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Les systemes dynamiques jouent un réle important dans la science
comme un outil pour I"étude des phénomenes. La théorie mathéma-
tique du contrdle fournit un cadre pour faire face a des systemes dy-
namiques en analysant leurs comportements qui peuvent étre mod-
élisés pour répondre a certaines contraintes réglementaires. Dans ce
travail, les systemes dynamiques considérés sont décrits par des équa-

tions différentielles ordinaires déterministes.

L’analyse de la stabilité des systemes dynamiques est 'un des prin-
cipaux problemes de la théorie du contrdle et, dans ce travail, la notion
utilisée est la théorie introduite par Lyapunov dans “Probleme général
de la stabilité du mouvement” en 1907. Parks présente le développe-
ment historique de la théorie de la stabilité de Lyapunov dans “A. M.
Lyapunov’s stability theory - 100 years on”, 1992. D’autres concepts
de stabilité ont été introduits, Leine présente le développement his-
torique de quelques notions de stabilité dans “The historical develop-
ment of classical stability concepts: Lagrange, Poisson and Lyapunov

stability”, 2010.
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Figure 1.1: lllustration du concept de
stabilité introduit par Lyapunov. Un
point x du space d’état est stable si
les solutions issues des conditions ini-
tiaux x(0) qui sont proches x restent
proches de x.

Grosso modo, un point x est Lyapunov stable pour un systéme
dynamique si ses solutions issues d"une condition initiale x(0) proche
de X reste a proximité du point x. Le point x est dit asymptotiquement
stable si au dela d’étre stable les solutions convergent vers x. La Figure

1.1, basée sur (Luenberger, 1979, Fig. 9.3), illustre ce concept.

-~ stable™~_

unstable

Dans ce travail, deux applications de la théorie de la stabilité sont
considérées: la synthese d’'une commande et 'analyse de l'interaction
de deux systemes dynamiques. Dans le premier cas, les conditions
relatives a la conception de la fonction qui modifie le comportement
d’un systéme pour atteindre un but désiré sont données, tandis que
dans le second, un critere pour rendre stable I'interconnexion de deux

systemes dynamiques est fourni.

Les propriétés d'un systeéme dynamique lorsqu’il est proche et loin-
tain de I'ensemble souhaité sont également pris en compte pour ces
applications de la théorie de la stabilité. Pour la synthese d’une lois
de commande non-linéaire, une approximation de la dynamique non-
linéaire du systeme, autour de I'ensemble desiré, est considerée. En
ce qui concerne I'interconnexion, la stabilité asymptotique globale est
obtenue grace a la stabilisation locale avec l'attractivité de différents

ensembles souhaités.

Des travaux qui mélangent des comportements locaux et non lo-
caux de systémes sont bien connus dans la littérature. Voir (Bena-
chour et al., 2013) pour la synthese de lois de commande correspon-
dant a des contraintes d’optimalité locales, (Andrieu and Prieur, 2010)

dans le cadre de fonctions de commande de Lyapunov et (Chaillet,
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Angeli, and Ito, 2012) pour les notions de stabilité entrée-état et sta-

bilité entrée-état intégrale.

1.1  CONTRIBUTIONS PRINCIPALES

Les principales contributions de cette thése sont résumées ci-dessous.

¢ Systemes pour lesquels la méthode de backstepping ne peut pas étre
employée pour concevoir une loi de commande qui stabilise glob-
alement !’ origine, la conception d'une loi de commande non-linéaire

est proposée pour stabiliser globalement un ensemble compact;

¢ Une approximation de la dynamique non-linéaire est fournie en
utilisant des inégalités matricielles linéaires pour obtenir une in-

clusion différentielle linéaire;

¢ Une méthodologie pour la conception d’une loi de commande qui
stabilise localement 1’origine et satisfait des contraintes sur le bassin

d’attraction est fournie;

e En utilisant le cadre des systemes hybrides 1 uneloi de commande ' Systémss avec une dynamique dis-
. ; . créte et continues.
hybride mélangeant des commandes stabilisantes locales et glob-
ales est proposée. La loi de commande résultante stabilise globale-

ment |'origine;

® Une nouvelle condition suffisante est presentée pour des systemes
dont le théoreme des petits gains ne peut pas étre utilisé pour con-

clure sur la stabilité de I'interconnexion;

¢ Il est introduit une notion de gain entrée-état serré;

¢ Il est montré, pour des systéemes unidimensionnels, que si la con-
dition des petits gains ne vaut pas pour la composition des gains
entrée-état serrés, alors il n’existe pas d’autres gains entrée-état ap-

propriés pour lesquelles elle peut étre valable;
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1.2

¢ Il est considéré le cas ot la condition du petit gain est valable dans

deux régions différentes de l'espace d’état: 1'intérieur d'un ensem-
ble compact contenant I'origine et a I'extérieur d’un autre ensemble

compact contenant aussi l'origine;

Les criteres pour la stabilité consistent en analyser comment une
fonction propre et définie positive varie le long les solutions d'un
systéme, dans les régions ou le petit gain est valable, et de fournir
une condition suffisante pour que les ensembles de conditions ini-
tiales et des solutions qui ne convergent pas vers un attracteur com-
pact aient une mesure de Lebesgue égale a zéro, en dehors de cette

régions;

Une généralisation du critere de Bendinxson pour 'absence des en-
sembles w-limite est fourni pour les systémes planaires et pour les

régions qui ne sont pas simplement connexes.

Pran

Cette these est organisée comme suit:

¢ Le Chapitre 2 considere le probléme de la conception d'une loi de

commande stabilisante pour un systeme non-linéaire, lorsque la
méthode par backstepping ne peut pas étre employée. La stratégie
est de rendre un systeme dynamique continu hybride et de mélanger
une loi de commande stabilisante locale, congue pour satisfaire des
contraintes sur le bassin de l'attraction, avec un contrdleur qui sta-
bilise globalement asymptotiquement un ensemble qui appartient

au bassin d’attraction;

Le Chapitre 3 fournit des critéres pour analyser l'interconnexion
des systemes dynamiques lorsque le petit gain n’est pas valable
dans une région de l'espace d’état. Plus précisément, dans les ré-
gions ou le petit état de gain est valable, il est analysé comment

une fonction définie positive varie le long les solutions du systeme
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interconnecté, tandis que dans les régions ou le petit gain ne pas
valable, il est analysé comment la mesure de I'ensemble des solu-

tions change le long les solutions du systéme interconnecté;

¢ Le Chapitre 4 propose la suite des travaux présentés dans les chapitres

précédents et recueille quelque observations finales;

¢ Le Chapitre A rappelle le contexte mathématique et les sujets de la

théorie de la stabilité de Lyapunov.

PROBLEMATIQUE CONSIDEREE

CHAPITRE 2

Au fil des années, la recherche de la stabilité des systemes dynamiques
non-linéaires a conduit a des nombreux outils pour la conception des
lois de commandes asymptotiquement stabilisantes. Ces techniques
nécessitent des structures particulieres sur les systemes. Selon les hy-
pothéses, le concepteur peut utiliser différentes approches telles que

le grand gain (Grognard, Sepulchre, and Bastin, 1999), backstepping

(Freeman and Kokotovi¢, 2008) ou forwarding (Mazenc and Praly, 1996).

Cependant, en présence des dynamiques non structurées, certaines de

ces méthodes ne peuvent pas étre applicables.

Pour des systemes ou la technique de synthese par backstepping
ne peut pas étre appliquée pour rendre 1'origine globalement asymp-
totiquement stable, les approches proposées dans (Stein Shiromoto,
Andrieu, and Prieur, 2011, 2012, 2013b) peuvent résoudre le prob-
leme en mélangeant une loi de commande par backstepping qui rend
un ensemble compact globalement attractif avec une commande lo-
calement stabilisante. Par hypothése, cet ensemble est contenu dans
le bassin d’attraction du systéme en boucle fermée du contréleur local.
Le principal résultat est une conception de loi commande pour les sys-
temes hybrides qui a priori ne disposent pas d’une loi de commande
qui stabilise globalement 1’origine. Cette méthodologie de comman-

des hybrides est maintenant bien connue (Prieur, 2001), et elle a égale-

11
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Zn(u(t))

ment été appliquée pour des systemes qui ne satisfont pas la condi-
tion dit de Brockett ((Goebel, Prieur, and Teel, 2009) et (Hespanha,
Liberzon, and Morse, 2004)). Lois de commandes hybrides peuvent
avoir l'avantage de rendre I'équilibre du systéme robuste asympto-
tiquement stable par rapport au bruit de la mesure et des erreurs de ac-
tionneurs ((Prieur, Goebel, and Teel, 2007) et (Goebel and Teel, 2006))
en boucle fermée. Il est également présenté une procédure pour con-
cevoir une loi de commande continue qui satisfait des contraintes lo-

cales sur le bassin d’attraction du systéme en boucle fermée.

Des travaux similaires existent dans le contexte des lois de com-
mandes continues ((Andrieu and Prieur, 2010) et (Pan et al., 2001)).
Contrairement a eux, pour la classe des systemes considérés dans ce
chapitre, a priori aucune commande globalement stabilisante continue
existe. Notez qu’ici il est adressé un probleme différent que (Mayhew,
Sanfelice, and Teel, 2011), o1 une fonction synergique Lyapunov et

une loi de commande sont congues par backstepping.

IDEE DE LA soLUTION. La classe de systémes considérés est donnée

par I'"équation

x1(t) = filxi(t),x2(t)) + hy(xq(t),x2(t), u(t))
x2(t) = fa(xq(t),x2(t))u(t) + ha(xq(t),x2(t), u(t)),

@.1)

dont, pour touslest € R, (x;(t),x2(t)) € R*! x R est la variable d’état

etu(t) € R est 'entrée. A partir d’ici, les arguments t seront omies.

Les fonctions qui décrivent la dynamique de (2.1) sont

f1 € C'R“TxR,R™1), h; e C'(R™'xRxRR"™),
f, € C'R™' xR,R), h, € C'R™' xR xR,R).

Par ailleurs, elles satisfont f1(0,0) = h(0,0,0) = 0, h2(0,0,0) = 0 et

fa(x1,%x2) =0 < (x1,%2) = (0,0).

Avec une notation plus compacte, le vecteur (x1,x,) € R™T xR
est noté par x, la i-éme composante de x; € R™~! est notée par x1 ;.
Quand hy(x1,%x2,u) = 0 et hy(x1,%x2,u) = 0, le systéeme (2.1) est noté

par Z(u).
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En considérant le systeme X (u), en supposant la stabilisabilité du
sous-systeme x; avec une loi de commande differentiable qui vaut
zéro lorsque son argument est aussi zéro, 'application de la procé-
dure pour la synthese par backstepping (voir la Section 2.7.1 pour plus
de renseignements) donne une lois de commande ¢y, € €°(R%,, R) qui
rend l'origine globalement asymptotiquement stable pour Z(¢s) (le
lecteur intéressé peut consulter (Krsti¢, Kanellakopoulos, and Koko-
tovi¢, 1995) pour avoir plus de détail sur cette conclusion). Cependant,
parce que les fonctions h; et h, dépendent de la variable v, la synthese
d’une lois de commande pour (2.1) conduit a une équation implicite
dans la variable d’entrée (I’Equation (2.27) fournit un exemple). Par
ailleurs, depuis que f»(0,0) = 0, la procédure proposée pourrait don-

ner une loi de commande telle que limjy|_,o @b (x) = oco.

Ces faits motivent l'introduction d’une loi de commande hybride
pour assurer la stabilité globale asymptotique de I'origine pour (2.1)
en boucle fermée. Pour ce faire, il a été nécessaire d’introduire les trois

hypotheses listées ci-dessous.

Une lois de commande hybride est composée par un ensemble de

indices Q telle que, pour chaque q € Q,

¢ [l existe une famille des ensembles fermés C,,D, C R™ telle que
CqUDy =R"et
U Cq =R"™
qeQ

¢ Une famille de fonctions continues ¢4 : R™ — R;

* Des applications multivaluées g4 : R™ = Q avec proprieté de con-

tinuité appropriée.

Le systeme (2.1) en boucle fermée avec une commande hybride
aura des dynamiques discretes et continues, selon les régions déter-
minées par Cq et Dy:

x = fh(X,(Pq(X)), X € Cq»

En(H) (22)

qt € gq(x), x € Dg,

Les solutions de (2.2) auront un comportement discret, dans les

régions Dy, et continus, dans les régions Cg.
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Stabilisation locale. Dans cette hypothese (voir I'hypothese (2.8)), il est
supposé l'existence d’une loi de commande hybride pour laquelle
l'origine est localement asymptotiquement stable pour le systéeme
(2.1) bouclé. Par ailleurs, il est supposé l'existence d'une famille
de fonctions de Lyapunov qui décroissent le long les solutions du

systeme bouclé.

Stabilisation du sous-systéme x et bornes sur les fonction hy et h,. Dans cette
hypothese (Voir 'hypothese 2.10) il est supposé I'existence d’une
loi de commande pour rendre I'origine globalement asymptotique-
ment stable pour le sous-systeme x; de Z bouclé. Il est aussi sup-
posé que les fonctions hy, h; et 0hi /3y, sont bornées par une fonc-
tion continue ¥ qui ne dépende pas de la variable de I'entrée u. Par
ailleurs, la dérivée de la fonction de Lyapunov du sous-systeme x;
de X, bouclé dans la direction de h; est supposée bornée et telle

borne ne dépende pas de l'entrée u;

Inclusion. Dans cette hypothese (voir I'hypothese 2.12), il est supposé
qu'un ensemble compact est inclus dans le bassin d’attraction de

(2.1) bouclé avec la commande hybride localement stabilisante.

D’apres I'hypothese de la stabilisation du sous-systeme x; et les
bornes sur les fonctions h; et hy, il est obtenu le premier résultat. Ce
résultat est énoncé dans la Proposition 2.14 et il concerne I'existence
d’une loi de commande pour lequel un ensemble compact est pra-
tiquement globalement asymptotiquement stable pour le systeme (2.1)

bouclé.

Le résultat qui suit concerne le mélange entre cette loi de com-
mande avec la commande hybride localement stabilisante. Le résultat
concerne la construction d’une loi de commande hybride. Cette con-

struction est illustrée dans la figure ci-dessous (voir aussi 2.1).

Avec cette approche, la commande qui stabilise globalement 'ensemble
compact est utilisée en dehors de la région rouge et la commande qui
stabilise localement I’origine est utilisée dans la région bleu. Par con-
séquence, pour chaque condition initial la composante x de la solution

convergera vers l'origine. Dont la stabilité asymptotique globale suit.

Dans la section suivante, il est aussi proposé une approche pour la
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Figure 1.2: lllustration de I'approche
proposée.

synthese d’une commande qui stabilise localement I’origine sous des

contraintes sur le bassin d’attraction.

Les non-linéarités de f,, sont approximées par un ensemble de ma-
trices et le systéme L}, est reformulé en fonction d’une inclusion dif-
férentielle linéaire, dans un voisinage de l'origine. Cette approche
simplifie la synthése mais cette méthode croit exponentiellement en

fonction du nombre de variables et des équations.

Le résultat principal de cette approche est présenté dans la Propo-
sition 2.23 ou il est donné des conditions sur la forme d’inégalités
matricielles pour la synthese d"une commande locale qui satisfait des
contraintes sur le bassin d’attraction. Plus précisément, cette contrainte
estl’inclusion de I'ensemble pratiquement globalement asymptotique-

ment stable pour (2.1) bouclé, donné par la Proposition 2.14.

1.3.2 CHAPITRE 3

L'utilisation des gains d’entrée-sortie non-linéaires pour l'analyse de
la stabilité des systémes interconnectés a été introduite par Zames
dans (Zames, 1966) en considérant un systeme comme un opérateur
d’entrée-sortie. La condition qui assure la stabilité, appelée théoreme

des petits gains, est basée sur le principe de la contraction.
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Sontag a introduit dans (Sontag, 1989) un nouveau concept de gain
liant I'entrée a I'état du systéme (ISS). Cette notion lie les approches de
Zames et Lyapunov (Sontag, 2001). Caractérisations en termes de dis-
sipation et fonctions de Lyapunov sont aussi présentées dans (Sontag

and Wang, 1995).

Dans (Jiang, Teel, and Praly, 1994), le principe de la contraction est
utilisé avec la notion de stabilité entrée-état pour obtenir un théoréme
des petits gains pour des systémes ISS. Une formulation de ce critere
en termes de fonctions de Lyapunov peut étre trouvée dans (Jiang,

Mareels, and Wang, 1996).

Au dela de l'analyse de la stabilité, le théoreme des petits gains
peut également étre utilisé pour la conception de lois de comman-
des qui satisfont des contraintes de robustesse. Le lecteur intéressé
est invité a voir (Freeman and Kokotovi¢, 2008; Sastry, 1999) et les
références qui s’y trouvent. D’autres versions du théoreme des petits
gains existent dans la littérature, voir (Angeli and Astolfi, 2007; Astolfi
and Praly, 2012; Ito, 2006; Ito and Jiang, 2009) pour l'interconnexion

de systemes qui ne sont pas nécessairement ISS.

Pour appliquer le théoréme des petits gains, il est nécessaire que la
composition de ces gains non-linéaires soit plus petite que 'argument
pour toutes les valeurs positives de son argument. Cette condition,
appelée condition des petits gains, limite 'application du théoreme

des petits gains a une composition bien choisie des gains.

Les approches présentées dans (Stein Shiromoto, Andrieu, and Prieur,
2013a,c) fournissent un critére alternatif pour la stabilisation de sys-
temes interconnectés, quand la condition des petits gains n’est pas
valable globalement. Il consiste a montrer que si localement (resp.
non-localement) la condition du petit gain est valable dans une ré-
gion locale (resp. non-locale) de l'espace d’état, et I'intersection de la
région locale et non-locale est vide. D’ailleurs, si a 'extérieur de I’
union de ces régions, I'ensemble des conditions initiales a partir des
quelles les trajectoires associées ne convergent pas a la région locale
ont une mesure zéro, le systeme interconnecté résultant est presque
asymptotiquement stable (cette notion est précisément définie dans le

Chapitre 3). Dans ce chapitre, une condition suffisante garantissant
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cette propriété est présentée. De plus, pour les systéemes planaires,
une extension du critere de Bendixson aux régions qui ne sont pas
simplement connexes est donnée. Ceci permet d’obtenir la stabilité

asymptotique globale de l'origine.

Cette approche peut étre considérée comme un mélange de deux
conditions des petits gains qui valent dans différentes régions: une

locale et un non-locale.

IDEE DE LA soLUTION. La classe de systemes considéré est donnée par

x = f(x,z),
. (3.8)
z = ¢glxz)

dont f,g € €' (R™,R™), les sous-systémes dans le variables x et z sont

ISS avec V et W, respectivement, des fonctions de Lyapunov de type

ISS. Avec un notation vectoriel, le systeme (3.8) est noté par y = h(y).

La dérivée de Lie de chaque fonction satisfait

y(W(z)) = DiVixz)

> <
1.1
W) > 8(V(x) = DiWlz) < —Al2), b

avec vy et b fonctions de classe X, A« et A, fonctions positive définies

et continues.

Le théoréme du petit gain énonce que (3.8) est stable si, pour tous
less € R>0 ,

Y(s) 0 d(s) < s. (SGC)

Dans le cas ou (SGC) n’est plus valable, dans un’intervalle borné de
R>o qui ne contient pas l'origine, 'approche consiste a montrer qu’il

existe

* Deux gains ISS y, et y4 pour le sous-systeme x de (3.8);

* Deux gains ISS §; et 5,4 pour le sous-systeme z de (3.8);
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¢ Les compositions y,08¢ et y4084 satisfont la condition du petit gain,
pas pour tous les valeurs de 'argument mais pour deux intervalles

différentes;

* Dans les regions hors de I'union de ces intervalles une condition

pour assurer l'inexistence des ensembles w-limite est vrai.

Alors, pour presque toutes les conditions initiales, les solutions de
(3.8) convergent vers l'origine. Par ailleurs, sin = m = 1, cette conclu-

sion est valable pour toutes les condition initiales.

Les hypotheses nécessaires pour obtenir le résultat de la stabilisa-

tion sont présentées ci-dessous.

Stabilité régionale. La premiere hypothese (voir Assumption 3.5) con-
cerne la propreté qui satisfont les fonctions de Lyapunov V et W
dans un ensemble S. Plus précisément, il est supposé l'existence
des constantes, gains ISS et un ensemble pour lesquels 1'inégalité

(1.1) est vraie dans cet ensemble;

Petit gain régional. La deuxiéme hypotheése (voir Assumption 3.6) con-
cerne la composition des gains ISS dans l'ensemble S, donné par

I'hypothese précédente. Plus précisement, il est supposé que la

fonction qui résulte de la composition des gains est bornée supérieure-

ment par la fonction identité, pour toutes les valeurs de 'argument

qui appartiennent a un’intervalle correspondant a I'ensemble S.

Le premier résultat concerne la convergence des solutions dans
I'ensemble S. Plus précisément, Proposition 3.8 énonce qui, sous les
hypothéses 3.5 et 3.6, les solutions de (3.8) convergent vers une fron-

tiere de 'ensemble S.

Deux corollaires suivent de la Proposition 3.8 et sont énoncés dans
3.9 et 3.11. Plus précisément, si les constantes de 'hypothese de la sta-
bilité régionale sont telles que S est compact et contient I’origine, alors
elle localement asymptotiquement stable (voir Corollaire 3.9). Si les

constantes de I’hypothese de la stabilité régionale sont telles qui S est
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I'ensemble complémentaire d’un compact de R™ contenant 1’origine,
alors cet ensemble compact est globalement attractif (voir Corollaire

3.11).

Si les contantes des Corollaires 3.9 et 3.11 sont telles que le bassin
d’attraction de I'origine ne contient pas I'ensemble globalement attrac-
tive, alors il pourrait exister des solutions de (3.8) qui ne convergent

pas vers I'origine mais vers un w-limite.

D’apreés les corollaires, la région ou les ensembles w-limite peu-
vent exister est un ensemble compact. Plus précisément, la région ré-
sultant de la différence entre I'ensemble attracteur global et le bassin
d’attraction de l'origine. Du coup, la méthode qui suit consiste en
donner des conditions suffisantes pour que ces ensembles w-limite

n’existent pas. Ce cas est illustré dans la figure ci-dessous.
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La condition pour avoir 'absence des ensembles w-limite pour les
systémes interconnectés avec n > 2 est donnée dans le Théoreme 3.13.
Plus précisément, sous les conditions des Corolaires 3.9 et 3.11, s'il
existe un fonction de densité p avec support compact qui contient R et
telle que, le divergent de hp est strictement positive dans R, alors pour
presque toutes les conditions initiales, les solution issues convergent
vers l'origine. Par ailleurs, I'ensemble des conditions initiales et de
solutions qui ne convergent pas ont une mesure de Lebesgue égale a

zéro.

Figure 1.3: lllustration des ensem-
bles. Le bassin d’attraction de I'origine
(région blue), région d’attraction pour
I’ensemble compact (région rose) qui
est l'attracteur global (ligne rouge) et
R la région résultant de la différence
entre I'attracteur global et le bassin
d’attraction de I'orgine.
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Pour des systemes interconnectés avec n = 2 il est donné, dans le
Théoreme 3.14, une condition pour I'absence des ensembles w-limite.
Plus précisément, sous les conditions des Corolaires 3.9 et 3.11, si la
divergence de h est différente de zéro dans R, et h n’y a aucun point
d’équilibre dans R, alors pour toutes les conditions initiales, les solu-

tions convergent vers 1'origine.

1.4 TRAVAUX EN COURS

Le Chapitre 4 présente quelques pistes pour généraliser les résultats
antérieurs. Une possible généralisation serait de définit une notion de
contrdlabilité presque partout et 1'utiliser pour la synthese des com-
mandes stabilisantes avec des gains différents dans chaque région de

I'espace d’état. Par ailleurs, trois lignes de recherches sont proposées

Interconnexion a large échelle. Dans ce cas, les résultats du Chapitre 3
sont en train d’étre adaptés pour l'interconnexion de plus de deux

systemes;

Interconnexion de systemes qui sont presque ISS. Dans ce cas, sont con-
sidérés des systemes qui sont presque ISS et une approche pour

montrer la stabilité de I'interconnexion est proposée;

Approximations homogénes de systémes hybrides a I'infini. Dans ce cas, sont
présentées des définitions pour que les systemes hybrides soient

approximés par des fonctions homogenes a I'infini.



2/ BLENDING NONLIN -
EAR FEEDBACK LAWS

In this chapter, a class of nonlinear systems with structural obstacles to
design nonlinear continuous feedback laws are considered. The strat-
egy consists in designing a feedback law rendering a suitable compact
set (strictly containing the origin) practically asymptotically stable.
This feedback is blended with a locally stabilizing one. A construc-
tive approach is given by employing a differential inclusion represen-
tation of the nonlinear dynamics. The results are illustrated with an

example.
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2.1

INTRODUCTION

Over the years, research in control of nonlinear dynamical systems
has led to many different tools for the design of (globally) asymp-
totically stabilizing feedback laws. These techniques require partic-
ular structures on the systems. Depending on the assumptions, the
designer may use different approaches such as high-gain (Grognard,
Sepulchre, and Bastin, 1999), backstepping (Freeman and Kokotovic,
2008) or forwarding (Mazenc and Praly, 1996). However, in the pres-
ence of unstructured dynamics, some of these methods may fail to be
applied.

For systems where the classical backstepping technique can not
be applied to render the origin globally asymptotically stable, the ap-
proaches proposed in (Stein Shiromoto, Andrieu, and Prieur, 2011,
2012, 2013b) may solve the problem by blending a backstepping feed-
back law that renders a suitable compact set globally attractive with
a locally stabilizing controller. By assumption, this set is contained
in the basin of attraction of the system in closed loop with the latter.
The main result can be seen as a design of hybrid feedback laws for
systems which a priori do not have a feedback law that globally stabi-
lizes the origin. This methodology of hybrid stabilizers is by now well
known (Prieur, 2001), and it has been also applied for systems that do
not satisfy the Brockett’s condition ((Goebel, Prieur, and Teel, 2009)
and (Hespanha, Liberzon, and Morse, 2004)). Hybrid feedback laws
can have the advantage of rendering the equilibrium of the closed-
loop system robustly asymptotically stable with respect to measure-
ment noise and actuators’ errors ((Prieur, Goebel, and Teel, 2007) and
(Goebel and Teel, 2006)). It is also presented a procedure to design a

continuous local feedback law satisfying constraints on the basin of
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attraction of the closed-loop system.

