
Délivré par l’Université Montpellier II

Préparée au sein de l’école doctorale I2S∗
Et de l’unité de recherche UMR 5506

Spécialité: Informatique

Présentée par Miguel Liroz Gistau
miguel.liroz_gistau@inria.fr

Partitionnement dans les

Systèmes de Gestion de

Données Parallèles

Soutenue le 17/12/2013 devant le jury composé de :

Pascal Molli, Professeur, Université de Nantes Rapporteur

Abdelkader Hameurlain, Professeur, Université Toulouse III Rapporteur

Marta Patiño-Martínez, Professeur, U. Polytechnique de Madrid Examinatrice

Reza Akbarinia, Chargé de Recherche, INRIA, Montpellier Encadrant

Esther Pacitti, Professeur, Université de Montpellier 2 Directrice

Patrick Valduriez, Directeur de Recherche, INRIA, Montpellier Directeur

∗
I2S: École doctorale Information Structures Systèmes

Résumé

Au cours des dernières années, le volume des données qui sont capturées et
générées a explosé. Les progrès des technologies informatiques, qui fournissent
du stockage à bas prix et une très forte puissance de calcul, ont permis aux
organisations d’exécuter des analyses complexes de leurs données et d’en extraire
des connaissances précieuses. Cette tendance a été très importante non seulement
pour l’industrie, mais a également pour la science, où les meilleures instruments et
les simulations les plus complexes ont besoin d’une gestion efficace des quantités
énormes de données.

Le parallélisme est une technique fondamentale dans la gestion de données
extrêmement volumineuses car il tire parti de l’utilisation simultanée de plusieurs
ressources informatiques. Pour profiter du calcul parallèle, nous avons besoin
de techniques de partitionnement de données efficaces, qui sont en charge de
la division de l’ensemble des données en plusieurs partitions et leur attribution
aux nœuds de calculs. Le partitionnement de données est un problème complexe,
car il doit prendre en compte des questions différentes et souvent contradictoires
telles que la localité des données, la répartition de charge et la maximisation du
parallélisme.

Dans cette thèse, nous étudions le problème de partitionnement de données,
en particulier dans les bases de données parallèles scientifiques qui sont conti-
nuellement en croissance. Nous étudions également ces partitionnements dans le
cadre MapReduce.

Dans le premier cas, nous considérons le partitionnement de très grandes bases
de données dans lesquelles des nouveaux éléments sont ajoutés en permanence,
avec pour exemple une application aux données astronomiques. Les approches
existantes sont limitées à cause de la complexité de la charge de travail et l’ajout
en continu de nouvelles données limitent l’utilisation d’approches traditionnelles.
Nous proposons deux algorithmes de partitionnement dynamique qui attribuent
les nouvelles données aux partitions en utilisant une technique basée sur l’affinité.
Nos algorithmes permettent d’obtenir de très bons partitionnements des données
en un temps d’exécution réduit comparé aux approches traditionnelles.

Nous étudions également comment améliorer la performance du framework
MapReduce en utilisant des techniques de partitionnement de données. En parti-
culier, nous sommes intéressés par le partitionnement efficient de données d’entrée

i

ii

avec l’objectif de réduire la quantité de données qui devront être transférées dans
la phase intermédiaire, connu aussi comme « shuffle ». Nous concevons et mettons
en œuvre une stratégie qui, en capturant les relations entre les tuples d’entrée
et les clés intermédiaires, obtient un partitionnement efficace qui peut être uti-
lisé pour réduire de manière significative le surcharge de communications dans
MapReduce.

Titre en français

Partitionnement dans les Systèmes de Gestion de Données Parallèles

Mots-clés

• Partitionnement de données
• Systèmes parallèles
• Bases de données parallèles
• MapReduce

Abstract

During the last years, the volume of data that is captured and generated has
exploded. Advances in computer technologies, which provide cheap storage and
increased computing capabilities, have allowed organizations to perform complex
analysis on this data and to extract valuable knowledge from it. This trend has
been very important not only for industry, but has also had a significant impact
on science, where enhanced instruments and more complex simulations call for
an efficient management of huge quantities of data.

Parallel computing is a fundamental technique in the management of large
quantities of data as it leverages on the concurrent utilization of multiple com-
puting resources. To take advantage of parallel computing, we need efficient data
partitioning techniques which are in charge of dividing the whole data and as-
signing the partitions to the processing nodes. Data partitioning is a complex
problem, as it has to consider different and often contradicting issues, such as
data locality, load balancing and maximizing parallelism.

In this thesis, we study the problem of data partitioning, particularly in sci-
entific parallel databases that are continuously growing and in the MapReduce
framework.

In the case of scientific databases, we consider data partitioning in very large
databases in which new data is appended continuously to the database, e.g. as-
tronomical applications. Existing approaches are limited since the complexity
of the workload and continuous appends restrict the applicability of traditional
approaches. We propose two partitioning algorithms that dynamically partition
new data elements by a technique based on data affinity. Our algorithms en-
able us to obtain very good data partitions in a low execution time compared to
traditional approaches.

We also study how to improve the performance of MapReduce framework
using data partitioning techniques. In particular, we are interested in efficient
data partitioning of the input datasets to reduce the amount of data that has to
be transferred in the shuffle phase. We design and implement a strategy which, by
capturing the relationships between input tuples and intermediate keys, obtains
an efficient partitioning that can be used to reduce significantly the MapReduce’s
communication overhead.

iii

iv

Title in English

Data Partitioning in Parallel Data Management Systems

Keywords

• Data partitioning
• Parallel Systems
• Parallel Databases
• MapReduce

v

Equipe de Recherche
Zenith Team, INRIA & LIRMM

Laboratoire
LIRMM - Laboratoire d’Informatique, Robotique et Micro-électronique de Montpellier

Adresse
Université Montpellier 2

UMR 5506 - LIRMM

CC477

161 rue Ada

34095 Montpellier Cedex 5 - France

vi

Résumé étendu

Introduction

Les quantités de données qui sont captées ou générées par des dispositifs infor-
matiques modernes ont augmenté de façon exponentielle au cours de ces dernières
années. Des nombreuses nouvelles sources de données ont été développées et sont
devenues omniprésentes. Il s’agit notamment des réseaux sociaux (et de l’Inter-
net en général), des web logs, des capteurs, des équiêments GPS, des systèmes
de commerce électroniques, des instruments scientifiques, etc. Le progrès dans la
capacité des systèmes informatiques, qui fournissent du stockage à bas prix et
une très forte puissance de calcul, conduit les organisations à garder toutes leurs
données, même anciennes, et d’effectuer des analyses complexes afin d’en extraire
des connaissances, qui peuvent être exploitées comme aide dans le processus de
prise de décisions.

Big Data est l’expression utilisée pour désigner les données qui, en raison
de leur taille et de leur complexité, sont difficiles à manipuler avec des outils
traditionnels de traitement et de gestion de données. Le big data se caractérise par
trois dimensions (aussi appelés les trois Vs) : 1) le volume, qui fait référence aux
très grandes quantités de données générées, 2) la vitesse, qui représente les taux
élevés avec lesquels les flux de données rentrent dans les organisations, et enfin
3) la variété, qui se réfère aux nombreux types et formats de données différents
dans lesquels les données sont produites.

L’un des domaines où le besoin de nouvelles technologies de gestion de données
extrêmement volumineuses est devenu essentiel est la science. Les améliorations
dans la précision des instruments d’observation et l’accroissement de la complexité
des modèles de simulation ont multiplié les quantités de données qui doivent être
analysées. En outre, les données scientifiques sont complexes et présentent une
grande variété de types et formats, y compris des données multidimensionnelles,
des graphes, des séquences, etc., qui posent des défis supplémentaires dans leur
gestion. Des exemples de projets scientifiques qui entrent dans cette catégorie sont
l’expérience ATLAS, une expérience de physique des particules réalisée à l’accé-
lérateur de particules ou Large Hadron Collider (LHC) du CERN et qui produit
1 Po de données chaque année ; ou les catalogues astronomiques qui sont générés
à partir d’observations régulières du ciel par les modernes télescopes optiques. Le

vii

viii

Sloan Digital Sky Survey (SDSS), qui a débuté en 2000, a été le premier effort
de ce type et a déjà recueilli aujourd’hui plus de 140 To de données. Les pro-
jets à venir, comme le Dark Energy Survey (DES) ou le Grand Synoptic Survey
Telescope (LSST) vont produire beaucoup plus de données, ce qui va augmenter
encore la pression sur leurs systèmes de gestion des données.

Lorsqu’on traite de grandes quantités de données, le calcul parallèle est l’une
des techniques fondamentales à utiliser, car il permet de tirer parti de l’utilisa-
tion simultanée de plusieurs ressources informatiques afin d’accélérer (speed-up)
les calculs ou de maintenir les temps de réponse du système (scale-up), lorsque la
taille des données d’entrée et la charge de travail augmentent. Inévitablement, le
calcul massivement parallèle est une solution importante à la fois dans l’industrie
et dans la recherche lors de l’élaboration de nouvelles techniques pour le traite-
ment des données à grande échelle. Par exemple, le framework MapReduce, qui
offre la distribution automatique des donnés, la parallélisation et la tolérance aux
pannes d’une manière transparente, est devenu l’une des standards en matière
d’analyse de données à grande échelle.

Le problème du partitionement des données

Le calcul parallèle exige que chaque nœud qui participe au traitement ob-
tienne une partie du travail. Ceci est réalisé par une approche en deux étapes : le
partitionnement des données (ou fragmentation) pour diviser l’ensemble de don-
nées, et le placement des données (ou la répartition) pour assigner des fragments
à des nœuds du système.

Si les données d’entrée sont initialement stockées hors du système parallèle,
elles doivent être divisées et transférées à chacun des nœuds participants. Cepen-
dant, dans de nombreux cas, les données sont déjà stockées dans les mêmes nœuds
qui exécutent le programme afin d’éviter la surcharge de transferts des données,
appliquant ainsi le principe qui dit que « déplacer le calcul est moins cher que
déplacer les données », ce qui maximise la localité de référence. L’exemple ma-
jeur de ce principe concerne les bases de données parallèles [97], où chaque nœud
est affecté à une partie des données et un processeur de requêtes détermine les
nœuds qui participent au traitement d’une requête. Un autre exemple concerne
les systèmes de fichiers distribués où les différents fichiers et même les différents
fragments dans lesquels un fichier est divisé sont répartis sur tous les nœuds.
Quand un calcul est soumis, le système essaie d’exécuter les unités de travail
dans les mêmes nœuds qui stockent leurs données d’entrée.

Un problème important lié à la façon dont les données sont partitionnées et
attribuées aux nœuds est la répartition de charge, car si les nœuds sont affec-
tés à différentes charges de travail, les avantages du calcul parallèle diminuent
parce que les ressources peuvent être sous-utilisées, et la durée totale d’exécution
devient celle du nœud le plus lent. L’un des défis liés à ce problème est que,

ix

dans de nombreux cas, la localité des données et la répartition de charge sont
contradictoires et un compromis doit être trouvé.

Il y a beaucoup de stratégies différentes pour partitionner et allouer un en-
semble de données et même l’objectif d’optimisation peut changer. Le choix d’une
approche particulière dépendrait de nombreux facteurs tels que les caractéris-
tiques des programmes, l’architecture du système, les capacités du réseau, etc.

Dans cette thèse, nous étudions le problème de partitionnement de données
dans les systèmes parallèles dans deux contextes différents : (1) les bases de
données scientifiques qui augmentent de façon continue avec l’arrivée de nouvelles
données et (2) le framework MapReduce. Dans les deux cas, nous proposons des
approches automatiques, qui sont accomplies de manière transparente pour les
utilisateurs, afin de les libérer du problème de partitionnement complexe.

Par rapport à (1), nous considérons le partitionnement de très grandes bases
de données dans lesquelles des nouveaux éléments sont ajoutés en permanence.
Ainsi, le développement de stratégies de partitionnement de données efficaces est
l’une des principales exigences pour obtenir de bons résultats. En particulier, ce
problème est plus difficile dans le cas de certaines bases de données scientifiques,
tels que les catalogues astronomiques. La complexité du schéma limite l’appli-
cabilité des approches automatiques traditionnelles basées sur les techniques de
partitionnement basiques. Le haut dynamisme rend l’utilisation d’approches ba-
sées sur les graphes impraticable, car ils nécessitent de considérer l’ensemble des
données afin de trouver un bon schéma de partitionnement. En conséquence, nous
avons besoin d’une approche qui soit capable de capturer les relations entre les
données, comme dans le partitionnement basé sur les graphes, mais d’une ma-
nière dynamique, c’est-à-dire, en ne considérant que les éléments qui sont ajoutés
à chaque fois.

Par rapport à (2), nous étudions comment le partitionnement des données
affecte la performance de travaux (jobs) MapReduce. Un travail MapReduce est
détaillé par deux fonctions définies par l’utilisateur, appelées map et reduce, qui
consomment et produisent des paires clé-valeur. Ces fonctions sont exécutées en
parallèle par plusieurs tâches qui sont responsables du traitement d’un fragment
des données. Les tâches map consomment des paires clé- valeur d’entrée et pro-
duisent des paires intermédiaires. Celles-ci sont alors triées et regroupées par clés,
puis livrées aux tâches reduce. Le framework MapReduce est responsable du par-
titionnement, du tri et du transfert des paires des tâches map aux tâches reduce.
Ce processus est connu sous le nom de la phase shuffle. La réduction de la quan-
tité de données qui sont transférées dans cette phase est très importante pour les
performances, car elle augmente la localité des données dans les tâches reduce,
et diminue ainsi la surcharge des exécutions. Dans la littérature, plusieurs opti-
misations ont été proposées avec l’objet de réduire le transfert de données entre
les tâches map et reduce. Néanmoins, toutes ces approches sont limitées par la
façon dont les paires clé-valeur intermédiaires sont réparties sur les sorties de la

x

phase map. Ce problème peut être résolu si les données d’entrée sont divisées de
sorte que les paires intermédiaires qui partagent la même clé sont produites par
la même tâche map.

État de l’art

Parallélisme

Le calcul parallèle dénote l’utilisation simultanée de plusieurs ressources de
calcul afin d’effectuer un calcul. La tâche d’origine est divisée en multiples petites
sous-tâches, qui sont assignées aux ressources informatiques dans le système et
exécutées en parallèle. Les ressources informatiques peuvent être processeurs ou
cœurs dans une seule machine multiprocesseur/multi-cœur ou représenter ordi-
nateurs autonomes reliées par un réseau dans un cluster ou une grille. L’objectif
principal d’un système parallèle est l’amélioration du temps de réponse des pro-
grammes. Cette amélioration peut être mesurée par le speed-up, qui quantifie
combien plus rapide est le système parallèle par rapport à une exécution séquen-
tielle du programme. Idéalement, l’accélération doit être linéal au nombre de
ressources informatiques utilisées ; cependant, dans des nombreux programmes il
y a certaines parties qui ne peuvent pas être exécutées en parallèle ou doit at-
tendre à la finalisation d’autres parties, par exemple, à cause de dépendances. En
conséquence, il y a un point à partir duquel l’ajout de nouvelles ressources dans
le système n’augmente pas sa performance.

Une autre façon de mesurer l’amélioration de la performance du calcul pa-
rallèle est le scale-up, qui est utilisé pour déterminer la capacité d’un système
de maintenir la performance quand les ressources et la taille des données et la
charge de travail sont augmentés proportionnellement. Cette mesure quantifie le
scalabilité du système. Idéalement, le temps d’exécution resterait constant quand
le nombre de ressources et la taille des données et la charge de travail augmente
à la même proportion.

Les techniques les plus importants utilisés dans le calcul parallèle sont les
suivantes :
• Partitionnement de données et allocation : Quand un programme est

exécuté en plusieurs ressources de calcul, chacun d’entre eux doit être al-
loué une partie différente du travail. Certains calculs simplement assignent
différents paramètres pour chacun des nœuds, qui génèrent l’entrée par
eux-mêmes. Mais dans des nombreux cas, l’entrée se compose d’un grand
ensemble de données qui doit être divisé et attribué aux nœuds. Ceci est
réalisé dans une procédure en deux étapes : le partitionnement de données
ou fragmentation (division de l’ensemble de données) et le placement ou
allocation (attribution des fragments aux nœuds du système). Le partition-
nement des données et l’allocation sont spécialement importantes dans les

xi

architectures shared-nothing, où chaque nœud dispose des disques durs at-
tachés qui sont accessibles beaucoup plus rapide que les disques attachés
à d’autres nœuds. Dans des nombreux cas, les données sont stockées dans
les mêmes ordinateurs qui exécutent le calcul afin d’éviter la surcharge de
transferts des données maximisent ce qui est connu comme localité des don-

nées.
• Répartition de charge : Dans un système parallèle, il est fondamental que

les nœuds reçoivent la même quantité de travail (ou un travail proportionnel
à leur puissance de calcul, si elle est différente), afin d’éviter la surcharge
de certains d’entre eux tandis que d’autres restent inactifs. Ceci est connu
comme la répartition de charge et a un impact significatif sur l’utilisation
des ressources, le débit et le temps de réponse. La répartition de charge est
étroitement liée avec le partitionnement des données et l’allocation, même si
elle se rapporte également à l’ordonnancement (scheduling), et fréquemment
entre en conflit avec la localité des données.

• Replication : Il consiste à stocker plusieurs copies des mêmes données dans
différents nœuds. Il est utilisé dans les systèmes parallèles à la fois pour
améliorer la disponibilité et la performance. La disponibilité est augmentée
car même si certains des nœuds tombe en panne, les données sont toujours
accessibles en récupérant les exemplaires conservés dans d’autres nœuds.
La performance peut être améliorée par : 1) l’exécution de programmes qui
accèdent aux mêmes données dans différents nœuds, augmentant ainsi le
parallélisme ; 2) l’amélioration de la répartition de charge en répliquant les
hotspots à différents nœuds, et 3) l’augmentation de la localité des données.

• Tolérance aux pannes : Deux concepts sont au cœur de la tolérance
aux pannes : la fiabilité et la disponibilité. La fiabilité est la capacité d’un
système à fonctionner sans faute pendant une période de temps, considèrent
une faute comme un écart de la spécification du système. Il est normalement
utilisé pour les éléments qui ne peuvent pas être réparés. La disponibilité

est la fraction de temps qu’un système est opérationnel. Il se réfère toujours
à des systèmes qui peuvent être réparés et mesure leur capacité à tolérer les
pannes de leurs éléments.
Un système parallèle peut être construit de telle sorte que les pannes indivi-
duelles de certains de ses éléments ne rendent pas le système indisponible.
La principale technique utilisée pour obtenir la tolérance aux pannes est
la redondance. La capacité de faire face aux pannes comporte trois capaci-
tés : la détection des pannes lorsqu’elles se produisissent ; la redirection des
requêtes affectées du nœud en panne à un autre de manière transparente
(failover) et la réintroduction des répliques en panne dans le système quand
ils sont à nouveau disponibles (récupération).

xii

Partitionement dans les bases de données

Un système de base de données parallèle [97] combine les techniques de ges-
tion de bases de données et les techniques de traitement des données en parallèle
afin de stocker de gros volumes de données et fournir des niveaux acceptables de
performance et de disponibilité. Le partitionnement de données est utilisé pour
diviser les éléments de base de données et les allouer aux nœuds qui participent au
traitement des requêtes. Le parallélisme peut être obtenu par l’exécution simul-
tanée de plusieurs requêtes et/ou par l’exécution en parallèle d’une seule requête
sur plusieurs nœuds. Selon l’application, l’objectif du partitionnement est diffé-
rent. Par exemple, lorsque de petites requêtes sont exécutées, le partitionnement
essaye de délimiter leur exécution dans un ou quelques nœuds afin d’éviter la sur-
charge liée à l’exécution distribuée. D’autre part, lorsque l’application se compose
de longues requêtes, l’objectif du partitionnement est de répandre les éléments
accédés par les requêtes dans tous les nœuds d’une manière équilibrée afin que
le temps de réponse total soit minimisé. Dans le premier cas, des techniques de
clustering sont utilisées, en essayant de placer des objets qui sont fréquemment
consultés conjointement dans les mêmes partitions. Dans le second cas, l’objectif
est à l’opposé, et le terme utilisé fréquemment est declustering.

Considérant une base de données relationnelle (avec des relations contenant
des tuples), les relations peuvent être partitionnées de deux façons : horizonta-
lement et verticalement. Dans le premier cas, chaque fragment est attribué un
sous-ensemble des tuples. Dans la seconde, les attributs de la relation sont divisés
en plusieurs groupes. Chaque fragment contient les attributs composant la clé
primaire ainsi que les attributs de l’un des groupes. Le partitionnement verti-
cal est généralement utilisé pour la conception physique de base de données. Le
partitionnement horizontal, d’autre part, est utilisé dans tous les cas et est la
principale forme de partitionnement utilisée pour diviser l’ensemble des données
dans une base de données parallèle.

Trois techniques de base ont été largement utilisées dans la littérature pour
partitionner les relations et affecter les tuples aux nœuds dans une base de données
parallèle : partitionnement round-robin, qui attribue les tuples aux nœuds de façon
séquentielle ; le partitionnement par hachage, qui applique une fonction de hachage
sur les attributs de partitionnement pour obtenir le nœud de destination ; et le
partitionnement par intervalle, qui définit des intervalles de valeurs des attributs
de partitionnement et les attribue aux différents nœuds.

Les techniques de base fonctionnent bien dans des nombreux cas et sont encore
utilisées dans des nombreuses applications, mais dès que la charge de travail
devient plus complexe, la conception d’un partitionnement efficace devient plus
difficile, car beaucoup de possibilités doivent être envisagées. Plusieurs outils de
partitionnement ont été conçus afin de partitionner automatiquement la base de
données de la manière la plus efficace possible, étant donné un modèle de charge

xiii

de travail [34]. Les choix sont basés sur les techniques de partitionnement de
base, principalement par hachage et par intervalle, et sélectionnent les attributs
de partitionnement qui sont les plus adéquats.

Les techniques de partitionnement basées sur des graphes [41, 90, 84] repré-
sentent une autre alternative pour le partitionnement automatique des données
qui peut fonctionner avec n’importe quel schéma et quelle que soit la complexité
des requêtes de la charge de travail, car seules les relations entre les éléments
sont utilisées. La charge de travail est modélisée sous forme d’un graphe, où les
sommets représentent les éléments et les arêtes sont pondérées en fonction de
la similitude entre deux données. La similitude est calculée par l’addition de la
fréquence totale des requêtes qui accèdent les deux éléments à la fois. Un autre
modèle est également utilisé dans lequel la charge de travail est représentée comme
un hypergraphe, où les arêtes peuvent connecter plus de deux sommets en même
temps. Dans ce cas, chaque requête génère une arête reliant tous les éléments ac-
cédés, par opposition au modèle de graphe, où une requête accédant à n éléments
génère n(n− 1) arêtes.

MapReduce

MapReduce désigne à la fois le modèle de programmation et le framework
initialement développé par Google [43] pour le traitement parallèle des données à
grande échelle. Les utilisateurs n’ont qu’à fournir deux fonctions, appelées map et
reduce, et le système gère toutes les questions liées à la parallélisation, la tolérance
aux pannes, la distribution des données et la répartition de charge.

Les fonctions map et reduce sont définies sur des paires clé-valeur. La fonction
map consomme des paires clé-valeur d’entrée et produit une liste (éventuellement
vide) de paires clé-valeur intermédiaires. Puis, le framework regroupe les paires
intermédiaires par clé et délivre chaque groupe (la clé et toutes les valeurs asso-
ciées) à la fonction reduce, qui produit à son tour une liste (éventuellement vide)
de paires clé- valeur de sortie.

Le framework MapReduce exécute des programmes en parallèle dans un clus-
ter shared-nothing. Il y a deux types de processus, les workers, qui exécutent les
tâches map et reduce, et le master, qui est en charge de contrôler l’exécution des
workers. Habituellement, les données d’entrée et de sortie sont stockées dans un
système de fichiers distribué, par exemple Google File System [60], qui s’exécute
dans les mêmes nœuds où les travaux MapReduce sont exécutés.

Dans un travail MapReduce, l’entrée est divisée en M parties (splits), qui
sont consommées par M tâches map, une par partie. La sortie des tâches map est
partitionnée selon la clé intermédiaire dans R fragments en utilisant une fonction
de partitionnement, par défaut (hash(k2) mod R), qui sont ensuite traités par
R tâches reduce.

Quand un travail est lancé, le master partitionne l’entrée en M fragments. Les

xiv

tâches map et reduce sont alors attribuées aux travailleurs (workers) dès qu’ils
deviennent inoccupés, premièrement les tâches map, puis les tâches reduce, une
fois que toutes les tâches map sont finies. La sortie des tâches map est découpée
en R fragments selon la clé intermédiaire et stockée sur les disques durs locaux
des workers. Les tâches reduce prennent ces sorties et les trient par la clé de sorte
que toutes les valeurs d’une clé intermédiaire donnée sont traitées conjointement
par la fonction reduce. Une fois que toutes les tâches map et reduce ont terminé,
l’utilisateur est averti. La phase intermédiaire d’un travail MapReduce, lorsque
les clés intermédiaires sont partitionnées, triées et transférées vers les nœuds qui
exécutent les tâches reduce est connu comme le shuffle.

MapReduce est utilisé en combinaison avec un système de fichiers distribué,
de sorte que les données sont déjà stockées dans les mêmes nœuds qui effectuent le
calcul. Dans Google, le Google File System (GFS) [60] est employé. Par défaut, il
divise automatiquement les fichiers en blocs de 64 Mo, qui sont ensuite répliquées
(en général 3 fois) et stockés sur des machines différentes.

Dans la version MapReduce de Google, une correspondance entre les blocs
de fichiers dans GFS et les splits dans l’entré des tâches map est établie. Le
master essaie de planifier des tâches map dans les mêmes machines stockant le
bloc correspondant. Si ce n’est pas possible, une réplique proche est choisie (par
exemple, dans le même rack). L’objectif est d’économiser la bande passante du
cluster, car la plupart des données d’entrée sont lues localement sans transfert de
réseau.

Néanmoins, lors de la planification des tâches reduce, la localité des données
n’est pas du tout prise en compte. En conséquence, selon le volume de données
produites dans les tâches map et les caractéristiques du réseau (la bande pas-
sante, la topologie du réseau), le shuffle peut prendre un temps considérable pour
finir [127, 98].

Il y a eu quelques travaux qui ont essayé d’améliorer la localité des données et
de réduire la surcharge produit par les transferts dans le shuffle. Dans [111], un
système dit de pre-shuffling est proposé afin de réduire les transferts de données
dans le shuffle. Un ordonnanceur modifié vérifie les fragments d’entrée avant que
la phase de map commence et prédit le reducer où les paires clé-valeur sont répar-
ties. Ensuite, les données sont affectées à une tâche map près du reducer attendu.
De même, dans [67], les tâches reduce sont assignées aux nœuds qui minimisent
les transferts sur le réseau entre les nœuds et les racks. Toutefois, dans ce cas,
la décision est prise en temps de programmation de tâches reduce. La limitation
des ces approches est que, même si toutes les paires intermédiaires sont produites
dans le même nœud, la fonction de partitionnement peut les forcer à être sépa-
rés en plusieurs tâches reduce, réduisant ainsi les possibilités de programmation
basées sur la localité des données. Dans [74], ce problème est résolu en attri-
buant les clés intermédiaires des reducers au moment de la programmation. Le
nombre de tâches reduce doit être égal au nombre de nœuds. Quand toutes les

xv

paires intermédiaires ont été produites, l’algorithme d’ordonnancement attribue
les paires intermédiaires aux tâches reduce avec un algorithme glouton. Cet al-
gorithme intègre à la fois la localité des données et la répartition de charge, de
sorte que la localité des données ne produise pas de tâches reduce avec beaucoup
plus de travail. Cependant, il dépend encore de la distribution des clés intermé-
diaires dans les sorties des tâches map. Si les paires intermédiaires avec la même
clé sont uniformément produites dans tous les travailleurs, les gains possibles de
cette approche ne sont pas significatifs.

Partitionnement dynamique pour des bases de
données en croissance continue

Dans beaucoup de domaines scientifiques les analyses des données nécessaires
pour obtenir des enseignements impliquent la gestion et le traitement d’énormes
quantités d’informations. Ceci est le résultat d’une explosion dans la quantité
de données produites par les nouveaux instruments scientifiques beaucoup plus
précises et des modèles de simulation plus complexes. L’un de ces domaines est
l’astronomie, où les télescopes modernes équipés de caméras très puissantes gé-
nèrent de grandes quantités de données provenant des observations régulières du
ciel. Nous nous concentrons sur le Dark Energy Survey (DES), un projet auquel
nous avons collaboré avec nos collègues du LNCC (Rio de Janeiro), dont le but est
d’aider à la découverte de la nature de l’énergie sombre. Un catalogue composé
de grandes tables avec des milliards de tuples et des centaines d’attributs (corres-
pondant aux dimensions, principalement des nombres réels en double précision)
stocke les objets découverts et est continuellement augmenté avec des nouvelles
observations effectuées. Les scientifiques du monde entier peuvent accéder à la
base de données avec des requêtes qui peuvent contenir un nombre considérable
d’attributs.

Le volume des données que ces applications contiennent pose des défis im-
portants pour la gestion de données. En particulier, des solutions efficaces sont
nécessaires pour partitionner et distribuer les données dans plusieurs serveurs,
notamment un cluster, afin d’optimiser l’exécution des requêtes, spécialement les
petites requêtes accédant à une petite partie de l’ensemble de données. Une straté-
gie de partitionnement efficace aurait comme objectif la minimisation du nombre
de fragments qui sont accédés dans l’exécution d’une requête, réduisant ainsi les
surcharges liées à l’exécution distribuée. Les approches traditionnelles de parti-
tionnement horizontal, comme le partitionnement par hachage ou par intervalle,
sont incapables de saisir les schémas d’accès complexes présents dans les appli-
cations de calcul scientifique, en particulier parce que ces applications utilisent
généralement des relations compliquées, y compris des opérations mathématiques,
sur un grand ensemble de colonnes, et sont difficiles à être prédéfinis a priori. Les

xvi

approches basées sur le partitionnement de graphes peuvent bien fonctionner avec
ces requêtes complexes, car elles peuvent travailler avec n’importe quel schéma et
quelle que soit la complexité des requêtes de la charge de travail. Cependant, elles
ont besoin de faire un recalcul complet du partitionnement lorsque l’ensemble de
données change, ce qui peut devenir prohibitif dans notre scénario. En outre, le
modèle basé sur des graphes ne tient pas compte du placement des données pré-
cédentes, et beaucoup de transferts de données peuvent avoir lieu afin d’appliquer
le nouveau partitionnement.

Dans cette partie, nous nous intéressons au partitionnement dynamique de
grandes bases de données qui sont agrandies continuellement. Après avoir mo-
délisé le problème de partitionnement des données en ensembles de données dy-
namiques, nous proposons deux algorithmes dynamiques basés sur la charge de
travail, appelés DynPart et DynPartGroup, qui adaptent efficacement le par-
titionnement à l’arrivée de nouveaux éléments de données. Ces algorithmes sont
conçus en se basant sur une heuristique que nous avons développée en tenant
compte de l’affinité entre les nouvelles données et les requêtes et les fragments.
Contrairement aux algorithmes basés sur la charge de travail statique, le temps
d’exécution de nos algorithmes ne dépend pas de la taille totale de la base de don-
nées, mais seulement de celle des nouvelles données, ce qui les rend appropriés
pour les bases de données en croissance constante.

Compte tenu d’un partitionnement π(D), on définit une mesure de l’effica-

cité du partitionnement comme le rapport entre le nombre de fragments qu’une
requête doit accéder (rel(q, π(D))) et le nombre minimum de fragments qui pour-
raient être employées pour y répondre (minfr(q, π(D))) :

eff (q, π(D)) =
minfr(q, π(D))
|rel(q, π(D))|

À partir de cette mesure, nous générons une heuristique, que nous appelons
affinité, qui est défini entre les nouveaux éléments de données qui arrivent et les
fragments qui forment le partitionnement :

aff (d, F) = −
∑

q:q(F)=∅∧comp(q,d)

f(q)
minfr(q, π(D))

|rel(q, π(D))| (|rel(q, π(D))|+ 1)

où comp(q, d) exprime que d est compatible avec la requête q et f(q) représente
sa fréquence dans la charge de travail.

Nous proposons une première version de l’algorithme, appelé DynPart, qui
traite les nouveaux éléments de données un par un et sélectionne le fragment
ayant une affinité maximale comme destination. Des contraintes de déséquilibre
(soit sur la taille des fragments ou sur leur charge) sont appliquées quand les
allocations sans déterminées.

Une deuxième version de l’algorithme, appelé DynPartGroup est également

xvii

proposée. Dans ce cas, une étape de regroupement préliminaire est effectuée sur
les nouveaux éléments. Les éléments équivalents (appartenant à la réponse des
mêmes requêtes) sont regroupés et attribués comme une seule unité à l’un des
fragments. Cette stratégie réduit le nombre de calculs d’affinité et évite la scission
des groupes en raison du déséquilibre, un scénario qui dégraderait l’efficacité du
partitionnement.

Nous avons validé notre approche en implémentant les algorithmes de parti-
tionnement et les exécutant sur des données réelles provenant du catalogue Sloan
Sky Digital Survey (SDSS), car les données du DES ne sont pas encore dispo-
nibles. Nous avons utilisé les requêtes SDSS SkyServer SQL query log comme
charge de travail de l’application. Nous avons comparé le temps d’exécution de
nos algorithmes à celle d’une approche statique basée sur le partitionnement de
graphes. Les résultats montrent que, dès la taille de la base de données augmente,
le temps d’exécution de l’algorithme statique augmente de manière significative,
par contre, celle de nos algorithmes reste stable. Ils présentent en outre l’avantage
que nos algorithmes, bien que basés sur une approche heuristique, ne dégradent
pas considérablement l’efficacité du partitionnement. Les expériences dévoilent
que dans le cas d’ensembles de données dans lesquels il y a une forte corrélation
entre les nouveaux éléments de données, l’algorithme DynPartGroup maintient
un très bon comportement. Ils indiquent également que cet algorithme n’est pas
très affecté par le déséquilibre dans la taille ou la charge des fragments.

Partitionnement des données pour minimiser les
transferts de données dans MapReduce

MapReduce [43] s’est imposé comme l’une des alternatives les plus populaires
pour le traitement des grands ensembles de données grâce à la simplicité de son
modèle de programmation et sa gestion automatique de l’exécution en parallèle
dans les clusters. Il divise le calcul en deux phases principales, à savoir, le map et
reduce, qui à leur tour sont effectués par plusieurs tâches qui traitent les données
en parallèle. Entre les deux, il y a une phase intermédiaire, appelée shuffle, où
les données produites par la phase map sont ordonnées, regroupées et transférées
vers les machines en charge de l’exécution de la phase reduce.

