmin(m,n)). If one only needs a
rank-k approximation of the matrix without performing a full decomposition, other it-
erative algorithms can be used which have complexity O(mnk). These algorithms with
reduced complexity still require extensive access to the matrix.

Randomized scheme for matrix decomposition. Finding more efficient ways (ei-
ther in complexity or in memory usage) than the usual iterative algorithms to perform
matrix decomposition has been the topic of a lot of works ((Mahoney, 2011; Halko et al.,
2011) compile numerous references). In particular, (Halko et al., 2011) describes several
randomized methods for computing matrix decompositions such as Singular Value Decom-
position (SVD) or QR decomposition. Typically, randomness is used to quickly compute a
low-rank estimate of the matrix, and then a standard decomposition algorithm is applied
to this estimate.

More precisely, if the matrix N to be decomposed approximately is of size m× n, the
randomized layout for computing the decomposition is composed of two stages:

1. Approximation of the action of the matrix: The first goal is to efficiently “capture”
the action of the matrix, that is compute a low-rank estimate of the action of the
matrix. Typically, a matrix will not have singular values of the same magnitude, so
that the energy of a random vector will be mostly mapped by the matrix on the first
singular directions. This phenomenon is used for randomized approximation: if one
searches for a rank-k approximation, the matrix N is applied to a set of k+p random
vectors (typically Gaussian vectors), where p > 0 is an oversampling parameter,
usually taken constant and 
 k. The complexity of this step is O(mnk), but can be
reduced to O(mn ln(k)) by applying N to a structured set of random vectors, such
as Subsample Random Fourier Transform (SRFT) (Woolfe et al., 2008). The output
is an m× (k + p) orthogonal matrix Q such that

‖N−QQTN‖ ≈ ‖N−Nk‖, (1.12)

where ‖ · ‖ typically denotes the Frobenius or the �2 operator norm and Nk is the
best rank-k approximation of N with respect to the norm ‖.‖.

2. Decomposition of the matrix: Since the matrix Q allows to compute a good low-rank
approximation of the main singular components of N, the desired decomposition of
N can directly be performed on the much smaller matrix QTN. For SVD, it is for
instance sufficient to compute the SVD of QTN = UΣV∗ and the approximate SVD
of N (up to rank k) is then given by Nk ≈ (QU)ΣV∗.
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This framework can be adapted to other decompositions such as QR. The complexity
is not different from a standard partial SVD algorithm for general dense matrices, but
since this layout relies mainly on matrix-vectors multiplications to reduce the size of the
data, the complexity can be significantly dropped if these multiplications can be quickly
computed, typically if the matrix is sparse. Finally, the scheme can also be adapted to
aim at reducing the number of passes on the matrix N, in the case where N is too large
to fit in main memory and the bottleneck of a decomposition algorithm is the disk access
time.

Links with compressed sensing. These randomized decompositions have provable
precision bounds, relying on concentration of measure tools. The results are various, but
they mainly consist either in an average case analysis, upper bounding the expectation
of the decomposition error over the drawing of the random vectors, or in a probabilistic
bound on the error, upper bounding it with high probability on the drawing of the random
vectors, similarly to compressed sensing. In these upper bounds usually appear the singular
values of the matrix N for ranks > k, so that the theoretical results confirm the intuition
that the randomized scheme will be useful only if the singular values of N decrease at a
sufficient rate.

These randomized decomposition methods share certain common points with the com-
pressed sensing framework: knowing that a matrix has sufficiently decreasing singular
values (which can be compared to the sparse model of compressed sensing), it is possible
to precisely estimate a low-rank decomposition from a compressed representation of the
matrix obtained via its image from a randomly picked operator. However, a singular dif-
ference is that one still needs to access the initial matrix to perform the decomposition
in the second step, whereas compressed sensing ensures the reconstruction of the initial
vector simply from the compressed representation and the projection operator.

1.2.3 Other randomized statistical procedures

In this section, we will mention other randomized schemes that have been used in vari-
ous learning frameworks, but which have fewer immediate links with compressed sensing.
However, the core idea is to save computational time by “picking randomly an item” in-
stead of “searching for the best item” to perform a task, which draws links to compressed
sensing.

Linear kernel approximations Kernels (Scholkopf and Smola, 2001) are widely used
functions in machine learning: they provide a considerable range of metrics between ele-
ments of a database and have nice properties leading to standard algorithms to perform
learning, such as Support Vector Machines (SVM). However, since these metrics can be
elaborate, the cost of computing kernel values is usually substantial, so that kernel methods
cannot be applied at a very large scale.

In the past few years, there has been in the machine learning community a gain of
interest for explicit embedding methods, which consist in finding an approximation of a
certain kernel K as a scalar product, that is finding a certain (nonlinear) transformation
Φ̃ of the data satisfying K(x,y) ≈ 〈Φ̃(x), Φ̃(y)〉. The benefit is that once the data has
been transformed by Φ̃, the approximate kernel values are fast to compute, since the
computation of scalar products relies on very optimized standard linear algebra routines.
This kind of approximation will be further discussed in Chapter 4.
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In (Rahimi and Recht, 2007), the authors consider two random schemes for defining
such a function Φ̃. They consider the case where the kernel K to approximate is a shift-
invariant kernel on Rn, that is K(x,y) only depends on the difference x− y.

Their first method relies on Bochner’s theorem, which allows to write K(x,y) as the
Fourier transform of a probability measure, that is K(x,y) can be seen as an expected
value of cosines. Therefore, they propose to approximate K(x,y) as an empirical mean of
cosines drawn from the proper probability distribution, which can be considered as a scalar
product. Concentration of measure results provide a uniform bound on the approximation
error of the kernel on a compact subset of Rn with high probability on the drawing of the
cosines.

The second method is less general and applies only to certain type of shift-invariant
kernels. It is similar to binary hashing and consists in randomly partitioning the space into
bins, ensuring the probability of collision between two vectors x,y on a compact subset
of Rn is proportional to K(x,y). By averaging several such hashed representations, one
again gets an approximation of the kernel that can be seen as a scalar product. Moreover,
a uniform bound on the approximation error can still be derived, upper bounding it with
high probability on the drawing of the hash functions.

In both cases, the probability distributions used to draw the function Φ̃ are adapted
to the kernel one wants to approximate. These linear random approximations were shown
to yield substantial savings on training time for several learning databases and problems
(Rahimi and Recht, 2007).

Random Kitchen Sinks. In (Rahimi and Recht, 2008), the authors consider a binary
classification problem where the classifier is sought as the sign of a linear combination of
some simple classifiers taken from a family Ω = {Φθ : θ ∈ Θ}. This framework encompasses
classification models such as SVM or boosting.

Given a training set of labeled points {(xi, yi)}Li=1 ⊂ Rn × {−1, 1}, the search for such
a classifier is usually expressed as the following minimization problem:

argmin
θ1,...,θm,α1,...,αm

L∑
i=1

�




m∑
q=1

αqΦθq(xi), yi


 , (1.13)

where m is a predetermined parameter enforcing the maximal number of terms in the
classifier and �(·, ·) is a loss function measuring the discrepancy between the predicted
class and the observed class. This optimization problem is complex, especially when
finding correct values for θq, since the relationship between θ and Φθ can be complicated.

The authors therefore propose to simplify this optimization problem by relaxing the
optimization on the parameters θq: instead of finding the best m such parameters, one
could just pick m parameters θ1, . . . , θm at random in Θ with respect to a probability
density p. The optimization problem simply becomes a simple matter of minimizing over
the weights α ∈ Rm the quantity

L∑
i=1

�
(
αT zi, yi

)
, (1.14)

where zi is the concatenated feature vector [Φθ1(xi), . . . ,Φθm(xi)]
T .

Under regularity conditions on the elements of Ω and the loss function �, with high
probability on the drawing of the parameters θq, one can upper bound the difference
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between the loss induced by the solution of (1.14) and the loss induced by the best classifier
in a certain regular family of linear combinations of elements in Ω.

Atop this theoretical bound, experiments show that this randomized formulation yields
substantial savings in training time for classification using AdaBoost.

Stochastic gradient Another interesting example where randomness can proficiently
be used to reduce learning costs is the so-called stochastic gradient method, which relies on
a method initially proposed in (Robbins and Monro, 1951). A long time after, the method
has been readjusted to online learning and studied statistically (Bottou, 1998; Murata,
1998).

The stochastic gradient is typically applied to problems where one aims at minimizing
with respect to x an objective function of the form f(x) =

∑L
i=1 �i(x), where the terms

�i(x) are typically loss terms of individual data of a training set. Provided all the functions
�i are differentiable with respect to x a usual gradient descent algorithm would need
to compute all terms ∇�i to find the gradient descent direction ∇f . However, it has
been proven that in a large-scale setting, it is sometimes preferable to reduce the cost of
computing this direction by iteratively considering a descent direction of the form ∇�i for
a particular i, which is chosen randomly among the training data in the case of stochastic
gradient. While such a method obviously yields a cost reduction of a single iteration of
the optimization algorithm, it has been proven theoretically that it can also offer a better
time/precision tradeoff at a large scale (Bottou and Bousquet, 2007).

Compressed least-squares regression. In (Maillard and Munos, 2009), the authors
propose a compressive framework to perform linear regression. Given data X = {(xr, yr)}Lr=1 ⊂
Ω×R and a family {fs : Ω → R}ns=1 of functions called features, the initial goal is to find
a vector α ∈ Rn such that the function fα =

∑n
s=1 αsfs is a viable regression function,

that is for all r,

yr ≈ fα(xr). (1.15)

The authors consider the case where α is chosen in a penalized least-squares fashion, that
is minimize a quantity of the type

L∑
r=1

|yr − fα(xr)|2 + J(α), (1.16)

where J is a regularization function.

Instead of searching for a regression function of the form fα, the authors propose
to compress the set {fs} by replacing it with a set of m features {gt}mt=1, obtained as
random linear combinations of fs. The proposed random combinations follow analogous
probability distributions to the distributions of (Achlioptas, 2001), aimed at keeping the
scalar products between a certain number of vectors while ensuring the linear combinations
are somewhat sparse in order to fasten the projections computations. The regression
function is then sought as a function gβ =

∑m
t=1 βtgt, with β ∈ Rm.

The authors derive theoretical bounds on the average risk of the optimal regression
function of the compressed model. For a suitable choice of the parameter m, one can
obtain similar error bounds on the approximation error as other noncompressive methods,
while learning the regressing function with a reduced complexity.
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1.3 Conclusion

The success of compressed sensing shows us that randomization can be very robust if
applied to the right model and problem. The provided examples of computational methods
using randomization to solve a learning task act as an incentive to express such a task in
a framework analog to compressed sensing. This will hopefully allow to develop learning
methods which combine numerical efficiency and theoretical soundness.

From this observation, we will build our first contribution in the following chapter
by proposing and instantiating a compressive learning framework on a usual estimation
problem.
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Chapter 2

Compressive density mixture
estimation

This chapter will appear in a slightly modified version in the Springer/Birkhäuser
book entitled Compressed sensing and its applications.

As we have seen in the previous chapter, methods that are close to compressed sensing have
been exploited to reduce complexity and/or memory costs of several learning tasks. To
further study the potential of compressed sensing to learning problems, let’s first present
a very conceptual view of what would be a “compressive learning” framework.

Conceptual compressive learning outline. When considering a learning problem,
one is interested in performing a certain task on a certain type of data. A learning
procedure will usually consist in trying to fit an underlying model to the type of data one
is interested in by picking a model in a parametrized set M = {Mθ : θ ∈ Θ}, where Θ is
a parameter set which is used to index the models in M. In order to achieve this model
fitting, a learning procedure will consist in finding a parameter θ∗ so that the model Mθ∗

is in some sense adequate to a training set X = {x1, . . . ,xL} containing some data one is
interested in. The computational cost of estimating such a parameter θ∗ will depend on
the size of X , on the size of the models in M and on the algorithm used for the estimation.

A compressive framework to perform such an estimation is outlined in Figure 2.1,
which represents two main ways of compressing training data in order to apply a learning
algorithm to data of reduced size. The top scheme represents the case where each vector of
X is compressed individually: this is performed for instance in (Calderbank et al., 2009),
with a method which will be described in the next section. The bottom scheme represents
the case where X will be compressed into a single representation usually called sketch, of
size m which should not depend on the number L of elements in the database but rather
on the complexity of the model one wants to fit (represented by the parameter set Θ)
and on the task one aims at achieving after the learning. This second scheme has been
instantiated in a simple estimation problem in (Thaper et al., 2002), which will also be
discussed in the next section.

Density mixture estimation. In this chapter, we will focus more particularly on a
classical unsupervised learning problem: density mixture estimation.

17
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n x1 . . . xL

Training set

(size Ln)

. . .p h1 hL

Compressed elements

(size Lp)

z

Database sketch

(size m)

m

θ

Parameters

Figure 2.1: Compressive learning outline. The learning data X = {x1, . . . ,xL} is com-
pressed into a smaller representation, which can either consist in reducing the dimensions
of each individual entry xr or in computing a more global compressed representation of the
data, called sketch. Parameters θ are then inferred from such a compressed representation
by an algorithm adapted to it.
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Let’s model the problem as follows: suppose the data set X comprises vectors of Rn,
and consider a set P of parametrized probability densities defined on Rn, that is

P =

{
pθ : Rn → R+

∣∣∣∣
∫

Rn

pθ dµ = 1,θ ∈ Θ

}
, (2.1)

where µ is the Lebesgue measure on Rn.
The goal of density mixture estimation is to find a density function p on Rn which

satisfies two prerequisites:

• p must be written as a linear combination, or mixture, of functions in P, that is
p =

∑k
s=1 αspθs , where the quantities αs are typically positive weights satisfying∑k

s=1 αs = 1 and θs are the parameters of the mixture. Let’s notice the similarity
of this condition with the sparsity condition discussed in the previous chapter.

• X can “reasonably well” be considered as a set of vectors drawn i.i.d. with respect
to a probability law of density p. This condition is typically enforced by optimizing a
certain quantity representing the consistency between the data X and the probability
p. Said quantity is usually closely related to the parametrization of the probability
densities, such as the likelihood of the parameters P(X|(αs,θs)

k
s=1), representing

the probability of the drawing of the data in X knowing the probability density p.
Alternatively, this condition can be formulated by supposing the data X is drawn
i.i.d. from a probability distribution of density f , and that one searches for the best
approximation p of f (in a certain sense), p being an element of the set of sparse
linear combinations of functions in P.

Since pmust be written as a linear combination of a few functions of P, one can consider
it as a “sparse vector” over the family P. In that sense, several works have considered
the density mixture estimation problem in a linear inverse problem fashion, and will be
discussed in the next section. Drawing our inspiration from these works, our goal in
this chapter will be to propose an instantiation of the compressive scheme represented in
bottom part of Figure 2.1, applying it to a density mixture estimation problem.

In the next section, on top of discussing the works relative to density mixture estimation
in a linear inverse problem fashion, we will also mention some other “compressive learning”
works which can also be considered as instantiations of the outline in Figure 2.1.

2.1 State of the art: density mixture estimation and com-
pressed learning

In this section, we present different sets of works that motivate our contribution: on the
one hand, works on density mixture estimation expressed as a linear inverse problem; on
the other hand, works on “compressed learning” aiming at performing learning tasks on
compressed data, some of which coming from the database literature with a concern in
analyzing data streams thanks to global compressed representations called sketches. Our
approach will combine both aspects.

2.1.1 Density mixture estimation as a linear inverse problem

To express the density mixture estimation problem in a linear inverse fashion, the works
(Bunea et al., 2010; Bertin et al., 2011) consider P as a finite set {p1, . . . , pk}. Moreover,
they also consider the alternative formulation of density mixture estimation mentioned
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earlier, that is X is drawn i.i.d. from a probability distribution of density f . Finally, they
consider the case where all the densities ps and the density f belong to the Hilbert space
L2(Rn).

In this case, the density mixture estimation consists in finding a sparse vector α ∈ Rk,
such that f ≈ fα, where fα =

∑k
s=1 αsps. This objective can be specified in different

ways in a linear inverse problem fashion. They all share the following observation: if E is
the expectation with respect to the density f , then the scalar product between f and ps,
defined by

〈f, ps〉 =
∫

Rn

psf dµ = E[ps(X)], (2.2)

can be approximated by an empirical mean obtained from the data X . This empirical
estimator is defined as

Ê[ps(X)] =
1

L

L∑
r=1

ps(xr), (2.3)

where Ê is the expectation with respect to the empirical probability distribution of the
data X .

In (Bunea et al., 2010), the authors aim at minimizing over α the quantity

‖f − fα‖22 + J(α), (2.4)

where J is a penalty function that promotes sparsity, defined as a weighted version of
�1-norm depending on the family P.

The first term can be developed using the scalar product, and can be replaced without
changing the solution to problem (2.4) by the term

− 2E[fα(X)] + ‖fα‖22. (2.5)

From there, the authors simply replace the theoretical expectation E in (2.5) by its
empirical counterpart Ê. This defines the “SPADES” estimator as

α̂ = argmin
α∈Rk

− 2

L

L∑
r=1

fα(xr) + ‖fα‖22 + J(α). (2.6)

They further propose oracle inequalities for the estimation error under different assump-
tions on the family P and the choice of the penalty term J .

In (Bertin et al., 2011), the authors apply the Dantzig selector (Candès and Tao, 2007)
to the problem by expressing it as

argmin
α∈Rk

‖α‖1, subject to |(Gα)s − Ê[ps(X)]| ≤ ηs for all 1 ≤ s ≤ k. (2.7)

In this formulation, the matrix G is the Gram matrix of the family P, for which the
(s1, s2) entry is equal to 〈ps1 , ps2〉. The quantity ηs is an adaptive threshold relative to
each density ps. The objective aims at finding a sparse solution via �1 relaxation, while
the constraints ensure that the theoretical correlation 〈ps, fα〉 = (Gα)s is close to the
empirical estimator of 〈ps, f〉 defined as Ê[ps(X)].

These two methods have been successfully applied to density mixture estimation for
several models in dimension n = 1, 2 in (Bunea et al., 2010) and n = 1 in (Bertin et al.,
2011). However, they suffer from two major drawbacks if one aims at applying them to
higher-dimensional models. Let’s give somewhat intuitive insights into the reasons for
these drawbacks:
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• Finiteness of the density model: The family P is supposed finite. However, several
density models typically used in estimation are infinite, such as Gaussian Mixture
Models (GMMs), which consider Gaussian densities indexed on a certain number of
parameters depending on n. If one aims for instance at applying these methods to
GMM estimation, one needs to discretize the continuous model of Gaussian densities.
Since a number of

(
R
h

)n
is required to sample a cube of side R with a mesh step

h in each direction, the number of centers in a discrete representation will grow
exponentially fast with n, which will not be viable computationally.

• Incoherence of the density model: Both methods rely on the fact that P is a family
of incoherent densities, that is the quantities

〈ps1 , ps2〉
‖ps1‖2‖ps2‖2

(2.8)

are not too close to 1 if s1 �= s2. This incoherence necessity prevents from decom-
posing f on a refined model containing many similar densities.

Therefore, if these approaches are viable and theoretically sound for density mixture
estimation in small dimension (n = 1, 2, 3), they may not be applied in all generality for
moderate dimensions (say, even n = 5, 10). For such dimensions, it would be more inter-
esting to consider a continuous model of densities pθ indexed by a continuous parameter
θ, such as a vector of a certain space Rd. However, such a continuous model cannot be
exploited by the aforementioned methods.

Keeping these limitations in mind, let’s present the other set of inspiring contributions
for our work, which can be viewed as compressive learning instances.

2.1.2 Learning with randomized dimensionality reduction and sketching

Learning with individual dimension reduction. In (Calderbank et al., 2009), the
authors address the classical linear Support Vector Machine (SVM) classification problem
: labeled data (X ,Y) = {(xr, yr)}Lr=1 ⊂ Rn × {−1, 1} must be separated by a hyperplane
with normal vector u satisfying yr = sign(〈u,xr〉) for all r ∈ �1, L�. Since this condition
usually cannot be satisfied, one often considers a relaxation of this problem where u is
sought as the minimizer of a loss �

L∑
r=1

�(〈v,xr〉, yr) (2.9)

over all vectors v of Rn. A reformulation of this problem in the case where � is the so-
called Hinge loss proves that v can be looked for as a linear combination of the vectors
xr. Therefore, the objective function is expressed in terms of scalar products 〈xr1 ,xr2〉.

In order to reduce the learning complexity of optimizing the objective function (2.9),
the authors propose to reduce the dimension of the vectors xr by replacing them with vec-
tors Mxr, with M : Rn → Rm being a dimensionality-reducing linear operator. Since the
vectors xr are supposedly sparse, we have seen in Chapter 1 that it is possible to randomly
choose M in order to get with high probability a RIP so that M acts approximately as an
isometry on X . Therefore, we will have

〈xr1 ,xr2〉 ≈ 〈Mxr1 ,Mxr2〉. (2.10)

The learning problem can thus approximately be tackled with the lower-dimensional vec-
tors Mxr instead of the vectors xr. The authors derive upper bounds on the error incurred
by the low-dimensional projection.
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Data stream sketches. Data streams consist in a flow of data (xr)r≥1. In some models,
the data stream is important in itself; in others, the data xr act simply as modification
step of an underlying item x, which is the object of interest (for instance, x could be a
vector and the elements xr could encode modifications of this vector such as adding or
subtracting a unit in a particular entry).

Standard statistical problems involving data streams include the search for frequent
items among the xr, usually called heavy hitters (Gilbert et al., 2007; Cormode and Had-
jieleftheriou, 2010), or more generally estimation of quantiles of the content of the stream.
When aiming at obtaining such information at a given time without having to store all
the data flow up to this point, it is necessary to maintain a compressed representation of
the data stream which will allow one to perform the desired estimations. Such compressed
representations can be deterministically built, but are sometimes built similarly to hash
functions. In this case, they are called sketches.

A sketch z is usually updated each time a new element (xr) is streamed. Examples of
usual sketches include the Count Sketch (Charikar et al., 2002) and the Count-Min Sketch
(Cormode and Muthukrishnan, 2004). They both rely on updating z thanks to randomly
chosen hash functions. They are mainly used to estimate the heavy hitters.

Compressed histogram estimation. Interestingly, (Thaper et al., 2002) proposes a
sketching procedure which can be linked to compressed sensing and to density mixture
estimation. In this work, the authors consider a data stream (xr)r≥1, where each xr is a
n-dimensional vector taken in a finite set A ⊂ Rn. The goal is to obtain, at a given point
r0, a histogram Hr0 approximating the distribution of vectors xr for r ≤ r0.

In order to avoid storing and updating a complete histogram of the data stream as
it flows, the authors propose instead to build and update a sketch of such a histogram.
This sketch is obtained by considering a low-dimensional projection of a histogram H by
a randomly built linear operator M designed to approximately keep distances between
histograms, still in a way similar to (Johnson and Lindenstrauss, 1984; Achlioptas, 2001).
The sketch can be updated at each time r by considering xr as a histogram Hr which is
null everywhere except in the bin corresponding to xr, where it is 1.

The benefit of this framework is to reduce memory costs, since the whole histogram
needs not be updated, while still being able to compute at any time a good approximation
of the histogram. However, the main drawback is the complexity of the recovery procedure,
which is exponential in the dimension n of the data. This prevents from applying this
method to even moderate dimensions (say, n = 10).

2.2 Layout of the chapter

In Section 2.3, we build an instantiation of the second scheme of Figure 2.1 to a den-
sity mixture estimation problem. We identify several conditions that such a compressive
framework must satisfy to succeed in proposing a correct answer to the problem of com-
pressive mixture estimation. We provide a precise framework to tackle this problem in
the case where the considered probability densities are isotropic Gaussians. We will also
prove that it is possible to (deterministically) linearly compress any sparse mixture of k
isotropic Gaussians in dimension n with less than 8k3n measurements.

In Section 2.4, we propose an algorithm derived from Iterative Hard Thresholding IHT
(Blumensath and Davies, 2009a) to solve the considered compressive estimation problem.
We propose an analysis of the memory usage of the algorithm and discuss its computational
cost.
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In Section 2.5, we apply our compressive algorithm to synthetic data. We compare
the precision of the compressive estimation to the estimation obtained with a standard
EM algorithm (Dempster et al., 1977) with respect to two usual pseudo-distance between
densities. We experimentally show that the compressive scheme achieves similar precision
as an EM algorithm while not requiring to store the learning data, thus leading to memory
savings when the data is numerous.

2.3 Compressive estimation framework

Let’s recall that we want to consider the following problem in a compressive way: let
X = {xr}Lr=1 be vectors of Rn, supposedly i.i.d. from a certain probability distribution
of density p ∈ L1(Rn). In the rest of this chapter, the notation Σ+

k (P) will denote the
positive linear combinations of k densities in P, that is

Σ+
k (P) =

{
k∑

s=1

λspθs : λs ∈ R+,θs ∈ Θ

}
. (2.11)

Let’s note that P ⊂ Σ+
k (P). Our goal is to find a good estimate of p in the set Σ+

k (P).

To simplify the problem, we will suppose that p is an exact k-sparse mixture of densities
taken in P, defined in (2.1), that is p =

∑k
s=1 αspθs , with αs ≥ 0,

∑k
s=1 αs = 1 and θs ∈ Θ.

In this case, the most natural way to approximate p with a density of Σ+
k (P) is to try

and estimate α = (α1, . . . , αk) and θ1, . . . ,θk from X . We further want to perform this
estimation in a compressive fashion. By analogy with compressed sensing, let’s derive a
conceptual method.