Related works do exist in the context of continuous controllers
((Andrieu and Prieur, 2010) and (Pan et al., 2001)). In contrast to them,
for the class of systems considered in this chapter, a priori no contin-
uous globally stabilizing controller exists. Note that it is addressed
a different problem than (Mayhew, Sanfelice, and Teel, 2011), where
a synergistic Lyapunov function and a feedback law are designed by

backstepping.

2.2 BACKGROUND, MOTIVATION, AND PROBLEM STATE-

MENT

2.2.1  SYSTEM UNDER CONSIDERATION

Consider the class of nonlinear systems defined by

£, () {5(1(’() = fi(x1(t),x2(t)) + hq(x1(t), x2 (1), u(t)) 21)

x2(t) = f2(x1(t), x2(D)u(t) + hax (1), x2(t), u(t)),

where, for every t € R, (x1(t),x2(t)) € R"! x Ris the state, and u(t) €
R is the input. From now on, arguments t will be omitted.

The functions describing the dynamics of (2.1) are

fi € CTR™“T xR,R™), h; € C'(R™'xRxRR"™),
f, e C'R™'xR,R), h, € C'R™' xR xR,R).

Moreover, they satisfy f;(0,0) = h;(0,0,0) = 0, h»(0,0,0) = 0, and
f2(x1,%x2) =0 & (x1,%x2) = (0,0).

In a more compact notation, the vector (x1,x2) € R*! x R is de-
noted by x, the i-th component of x; € R is denoted by x1,;. When
hy (x1,%2,u) = 0 and hy(x1,x2,u) =0, system (2.1) is denoted by Z(u).

2.2.2 MOTIVATION

Consider system X(u), assuming stabilizability of the x;-subsystem
with a smooth feedback law, and applying the backstepping design pro-
cedurel, it is obtained a feedback law ¢y, € GO(RQO,R) that renders ' Cf. Section 2.7.1.
the origin globally asymptotically stable for X(¢y) (e.g. Krsti¢, Kanel-
lakopoulos, and Kokotovi¢ (1995)). However, because functions h
and h;, depend on u, the design of a feedback law for (2.1) leads to
an implicit equation in the input variable (see (2.27) below for an ex-

ample). Moreover, since f,(0,0) = 0, the suggested procedure could
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2Based on (Prieur, Goebel, and Teel,
2007, Definition 3.4)

3 (Goebel, Sanfelice, and Teel, 2012,
Definition 2.3)

4 (Prieur, Goebel, and Teel, 2007, Defini-
tion 3.5)

2.2.3

yield a feedback law such that lim,|_,¢ @1 (x) = .
These facts motivate the introduction of a hybrid feedback law en-

suring global asymptotic stability of the origin for (2.1) in closed loop.

BACKGROUND

Definition 2.1 (Hybrid feedback law). 2 A hybrid feedback law, denoted
by J#, consists in a finite set Q C N. For every q € Q,

* Closed sets Cq,D4 C R™ such that Cq UD4 =R™ and

U Cq =R"™;

q€Q
e Functions ¢4 € C°(R™ R);
* Set-valued maps g4 € OSC(R™, Q). o

From now on, assume the existence of a hybrid feedback law.
System (2.1) in closed loop with %" leads to a system with contin-

uous and discrete dynamics

£ ) x = fulx@q(x)), x € Cq, (2.2)
" € gqlx), x € Dy,

with state space given by R™ x Q.
System (2.2) is analyzed by the framework provided in (Goebel,
Sanfelice, and Teel, 2012; Prieur, Goebel, and Teel, 2007).

Definition 2.2 (Hybrid time domain). 3 A set T ¢ Rx, x N is called

compact hybrid time domain if

71
T= U([tj>tj+1}»j)
j=0
for some finite sequence of times 0 = to < t; < tp < --- < ty. Itis
hybrid time domain if, for every (T,]J) € T, TN ([0, T] x {0,1,...,]}) isa

compact hybrid time domain. o

Definition 2.3 (Hybrid solution). # Let T be a hybrid time domain,
and consider the functions X : T — R™ and Q : T — Q. The pair of
functions (X, Q) is called hybrid solution of (2.2) if

¢ For a fixed j, the function t — X(t,j) is locally absolutely continu-

ous, and (t,j) € T;

e For a fixed j, the function t — Q(t, j) is constant, and (t,j) € T.
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The time-domain where (X, Q) is defined is denoted by dom(X, Q). Fur-

thermore,
S;. X(0,0) € CQ(O,O) U DQ(O,O];

S,. Foreveryj € Nsuch that U :={t € R : (t,j) € dom(X, Q)}, and for

almost every t € I,
X(t,j) = fn(X(t,3), ot (X(1,3))),  X(t,7) € Cqe);
S;. For every (t,j) € dom(X, Q) such that (t,j + 1) € dom(X, Q),
Qt,j+1) € 9o, (X(t,j)),  X(t,j) € Dgt)-

A hybrid solution (X, Q) is called
* non-trivial if dom(X, Q) contains at least two points;
o complete if sup(dom(X, Q)) = oo;

e maximal if there exists no other hybrid solution (X, Q) of (2.2) such

thatdom(X, Q) ¢ dom(X, Q), and forevery (t,j) € dom(X, Q), (X(t,j), Q(t,j)) =

(X(tvl)vé(tvl)) ©

The basic regularity conditions for the existence of solutions of (2.2)

are presented in the following

Definition 2.4 (Basic assumptions). ° If, for every® q € Q,
1. The sets C4 and D are closed subsets of R™;

2. The map fi(, @q(-)) : Cq4 = R™ is continuous;

3. The set-valued map g4 : Dq = Q is outer semicontinuous, locally

bounded, and for every x € Dy, gq(x) is nonempty,
then (2.2) satisfies the basic assumptions. o

Lemma 2.5. For every initial condition (X(0,0),Q(0,0)) € Cq(0,0)UDq 0,0,
there exists a non-trivial hybrid solution (X, Q) for (2.2) such that either

a. (X, Q) is complete or;

b. dom(X, Q) is bounded and the interval U, where ] = sup; donm(X, Q),
has nonempty interior and t — (X(t,7]), Q(t,])) is a maximal solution of
Znleqq,n), in fact

lim |X(t, J)| — oo,
t—T

where T = sup, dom(X, Q). O

5 Based on (Goebel, Sanfelice, and Teel,
2009, Assumption 6.10) and (Prieur,
Goebel, and Teel, 2007, pp. 2210).
Sltems 1. and 2. have been added
here for the sake of completeness of the
chapter. Item 1 holds from Definition
2.1. ltem 2 holds, since the functions
f1, and @4 are continuous.
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7 (Goebel, Sanfelice, and Teel, 2012,
Definition 7.1).

8Based on (Goebel, Sanfelice, and
Teel, 2012, Definition 7.3) and (Prieur,
Goebel, and Teel, 2007, Definition 3.3).

9 Based on (Goebel, Sanfelice, and Teel,
2012, Definition 3.16).

10 (Stein Shiromoto, Andrieu, and Prieur,
2013b)

Roughly speaking, the proof of Lemma 2.5 consists of showing that
(2.2) satisfies Assumption 2.4. From Proposition 6.10 of (Goebel, San-
felice, and Teel, 2012), the conclusion follows. The proof of Lemma 2.5

is provided in details in Section 2.5.1.

Definition 2.6 (Uniform local asymptotic stability). 7 Consider system

(2.2). A compact invariant set A C R™ is called

* uniformly stable for (2.2) if for every e > 0, there exists > 0 such that,
for every solution (X, Q) of (2.2) with [X(0,0)|a < 6, [X(t,j)la < ¢, for
every (t,j) € dom(X, Q);

* attractive for (2.2) if there exists 8y > 0 such that every solution (X, Q)

of (2.2) with [X(0,0)|a < §¢ is complete and

lim [X(t,j)|a = 0;

t+j—o0

* asymptotically stable for (2.2) if stable and attractive.

The uniform basin of attraction® of the compact set A is the set of all
X(0,0) € R™ such that, for every Q(0,0) € Q, there exists a hybrid
solution (X, Q) of (2.2) that is complete and

lim [X(t,j)la = 0.

t+j—o0
The prefix pre is dropped, when hybrid solutions are complete. o
The uniformty in Definition 2.6 is with respect to the variable Q.

Definition 2.7 (Hybrid Lyapunov function candidate). * Consider the
system (2.2). For every q € Q, a function V; : dom(Vq) — R is called

hybrid Lyapunov function candidate for (2.2) if,
1. C4uDgUgq(Dg) C dom(Vy);
2. V4 is continuously differentiable on an open set containing C4. o©

Note that Definition 2.7 is less restrictive than Definition A.34, be-
cause in the former no requirement is made regarding positive defi-

niteness and properness properties.

STANDING ASSUMPTIONS AND RESULTS

STANDING ASSUMPTIONS

Assumption 2.8 (Locally stabilizing hybrid feedback law). 10 Given a

finite discrete set L C N such that, for every | € L, there exist
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Closed sets C; ¢ R™ and D; ¢ R™ with C; UD; = R™ and

U C1 :Rn;

lelL

Feedback laws ¢, € C°(R™, R);

Set-valued maps g, € OSC(R™,L);

Vi € CT(R™, Rsy), &, & € Ko, and a constant value ¢, > 0 satisfying,

vx € R™,  aflx]) < Vi(x) < &(Ix]), (2.3)

x € (Qge V)N CIN{0}, L, Vilx, @i(x)) <0, (24)

X € (Qce, VUNDUYN\{0h g € qilx),  Vg(x) —Vi(x) <0. (2.5)

The hybrid feedback law together with the family of function V; sat-
isfying (2.3)-(2.5) is denoted by %5. o

Note that, for every 1 € L, V; is a hybrid Lyapunov function candi-
date.

Definition 2.9. For every 1 € L, the function V; satisfying (2.3)-(2.5) is
called hybrid Lyapunov function for system' £y, (#;). o

From the proof of Lemma 2.5, system Iy, (.#5) satisfies the basic as-
sumptions!? for the existence of solutions. From (Goebel, Sanfelice,
and Teel, 2009, Theorem 20), Assumption 2.8 implies that the set {0} x L
is locally asymptotically stable for Z,,(.#5). To see this claim, note that
whenever a solution starts in a neighbourhood of the origin, Equation
(2.4) ensures that, for every | € L, the Lyapunov function V; is strictly
decreasing during a flow. Equation (2.5) ensures that for a solution
starting in a neighbourhood of the origin, during a transition from a
feedback law 1 to a feedback law determined by g € g, the value Vi (x)
strictly decreases to V4 (x). 13

The second assumption provides bounds for the terms that im-
peach the direct application of the backstepping method. It also con-

cerns the global stabilization of the origin for
x1 = f1(xq ) XZ)) (26)

when x, is considered as an input.

Assumption 2.10 (Bounds). * There exist a proper function Vi €
(€' N P)(R™1 Rxp), a feedback law ¢y € €¢'(R™ 1 R), and a locally
Lipschitz function « € X such that

Note that, since the set L is finite, it is
possible to pick functions of class K,
that bound all functions V;.

1 System (2.1) in closed loop with .75 is
analogous to (2.2).

12 See Definition 2.4.

3To see that Iy, (%) is stable in the
sense of Definition 2.6, the ideas of
(Theorem 3.18 Goebel, Sanfelice, and
Teel, 2012) are used here.

Since the functions V; are
strictly decreasing along so-

lutions of X (%), for every
(t)j) € dom(X,L], VL[t,])(X(t»])) <
VL(O,O)(X(O)O))' From (23),

IX(t,5)] < o« ' o ®(]X(0,0)]).
Thus, for every [X(0,0)] < &,
by letting & = w! o «fe),
IX(0,0)] < & = IX(t,j)l < e
Hence, {0} x L is stable for X, (J%5).

It now remains to show that at-
tractivity holds. From the conti-
nuity the functions V4, there exists
a € (€°n P)(R",Rso) such that
Lo Vil @ou(s) < —a(-) and Vg(+) —
Vi(-) € —«(-). Assume, for the pur-
poses of contradiction, that there exist
T > 0 such that, for every | X(0, 0)] < 6,
T < IX(4,))] < e, for every (t,j) €
dom(X,L). Let v = min{p(x) : r <
IxI < e}, V(X(t,j)) < V(X(0,0)) —
v(t +3j). As t + j increases, the
value V(X(t,j)) will become negative,
contradicting its positive definiteness.
Thus, the set {0} x L is attractive to
1. (). Therefore it is locally asymp-
totically stable for =y, (. %5).

14 (Stein Shiromoto, Andrieu, and Prieur,
2011, 2013b)
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a. Stabilizing feedback law for (2.6): for every x; € R"~1,

L, Vi(x1, 01 (x1)) < —a(Vi(x1));

In addition, there exist ¥ € €°(R™,R), and two positive constant val-
ues ¢ and M with 0 < & < 1 satisfying, for every (x1,x2,u) € R x

R xR,

b. Bounds on h;:

[hi(x1,x2,w)] < W(x1,%x2),
oh
aX;(Xsz»u)‘ < W(x,%x2),

Lp, Vilxi,b1(x1),u) < (1 —=8)a(Vi(x1)) +ex(M);  (2.7)

c. Bound on h;:

ha(x1,x2,u)] < Wixi,x2). o

The motivation of items b and ¢ of Assumption 2.10 is explained
as follows. Suppose that the item a of Assumption 2.10 holds and

consider the Lyapunov function candidate given by

V: RVTxR — Ryo

(k) = Vila)+ 300 — by (k)2

Taking its Lie derivative in the fn-direction yields

Ls, Vix,u) = gradV(xi,x2) - frn(x1,x2,u)

< —oq(Vilx1)) + Ly, Vilxa, b1 (x1),w) + (x2 —1(x1)) (fz(x1,xz]u+ ha (x1,%2,1)
1

(2.8)

oV or
7Lr1lb1(x1,x2,u)+—1(x1] J ] (X1)T]x1,xz(5),u))
0

aX] anX1 yX2

where, for every (x1,%2,u) € R* 1 x R x R, 71 (x1,%2,u) = f1(x1,%2) +
hy(x1,%x2,1).

To see the role of the uniform bound V¥, note that to compute a sta-
bilizing feedback law, one needs to solve Equation (2.8) in the implicit
variable u. Without the uniform bound provided by items b and c of
Assumption 2.10, finding a feedback law ¢ rendering (2.8) negative
definite may not be an easy task.

To see the role of the constant values ¢ and M, assume that As-
sumption 2.10 holds and consider the proper function V; € (€' N

P)(R™1,R>,). Taking its Lie derivative in the r;-direction yields, for
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ever (X] X2 u) e R™ T xR x R,
y y X2y
I—n V1 (X1 y X2y LL) - Lf] V] (X])Xl) Lh] V1 (X1 y X2y LL)-

Considering feedback law {1 € € TR 1,R) and letting, for every x; €
R, xp =g (x2).

L, Vi(x1,P1(x1),u) L, Vi(xa, W1 (x1)) + Ln, Vi (x1,¥1(x1), 1)

< =1 (Vi(x1)) + L, Vilxa, U1 (x1),u).
From Equation (2.7),
L, Vilxi,01(x1),u) < —aq(Vi(x1)) + (1 —e)o(Vi(x1)) + e (M)
< el(M) — (Vi (x1))].

The upper bound for Ly, V; increases the value of L,, V;. Moreover,

the role of the variables M and ¢ as follows.

e If M =0, then for every (x7,u) € R" ! x R,
Ly, Vi(x1, 1 (x1), 1) < —ea(Vi(x1)).

This implies that the feedback law 1; stabilizes the x;-subsystem,
for every u. Thus, in this case the input variable u has no role in the

x1-subsystem which seems to be a strong assumption on M;

* The role of ¢ is related to the speed of convergence of the solutions
of

x1 = f1(x1,p1(x1)) +ha(x1,P1(x1), 1)

to the set Q¢m(V1). Moreover, the presence of the term h;y de-
creases the speed of convergence of solutions to ¢. Thus, ¢ must
be different from zero. For the case ¢ = 1, the presence of the func-

tion hy has no role in the speed of convergence of the solutions.

Remark 2.11. Items b and c of Assumption 2.10 can be satisfied for
a class of linear systems with scalar inputs, provided that a suitable

matrix exists. To see this claim, consider the linear system

X1 arr arz| |x by
. = + U,
X2 azr ax| |x2 b2

supposed to be controllable, and with b, # 0.

29
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15 (Stein Shiromoto, Andrieu, and Prieur,
2013b)

Suppose that the matrix

satisfying c11 # 0 and —cy71a12b1/p, # az2 exists.

Let the variable z := Tx. This implies that,

b1
2 ajici —C11a12b* +taz| |z 0
= 2 + u
. 1 b
Z2 az1a11 —C11(122F + az z 2
2

Consider the variable v € R, by letting

1 b
Uu=-—|v—azaz; +cnax;— —az +22
bz bZ

it yields the linear system

b;
Z ancin —Crdnes a2 |z 0
= 2 + v
5] 0 1 ) 1

with input variable v. Note that,

b
fi(z1,22) = anenz + (azz *Cnaué) 22, hi(z1,z2,v) = 0,
fa(z1,22) = 2z, ha(z1,22,v) = 0.
Thus, items b and c of Assumption 2.10 hold. o

Before introducing the last assumption, consider the set A C R™

given by
A ={(x1,x2) € R™ " x R:V;(x1) < Myx2 =1 (x1)}. (2.9)

Since the function V; is proper and {; € C'(R™1,R), the set A is
closed and bounded. Thus, it is compact. It will be shown in Propo-
sition 2.14 that, under Assumption 2.10, there exists a feedback law
@4 € €°(RL,, R) rendering A globally practically attractive for Zr, (@g).
Note that, when M = 0, the set A is the origin.

Assumption 2.12. (Inclusion)!® For every | € L, the function V; satis-
fies

max Vi (x) < ¢y,
XEA

where the constant c; was introduced in Assumption 2.8. o

Assumption 2.12 states the set A is included in the basin of attrac-
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tion of the set {0} x L.

2.3.2  (GLOBAL PRACTICAL STABILIZATION

Before stating the first result, the concept of practical stabilizability is

recalled.

Definition 2.13 (Global practical asymptotic stabilizability). 16 A com- 16 Based on (Isidori, 1999, pp. 126).
pact invariant set S C R™ containing the origin is globally practically
asymptotically stabilizable for (2.1) if, for every a € R, there exists a

feedback law @4 : R™ — R such the set
B<a(S):={x e R":[x|s < a}

contains a compact set that is globally asymptotically stable for Zi, (¢4).

o

Proposition 2.14. 17 Under Assumption 2.10, the set A is globally practi- 17 (Stein Shiromoto, Andrieu, and Prieur,

] - 2011, 2013b)
cally asymptotically stabilizable for (2.1). O

A sketch of the proof of Proposition 2.14 is given as follows. Un-
der Assumption 2.10, the terms impeaching the design of a feedback
law are bounded. This fact allows the application of the backstepping
method!® to design a feedback law ¢ that renders A globally practi-
cally asymptotically stable for Zn(¢4). The proof of Proposition 2.14

is provided in details in Section 2.5.2.

'8 Cf. Section 2.7.1
Corollary 2.15. Under Assumption 2.10 with M = 0, the origin is globally

practically asymptotically stabilizable for (2.1). O

Since A is globally practically asymptotically stabilizable for (2.1)
and under Assumptions 2.8 and 2.12 the set A is included in the basin
of attraction of X1, (%), it is possible to build a hybrid feedback law %2
that globally stabilizes the set {0} x L for (2.2). This is the idea behind
the following theorem whose proof is provided in details in Section

2.5.3.

Theorem 2.16. 19 Under Assumptions 2.8-2.12, there exist 19 (Stein Shiromoto, Andrieu, and Prieur,
2013b)

* A feedback law ¢4 € €°(R%, R);

#0)

* A constant value by satisfying 0 < be < c¢;

* A hybrid state feedback law ¢ defined by the discrete set Q :={1,2} x L
such that, for every 1 € L,
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C =

g1

20Based on (Goebel, Sanfelice, and
Teel, 2012, Definition 6.27) and (Prieur,
Goebel, and Teel, 2007, Definition 4.1).

— The subsets of R™ are defined by

Qe M)NC, Dip = (Qge,M)NDYUQe, (VL)
Qv (V1), D;1 = Q¢p,M);

(2.10)

The feedback laws @ 4,1 € €°(Cq,1,R) are defined by

)y ] = ]>
anl) =4 O ¥ d (2.11)
(pg(')) lf q=2;

The set-valued maps gq,1 € O8C(Dgq.1, Q) are defined by

g21: Doy = Q

(2.12)
x = {1}
and
Dip = Q
{(1,gux)) x € Qe (VA) N Dy, (2.13)
X = {(2)1)}> XEQ>C¢(VL))

{(1)91(7(]))(2’1)}» XGQ:CC(Vl)le)
rendering the set {0} x L is globally asymptotically stable for v (2¢). O

These results are useful for systems that do not satisfy the Brockett
necessary condition for the existence of a continuous stabilizing con-
troller and for which there exists a locally stabilizing hybrid feedback
law (see e.g. (Goebel, Sanfelice, and Teel, 2009, Example 38) and (Hes-
panha and Morse, 1999)).

Remark 2.17. Recall the concept of robust stability of hybrid systems.?
The compact invariant set S is called robustly asymptotically stable for
(2.2) with respect to measurement noise, if it is asymptotically stable for
(2.2), and in addition, there exists p € €°(R™, Rx,) such that S is asymp-
totically stable for

x € falx), x € C§f,

) { (2.14)

qt € Qg(X% x € Dg)

where

fi(x) = co fh<x,(pq(B<p(X)(x)ﬂCq)>},

gg(x) = Ygq ng(x)(x)ﬂDq))
Cg = {XGRnlng(X)(X]qu #@},
D§ = {x€R":Bg,x)(x)NDq#0}.
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Since p is continuous, the system (2.14) satisfies Assumption 2.4.21 21 (Goebel, Sanfelice, and Teel, 2012,
Thus, from Lemma 2.5, there exists a non-trivial solution of system Proposition 6.26)
(2.14).

Robust stability of {0} x L for (2.2) can be concluded from (Prieur,
Goebel, and Teel, 2007, Theorem 4.3) as follows. If system (2.2) sat-
isfies Assumption 2.4, then it satisfies all the necessary assumptions
of (Prieur, Goebel, and Teel, 2007, Theorem 4.3). From this result, if
{0} x L is asymptotically stable for (2.2), then it is robustly asymptoti-
cally stable.

Although {0} x Lis robustly globally asymptotically stable for Z, (%),
the design of the sets C4 and D4 imposes a limitation on the perturba-
tion p. More precisely, if the perturbation p is such that D} ;nD5 | # 0,
then the hysteresis region is empty and it might exist chattering be-
tween the feedback laws ¢4 and ¢;. In this case, the x-component of
the solution would remain in the region DY ; N D5 # 0 and never

flow. o

Figure 2.1: lllustration of the proposed
approach.

In the next section, a local continuous feedback law satisfying As-
sumptions 2.8 and 2.12 is designed using a linear differential inclusion

@.1).

2.3.3 SEMIGLOBAL STABILIZATION

So far, global practical stabilization of the set A has been achieved. The
objective of this section is to obtain the semiglobal stabilization of the
set {0} x L under the condition that the basin of attraction contains A.
Thus, the aim is to design a feedback law satisfying Assumptions 2.8

and 2.12. To start it is necessary to introduce the concept of semiglobal
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22 Based on (Isidori, 1999, pp. 126) and
(Chaillet and Loria, 2008).

23 Because A is a compact set.

asymptotic stabilizability.

Definition 2.18 (Semiglobal asymptotic stabilizability). ??> The origin
is called semiglobally asymptotically stabilizable for Ly, if, for every com-
pact set K C R™ containing the origin, there exists a feedback law
@¢ : R™ — R such that K is contained in the basin of attraction of

Zhi@e). o

Based on the approach presented on (Andrieu and Tarbouriech,
2013), the nonlinear dynamics of (2.1) is formulated in terms of a Lin-
ear Differential Inclusion. Let L be a singleton, the procedure starts

by defining a neighborhood N, of the origin such that

a. There exist a feedback law ¢ € C°(R™,R), and a Lyapunov func-

tion Vq € C'(R™, R>,) satisfying, forevery x € N, \{0}, L¢, Vi(x, @1(x)) <

0;

b. Itstrictly contains an estimation of the basin of attraction of Zy (¢1),

and a convex set that contains A.

Under Assumption 2.10, there exist?® a finite set P ¢ N of indexes

and a set of vectors {x, € R™ : p € P} such that

A Cco({xp e R":p e P}). (2.15)

Let r, > 0 be a constant value and r = [ry,...,T.] € R™ be a vector
of strictly positive values such that co({x, € R" : p € P}) C N = {x:
il <73, 1 <i<n}

Consider the function

fr(x, 1) = fn(x, 1) — Fx — Gu, (2.16)

where F and G are the linearization of (2.1) around the origin:

x=Fx+ Gu:= %(O)X + aﬂ(O)u. (2.17)
ox ou

Since f € C'(R™,R"), f, € €'(R",R"). Foreachm € M := {m ¢
N:1<m 2™, let Cy € R™*™ be a matrix with components cy;,

where 1 <i<nand1<j<n, given by either

Ofh i _ . Ofni
cjj = max L (x,u) or c;; = min b (x, ). (2.18)
xEN¢r Xj xENr Xj
lul<r [ul<r

Foreachve V:={ve N:1<v 2"} let D, € R"*! be a vector
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with components di, where 1 < i < n, given by either

s _ . Ofhi
d{":xrenﬁi(r az’l(x,u) or d; — min az’l(x,u). (2.19)
NE<s lul<r

Remark 2.19 (Computational cost). To see the maximum number of
matrices provided by the approach proposed in (2.18), consider a func-
tion g € C'(RP,R9). It has the Jacobian matrix ] € R9*P with elements

given by
_ %9
Ji = ox;’

where 1 < i< pand 1 <j < qare, respectively, the number of lines
and columns.