MapReduce applique le principe qui stipule que « déplacer le calcul est moins
cher que déplacer les données » et essaie ainsi de planifier les tâches map dans des
machines proches des données d’entrée qu’ils traitent, afin de maximiser la localité
des données. La localité des données est souhaitable, car elle réduit la quantité de
données transférées via le réseau, ce qui réduit la consommation d’énergie ainsi
que le trafic réseau des centres de données. Cependant, dans l’ordonnancement
des tâches reduce, la localité des données n’est pas du tout prise en compte. Cer-
taines travaux [127, 98] ont démontré que les transferts à travers le réseau peuvent

xviii

poser une surcharge considérable dans l’exécution des travaux MapReduce. En
conséquence, plusieurs optimisations ont été proposées afin de réduire les trans-
ferts de données entre les mappers et les reducers. Nous avons couvert certaines
des propositions, qui vont de la planification intelligente des tâches reduce [111,
67] à l’attribution dynamique des clés intermédiaires aux tâches reduce au mo-
ment de la planification [74]. Néanmoins, toutes ces approches sont limitées par
la façon dont les paires clé-valeur intermédiaires sont réparties sur les sorties de la
phase map. Si les données associées à une clé intermédiaire donnée sont présentes
dans toutes les sorties des tâches map, les paires dans tout l’ensemble des nœuds
sauf un doivent encore être transférées à travers le réseau.

Dans cette thèse, nous proposons une technique, appelée MR-part, qui vise à
minimiser les données transférées entre les mappers et les reducers dans la phase
de shuffle de MapReduce. Pour ce faire, il rend compte des relations entre les
tuples d’entrée et les clés intermédiaires en surveillant l’exécution d’un ensemble
des travaux MapReduce qui sont représentatifs de la charge de travail. Ensuite,
en fonction des relations capturées, il partitionne les fichiers d’entrée et attribue
les tuples d’entrée aux fragments appropriés de telle manière que les travaux Ma-
pReduce ultérieurs tireront pleinement parti de la localité des données dans la
phase reduce. Afin de caractériser la charge de travail, nous injectons une com-
posante de surveillance (monitoring) dans le famework MapReduce qui produit
les métadonnées requises. Ensuite, un autre élément, qui est exécuté hors ligne,
combine les informations saisies pour tous les travaux MapReduce de la charge de
travail et partitionne les données d’entrée en conséquence. Nous avons modélisé la
charge de travail en utilisant un hypergraphe, auquel on applique un algorithme
de coupe minimal des graphes pour attribuer les tuples aux fragments d’entrée.

Nous avons implémenté un prototype de MR-part et l’avons intégré dans Ha-
doop. Le composant du monitoring comme celui d’ordonnancement sont incorpo-
rés à Hadoop, alors que les composants de repartitionnement sont exécutés hors
ligne et en dehors du framework Hadoop. Chaque fois que possible, nous avons
défini une interface générale et fourni une ou plusieurs implémentations. Cela
permet de tester plusieurs stratégies avec un minimum d’effort et rend l’entre-
tien et l’extension du prototype simple. De cette façon, des stratégies alternatives
peuvent être envisagées pour le suivi de la charge de travail, mais encore plus
utile est la possibilité de définir des algorithmes d’ordonnancement spécifiques.
Les nouvelles implémentations de surveillance ou de planification peuvent être
encapsulées dans un fichier jar et chargés dynamiquement sans avoir à modifier
le code du framework Hadoop.

Nous avons évalué notre prototype dans Grid5000, une infrastructure à grande
échelle composée de différents sites avec plusieurs clusters. Nous avons utilisé le
benchmark TPC-H et exécuté ses requêtes sur Hadoop native, la version modi-
fiée de Hadoop incorporant l’attribution dynamique des clés intermédiaires [74]
et MR-Part. Les résultats montrent que, sans le repartitionnement des données

xix

d’entrée, peu de gain est obtenu en ce qui concerne le volume de données trans-
férées dans la phase shuffle. Cependant, MR-part réduit les transferts de données
à moins de 10% du total pour différents types de requêtes et différentes tailles
du cluster. Cette réduction a un impact significatif sur le temps total d’exécution
lorsque la bande passante du réseau est limitée, compte tenu que le temps de
shuffle est considérablement réduit.

Conclusions

Cette thèse s’inscrit dans le contexte des applications big data, en utilisant le
parallélisme à grande échelle pour le traitement et la gestion efficace de grands
ensembles de données. En particulier, nous nous sommes concentrés sur le pro-
blème de partitionnement des données, ce qui est fondamental pour obtenir un
traitement parallèle et donc d’améliorer les performances des applications qui
traitent de grands ensembles de données. Nous avons abordé deux problèmes en
particulier :
• Nous avons abordé le problème de partitionnement automatique dans les

grandes bases de données scientifiques où des nouveaux éléments sont in-
sérés dès que de nouvelles mesures sont effectuées. Nous avons identifié les
principales limitations des approches existantes, essentiellement : 1) l’inef-
ficacité des approches automatiques basés sur les techniques de base pour
gérer la complexité des applications scientifiques, et 2) le long temps d’exé-
cution des algorithmes de partitionnement basés sur les graphes. Comme
solution, nous avons proposé deux algorithmes, DynPart et DynPartGroup

qui allouent dynamiquement les nouveaux éléments en fonction de l’affi-
nité qu’ils ont avec les fragments actuels dans le partitionnement. Le temps
d’exécution de nos algorithmes reste constant même si la taille de la base
de données augmente, tandis que celle des approches basées sur des graphes
augmente. Les résultats révèlent également que dans nos algorithmes, l’effi-
cacité du partitionnement est préservée lorsque la base de données croît en
taille.

• Nous avons étudié comment le partitionnement des données affecte la per-
formance des travaux MapReduce et proposé une approche en vue de réduire
la quantité de données transférées via le réseau dans la phase shuffle. Il est
basée sur le partitionnement des données d’entrée, qui est effectué après une
phase de surveillance (monitoring) où les relations entre les tuples d’entrée
et les clés intermédiaires sont capturées. Cette répartition peut être utili-
sée pour réduire les transferts via le réseau dans la phase shuffle, ce qui se
traduit par des réductions significatives sur le temps d’exécution lorsque la
bande passante est limitée.

xx

Contents

1 Introduction 1
1.1 Data Partitioning Problem . 2
1.2 Contributions . 3
1.3 Publications . 4
1.4 Organization of the Thesis . 5

2 State of the Art 7
2.1 Overview Of Parallel Computing 7

2.1.1 What is parallel computing? 7
2.1.2 Architectures . 8
2.1.3 Computing Paradigms . 11
2.1.4 Parallel Databases . 15
2.1.5 Techniques . 15

2.2 Data Partitioning in Databases 19
2.2.1 Definition . 19
2.2.2 Types . 19
2.2.3 Optimization Objectives 21
2.2.4 Techniques . 21

2.3 MapReduce . 28
2.3.1 Overview . 29
2.3.2 Implementation Details . 35
2.3.3 Limitations and Main improvements 37

2.4 Conclusions . 44

3 Dynamic Partitioning for Continuously Growing Databases 47
3.1 Motivation and Overview of the Proposal 47
3.2 Problem Definition . 49

3.2.1 Static Partitioning . 49
3.2.2 Dynamic Partitioning . 50

3.3 Affinity Based Dynamic Partitioning 51
3.3.1 System Overview . 51
3.3.2 Principle . 52
3.3.3 Algorithm . 53

xxi

xxii CONTENTS

3.3.4 Example . 54
3.3.5 Data Structures . 56
3.3.6 Dealing with Deletes and Updates 56

3.4 Dealing with Imbalance . 57
3.4.1 Algorithm . 57
3.4.2 Example . 60
3.4.3 Balancing Fragments Based on Load 62

3.5 Experimental Evaluation . 62
3.5.1 Set-up . 63
3.5.2 Partitioning Time . 63
3.5.3 Partitioning Efficiency . 66
3.5.4 Effect of Imbalance Factor and Data Correlation 67

3.6 Related Work . 69
3.7 Conclusions . 71

4 Data Partitioning for Minimizing Data Transfers in MapReduce 73
4.1 Motivations and Overview . 73
4.2 Problem Definition . 74

4.2.1 Input Dataset . 74
4.2.2 Transferred Data in Shuffle Phase 75
4.2.3 Problem Statement . 76

4.3 MR-Part . 77
4.3.1 Workload Characterization 77
4.3.2 Repartitioning . 79
4.3.3 Reduce Tasks Locality-Aware Scheduling 82
4.3.4 Improving Scalability . 85

4.4 Experimental Evaluation . 85
4.4.1 Set-Up . 85
4.4.2 Results . 86

4.5 Related Work . 89
4.6 Discussion . 90

4.6.1 Locality-aware Scheduling of Reduce Tasks 90
4.6.2 Assignment of Intermediate Keys at Scheduling Time . . . 91

4.7 Conclusions . 93

5 MR-Part Prototype 95
5.1 Overview . 95
5.2 Monitoring . 96

5.2.1 Collector Interface . 98
5.2.2 Collector Integration in MapReduce 100

5.3 Repartitioning . 101
5.3.1 Metadata Combination . 101

CONTENTS xxiii

5.3.2 Graph Partitioning . 103
5.3.3 File Repartitioning . 104

5.4 Scheduling . 105
5.4.1 Frequency Information . 105
5.4.2 Reduce Scheduler . 106
5.4.3 Shuffle Mechanism . 107

5.5 Conclusions . 108

6 Conclusions 111
6.1 Contributions . 111

6.1.1 Dynamic Partitioning in Continuously Growing Databases 111
6.1.2 Partitioning for Reducing Network Traffic in MapReduce . 112

6.2 Directions for Future Work . 113

Bibliography 115

xxiv CONTENTS

Chapter 1

Introduction

The amount of data that is captured or generated by modern computing
devices has augmented exponentially over the last years. Numerous novel in-
put data sources have been developed and become omnipresent. These include
social networks (and the Internet in general), web logs, sensors, GPS devices,
trading systems, scientific instruments, etc. The enhanced capacity of computer
systems, which provides vast storage and increased computing capabilities, has
led organizations to keep their data and perform complex analysis in order to
extract knowledge from it, allowing them to obtain insightful understanding of
their business, which would, in turn, help them in the decision making process.

Big Data is the term that has been coined to refer to the data that, because
of its size and complexity, is difficult to be handled by traditional data manage-
ment and processing tools. It is commonly characterized by three dimensions
(also called the three Vs): 1) Volume, which refers to the increased quantity of
generated data; 2) Velocity, which denotes the high rate at which data flows into
organizations; and 3) Variety, which refers to the many different data types and
formats in which data is produced.

One of the domains where the need for new big data management technolo-
gies have become critical is science. The improvements in the precision of ob-
servational instruments and the increased complexity of simulation models has
multiplied the quantity of data that has to be analyzed. Moreover, scientific data
is complex and presents a wide variety of types and formats, including multidi-
mensional data, graphs, sequences, etc., which pose additional challenges for data
management. Examples of scientific projects that fall into this category include
the ATLAS experiment, a particle physics experiment at CERN’s Large Hadron
Collider (LHC) that produces 1 petabyte of data each year; or the astronomical
catalogs that are generated from regular observations of the sky by novel optical
telescopes. The Sloan Digital Sky Survey (SDSS), which was started in 2000, has
been the first effort of this type and has already collected more than 140 TB of
data to the present. Future projects, such as the Dark Energy Survey (DES) or
the Large Synoptic Survey Telescope (LSST) will produce much larger quantities

1

2 1. Introduction

of data, thereby putting much pressure on their data management systems.
When dealing with large amounts of data, parallel computing is one of the

fundamental techniques to be used, as it leverages the concurrent utilization of
multiple computing resources in order to accelerate (speed-up) the computations
or to maintain the response times of the system (scale-up) as the input data size
increases. Indeed, massive parallel computing has been a major solution in both
industry and research when developing new techniques for big data processing.
For example, the MapReduce framework, which provides for automatic distribu-
tion, parallelization and fault-tolerance in a transparent way, has become one of
the standards in big data analysis.

1.1 Data Partitioning Problem

For a program to be executed concurrently using several processing nodes in a
parallel computer system (e.g. a cluster), the work has to be divided and assigned
to each one of them. This usually requires a given input dataset to be divided
and assigned to each of the nodes. This is carried out in a two-step process:
data partitioning (or fragmentation) to divide the dataset, and data placement
(or allocation) to assign the fragments to the system’s nodes.

If the original input data is stored at a single node or outside the parallel sys-
tem, then it has to be divided and transferred to each of the participating nodes.
However, in many cases, the data is stored at the same nodes that execute the
program in order to avoid the overhead of data transfers, thus applying the prin-
ciple “moving computation is cheaper than moving data”, which fosters locality
of reference to the data. The paradigmatic example of this principle is distributed

and parallel databases, where each node is assigned a partition of the database
and a query processor determines the nodes that participate in the processing of
a query. Another example is a distributed file system where different files and
even different fragments of the same file are spread over all the nodes. When a
program is executed, the system executes as much as possible each unit of work
at the same node that stores its input.

An important issue related to how data is partitioned and assigned to the
nodes is load balancing, since if nodes are assigned a different amount of work, the
benefits of parallel computing decrease because the resources are under-utilized,
and the response time becomes that of the slowest node. One of the challenges
related to this problem is that in many cases data locality and load balancing are
contradictory and a compromise has to be found.

There are many different strategies to partition and allocate a dataset and
even the optimization goal may change. The choice of a particular approach
depends on many factors such as the the characteristics of the programs, the
architecture of the system, the network capabilities, etc.

1.2. Contributions 3

In this thesis, we study the problem of data partitioning in parallel systems in
two different contexts: (1) in scientific databases that are continuously growing
and (2) in the MapReduce framework. In both cases, we propose automatic
approaches, which are performed transparently to the users, in order to free them
from the burden of complex partitioning.

Wrt (1), we consider applications with very large databases, where data items
are continuously appended. Thus, the development of efficient data partitioning
is one of the main requirements to yield good performance. In particular, this
problem is harder in the case of some scientific databases, such as astronomical
catalogs. The complexity of the schema limits the applicability of traditional
automatic approaches based on the basic partitioning techniques. The high dy-
namicity makes the usage of graph-based approaches impractical, as they require
to consider the whole dataset in order to come up with a good partitioning scheme.
So, we need an approach that is able to capture the relationships between tuples,
as in graph-based partitioning, but in a dynamic way, i.e., only considering the
data elements that are appended at each time.

Wrt (2), we study how data partitioning affects the performance of MapRe-
duce computations. A MapReduce job is specified by two user defined functions,
called map and reduce, which consume and produce key-value pairs. These func-
tions are executed in parallel by several tasks which are responsible for processing
a fragment of the data. Map tasks consume input key-value pairs and produce in-
termediate pairs. These should be sorted and grouped by key and then delivered
to the reduce tasks. The MapReduce framework is responsible of partitioning,
sorting and transferring the pairs from map to reduce tasks. This process is
known as the shuffle phase. Reducing data transfer in MapReduce’s shuffle phase
is very important for performance because it increases data locality of reduce
tasks, and thus decreases the overhead of job executions. In the literature, sev-
eral optimizations have been proposed to reduce data transfer between map and
reduce tasks. Nevertheless, all these approaches are limited by how intermediate
key-value pairs are distributed over map outputs. This issue can be solved if the
input data is partitioned so that the intermediate pairs that share the same key
are produced by the same map task.

1.2 Contributions

The main contributions of this thesis are:

A dynamic workload-driven partitioning approach for continuously
growing databases. In this work, we propose DynPart and DynPartGroup,
two dynamic partitioning algorithms for continuously growing databases. These
algorithms efficiently adapt the data partitioning to the arrival of new data ele-

4 1. Introduction

ments by taking into account the affinity of new data with queries and fragments.
In contrast to existing static approaches, our approach offers constant execution
time, no matter the size of the database, while obtaining very good partition-
ing efficiency. We validate our solution through experimentation over real-world
data; the results show its effectiveness.

An automatic repartitioning strategy that reduces significantly data
transfer in MapReduce job execution. In this work, we address the prob-
lem of high data transfers in MapReduce, and propose a technique that repar-
titions tuples of the input datasets, and thereby optimizes the distribution of
key-values over mappers, and increases the data locality in reduce tasks. Our
approach captures the relationships between input tuples and intermediate keys
by monitoring the execution of a set of MapReduce jobs which are representative
of the workload. Then, based on those relationships, it assigns input tuples to
the appropriate chunks. With this data repartitioning and a smart scheduling of
reducer tasks, our approach significantly contributes to the reduction of trans-
ferred data between mappers and reducers in job executions. We evaluate our
approach through experimentation in a Hadoop deployment on top of Grid5000
using standard benchmarks. The results show high reduction in data transfer
during the shuffle phase compared to Native Hadoop.

1.3 Publications

• M. Liroz-Gistau, R. Akbarinia, E. Pacitti, F. Porto, and P. Valduriez,
« Dynamic workload-based partitioning algorithms for continuously grow-
ing databases », Transactions on Large-Scale Data- and Knowledge-Centered

Systems (TLDKS Journal), Lecture Notes in Computer Science, vol. 8320,
2013, To appear

• M. Liroz-Gistau, R. Akbarinia, E. Pacitti, F. Porto, and P. Valduriez, « Dy-
namic workload based partitioning for large-scale databases », in Database

and Expert Systems Applications (DEXA 2012), ser. Lecture Notes in Com-
puter Science, vol. 7447, 2012, pp. 183–190

• M. Liroz-Gistau, R. Akbarinia, D. Agrawal, E. Pacitti, and P. Valduriez,
« Data partitioning for minimizing transferred data in MapReduce », in
Data Management in Cloud, Grid and P2P Systems (Globe 2013), ser. Lec-
ture Notes in Computer Science, vol. 8059, 2013, pp. 1–12

• M. Liroz-Gistau, R. Akbarinia, E. Pacitti, F. Porto, and P. Valduriez,
« Dynpart: dynamic partitioning for large-scale databases », in 28èmes

Journées Bases de Données Avancées (BDA 2012), Clermont-Ferrand, Oct.

1.4. Organization of the Thesis 5

2012

• M. Liroz-Gistau, R. Akbarinia, D. Agrawal, E. Pacitti, and P. Valduriez,
« MR-Part : minimizing data transfers between mappers and reducers
in MapReduce », in 29èmes Journées Bases de Données Avancées (BDA

2013), Nantes, Oct. 2013

1.4 Organization of the Thesis

The rest of the thesis is organized as follows.

Chapter 2: State of the Art. In this chapter, we review the state of the art.
It is divided in three sections: In Section 2.1, we give a general overview
of parallel computing and introduce the main architectures, computing
paradigms and techniques. Section 2.2 focuses on data partitioning in par-
allel databases, which is the context of the work presented in Chapter 3.
Finally, Section 2.3 describes the MapReduce framework, which is used
in Chapters 4 and 5 and presents its limitations and the most important
solutions to overcome them.

Chapter 3: DynPart and DynPartGroup. In this chapter, we deal with the
problem of automatic workload-based partitioning in large databases where
the data is continuously appended. We formally define the problem in
Section 3.2 and propose two algorithms: DynPart, which is specified in
Section 3.3, and an extension called DynPartGroup, which is described in
Section 3.4. We evaluate the algorithms experimentally and compare them
with a static graph-based partitioning approach in Section 3.5. Finally, we
compare our proposal with related work and discuss possible extensions.

Chapter 4: MR-Part. This chapter addresses the problem of data transfers in
MapReduce shuffle’s phase and proposes a new strategy, called MRPart,
in order to minimize the amount of data that is transferred through the
network. Section 4.2 formalizes MapReduce job execution and presents the
problem definition. Then, Section 4.3 explains the strategy and depicts the
designed algorithms. These algorithms are assessed and compared to na-
tive Hadoop and previous reduce locality-aware approaches by experimental
evaluation. The results show a significant reduction in the amount of data
transferred in the shuffle phase, which turns into a reduction of the response
time, specially when the network bandwidth is limited.

Chapter 5: MR-Part Prototype. In this chapter, we describe our implemen-
tation of the MRPart strategy proposed in Chapter 4 and its integration
within the MapReduce framework. We also discuss how MRPart can be
extended to include new ideas and variations of the algorithms. The imple-
mentation is divided in three main parts: Section 5.2 describes the system in

6 1. Introduction

charge of workload monitoring, Section 5.3 describes the programs involved
in combining workload information and performing the repartitioning of the
input files and Section 5.4 gives the modifications that have been made in
the MapReduce framework in order to alter the scheduling of reduce tasks.

Chapter 2

State of the Art

In this chapter we first present an overview of parallel computing, the main
parallel architectures and computing paradigms. Then, in Section 2.2 we focus on
the data partitioning problem in parallel and distributed databases. We describe
the main works on the topic by classifying them in three groups: basic techniques,
workload-based approaches and graph-based approaches. Section 2.3 addresses
MapReduce, which is a major framework for parallel processing. We present its
operation in detail and identify the main limitations and proposals that have been
presented in order to overcome them. Finally, in Section 2.4 we relate the state
of the art to our own work, which is presented in the next chapters of the thesis.

2.1 Overview Of Parallel Computing

2.1.1 What is parallel computing?

Parallel computing denotes the concurrent utilization of multiple computing
resources in order to perform a computation. The original task is divided into
multiple smaller tasks that are assigned to the computing resources in the system
and executed in parallel. Computing resources may be just CPUs or cores in
a single multi-processor/multi-core machine or represent autonomous computers
linked through a network in a cluster or grid. Parallel computing has been applied
to many problems including numerical simulations of complex systems, for scien-
tific applications (e.g., global climate, astrophysical or earthquake modeling) and
industrial purposes (e.g., crash simulation); web search; transaction processing;
decision support, etc.

The main goal of a parallel system is to improve the response time of program
execution. This improvement can be measured by the speed-up, Sp, which quan-
tifies how faster is the parallel system in comparison with a sequential execution
of the program:

Sp =
T1

Tp

, (2.1)

7

8 2. State of the Art

where p denotes the number of processors in the system and Ti the time it takes
to execute the program on i processors.

Ideally the speed-up should be p (linear speed-up). However, in many program
executions, there are some parts that cannot be executed in parallel or should
wait for other parts to finish, e.g., because of dependencies. As a consequence,
there is a point at which the addition of new resources in the system does not
increase performance. The Amdahl’s law [16] expresses this idea. It states that the
speed-up of a given program is limited by the fraction that should be executed
sequentially. Let B be the fraction of the program that should be executed
sequentially. Then, the speed-up can be expressed as

Sp =
p

B · p + (1−B)
. (2.2)

Note that even the result of this expression is difficult to obtain because of
start-up costs, communication costs, interference between resources, skew, etc.

An alternative way of measuring the performance improvement of parallel
computation is the scale-up, which is used to determine how well a system sustains
performance as both the number of nodes and the data size and load are increased
proportionally. This measure quantifies the scalability of the system. Ideally,
execution time would remain constant as the number of resources and the data
size and load increase proportionally.

A parallel system provides the following advantages [97]:

High performance: As computing resources execute in parallel, the execution
time of programs can be reduced significantly. Moreover, systems may be
able to process bigger datasets or serve more users in reasonable times.

High availability: Introducing redundancy may allow the system to increase its
availability and fault-tolerance. For instance, data replication is an effective
technique to support failover, that is, readdressing the computations that
were proceeding at the failed nodes to other resources that are available at
that time.

Extensibility: Parallel systems should make it easy to accommodate larger
datasets or more users. Some alternatives, such as cloud computing are
even able to adapt dynamically to changes in the load by provisioning or
deprovisioning resources automatically, an ability known as elasticity.

2.1.2 Architectures

The way in which hardware elements, e.g. main memory, disks and pro-
cessors, are linked through an interconnection network gives rise to three main
architectures: shared-memory, shared-disk and shared-nothing.

2.1. Overview Of Parallel Computing 9

P1 P2
. . . Pn

Shared memory D1

...
Dm

Figure 2.1: Shared memory architecture

Shared-Memory

A shared-memory system consists of a single RAM main memory that can
be accessed by any processor through a fast interconnection network, e.g. a high
speed bus or a cross-bar switch. Processors can also access any given disk as
required (see Figure 2.1).

Shared-memory systems have an easy programming model since there is a
single view of data. Processes can communicate with each other at the speed of
memory by writing to the same locations.

An important disadvantage of such systems is that interconnections are ex-
pensive as they require complex hardware. Moreover, extensibility is limited as
the network may become a bottleneck when there are conflicting accesses to the
shared memory. Finally, the memory represents a single point of failure, which
may limit availability.

Symmetric multiprocessors (SMP) are a specific case of shared-memory sys-
tems where all processors are identical. Processors are interconnected using a
bus, a crossbar switch or an on-chip mesh network. While buses and crossbar
switches impose a bottleneck on the communication network, mesh architectures
scale better and are able to support a higher number of processors.

When each processor has its own memory but all the memory is distributed
and virtually shared, access times depend on whether the address belongs to the
local memory or to the memory attached to another processor. This type of
memory access is called Non-Uniform Memory Access (NUMA), and provides a
simple model of shared-memory that allows the system to better scale, at the
expense of longer accesses to remote memory.

Shared-Disk

In a shared-disk architecture all disks can be accessed by any processor through
an interconnection network, but processors have separate and private main mem-
ory blocks (see Figure 2.2). A global cache consistency mechanism guarantees
that accesses to the same data are done in an ordered fashion. Typically this is

10 2. State of the Art

P1 M1 P2 M2
. . . Pn Mn

D1

. . .
Dm

Figure 2.2: Shared disk architecture

P1 M1 P2 M2
. . . Pn Mn

D1 D2 Dn

Figure 2.3: Shared nothing architecture

implemented by means of a distributed lock manager.
Shared-disk systems are less costly than shared-memory systems given that

the cost of the interconnection is notably lower as standard bus technologies can
be used. They are also easy to extend since data accesses can usually confined to
local memory, reducing interferences. Availability is also higher, as disks and/or
memory faults are localized and do not accept other resources. As a downside,
programs are more complex because consistency has to be taken into account and
they may suffer from performance problems.

Shared-Nothing

In a shared-nothing architecture, each processor has its own private mem-
ory and disk. In fact, each node is an autonomous computer that can function
independently and is connected to the other nodes through a network (see Fig-
ure 2.3). Shared-nothing systems are even less costly than shared-disk systems,
as no special interconnection is required to access the disks. Additionally, the
system is more extensible than shared-disk systems. Finally, high availability can
be obtained using replication.

Nevertheless, shared-nothing systems are much more complex than shared-
memory and shared-disks. All distribution functions have to be implemented by
the application, and load balancing has to be carefully managed as it is affected
by data partitioning.

2.1. Overview Of Parallel Computing 11

Clusters

A cluster is a set of connected computers that share resources and behave as
if they were a single computer. The nodes of a cluster are typically made of off-
the-shelf components (low-cost, low-performance commodity computers) which
are better in terms of cost/performance ratio than high-performance resources
and allow the system to be extended easily. However, for High Performance
Computing (HPC), clusters can also be made of expensive high-end computers
connected through high-speed networks.

The nodes in a cluster are usually identical (homogeneous cluster) but can
also consist of computers with different characteristics (heterogeneous cluster).
Interconnections are usually implemented through local networks, although more
advanced technologies, such as Myrinet or Infiniband can also be employed, typi-
cally in HPC clusters. In any case, all the elements of a cluster are geographically
concentrated. Clusters can use either a shared-nothing or a shared-disk architec-
ture. In the second case, two main technologies have been introduced to share the
disks: network-attached storage (NAS), which consists of network appliances with
one or more hard drives specifically built to provide access to storage through file-
based protocols, and storage-area network (SAN), which uses dedicated networks
to provide direct access to block level data storage. NAS architecture makes use
of the LAN network and is easy to deploy and maintain and of relatively low cost.
However the performance is low and does not scale very well. On the other hand,
SANs usually employ Fibre Channel, which make them faster and more scalable
but much more expensive.

2.1.3 Computing Paradigms

By leveraging on the ideas of cluster computing, several distributed comput-
ing paradigms have been proposed with different features and typically used in
different domains.

Grid Computing

Grid computing is a parallel computing paradigm in which a large number
of resources, typically heterogeneous and geographically dispersed, are coupled
together to perform large tasks. A middleware is in charge of coordinating the
resources and offering the user the possibility of submitting tasks and asking for
different levels of quality of service. It is difficult to give an exact definition
of a Grid, since there are many different implementations and the concept has
evolved over time. Ian Foster, one of the inventors of the concept, gave a checklist
of requirements of a grid system [55]:
• It coordinates resources that are not subject to centralized control. Resources

are spread in several administrative domains and the system needs to ad-

12 2. State of the Art

dress security, policy, payment or membership issues, among others.
• It uses standard, open, general-purpose protocols and interfaces. A grid

system employs multi-purpose protocols to implement all its attributions.
It is important that these protocols are open and ideally they should be
standard to improve interoperability.

• It delivers nontrivial qualities of service. Resources are coordinated in a way
they can offer various qualities of service such as response time, throughput,
availability and security in order to respond to complex user demands.

The grid provides coordinated resource sharing and problem solving in dy-
namic, multi-institutional Virtual Organizations (VO). By VO, we refer to a set
of individuals, organizations or companies that agree on a set of rules for resource
sharing. This sharing not only refers to data but to direct access to computers or
software. It is highly controlled as both resource providers and consumers specify
which are the conditions under which this sharing is performed.

Grid services and protocols are organized in the following layers [56]:

Grid Fabric: Provides the resources that are shared in the Grid, e.g., compu-
tational resources, storage, catalogs, network resources, etc. Resources can
refer to actual physical elements or denote logical entities, for instance a
distributed file system. Resources should provide both enquiry and resource
management mechanisms to be exploited by higher level layers.

Connectivity: This layer defines communication (transport, routing, naming)
and authentication protocols.

Resource: Defines the protocols for negotiation, initiation, monitoring, control,
accounting and payment of operations on individual shared resources. We
distinguish two type of protocols: information protocols, which are em-
ployed to retrieve information about the structure and state of resources;
and management protocols, which are used to negotiate access to those
resources.

Collective: As opposed to the resource layer, this layer coordinates the access
to collections of resources and is responsible of many tasks, such as resource
discovery, co-allocation and scheduling, monitoring, data replication, etc.

Application: This layer comprises the user applications, that are built by ac-
cessing the services provided by lower level layers.

Case study: Grid5000

Grid5000 [64] is a french nation wide infrastructure for large scale and dis-
tributed computing research created in 2003 and mainly funded by INRIA, with
the participation of 19 laboratories. It includes 9 geographically distributed sites
that are composed of one to many clusters with computers of different character-
istics. Currently, Grid5000 consists of a total of more than 7000 cores. On each

2.1. Overview Of Parallel Computing 13

site, the nodes connected to the same switch enjoy 1Gbps point-to-point links.
Links between switches and connections between sites (that use the RENATER
network) have 10Gbps. High-speed networks, namely InfiniBand and Myrinet,
are also available for some nodes. Users can reserve a set of nodes and submit
jobs through OAR [31], the resource manager that handles node allocation in
Grid5000. Users are also allowed to deploy specific environments as desired with
Kadeploy [75]. Grid5000 is the platform used for large-scale experiments in this
thesis.

Cloud Computing

Cloud computing is the latest trend in parallel computing and has been subject
of much attention. The main idea is to offer both software and hardware services
on demand over the Internet in a pay-as-you go basis [22]. Cloud computing is
an evolution and combination of several existing models, including service ori-
ented architectures (SOA), utility computing, cluster computing, virtualization,
autonomous computing and grid computing [97]. However, it provides a new set
of features:
• The illusion of infinite resources available on demand.
• The elimination of users commitment allowing them to scale-up (add more

resources) or down (release resources) depending on their needs.
• The introduction of the pay-as-you-go model on a short-term basis, letting

users to acquire and release both computational and storage resources for
short periods of time.

The main challenge of cloud computing from the technical point of view is to
support very large scale infrastructures with many users and resources in a cost-
effective way. This is the reason why the main cloud providers are web industry
giants such as Amazon, Google or Microsoft which have the ability to build big
data centers and profit from economies of scale.

Cloud computing provides benefits for infrastructure providers and users [87].
Providers can obtain improved server utilization and reliability through virtual-
ization and reduce energy consumption by moving data centers to cheaper energy
locations. Users can use any type of specialized resource without the need to in-
stall and maintain it, adapt to workload changes by scaling up and down and
deploy easily their systems using specific virtual machines; which gives the user
the illusion of isolated resource access.

Cloud services can be provided at three levels:

Infrastructure as a Service (IaaS): provides on-demand resources, typically
computing power, network and storage as services. More complex resources
such as firewalls, IP addresses, load balancers, VLANs or software bundles
are also offered. Resources are usually virtualized and the user is allowed to
scale up and down as needed. This allows the system to allocate multiple

14 2. State of the Art

applications on the same physical server as virtual machines. The provider
charges fees in a pay-as-you go model depending on the amount and type
of resources and the time they are used. For instance, Amazon EC2 [10]
offers 18 different instances with different hardware characteristics (main
memory, architecture, number of CPUs and cores, storage, etc), operating
systems and installed software at different prices per hour. Data transfers
are also charged per GB and different storage options are also available in
a usage basis like Amazon S3 [13] or Amazon EBS [9]. Other examples of
IaaS providers are Nimbus [92], Eucalyptus [93], OpenNebula [95], Google
Compute Engine [63] and HP Cloud [72].

Platform as a Service (PaaS): delivers a high-level computing platform tar-
geted for software developers as a service. The maintenance, load-balancing
and scalability is delivered by the service provider so that developers need
only to focus on their solutions and not on the underlying hardware. The
platform usually includes an operating system, a programming and exe-
cution environment and a database. Examples of PaaS are Google App
Engine [61], Windows Azure [129] and Amazon RDS [12].

Software as a Service (SaaS): provides software applications as a service so
that the user directly uses the applications deployed on the cloud infras-
tructure. The user just needs a client, e.g., the web browser, and everything
is installed and managed in the Cloud. Billing is typically done in a per-
use basis, normally through subscriptions. Applications range from simple
ones such as email and calendar to complex software like CRM (Customer
Relationship Management). There are plenty of service providers, the most
notorious being Google App [62], Amazon Web Services [15] and Sales-
force [107].

Deployment Models. The cloud computing model described so far, which
brings access to resources to the general public through Internet is know as public

cloud. When private institutions make use of technologies and practices of cloud
computing for their own data centers, these are denoted as private clouds. As
opposed to public clouds, in private clouds, the operator has explicit knowledge
of all the users and can define its own policies and employ traditional security
mechanisms. Sometimes, public clouds provide certain level of isolation between
users in what is called virtual private cloud (VPC). The isolation is attained by
means of private IP networks and VLANs and some form of encryption such as
VPNs. An example of such a service is Amazon Virtual Private Clouds [14].

In a similar way than in the Grid Computing, different institutions (VOs)
owning private clouds can federate to form a community cloud (also known as
federated cloud) and share their resources. Furthermore, an organization with a
private cloud can use resources of a public cloud, typically to respond to surge
requirements, in what is called cloudbursting. This type of deployment is denoted

2.1. Overview Of Parallel Computing 15

as hybrid cloud. These combinations are envisioned as possible evolutions of the
Grid architectures to be used in scientific computing [87].

2.1.4 Parallel Databases

Very large database applications, e.g., e-commerce, data-warehousing, data
mining, require the use of parallel systems in order to store large volumes of
data and provide acceptable levels of performance and availability. Two types of
applications are distinguished: On-Line Transaction Processing (OLTP), which
typically generates a high number of concurrent transactions and On-Line Ana-
lytical Processing (OLAP), which produces big complex queries.

A parallel database system combines database management and parallel pro-
cessing techniques to attain its objectives. The way in which it is designed varies
in different implementations: from a straightforward transformation of existing
DBMS to more complex blending of parallel computing and database techniques.
In any case, they consist of a client-server architecture with three subsystems:
a session manager, which connects and disconnects with the other subsystems;
a request manager, which receives requests from the user, manages them, e.g.,
compiles the queries, and triggers their execution; and a data manager, which
provides the necessary low-level functions to execute compiled queries [24].