2.3.1 The compressive operator.

The unknown “signal” p is a sparse linear combination of the pθ’s. One would like to
reconstruct p from a “compressive” measure Mp, where M is a linear operator which
transforms a density function into a finite-dimensional representation, so that one is able
to manipulate it. To reconstruct p from Mp, one will then look for an element q of Σ+

k (P)
satisfying Mq ≈ Mp. The main raised issue for now is to design an adequate linear
measurement operator M. This operator should satisfy the following requirements:

• Estimation of Mp: The empirical representation of the density p is the discrete
density associated to the collection of vectors X . Since p is unknown, one cannot
compute directlyMp, and so the operatorMmust be such thatMp can be estimated
through this empirical distribution.

• Computation of MP: Intuitively, the reconstruction algorithm will aim at finding
densities of Σ+

k (P) which will have an image by M similar to the empirical value of
Mp computed from X . To reconstruct the density, one should therefore be able to
compute “easily” the value of Mf for any f ∈ Σ+

k (P) (or for any f ∈ P, which is
equivalent). “Easily” essentially means one must have a closed-form expression of
Mf .

Suppose the operator M transforms a function into a compressed representation of
dimensionm. OperatorM can be seen as the concatenation ofm linear formsM1, . . . ,Mm.
Since we made the simplifying assumption that p belonged to Σ+

k (P) ⊂ 〈P〉, where 〈P〉
denotes the complex span of P, one only needs to define the linear forms Mj on 〈P〉.
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Considering the complex span instead of the real positive span will allow us to simplify
the expressions of the linear forms we consider in the following, which are based on Fourier
transform.

These linear forms must satisfy the two above conditions. Simple linear forms on 〈P〉
can be defined as

Mg : f �→
∫

Rn

fg dµ, (2.12)

where g is a bounded measurable function on Rn. In particular, the required conditions
are easily interpreted for Mg:

• Estimation of Mgp: Since p is a probability density on Rn,

Mgp =

∫

Rn

gp dµ = E[g(X)], (2.13)

where E[·] is the expectation with respect to the probability law of density p. There-
fore, the value of Mgp can be approximated by the empirical estimate

M̂g(X ) =
1

L

L∑
r=1

g(xr) = Ê[g(X)], (2.14)

where Ê[·] is the expectation with respect to the empirical distribution with L equal
masses 1

L at each vector of X = {x1, . . . ,xL}. For such a choice of linear forms, it
is therefore possible to estimate Mgp for virtually any g. Moreover, concentration
of measure results such as Hoeffding’s inequality or McDiarmid’s inequality provide
confidence intervals on the estimation error.

• Computation of MP: The functions g should be chosen so that the value of Mgpθ
is computable in closed form for any θ ∈ Θ.

A compression scheme analog to compressed sensing will consist in considering a family
G of functions so that g.pθ is integrable for any θ ∈ Θ and g ∈ G. Having defined a probabil-
ity distribution on the family G, one will be able to randomly choose a compressive operator
M by drawing i.i.d. m functions g1, . . . , gm ∈ G and defining M = (Mg1 , . . . ,Mgm).

2.3.2 Proposed instantiation: isotropic Gaussians.

Let’s now propose a particular instantiation of this framework which we will use in the
rest of this chapter. Let’s consider σ ∈ R∗

+, which will be fixed for the rest of the chapter.
Given n ∈ �∗, let’s define the considered family of densities as

Pn =

{
pµ : x �→ 1

(2π)
n
2 σn

exp

(
−‖x− µ‖22

2σ2

)
,µ ∈ Rn

}
. (2.15)

This family contains all isotropic Gaussians of Rn with variance σ2, indexed by their n-
dimensional mean µ, which uniquely characterizes them. As before, we define Σ+

k (Pn) as
the linear combinations of k (or less) functions of Pn and we adopt for the rest of the
chapter the simplifying notation Σ+

k (Pn) = Σ+
k,n.

Natural linear forms associated to this type of functions are Fourier measurements.
Each Fourier measurement can be indexed by a frequency vector ω ∈ Rn and the corre-
sponding function g can be defined as gω(x) = exp (−i〈x,ω〉). The corresponding linear
form, denoted as Mω, is therefore:

Mω : q �→
∫

Rn

q(x)e−i〈x,ω〉dx. (2.16)
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Given data X = {x1, . . . ,xL}, the empirical counterpart of this linear form is

M̂ω (X ) =
1

L

L∑
r=1

exp (−i〈xr,ω〉) . (2.17)

A compressive operator can therefore be defined by choosing m frequencies ω1, . . . ,ωm

and posing M = (Mω1 , . . . ,Mωm). These frequencies will typically be randomly drawn,
so that for a probability density f ∈ 〈Pn〉, Mf can be interpreted as the sampling of the
characteristic function of f at m random frequencies. We will make precise the random
choice of the frequencies we retained in section 2.5.

The value of Mωpµ is explicitly computable: one has

Mωpµ = exp

(
−σ2

2
‖ω‖22

)
exp (−i〈µ,ω〉) . (2.18)

2.3.3 Injectivity of the compressive operator.

Let’s now prove that for some deterministic choices of less than 8k3n frequencies, the
corresponding sketching operator M is injective on Σ+

k,n, and even on Σk,n, which is the
set of all linear combinations of k densities of Pn (non-necessarily with positive coefficients).

Even though the frequencies we will consider in our experiments will not be deter-
ministically chosen (and will be far less numerous), the following results prove that recon-
structing a function of Σ+

k,n from a finite number of Fourier measurements is a theoretically
well-posed problem provided the frequencies are well-chosen. The proofs of the following
theorems can be found in Appendix A.

In dimension 1. We first consider the case where n = 1, from which we can deduce the
generalization for larger dimensions. In this case, the injectivity can be obtained with 4k2

well-chosen frequencies (which is indeed inferior to the number of 8k3 announced earlier):

Theorem 1. Let ω1, . . . , ω2k ∈ R\{0} be such that ∀p �= q,
ωp

ωq
�= Q. Let’s define M

be the linear operator on L1(R) which performs a Fourier sampling at the following 4k2

frequencies:

• 2k first multiples of ω1: ω1, 2ω1, . . . , 2kω1,

• 2k first multiples of ω2: ω2, 2ω2, . . . , 2kω2,

•
...

• 2k first multiples of ω2k: ω2k, 2ω2k, . . . , 2kω2k.

Then M is injective on Σk,1, and in particular on Σ+
k,1.

Let’s note that for any k, there exists 2k frequencies ωs satisfying the condition
ωp

ωq
�= Q

for all p �= q. This comes from the fact that R is a vector space of infinite dimension over
Q (if it were finite-dimensional, R would be isomorphic to QL as a Q vector space for a
certain integer L, and thus would be countable).
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In dimension n > 1. For n > 1, let’s keep the choice of ω1, . . . , ω2k of Theorem 1. The
following theorem states that there exists m ≤ 2kn vectors (uj)

m
j=1 of Rn such that taking

the measurements at frequencies ωsuj with (s, j) ∈ �1, 2k� × �1,m� yields injectivity on
Σk,n. The total number of measurements is therefore 4k2m ≤ 8k3n.

Theorem 2. Let n > 1 and ω1, . . . , ω2k ∈ R\{0} be such that ∀p �= q,
ωp

ωq
�= Q. There

exists m ≤ 2kn vectors (uj)
m
j=1 of Rn such that if M is the linear operator on L1(Rn)

which performs a Fourier sampling at frequencies ωsuj with (s, j) ∈ �1, 2k� × �1,m�, then
M is injective on Σk,n, and in particular on Σ+

k,n.

2.3.4 Recovery problem formulation.

Given the data X , we will denote ẑ the empirical sketch of X , which is the m-dimensional
vector ẑ = (M̂ω1(X ), . . . , M̂ωm(X )). One can express the recovery of the initial density p
from ẑ as the following minimization problem:

p̂ = argmin
q∈Σk

1

2
‖ẑ−Mq‖22. (2.19)

Despite being nonconvex, this kind of formulation of the problem is addressed in a
regular compressed sensing setting by greedy algorithms. In the next section, we will
derive from such a standard method an algorithm aimed at solving (2.19).

2.4 Compressive reconstruction algorithm

To address the estimation problem (2.19), we propose an algorithm analogous to Iterative
Hard Thresholding (IHT) (Blumensath and Davies, 2009a).

2.4.1 Reminder of Iterative Hard Thresholding

IHT is a standard greedy method aimed at solving sparse inverse problems, as mentioned
in Section 1.1.2. Consider a k-sparse signal x of dimension n and a measurement matrix
M of size m× n (with m < n). Denoting y = Mx the measurement of x, IHT considers
the minimization

argmin
z∈Σk

‖y −Mz‖22, (2.20)

where Σk is this time the set of k-sparse vectors of Rn. At each iteration, IHT updates
an estimate x̂ of x, decreasing the objective function φ : x̂ �→ 1

2‖y−Mx̂‖22 while ensuring
the k-sparsity of x̂. The quantity r = y −Mx̂ is named the residual. The update step is
performed in two steps:

1. The n-dimensional gradient of φ at current iterate x̂, noted ∇φ, is computed.

2. The update is given by x̂ ← Hk(x̂ − λ∇φ), where λ is a descent step and Hk is a
hard thresholding operator which keeps only the k entries of the vector with largest
module and sets the others to 0.

This algorithm has been proven to converge to the global minimum of (2.20) under a
RIP assumption on M (Blumensath and Davies, 2009a). We now adapt this scheme of
work to our reconstruction problem (2.19).
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2.4.2 Proposed continuous case algorithm

We also adopt an iterative greedy method to perform the reconstruction of p. We therefore
iteratively update an estimate p̂, which is parametrized by a vector â ∈ Rk of positive
weights and by the support Γ̂ = {µ̂1, . . . , µ̂k} ⊂ Rn corresponding to the means of the
current estimated Gaussians. The current residual is defined by r̂ = ẑ−Mp̂. In our case,
the function φ takes p̂ as an argument and is defined as

φ(p̂) =
1

2
‖ẑ−Mp̂‖22. (2.21)

There are some differences between our density estimation problem and the problem
addressed by IHT which require modifications of the procedure. They are explained in the
following sections. The algorithm is then more precisely described.

The “gradient”: continuous version. In IHT, the signal one wants to reconstruct is
supposed to be sparse in a finite basis of vectors. The gradient computed in the first step
is a finite-dimensional vector, and each entry corresponds to the infinitesimal shift of the
objective function φ when a certain entry of the vector is shifted.

In our case, the density is supposed to be sparse in the infinite basis Pσ, which is
parametrized by Rn. The “canonical” directions in which p̂ can be shifted are therefore
also parametrized by Rn, and the “gradient” is the collection of these possible shifts, which
are noted ∇µφ for all µ ∈ Rn and defined as follows:

∇µφ(p̂) =

(
∂

∂t

1

2
‖ẑ−M(p̂+ tpµ)‖22

)

t=0

= −〈Mpµ, r̂〉. (2.22)

Again, this quantity represents the local variation of the objective function (2.19) when
an infinitesimal fraction of the density pµ is added to the current estimate. Since we cannot
compute these values for every µ ∈ Rn, we must only choose a finite number of µ for which
we will compute ∇µφ.

Since we aim at decreasing φ, these directions should be chosen so that ∇µφ(p̂) is
negatively minimal, so that pµ is a seemingly good candidate to be added to the current
estimate p̂. Therefore, we seek instead a certain numberM of local minima of µ �→ ∇µφ(p̂),
which will typically be chosen as O(k). These local minima parametrize elements of P
which are the best correlated elements to the residual r̂. They are the best directions
in which to “move” locally the estimate p̂ in order to decrease the objective function φ.
These local minima are searched for by a randomly initialized minimization algorithm.
When they are found, they are added to the current support Γ̂, increasing its size up to
M + k elements.

Hard Thresholding. The second step in IHT consists in choosing a descent step used to
shift the current estimate in the direction of the gradient, and enforcing sparsity through
hard thresholding. In our case, we have at this point an updated collection of candidate
means Γ̂, and we want to keep only k of these means.

In order to do this, we aim at decomposing the empirical sketch ẑ as a positive linear
combination of vectors in Mpν , with ν ∈ Γ̂, that is to project the sketch ẑ on the cone
generated by the sketches of the functions {pν : ν ∈ Γ̂}. This cone can be noted C(MΓ̂)
and defined by

C(MΓ̂) =




K∑
j=1

λjMpνj : N > 0, λj ≥ 0,νj ∈ Γ̂


 . (2.23)
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The aforementioned projection of ẑ on C(MΓ̂) is expressed as the following minimiza-
tion problem, supposing Γ̂ contains K vectors ν1, . . . ,νK :

argmin
β∈RK

+

‖ẑ−Nβ‖2, (2.24)

where N is the concatenation of the sketches of the functions parametrized by Γ̂, that is

N = [Mpν1 . . . MpνK ] . (2.25)

The hard thresholding step is then performed by keeping the k largest coefficients and
the k corresponding parameters of Γ̂ found in (2.24). Note that in the framework we
consider (isotropic Gaussians with Fourier measurements), the quantity ‖Mpν‖2 do not
depend on ν, that is the sketches all have the same energy. In the case where they do not
have the same energy, one should keep the k coefficients such that ‖βjMpνj‖2 is maximal.

Gradient descent step. In IHT, an iteration stops when hard thresholding is per-
formed. In our case, we can still perform an additional step, which consists in decreasing
further the objective function ϕ.

At this point in the iteration, p̂ is defined as

k∑
s=1

α̂spµ̂s
, (2.26)

where the parameters ˆalphas and µ̂s hopefully estimate the real parameters αs and µs of
p.

Since the family Pσ is extremely coherent, the local minima we found in the previous
steps may be shifted from the true mean vectors because of the imprecision induced by
the other components of the mixture. This imprecision on the µs obviously also imply
imprecision on the αs. However, there may exist a better estimate for p in the vicinity of
p̂.

To find it, we simply consider ϕ as a slightly different version of φ: ϕ represents
the same cost function, but takes the parameters α1, . . . , αk and µ1,µk as arguments.
Therefore, it is defined as:

ϕ : Rk × (Rn)k → R
(α,µ1, . . . ,µk) �→ 1

2‖ẑ− [Mpµ1
. . . Mpµk

]α‖22.
(2.27)

Initializing the parameters to the current estimators α̂ and µ̂1, . . . , µ̂k, we can apply a
gradient descent algorithm on ϕ to find, in the vicinity of p̂, a better estimate in the sense
that it has a smaller image by φ.

Algorithmic scheme. Algorithm 1 summarizes the overall procedure. It mainly con-
sists of three steps by iteration:

1. M local minima of µ �→ ∇µ(p̂) are sought with a gradient descent algorithm with
random initialization and are added to the current support Γ̂.

2. The sketch ẑ is projected onMΓ̂ with a positivity constraint on the coefficients. Only
the k highest coefficients and the corresponding vectors of the support are kept.

3. A gradient descent algorithm is applied to further decrease the objective function
with respect to the weights and support vectors.

Algorithms 2, 3, 4 and 5 describe the subfunctions.
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Algorithm 1 Compressive isotropic Gaussian mixture parameter estimation

Input: Sketch ẑ, operator M, target sparsity k, integer M .
Initialize Γ̂ = ∅, r̂ = ẑ.
repeat

Set ν1, . . . ,νM ← Find min(M, r̂,M).

Set Γ̂′ ← Γ̂ ∪ {ν1, . . . ,νM}.
Set â′ ← Proj cone(ẑ, Γ̂′).

Set â, Γ̂ ← Hard threshold(â′, Γ̂′, k).

Set â, Γ̂ ← Shift support(ẑ, â, Γ̂).

Set r̂ ← ẑ−
∑k

j=1 α̂jMpµ̂j
.

until Stopping criterion is satisfied
Return â, Γ̂.

Algorithm 2 Find min(M, r̂,M)

For i = 1 to M
Find a local minimum νi of the function:
ν ∈ Rn �→ −〈Mpν , r̂〉
with a gradient descent algorithm, initialized randomly.

End For
Return ν1, . . . ,νM .

2.4.3 Memory usage

Let’s now estimate the order of magnitude of the memory required by the compressive
algorithm to estimate p from ẑ. Let’s consider that n, k and m are much larger than 1.
If we suppose that optimization algorithms only use first-order quantities, their memory
costs are dominated by O(kn). The computation of the cost function of Algorithm 5
requires O(km). The storage of the operator M (via the frequencies ωj) requires O(mn).

Therefore, the total memory usage is O((k + n)m + kn) and does not depend on the
number L of vectors. In comparison, the memory requirement of EM is O(L(k + n)) to
store both the vectors and their probabilities to belong to each current component of the
mixture. The compressed algorithm allows memory savings as soon as m+ kn

k+n � L. Since
kn � m, this condition is nearly equivalent to m � L.

This suggests that one will be able to make memory savings if the number of vectors
in the training set X is larger than the size of the sketch required to performed the
reconstruction.

2.4.4 Computational complexity

Computational complexity is the main drawback of the compressed procedure, since this
procedure relies on several optimization steps, which can involve many variables for large
k and n.

More precisely, the computational bottleneck is the last step of the iteration where a
gradient descent is performed. This optimization procedure involves k(n+1) variables and
the cost for computing the function at a certain point is O(mk). Therefore, since a first
order optimization algorithm requires the computation of the gradient for each variable,
the complexity of a simple gradient descent implementation is O(mk2(n+ 1)). Moreover,
the cost of computing the sketch from the training data is O(mL), and must be taken into
account unless the data is streamed so that the sketch can be computed “on the fly” before
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Algorithm 3 Proj cone(v,Γ = {ν1 . . .νK})
Solve the following convex optimization problem:

a = argmin
β∈RK

+

||v −Nβ||2, with N = [Mpν1 , . . . ,MpνK ].

Return a.

Algorithm 4 Hard threshold(a,Γ = {u1, . . . ,uK}, k)
Let ai1 , . . . , aik be the k highest entries of a.
Return (ai1 , . . . , aik), {ui1 , . . . ,uik}.

Algorithm 5 Shift support(ẑ, a,Γ = {µ1, . . . ,µk})
Find a local minimum (a′,µ′

1, . . . ,µ
′
k) of the function:

Rk × (Rn)k → R+

(b,ν1, . . . ,νk) �→ ‖ẑ− [Mpν1 , . . . ,Mpνk
]b‖2,

using a gradient descent algorithm initialized at
a,µ1, . . . ,µk.

Return a′, {µ′
1, . . . ,µ

′
k}.

the estimation procedure per se. The overall cost is virtually O(mL+mk2(n+ 1)ncomp),
where ncomp is the number of iterations performed in the compressed estimation procedure.

This must be compared to a standard EM algorithm, which has complexityO(kLnEM ),
where nEM is again the number of iterations performed in the EM algorithm. In the case
the sketch is not computed on the fly, there will be a gain in complexity in the compressed
case only if m 
 knEM . This was not the case in our experiments (described in the next
section), since the EM algorithm converged quickly enough so that m ∼ knEM . We will
further discuss the computational outlooks in Section 2.6.

2.5 Experiments

2.5.1 Experimental setup

To evaluate the behavior of the compressive reconstruction algorithm, we conducted exper-
iments on vectors drawn from a mixture of k isotropic Gaussians with identity covariance
matrices (σ = 1). In each case, we drew weights uniformly on the simplexa, and we
chose the Gaussian means µj by drawing random vectors, each entry being drawn from a
probability law of density N (0, 1).

The experiments were performed in the following way: after the choice of the prob-
ability distribution p, we drew L random vectors from this probability distribution and
computed the empirical sketch of the distribution in one pass of the data. The training
samples were then discarded from hard memory. We chose the sketching operator M
randomly, following the scheme described in Section 2.5.2. We then applied the recon-
struction algorithm to the empirical sketch ẑ to get an approximated mixture p̂. The
random initialization for the reconstruction algorithm is detailed in section 2.5.3.

To evaluate the quality of the estimation, we relied on two usual discrepancy measures
between probability density functions. They were used to quantify the difference between
the true mixture p and the estimated mixture p̂. The two considered quantities are defined

aWe also performed experiments where all the weights were equal to 1
k
and this didn’t alter the conclu-

sions drawn from the experiments.
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by integrals, which in our case could not be computed explicitly. Therefore, we approx-
imated the integrals by empirical means: we drew N = 105 points (yi)

N
i=1 i.i.d. from p

and computed the empirical estimates described below. The two chosen measures were:

• Kullback-Leibler (KL) divergence: A symmetrized version of KL divergence can be
defined as

DKL(p, p̂) =

∫

Rn

[
ln

(
p(x)

p̂(x)

)
p(x) + ln

(
p̂(x)

p(x)

)
p̂(x)

]
dx. (2.28)

The empirical estimate we considered is defined as

D̂KL(p, p̂) =
1

N

N∑
r=1

[
ln

(
p(yr)

p̂(yr)

)
+

p̂(yr)

p(yr)
ln

(
p̂(yr)

p(yr)

)]
. (2.29)

The KL divergence ranges from 0 to +∞, lower values meaning closer distributions.

• Hellinger distance: The Hellinger distance can be defined as

DH(p, p̂) = 1−
∫

Rn

√
p(x)p̂(x)dx. (2.30)

The empirical estimate we considered is defined as

D̂H(p, p̂) = 1− 1

N

N∑
r=1

√
p̂(yr)

p(yr)
. (2.31)

The Hellinger distance ranges from 0 to 1. Here again, lower values mean closer
distributions.

2.5.2 Choice of the frequencies

Let’s now describe the heuristic we considered to randomly choose the compressive oper-
ator M. Let’s recall that p ∈ Σk, so that p =

∑k
s=1 αspµs

, with the αs positive which sum
to 1. Denoting by F(f).ω the Fourier transform of a function f taken at frequency ω, we
have

|F(p).ω| =

∣∣∣∣∣
k∑

s=1

αspµs

∣∣∣∣∣ ≤
k∑

s=1

αs|F(pµs
).ω|

=
k∑

s=1

αs exp

(
−σ2

2
‖ω‖22

)
= exp

(
−σ2

2
‖ω‖22

)
. (2.32)

This upper bound on the value of F(p) gives a hint on the way to design the random
choice of frequencies. Indeed, we want to sample frequencies which are likely to be “en-
ergetic”, so that |F(p).ω| is not “too low”. Designing a random choice with a density
proportional to the upper bound found in (2.32) seems like a reasonable choice. Since
σ = 1, the random sampling we chose for the frequencies ωj is from a probability law of
density N (0, Id).
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Figure 2.2: Real and reconstructed centroids (respectively represented as circles and
squares) of 4 Gaussians in dimension 2 from 103 points drawn from the mixture. To
estimate the 12 real parameters of the mixture, the data was compressed to a complex-
valued sketch of dimension 30, represented to the right as a 60-dimensional real signal.

2.5.3 Heuristic for random initialization

The search for local minima in Algorithm 2 was initialized randomly by exploiting a
measure performed during the construction of the sketch: during the single pass on the
data, the norms of the vectors xr are computed and the maximum of the norms, R =
max
x∈X

||x||2, is computed. These calculations have a negligible impact on the computation

time of the sketch, and on its size (it only adds one component which “completes” the
sketch). The knowledge of R allows us to delimit a ball in which the centers of the
Gaussians are very probably contained.

We performed the random initialization by drawing a direction uniformly on the unit
sphere and multiplying this unit vector by a scalar uniformly drawn in [0;R].

2.5.4 Results

Figure 2.2 visually illustrates the behavior of the algorithm on a simple mixture of 4
Gaussians in dimension 2. L = 103 points were drawn from this mixture and used to
compute a m = 30-dimensional sketch. As shown in the figure, the mixture parameters
are precisely estimated without referring to the initial data. The symmetric KL divergence
and Hellinger distance are respectively 0.026 and 0.003.

Figure 2.3 illustrates the reconstruction quality of our algorithm in dimension 10 for
different values of mixture components k and sketch sizes m in terms of Hellinger distance.
For each sketch size m ranging from 200 to 2000 with step size 200, k was chosen to range
from m/200 to m/10 with step m/200. For each choice of parameters, 10 experiments
were performed and the depicted value is the Hellinger distance such that 80% of the
experiments lead to a smaller Hellinger distance. We can essentially observe that the
Hellinger distance gradually decreases as the number of mixture components rises. For
the considered parameters range, choosing m = 10kn, i.e., choosing m so that it contains
10 times more values than the number of parameters to estimate, leads to a Hellinger
distance smaller than 0.03 for 80% of the cases. Note that the number of measurements
we took for the experiments is way below the deterministic number of 8k3n provided in
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Figure 2.3: Quality of reconstruction in dimension n = 10, with N = 104 points, measured
as a Hellinger distance. Each square corresponds to 10 experiments, and the depicted
values are the values of the Hellinger distance under which 80% of performed experiments
are placed.

Section 2.3.3, suggesting that a random choice of frequencies can be proven as a robust
choice allowing the drastic reduction of the number of measurements compared to the
proposed deterministic choice.

Table 2.1 compares our algorithm with a standard EM algorithm (Dempster et al.,
1977) in the case where n = 20, k = 10, m = 1000 for values of dataset size L ranging
from 103 to 105. For each case, we can see that the precision of the estimation increases
with the number of samples. In the compressed case, this can be explained by the fact
that the components of the sketch are better estimated with more points. We notice that
the memory used for EM is proportional to the number L of samples in the dataset, while
the memory required by the compressed algorithm does not depend on this parameter,
which leads to a substantial improvement in memory usage for L ≥ 104. Even with this
reduced memory cost, the compressed algorithm is able to provide a precision comparable
to the precision of the EM algorithm.