Fix two values i and j and consider a matrix having only one ele-
ment of the form J: 5 and, consequently, all of the others of the form
J5; forevery 1 <i<pand1<j<qwithi#iandj#j. Forinstance,

if i =j = 1, then this matrix is represented by

-+ -
+ 4 +
+ o+ +

The number of matrices with only one element of the form J;- 5 is
given by the combinantion of one symbol — among the all of the (p x

q — 1) symbols +. Thus,

pPXxq (p x q)!
N A TTETE U

which is the permutation of — among all +.
Hence, the total number of matrices is given by the sum of all of the

above combinations

"qu (p . :"qu k! P xq) = 2P7.
=\ & Kkp xg—k)!

Therefore, the number of matrices grows exponentially with the
dimension of the domain and image sets of g. For a system with dy-
namics described by g, the number of matrices increases exponentially
with the number of variables and equations of the system.

Note also that, depending on the structure of the function g, the
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number of matrices may be smaller than p x q. Example 2.20 illustrates

this case. )

Example 2.20. Consider the nonlinear function fn; € €' (R3,R), and
the function i, € C'(R3,R) assumed to be linear in the arguments.

Recall the definition of the function f;,,

frn(x,u) = fr(x,u) — Fx — Gu, (2.16)
where x := (x1,x2). Since fy ; is linear in the arguments, the function
(2.16) is given by fy, (x1,%x2,u) = [fn1(x1,1),0]T. Following the previ-

ous definitions of the derivatives, the 22* = 16 matrices C,, are

e i choCh e
(31 €3 ) (31 €3 ’ (51 €35 , I ,
e Ci1 Ci2 o Ci2 o Ci

) ) ) )
¢ €l e | e e e
- - T To- : (2.20)
¢l cn ¢l cn o ci2 ¢l cn2

) ) ) )
(21 | (1 | (1 | [ €2
o Ci2 Ci1 Ci2 €11 C12 €11 G2

) ) )
(&1 | (1 | (21 2] [ €2

Because of the structure of ﬂﬂ and fh, 2, ¢, =c¢i, =0, and for every
i=1,2,¢;; = c;; = 0. Thus, the matrices (2.20) are reduced to the
first pair at the first line.

For the derivatives with respect to the input u, the 2% = 4 vectors
D, are

dy dy dy dy
Gl g e (o

Since d;, = dj =0, these vectors are also reduced to the first pair. ¢

From (2.16), for every x € N¢, and every |u| < 1y, the value fy, (x, u)
is contained in the convex set formed by (2.17), and the matrices Cr,

and vector D,,, where m € M and v € V. More precisely,

Claim 2.21. For every x € N, and for every ul < ry, system (2.1) satisfies

the following linear differential inclusion
x € co{(F+ Crm)x + (G + Dy )ul, (2.21)

where m e Mandv e V. O

The proof of Claim 2.21 is provided in Section 2.5.4.
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Remark 2.22. ?* This linear differential inclusion goes further than the
linearization (2.17), because the gradient of the nonlinear terms is also
taken into account. Two aspects are crucial, when using this method
to describe the dynamics of fi,. Namely, the size of the neighborhood

N, and the rate of change of the nonlinear terms 1. o

Consider the canonical basis in R™, i.e., the set of vectors {e;}icy,
I ={i € N:1 < i< n}, where the components are all 0 except the i-th

one which is equals to 1.

Proposition 2.23. 25 Assume that there exist a symmetric positive definite
matrix W € R™™ and a matrix H € R satisfying, for every m € M,

and for everyv eV,

WF+C)" +H(G+D)" + (F+ Co)W+ (G+D,)H" <0, (2.22)

W We;
Viel, >0, (2.23)
* 1
XT
Vp € P, Pl >0, (2.24)
* W
and
W H
> 0. (2.25)
* 1

Then, by letting L = {1}, Vq(x) = x"Px, where P =W~1, ¢, =1,C; =R",
D; = Q:1(V1), g1(x) = {1} and @1(x) = Kx, where K = HTP, Assump-
tions 2.8 and 2.12 hold. O

From Schur’s complement,?® the matrices (2.23)-(2.25) are, respec-
tivel, equivalent to the following system of matrix inequalities in the

variables W and H

Weiel WT < 12W, (2.23.bis)
W] <1, (2.24.bis)
HHT < wrl, (2.25.bis)

The proof of Proposition 2.23 is provided with details in Section
2.5.5. A sketch of the proof is given as follows. Equation (2.22) implies
that V; is a Lyapunov function in the small?” for Zy,(¢@1). Equation
(2.23.bis) implies that Q<1 (V1) C N¢,. Equation (2.24.bis) implies that
co({xp € R™:p € P}) € Q. Equation (2.25.bis) implies that (| < ry,.

Note that, from Proposition 2.23 and Assumption 2.8, the set {0} x

24 (Stein Shiromoto, Andrieu, and Prieur,
2013b)

25 (Stein Shiromoto, Andrieu, and Prieur,
2013b)

Since the results given by Proposi-
tion 2.23 depend on the neighbourhood
chosen a priori, and the parameters ¢
and M from Assumption 2.10 must be
constant and such that (2.7) holds glob-
ally, it is not possible to compute them

here in Proposition 2.23.
26 See Theorem 2.28.

27 See also Definition A.34.
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{1} semiglobally asymptotically stabilizable for . It now remains
to blend the practical asymptotic stability of A with the semiglobal
asymptotic stability of the set {0} x {1} to achieve global asymptotic

stabilization of {0} x {1}. This is purpose of the next section.

2.3.4 (GLOBAL STABILIZATION

In this section, the global practical asymptotical stabilizability of A is
blended with the semiglobal asymptotic stabilizability of the set {0} x
{1} to achieve global asymptotic stability of the latter. More formally,

Corollary 2.24. Under Assumption 2.10 and the hypotheses of Proposition
2.23, by defining the hybrid feedback law % as in (2.10)-(2.13), the set {0} x
{(1,1)} is globally asymptotically stable for Xy (). O

2.4 JLLUSTRATION

Consider the system given by

{ X1 = x1+x2+ 0107 + (14 x1) sin(u)], (2.26)

5(2 = Uu.

In the presence of the term 0.1(1 + x;) sin(u) in the time-derivative of

x1, it will be shown that the backstepping technique is difficult to apply.

Let
fi(x1,x2) = x1+x2+0.1x3, hy(x1,%2,u) = 0.1(14x7)sin(u),
fa(x1,%x2) = 0, ha(x1,x2,u) = 0.

Firstly, it is checked the necessary assumptions for Proposition 2.14

and Theorem 2.16.

AssuMPTION 2.10. To see that item a. holds, consider the Lyapunov
function candidate given, for every x; € R, by V;(x1) = xi/;. Taking

the Lie derivative in the f;-direction yields, for every x; € R,

Le, Vi(x1,%2) =% +x1x2 + 0.1%]

Consider the feedback law given, for every x; € R, by ¥(x;) =

—(1 + Kq)x7 — 0.1x3, where K; > 0 is a constant value. Letting x, =

IJ)1 (X] ) y1€1dS

Lt, Vi(x1,W%1(x1)) = —Kix? = —a( V1 (x1)),
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where, for every s € Rxo, «(s) := 2K;s.
Since item a. of Assumption 2.10 holds, the backstepping technique
could be applied to (2.26). Following the procedure described in Sec-

tion 2.7.1, consider the Lyapunov function candidate

V: RxR — Ry

(x1,%2) — Vilx1)+ %(Xz —P1(x1))%

Taking its Lie derivative, algebraic computations yield, for every (x1,x2,u) €

R xR xR,

L, Vixiyxa,u) < =Kixg +x10.1(1 4 %) - sin(uw) + (x2 — 1 (x1))

: (u+ %‘ 14Ky +0.2Kyx7) - (X1 +x2 + 0102 + (1 +x7) »sin(u)])) . @27)
In order to have a term proportional to (x; — 1 (x1))? in the right-

hand side of (2.27), it is necessary to solve an implicit equation in the

variable u defined as E(x1,x2,u) < —K1x§ — L(x2 —1(x1))?, where E

is the right-hand side of (2.27), and L > 0 is a constant value. Since

this procedure seems to be difficult (if not impossible), it motivates

the design a hybrid feedback by applying Theorem 2.16.
To see that items b. and c. hold note that, for every (x1,x2,u) €

R xR xR,

hi(x,x2, W)l = [0.1(T+x1)sin(u)] < 0.1(1 4+ [x1])

“’LZ(X],XZ,'LLN = 0
ohy ’

T(X] y X2y u)
X2

Lh, Vi (x1, 1 (x1),1)

= 0

N

x110.1 +x30.1

x? 0.12
< 7. -
< 212+ 7

where the last inequality is obtained by applying Young’s inequality
in [x;16.
Finally by letting, for every (x1,x2) € Rx R, W(x1,x2) = 0.1(1+[x11),
e < 1-12/0k) and® M > 0.1/(4K, ¢) items b. and c. of Assumption 26 The conditions ¢ < 1—1.2/(2k,) and

Lo e > 0 imply in a lower bound for K; >
2.10 are satisfied. 0.6.

ASSUMPTIONS 2.8 AND 2.12. From the definitions of V; and 1y, the set
A is given by

A= {(x1,xz) ERXR:|x1| < V2M,x2 = —(1T+Kq)xq —O.bﬁ}.

Firstly, it is established the sets P and {x, € R™ : p € P} such that
(2.15) holds. Since {7 € €' (R,R), from the mean value theorem, for
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at = max
x1]<Vv2ZM

a = min
Ix1]<V2M

Figure 2.2: The sets A (in red) and the
convex set defined in (2.28) (in blue) are
presented in solid line. The circles are
the vertexes of this set. The dashed
straight lines which bound A are given
by functions x; — a’x; and x7 —
a Xi.

0y,
0x1

every xj € [—\/ZM, \/ZM} \ {0}, there exits ¢ € {—\/ZM, \/ZM] such
that
0

aX1

Pi1(x1) =

(c)-xq.

Let the constant values

(x1) = max —(1+K;)—0.2x7 =—(1+K;)+0.2v2M

[x11<V2ZM

"ix) = min —(1+Kj)—0.2x; = —(1 +K;) — 0.2v2M

% (x1

[x11<vV2ZM
and let P ={1,2,3,4}.

Together with the definition of the constant values a* and a~, for
every [x1| < v2M, a” -x; < 1(x1) < a* -x;. Thus, for every (x1,x2) €

A, a” -x; < x2 < a’ - x;. This implies that
A C co((VIM) x {x3<%, x5 =) U ((=VZM) x {5770, %;>))), (2.28)

where
X370 = —atV2M, x3=° =atV2M,

X770 = —a V2M, x,;<% =a " V2M.

Figure 2.2 illustrate the inclusion (2.28).

(2.29)

0.65\ T T T T =

-0.2 -0.15 0.1 -005 O 005 01 0.15 0.2

T

A necessary condition for feasibility of the Linear Matrix Inequali-

ties of Proposition 2.23 is A C N,. This inclusion holds, if vV2M < 14
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Figure 2.3: The sets N, (in red), 2
Q_; (x"Px) (in blue), and the inclusion
(2.28) (in red) at the center. Initial condi-
tions are points given in a ball of radius 15¢ 7
0.5 and centered at the origin.
1 L 4
0.5 ]
& of 1
-0.5¢ 1
-1r ,
-1.5¢ 1
_2 I I |
-1 -0.5 0 0.5 1
T
and [a*v/2M| < 1,. These inequalities imply that K; must satisfy
0.1 T2
0.6 <K ——02r — 1. 2.3
2r3 Foe<fis ™ m (2.30)
Remark 2.25. Equation (2.30) imposes a limitation on the speed of
response, since K; is lower and upper bounded. o
Applying the technique presented in Section 2.3.3, let 6 = 0.1, r =
[1,2], N ={(x1,x2) € RXR: [xq] < 1, [x2] < 2}and [u] < 2. Moreover,
Equation (2.30) holds with K; = 1.45. From Assumption 2.10, and
such a choice for Ky, let M = 0.03, and ¢ = 0.6.
The matrices F and G defined in (2.17) are given by
11 0.1
F= and G= .
0 0 1
The function f}, is given by
- 0.1sin(uw)(x7 +1) — 0.1u+0.1x3
frix,u) = )
0
and its derivatives with respect to the state and input are
ofn 0.2x7 +0.1sin(u) 0 ofn 0.1cos(u)(x7 +1) —0.1
- (x1,%2) = and  ——=(x1,%2) =
0x 0 0 ou 0

The matrices {Cr, € R2*2:1 <m < 2}and{D, e R2:1 < v <2}
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have elements defined by (2.18) and (2.19). The matrices that are not
identically zero are given by

03 0 —03 0 0.1 —0.3
m= )C2: ,D]: ,andDzZ .
0 o0 0 0 0 0

Using SeDuMi 1.3 to solve the Linear Matrix Inequalities (2.22)-
(2.25), it yields

, [27.4276 11.2248

_ and K= [712.9029 —6.4736}.
112248  6.2911

From Proposition 2.23, Assumptions 2.8 and 2.12 hold with ¢, = 1.
Figure 2.3 shows some solutions of system (2.26) in closed loop with

the feedback law ¢, the inclusions A C Q¢ (Vi) and Q¢ (Vi) C Ng,.

THE MAIN RESULT. Since Assumption 2.10 holds, from the proof of

Proposition 2.14 the feedback law given, for every (x1,x2) € R™ ' xR,

by
x
@g(x1,%2) = —(14+Kqy+20x1)(x1 +0x3 +x2) — ﬁ
x1 —P1(x1) C 2
Ty [C‘F ZA(XMXZ) } )
where

Alxa,x2) = [xal0(T + Ixi]) + KyO(T + [x1 (1 +[1 + Ky + 201 ),

and with parameters 6 = 0.1,

c:35()>349:max{8

,EKVK1,1}:max{ ] KVK“J},

elo(a’) — a(M)]’ )

M+ a

Ky =350 < ——5—,

a = 0.01, and a’ = 0.04 renders the set A globally practically asymp-
totically stable for (2.26) in closed loop with @g.

Theorem 2.16, provides a hybrid feedback law .%". Let by = 0.75,
the discrete set Q = {1, 2} x{1}. From (2.10), the subsets of R™ are given
by

Cii = Qax'™Px),  Dig = Qui(x"Px),

Coi = Qz075(x"Px), Dzi = Qco75(x"Px).
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From (2.11)-(2.12), the maps are given by

e1(-), if q=1,
q’q,](') = .
(pg(’)> if q :2)

D,13x~ g2,1(x) ={(1,1)}and

gii: Din = Q
{(1,1D}, x€Q1(x"Px) N Dy,
X — {(2,1)}, x€Qo1(x"Px),
{(1,1),(2,1)}, xe€ Q=1 (\i)N Dy,

Moreover, from Theorem 2.16, the origin is globally asymptotically
stable for (2.26) in closed loop with .JZ".

A simulation of (2.26) in closed loop with .%” with initial condition
(x1,x2,q) = (2,0,1) is presented in Figure 2.4. It is shown the time
evolution of the x;, x; and ¢ componentszg. Firstly, (2.26) is in closed
loop with @4 (for t € [0, 1.4]), and after (2.26) is in closed loop with ¢+,

and the solution converges to the origin.

2 T
§1F 1
0 0.5 1 1.5 2 2.5 3
time
0 \
a
_5 | 1 i 1 L
0 0.5 1 15 2 2.5 3
time
2 T
1
1
> 1.5F : .
1
1 | | ! 1 1 |
0 0.5 1 1.5 2 2.5 3

time

29 Regarding q, here it is shown only its
first component, because the second
one does not change.

Figure 2.4: Time evolution of a solution
of (2.26) in closed loop with .7 starting
from (2,0, 1).
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2.5 PROOFS OF CHAPTER 2

2.5.1 PROOF OF LEMMA 2.5

Proof. The proof consists of showing that (2.2) satisfies Assumption
2.4 and use (Goebel, Sanfelice, and Teel, 2012, Proposition 6.10) to
show that solutions exist.

From Definition 2.1, for every q € Q,
¢ the sets C4 and Dy are closed subsets of R™;

* Since ¢4 € C°(R™,R) and f, € C'(R™*!,R™), for every fixed q € Q,
fr(@q(-) € €°(R™R"). From Theorem A.20, fi(-, @q(-)) is lo-
cally bounded relative to C4. Moreover, for every x € Cq, the
set {frn(x, @q4(x))} is a singleton, thus convex and nonempty. Since

dom(fn) =R™, C4 C dom(fy);

* By definition, g4 € O8C(R™, Q). Since Q is a finite discrete map, for
every x € Dy, g4(x) is locally bounded. Moreover, dom(gq) = Dy

implies that D4 C dom(ggq).

Thus, Assumption 2.4 is satisfied. Now, it remains to show that solu-
tions of Ly (%)) exist.

For every Q(0,0) € Q, since R™ = Cgqo,0) U Dg(o,0), X(0,0) €
D (0,0), or X(0,0) € Cq(0,0) \ Dg(0,0)- In the latter case, system (2.2) is
given by

X = fr(x, g (0,0)(X)). (2.31)

Since fr, € C'(R™,R™), and ¢4 € C°(R™,R), from Theorems A.24 and
A.25, for every initial condition X(0,0) € Cq(0,0) \ Dg(0,0), there exists
a unique solution for (2.31). Thus, for every X(0,0) € Cq0,0) \Dq(0,0),
there exists a neighbourhood N (X(0,0)) of X(0,0) such that, for every
x € N(X(0,0)) N Cqo,0),

{fr (%, ©Q(0,0) )} N Teg 0.0, (%) # 0y

where

Xi—X
TCQ(O,O) (X) = {W ceR™: H{Xi}iel\l C CQ(O,O)vxi — X, H{Ti}ieN C R, Ti \ 0, s.t. 11_ — W} .
1
In other words, the tangent cone at x € N(X(0,0)) has non-empty in-
tersection with the image of the vector field fy.
Note that, from Definition 2.3 at each jump, the function X remains

constant. Also, it never leaves the set C;UD, because CqUD, =R™.
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Hence, the third case of (Goebel, Sanfelice, and Teel, 2012, Proposition
6.10) never happens.

From (Goebel, Sanfelice, and Teel, 2012, Proposition 6.10), for every
Q(0,0) € Q, and for every X(0,0) € Cq(o,0) U Dg(o0,0), there exists
a non-trivial hybrid solution (X, Q) for (2.2) that satisfies one of the

following conditions

a. (X, Q) is complete or;

b. dom(X, Q) is bounded and the interval I’, where ] = sup; dom(X, Q),
has nonempty interior and t — (X(t,]), Q(t,])) is a maximal solu-

tionof L (@q,y)), infactlim_, 7 [X(t, J)| = oo, where T = sup, dom(X, Q).

This concludes the proof. u

2.5.2 IPROOF OF PROPOSITION 2.14

To prove Proposition 2.14, the following lemma is needed.

In other words, Lemma 2.26 shows that
Lemma 2.26. There exist positive constant values a’ and Ky, and a class it is possible to tune the gain Ky such
that there exist sublevel sets of the pos-
itive definite function given by (2.32) that
are contained in B¢, (A).

C', proper and positive definite function3

V:R"TxR — R

K (2.32) 30 Recall that the proper function V; €
(x1,x2) — Vi(x1)+ l(XZ —P1(xq ])2 (€' N P)(R™ T, Ry) is introduced in
2 Assumption 2.10.
such that the set Q< (V) satisfies the inclusion
Q<a’ (V) C B<a(A). (2.33)
O

Proof (of Lemma 2.26).  Consider the sequence of proper functions {Vy Jxen C

(€' NP)(R™,R>o) given, for every (x1,x2) € R*! x R, by
k 2
Vie(x1,%2) = Vi(x1) + E(Xz —P1(x1))7,

and the sequence {a; }xen C Rxo, where a; = (a+1)/y.
Assume, for purposes of contradiction that, for every k > 0, inclu-
sion (2.33) does not hold. From the surjectivity and continuity of Vi,

there exists a sequence {xi}xeny C R™, where xy = (x1 x, x2,k), such that

Vie(x1kx2k) S M+a and  (x1,k,%2,k) € BcalA).
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31 See Assumption 2.10.

%2 Note that with these constraints,
Vi(xj,x3) < a’.

This implies that there exists ¢ € (0, 1) satisfying

Vilxix) < E(M+a:£1 ,
b — Wil ))? < 2 <M+ - )

Since3! V; is proper, from the first equation of (2.34), the sequence
{x1,xJken C R™ belongs to a compact subset. Hence, there exists a
subsequence {x1 i, }jen C {X1,k}ken such that xj \; — xj, asj — oo.

It remains to show that x, i is also bounded. Note that, for every
k€N xax = b1(x1,k) + x2,6 — $1(x1,x). This implies that x3, <
W1 (x1,1)17 + Ix2,xk — P71 (%71 x)[>. From the second equation of (2.34), as
k — 00, (x2,x — W1 (%7 ,k))z = 0. Together with the existence of the con-
verging subsequence {x1 i, }jen C {X1 k}ken, asj — oo, [x5] < [P (x7)]
and the sequence {xy}xen C R™ is bounded.

From (2.34), Vi (x}) < eM < M and x5 — (x5) = 0. Hence (x},x3) €
A. This contradicts the fact that xi; = (x1,x;,%2,x;) € B<a(A). Conse-
quently, there exist a’ > 0 and Ky > 0 such that (2.33) holds. This

concludes the proof of Lemma 2.26. [ |

Remark 2.27. It remains to estimate the values Ky and a’. By letting
a’ < M+ aand K, = (M+a)/(42) the condition Q¢4+ (V) C Bga(A) is

satisfied. To see this claim, pick any (x},x3) € Q<q/(V) such that3?

{ Vi) < 5
s —bi(x7)l < a.

N

This implies that

* ok * K * * M+a M+a M+ a
V(x7,x3) :V1(X])+7V(X2—11)1(x1))2 < 3 + 7 =3 i

and the inclusion (2.33) holds.

Note that the gain Ky brings a dependence of V on the parameter a.
In other words, Equation (2.32) is also parametrized by a. A Lyapunov
stability theorem for uniform global practical stability is provided in
(Chaillet, 2006, Theorem 7.5) (see Theorem 2.29, below), where an ad-
dition condition concerning the asymptotic behaviour of bounds of
the parametrized Lyapunov function is introduced. To see that (2.32)

also satisfies (2.44), consider the function

e: R xR — Ry

(x1,%2) = (x2 —W1(x1))?
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that is positive definite with respect to the set {(x1,x2) € R* ' x R :
x2 = P(x7)} and proper. From Claim A.33, there exist functions «,

and &, of class K, such that, for every (x1,x2) € R™ ! x R,
e (I(x1,%2)1) < e(x1,%x2) < Ke(|(x1,%2)).

From (2.32), consider function Ky : R>¢ — R given by Ky (a) and

satisfying K, (a) — oo, as a = 0,

o () + Ky (a)ee (1(x1,%x2)1) < Vx1,%x2) <o (lxq]) + Ky (a)ae (|(x1,%2)1).

Moreover,

Ky (a)eee (I(x1,x2)[) < & (x1]) + Ky (@) ([(x1, x2)1) < V(x1,x2)

<@ () + Ky (a)xe ((x1,%2)1) < max {1, Ky (a)} (@ (I(x1,%2)1) + e ([(x1 ,Xz)l))

Define, for every s € Ry, the class K, functions

®a(s) = max{l,Ky(a)}(a;(s) + xe(s))
1
la(s) = mﬁe(3)~
Since33, for every s € Ry, 3 Because, for every s € Ry, ag' o

ﬁu(s) =Ss.

Kv(a)
Hence, the condition (2.32) holds. o

lim o' 0 ®o(a) = lim &'
a—0 a—0

max {1, Ky (a)} (& (a) +&e(a))) =0.

Proof (of Proposition 2.14). Let a > 0 be a constant value. It will be
shown that there exist a feedback law ¢4 € €°(R™\ {0},R) and a con-
stant value a’ > 0 such that the set Qq/(V) C Bgq(A) is globally
asymptotically stable for Iy (@4).

Consider the function

r: R"TxRxR — R"!

(x1,x2,u) = fi(x1,%2) +hi(x1,%x2,u).
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Taking the Lie derivative of V; yields, for every (xq,x2,u) € R x

R xR,

L., Vilx1,x2,u) = L¢ Vilxa,x2) + Ly, Vil(x1,x2,u)
= L Vilxa,x2) + Le, Vi(xr,W1(x1)) = Le, Vi (x1, P01 (x1)) + Ly, Vi (x1,x2,1)
+Ln, Vi(xr, ¥1(x1),uw) — Ly, Vi (x1, P17 (x1),1)

< —a(Vilxa)) + (1T =e)ax(Vi(x1)) + ex(M) + Lg, Vi (x1,%2) 4 Ln, Vi (x1,%2,1)
—Le, Vilxa, ¥ (x1)) = Ln, Vi (x5 1 (x1), ).
“Recall that the inequal- where the last inequalitiy is due to a. and b. of Assumption3* 2.10.
ity  Ln, Vi(x1,¥i1(x1),u) < Thus. f el
(1 — &«(Vi(x1)) + ex(M) is us, for every (xq,xz,u) € R xR xR,

assumed.
L., Vilx1,x2,u) < ela(M) — a(Vi(x1))] + Ly, Vi(x1,%x2,u)
—L, Vi (x1, 1 (x1),u).

Given (x1,x2) € R x R fixed, let
T]X] X2 : [O) ]] — R
s = sxa A+ (1—s)Pi(x1)

Since 11 € C'(R™ R 1) and 1y, x, € C'([0,1],R),

dT‘]

K(XT yMNxq,x2 (S),‘LL]

B an
My ,x2

Integrating both sides with respect to s, yields

1

1ok, 1) = 11 By (1)) = (2 = 1 0] [ 32 g s (5, 0) .

Hence, from (2.35), for every (x1,x2,u) € R* ! x R x R,

1

Lo, Vi (x1yx0010) < elac(M) — ae(Vy (x1))] + %(m =1 (x1)) - J ST (1T () ) s,

Consider the feedback law defined by

Y (R xR)\{0,0) xR — R

_ 1 u 1 0V
- L 7
(x1,%2,0) = le(xnxz) {Kv_'_ 01 (x1,%x2) Ky,
0f;
(J; anm,xz (thm,xz(s)) dS] )

where Ky is given by Lemma 2.26.