The relational data model is used, which offers good opportunities for data-
based parallelism [48]. Relational queries consist of operators applied to database
relations that produce new relations, so they can be composed in parallel data-
flow graphs. The parallelism can be obtained in several ways [97]:
• Inter-query parallelism: consists of the parallel execution of multiple

queries generated by concurrent transactions. A better throughput can be
obtained.

• Intra-query parallelism: consists of the execution of a single query in
parallel in order to obtain better response times. Two complementary
strategies can be used:
– Intra-operator parallelism: where each operator is divided into a set

of sub-operators that are applied to a fragment of the data.
– Inter-operator parallelism: consists of the parallel execution of sev-

eral operators of a given query. When several operators are chained in a
producer-consumer flow we apply pipeline parallelism. When there is no
dependency relation between the operators, we apply independent paral-

lelism.

2.1.5 Techniques

In order to implement and execute computations in a parallel system,many
techniques have been studied, developed and applied in many systems. In this

16 2. State of the Art

section, we briefly describe the most important ones.

Data Partitioning and Allocation

When a program is executed in several computational resources, each of them
has to be assigned a different portion of the work. Some computations just
assign different parameters to each of the nodes, which generate the input by
themselves. But in many cases, the input consists of a large dataset that has to
be divided and assigned to the nodes. This is carried out in a two-step process:
data partitioning or fragmentation (to divide the dataset) and data placement or
allocation (to assign the fragments to the system’s nodes). Data partitioning and
allocation are specially important in shared-nothing architectures, where each
node has attached disks which are accessed much faster than the disks attached
to other nodes.

If the original input data is stored in a single site or outside the parallel system,
it has to be divided and transferred to the participating computers. However, in
many cases, the data is stored in the same computers that execute the program in
order to avoid the overhead of data transfers, thus applying the principle stating
that “moving computation is cheaper than moving data”, which aims for data

locality. The paradigmatic examples of this idea are distributed and parallel
databases, where each node is assigned a partition of the database and there is a
mechanism that determines the nodes that must participate in the processing of a
query [97]. Another important example of this principle outside databases is the
use of distributed file systems where different files and even different fragments
of the same file are spread over all the computers of the system [32, 60, 110, 128].
When a program is executed, each of the units of work in which it is divided is
attempted to be executed at the same node that stores its input [43].

There are many different strategies to partition and allocate a dataset. The
selection of a specific strategy depends on many factors, such as the type of
programs being executed, the information available about their distribution and
evolution over time (workload information), the data structure and layout, etc.
In Section 2.2, we give a more detailed description of these strategies and their
convenience.

Load Balancing

In a parallel system, it is fundamental that nodes are given a similar amount
of work (or a work proportional to their computational power if it differs) in order
to avoid the overload of some of them while others remain idle. This is known as
load balancing and has a significant impact on resource usage, throughput and
response time. The opposite situation, where a node or a set of nodes have to
deal with larger data sets or more complex computations is known as skew. Load
balancing is tightly connected with data partitioning and allocation, although

2.1. Overview Of Parallel Computing 17

it also relates to scheduling, and it frequently conflicts with data locality. An
illustrating example occurs when a set of popular fragments, called hotspots, are
assigned to the same node. In order to preserve data locality, a lot of computations
have to be performed at that node, thus generating an important skew and hurting
load balancing.

Load balancing can be pursued within a single parallel program or by consid-
ering several programs that are executed in parallel. In the first case, the response
time of the program is determined by the longest unit of work. Load balancing
reduces it by evening the loads of all nodes in order to reduce response times.
In the second case, a better throughput can be obtained by executing different
programs at different nodes in parallel.

There are many different approaches to obtain load balancing and they depend
on the type of program and partitioning used. In general, we can divide these
approaches in two types: static and dynamic (or adaptive). When the workload
is static and known in advance, data allocation and scheduling may be carried
out so that the expected load at each node is similar (by also taking into account
other issues such as data locality). On the other hand, if the workload is unknown
and/or changes over time, a dynamic approach should be used [46].

Replication

Data replication is used in parallel systems both to improve both availability
and performance. Availability is increased because even if some of the nodes fail,
data can still be accessed by retrieving one of the copies stored at other nodes.
Performance can be improved by: 1) executing programs that access the same
data at different nodes, thus increasing parallelism; 2) enhancing load balancing
by replicating hotspots at different nodes; and 3) increasing data locality.

Nevertheless, data replication comes at a price. Whenever a data element is
modified, the changes have to be propagated to the other replicas. Depending on
the application requirements, this synchronization may be more or less complex
and a different replication protocol should be used. In general, the way in which
replication is carried out depends on the following factors:
• Consistency model: The consistency model defines the rules under which

writes and reads are ordered in the execution. This is fundamental for
atomic operations, such as transactions. The strongest levels of consistency
are linearizability [71] and serializability [25] but they can be relaxed to
improve performance, e.g., eventual consistency [125].

• Where updates are performed: Centralized protocols require that all
updates are first performed on a master copy, while distributed ones allow
updates to be executed on any replica. In centralized systems, the master
replicas can all be stored at the same site (single master) or spread among
the sites (primary copy).

18 2. State of the Art

• How updates are propagated: Updates can be propagated within the
context of a transaction (eager replication) or after the transaction has com-
mitted (lazy replication). In the last case, some form of conflict resolution
may be necessary in order to resynchronize the copies.

There is another form of replication, called computational replication, which
is also used to improve performance and reliability. In this case, the same task
is executed several times at different nodes. In that way, the program does not
need to wait for tasks on faulty or slow nodes and response time is reduced. This
technique has been employed for performance reasons in peer-to-peer communi-
ties [105], the Grid [88, 113] and MapReduce [43], in the form of speculative task
execution. In volunteer computing, where malicious participants may introduce
erroneous results, computational replication can also be used to check the cor-
rectness of the outputs by employing majority voting mechanisms between the
task replicas [109].

Fault Tolerance

Two concepts are central to fault tolerance: reliability and availability. Relia-

bility is the capability of a system to operate without failures for a period of time,
defining failures as deviations over the system specification. It is normally used
for elements that cannot be repaired. Formally. it is defined as a probability [97]:

R(t) = P{0 failures in time [0, t) | no failures at t = 0} (2.3)

Availability is the fraction of time that a given system is operational, although
it can also be seen as the probability of the system to be operational at a given
time. Typically it is a decimal measure, e.g., 0.9999, although sometimes a metric
called nines is used instead, which denotes the number of nines in the decimal
metric. It always refers to systems that can be repaired and measures their ability
to tolerate failures on their elements.

In a distributed or parallel system, there are different types of failures:
• Program failures: These are the failures caused by erroneous conditions

in the program execution or inadequate input data.
• Node/System failures: Either with a hardware or a software origin, the

effect is that the content of the main memory is lost.
• Media failures: They are failures produced in secondary storage devices

containing data relevant to the system operation. It is assumed that the
contents of the disks are accessible any more.

• Communication failures: Refer to failures in communications between
the nodes of the system. Network protocols are responsible of dealing with
some of the possible failures, e.g., error correction and ordering of messages,
but other failures, such as line failures are not solved by them. An special
case is when the network fails in such a way that nodes are isolated in two

2.2. Data Partitioning in Databases 19

or more disjoint groups. This is called network partition.
A parallel system can be built so that individual failures of some of its ele-

ments do not make the system unavailable. The main technique used to obtain
fault tolerance is redundancy, that can refer to the inclusion of duplicated hard-
ware elements, e.g, an additional power supply, or software mechanisms, such as
replication as explained before. It is also important that the adequate recovery
mechanisms are integrated into the system design, so that when transient failures
are solved, the system can return to an appropriate state.

The first requirement to deal with failures is to be able to detect them when
they occur. This ability can be provided by a specific component such as the
communication layer, e.g., TCP, or a group communication system [36], or im-
plemented as a component of the replication logic. Once the failure has been
detected, a failover mechanism is applied. It consists in redirecting the affected
requests from the failed node to another one in a transparent way to the user.
This process may be more complex if the master is the node that failed. Moreover,
depending of the consistency model, failover may require the abortion of ongoing
transactions. Finally, the recovery mechanism is in charge of reintroducing failed
replicas in the system by transferring the missed state updates to the recovering
nodes.

2.2 Data Partitioning in Databases

2.2.1 Definition

Data partitioning consists in splitting a given dataset into a set of fragments.
This technique is needed in distributed and parallel systems, as usually the data
has to be divided and assigned to the participating nodes.

In database systems, the use of the relational model makes data partitioning
practical. A partitioning π(R) = {F1, ..., Fn} over relation R is said to be correct
if it satisfies the following properties [97]:
• Completeness: Every data item that appears in R should appear in at

least one of the fragments Fi.
• Reconstruction: There should be an operator ∇ that allows the original

relation to be rebuilt from the fragments, R = ∇Fi, ∀Fi ∈ π(R)
• Disjointness: Each item of R should appear in at most one of the frag-

ments.

2.2.2 Types

A given relation can be partitioned in two ways: horizontally or vertically. If
both strategies are used, i.e., a relation is first horizontally partitioned and then
vertically or vice versa, we are talking about hybrid partitioning.

20 2. State of the Art

Horizontal partitioning. It consists of dividing relation R along its tuples, so
that each fragment is assigned a subset of the tuples. The reconstruction operator
∇ is the union, i.e., R =

⋃

Fi, ∀Fi ∈ π(R).
Two types of horizontal partitioning are distinguished: primary horizontal

partitioning, which is done using predicates over a given relation and derived

horizontal partitioning, which is performed by propagating the partitioning over
the attributes of another relation in a link, where the link is defined by an equijoin
operation [97].

In the first case, the partitioning is done by applying the selection operator
over a set of predicates. In this way, fragment Fi is obtained by applying the
fragmentation predicate pi over R, Fi = σpi

(R),. The way in which those pred-
icates are selected depends on the global conceptual schema of the database, in
particular the links between relations; and on the application, mainly the queries
that are executed and their relative frequencies. For derived partitioning, if there
is a link between relations R and S, the fragments on S are obtained from the
fragments on R by applying the semijoin operator: Si = S ⋉ Ri. When there
are more than one link into relation S, a choice must be made regarding derived
partitioning. It should be done depending on the join characteristics and the
frequency of its use.

Vertical partitioning. It consists of dividing R(A), A = a1, ..., am, so that each
of the fragments Fi(Ai) only contains a subset of the attributes of R. The recon-
struction operator is the join on the primary key of R, i.e., R =⋊⋉P K Fi, ∀Fi ∈
π(R), where PK ⊆ A is the primary key of R. As a consequence, the attributes
of the primary key should be replicated in all the fragments. The attributes that
are accessed together are privileged to be on the same fragment because a join,
which is a costly operation, is required to answer queries that access attributes
in several fragments.

With a concept similar to vertical partitioning, column-oriented databases

store data along columns instead of rows. The basic approach (and seminal paper)
is the Decomposition Storage Model (DSM) [40] where a relation R(A1, ..., An) is
partitioned vertically in n fragments, each corresponding to a binary relation with
a tuple identifier and one attribute. The main goal is to reduce I/O bandwidth
as only the attributes needed in the query are accessed on disk, as in vertical
partitioning. However, the column-oriented databases provide further advantages
related to the data layout and the query execution optimizations that go beyond
that of reduced I/O. In fact, the use of analogous vertical partitioning approaches
in row-oriented databases do not obtain the performance gains of column-oriented
databases [1].

Although an old concept, column-oriented systems have received a lot of at-
tention recently, because of their superior performance for OLAP which features
ad-hoc queries. Notorious systems include MonetDB [27], which follows a pure

2.2. Data Partitioning in Databases 21

DSM model, C-Store [116] which groups and optionally replicate attributes in
projections or Vertica [124] and Sybase IQ [108], as examples of commercial sys-
tems.

2.2.3 Optimization Objectives

Data partitioning can be expressed as an optimization problem. Two opposite
optimization goals can be used when designing a partitioning strategy:
• Clustering: The goal is to place data elements that are frequently accessed

together in the same fragment(s). If a query accesses a small number of el-
ements, data clustering will require a small number of fragments to answer
it. This is the only suitable strategy for vertical partitioning, since fragment
combination is expensive, as it requires to execute joins. It is also the strat-
egy to be used in horizontal partitioning when the overhead of distributed
execution is high with respect to query response time.

• Declustering: The goal is to spread the elements a query must access in
every fragment in the most balanced way. This strategy is used when the
objective is to optimize intra-query parallelism. In the execution of a query
and under the same computation capabilities at all nodes, the fragment
with the higher number of relevant data items will determine the response
time.

2.2.4 Techniques

Basic techniques

Three basic techniques have been extensively used in the literature to partition
and assign tuples to nodes in a parallel database:
• Round-robin partitioning: The tuples of a relation are assigned to each

node in a round-robin fashion, i.e., if there are n nodes, tuple i is assigned
to node (i mod n). It guarantees uniform data distribution. A scan of a
relation can be performed in parallel at all nodes, but direct access to tuples
based on predicates needs that all nodes be accessed.

• Hash-based partitioning: A hash function is applied over a given at-
tribute or set of attribute’s values (partitioning attributes), whose result
determines the node in which that tuple is stored. Queries with exact-
match selection predicates on the partitioning attributes can be executed
at just one node, while the rest of the queries have to access all the nodes.

• Range-based partitioning: Tuples are assigned to the nodes depending
on the value intervals of some attributes (partitioning attributes). Exact-
match queries can be executed at just one node, the same way as in hash-
based partitioning. Range-queries can also be executed at just one node (or
a few if the query range is big).

22 2. State of the Art

These techniques have been early adopted in parallel databases. Notorious
examples include The Gamma Database Machine Project [47], which offered the
three possibilities (round-robin being the default one), Bubba [39], which used
either a hash function or ranges that are defined based on the frequency of access
rather than the size; or Teradata [49]. Due to their simplicity, they are still being
used in modern storage systems, such as cloud key-value stores. For example,
Google’s BigTable [33] uses range partitioning on the key to split the tables into
small fragments called tablets, which are then allocated based on load balancing.
Yahoo’s PNUTS [38] allows to use both range-based partitioning (in ordered
tables) and hash-based partitioning (in hash tables) to produce the tablets. Like
BigTable, its number is much bigger than the number of nodes to allow better
load balancing. Amazon’s Dynamo [45] and Cassandra [86], among others, use
consistent hashing [80] to partition and allocate the rows. In this technique,
the output of the hash function is treated as a circular space. Nodes are given
a random id and are responsible for the rows with hash values (resulting from
applying the hash function) between that id and the id of the next node in the
circle.

In a parallel query execution, there is an initial step that creates and initializes
processes and communications. Its execution time is proportional to the degree of
parallelism. Thus, for simple queries, if the degree of parallelism is high, this phase
can dominate the response time. As a consequence, the number of nodes involved
in the execution of a query should be adjusted depending on its complexity. The
round-robin approach leaves no place to control this aspect and queries must
always be redirected to all nodes. On the other hand, in the case of hash-based
and range-based partitioning, some types of queries can be localized in one or
a few nodes. Exact-match queries on the partitioning attributes are directed
to just one node in both approaches. In the case of range-based predicates on
those attributes, range-based partitioning is able to localize the execution at a
few number of nodes (depending on the range size). However, this is not always
advisable, as mentioned before. Hash-based partitioning needs to access all nodes
when executing range-based selection queries, giving no control in the degree
of parallelism. A Hybrid Partitioning Strategy has been proposed in [59] that
provides the best of both strategies and is able to adapt the degree of parallelism
to optimize query response time. This approach creates several small ranges and
then allocates them in a round robin fashion. Queries with small ranges or exact
matches can be executed at one node. As the size of the range increases, a higher
number of nodes would be involved.

From the basic strategies, only the round-robin approach guarantees uniform
data distribution. However this is not the only source of skew. In [126], five dif-
ferent types of partitioning skew are distinguished. Attribute value skew (AVS)
describes the variation on the number of tuples for different values of a given at-
tribute, while Tuple Placement Skew (TPS) refers to the variation on the number

2.2. Data Partitioning in Databases 23

of tuples assigned to each node. AVS, which is inherent to the dataset, can be the
cause of the TPS both in hash-based and range-based partitioning. Selectivity
Skew (SS) is introduced when the selectivity of predicates varies on each node.
Finally, all strategies are vulnerable to Redistribution Skew (RS), which occurs
when data is redistributed between two operators, and to the Join Product Skew
(JPS), that arises when the join selectivity varies among nodes.

The round-robin approach needs no parameter, so it can be applied automat-
ically. However, both hash-based and range-based partitioning require a set of
attributes to be selected as the partitioning attributes. The choice should de-
pend on the workload; in particular, in the attributes used in the predicates of
the queries. Depending on the workload, the selection of those attributes can be
quite complex, which is why some automatic partitioning strategies have been
designed. The range-base approach also requires a strategy to select the range
boundaries in order to produce balanced partitions. This task may not be trivial
due to AVS.

Workload-based techniques

When the workload of an application gets complex, the selection of a partition-
ing strategy may become extremely difficult for the database administrator. This
has motivated the emergence of tuning advisors that recommend and simulate
the impact of different database configurations on performance [34]. Notorious
examples of such tools are Database Engine Tuning Advisor (DTA) [3] on Mi-
crosoft SQL Server, DB2 Design Advisor [122] in IBM’s DB2 Universal Database
and SQL Access Advisor [42] in Oracle 10g.

DTA was the outcome of the AutoAdmin project, which started in 1996. The
first versions were interested in the automatic selection of indices in order to
improve the performance of the system under a given workload. They provide
the concept of an hypothetical ("what-if") index, that allows DBAs to analyze
the impact of the addition of a given set of indices in the database [35]. This
tool was later enhanced to include the possible design alternatives in the creation
of materialized views [4] and the use of horizontal and vertical partitioning [5].
The final architecture includes four steps. First, the search space is reduced
by pruning, which discards the table sets (where materialized views could be
created) and column sets (from which indices and partitioning keys could be
obtained) that are not relevant to any query. Second, in the candidate selection

step, the set of alternatives are further reduced by considering their cost-benefit.
The result is a (near-) optimal configuration for the workload, but often with
important costs in terms of storage and update overheads. Because of that,
there is another merging step in which the alternatives are combined in order to
produce cheaper candidates that can benefit several queries at the same time.
These new alternatives are added to those produced in the second step. Finally,

24 2. State of the Art

in the enumeration step, using the workload and the set of candidates produced
in the second and third phases, a search algorithm is employed in order to obtain
the subset of candidates with the smallest total cost for the given workload. Due
to the complexity of the search space, heuristics have to be employed in this
procedure.

DB2 advisor also started by working with indices [122] and included other
possible design alternatives such as materialized query tables (MQT), multi-
dimensional clustering (MDC) and partitioning [133]. Two types of approaches
to obtain the set of design alternatives to apply are identified: the iterative ap-
proach, which selects each feature one at a time (indexing, partitioning, etc.) and
the integrated approach, where search is performed in the combined search space,
which is the approach of DTA. In DB2 advisor, the relationships among features
are categorized. For strong dependencies, an integrated approach is used. For the
cases where there are no dependencies or they are weak, an iterative approach
is employed. DB2 Advisor has three components: IM, which recommends MQTs
and indices, P, which is responsible of partitioning and C, which recommends
MDCs.

Recent works have also proposed automatic partitioning adapted to the work-
load but their main focus is how to partition the database in multiple nodes and
not physical design. In [91] a partitioning advisor is designed to improve the
performance of complex queries in Massive Parallel Processing (MPP) systems.
One of the main goals of the proposed system is to minimize the data movement
operations when data needs to be re-partitioned in some query executions. Their
approach is tightly coupled with the query optimizer, as it uses the same cost
model. They reduce the search space by inferring lower bounds on partial par-
titioning configurations, which allows the search algorithm to apply branch and
bound techniques [83] more efficiently, i.e., discard whole branchs of the solution
tree early in the search. Tables can be either replicated or partitioned using a
hash function on a single column. The possible columns used in the partition-
ing are selected before the search among the ones referenced in equi-joins and in
group-bys.

In [100], the targeted system is an enterprise-class OLTP application, which
includes stored procedures, load-balancing constraints under variable skews and
complex schemas and deployments. They implement the solution in H-store [79],
a main-memory DBMS deployed in a shared-nothing architecture. The objective
of the partitioning is to reduce the number of distributed transactions while mod-
erating the effect of temporal skew. Their search algorithm, called Horticulture,
is provided with the application schema, the stored procedure definitions and a
trace of the workload. Using an adaptation of the large-neighborhood search tech-
nique [6], they explore the search space in order to obtain the best solution. The
design alternatives are: 1) horizontal partitioning on one or multiple attributes
using either hash-based or range-based partitioning; 2) whole table replication;

2.2. Data Partitioning in Databases 25

or 3) a replication of a secondary-index on a set of attributes.
Automatic database partitioning has also received some attention in scien-

tific databases. For instance, in [99] the authors propose AutoPart, an algorithm
that automatically finds the best partitioning alternatives for physical design in
large-scale scientific databases, where indexes and materialized views are less ap-
propriate because of the data volume and the continuous insertion of new data in
the database. Two types of partitioning are used: categorical and vertical parti-
tioning. Categorical partitioning horizontally partitions a table using categorical
attributes, i.e., attributes with a small number of discrete values, typically used
to identify classes of objects. The algorithm starts by fragmenting the tables by
identifying the categorical attributes. Then, on each of the partitions, atomic
fragments are generated for vertical partitioning. An atomic fragment is a sub-
set of the attributes that is always accessed atomically, i.e., there is no query
accessing a subset of those attributes. Those fragments are later combined into
composite fragments with a greedy algorithm until no gains in the workload cost
can be obtained.

Graph-based techniques

Graphs have been commonly used to represent data dependencies in a com-
putation, and then graph partitioning algorithms to divide the work between
the different nodes of a parallel system [69]. Examples of graph usage include
parallelization of matrix-vector multiplications, neural net simulations, particle
calculations, VLSI layout design and database partitioning.

In database systems, graph-based techniques have been used both for declus-
tering [90, 84] and clustering [41]. As opposed to other partitioning approaches,
e.g., the ones mentioned so far, graph-based techniques can work with any schema
and independent of the complexity of the queries in the workload [41], as only
relations between data items are used.

Liu et al. [90] address the problem of declustering a database in a single node
with multiple disks, so that queries can be fully parallelized, i.e., data is read
from multiple disks in parallel. The core idea is the concept of similarity, which
represents the likelihood that two data items will be accessed together as part
of query execution. A model of the workload is built using a graph G = (V, E),
called Weighted Similarity Graph (WSJ), where vertices represent data items
and edges are weighted depending on the similarity between two data items, i.e,
w(di, dj) = f denote that queries accessing data items both di and dj accounts for
a total frequency of f . The WSJ is then split into k independent components (as
much as disks in the system) by means of a max-cut graph partitioning algorithm.
The optimization goal of this algorithm is to maximize the weight of the edges
that are crossed by the cut. Constraints on the size or frequency of access of the
components can also be incorporated into the model.

26 2. State of the Art

D = {d1, d2, d3, d4, d5, d6}, Q = {q1, q2, q3, q4}

q1 = {d1, d2, d3, d5}, q2 = {d3, d4, d5, d6}, q3 = {d1, d3}, q4 = {d5, d6}

d1

d2
d3

d4
d5

d6

2

2

2

F0

F1

(a)

d1

d2
d3

d4
d5

d6

F0

F1

(b)

Figure 2.4: Graph models for data partitioning: (a) graph, (b) hypergraph

As pointed out in [69], the graph model is not completely appropriate for
all applications and other related models may be used instead. In [84], the idea
is developed and instead of using a graph to represent the workload, an hy-
pergraph H = (V, E) is built. The objective remains the same: declustering
a database for efficient execution of queries in a single-node system with mul-
tiple disks. Vertices also represent data items but, in this case, an hyperedge
e = {de1 , ..., den

} ⊆ V , which is a set of vertices, is added for each of the queries
in the workload. Therefore, if a query q accesses data items {dq1 , ..., dqn

}, while
a single hyperedge containing all the accessed items is added in the hypegraph
model, a clique of n vertices, with n(n−1)

2
edges, needs to be included in the graph

model. The partitioning is obtained by applying a modified version of the hy-
pergraph partitioning problem, where the optimization goal is to minimize the
maximum weight each hyperedge has on a partition. The idea is that the par-
tition with the highest weight will represent the node with the highest amount
of work in the query processing and hence determine the query response time.
When the number of elements accessed in a query is equal or less than the num-
ber of partitions, the algorithm’s optimization goal is exactly the same as the
standard hypergraph partitioning problem, i.e., minimize the weighted sum of
conductivities of hyperedges.

Figure 2.4 compares both graph models. In the example, the database consists
of 5 data items and 4 queries (frequency is not considered for simplicity). In
Figure 2.4(a), the workload is modeled using the method proposed in [90]: for
each query, a clique linking all the accessed data item is added to the graph
(the edge weight is increased if it already existed). In our example, the obtained
partitioning has a cut value of 11, corresponding to the sum of the weights of the
edges traversing the cut. In Figure 2.4(b) an hypergraph is used as in [84]. In

2.2. Data Partitioning in Databases 27

D = {d1, d2, d3, d4, d5}, T = {t1, t2, t3, t4}

t1 = {d1, d2, d3}, t2 = {d2, d3}, t3 = {d1, d4, d6}, t4 = {d4, d5}

d1

d2

d3

d4d5

2

F0

F1

(a)

d1

d11

d1

1

d2

d2

3
d2

3

d3

d3 2

d3

2

d4

d4

4

d4

4

d5

d5

3

d5

3

F0

F1

(b)

Figure 2.5: Graph model used in Schism (a) without replication, (b) with
replication

this case, each query generates an hyperedge connecting all the accessed elements.
The cut value used for the optimization goal would be 6, corresponding to the
sum of the maximum weights each edge cut by the partitioning has on a given
fragment.

Curino et al. [41] propose Schism, whose objective of the partitioning is differ-
ent. The targeted system is an OLTP application, and the goal is to reduce the
number of distributed transactions, that is, maximize the number of transactions
that are executed at a single node. A simple graph model is used, but in this case
the graph is built so that replication alternatives are considered (see Figure 2.5).
Instead of queries, edges are built from transactions, i.e., when two tuples are
co-accessed in a transaction, the frequency of the query is added to the weight
of the edge that links the vertices representing those tuples. The possibility of
replication is modeled by exploding the vertex associated with a tuple into n + 1
vertices in a star-shape schema, n being the number of transactions accessing the
tuple. The cost of replication is considered by weighting the edges between the
new created vertices and the center of the star. Since, the partitioning objec-
tive is clustering, the algorithm that is used to partition the graph is a min-cut
partitioning algorithm.

An explanation phase is added to the system to have a compact model of
the tuple assignments to partitions, as an alternative of a fine-grained, tuple-to-
partition index. The result is a set of rules that assign the values of some of
the tuple attributes to specific partitions. A decision tree classifier is used for
that matter. Frequently used attributes are selected and their correlation with

28 2. State of the Art

assigned partitions analyzed. Several other optimizations are also envisioned to
obtain scalability on the graph partitioning algorithm, including transaction-level
sampling, tuple-level sampling, relevance filtering, etc.

Constrained k-way (hyper-) graph partitioning is known to be NP-hard. As
a result, several heuristics have been used and implemented, mainly iterative-
improvement heuristics such as the ones proposed by Kernighan-Lin (KL) [82]
and Fiduccia-Mattheyses (FM) [53]. The idea is the following. Starting from an
initial bi-partition, iteratively move the vertices that offer the maximum gain in
the cut-metric from one partition to the other. Even negative gains are allowed to
provide the algorithm with a hill-climbing ability. Multilevel partitioning [70] is
widely used, which consists of three phases: 1) coarsening phase, where the graph
is transformed into a sequence of smaller graphs; 2) partitioning phase, where a
partitioning of the graph is carried out; and 3) uncoarsening phase, where the
partitioning obtained over the coarsened graph is projected back to the original
graph. K-way partitioning is usually performed by applying recursive bisection,
where two-way partitioning is recursively applied until the desired number of
partitions is obtained. However, direct k-way partitioning methods also exist.

There exist several software packages devoted to graph, hypergraph and mesh
partitioning, both as stand-alone programs and libraries that can be integrated
into other applications. Notorious examples include METIS [81] (and its alterna-
tives for parallel partitioning, ParMETIS; and hypegraph partitioning, hMETIS);
PaToH [121], devoted to the partitioning of hypergraphs; Scotch [57], which pro-
vides sequential and parallel versions for graph partitioning, and a sequential
version for mesh and hypergraph partitioning; and Zoltan [26], which provides se-
quential and parallel versions of graph, hypergraph and mesh partitioning. Scotch
and Zoltan also offer other related tools for dynamic load balancing, graph color-
ing, etc. In general, they allow the user to control many parameters, including the
algorithms used in many of the sub-phases, imbalance constraints, optimization
goals, etc. Moreover, they work with different graph formats, with and without
weights in both vertices and edges and allow to specify some constraints, like
fixed vertices.

2.3 MapReduce

In this section, we describe MapReduce, its implementation and several pro-
posed improvements. Section 2.3.1 describes MapReduce’s programming model
and operation. More details about the implementation are given in Section 2.3.2.
Finally, Section 2.3.3 identifies MapReduce’s limitations and presents the most
important works aiming at their improvement.

2.3. MapReduce 29

2.3.1 Overview

MapReduce denotes both the programming model and the framework origi-
nally developed by Google [43] for parallel processing of large scale datasets. Users
only need to provide two functions, called map and reduce, and the framework
handles all the issues related to parallelization, fault-tolerance, data distribution
and load balancing. Although the programming model by itself is not new, as it
is inspired by the map and reduce primitives of functional languages such as Lisp,
it made a tremendous impact as it allows programmers to implement scalable and
fault-tolerant versions of their applications in a simple way.

MapReduce has received a lot of attention both in research and industry.
An open-source implementation of the framework, called Apache Hadoop [19]
has become extremely popular. There are other implementations of MapReduce,
such as Amazon Elastic MapReduce [11], Aster MapReduce Appliance [23] and
Greenplum MapReduce [103].

Programming Model

MapReduce programs are expressed by means of two functions:

map: consumes input key-value pairs and produces for each of them a (possibly
empty) list of intermediate key-value pairs. Formally:

map : (K1,V1) → list(K2,V2)

reduce: receives an intermediate key and all its intermediate values and produces
a (possibly empty) list of output key value pairs. Formally:

reduce : (K2, list(V2)) → list(K3,V3)

The execution of the map and reduce functions over different pairs can be done
in parallel. The framework is responsible of sorting and grouping intermediate
pairs with the same key for the reduce function execution.

Example: WordCount. An example that is frequently used to illustrate
MapReduce is the wordcount example. This program counts the occurrences
of words in a given file. The implementation of this program in MapReduce is
shown in Algorithm 1. The map function just divides a given line into words,
and produces a pair (word, 1). The reduce function receives for each word all the
produced counts and adds them before emitting the final count. In the following
example, we illustrate the behavior of map and reduce functions:

map(1321, “Darkness there, and nothing more.”) →

〈 (“Darkness”, 1), (“there”, 1), (“and”, 1), (“nothing”, 1), (“more”, 1) 〉

30 2. State of the Art

reduce(“more”, (1,1,1,1,1,1,1,1)) →

〈 (“more”, 8) 〉

Algorithm 1: Wordcount in MapReduce
Types:
K1 : long; V1 : text
K2,K3 : text; V2,V3 : int

1 map(offset : K1, line : V1)
2 foreach word ∈ line do
3 emit (word, 1)

4 reduce(word : K2, counts : list(V2))
5 sum ← 0
6 foreach c ∈ counts do
7 sum ← sum + c

8 emit (word, sum)

Architecture and Basic Operation

The MapReduce framework executes programs in parallel in a shared-nothing
cluster (see Figure 2.6). There are two types of processes, the workers, which
execute map and reduce tasks and the master, which is responsible of controlling
the workers’ execution. Usually, input and output data are stored in a distributed
file system, e.g., GFS [60], which executes at the same nodes where MapReduce
jobs are run.

In a MapReduce job, the input is partitioned into M splits, which are con-
sumed by M map tasks, one per split. The map tasks output is partitioned by
the intermediate key into R fragments using a partitioning function, by default
(hash(k2) mod R), which are then processed by R reduce tasks.

When a job is launched, the master partitions the input into M fragments.
Map and reduce tasks are then assigned to workers as they become idle, first
the map tasks and then the reduce tasks, once all map tasks are finished. The
output of the map tasks is partitioned into R fragments by the intermediate key
and stored in the local disks of the workers. Reduce tasks fetch these outputs and
sort them by key so that all the values of a given intermediate key are processed
together by the reduce function. Once all map and reduce tasks have finished,
the user is notified.

In this case, the input is divided into 3 splits and consumed by map tasks
m0, m1 and m2, respectively. After reading the split, the corresponding input
key-value pairs are passed to the map function. The map function executes the

2.3. MapReduce 31

s
p

li
ts

Input

distributed
filesystem

fin

s0

s1

s2

Output

distributed
filesystem

fo1

fo2

Client

Master

schedule tasks

submit job

Map Phase

Worker

m0

local disk

Worker

m1

m2

local disk

Reduce Phase

Worker

r0

Worker

r1

Shuffle Phase

Figure 2.6: Architectural view of a MapReduce job execution

32 2. State of the Art

Input

fi

C0

C1

C2

Output

fo1

fo2

Map tasks

m0

re
a

d
e
r

k0 v0

k1 v1

k2 v2

k3 v3

0 v′
0

6 v′
1

1 v′
2

map

m1

re
a

d
e
r

k4 v4

k5 v5

k6 v6

0 v′
3

2 v′
4

1 v′
5

9 v′
6

map

m2

re
a

d
e
r

k7 v7

k8 v8

k9 v9

1 v′
7

3 v′
8

9 v′
9

map

Reduce tasks

r0

0

2

6

v′
0

v′
2

v′
4

v′
1

k′′
0 v′′

0

k′′
1 v′′

1

k′′
2 v′′

2

red

w
r
it

e
r

r1

1

3

9

v′
2

v′
5

v′
7

v′
8

v′
6

v′
9

k′′
3 v′′

3

k′′
4 v′′

4

k′′
5 v′′

5

k′′
6 v′′

6

red

w
r
it

e
r

Shuffle

Figure 2.7: Logical view of a MapReduce job execution

program provided by the user and generates a set of intermediate pairs. This pairs
are partitioned and sent to the corresponding reduce, where they are grouped by
key. In the example, the default partitioning function is used, so even keys are
sent to reduce task r0 and odd keys to r1. The key and the set of intermediate
values are then passed to the reduce function, which in turn produces a set of
output key-value pairs, which are written back to the file system.

Data Locality

MapReduce is used in combination with a distributed file system, so that data
is already stored in the same nodes that perform the computation. In Google, the
Google File System (GFS) [60] is employed. By default, it automatically splits
files into 64MB blocks, which are then replicated (typically 3 times) and stored
in different machines.

In Google’s MapReduce, a correspondence between file blocks in GFS and

2.3. MapReduce 33

splits in the map tasks input is established. The master tries to schedule map
tasks in the same machines storing the corresponding block. If this is not possible,
a close replica is chosen (for instance, in the same rack). The objective is to
save cluster bandwidth, as most input data is read locally without any network
transfer.

Shuffle

Shuffle is the name given to the intermediate phase of MapReduce, when
intermediate keys are partitioned, sorted and transferred to the nodes executing
the reduce tasks. Depending on the volume of data produced in the map tasks
and the network characteristics (bandwidth, network topology), this phase may
take a considerable amount of time [127, 98].