2.6 Conclusion and outlooks

In this chapter, we first proposed a review of techniques reminiscent of inverse problems
and compressed sensing applied to certain learning tasks, mainly to density estimation.
Our contribution consisted in a framework for density mixture estimation, which was
instantiated to isotropic Gaussians and random Fourier sampling. We could derive an
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L
Compressed

KL div. Hell. Mem.

103 0.68± 0.28 0.06± 0.01 0.6

104 0.24± 0.31 0.02± 0.02 0.6

105 0.13± 0.15 0.01± 0.02 0.6

L
EM

KL div. Hell. Mem.

103 0.68± 0.44 0.07± 0.03 0.24

104 0.19± 0.21 0.01± 0.02 2.4

105 0.13± 0.21 0.01± 0.02 24

Table 2.1: Comparison between our compressed estimation algorithm and an EM algorithm
in terms of precision of the estimation and memory usage (in megabytes). Experiments
were performed with n = 20, k = 10, m = 1000. In each cell, the value is a median on 10
experiments with the standard deviation for the precision measures.

algorithm which experimentally shows good reconstruction properties with respect to a
standard estimation algorithm. Let’s now mention some outlooks related to these results.

2.6.1 Extension to richer families of densities

Density mixture estimation using isotropic Gaussians can be seen as a clustering problem.
It would be particularly interesting to extend the experimental results to more general
families of Gaussians, for instance with diagonal covariance matrices, to allow for variations
in the form of the “clusters”.

Considering larger families of densities would probably require finer choices for the
sketching operator M, in order to be able to separate the compressed representations of
all vectors of the enriched family. For this purpose, it seems interesting to investigate
multiscale sketches, where coarser frequencies may be used at the beginning of the recon-
struction algorithm to avoid getting too many local minima, and higher frequencies can
be added throughout the algorithm to approach the solution.

2.6.2 Computational savings

If such a compressive framework has the potential to reduce memory requirements by
computing the sketch on the fly with streamed data, the computational complexity of
the density reconstruction is still large, especially due to the last stage of the algorithm
(Algorithm 5), which is an optimization step involving (n + 1)k variables and which is
performed at each iteration in the current state of the algorithm. Algorithmic savings
could be made by finding a faster alternative to this step. The cost of computing the sketch
may also be reduced by finding better sketching operators or procedures. In particular,
adopting a “multiscale” paradigm, where several sketches are computed at different ranges
of frequencies may provide faster convergence to an acceptable solution.

Let’s also note that the size of the sketch does not depend on the number of training
vectors, that is the complexity of the estimation do not increase in the case where the
sketch is updated using more training vectors (this does not include the time which is
necessary to build the sketch). Moreover, the algorithm should be more precise when
the number L of training vectors increases, since the empirical sketch ẑ is in this case
a more reliable estimate of the theoretical sketch Mp. The general approach described
in this chapter may therefore be compared to conceptual results suggesting that for a
certain learning task, if an estimation algorithm is well chosen in an abstract collection
of algorithms, then the computational complexity required to achieve a given estimation
error ratio should decrease when the size of the training set increases (Shalev-Shwartz
et al., 2012).
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2.6.3 Theoretical analysis

We have proved that some deterministic choices of the frequencies yielded the injectivity
of the sketching operator M on Σk, so that the reconstruction of a density from a sketch is
theoretically well-posed. The next step in studying the well-posedness of such a problem
would be a finer study of Σk and the action of M when the frequencies are chosen at
random, with a Gaussian distribution such as the distribution chosen for the frequencies.

Investigating the geometry of Σk and using “union bound” techniques such as in clas-
sical compressed sensing, it seems possible to study the average amount of energy of the
function one is able to keep by randomly sampling the Fourier transform. This type of
result typically allows deduction of robustness results about the operator M.

In particular, the regularity of Gaussians seems interesting to study this “conservation
of energy” and it may be conclusive to study the behavior of M on the Schwartz space.
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Chapter 3

Performance of decoders in linear
inverse problems

Note: The main part of this chapter is taken from the preprint Fundamental per-
formance limits for ideal decoders in high-dimensional linear inverse problems, which
was submitted to IEEE Transactions on Information Theory on November 2013. A
version of this preprint can be found at: http://arxiv.org/abs/1311.6239.

Inverse problems have been introduced in Chapter 1 in the case where one wants to invert
a linear operator applied to a sparse vector in a certain basis. On top of this standard case,
inverse problems concern a wide range of other signals: one can be interested in adding
hypotheses to the usual sparse model if they have more information than just sparsity
about the considered signals or conversely relax some hypotheses on the sparse model
to build a model containing more objects. Inverse problems can even be considered for
models which are structured differently than the set of sparse vectors.

Models beyond sparsity for inverse problems. Even if the sparse vectors model
still attracts a lot of attention, other works on inverse problems or compressed sensing
considering more exotic signal models have multiplied over the years (Baraniuk et al.,
2010). In these “generalized” models, the signals of interest live in or close to a subset
Σ of the space. Such models are more adequate to describe particular type of signals or
objects, and some of them are represented in Figure 3.1. A list of various models which
have been considered in inverse problem or compressed sensing setting is:

• Block-sparse signals (Eldar et al., 2010) are vectors divided into blocks and for
which only a few blocks are nonzero. In practice, this model can be used to model
signals with a multi-band spectrum (Mishali and Eldar, 2009), or the difference of
gene expression levels between two samples (Parvaresh et al., 2008).

• Dictionary-sparse signals (Rauhut et al., 2008). Sparse signals models can be
considered relatively to a certain basis, but also to a dictionary, with possibly linearly
redundant vectors but which represent more adequately the considered signals. In
particular, these models can be used for various signal processing tasks such as
denoising or deblurring.

37

http://arxiv.org/abs/1311.6239


38CHAPTER 3. PERFORMANCEOF DECODERS IN LINEAR INVERSE PROBLEMS

• Cosparse signals (Nam et al., 2013) are signals which are sparse after undergoing
a linear transform Ω, typically dimension-increasing. This framework can model
overcomplete transforms of a signal which supposedly yields sparsity, such as the
shift invariant wavelet transform (Mallat, 2008) or the finite difference operator for
an image.

• Low-rank matrices (Recht et al., 2010; Candès and Plan, 2011) often appear
when considering data which live near a subspace of limited dimension relatively
to the ambient dimension. Moreover, instead of only considering matrices which
are approximately low-rank, one can model the signals of interest as the sum of a
low-rank matrix and of a sparse matrix (Zhou et al., 2010). In order to circumvent
the ambiguity of such a decomposition (a matrix can be low-rank and sparse), a
nonsparsity constraint on the low-rank matrix can be considered (Candès et al.,
2011a).

• Unions of subspaces (Blumensath and Davies, 2009b; Blumensath, 2011) can
be considered in a general setting, which encompasses a lot of other models. In
particular, the usual k-sparse model in dimension n is the union of

(
n
k

)
subspaces

corresponding to all the possible supports of a k-sparse vector. Most other sparse
models can be considered as finite union of subspaces. Furthermore, some models
of low-rank matrices can be viewed as an infinite union of subspaces (Blumensath,
2011).

• Low-dimensional manifolds have been considered in a compressed sensing setting
(Baraniuk and Wakin, 2006; Eftekhari and Wakin, 2013). Such models can apply to
the representation of small variations of an image (Wakin et al., 2005; Wakin, 2009).

• Symmetric definite positive square matrices with k-sparse inverse. High-
dimensional Gaussian graphical models have a covariance matrix of this type: the
numerous pairwise conditional independences that characterize the structure of such
models, and make them tractable, translate into zeros entries of the inverse covari-
ance matrix (the concentration matrix). Combining sparsity prior on the concentra-
tion matrix with maximum likelihood estimation of covariance from data, permits
to learn jointly the structure and the parameters of Gaussian graphical models (so
called “covariance selection” problem) (Yuan and Lin, 2007; Yuan, 2010).

• Low-dimensional embedding of a point cloud consists in finding a projection of
the points onto a low-dimensional subspace while approximately keeping distances
between points. This is asymptotically feasible while substantially reducing the di-
mension, as proved by Johnson-Lindenstrauss lemma (Johnson and Lindenstrauss,
1984). As in compressed sensing, such a projection can be achieved with high prob-
ability with usual random drawings of matrices (Achlioptas, 2001).

All these models share a common point: they typically contain far fewer vectors than
the whole space. Indeed, these models serve as a priori information on the considered
signals in order to enable their reconstruction from a non-injective operator M. The
well-posedness of an inverse problem thus comes from the information that the signal to
reconstruct x is sufficiently close to a subset Σ of the signal space. For this information to
be useful, the model Σ needs to be a substantially small part of the space for the inverse
problem to make sense, otherwise the number of solutions of the problem will be too large
to have a meaning.
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Figure 3.1: Illustration of several CS models. From left to right: k-sparse vectors, union
of subspaces, smooth manifold and point cloud.

Since these models generalize the sparse model, the following question arises: can they
be considered under a general framework, sharing common reconstruction properties? The
following discussion precises what type of results would be expected in this generalized
framework.

What should we expect for an inverse problem to be well-posed? The well-
posedness of an inverse problem is not a universal property. There are numerous ways to
define when a problem is well-posed: either theoretically or practically, either uniformly
or probabilistically. A common requirement for well-posedness is that M is injective on
Σ, so that the problem is theoretically well-posed: if x ∈ Σ, the knowledge of Mx yields
the knowledge of x since there is one, and one only, element of Σ having the image Mx
by M.

However, this theoretical well-posedness given by the single injectivity on Σ is usually
not sufficient practically for several reasons:

• Stability to the model : The model Σ do not contain exactly the vectors one is inter-
ested in recovering. It is only comprised of approximations of the signals of interest.
Therefore, M should be such that one can recover sufficiently precisely vectors which
do not exactly belong to Σ but “live near” Σ in a certain sense.

• Robustness to noise: The measure Mx cannot be known with infinite precision.
Aside from the obvious fact that this quantity is usually considered numerically,
so that a quantization step occurs and involves a precision loss, linear operators M
considered in inverse problems represent in general physical filters applied to a signal,
such as transformations that a signal undergoes when captured or processed by a
device. In this case, chances are that the measure is corrupted by a certain amount
of noise, so that the measure is of the form Mx + e, where e is the additive noise
term.

• Practical recovery algorithm: Probably the most important issue, one needs to be
capable of practically solve the inverse problem with all the aforementioned con-
straints. The existence of a unique solution is therefore not sufficient to ensure the
reconstruction: one needs an algorithm which will find the signal x within a given
precision.
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Expressing conditions under which a signal model can be recovered with these ad-
ditional constraints is much more difficult and involves a part of subjectivity. In this
chapter, we first review a well-posedness formulation previously proposed (Cohen et al.,
2009) and called Instance Optimality. This condition was originally defined for the model
of sparse vectors and characterizes a uniform stability to the model. The contributions of
this chapter concern the generalization of these results to other models as those previously
mentioned, as well as the study of Instance Optimality in the general case.

3.1 State of the art: Instance Optimality in the sparse case

Let’s consider the vector space E = Rn and the set of k-sparse vectors Σk. Define on
E a linear measurement operator M mapping the signal space in Rm. The problem of
inverting M for signals in Σk can be seen as the definition of a decoder ∆ : Rm → Rn such
that ∀x ∈ Σk,∆(Mx) = x, thus making M a linear encoder associated to the (typically
nonlinear) decoder ∆.

As has already been mentioned in the previous section, a good decoder ∆ is certainly
expected to have nicer properties than simply reconstructing Σk, the first of it being the
stability to the model: the signal x to be reconstructed may not belong exactly in Σk but
“live near” Σk under a distance d, meaning that d(x,Σk) = infz∈Σk

d(x, z) is “small” in
a certain sense. In this case, one wants to be able to build a sufficiently precise estimate
of x from Mx, that is a quantity ∆(Mx) such that ‖x−∆(Mx)‖ is “small” for a certain
norm ‖ · ‖. This stability to the model has been formalized into the so-called Instance
Optimality assumption on ∆. ∆ is said to be instance optimal if:

∀x ∈ Rn, ‖x−∆(Mx)‖ ≤ Cd(x,Σk), (3.1)

for a certain choice of norm ‖ · ‖ and distance d. For this property to be meaningful,
the constant C must not scale with n and typically “good” instance optimal decoders are
decoders which involve a constant which is the same for all n (note that this implicitly
relies on the fact that a sparse set Σk ⊂ Rn can be defined for any n). When the norm
is �2 or �1 and the distance is �1, such good instance optimal decoders exist and can be
implemented as the minimization of a convex objective (Donoho, 2006; Candès and Tao,
2006; Candès, 2008) under assumptions on M such as the Restricted Isometry Property
(RIP). Note that Instance Optimality is a uniform upper bound on the reconstruction
error, and that other types of bounds on decoders can be studied, particularly from a
probabilistic point of view (Chandrasekaran et al., 2012). Other early work include upper
bounds on the reconstruction error from noisy measurements with a regularizing function
when the signal belongs exactly to the model (Engl et al., 1996).

In (Cohen et al., 2009), the authors considered the following question: Given the
encoder M, is there a simple characterization of the existence of an instance optimal
decoder? Their goal was not to find implementable decoders that would have this property,
but rather to identify conditions on M and Σk under which the reconstruction problem
is ill-posed if one aims at finding an instance optimal decoder with small constant. The
existence of a decoder ∆ which satisfies (3.1) will be called the Instance Optimality Property
(IOP). The authors proved that this IOP is closely related to a property of the kernel of
M with respect to Σ2k, called the Null Space Property (NSP). This relation allowed them
to study the existence of stable decoders under several choices of norm ‖.‖ and distance
d(., .).

More precisely, the authors considered two norms ‖ ·‖G and ‖ ·‖E defined on the signal
space Rn, the distance derived from ‖ · ‖E being denoted dE . Instance Optimality with
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respect to these two norms rewrites as follows: a decoder ∆ : Rm → Rn is said to be
instance optimal for k-sparse signals if

∀x ∈ Rn, ‖x−∆(Mx)‖G ≤ CdE(x,Σk), (3.2)

for some constant C > 0.
This property on ∆ upper bounds the reconstruction error of a vector, measured by

‖ · ‖G, by the distance from the vector to the model, measured by dE . The authors prove
that the existence of an instance optimal decoder, called IOP, is closely related to the
NSP of M with respect to the set Σ2k of 2k-sparse vectors. Noting N = ker(M), this NSP
states

∀h ∈ N , ‖h‖G ≤ DdE(h,Σ2k) (3.3)

for some constant D.
The relationship between the IOP and the NSP is the following: if there exists an

instance optimal decoder ∆ satisfying (3.2), then (3.3) holds with D = C. Conversely,
if (3.3) holds, then there exists a decoder ∆ such that (3.2) holds with C = 2D. Such a
decoder can be defined as follows, supposing M is onto:

∆(Mx) = argmin
z∈(x+N )

dE(z,Σk), (3.4)

x+N denoting the set {x+ h,h ∈ N}. The well-posedness of this definition is discussed
in Appendix B.1, in the more general setting where the model is a finite union of subspaces
in finite dimension. Note that for generalized models, such a decoder may not necessarily
exist since the infimum of dE(z,Σ) may not be achieved, as we will discuss in the next
section.

This result can be seen as an “equivalence” between the IOP and the NSP, with similar
constants.

On top of this fundamental relationship between IOP and NSP, a question addressed
in (Cohen et al., 2009) is that of the fundamental limits of dimension reduction: Given
the target dimension m and desired constant C, is there an encoder M with an associated
instance optimal decoder? They particularly showed that there is a fundamental trade-
off between the size of the constant C in (3.1) (with �2 norm and �2 distance) and the
dimension reduction ratio m/n.

In (Peleg et al., 2013), the theoretical results of (Cohen et al., 2009) are generalized in
the case where one aims at stably decoding a vector living near a finite union of subspaces
(UoS). They also show in this case the impossibility of getting a good �2/�2 instance optimal
decoder with substantial dimensionality reduction. Their extension also covers the case
where the quantity one wants to decode is not the signal itself but a linear measure of the
signal.

In our thesis work, we further extended the study of the IOP to general models of
signals. The global summary of our contributions is the subject of the next section.

3.2 Summary of the contributions

In our work, we consider signals of interest living in or near a subset Σ of a vector space
E, without further restriction, and show that instance optimality can be generalized for
such models. In fact, we consider the following generalizations:

• Robustness to noise: noise-robust instance optimality is characterized, showing
somewhat surprisingly the equivalence between the existence of two flavors of noise-
robust decoders (noise-aware and noise-blind);
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• Infinite dimension: signal spaces E that may be infinite dimensional are con-
sidered. For example E may be a Banach space such as an Lp space, the space
of signed measures, etc. This is motivated by recent work on infinite dimensional
compressed sensing (Adcock et al., 2013; Hansen and Adcock, 2011) or compressive
density estimation (Bourrier et al., 2013b), discussed in Chapter 2;

• Task-oriented decoders: the decoder is not constrained to approximate the signal
x itself but rather a linear feature derived from the signal, Ax, as in (Peleg et al.,
2013); in the usual inverse problem framework, A is the identity. Examples of
problems where A �= I include:

– Medical imaging of a particular region of the body: as in Magnetic Resonance
Imaging, one may acquire Fourier coefficients of a function defined on the body,
but only want to reconstruct properly a particular region. In this case, A would
be the orthogonal projection on this region.

– Partial source separation: given an audio signal mixed from several sources
whose positions are known, as well as the microphone filters, the task of isolating
one of the sources from the mixed signal is a reconstruction task where E is the
space of concatenated sources, and A orthogonally projects such a signal in a
single source signal space.

We now summarize more precisely our main contributions which fall under two cate-
gories: on the one hand the characterization of the existence of an instance optimal decoder
given a linear measurement operator M and a model Σ, on the other hand the limits of
dimensionality reduction.

3.2.1 Instance optimality for inverse problems with general models

In the noiseless case, we express a concept of Instance Optimality which does not neces-
sarily involve homogeneous norms and distances but some pseudo-norms instead. Such a
generalized Instance Optimality can be expressed as follows:

∀x ∈ E, ‖Ax−∆(Mx)‖G ≤ CdE(x,Σ), (3.5)

where ‖ ·‖G is a pseudo-norm and dE is a distance the properties of which will be specified
in due time, and A is a linear operator representing the feature one wants to estimate
from Mx. Our first contribution is to prove that the existence of a decoder ∆ satisfying
(3.5), which is a generalized IOP, can be linked with a generalized NSP, similarly to the
sparse case. This generalized NSP can be stated as:

∀h ∈ ker(M), ‖Ah‖G ≤ DdE(h,Σ− Σ), (3.6)

where the set Σ − Σ is comprised of all differences of elements in Σ, that is Σ − Σ =
{z1 − z2|z1, z2 ∈ Σ}. The constants C and D are related by a factor no more than 2,
as will be stated in Theorems 3 and 4 characterizing the relationships between these two
properties. In particular, all previously mentioned low-dimensional models can fit in this
generalized framework.

3.2.2 Noise-robust instance optimality

Our second contribution (Theorems 5 and 6) is to provide a noise-robust extension of
instance optimality and link it to a property called the Robust NSP. Section 3.4 regroups
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these noiseless and noise-robust results after a review of the initial IOP/NSP results of
(Cohen et al., 2009). We show somewhat surprisingly that the existence of noise-aware
instance optimal decoders for all noise levels implies the existence of a noise-blind decoder.

3.2.3 Infinite-dimensional inverse problems

The generalization to arbitrary vector spaces allows us to consider infinite dimensional
inverse problems. Here things are not always as straightforward as in the finite dimensional
setting. For example, in the theory of generalized sampling (Adcock and Hansen, 2012),
even when the signal model Σ is simply a finite dimensional subspace, it can be necessary
to oversample by some factor in order to guarantee stable recovery. In fact Theorem 4.1 of
(Adcock and Hansen, 2011) can be read as a statement of �2/�2 instance optimality for a
specific (linear) decoder given in terms of the NSP constant of the measurement operator.
The results presented here therefore provide an extension of generalized sampling for linear
models beyond �2.

In (Adcock and Hansen, 2011) the authors also combine generalized sampling theory
with compressed sensing. However, rather than developing a uniform instance optimality
theory which seems the most natural extension of generalized sampling, they adopt a
non-uniform approach based on (Candès and Plan, 2011). Our results should enable the
development of a uniform infinite dimensional CS theory.

3.2.4 Limits of dimensionality reduction with generalized models

The reformulation of IOP as an NSP allows us to consider the �2/�2 instance optimality for
general models in Section 3.5. In this case, the NSP can be interpreted in terms of scalar
product and we precise the necessity of the NSP for the existence of an instance optimal
decoder. This leads to the proof of Theorem 8 stating that, just as in the sparse case,
one cannot expect to build an �2/�2 instance optimal decoder if M reduces substantially
the dimension and the model is “too large” in a precise sense. In particular, we will see
that the model is “too large” when the set Σ − Σ contains an orthonormal basis. This
encompasses a wide range of standard models where a consequence of our results is that
�2/�2 IOP with dimensionality reduction is impossible:

• k-sparse vectors. In the case where Σ = Σk is the set of k-sparse vectors, Σ contains
the null vector and the canonical basis, so that Σ− Σ contains the canonical basis.
Note that the impossibility of good �2/�2 IOP has been proved in (Cohen et al.,
2009).

• Block-sparse vectors (Eldar et al., 2010). The same argument as above applies
in this case as well, implying that imposing a block structure on sparsity does not
improve �2/�2 feasibility.

• Low-rank matrices (Recht et al., 2010; Candès and Plan, 2011). In the case where
E = Mn(R) and Σ is the set of matrices of rank ≤ k, Σ also contains the null matrix
and the canonical basis.

• Low-rank + sparse matrices (Zhou et al., 2010; Candès et al., 2011a). The same
argument applies to the case where the model contains all matrices that are jointly
low-rank and sparse, which appear in phase retrieval (Oymak et al., 2012; Ohlsson
et al., 2011; Candès et al., 2011b).
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• Low-rank matrices with non-sparsity constraints. In order to reduce the
ambivalence of the low-rank + sparse decomposition of a matrix, (Candès et al.,
2011a) introduced non-sparsity constraints on the low-rank matrix in order to enforce
its entries to have approximately the same magnitude. However, as shown in Lemma
3, an orthonormal Fourier basis of the matrix space can be written as differences of
matrices which belong to this model.

• Reduced union of subspace models (Baraniuk et al., 2010) obtained by pruning
out the combinatorial collection of k-dimensional subspaces associated to k-sparse
vectors. This covers block-sparse vectors (Eldar et al., 2010), tree-structured sparse
vectors, and more. Despite the fact that these unions of subspaces may contain
much fewer k-dimensional subspaces than the combinatorial number of subspaces of
the standard k-sparse model, the same argument as in the k-sparse model applies
to these signal models, provided they contain the basis collection of 1-sparse signals.
This contradicts the naive intuition that �2/�2 IOP could be achievable at the price
of substantially reducing the richness of the model through a drastic pruning of its
subspaces.

• k-sparse expansions in a dictionary model (Rauhut et al., 2008). More gen-
erally, if the model is the set of vectors which a linear combination of at most k
elements of a dictionary D which contains an orthogonal family or a tight frame,
then Theorem 8 applies.

• Cosparse vectors with respect to the finite difference operator (Nam et al.,
2013; Peleg et al., 2013). As shown in (Peleg et al., 2013), the canonical basis is
highly cosparse with respect to the finite difference operator, hence it is contained
in the corresponding union of subspaces.

• As shown in Lemma 2, this is also the case for symmetric definite positive square
matrices with k-sparse inverse. The covariance matrix of high-dimensional Gaus-
sian graphical models is of this type: the numerous pairwise conditional indepen-
dences that characterize the structure of such models, and make them tractable,
translate into zeros entries of the inverse covariance matrix (the concentration ma-
trix). Combining sparsity prior on the concentration matrix with maximum likeli-
hood estimation of covariance from data, permits to learn jointly the structure and
the parameters of Gaussian graphical models (so called “covariance selection” prob-
lem) (Yuan and Lin, 2007; Yuan, 2010). In very high-dimensional cases, compressive
solutions to this problem would be appealing.

• Johnson-Lindenstrauss embedding of point clouds (Achlioptas, 2001). Given a set
X of L vectors in Rn and ε > 0, there exists a linear mapping f : Rn → Rm, with
m = O(ln(L)/ε2) and

(1− ε)‖x− y‖2 ≤ ‖f(x)− f(y)‖2 ≤ (1 + ε)‖x− y‖2 (3.7)

holds for all x,y ∈ X . The fact that the point cloud contains a tight frame is
satisfied if it “spreads” in a number of directions which span the space. In this case,
one cannot guarantee precise out-of-sample reconstruction of the points in Rn in the
�2-sense, except for a very limited neighborhood of the point cloud. This is further
discussed in Section 3.7.
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3.2.5 Generalized Restricted Isometry Property

Our last contribution, in Section 3.6, is to study the relations between the NSP and a
generalized version of the Restricted Isometry Property (RIP), which encompasses classical
or recent RIP formulations, such as

• the D-RIP (Candès et al., 2011) for the dictionary model;

• the RIP for low-rank matrices (Candès and Plan, 2011);

• the Ω-RIP (Giryes et al., 2013) for the cosparse model.