(2.35)

(X715 My %2 (8), 1) - (x2 — 1 (x1)).

(2.36)
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Let u = {(x1,x2,1) and denote it by P(i). Recall Equation (2.32)

VR xR — R

K (2.32)
(x1,%2) = Vilx)+ %(Xz —1(x1))%
By taking its Lie derivative in the fy-direction, it yields
Le, V(x1,%2,0(W) = Ly, Va(x1,x2, W(W)) + Ky (x2 — W1 (x1))[f2(x1,%2) (@) + ha(x1, X2, (W)

—Lr]lp] (X1>X2»¢(ﬁ)]]

1
< s[oc(M)—a(vmx]))Hgl(xn-(xZ—wl(xmj O (1 s e (), (@) dis
X1 an)c],xz
0
+Ky (%2 — 1 (x1))[F2 (%1, %2)W (@) + Mo (x1,%2, B(@)) — Ly 1 (1, %2, B (1))
< a[cx(M)—a(vmx]))Hm—un(xm-lgv‘(m-J (1, s (51 D) ds
X1 anx1,xz
+KyF2(x1, %2 (1) + Kyha (x1, X2, P (@) — Ky Ly, 1 (x1, Xzﬂb(u))}
< elalM) — Vi b))+ (2 — 1 () - [gv‘(m | S e 9 bl s
X1 T]x1,xz
+ﬁ+thz(Xth,lT)(ﬁ))+Kvall|)1(X1,Xz)—gl(X1)'J of: (X1,Mx; x5 (8)) ds
X1 anx1,xz
0
_KVI—n 11’1 (X1 ) XZ)J)(U')):|
oV 1 oh
< elaM) = (Vi) + (2 = i (x1)) {u%‘m)j 01, o (), (@) ds
X1 anxl,xz
0
+Kyvha(x1,x2, D (W) — Ky L, P (x1, %2, P(1))
< ela(M) — a(Vi (x1))] + (x2 — by (x1)[E + Y (x71, x2, B(W))],
where
oV 16}1
T, x2, () = 3~ (1) -Ja—é(xl,nx,,xz(s),d)mn ds + Kvha (x1,x2, (1)) — Ky L, 1 (61,2, (1))
0

From items b)-d) of Assumption 2.10, for every (x1,x2,1) € R x

R x R,

IV (x1,x2, 0 (W) < Alx1,x2),
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where

Alx1,%x2) = %(M)JW(XIMM,XZ(S))dS
) (14|52 ) )
X1

From Cauchy-Schwartz inequality, and for each constant value ¢ >

0, and for every (x1,x2,u) € R™ ! x R x R,

(x2 — 1 (x1))V(x1,%2,1) < = + —(x2 — W1 (x1))2Ax1,%2)%

o=
Ao

Letting
G = =0 =1 0a)) [e+ AN x2)? (2.37)

it yields, for every (x1,x2) e R* ! xRandc > 1,

L, Vix1,x2,0) < elalM) — (Vi (x1))] + (x2 — 1 (x1)) 0 + % + %(Xz — 1 (x1))?Ax1,%x2)?

< ela(M) — (Vi (1)) = (x2 — 1 (x1))2 [C + %A(X‘ ’XZ)Z] + %
00 1 (a) Al )2,

Thus,

L Vi d) < elalM) —alVi )] + ©

—c(x2 — 1 (x1))?,

(2.38)

where, in order to simplify the presentation, \(x1,x;) is denoted by

P.

Since V; is proper function, the set

Ao = {(thz) ER™ T X R™:ea(Vy(x1)) + clxa — 1 (x1))? < ex(M) + %}

is compact. Note that A is the set of (x1,x2) € R*! x R for which

thV(XT )XZaLI)) > 0.

Let ¢ = max{V(x1,x2) : (x1,x2) € Axo}, for every ¢ > 1, and for
every (x1,%2) € Q=¢(V), thV(xl,xz,ﬁ)) < 0. In other words, Q¢ (V)

is globally asymptotically stable for Zy ().
Let K« > 0 be the Lipschitz constant of « in the compact set [0, ].

For every (x1,x2) € Q¢ (V),

alVibxr) = alVixr, x2))l € 5% 02 = by (1)),

From (2.38), for every c¢ > 1, and for every (x1,x2) € Q¢ (V),
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L Vi, B) < eladM) = aVabe)l o+ - = el =i (1),

< elx(M) = &(V(x, x2))] + elo(Vxa,x2)) — (Vi (x1))] + % —cx2 —P1(x1))%

KVKLX

N

eloe(M) — a(V(x1,%x2))] + % — (c —¢

Consider the constant value a’ given by Lemma 2.26 and let

€y = max ! sKVK“ 1
9 ela(a’) —a(M)]’™ 2 7 [°
For every ¢ > cg, and for every (x1,x2) € Q< (V),

thV(Xth,l])) < 3 [(X(Cl/) - ‘X(V(XHXZ)H .

Thus, for every ¢ > ¢4, and for every (x1,x2) € Q~q/(V),

I—fhv(x1 )XZaLI)) <0.

Hence, the set Q¢4 (V) is an attractor for Zy ().

Since from Lemma®® 2.26 the inclusion Q«a/(V) C Bgq(A) holds,
solutions of £ () with initial conditions belonging to B..q(A) will
converge to a set contained in B¢,(A). Thus, A is practically asymp-
totically stable®® for £y, ().

Moreover, from (2.36) and (2.37), by letting, for every (x1,x2) €

R x R\ {(0,0)},

1 oV;
—  |KyL X1,%2) — —(x
AT [ vLe, P (x1,%2) (x1)

@g(x1,%2) P
—(x2 =1 (x1)) - (C+ %AZ(XMXZ))} ,

where ¢ > cq4 the feedback law P() = @g4(-) renders the set Q¢q/ (V)
globally asymptotically stable for L, (¢4). This concludes the proof of
Proposition 2.14. [ |

2.5.3 I’ROOF OF THEOREM 2.16

Proof. Let the constant values a, b, and c, satisfy37 0 < by < ¢ and

be such that, for every l € L,

max{Vi(x) : x € B<a(A)} < by. (2.39)

Under Assumption 2.10, Proposition 2.14 provides the feedback
law @4 € C°(R™ \ {0},R). This is used to design a hybrid feedback

aXZ
0

) (x2 —W1(x1))%

Let |x|q/ = dist(x, Q¢4 (V). Since
x € K, defined the function note
that oq/ (I1x])
—a(a’) +
is of class K.

= oafl(x1,x2)lar) =
x(V(x1,%x2)) which
Thus, for
Qsqr(V),

70(0/(|X‘a/)

every  (x1,x2) €
L(hV(X],XZ,II)) <
and Eq. (2.43) is satisfied.
35 More specifically, from (2.33)

% This also could be concluded with
Theorem 2.29 below.

of
L (X1, My s (5)) ds

37 From Assumptions 2.8 and 2.12, such
values do exist because, for every 1 €
L, V, is a proper continuous function.
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38 see also (Goebel, Sanfelice, and Teel,
2009, Page 51) or (Prieur, 2001) for sim-
ilar concepts applied to different control
problems.

law 7" building an hysteresis of local and non-local feedback laws on
appropriate domains.3® Define Q = {1,2} x L. Consider the subsets
(2.10) and the maps defined in (2.11) and (2.12). Recall that the state
of system Xy (%) is (x,q) € R™ x Q.

Case 1. Assume that q ={(2,1)}.

1i. If x € Cy,1, then from (2.11), @2,1(x) = @4(x). From As-
sumption 2.10 and Proposition 2.14, A is globally prac-
tically asymptotically stable for L1, (¢4) and, from (2.10)
and (2.39), A C Dy,;. Together with the fact that solu-
tions of (2.2) will not jump until the x component be in

D,,,, they will converge to D, y;

Lii. If x € Dy, then from (2.12), g,,1(x) = {(1,1)} and, af-
ter the jump, the local hybrid feedback law is selected.
Since the value of x does not change during a jump,
x € Dy after ajump, and from (2.10) and (2.39), D1 C
Q¢ (V). From the local asymptotic stability of {0} x L,
solutions of Xy (%) starting in D,,; will converge to

{0} x L;

To sum up Case 1, whenever (X(0,0),Q(0,0)) € R™ x {(2,1)},
the solutions of (2.2) converge to {0} x L.

Case 2. Assume that q ={(1,1)}.

24i. If x € Cyq, then from (2.11), @1,1(x) = @i(x), and the
local hybrid feedback law is selected. From the local
asymptotic stability of {0} x L, solutions of Iy, (.%5) start-

ing in C;; will converge to {0} x L;
2ii. If x € Dy . Then from (2.10) and (2.13), either

2ita. qt = {(2,1)} and, after the jump, ¢4 is selected.
Since before thisjump x € Q. (V1),and Q>., (V1) C
C,,1, and the x-component remains constant af-
ter the jump; from Case 1.i., solutions of (2.2) con-
verge to Dy y;

2iib. or q* = {(1,91(x))} and, after the jump, a local
feedback law is selected. Since before this jump,
x € Q¢ (Vi) N Dy and the x-component of the

solutions remains constant just after the jump,
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from the local asymptotic stability of {0} x L, so-
lutions of Ly (J#5) starting in Q<. (V1) N Dy will

converge to {0} x L;

To sum up Case 2, whenever (X(0,0),Q(0,0)) € R™ x {(1,1)},

the solutions of (2.2) converge to {0} x L.

Thus, the set {0} x L is locally stable and globally attractive for (2.2).
Hence, it is globally asymptotically stable for (2.2). This concludes the
proof. |

2.5.4 PPROOF OF CLAIM 2.21

Proof. LetN:=Ng, x{u € R:[ul < r,}, and fix (x1,u1), (x2,u2) € N.

Let also

gi: [O,H —- R
t o (1=t (x,w) + tlxo, 1)),

where 1 <i<n.
Since f;, € C'(R™*! | R"), for every i = 1,...,1n, g; € €'([0,1],R™).

Moreover, for every t € [0, 1],

tgti(t) = gradfn((1—t)(x1,u1) + t(x2,u2))((x2,1u2) — (x1,u1)).
- %m_t)x]+tx2)'(xz_x1)+%(“—t)u1+tuz)(Uz—u1)
X ou

From the mean value theorem, there exists ¢ € (0, 1) such that

dgi
dt

(€) = fyi(x2y12) — Fryi(x1,11).

Thus,

Ofni
ox

Ofn i
ou

fri(x2y12) — fri(xr, ) = (T—c)xg +ex2) - (xa —x1) + (1 =c)ug + cuz)(upy —uy)

Hence, for every (x,u) € N, there exists (x,1) € N such that

Ofn i
ox

?h,i(xa u) =

(%, 1) - x + —2L (%, W)u.
uw

From Equations (2.16) and (2.17), for every (x,u) € N, there exists
(x,1) € N such that

53
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From (2.18), there exist m, m € M such that

hoi = —
j; Cm,ij S ;; ale (%, 1) < Zcﬁ,i)W

j=1

This implies that, for every (x,u) € N, there exist m, € M such that

Together with (2.19), for every (x,u) € N, there exist m,™m € M,

and v,V € V such that
T’(i, ﬁ)u < Cﬂ’i_ - X+ Dv‘i.

Thus, for every (x,u) € N, there exist m,m € M, and v,v € V

Ofh.i 0fh i Ofh.i
L (0,0) + Conyi ) X+ | 225 (0,0) + Dyt ) 1 < il w) < [ =
d " du 7, ’ d

X X

afh’i

(0,0)+ G )t g

(0,0) + Dw) "

In other words, for every (x,1u) € N, there exist m,m € M, and v,v €

V, and t € [0, 1] such that

fh,i(x,u) < (] 7t)(Fi + Cm,i) -X + (G1 + Dyyi)u+ t(Fi + Cﬁ,i) - X+ (61 + Dv‘i)u.

Therefore from (2.1), for every (x,u) € N,
x € cof(F+ Cr)x + (G + D, Ju},

where v € V and m € M. This concludes the proof. [ |

2.5.5 IPROOF OF PROPOSITION 2.23

Proof. Equation (2.22) rewritten in terms of a Linear Matrix Inequal-

ity in the matrix variables (2.2) and W given by
W(F+Chn)T+H(G+Dy)" + (F+ C))W+ (G+ D, )H' <0.

Multiplying this equation at left and right by a symmetric positive
definite matrix P yields, for every m € M, and for every v € V, and

for every x € N¢, \ {0},
X" (F+Cm + (G+Dy)K)"Px +x"P(F+ Cyp + (G + D, )K)x < 0.

From Theorem 2.28, Equation (2.23) is equivalent, for every i € I,
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to

TPW — WeielWT >0
Since W = P!, for every x € Q<1(V1),

xTeielx < rixTPx < 12,
Since e; - x = x4, for every x € Q<1 (V1), x} <12. Thus, Q¢1(Vi) C Ng,.
From Theorem 2.28, Equation (2.24) implies that, for every p € P,
ngxp < 1. Thus co(fx, € R™:p € P}) C Q<1 (xTPx).
From Theorem 2.28, Equation (2.25) is equivalent to 2 W—HHT > 0.
This implies 2ZW~T > KTK. Then, for every x € Q<;(V}), x"KTKx <

r2xTPx < r2. This concludes the proof.

2.6 SUMMARY

A design of hybrid feedback laws method has been presented in this
chapter to combine a nonlinear feedback law that stabilizes a compact
set with a local feedback law that renders the origin locally asymptot-
ically stable. This procedure provides a stabilizing feedback law for
nonlinear control systems for which the backstepping design procedure
can not be applied to globally stabilize the origin. It has been devel-
oped a method to design a linear feedback law satisfying constraints

on the basin of attraction of the closed-loop system.

2.7 APPENDIX OF CHAPTER 2

2.7.1  THE BACKSTEPPING PROCEDURE

The backstepping is a well known method to design a feedback law ren-
dering cascaded systems asymptotically stable see, e.g., (Isidori, 1999;
Khalil, 2001; Kokotovi¢, 1992; Krsti¢, Kanellakopoulos, and Kokotovic,
1995).

Consider the system

x1 = fi(x1,x
1 1(x1,%2) (2.40)
x2 = falxi,x2)u
where, f; € €' (R™,R" ") and f, € €' (R™,R_0) .

Assume that, there exists a feedback law ¢ € €' (R,R) with ¢1(0) =
0 for the x;-subsystem rendering the origin globally asymptotically
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stable for
x1 = f1(x1, d1(x1)).

% See Theorem A.36. From the converse Lyapunov theorem?, there exist proper function
Vi € (€' NP)R™ T, Rp) and oy € K, such that, for every x; € R,
Le, Vilxr, 1(x1)) < —or ([xa).

Let (x1,x2) € R*! x R be fixed, consider the function

Mxxe : 0,11 — R
s = sxo+(1—s)di(x1)

Since for every (x1,x2) € R x R, f5(x1,x2) # 0, by letting u =

/£, (x1,x;), System (2.40) can be rewritten as

1

ﬁ(xl,wm)+(xZ—¢1m))J o

a X1,X2

X1 (thm,xZ (s))ds

7.(2 = vV,

where v € R.
Consider the variable change e := x, — ¢1(x1). Taking the time-
derivative of e yields € = x, —L¢, ¢1(x1,x2). System (2.40) rewritten in

the new variable e is given by

1
. ofq
x1 = fi(x7,p1(x1))+ COJ anx1,xz (Xhﬂxuxz (s))ds (241)

e = w,

where w =v —L¢, ¢1(x1,%x2). System (2.41) is denoted by x = f(x).
Consider the Lyapunov function candidate for system (2.41) given

by

o2
V(x1,e) = Vi(x1) + 5

Taking its Lie derivative in the f-direction yields

)% of
LiVixi,e) = Lﬁvmm,qa](xnw—‘ej !
aX1 5 anx1,xz

(X1, My x, (8)) ds + ew

1

A% of
< ol +e —‘(xmj L (X1, s () ds W
aX] anm,xz

Consider the feedback law

d)(X],e) =

1
6V1( 1).‘[ ofy

_E X (X1)nx1,xZ(5))d5_Kea

M ,x2

where K > 0 is a constant value. Letting w = ¢(x1, e) yields, for every
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(x1,e) e R*" xR,
LeV(x1,e) < —ou([x1]) — Ke?.

Thus, the origin is globally asymptotically stable for (2.41) in closed
loop with ¢. Hence, the origin is also asymptotically stable for (2.40),
because (x1,e) = (0,0) = 0 =x2 — ¢1(0).

Since ¢(x1,e) =w =v — L¢, d1(x1,x2), it follows that

oV of
v=_2"N (X]).J L (X1, My (8)) ds— (xa— 1 (x1)) 4Ly, b1 (x1,X2).
aX1 anx1,xz

Therefore, the feedback law defined, for every (x1,x2) € R xR, by Note that, if f,(0,0) = 0 the feedback
law ¢ would be discontinuous at the
origin.

1

oV of
——‘(xn-J L (X103 o (8)) ds — (x2 — b1 (x1)) + Ly, &1 (x1,%2)
6x1 anx1,xz

1
f2(x1,%2)

Qp(x1,%x2) =

renders the origin globally asymptotically stable for (2.40).

2.7.2 THE SCHUR’S COMPLEMENT

The Schur’s complement is used in this chapter to design a linear feed-
back law rendering the origin locally asymptotically stable. For fur-
ther reading on the Schur’s complement, the interested reader is in-
vited to see (Jbilou, Messaoudi, and Tabaa, 2004; Zhang, 2005). Here,
it is presented some basic concepts.

Consider the matrices A € RP*?, B € RP*4, C € R9%?, and D ¢

R9%4, and the block matrix M € R(PFTa)x(P+d) giyen by

A B
cC D

M =

b

and assume that det(A) # 0. Consider a vector z = (x,y) € RP x R9.

The linear system Mz" = 0 is equivalent to

Ax + By
Cx + Dy = 0.

Multiplying the first equation by —CA~', in the left, and adding it to

I
o

the second one, the x component of the vector is eliminated, and the

linear system is given by

(D—CA "By =0.
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40 (Jbilou, Messaoudi, and Tabaa, 2004)

41Based on (Zhang, 2005, Theorem
1.12).

42 Based on (Isidori, 1999, pp. 126).

43 See Proposition 2.14, above.

2.7.3

The matrix S = D — CA~'B is called Schur complement of A in M.

Theorem 2.28. 4! Let M € R(P+a)x(P+4) pe g symmetric matrix given by

A B
M = ,
!BT D
where A € RP*P is square and det(A) # 0. Then, M > 0 if and only if
A >0and (D—BTA™'B) > 0. O

From (Jbilou, Messaoudi, and Tabaa, 2004, Proposition 1), under
the hypothesis of Theorem 2.28, M > 0 if and only if D > 0 and A —
BD-'BT > 0.

A REMARK ON THE LYAPUNOV SUFFICIENT CONDITIONS FOR

PRACTICAL STABILITY

Recall the concept of global practical asymptotic stabilizability stated
in Definition 2.13.

Definition 2.13 (Global practical asymptotic stabilizability).#2 A
compact invariant set S ¢ R™ containing the origin is globally prac-
tically asymptotically stabilizable for (2.1) if, for every a € R.,, there

exists a feedback law ¢4 : R™ — R such the set
Bea(S) ={x eR™: [x|]s < a}

contains a compact invariant set that is globally asymptotically stable
for Zn(¢g). o

Under Assumption 2.10, for every a € R.o, there exists*® a feed-
back law @4 : R™ — R such the set B¢, (A) contains a compact invari-
ant set that is globally asymptotically stable for Zy, (¢ 4), where A is the
set given by

A={(x1,x2) ER™ T xR:Vi(x1) < Myx2 =¥y (x1)} (2.9)

Because of the choice of Ky, in the proof of 2.14, the feedback law
@y is parametrized by a. Thus, the closed-loop system L, (¢4) and the
candidate Lyapunov function

V:R™'xR — R 232)
K .
(x1,%2) = Vilxi)+ TV(XZ —1(x1))?
are also parametrized by a. The dependence of the the above func-

tions on the parameter a is highlighted by adding it as subscript, for
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instance, Zn(@g,q)

A question that arises from this dependence of a concerns the be-
haviour of the Lyapunov functions. A theorem introduced in (Chail-
let, 2006) gives a sufficient condition to achieve stability of a compact
invariant set. For the sake of completeness of this chapter, it is recalled

here

Theorem 2.29 (Lyapunov sufficient conditions for global practical asymp-

totic stability). ** Let A € R™ be a compact set. Suppose that, given “Based on (Chaillet, 2006, Theorem
any a > 0, there exist a continuous differentiable Lyapunov function V : 79

R™ — Rxo, and class Koo functions x,, oy, and «q such that, for every

X € B)a(A),

aq(Ixla) < Va(x) < Xallxla), (2.42)

thva(X) (pg,a) < _Cxa(‘x‘A)» (243)
lim o' 0 &4 (a) = 0. (2.44)
a—0

Then, the set A is globally practically asymptotically stable for system L (@g).
g
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A sufficient condition for the stability of the interconnection of dy-
namical systems is given by the small gain theorem. Roughly speak-
ing, to apply this theorem, it is required that the gains’ composition
is continuous, increasing and strictly smaller than the identity func-
tion. In this chapter, it is presented an alternative sufficient condition
when such criterion fails due to either lack of continuity or the bound
of the composed gain is larger than the identity function. The local
(resp. global) asymptotic stability of the origin (resp. attractivity of a
compact set) is ensured by a region-dependent small gain condition.
Under an additional condition that implies convergence of solutions
for almost all initial conditions in a suitable domain, the almost global
asymptotic stability of the origin is ensured. An example illustrates

the approach.
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3.1

INTRODUCTION

The use of nonlinear input-output gains for stability analysis was in-
troduced in (Zames, 1966) by considering a system as an input-output
operator. The condition that ensures stability, called Small Gain The-
orem, of interconnected systems is based on the contraction principle.

Sontag introduced a new concept of gain relating the input to sys-
tem states (Sontag, 1989). This notion of stability links Zames’ and
Lyapunov’s approaches (Sontag, 2001). Characterizations in terms of
dissipation and Lyapunov functions are given in (Sontag and Wang,
1995).

In (Jiang, Teel, and Praly, 1994), the contraction principle is used
with the input-to-state stability notion to obtain an equivalent Small
Gain Theorem. A formulation of this criterion in terms of Lyapunov
functions may be found in (Jiang, Mareels, and Wang, 1996).

Besides stability analysis, the Small Gain Theorem may also be used
for the design of dynamic feedback laws satisfying robustness con-
straints. The interested reader is invited to see (Freeman and Koko-
tovi¢, 2008; Sastry, 1999) and references therein. Other versions of the
Small Gain theorem do exist in the literature, see (Angeli and Astolfi,
2007; Astolfi and Praly, 2012; Ito, 2006; Ito and Jiang, 2009) for not
necessarily ISS systems.

In order to apply the Small Gain Theorem, it is required that the
composition of the nonlinear gains is smaller than the argument for all
of its positive values. Such a condition, called Small Gain Condition,
restricts the application of the Small Gain Theorem to a composition
of well chosen gains.

The approaches introduced in (Stein Shiromoto, Andrieu, and Prieur,

2013a,c) provide an alternative criterion for the stabilization of inter-
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connected systems, when a single Small Gain Condition does not hold
globally. It consists in showing that if a local (resp. non-local) Small
Gain Condition holds in a local (resp. non-local) region of the state
space, and the intersection of the local and non-local regions is empty,
additionally if outside the union of these regions, the set of initial con-
ditions from which the associated trajectories do not converge to the
local region have measure zero, then the resulting interconnected sys-
tem is almost asymptotically stable (this notion is precisely defined
below). In this chapter, a sufficient condition guaranteeing this prop-
erty to hold is presented. Moreover, for planar systems, an extension
of the Bendixson criterion to regions which are not simply connected
is given. This allows to obtain global asymptotic stability of the origin.

This approach may be seen as a blend of two small gain conditions
that hold in different regions: a local and a non-local. The use of a
unifying approach for local and non-local properties is well known in
the literature see (Andrieu and Prieur, 2010) in the context of control
Lyapunov functions, and (Chaillet, Angeli, and Ito, 2012) for blending
iISS and ISS properties.

3.2 BACKGROUND, MOTIVATION, AND PROBLEM STATE-

MENT

3.2.1 BACKGROUND

Let f € €' (R™ x R™, R™) and consider the system
x(t) = f(x(t),u(t)), 3.1)

where, for every t € R, x(t) € R™ and u(t) € R™, for some posi-
tive integers n and m. A solution of (3.1) with initial condition x, and
input u at time t is denoted by X(t,x,u). From now on, arguments t
will be omitted. Note that, from Theorems A.24 and A.25, for every

ue Ly

P (R,R™), and for every initial condition, there exists a unique

solution of (3.1).

Definition 3.1 (Input-to-state stability). I The equilibrium of the ori- ' (Sontag, 2008, pp. 8)
gin is said to be input-to-state stable for (3.1) if there exist y € K, and

B € KL such that, for every x € R™, for every u € L2 (R>o,R™), and

for every t € Ry, As remarked in (Sontag, 2008, pp. 9),
since v € K, sup{y(lu(s)l) : s €
[0, t]} is equivalent to v (sup{|u(s)| :

[X(t, %, W) < BIxl,t) +v (|ju , 3.2
(| oy ’OO) (3-2) s € [0,t]}) = v(lup t)leo)-
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2Based on (Dashkovskiy, Ruffer, and
Wirth, 2010; Liberzon, NeSi¢, and Teel,
2013; Sontag, 2008).

3 (Sontag and Wang, 1995)

where v (|ujo,y| ) is called ISS gain for (3.1). o

From now on, by saying that (3.1) is ISS it is meant that the equilib-
rium of the origin is input-to-state stable for (3.1).

Note that, solutions of ISS systems converge to a ball centered at
the origin and with radius given by v (luls) (see (3.2)). On the other
hand, for systems that are UGAS, solutions converge to the origin for

every input belonging to a given set (see (A.8)).