The shuffle phase consists of the following steps, which are shown in Figure 2.8:

1. Buffering: The intermediate key-value pairs produced in the map tasks
are buffered in memory and periodically written to disk. In Hadoop there
are thresholds both on the size and the number of pairs that determine
when to flush this information.

2. Spilling: To flush the buffer, the intermediate pairs are written to disk in
a file called spill. In each spill, the key-value pairs are partitioned into R

fragments which are sorted and then stored. Notice that R is the number
of reduce tasks.

3. Merging spills: All spill files generated by the same map tasks are merged
into R files, one per reduce task, before communicating the success to the
master.

4. Copying map outputs to reduce tasks: The master forwards the in-
formation about the location of the map tasks outputs to the reduce tasks,
which then fetches this information through remote procedure calls (HTTP
protocol in Hadoop).

5. Merging map outputs: The files coming from different map tasks are
merged and sorted by intermediate key. Then, the workers iterate over the
intermediate key-value pairs. For each unique key found, a worker passes
the key and the set of values to the reduce function defined by the user.

MapReduce also provides the possibility of optimizing the shuffle phase by
providing an additional function, called combiner :

combine : (K2, list(K2,V2)) → list(K2,V2)

This function is employed to reduce the amount of I/O when flushing the
buffer to disk and to reduce the amount of data transferred through the network.
It may be applied in steps 2 and 3. When the reduce function is commutative

34 2. State of the Art

in

out

Worker i (Mapper)

Map task m1

map

Buffer

spills

map output

Worker j (Reducer)

Reduce task r1

copy(m1,r1)

m0

m2

red

1

2

3
4

5

Figure 2.8: Shuffle phase in Hadoop

and associative, which is a common scenario, the same function can be employed
for both combine and reduce operations.

Fault-tolerance

In big data centers, where MapReduce jobs are executed, failures are the norm
rather than the exception. In order to deal with failures, MapReduce incorporates
a powerful fault-tolerance mechanism to deal with and recover from those failures.

The failure of workers is controlled by periodic communication between the
master and each of the workers. When no message is received from a worker
for a given amount of time, it is considered as failed. All map tasks finished in
that worker and all map and reduce tasks that were in progress are marked as
uncompleted and can be scheduled again. Note that completed map tasks need
to be re-executed because their output is needed by the reduced tasks and is only
kept in the worker’s local disk. When the new map task is finished, reduce tasks
should be informed in order to retrieve the data from the new assigned worker
instead of from the failed one.

The failure of the master in some implementations like Hadoop is not sup-
ported. In this case, all running jobs are aborted. The main reason is that,
provided that there is a single master, the probability of its failure is unlikely. In
any case, in Google’s implementation, the master makes periodic checkpoints to
GFS. If it fails, a new master can be started from the last stored checkpoint.

MapReduce is also capable of dealing with very slow workers, called stragglers.
When a job is near the end, i.e., all the tasks have been completed or are in
progress, replicas of the tasks in progress are also scheduled. This is known as
speculative execution. In that way, if a task in progress is too slow because it is
being executed in a straggler, the backup task may complete before and reduce

2.3. MapReduce 35

the total response time of the job. In [43], an example is given where this approach
improves job response time by 44%.

Finally, MapReduce also supports failures in the processing of individual
records. This can be originated from bugs in the program or a malformed in-
put which only affects a small part of the data. Whenever a failure is detected in
the processing of a record, its sequence number is sent to the master along with
the error information. If more than a given threshold of failures are detected in
the same record, new instances of that task will be instructed to skip it, thus
allowing the computation to ignore this particular case and continue with the
rest of the computation.

2.3.2 Implementation Details

Hadoop and Other Implementations

Apache Hadoop [19] is the most popular implementation of MapReduce. Its
core provides an open-source implementation of Google’s MapReduce [43] and
Google File System [60], denoted respectively Hadoop MapReduce and Hadoop
Distributed File System (HDFS) [112]. Nevertheless, this only represents the
kernel of Hadoop’s platform, which also includes other projects such as Hadoop
YARN [20], a framework for job scheduling and resource management; Pig [94], a
high-level dataflow language; Hive [120], a data-warehousing infrastructure with
an SQL-like interface; HBase [21], a distributed database that mimics Google’s
BigTable [33], ZooKeeper [73], a coordination service which shares the same goals
as Google’s Chubby [30] but uses another protocol, etc.

Hadoop MapReduce is very close to the details given in Google’s paper [43],
only differing in the terminology, e.g., the master is known as the jobtracker and
the workers as tasktrackers, and small details, e.g., reduce tasks fetch the map
outputs using the HTTP protocol instead of remote procedure calls. Of course,
since Google’s paper is not exhaustive, many engineering decisions have been
taken on their own and many enhancements have been included.

Yet, there are many other implementations of MapReduce like Amazon Elastic
MapReduce [11], which runs on top of Amazon EC2 [10] and Amazon S3 [13];
Greenplum’s [103], which is integrated with their RDBMS in a single parallel
dataflow engine; or Aster MapReduce Appliance [23], which is closely tied to
SQL, among others. Many other products have also incorporated the possibility
of plugging Hadoop MapReduce (or other implementations for that matter) into
their big data analytic engines, e.g., [58, 96, 117].

Input and Output

MapReduce supports different formats and sources for input and output data,
as required by the user. Although reading data from files in a distributed file

36 2. State of the Art

system, e.g., GFS in Google’s implementation, is the most common usage, it can
also be read from databases, data structures in main memory, etc. The input
interface needs to implement how to divide the input data into several splits, one
per map, and how to obtain key-value pairs from those splits.

In Hadoop, the InputFormat interface is used for that matter. It is composed
of two methods:

• getSplits(): this method defines the set of splits in which the input is
divided. It receives the number of desired splits as an hint and produces a
set of InputSplit instances with the information about the split, which at
least includes their length and locations. This information is used by the
scheduler to assign map tasks to workers.

• getRecordReader(): returns an implementation of the RecordReader in-
terface. This class is responsible of parsing the input data and generating
the key-value pairs that are passed to the map function.

The user is allowed to define its own implementations of the input readers,
but some classes are provided for the most common situations. For instance,
implementations for reading data from files (FileInputFormat) and databases
(DBInputFormat) are provided. In the first case, several formats are supported,
mainly:

• Text files: The input is given in text files. By default Hadoop uses
TextInputFormat, which generates a pair for each file line in which the
key refers to its offset and the value contains the text of the line. Other im-
plementations are also supplied, for instance KeyValueTextInputFormat,
where each line contains a key and a value separated by a tab.

• Sequence files: The input is given binary files which contain a set of
serialized key-value pairs. They support compression as part of the format,
allowing the usage of arbitrary types and are generally more efficient. In
many cases, the user just needs to provide mechanisms to serialize and
deserialize the used types.

Note that splits are generated from the HDFS chunks. When key-value pairs
cross the boundaries of the chunks, the InputFormat is able to obtain the rest of
the pair’s data by performing remote reads on the next chunk.

Hadoop also allows to get the input data from different sources and formats
at the same time, using MultipleInputs. A specific format is assigned to each
of the given input paths.

In the same way, different formats can be used and defined for the out-
put, and the user can define the format of the job output. The default is
TextOutputFormat, in which each key-value pair is written as a text line, where
the key and the value are separated by a tab.

2.3. MapReduce 37

Scheduling

In Hadoop, scheduling is done in two steps: first a job needs to be selected
to run and then a task within the job is assigned to one of the tasktrackers.
Early versions of Hadoop included a FIFO scheduler for clusters in which jobs
are executed in submission order and employ the whole cluster to perform the
computations. Later, priority was added to the scheduler, but without preemp-
tion, thus jobs still have to wait for executing jobs to finish. From version 0.19,
new schedulers were added to the system and can be chosen by the administrator.
For instance, in the Fair Scheduler, jobs are grouped into pools and assigned a
fair share of the cluster capacity. The whole scheduling architecture has been
changed in version 2 with the inclusion of Yarn [20].

Each tasktracker in the cluster has a set of slots that can run map and reduce
tasks, which can be configured by the administrator (the rule of thumb is to
define as many slots as cores in the node). Periodically, the tasktracker sends
heartbeat messages to the jobtracker, so that the latter can detect when failures
occur. In the message, the tasktracker also reports the number of idle slots. The
jobtracker selects a job and a task within the job. For map tasks, it first tries to
assign local tasks, i.e., tasks whose input is replicated on the node, or rack task if
local task assignment is not possible. In the case of reduce tasks, only one reduce
task is scheduled at a time with no locality constraints. In both cases, if there
are failed tasks, they have priority over the other tasks. Finally, if there are no
tasks waiting to be scheduled, speculative tasks can be considered.

2.3.3 Limitations and Main improvements

There has been an intense debate around MapReduce and its comparison
with parallel databases. Pavlo et al. [101] compare the performance of Hadoop
with an unrevealed parallel database management system (DBMS) and Vertica,
concluding that the performance of MapReduce was 2 to 50 times slower except
for the case of data loading. Later, both parts have the opportunity to explain
themselves in the Communications of the ACM [44, 115]. Anderson et al. [18]
also criticized data intensive scalable computing (DISC) in general for having
poor efficiency, and particularly focused on MapReduce as it the most of popular
of such systems.

Among the critiques that MapReduce has received, the following are the most
serious ones:
• It has no high-level language and schema support and this forces the devel-

opers to incorporate all that functionality into their programs. The need
to parse the data every time it is read may also add a significant over-
head. Nonetheless, in [76] it is argued that the main responsible of this
overhead is immutable decoding, which requires extensive CPU utilization,
as the framework needs to create a new object for each key-value pair in

38 2. State of the Art

the input.
• It does not incorporate compression, and when it used in an ad-hoc way, it

offers no performance gains [101]. However, parallel DBMS can particularly
benefit from it, reducing total I/O.

• It does not include traditional database optimizations such as indexes or
column-based layouts, which can significantly reduce the total amount of
data that has to be read in order to answer a query.

• It has large start-up and scheduling costs. As opposed to parallel DBMS,
where a query plan is first designed and sent to all participant nodes,
MapReduce employs online scheduling, which requires the interchange of
control messages between the computers, which incurs an important over-
head. Moreover, the lack of a predefined pipeline excludes some perfor-
mance optimizations used in parallel DBMS, such as reducing the amount
of transferred data or pipeline parallelism.

• The shuffle phase is inefficient. The materialization of the intermediate
data in M ×R files and the usage of a pull model may put a lot of pressure
on the disk, which has to perform a lot of seeks [101]. Moreover, the sort-
merge scheme used to group the keys is not always needed and more efficient
strategies may be used in some cases [76].

Dean et al. [44] pointed out that some of the critiques are actually misconcep-
tions about the system. MapReduce is a specialized tool for performing possibly
complex analysis in heterogeneous systems, were data may be stored in many
formats. The programming model is also focused on their specific use cases, as
complicated transformations are easier to express in MapReduce than in SQL.
Some of the mechanisms that are claimed to be lacking, such as indices, can
actually be used in the system, and the critiques about the performance made
assumptions about the way the programs and the framework are implemented,
e.g., using text formats, start-up costs. Other issues related to performance, such
as materialization of intermediate results, are actually a choice aiming at provid-
ing fault-tolerance for job executions. Nonetheless, some of the limitations are
still to be addressed and a lot of research effort have focused on such task.

In the rest of the section, we explain in detail some proposals that have been
presented in order to overcome MapReduce’s limitations and incorporate addi-
tional functionalities.

Extended Programming Model

Sawzall [102] is a scripting language proposed by Google that is executed
over a MapReduce framework and simplifies the implementation of analytical
applications. It also consists of two phases, a first phase that consumes single
records and emits values to external aggregators, and an aggregator phase. These
phases match map and reduce phases of a MapReduce job. Protocol buffers are

2.3. MapReduce 39

used to specify a schema on the input records, as each type is defined through a
data definition language (DDL) file.

Several other declarative languages have been also proposed to be used on
top of the MapReduce framework. A notorious example is Apache Pig [94], an
environment built on top of Hadoop that uses a high-level language to express
MapReduce queries. Jobs are expressed as a sequence of operations that perform
single, high-level relational algebra-style transformations such as filter, join, group
by, etc. An optimizer is in charge of building a logical query plan that is compiled
into a chain of MapReduce jobs. Pig supports a nested data model and offers a
set of pre-defined user-defined functions (UDFs) for the most common operations.
Another example is Hive [120], a data warehousing solution built also on top of
Hadoop. It defines a declarative language similar to SQL called HiveQL. The data
model organizes data into tables, partitions and buckets. All the meta information
is stored in a system catalog. Queries are compiled into directed acyclic graphs
(DAGs) of MapReduce jobs and query optimizations are also employed in the
process. Similar to Hive, SCOPE [132] defines a SQL-like declarative scripting
language that incorporates C# expressions. Queries are transformed into job
plans that are executed in Microsoft’s distributed computing platform, called
Cosmos, which is similar to MapReduce. Clydesdale [78] is a research prototype
built on top of Hadoop that focuses on workloads for which the data model fits a
star schema, i.e., a fact table and several dimension tables. It implements several
optimizations for this specific type of queries and will provide a SQL parser and
compiler in order to transform them into the corresponding MapReduce jobs.

MapReduce’s programming model has also been extended beyond the inclu-
sion of a declarative language interface. For instance, Hadoop Online Prototype
(HOP) [37], a modified version of Hadoop, is able to pipeline data between map
and reduce tasks and between different jobs. This allows the modified framework
to support online aggregation and continuous queries. The pipeline parallelism
between map and reduce tasks is achieved by sending the spills produced when
the map output buffer is full, directly to the corresponding reduce tasks, provided
they can keep up with the rate. Pipeline between jobs is carried out by send-
ing directly the output of the reduce tasks to the map tasks of the next job in
the chain, avoiding the expensive writes in HDFS. HaLoop [29, 28] extends the
original Hadoop framework in order to support iterative programs. MapReduce
API is modified to express iterative jobs. This allows the system to apply some
optimizations like inter-iteration locality, by which map and reduce tasks access-
ing the same data in different iterations are assigned to the same nodes. HaLoop
takes advantage of caching and indexing of loop-invariant data or caching the
reducers output data in order to accelerate the evaluation of fixpoint termination
conditions.

40 2. State of the Art

Database Optimizations

As a consequence of Pavlo et al.’s paper [101] pointing out the weaknesses
of MapReduce when compared to parallel databases, many works started to in-
corporate database techniques into the MapReduce framework. HadoopDB [2]
was one of the first proposals in this direction. It consists of a hybrid approach
where the data is stored in a set of databases that are connected using Hadoop.
The databases replace the data nodes in the distributed file system and allow
the system to fetch the data more efficiently, as database optimizations are used
in the process. The interface between the different systems is handled by the
SMS (SQL to MapReduce to SQL) planner, which receives queries in SQL and
translates them into query plans by extending Hive [120].

Hadoop++ [50] takes another approach. The execution plan is mapped to
a physical query execution plan and all the operators identified. In this way,
many other functions apart from map are reduce are identified and formalized
including 10 UDFs. In Hadoop++, two main database-inspired optimizations
are incorporated and evaluated. The first one, called Trojan index, consists in
incorporating an index on each of the chunks, thus reducing the amount of reads
that need to be performed. The second, called Trojan join, is aimed for efficient
join processing. The idea is to co-partition data at load time by applying the same
partitioning function on the join attributes of the two relations involved in the
join and to store the groups with the same key in the same chunk. An extension of
Hadoop++ enriches this framework by including Trojan data layouts [77], which
organize each chunk into attribute groups that depend on the workload. In that
way, attributes that are frequently accessed together in the workload are assigned
to the same group. By incorporating an index into each of the chunks only the
needed groups are accessed and I/O operations are reduced. They compare their
approach to other traditional approaches such as horizontal, columnar and PAX
(a data organization model that group all the values of an attribute within each
cache page [8]) layouts and show that the proposed approach is more efficient.

In [68], as in [77], the three possible traditional data placement structures,
namely horizontal row store, vertical row store and PAX, are used and studied
in the context of MapReduce. They propose RCFile, a data placement structure
for MapReduce-based data warehouses that is based on PAX. Each chunk is
divided into several row groups. In each row group, values for the same attribute
are stored contiguously. Then, the contents are compressed, optionally using
different algorithms for different columns. Although RCFiles and Trojan data
layouts use related approaches and claim to work better than the alternatives,
they are not well compared. In [77] the PAX approach is used in the comparison,
but is not implemented through row stores and uses data compression as in [68].
On the other hand, column groups are used in RCFile’s evaluation, but their are
not used in a PAX-like approach. In [54], RCFile’s weaknesses are pointed out:

2.3. MapReduce 41

namely that I/O elimination is limited by HDFS and file system’s prefetching
mechanism and that it imposes a storage overhead due to metadata. As an
alternative, they propose to partition the dataset into several splits and store the
data from each column in a different file. In order to guarantee data locality when
accessing multiple columns, the HDFS block placement policy is modified in order
to automatically co-locate the column files of each split. An additional advantage
of this approach is that the addition of columns to the dataset is straightforward,
as it only requires to add a new file for each of the splits.

CoHadoop [52] shares the same objective as Trojan joins [50], that is, to co-
locate the related data in the same nodes. However, the strategy is similar to
that of [54]. While Hadoop++ is a static approach, which needs to reorganize the
data for co-location in the same job, CoHadoop allows to incrementally co-locate
files as new data arrives. This is carried out by modifying the HDFS placement
policy and including the concept of write affinity, in an analogous way as in [54].
Data from different files is partitioned using the same partitioning function. The
set of created chunks are co-located by assigning the same locator, which will
force HDFS to store them in the same nodes.

Shuffle Optimizations

The shuffle phase of a MapReduce job may incur an important part of total
execution time [127, 98]. In [127], through simulation, it is shown that the network
topology has a significant impact on the shuffle overhead. Four topologies are
studied: star, double rack, tree and DCell. Double rack, followed by tree are the
worst case scenarios, as they comprise network links that are shared by multiple
communications. Unfortunately, the typical topology in MapReduce clusters is
a generalization of double rack, as there are several racks where computers are
connected in a star schema, but communications between nodes in different racks
have to pass through a shared interconnect. In [98], reduce locality is pointed out
as a significant issue in MapReduce jobs, showing through examples that a bad
reduce locality can multiply response time by four.

By default, MapReduce uses hash partitioning to distribute intermediate keys
among reduce tasks. In a configuration with N nodes, this implies a reduce
data locality of only 1

N
, e.g., just for 10 nodes 90% of the intermediate data is

transferred through the network. As a result, there have been some works which
have tried to improve data locality and decrease the overhead of the shuffle phase.
In [111], a pre-shuffling scheme is proposed to reduce data transfers in the shuffle
phase. A modified scheduler looks over the input splits before the map phase
begins and predicts the reducer the key-value pairs are partitioned into. Then,
the data is assigned to a map task near the expected future reducer. Similarly,
in [67], reduce tasks are assigned to the nodes that reduce the network transfers
among nodes and racks. However, in this case, the decision is made at reduce

42 2. State of the Art

scheduling time. There is a tradeoff on when to start the scheduling reduce
tasks. As more map tasks have finished, the information about data locality is
more accurate, however, the possible benefits of parallelizing data transfer and
map execution are lost (early shuffling). A parameter is incorporated into the
scheduler that accounts for that tradeoff. It has to be chosen statically for each
application.

The limitations of the mentioned approaches is that even if all intermediate
pairs are produced in the same node, the partitioning function may force them to
be separated into several reduce tasks, reducing the possibilities of locality-aware
scheduling. In [74], this problem is addressed by assigning intermediate keys to
reducers at scheduling time. The number of reduce tasks is set to the number
of nodes. Then, when all intermediate pairs have been produced, the scheduling
algorithm assign intermediate keys to reduce tasks with a greedy algorithm. This
algorithm incorporates both data locality and load balancing awareness, so that
enforcing data locality does not produce skewed reduce tasks. However, it still
depends in the distribution of intermediate keys in the map outputs. If interme-
diate pairs with the same key are uniformly produced at all workers, the possible
gains of this approach are not significant.

Load balancing

Skew may have a significant impact on the response time of MapReduce jobs,
both in map tasks, since the reduce function cannot start until all maps have fin-
ished, and in reduce tasks, as the response time is determined by the last finished
reduce task. The original implementation of MapReduce tries to overcome the
skew produced by stragglers by means of speculative execution of tasks [43]. Some
works have tried to improve this approach by considering some other issues. For
instance, in [131], the way in which speculative tasks are scheduled is modified
in order to account for workers with different characteristics (heterogeneous clus-
ters) and overcome some of the limitations of the original MapReduce’s approach.
The outcome is a new scheduling algorithm called Longest Approximate Time to
End (LATE). This algorithm selects the task estimated to finish the latest for
speculative execution. The termination time is estimated by taking into account
the processing rate and the quantity of work that remains to be done. Moreover,
the worker selected to execute this task need to be one of the fastest nodes, which
is guaranteed by establishing a threshold on the processing speed with respect to
the average speed.

Divergences on the performance of workers is not the only source of skew,
as shown in [89]. Many phenomena follow Zipfian distributions, where a few
elements are extremely common while there is a long tail of rare elements, and
this also holds in MapReduce computations. Thus, other sources of skew have
handled.

2.3. MapReduce 43

In Mantri [17], a more complex approach is used. Three types of skew are
identified by analyzing the jobs executed in a production cluster: 1) data skew,
due to unequal assignment of work to tasks; 2) cross-rack traffic, which makes
some tasks waste a lot of time in order to fetch the input data; and 3) bad and
busy machines, which is the case treated in [43, 131]. Depending on the cause,
a different measure is taken: ranging from the speculative approach taken in
previous approaches, to network-aware placement, scheduling of larger task first
or replicating output to avoid re-computation in case of failures.

There are still other sources of skew that are not solved by Mantri or specu-
lative execution. In [85], four additional cases are identified: In the map phase,
skew may be produced due to 1) expensive records, which require more CPU
or memory, or 2) heterogeneous maps. In the reduce phase, 3) the partitioning
function may create uneven partitions or 4) some of the created groups be expen-
sive, i.e., contain a lot of values. The proposed solution identifies the stragglers
and repartitions the remaining unprocessed data into several fragments, which
are forwarded to other workers to be processed there. Straggler detection is post-
poned until there are no tasks to occupy idle workers. If the estimated remaining
time is at least twice the overhead of repartitioning, the procedure is triggered;
otherwise, the task continues normally. Range-based repartitioning based on a
scanning of the remaining data is used to determine the partitioning intervals.

Other approaches focus on the skew in reduce execution. In [74] individual
intermediate keys are assigned to reduce tasks at scheduling time. A greedy al-
gorithm assigns the keys to the nodes based on both data locality and fairness.
For this, the map tasks collect information about the frequency of the interme-
diate keys, which is sent to the master and aggregated. Once all map tasks have
finished, all the collected information is used by the greedy algorithm.

Gufler et al. [65] improve this approach in two ways: the complexity of the
reduce function is incorporated into the cost and a threshold on the number
of keys for which statistics are collected is introduced. The cost of executing
the reduce function may be super-linear to the size of the groups in the reduce
task.Therefore, even for the same number of values, groups of different sizes may
require different times [66]. For instance, if the reduce function has a complexity
in the order of O(n2), a reduce task with one group of 2n values will take more
time to execute than a reduce task with two groups of just n values. As a
consequence, the size of the groups is taken into account in the cost model. And,
provided that big groups contribute a lot more to the total cost, the statistics
collected on each map phase about the cardinality of each intermediate key can
be approximated by only taking into account the groups bigger than a given
threshold and estimating the size of the rest.

In [130], a sampling MapReduce job is executed in advance to obtain an
estimation of the key’s frequency distribution. This information is used to create
a partitioning scheme that is later used in the execution of the original job.

44 2. State of the Art

This strategy is also used in the Pig framework [94] to adjust the partitioning
function when executing some operators like sort. A sampling approach has also
been incorporated into the Oracle Loader for Hadoop (OLH) in [104]. The map
output is sampled by applying the map function to samples of the input data.
The size of the sample is calculated dynamically, i.e., the sampling process is
finished when the desired quality is obtained according to a model. Then, keys
are classified into three types: large, medium and small. The framework chops
large keys into several medium keys that are smaller than the average reduce load.
Chopping is only allowed if the reduce function is distributive. If it is distributive
over the union, hash based chopping is used; if it is only distributive over the
concatenation, range-based partitioning has to be used instead. Medium keys are
assigned to reducers using a greedy bin-packing algorithm. This assignments is
passed to map tasks through a partition file. Small keys are assigned to reducers
via hashing.

In [123] an adaptive solution is proposed in order to overcome the skew both
in the map and reduce phases. In order to achieve that, mappers are allowed
to asynchronously communicate through a transactional, distributed meta-data
store. This allows them to have a global view of the system and make coordinated
optimization decisions. Map phase skew is handled by allowing map tasks to
dynamically load input splits. This strategy eliminates the overhead of map
tasks start-up and allows to have smaller input splits that are better for load
balancing. Map tasks also sample the map outputs and update a global view in
the meta-data store, allowing to adapt the intermediate key partitioning in order
to deal with reduce skew.

2.4 Conclusions

As shown in this chapter, data partitioning is a fundamental technique for
parallel computing, both in parallel databases and massively parallel processing
frameworks such as MapReduce. It is used in combination with other techniques
also covered in this chapter, such as replication and load balancing.

In parallel databases, data partitioning is used in order to divide the data
collections into fragments and assign them to the nodes that participate in the
processing of queries. Parallelism can be obtained with the concurrent execution
of several queries and/or with the parallel execution of a single query at several
nodes. Depending on the application, the objective of the partitioning is different.
For instance, when small queries are executed, the partitioning tries to confine
their execution at one or a few nodes in order to avoid the overhead of distributed
execution. On the other hand, when the application consists of long running
queries, the objective of the partitioning is to spread the data items accessed by
queries at all the nodes in a balanced way so that total response time is minimized.

2.4. Conclusions 45

As the workload becomes more complex, the design of an efficient partition-
ing becomes more difficult, as many alternatives need be considered. Several
partitioning advisors have been designed in order to automatically partition the
database in the most efficient way, given a workload model. They make use of
the basic partitioning techniques, mainly hash-based and range-based partition-
ing, and select the partitioning attributes that are more adequate. Graph-based
partitioning techniques represent another alternative for automatic data parti-
tioning which can work with any schema and regardless of the complexity of the
queries in the workload.

In MapReduce data partitioning is employed in order to split the input data
and assign the fragments to the tasks that execute in parallel the map phase of
the job. Afterwards, intermediate data is again repartitioned and transferred to
the reduce tasks, which execute the second phase of the MapReduce job. While
data locality is taken into account in the execution of the map phase, it is not
considered in the reduce phase. Several works have focused on overcoming this
limitation, as well as other inefficiencies of the original MapReduce framework.
However, some scenarios are yet to be optimized.

We identified two main limitations of the current works related to data parti-
tioning. In this thesis, we address these limitations:
• Partitioning in continuously growing scientific databases: We con-

sider scientific databases composed of tables with a large number of at-
tributes and complex access patterns where new data items are inserted
as new observations are performed. Automatic approaches based on the
basic techniques, namely hash-based and range-based partitioning, are not
capable to deal with the complex queries of scientific applications. More-
over, the search space is huge as a lot of attributes should be considered.
Graph-based approaches, not being affected by the schema complexity, can
be able to capture tuple relations. However, they require a whole reparti-
tioning each time new data items are appended. As a consequence, we need
a partitioning approach that is able to efficiently adapt the partitions to the
continuous arrival of new data items. We cover this problem in Chapter 3.

• Expensive data transfers in MapReduce’s shuffle phase: As shown
in Section 2.3.3, the shuffle phase in MapReduce may produce a significant
overhead on job execution because of expensive network transfers. Some
works have tried to overcome this problem by modifying the way in which
the MapReduce framework schedules reduce tasks and how intermediate
keys are assigned to those tasks. Nevertheless, if the intermediate keys are
generated uniformly on the map outputs, the gains of those approaches are
not considerable. In Chapter 4, we propose a strategy to repartition input
data in order to take full advantage of intelligent scheduling of intermediate
keys and reduce network transfers in MapReduce execution.

46 2. State of the Art

Chapter 3

Dynamic Partitioning for
Continuously Growing Databases

In this chapter, we address the problem of dynamic data partitioning in large
databases where data is continuously appended. As a motivating example, we
illustrate the problem with astronomical catalogs, composed of tables with a
large number of attributes which are accessed through complex queries and which
grow as new observations are performed. Traditional automatic partitioning ap-
proaches are limited due to the number of attributes and workload complexity;
and graph-based approaches, which are able to capture those relationships, re-
quire the recomputation of the partitioning from scratch each time new data is
inserted into the database. To overcome those limitations, we propose two par-
titioning algorithms that dynamically assign new arriving data elements using
the affinity of new data with queries and fragments. The problem is formalized
in Section 3.2 and the algorithms described in Sections 3.3 and 3.4. Then, we
evaluate the proposed algorithms and compare them to traditional graph-based
approaches to show their effectiveness.

3.1 Motivation and Overview of the Proposal

We are witnessing the proliferation of applications that have to deal with huge
amounts of data. The major software companies, such as Google, Amazon, Mi-
crosoft or Facebook have adapted their architectures in order to support the enor-
mous quantity of information that they have to manage. Scientific applications
are also struggling with those kinds of scenarios and significant research efforts
are directed to deal with it [7]. An example of these applications is the manage-
ment of astronomical catalogs; for instance those generated by the Dark Energy
Survey (DES) [118] project with which we are collaborating. In this project, huge
tables with billions of tuples and hundreds of attributes (corresponding to dimen-
sions, mainly double precision real numbers) store the collected sky data. Data

47

48 3. Dynamic Partitioning for Continuously Growing Databases

is appended to the catalog database as new observations are performed and the
resulting database size is estimated to reach 100TB very soon. Scientists around
the globe can access the database with queries that may contain a considerable
number of attributes.

The volume of data that such applications hold poses important challenges
for data management. In particular, efficient solutions are needed to partition
and distribute the data in multiple servers, e.g., in a cluster, in order to optimize
query execution, specially small queries accessing a small part of the dataset. An
efficient partitioning scheme would try to minimize the number of fragments that
are accessed in the execution of a query, thus minimizing the overhead of the
distributed execution. Vertical partitioning solutions may be useful for physical
design at each node, but fail to provide an efficient distributed partitioning, in
particular for applications with high dimensional queries, where joins would have
to be executed by transferring data between nodes. Traditional horizontal par-
titioning approaches, such as hashing or range-based partitioning, are unable to
capture the complex access patterns present in scientific computing applications,
especially because these applications usually make use of complicated relations,
including mathematical operations, over a big set of columns, and are difficult to
be predefined a priori.

One solution is to use partitioning techniques based on the workload. Among
them, graph-based partitioning is an effective approach for that purpose as it
is independent of the schema and workload complexity [41]. As explained in
Section 2.2.4, a graph (or hypergraph) representing the relationships between
queries and data elements is built and the problem is reduced to that of minimum
k-way cut problem. However, this method requires to process the entire graph in
order to obtain the partitioning. This strategy works well for static applications,
but scenarios where new data is inserted to the database continuously, which is
the most common case for scientific computing, introduce an important problem.
Each time a new set of data is appended, the partitioning should be redone
from scratch, and as the size of the database grows, the execution time of such
operation may become prohibitive. Moreover, since the graph model does not
take into account previous data placements, a lot of data transfers may have to
take place to enforce the new partitioning.

In this chapter, we are interested in dynamic partitioning of large databases
that grow continuously. After modeling the problem of data partitioning in dy-
namic datasets, we propose two dynamic workload-based algorithms, called Dyn-

Part and DynPartGroup, that efficiently adapt the partitioning to the arrival of
new data elements. Our algorithms are designed based on a heuristic that we
developed by taking into account the affinity of new data with queries and frag-
ments. In contrast to the static workload-based algorithms, the execution time
of our algorithms do not depend on the total size of the database, but only on
that of the new data and this makes them appropriate for continuously growing

3.2. Problem Definition 49

databases.
We validated our solutions through experimentation over real-world data sets.

The results show that they obtain high performance gains in terms of partition-
ing execution time compared to one of the most efficient static partitioning al-
gorithms. We also compared both algorithms and concluded that the grouping
strategy of DynPartGroup obtains better partitioning efficiencies and performs
better, specially in scenarios with high correlation between new data items and
strict imbalance constraints. DynPartGroup is a variation of DynPart, which
groups data items before calculating fragment affinities. This strategy adapts
better for the situations where there is high correlation on the new data items
and the imbalance constraints (maximum allowed imbalance) are strict, and offers
an improved performance.

3.2 Problem Definition

In this section, we state the problem we are addressing and specify our as-
sumptions. We start by defining the problem of static partitioning, and then
extend it for a dynamic situation where the database can evolve over time.

3.2.1 Static Partitioning

The static partitioning is done over a set of data items and for a workload. Let
D = {d1, ..., dn} be the set of data items. The workload consists of a set of queries
W = {q1, ..., qm}. We use q(D) ⊆ D to denote the set of data items that a query
q accesses when applied to the data set D. Given a data item d ∈ D, we say that
it is compatible with a query q, denoted as comp(q, d), if d ∈ q(D). Queries are
associated with a relative frequency f : W → [0, 1], such that

∑

q∈W f(q) = 1.
Partitioning of a data set is defined as follows.

Definition 3.2.1. Partitioning of a data set D consists of dividing the data of
D into a set of fragments, π(D) = {F1, ..., Fp}, such that there is no intersection
between the fragments, ∀i 6= j : Fi ∩ Fj = ∅, and the union of all fragments is
equal to D, i.e.,

⋃p
i=1 Fi = D.

Let q(F) denote the set of data items in fragment F that are compatible with
q. Given a partitioning π(D), the set of relevant fragments of a query q, denoted
as rel(q, π(D)), is the set of fragments that contain some data accessed by q, i.e.,
rel(q, π(D)) = {F ∈ π(D) : q(F) 6= ∅}.

To avoid a high imbalance on the size of the fragments, we use an imbalance

factor, denoted by ǫs. The size of the fragments at each time should satisfy the
following condition: |F | ≤

⌈

|D|
|π(D)|

(1 + ǫs)
⌉

.
In this chapter, we are interested in minimizing the number of query accesses

to fragments. Note that the minimum number of relevant fragments of a query q

50 3. Dynamic Partitioning for Continuously Growing Databases

is minfr(q, π(D)) =
⌈

|q(D)|
(|D| / |π(D)|)(1+ǫs)

⌉

. We define the efficiency of a partitioning

for a workload based on its efficiency for queries. Intuitively, the efficiency of

a partitioning for a query represents the ratio between the minimum number of
relevant fragments of q and the number of fragments that are actually accessed
under the given partitioning:

Definition 3.2.2. Given a query q, then the efficiency of a partitioning π(D) for
q, denoted as eff (q, π(D)) is computed as:

eff (q, π(D)) =
minfr(q, π(D))
|rel(q, π(D))|

(3.1)

When the number of accessed fragments is equal to the minimum possible,
i.e., minfr(q, π(D)), the efficiency is 1.

Using eff (q, π(D)), we define the efficiency of a partitioning π(D) for a work-
load W as follows.

Definition 3.2.3. The efficiency of a partitioning π(D) for a workload W , de-
noted as eff (W, π(D)), is equal to the sum of the efficiencies of partitioning π(D)
for all queries in W multiplied by their relative frequencies. In other words,

eff (W, π(D)) =
∑

q∈W

f(q)× eff (q, π(D)) (3.2)

Given a set of data items D and a workload W , the goal of static partitioning
is to find a partitioning π(D) such that eff (W, π(D)) is maximized.