This generalized RIP bounds ‖Mx‖F from below and/or above on a certain set V , and
can be decomposed in:

Lower− RIP : ∀x ∈ V, α‖x‖G ≤ ‖Mx‖F (3.8)

Upper− RIP : ∀x ∈ V, ‖Mx‖F ≤ β‖x‖G, (3.9)

where ‖ · ‖G and ‖ · ‖F are norms defined respectively on the signal space and on the
measure space, and 0 < α ≤ β < +∞. We prove particularly in Theorem 9 that a
generalized lower-RIP on Σ− Σ implies the existence of instance optimal decoders in the
noiseless and the noisy cases for a certain norm ‖ · ‖E we call the “M -norm”a.

Furthermore, we prove that under an upper-RIP assumption on Σ, this M -norm can
be upper bounded by an atomic norm (Chandrasekaran et al., 2012) defined using Σ and
denoted ‖ · ‖Σ. This norm is easier to interpret than the M -norm: it can in particular
be upper bounded by usual norms for the k-sparse vectors and low-rank matrices models.
We have the following general result relating generalized RIP and IOP (Theorem 10): if
M satisfies a lower-RIP (3.8) for V = Σ− Σ and an upper-RIP (3.9) for V = Σ, then for
all δ > 0, there exists a decoder ∆δ satisfying ∀x ∈ E, ∀e ∈ F ,

‖x−∆δ(Mx+ e)‖G ≤ 2

(
1 +

β

α

)
dΣ(x,Σ) +

2

α
‖e‖E + δ, (3.10)

which is a particular case of Robust instance optimality, as described in Section 3.4.

3.3 Structure of the chapter

The structure of the chapter is as follows: Section 3.4 first contains a quick review of the
relationship between IOP and NSP in the usual sparse case, then exposes the more general
setting considered in this paper, for which these properties and their relationship are
extended, both in noiseless and noisy settings. Section 3.5 then focuses on the particular
case of �2/�2 IOP, proving the impossibility for a certain class of models to achieve such
IOP with decent precision in dimension reducing scenarii. In particular, we show that
this encompasses a wide range of usual models. Finally, in Section 3.6, we get back to
the problem of IO with general norms and prove that a generalized version of the lower-
RIP implies the existence of an instance optimal decoder for a certain norm we call the
“M -norm”. We propose an upper-bound on this norm under a generalized upper-RIP
assumption to get an IOP with simpler norms, illustrating the result in standard cases.

The proofs of most of the results presented in this chapter are found in Appendix B.

aThe prefix “M-” should be thought as “Measurement-related norm” since in other works the measure-
ment matrix may be denoted by other letters.
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Signal space E

Pseudo-norm ‖ · ‖E
(pseudo-distance dE) Measure space F
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MΣ
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∆(Mx+ e)

‖Ax−∆(Mx+ e)‖G

AΣ
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A

Feature space G

Pseudo-norm ‖ · ‖G

Figure 3.2: Illustration of the proposed generalized setting. The signals belong to the
space E, supplied with a pseudo-norm ‖ ·‖E used to measure the distance from a vector to
the model Σ containing the signals of interest. E is mapped in the measure space F by the
operator M and the measure is perturbed by an additive noise e. The space F is supplied
with a pseudo-norm ‖·‖F . The feature space G, supplied with a norm ‖·‖G, is composed of
vectors obtained by applying a linear operator A to the signals in E. These feature vectors
are the vectors one wants to reconstruct from the measures in M by applying a decoder
∆. The reconstruction error for the vector x and noise e is therefore ‖Ax−∆(Mx+e)‖G.
Note that in the case where E = G and A = I, the decoder is aimed at reconstructing
exactly the signals.

3.4 Generalized IOP and NSP equivalences

In this section, we extend the initial IOP/NSP relationship in several ways.

3.4.1 Proposed extensions

The framework we consider is more general. The signal space is a vector space E, possibly
infinite-dimensional. In particular, E may be a Banach space such as an Lp space, the
space of signed measures, etc. On this space is defined a linear operator M : E → F , where
F is the measurement space, which will most likely be finite-dimensional in practice. We
assume that M is onto. We further define a signal model Σ ⊂ E comprising the signals
which we want to be able to “reconstruct” from their images by M. In the framework
we consider, this “reconstruction” is not necessarily an inverse problem where we want to
recover x from Mx. More precisely, as in (Peleg et al., 2013), we consider a case where we
want to recover from Mx a quantity Ax, where A is a linear operator mapping E into a
space G. When G = E and A = I, we are brought back to the usual case where we want
to reconstruct x. This generalized framework is illustrated in Figure 3.2.

In this generalized framework, we are now interested in the concepts of IOP and NSP,
as well as their relationship. A decoder ∆ : F → G will aim at approximating Ax from
Mx.

The approximation error will be measured by a function ‖ · ‖G : G → R+. This
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Triangle Inequality Symmetry ‖0‖ = 0 Definiteness Homogeneity

‖ · ‖E X X X - -

‖ · ‖F X X X - -

‖ · ‖G X X - - -

Table 3.1: Summary of the hypotheses on the pseudo-norms ‖ · ‖E , ‖ · ‖F and ‖ · ‖G. A
cross means the property is required, a horizontal bar means it is not.

function needs not be a norm in order to state the following results. It still must satisfy
the following properties:

Symmetry : ‖x‖G = ‖ − x‖G (3.11)

Triangle inequality : ‖x+ y‖G ≤ ‖x‖G + ‖y‖G. (3.12)

The differences with a regular norm is that neither definiteness nor homogeneity is required:
‖x‖G = 0 needs not imply x = 0 and ‖λx‖G needs not equal |λ|‖x‖G. We provide two
examples of such pseudo-norms in the case where G = Rn:

• ‖ · ‖G can be defined as a “non-normalized” �p-quasinorm for 0 ≤ p ≤ 1, that is
‖x‖G =

∑n
i=1 |xi|p. In this case, ‖λx‖G = |λ|p‖x‖G.

• More generally, if f : R+ → R+ is a concave function such that f(x) = 0 ⇔ x = 0,
then ‖·‖G can be defined as the f -(pseudo-)norm ‖x‖f =

∑n
i=1 f(|xi|), see (Gribonval

and Nielsen, 2007).

In order to measure the distance from a vector to the model, we also endow E with a
pseudo-norm ‖ · ‖E : E → R+ which satisfies the same properties as ‖ · ‖G with the
additional requirement that ‖0‖E = 0. The pseudo-distance dE is defined on E2 by
d(x,y) = ‖x − y‖E . Yet again, ‖ · ‖E can be defined as a non-normalized �p-norm or an
f -norm.

We will also consider a noisy framework where the measure Mx is perturbed by an
additive noise term e. To consider IOP and NSP in this context, we measure the amount
of noise with a pseudo-norm in the measurement space F , which we will denote by ‖ · ‖F .
The assumptions we make on ‖ · ‖F are the same as the assumptions on ‖ · ‖E .

To sum up, here are the extensions we propose compared to the framework of (Cohen
et al., 2009; Peleg et al., 2013) :

• The measure Mx can be perturbed by an additive noise e.

• The model set Σ can be any subset of E.

• E is not necessarily Rn but can be any vector space, possibly infinite-dimensional.

• The reconstruction of Ax is targeted rather than that of x.

• The functions ‖ · ‖E , ‖ · ‖F and ‖ · ‖G need not be norms but can be pseudo-norms
with relaxed hypotheses. In particular, Table 3.1 summarizes the requirements on
these functions.
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N

Σ

x+N•
x

•
x1

d(x1,Σ)

•
x2

d(x2,Σ)

•
x3

d(x3,Σ)

Figure 3.3: Necessity of the additive δ term in a simple case. For each x in the blue
half-plane, the distance dE(x + N ,Σ) is never reached at a particular point of x + N :
the distance strictly decreases as one goes right along the affine plane x+N (d(x1,Σ) <
d(x2,Σ) < d(x3,Σ)), so that the minimal distance is reached “at infinity”.

The noiseless case

We first consider the same framework as (Cohen et al., 2009; Peleg et al., 2013), where one
measures Mx with infinite precision. In our generalized framework, instance optimality
for a decoder ∆ reads:

∀x ∈ E, ‖Ax−∆(Mx)‖G ≤ CdE(x,Σ).

We will prove that if IOP holds, i.e., if the above holds for a certain decoder ∆, then a
generalized NSP is satisfied, that is:

∀h ∈ N , ‖Ah‖G ≤ DdE(h,Σ− Σ),

with D = C. Note that the set Σ2k has been replaced by Σ− Σ = {x− y,x ∈ Σ,y ∈ Σ}.
When Σ = Σk, we have indeed Σ− Σ = Σ2k.

The construction of an instance optimal decoder from the NSP is more complicated
and the form of the instance optimality we get depends on additional assumptions on
Σ and M. Let’s first suppose that for all x ∈ E, there exists z ∈ (x + N ) such that
dE(z,Σ) = dE(x+N ,Σ). Then the NSP (3.6) implies the existence of an instance optimal
decoder satisfying (3.5) with C = 2D. If this assumption is not true anymore, then the
NSP implies a slightly modified IOP, which states, for any δ > 0, the existence of a decoder
∆δ such that:

∀x ∈ E, ‖Ax−∆δ(Mx)‖G ≤ CdE(x,Σ) + δ, (3.13)

reflecting the fact that one cannot necessarily consider the exact quantity

argmin
z∈(x+N )

dE(z,Σ)

but rather a certain vector z ∈ (x+N ) satisfying dE(z,Σ) ≤ dE(x+N ,Σ)+ δ. A similar
positive “projection error” appears in (Blumensath, 2011).

Remark 1. To understand the necessity of such an additive error term when Σ is a general
set, we can consider the following toy example depicted in Figure 3.3 where E = R2,
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N = R× {0}, Σ = {(x1, x2) ∈ (R+)
2 : x2 =

1
x1
} and ‖ · ‖G/‖ · ‖E are the �2 norm. In this

case, the minimal distance between x + N and Σ is not reached at any point, making it
necessary to add the δ term for the decoder to be well-defined.

In this setting, the NSP (3.6) implies the existence of instance optimal decoders in the
sense of (3.13) for all δ > 0. Moreover, this weak IOP formulation still implies the regular
NSP with D = C. This is summarized in Theorems 3 and 4.

Theorem 3. Suppose ∀δ > 0, there exists a decoder ∆δ satisfying (3.13):

∀x ∈ E, ‖Ax−∆δ(Mx)‖G ≤ CdE(x,Σ) + δ.

Then M satisfies the NSP (3.6):

∀h ∈ N , ‖Ah‖G ≤ DdE(h,Σ− Σ),

with constant D = C.

Theorem 4. Suppose that M satisfies the NSP (3.6):

∀h ∈ N , ‖Ah‖G ≤ DdE(h,Σ− Σ).

Then ∀δ > 0, there exists a decoder ∆δ satisfying (3.13):

∀x ∈ E, ‖Ax−∆δ(Mx)‖G ≤ CdE(x,Σ) + δ,

with C = 2D.

If we further assume that

∀x ∈ E, ∃z ∈ (x+N ), dE(z,Σ) = dE(x+N ,Σ), (3.14)

then there exists a decoder ∆ satisfying (3.5):

∀x ∈ E, ‖Ax−∆(Mx)‖G ≤ CdE(x,Σ) (3.15)

with C = 2D.

Note that this result is similar to the result proven in (Peleg et al., 2013), which was
stated in the case where Σ is a finite union of subspaces in finite dimension. In this
framework, condition (3.14) is always satisfied as soon as ‖ · ‖E is a norm, by the same
argument as in usual CS (see Appendix B.1).

Let’s also note the following property: if ‖ · ‖E is definite, that is ‖x‖E = 0 ⇒ x = 0,
then dE is a distance. In the following proposition, we prove that if we further suppose that
the set Σ+N is a closed set with respect to dE , then the NSP (3.6) implies for any δ > 0 the
existence of a decoder ∆δ satisfying (3.5) with C = (2 + δ)D. This assumption therefore
allows us to suppress the additive constant in (3.13) and replace it by an arbitrarily small
increase in the multiplicative constant of (3.5).

Proposition 1. Suppose that M satisfies the NSP (3.6), that dE is a distance and that
Σ+N is a closed set with respect to dE. Then ∀δ > 0, there exists a decoder ∆δ satisfying:

∀x ∈ E, ‖Ax−∆δ(Mx)‖G ≤ (2 + δ)DdE(x,Σ). (3.16)
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The noisy case

In practice, it is not likely that one can measure with infinite precision the quantity Mx.
This measure is likely to be contaminated with some noise, which will be considered in
the following as an additive term e ∈ F , so that the measure one gets is y = Mx+ e. In
this case, a good decoder should be robust to noise, so that moderate values of e should
not have a severe impact on the approximation error. We are interested in the existence
of similar results as before in this noisy setting.

We first need to define a noise-robust version of instance optimality. The robustness to
noise of practical decoders is in fact a problem that has been considered by many authors.
A first type of result considers noise-aware decoders, where given the noise level ε ≥ 0 a
decoder ∆ fulfills the following property: ∀x ∈ E, ∀e ∈ F,

‖e‖F ≤ ε ⇒ ‖Ax−∆(Mx+ e)‖G ≤ C1dE(x,Σ) + C2ε. (3.17)

Here, the upper bound on the approximation error gets a new term measuring the ampli-
tude of the noise. For example, this noise-robust instance optimality holds for a noise-aware
�1 decoder in the sparse case with bounded noise (Candès, 2008) for ‖ · ‖G = ‖ · ‖2 and
‖ · ‖E = ‖.‖1/

√
k, provided M satisfies the RIP on Σ2k.

In practical settings, it is hard to assume that one knows precisely the noise level. To
exploit the above guarantee with a noise-aware decoder, one typically needs to overestimate
the noise level. This loosens the effective performance guarantee and potentially degrades
the actual performance of the decoder. An apparently stronger property for a decoder is
to be robust even without knowledge of the noise level: ∀x ∈ E, ∀e ∈ F,

‖Ax−∆(Mx+ e)‖G ≤ C1dE(x,Σ) + C2‖e‖F . (3.18)

Further on, such decoders will be referred to as noise-blind. Guarantees of this type
have been obtained under a RIP assumption for practical decoders such as iterative hard
thresholding, CoSAMP, or hard thresholding pursuit, see e.g. (Foucart, 2011, Corollary
3.9).

Of course, the existence of a noise-blind noise-robust decoder in the sense of (3.18)
implies the existence of a noise-aware noise-robust decoder in the sense of (3.17) for any
noise level ε. We will see that, somewhat surprisingly, the converse is true in a sense, for
both are equivalent to a noise-robust NSP.

Just as in the noiseless case, dealing with an arbitrary model Σ and possibly infinite di-
mensional E requires some caution. For δ > 0, the noise-robust (and noise-blind) instance
optimality of a decoder ∆δ is defined as: ∀x ∈ E, ∀e ∈ F ,

‖Ax−∆δ(Mx+ e)‖G ≤ C1dE(x,Σ) + C2‖e‖F + δ. (3.19)

One can see that ∆δ necessarily also satisfies the noiseless instance optimality (3.13) by
setting e = 0.

As we show below, if for every δ > 0 there exists a noise-robust instance optimal
decoder ∆δ satisfying (3.19), then a generalized NSP for M relatively to Σ − Σ, referred
to as Robust NSP, must hold:

∀h ∈ E, ‖Ah‖G ≤ D1dE(h,Σ− Σ) +D2‖Mh‖F , (3.20)

with D1 = C1 and D2 = C2. This property appears e.g. in (Foucart and Rauhut, 2013)
(Chap. 4) with ‖ · ‖G = ‖ · ‖E = ‖ · ‖1 and ‖ · ‖F any norm. Note that this Robust NSP
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concerns every vector of E and not just the vectors of the null space N = ker(M)b. In the
case where h ∈ N , one retrieves the regular NSP. For other vectors h, another additive
term, measuring the “size” of Mh, appears in the upper bound.

Conversely, the Robust NSP implies the existence of noise-robust instance optimal
decoders ∆δ satisfying (3.19) with C1 = 2D1 and C2 = 2D2 for all δ > 0. These results
are summarized in Theorems 5 and 6.

Theorem 5. Suppose ∀δ > 0, there exists a decoder ∆δ satisfying (3.19): ∀x ∈ E, ∀e ∈ F,

‖Ax−∆δ(Mx+ e)‖G ≤ C1dE(x,Σ) + C2‖e‖F + δ.

Then M satisfies the Robust NSP (3.20):

∀h ∈ E, ‖Ah‖G ≤ D1dE(h,Σ− Σ) +D2‖Mh‖F ,

with constants D1 = C1 and D2 = C2.

Theorem 6. Suppose that M satisfies the Robust NSP (3.20):

∀h ∈ E, ‖Ah‖G ≤ D1dE(h,Σ− Σ) +D2‖Mh‖F .

Then ∀δ > 0, there exists a decoder ∆δ satisfying (3.19): ∀x ∈ E, ∀e ∈ F,

‖Ax−∆δ(Mx+ e)‖G ≤ C1dE(x,Σ) + C2‖e‖F + δ,

with constants C1 = 2D1 and C2 = 2D2.

We conclude this section by discussing the relation between noise-aware and noise-blind
decoders. A noise-aware version of noise-robust instance optimality can be defined where
for ε ≥ 0, δ > 0 we require ∀x ∈ E, ∀e ∈ F,

‖e‖F ≤ ε ⇒ ‖Ax−∆δ,ε(Mx+ e)‖G ≤ C1dE(x,Σ) + C2ε+ δ. (3.21)

Of course, the existence of a noise-blind instance optimal decoder implies that of noise-
aware decoders for every ε ≥ 0. The converse is indeed essentially true, up to the value of
the constants Ci:

Theorem 7. Suppose ∀ε, δ > 0, there exists a noise-aware decoder ∆δ,ε satisfying (3.21):
∀x ∈ E, ∀e ∈ F,

‖e‖F ≤ ε ⇒ ‖Ax−∆δ,ε(Mx+ e)‖G ≤ C1dE(x,Σ) + C2ε+ δ.

Then M satisfies the Robust NSP (3.20) with constants D1 = C1 and D2 = 2C2. There-
fore, by Theorem 6, there exists an instance optimal noise-blind decoder satisfying: ∀x ∈
E, ∀e ∈ F,

‖Ax−∆δ(Mx+ e)‖G ≤ 2C1dE(x,Σ) + 4C2‖e‖F + δ.

bIn fact, unlike the NSP (3.6), (3.20) is not purely a property of the null space N even though it implies
the NSP. The name Robust NSP is thus somewhat improper, but has become a standard for this type of
property.
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3.5 �2/�2 Instance Optimality

In this section, we suppose that E is a Hilbert space equipped with the norm ‖ · ‖2 and
scalar product 〈·, ·〉, that F = Rm and we consider a finite-dimensional subspace V of
dimension n, on which we define the measure operator M. We are interested in the
following question in the noiseless framework: Is it possible to have a “good” noiseless
instance optimal decoder with ‖ · ‖G = ‖ · ‖E = ‖ · ‖2 in a dimensionality reducing context
where m 
 n?

A result of (Cohen et al., 2009) states that in the usual sparse setting, one cannot
expect to get a good instance optimal decoder if M performs a substantial dimensionality
reduction, the best corresponding constant being

√
n
m . In (Peleg et al., 2013), the authors

prove that this lower bound on the constant holds in the case where Σ is a finite union
of subspaces in finite dimension. Here, we are interested in a version of this result for the
general case where Σ can be a more general subset of E. More precisely, we will give a
sufficient condition on Σ under which the optimal �2/�2 instance optimalityconstant is of
the order of

√
n
m , thus preventing the existence of a �2/�2 instance optimal decoder with

small constant if m 
 n.

3.5.1 Homogeneity of the NSP

In the case where ‖ · ‖G, ‖ · ‖E and ‖ · ‖F are actual norms, the general NSP can be
rewritten as an NSP holding on the cone R(Σ − Σ) generated by Σ − Σ, i.e., the set
{λz|λ ∈ R, z ∈ Σ− Σ}.

Lemma 1. If ‖ · ‖G and ‖ · ‖E are norms, we have an equivalence between the NSP on
Σ− Σ:

∀h ∈ N , ‖Ah‖G ≤ DdE(h,Σ− Σ), (3.22)

and the NSP on R(Σ− Σ):

∀h ∈ N , ‖Ah‖G ≤ DdE(h,R(Σ− Σ)). (3.23)

Similarly, if ‖ · ‖G, ‖ · ‖E and ‖ · ‖F are norms, we have an equivalence between the
robust NSP on Σ− Σ:

∀h ∈ E, ‖Ah‖G ≤ D1dE(h,Σ− Σ) +D2‖Mh‖F , (3.24)

and the robust NSP on R(Σ− Σ):

∀h ∈ E, ‖Ah‖G ≤ D1dE(h,R(Σ− Σ)) +D2‖Mh‖F . (3.25)

This lemma, which is valid even in the case where A is not the identity, shows that
the NSP imposes a constraint on the whole linear cone spanned by the elements of Σ−Σ
and not only on the elements themselves. Note that this equivalence is trivial in the case
where Σ is a union of subspaces since Σ− Σ is already a cone in this case.

3.5.2 The optimal �2/�2 NSP constant

Remark 2. In the subsequent sections of the paper, we will assume that A = I (this
implies G = E), so that one aims at reconstructing the actual signal.



3.5. �2/�2 INSTANCE OPTIMALITY 53

In the �2/�2 case, one can give a simple definition of the optimal NSP constant D∗, that
is the minimal real positive number D such that the �2/�2 NSP is satisfied with constant
D:

D∗ = inf {D ∈ R+|∀h ∈ N , ‖h‖2 ≤ Dd2(h,Σ− Σ)}. (3.26)

This definition assumes that there exists some constant so that the NSP is satisfied. Using
the NSP definition and Lemma 1, we get that

D∗ = sup
h∈N

z∈R(Σ−Σ)

‖h‖2
‖h− z‖2

= sup
h∈N

z∈R(Σ−Σ)

1

‖ h
‖h‖2 − z

‖h‖2 ‖2
. (3.27)

Denoting N1 and Σ1 respectively the set of unit-norm vectors (in the �2 sense) of N
and Σ− Σ, we can rewrite the expression above as:

D∗ = sup
h∈N1

z∈R(Σ−Σ)

1

‖h− z‖2
= sup

h∈N1
z∈Σ1
λ∈R

1

‖h− λz‖2
. (3.28)

A simple study gives that if ‖h‖2 = ‖z‖2 = 1, then supλ∈R
1

‖h−λz‖2 = 1√
1−〈h,z〉2

, so

that:

D∗ = sup
h∈N1
z∈Σ1

1√
1− 〈h, z〉2

. (3.29)

The contraposition of Theorem 3 gives the following result : if the NSP (3.6) is not
satisfied for a certain constant D, then no decoder ∆δ can satisfy instance optimality (3.13)
with constant D. In the �2/�2 case, considering D < D∗, h ∈ N ∩B2 and z ∈ R(Σ−Σ)∩B2

such that 〈h, z〉2 ≥ 1 − 1
D2 , we can construct two vectors such that for any decoder,

instance optimality with constant <
√
D2 − 1 can only be satisfied for at most one of

them. This will shed light on the link between NSP and IOP. We have z = z1−z2
‖z1−z2‖2

for some z1, z2 ∈ Σ. Let ∆ be a decoder. If ∆(Mz1) �= z1, then this vector prevents
∆ from being instance optimal. The same goes for z2 if ∆(Mz2) �= z2. Now, let’s
suppose that z1 and z2 are correctly decoded. In this case, (z1 + z2)/2 is decoded with a
constant worse than

√
D2 − 1, as depicted in Figure 3.4. Indeed, noting p = (z1 + z2)/2

and defining the vectors p1 and p2 respectively as the orthogonal projections of z1 and
z2 on the affine plane p + N , we must have ∆(Mp1) = ∆(Mp2). Denoting as pN⊥

the orthogonal projection on N⊥, we have d2(p1,Σ) ≤ d2(p1, z1) = ‖pN⊥(z2 − z1)‖2/2.
Similarly, d2(p2,Σ) ≤ ‖pN⊥(z2− z1)‖2/2. The fact that ∆(Mp1) = ∆(Mp2) implies that
there exists i ∈ {1, 2} such that ‖pi − ∆(Mpi)‖2 ≥ ‖p1 − p2‖2/2 = ‖pN (z1 − z2)‖2/2.
Therefore, ‖pi−∆(Mpi)‖2

d2(pi,Σ) ≥ ‖pN (z2−z1)‖2
‖pN⊥ (z2−z1)‖2 ≥ D

√
1− 1

D2 =
√
D2 − 1. This illustrates the

closeness between NSP and IOP: a vector of R(Σ−Σ) which is correlated with N can be
used to define a couple of vectors such that for any decoder, one of the vectors will not be
well decoded.

3.5.3 �2/�2 IO with dimensionality reduction

Main theorem

Let’s now exploit the expression of D∗ to state the main result of this section: if R(Σ−Σ)
contains an orthonormal basis of the finite-dimensional subspace V ⊂ E (or even a family
of vectors that is sufficiently correlated with every vector of V ), then one cannot expect to
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N

p1

z1

z2

p2

•
p

p+N

Figure 3.4: Illustration of the impact of the correlation between N and Σ−Σ on instance
optimality. Here, z1 and z2 are two vectors in Σ such that z1 − z2 is well correlated with
N , implying that at least one of the two vectors p1 and p2, which are close to Σ but far
from one another, will not be well decoded.

get a �2/�2 instance optimal decoder with a small constant while M substantially reduces
the dimension of V . The fact that R(Σ− Σ) contains such a tight frame implies that the
dimension of N cannot be too big without N being strongly correlated with Σ− Σ, thus
yielding the impossibility of a good instance optimal decoder.