Definition 3.2. 2 Let k > 0 be a constant integer. A function V €
C*(R™,R>o) that is locally Lipschitz is called an ISS-Lyapunov function
for (3.1) if

* There exist &, ® € K, such that, for every x € R™,

a(lx]) < V(x) < &(|x]); (3.3)

e There exist ay € K, and a proper function A, € (€° N P)(R™,R>,)

such that, for every (x,u) € R™ x R™,
V(x) 2 o (lul) = D;LV(X> u) < 7}\x(x)7 (34)

where o, is an input gain. o

From Remark A .40, if k > 0, then D} V(x,u) = grad V(x) - f(x, u), for
every (x,u) € R™ x R™. The ISS property is characterized in terms of

the existence of smooth ISS-Lyapunov functions. More precisely,

Theorem 3.3. 3 System (3.1) is ISS if and only if there exists a smooth ISS-
Lyapunov function for (3.1). O

As remarked in (Dashkovskiy, Riiffer, and Wirth, 2010), the proof
that (3.3) and (3.4) imply that (3.1) is ISS goes along the lines presented
in (Sontag and Wang, 1995).

3.2.2 MOTIVATION

Consider the system
z=g(v,z), (3.5)

where g € C'(R™ x R™,R™). A solution of (3.5) with initial condi-
tion z, and input v at time t is denoted by Z(t,z,v). Let k > 0 be
a constant integer, from now on, assume that there exists a function

W e Gk(Rm, R}o)
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Ja, € Koo, IX, € Koo : Vz € R™,

Ja, € K, I, € (€° N P)R™,Rxo) proper : V(x,z) € R* x R™, W(z) > o, (v]) = DgW(v, z) < —A.(2).(3.7)

In other words, (3.5) is ISS.

SYSTEM UNDER CONSIDERATION. Interconnecting systems (3.1) and

(3.5) yields
{fc = f(x2),
_ (3.8)

z = g(x,2z).
Using vectorial notation, system (3.8) is denoted by ¢y = h(y). A solu-
tion initiated from y € R™*™ and evaluated at time t is denoted Y(t, y).
Considering the ISS-Lyapunov inequalities, after interconnection, the

following inequalities

y(W(z)) = DiVixz) < —Ax),
S(V(x)) = DiWixz) < —A(z),

are obtained with the gains y(-) = a, 0%, '(-) € X, and §(-) = a, o
() € K.
A sufficient condition ensuring that the origin is globally asymp-

totically stable for (3.8) is given by the following

Theorem 3.4 (Small-gain theorem). 4 Assume that V (resp. W) is an
ISS-Lyapunov function for (3.1) (resp. (3.5)) satisfying (3.3) and (3.4) (resp.
(3.6) and (3.7)). If,

Vs € Rug, 7vobd(s)<s, (SGO)

then the origin is globally asymptotically stable for (3.8). O

Equation (SGC) is called Small Gain Condition. At this point, it is
possible to explain the problem that is dealt with in this chapter. Sys-
tems for which the composition of the gains does not satisfy (SGC) are
considered.

In this chapter, it will be shown that, if

¢ There exist two gains y,; and v, for the x-subsystem of (3.8);
¢ There exist two gains 5; and 3, for the z-subsystem of (3.8);

* The compositions y¢od¢ and y 4084 satisfy the Small Gain Condition,

not for all values of the arguments, but for two different intervals;

&, (lz]) < W(z) < & (lzl), (3.6)

4 Based on (Jiang, Mareels, and Wang,
1996, Theorem 3.1).



66 | H.STEIN SHIROMOTO

¢ Inthe gaps where the small gain conditions do not hold, a condition
ensuring the convergence of almost all solutions towards compact

sets holds.

Then, for almost every initial condition, solutions of (3.8) converge
to the origin. Moreover, if n = m = 1, the previous conclusion holds

® See Theorems 3.13 and 3.14 below. true for every initial condition.?

3.3 STANDING ASSUMPTIONS
6 (Stein Shiromoto, Andrieu, and Prieur, Assumption 3.5. 6 There exist constant values
2013c)

0<KM<M<oo and 0<N<N < oo,

functions y and % of class X such that,

b = limsupy(s) >M, if M < oo,
s—»00 - (3.9)
b = limsupy(s)>M, if M=ooc.

If min{M, N} < oo, assume also that

max{y~" (M), N} < min{s(M), N}. (3.10)
Let
S = {(X)Z) e R™ XRmM<V(X) <M,W(Z) <N} (3 11)
U{(x,2) € R x R™: V(x) < M,N < W(z) < N} ’

The functions V and W satisfy, for every (x,z) € S,

V(x) 2 v(W(z)) = D{V(xz) < —Ax), (3.12)
W(z) 2 38(V(x)) = DygW(x,z) < —A(2). (3.13)

e}

Assumption 3.5 gives conditions for the ISS-Lyapunov inequalities
(3.12) and (3.13) to hold within the set S ¢ R™*™, defined as the union
of sublevel sets of the ISS-Lyapunov functions V and W.

Equation (3.9) suppose that, for the gain vy, its maximum value is
reached outside the set S (for the case in which S is bounded) or inside
it (for the case in which S is unbounded).

The role of Equation (3.10) becomes clear in Proposition 3.8, where
it is used for the computation of an attractor sublevel set and for the

estimation of the basin of attraction of this attractor.
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Assumption 3.6. 7 7 (Stein Shiromoto, Andrieu, and Prieur,
2013c)

if M <oo, se[MM]\{0}, yod(s)<s,

o o (3.14)
if M=oo, se&[M,M)\{0}, vod(s)<s.

e}

Assumption 3.6 implies that the small-gain condition holds in an

interval of R>( corresponding to the set S.

Remark 3.7. Equation (3.14) is equivalent to

ifM<oo, sely '(M),y

JIN{O}, Sovy(s) <s,
DA{O}, Sovy(s) <s.

1 (3.15)

, M
ifM=o00, sely '(M),y'(M
To see this claim, from (3.14)

if M<oo, se[MM]\{0}, &)<y '(s),
ifM=o00, se[MDb)\{0}, &(s)<vy '(s).

which is equivalent to,

ifM <oo, V¥sely '(M),y '(MJ]\{0}, Soy(s)<s
if M = oo, Vs € [y (M), b) \ {0}, Soy(s) <s

which, consequently, is equivalent to (3.15). o

3.4 RESULTS

Proposition 3.8. 8 Under Assumptions 3.5 and 3.6, let 8 (Stein Shiromoto, Andrieu, and Prieur,
2013c)

M =max{y "(M),N} and M =min{5(M),N}.

Then, there exists a proper function U € (CONP)(R™™ R) that is locally
Lipschitz on R™"™ \ {0} and such that,

Yy € Q5 (W Qg (W), ELIgU(Y(t,y)) <M.

Moreover, if v, 6 € (€' NK,), then a suitable U is given by

A sketch of the proof of Proposition 3.8 is given as follows. As-
sumptions 3.5 and 3.6 provide a proper function U € (€%, NP)(R™ ™, Rx,)

whose derivative? is negative definite in S. From (3.10), Q_g (W) \ 9ln the sense of Dini derivatives (see
= Definition A.39 below).
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0See also (Dashkovskiy, Ruffer, and
Wirth, 2010; Dashkovskiy and Riiffer,
2010; Stein Shiromoto, Andrieu, and
Prieur, 2013c).

1 See also (Dashkovskiy, Ruiffer, and
Wirth, 2010; Dashkovskiy and Riiffer,
2010; Stein Shiromoto, Andrieu, and
Prieur, 2013c).

12 (Angeli, 2004)

Q (W) # ¢, and Qgﬁ(u) \ng(u) c S. Thus, solutions of (3.8)
starting in Qgﬁ(u) \ Qgﬁl(u) converge to ng(m. The proof of

Proposition 3.8 is provided in details in Section 3.6.1.

Corollary 3.9. [Local stabilization] 10 Consider Assumptions 3.5 and 3.6
with the constant values M = N =0, My .= M < oo and Ny := N < 0.
The set Q g5 (Ug) is included in the basin of attraction of the origin of (3.8),
where Uy and M are given by Proposition 3.8. O

Remark 3.10. Since the function U given by Proposition 3.8 is not
locally Lipschitz in the origin, the construction of the function o €
(X N C') is slightly different. The interested reader may check the
construction of the function U in the proofs of (Sanfelice, 2014, Lemma

4.1 and Theorem 4.2) and (Praly, 2011, Théoreme 3.109). o

Corollary 3.11. [Global attractivity] 1 Consider Assumptions 3.5 and 3.6
with the constant values Mg := M > 0 and Ng := N > 0, and M = N = oo.
The set O <, (Ug) s globally attractive for (3.8), where Uy and My are
given by Proposition 3.8. O

From Corollary 3.9 (resp. 3.11), solutions of (3.8) starting in Q i, (Uo)
(resp. Q_w, (Ug)) converge to the origin (resp. O, (Ug)).

Note that if Q <M, (Ug)cQ <N (Ug), then global asymptotic stabil-
ity of (3.8) is achieved by the local stability of origin together with the
global attraction of Q <M, (Ug). When that inclusion does not hold,
solutions of (3.8) starting in Q<7\7i9 (Ug) \Qgﬁé (U¢) may converge to a
w-limit set instead of Q <M (U). To avoid it, the following theorems

provide sufficient conditions.

Definition 3.12. 12 Let A ¢ R™*™ be a compact set with respect to
(3.8). It is called almost globally asymptotically stable if it is locally stable

in the Lyapunov sense, i.e.,

V£>O>E|6>O |y|A <6:>|Y(tay)| §£, Vt2o)

and attractive for almost every initial condition. More precisely, there

exists X C R™™ with u(X) = 0 such that,
Yy € RV™\ | tIim [Y(t,y)la = 0. o
—00

In other words, an invariant set A is said to be almost globally
asymptotically stable if it is stable in the Lyapunov sense and, for al-

most every initial condition, solutions will converge to A.
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Theorem 3.13. 13 Under Assumptions 3.5 and 3.6, assume that the con- 18 (Stein Shiromoto, Andrieu, and Prieur,

2013c
stant values of Corollaries 3.9 and 3.11 are such that )

Me<Mg or Ne<Ng.

Let
R=cl {Q@g (U \ Qg (u@)} .

If there exists p € €1 (R™™\ {0}, R>o) with supp(p) 2 R such that,
Yy € R, div(hp)(y) > 0.

Then, the origin is almost globally asymptotically stable for (3.8). O

From Liouville’s theorem!4, the measure of the sets of solutions and 4 See Lemma 3.33.
their initial conditions are related to the divergence of vector field of
(3.8). Under the hypothesis of Theorem 3.13 it is shown that the mea-
sure of the set of solutions that do not converge to Q_g; (Uy) is zero.
Also, the measure of the set of their initial conditions is zero. Thus,
the conclusion of Theorem 3.13 follows. The proof of 3.13 is based on

(Angeli, 2004; Rantzer, 2001), and is provided in Section 3.6.2.

15 15 (Stein Shiromoto, Andrieu, and Prieur,

2013c)

Theorem 3.14 (Application of the Bendixson extended criterion).
Letn = m = 1. Under Assumptions 3.5 and 3.6, assume that the constant

values of Corollaries 3.9 and 3.11 are such that

M¢<Mg or N¢<Ng.

Let
R=cl {Q@g (Ug)\ Q gz, (uz)} .
If,
Yy € R, divh(y) #0 and h(y)#0,
then the origin is globally asymptotically stable for (3.8). O

The absence of w-limit sets in R is shown by exhibiting a contradic-
tion between its existence and the assumption that, for every y € R,
divh(y) # 0 and h(y) # 0. The proof of Theorem 3.14 is provided in
Section 3.6.3.

Figure 3.1 illustrates the region R obtained from the hypothesis of
Corollaries 3.9 and 3.11, when M; < Mg and Ny < Ng.
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lllustration of sets

X Qgn, (W) (blue re-
gion), Q_g (U) (dark blue line),
Q>m(V)

Figure 3.1:
Qm, (V)

x Qsn(W)  (pink re-
gion), Q:ﬂg(ug) (red line), and
R = cl{Qg, (Ug) \ Qy, (U}

(pattern filled).

=V

6To conclude about the asymptotic
stability of this example, one may in-
fer from the LaSalle invariance princi-
ple together with the Lyapunov function
V + W. Other techniques also apply
such as (Angeli and Astolfi, 2007).

7 see Definition A.39 below.

Note that there, here it is given the sys-
tem and the ISS-Lyapunov function and
the problem is to find the gain v and
the decrease rate A. In (Ito and Jiang,
2009, Lemma 1), the converse prob-
lem is considered: given a function A €
(PNE%) (R, R50), and a gain v find the
ISS system and ISS-Lyapunov function
corresponding to such a pair.

3.5

[LLUSTRATION

In this section, an example where the small-gain condition cannot be
applied is given.!® Corollaries 3.9 and 3.11, and Theorem 3.14 are il-
lustrated.

Consider the system

x = f(X, Z) = —Px (X) + z, (317)
z = Q(X, z) = —z+ pz(x)a
where, for every x € R,
x3 x?
px(x) = 3 37 +2x and p.(x) = 0.8px(x),

and

Vx € R, V(x) = |x,

Vz € R, Wi(z) = Iz].

The Dini derivativel” of V in the f-direction yields, for every (x,z) €
R x R,
D{ V(x,2) < —px V(X)) + W(z).

Letting, for every x € R, A«(x) = expx(V(x)), where ¢, € (0,1). For

every (x,z) € R xR,

W(z)

Pr(V(X)) > -
-

=

= D V(x,z) < —A(x). (3.18)

Since py is strictly decreasing in (1,2), it is not possible to use its in-

verse as a gain. From now on, fix ¢x = 0.05. Consider the piecewise
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8

continuous and positive definite function! 8 Note that 0.95p,(2) = 0.6.

M(s) = (3.19)
ol (59z)s s € 0:6,00),

where the function px 4 : [2,00) — [px(2), 00) is givenby py 4 (-) = px(-).

Claim 3.15. The positive definite function T can be viewed as a non-smooth
input-to-state gain of the x-subsystem of (3.17). More precisely, for every
(x,2) e R xR,

V(x) = T(W(z)) = D{ V(x,z) < —Ac(x). (3.20)

Moreover, the function " is “tight”. More precisely, if there exist a function
I :R — R, and a positive value s* such that T'*(s*) < I'(s*), then there exists
(x*,z*) € Roo x Rog satisfying V(x*) > T*(W(z*)) and D} V(x*,z*) >
0. ]

The proof of Claim 3.15 is provided in Section 3.6.4. Note that any
function y € X such that, for every s € R>o, I'(s) < y(s) is a gain for
the x-subsystem of (3.17).

35 ; ; ‘ ; 25
““““ id
By
3 ol "'6.//
—4
250 --A
wn 2 |-
g 2f g5
5
E15f 2 0
OB o e T
05 /P AT e
0 5 : : ; ; o)l | i i |
0 05 1 15 2 25 0 05 1 15 2 25
a) b)

Figure 3.2: a) Graph of functions py

(dotted blue), id (dotted black), T

. . . . (dashdotted blue), v, (solid cyan), vq

The above reasoning can be applied to the z-subsystem yielding, (dashed cyan) and the parametrized

curve (px(s),s) (dashed blue), in the
forall (x,z) € R xR, interval [0, 2.5]. b) Graph of functions
p, (dotted red), id (dotted black), A

+ (dashedotted red), &, (solid green) and
W(z) > A(V(x)) = Dg W(x,z) < —A:(2), (3.21) &4 (dashed green). For e, = e, = 0.05.

where A is the tight input gain for the z-subsystem of (3.17) defined
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9 The proof of Claim 3.16 is provided in
Section 3.6.5.

20 Note that b = .

p(s), s<l0,1),
), sell,2.5),
p(s), se€l[2.5,00),
and, for every s € Ry, p(s) = pz(s)/p.95. Note also that any function
b € X such that, for every s € R, A(s) < 8(s) is a gain for the z-
subsystem of (3.17).
The small gain condition (SGC) does not hold. More precisely,

Claim 3.16. !° For every s € (0.65,2.5), s < T o A(s). O

Note also that the approach proposed in (Astolfi and Praly, 2012;
Ito, 2006; Ito and Jiang, 2009) cannot be applied here, since they re-
quire a composition of gains to be smaller than its argument. How-
ever, the results proposed in (Angeli and Astolfi, 2007) can be applied

in this example.

ILLusTRATION OF COROLLARY 3.9. Consider a function vy, € X such

that, for every s € [0,0.5], y¢(s) = P, (s). Let 8¢ € X be such that,

de(s) {

Assumption 3.5. Pick?® M =M; =N =N; =03, and M = N = 0.
Note that, max{yg1 (M), N} = 0 and min{6,(M), N¢} = 0.3. Moreover,

(s), s€lo1),

Als
A(s), se€[1,2.5].

WV

for every (x,z) € S¢ == (Qcm, (V) x Qen, (W),

=
Ra¥
%

Ye (W(Z)) = D%‘_V(X) Z) < _)\x (X))
W(z) > &(V(x)) = DiW(xz) < —Alz).

Assumption 3.6. From Remark 3.7, for every s € (O,y[1 (M) =
(0,0.71,

Lops! (s/0.95) 0.8 /s
5*°W(S):%9(5/):mpx°px1<m)<&

From Corollary 3.9, the set Q«o.3(U,) is included in the basin of

attraction of the origin. Moreover,

Se(V(x) +v¢ ' (V(¥)
2

U (x,z) = max { ,W(z)} .
ILLusTRATION OF COROLLARY 3.11. Consider a function y4 € X such
that, for every s € [0.7,00), v4(s) = I'(s). Let also 84 € X be such that,

for every s € [2,00), 84(s) = p(s).
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Assumption 3.5. Pick M = Mg = 4and N = Ng = 1, and M =
N = oco. Note that, max{y,'(M),N} = 4 and min{§4(M),N} = oo.

Moreover, for every (x,z) € Sq := (Qxm, (V) x Qxn, (W),

=
Ra¥
\%

Y¢(W(z)) = DiVixz) < —A(x),
W(z) > 34(V(x)) = DgW(x,z) < —A(z).

Assumption 3.6. From Remark 3.7, for every s € [y,' (Mg),00) =
[4.5,00),

038 1/ S
B0 ¥ols) = gogpx o (5g5) <
From Corollary 3.11 the set Q<4 (Uy) is globally attractive for (3.17).

Moreover,

5q(V(X)) +v5 ' (V(x)
3 J ,W(Z)}.

Ug(x,z) = max {

ILLusTRATION OF THEOREM 3.14. Note that, My = 0.3 < 4 = M4 and
N¢ = 0.3 < 1 =Ny. Since system (3.17) is €', and the only equilibrium

point is the origin, and the equation

0 0
—f(x,z) + —g(x,z) = x*+3x—3=0
ox 0z

has no zeros in
R =cl{Q(Ug)\ Qco.3(Ue)},

from Theorem 3.14, the origin is globally asymptotically stable for
(3.17).

Figure 3.3 shows a simulation of (3.17) for some initial conditions.

3.6 PPROOFS OF CHAPTER 3

3.6.1 PROOF OF PROPOSITION 3.8

Before proving Proposition 3.8, the following lemma is needed.

Lemma 3.17. 21 Under Assumptions 3.5 and 3.6, there exists y € Ky 21 Based on (Stein Shiromoto, Andrieu,
and Prieur, 2013a).
such that,
Vs € Rug, 0(s) <¥y(s). (3.22)
Moreover,
if M<oo, then Vse[M,MI\{0}, ¥(s)<vy '(s), (3.23)
if M=oo, then Vse[M,b)\{0}) ¥(s)<vy '(s). '
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Figure 3.3: Simulation of (3.17).

O

The proof of Lemma 3.17 is based on (Jiang, Mareels, and Wang,
1996) and is provided after the proof of Proposition 3.8.

Proof (of Proposition 3.8).  The proof of Proposition 3.8 is adapted from
(Jiang, Mareels, and Wang, 1996, proof of Theorem 3.1). Here, it is
divided into 2 parts. Firstly, it is shown that the Dini derivative of a
proper function U € (€% N P)(R™ ™, R,) is strictly negative in the set
S defined in (3.11). In the second part, it is shown that solutions of

(3.8) starting in O _; (W) \ Q3 (U) converge to Q5 (U).

First ParT. Under Assumptions 3.5 and 3.6. Let ¥ € K., be given
by Lemma 3.17. Since 5 is of class X and ¥ is of class K, satisfying
(3.23), from (Jiang, Mareels, and Wang, 1996, Lemma A.1), there ex-
ists a function 0 € K, N €' whose derivative is strictly positive and
satisfies,

Vs € Rug, 0(s) < o(s) <v(s). (3.24)

Let
U: R*"xR™ — Rso
(x,2) — max{o(V(x)), W(z)}.

Note that U € (CONP)(R™*™, Rx) is a proper function. Forany (x,z) €

R™ x R™, one of the following cases is possible:
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Case l. o(V(x)) < W(z);
Case2. W(z) < o(V(x)) or;

Case 3. W(z) = o(V(x)).

The proof follows by showing that the Dini derivative of U is strictly

negative. For each case, assume that
(x,2) € S»0 := S\ {(0,0)},

where § is defined in (3.11).
Case 1. Assume that

o(V(x)) < W(z).
This implies
U(x,z) =W(z) and Dj’gu(x, z) = Dy W(x,2).

From (3.24),
5(V(x)) < o(V(x)) < W(z).

From (3.13), DJW(x,z) < —A.(z). Thus,
W(z) > o(V(x)) = fogU(x, z) < —A.(2).

Case 2. Assume that

W(z) < o(V(x)).

This implies
U(x,z) =0(V(x)) and Dj Ul(x,z) = o (V(x))D} V(x,2).
Since (x,z) € S0, from (3.24),
W(z) < o(V(x)) <y(V(x)).
If M < oo, then from (3.23),
W(z) < o(V(x)) <¥(V(x)) <y~ (V(X). (3.25)

Together with (3.12), Df V(x,z) < —Ac(x).

If M = oo, then two regions of x must be analyzed: b < V(x) and
M<V(x)<b.

Case 2.a. In the region where b < V(x), Equations (3.12) and (3.9)
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yield
V(x) >b>vy(W(z)) = D{ V(x,z) < —A(x).

Case 2.b. In the region where M < V(x) < b, from (3.23), (3.25), and
(3.12),
V(%) >v(W(z)) = D{ V(x,z) < —Ax(x).

Summing up Case 2,
W(z) < o(V(x)) = Df jU(x,z) < =0’ (V(x))Ax(x).

Case 3. Assume that

W(z) = o(V(x))
Note that,
D}L’QU(X, z) = lim sup% [max {G(V(X(t, x,z))),W(Z(t, z,x))} — U(x, z)]
£\0
i supmax { SYIX( 12 o Vi) Wizt 2 )W)
N P t ’ t

= max {o’(V(x))D{ V(x,z), DIW(x, z)}.

The analysis of Df U is divided in two sub cases. In the first one,
the function DJW is analyzed while in the last the function DV is
analyzed.

Case 3.a. The analysis of DfW. From (3.24), and the fact that x # 0
and z # 0, the inequality 5(V(x)) < o(V(x)) = W(z) holds. Analo-
gously to case 1, Dy W(x,z) < —A.(z) .

Case 3.b. The analysis of D} V. From (3.24), and the fact that x # 0 and
z # 0, the inequality W(z) = o(V(x)) < ¥(V(x)) holds. Analogously to
case 2, D} V(x,z) < —A«(x).

Summing up Case 3,
0 # W(z) = o(V(x)) = Dy jU(x,z) < —min{o’(V(x))Ax(x),Az(2)}.

Claim 3.18. There exists ¢ > 0 such that Q¢ (U) C Q 57(V) x Qg (W).

Moreover, the constant values M and M are such that

<Q<M(V) X Q@(W)) CO_u(Wca_gu)c (Q@(V) X Q@(WJ) . (3.26)

The proof of Claim 3.18 is provided after the proof of Proposition
3.8.
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From the above case study and (3.26),

M < Ulx,2) < M = D{ jU(x,z) < ~E(x,2),

where
E: R"xR™ — Rso
(x,z) = min{o’(V(x))Ax(x),Az(2)}.
Since E € (€° NP)(R™ x R™, R,), there exists?? « € K., such that, 22 (Sontag, 1989, pp. 13). See also the

f n+m . - proof of Claim A.33.
or every (x,z) € R , a(l(x,2)]) < E(x,z). Moreover, since Q_;(U)

contains the origin and
06,2 5= dist (%, 2), Qg (W) <0, 2)]
the inequality
x (I(x,2)l57) < e (l(x,2)]) < E(x,2)

holds. Thus,

M < U(x,2z) < M= fogU(x, z) < —a (I(x, Z)|M) . (3.27)

SeconD PART. The function U is locally Lipschitz on R™ x R™\ {(0, 0)}.
To see this claim, note that in the region o(V(x)) > W(z) (resp. o(V(x)) <
W(z)) 0 o V (resp. W) is locally Lipschitz on R™ \ {0} (resp. R™). In
the region U*(x,z) := o(V(x)) = W(z) # 0, given any (x1,z1) and
(x2,z2) € R™ x R™\{(0,0)},

U (x1,21) —U*(x2,22)] = [o(V(x1)) — o(V(x2))]
= |o(V(x1)) = o(V(x2)) + W(z1) — W(z2)
+W(z2) — W(z1)|
< LolV(x) = Vx2)l + 2Lwlz1 — z2|

< Lolvixt —xal + 2Lwlzy — 23,

where Ly, L, and Lyy are, respectively, the Lipschitz constant of func-

tions V, 0, and W. Let L = max{Lv,Ly,2Lw}
U™ (x1,21) — U (x2,22)| < L(Ix1 — %2l + 21 — z2]) .

From Theorem A.42, for every y € R™*™, and for every t € Rx,

along solutions of (3.8),

DFU(Y(t,y)) = DLU(Y(t,y)).
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2 From Rademacher’s theorem (see
Evans, 1998, Theorem 6).

24 Since U is locally Lipschitz, it is abso-
lutely continuous (Hunter, 2013, Exam-
ple 3.57). Thus, D*U is 1-integrable.
See Definition A.15.

25 due to the fact that § € Ko, N C1.
% due to the fact that v 1,v € Koo N
el

From Remark A.43, for every y such that M < Uy) < /M, and for

every t € Ry, the function
t—= U(Y(t,y)
is strictly decreasing. Moreover, it will be shown that

U™ := lim U(Y(t,y)) < M.

t—o0

To see this fact suppose, by absurd, that U* > M. From the conti-

nuity of U, there exists ¢ > 0 such that
U®—¢>M and U® —e<Uy) <U® +e.