3.2.2 Dynamic Partitioning

Let us assume now that the data set D grows over time. For a given time t,
we denote the set of data items of D at t as D(t) 1.

During the application execution, there are some events, namely data inser-

tions, by which new data items are inserted into D. These events in the model
correspond to the appending of the tuples corresponding to new observations in
the DES catalog. No changes in the schema are involved. Let Tev = (t1, . . . , tm)
be the sequence of time points corresponding to those events. Note that between
two consecutive time points ti, ti+1, D remains constant. In this chapter, we
assume that the workload is stable and neither the queries nor their frequencies
change. However, the queries may access new data items as the data set grows.

Let us now define the problem of dynamic partitioning as follows. Let Tev =
(t1, . . . , tm) be the sequence of time points corresponding to data insertion events;
D(t1), . . . , D(tm) be the set of data items at t1, . . . , tm respectively; and W be a

1. We confine this formulation to this subsection for the sake of simplicity, so that, in the
next sections, when we use D we mean D(ti).

3.3. Affinity Based Dynamic Partitioning 51

User

Query
Processor

PartitionerMetadata and
Index Manager

Physical
Manager

New data

Partitioned new data

MetadataMetadata

Results

Query

Results

Query plan

Data

F1 F2

...
Fn

Figure 3.1: System architecture

given workload. Note that, as we only consider data insertions, if ti < tj then
D(ti) ⊂ D(tj) ∀ti, tj ∈ Tev.

The goal is to find a set of partitionings π(D(t1)), ..., π(D(tm)) for data sets
D(t1), . . . , D(tm) respectively, such that the sum of the efficiencies of the parti-
tionings for W are maximized. In other words, our objective is as follows:

maximize

∑

q∈W

(f(q)× eff (q, π(D(t))))

∀t ∈ Tev

3.3 Affinity Based Dynamic Partitioning

In this section, we propose an algorithm, called DynPart, that deals with
dynamic partitioning of data sets. It is based on a principle that we developed
using the partitioning efficiency measure described in the previous section.

3.3.1 System Overview

In this chapter, our proposal mainly focuses on how the data is partitioned
in fragments. Here, we provide an overview of a system architecture taking
advantage of our partitioning approach. The components of this architecture are
as follows (see Figure 3.1):
• Query processor: It parses the user queries, accesses the metadata and

index manager, prepares an optimized execution plan and sends it to the
physical manager to retrieve the data from fragments.

• Metadata and Index Manager: Stores metadata about the partitioning,
and also indexes the location of the data items in the fragments.

52 3. Dynamic Partitioning for Continuously Growing Databases

• Physical Manager: It is in charge of storing/retrieving data to/from
fragments.

• Partitioner: It holds the data items until a given number of items is
inserted. Then, it obtains the necessary metadata and executes the parti-
tioning algorithm. Finally, it transfers the data items to the corresponding
fragments and informs the metadata and index manager about the modifi-
cations in the fragments. This component may also be contacted to include
in the query results the corresponding data items in new added data.

We assume a shared nothing architecture composed of data nodes containing
a physical data manager that stores one or several fragments at each node, and
dedicated nodes for other components. We use a shared nothing architecture
as it is the most common one since it is cheaper and can be scaled easily when
required. The query processor and the metadata and index manager are preferred
to be executed at the same node (nodes) to avoid communication overhead, as
the query processor always has to access the index.

3.3.2 Principle

Let d be a new inserted data item. We can express the efficiency of the new
dataset as:

eff (W, π(D ∪ {d})) = eff (W, π(D)) + ∆ (3.3)

Let assume that F is the fragment selected to insert d. The efficiency will
remain the same for all queries but those which now have to access F in order to
retrieve d but did not before. Hence, we can calculate ∆ as 2:

∆ ≈
∑

q:q(F)=∅∧comp(q,d)

f(q) (eff (q, π(D ∪ {d}))− eff (q, π(D))) (3.4)

=
∑

q:q(F)=∅∧comp(q,d)

f(q)

(

minfr(q, π(D))
|rel(q, π(D))|+ 1

−
minfr(q, π(D))
|rel(q, π(D))|

)

(3.5)

= −
∑

q:q(F)=∅∧comp(q,d)

f(q)
minfr(q, π(D))

|rel(q, π(D))| (|rel(q, π(D))|+ 1)
(3.6)

where q : q(F) = ∅∧ comp(q, d) is the set of queries that will read d but no other
data items in F .

Based on this idea, we define the affinity between the data d and fragment F :

aff (d, F) = −
∑

q:q(F)=∅∧comp(q,d)

f(q)
minfr(q, π(D))

|rel(q, π(D))| (|rel(q, π(D))|+ 1)
(3.7)

2. Note that this approximation is an equality in all cases except when the increment in
|q(D)| makes minfr(q, π(D)) to be increased by 1, which happens very rarely.

3.3. Affinity Based Dynamic Partitioning 53

Using (3.7), we develop a heuristic algorithm that places the new data items
in the fragments based on the maximization of the affinity between the data items
and the fragments. Notice that the affinity is always negative or zero. In the first
case, the efficiency of the partitioning will decrease, while in the second it will
remain the same. Thus, the bigger the affinity of a data item to F (closer to
zero), the less the efficiency will degrade.

3.3.3 Algorithm

Our DynPart algorithm takes a set of new data items D′ as input and selects
the best fragments to place them. For each new data item d ∈ D′, it proceeds
as follows (see the pseudo-code in Algorithm 2). First, it finds the set of queries
that are compatible with the data item. This can be done by executing the
queries of W on D′ or by comparing their predicates with every new data item.
Then, for each compatible query q, DynPart finds the relevant fragments of q,
and increases the fragments affinity using the expression in (3.7). Initially the
affinity of fragments is set to zero.

Algorithm 2: DynPart

Input:
D′: Set of new data items
π(D): Partitioning

Result:
π(D ∪D′): Partitioning including the new data items

1 begin
2 foreach d ∈ D′ do
3 foreach q : comp(q, d) do
4 foreach F /∈ rel(q, π(D)) do
5 if feasible(F) then

// aff (F) is initialized to 0
6

7 aff (F) ← aff (F)− f(q) minfr(q,π(D))
|rel(q,π(D))|(|rel(q,π(D))|+1)

8 if ∃F ∈ π(D) : aff (F) > 0 then
9 dests ← arg maxF ∈π(D) aff (F)

10 else
11 dests ← {F ∈ π(D) : feasible(F)}

12 Fdest ← select from arg maxF ∈dests |F |
13 move d to Fdest

14 update metadata

After computing the affinity of the relevant fragments, DynPart has to choose

54 3. Dynamic Partitioning for Continuously Growing Databases

the best fragment for d. Not all of the fragments satisfy the imbalance constraints,
thus we must only consider those that do meet the restrictions. We define the
function feasible(F) to determine whether a fragment can hold more data items
or not:

feasible(F) = |F |+ 1 ≤

⌈

|D|

|π(D)|
(1 + ǫs)

⌉

(3.8)

Accordingly, DynPart selects from the set of feasible fragments the one with
the highest affinity. If there are multiple fragments that have the highest affin-
ity, then the smallest fragment is selected, in order to keep the partitioning as
balanced as possible.

DynPart works over a set of new data items D′, instead of a single data
item. This allows the system to perform bulk operations over a set of n data
items instead of executing n times the same operations, which is in general more
costly. Moreover, it gives the algorithm more flexibility in the application of the
imbalance constraints and groups data insertions in each of the fragments.

Let compavg be the average number of compatible queries per data item, and
relavg be the average number of relevant fragments per query. Then, the average
execution time of the algorithm is O(compavg × relavg × |D

′|), where |D′| is the
number of new data items to be appended to the fragments. The complexity can
be O(|W | × |π(D)| × |D′|) in the worst case, e.g. when all queries are compatible
to all new data and the partitioning has not been done well. However, in practice,
the averages are usually much smaller than the worst case values. The reason is
that the queries usually access a small portion of the data (not the whole set),
thus the average number of compatible queries per data item is low. In any
case, in order to reduce the number of queries, we may use a threshold on the
frequency, so that only queries above that threshold are considered. In addition,
the partitioning efficiency of our approach is good (see experimental results in
the next section), so the average number of relevant fragments per query is low.

3.3.4 Example

Figure 3.2 illustrates the execution of the DynPart algorithm. Before its
execution, the system is partitioned into 4 fragments, whose sizes are shown in
the figure. The workload consists of 5 queries, which are represented inside the
fragments they access. There are 16 new data items, D′ = {d1, ..., d16}, that
should be distributed over the fragments. The imbalance factor is ǫs = 0.05, so
resulting maximum size (taking into account new data items) is 42. We show the
execution of the algorithm for some of the steps.

In Step 1 we show the insertion of data item d1. The set of compatible queries
is indicated in comp(d1). For each of these queries, the affinity of the relevant
fragments is increased by the corresponding expression. As a consequence, F1

has a total affinity of −0.1, resulting from the affinity expression applied to q1

3.3. Affinity Based Dynamic Partitioning 55

D = {d1, ..., d16}, ǫs = 0.05, W = {q1, q2, q3, q4, q5},

f(q1) = 0.3, q1(D) = {d1, d2, d3, d4, d11, d12, d13, d14, d15, d16}
f(q2) = 0.2, q2(D) = {d2, d9, d10, d11, d12, d13, d14, d15, d16}
f(q3) = 0.3, q3(D) = {d2, d11, d12, d13, d14, d15, d16}
f(q4) = 0.1, q4(D) = {d9, d10}
f(q5) = 0.1, q5(D) = {d1, d3, d4}

|F1| = 38

q2, q4

|F2| = 37

q3, q5

|F3| = 35

q1, q4

|F4| = 34

q1, q2,
q3

comp(d1) = {q1, q5}
• aff (F1) = −0.1
• aff (F2) = −0.05, |F3| = 37
• aff (F3) = −0.05, |F3| = 35
• aff (F4) = −0.05, |F4| = 34⋆

d1 d2

d3
...

Step 1

|F1| = 38

q2, q4

|F2| = 37

q3, q5

|F3| = 35

q1, q4

|F4| = 35

q1, q2,
q3, q5

comp(d2) = {q1, q2, q3}
• aff (F1) = −0.1
• aff (F2) = −0.08
• aff (F3) = −0.08
• aff (F4) = 0⋆

d2 d3

d4
...

Step 2

. . .

|F1| = 40

q2, q4

|F2| = 40

q3, q5

|F3| = 35

q1, q4

|F4| = 42

q1, q2,
q3, q5

comp(d14) = {q1, q2, q3}
• aff (F1) = −0.1
• aff (F2) = −0.08, |F2| = 40
• aff (F3) = −0.08, |F3| = 35⋆

• aff (F4) = 0, ¬feasible(F4)

d14 d15

d16

Step 14

Figure 3.2: Example of operation of the DynPart algorithm

56 3. Dynamic Partitioning for Continuously Growing Databases

and q5; and F1, F2 and F3 have an affinity of −0.05, resulting from the expression
applied to q1 for F2 and q5 for F3 and F4. The three fragments have the highest
affinity, but F4 is selected since it is the smallest fragment.

In Step 2, the processing for data item d2 is depicted. Note that the infor-
mation has been updated as a consequence of last move: the size of F4 has been
incremented by 1 and the set of accessing queries now include q5, provided that
d1 is accessed by it. In this case, the highest affinity is that of fragment F4, so it
is selected and d2 is moved to it.

The algorithm continues to execute as before until Step 14. In that case, the
fragment with the highest affinity is F4, but it can not be selected, as it would
violate the imbalance constraint. As a consequence, the next fragment in terms
of affinity is selected and data item d14 is placed in fragment F3.

3.3.5 Data Structures

Our algorithm needs to maintain information about the relevant fragments of
each query, so that we can compute the affinity efficiently. Queries are assigned
a unique identifier and stored on a hash table for efficient access. For each of
them, we store the set of relevant fragments as a list, as they are always accessed
sequentially, i.e., no random access. Space complexity is O(|W | × |π(D)|) in
the worst case, but, as we have pointed out, the average number of relevant
fragments stays low even when the number of fragments increases. For example,
in our experiments, for 1024 fragments, the average number of relevant fragments
do not exceed 18 in any scenario. We also need to store the set of queries for each
of the new data items. Again, as this set is accessed sequentially, we keep a list
of query identifiers.

Our algorithm needs to create a data structure for each new data item to
store the affinity of the possible destination fragments. For this, there are several
alternatives. One option is to keep an array of size |π(D)| initialized to zero. Note
that, as the actual number of possible destinations is much lower than the total
number of fragments, we would waste a lot of space with zero-affinity entries.
Therefore, we keep a hash table of fragments and only compute those for which
the affinity is non-zero. With this method, access time will be maintained, while
space requirements will be significantly reduced.

3.3.6 Dealing with Deletes and Updates

So far, we have only considered the case where data items are appended to the
database. However, we could easily extend our approach to deal with deletions
and updates. For a deletion, we only need to consider metadata maintenance.
Whenever a data item d is deleted, the size of the fragment where it was placed
should be reduced by one. We would also have to check for all queries compatible

3.4. Dealing with Imbalance 57

with d whether they still have to access that fragment or not, and update their
set of relevant fragments if necessary. An efficient way to do this is to keep the
number of data items accessed by each query on every of its relevant fragments,
i.e., |q(F)| ∀F ∈ rel(q, π(D)). Then, whenever d is deleted from a fragment F ,
|q(F)| would be reduced by 1. If the size reaches 0, then F should be deleted
from the set of relevant fragments.

The case of updating a data item can be considered as a deletion followed
by an insertion. However, we can benefit from previous information, and only
recalculate the compatibility of queries that are affected by the changes.

3.4 Dealing with Imbalance

In the algorithm presented in the previous section, new data items are treated
individually even if they are highly correlated. As a consequence, the destination
chosen for them may differ if at a given point the selected fragment reaches
the maximum size constrained by the imbalance factor. The problem might be
specially important when there are big groups of similar elements and/or the
imbalance constraints are too restrictive. In this section we present a variation of
the previous algorithm which tries to avoid such a situation by grouping similar
elements together and taking a common decision for all of them.

3.4.1 Algorithm

The extended version of our algorithm, which we call DynPartGroup, starts
by dividing the set of new data items D′ into a set of groups G such that all
members of each group are accessed exactly by the same set of queries. Thus, the
members of each group share exactly the same affinity for each given fragment. If
they are allocated to different fragments, the partitioning efficiency of each of the
incident queries is likely to decrease. The construction of the groups is included
in function CreateGroups(). A list of groups is built, where each group stores the
set of composing tuples and the set of accessing queries. All items in a group are
treated in the same way.

The algorithm (the pseudo-code is shown on Algorithm 3) first creates the
groups and orders them by size in descending order, i.e., the biggest groups are
considered before the smallest ones. The rationale is that, if we consider first the
biggest groups, there is more free space on the fragments and the probability that
all members of these groups fit on the same fragment is higher.

Once groups are ordered, an affinity value is calculated for each group, exactly
in the same way it was done for individual data items in the basic algorithm. In
this case, function feasible(F, g) will return true if F plus the data items of the

58 3. Dynamic Partitioning for Continuously Growing Databases

Function CreateGroups(D′)
Input:

D′: Set of new data items
Result:

G: Set of group with of equivalent data items
1 begin
2 G ← emptyList()

3 foreach d ∈ D′ do
4 qs = {q : comp(q, d)}
5 if ∃g ∈ G : g.qs = qs then
6 g.ts ← g.ts ∪ {d}
7 else
8 gnew.ts ← {d}
9 gnew.qs ← qs

10 G ← insert(G, gnew)

11 return G

group g does not violate the imbalance factor, i,e:

feasible(F, g) = |F ∪ g.ts| ≤

⌈

|D|

|π(D)|
(1 + ǫs)

⌉

(3.9)

If there is no feasible destination for F , the group is split into two equal halves
and the resulting groups are inserted back in the list in the corresponding positions
so that the order is maintained. At some point, those groups would be considered
again but, in this case, individually. Note that other splitting strategies may be
envisioned, e.g., assigning only the elements that fit in the fragment with the
highest affinity and considering the rest as a new group. However, this will be in
detriment of other big groups that might have to be subsequently split, and they
will not offer any gain regarding the partitioning efficiency, as the group would
be split anyway.

Let us now analyze the complexity of the algorithm. We divide the analysis in
two parts; first we analyze the group creation and ordering part, and then the rest
of the algorithm. Function CreateGroups(D′) has to go over all the elements in
D′. Each of them has to be compared with existing groups to check if accessing
queries match, which can be done by defining a hash function over the query
sets. This function has a complexity of O(|W |). As a result, the total complexity
of group creation is O(|D′| × |W |). Let |G| be the number of groups, then the
complexity of group sorting is O(|G|× log |G|). In the worst case, |G| = |D′|, but
as we will see in the experimental section, the number of groups is usually much
lower than that value.

3.4. Dealing with Imbalance 59

Algorithm 3: DynPartGroup

Input:
D′: Set of new data items
π(D): Partitioning

Result:
π(D ∪D′): Partitioning including the new data items

1 begin
2 G ← CreateGroups(D′)

3 order G by |g.ts| in descending order
4 while G 6= ∅ do
5 g ← first(G)

6 G ← G− {g}
7 foreach q ∈ g.qs do
8 foreach F /∈ rel(q, π(D)) do
9 if feasible(F) then

// aff (F) is initialized to 0

10

11 aff (F) ← aff (F)− f(q) minfr(q,π(D))
|rel(q,π(D))|(|rel(q,π(D))|+1)

12 if ∃F ∈ π(D) : aff (F) > 0 then
13 dests ← arg maxF ∈π(D) aff (F)
14 else
15 dests ← {F ∈ π(D) : feasible(F)}

16 if dests 6= ∅ then
17 Fdest ← select from arg minF ∈dests |F |
18 move d to Fdest

19 update metadata
20 else
21 split g into two equal sets g1 and g2

22 insert g1 and g2 in G maintaining G’s order

60 3. Dynamic Partitioning for Continuously Growing Databases

The complexity of the rest of the algorithm is calculated in a similar way than
in the basic algorithm. The main difference is the number of times the outer loop
has to be executed. The worst case is the situation where there is a single group,
the imbalance factor is near 0 and |π(D)| ≥ |D′|. In that case, only one data item
can be inserted on each fragment, and the group would have been split in |D′|
groups of size 1. This would cause |D′| − 1 splits and require 2× |D′| ∈ O(|D′|)
executions of the outer loop, which would imply O(|W | × |π(D)| × |D′|) affinity
calculations, as in the basic algorithm.

The size of |G| can vary throughout the execution, as each split increases its
size by one. In the worst scenario explained above, its size will increase until
reaching |D′|, point from which it will be consumed, as all groups would be
of size 1. Assume that the ordered insertion on G is executed on O(log |G|).
Then, all the sequence of insertions would need O(log 1) + O(log 2) + ... +
O(log |D′|) = O(log |D′|!) = O(|D′| log |D′|). Hence, the worst case complexity is
O(|W | × |π(D)| × |D′|+ |D′| log |D′|)

However, that worst case is very rare as usually there are a higher number of
groups, and the splits are uncommon. Thus, we can say that in the average case
execution complexity of this part of the algorithm is O(compavg × relavg × |G|).

3.4.2 Example

Figure 3.3 compares the assignments performed by the basic version of the
algorithm (DynPart), and the algorithm we described above (DynPartGroup), in
the same scenario as in the previous section. Compatible queries for all data items
are shown in previous example but can also be inferred from the groupings shown
in the top of the figure, i.e., all the data items in a group have the corresponding
set of compatible queries. In the basic algorithm, data items are assumed to
be processed in the order indicated in the subindex, i.e., first d1, then d2, etc.
Finally, recall that an imbalance factor of 0.05 for a fragment of size 40 means
that the maximum size of the fragment at the end of the execution is 42.

Figure 3.3(a) shows the final assignment performed by the extended algorithm.
All the groups are assigned to a single fragment and the chosen fragments have
always one of the highest affinities, so the allocations are optimal. In figure 3.3(b)
the assignments resulting from the execution of the basic algorithm are depicted.
Note that, in this case, groups g1 and g2 have to be split into different fragments.
As a consequence, q1, q3 and q5 increment the number of accessed fragments by
1 and q2 by 2, thus decreasing partitioning efficiency. This is the consequence
of fragment F4 being at its maximum size in step 14, which prevents it to be
selected in further phases of the algorithm.

3.4. Dealing with Imbalance 61

g1.ts = {d2, d11, d12, d13, d14, d15, d16} g1.qs = {q1, q2, q3}
g2.ts = {d5, d6, d7, d8} g2.qs = {q5}
g3.ts = {d1, d3, d4} g3.qs = {q1, q5}
g4.ts = {d9, d10} g4.qs = {q2, q4}

d9, d10

d1, d3, d4

|F1| = 40

q2, q4

|F2| = 41

q3, q5

|F3| = 38

q1, q4,
q5

|F4| = 41

q1, q2,
q3

d5, d6, d7, d8

d2, d11, d12, d13,
d14, d15, d16

(a)

d9, d10

d14, d15, d16

|F1| = 40

q2, q4

|F2| = 40

q3, q5,
q1, q2

|F3| = 38

q1, q4,
q2, q3

|F4| = 42

q1, q2,
q3, q5

d5, d6, d8

d1, d2, d3, d4,
d7, d11, d12, d13

(b)

Figure 3.3: Example of execution of the distribution algorithms: a) algorithm
DynPartGroup, b) algorithm DynPart

62 3. Dynamic Partitioning for Continuously Growing Databases

3.4.3 Balancing Fragments Based on Load

In Section 3.2, we modeled the problem of data partitioning using a size
balancing constraint. Nonetheless, the problem may also be formalized if a load
balancing constraint is required. Intuitively, with load we mean the number of
accesses to the fragments.

Let us first define formally the load of a dataset as follows.

Definition 3.4.1. The load of a data set D, denoted L(D) is defined as the sum
of the frequencies of the queries accessing its data items:

L(D) =
∑

q∈W

f(q)× |q(D)| (3.10)

Given this definition, we can reformulate the imbalance constraint in the fol-
lowing way: L(F) ≤ L(D)

|π(D)|
(1 + ǫl). As a result, the formula for the minimum

number of fragments that should be accessed for a given query should be modi-
fied accordingly:

minfr(q, π(D)) =

⌈

L(q(D))
(L(D) / |π(D)|)(1 + ǫl)

⌉

(3.11)

Note that in the numerator we use L(q(D)) instead of |q(D)| because we
should take into account that items accessed by q are also accessed by other
queries that we have to consider.

To use this new imbalance constraint, our algorithms only need some minor
modifications as follows. In Algorithm 2, in case of ties in the affinity measure, the
least loaded fragment should be selected instead of the smallest one. Moreover, in
Algorithm 3, groups should be ordered by load instead of by size. Furthermore,
function feasible should be redefined as follows:

feasible(F, g) = L(F ∪ g.ts) ≤

⌈

L(D)
|π(D)|

(1 + ǫl)

⌉

(3.12)

3.5 Experimental Evaluation

To validate our dynamic partitioning algorithms, we conducted a thorough
experimental evaluation over real-world data. In Section 3.5.1, we describe our
experimental setup. In Section 3.5.2, we report on the execution time of our algo-
rithms and compare them with a well known static workload-based algorithm. In
Section 3.5.3, we study the effect of the heuristic, which we used in our algorithms,
on partitioning efficiency. Finally, Section 3.5.4 studies how the imbalance factor
and the correlation of new data affect the partitioning efficiency.

3.5. Experimental Evaluation 63

3.5.1 Set-up

For our experimental evaluation we used the data from the Sloan Digital Sky
Survey catalog, Data Release 8 (DR8) [114], as it is being used in LIneA in
Brazil 3. It consists of a relational database with several observations for both
stars and galaxies. We obtained a workload sample from the SDSS SkyServer SQL
query log data, which stores the information about the real accesses performed
by users. In total, the database comprises almost 350 million tuples, that take
1.2 TB of space. The query log consists of a total of 27000 queries, some of which
are similar in the SQL form but produce different results, as they use different
parameters.

All queries were executed on the database and the tuple ids accessed by each of
them were recorded. Only tuples accessed by at least one query were considered.
We simulated the insertions on the database by selecting a subset of the tuples
as the initial state and appending the rest of the tuples in groups. We varied
the following parameters: 1) the number of tuples inserted to the database on
each execution of our algorithm, |D′|; 2) the number of fragments in which the
database is partitioned, |π(D)|; 3) the imbalance factors, ǫs and ǫl; and 4) the
order of data items, so as to produce datasets with higher correlation between
consecutive data items. On each of the experiments, the specific numbers are
detailed.

All experiments were executed in a 3.0 GHz Intel Core 2 Duo E8400, running
Ubuntu 11.10 64-bit with 4GB of memory.

3.5.2 Partitioning Time

In this section, we study the execution time (partitioning time) of the dy-
namic algorithms DynPart (DP in the figure) and DynPartGroup (DPG) and
compare them with a static graph partitioning algorithm (SP). For the later, we
use PaToH 4, an hyper-graph partitioner. Figure 3.4 shows the comparison of the
partitioning time for 16 fragments and for data size balancing (ǫs = 0.15) and
load balancing (ǫl = 0.15). We executed the dynamic algorithms with two values
for |D′|: 500000 and 1 million tuples. Similar results are obtained for different
values of |π(D)|. As the difference between execution times of the static and
the dynamic algorithms is significant, we use a logarithmic scale for the y-axis
in order to show the results. The results are depicted until a database size of 20
million tuples, as the memory requirements for the static partitioning are bigger
than the total available memory for higher values. The dynamic algorithms, on
the other hand, do not cause any problem as the memory footprint depends on
|D′|, which is constant throughout the experiment.

3. Data from the DES project is still unavailable, so we have used data from SDSS, which
is a similar, previous project

4. http://bmi.osu.edu/~umit/software.html

64 3. Dynamic Partitioning for Continuously Growing Databases

0.1

1

10

100

1000

2M 4M 6M 8M 10M 12M 14M 16M 18M 20M

P
a

rt
it

io
n

in
g

ti
m

e
(s

)

DB size (# of tuples)

SPSP

 !

 !

 !

 !

 !

 !

 !

 !

 !

 !

 !

 !

 !

 !

 !

 !

 !

 ! !

 !

 !

 !

 !

 !

 !

 !

 !

 !

 !

 !

 !

 !

 !

 !

 !

 !

DP, |D′| = 0.5M
DP, |D′| = 1M
DPG, |D′| = 0.5M
DPG, |D′| = 1M

(a)

0.1

1

10

100

1000

2M 4M 6M 8M 10M 12M 14M 16M 18M 20M

P
a

rt
it

io
n

in
g

ti
m

e
(s

)

DB size (# of tuples)

SP

 !

 !

 !

 !

 !

 !

 !

 !

 !

 !

 !

 !

 !

 !

 !

 !

 ! !

 !

 !

 !

 ! !

 !

 ! !

 !

 !

 !

 !

 !

 !

 !

 !

 !

 !

DP, |D′| = 0.5M
DP, |D′| = 1M
DPG, |D′| = 0.5M
DPG, |D′| = 1M

(b)

Figure 3.4: Comparison of partitioning times of the dynamic and graph-based
partitioning algorithms as the DB size increases (|π(D)| = 16) for a) data size

balancing (ǫs = 0.15) and b) load balancing (ǫl = 0.15).

As it can be seen, partitioning time increases for the graph partitioning algo-
rithm as the size of the database increases, provided that the size of the graph
increases accordingly. For the dynamic algorithms, on the other hand, the execu-
tion time stays at the same level, as it is always executed for the same number of
data items. Some variation is observed since the features of the new items adapt
differently to the partitioning. However the trend is constant.

In the figure, we can also observe that the execution times of the DynPart-

Group algorithm are better that those of the basic algorithm. This is caused by
the reduced number of affinity calculations, as we will show later.

We compared the execution of our algorithms for different sizes of D′. Fig-
ure 3.5 shows the average execution time of the DynPart and the DynPartGroup

algorithms as |D′| increases for different number of fragments and for both bal-
ancing strategies. As expected, the execution time is linearly related to the buffer
size. Also, the higher number of fragments, the higher the execution time. This
increase is not linear since the number of relevant fragments does not increase at
the same pace. In fact, the number of relevant fragments does not exceed 8 for
|π(D)| = 256 and 16 for |π(D)| = 1024. The difference on the execution time
between the DynPart and the DynPartGroup algorithms is also noticeable.

In Figure 3.6, we represent the average execution times for the different stages
of the dynamic algorithms corresponding to the same scenario of Figure 3.4. Both
algorithms contain the following stages: calculate affinities, select max affinity and
update metadata. The extended algorithm also contains two additional stages,
namely create groups and sort groups. Finally, another phase is depicted, which
represents the rest of the operations executed during the distribution but not
associated to a particular algorithm.

3.5. Experimental Evaluation 65

0

5

10

15

20

25

2M 4M 6M 8M 10M

P
a

rt
it

io
n

in
g

ti
m

e
(s

)

Buffer size (# of tuples)

DP, |π(D)| = 4

DP, |π(D)| = 16

DP, |π(D)| = 256

DP, |π(D)| = 1024

(a)

0

5

10

15

20

25

2M 4M 6M 8M 10M

P
a

rt
it

io
n

in
g

ti
m

e
(s

)

Buffer size (# of tuples)

DPG, |π(D)| = 4

DPG, |π(D)| = 16

DPG, |π(D)| = 256

DPG, |π(D)| = 1024

(b)

0

5

10

15

20

25

2M 4M 6M 8M 10M

P
a

rt
it

io
n

in
g

ti
m

e
(s

)

Buffer size (# of tuples)

DP, |π(D)| = 4

DP, |π(D)| = 16

DP, |π(D)| = 256

DP, |π(D)| = 1024

(c)

0

5

10

15

20

25

2M 4M 6M 8M 10M

P
a

rt
it

io
n

in
g

ti
m

e
(s

)

Buffer size (# of tuples)

DPG, |π(D)| = 4

DPG, |π(D)| = 16

DPG, |π(D)| = 256

DPG, |π(D)| = 1024

(d)

Figure 3.5: Partitioning time vs. |D′| for a) DynPart and data size balancing
(ǫs = 0.15), b) DynPartGroup and data size balancing (ǫs = 0.15), c) DynPart

and load balancing (ǫl = 0.15) and d) DynPartGroup and load balancing
(ǫl = 0.15).

Other
Update
Max aff
Obtain affs
Sort groups
Create groups

Algorithm

P
a

rt
it

io
n

in
g

ti
m

e
(m

s)

DP,1MDPG,1MDP,500kDPG,500k

1200

1000

800

600

400

200

0

Figure 3.6: Comparison of dynamic algorithms’ partitioning times (data size
balancing with ǫs = 0.15)

66 3. Dynamic Partitioning for Continuously Growing Databases

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10M 20M 30M 40M 50M 60M 70M 80M 90M

P
a

rt
it

io
n

in
g

e
ffi

c
ie

n
c
y

DB size (# of tuples)

DP, |π(D)| = 16

DP, |π(D)| = 1024

DPG, |π(D)| = 16

DPG, |π(D)| = 1024

(a)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10M 20M 30M 40M 50M 60M 70M 80M 90M

P
a

rt
it

io
n

in
g

e
ffi

c
ie

n
c
y

DB size (# of tuples)

DP, |π(D)| = 16

DP, |π(D)| = 1024

DPG, |π(D)| = 16

DPG, |π(D)| = 1024

(b)

Figure 3.7: Comparison of partitioning efficiency as the size of the DB grows
(|D′| = 1M) for a) data imbalance and b) load imbalance

As we can observe in Figure 3.6, the distribution of execution times is com-
pletely different for both algorithms. The DynPart algorithm spends most of the
time in the calculation of the affinities, although the time spent in the rest of the
phases is also significant. On the other hand, DynPartGroup spends almost all
the time in the creation of the groups, whereas the time spent in the rest of the
stages is negligible. This can be explained by considering the number of groups
created in average, 664 for |D′| = 500k and 1360 for |D′| = 1M , which represent
around 0.13% of the number of tuples. As a consequence, with DynPartGroup

the time for computing affinities, selecting the best fragment, and updating the
corresponding metadata is significantly reduced.

3.5.3 Partitioning Efficiency

One of the important issues to consider for the dynamic algorithms is how
they affect the partitioning efficiency.

We executed the algorithms as the database is fed with new data after an
initial partitioning using the graph-based partitioning approach. With |D′| =
1 M, Figure 3.7 shows how the partitioning efficiency evolves as the database
grows for different number of fragments, |π(D)|. Similar results were obtained
for other configurations of |D′|. The efficiency decreases as the database grows,
as expected, but this reduction is very small. For example, in the worst case,
|π(D)| = 1024 and data size balancing, the partitioning efficiency decreases 2.82×
10−3 in average for each 10 million new tuples. The difference between DynPart

and DynPartGroup is very small for small values of |π(D)|, but increases for
higher values. In any case, it is below 5% for the worst case.

To evaluate the quality of our partitioning approach, in addition to the parti-

3.5. Experimental Evaluation 67

0.5

0.6

0.7

0.8

0.9

1

10M 20M 30M 40M 50M 60M 70M 80M 90M

%
S

in
g

le
-n

o
d

e
q

u
e
ri

e
s

DB size (# of tuples)

DP, |π(D)| = 16
DP, |π(D)| = 1024
DPG, |π(D)| = 16
DPG, |π(D)| = 1024

(a)

0.5

0.6

0.7

0.8

0.9

1

10M 20M 30M 40M 50M 60M 70M 80M 90M

%
S

in
g

le
-n

o
d

e
q

u
e
ri

e
s

DB size (# tuples)

DP, |π(D)| = 16
DP, |π(D)| = 1024
DPG, |π(D)| = 16
DPG, |π(D)| = 1024

(b)

Figure 3.8: Comparison of percentage of single-node queries as the size of the
DB grows (|D′| = 1M) for a) data imbalance and b) load imbalance

tioning efficiency metrics, as in [41, 100] we studied the percentage of single-node
queries, which means the percentage of the queries that can be executed using
the data of only one fragment. Figure 3.8 shows the results. As seen, when the
number of fragments is small, the results are similar to what we reported for
partitioning efficiency metrics. However, for higher number of nodes, the number
of single-node queries is lower. The reason is that in these cases the partitions
are smaller, so it is more difficult to confine all the results of a query in a single
fragment

3.5.4 Effect of Imbalance Factor and Data Correlation

The imbalance factor (ǫs or ǫl) may affect the efficiency as it constraints the
flexibility of the algorithm in allocating new data items. The lower the imbalance
factor, the less flexibility, which may imply that some data items are not placed
in the optimal fragments because they are full. Figures 3.9(a) and 3.9(c) show
the average partitioning efficiency for different values of ǫs and ǫl, respectively.
The efficiency decreases as the imbalance factor decreases, as expected, but it is
much more noticeable for the DynPart algorithm.

To enrich our study, we have considered other scenarios by reordering the data
so that correlated data items arrive together. In order to do that, we executed
the DynPart algorithm over the initial data set and created the corresponding
partitions. Then we reordered the data by placing on defined intervals data of
only one of the fragments at a time. That way, we increase the correlation of new
data (D′) on each execution of the algorithm.