Before showing examples where this theorem applies, let’s first state it and prove it.

Theorem 8. Suppose V is of dimension n and Σ − Σ contains a family z1, . . . , zn of
unit-norm vectors of E satisfying ∀x ∈ V ,

∑n
i=1〈zi,x〉2 ≥ K‖x‖22. Then to satisfy the

NSP on V , M must map V into a space of dimension at least
(
1− 1

K

(
1− 1

D2
∗

))
n.

If the number of measurements m is fixed, then an �2/�2 IO decoder must have a
constant at least 1√

1−K(1−m
n )

.

In particular, if Σ−Σ contains an orthonormal basis of V , then K = 1 and the minimal
number of measures to achieve NSP with constant D∗ is n/D2

∗. Similarly, if m is fixed so
that m 
 n, then a �2/�2 instance optimal decoder has constant at least

√
n
m .

Examples

As discussed in the introduction, there is a wide range of standard models where Σ − Σ
contains an orthonormal basis, and so where �2/�2 IOP with dimensionality reduction is
impossible. We provide here less trivial examples, where E = V is finite-dimensional.

Symmetric definite positive matrices with sparse inverse.

Lemma 2. Consider E is the space of symmetric n-dimensional matrices, and Σ ⊂ E
the subset of symmetric positive-definite matrices with sparse inverse and with sparsity
constant k ≥ n+ 2 (note that k ≥ n is necessary for the matrix to be invertible). The set
Σ− Σ contains an orthonormal basis of E.

Proof. This orthonormal basis we consider is made of the n(n + 1)/2 matrices: Ei,i and
1√
2
(Ei,j +Ej,i)i �=j , where Ei,j is the matrix where the only nonzero entry is the (i, j) entry

which has value 1.



3.5. �2/�2 INSTANCE OPTIMALITY 55

First, consider Bi = I+ Ei,i, where I is the identity matrix. Since B−1
i = I− 1

2Ei,i is
n-sparse, we have Bi ∈ Σ. Since, I ∈ Σ, we have Ei,i = Bi − I ∈ Σ− Σ.

Now, consider the matrix Ci,j = 2I + Ei,j + Ej,i. This matrix is symmetric and for
x = (x1, . . . , xn) ∈ Rn, we have xTCi,jx = 2(‖x‖22−xixj) ≥ 0, so that Ci,j is semi-definite
positive. We can remark that Ci,j is invertible and that its inverse is 1

2I+
1
6(Ei,i+Ej,j)−

1
3(Ei,j + Ej,i), which is n + 2-sparse. The fact that Ci,j is invertible implies that it is
definite, so that Ci,j ∈ Σ. Therefore, we can write Ei,i + Ej,j = Ci,j − 2I ∈ Σ− Σ. Since
Σ is a positive cone, multiplying this equality by 1√

2
yields the desired result.

Low-rank and nonsparse matrices. In (Candès et al., 2011a), the authors consider
a matrix decomposition of the form L+ S, where L is low-rank and S is sparse. In order
to give meaning to this decomposition, one must avoid L to be sparse. To this end, a
“nonsparsity model” for low-rank matrices was introduced.

Let E be the space of complex matrices of size n1 × n2. Given µ ≥ 1 and r ≤
min(n1, n2), let Σµ,r be the set of matrices of E of rank ≤ r satisfying the two following
conditions (denoting the SVD of such a matrix by

∑r
k=1 σkukv

∗
k, where σk > 0 and the

uk and vk are unit-norm vectors) :

1. ∀k, ‖uk‖∞ ≤
√

µr
n1

and ‖vk‖∞ ≤
√

µr
n2
.

2. Denoting U and V the matrices obtained by concatenating the vectors uk and vk,

‖UV∗‖∞ ≤
√

µr
n1n2

.

These two conditions aim at “homogenizing” the entries of U and V. Note that we
necessarily have µ ≥ 1.

Lemma 3. Let E = Mn1,n2(C) and Σµ,r be the subset of E containing the matrices
satisfying the two above conditions (with µ ≥ 1 and r ≥ 1). Then Σµ,r −Σµ,r contains an
orthonormal basis.

Proof. Since Σµ,r contains the null matrix, it is sufficient to prove that Σµ,r contains an
orthonormal basis. Let {ek}n1

k=1 and {f�}n2
�=1 be the discrete Fourier bases of Cn1 and Cn2 ,

that is

ek =
1

√
n1

[
1, exp

(
2iπk

n1

)
, . . . , exp

(
2iπ(n1 − 1)k

n1

)]T

f� =
1

√
n2

[
1, exp

(
2iπ�

n2

)
, . . . , exp

(
2iπ(n2 − 1)�

n2

)]T
.

Then the n1n2 rank-1 matrices of the form ekf
∗
� are elements of Σµ,r since they ob-

viously satisfy the two above conditions. But they also form an orthonormal basis of E,
since each entry of ekf

∗
� is of module 1√

n1n2
and that, denoting 〈·, ·〉 the Hermitian scalar

product on E, we have

〈ekf∗� , ek′f∗�′〉

=

n1−1∑
u=0

exp

(
2iπu

k − k′

n1

) n2−1∑
v=0

exp

(
2iπv

�− �′

n2

)

= δk
′

k δ�
′
� ,

proving that these matrices form an orthonormal basis of E.
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3.6 The NSP and its relationship with the RIP

In the following section, we consider E = G (and A = I). As we have seen, one cannot
expect to get �2/�2 instance optimality in a dimensionality reduction context. This raises
the following question: given pseudo-norms ‖ · ‖G and ‖ · ‖F defined respectively on E and
F , is there a pseudo-norm ‖ · ‖E such that IOP holds? We will see that this property is
closely related to the RIP on M.

3.6.1 Generalized RIP and its necessity for robustness

The Restricted Isometry Property is a widely-used property on the operator M which
yields nice stability and robustness results on the recovery of vectors from their compressive
measurements. In the usual CS framework, the RIP provides a relation of the form (1 −
δ)‖x‖G ≤ ‖Mx‖F ≤ (1 + δ)‖x‖G for any vector x in Σ2k. The norms ‖ · ‖G and ‖ · ‖F are
usually both taken as the �2-norm. A form of RIP can easily be stated in a generalized
framework: we will say that M satisfies the RIP on Σ−Σ if there exists positive constants
α, β such that

∀z ∈ Σ− Σ, α‖z‖G ≤ ‖Mz‖F ≤ β‖z‖G. (3.30)

Similarly to the sparse case, it is possible to make a distinction between lower-RIP (left
inequality) and upper-RIP (right inequality). Let’s remark that this definition has been
stated for vectors of Σ − Σ: this choice is justified by the links between this formulation
and the NSP, which will be discussed later in this section. Let’s also note that this form of
RIP encompasses several generalized RIP previously proposed: the Ω-RIP (Giryes et al.,
2013), the D-RIP (Candès et al., 2011) and the Union of Subspaces RIP (Blumensath,
2011).

Let’s now suppose the existence of decoders robust to noise, that is for all δ > 0, (3.19)
is satisfied for a certain ∆δ. This property implies the Robust NSP (3.20) with the same
constants according to Theorem 5. By considering h ∈ Σ− Σ, the Robust NSP reads:

∀h ∈ Σ− Σ, ‖h‖G ≤ D2‖Mh‖F . (3.31)

This is the lower-RIP on Σ − Σ, with constant 1/D2. The stability to noise therefore
implies the lower-RIP on the set of differences of vectors of Σ, which is therefore necessary
if one seeks the existence of a decoder robust to noise.

3.6.2 M-norm instance optimality with the RIP

The lower-RIP is necessary for the existence of a Robust instance optimal decoder, but
what can we say this time if we suppose that M satisfies the lower-RIP on Σ − Σ with
constant α, that is ∀z ∈ Σ−Σ, α‖z‖G ≤ ‖Mz‖F ? We will prove that in both the noiseless
and the noisy cases, this implies the IOP with norms ‖ · ‖G and ‖ · ‖M, the latter being
called “M -norm”c and involving ‖ · ‖G and ‖ · ‖F .

Let’s define the M -norm on E as the following quantity, extending its definition for �2
norms in (Peleg et al., 2013) and its implicit appearance in the proof of early results of
the field (Candès, 2008):

∀x ∈ E, ‖x‖M = ‖x‖G +
1

α
‖Mx‖F . (3.32)

cto highlight its dependency on the Measurement operator
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Note that the term M -norm should be understood as M -pseudo-norm in the general
case: if ‖ · ‖F and ‖ · ‖G satisfy the properties listed in Table 3.1, then ‖ · ‖M satisfies the
same properties as ‖ · ‖G. However, when ‖ · ‖G and ‖ · ‖F are norms, ‖ · ‖M is also a norm.
We will note dM(., .) its associated (pseudo-)distance. The following theorem states that
this ‖ · ‖M allows one to derive an NSP from the lower-RIP on Σ− Σ.

Theorem 9. Let’s suppose that M satisfies the lower-RIP on Σ−Σ with constant α (left
inequality of (3.30)). Then the following Robust NSP is satisfied:

∀h ∈ E, ‖h‖G ≤ dM(h,Σ− Σ) +
1

α
‖Mh‖F . (3.33)

In particular, the following regular NSP is satisfied:

∀h ∈ N , ‖h‖G ≤ dM(h,Σ− Σ). (3.34)

Therefore, if M satisfies the lower-RIP on Σ − Σ with constant α, then for all δ > 0,
there exists a noise-robust instance optimal decoder ∆δ satisfying the following property
(Theorem 6): ∀x ∈ E, ∀e ∈ F,

‖x−∆δ(Mx+ e)‖G ≤ 2dM(x,Σ) +
2

α
‖e‖F + δ. (3.35)

Note that in (Blumensath, 2011), the author explored the implication of a lower-RIP
on Σ − Σ for the case where Σ is an arbitrary UoS and ‖.‖G/‖.‖F are the �2 norm. He
proved that this generalized lower-RIP implies the following IOP: for all δ > 0, there exists
a decoder ∆δ such that ∀x ∈ E, ∀e ∈ F, ∀z ∈ Σ,

‖x−∆δ(Mx+ e)‖2 ≤ ‖x− z‖2 +
2

α
‖M(x− z) + e‖2 + δ. (3.36)

In this set-up, the instance optimality in equation (3.35) can be reformulated as: ∀x ∈
E, ∀e ∈ F, ∀z ∈ Σ,

‖x−∆δ(Mx+ e)‖2 ≤ 2‖x− z‖2 +
2

α
‖M(x− z)‖2 +

2

α
‖e‖2 + δ. (3.37)

Comparing these two instance optimality results, we can remark that the one in (Blu-
mensath, 2011) is slightly tighter. This is merely a consequence of the difference in our
method of proof, as we add the NSP as an intermediate result to prove instance optimality.
The upper bound in (Blumensath, 2011) can also be derived in our case with the same
proof layout if we suppose the lower-RIP. Compared to (Blumensath, 2011), our theory
deals with general (pseudo-)norms and sets Σ beyond Union of Subspaces.

3.6.3 Upper-bound on the M-norm by an atomic norm

As we have seen, provided a lower-RIP on Σ − Σ, an NSP can be derived with the M -
norm as ‖ · ‖E . However, this may look like a tautology since the M -norm explicitly
depends on M. Hence, one may wonder if this NSP is of any use. We will prove in the
following that provided an upper-RIP on a certain cone Σ′ (which can be taken as RΣ),
a more natural upper bound can be derived by bounding the M -norm with an atomic
norm (Chandrasekaran et al., 2012). In particular, this type of inequality applied to the
usual k-sparse vectors and low-rank matrices models give, under standard RIP conditions,
instance optimality upper bounds with typical norms.

We will suppose in this section that ‖ · ‖G is a norm.
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The atomic norm ‖ · ‖Σ′

Let Σ′ be a subset of E and let E′ be the closure of span(Σ′) with respect to the norm
‖ · ‖G. For x ∈ E′, one can define the “norm” ‖x‖Σ′ by:

‖x‖Σ′ = inf

{
+∞∑
k=0

‖xk‖G | ∀k,xk ∈ RΣ′ and ‖x−
K∑
k=0

xk‖G →K→+∞ 0

}
. (3.38)

Remark that there may be some vectors x for which ‖x‖Σ′ = +∞, if
∑+∞

k=0 ‖xk‖G =
+∞ for any decomposition of x as an infinite sum of elements of RΣ′. However, the set
V = {x ∈ E|‖x‖Σ′ < +∞} is a normed subspace of E which contains Σ′ (DeVore and
Temlyakov, 1996). In the following, we assume that V = E. Note that this norm can be
linked to atomic norms defined in (Chandrasekaran et al., 2012) by considering A as the
set of normalized elements of Σ′ with respect to ‖ · ‖G.

Now suppose M satisfies an upper-RIP on Σ′, so that

∀x′ ∈ Σ′, ‖Mx′‖F ≤ β‖x′‖G. (3.39)

For x ∈ E admitting a decomposition
∑+∞

k=0 xk on RΣ′, we can therefore upper bound
‖Mx‖F by

∑+∞
k=0 ‖Mxk‖F ≤ β

∑+∞
k=0 ‖xk‖G. This inequality is valid for any decomposition

of x as a sum of elements of RΣ′, so that ‖Mx‖F ≤ β‖x‖Σ′ . Therefore, under these
hypotheses,

∀x ∈ E, ‖x‖M ≤ ‖x‖G +
β

α
‖x‖Σ′ ≤

(
1 +

β

α

)
‖x‖Σ′ . (3.40)

In particular, we have the following result:

Theorem 10. Suppose M satisfies the lower-RIP on Σ − Σ with constant α and the
upper-RIP on Σ with constant β, that is

∀x ∈ Σ− Σ, α‖x‖G ≤ ‖Mx‖F (3.41)

and
∀x ∈ Σ, ‖Mx‖F ≤ β‖x‖G. (3.42)

Then for all δ > 0, there exists a decoder ∆δ satisfying: ∀x ∈ E, ∀e ∈ F,

‖x−∆δ(Mx+ e)‖G ≤ 2

(
1 +

β

α

)
dΣ(x,Σ) +

2

α
‖e‖E + δ, (3.43)

where dΣ is the distance associated to the norm ‖ · ‖Σ.

Remark 3. Note that these results can be extended with relative ease to the case where
‖ · ‖G is not necessarily homogeneous but p-homogeneous, that is ‖λx‖G = |λ|p‖x‖G.

Study of ‖ · ‖Σ in two usual cases

We now provide a more thorough analysis of the norm ‖ · ‖Σ for usual models which are
sparse vectors and low-rank matrices. In particular, we give a simple equivalent of this
norm involving usual norms in the case where ‖ · ‖G = ‖ · ‖2 (for matrices, this is the
Frobenius norm).

The norm ‖ · ‖Σ relies on the decomposition of a vector as a sum of elements of RΣ.
When Σ is the set of k-sparse vectors or the set or matrices of rank k, there are particular
decompositions of this type:
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• In the case where Σ is the set of k-sparse vectors, a vector x can be decomposed
as

∑∞
j=1 xj , where all xj are k-sparse vectors with disjoint supports, which are

eventually zero, and such that any entry of xj does not exceed any entry of xj−1

(in magnitude). This is a decomposition of x into disjoint supports of size k with a
nonincreasing constraint on the coefficients.

• Similarly, in the case where Σ is the set of matrices of rank k and N is a matrix, the
SVD of N gives a decomposition of the form N =

∑∞
j=1Nj , where the Nj are rank

k, eventually zero matrices such that any singular value of Nj does not exceed any
singular value of Nj−1.

For j ≥ 2, we can upper bound the quantity ‖xj‖2 using the assumption on the

particular decomposition: ‖xj‖2 ≤
√
k‖xj‖∞ ≤

√
k
‖xj−1‖1

k =
‖xj−1‖1√

k
. Similarly, ‖Nj‖2 ≤

‖Nj−1‖∗√
k

, where ‖ · ‖∗ is the trace norm, defined as the sum of singular values. We can

therefore, in both cases, upper bound the norm ‖ · ‖Σ. In the case of k-sparse vectors, this
gives:

‖x‖Σ ≤ ‖x1‖2 +
∑
j≥1

‖xj‖1√
k

≤ ‖x‖2 +
‖x‖1√

k
. (3.44)

In the case of matrices of rank k, this gives:

‖N‖Σ ≤ ‖N1‖2 +
∑
j≥1

‖Nj‖1√
k

≤ ‖N‖F +
‖N‖∗√

k
. (3.45)

We can also upper bound the right hand side of these equations by O(‖ · ‖Σ) with
a small constant, which will prove that the norms defined in these equations are of the
same order. Indeed, a simple application of the triangle inequality gives us first that
‖x‖2 ≤ ‖x‖Σ and ‖N‖F ≤ ‖N‖Σ. Then, considering a decomposition of x as a sum of
k-sparse vectors

∑
j≥1 xj , we get

‖x‖1√
k

≤
∑
j≥1

‖xj‖1√
k

≤
∑
j≥1

‖xj‖2 (3.46)

(indeed, each xj can be viewed as a k-dimensional vector and we have for such a vector
‖xj‖1 ≤

√
k‖xj‖2). Similarly,

‖N‖∗√
k

≤
∑
j≥1

‖Nj‖F . (3.47)

Since these upper bounds are satisfied for any decomposition, they can be replaced
respectively by ‖x‖Σ and ‖N‖Σ. Finally, we have

‖x‖2 + ‖x‖1√
k

≤ 2‖x‖Σ and ‖N‖F + ‖N‖∗√
k

≤ 2‖N‖Σ. (3.48)

In these two cases, the norm ‖ · ‖Σ is therefore equivalent (with constants bounded by

2) to the norm ‖ · ‖2 + ‖·‖1√
k

(which is ‖ · ‖F + ‖·‖∗√
k

for matrices).

We have thus shown:

Lemma 4. When Σ is the set of k-sparse vectors, the norm ‖ · ‖Σ satisfies

‖ · ‖Σ ≤ ‖ · ‖2 +
‖ · ‖1√

k
≤ 2‖ · ‖Σ. (3.49)
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When Σ is the set of rank-k matrices, it satisfies

‖ · ‖Σ ≤ ‖ · ‖F +
‖ · ‖∗√

k
≤ 2‖ · ‖Σ. (3.50)

We can therefore remark that for these two standard models, the norm ‖ · ‖Σ can
easily be upper bounded by usual norms under RIP conditions, yielding an IOP with a
usual upper bound. We can also note that stronger RIP conditions can yield a stronger
result: in (Candès, 2008), the author proves that under upper and lower-RIP on Σ − Σ
with Σ being the set of k-sparse vectors, an instance optimal decoder can be defined as the
minimization of a convex objective: the �1 norm, which appears as strongly connected to
the norm ‖ ·‖Σ. One may then wonder if a generalization of such a result is possible: when
can an instance optimal decoder be obtained by solving a convex minimization problem
with a norm related to ‖ · ‖Σ?

3.7 Discussion and outlooks on Instance Optimality

Let’s now review the results presented in this chapter and give some insights on interest-
ing future work. As has been detailed throughout the chapter, Instance Optimality is a
property presenting several benefits:

• It can be defined in a very general framework, for any signal space, signal model and
pseudo-norms, as well as for both noiseless and noisy settings.

• It is a nice uniform formulation of the “good behavior” of a decoder and thus of the
well-posedness of an inverse problem.

• It can be linked to Null Space Property and Restricted Isometry Property, which
provide necessary and/or sufficient conditions for the existence of an instance optimal
decoder.

We now present some immediate outlooks and interesting open questions related to
Instance Optimality and to the results presented in this paper.

3.7.1 Condition for the well-posedness of the “optimal” decoder.

We have seen that for general models Σ, an additionnal term δ appears in the right hand
side term of the instance optimality inequality ((3.13),(3.19)), reflecting the fact that the
minimal distance of the “optimal” decoder (B.7) may not be reached at a specific point.
However, as mentioned in Property 1, this additive constant can be dropped in the noiseless
case provided Σ+N is a closed set. One can then wonder if there exists a similar condition
(e.g., a sort of local compactness property) in the noisy case for which one can drop the
constant δ and get a more usual instance optimality result.

3.7.2 Compressed graphical models.

As has been mentioned in Section 3.2.4, the case where Σ is the set of symmetric defi-
nite positive square matrices with sparse inverse is related to high-dimensional Gaussian
graphical models. In Lemma 2, we showed this type of models fits in our theory since we
could apply Theorem 8 in this case, proving the impossibility of �2/�2 IOP in a dimension-
reduction case. Yet, as for other signal models, can Gaussian graphical models satisfy
some IOP/NSP with different norms in a compressive framework?
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3.7.3 Guarantees for signal-space reconstructions and more.

When D is a redundant dictionary of size d×n and the signals of interest are vectors of the
form z = Dx, where x is a sparse vector, traditional reconstruction guarantees from y =
Mz assume the RIP on the matrix MD. This is often too restrictive: for example when D
has strongly correlated columns, failure to identify x from y does not necessarily prevent
one from correctly estimating z. Recent work on signal-space algorithms (Davenport et al.,
2013) has shown that the D-RIP assumption on M is in fact sufficient.

The framework presented in this paper offers two ways to approach this setting:

• Considering Σ = Σk as the set of k-sparse vectors of dimension n and A = D,
the upper bound on the reconstruction error is of the form dE(x,Σk). Signal-space
guarantees can be envisioned by choosing a metric ‖ · ‖E = ‖D · ‖.

• Considering Σ = DΣk as the set of d-dimensional vectors that have a k-sparse
representation in the dictionary D and A = I, the upper bound is of the form
d′(z,DΣk).

In (Needell and Ward, 2013), the authors propose a result similar to instance optimality
by upper bounding, for a Total Variation decoder, the reconstruction error of an image
X from compressive measurement by a quantity involving d1(∇X,Σk), where ∇ is the
gradient operator, Σk the k-sparse union of subspaces (in the gradient space) and d1 is
the �1 distance. This quantity is therefore the distance between the gradient of the image
and the k-sparse vectors model. Can such a bound be interpreted in our framework, and
possibly be generalized to other types of signals?

3.7.4 Task-oriented decoders versus general purpose decoders.

We already mentioned two very different application set-ups, in medical imaging and audio
source separation, where only parts of the original signals need to be recovered. One
can think of other, more dramatic, cases where only task-oriented linear features should
be reconstructed. One such situation is met in current image classification work-flows.
Indeed, most recent state-of-art image classification methods rely on very high-dimensional
image representation (e.g., so called Fisher vectors, of dimension ranging from 10,000 to
200,000) and conduct supervised learning on such labeled signals by means of linear SVMs
(Sanchez et al., 2013). Not only this approach yields top-ranking performance in terms of
classification accuracy on challenging image classification benchmarks, but it also permits
very large scale learning thanks to the low complexity of linear SVM training and its
efficient implementations, e.g., with stochastic gradient descent. For each visual category
to recognize, a linear classifier w is learned, which associates to an input image with
representation x the score wTx. The single or multiple labels that are finally assigned to
x by the system depend on the scores provided by all trained classifiers (typically from 10
to 100), hence on a vector of the form Ax, where each row of A is one one-vs-all linear
SVM. In this set-up, the operator A implies a dramatic dimension reduction. For very
large scale problems of this type, storing and manipulating original image signatures in
the database can become intractable. The theoretical framework proposed in this paper
might help designing new solutions to this problem in the future. In particular, it will
provide tools to answer the following questions:

• A being given (learned on a labeled subset of the database): can one design a com-
pressive measurement operator M such that the “classifiers” scores can be recovered
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directly from the compressed image signature Mx, hence avoiding the prior recon-
struction of the high-dimensional signal x?

• M being given (“legacy” compressed storing of image signatures): what are the
linear classifier collections that can be precisely emulated in the compressed domain
thanks to a good decoder ∆?

Note that this classification-oriented set-up might call for a specific norm ‖ · ‖G on the
output of a linear score bank.

Another important domain of application that might benefit from both aspects (general
purpose and task-oriented) of our work is data analysis under privacy constraints. Two
scenarii can be envisioned, where our framework could help decide whether or not such
constraints are compatible with the analysis of interest:

• General purpose scenario: given a linear measurement operator M of interest for
further analysis, can one guarantee that there is no decoder permitting good enough
recovery of original signals?

• Task-oriented scenario: the operator M serving as a means to obfuscate original
signals such that critical information can’t be recovered, let’s consider a specific
analysis task on original signals requiring the application of the feature extractor A.
Can this task be implemented on obfuscated signals instead, via a good decoder ∆,
hence in a privacy-preserving fashion?

3.7.5 Worst case versus average case instance optimality.

The raw concept of Instance Optimality has a major drawback: the uniformity of the bound
may impose, in some settings, a large global instance optimality constant whereas the
inverse problem is well posed for the vast majority of signals. Let’s consider the example
depicted in Figure 3.5, where the signal space E is of dimension 2, the signal model Σ is a
point cloud mostly concentrated along the line D and the measurement operator M is the
orthogonal projection on D. The figure depicts the ratio (approximation error)/(distance
to model) for each x ∈ R2. The optimal constant, which is the supremum of these ratios,
is infinite: the ratio actually goes to infinity in the vicinity of the point p. However, for
the vast majority of vectors, the ratio is rather low (the blue section covers most of the
space).