Since U is proper, the set {y € R™™ : U™ —¢ < U(y) < U® + ¢} is

compact. Thus, the constant
&=min {a (jylg;) >0:U® —e < U(y) <U®+¢}

exists.

Since Uislocally Lipschitz on R™ x R™\{(0, 0)} and solutions of (3.8)
are functions of class €', the function t — U(Y(t,y)) is also locally Lip-
schitz on Ro. Thus, for almost every t € R, U(t) is differentiable?>
and DTU(t) is integrable24. From the definition of the constant &, for

every t € Ry,

UY(ty) = u(y)+jD+u(Y(s,ynds
0
< Uy) —&t

As t increases to infinity, the value U(Y(t,y)) will eventually be neg-
ative contradicting the positive definiteness of U. Thus, U® < M.
Hence, solutions of (3.8) starting in Q @(u) \ Q @(U) converge to
Q_g(W).

To see that U can be given as in (3.16), note that U relies on the
computation of o. Let for every s € Rxo, o(s) = (8(s) +v'(s))/2, this

implies, for every s € R~.,

do dd 1
S N
o)
S

which is positive, because?® d5(s)/qs > 0 and?® dy (y~'(s))/qs > O.

Moreover, the function o satisfies (3.24). This concludes the proof of
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Proposition 3.8. u

Proof (of Claim 3.18).  Let c be a positive real number?” such that Q<. (U) C # Such a positive real number always

exist. Otherwise, for every n > N,
ng(V) X Qgﬁ(w)‘ there exists a sequence {ynlneny C
R™™ such that, for every n €
N, yn € Qgqm(U) and yn ¢
ng(\/) X Qgﬁ(w). Since U is

r v i N proper, Q< (U) C Q«1(U) is com-
U(x,z) < M = max{V(x), W(z)} < min{M, N}. (3.28) pact. Hence, there exists {yn, }icn C

In the first part, it will be shown that, for every (x,z) € S,

{Yn}nen such that yn, Iz % and
In the second part, it will be shown that, for every (x,z) € S, U(y*) = 0. From the positive definite-
ness of U, y* = 0. Consequently, yn;
N is a sequence converging to zero and
M < U(x,z) = max{M, N} < min{V/(x), W(z)}. (3.29) outside O _7(V) x Q_x(W). This is
impossible since this set is a neighbor-
e hood of the origin.
Part 1. Inequality U(x,z) < M implies

max {o(V(x)), W(2)} = U(x,z) < M = min {§(M),N}.

Assume that max{c(V(x)), W(z)} = o(V(x)).
Part 1.a. Suppose that min{s(M), N} = §(M). Since o(V(x)) <
5(M), from (3.24), V(x) < o~ 0 (M) < M;

Part 1.b. Suppose that min{§(M),N} = N. Since o(V(x))
N < 8(M). From part 1.a, V(x) < 0 ' 0 5(M) < M.

N

Assume now that max{c(V(x)), W(z)} = W(z).

Part 1.c. Suppose that min{§(M), N} = §(M). Thisimplies W(z) <
5(M) < N;

Part 1.d. Suppose that min{s(M), N} = N. Thisimplies W(z) <
N.

Thus, (3.28) holds and

O (W) € (Qepi(V) x 0 (W))

Part 2. Inequality M < U(x, z) implies

max{y "' (M), N} = M < U(x,z) = max{o(V(x)), W(z)}.

Assume that max{c(V(x)), W(z)} = o(V(x)).

Part 2.a. Suppose that max{y~'(M),N} =y~(M). Sincey~ ' (M) <
o(V(x)), from (3.23) and (3.24), M. < vy o o(V(x)) <
V(x);

Part 2.b. Suppose that max{y~'(M),N} = N. Since y~'(M) <
N < o(V(x)), from item 2.a., M < yo o(V(x)) < V(x);
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Thus, max{M, N} < V(x).

Assume now that max{c(V(x)), W(z)} = W(z).

Part 2.c. Suppose thatmax{y~'(M),N} =y~ (M). Sincey (M) <
W(z), N<y ' (M) < W(z);

Part 2.d. Suppose that max{y~—'(M),N} = N. It yields N <
W(z).

Thus, max{M, N} < W(z).

From parts 1 and 2, max{M, N} < V(x) and max{M, N} < W(z).
Hence,

max {M, N} < min{V(x), W(z)}.

Therefore, (3.29) holds and

<_O_<M(V) X _O_gm(W)) C ng(u)

Since (3.10) is a strict inequality, from the continuity and surjectiv-
ity of U, there exists (x,z) € S such that M < U(x,z) < M. From (3.28)
and (3.29),

M < U(x,z) < M = max{M, N} < min{V(x), W(z)} < max{V(x), W(z)} < min{M, N},

and the inclusion (3.26) holds. This concludes the proof of Claim 3.18.
]

Proof (of Lemma 3.17).  Under Assumptions 3.5 and 3.6, there exist

constant values ¢ > 0 and M > 0 such that defining, if M < oo,

8(s) + min{s, M}, se[0O,M),
5(3)+min{s,y](s)26(5)}, s€ [M,M],
¥(s) = (3.30)
AS) +(Bls) = Als) =, s € (MM +e),
5(s)+s, se€[M+e,00),
where
7] A _ A A
A(s) = 6(5)—&-min{l\/l,y <M)2 5<M)},
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and, if M = oo,
5(s) + min{s,M}, se[0,M),
$(s) = { 5(s) +min {s, Vl(s)zé(s)} seM,b), (3.31)

o(s)+s, se€lb,oo).

the function ¥ is of class X, and satisfies (3.22) and (3.23).
The proof of this claim consists of three parts. Firstly, it is obtained
the constant values M and ¢. In the second part, it is shown that ¥ is of

class K. In the last part, it is shown that y satisfies (3.22) and (3.23).

First pART. Consider the functions §,y € X given by Assumption 3.5.
The function y ! is defined on [0, b) and satisfies

limvy~'(s) = c.
lim y (s) =00

Since M < b, Equation (3.9) and Assumption 3.6 imply,

if M<oo, Vse&[MMI\{0}, &(s)<vy '(s)

- o (3.32)
if M=oo, Vse&[M,M)\{0}, &(s) <y '(s).

Let,

YERAILEL N

If M < oo, from the continuity of y and & and from (3.32), there

exists a constant value ¢ > 0 such that M + ¢ < b and, for every s €

M, M +¢), 8(s) <v~'(s).

SeEcoND PART. To see that ¥ is continuous, the limits around each in-
terval is analyzed. Afterwards, the increasing behavior is concluded.

Around M, it yields

Sh}&ﬂs) = sli/rnM[é(S)+min{8,M}}

= 5(M)+min{M, M}

= Sli\mM {6(s)+min{s,y1(s)2_6(s)}]

= Sl{‘niy(s).
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Around M < oo, it yields

Around M + ¢ < oo, it yields

lim ¥(s) = lim [A(s)+(B(s)—A(s)>
s,/ "M+e s,/ M+e

= BM+¢)

= lim [5(s)+ s]
sN\M+e

s—M
€

= lim (s
sN\M+e

When M = oo, around b,

limy(s) = lim [6(s)+min{s,
s,/'b s /"M

= 5(b)+b

v '(s) = 3(s)
2

= limd(s) +s
sN\(b

= gl\nrlljv(s)-

Thus, ¥ is continuous.

THIRD PART. To see that inequality (3.22) is satisfied, note that, for
every s € Ry, v is defined as the sum of 5(s) with a positive function
or value. Thus, for every s € R~q, 8(s) < Y(s). Moreover, ¥ € K.

To see that inequality (3.23) is satisfied, assume that M < oo (resp.
M = o0) and s € [M, M] \ {0} (resp. s € [M,b) \ {0}). Two cases may
occur, according to the value of

min{s,y](s)zé(s)}.

From (3.30) (resp. (3.31)),

i
Casel. s< M

implies

F(s) = 8(s) +s < 8(s) + ~ 3 - :

—1 — . .
Case?2. s> % implies
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From (3.32), cases 1 and 2 yield, for every s € [M, M] \ {0} (resp.
s € [M,b)\{0}), ¥(s) < y~'(s). Thus, (3.23) holds. This concludes the
proof of Lemma 3.17. ]

3.6.2 PROOF OF THEOREM 3.13

Before proving Theorem 3.13 the following lemma, based on (Angeli,

2004; Rantzer, 2001), is needed.

Lemma 3.19. 2 Under the hypotheses of Theorem 3.13, if there exists p €
(R ™ Rs,) with supp(p) 2 R such that,

Yy eR, div(hp)(y) >0, (3.33)

then for almost every initial condition in R, the solutions of (3.8) converge

to ngz(V). O

The proof of Lemma 3.19 is provided after the proof of Theorem
3.13.

Proof (of Theorem 3.13). This proof is divided into 4 parts. Firstly,

it is shown that every solution starting in Q_,(Ug) converges to

Q_x; (Ug). The second part shows that every solution starting in
SMg

Q_< (Ug) converges to the origin. In the third part, it is shown that al-

<M
most every solution starting in R converges to Q_g; (U). The fourth

part concludes the almost global asymptotic stability of the origin.

FirsT pART. From Corollary 3.11, the set O, (Ug)is globally attrac-
tive for (3.8), where My = max{y,'(Mg),Ng}, Mg and N are defined
in Corollary 3.11, and vy is given by Assumption 3.5.

SeconD PART. From Corollary 3.9, the set Q 5, (Ug) is contained in
the basin of attraction of the origin, where /T\Zg = min{&;(M¢), N¢}, M,
and N are defined in Corollary 3.9, and v, is given by Assumption
3.5.

THIRD PART. It remains to show that Q 5, (Ue) < Qgﬁg (Ug). From

the proof of Claim 3.18,

M, = max{V(x),W(z)}
M

<
g = min{V(x),W(z)} > max{Mg,Ng}

28 (Stein Shiromoto, Andrieu, and Prieur,
2013c)
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2 Note also that, when Y(t,Z) does
not exist, for t < 0, then Y(t,Z) = 0.

30 See the proof of Lemma 3.19.

31 Because (3.8) is of class @' and so-
lutions are unique (see also Hartman,
1982, Corollary 3.1).

Since min{Mg, N} < max{Mg4, Ng}, Q. (U) S Q Ug) and

<f\7lg(
R=cl {Q@g(ug) \Q@a(uz)} # 0.

Because there exists p € €' (R™* ™, R+) with supp(p) 2 R and such
that,
vy € R, div(hp)(y) >0,

by employing Lemma 3.19, the set Z of initial conditions in R from
which solutions do not converge to Q <N (Ug) and the set of solutions

have Lebesgue measure zero.

FourTH PART. It is shown that initial conditions from which issuing
solutions converge to the set Z C R have also measure zero. For every
t, let

Y(t,Z) ={Y(t,z) : t € dom(z),z € Z},

where dom(z) is the maximum time interval where Y(t, z) exists. Since

Z is positively invariant, for every t,t, € dom(z),

t1 <t <0= Y(tz,Z) cY(ty,2Z).

This inclusion implies that?’

Y=, 2= | {vt,2): <.
<0 leZ 2o
Hence, the set Y is a countable union of images of Z by the flow. Since
Z is measurable®® and, for every t € dom(y), themap Z >y — Y(t,y)
isa diffeomorphism3l, Y is also measurable.

Note that,

Vvt € dom(Z), J dz < JIgradY(t,y)l dy =0,
Y(t,2) z

because Z has measure zero. This implies that, for every t € dom(Z),
Y(t, Z) have Lebesgue measure zero. Since Y is the countable union of
sets of measure zero, it has also measure zero. Recall that Y is the set
of initial conditions for which solutions of (3.8) do not converge to the
origin.

From the above discussion, the origin is locally stable and almost
globally attractive for (3.8). Thus, it is almost globally asymptotically
stable for (3.8). This concludes the proof of Theorem 3.13. [ ]

Proof (of Lemma 3.19). It will be shown that almost all solutions of
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(3.8) starting in R converge to Q <M, (Ue). To do so, it is followed the
same line as in (Rantzer, 2001, Theorem 1) and (Angeli, 2004, Theorem
3). However, here a less conservative condition is required, since it is
considered a set that is only positively invariant and it is needed for
the divergence to be positive only in a compact set.

Let Z ¢ R™*™ be given by

DX

Z =N {y ey, Ug): UelYt,y) > Mgt > 1},

1

1

Since Z is a countable intersection of open sets, it is measurable.3?
Note that Z is the set of all initial conditions belonging to Q _5; (Uy)
= 9
from which issuing solutions do not converge to Q_g; (Uy). Since

O, (Ug) is positively invariant33, the set Z is also positively invari-

ant. Thus, given a fixed T € R~
vt>T, Y(t,Z)CY(t,Z).
Hence, for every t € R,

j oly) dy — j oly) dY < 0. (334)
Y(t,Z) y4

From Lemma 3.33, for every t € Ry,

J J div(hp)(y) dyds = J p(y)dyfjp(y)dy-
0Y(s,Z) Y(t,Z) z

Since, for every y € R, div(hp)(y) >0, and Z C R, for every t € R,

t
¢ | aivheway < || divthe)y) dyas
Y(t,Z) 0Y(s,Z)

< J p(y)dy—Jp(y)dy-
Y(t,Z) z

From (3.34),
vVt € Ry, J div(hp)(y) dy < 0.

Together with (3.33),
Vt € Rso, J div(hp)(y) dy = 0.
Y(t,2)

Thus, for every t € Ry, Y(t,Z) has Lebesgue measure zero. From the

32 See also Propositions A.8 and A.9.

33 Cf. Corollary 3.11.
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continuity of Y, Z has also Lebesgue measure zero. Consequently,

fora.e.y € R, limsupU,(Y(t,y)) < M.

t—oo

This concludes the proof of Lemma 3.19. |

3.6.3 PPROOF OF THEOREM 3.14

34 (Stein Shiromoto, Andrieu, and Prieur, Lemma 3.20 (Extended Bendixson criterion). 3¢ Let n = m = 1, under

2013c) .
the hypotheses of Theorem 3.14 if,
Wy eR, divh(y)#0, hiy) #0, (3.35)

then all solutions of (3.8) issuing from R converge to Qo (Ue). O

The proof of Lemma 3.20 is provided after the proof of Theorem
3.14.

Proof (of Theorem 3.14). The proof of Theorem 3.14 follows the same
line as the proof of Theorem 3.13. The difference consists in the third
and fourth parts. Here, itis assumed that, foreveryy € R, divh(y) #0
and h(y) # 0, the existence of the function p is not needed. In the
fourth part, no consideration concerning the measure of the sets of
initial conditions is needed.

Similarly to the discussion of the proof of Theorem 3.13, the origin
is locally stable and globally attractive for (3.8). Thus, it is globally
asymptotically stable for (3.8). This concludes the proof of Theorem
3.14. |

Before proving Lemma 3.20, some concepts regarding the asymp-
totic behavior of solutions are recalled. For planar systems, a closed
curve C C R? is called closed orbit if C is not an equilibrium point and
there existsatime T < oo such that, foreach (x,z) € C, (X(nT,x,z), Z(nT,x,z)) =

% cf. (Sastry, 1999, Definition 2.6). (x,z),¥n € Z. 35

Proof (of Lemma 3.20).  Consider the proper function U, € (C°NP)(R™™ Rx)
(resp. Ug € (€° N P)(R™™ R5)) and the constant values given by
Corollary 3.9 (resp. 3.11). From the proof of Claim 3.18,

—

Ue(x, z) M¢ = max{V(x),W(z)}

< <
Ug(x,2) =2 My = min{V(x),W(z)} > max{Mg,Ng}

Since min{M¢, N} < max{Mg4, Ng}, Q_g, (Ue) C Q\~g (Ug) and

R=cl {ngg(ug) \ng(uz)} # 0.



STABILIZATION UNDER LOCAL AND GLOBAL CONSTRAINTS | 87

From Lemma 3.22, there exists a proper function Uy, € (€°NP)(R™™ R5)

that is locally Lipschitz on R™*™\ {0} (resp. a function h € €' (R2,R?))
with supp(Ue ) (resp. supp(h)) compact satisfying supp(Us) O R (resp.
supp(h) D R). Moreover, for every y € R, Uy(y) = Ug(y) (resp.
h(y) = h(y)).

From Theorem 3.29,
* The set O_p, (Uy) has finite perimeter;

e The function U, is almost everywhere36 differentiablein Q_m (U );

* Let S.o C Q_m,(Us) be set of points where U is not differen-
tiable. There exists a Lipschitz parametrization p : [0, beo] C
R — Q_p, (Us) that is injective and satisfies, for almost™” every s €

[Aooy Dools Poo(s) € S and dpw(s)/gs is perpendicular to VUe (Poo(s)).
From Theorem 3.31,
|| avhway= § Aweonewa 630
Q<mg (Uo) O-mg(Ux)

where n, is the outward normal of Q¢m, (Us) defined, for every y €

Q:Mg (uoo)/ by

grad Uy (y)

Neo(y) = { leradUs(y)l’
0, if otherwise.

if gradU.(y) exists,

From the proof of Proposition 3.8 and Corollary 3.11, there exists
Eg € (0N P)(R™™ R5o) such that

vy € Q:Mg(uoo)) DEUOO(U) < _Eg(y) < 0.

From the above discussions, the existence of the parametrization p,

and Remark A .40,

D Uso(poo(s))
|grad Us (poo(s))l

fOI' a.e.s € [aoo,boo}, = E(Poo(s)) : noo(poo(s)) <0.

Applying the generalized divergence theorem to the level curve

Q_m, (Uy), from (3.36)

[| avnway= | heels) napesnas<o ¢37)

Qcmyg(Ug) [0, b

because, for every y € K, Uy (y) = Uy (y) and h(y) = h(y).
Analogously to the above and from the proof of Proposition 3.8 and

Corollary 3.9, and by letting p¢ : [a¢, be] = Q_m, (U¢) be a parametriza-

36 In the Hausdorff measure sense.

37 In the Lebesgue measure sense.

Note that, from the previous paragraph,
for almost every y € Q_my (Us),
grad Ug(y) exists.
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38 From the uniqueness of solutions with
respect to initial conditions, the closed
orbit C is a simple closed curve.

39 (Sastry, 1999, Theorem 2.15)

tion of Q_p, (U,) with outward unit normal n,, based on Equation

(3.36),

[| avhwiay= | npesn ndpisias<o  (339)

Q g, (Ue) lae,bel

Suppose, by absurd, that there exists a closed orbit®® C € R?, param-
etrized by p : [a,b] — C and with outward unit normal n, and con-

tained in R. From the generalized divergence theorem,

[Javhm ay = [ e nipenas=o (3.39)

Dc [a,b]

where D is the simply connected region bounded by C.

Note that,
” divh(y)dy = JJ divh(y) dy — JJ divh(y) dy
Qmg (Ug\Dec Qgmg (Ug) Dc
= JJ divh(y) dy,
Qgmg (Ug)

where the last equality is due to (3.39). This yields with (3.37)

” divh(y)dy < 0. (3.40)
Qcmg (Ug)\Dc

On the other hand,

Dc\Q g, (Ue) Qg (Ue)

divh(y)dy = Jdiv h(y) dy — JJ divh(y) dy
D¢

” divh(y) dy,

Qx, (Ue)

where the last equality is also due to (3.39). From (3.38),

divh(y)dy > 0. (3.41)

Dc\Q g, (Ue)

From (3.40), (3.41) and the fact that C is arbitrary, div h changes sign in
R. From the continuity of div h, there exists § € Rsuch thatdivh(g) =
0 which is a contradiction with (3.42). Thus, there exist no closed orbits
C contained in R.

From the Poincaré-Bendixson Theorem??, the w-limit set of a so-
lution starting in R is a closed orbit or equilibria. Since equilibria do
not exist by assumption and with the above analysis, there exist no

w-limit sets in R. Thus, every solution starting in R will converge to
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Qm, (Uyg). This concludes the proof of Lemma 3.20. |

Corollary 3.21 (Bendixson criterion). Let n = m = 1, under the hypothe-

ses of Theorem 3.14 if R is a simply connected region such that,
Yy € R, divh(y) #0, h{y) #0, (3.42)

then all solutions of (3.8) issuing from R converge to Q i (Uy). O

3.6.4 PPROOF OF CLAIM 3.15

Assume for a fixed (x,z) € R™ x R™, V(x) > I'(W(z)). Suppose also
thatz € Q. ¢(W). From (3.19),

This implies

| W(Z)
V(x) > px ( 0.95 ) .

Because py ! is strictly increasing in [0, 0.6), it is invertible and

From (3.18), D} V(x,z) < —A«(x). The above reasoning applied for
z € O>0.6(W) yields the same conclusion.

Now it remains to show that T' is tight. From the surjectivity and
continuity of W, there exists z* € R.o such that s* = W(z*). Thus,
M (W(z*)) < T(W(z")).

Assume that z* € (R-o N Q<0.6(W)). From (3.19),

* =1 W(Z*)
rowe) =i (M)

Since py ! is strictly increasing in the interval [0, 0.6), it is invertible and
px (M (W(z*)))0.95 < W(z*). From the surjectivity and continuity of V,
there exists x* € R~ such that p, (T (W(z*)))0.95 < px(V(x*)) < W(z*).

Since (x*,z*) € R.o X R~o, the Dini derivative of V yields
D{V(x*,z*) = —px (V(x*)) + W(z") > 0.

The case in which z* € Q3¢.6(W) is parallel. Thus, there exists
(x*,z*) € Roo X Rog such that Dy V(x*,z*) > 0. This concludes the

proof. u
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3.6.5

3.7

3.8

3.8.1

ProoF oF CLAIM 3.16

In the interval (0.65,2.5) two regions will be analyzed: (0.65,1) and
[1,2.5).

Suppose that s € (0.65,1). In this region, A is strictly increasing and
0.6 < A(s) < 0.7. From (3.19), Vs € (0.6,0.7), I'(s) is strictly increasing.
Moreover, Vs € (0.65,0.7), 2.2 < p;'(s) < 2.3. Hence, Vs € (0.65,1),
s < "o A(s). The analysis for the interval [1,2.5) is analogous. This

concludes de proof. [ |

CONCLUSION

Systems for which the small gain theorem cannot be used a sufficient
condition for the stability of the resulting interconnected system is
proposed. The approach consists in verifying if the small gain con-
ditions holds in two different regions of the state space: a local and a
non-local. In the gap between both regions, it must be checked if w-
limit sets exist. An approach is proposed for planar system for which
Bendixson criterion does not hold. A condition is given to check the
absence of w-limits sets and trajectories that converge to them with

measures larger than 0. An example is given to illustrate the results.

APPENDIX OF CHAPTER 3

TECHNICAL LEMMA

Lemma 3.22. Let k > 0 and p > 0 be constant integers. Given a function
h € C*R™,RP), and compact set K C R™ such that, for every y € K,
h(y) # 0. Then, there exists h € €%(R™, RP) such that supp(ﬂ) D K with
supp(h) compact and, for every y € K, h(y) = h(y). O

Proof. This proof if based on (see Salsa, 2008, pp. 370). From the
compactness of K and since, for every y € K, h(y) # 0, there exists
¢ > 0 such that, for every y € B¢, (K), h(y) # 0.

Let, for every y € R™, the function

—1 .
cexp (W)’ if |yl<1,
0, if otherwise,

nly) =
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where c is chosen to satisfy
J nly)dy =1. (3.43)
RN

Note that, 1 € C®°(R™,R>o) and supp(n) = B«;(0). Pick a constant

value § > 0 and define, for every y € R", the function

Ns(y) = %n (%)

Note also thatns € €*°(R™,R>), supp(ns) = B<s(0), and
J ns(y)dy =1.
RT\

Let

X

{1, if yeB_:(K),

0, if otherwise

and consider the function®?

X(y) = Jx(y—X)n%(X) dx.
RT[
Note that
Jn%(x)dx, if y—xeB:(K) and |x|<§,
X(y) =4 En .
0, if y-x¢B_c(K) or >5.

Thus, ¥ € €*(R™, [0, 1]) and satisfies

* Together with (3.43), for every y € K, X(y) = 1;
e Foreveryy € B..(K),X(y) =0;

* supp(X) = B (K).

Now, for every y € R™, define h(y) = X(y)h(y). Note that h ¢
C*(R™,RP) and satisfies

 Foreveryy € K, h(y) = h(y);

e Foreveryy € B-.(K), h(y) =0.

Moreover, K C supp (ﬂ), the set supp (ﬁ) is compact, and for every
Yy € supp (ﬁ), h # 0. This concludes the proof. [

40 also known as convolution of x and
Ne/2 (see Salsa, 2008, pp. 370).
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41 (Rudin, 1976, Definition 8.17)

42 (Pfeffer, 2012, pp. 14)

43 (Evans and Gariepy, 1992, Section
2.2)

44 cf. Definitions A.5 and A.7.

45 (Marzocchi, 2005)

46 (Pfeffer, 2012, pp. 50)

3.8.2

THE DIVERGENCE THEOREM FOR LEVEL SETS OF A LYAPUNOV

FUNCTION

Definition 3.23 (Gamma function). 4! The function

5 Te tdt

w
I
o——8 #

is called gamma function. o

Definition 3.24 (Hausdorff measure). 42 Let E c R", the diameter of E

is the function

diam: ExXE — R>0

(x,y) = supix—yl}

Let 0 <m < oo. For 0 < & < oo define

A (E) =inf{ Y diam(E;)":E C | J Ej,diam(E;) < §,E; CR™
jeN jeN

The n-dimensional unnormalized Hausdorff measure of E is the limit

S (E) = lim 5™ (E) = sup 4" (E).