Figures 3.9(b) and 3.9(d) show the same configuration as before but with a
new ordering created by producing 8 fragments on the original data and placing

68 3. Dynamic Partitioning for Continuously Growing Databases

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5

P
a

rt
it

io
n

in
g

e
ffi

c
ie

n
c
y

Imbalance factor (ǫs)

DP, |π(D)| = 16

DP, |π(D)| = 256

DPG, |π(D)| = 16

DPG, |π(D)| = 256

(a)

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5

P
a

rt
it

io
n

in
g

e
ffi

c
ie

n
c
y

Imbalance factor (ǫs)

DP, |π(D)| = 16

DP, |π(D)| = 256

DPG, |π(D)| = 16

DPG, |π(D)| = 256

(b)

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5

P
a

rt
it

io
n

in
g

e
ffi

c
ie

n
c
y

Imbalance factor (ǫl)

DP, |π(D)| = 16

DP, |π(D)| = 256

DPG, |π(D)| = 16

DPG, |π(D)| = 256

(c)

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5

P
a

rt
it

io
n

in
g

e
ffi

c
ie

n
c
y

Imbalance factor (ǫl)

DP, |π(D)| = 16

DP, |π(D)| = 256

DPG, |π(D)| = 16

DPG, |π(D)| = 256

(d)

Figure 3.9: Partitioning efficiency vs. imbalance factor for a) original data set
and data size balancing, b) reordered data set and data size balancing, c)
original data set and load balancing and d) reordered data set and load

balancing

items of one of those fragment in intervals of 10M 5. As we see, in the case of
correlated data, the impact of the imbalance factor is higher than in the previous
scenario. Nevertheless, the DynPartGroup algorithm still shows good behavior
for different values of ǫs and ǫl.

Finally, in Figure 3.10 we show the evolution of the partitioning efficiency as
the database grows for imbalance factors of 0.001 and 0.5, which represent both
extremes on the studied values of ǫs and ǫl. This confirms that higher correlations
on the inserted data affect the resulting partitioning efficiency. At the beginning
the efficiency is low, since all the inserted data is highly correlated and data
items that should be allocated together have to be split because of imbalance

5. We have produced different reorderings and the experiments show similar results

3.6. Related Work 69

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10M 20M 30M 40M 50M 60M 70M 80M 90M

P
a

rt
it

io
n

in
g

e
ffi

c
ie

n
c
y

DB size (# of tuples)

DP, ǫs = 0.001

DP, ǫs = 0.5

DPG, ǫs = 0.001

DPG, ǫs = 0.5

(a)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10M 20M 30M 40M 50M 60M 70M 80M 90M

P
a

rt
it

io
n

in
g

e
ffi

c
ie

n
c
y

DB size (# of tuples)

DP, ǫl = 0.001

DP, ǫl = 0.5

DPG, ǫl = 0.001

DPG, ǫl = 0.5

(b)

Figure 3.10: Partitioning efficiency for the reordered data (|π(D)| = 16) for a)
data size balancing and b) load balancing

constraints. However, as new data items with different affinities are included and
the imbalance is more flexible, the efficiency increases.

By comparing the behavior of both dynamic algorithms we can state that the
DynPartGroup algorithm obtains better partitioning efficiencies consistently. The
DynPart algorithm approaches DynPartGroup when the imbalance factor is high,
but degrades as the imbalance constraints are stricter. This difference between
the partitioning efficiency of the two algorithms is even higher for configurations
with more number of fragments.

3.6 Related Work

Partitioning has been used both for declustering and clustering. In this chap-
ter, we are interested in the later, as we are trying to reduce the number of query
accesses to the fragments.

As we explained in Section 2.2.4, the basic and most popular techniques for
database partitioning include 1) round-robin, which consists in assigning each
tuple to a different fragment; 2) hash-partitioning, which applies a hash function
of a predefined set of attributes; and 3) range-based partitioning, which splits
data on ranges on a given set of attributes. These techniques are still being used,
for instance in distributed key-value stores, as they work well in many scenarios.
Dynamo [45] uses a modified version of hash-partitioning on the key and, as a
consequence, only obtain single-site query executions when the query contains
equality predicates on the key. In general, hash-based partitions are good for
clustering only when the queries contain equality predicates on the partitioning
attributes, which is not the case of our workload. BigTable [33] and PNUTS [38]

70 3. Dynamic Partitioning for Continuously Growing Databases

use range-based partitioning on the keys; which still is too simple for our reference
queries. In general, the complexity of scientific workloads makes it hard to design
a good partitioning strategy manually, so automatic partitioning is preferred [99].

In Section 2.2.4 we covered the different approaches employed in automatic
database partitioning, including the systems proposed by major vendors such as
Microsoft’s SQL Server AutoAdmin [35, 5] and IBM’s DB2 Database Advisor [106,
133]. Many of these works have focused on partitioning (both vertical and hori-
zontally) as an element of physical design for a single-node, along with indexing
and materialized views. For instance, in [5] a set of physical design alternatives
(that includes partitioning) is generated. Then, in order to limit the search space
they prune the set of candidates. Similar procedures are used in other works,
such as AutoPart [99], which is focused on scientific workloads. In this case only
vertical and categorical partitioning are considered and the resulting partitioning
is also used for physical design at a single-node.

Some other proposals use analogous techniques to automatically generate par-
titions in distributed systems. The solution proposed in [106] uses a similar ap-
proach but with the goal of distributing the queries over all the nodes (data
declustering). Automatic database partitioning for distributed databases has re-
cently received further attention. In [91], data is partitioned automatically to
optimize the execution of MPP systems. As a possible alternative they only
consider hash-based partitioning over a single column. In [100], both hash and
range-based partitioning on the most accessed attributes are considered for parti-
tioning in OLTP systems. To find a near optimal solution, their approach explores
a solution space by adapting the large-neighborhood search technique. However,
this approach and most of the approaches mentioned above are not well suited for
our underlying scientific applications that are characterized by complex workload
predicates involving many attributes; and this significantly degrades the efficiency
of those approaches

Graph-based approaches have been used to capture more complex relations
between the workload and the data both for partitioning with the objective of
declustering [90, 84] and clustering [41]. The most important works were cov-
ered in Section 2.2.4. Schism [41] is a recent system that partitions the data
by building a graph containing the relations between queries and tuples. Data
items are retrieved using an index or by means of predicate-based explanations,
depending on the scenario. However, like other existing graph-based approaches,
it is static and needs to redo the partitioning from scratch when the data changes.
As we showed in this chapter, this approach does not perform well for growing
databases, and a dynamic approach is hence required. Furthermore, as new pro-
duced partitioning schemes are not aware of previous ones, large amounts of data
transfers may have to take place in order to apply the new data placements.

3.7. Conclusions 71

3.7 Conclusions

In this chapter, we proposed a pair of dynamic algorithms for partitioning con-
tinuously growing large databases. We modeled the partitioning problem for dy-
namic datasets and proposed a new heuristic to efficiently distribute new arriving
data, based on the affinity it has with the different fragments in the application.
We designed two alternatives, DynPart, the basic algorithm, and DynPartGroup,
which better deals with strict imbalance constraints.

We validated our approach through implementation, and compared its execu-
tion time with that of a static graph-based partitioning approach. The formalism
used in the construction of our algorithms is very related to that of the hyper-
graph, as data elements are equivalent to vertices and queries are equivalent to
hyperedges (subsets of vertices). Imbalance constraints are also present in both
models, as graph-partitioning algorithms incorporate them as part of their input.

The results show that, as the size of the database grows, the execution time
of the static algorithm increases significantly, but that of our algorithms remains
stable. This was expected, as our algorithm was designed to only consider the
new elements when calculating the assignments. They also exhibit that, for the
given dataset, our algorithms, although based on a heuristic approach, do not
degrade partition efficiency considerably. As a future work, scenarios where the
workload evolve over time and produce a degradation of the partitioning efficiency
could also be envisageable. In those cases, efficient reorganization of data items
is required by taking into account not only the efficiency but also the cost of the
data transfers needed to attain the new data partitioning.

The experiments show that in the case of datasets where there is a high
correlation between new data items, the DynPartGroup algorithm maintains a
very good behavior. They also indicate that this algorithm is not highly affected
by the imbalance of fragments’ sizes. We also consider, as a possible strategy
to explore, modified versions of the grouping algorithm, where the equivalence
between data elements could be relaxed.

Overall, our experiments confirm that our dynamic partitioning strategy is
able to efficiently deal with the data of our astronomic application. But, we
believe that its utilization is not limited to this application, and it can be used for
data partitioning in many other applications where the data items are appended
continuously.

72 3. Dynamic Partitioning for Continuously Growing Databases

Chapter 4

Data Partitioning for Minimizing
Data Transfers in MapReduce

In this chapter, we focus on the shuffle phase of MapReduce executions. We
identify the overhead that this phase may pose in the MapReduce framework
and pinpoint the limitations of the approaches that have tried to overcome it.
We propose MR-Part, a repartitioning strategy that reduces the quantity of data
that should be transferred through the network in the shuffle phase. The problem
is formalized in Section 4.2 and the proposed approach explained in detail in
Section 4.3. Then, its efficiency is assessed through experiments on the Grid5000
platform under varying parameters.

4.1 Motivations and Overview

MapReduce [43] has established itself as one of the most popular alternatives
for big data processing due to its programming model simplicity and automatic
management of parallel execution in clusters of machines. It divides the computa-
tion into two main phases, namely map and reduce, which in turn are carried out
by several tasks that process the data in parallel. Between them, there is a phase,
called shuffle, where the data produced by the map phase is ordered, partitioned
and transferred to the appropriate machines executing the reduce phase.

MapReduce applies the principle of “moving computation towards data” and
thus tries to schedule map tasks in MapReduce executions close to the input
data they process, in order to maximize data locality. Data locality is desirable
because it reduces the amount of data transferred through the network, and this
reduces energy consumption as well as network traffic in data centers.

Recently, several optimizations have been proposed to reduce data transfers
between mappers and reducers. For example, [67] and [98] try to reduce the
amount of data transferred in the shuffle phase by scheduling reduce tasks close
to the map tasks that produce their input. Ibrahim et al. [74] go even further

73

74 4. Data Partitioning for Minimizing Data Transfers in MapReduce

and dynamically partition intermediate keys in order to balance load among re-
duce tasks and decrease network transfers. Nevertheless, all these approaches are
limited by how intermediate key-value pairs are distributed over map outputs. If
the data associated to a given intermediate key is present in all map outputs, the
pairs in all the nodes but one still have to be transferred.

In this chapter, we propose a technique, called MR-Part, that aims at min-
imizing the transferred data between mappers and reducers in the shuffle phase
of MapReduce. MR-Part captures the relationships between input tuples and
intermediate keys by monitoring the execution of a set of MapReduce jobs which
are representative of the workload. Then, based on the captured relationships, it
partitions the input files, and assigns input tuples to the appropriate fragments in
such a way that subsequent MapReduce jobs following the modeled workload will
take full advantage of data locality in the reduce phase. In order to characterize
the workload, we inject a monitoring component in the MapReduce framework
that produces the required metadata. Then, another component, which is exe-
cuted offline, combines the information captured for all the MapReduce jobs of
the workload and partitions the input data accordingly. We have modeled the
workload by means of a hypergraph, to which we apply a min-cut k-way graph
partitioning algorithm to assign the tuples to the input fragments.

We implemented MR-Part in Hadoop, and evaluated it through experimenta-
tion on top of Grid5000 using standard benchmarks. The results show significant
reduction in data transfer during the shuffle phase compared to Native Hadoop.
They also exhibit a significant reduction in response time when network band-
width is limited.

4.2 Problem Definition

We are given a set of MapReduce jobs which are representative of the system
workload, and a set of input files. We assume that future MapReduce jobs follow
similar patterns as those of the representative workload, at least in the generation
of intermediate keys.

The goal of our system is to automatically partition the input files so that the
amount of data that is transferred through the network in the shuffle phase is
minimized in future executions. We make no assumptions about the scheduling of
map and reduce tasks, and only consider intelligent partitioning of intermediate
keys to reduce tasks, e.g., as it is done in [74].

4.2.1 Input Dataset

We define the input data as a set of tuples D = {d1, ..., dn}, which is divided
by the MapReduce framework into a set of chunks C = {C1, ..., Cp}. The function
that assigns tuples to chunks is the following:

4.2. Problem Definition 75

input_file

IF + RR

d1 d2 d3 d4 d5 d6 d7 d8 d9

C1 C2 C3

split1 split2 split3

Figure 4.1: Input dataset and tuple assignments

loc : D → C (4.1)

Actually, before executing a job there is no physical assignment between tu-
ples and chunks. We consider a tuple di to be allocated to a chunk Cj if it is
generated by the RecordReader when parsing input split assigned to chunk Cj by
the InputFormat. As explained in Section 2.3.2, the InputFormat is the compo-
nent of the MapReduce framework that generates input splits and assigns them
to map tasks and the RecordReader is the component that parses those splits
and produces input key-value pairs.

We consider a set of MapReduce jobs that are executed over the same input
dataset and that use the same InputFormat and RecordReader. This guarantees
that the key-value pairs that are fetched to the MapReduce jobs are exactly
the same in all jobs. We also assume that the data is stored in a distributed file
system like GFS or HDFS, where files are divided into chunks and allocated in the
nodes of the system. Normally each file format is parsed by a single combination
of InputFormat and RecordReader; therefore, using the same combination of
components in all the jobs that read the same file is a common practice.

Let us illustrate the loc() function with the example shown in Figure 4.1. In
that scenario, there are three chunks and the assignments are loc(d1) = loc(d2) =
loc(d3) = loc(d4) = C1, loc(d5) = loc(d6) = loc(d7) = C2, etc. The bytes corre-
sponding to tuples d4 and d7 cross chunk boundaries. We assign them to chunks
C1 and C2 respectively as the RecordReader generates them when parsing the
corresponding splits.

4.2.2 Transferred Data in Shuffle Phase

Let us formally define the transferred data which we want to minimize. Let
jobα denote a MapReduce job. It is composed of Mα = {m1, ..., mp} map tasks
and Rα = {r1, ..., rq} reduce tasks. We do not consider map or reduce tasks which
fail or are the result of speculative execution and are not retained. We assume
that each map task mi processes chunk ci, for i = 1, ..., p.

Let Iα = {ip1, .., ipm} be the set of intermediate key-value pairs produced
by the map phase, such that map(dj) = {ipj1

, ..., ipjt
}. key(ipj) represents the

76 4. Data Partitioning for Minimizing Data Transfers in MapReduce

key of intermediate pair ipj and size(ipj) represents its total size in bytes. Kα

is defined as the set of intermediate keys produced in the execution of jobα,
Kα =

⋃

ip∈Iα
key(ip).

We define output(mi) ⊆ Iα as the set of intermediate pairs produced by map
task mi, output(mi) =

⋃

dj∈Ci
map(dj). We also define input(ri) ⊆ Iα as the set

of intermediate pairs assigned to reduce task ri. This assignment is controlled by
the reduce partitioning function:

part : Kα → Rα (4.2)

Let N = {n1, .., ns} be the set of machines that compose the cluster; node(t)
represents the machine where task t is executed:

node : Mα ∪Rα → N (4.3)

The way in which this assignment is done depends on the scheduling algo-
rithm, the properties of the job and the characteristics and behavior of the cluster
where it is executed.

Now we distinguish between local and remote transfers of intermediate tu-
ples. Let ipj be an intermediate key-value pair, produced in map task m, i.e.,
ipj ∈ output(m) and consumed by reduce task r, i.e., ipj ∈ input(r). We define
Pα(ipj) ∈ {0, 1} as a variable that indicates whether ipj is transferred or not
through the network:

Pα(ipj) =

0 if node(m) = node(r),

1 if node(m) 6= node(r).
(4.4)

From function Pα we can derive the total amount of data that is transferred
through the network in the execution of jobα.

transfer(jobα) =
∑

ipj∈Iα

size(ipj)Pα(ipj) (4.5)

4.2.3 Problem Statement

Let W = {job1 , ..., jobw} be the set of jobs in the workload sample. Our goal
is to minimize the total amount of data transferred over the network in the shuffle
phase of jobs involved in W :

minimize

∑

jobα∈W

transfer(jobα)

by optimizing:
• the assignments of data items to chunks, i.e., loc function,

4.3. MR-Part 77

Workload
Characterization

Injecting

monitoring code

Detecting key-tuple

relationships
Generating

metadata files

Repartitioning
Workload
modeling

Hypergraph
partitioning

Input file
repartitioning

Execution and
scheduling

Using repartitioned

file

Locality-aware

scheduling

Figure 4.2: MR-Part workflow scheme

• the reduce partitioning function, i.e., part function and
• the scheduling algorithm, i.e., node function,

4.3 MR-Part

In this section, we propose MR-Part, a technique that by automatic partition-
ing of MapReduce input files allows Hadoop to take full advantage of locality-
aware scheduling of intermediate keys, and to reduce significantly the amount of
data transferred between map and reduce nodes during the shuffle phase. MR-

Part proceeds in three main phases, as shown in Figure 4.2: 1) Workload char-
acterization, in which information about the workload is obtained from the exe-
cution of MapReduce jobs, and then combined to create a model of the workload
represented as a hypergraph; 2) Repartitioning, in which a graph partitioning al-
gorithm is applied over the hypergraph produced in the first phase, and based on
the results the input files are repartitioned; 3) Scheduling, that takes advantage
of the input partitioning in further executions of MapReduce jobs, and by an
intelligent assignment of intermediate keys to reduce tasks decreases the amount
of data transferred in the shuffle phase. Phases 1 and 2 are executed offline over
the model of the workload, so their cost is amortized over future job executions.

4.3.1 Workload Characterization

In order to minimize the amount of data transferred through the network
between map and reduce tasks, MR-Part tries to perform the following actions:
1) grouping all input tuples producing a given intermediate key in the same chunk
and 2) assigning the key to a reduce task executing at the same node.

The first action needs to find the relationship between input tuples and in-
termediate keys. With that information, tuples producing the same intermediate
key are co-located in the same chunk.

78 4. Data Partitioning for Minimizing Data Transfers in MapReduce

Monitoring

We inject a monitoring component in the MapReduce framework that moni-
tors the execution of map tasks and captures the relationship between input tuples
and intermediate keys. This component is transparent to the user program.

The development of the monitoring component is not straightforward because
the map tasks receive entries of the form (K1,V1), but with this information alone
we are not able to uniquely identify the corresponding input tuples. However, if
we always use the same InputFormat and RecordReader to read the file, we can
uniquely identify an input tuple by a combination of its input file name, its chunk
starting offset and the position of RecordReader when producing the input pairs
for the map task. This is similar to the approach taken in MapReduce’s bad
records skipping mechanism, as it also needs to uniquely identify the tuples that
produce the errors in the execution.

For each map task, the monitoring component produces a metadata file as
follows. When a new input chunk is loaded, the monitoring component creates
a new metadata file and writes the chunk information (file name and starting
offset). Then, it initiates a record counter (rc). Whenever an input pair is read,
the counter is incremented by one. Moreover, if an intermediate key k is produced,
it generates a pair (k, rc). When the processing of the input chunk is finished,
the monitoring component groups all key-counter pairs by their key, and for each
key it stores an entry of the form 〈k, {rc1, ..., rcn}〉 in the metadata file.

Combination

While executing a monitored job, all metadata is stored locally. Whenever a
repartitioning is launched by the user, the information from different metadata
files have to be combined in order to generate a hypergraph for each input file.
The hypergraph is used for partitioning the tuples of an input file, and is generated
using the metadata files created in the monitoring phase.

As we explained in Section 2.2.4, a hypergraph H = (HV , HE) is a general-
ization of a graph in which each hyper edge e ∈ HE can connect more than two
vertices. In fact, a hyper edge is a subset of vertices, e ⊆ HV . In our model,
vertices represent input tuples and hyper edges characterize tuples producing the
same intermediate key in a job.

The pseudo-code for generating the hypergraph is shown in Algorithm 4. Ini-
tially the hypergraph is empty, and new vertices and edges are added to it as the
metadata files are read. The metadata of each job is processed separately. For
every job, our algorithm creates a data structure T , which stores for each inter-
mediate key, the set of input tuples that produced the key. For every entry in the
file, the algorithm generates the corresponding tuple ids and adds them to the
entry in T corresponding to the generated key. For easy id generation, we store
in each metadata file, the number of input tuples processed for the associated

4.3. MR-Part 79

chunk, ni. In order to produce unique ids from the record numbers we use the
following function:

generateTupleID(ci, rc) =
i−1
∑

j=1

ni + rc (4.6)

After processing all metadata of a job, for every read tuple, our algorithm adds
a vertex to the hypergraph (if it is not already there). Then, for each intermediate
key, it adds a hyper edge containing the set of tuples that have produced the key.

Algorithm 4: Metadata combination
Input:

F : Input file
W : Set of jobs composing the workload

Result:
H = (HV , HE): Hypergraph modeling the workload

1 begin
2 HE ← ∅
3 HV ← ∅
4 foreach job ∈ |W | do
5 T ← ∅
6 K ← ∅
7 foreach mi ∈ Mjob do
8 mdi ← getMetadata(mi)
9 if F = getFile(mdi) then

10 foreach 〈k, {rc1, ..., rcn}〉 ∈ mdi do
11 {t1.id, ..., tn.id} ← generateTupleID(ci, {rc1, ..., rcn})
12 T [k] ← T [k] ∪ {t1.id, ..., tn.id}
13 K ← K ∪ {k}

14 foreach intermediate key k ∈ K do
15 HV ← HV ∪ T [k]
16 HE ← HE ∪ {T [k]}

4.3.2 Repartitioning

Once we have modeled the workload of each input file through a hypergraph,
we apply a min-cut k-way graph partitioning algorithm. The algorithm takes as
input a value k and a hypergraph, and produces k disjoint subsets of vertices
minimizing the sum of the weights of the edges between vertices of different
subsets. Weights can be associated to vertices, for instance to represent different
sizes. We set k as the number of chunks in the input file. Using the min-cut

80 4. Data Partitioning for Minimizing Data Transfers in MapReduce

algorithm, the tuples that are used for generating the same intermediate key are
usually assigned to the same partition.

The output of the algorithm indicates the set of tuples that have to be assigned
to each of the input file chunks. Then, the input file should be repartitioned using
the produced assignments. However, the file repartitioning cannot be done in a
straightforward manner, particularly because the chunks are created by HDFS
automatically as new data is appended to a file. We create a set of temporary
files, one for each partition. Then, we read the original file, and for each read
tuple, the graph algorithm output indicates to which of the temporary files the
tuple should be copied. Then, two strategies are possible: 1) create a set of files
in one directory, one per partition, as it is done in the reduce phase of MapReduce
executions and 2) write the generated files sequentially in the same file. In both
cases, at the end of the process, we remove the old file and rename the new
file/directory to its name. The first strategy is straightforward and instead of
writing data in temporary files, it can be written directly into HDFS. The second
one has the advantage of not having to deal with more files but has to deal with
the following issues:
• Unfitted partitions: The size of partitions created by the partitioning algo-

rithm may be different than the predefined chunk size, even if we set strict
imbalance constraints in the algorithm. To approximate the chunk limits
to the end of the temporary files when written one after the other, we can
modify the order in which temporary files are written. We used a greedy
approach in which we select at each time the temporary file whose size,
added to the total size written, approximates the most to the next chunk
limit.

• Inappropriate last chunk: The last chunk of a file is a special case, as its
size is less than the predefined chunk size. However, the graph partitioning
algorithm tries to make all partitions balanced and does not support such
a constraint. In order to force one of the partitions to be of the size of the
last chunk, we insert a virtual tuple, tvirtual , with the weight equivalent to
the empty space in the last chunk. After discarding this tuple, one of the
partitions would have a size proportional to the size of the last chunk.

The repartitioning algorithm’s pseudo-code is shown in Algorithm 5. In the
algorithm we represent RR as the RecordReader used to parse the input data.
We need to specify the associated RecordWriter, here represented as RW , that
performs the inverse function as RR. The reordering of temporary files is repre-
sented by the function reorder().

The complexity of the algorithm is dominated by the min-cut algorithm exe-
cution. Min-cut graph partitioning is NP-Complete, however, several polynomial
approximation algorithms have been developed for it. In this work we use Pa-
ToH [121] to partition the hypergraph. In the rest of the algorithm, an inner loop
is executed n times, where n is the number of tuples. generateTupleID() can be

4.3. MR-Part 81

Algorithm 5: Repartitioning
Input:

F : Input file
H = (HV , HE): Hypergraph modeling the workload
k: Number of partitions

Result:
F ′: The repartitioned file

1 begin
2 HV ← HV ∪ tvirtual

3 {P1, ..., Pk} ← minCut(H, k)
4 for i ∈ (1, ..., k) do
5 create tempfi

6 foreach ci ∈ F do
7 initialize(RR, ci)
8 rc ← 0
9 while t.data ← RR.next() do

10 t.id ← generateTupleID(ci, rc)
11 p ← getPartition(t.id, {P1, ..., Pk})
12 RW.write(tempfp, t.data)
13 rc ← rc + 1

14 (j1, ..., jk) ← reorder(tempf1, ..., tempfk)
15 for j ∈ (j1, ..., jk) do
16 write tempfi in F ′

82 4. Data Partitioning for Minimizing Data Transfers in MapReduce

executed in O(1) if we keep a table with ni, the number of input tuples, for all
input chunks. getPartition() can also be executed in O(1) if we keep an array
storing for each tuple the assigned partition. Thus, the rest of the algorithm is
done in O(n).

4.3.3 Reduce Tasks Locality-Aware Scheduling

Overview

In order to take advantage of the repartitioning, we need to maximize data
locality when scheduling reduce tasks. We have adapted LEEN, the algorithm
proposed in [74], in which individual keys are assigned dynamically to reduce
tasks once all the map tasks have completed. Each node executes a single reduce
task. Each (key,node) pair is given a fairness-locality score representing the ratio
between the imbalance in reducers input and data locality when a key is assigned
to a given reducer. Each key is processed independently in a greedy algorithm.
For each key, candidate nodes are sorted by their key frequency in descending
order (nodes with higher key frequencies have better data locality). But instead
of selecting the node with the maximum frequency, further nodes are considered
if they have a better fairness-locality score. The aim of this strategy is to balance
reduce input sizes as much as possible. On the whole, we made the following
modifications in the MapReduce framework:
• The partitioning function is changed to assign a unique partition for each

intermediate key, i.e., part(k) = k.
• Map tasks, when finished, send to the master a list with the generated

intermediate keys and their frequencies. This information is included in the
Heartbeat message that is sent at task completion.

• The master assigns intermediate keys to the reduce tasks relying on this
information in order to maximize data locality and to achieve load balanc-
ing. As a result, a given reduce task will process as many partitions as
intermediate keys are assigned to it.

LEEN Scheduling Algorithm

In the LEEN algorithm proposed in [74] two elements are taken into account
when scheduling keys: the locality and the fairness. The fairness is defined as the
variation on the size of the reduce tasks’ input, i.e., a scheduling which assigns
keys to reduce tasks in a way in which the input sizes are similar is better (fairer)
than a scheduling which produces skew on the reduce input sizes. The goal of
the algorithm is to schedule keys so that locality is maximized while maintaining
fairness, i.e., not producing skewed distributions on the reducer’s input size.

The algorithm’s pseudocode is shown in Algorithm 6. It follows a greedy
approach in which fairness is computed based on the distribution of the keys that

4.3. MR-Part 83

only consider the partitioning assignments decided so far. That is, in the iteration
(i + 1), keys from k1 to ki have been already assigned to a reduce task and this
assignment is fixed and only the placement of key ki+1 is decided. We assume
that node

Locality is defined as follows. Let k be an intermediate key. We define its
frequency at node n as the number of intermediate pairs produced in the map
tasks executed in n with that key:

freq(k, n) =
∑

mj∈Mα:
node(mj)=n

|{ip ∈ output(mj) : key(ip) = k}| (4.7)

From the frequency we can then define the locality of k when assigned to
reduce task ri as follows:

locality(k, ri) =
freq(k, ni)

∑

n∈Nα
freq(k, n)

(4.8)

Intuitively, the locality of key k at node ni is the number of intermediate
tuples with key ki that have been produced in map tasks executed at n divided
by the total number of tuples with that key.

Keys are first sorted in descending order of their fairness-locality value, FLK (k)
(line 3), defined as the standard deviation of the distribution of frequencies of k

divided by the maximum frequency:

FLK (k) =
σ(freq(k))

max(freq(k))
(4.9)

For each key, nodes are considered in order of their frequency (see Line 5 in
Algorithm 6): first the nodes where the frequency is higher (as it would maximize
locality). If the next node in the list would produce a more balanced assignment,
i.e., with better fairness, it is explored; if not, the current node is retained, as
the next one has worse values both on locality and fairness. In order to calculate
the fairness we first define hosted(n) as the total number of keys produced in n,
minus the number of pairs already assigned to other nodes, plus the number of
pairs already assigned to n. That is, hosted(n) is initialized to the sum of the
frequencies of all the keys produced at n in the map phase (see Line 2). For each
iteration i, if ki is assigned to n, we add the frequency that this key has in the rest
of nodes (see Line 13), as those tuples will be transferred to n. If ki is assigned
to other node, we subtract the frequency of ki (see Line 14), as the tuples will be
processed in other node. In the algorithm, fairness(ki, n) represents the standard
deviation on hosted(n) if ki is assigned to n.

84 4. Data Partitioning for Minimizing Data Transfers in MapReduce

Algorithm 6: LEEN scheduling algorithm
Input:

K: Set of intermediate keys
N : Set of nodes in the cluster

Result:
part: Partitioning function (assignments): part(k) returns the reducer
responsible of key k

1 begin
2 hosted(n) =

∑

k∈K freq(k, n) // number of keys produced at node n

3 Ksorted ← sort(K, FLK (k), desc) // sort keys in descending order of

fairness-locality

4 for ki ∈ Ksorted do
5 Nsorted ← sort(N, freq(ki, n), desc) // sort nodes in descending order of

ki frequency

6 for nj ∈ Nsorted do
7 if fairness(ki, nj) ≤ fairness(ki, nj+1) then
8 break

9 part(ki) ← rj // assign key ki to reduce task rj

10 for n ∈ N do
11 // update the number of keys at each node

12 if n 6= nj then
13 hosted(nj) ← hosted(nj) + freq(k, n)
14 hosted(n) ← hosted(n)− freq(k, n)

15 return part

4.4. Experimental Evaluation 85

4.3.4 Improving Scalability

Two strategies can be taken into account to improve the scalability of our
approach:

Grouping of intermediate keys: In order to deal with a high number of inter-
mediate keys, we use the concept of virtual reducers, VR. Instead of using
intermediate keys both in the metadata and the modified partitioning func-
tion we use part(key) = (key mod |VR|). Actually, this is similar to the
way in which keys are assigned to reduce tasks in the original MapReduce,
but in this case we set |VR| to a much greater number than the actual num-
ber of reduce tasks. This decreases the amount of metadata that should be
transferred to the master and the time to process the key frequencies and
also the amount of edges that are generated in the hypergraph.

Reducing the number of vertices in the graph: To reduce the number of
vertices that should be processed in the graph partitioning algorithm, we
perform a preparing step in which we coalesce tuples that always appear
together in the edges, as they should be co-located together. The weights of
the coalesced tuples would be the sum of the weights of the tuples that have
been merged. Let t1, t2 ∈ HV be two tuples in the graph. We would create
a new tuple t′ with weight w(t′) = w(t1) + w(t2) if the following condition
is satisfied

∀e ∈ HE : t1 ∈ e ⇐⇒ t2 ∈ e (4.10)

If the condition holds, the appearances of t1 and t2 are replaced by t′ in
all the edges of the graph. This step can be performed as part of the
combination algorithm described in Section 4.3.1.

4.4 Experimental Evaluation

In this section, we report the results of our experiments done for evaluating
the performance of MR-Part. We first describe the experimental setup, and then
present the results.

4.4.1 Set-Up

We implemented a prototype of MR-Part on top of Hadoop-1.0.4 and evalu-
ated it on Grid5000 [64], a large scale infrastructure composed of different sites
with several clusters of computers (see Section 2.1.3). In our experiments we
employed PowerEdge 1950 servers with 8 cores and 16 GB of memory. We de-
ployed Debian GNU/Linux 6.0 (squeeze) 64-bit in all nodes, and used the default
parameters for Hadoop configuration, unless otherwise is indicated.

86 4. Data Partitioning for Minimizing Data Transfers in MapReduce

We tested the proposed algorithm with queries from TPC-H [119], a decision
support benchmark. Queries have been written in Pig [94] 1, a dataflow system
on top of Hadoop that translates queries into MapReduce jobs. Scale factor
(which accounts for the total size of the dataset in GBs) and employed queries
are specified on each specific test. After data population and data repartitioning
the cluster is rebalanced with a balancing threshold of 5% in order to minimize
the effects of remote transfers in the map phase.

As input data, we used lineitem, which is the biggest table in TPC-H dataset.
In our tests, we used the queries for which the shuffle phase has a significant
impact in the response time. In particular, we used the following queries: Q5
and Q9 that are examples of hash joins on different columns, Q7 that executes a
replicated join and Q17 that executes a co-group. Note that, for any query data
locality will be at least that of native Hadoop.

We compared the performance of MR-Part with that of native Hadoop (NAT)
and reduce locality-aware scheduling (RLS) [74], which corresponds to changes
explained in Section 4.3.3 but over the non-repartitioned dataset. We measured
the percentage of transferred data in the shuffle phase for different queries and
cluster sizes. We also measured the response time and shuffle time of MapReduce
jobs under varying network bandwidth configurations.

4.4.2 Results

Transferred Data for Different Query Types

We repartitioned the dataset using the metadata information collected from
monitoring query executions. Then, we measured the amount of transferred data
in the shuffled phase for our queries in the repartitioned dataset. Figure 4.3(a)
depicts the percentage of data transferred for each of the queries on a 5 nodes
cluster and scale factor of 5. As we can see, transferred data is around 80% in
non repartitioned data sets (actually the data locality is always around 1 divided
by the number of nodes for the original datasets), while MR-Part obtains values
for transferred data below 10% for all the queries. Notice that, even with reduce
locality-aware scheduling, no gain is obtained in data locality as intermediate
keys are produced with similar frequencies in all input chunks.

Transferred Data for Different Cluster Sizes

In the next scenario, we have chosen query Q5, and measured the transferred
data in the shuffle phase by varying the cluster size and input data size. Input
data size has been scaled depending on the cluster size, so that each node is
assigned 2GB of data. Fig 4.3(b) shows the percentage of transferred data for the

1. We have used the implementation provided in http://www.cs.duke.edu/starfish/

mr-apps.html

4.4. Experimental Evaluation 87

 0

 0.2

 0.4

 0.6

 0.8

 1

Q5 (HJ) Q7 (REPJ) Q9 (HJ) Q17 (COG)

T
ra

n
sf

er
re

d
 d

at
a

(%
)

Query

NAT RLS MRP

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20 25

T
ra

n
sf

er
re

d
 d

at
a

(%
)

Cluster size

NAT RLS MRP

(b)

Figure 4.3: Percentage of transferred data for a) different type of queries b)
varying cluster and data size

three approaches, while increasing the number of cluster nodes. As shown, with
increasing the number of nodes, our approach maintains a steady data locality,
but it decreases for the other approaches. Since there is no skew in key frequencies,
both native Hadoop and RLS obtain data localities near 1 divided by the number
of nodes. Our experiments with different data sizes for the same cluster size show
no modification in the percentage of transferred data for MR-Part.