An interesting outlook to circumvent this pessimistic “worst-case” phenomenon is to
consider a probabilistic formulation of instance optimality, as in (Cohen et al., 2009): given
Ω a probability space with probability measure P , and considering M as a random variable
on Ω, is there a decoder ∆(.|M) (which computes an estimate given the observation and
the particular draw of the measurement operator M) such that for any x ∈ E, the instance
optimality inequality

‖x−∆(Mx|M)‖G ≤ CdE(x,Σ) (3.51)

holds with high probability on the drawing of M? A particular challenge would be to
understand in which dimension reduction scenarii there exists both a probability measure
and a decoder with the above property. Another possible formulation of probabilistic
instance optimality is to define a probability distribution on the signal space and to upper
bound the average reconstruction error of the vectors, as in (Yu and Sapiro, 2011).
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Figure 3.5: Drawback of uniform instance optimality in a simple case: the model Σ (Left)
is the set of black points including those on D and the point p and the operator M is
the 1-dimensional orthogonal projection on the horizontal axis. If we choose ∆ as the
pseudo-inverse of M, the depicted IO ratio (Right) is low on most of the space, but the
uniform constant is infinite.
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Chapter 4

Explicit embeddings for nearest
neighbor search

As has been mentioned in Chapters 1 and 2 and pictured in Figure 2.1, individual di-
mension reduction of vectors can be used to reduce the cost of a learning task. In this
chapter, we will consider a problem which is not itself a learning problem as the beginning
of Chapter 2 depicts thema, but which can constitute a particular step in some global
learning task.

The envisioned task is nearest neighbor (NN) search. Let Ω be a set supplied with a
distance d and X = {x1, . . . ,xL} be a database of elements of Ω. Given a new element
q ∈ Ω, typically called a query, a nearest neighbor of q in X is a solution of the problem

argmin
x∈X

d(q,x). (4.1)

Usually, this solution will be unique.

Such a problem arises in applications such as image search (Sivic and Zisserman, 2003;
Torralba et al., 2008) and classification (Grauman and Darrell, 2005; Boiman et al., 2008;
Deng et al., 2009; Perronnin et al., 2010). In such practical applications, one is usually
interested in computing not only the nearest neighbor of a query but its k nearest neigh-
bors. In this chapter, we will develop methods and perform experiments in a framework
where we only seek the nearest neighbor of a query for simplicity, but the contributions
described in this chapter can be easily extended to the case where one searches for several
nearest neighbors of a query.

Approximate search. The most basic way to find a nearest neighbor is to compute
all the distances d(q,x) for all x ∈ X and to find the minimal values. However, these
computations come at a cost of O(LCd), where Cd is the cost of computing one distance
value between two elements of Ω. This cost can be prohibitive when L is large, which
motivates the search for less costly approximate nearest neighbor (ANN) search schemes.
These schemes typically rely on the computation of small-dimensional signatures, which
are compressed representations of the elements of Ω. The signatures will be outputs of
an encoding function s : Ω → S, where the signature space S is provided with a distance
which is much faster to compute than the distance of Ω.

The ANN search of a query q is therefore performed in this signature space. Note that
as discussed in Section 1.2.1, an obvious way of using these signatures is to perform a full

aThat is a problem where one wants to infer some parameters from a training data set.

65
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NN search in the signature space by computing all the distances between the signature of
the query and the signatures of the database elements. In this chapter, we will consider
methods applied in this “full-search” framework.

An ANN search pipeline will typically divide into offline steps, which will regroup the
“fixed costs” and prepare the database X to the actual search step, and online steps,
which are the steps where one gets a query q and needs to perform the search. The offline
meta-procedure will usually be as follows:

• Choice of the encoding function: The encoding function s which will compute signa-
tures is determined. In methods such as LSH, this step is generally quick since the
function is a concatenation of randomly chosen hash functions. However, as we will
see in Section 4.1, the choice of the signatures can be the result of a learning step
involving the data, in order to choose adequate signatures.

• Computation of the signatures : The signatures s(x1), . . . , s(xL) are computed and
stored. For a fixed database, this operation is only required to be performed once,
since the same signatures can be used to perform as many NN searches as needed.

Given a query q for which one wants to perform an ANN search among the elements
in X , the online meta-procedure will be as follows:

• Full NN search in the signature space: The signature s(q) is computed, and the
distances between s(q) and every s(xr) is computed. The N nearest neighbors in
the signature space are identified, where N is a predetermined integer, supposedly
far smaller than the size of X . This step may be costly since it linearly scales with
the size of X , but the signatures are chosen so that it is far less costly than a full
search in the space Ω.

As an alternative, in the case where S ⊂ Ω, one can perform the full NN search in
an asymmetric way, that is by computing the distances d(q, s(xr)) instead of the
distances d(s(q), s(xr)). This case, although non-intuitive at first glance, will be
instantiated in this chapter via the Product Quantization (Jégou et al., 2011), in
which the authors argue that an asymmetric scheme yields better precision than a
symmetric scheme.

• Reranking : The N approximate nearest neighbors identified in the previous step are
then reranked, that is the effective distances between q and the corresponding xi

are computed. If the signature function s and the number N are well designed, the
nearest neighbor of q is likely to be among these N elements.

In this case, if Cd is the cost of computing a distance in Ω and Cs is the cost of
computing a distance in the signature space (one should have Cs 
 Cd), then the full-
search cost in Ω is O(LCd) whereas the cost of the described approximate scheme is
O(LCs +NCd). The approximate scheme will yield computational savings if

LCs +NCd

LCd
=

Cs

Cd
+

N

L

 1. (4.2)

In practice, these two fractions are 
 1, so that the approximate scheme yields substantial
complexity reduction.
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ANN search methods. Significant progress has been achieved on ANN search in the
last decade, in particular with the substantial contribution of the LSH approach (Datar
et al., 2004b), described in Chapter 1. Variants of this method have been developed,
consisting of different types of low-dimensional signatures (Muja and Lowe, 2009; Weiss
et al., 2008; Jégou et al., 2011). These methods typically allows ANN search systems to
scale to datasets comprising 109 elements.

However, the aforementioned methods only consider simple metrics such as �p norms,
and mainly the Euclidean norm. In this chapter, we will consider the case where the
distance d derives from a Mercer kernel, which is a broad generalization of the case where
the distance is Euclidean. This case has less been studied in the ANN literature, although
kernels provide a wide range of distances which are more elaborate than the Euclidean
distance. Kernels are reviewed in the next paragraph.

Mercer kernels and nearest neighbors. Let’s first recall standard definitions and
properties of Mercer kernels (Schölkopf and Smola, 2002). A positive semi-definite (PSD)
kernel on a space Ω is an application K : Ω2 → R such that for any collection X =
{x1, . . . ,xL} of elements of Ω, the Gram matrix

K(X ) =




K(x1,x1) . . . K(x1,xL)
...

...
K(xL,x1) . . . K(xL,xL)


 (4.3)

is symmetric semi-definite positive. For any such kernel, there exists a unique (up to
isomorphism) Hilbert space H and application Ψ : Ω → H such that ∀x,y ∈ Ω,

K(x,y) = 〈Ψ(x),Ψ(y)〉H, (4.4)

where 〈·, ·〉H is the scalar product of H. H is usually named implicit space, since it is
a space which allows the implicit interpretation of the action of K as a scalar product,
provided one knows the implicit function Ψ which embeds Ω into H. Usually, one does
not know this function but some interesting properties can still be derived, relying on the
so-called kernel trick : one does not need to explicitly know the values of Φ(x) and Φ(y)
to compute their scalar product in H, since this scalar product is equal to K(x,y).

In particular, K induces a distance dK on Ω by posing

dK(x,y) = K(x,x) +K(y,y)− 2K(x,y). (4.5)

Let’s notice that if we define

SK(1) = {x ∈ Ω : K(x,x) = 1}, (4.6)

then for all x,y ∈ SK(1),
dK(x,y) = 2 (1−K(x,y)) . (4.7)

This property ensures that when considering data X ⊂ SK(1) and a query q ∈ SK(1), the
problem (4.1) with d = dK is equivalent to the following problem:

argmax
x∈X

K(q,x), (4.8)

that is searching for the nearest neighbor in the sense of dK is equivalent to searching
for the most correlated vector in the sense of K. This constitutes a good incentive to
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normalize data, that is project it onto SK(1), when it is possible: it allows one to consider
kernels instead of distances. This will be used in our contribution, where we will perform
our experiments on normalized data.

In the particular case where Ω is a compact Hausdorff space provided with a finite
measure µ with support Ω, the kernelK is a Mercer kernel (König, 1986), that isH = �2(R)
and for all i ∈ N, there exists λi ∈ R and Ψi : Ω → R satisfying

Ψ(x) =
[√

λiΨi(x)
]∞
i=0

, (4.9)

with λi ↓ 0 and
∫
ΩΨiΨj dµ = δji . The λi’s and Ψi’s are respectively the eigenvalues and

the eigenfunctions of K. In this case, the embedding Ψ therefore transforms elements of
Ω into square-summable sequences with decreasing average energy. This is particularly
important in order to approximate the kernel values, as we will review when describing
our contribution.

Quick overview of the contribution. In this chapter, we propose two methods for
NN search when the considered distance is derived from a Mercer kernel K. The described
methods rely on explicit embeddings, that is approximating the unknown function Ψ by
an explicit function Ψ̃ which maps Ω to the Euclidean space RE (E > 0 is the embedding
dimension), and satisfying

〈Ψ(q),Ψ(xi)〉H ≈ 〈Ψ̃(q), Ψ̃(xi)〉, (4.10)

where 〈·, ·〉 is the scalar product in RE . We will underline two benefits from exploiting
explicit embeddings when designing ANN search methods with kernel distances:

• Exact search scheme: As shown in our first proposed method, one can derive error
bounds from an explicit embedding such as KPCA, which can be used to derive an
exact search scheme while performing the NN search in RE instead of performing it
in Ω. This can yield slightly lower search times while still be ensured to obtain the
nearest neighbor of the query.

• Approximate search scheme: More importantly, our second proposed method aims
at computing low-dimensional signatures for efficient large-scale ANN search in two
steps: first the data X is mapped from Ω to RE with an explicit embedding Ψ̃, then
small-dimensional signatures are computed using methods adapted to an Euclidean
space, and which are therefore not applicable directly in Ω. This two-step procedure
is experimentally shown to perform better than previously proposed methods which
aim at finding signatures directly in the implicit space, and are detailed in the
following section.

4.1 State of the art: ANN search for kernels and explicit
embeddings

In this section, we first describe two previously existing methods developed in order to
compute signatures specifically aimed at solving problem (4.1) when d is a Mercer kernel
distance. The two presented methods both produce binary signatures, which are then
compared with respect to the Hamming distance in the signature space. Note that other
methods aimed at producing small-size signatures for kernels exist, such as (He et al.,



4.1. STATE OF THE ART: ANN SEARCH FORKERNELS AND EXPLICIT EMBEDDINGS69

2010; Gorisse et al., 2012), but were not considered in our work because the framework
presented in these papers is different from ours and closer to a classification context.

Then is reviewed the main explicit embedding method: the Kernel Principal Com-
ponent Analysis (KPCA), which will be used in our approach. We also briefly mention
several other explicit embeddings procedures, which may also be used in the framework
we consider, provided they are applied to the proper kernels.

4.1.1 Kernel ANN methods

Kernelized Locality Sensitive Hashing

In LSH, a typical choice for the hash functions for n-dimensional vectors are functions of
the type h : x �→ sign(〈x, r〉), where r is usually chosen as a random draw with respect to
a normal distribution N (0, I). Kernelized Locality Sensitive Hashing (KLSH) (Kulis and
Grauman, 2009) aims at imitating this Gaussian random choice in the implicit space H.

To this end, the authors select M data points y1, . . . ,yM among X and approximate
the space H by the finite-dimensional space F spanned by Ψ(y1), . . . ,Ψ(yM ). The hash
functions are determined by randomly choosing subsets of Q < M points among the
Ψ(yi) and taking the empirical mean of these Q points. The image of a vector of Ω by
such a hash function is computable thanks to the kernel trick. After a proper rescaling
aimed at correcting variance deviations, this random choice yields a vector of F which is
approximately drawn with respect to an isotropic Gaussian distribution N (0, I), according
to the Central Limit Therorem.

Moreover, since the considered directions belong to the space F spanned by elements
of X , the image by the corresponding hash functions of any vector Ψ(x) with x ∈ Ω
can explicitly be computable since the calculation only requires to compute kernel values
between x and the yi.

Random Maximum Margin Hashing

Random Maximum Margin Hashing (RMMH) (Joly and Buisson, 2011) aims at finding
hash functions of the form h : x �→ sign(〈Ψ(x), r〉H + b), where r is once again a vector of
H and b is a real number. The authors express the problem of finding such hash functions
as an SVM problem.

Each hash function is chosen as follows: an even number M of vectors y1, . . . ,yM are
randomly drawn from X and half of these vectors are labeled with label +1, the other half
with label −1. The corresponding hash function is given by

h(x) = sign

(
M∑
i=1

αiεiK(x,yi) + b

)
, (4.11)

where εi is the label of yi and (αi)
M
i=1 and b maximize the usal C-SVM cost:

1

2

M∑
i,j=1

εiεjαiαjK(yi,yj) + C

M∑
i=1

ξi, (4.12)

subject to

∀i, ξi ≥ 0 and 1− ξi ≤ εi




M∑
j=1

εjαjK(yi,yj) + b


 . (4.13)
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Intuitively, this formulation finds hash functions which prevent close neighbors from
having a different image by the hash function, since the hyperplane is chosen by margin
maximization. This method has been presented as yielding better precision than KLSH
for approximate search.

4.1.2 Explicit embeddings

In this section, we provide a quick review of the standard KPCA method, which can be
considered as the standard explicit embedding procedure. We also give a brief list of other
embedding methods which have been proposed.

Kernel Principal Component Analysis

KPCA was introduced in (Schölkopf et al., 1998) as a way to perform explicitly PCA in
the implicit space H, thus being a generic way to compute a finite-dimensional embedding
of the data satisfying the condition (4.10).

Performing PCA on the set of vectors Ψ(X ) = (Ψ(xi))
M
i=1 in implicit space H consists

in projecting them onto the E-dimensional subspace V that minimizes the following mean-
squared error:

M∑
i,j=1

(K(xi,xj)− 〈PWΨ(xi), PWΨ(xj)〉H)2 (4.14)

over all E-dimensional subspaces W (PW being the orthogonal projection onto W ).

It is possible to compute explicitly this projection for any vector of the form Ψ(x)
by exploiting the Gram matrix K(X ) = (K(xi,xj))i,j=1,...M . Let us denote its E largest
eigenvalues by (σ2

i )
E
i=1 and by (ui)

E
i=1 the corresponding eigenvectors. Let K(x, :) be the

vector [K(x,x1), . . . ,K(x,xM )]T . Then if (vi)
E
i=1 denote the E first eigenvectors of the

covariance operator of Ψ(X ), one has (Schölkopf et al., 1998):

ϕi = 〈PV (Ψ(x)),vi〉H =
1

σi
〈K(x, :),ui〉. (4.15)

This result allows us to define by PCA approximation an explicit embedding Ψ̃ : Ω →
RE such that Ψ̃(x) = [ϕi]

E
i=1.

This result allows us to define by PCA approximation an explicit embedding Ψ̃(x) =
PV (Ψ(x)) and an approximate kernel K̃(x,y) = 〈Ψ̃(x), Ψ̃(y)〉. We therefore have

K̃(x,y) = 〈PV (Ψ(x)), PV (Ψ(y))〉H. (4.16)

Note that KPCA is adaptive, that is the explicit embedding Φ̃ it produces is learned
on training data X , and thus depend on it.

Other explicit embeddings

Other embedding methods have been proposed for specific kernels in a classification con-
text. In (Maji and Berg, 2009), the authors describe an explicit embedding for the his-
togram intersection kernel, defined for x,y ∈ Rn by

K(x,y) =

n∑
i=1

min(xi, yi). (4.17)
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Dataset Number of vectors Dim Descriptor URL
SIFT1M 1M 128 HesAff + SIFT http://corpus-texmex.irisa.fr
BIGANN 1M–200M 128 DOG + SIFT http://corpus-texmex.irisa.fr
Imagenet 1.261M 1,000 Bag-of-words http://www.image-net.org

Table 4.1: Datasets used for the evaluation of nearest neighbor search

In (Vedaldi and Zisserman, 2010, 2012), the authors propose a nonadaptive (thus
requiring no input data nor learning step) embedding algorithm for additive or multi-
plicative kernels, that is kernels defined on Rn as K(x,y) =

∑n
i=1 k(xi, yi) or K(x,y) =∏n

i=1 k(xi, yi), where k is a kernel on R.
In (Perronnin et al., 2010), the authors suggest applying KPCA independently in each

dimension if the kernel K is additive. This yields a computational gain at the cost of a
loss of precision in the embedding approximation.

As we will see, the methods we propose heavily relies on explicit embeddings. In all our
experiments, we used KPCA as the embedding method, mainly because we are aiming at a
generic kernel-independent method. In that sense, the KPCA has the benefit that it does
not make any assumption on K other than the fact it is a Mercer kernel. Moreover, KPCA
allows one to derive an embedding in RE without constraints on E, whereas for instance,
(Maji and Berg, 2009; Vedaldi and Zisserman, 2010; Perronnin et al., 2010) require the
output dimensionality to be greater than or equal to that of the initial space. Finally,
KPCA yields in practice good approximations on real datasets.

4.2 Layout of the chapter

Our contribution consists in two methods relying on explicit embedding for ANN search.
Since the description of each method is directly followed by practical experiments, the
datasets used in the experiments are first described in Section 4.3.

The first proposed method is an exact search method and is described in Section 4.4,
along with an analysis of its benefits and an experimental illustration.

The second proposed method is an approximate scheme and is described in Section 4.5.
It is experimentally compared to the previously mentioned KLSH and RMMH schemes in
terms of precision.

4.3 Datasets and experimental protocol

For the sake of reproducibility, we have used publicly available datasets of vectors that
are large enough to evaluate the interest of NN search techniques. Table 4.1 gives a brief
description of these benchmarks, which all consist of image descriptors extracted from real
images.

In our case, each of these datasets is separated into three disjoint sets: a query set, a
training set and a validation set, this separation being random for SIFT1M and BIGANN
which do not have such explicit prior separation of the full dataset.

• SIFT1M : This benchmark introduced in (Jégou et al., 2011) consists of one million
local SIFT descriptors (Lowe, 2004) computed on patches extracted with the Hessian-
Affine detector (Mikolajczyk et al., 2005).

• BIGANN (Jégou et al., 2011): This set provides a NN ground-truth for subsets
of increasing size, from one million to one billion vectors. These descriptors were
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extracted using the Difference of Gaussians (DoG) detector and are therefore not
equivalent to those of the SIFT1M benchmark.

• Imagenet (Deng et al., 2009): This set contains the pre-computed 1,000-dimensional
bag-of-words (BOW) vectors provided with the images of the 2010 Large-Scale Visual
Recognition (ILSVRC’2010). For our search problem, the larger “train” set is used as
the database to be searched, the “val” set to learn the parameters, and we randomly
selected a subset of 1,000 queries from the “test” set to act as queries to be processed
by our methods.

For these three datasets, we are looking for the most similar vectors with respect to
the χ2 kernel, as done in related works (Joly and Buisson, 2011; Vedaldi and Zisserman,
2012). The χ2 kernel is defined on Ω = Rn by

K(x,y) = Kχ2(x,y) =

n∑
i=1

xiyi
xi + yi

. (4.18)

In our experiments, all the data vectors were �1-normalized. This is the normalization
for which Kχ2(x,x) = 1, and thus it is the required normalization to get the equivalence
between nearest neighbor and highest kernel value, as discussed at the beginning of the
chapter.

In the experiments we describe, the search performance is measured by the Recall@R,
which measures the rate of queries for which the nearest neighbor is present among the R
closest neighbors in the signature/embedded space.

4.4 Exact search method

The first method we propose relies on an explicit embedding in order to cast the search
problem in a Euclidean space. The benefit is that in such a space, the scalar products
are matrix multiplications and such computations can be performed by heavily optimized
routines.

In order to derive an exact NN search scheme, one needs to be able to retain every
potential nearest neighbor, that is upper bounding the precision of the explicit embedding.
Since we are using KPCA, the next section is dedicated on the derivation of a standard
error bound for KPCA.

4.4.1 Error bound for the KPCA embedding

Precision bounds on the KPCA provided in the literature are usually probabilistic bounds
on the error between the empirical eigenvalues/eigenfunctions computed from the matrix
K(X ) (denoted σ2

i and ui in Section 4.1.2) and their continuous counterparts, defined in
the preliminary section of this chapter. Such bounds are difficult to obtain and they are
not tight or require oracle knowledge about the implicit embedding (Shawe-Taylor et al.,
2005; Braun, 2006).

However, it is possible to get tighter precision bounds for our problem by exploiting
the data we consider. As shown in Section 4.1.2, KPCA is an orthogonal projection onto a
subspace V in the implicit space H. The approximation error ε(x,y) = K(x,y)− K̃(x,y)
can thus be written as a scalar product in the implicit space:
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ε(x,y) = K(x,y)− K̃(x,y)

= 〈Ψ(x),Ψ(y)〉H − 〈PV Ψ(x), PV Ψ(y)〉H
= 〈PV ⊥Ψ(x), PV ⊥Ψ(y)〉H, (4.19)

where PV ⊥ is the orthogonal projection on the subspace orthogonal to V . Let us denote

R(x) = ||PV ⊥Ψ(x)||H =
(
K(x,x)− ||Ψ̃(x)||2

) 1
2
. (4.20)

This quantity can be easily computed in practice. The Cauchy-Schwarz inequality provides
a bound on ε(x,y) in terms of R(x) and R(y):

|ε(x,y)| ≤ R(x)R(y). (4.21)

This bound can be used for nearest neighbor search. Despite its simplicity, we believe
it has never been used in such a context. Let us assume that we look for the nearest
neighbor of a query q in the vector dataset X and let us define

x1 = argmax
x∈X

K(q,x) and x̃1 = argmax
x∈X

K̃(q,x), (4.22)

that is respectively the nearest neighbor and approximate nearest neighbor of the query
q. We can get a lower bound for K(q,x1) by noticing:

K(q,x1) ≥ K(q, x̃1) ≥ K̃(q, x̃1)−R(q)R(x̃1). (4.23)

For any vector x ∈ X , we can get an upper bound on K(q,x):

K(q,x) ≤ K̃(q,x) +R(q)R(x). (4.24)

Combining (4.23) and (4.24), we obtain that, if for some x we have:

K̃(q,x) +R(q)R(x) < K̃(q, x̃1)−R(q)R(x̃1), (4.25)

then K(q,x) < K(q,x1) and x cannot be the nearest neighbor of q. The following section
describes a procedure that uses this result to avoid kernel computations while still being
sure to find the nearest neighbor of a query.

4.4.2 Exact search procedure: description and illustration

Assuming that the quantities R(x) are computed and stored while performing the embed-
ding of all vectors in dataset X , the nearest neighbor of the query q is retrieved exactly
by using the following procedure, which principle is illustrated in Figure 4.1 (left):

1. Compute Ψ̃(q) and R(q) using Equation (4.15).

2. Compute K̃(q,x) = 〈Ψ̃(q), Ψ̃(x)〉 for all x ∈ X .

3. Find x̃1 = argmax
x∈X

K̃(q,x)

4. Find all elements y ∈ X such that:

K̃(q, x̃1)−R(q)R(x̃1) ≤ K̃(q,y) +R(q)R(y).

Let us denote by Y this set of vectors.

5. The true nearest neighbor of the query is x1 = argmax
y∈Y

K(q,y).
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Figure 4.1: Exact nearest neighbor search in a database of 10M 128-dimensional SIFT
vectors (extracted from the BIGANN database), embedded in dimension 128 with KPCA
on χ2 kernel. Left: Procedure for a given query. The reranked vectors are the neighbors
which have an upper bound value higher than the lower bound of the approximate nearest
neighbor. Right: one minus the cumulative density function of the number of kernel values
computed to find the exact nearest neighbor of a query (for different values of M). The
M kernel calculations required to compute the embedding of the query are taken into
account.

4.4.3 Complexity Analysis and Experiments

Let L be the size of the base X , E be the embedding dimension, M be the number of
vectors used for KPCA, N be the cardinality of Y, CK be the cost of computing the
kernel between two vectors in the initial space and CK̃ be the cost of computing the
approximate kernel between two embedded vectors (which is the cost of a scalar product
in the embedded space). The cost of the exact search in the initial space has complexity
O(CKL).

The exact search in the embedded space as described above has complexity O(MCK)
for step 1 (scalar products are negligible if E 
 M), O(NCK̃) for steps 2 to 4 (steps 3
and 4 have constant complexity per data vector, which is negligible compared to CK̃ for
high-dimensional data), and O(NCK) for step 5.

Hence this method is guaranteed to find the nearest neighbor of q with complexity

O
(
(M +N)CK + LCK̃

)
. (4.26)

If CK̃ 
 CK (which is likely to be the case, especially for complicated kernels), and if
M +N 
 L, we can be sure to retrieve the nearest neighbor while performing much fewer
calculations.