5>0

The n-dimensional Hausdorff measure of E is given by

oc(s)

H(E) = oA E),
where ( )
T .
SR Y G &

Remark 3.25. 43 Note that the n-dimensional Lebesgue measure of
a set E C R™ is the n-fold product of unidimensional Lebesgue mea-

sures ** while the Hausdorff measure is computed in terms of arbitrar-

ily coverings of E with small diameters. Moreover, the Lebesgue mea-

sure in R™ is equivalent to the n-dimensional Hausdorff measure, i.e.,

w = ", Also, if #™(E) < oo, then ™ ' (E) = co and "+ (E) =
0‘45

¢}

Definition 3.26 (Essential boundaries). ¢ For a set E ¢ R™,

e The essential exterior is the set

- n . qim PENB< () 1.
ext*(E)—{xeR 11_{1(1) (B (X)) —O},
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e The essential interior is the set int,(E) = ext,(R™ \ E);
e The essential closure is the set c1,{E} = R" \ ext,(E);
® The essential boundary is the set 0,E = c1,{E}\ int,(E). o

The following properties hold%”

int,(E) C c1l.{E}, int,(R™\E)=ext,(E),
0,E=cl,(E)Ncl,{R*"\E} =0,(R™\E) =R"\ (int,(E) U ext.(E)).

Definition 3.26 is related to the usual topological concepts as fol-

lows
int(E) C int.(E), cl,{E}C cl{E}, 0.E C OE.
Moreover,
0.E =0E & int(E) = int,(E) and c1,{E}= cl{E}
and

. nopo WENBg(x))
1nt*(E)C{x€R .11£r(1)m_1}

becomes an inequality, when E is measurable.

Example 3.27. 48 Consider the heart-shaped open set C illustrated by
Figure 3.4. Assume that it is measurable, and points x;,x2,x5 ¢ C,

and that C is cusped in x, and xs.

/ -\t
! R L
\ A ]
¥ <
\ X 7
\ SR 7 X1
"~‘ N +2Fs 4
'Y SiXe
N 7
X3 N
N7
o
X2

Note that, x1,%2,x3 ¢ int,(C) while x4,x5 € int,(C). In particular,
x1 € 0,C, and x;,x3 € ext,(C). Moreover, and if C was not cusped in

x2, then x; € 0,.C. o

Definition 3.28 (Perimeter of a set). 4° The perimeter of a set E C R™ is
the measure

P(E) = 2™ (3.E).
The perimeter is finite if u(E) + P(E) < oo. o

Theorem 3.29. %0 Let k > 0 be a constant integer, and consider the Lipschitz

47 (Pfeffer, 2012, pp. 49)

48 (Marzocchi, 2005)

Figure 3.4: Heart-shaped set. Circum-
ferences illustrates the set B, (x{), 1 =
1,...,5.

4 (Pfeffer, 2012, Definition 4.5.1)

50 Adapted from (Alberti, Bianchini, and
Crippa, 2013, Theorem 2.5).
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510Q_.(V) can be s#'-almost every-
where covered by countably many 1-
dimensional curves of class @'.

52 Based on (Pfeffer, 2012, pp. 127-128)
and (Marzocchi, 2005, Definition 1.6).

map V € C*(R? Rxo) with supp(V) compact. The following statements

hold, for almost every c € Rxo.

1. Q_c(V) is 1-rectifiable®® and 7" (Q_.(V)) < o0;

2. For " -almost every x € Q_.(V), the map V is differentiable at x;

3. Every connected component C of Q_.(V) is either a point or a closed
simple curve with a Lipschitz parametrization p : [a,b] — C which is

injective and satisfies, for almost every t € [a, b],

dp ..
P =1(p(t),
where, for every x € C, t(x) is the vector tangent to C. o

From item 2, since level set Q_.(V) is either a point or a simple
closed curve of R?, 3Q_.(V) = cl{Q_.(V)} = Q_.(V). Moreover,
0,.Q_.(V) € cl{Q_(V)}. Thus, the sub-level set Q<. (V) has finite

perimeter and, from item 1,
J A" < o,
Q_c(V)

where, from Remark 3.25, the integral is defined in the Lebesgue sense

inR'.
Definition 3.30. [Outward normal]®? For every x € 9.E, denote by
ng (x) the unit vector of R™ such that
Hi(E,x) ={y e R":tng(x) - (y—x) = 0}
The function ng is called outward unit normal of E C R™ if, for every

x € 0,E,
1 (B (x) N H (E,x) NE)

o W Bk -0

(3.44)
WBa )N (H (EX\E)
s k(B () =0

hold. o



STABILIZATION UNDER LOCAL AND GLOBAL CONSTRAINTS | 95

From item 2 of Theorem 3.29, for #'-almost every x € Q_.(V),
grad V(x) exists. Thus, the vector field

n: Q_.(V) - R?

B grad V(x)
lgrad V(x)|’

0, if otherwise

if gradV(x) exists, (3.45)
X

is #"-almost everywhere an outward normal to Q<.(V). Since
the outward normal to sets of finite perimeter is unique3, n satisfies
(3.44).

For a further reading on the sets of finite perimeters and on the con-
struction of outward normals for them, the interested reader is invited

to see (Pfeffer, 2012, Chapters 5 and 6).

Theorem 3.31 (Generalized divergence theorem). >* Under the assump-
tions of Theorem 3.29. Let k > 0 be a constant integer, and consider the map

f € €%(R?,R?) with supp(f) compact. Then, the formula

” divf(x) dx = f]g f(p(s)) - n(p(s)) ds
Q< (V) la,b]
holds, where the integral of the lefthand-side (resp. righthand-side) is taken
in the Lebesgue (resp. 1-dimensional Hasudorff) measure on R? (resp. R),

and p : [a,b] = Q_.(V) is a parametrization of Q_ (V). O

Before showing a sketch of the proof of Theorem 3.31, the following

Lemma is needed.>®

Lemma 3.32 (Green’s Theorem). % Let C C R? be a positively oriented,
piecewise smooth, simple closed curve with finite length, let D ¢ be the region
bounded by C, and let f = (f1,f2) : R? — R2 Iff; : R? — Rand f, : R? —

R are defined on an open region containing D¢, and f is differentiable in such

Figure 3.5: lllustration of Equation
(3.44), the measure of the shaded sets
must go to zero faster than the measure
of the balls. Note that, in x3 the nor-
mal is a cone. Thus, it does not satisfy
(3.44). Hence, it is 0 at x3. Figure origi-
nally presented in (Marzocchi, 2005).

53 (Federer, 1945, Theorem 3.4)

54 Adapted from (Marzocchi, 2005, The-
orem 1.7) or (Pfeffer, 2012, Theorem
6.5.4). In the latter, the set where the in-
tegral is computed is assumed to have
Bounded Variariation, in (Pfeffer, 2012,
Theorem 6.5.5) it is shown that a set has
bounded variation if and only if it has fi-
nite perimeter.

5 For a detailed proof in R™, the inter-
ested reader may consult (Pfeffer, 2012,
Chapters 1 to 6).

56 Based on (Spiegel, 1959, pp. 106).
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57 Based on (Spiegel, 1959, pp. 108).

|
|
|
|
:
a b

Figure 3.6: lllustration of the curve C.

58 (DiBenedetto, 2002, Theorem 14.1)

= X1

a region, then

of, of
jg(ﬁ (x1,x2) dx1 + f2(x1,%x2) dx2) = ” 22— L) dxidxg, (3.46)
aX1 aXZ
C c
where the path of integration along C is counterclockwise. O

Proof (of Lemma 3.32). 57 Since C is a simple closed curve in the plane,
the region D¢ is bounded. The projection of the curve in the x-axis
(resp. y-axis) yields an interval [a, b] (resp. [e, f]). Consider the points
of A,B € C (resp. E,F € C) corresponding to the points a and b (resp.
e and f) on the x-axis, the curve C can be saw as the union of the curves
AEB and AFB. The Figure 3.6 illustrates the curve C, and the intervals
[a, b], and [e, f].

Let the equation of the curve containing the points AEB (resp. AFB)
be given by a piecewise continuous function n; : [a,b] — R? (resp.
M2 : [a,b] — R?).

Integrating the partial derivative of f; with respect to x, in D¢

yields
5¢ bnz2(x1) af
Jafl(xhxz) dxqdx; :J J — (x1,%2) dxadx
X2 axZ
Dc anq(x1)

where the equality is due to Fubini’s theorem®. Moreover, since C

has finite length, the equality

b
of
”a—x‘z(xm)dx]dm - J(ﬁ(xhﬂz(xl))—ﬁ(XhTh(Xl)))dM
Dc a
b a
= —Jﬂ(xbm(xﬂ)dm—Jﬁ(xhnz(?ﬂ))dm
a b
= —%f](X],Xz)dX].
C
holds.

Analogously, integrating the partial derivative of f, with respect to

x1 in D¢ yields

of
” afz(xmu) dxidx; = jﬁfz(th) dx,.
X1
C

C

From where the conclusion follows. [ ]

Now, it is possible to present an idea of the proof of Theorem 3.31.

From Theorem 3.29,
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e The curve Q_.(V) is piecewise €', because it is rectifiable. More-

over, it is also simple and closed;

e Since V is s#'-a.e. differentiable in Q_.(V), the outward normal

vector defined by (3.45) is . -a.e. non null;

¢ The curve Q_ (V) has finite length, because ' (Q_.(V)) < oo;

* There exists a injective and Lipschitz continuous parametrization

p:la,b] = Q_ (V) that is a.e. differentiable.

Consider the vector field f = (—f5, f;) that is perpendicular to f =
(f1,f2). Since f = (f1,f2) € €'(R%,R?), f € €'(R?,R?). Together with

the above, from®® Lemma 3.32, 59 More specifically from (3.46).

jg (—f2(x1,x2) dxq + f1(x1,%2) dx2) = ﬂg (—f2(x1,%2), f1(x1,%2)) - (dx1, dx2)
Q_.(V) Q_c(V)
Consider a point x = (X1,%2) € C for which there exists 5 € [a,b]
such that p(s) = (x1,%2) and p’(s) is defined. The unit tangent vector
to C at x is given by T(s) = p'(s)/jp/(5)| = (7(8), 0(5)). The unit normal
vector at X is given by N(5) = n(p(s)) = (o(5), —(s)). For almost every

s € [a,b],

Thus,

97
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fj; (—f2(x1,%2) dxq + f1(x1,%2) dx2)

From (3.46),

[] <§%(X1,Xz)+§%(xhxz)) dadx = § (AP, F(pls)) nlp(s) ds

Qg (V) [a,b]

This concludes the sketch of the proof of Theorem 3.31.

3.8.3 INTEGRATION ALONG SOLUTIONS OF AN ODE

6 Based on (Rantzer, 2001, Lemma A.1) Lemma 3.33 (Liouville’s Theorem). 60 Tetk > 1and p > 1 be constant
integers, the function p € (€% N LP)(R™™ Rso). Let also Y(t,y) be a
solution of (3.8) starting in y € R™*™ and computed at time t € Rxo. For
a measurable set Z, let Y(-,Z) ={Y(-,z) : z € Z}. Then,

J p(y)dy—Jp(y)dy:J J div(ph)(y) dydr.
Y(t,Z) z 0Y(t,2)

g

81 (Rantzer, 2001, Theorem 1) Theorem 3.34 (Almost attractivity). 1 Let k > 1 and p > 1 be constant

integers. Suppose that there exists p € (C* N LP)(R™, Rxo) such that,

J (hp)(y) dy < 0o
B>1(0)

lyl

and,

fora.e.y € R™™,  div(hp)(y) > 0.

Then, for almost every initial condition y € R™*™,

limsup|Y(t,y)| = 0.

t—o0

Moreover, if the origin is stable, then the conclusion remains valid when p

takes negative values. O
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41 CONCLUSIONSAND
PERSPECTIVES

This chapter collects final remarks of this dissertation and discuss fur-

ther development on the results presented in the previous chapters.

Contents

4.1 Conclusions 99
4.2 Perspectives and work in progress 100

4.2.1 Analysis of large-scale systems under nested criteria

4.2.2 Interconnecting almost input-to-state stable systems

4.2.3 Homogeneous approximations of hybrid systems 101

CONCLUSIONS

In this dissertation two applications of stability theory were consid-
ered: the synthesis of a hybrid nonlinear feedback satisfying constraints
in the basin of attraction, and the analysis of the stability of an inter-
connected system using nested criteria.

In Chapter 2, the problem of designing a stabilizing feedback law
for a nonlinear system, when the backstepping method may fail to be
employed, were considered. By adding a discrete dynamics to the
continuous system under consideration, it was possible to blend a
local stabilizing feedback law, designed to satisfy constraints in the
basin the attraction, with a controller that globally asymptotically sta-
bilizes a set contained in the basin the attraction. Some drawbacks of
this approach were discussed in Remarks 2.17 and 2.19. In the former,
it is estimated the maximum admissible perturbation, while in the lat-

ter it is shown the computational cost to obtain a local feedback law

100

100
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using an approximation of the nonlinear dynamics.

In Chapter 3, when the small gain condition does not hold in a
given region of the state space, some criteria to analyze the intercon-
nection of dynamical systems were provided. More specifically, in
the regions where the small gain condition holds, it is analyzed how
a positive definite function varies along the solutions of the intercon-
nected system, while in the regions where the small gain condition
does not hold, it is provided a sufficient condition for the Lebesgue
measure of the sets of initial conditions, and corresponding solutions
that do not converge to an compact attractor to be zero.

Although this approach does not ask for the small-gain condition to
hold everywhere, it is needed further regularity on the vectorial field
on the same region, because of the use of differentiability of the vec-
tor field. An attempt to relax the need for regularity could generalize
the presented approach. Also, a method to check the absence of w-
limit sets with Lebesgue measure zero would improve the criterion.
Applications of Chapter 3 include analysis of large-scale systems (see
Section 4.2.1 below), and could lead to the design of feedback laws

satisfying different gains.

PERSPECTIVES AND WORK IN PROGRESS

The objective of this section is to show some possible applications and

developments on the work presented on the previous chapters.

ANALYSIS OF LARGE-SCALE SYSTEMS UNDER NESTED CRITERIA

With Dashkovskiy, the author is currently working on an application
of the criterion proposed on Chapter 3 for the stability analysis of sys-
tems obtained from the interconnection of several components.

The idea is to merge the criterion proposed in (Dashkovskiy, Riif-
fer, and Wirth, 2010; Dashkovskiy and Riiffer, 2010) which relies on
a small-gain like assumption holding globally with the one presented

on Chapter 3.

INTERCONNECTING ALMOST INPUT-TO-STATE STABLE SYSTEMS

BackGROUND AND MOTIVATION. Consider the system

x1 = f1(x1,u1) (4.1)
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where, f; € T (R™™ R™).

Definition 4.1. ! The system (4.1) is called almost input-to-state stable T (Angeli, 2004)

(aISS) with respect to an invariant compact A; C R", if

® The set A; is locally asymptotically stable in the Lyapunov sense,

when? u = 0; 2 Note that Angeli did not state whether
u = 0 or not. Itis assumed that u = 0,
* There exists y1 € X such that, for every u; € R™, there exists because of properties 2) - 3) listed just

. Lo before (Angeli, 2004, Definition 2.1).
N (uy) € R™ with py (X5 (ug)) = 0 satisfying,

Vx1 € RM\ X;(ug), limsup|X;(t,x1,w1)la < villhulle). o

t—o0
From now on, assume that A; = {0}, and (4.1) is alSS.

Theorem 4.2. 3 System (4.1) is alSS if and only if there exists a mapping ® (Angeli, 2004, Theorem 1)
Ny R™ — 2R with u(Xy(uy)) = 0 for any measurable input w; € R™
such that,

Yug € Rm, Vx; € R™\ Ny (ug ), lim sup X7 (tyxq1,u1)] < vi <11m sup [uq (t)|) . (42)

t—oo t—o0

O

Is the interconnection of two almost input-to-state systems almost

globally asymptotically stable?

4.2.3 HOMOGENEOUS APPROXIMATIONS OF HYBRID SYSTEMS

Homogeneous approximations of dynamical systems allow the anal-

ysis of dynamical systems using approximation functions. The aim of

this section is to analyze systems with mixed dynamics (continuous

and discrete) using functions that approximate it around the origin

and in the infinity.
The advantage in using this method are based in two important re-

sults. The first is concerned with the stability of the equilibrium, while

the second is concerned with attractors containing the equilibrium.

Roughly speaking, if this equilibrium is asymptotically stable for the

homogenous approximation in the equilibrium, then it is also asymp-

totically stable for the nomimal system.* Moreover, if this equilibrium 4 (Goebel and Teel, 2010)

is globally asymptotically stable for the homogenous approximation

in the infinity, then there exists a set that is globally asymptotically

stable for the nominal system and strictly contains this equilibrium

point. 5 (Andrieu, Praly, and Astolfi, 2008)
The aim is to extend the concepts and results of (Andrieu, Praly,

and Astolfi, 2008), concerning the homogeneous approximation in the
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8 (Andrieu, Praly, and Astolfi, 2008)

infinity using the framework of hybrid systems, and complementing
(Goebel and Teel, 2010). More precisely, is it possible to generalize the

following result for hybrid systems?

Proposition 4.3. © Consider a homogeneous approximation of the vector
field £ : R™ — R™ in the infinity fo : R™ — R™. If the origin is globally
asymptotically stable for the system

X = foo(x))

then there exists an invariant compact subset of R"™, denoted C, which is

globally asymptotically stable for the system

x = f(x). O
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LEBESGUE MEASURE AND INTEGRAL

ter 3, are recalled here.

THE LEBESGUE MEASURE

called o-algebra of sets if

1. 0, R™ € G(R™);

Some concepts of Lebesgue measure an integral, used mainly on Chap-

Definition A.1 (0-algebra). ! A collection & of subsets of a set R™ is

AITORDINARYDIFFEREN-
TIAL EQUATIONS

" Based on (Salsa, 2008, Definition B.1)
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2 (Hunter, 2011, Definition 2.18)

3Based on (Kurtz and Swartz, 2004,
Definition 3.32, and pp. 80)

4 Based on (Hunter, 2011, pp. 10) and
(Kurtz and Swartz, 2004, Definition 2.1,
and pp. 80).

5 Based on (Hunter, 2011, Definition 2.1)
and (Kurtz and Swartz, 2004, Definition
3.40).

2. if A € G(R"), then R™"\ A € G(R");
3. if{A;:1 € N} C &(R"), then

JAie&®R") and () AicSERM.
ieN ieN
The pair (R™, &(R™)) is called measurable space, and the sets A € G(R™)

are called measurable set. o

Definition A.2. 2 Let T(R") be collection of all open sets of R™. The
Borel o-algebra B(R™) on R™ is the o-algebra generated by the open
sets, B(R™) = S(T(R")). A set that belongs to B(R™) is called Borel

set. o

Definition A.3 (Measure). 3 Consider a measurable space (R™, &(R™)),

a mapping mes : §(R") — Ry is called measure if
1. mes(0) =0;

2. mes is countably additive, i.e.,

mes (U Ai) = Zmes(/\i),

ieN ieN
for every sequence of pairwise disjoint sets {A;}ien C G(R™).
The triple (R™, §(R™), mes) is called measure space. o

Definition A.4 (Partition, length, and volume). 4 The length of an in-
terval [a, b] is defined by £([a,b]) = b — a. A rectangle R C R™ is a set

of the form

R = Xlai, bil.

i=1

A rectangle is called open if R = int(R). Two rectangles R; and R;
are called almost disjoint if int(R1) N int(R2) = (. The set of all n-
dimensional rectangles of R™ is denoted by R. The volume of a rectan-

gle R is defined by

n

vol(R) = H ([ai, bil)

i=1

with the convention that 0 - co = 0. o

Definition A.5 (Lebesgue outer measure). 5Let (R™, G(R™)) be a mea-

surable space the Lebesgue outer measure of E C R™ is defined by

u*(E) = inf{zvol(m) EC [JRyRi€ m},

ieN ieN
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where the infimum is taken over all countable collection whose union

contains E. The mapping

oo 2B 5 Ry

E — uwi(E),

where 28" denotes the collection of all subsets of R™, is called outer

Lebesgue measure. o

Proposition A.6. © The Lebesgue outer measure has the following proper- 8 (Hunter, 2011, Theorem 2.4)
ties

Py, u* (@) =0;

Py. if B C &(R™), then w*(E) < p*(S(R™));

Ps. if {E; C R™ :1i € N}is a countable collection of subsets of R™, then

Ty (U Ei) <D wi(E).

i=1 i=1

O
Definition A.7 (Lebesgue measure, Measurable set). 7AsetE C R 7 (Hunter, 2011, Definition 2.10)
is said to be Lebesgue measurable if, for every A C R™,
W(A) = (A NE) + u*(A\ E). (A1)

Let £(R™) denote the o-algebra of Lebesgue measurable sets, the re-

striction of the Lebesgue outer measure p* to the Lebesgue measurable

sets, i = p*ggrn), 11 L(R™) — [0, 00, is called Lebesgue measure. o
Proposition A.8. & Every rectangle is Lebesgue measurable. O 8 (Hunter, 2011, Proposition 2.11)
Proposition A.9. ° Every open set is a countable union of almost disjoint ® (Hunter, 2011, Proposition 2.20)
rectangles. O

As a consequence of Propositions A.8 and A.9, every open set is

Lebesgue measurable.

Definition A.10. 10 Let (R", 5(R")) and (R™, G(R™)) be measurable 10 (Hunter, 2011, Definition 3.1)
spaces. A function f : R™ — R™ is called measurable if f~'(B) € G(R"),

for every B € 6(R™). o

A.1.2 THE LEBESGUE INTEGRAL

Definition A.11. ' A characteristic function of a subset E C R™ is the " (Hunter, 2011, Definition 3.11)
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function
xe: R*™ — R
1, if y€eE,
0, if y¢E.

y =

A simple function ¢ : R™ — R on a measurable space (R™, 5(R")) is a

function of the form

N
dy) =) cixe, (v),
i=1

where, for every i = 1,...,N, ¢; € R, and E; € S(R"). It is called
positive simple function if, in addition, for every i =1,...,N, ¢; € Rxo.

o

12 (Hunter, 2011, Definition 4.1) Definition A.12. 12 Let (R, &, u) be a measure space and ¢ : R™ —

R0 a positive simple function the integral of ¢ with respect to p is

N
Jd) dp = Z cip(Eq).
i=1
With the convention that if ¢; = 0 and u(E;) = oo, then 0- co = 0. o

13 (Hunter, 2011, Definition 4.4) Definition A.13. 13 Let (R", &, i) be a measure space and h : R™ —

R0 a measurable function
Jhdu:sup{J¢dp:0<¢<h,d>simple}. o

4 (Hunter, 2011, pp. 53) Remark A.14. 1 Definitions A.12 and A.13 also applies to vector fields.
In this case, the integral of a vector field simple function ¢ is defined
exactly as in Definition A.12. A vector field f : R™ — R™ is called inte-

grable if there exists a sequence of integrable simple functions {¢: }ien,

Blet S ¢ R™, and {fn}nen be a se- where ¢; : R™ — R™, such that ¢; — f pointwiselS, where the conver-
quence of real valued functions defined . .
on S. The sequence {fy}ncy is said gence is with respect to the norm on R™, and

to converge pointwisely to f if 3x € S
such that, Ve > 0, IN(%, e) > 0 such
that, |H:*d)n||d+t‘> 0, asm — oo.

vn 2 N(x, e), [fn(x) — f(X)] < e.

6 Based on (Hunter, 2011, Definition Definition A.15. !¢ Let (R™, &(R"), ), and p € [1,00). The Lebesgue
7.1) and (Vladimirov, 2002, pp. 3). . i . .
measurable function h : R™ — R is said to be locally p-integrable (or p-

summable) on R™ if, for every compact set K C R™, and for p € [1,00),

Jm(ynp dp < oo.
K

The class of locally p-integrable functions h on R™ is denoted by £} (R™, R).
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For p = oo,

ess sup |h(y)| < oo,
yekK

where

esssuph(y) =infla e R: u{y € K: h(y) > a} =0}
yek

The class of locally co-integrable functions h on R™ is called locally es-

sentially bounded, and is denoted by £° (R™, R). The essential supremum

loc

norm of hin R™ is the positive value |[h| := ess sup{/h(y)|:y € R"}. o

A.2 CONTINUITY OF FUNCTIONS

Definition A.16 (Uniform continuity). Let Y C R™ be an open set. A

function h: Y — R™ is called continuous if,
vy € Y,Ve >0,35(y,e) > 0: vy € Y,ly—yl < 8(y,e) = [h(y)—h(y)l <e.

The class of k-times continuously differentiable functions h: Y — R™
is denoted by €*(Y,R™). The function h is said to be uniformly contin-

uous if
Ve > 0,35(e) > 0:Yy; € Y,Yy2 €Y, |ly2—y2| < 8(e) = [h(y1)—h(yz2)| < e.

¢}

Definition A.17. A function h € C°(R™,R™) is called locally Lipschitz
continuous if, for every compact set K C R", there exists a constant

value M > 0, called Lipschitz constant such that, for every yi, y> € K,

h(y1) —h(y2)l < Mly1 —ya2l.

[¢]

Definition A.18 (Absolute continuity). Let [a, b] C R be a compact set.
A function h : [a, b] — R™ is called absolutely continuous if there exists

g € £'([a, b],R™) such that, for every t € [a, b],

Definition A.19 (Local boundedness). 17 A function map h : R™ — 7 (Mimna and Mimna, 1997, Definition
1).
R™ is called locally bounded if, for all x € R™, there exists an open set )

O C R™ such that h is bounded on O. o

Theorem A.20. '8 If f € C°(R™,R™), then f is locally bounded. O '8 (Mimna and Mimna, 1997, Theorem
1).
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9 (Goebel, Sanfelice, and Teel, 2012,
Definition 5.9)

Ana

Az

Asa

SET-VALUED MAPS

Definition A.21 (Outer semicontinuity). ! A set-valued map M : R™ =
R™ is called outer semicontinuous at x € R™ if, for every sequence of
points {xi}iecn C R™ convergent to x € R™, and any convergent se-
quence of points {yi }iew C M({Xi}ien), onehasy € M(x), wherey; — y.
The map is outer semicontinuous if it is outer semicontinuous for every
x € R™. Given S C R™, M : R™ = R™ is outer semicontinuous relative
to S if the set-valued map from R™ = R™ defined by M(x), for x € S,

and 0, for x ¢ S, is outer semicontinuous at each x € S. o

Note that continuous functions are outer-semicontinuous set-valued

maps.