Response Time

As shown in previous subsection, MR-Part can significantly reduce the amount
of transferred data in the shuffle phase. However, its impact on response time
strongly depends on the network bandwidth. In this section, we measure the
effect of MR-Part on MapReduce response time by varying network bandwidth.
We control point-to-point bandwidth between nodes with Linux tc command line
utility. We execute all the queries on a cluster of 20 nodes with scale factor of 40
(40GB of dataset total size).

The results are shown in figure 4.4 and 4.5. As we can see in the left side of
the figures, the slower is the network, the bigger is the impact of data locality on
response time. To show where the improvement is produced we also report the
time spent in data shuffling in the right side of the figures. Measuring shuffle time
is not straightforward since in native Hadoop it starts once 5% of map tasks have
finished and proceeds in parallel while they are completed. Because of that, we
depict two lines: NAT-ms, that represents the time spent since the first shuffle
byte is sent until this phase is completed, and NAT-os, that represents the period
of time where the system is only dedicated to shuffling, i.e., from the completion
of the last map task to the end of the copy phase. For MR-Part only the second
line has to be represented as the system has to wait for all map tasks to complete

88 4. Data Partitioning for Minimizing Data Transfers in MapReduce

 0

 200

 400

 600

 800

 1000

 1200

 10 20 30 40 50 60 70 80 90 100

R
es

p
o

n
se

 t
im

e
(s

)

Bandwith (mbps)

NAT

MRP

(a) Q5 response time

 0

 100

 200

 300

 400

 500

 600

 700

 10 20 30 40 50 60 70 80 90 100

S
h

u
ff

le
 t

im
e

(s
)

Bandwith (mbps)

NAT-ms

NAT-os

MRP

(b) Q5 shuffle time

 0

 100

 200

 300

 400

 500

 600

 10 20 30 40 50 60 70 80 90 100

R
es

p
o

n
se

 t
im

e
(s

)

Bandwith (mbps)

NAT

MRP

(c) Q7 response time

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 10 20 30 40 50 60 70 80 90 100

S
h

u
ff

le
 t

im
e

(s
)

Bandwith (mbps)

NAT-ms

NAT-os

MRP

(d) Q7 shuffle time

Figure 4.4: Results for varying network bandwidth in queries Q5 and Q7

in order to schedule reduce tasks (both lines would coincide).

We can observe that, while shuffle time is almost constant for MR-Part, re-
gardless of the network conditions, it increases significantly as the network band-
width decreases for the other alternatives. For instance, in Q5 and with a band-
width of 10 mbps, the shuffle time in MR-Part is just 12% of NAT-os (only
shuffling) and 8,5% of NAT-ms. This results are similar in other queries: 20%
(11,8%) in Q7, 17,5% (11,5%) in Q9 and 22% (12%) in Q17. Depending on the
query characteristics, the shuffle phase would have more or less importance in
the response time. The consequence is that the response time of MR-Part ranges
from from 42% of that of native Hadoop in Q9 to 69% in Q5. In any case, , with
MR-Part significant gains can be obtained.

4.5. Related Work 89

 0

 200

 400

 600

 800

 1000

 1200

 1400

 10 20 30 40 50 60 70 80 90 100

R
es

p
o

n
se

 t
im

e
(s

)

Bandwith (mbps)

NAT

MRP

(a) Q9 response time

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 10 20 30 40 50 60 70 80 90 100

S
h

u
ff

le
 t

im
e

(s
)

Bandwith (mbps)

NAT-ms

NAT-os

MRP

(b) Q9 shuffle time

 0

 100

 200

 300

 400

 500

 600

 10 20 30 40 50 60 70 80 90 100

R
es

p
o

n
se

 t
im

e
(s

)

Bandwith (mbps)

NAT

MRP

(c) Q17 response time

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 10 20 30 40 50 60 70 80 90 100

S
h

u
ff

le
 t

im
e

(s
)

Bandwith (mbps)

NAT-ms

NAT-os

MRP

(d) Q17 shuffle time

Figure 4.5: Results for varying network bandwidth in queries Q9 and Q17

4.5 Related Work

Reducing network transfers in the shuffle phase is important because they
may produce a significant overhead in job execution, as already explained in Sec-
tion 2.3.3. Simulation and experiments on real production clusters under different
scenarios have shown how this problem can affect MapReduce’s performance [127,
98]. As a consequence, several works have tried to overcome this limitations.

Seo et al. [111] propose a pre-shuffling scheme to reduce data transfers in
the shuffle phase. Their approach looks over the input splits before the map
phase begins and predicts the reduce task the intermediate key-value pairs will
be assigned to. Then, the data is assigned to a map task near the expected future
reducer. Similarly, in [67], reduce tasks are assigned to the nodes that maximize
data locality, but in this case the decision is taken at reduce scheduling time,
once a given percentage of map tasks have finished.

Ibrahim et al. [74] propose a more fine-grained approach, as intermediate keys

90 4. Data Partitioning for Minimizing Data Transfers in MapReduce

are assigned to reduce tasks at scheduling time, instead of using a predefined
partitioning function. However, data locality is limited by how intermediate keys
are spread over all the map outputs, i.e., if a given key is produced with the same
frequency at all nodes, the possible gain is limited, as only the pairs produced
at one node can be local. MR-part employs this technique as part of the reduce
scheduling, but improves its efficiency by partitioning intelligently input data,
thus modifying the distribution of intermediate keys among nodes.

In the literature, there have been many other improvements to the MapReduce
framework. Some of them are also related to MR-part but in a lesser extent. For
example, CoHadoop [52] aims to improve the performance of joins by partitioning
input datasets over the join column and co-locating the corresponding chunks in
the same nodes, thus avoiding the need of a shuffle phase. This approach is
only applicable to a very specific type of queries, as opposed to ours which aims
at a greater type of jobs. An alternative to repartitioning when executing a
set of queries over the same dataset is to store intermediate results as a form of
caching, as is proposed in [51]. However, this may pose a high overhead in storage
requirements. Our approach, on the other hand, improves queries performance
while requiring the same storage size as the original dataset.

Graph and hypergraph partitioning have been used to guide data partitioning
in databases and in general in parallel computing, as it was explained in Sec-
tion 2.2.4. They allow to capture data relationships when no other information,
e.g., the schema, is given. The work in [41, 90] uses this approach to generate
a database partitioning. The approach in Curino et al. [41] is similar to our
approach in the sense that it tries to co-locate frequently accessed data items,
although it is used to avoid distributed transactions in an OLTP system.

4.6 Discussion

In this section, we show why the related approaches, e.g. [67] and [74], that
try to reduce data transfer in the shuffle phase can not be efficient without using
proper partitioning of the input. We consider two approaches: 1) locality-aware
scheduling of reduce tasks [67]; 2) assignment of intermediate keys at scheduling
time [74].

4.6.1 Locality-aware Scheduling of Reduce Tasks

The approach taken in [67] consists in scheduling reduce tasks to the nodes
that decrease the amount of network transfers. Formally, given a reduce task ri

in job jobα, the node chosen for its execution would be:

4.6. Discussion 91

Node 0

m0

C0

IF
+
RR

d1

d2

d3

d4

1

1

2

2

map

r0

2

2

4

4

fr0red

Node 1

m1

C1

IF
+
RR

d5

d6

d7

d8

3

3

4

4

map

1

1

3

3

fr1

r0

red

Figure 4.6: Limitations of locality-aware scheduling of reduce tasks

node(ri) = arg max
n∈N

∑

mj∈Mα:
node(mj) 6=n

|output(mj) ∩ input(ri)| (4.11)

However, this approach does not make any assumption on the reduce parti-
tioning function (by default part(key) = key mod |Rα|). As a consequence, even
if all the intermediate pairs could be scheduled locally, the partitioning function
may assign them to different reduce tasks. This is the case of the example shown
in Figure 4.6. Default partitioning assigns keys 2 and 4 to reduce r0 and keys 1
and 3 to reduce r1. As a consequence, no matter where those tasks are scheduled,
always half of the keys have to be transferred through the network.

4.6.2 Assignment of Intermediate Keys at Scheduling Time

In [74] one reduce task is assigned to each of the nodes participating in the
computation of the MapReduce job, i.e., node(ri) = ni,∀i ∈ {1, ..., |N |}. Then,
at the end of the map phase, intermediate keys are assigned individually to one
of the reduce tasks (bypassing the partitioning function) in a way such that the
amount of transferred data is reduced.

Apart from locality, in their algorithm, they also consider load balancing when
assigning intermediate tuples. If we ignore that part, which can only worsen data
locality, a given intermediate key ipj is assigned to the reduce task given by this
expression:

92 4. Data Partitioning for Minimizing Data Transfers in MapReduce

Node 0

m0

C0

IF
+
RR

d1

d2

d3

d4

1

2

3

4

map

r0

1

1

2

2

fr0red

Node 1

m1

C1

IF
+
RR

d5

d6

d7

d8

1

2

3

4

map

3

3

4

4

fr1

r0

red

Figure 4.7: Limitations of scheduling time key assignment

part(k) = arg max
r∈Rα

locality(k, r) (4.12)

With this approach, in the example shown in Figure 4.6 no network transfers
would be required between map and reduce tasks, as keys 1 and 2 would be
assigned to reduce r0 and 3 and 4 to r1 at scheduling time. Nevertheless, if the
keys are produced by all map tasks with similar frequencies, no gain is obtained.
The extreme case is the scenario shown in Figure 4.7 where all the intermediate
keys are generated by all map tasks with equal frequency. In that case, no matter
the assignments of the keys, |N |−1

|N |
× 100% of the keys have to be transferred

through the network.

If we employ MR-Part, input tuples will be repartitioned, for instance in the
following way:

loc(d1) = loc(d5) = loc(d2) = loc(d6) = C0

loc(d3) = loc(d7) = loc(d4) = loc(d8) = C1

That would guarantee the schedule strategy used in [74] would obtain perfect
data locality in reduce task execution.

4.7. Conclusions 93

4.7 Conclusions

In this chapter, we focused on the shuffle phase of MapReduce computations.
In particular, we have studied the problem of remote data transfers, as they can
cause a big overhead on the response time of the jobs. The main approach used to
tackle this problem is to consider data locality when scheduling reduce tasks. The
idea is to allocate those tasks as close as possible to the nodes that executed the
map tasks producing their input. However, even if we take the most fine-grained
approach, in which individual keys are assigned to reduce tasks, we are limited
by how those keys are generated in the map tasks. The idea of our approach is
to break that limitation, and in order to do so, we had to modify the input of the
map tasks.

We proposed MR-Part, an approach that repartitions the input files of MapRe-
duce jobs in order to co-locate the input pairs that frequently generate the same
intermediate keys in the same file chunks, as they will be processed by the same
map task. MR-Part monitors a set of MapReduce jobs and captures the rela-
tionships between input tuples and intermediate keys. It makes no assumptions
about the structure of the input data or the semantics of the map tasks, a fea-
ture very appropriate to MapReduce computations, which aim to be general and
schema independent. Of course, some implicit structure is needed, as we work
with input tuples that should be equivalent among all the jobs. But this is a very
weak assumption.

MR-Part uses a hypergraph to model the relationships between input tuples
and intermediate keys and then relies on a min-cut graph partitioning algorithm
to generate the partitions. The hypegraph model is well suited to our problem
since it is independent of the schema and the complexity of the workload. A
possible limitation would be its scalability with respect to the number of tuples.
However, in MapReduce, tuples may represent large pieces of data, so big datasets
do not necessary imply huge amounts of tuples. Moreover, as MapReduce is
already deployed in shared-nothing clusters for parallel computing, we can make
use of the infrastructure and execute the graph partitioning in parallel, since there
already exist some tools that do that.

We built a prototype of MR-Part and tested it in the Grid5000 experimental
platform. The results show a significant reduction in transferred data in the
shuffle phase. This reduction has a significant impact on the response time when
the network bandwidth is limited, as the shuffle time is considerably reduced.
Reduction of network traffic is important in data centers, where many jobs can be
executed in parallel and share some network links which can become a bottleneck.
This feature is even more important in some deployment models such as hybrid
or community clouds, where some links are especially slower when compared
to others. In order to better adapt to those scenarios, alternative scheduling
algorithms that account for network links with varying characteristics could also

94 4. Data Partitioning for Minimizing Data Transfers in MapReduce

be developed and evaluated.

Chapter 5

MR-Part Prototype

In this chapter, we describe the implementation of MR-Part prototype in more
details. First, in Section 5.1, we provide a general vision of the prototype and
introduce the main components and their role in MR-Part. In Section 5.2, we
describe the interface for job monitoring and its integration to the MapReduce
framework. Section 5.3 describes how this information is combined and employed
for repartitioning the input files. Then, in Section 5.4, we give the modifications
which we have made in the MapReduce framework in order to modify the reduce
scheduling behavior and implement the desired scheduling algorithm. Finally, we
conclude by pointing out the key features of our prototype and discuss the main
challenges found in the implementation.

5.1 Overview

As explained in Chapter 4, MR-Part captures the relationship between input
key-value pairs and intermediate keys from a set of MapReduce jobs representing
the workload and uses this information in order to repartition the input data
and co-locate the pairs that frequently produce the same intermediate keys. At
the end of the process, related tuples will be stored either in the same chunk
(if a single input file is generated) or in the same file (if one file per partition
is generated). In both cases, future MapReduce jobs will assign the tuples that
were co-located together by the repartitioning algorithm to the same input splits
and, consequently, process them in the same node with the same map task. This
will allow future executions of MapReduce jobs to take full advantage of reduce
locality-aware scheduling in order to reduce the transfers in the shuffle phase.

MR-Part proceeds in three main phases (see Figure 5.1):
• Monitoring: the monitoring phase is responsible for capturing the re-

lationships between the input tuples and the intermediate keys from the
jobs in the workload model. It is implemented through a component called
collector, which is integrated into the MapReduce framework and can be

95

96 5. MR-Part Prototype

Monitoring Repartitioning Scheduling

Input Repartitioned input

Workload

Hadoop

C
o

ll
e
c
to

r

metadata
metadata

Combiner
metadata

mappings

hypergraph

Graph Partitioner

assignments

FileRepartitioner

Jobs

Hadoop

S
c
h

e
d

u
le

r

Figure 5.1: MR-Part implementation overview

activated or deactivated by the user. It generates a set of metadata files,
one per map task, that are later used in the repartitioning.

• Repartitioning: the repartitioning phase is responsible for reorganizing
the tuples of the input dataset according to the metadata collected from the
workload in the monitoring phase. It works in three steps: 1) it combines all
the metadata files produced by the collector and generates an hypergraph
and a mapping between tuple identifiers and their location at the input
dataset (file, offset and record counter); 2) it uses a graph-partitioning
algorithm, e.g., PaToH, to obtain a set of partition assignments from the
hypergraph; and 3) it repartitions the input file based on the obtained
partition assignments.

• Scheduling: in this phase, future jobs are executed by using the repar-
titioned input and a scheduling algorithm that is added to the Hadoop
framework.

We have implemented MR-Part on top of Hadoop-1.0.4 framework. Two APIs
coexist in MapReduce at the moment, the older org.apache.hadoop.mapred,
maintained for backwards compatibility but most commonly used in the examples
of books and manuals, and the newer org.apache.hadoop.mapreduce. Some
parts of the framework are common to both APIs, but the behavior changes
slightly in other parts depending on the choice. In this chapter, whenever both
versions are available, we always refer to the newer API.

5.2 Monitoring

The objective of the monitoring component of MR-Part is to detect the rela-
tionships between input key-value pairs and intermediate keys.

5.2. Monitoring 97

H
D

F
S

M
a

p
P

h
a

se

In
it

ia
li

z
a

ti
o

n

parsing

(K1, V1)

seq

tuple ID

0 64 104

f

Master

InputFormat

S0= f:0:64

S1= f:64:50

g
e
t
S
p
l
i
t
s
(
)

Worker 1

RecordReader

k v

1

f:0:1

k v

2

f:0:2

k v

3

f:0:3

Worker 2

RecordReader

k v

1

f:64:1

k v

2

f:64:2

g
e
t
R
e
c
o
r
d
R
e
a
d
e
r
(
)

Figure 5.2: Tuple identification procedure

The first task of the monitoring component is to uniquely identify input tuples
in a transparent way to the user. We have to take into account the following issues:
• There is no constraint on the uniqueness of the key or key-value pairs that

are passed as input to the map function. As a consequence, the only way
to uniquely identify a given tuple is to consider its position in the sequence
of pairs that is obtained when parsing the input.

• The input is not parsed sequentially at a single node, but divided into
several splits and parsed in parallel by different map tasks. Input splits
are defined by a file path, an offset (starting position) and a length. The
InputFormat is in charge of creating the splits from the input data in
a MapReduce execution. Typically, the input of MapReduce is stored in
HDFS and there is a one-to-one correspondence between the file chunks and
the input splits. Therefore, we can consider together the tuples generated
for chunks of the same file, and order them by the offset of the splits from
which they are generated.

• Input tuples are generated from the input splits with the RecordReader.
This class reads the data from the file system, parses it and generates the
corresponding input key-value pairs one after another. Consequently, we
can uniquely identify tuples in a split by keeping a record counter which is
incremented each time a new tuple is parsed.

We show the procedure in Figure 5.2. The input file is stored in HDFS and
contains the input key-value pairs in a specific format. In the figure we depict both
the marks that separate different pairs and the marks that separate keys from
values within a pair. In the job initialization, the master uses the InputFormat

class to generate the input splits, one per file chunk. A split is defined by the file
path, the starting offset in the file and its length and is assigned to a map task.

98 5. MR-Part Prototype

When a map task is executed in a worker it creates the appropriate instance of
RecordReader both from the InputFormat and the split that has been assigned
to the task and parses the input. As a result it generates a sequence of key-
value pairs. Notice that if a pair is cut at the middle of the chunk boundary,
the RecordReader also reads the beginning of the next chunk in order to retrieve
the whole tuple. We assign a sequence number to each pair. The resulting tuple
identifier will contain the information necessary to uniquely identify the split (file
path and offset) and the sequence number. For instance, f:64:2 represents in the
figure the second key-value pair produced when processing the split generated in
file f at starting position 64.

Once we have a mechanism to uniquely identify input tuples, we just have to
associate the pairs to the values produced by the map function when processing
them. We do not need to be aware of the body of the map function since for us,
it just consumes one input tuple and generates zero or more intermediate tuples.
We link the input tuple identifier and the set of intermediate keys generated by
the map function.

The class that performs the mentioned task is called collector. We first de-
fine an interface that allows the developer to implement different versions of the
collector and then explain how it is integrated into the MapReduce framework.

5.2.1 Collector Interface

To collect the information about the relationship between input pairs and in-
termediate keys, we have defined an interface called WLCollector. This interface
defines the following methods:
• startTask(MapTask task, TaskAttemptContext context): This method in-

dicates the start of the execution of the map task associated with the col-
lector. Information about the task and the context is passed so that the
metadata of the task attempt can be accessed.

• startSplit(Path f, long offset, long length): This method indicates
the information about the split from which input tuples are produced. All
the intermediate keys (notified through addRecord()) produced between the
execution of this method and that of endSplit() are associated to the split.

• addRecord(int rc, K1 kIn, V1 vIn, K2 kOut, V2 vOut): Each time a new
intermediate key is produced, the information about the current record
counter (position of the key-value pair in the sequence of generated tuples)
along with the input and intermediate key-value pairs are communicated to
the collector.

• endSplit(int rc): This method is necessary to store the number of input
records produced for a given split. It is necessary since addRecord() is only
called when an intermediate key is produced and this is not always the case.

• endTask(): Communicates the collector that the task has finished its exe-

5.2. Monitoring 99

cution.
Different implementations of this interface can be provided. We have defined

several versions, which vary in generality and efficiency. In order to optimize the
performance of the collector and reduce the size of the metadata, we make use
of the concept of virtual reducer, that we defined in Section 4.3.4. Recall that
instead of keeping the individual relationships between intermediate keys and
reduce tasks, we consider several keys as a group (virtual reducer) and assign all
of them to the same reduce task.

We implement the following classes for the WLCollector interface:
• TupleWLCollector: It is the most general implementation, which associates

the input tuples (using the split information and the record counter) with
intermediate keys.

• HashWLCollector: Instead of storing the intermediate keys, it stores their
hashCode(). This is only appropriate when, in the partitioning function,
only the information of the hashCode() is employed to determine the reduce
task. This is the case of the default partitioner in MapReduce.

• VRWLCollector: If we are using virtual reducers and the number is fixed
among the different jobs, instead of storing the hashCode(), we can directly
use the assigned virtual reducer. Since they are going to be assigned to the
same reduce task by the scheduler, there is no need to treat them differently.
As a more optimized data structure, we can use a fixed size array of record
counters where the i-th position stores the values of the record counters
when producing an intermediate key assigned to virtual reducer i.

The implementation of the collector is coupled with the implementation of
the combiner, as the metadata that is stored in the former is parsed by the latter.
From the above mentioned classes, VRWLCollector is the most optimal implemen-
tation, and it is the one that has been employed in the experimental evaluation.
It generates two metadata files: header, which contains the information about
the split (file, offset and length) and about the intermediate keys; and rcounters,
which contains the list of record counters ordered by the virtual reducer assigned
to the intermediate keys that they generate. The information about intermediate
keys is composed of: 1) the number of input tuples; 2) the number of input tuples
that produce intermediate keys; 3) the number of generated intermediate keys;
and 4) a list of pairs 〈vr , freq〉 with the number of keys produced for each virtual
reducer.

In Figure 5.3, the operation of VRWLCollector is depicted through an exam-
ple. Map mi is assigned a split created from file foo at position 128, with a length
of 64. In the left-hand side of the figure, the map task execution is represented.
Each input tuple may generate an intermediate key that is then assigned a virtual
reducer by the partitioning function. On the top right hand-side of the picture,
the main memory structure kept by the collector is represented. This data struc-
ture consists of an array storing for each virtual reducer, the tuples producing

100 5. MR-Part Prototype

foo

128 192

Node

mi

IF + RR

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

4 0 1 7 8 7 3

map

0 0 1 3 0 3 3

part(k) = k mod |VR| V
R
W
L
o
l
l
e
c
t
o
r

VR

0

1

∅2

3

1 2 6

4

5 8 9

Header

foo, 128, 64

10, 7, 7

0, 3, 1, 1, 3, 3

Rcounters

1, 2, 6, 4, 5, 8, 9

Figure 5.3: Example of VRWLCollector execution

intermediate keys that were later assigned to the virtual reducer. Finally, on the
bottom right side of the figure, the two files generated from this information are
depicted. Notice that the information for virtual reducer 2 is not written, as no
intermediate keys have been assigned to it.

5.2.2 Collector Integration in MapReduce

There are several ways in which the collector can be integrated into the
MapReduce framework so that it can be notified whenever a new intermediate key
is produced. In our implementation, it is executed transparently when FileSplit

is employed. FileSplit is the subclass of InputSplit defined by Hadoop to be
used when the input data of a MapReduce job comes from files. All provided
InputFormat implementations that parse files make use of this class. If other
types of input splits are used, the RecordReader is responsible of indicating the
split information to the collector.

At the beginning of the map execution (MapTask.runNewMapper() method)
the collector is created and initialized. The specific implementation to be used is
indicated by the parameter mapred.wl.collector.class. To disable the moni-
toring, a special implementation called NoOpWLCollector should be used.

The management of the split information and record counter can get com-
plicated when using multiple threads or several splits in a map task. In our
prototype, we only consider jobs that read one file per split and do not use

5.3. Repartitioning 101

MultithreadedMapper. We have modified MapContext to keep track of the cur-
rent record count. Whenever a new input pair is read, its value is incremented.
Whenever an intermediate key is written, the addRecord() is called in the col-
lector.

5.3 Repartitioning

Repartitioning of input files is done in three steps: 1) the metadata of different
map tasks in different jobs is combined and an hypergraph is generated for each
of the input files; 2) the graph partitioning algorithm is executed; and 3) the
input files are repartitioned according to the results of the graph partitioning.

5.3.1 Metadata Combination

As a result of the job monitoring process, we obtain a set of files with all the
workload information, two files per map task: the header, with summary informa-
tion for the split, and the rcounters, which contains for each virtual reducer the
set of input tuples that produce it. The goal of the metadata combination phase
is to create a graph representing the workload of all those files. As mentioned
in the previous section, the combiner is coupled with the chosen implementation,
as it has to parse the produced metadata files. We have an interface, called
WLCombiner, and several implementations.

The execution of the combiner is performed in two main steps, mainly because
of efficiency reasons. In the first step, general information from the metadata
is retrieved. This information is used to execute more efficiently the second
step, where the information about the relationships between input tuples and
intermediate keys is actually processed. The steps for executing the combiner are
as following:

1. In this step, only the header file of each map task is read. The following
information is retrieved:
• The number of input tuples generated at each split (ni): this information

is used to assign consecutive integers as tuple identifiers, e.g., split 1
would assign ids from 1 to n1, split 2 from n1 + 1 to n1 + n2, etc.

• The frequency of intermediate keys for each virtual reducer: this allows
to represent the hyperdges as fixed-size arrays, which is a more compact
data structure.

2. In this step, the rcounters files are processed and the hypergraph is gener-
ated. If there is more than one input file (this information is obtained when
reading the headers), each file is processed independently and produces
a different hypergraph. For a given file, one job is handled after another.
Within a job, the sets of record counters producing the same key at different

102 5. MR-Part Prototype

splits are merged by just concatenating the arrays, as there are no intersec-
tions. Each of these sets generates an hyperedge in the graph. Notice that
it could be possible to generate exactly the same hyperedge several times for
different jobs. However, modifying the corresponding weight has the same
effect as writing the edge several times in the hypergraph. Computing the
weights would require to keep all the information in memory between the
processing of different jobs and perform plenty of set comparisons. That is
why, repeating them in the file is preferred and after processing each job all
the hyperedges are written to the file and the memory is freed.

In the experimental evaluation we have used VRWLCombiner, which is the
combiner associated to VRWLCollector. This combiner incorporates the tuple
coalescing strategy into the combining process, requiring an additional pass over
the rcounters files and producing an additional file with the mapping between
the original tuple identifiers and the new coalesced tuples identifiers. Coalescing
is the strategy proposed in Section 4.3.4 to reduce the size of the hypergraph. It
merges the vertices that are equivalent in the graph, i.e., belong exactly to the
same set of edges, into a unique virtual vertex.

Algorithm 7: Coalescing Procedure
Input:

CoalMap: Array with tuple mappings
VRtoID: Producing tuple ids for virtual reducer
nextId: identifier to assign to next virtual tuple

Result:
CoalMap: Modified tuple mappings
nextId: updated identifier for next virtual tuples

1 begin
2 for i = 0 to |VR| do
3 aux ← emptyMap()

4 foreach id ∈ VRtoID(i) do
5 oldId ← CoalMap[id]
6 if ∃ aux(oldId) then
7 newId ← aux(oldId)
8 else
9 newId ← nextId

10 aux(oldId) ← newId
11 nextId ← nextId + 1

12 CoalMap[id] ← newId

For tuple coalescing an array needs to be kept where position i represents the
mapping of tuple i to a given virtual tuple j. At the end of the process, all the

5.3. Repartitioning 103

tuples with the same mapping value are considered as a single virtual tuple. The
pseudo-code of the coalescing procedure is shown in Algorithm 7. It is executed
each time the metadata of a given job is read. It receives the coalescing mapping
array (CoalMap), the data structure containing the relationships between tuples
and virtual reducers for the job (VRtoID), and the next identifier to be assigned
when a new virtual tuple is created. Let |Iα| be the number of intermediate
tuples in job α, then the complexity of the algorithm is O(|Iα|). If at most one
intermediate pair is created by input key (which is the most frequent situation),
then the execution of the coalescing process for all the jobs is in the order of
O(n × |W |) in the worst case, where n is the total number of input tuples and
|W | the number of jobs in the workload. The space complexity of the algorithm
is O(n).

As mentioned before, when using tuple coalescing, the metadata files are read
twice, first to generate the coalescing and then to generate the hypergraph file
from the monitoring information and the tuple mappings. This avoids to keep in
memory more than O(|Iα|) elements at a time.

Once the mapping between input tuples and intermediate keys is obtained,
it can be used to generate the graph partitioning algorithm’s input. Weights of
coalesced tuples include the total count of original tuples that have been merged.
If a single input file is created (see Section 5.3.3), a fake tuple is generated with
a weight proportional to the unused space of the last chunk.

If coalescing is used, the combiner generates a file with the mapping be-
tween tuple locations and the corresponding virtual tuple. Otherwise the map-
ping would not need to be stored individually as simply applying the formula
in Equation 4.6 is enough. Only the number of input tuples per split and their
offsets are required.

5.3.2 Graph Partitioning

For partitioning the hypergraphs, we have used PaToH [121], a library for
hypergraph partitioning based on multilevel hypergraph bisection. This library
defines a set of functions to be used in C, where the input is passed as variables
in memory, but can also be used as a standalone program. In this case, the input
is formatted in text files, which are parsed and loaded into memory by the library
itself. The output is also given in a text file.

In our implementation we have used the second standalone version of PaToH.
Consequently, the combiner generates a file with the hypergraph representation
and this file is passed as input to PaToH. The file is divided into three parts:
1) the header, which specifies the index base (0 or 1), the number of vertices,
edges and pins (one vertex in an edge accounts for a pin), and the used weighting
scheme (no weights, weights in tuples, edges or both); 2) the edges, one line per
hyperedge with the connected tuples; and 3) the tuple weights, which are specified

104 5. MR-Part Prototype

in the final line. If the same hyperedge is generated in several jobs, it is repeated
in the file instead of modifying its weight.

The number of partitions into which the graph is divided is equal to the
number of chunks in which the original input file was stored. The rest of the
parameters used in the partitioning are set to default values. The output of the
execution is a new file which contains a list of integers, one per input tuple with
the assigned partition id.

5.3.3 File Repartitioning

The last step of MR-Part consists of repartitioning the input files according
to the results obtained in the graph partitioning. Two implementations of this
phase are provided: SingleFileRepartitioner, which repartitions each input
file into a new single file and MultiFileRepartitioner, which generates one new
input file for each fragment of the partitioning.

Both implementations extend from FileRepartitioner, an abstract class
which implements the common parts of the process. The repartitioning of each
input file consists of the following steps:

1. Read the file properties, including splits’ information, RecordReader, etc.
All this information has been generated by the combiner from the metadata
gathered by the collectors.

2. Load the partitioning assignments into memory. In the case of PaToH, the
assignments are stored in a text file, as explained in the previous section.
Note that with coalescing, the assignments associate virtual tuple ids with
fragments.

3. Read the input file, apply the partitioning and generate k + 1 temporary
files, where k is the number of chunks into which the input file is divided.
For each chunk, the following procedure is performed:

3.1. Read the mappings of the tuples corresponding to the current chunk
and store them in memory.

3.2. Read the chunk tuples one by one, keeping the count of the current
record number within the chunk.

3.3. Obtain the assigned partition for the given tuple using the mapping
between locations and tuple identifiers (produced in the combiner) and
the partition assignment (produced by the graph partitioner).

3.4. Write the tuple into the temporary file corresponding to the assigned
partition. If no partition has been assigned (because the tuple never
produces intermediate keys), the tuple is written into a special tem-
porary file, which we call leftovers file.

4. Based on the partitioner implementation, do one of the following options:

5.4. Scheduling 105

• MultiFileRepartitioner: This implementation is straightforward as it
just writes each temporary file into a new HDFS file. Tuples in the
leftovers file are used in the smaller files to make their sizes balanced, as
they can be placed anywhere without harming the partitioning.

• SingleFileRepartitioner: In this case, the temporary files are written
one after another in the same HDFS file. As explained in Section 4.3.2,
the size of the temporary files may not correspond to that of the chunks
and this may cause tuples assigned to one partition to be written in the
chunk associated to another partition. In order to minimize the effects of
that scenario, the temporary files are first reordered in order to approxi-
mate the chunk and the file boundaries.

5.4 Scheduling

In order to include the scheduling strategy in the MapReduce framework, we
modified several parts:
• Information about the frequency of the intermediate keys is captured and

sent to the master (jobtracker) when the map task completes, as it is re-
quired by the scheduling algorithm.

• The reduce scheduling algorithm is modified so as to implement the desired
scheduling strategy. The user specifies the strategy to be used through a
MapReduce property. LEEN algorithm, presented in Section 4.3.3, is one
of the possible strategies to use.

• The map tasks partition the intermediate keys by assigning them to virtual
reducers, as proposed in Section 4.3.4. As a consequence the spills generated
from the buffer are also partitioned in as many parts as virtual reducers.

• The shuffle mechanism has been extended in order to include the possibility
of specifying which virtual reducers a given reduce task needs to fetch. The
data corresponding to those virtual reducers is merged before being sent to
the reduce task.

5.4.1 Frequency Information

The scheduling algorithm (see Algorithm 6 in Section 4.3.3) needs to know the
number of tuples (frequency) for each key produced at each node. We have mod-
ified the MapReduce framework in order to collect and transfer this information
to the algorithm.

Map tasks capture information about the number of intermediate pairs that
have been produced for each virtual reducer. The implementation of this mech-
anism is simple, as it only requires to keep an array which is updated each time
RecordWriter.write() method is called.

106 5. MR-Part Prototype

When a map task completes its execution, a heartbeat message is sent to the
master (jobtracker) with information about the task, which is stored in a class
called MapTaskStatus. We have modified this class in order to transfer the array
including the virtual reducers frequencies.

5.4.2 Reduce Scheduler

The information about the frequencies produced by the map tasks should be
collected by the master and then used in order to assign virtual reducers to reduce
tasks. We have defined a new interface called ReduceScheduler that is injected
into the reduce task scheduling mechanism of MapReduce in order to implement
the desired strategy, e.g., LEEN algorithm. The user is able to provide an im-
plementation of this class and instruct the framework to use it by modifying the
parameter mapred.jobtracker.taskScheduler.reduceScheduler.class. The
main methods of this interface are the following:
• mapFinished(MapTaskStatus status): This method is called each time a

map task reports its completion. The reduce scheduler may then query
the status in order to get the needed information, e.g., the virtual reducer
frequencies. Recall that this information have been included in the modified
status.

• calculateReduceAssignments(int clusterSize): This method is called once
all the map tasks have finished, when all the frequencies information is
available. It executes the reduce scheduling algorithm and produces the
assignments of virtual reducers to reduce tasks. For instance, if the LEEN
algorithm is used, it will execute the code corresponding to Algorithm 6.

• getNextReduceID(String host): Gets the id of the next reduce task to be
executed in the specified host. In the LEEN algorithm, each host is assigned
a single reduce task. Hence, the first call to this method would return the
id of the reduce task to be executed at that node and future calls will return
invalid ids.

• getVRs(int reduceID): Returns an array with the virtual reducers that have
to be processed by the reduce task with the specified id.

We provide several implementations of ReduceScheduler interface, including
DefaultScheduler, which implements the default MapReduce scheduling behav-
ior, LEENScheduler, which implements Algorithm 6, and DataLocalityScheduler,
which assigns intermediate keys by just considering data locality and not fairness.

The ReduceScheduler is loaded by the JobInProgress when created. This
class manages the execution of a single job and is called by the jobtracker when-
ever a relevant event occurs, e.g., a map task finishes. When a task is reported
complete, method completedTask() at JobInProgress is called and the infor-
mation about the task status is passed. If the task is a map, this information is
forwarded to the reduce scheduler through the mapFinished() method. If the

5.4. Scheduling 107

completed task is the last map task, then calculateReduceAssignments() is
executed on the scheduler. This is because the scheduling algorithm needs the
information about all key frequencies and this is only available at the end of the
map phase.