Figure 4.1 (right) illustrates this method on 106 SIFT descriptors taken from the
dataset BIGANN and shows that it reduces the number of kernel values computed. Indeed,
for M = 2, 048, 90% of the tested queries require less than 15,000 kernel computations,
which is a comparison with less than 0.15% of the base with respect to the distance we are
interested in. These comparisons are of negligible complexity, the exact search process in
the embedded space thus roughly requires 106 scalar products in dimension 128 instead of
106 χ2 kernel computations in dimension 128 for the exact search in the initial space, which
leads to a speedup considering that scalar products have more optimized implementations
than the χ2 kernel.

A tradeoff has to be found on M : a high value will tighten the Cauchy-Schwarz bound
but will result in more kernel computations to perform the embedding on the query. In
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Figure 4.2: Impact of the size M of the learning set on the ranking performance for the
exact search procedure, measured using recall@R curves. For the two datasets considered
(Imagenet and SIFT1M), the vector output by the explicit embedding is about one half
of the original descriptor dimensionality (E=512 and E=64, respectively).
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Figure 4.3: Ranking quality (Recall@R curves) as a function of the embedded vector size E
for the exact search procedure. The number of learning vectors is here fixed to M =
8, 192. As expected, the longer BOW vectors from Imagenet require a higher embedding
dimensionality E.

this example, M = 2, 048 performs on average better than M = 8, 192 (8,000 average
kernel computations vs. more than 11,000). See also Figures 4.2 and 4.3 for an analysis
of the impact of parameters M and E on the search quality (independently of the number
of kernel computations).

On the other hand, this approach does not perform well on the Imagenet database. For
this dataset, the Cauchy-Schwarz inequality is too pessimistic to provide a good selection
of the vectors to be reranked. Indeed, experiments showed that the number of reranked
vectors reprensented 30% of the database. In this case, it is still possible to select fewer
vectors by relaxing the Cauchy-Schwarz inequality and considering that

αR(x)R(y) ≤ ε(x,y) ≤ βR(x)R(y), (4.27)

where α and β are simply lower and upper bounds for cos(x,y). By empirically estimating
values for α and β that work for many vectors, one can use concentration of measure
inequalities to derive theoretical guarantees learned from data. However, one is not able
then to precisely ensure the retrieval of the true nearest neighbor of a vector.
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Figure 4.4: Proposed approximate search scheme. As opposed as the existing implicit
hashing methods, we first compute explicit vectors belonging to an Euclidean space, then
apply an encoding method designed for Euclidean distances.

4.5 Approximate search method

Even though the previous method allows one to perform an exact search at a slightly
reduced cost, it may still be too costly to perform the approximate search in the embedded
space. In this case, it is preferable to compute very small-dimensional signatures from the
database elements, as described in the preliminary section of this chapter.

The binary schemes described in Section 4.1.1 are implicit schemes: they aim at finding
the encoding function directly as a hashing function in the implicit space H, expressing it
as a function of the kernel K. Instead, the approximate scheme we propose relies on two
separate steps:

1. The data is embedded in a Euclidean space RE using a function Ψ̃ corresponding to
KPCAb.

2. The signatures are computed by applying an Euclidean signature method on the
Ψ̃(xi) in RE .

This scheme is illustrated in Figure 4.4.
Note that at step 2, if the data is normalized with respect to the kernel, any compression

technique which aims at approximating the dot-product, the Euclidean distance or the
cosine similarity could be employed. This includes among others LSH (Charikar, 2002b;
Datar et al., 2004a) which approximates the cosine or Spectral Hashing (Weiss et al., 2008)
and Locality Sensitive Binary Code (Raginsky and Lazebnik, 2010) which approximate the
Euclidean distance. In this section, we particularly focus on a recently proposed technique
known as Product Quantization (PQ) which has been shown to be state-of-the-art for the
Euclidean distance (Jégou et al., 2011). It is discussed briefly in the next section.

4.5.1 Product quantization and variations

Most of the techniques based on short signatures for ANN search consider binary codes (Kulis
and Grauman, 2009; Joly and Buisson, 2011; Gong and Lazebnik, 2011). In (Jégou et al.,
2011), the authors proposed instead the PQ algorithm which produces non-binary codes
allowing the estimation of Euclidean distances in the signature domain. For this purpose,
a product quantizer is used to decompose the feature space into a Cartesian product of D
subspaces. A given database vector x is decomposed into D subvectors of equal lengths,
each of which is quantized separately using a k-means quantizer with a limited number
of centroids. This number is typically set to 256 such that each subvector is quantized

bAny other explicit embedding method can be used if applicable, but we used KPCA in our experiments.
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Figure 4.5: Illustration of the PQ procedure on one vector. The vector is considered as a
product of D subvectors of equal length, and each subvector is quantized separately using
a k-means algorithm on the database X .

as a 1-byte code (8 bits) and therefore the vector is represented by a D-bytes code. This
quantization is illustrated in Figure 4.5. The estimation of d(q,x) is done in an asym-
metrical manner, i.e., the query is not quantized to prevent it from being approximated.
Computing a distance estimate requires D table look-ups and additions, which remains
competitive compared with operations on binary vectors at a given signature size.

4.5.2 Experiments on approximate search

In this section, we provide and discuss experimental results of our approximate search
scheme compared to the other previously described binary methods. Let’s first discuss a
particular pre-processing which has been chosen for the PQ technique in our experiments.

Pre-processing for energy balance.

Since we are applying PQ after a KPCA, the energy is not equally distributed in the
embedded vectors Ψ̃(xi): the first components have high energy while the last components
have smaller values. This has a negative impact on PQ since the last subvectors will have
less variance than the first while the k-means clustering still produces the same number of
centroids for each subvector. Intuitively, one should find a way to balance energy between
the subvectors so that all the quantizers have a subvector of comparable energy to encode.

In (Jégou et al., 2010), the authors faced the same phenomenon after a regular PCA.
In this context, they argue that the PQ technique is more effective if a rotation matrix is
applied on the vectors produced by the PCA and prior to PQ encoding. The drawback
is that the individual product quantizers partially encode the same information, since the
decorrelation performed by PCA is lost.

In our contribution, we consider the use of a random permutation of the components
of the vectors Ψ̃(xi) as an alternative to applying a random rotation. The random per-
mutation is cheaper to compute and it ensures that the components remain uncorrelated.

In order to choose the appropriate pre-processing for PQ, let’s study the impact of
three pre-processing techniques:

(i) No pre-processing is done at the output of the KPCA.

(ii) A random rotation is applied to the Ψ̃(xi).

(iii) The components of the Ψ̃(xi) are randomly permuted.

Table 4.2 shows that the choice of the pre-processing stage has an impact on the search
quality in terms of Recall@R. On SIFT1M, the random permutation is clearly the best
choice. On Imagenet, the difference is less clear but the random permutation still yields
better results. We will therefore adopt this choice in all subsequent experiments.



78 CHAPTER 4. EXPLICIT EMBEDDINGS FOR NEAREST NEIGHBOR SEARCH

Dataset SIFT1M Imagenet
Pre-processing None RR RP None RR RP

Recall@1 0.17 0.15 0.19 0.04 0.04 0.05
Recall@10 0.42 0.39 0.51 0.12 0.12 0.14
Recall@100 0.75 0.74 0.85 0.30 0.33 0.37
Recall@1000 0.96 0.97 0.99 0.60 0.67 0.69

Table 4.2: Choice of the pre-processing: performance of KPCA+PQ (Recall@R) with
no pre-processing (Jégou et al., 2011), Random rotation (RR) (Jégou et al., 2010) and
Random permutation (RP). Parameters: M = 1, 024, E = 64 and D = 8 for the two
datasets considered. Averages on 10 experiments.

Comparison with the state of the art.

We now compare the proposed coding scheme based on KPCA+PQ with the state-of-the-
art techniques described earlier: KLSH (Kulis and Grauman, 2009) and RMMH (Joly and
Buisson, 2011). We note that the proposed approach differs in two significant ways from
KLSH and RMMH:

(i) As previously mentioned, KLSH and RMMH rely on an implicit embedding while
we rely on an explicit KPCA embedding.

(ii) The signatures produced in KLSH and RMMH are binary while PQ encodes an
embedded vector Ψ̃(xi) as a succession of bytes.

To better understand the respective impact of these two differences, we also experi-
mented with a coding scheme based on KPCA+LSH which performs an explicit embedding
of the data (as in the first step of the proposed scheme) but performs a standard binary
coding (as in the second step). Comparing this scheme with KLSH and RMMH allows
one to measure exactly the gain of adding the explicit embedding step since the produced
binary codes are very similar to those produce by KLSH and RMMH.

We performed experiments for different signature sizes (noted B in bits). The number
of learning vectors for the KPCA was chosen as M = 1, 024, so that the number of kernel
computations when processing a query is limited. A similar number of learning vectors
was chosen as an input to KLSH and RMMH algorithms. For the embedding dimension
E, we set it differently depending on the scheme. For KPCA+PQ, we set E = 128. For
KPCA+LSH, we set E = B which led to optimal or near optimal results in preliminary
experiments.

We report results for SIFT1M on Figure 4.6 and for Imagenet on Figure 4.7. We
repeated all experiments 10 times, with different random draws for any step that relies on
randomness. We show the average and standard deviation.

We can first observe that, as reported in (Joly and Buisson, 2011), RMMH outperforms
KLSH on the BOW Imagenet features. However, for SIFT features, KLSH performs
significantly better than RMMH. For instance, for B = 128 bits, the improvement in
recall@100 is on the order of 10% absolute. Second, we can see that the simple KPCA+LSH
scheme outperforms KLSH and RMMH at all ranks and code sizes. This difference can
be significant (on the order of 10% absolute on SIFT1M for 128 bits). This shows the
practical superiority of explicit embedding over implicit embedding for approximate search
on these datasets. Finally, we can observe that KPCA+PQ performs significantly better
than KPCA+LSH, which confirms the superiority of a non-binary encoding scheme over
a binary coding scheme (Jégou et al., 2011).
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Overall, the improvement of KPCA+PQ with respect to KLSH and RMMH can be
considerable, especially for small codes. For instance, for SIFT1M and for B = 64, the
recall@100 is about 80% for KPCA+PQ while it is 20% for KLSH. For Imagenet and
for the same number B of bits, the recall@1000 of RMMH is somewhat above 30% while
KPCA+PQ achieves on the order of 70%.

Large scale experiments.

Figure 4.8 reports the Recall@R measured on subsets of 1M–200M SIFT descriptors taken
from the BIGANN dataset. These results show that the proposed KPCA+PQ scheme can
scale to very large datasets without a drastic loss in performance.

4.6 Conclusion

This study shows that when dealing with a distance derived from a Mercer kernel, the
use of explicit embeddings can benefit nearest-neighbor search both for exact and more
generally for approximate search.

The proposed exact search algorithm based on the Cauchy-Schwarz inequality works
very well on the SIFT descriptors and allows to reduce the cost of the exact search roughly
to the cost of computing the scalar products in the embedded space. However, it is not
applicable to the Imagenet high-dimensional descriptors due to the rough precision of the
Cauchy-Schwarz inequality in a high-dimensional space. Nonetheless, it may be possible in
this context to sacrifice the exact search for a quasi-exact search with probability bounds
by learning the discrepancy between Cauchy-Schwarz inequality and the actual value of
the approximation error for a range of training vectors.

The proposed approximate scheme, despite its simplicity, performs better than other
encoding methods in this framework. Performing KPCA followed by a standard binary
LSH encoding yields better precision than standard methods which directly mimic binary
LSH in the implicit space, thus giving a first incentive to use explicit embeddings. Further-
more, mapping the initial elements into an Euclidean space allows one to use a wide range
of schemes designed at computing signatures, and especially Product Quantization, which
performs way better than binary schemes at a given signature size. Therefore, using an
explicit embedding prior to an efficient Euclidean coding scheme should be considered as
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a baseline when measuring the performance of ANN search methods with small signatures
in a kernelized framework.
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Chapter 5

Conclusion

In this short chapter, we first propose to wrap up the principal contributions presented
in this manuscript and to draw additional links between them, deriving some lessons
from these different works. We then suggest some global research directions which seem
interesting to pursue in order to benefit from the most conceptual part of this thesis work.

5.1 Summary of the contributions

The proof of concept of Chapter 2 focuses on estimating the parameters of a mixture of
densities, instantiating it on isotropic Gaussian mixture models. Even though these are a
simple problem and model, the estimation of such Gaussian mixture parameters acts as a
step in many practical learning or data processing mechanisms. Therefore, this proof of
concept is meaningful and acts as an incentive to come up with extensions of the method
to more general Gaussian mixture models.

Aside from the experimental results, the originality of the approach itself motivates
the search for alternate algorithms designed to perform learning with more data and less
work (Shalev-Shwartz et al., 2012). The standard algorithmic procedure, updating in an
iterative way some parameters using all available data, is replaced in our approach by a
two-step procedure in which the data is compressed to a sketch of fixed-size representation
prior to the estimation step. The way this sketching step is built may heavily depend
on the task one wishes to perform afterwards: one could either consider building a sketch
particularly fitted to a specific parameter estimation or more generally building a (probably
higher-dimensional) sketch aimed at different estimation or processing tasks. In all cases,
this sketching procedure can be viewed as a “storage step”, where the only amount of
information that is kept on the data is the amount one needs to be able to exploit it.

Since the estimation procedure we proposed can be interpreted as a generalized com-
pressed sensing problem, it seems natural to be inspired by the rich signal processing
literature on the subject. In particular, we showed in Chapter 3 that standard theoretical
results can be generalized to a broad class of models. The assumptions we made to derive
our results are very mild, so that the studied guarantees are potentially applicable to the
study of many linear compression schemes for learning. More particularly, the stated the-
orems give tools aimed at studying both the performance one will not be able to achieve
and the performance one can achieve if a generalized RIP is satisfied. This gives an angle
for tackling the theoretical study of linear sketching tools: one may aim at finding frame-
works where these tools satisfy the RIP in order to get the developed instance optimality
guarantees.

83
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The work in Chapter 4 shows that a simple scheme for nearest neighbor search exploit-
ing a well-used technique (namely, the KPCA) can still achieve better performance than
more elaborated techniques. One may see there an incentive to make the most of existing
techniques.

5.2 Perspectives

Some short-term perspectives have already been presented at the end of Chapters 2 and 3.
In this section, we will elaborate on some of them and evoke more general lines of research
(possibly very conceptual in their current form) inspired by the work presented in this
manuscript. These perspectives mainly focus on compressed density estimation (and more
generally compressed learning), linear inverse problems for general models and algorithmic
methods to solve such problems.

5.2.1 Short-term perspectives

Robustness analysis of compressed Gaussian mixture estimation. In Chapter 2,
we proved a theorem stating the injectivity of the sketching operator on the set of sparse
mixtures of isotropic Gaussians, provided the frequencies were (deterministically) well-
chosen. However, the operators we used in our practical experiments were randomly drawn,
and the method was experimentally shown to work with far fewer measurements than
stated in the theorem. In order to better estimate the number of required measurements
needed to reconstruct accurately the mixture, we certainly need, as in compressed sensing
theory, to consider a probabilistic framework where M is randomly drawn. This should
allow us to find a number of measurements so that with high probability on the draw of
M, a robustness result is satisfies (such as a RIP, so that the results of Chapter 3 are
satisfied). In particular, it seems interesting to consider a method analog to (Baraniuk
et al., 2007) by studying the average conservation of the �2 norm between f and Mf for
f ∈ Σ+

k,n, then using concentration of measure and union bound arguments to obtain a
RIP-like result.

Reduction of the complexity of the compressed estimation algorithm. The
compressed approach we developed in Chapter 2 allows memory savings in the case of
numerous data, but the complexity of the algorithm is still high due to the numerous
optimization steps required by the estimation. It is therefore important to overcome these
complexity limitations in the case of numerous parameters to estimate. The bottleneck of
the algorithm is the last step of the iteration, which performs a gradient descent on the
objective function taken as a function of the parameters. To reduce the computational
cost of this step, one may consider trying not to perform it at each iteration, or update in
this fashion only a fraction of the parameters. The complexity will also be reduced if the
algorithm is modified so that it converges faster: in that sense, it may be interesting to
consider a hierarchical procedure where only low-frequency components of the sketch are
used at the beginning of the optimization, leading to a rough estimation of the parameters,
then high-frequency components are considered to refine the estimation.

Practical extension of the compressed framework to a broader class of Gaus-
sians. As has been mentioned in the summary of the contributions, Gaussian models are
widely used in learning frameworks because of their simplicity. It is therefore an interesting
outlook to extend the proof of concept of Chapter 2 to richer families of Gaussians than
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isotropic Gaussians. In particular, Gaussians with diagonal covariance matrices are often
used since they allow more variability than isotropic Gaussians without changing the order
of magnitude of the number of parameters needed to describe them, which is O(kn) for k
Gaussians in dimension n. An experimental study of the compressed framework instanti-
ated on this enriched class of Gaussians is therefore motivated by potentially important
applications. Moreover, the practical challenges can help finding a better way to build
sketching operators and design algorithms to solve the compressed estimation problem.

Theoretical analysis of the difference between explicit and implicit hashing.
We have experimentally shown in Chapter 4 that performing an explicit embedding then
applying a Euclidean hashing scheme yielded better precision than using an implicit em-
bedding which directly tries to mimic a hashing technique in the implicit space and use the
kernel trick to define the hashing functions. It may be insightful to perform a theoretical
analysis of this behavior. For instance, under assumptions on the probability distribution
of the data and the decrease of the eigenvalues of K, can theoretical results be exploited
to compare the expected precision of the different methods?

5.2.2 Mid-term perspectives

Generalized theoretical recovery results for compressive density mixture esti-
mation. The compressive framework of Chapter 2 could be refined in the case where the
mixture model is generic. In particular, a crucial question is the existence of key properties
on the probability family P and the linear sketching operator M such that there exist the-
oretical recovery guarantees of a mixture of Σ+

k (P) given its image by M. More precisely,
finding conditions ensuring the generalized RIP for M stated in Chapter 3 would yield
an IOP for M. If a probabilistic analysis of the robustness of the sketching operator has
already been performed in the case of isotropic Gaussians, it may serve as a starting point
to identify the prerequisites on the density families allowing to generalize the robustness
results.

Characterization of the existence of “well-behaved” decoders. In Chapter 3, we
studied the existence of instance optimal decoders without constraints on these decoders.
The theorems in Section 3.4 provide decoders which are minimizers of possibly nonconvex
and irregular functions. In order to link the theory to practical application, we need to
identify the cases when it is possible to regularize these decoders (in particular, make them
minimizers of convex objectives) and still getting instance optimality. A starting point can
be the study of the difference between the decoders mentioned in the proofs of Section
3.4 theorems and the �1 decoder used in classical compressed sensing. Can the method
used to prove the �1 ⇔ �0 minimization equivalence for sparse vectors be adapted to more
general norms and models?

5.2.3 Long-term perspectives

Randomized methods for non-convex optimization and sparse decomposition.
In order to solve the non-convex problem (2.19), we designed an algorithm based on
random initialization in the parameter space to search for good candidates to add to
the current estimate. Such methods, aimed at reconstructing a sparse signal on a very
coherent (and even continuous) dictionary, may be studied more thoroughly and improved.
An important theoretical question is the existence of probabilistic recovery guarantees for
such algorithms, which would certainly need to identify some particular required properties
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on the random step for the algorithm to be robust. Given a dictionary D, is there an
“optimal” parametrization of D which essentially makes decomposition algorithms more
robust?

The enriched tradeoffs of large-scale learning. In (Bottou and Bousquet, 2008), the
authors studied the impact of modifying the expression of learning objectives to sacrifice
optimization precision for computational savings. In particular, they proved that at a
given target training time, the required time to reach an asymptotic generalization error
can be reduced by sacrificing the precision of the iteration steps for computational gains.
However, they do not take account the memory used by the training algorithm. Moreover,
they consider algorithms aimed at minimizing a single objective.

A deep question is therefore the tradeoff between generalization error, required mem-
ory and computational time in a learning procedure. It would be particularly appealing to
come with the relationship between memory and computational time at a target precision
for a class of algorithms which compute low-dimensional representations of training data
as a step before the actual estimation of the training parameters. The consideration of
computational tradeoffs for a class of algorithms aimed at performing a certain task is
linked to (Shalev-Shwartz et al., 2012) and is a thrilling problematic. It has the potential
to answer some profound questions about the optimal way to perform learning depend-
ing on the limitations of a particular practical framework in terms of available memory,
computational time, and number of available training samples.
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Appendix A

Proofs of Chapter 2 theorems

This appendix is aimed at proving Theorems 1 and 2. Let’s recall that the standard
deviation of the Gaussians, denoted σ, is a fixed positive real number in all the subsequent
sections of this appendix. For ω ∈ Rn, Mω will denote the Fourier sampling operator on
L1(Rn) at frequency ω. Recall that L1(Rn) denotes the complex vector space of Lebesgue-
integrable functions mapping Rn into C.

A.1 Preliminary lemmas

In this section, we consider n as any positive integer and prove two elementary lemmas
which will be used in the proofs of Theorems 1 and 2.

The first lemma states a simple result:

Lemma 5. For any integer n > 0, the family

Pn =

{
pµ : x �→ 1

(2π)
n
2 σn

exp

(
−‖x− µ‖22

2σ2

)
,µ ∈ Rn

}
(A.1)

is linearly independent in L1(Rn).

Proof. Let N > 0, (λj)
N
j=1 be complex numbers and (νj)

N
j=1 be real n-dimensional distinct

vectors such that f =
∑N

j=1 λjpνj = 0. Let’s prove that we necessarily have λj = 0 for all
j, which will prove the lemma.

Denoting by F the Fourier transform, we get that for any ω ∈ Rn:

F(f).ω =
N∑
j=1

λjF(pνj ).ω =

N∑
j=1

λje
−i〈ω,νj〉F(p0).ω = 0. (A.2)

Since F(p0) takes no zero value, this is equivalent to

N∑
j=1

λje
−i〈ω,νj〉 = 0. (A.3)

Denoting fj the linear form ω �→ 〈ω,νj〉 on Rn, there exists u ∈ Rn such that u /∈
ker(fr − fs) for all distinct r, s ∈ �1, N�. A straightforward argument to justify this claim
is to invoke Baire’s theorem, since Rn is complete and a hyperplane is a closed set of empty
interior.
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Denoting cj = 〈u,νj〉, the hypothesis on u implies that the cj are distinct. We then
have for any x ∈ R, by replacing ω by xu in (A.3),

N∑
j=1

λje
−icjx = 0. (A.4)

The functions x �→ e−icjx defined on R are eigenfunctions of the linear derivation
operator on C∞(R) associated to distinct eigenvalues −ic1, . . . ,−icN . Therefore, they
form a linearly independent family and the λj are all zero. Finally, the family Pn is
linearly independent.

Lemma 5 will principally be used in the following way: if a linear combination f =∑k
s=1 λspµs

of distinct functions of Pn is the zero function, then all the λs are equal to 0.
The next lemma relates the injectivity of an operator M on Σk,n with the preimage of

{0} by M in Σ2k,n.

Lemma 6. Let n > 0 and M be a linear operator on L1(Rn). Then the following properties
are equivalent for any integer k > 0:

1. M is injective on Σk,n.

2. ker(M) ∩ Σ2k,n = {0}.

Proof. 1. ⇒ 2. Suppose M is injective on Σk,n and let f ∈ ker(M)∩Σ2k,n, that is Mf = 0
and

f =

2k∑
s=1

λspµs
, (A.5)

with λs ∈ R and pµs
∈ Rn for all s. Since Mf = 0, we can apply M to (A.5) to obtain

M

(
k∑

s=1

λspµs

)
= M

(
2k∑

s=k+1

−λspµs

)
. (A.6)

The left and right-hand side of (A.6) are images by M of functions of Σk,n. Since M is
injective on Σk,n, these functions are equal, which yields

f =
2k∑
s=1

λspµs
= 0. (A.7)

Therefore, ker(M) ∩ Σ2k,n = {0}.
2. ⇒ 1. Let’s suppose ker(M) ∩ Σ2k,n = {0}. Let µ1, . . . ,µk,ν1, . . . ,νk be vectors of

Rn and α1, . . . , αk, β1, . . . , βk be real numbers such that

M

(
k∑

s=1

αspµs

)
= M

(
k∑

s=1

βspνs

)
. (A.8)

By subtracting the right hand side in (A.8), we get

M

(
k∑

s=1

αspµs
−

k∑
s=1

βspνs

)
= 0. (A.9)
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The argument is a function of ker(M) ∩ Σ2k,n, so it is zero by hypothesis. Therefore, we
necessarily have

k∑
s=1

αspµs
=

k∑
s=1

βspνs (A.10)

and M is injective on Σk,n.

In the proofs of Theorems 1 and 2, we will actually prove that ker(M) ∩ Σ2k,n = {0}.
Lemma 6 states that this implies the injectivity result we want to obtain. The converse
will also be used to prove Theorem 2 from Theorem 1.

A.2 Proof of Theorem 1

In this section, we fix n = 1. The numbers ω1, . . . , ω2k defined in the statement of the
theorem are also fixed, and we note ω = (ω1, . . . , ω2k) ∈ R2k. We define M as the linear
Fourier sampling operator on L1(R) associated to the 4k2 frequencies defined as the 2k
first nonzero multiples of the ωj .