INITIAL-VALUE PROBLEM

EXISTENCE AND UNIQUENESS

Let k > 0 be a constant integer. Consider the functions h € €¥(R™ x

R™ R") and u € £2 (R,R™), and the equation

loc

y(t) = hy(t),u(t)),
ylto) = yo,

(ODE)

where, for every t € R, y(t) € R™. The function u is called an input of
(ODE).
From the fundamental theorem of calculus, for almost every t €

R, and for every fixed function u € £ (R,R™), Equation (ODE) is

loc

equivalent to

y(t) =yo + J h(y(s),u(s)) ds.

Definition A.22 (Solution). Letyy € R™, I C Rwith to € I, and a fixed
function u € £ (R,R™). A function Y : I x {yo} x {u} = R™ is called
solution of (ODE) with initial condition yo and input u if

1. Y(to) =vyo;
2. The functionI 5 t — Y(t,yo,u) € R™ is absolutely continuous;
3. For almost every t €I,

dy
E(tvy)u) = h(Y(t,U,u))
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The set of solutions of (ODE) with initial condition yo and input u
is denoted by Sn(yo,u). From now on, the interval I is denoted by
dom(Y). When u = 0, the solution is denoted by Y(t,y,) and the set of
solutions by Sk (yo). o

Definition A.23 (Continuation of solution). 20 Let Y and Y be solutions 20 Based on (Hale, 1980, pp. 16)
of (ODE), Y is called continuation of Y if dom(Y) C dom(Y), for every

t € dom(Y), Y(t,yo,u) = Y(t,yo,u), and for almost every t € dom(Y),

dy -
a(t»ymu) = h(Y(t»y())u))'
A solution Y is called

* complete if dom(Y) is unbounded. If sup dom(Y) = oo, then Equation
(ODE) is called forward complete;

e maximal if cannot be continued. o

Theorem A.24 (Existence). 2! Let k > 0 be a constant integer, and u € 21 Based on (Hale, 1980, Theorems I.1.1
o m . P m on n and 1.2.1), (Teschl, 2012, Theorem 2.8)

Lisc(R,R™) be fixed. Ifh € C*(R™ x R™,R™), then for every yo € R",  and (Praly, 2011, Théoréme 1.7).

there exists at least one solution Y of (ODE) that is locally Lipschitz and can

be continued to a maximal interval of existence. Moreover, if Y is maximal,

then Y(t,yo,u) tends to co as t — ddom(Y). O

Theorem A.25 (Uniqueness). 22 Jetu € Lps (R,R™) be fixed. If h € 22 (Hale, 1980, Theorem 1.3.1) and
. . . . . . (Praly, 2011, Théoreme 1.7).

CO(R™ x R™ R™) is locally Lipschitz with respect to y and uniformly with

respect to w on compact sets, then for every yo € R™, there exists a unique

solution Y of (ODE). O

Theorem A.26 (Regularity). 23 Let k > 1 be a constant integer, and u € 23 Based on (Teschl, 2012, Theorem 2.7)
. and (Hartman, 1982, Corollary 3.1).

L (R,R™) be fixed. If h € CK(R™ x R™ R™), then for every yo € R™,

solution Y of (ODE) is of class €*(dom(Y) x {yo} x {u},R™) and the map
R™ 3 yo — Y(+,yo,u) € R™ is a diffeomorphism of class C*. O

A.3.2  STABILITY

Letk > Obe a constant integer, consider a fixed function ¢ € €*(R™,R™),

called feedback law. When it substitutes u in (ODE), it yields

dy _
{ ot (t) = h(y (t)) ¢(U (t)))) (d)-ODE)

y(to)

Yo-

From now on, with an abuse of notation, h(y(-), $(y(-))) is denoted

by h(y(-)). Also, assume that (¢-ODE) is forward complete.
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24 (Sastry, 1999, Definition 2.11).

25 Based on (Khalil, 2001, pp. 127).

%6 Based on (Sastry, 1999, Definition
5.2).

27 Based on (Bacciotti and Rosier, 2001,
Definition 2.1).

28 (Bhatia and Szeg6, 1967, Definition
1.5)

2 Based on (Sastry, 1999, Definition
5.6)

30 Based on (Bacciotti and Rosier, 2001,
Definition 2.3).

Definition A.27 (w-limit and invariant sets). The element y., € R™ is
called®* w-limit point of Y if there exists {ti}ieny C dom(Y) with t; oo
such that, for every Y € 8n(yo), Y(tn,Yo) — Yoo The set of all w-limit
points of Y is called w-limit set, and it is denoted by w(yo).

Aset M C R™ is called? positively invariant with respect to ($-ODE)
if, for every yo € M, and for every Y € 81 (yo), Y(t,yo) € M, for every

t 2> 1. o

Definition A.28 (Equilibrium point). 2° Let Y be a solution of (¢-ODE)
with initial condition §y € R™. The element y is called an equilibrium
point of ($-ODE) if, for almost every t € dom(Y), h(Y(t,y)) = 0. o

Note that, if ($-ODE) have only one equilibrium point in Y, then
there exists a coordinate change rendering the origin an equilibrium
point. To see this claim, assume that § is an equilibrium point, and for
every t € R, consider the coordinate change c(t) = y(t) —y. Taking
its derivative, for almost every t € R, it yields ¢(t) = y(t), and ¢ is
described by the same vector field as yj. Thus, the properties referring
to the origin as an equilibrium point are equivalent to refer to any

other single equilibrium point.

Definition A.29. Let A C R™ be a compact set, assume that it is posi-

tively invariant with respect to ($p-ODE), it is called

e Stable?’ for ($-ODE) if, for every e > 0, there exists §(e) > 0 such

that, for every yo € R™, and for every Y € 8n(yo),
lyola < 0(e) = [Y(t,yo)la <€, Vt=to;

e Unstable for (6-ODE) if not stable;?

e Locally attractive for (6-ODE)? if, there exists 5o > 0 such that, for

every yo € R™, and for every Y € 8(yo),
[yola < 80 = lim [Y(t,yo)la =0.
t—o0

e Locally asymptotically stable for ($-ODE)30 if it is stable and locally
attractive. The adjective locally is replaced by globally, when the

choice of &, can be taken as large as desired. o

Example A.30. Note that stability and attractivity are different con-
cepts. The following example is analyzed in details in (Hahn, 1967,

Paragraph 40) and illustrates a case where the origin is unstable and
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attractive.
P Xy —x) +y°
(x2 +y2)(1+ (x2 +y?))?
(A.2)
g — 92(9 B 27(,)
(2 +y2) (1 + (x2 +y2))2
The phase portrait is presented in Figure A.1. ©
Figure A.1: Phase portrait of system
(A2).
0.5; 75 1
/
0 o L
-1 -0.5 0 0.5 1 1.5 2
x
A.+ DIFFERENTIATION ALONG SOLUTIONS OF AN ODE
Definition A.31 (Comparison functions). Let k > 0 be a constant in-
teger,
e A function € C*([0, a), R>o) is called strictly increasing if, for every
s1,82 € [0, a) with s7 < s2, a(s1) < «(s2);
e A function V € C*(R™,Rxo), p = 1, is called locally positive definite
with respect to a set S C R™ if3! there exists a constant value r > 0 31Based on (Sastry, 1999, Definition
5.12).

such that, for every y € B<.(S) \{S}, V(y) > 0, and V(y) = 0 if and
only if y € S. The class of such functions is denoted Pjo.(R™,R>0).

It is called positive definite if v can be taken as large as desired and
32 This property is also called radially

S ={0}, in this case, the class of functions is denoted by P(R™,R>0); unbounded. This definition is based on
(Schwartz, 1970, pp. 111) for a defini-
¢ A function V € €*(R™,R) and p > 1, is called proper32 if, as [y| — tion in terms of pre-images of compact
sets see (Bourbaki, 1966, Proposition
o0, V(y) — oo; 1.3.7).
* A function® « € (€% N P)([0,a),R>o) is called of class K([0, a), R>o) 33 Based on (Khalil, 2001, Definitions
4.2).

if it is strictly increasing. It is denoted by X, if a can be taken as

large as desired. It is called of class K if it is of class X and proper;

e A function® p € C*(Rso x Rso,Rx0) is called of class XL if, for 3 Based on (Khalil, 2001, Definitions
4.3).
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Figure A.2: lllustration of some of the
functions described in Definition A.31.
a) a positive definite function, b) a func-
tion of class X, c) a function of class
X L, and d) a function of class K.

% (Khalil, 2001, Lemma 4.2)

36 (Sontag, 1998, Proposition 7)

a fixed t € Ry, the function s — f(s,t) is of class X and, for a
fixed s € Ry, the function t — (s, t) € Ry is non-increasing and

satisfies (s,t) — 0, as t — oo. o

Figure A.2 illustrates the functions presented in Definition A.31.

(s) o(s)
O(G:P ,,,,q,e,gg,,
| S| S
b)
x € Ky
s
d)

Proposition A.32 (Properties of comparison functions). 3 Let o, «; €

K, «3, g € Koo, and p € KL. Then,

o o' € Kis defined on [0, o1 (a)];

* o' € Ko,

* xjox €K

® 3004 € Koo

* Bls,t) = o1 (Blaxz(s), t)) € XL;

* Bls,t) < oufoa(sle™) € KL O

Claim A.33. Let k > 0 be a constant integer, the function V € €*(R™,R>,)
is locally positive definite with respect to the origin if and only if there exist

a constant value v > 0, and &, x € K([0,1),R>0) such that
Yy € B<+(0),  a(lyl) < V(y) <x(lyl). (A.3)

Additionally, V is proper if and only if &, & € K. O
The proof of Claim A.33 is provided in Section A.5.1

Definition A.34 (Lie derivative, Lyapunov function). Letk > 1be a
constant integer. The function V € C€*(R™ Rx,). Itis called Lyapunov

function candidate (resp. in the small) if there exist x,& € XK. (resp.
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o, & € K([0,1),R>0)) such that, for every y € R™ (resp. for every y €
B« (0)),
a(lyl) < Viy) <x(yl). (A4)

The function

L.W: R* - R
y = (gradV(y),h(y)).

is called Lie derivative of V in direction of h. If =L,V € (C*~TNP)(R™, Rxo)
(resp. —LnV € (€1 N Poe) (R™,R50)), then V is called Lyapunov func-
tion (resp. in the small) for (¢-ODE). o

From Definition A.34 and Claim A.33, =L,V € (€%~ TNPyoc) (R™, Rxo0)
implies that there exists « € K([0,7),R>0) such that, for every y €
B<(0), LnV(y) < —«(lyl). In (Lin, Sontag, and Wang, 1996, Remark
4.1) it is shown that it is not restrictive to choose the functions &, &

given by Claim A.33, and « as being of class (C* N K)([0,7),Rxo).
Theorem A.35 (Basic Lyapunov theorems). 37 If

1. V€ Pioc(R™,Rx0), and for everyy € Y, LnV(y) < O, then the origin is
stable for ($-ODE);

2. V € Pioc(R™,Rx0) and proper, and for every y € Y, LnV(y) < 0, then
the origin is uniformly stable for ($-ODE);

3. V € Poe(R™,Rx0) and proper, and —LpV € Pic(R™,R>0), then the
origin is locally uniformly asymptotically stable for ($-ODE);

4. V € P(R™,Rxo) and proper, and —LpV € P(R™,Rx), then the origin
is globally uniformly asymptotically stable for (p-ODE). O

Theorem A.36 (Converse Lyapunov Theorem). 38 If the origin is glob-
ally (resp. locally) asymptotically stable for (b-ODE), then there exists a

Lyapunov function (resp. in the small). O

Proposition A.37. 3 Consider the scalar differential equation

y = —afy)
ylto) = yo,

where o is a locally Lipschitz function of class K ([0, a), Rxo). For every 0 <
Yo < a, this equation has a unique solution Y defined on [to, 0o). Moreover,
there exists p € KL(([0,a),R>0) X Rx0,R>0 x Rx0) such that, for every

te [tO)OO)/ U(t) < B(UO)t_tO)' O

37 (Sastry, 1999, Theorem 5.16)

38 (Bacciotti and Rosier, 2001, Theorem
2.4)

39 (Khalil, 2001, Lemma 4.4)
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40 (Khalil, 2001, Lemma 4.5)

4"Based on (Rouche, Habets, and
Laloy, 1977, pp. 345) and (McShane,
1947, pp. 188).

Note that, in (Clarke et al., 1998, pp. 4),
the Dini derivative of a several variable
function V : R" — R is defined, for ev-
eryy € R™, by
D{V(y) = limsup
v "

In the case where V is locally Lipschitz,
the above limit reduces to (A.6) (see
Clarke, 2013, Exercise 11.19).

42 (see Clarke, 2013, Definition 11.42)

Viy +™w) fV(y).

Proposition A.38. 40 Assume that the origin is an equilibrium point of
(-ODE). Then,

It is uniformly stable if and only if there exist o € X, and a constant value

¢ > 0, independent of to, such that for every |yol < c,

IY(t,yo)l < ellyol), t= to;

It is locally uniformly asymptotically stable if and only if there exist 3 €
XL, and a constant value ¢ > 0 independent of to such that for every
‘Uo| < C,

(A.5)

|Y[ta90)‘ < B(|y0|)t7t0)a t>t03

It is globally uniformly asymptotically stable if and only if the constant

value c can be taken as large as desired, in inequality (A.5). a

Sometimes, ask for continuously differentiable Lyapunov function

candidate may be quite restrictive. Inspired by works such as (Praly,
2011), (Liberzon, Nesi¢, and Teel, 2013), and (Dashkovskiy, Riiffer,

and Wirth, 2010), relaxed notions of derivative and the existence of

sufficient conditions ensuring asymptotic stability are recalled.

Definition A.39 (Dini Derivatives). 4! Consider a function f : [a,b) —

R, the limits at t € [a, b)

if they exist, then they are called Dini derivatives.

D+f(t) — hmsup M’
™0 T

D,f(t) = liminf M’
™0 T
T,0 T

D f(t) = liminf M’
T,0 T

Letn > Obea

positive value, y,v € R™, V: R™ — R. The limit

D V(y) =limsup Viy+w) = Vy)
™0 T

(A.6)

(if it exists) is called Dini derivative of V in the v-direction at y. The other

three Dini derivatives can be analogously defined in the v-direction.
The set

gradp V(y) ={{ € R": D, V(y) > & v,V € R"}

is called Dini subdifferential*? of V and each & is called Dini subgradient.

o
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Remark A.40. 3 Let V € C°(R™,R) be locally Lipschitz. Then, for
every y € R", D¥V(y) exists. Moreover, if V is of class @', then, for
everyy € R™,

Dy V(y) = grad V(y) - v.

To see the the first statement. Since V is locally Lipschitz, for every
T > 0, and for every compact set K C R™, there exists L > 0 such that,

for every y,v € Kwithy+ 1t €K,

DIV(y) < lim sup Viy + ) = V(y)l < limsup @ < L.

™0 T ™0

For the second statement. Since V € €' (R™,R"), forevery y,v € R™,
and for every T > 0, its Taylor first order expansion yields V(y +tv) =

V(y) + grad V(y) - v +9(y,v, 1). Thus, for every y € R™,

grad V(y) - v+ 9d(y,v, T)

D V(y) = limsup =gradV(y)-v. o

™0 T
Proposition A.41. 4 Tetfee((ab),R). The function f is increasing in
(a,b) ifand only if, on the interval (a,b), the four Dini derivatives are larger

or equal to zero. O

The following theorem is credited to (Yoshizawa, 1966), and it is
presented and proved in (Rouche, Habets, and Laloy, 1977, Theorem
4.3). It states that the Dini derivative with respect to time of a locally
Lipschitz function computed along solutions of ($-ODE) is equal to its
Dini derivative computed along solutions of (¢-ODE) in the direction

of the vector field.
Theorem A.42. %5 Let Y be a solution of (-ODE), and V € C°(R™,R) be
locally Lipschitz. Then, for every t € dom(Y),

DFV(Y(t,y)) = Dy V(Y(t,y)). O

A consequence®® of Theorem A.42 and Proposition A.41 is that if,
forevery y € R™, D{' V(y) < 0, then V is non-increasing along the solu-
tions of ($p-ODE). Moreover, the above statements and consequences

remain true for the other three Dini derivatives.

Remark A.43. Let the proper function V € (C°NP)(R™, R>,) be locally
Lipschitz. If there exists « € X, such that, for every y € R™,

DI V(y) < —allyl),

then V is strictly decreasing along solutions of (¢-ODE).

“3Based on (Praly, 2011, Proposition
1.26) and (Clarke et al., 1998, pp. 4).

“See (Rouche, Habets, and Laloy,
1977, Theorems 2.1 and 2.3, and Corol-
lary 2.4).

45 See also (Praly, 2011, Lemme 1.28).

“6Based on (Rouche, Habets, and
Laloy, 1977, Remark 4.4)
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To see this claim, consider a solution Y of (¢-ODE) with initial con-
dition y € R™. Since V € (€% N P)(R",Rxo) is locally Lipschitz, for
4 Thus, D}V is 1-integrable. almost every y € R™, D, V(y) exists, and V is absolutely continuous?.

Moreover, for every tq,t> € dom(Y) with t; < t,

V(Y(t2,y) — V(Y(t,y) = JDW(Y(s,y)st
< —Ja(w(s,ymds

< —a([Y(tr,y)D(t2 —t1)
0.

Thus, V(Y(t2,y)) < V(Y(t1,y)).

Note that, for a function W € (€°NP)(R™, R>,) the condition D} W(y) <
0, for every y € R™, is not enough to ensure that D; W is strictly de-
creasing. Since D}y W may notexistin a given g, the condition D) W(g) <
0implies sup D{ W(y) = 0, and the above integral inequality no longer
holds. o

48 (Clarke, 2013, pp. 194) Definition A.44 (Clarke derivative). 48 The Clarke upper and lower deriva-

tives of a function V : R™ — R are given, respectively, by

V(x +1v) —V(x)

VS (y) = lim sup ———m——,
X—y T
™0
VO,V (y) = liminf \/(X‘i"f\)—)\/(x)‘
xX—y T
™0

49 (Clarke, 1983, pp. 27). The set 49
The generalized gradient is defined as a

subset of the space of continuous linear

functionals defined on the same space gradc Vly) ={&eR™: V\(: (y) =& v e R

as v and that are upper-bounded by the
upper Clarke derivative. is called Clarke generalized gradient of V aty € R™. o

% See also (Ceragioli, 2000, pp. 22) Since the Clarke generalized gradient has the following property>
grade V(y) ={£ € R™: Vo, (y) < &-v < Vi(y)},

the Clarke derivatives can be reconstructed as follows

Vouly) = inf {&-v:&egrade V(y)l,
Vi(y) = sup {&-v:E&egradeV(y))

Proposition A.45. The following properties hold for the Clarke generalized
gradient
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e IfV € C*R™ Rxo) with k > 1 a constant integer, then grad. V(y) =
{grad V(y)};>!

o Letx € R™, V € CO(R™,Rx0) be locally Lipschitz. Let X be any subset of
measure zero in R™, and let Xy, be the set of points at which V fails to be
differentiable. Then,>?

gradCV(y):CO{lim gradV(yi) 1 yi = Y, yi ¢ NUNV}. O
1—00

The result that gives sufficient a condition for the monotonicity of

a function V : R™ — R is given by the following

Theorem A.46. 53 Let the proper function V € (€°NP)(R™, Ro) be locally
Lipschitz. If, for every y € R™, and for every & € grad. V(y),

max{h(y) - &} <0,

then V is non-increasing along solutions of (¢-ODE). O

Remark A.47. Under the conditions of Theorem A.46. If there exists
o € Ko such that, for every y € R™, and for every & € grad. V(y),

maxth(y) - &} < —a(lyl), (A7)

then V is strictly decreasing, along solutions of (¢-ODE).
From (Clarke et al., 1998, Proposition 5.3), Equation (A.7) is equiv-

alent to
inf Dy nV(y) < —a(ly)).
xER™
The conclusion follows from Remark A.43. o

Trape-oFFs. Note that™, for every T € R.o,

(x+) = V(x) _ Viy+m) = V(y)

Vv
liminf < < limsup

xX—y T T x—y
From Definitions A.39 and A.44, and the continuity of V, the last in-

equalities imply
Vou(y) < D V(y) < DyV(y) < Vo).

Consequently,

Proposition A.48. > If V € C°(R™,R) is locally Lipschitz, then for every
y € R",
gradp V(y) C grad¢: V(y). a

51 (Clarke, 2013, Theorem 10.8)

52 (Clarke, 2013, Theorem 10.27)

53 Based on (Clarke, 2013, Theorem
12.17).

54 See also (Ceragioli, 2000, pp. 22).

V(x+1v) — V(x)

T

55 Based on (Clarke, 2013, Proposition
11.49).
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From Definition A.39, the Dini subdifferential reduces to the deriva-
tive, when it exists. This is not necessarily the case for the Clarke
generalized gradient, because it is defined on the dual set. On the
other hand, the Clarke derivatives can be reconstruct directly from
the Clarke generalized gradient while the four Dini derivatives can

% This discussion was originally made not be directly reconstruct from the Dini subdifferential .5
in (Clarke, 2013, pp. 252). .. .. .
From Proposition A.48, requiring a property to hold with respect

to the Clarke generalized gradient is more restrictive than require for

it to hold with respect to Dini subdifferential.

A.i1 THE SYSTEM WITH INPUTS

Recall system (ODE) defined by

y(t)
y(to)

h(y(t),u(t)),
Yo-

(ODE)

From now on assume that (ODE) is forward complete and that, for
every t € R.o, u(t) € K,,, where K,, C R™ is a compact set

The objective of this section is to recall the existing results that ex-
tends the stability analysis of (ODE) to systems with inputsu € £5 (R, Ky,)

in a given compact set. The concepts of stability and Lyapunov func-

57 See, respectively, Definitions A.29 tions” are slightly different.
and A.34.
% Based on (Lin, Sontag, and Wang, Definition A.49 (Invariant set, stability). 58 A closed set M C R™ is

1996, Definition 2.2). ] ) ) ,
called an invariant set with respect to (ODE) if

Yyo € M,Yu € Lfgc(Rgo,Km),Vt >0, Y(tyo,u) € M.

System (ODE) is uniformly globally asymptotically stable (UGAS)
with respect to M if it is

® Uniformly stable: there exists 5 € Ko, such that, for every ¢ > 0,

and for every u € L2 (R>0, Ky, ), and for every t > 0,

‘HO‘M < 5(5) = |Y(t)90au]| < &5

* Uniform attraction: for any r, ¢ > 0, there exists T > 0 such that, for

every u € L2 (Rx0,K), and forevery t > T,

Yol <1 = 1Y(t,yo,uw) < e. o

Analogously to Proposition A.38, the UGAS of (ODE) is also char-
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acterized in terms of comparison and Lyapunov functions. Namely,

Proposition A.50. % System (ODE) is UGAS with respect to a closed in-
variant set M C R™ if and only if there exists p € XL such that, for every

Yo € R™, for every u € L (R, Ky, ), and for every t € Rxo,

[Y(t,yo, wlm < B(lyol, t). (A.8)
O

Definition A.51. %0 Let V € €%(R™,R,) be a Lyapunov function can-
didate for (ODE) with respect to a nonempty, closed invariant set M. C
R™ that is smooth on R™ \ M. It is called smooth Lyapunov function for
(ODE) with respect to M if there exists « € Ko such that, for every
y € R*"\' M, and for every u € £{° (R, Ky,),

loc
LhV(y,u) < —ax(lylm) . o

Theorem A.52. ! Let M C R™ be a nonempty compact invariant set with
respect to (ODE). Then, system (ODE) is UGAS with respect to M if and
only if there exists a smooth Lyapunov function V for (ODE) with respect to
M. O

Proor or CHAPTER A

Proor or CLAIM A .33
This proof is based on the proof of (Khalil, 2001, Lemma 4.3).

® The upper bound. Let, for every s € [0, 1],

d(s) = sup V(y).

lyl<s

Since V € (€% N Pc) (R™,Rx0), & € (C* N Poc) (Rs0,R>p) and it is
non-decreasing. Let ¢ > 1be a constant value, and @ € K ([0, 1), R>0)
be such that, for every s € [0,7], ¢dp(s) < &(s). Then, for every y €
B<:(0),

X

V(y) < ¢(lyl) < x(lyl);

® The lower bound. Let, for every s € [0, 7],

Y(s) = inf V(y).

s<lyl<r

Since, for every y € B<,(0) \ {0}, V(y) > 0, it follows that, for every

s € (0,7], ¥(s) > 0. Moreover, the function 1\ is non-decreasing.

59 (Lin, Sontag, and Wang, 1996, Pro-
posotion 2.5).

60 Based on (Lin, Sontag, and Wang,
1996, Definition 2.6).

87 (Lin, Sontag, and Wang, 1996, Theo-
rem 2.9).
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52 This discussion is made in (Isidori,
1999, Remark 10.1.3).

% Note that, Q.(V) is pre-image of
[0, c] by the map V.

From the continuity of V, ¢ € C%(Rs0,R>p). Letc < Tbe a strictly
positive constant value, and « € X([0,r),R>0) be such that, for ev-

ery s € [0,1], a(s) < c(s). Then, for every y € B<.(0),
a(lyl) < W(lyl) < Viy).

If Ve (E*NP)(R™, Rxo), then the above reasoning is repeated with
T = co. Additionally, when V is proper, ¢(s) — oo (resp. P(s) — o0), as
s — oo. In such a case, it is sufficient for « and & to be taken from K.
To see see this claim for the upper bound, note that from Definition
A.31, V(x) — oo, as [x| — oco. Thus, it must hold &(|x|) — oo, V(x) — oo,
as x| — oo, in order to have V upper bounded by =.

Concerning the lower bound, V is proper if and only®? if « € K.
To see the sufficiency, note that for every constant value ¢ > 0, x €
Q< (V) implies x| < « "(V(x)) < o« '(c). Consequently, Q¢.(V) is
bounded®. Since it is also closed by definition, and Q«.(V) C R",
this set is compact. Thus V is proper. To see the necessity, assume
that Q¢ (V) is compact, and let for every ¢ € R~o, p(c) = max{/x] :
x € O¢(V)}. Since this function is positive definite, and from the
continuity of V, it is strictly increasing and proper. Thus it is of class
K. Now pick x € R™ such that V(x), note that |x] < max{[x| : x €
Q<c(V)}. Then, a(lx]) < almax{x| : x € Q< (V)}) = alp(c)) = V(x).

This concludes the proof.
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