When a tasktracker reports that a reduce slot (processor) is idle, the method
obtainNewReduceTask() is called in one JobInProgress. The selection of the
task to execute is delegated to the reduce scheduler. Recall from Section 2.3.2 that
scheduling in MapReduce is done in two steps: first a job is selected and then a
task within the job. The first step is done by the MapReduce framework as usual.
The second step is carried out by the reduce scheduler. If a valid id is returned,
the reduce scheduler is queried in order to obtain the list of virtual reducers
assigned to that task (method getVRs(int reduceID)). This list is written into
the reduce task configuration and then the task sent to the tasktracker selected
for its execution. Invalid ids can be returned if no more schedule tasks are planned
to execute at that node.

5.4.3 Shuffle Mechanism

The shuffle mechanism has been modified in order to manage the virtual reduc-
ers. The changes affect both the way in which intermediate pairs are partitioned
by the map task and the communication protocol that is used between the reduce
tasks and the tasktracker in order to retrieve the reduce input.

Number of Virtual Reducers

A new MapReduce configuration parameter has been included in order to
specify the number of virtual reducers in the scheduling mechanism. The par-
titioning function will use this number instead of the actual number of reduce
tasks when called. The consequence is that at the end of the map execution
the output will be divided into |VR| files, one per virtual reducer. As in default
MapReduce, the pairs within these files are ordered by the Comparator specified
by mapred.output.key.comparator.class parameter.

Reduce Input Retrieval

When a new reduce task is scheduled to a node, the corresponding instance
of ReduceTask gets the information about the virtual reducers that has been
assigned to it (which has been stored in the configuration). The protocol for the
communication of this task with the tasktrackers that store the map outputs has
been slightly modified. The HTTP request has been converted to use the POST

method, since the number of required virtual reducers may be big and it may
not be possible to include them in the HTTP query string. This list is written
into the message body. The HTTP server at the tasktracker reads this list from

108 5. MR-Part Prototype

in

Worker i

Map task m0

map

Buffer

spills

map output

additional merge

copy(m1,r1)

vrs = {2, 4} r1

Figure 5.4: Modified shuffle

the message and merges the files corresponding to the requested virtual reducers
before sending them to the reduce task. This step is needed as the reduce task
expects the map output to be sorted to be able to merge the outputs coming
from different map tasks.

An example of the modified shuffle phase is shown in Figure 5.4. In this case,
we use 6 virtual reducers and 2 reduce tasks. When a reduce task, in this case
r1, sends a request, it also indicates the set of virtual reducers that it wants to
retrieve, in this case, 2 and 4. The worker then reads the data corresponding
to those virtual reducers and perform an additional merge before sending the
response.

5.5 Conclusions

In this chapter, we described the implementation details of the MR-Part pro-
totype, which we have integrated into Hadoop-1.0.4. Both the monitoring and
the scheduling components are incorporated into Hadoop, while the repartitioning
components are executed offline and outside the Hadoop framework.

Whenever possible, we have defined a general interface and provided one or
more implementations. This allows to test several strategies with minimum effort
and makes the maintenance and extension of the prototype simpler. In this
way, alternative strategies can be envisioned for workload monitoring, but even
more useful is the possibility of defining specific scheduling algorithms. New
monitoring or scheduling implementations can be packaged in a jar file and
loaded dynamically without having to modify the Hadoop framework code.

The Hadoop implementation of MapReduce is complex and difficult to modify.
Its complexity comes, not only from the number of issues that are managed by the
MapReduce framework, but also from the objective of making the framework as
extensible as possible in order to provide the developers with a lot of freedom in

5.5. Conclusions 109

terms of implementation choices. Moreover, the coexistence of two APIs requires
to duplicate many parts of the code and makes the Hadoop code difficult to
understand and modify.

In our prototype, we have tried to make its applicability as wide as possible.
As a consequence, we have not constrained our implementation to specific formats
or job types but used the general interfaces provided in Hadoop. This covers the
big majority of MapReduce jobs that are usually implemented. However, some
of the most advanced features require a lot of engineering effort and have been
left for future work, including a more transparent integration with multi-layered
input format strategies (complex versions of InputSplit or the management of
multi-threaded execution of map tasks (MultithreadedMapper).

110 5. MR-Part Prototype

Chapter 6

Conclusions

In this chapter, we summarize and discuss the main contributions made in
the context of this thesis. Then we give some research directions for future work.

6.1 Contributions

This thesis is in the context of big data applications, using large-scale paral-
lelism for the efficient processing and management of large datasets. In particular,
we focused on the problem of data partitioning, which is fundamental to yield
parallel processing and thus improve the performance of applications that deal
with big datasets. We have addressed two problems in particular:

6.1.1 Dynamic Partitioning in Continuously Growing Lar-
ge Databases

We tackled the problem of automatic partitioning in large scientific databases
where new data items are inserted as new measurements are carried out. We
identified the main limitations of existing approaches, basically: 1) the inefficiency
of automatic approaches based on the basic techniques to handle the complexity
of scientific applications; and 2) the overhead of executing partitioning algorithms
over the whole dataset in the case of graph-based approaches. As a solution, we
proposed two algorithms, DynPart and DynPartGroup that dynamically allocate
the new data items based on the affinity they have with the current fragments in
the partitioning. The first algorithm processes new data items one by one, finds
the fragment with the highest affinity that satisfies the imbalance constraints and
makes the partition assignment. DynPartGroup, on the other hand, performs an
additional step in which equivalent data items are grouped together. Then, the
assignments are carried out group by group from the biggest to the smallest group.
This strategy requires less affinity calculations and deals better with imbalance
constraints.

111

112 6. Conclusions

We evaluated our dynamic approach through implementation and compared
its execution time with that of a static graph-based partitioning approach. The
results show that the running time of the static approach increases as the database
grows in size, while that of our algorithms remains stable. They also reveal that
with our algorithms the partitioning efficiency is preserved when the database
grows in size.

The experimental results also show that DynPartGroup algorithm presents a
very good behavior when there is a high correlation between arriving elements,
and this is not affected by the imbalance constraints on the fragments.

We have tested our algorithms in the context of astronomical catalogs, which
store data elements with a high number of attributes which are queried through
complex workloads. Overall, our experimental evaluation illustrates that our par-
titioning strategy is very good at efficiently handling the data partitioning in our
astronomy application, but the results are not constrained to this application and
can be employed in many other applications where data is continuously appended
into the database.

6.1.2 Data Partitioning for Reducing Network Traffic in
MapReduce

MapReduce has become one of the most popular frameworks for large scale
data analysis and has been subject of many works aiming to improve its efficiency.
We identified the overhead that the MapReduce’s shuffle causes when large in-
termediate data transfers are involved. Then, we proposed MR-Part, a strategy
that monitors a MapReduce workload by capturing relationships between input
tuples and intermediate keys and repartitions the input files so that locality-aware
reduce scheduling strategies can obtain the maximum benefit.

To validate our proposal, we built a prototype of MR-Part by modifying and
extending the Hadoop framework, the most popular framework in open source
for MapReduce. The prototype has been designed with the aim of maximum
applicability and it is not limited to any particular type of MapReduce jobs.
Indeed it is highly customizable as it provides several interfaces that allow the
developers to implement personalized strategies with minimum effort.

We evaluated MR-Part in the Grid5000 experimental platform. The results
reveal a significant reduction on the amount of data that is transferred through
the network in the shuffle phase. This reduction has a significant impact on the
total execution time when the network bandwidth is limited, as the shuffle time
is considerably reduced.

6.2. Directions for Future Work 113

6.2 Directions for Future Work

The results presented in this thesis leave room to further improvement. Some
future directions of research are:
• Adaptation to workload evolution: We can consider changes in the

workload of the partitioning when using the DynPart or DynPartGroup

algorithms, which may lead to a degradation of partitioning efficiency. In
order to deal with those scenarios, efficient reorganization of data items
is required. This process should take into account the evolution of the
partitioning efficiency and the cost of the data transfers needed to attain
the new data partitioning.

• Clustering of similar queries: Queries with similar characteristics, e.g.,
accessing similar sets of data items, may be grouped together when con-
structing groups in the DynPartGroup algorithm (CreateGroups() func-
tion). This would allow DynPartGroup to execute even faster as less affini-
ties should have to be calculated and reduce the amount of metadata, as
only clusters and not individual queries would have to be taken into account.

• Fully parallelization of the MR-Part approach: The main goal is to
make the system more scalable. This would require the usage of parallel
partitioning libraries, e.g., Zoltan [26], and its integration into parallel ver-
sions of the combination and repartitioning algorithms, which could profit
of the MapReduce framework for that task.

• Improved scheduling of reduce tasks: In particular, we plan to develop
new intermediate key scheduling algorithms that take into account not only
the data locality but also the characteristics of the network. A possible
approach would be to design a cost model including the estimated cost of
rack and off-rack data transfers and their impact on response time when
used in combination with load balancing.

114 6. Conclusions

Bibliography

[1] D. J. Abadi, S. R. Madden, and N. Hachem, « Column-stores vs. row-
stores: how different are they really? », in Proceedings of the 2008 ACM

SIGMOD international conference on Management of data, 2008, pp. 967–
980.

[2] A. Abouzeid, K. B. Pawlikowski, D. J. Abadi, A. Rasin, and A. Silber-
schatz, « HadoopDB: an architectural hybrid of mapreduce and dbms tech-
nologies for analytical workloads », Proceedings of the VLDB Endowment,
vol. 2, no. 1, pp. 922–933, Aug. 2009.

[3] S. Agrawal, S. Chaudhuri, L. Kollar, A. Marathe, V. Narasayya, and
M. Syamala, « Database tuning advisor for Microsoft SQL Server 2005:
demo », in Proceedings of the 2005 ACM SIGMOD international confer-

ence on Management of data, 2005, pp. 930–932.

[4] S. Agrawal, S. Chaudhuri, and V. R. Narasayya, « Automated selection
of materialized views and indexes in sql databases », in Proceedings of the

26th International Conference on Very Large Data Bases, 2000, pp. 496–
505.

[5] S. Agrawal, V. R. Narasayya, and B. Yang, « Integrating vertical and hori-
zontal partitioning into automated physical database design », in Proceed-

ings of the 2004 ACM SIGMOD international conference on Management

of data, 2004, pp. 359–370.

[6] R. K. Ahuja, Özlem Ergun, J. B. Orlin, and A. P. Punnen, « A survey of
very large-scale neighborhood search techniques », Discrete Applied Math-

ematics, vol. 123, no. 1–3, pp. 75 –102, 2002.

[7] A. Ailamaki, V. Kantere, and D. Dash, « Managing scientific data », Com-

munications of the ACM, vol. 53, no. 6, pp. 68–78, Jun. 2009.

[8] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis, « Weaving
relations for cache performance », in Proceedings of the 27th International

Conference on Very Large Data Bases, 2001, pp. 169–180.

[9] Amazon Elastic Block Store (EBS), http://aws.amazon.com/ebs, 2013.

[10] Amazon Elastic Compute Cloud (Amazon EC2), http://aws.amazon.

com/ec2, 2013.

115

116 BIBLIOGRAPHY

[11] Amazon Elastic MapReduce, http://aws.amazon.com/

elasticmapreduce/, 2013.

[12] Amazon Relational Database Service (Amazon RDS), http://aws.

amazon.com/es/rds/, 2013.

[13] Amazon Simple Storage Service (Amazon S3), http://aws.amazon.com/

s3, 2013.

[14] Amazon Virtual Private Cloud (Amazon VPC), http://aws.amazon.com/

vpc/, 2013.

[15] Amazon Web Servoces, http://aws.amazon.com/, 2013.

[16] G. Amdahl, « Validity of the single processor approach to achieving large
scale computing capabilities », in Proceedings of the AFIPS spring joint

computer conference, 1967, pp. 483–485.

[17] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu, B.
Saha, and E. Harris, « Reining in the outliers in map-reduce clusters us-
ing Mantri », in Proceedings of the 9th USENIX conference on Operating

systems design and implementation, 2010, pp. 1–16.

[18] E. Anderson and J. Tucek, « Efficiency matters! », SIGOPS Operating

Systems Review, vol. 44, no. 1, pp. 40–45, Mar. 2010.

[19] Apache Hadoop, http://hadoop.apache.org, 2013.

[20] Apache Hadoop NextGen MapReduce (YARN), http://hadoop.apache.

org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html, 2013.

[21] Apache HBase, http://hbase.apache.org, 2013.

[22] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski,
G. Lee, D. A. Patterson, A. Rabkin, and M. Zaharia, « Above the clouds:
a Berkeley view of cloud computing », EECS Department, University of
California, Berkeley, Technical report, Feb. 2009.

[23] Aster MapReduce Appliance, http://www.asterdata.com/product/

deployment/appliance.php, 2013.

[24] B Bergsten, M Couprie, and P Valduriez, « Prototyping DBS3, a shared-
memory parallel database system », in Proceedings of the First Interna-

tional Conference on Parallel and Distributed Information Systems, Dec.
1991, pp. 226–234.

[25] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency control

and recovery in database systems. Addison-Wesley Longman Publishing
Co., Inc., 1987.

BIBLIOGRAPHY 117

[26] E. Boman, K. Devine, L. A. Fisk, R. Heaphy, B. Hendrickson, C. Vaughan,
U. Catalyurek, D. Bozdag, W. Mitchell, and J. Teresco, Zoltan 3.0: parallel

partitioning, load-balancing, and data management services; user’s guide,
Tech. Report SAND2007-4748W, http://www.cs.sandia.gov/Zoltan/

ug_html/ug.html, Sandia National Laboratories, 2007.

[27] P. Boncz, M. Zukowski, and N. Nes, « MonetDB/X100: hyper-pipelining
query execution », in Second Biennial Conference on Innovative Data Sys-

tems Research, 2005, pp. 225–237.

[28] Y. Bu, B. Howe, M. Balazinska, and M. Ernst, « The HaLoop approach
to large-scale iterative data analysis », The VLDB Journal, vol. 21, no. 2,
pp. 169–190, Apr. 2012.

[29] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, « HaLoop: efficient
iterative data processing on large clusters », Proceedings of the VLDB

Endowment, vol. 3, pp. 285–296, Sep. 2010.

[30] M. Burrows, « The Chubby lock service for loosely-coupled distributed sys-
tems », in Proceedings of the 7th symposium on Operating systems design

and implementation, 2006, pp. 335–350.

[31] N. Capit and J. Emeras, OAR documentation - user guide, http://oar.

imag.fr/dokuwiki/doku.php, Laboratoire d’Informatique de Grenoble,
2012.

[32] P. H. Carns, W. B. Ligon, R. B. Ross, and R. Thakur, « PVFS: a parallel
file system for Linux clusters », in Proceedings of the 4th Annual Linux

Showcase and Conference, 2000, pp. 317–327.

[33] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber, « Bigtable: a distributed storage
system for structured data », ACM Transactions on Computer Systems,
vol. 26, no. 2, pp. 1–26, 2008.

[34] S. Chaudhuri and V. Narasayya, « Self-tuning database systems: a decade
of progress », in Proceedings of the 33rd international conference on Very

large data bases, 2007, pp. 3–14.

[35] S. Chaudhuri and V. R. Narasayya, « Autoadmin "what-if" index analysis
utility », in Proceedings of the 1998 ACM SIGMOD international confer-

ence on Management of data, 1998, pp. 367–378.

[36] G. Chockler, I. Keidar, and R. Vitenberg, « Group communication specifi-
cations: a comprehensive study », ACM Computiong Surveys, vol. 33, no.
4, pp. 427–469, Dec. 2001.

[37] T. Condie, N. Conway, P. Alvaro, J. Hellerstein, K. Elmeleegy, and R.
Sears, « MapReduce online », in Proceedings of the 7th USENIX conference

on Networked systems design and implementation, 2010, p. 21.

118 BIBLIOGRAPHY

[38] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohan-
non, H. A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni, « PNUTS: Ya-
hoo!’s hosted data serving platform », Proceedings of the VLDB Endow-

ment, vol. 1, no. 2, pp. 1277–1288, Aug. 2008.

[39] G. Copeland, W. Alexander, E. Boughter, and T. Keller, « Data place-
ment in Bubba », in Proceedings of the 1988 ACM SIGMOD international

conference on Management of data, 1988, pp. 99–108.

[40] G. P. Copeland and S. N. Khoshafian, « A decomposition storage model »,
in Proceedings of the 1985 ACM SIGMOD international conference on

Management of data, 1985, pp. 268–279.

[41] C. Curino, E. Jones, Y. Zhang, and S. Madden, « Schism: a workload-
driven approach to database replication and partitioning », Proceedings of

the VLDB Endowment, vol. 3, no. 1, pp. 48–57, Sep. 2010.

[42] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zait, and M. Ziauddin,
« Automatic SQL tuning in Oracle 10g », in Proceedings of the Thirtieth

international conference on Very large data bases, 2004, pp. 1098–1109.

[43] J. Dean and S. Ghemawat, « MapReduce: simplified data processing on
large clusters », in 6th Symposium on Operating System Design and Im-

plementation, 2004, pp. 137–150.

[44] ——, « MapReduce: a flexible data processing tool », Communications of

the ACM, vol. 53, no. 1, pp. 72–77, Jan. 2010.

[45] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, « Dynamo:
Amazon’s highly available key-value store », in Proceedings of twenty-first

ACM SIGOPS symposium on Operating systems principles, vol. 41, 2007,
pp. 205–220.

[46] K. D. Devine, E. G. Boman, R. T. Heaphy, B. A. Hendrickson, J. D.
Teresco, J. Faik, J. E. Flaherty, and L. G. Gervasio, « New challenges in dy-
namic load balancing », Applied Numerical Mathematics, vol. 52, pp. 133–
152, Feb. 2005.

[47] D. J. DeWitt, S. Ghandeharizadeh, D. A. Schneider, A. Bricker, H. I.
Hsaio, and R. Rasmussen, « The Gamma database machine project »,
IEEE Transactions on Knowledge and Data Engineering, vol. 2, no. 1,
pp. 44–62, Mar. 1990.

[48] D. J. DeWitt and J. Gray, « Parallel database systems: the future of high
performance database systems », Communications of the ACM, vol. 35,
no. 6, pp. 85–98, Jun. 1992.

BIBLIOGRAPHY 119

[49] D. J. DeWitt, M. Smith, and H. Boral, « A single-user performance evalua-
tion of the teradata database machine », in High Performance Transaction

Systems, 1989, pp. 243–276.

[50] J. Dittrich, J. A. Q. Ruiz, A. Jindal, Y. Kargin, V. Setty, and J. Schad,
« Hadoop++: making a yellow elephant run like a cheetah (without it even
noticing) », Proceedings of the VLDB Endowment, vol. 3, pp. 515–529, 1-2
Sep. 2010.

[51] I. Elghandour and A. Aboulnaga, « ReStore: reusing results of MapReduce
jobs in Pig », vol. 5, pp. 586–597, 6 Feb. 2012.

[52] M. Y. Eltabakh, Y. Tian, F. Özcan, R. Gemulla, A. Krettek, and J.
McPherson, « CoHadoop: flexible data placement and its exploitation in
Hadoop », Proceedings of the VLDB Endowment, vol. 4, no. 9, pp. 575–
585, Jun. 2011.

[53] C. M. Fiduccia and R. M. Mattheyses, « A linear-time heuristic for im-
proving network partitions », in Proceedings of the 19th Design Automa-

tion Conference, 1982, pp. 175–181.

[54] A. Floratou, J. M. Patel, E. J. Shekita, and S. Tata, « Column-oriented
storage techniques for MapReduce », Proceedings of the VLDB Endow-

ment, vol. 4, pp. 419–429, Apr. 2011.

[55] I. Foster, « What is the grid? - a three point checklist », GRIDtoday, vol.
1, no. 6, Jul. 2002.

[56] I. Foster, C. Kesselman, and S. Tuecke, « The anatomy of the Grid -
enabling scalable virtual organizations », International Journal of Super-

computer Applications, vol. 15, 2001.

[57] François Pellegrini, PT-Scotch and libPTScotch 6.0. User’s Guide,
http://www.labri.u-bordeaux.fr/perso/pelegrin/scotch/, Univer-
sité Bordeaux 1 & LaBRI, Dec. 2012.

[58] E. Friedman, P. Pawlowski, and J. Cieslewicz, « SQL/MapReduce: a prac-
tical approach to self-describing, polymorphic, and parallelizable user-
defined functions », Proceedings of the VLDB Endowment, vol. 2, no. 2,
pp. 1402–1413, Aug. 2009.

[59] S. Ghandeharizadeh and D. J. DeWitt, « Hybrid-range partitioning strat-
egy: a new declustering strategy for multiprocessor databases machines »,
in Proceedings of the sixteenth international conference on Very large

databases, 1990, pp. 481–492.

[60] S. Ghemawat, H. Gobioff, and S.-T. Leung, « The Google file system »,
in Proceedings of the nineteenth ACM symposium on Operating systems

principles, vol. 37, 2003, pp. 29–43.

120 BIBLIOGRAPHY

[61] Google app engine, https://cloud.google.com/products/app-engine,
2013.

[62] Google Apps for business, http://www.google.com/intx/en/

enterprise/apps/business/, 2013.

[63] Google compute engine, https://cloud.google.com/products/

compute-engine, 2013.

[64] Grid 5000 project, https://www.grid5000.fr/mediawiki/index.php,
2013.

[65] B. Gufler, N. Augsten, A. Reiser, and A. Kemper, « Load balancing in
MapReduce based on scalable cardinality estimates », in 2012 IEEE 28th

International Conference on Data Engineering, Apr. 2012, pp. 522–533.

[66] B. Gufler, N. Augsten, A. Reiser, and A. Kemper, « Handling data skew
in MapReduce », in Proceedings of the 1st International Conference on

Cloud Computing and Services, May 2011, pp. 574–583.

[67] M. Hammoud, M. S. Rehman, and M. F. Sakr, « Center-of-gravity reduce
task scheduling to lower MapReduce network traffic », in Proceedings of

the 2012 IEEE Fifth International Conference on Cloud Computing, 2012,
pp. 49–58.

[68] Y. He, R. Lee, Y. Huai, Z. Shao, N. Jain, X. Zhang, and Z. Xu, « RCFile:
a fast and space-efficient data placement structure in MapReduce-based
warehouse systems », in 2011 IEEE 27th International Conference on Data

Engineering, Apr. 2011, pp. 1199–1208.

[69] B. Hendrickson and T. G. Kolda, « Graph partitioning models for parallel
computing », Parallel Computing, vol. 26, no. 12, pp. 1519–1534, 2000.

[70] B. Hendrickson and R. Leland, « A multilevel algorithm for partitioning
graphs », in Proceedings of the 1995 ACM/IEEE conference on Supercom-

puting, 1995.

[71] M. Herlihy and J. Wing, « Linearizability: a correctness condition for con-
current objects », ACM Transactions on Programming Languages and Sys-

tems, vol. 12, no. 3, pp. 463–492, Jul. 1990.

[72] Hp cloud services, https://www.hpcloud.com/, 2013.

[73] P. Hunt, M. Konar, F. Junqueira, and B. Reed, « ZooKeeper: wait-free co-
ordination for internet-scale systems », in Proceedings of the 2010 USENIX

conference on USENIX annual technical conference, 2010, p. 11.

[74] S. Ibrahim, H. Jin, L. Lu, S. Wu, B. He, and L. Qi, « LEEN:
locality/fairness-aware key partitioning for MapReduce in the cloud », in
Proceedings of the 2010 IEEE Second International Conference on Cloud

Computing Technology and Science, 2010, pp. 17–24.

BIBLIOGRAPHY 121

[75] E. Jeanvoine, L. Sarzyniec, and L. Nussbaum, « Kadeploy3: efficient and
scalable operating system provisioning », USENIX ;login:, vol. 38, no. 1,
pp. 38–44, Feb. 2013.

[76] D. Jiang, B. C. Ooi, L. Shi, and S. Wu, « The performance of MapReduce:
an in-depth study », Proceedings of the VLDB Endowment, vol. 3, no. 1-2,
pp. 472–483, Sep. 2010.

[77] A. Jindal, J. A. Q. Ruiz, and J. Dittrich, « Trojan data layouts: right shoes
for a running elephant », in Proceedings of the 2nd ACM Symposium on

Cloud Computing, 2011.

[78] T. Kaldewey, E. Shekita, and S. Tata, « Clydesdale: Structured Data Pro-
cessing on MapReduce », in Proceedings of the 15th International Confer-

ence on Extending Database Technology, 2012, pp. 15–25.

[79] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E.
P. C. Jones, S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, and D. J.
Abadi, « H-store: a high-performance, distributed main memory transac-
tion processing system », Proceedings of the VLDB Endowment, vol. 1, no.
2, pp. 1496–1499, Aug. 2008.

[80] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D.
Lewin, « Consistent hashing and random trees: distributed caching proto-
cols for relieving hot spots on the World Wide Web », in Proceedings of

the twenty-ninth annual ACM symposium on Theory of computing, 1997,
pp. 654–663.

[81] G. Karypis, METIS : a software package for partitioning unstructured

graphs, partitioning meshes, and computing fill-reducing orderings of

sparse matrices. Version 5.1.0, http://glaros.dtc.umn.edu/gkhome/

views/metis, Department of Computer Science & Engineering, University
of Minnesota, Mar. 2013.

[82] B. W. Kernighan and S. Lin, « An efficient heuristic procedure for par-
titioning graphs », The Bell System Technical Journal, vol. 49, no. 1,
pp. 291–307, 1970.

[83] W. Kohler and K. Steiglitz, « Characterization and theoretical comparison
of branch-and-bound algorithms for permutation problems », Journal of

the ACM, vol. 21, no. 1, pp. 140–156, Jan. 1974.

[84] M. Koyutürk and C. Aykanat, « Iterative-improvement-based declustering
heuristics for multi-disk databases », Information Systems, vol. 30, pp. 47–
70, Mar. 2005.

[85] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, « SkewTune: mitigating
skew in MapReduce applications », in Proceedings of the 2012 interna-

tional conference on Management of Data, 2012, pp. 25–36.

122 BIBLIOGRAPHY

[86] A. Lakshman and P. Malik, « Cassandra: a decentralized structured stor-
age system », SIGOPS Operating Systems Review, vol. 44, no. 2, pp. 35–
40, Apr. 2010.

[87] C. A. Lee, « A perspective on scientific cloud computing », in Proceed-

ings of the 19th ACM International Symposium on High Performance Dis-

tributed Computing, 2010, pp. 451–459.

[88] Y. Li and M. Mascagni, « Improving performance via computational repli-
cation on a large-scale computational grid », in Proceedings of the 3st In-

ternational Symposium on Cluster Computing and the Grid, 2003.

[89] J. Lin, « The curse of zipf and limits to parallelization: a look at the
stragglers problem in MapReduce », in Proceedings of the 7th Workshop

on LargeScale Distributed Systems for Information Retrieval, 2009.

[90] D. R. Liu and S. Shekhar, « Partitioning similarity graphs: a framework
for declustering problems », Information Systems, vol. 21, no. 6, pp. 475–
496, Sep. 1996.

[91] R. V. Nehme and N. Bruno, « Automated partitioning design in parallel
database systems », in Proceedings of the 2011 ACM SIGMOD Interna-

tional Conference on Management of data, 2011, pp. 1137–1148.

[92] Nimbus project, http://www.nimbusproject.org/, 2013.

[93] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Yous-
eff, and D. Zagorodnov, « The Eucalyptus open-source cloud-computing
system », in Proceedings of the 2009 9th IEEE/ACM International Sym-

posium on Cluster Computing and the Grid, 2009, pp. 124–131.

[94] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, « Pig latin:
a not-so-foreign language for data processing », in Proceedings of the 2008

ACM SIGMOD international conference on Management of data, 2008,
pp. 1099–1110.

[95] Open Nebula – open source data center virtualization, http://

opennebula.org/, 2013.

[96] Oracle loader for Hadoop, http://www.oracle.com/technetwork/bdc/

hadoop-loader/overview/index.html, 2013.

[97] M. T. Özsu and P. Valduriez, Principles of Distributed Database Systems,
3rd. Springer, 2011.

[98] B. Palanisamy, A. Singh, L. Liu, and B. Jain, « Purlieus: locality-aware
resource allocation for MapReduce in a cloud », in Proceedings of 2011

International Conference for High Performance Computing, Networking,

Storage and Analysis, 2011.

BIBLIOGRAPHY 123

[99] S. Papadomanolakis and A. Ailamaki, « AutoPart: automating schema de-
sign for large scientific databases using data partitioning », in Proceedings

of the 16th International Conference on Scientific and Statistical Database

Management, 2004, pp. 383–392.

[100] A. Pavlo, C. Curino, and S. B. Zdonik, « Skew-aware automatic database
partitioning in shared-nothing, parallel OLTP systems », in Proceedings

of the 2012 ACM SIGMOD International Conference on Management of

Data, 2012, pp. 61–72.

[101] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden, and
M. Stonebraker, « A comparison of approaches to large-scale data analy-
sis », in Proceedings of the 2009 ACM SIGMOD International Conference

on Management of data, 2009, pp. 165–178.

[102] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan, « Interpreting the
data: parallel analysis with Sawzall », Scientific Programming, vol. 13, no.
4, pp. 277–298, Oct. 2005.

[103] Pivotal Greenplum Database, http://gopivotal.

com/pivotal-products/pivotal-data-fabric/

pivotal-analytic-database, 2013.

[104] S. Ramakrishnan, G. Swart, and A. Urmanov, « Balancing reducer skew
in MapReduce workloads using progressive sampling », in Proceedings of

the Third ACM Symposium on Cloud Computing, 2012.

[105] K Ranganathan, A Iamnitchi, and I Foster, « Improving data availability
through dynamic model-driven replication in large peer-to-peer communi-
ties », in 2nd IEEE/ACM International Symposium on Cluster Computing

and the Grid, May 2002, p. 376.

[106] J. Rao, C. Zhang, N. Megiddo, and G. M. Lohman, « Automating phys-
ical database design in a parallel database », in Proceedings of the 2002

ACM SIGMOD International Conference on Management of Data, 2002,
pp. 558–569.

[107] Salesforce - CRM and cloud computing to grow your business, http://

www.salesforce.com/, 2013.

[108] SAP Sybase IQ Columnar Database, Column-Based & Oriented DBMS,
http://www.sybase.com/products/datawarehousing/sybaseiq, 2013.

[109] L. F. G. Sarmenta, « Sabotage-tolerance mechanisms for volunteer com-
puting systems », in Proceedings of the First IEEE/ACM International

Symposium on Cluster Computing and the Grid, 2001, pp. 337–346.

[110] P. Schwan, « Lustre: building a file system for 1,000-node clusters », in
Linux Symposium, 2003, p. 380.

124 BIBLIOGRAPHY

[111] S. Seo, I. Jang, K. Woo, I. Kim, J.-S. Kim, and S. Maeng, « HPMR:
prefetching and pre-shuffling in shared MapReduce computation environ-
ment », in Proceedings of the 2009 IEEE International Conference on Clus-

ter Computing, 2009, pp. 1–8.

[112] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, « The Hadoop dis-
tributed file system », in IEEE 26th Symposium on Mass Storage Systems

and Technologies, May 2010, pp. 1–10.

[113] D. Silva, W. Cirne, and F. Brasileiro, « Trading cycles for information:
using replication to schedule bag-of-tasks applications on computational
grids », in Euro-Par 2003 Parallel Processing, vol. 2790, 2003, pp. 169–
180.

[114] Sloan Digital Sky Survey, http://www.sdss3.org, 2013.

[115] M. Stonebraker, D. Abadi, D. DeWitt, S. Madden, E. Paulson, A. Pavlo,
and A. Rasin, « MapReduce and parallel DBMSs: friends or foes? », Com-

munications of the ACM, vol. 53, no. 1, pp. 64–71, Jan. 2010.

[116] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Fer-
reira, E. Lau, A. Lin, S. Madden, E. O’Neil, P. O’Neil, A. Rasin, N. Tran,
and S. Zdonik, « C-store: a column-oriented DBMS », in Proceedings of the

31st international conference on Very Large Data Bases, 2005, pp. 553–
564.

[117] X. Su and G. Swart, « Oracle in-database Hadoop: when MapReduce
meets RDBMS », in Proceedings of the 2012 ACM SIGMOD International

Conference on Management of Data SE - SIGMOD ’12, 2012, pp. 779–
790.

[118] The Dark Energy Survey, http://www.darkenergysurvey.org/, 2013.

[119] The TPCBenchmarkTMH (TPC-H), http://www.tpc.org/tpch/, 2013.

[120] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Antony,
H. Liu, and R. Murthy, « Hive - a petabyte scale data warehouse using
Hadoop », in Proceedings of the 26th International Conference on Data

Engineering, Mar. 2010, pp. 996–1005.

[121] Ümit V. Çatalyürek and Cevdet Aykanat, PaToH: partitioning tool for

hypergraphs, http://bmi.osu.edu/~umit/software.html, Mar. 2011.

[122] G. Valentin, M. Zuliani, D. Zilio, G. Lohman, and A. Skelley, « DB2 advi-
sor: an optimizer smart enough to recommend its own indexes », in Pro-

ceedings of the 16th International Conference on Data Engineering, 2000.

[123] R. Vernica, A. Balmin, K. S. Beyer, and V. Ercegovac, « Adaptive MapRe-
duce using situation-aware mappers », in Proceedings of the 15th Interna-

tional Conference on Extending Database Technology, 2012, pp. 420–431.

BIBLIOGRAPHY 125

[124] Vertica, http://www.vertica.com/, 2013.

[125] W. Vogels, « Eventually consistent », Communications of the ACM, vol.
52, no. 1, pp. 40–44, Jan. 2009.

[126] C. Walton, A. Dale, and R. Jenevein, « A taxonomy and performance
model of data skew effects in parallel joins », in Proceedings of the 17th

International Conference on Very Large Data Bases, 1991, pp. 537–548.

[127] G. Wang, A. R. Butt, P. Pandey, and K. Gupta, « A simulation approach
to evaluating design decisions in MapReduce setups », in 17th Annual

Meeting of the IEEE/ACM International Symposium on Modelling, Anal-

ysis and Simulation of Computer and Telecommunication Systems, 2009,
pp. 1–11.

[128] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn,
« Ceph: a scalable, high-performance distributed file system », in Proceed-

ings of the 7th symposium on Operating systems design and implementa-

tion, 2006, pp. 307–320.

[129] Windows Azure: Microsoft’s cloud platform, http://www.windowsazure.

com/, 2013.

[130] Y. Xu, P. Zou, W. Qu, Z. Li, K. Li, and X. Cui, « Sampling-based par-
titioning in MapReduce for skewed data », in 2012 Seventh ChinaGrid

Annual Conference, 2012, pp. 1–8.

[131] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica, « Im-
proving MapReduce performance in heterogeneous environments », in Pro-

ceedings of the 8th USENIX conference on Operating systems design and

implementation, 2008, pp. 29–42.

[132] J. Zhou, N. Bruno, M. Wu, P. Larson, R. Chaiken, and D. Shakib,
« SCOPE: Parallel Databases Meet MapReduce », The VLDB Journal,
vol. 21, no. 5, pp. 611–636, Oct. 2012.

[133] D. C. Zilio, J. Rao, S. Lightstone, G. M. Lohman, A. J. Storm, C. Garcia-
Arellano, and S. Fadden, « DB2 design advisor: integrated automatic phys-
ical database design », in Proceedings of the Thirtieth International Con-

ference on Very Large Data Bases, 2004, pp. 1087–1097.