Let’s now define a family of finite-dimensional linear operators which will be injective
iff M is injective, as stated by the following lemma. Given real numbers ω and µ, define
the function

hω(a) = exp

(
−σ2

2
ω2

)
exp (−iωµ) . (A.11)

Since hω(µ) = Mω(pµ), this new notation will be used to simplify the expressions. Given
ω ∈ R and an �-dimensional vector µ = (µ1, . . . , µ�), we denote by Nω,µ the following
matrix:

Nω,µ =




hω(µ1) . . . hω(µ�)
h2ω(µ1) . . . h2ω(µ�)

...
...

h2kω(µ1) . . . h2kω(µ�)


 ∈ M2k,�(R). (A.12)

We note Nµ the matrix:

Nµ =




Nω1,µ
...

Nω2k,µ


 ∈ M4k2,�(R). (A.13)

The following lemma links the injectivity of M and the injectivity of the Nµ.

Lemma 7. The operator M is injective on Σk,n if and only if the operator Nµ is injective
for any vector µ ∈ R2k composed of distinct entries.

Proof. Let’s first remark that for all coefficients α = (α1, . . . , αk) ∈ Rk and distinct means

µ = (µ1, . . . , µk) ∈ Rk, we have M
(∑k

s=1 αspµs

)
= Nµα. The matrix Nµ thus allows us

to interpret M as a finite-dimensional linear map for linear combinations of Gaussians in
the support µ. Let’s now prove the equivalence.

Necessary condition. Suppose M is injective on Σk,n. Let µ ∈ R2k be a vector com-
posed of distinct entries and γ ∈ ker(Nµ). This implies

M

(
2k∑
s=1

γspµs

)
= 0. (A.14)
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Since M is injective on Σk,n, Lemma 6 ensures that

2k∑
s=1

γspµs = 0. (A.15)

Since the µs are distinct, Lemma 5 implies that all γs are 0, so that γ = 0. Finally,
ker(Nµ) = {0} and Nµ is injective.

Sufficient condition. Suppose Nµ is injective for all µ ∈ R2k composed of distinct
entries. Let α = (α1, . . . , αk), β = (β1, . . . , βk), θ = (θ1, . . . , θk) and ν = (ν1, . . . , νk) be
such that:

M

(
k∑

s=1

αspθs

)
= M

(
k∑

s=1

βspνs

)
. (A.16)

With a proper reordering of the terms of the two sums, we can put this last inequality in
the form:

M

(
�∑

s=1

(αs − βs)pθs +
k∑

s=�+1

αspθs +
k∑

s=�+1

−βspµs +
�∑

s=1

0.pξs

)
= 0, (A.17)

where the first sum is the gathering of the common functions between the two sums in
(A.16), the second and third are the distinct functions, and the fourth is composed of any
other functions pξs chosen so that the linear combination comprises 2k terms composed of
distinct functions.

The injectivity of Nµ for µ = (θ1, . . . , θk, ν�+1, νk, ξ1, . . . , ξ�) gives that αs = βs for all
s ∈ �1, �� and αs = βs = 0 for all s ∈ ��+ 1, k�, so that

k∑
s=1

αspθs =

k∑
s=1

βspνs , (A.18)

which gives the injectivity of M on Σk,n.

We are now ready to prove Theorem 1. Lemma 7 casts the initial claim as the injectivity
of Nµ for all µ ∈ R2k with distinct entries. For such a vector µ, we have

ker(Nµ) =
⋂

s=1,...,2k

ker(Nωs,µ). (A.19)

Let’s therefore study ker(Nω,µ) for ω ∈ R. For s ∈ {1, . . . , 2k}, in order to simplify

notations, let’s note βs = exp
(
−σ2

2 s2ω2
)
and xs = exp(−iωµs).

Nω,µ can be written as:

Nω,µ =




β1x1 . . . β1x2k
β2x

2
1 . . . β2x

2
2k

...
...

β2kx
2k
1 . . . β2kx

2k
2k


 . (A.20)

The determinant of this matrix is proportional (within a nonzero factor) to a Vander-
monde determinant. Therefore, this matrix has a nonzero kernel if and only if ∃s �= t such
that xs = xt, which is equivalent to µs = µt

[
2π
ω

]
.
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The structure of the matrix gives the form of ker(Nω,µ) which is determined by the
equivalence classes of the µs in R\2π

ω Z. More precisely, if there are P ≤ 2k such classes
and if we note I1, . . . , IP the partition of �1, 2k� such that

∀j, ∀s, t ∈ Ij , µs = µt

[
2π

ω

]
(A.21)

then

ker(Nω,µ) =
⊕

j=1,...,P

U(Ij), (A.22)

where

U(Ij) =


u = (u1, . . . , u2k) ∈ R2k :

∑
s∈Ij

us = 0, ∀s /∈ Ij , us = 0


 . (A.23)

Let’s remark that U(Ij) = {0} if and only if Ij is a singleton. Let’s now show that the
choice taken for the frequencies is sufficient to yield the injectivity of Nµ.

For t = 1, . . . , 2k, we note It1, . . . , I
t
Pt

the partition induced on �1, 2k� by the equivalence

relation of equality modulo 2π
ωt

for the µs, s ∈ �1, 2k�. To prove the theorem, it is sufficient
to prove that:

∀s ∈ �1, 2k�, ∃t ∈ �1, 2k�, ∃j ∈ �1, Pt�, Itj = {s}. (A.24)

Indeed, this will prove that ∀s ∈ �1, 2k�, ∃t ∈ �1, 2k�, ker(Nωt,µ) ⊥ 〈es〉, where es denotes
the sth vector of the canonical basis of R2k. We will thus have:

∀s ∈ �1, 2k�,


 ⋂

t∈�1,2k�
ker(Nωt,µ)


 ⊥ 〈es〉, (A.25)

which will yield that ⋂
t∈�1,2k�

ker(Nωt,µ) = {0}. (A.26)

Let’s therefore prove (A.24). The proof relies on the following fact: if x �= y are in
Is� for some � and s, then for all t �= s, x and y cannot belong to a same Itj . Indeed, by

contraposition, if x and y belong to Is� and Itj for s �= t, we have µx−µy = 0
[
2π
ωs

]
= 0

[
2π
ωt

]
.

By hypothesis, ωs
ωt

/∈ Q, so that 2π
ωs
Z ∩ 2π

ωt
Z = {0}. Therefore, µx = µy and x = y since µ

is composed of distinct entries.

Let s ∈ �1, 2k�. The above result tells us that for any t �= s, t and s are in the same
subset in at most one of these partitions. Since there are 2k partitions and only 2k − 1
elements t distinct from s, there is necessarily at least one partition in which {s} is a
subset. This yields (A.24), and therefore the result.

A.3 Proof of Theorem 2

We fix ω1, . . . , ω2k as real frequencies satisfying the hypotheses of Theorem 1.

Given a family U = {u1, . . . ,um} ⊂ Rn, we note M(U) the functional operator which
samples the Fourier transform of a function at every frequency xωyuj for (x, y, j) ∈
�1, 2k�2 × �1,m�.

Let’s first give a sufficient condition on U such that M(U) is injective on Σk,n.
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Lemma 8. Suppose U is a family of m vectors in Rn satisfying the following property:
for all distinct vectors x1, . . . ,x2k of Rn, for all t ∈ �1, 2k�, there exists u ∈ U satisfying

∀s ∈ �1, 2k�, s �= t ⇒ 〈xs − xt,u〉 �= 0. (A.27)

Then M(U) is injective on Σk,n.

Proof. The assumption on U means that for any collection X of 2k vectors and any vector
x ∈ X , there exists a direction u in U such that the orthogonal projection of x on u is
different from the orthogonal projection of any other vector of X on u. Since U is fixed
in the current proof, let’s note M = M(U). Without loss of generality, let’s suppose the
vectors of U are normalized in the �2 sense.

Using Lemma 6, it is sufficient to prove that for all collection of vectors µ1, . . . ,µ2k ∈
Rn and all real numbers λ1, . . . , λ2k,

M

(
2k∑
s=1

λspµs

)
= 0 ⇒

2k∑
s=1

λspµs
= 0. (A.28)

Without loss of generality, we can suppose the µs are distinct (if some of them are equal,
we can gather the common values and add any other pµ with a coefficient 0 until we get

2k terms). We note p =
∑2k

s=1 λspµs
.

We will now prove that every λt is 0, which will prove the result. Let t ∈ �1, 2k�. From
the hypothesis, there exists u ∈ U such that (A.27) holds. In the expression of Mp as
a vector of dimension 4k2m, let’s consider the 4k2 entries Mxωjp, with (x, j) ∈ �1, 2k�2.
Using (2.18), we can get their expressions in terms of p:

0 = Mxωju(p) =
2k∑
s=1

λsF(pµs
).(xωju) =

2k∑
s=1

λs exp

(
−σ2

2
x2ω2

j

)
exp(−ixωj〈u,µs〉).

(A.29)
Let’s now remark that the above quantity is the Fourier transform at frequency xωj of

the mixture of 1-dimensional Gaussians

q =
2k∑
s=1

λsp〈u,µs〉. (A.30)

Let N be the operator defined on L1(R) which samples the Fourier transform of a
function at frequencies xωj for (x, j) ∈ �1, 2k�2. From the above reasoning, we have
Nq = 0, so q ∈ ker(N).

Theorem 1 ensures that N is injective on Σk,1 and therefore Lemma 6 ensures that
ker(N)∩Σ2k,1 = {0}. Thus, q = 0. But the hypothesis on u ensures that 〈u,µt〉 �= 〈u,µs〉
for all s �= t. By regrouping the same functions p〈u,µs〉 in the expression (A.30), we get
that

q = λtp〈u,µt〉 +
∑
s

ξsp〈u,µs〉, (A.31)

where the second sum contains at most 2k − 1 terms and the µs and µt are distinct.
Lemma 5 ensures that, since q = 0, we have λt = 0. This is valid for all t ∈ �1, 2k�, which
proves the result.

Let’s now prove a final lemma, which states the existence of certain remarkable families
of vectors in Rn which will be used in the rest of the proof.
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Lemma 9. For any integer q ≥ n, there exists a family Bq of vectors of Rn such that any
subfamily of n vectors of Bq is a basis of Rn.

Proof. We prove this by induction on q. For q = n, the property is trivial: it is sufficient
to define Bq as a basis of Rn.

Let’s suppose the property is satisfied for q ≥ n. Consider the hyperplanes of Rn

spanned by all the collections of n − 1 vectors of Bq: there are finitely many such hyper-
planes. The union of these hyperplanes cannot recover Rn: a straightforward argument to
justify this claim is to invoke Baire’s theorem, since Rn is complete and a hyperplane is a
closed set of empty interior. Therefore, there exists a vector x ∈ Rn which is not in this
union.

Let’s define Bq+1 = Bq ∪{x}, and let U be a subfamily of n vectors of Bq+1. If U ⊂ Bq,
then U is a basis of Rn by hypothesis. If not, then U is composed of x and n− 1 vectors
of Bq. These n− 1 vectors are linearly independent: if not, adding one other vector of Bq

to them would produce a subfamily of n vectors of Bq which is not a basis. Moreover, by
hypothesis on x, it is not included in the hyperplane spanned by these n − 1 vectors, so
that U is a linearly independent family of Rn composed of n vectors, that is a basis of Rn.
This proves the result.

Let’s now finish the proof of the theorem. Let m be an integer > (2k − 1)(n − 1)
and pose U = Bm, where Bm is the corresponding set in Lemma 9. We will prove that U
satisfies the hypothesis of Lemma 8, which will prove the theorem.

Let x1, . . . ,x2k be a family of distinct vectors of Rn, and t ∈ �1, 2k�. For any s �= t,
there are at most n − 1 vectors u of U such that 〈u,xt〉 = 〈u,xs〉: indeed, if there are n
such vectors, they form a basis and we would therefore have xt = xs, which contradicts
the fact that the vectors are distinct. Therefore, the set

⋃
s�=t

{u ∈ U : 〈u,xt〉 = 〈u,xs〉} (A.32)

is of cardinal ≤ (2k−1)(n−1). Since m > (2k−1)(n−1), there exists a vector u ∈ U such
that for all s �= t, 〈u,xt〉 �= 〈u,xs〉. This is valid for all t, so that U satisfies the hypothesis
of Lemma 8, which proves the result, since we can pose m = (2k − 1)(n− 1) + 1 ≤ 2kn.
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Appendix B

Proofs of Chapter 3 theorems

B.1 Well-posedness of the finite UoS decoder

In this section, we will prove that if Σ is a finite union of subspaces in Rn and ‖.‖ a norm
on Rn, then the quantity argminz∈(x+N ) d(z,Σ), where d is the distance relative to ‖.‖, is
defined for all x ∈ Rn.

Let’s first prove the following lemma:

Lemma 10. Let V and W be two subspaces of Rn and ‖.‖ a norm on Rn. Then ∀x ∈
Rn, ∃y ∈ (x + V ) such that d(y,W ) = d(x + V,W ), where d is the distance derived from
‖.‖.

Proof. Let Φ be defined on V +W by Φ(u) = ‖u− x‖. Since Φ(u) ≥ ‖u‖ − ‖x‖, we have
lim‖u‖→+∞Φ(u) = +∞, so that ∃M > 0 such that ‖u‖ > M ⇒ Φ(u) ≥ ‖x‖. The set
B = {u ∈ V +W, ‖u‖ ≤ M} is a closed ball of V +W and is thus a compact. Since Φ is
continuous, Φ has a minimizer v on B. 0 ∈ B, so that Φ(0) = ‖x‖ ≥ Φ(v). For all u such
that ‖u‖ > M , we have Φ(u) ≥ ‖x‖ ≥ Φ(v), so that v is a global minimizer of Φ.

We therefore have ∀(u,w) ∈ V ×W, ‖x − v‖ ≤ ‖x − (u +w)‖. The vector v can be
written f + g with f ∈ V and g ∈ W , so that the vector y = x − f , which belongs to
x+ V , satisfies d(x− f ,W ) = ‖(x− f)− g‖ = d(x, V +W ) = d(x+ V,W ), which proves
the result.

Let Σ = ∪i∈�1,p�Vi, where Vi are subspaces of Rn. Lemma 10 applied to V = N and
W = Vi ensures the existence of xi ∈ (x + N ) such that dE(xi, Vi) = dE(x + N , Vi).
Therefore, ∆(Mx) can be defined as

argmin
{xi,i∈�1,p�}

dE(xi, Vi)

and satisfies dE(∆(Mx),Σ) = dE(x+N ,Σ), so that the decoder

∆(Mx) = argmin
z∈(x+N )

d(z,Σ)

is properly defined. In particular, this applies to the decoder (3.4).
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B.2 Proof of Theorem 3

Let δ > 0 and ∆δ and C be such that (3.13) holds ∀x ∈ E. Let h ∈ N . Then ∃h0 ∈ Σ−Σ
such that dE(h,h0) ≤ dE(h,Σ−Σ)+δ. Let h0 = h1−h2 with h1,h2 ∈ Σ, and h3 = h−h0.
Since h ∈ N , we have:

M(h1 + h3) = Mh2. (B.1)

Applying (3.13) to x = h2 ∈ Σ and using the fact that ‖0‖E = 0, we get:

‖Ah2 −∆δ(Mh2)‖G ≤ δ. (B.2)

Let’s now find an upper bound for ‖Ah‖G:

‖Ah‖G = ‖A(h1 − h2 + h3)‖G
= ‖A(h1 + h3)−∆δ(M(h1 + h3))−Ah2 +∆δ(M(h1 + h3))‖G
≤ ‖A(h1 + h3)−∆δ(M(h1 + h3))‖G + ‖Ah2 −∆δ(M(h1 + h3))‖G (B.3)

where we have used (3.11) and (3.12) for the last inequality. Combining (B.1) and (B.2),
we get that:

‖Ah2 −∆δ(M(h1 + h3))‖G ≤ δ. (B.4)

Applying (3.13) to x = h1 + h3, we get:

‖A(h1 + h3)−∆δ(M(h1 + h3))‖G
≤ CdY (h1 + h3,Σ) + δ ≤ C‖h3‖E + δ

= CdY (h,h0) + δ ≤ CdY (h,Σ− Σ) + (C + 1)δ. (B.5)

Combining (B.3), (B.4) and (B.5) gives:

‖Ah‖G ≤ CdY (h,Σ− Σ) + (C + 2)δ. (B.6)

(B.6) is valid for all δ > 0, so it is valid for δ = 0. This gives us the property (3.6) with
D = C.

B.3 Proof of Theorem 4

Let’s first assume that (3.14) holds and define the following decoder on F :

∆′(Mx) = argmin
z∈(x+N )

dE(z,Σ). (B.7)

Note that the decoder is well defined, since Mx1 = Mx2 ⇒ x1 +N = x2 +N .
For x ∈ E, we have x−∆′(Mx) ∈ N , so that (3.6) yields:

‖Ax−A∆′(Mx)‖G ≤ DdE(x−∆′(Mx),Σ− Σ)

≤ DdE(x,Σ) +DdE(∆
′(Mx),Σ)

≤ 2DdE(x,Σ), (B.8)

where we have used (3.12) for the second inequality. The last inequality comes from (B.7),
which yields dE(∆

′(Mx),Σ) ≤ dE(x,Σ). Therefore, by posing ∆ = A∆′, we get (3.5).

Let’s return to the general case, and consider ν > 0. We define the following decoder
on F :

∆′
ν(Mx) ∈ {u ∈ (x+N )|dE(u,Σ) ≤ dE(x+N ,Σ) + ν}. (B.9)



B.4. PROOF OF PROPOSITION 1 107

Note that this set may not contain a unique element and thus this definition relies on the
axiom of choice.

For x ∈ E, we have again x−∆′
ν(Mx) ∈ N , so that by (3.6):

‖Ax−A∆′
ν(Mx)‖G ≤ DdE(x−∆′

ν(Mx),Σ− Σ)

≤ DdE(x,Σ) +DdE(∆
′
ν(Mx),Σ)

≤ 2DdE(x,Σ) +Dν, (B.10)

where we have used (3.12) again for the second inequality. The last inequality comes from
(B.9), which yields dE(∆

′
ν(Mx),Σ) ≤ dE(x,Σ) + ν. Therefore, by posing ∆δ = A∆′

δ/D,

we get (3.13).

B.4 Proof of Proposition 1

Let x ∈ E and ν > 0. If 0 = dE(x+N ,Σ) = dE(x,Σ +N ), then since Σ +N is a closed
set, x ∈ Σ + N , and therefore (x +N ) ∩ Σ �= ∅. In this case, we define ∆′

ν(Mx) as any
element of (x+N ) ∩ Σ.

If dE(x+N ,Σ) > 0, then we define

∆′
ν(Mx) ∈ {u ∈ (x+N )|dE(u,Σ) ≤ (1 + ν)dE(x+N ,Σ)}.

This provides a consistent definition of ∆′
ν .

Let’s remark that for all x ∈ E,

dE(∆
′
ν(Mx),Σ) ≤ (1 + ν)dE(x+N ,Σ)

≤ (1 + ν)dE(x,Σ)

For x ∈ E, x−∆′
ν(Mx) ∈ N , so that (3.6) gives:

‖Ax−A∆′
ν(Mx)‖G ≤ DdE(x−∆′

ν(Mx),Σ− Σ)

≤ DdE(x,Σ) +DdE(∆
′
ν(Mx),Σ)

≤ (2 + ν)DdE(x,Σ). (B.11)

Defining ∆δ = A∆′
ν , we get the desired result.

B.5 Proof of Theorem 5 and Theorem 7

Let’s first remark that applying (3.19) (resp. (3.21)) with x = z ∈ Σ and e = 0 yields
‖Az−∆δ(Mz)‖G ≤ δ and ‖Az−∆δ,ε(Mz)‖G ≤ C2ε+ δ for any z ∈ Σ, ε ≥ 0, where we
have used the fact that ‖0‖F = 0.

Let h ∈ E and z ∈ Σ. We apply (3.19) (resp. (3.21)) with x = z − h, e = Mh, and
ε = ‖Mh‖F , which yields:

‖Az−Ah−∆δ(Mz)‖G ≤ C1dY (z− h,Σ) + C2‖Mh‖F + δ.

‖Az−Ah−∆δ,ε(Mz)‖G ≤ C1dY (z− h,Σ) + C2‖Mh‖F + δ.

Let’s remark that (3.11) and (3.12) imply for all x,y ∈ G ‖y‖G ≤ ‖x − y‖G + ‖x‖G.
Therefore, since ‖Az − ∆δ(Mz)‖G ≤ δ (resp. ‖Az − ∆δ,ε(Mz)‖G ≤ C2‖Mh‖F + δ), we
have:

‖Ah‖G ≤ C1dY (z− h,Σ) + C2‖Mh‖F + 2δ.

(resp. ‖Ah‖G ≤ C1dY (z− h,Σ) + 2C2‖Mh‖F + 2δ.)



108 APPENDIX B. PROOFS OF CHAPTER 3 THEOREMS

This last inequality is valid for all z ∈ Σ, therefore (3.19) implies:

‖Ah‖G ≤ C1 inf
z∈Σ

dY (z− h,Σ) + C2‖Mh‖F + 2δ

= C1 inf
z∈Σ,u∈Σ

‖z− h− u‖E + C2‖Mh‖F + 2δ

= C1dY (h,Σ− Σ) + C2‖Mh‖F + 2δ, (B.12)

where we have used (3.11) for the last inequality. Similarly, (3.21) implies

‖Ah‖G ≤ C1dY (h,Σ− Σ) + 2C2‖Mh‖F + 2δ. (B.13)

We conclude by using the fact that (B.12) and (B.13) hold for all δ > 0.

B.6 Proof of Theorem 6

Let’s suppose (3.20) and define for δ > 0 the decoder ∆′
δ : F → E such that ∀y ∈ F :

D1dY (∆
′
δ(y),Σ) +D2dZ(M∆′

δ(y),y) ≤ inf
u∈E

[D1dY (u,Σ) +D2dZ(Mu,y)] + δ. (B.14)

Let’s prove that this decoder meets property (3.19).

Let x ∈ E and e ∈ F . Applying (3.20) with h = x−∆′
δ(Mx+ e), we get:

‖A(x−∆′
δ(Mx+ e))‖G

≤ D1dY (x−∆′
δ(Mx+ e),Σ− Σ) +D2‖M(x−∆′

δ(Mx+ e))‖F
≤ D1dY (x,Σ) +D1dY (∆

′
δ(Mx+ e),Σ) +D2dZ(M∆′

δ(Mx+ e),Mx+ e) +D2‖e‖F
≤ 2D1dY (x,Σ) + 2D2‖e‖F + δ, (B.15)

where we have used (3.11) and (3.12) for the second inequality and the last inequality is
a consequence of (B.14).

Posing ∆δ = A∆′
δ proves (3.19) with C1 = 2D1 and C2 = 2D2.

B.7 Proof of Lemma 1

The two equivalences are very similar to prove, so that we will only prove the first. (3.23)
⇒ (3.22) is obvious. Let’s now suppose (3.22), so that:

∀h ∈ N , ∀z ∈ Σ− Σ, ‖Ah‖G ≤ D‖h− z‖E . (B.16)

We also have:

∀λ ∈ R∗, ∀h ∈ N , ∀z ∈ Σ− Σ, ‖λAh‖G ≤ D‖λh− z‖E , (B.17)

so that:

∀λ ∈ R∗, ∀h ∈ N , ∀z ∈ Σ− Σ, ‖Ah‖G ≤ D‖h− z/λ‖E . (B.18)

This last inequality yields (3.23).
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B.8 Proof of Theorem 8

Let’s note M̃ = M|V and Ñ = N ∩V . Let m be the dimension of the range of M̃, so that

Ñ is of dimension n−m. Let h1, . . . ,hn−m be an orthonormal basis of Ñ . We have:

n−m =
n−m∑
j=1

‖hj‖22 ≤
1

K

n−m∑
j=1

n∑
i=1

〈hj , zi〉2. (B.19)

Using (3.29), we get that, for all h ∈ N and unit-norm vector z ∈ Σ − Σ, 〈h, z〉2 ≤(
1− 1

D2
∗

)
‖h‖22. If we denote by pÑ the orthogonal projection on Ñ and apply this

inequality with h = pÑ (zi) =
∑n−m

j=1 〈hj , zi〉hj and z = zi, we get that ‖pÑ (zi)‖42 ≤(
1− 1

D2
∗

)
‖pÑ (zi)‖22, which can be simplified to ‖pÑ (zi)‖22 =

∑n−m
j=1 〈hj , zi〉2 ≤

(
1− 1

D2
∗

)

even if ‖pÑ (zi)‖2 = 0.
Using this relation in (B.19), we get:

n−m ≤ n

K

(
1− 1

D2
∗

)
, (B.20)

so that:

m ≥ n

(
1− 1

K

(
1− 1

D2
∗

))
. (B.21)

We get the lower bound on D2
∗ by isolating it in the inequality.

B.9 Proof of Theorem 9

Let h ∈ E and z ∈ Σ− Σ. We have the following inequalities:

‖h‖G ≤ ‖h− z‖G + ‖z‖G ≤ ‖h− z‖G +
1

α
‖Mz‖F , (B.22)

where we have used the lower-RIP for the second inequality.
A similar consideration on Mz yields:

‖Mz‖F ≤ ‖M(z− h)‖F + ‖Mh‖F . (B.23)

Substituting (B.23) into (B.22), we get:

‖h‖G ≤ ‖h− z‖G +
1

α
‖M(h− z)‖F +

1

α
‖Mh‖F

= ‖h− z‖M +
1

α
‖Mh‖F . (B.24)

Taking the infimum of the right hand-side quantity over all z ∈ Σ − Σ, one gets the
desired Robust NSP:

‖h‖G ≤ dM(h,Σ− Σ) +
1

α
‖Mh‖F . (B.25)
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