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Abstract

This thesis is concerned with recovery guarantees and sensitivity analysis of
variational regularization for noisy linear inverse problems. This is cast as a
convex optimization problem by combining a data fidelity and a regularizing
functional promoting solutions conforming to some notion of low complex-
ity related to their non-smoothness points. Our approach, based on partial
smoothness, handles a variety of regularizers including analysis/structured
sparsity, antisparsity and low-rank structure. We first give an analysis of the
noise robustness guarantees, both in terms of the distance of the recovered
solutions to the original object, as well as the stability of the promoted model
space. We then turn to sensivity analysis of these optimization problems
to observation perturbations. With random observations, we build unbiased
estimator of the risk which provides a parameter selection scheme.

Keywords: inverse problem, variational regularization, low complexity prior,
sparsity, robustness, sensitivity, risk estimation, degrees of freedom, parameter
selection, partly smooth function.

Résumé

Cette thése se consacre aux garanties de reconstruction et de 1’analyse de sen-
sibilité de régularisation variationnelle pour des problémes inverses linéaires
bruités. Il s’agit d’'un probleme d’optimisation convexe combinant un terme
d’attache aux données et un terme de régularisation promouvant des solu-
tions vivant dans un espace dit de faible complexité. Notre approche, basée
sur la notion de fonctions partiellement lisses, permet 1’étude d'une grande
variété de régularisations comme par exemple la parcimonie de type analyse
ou structurée, I’antiparcimonie et la structure de faible rang. Nous analysons
tout d’abord la robustesse au bruit, a la fois en termes de distance entre les
solutions et 1’objet original, ainsi que la stabilité de 1’espace modéle promu.
Ensuite, nous étudions la stabilité de ces problemes d’optimisation a des
perturbations des observations. A partir d’observations aléatoires, nous con-
struisons un estimateur non biaisé du risque afin d’obtenir un schéma de
sélection de parametre.

Mots-clés : probleme inverse, régularisation variationnelle, a priori de faible
complexité, parcimonie, robustesse, sensibilité, estimation du risque, degrés
de liberté, sélection de parametre, fonction partiellement lisse.
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Chapter 1 Introduction

1.1 Inverse Problems and Regularization

Consider the following challenges:

e You are given an image where half of the sensors in your CCD cam-
era are defective ! Could one recover the original image up to a given
accuracy ?

e You work for a major entertainment company which is willing to build
a recommender system to provide recommendations on movies based
on the user’s preferences. However, the data is quite incomplete since
users typically rate only a few movies in the database. Could one infer
the preference of any user for any movie, including the unrated ones ?

¢ You were recording the best performance with your rock band. Unfortu-
nately, someone near the microphone was talking during the recording.
Can you remove the voice of this uncivil ?

¢ You want to build a search engine for large-scale images, whose goal is
to retrieve images based on a semantic query. Can one build efficient
compact descriptors/features on which efficient retrieval can be based ?

Several strategies have been proposed in the past decades to solve these
problems (image inpainting, matrix completion, source separation, large-scale
nearest neighbor search). All these problems can be cast in the same frame-
work, where one has access to recover an object of interest (signal, image,
video, matrix, etc.) while only partial, indirect and possibly imperfect infor-
mation of it is available. To handle this class of problems within the same
setting, we hinge on the following triad:

(i) Forward model : One has to model the degradation process underlying
the incomplete and corrupted observations. Throughout this thesis, we
consider the case of linear forward models where both the original object
and the observations live in finite-dimensional vector spaces.

(ii) A priori : While recovering a vector from an underdetermined system
of linear equations seems hopeless by basic arguments, the situation
radically changes if some information is available in the form of a prior.
Here, we consider a variational formulation of this prior encoded into a
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convex function. More precisely, we focus on functions promoting low
complexity objects, for instance piecewise constant, sparse or low rank.

(iii) Computational algorithm : In practice, it is necessary to be able to compute
quickly a solution of a convex optimization problem casted as a trade-off
between data fidelity (item (i)) and prior (item (ii)), hopefully unique, up
to a good accuracy. It is thus important to propose an efficient algorithm,
which is the case of the majority of the regularization considered here,
using the structure of the problem.

1.1.1 Forward Model

This thesis is concerned with linear inverse problems in finite dimension. This
framework is used in many applications in the fields of signal processing,
imaging sciences, statistics and machine learning. Although one may object
that this does not always conform to real world applications, where the corre-
sponding objects may be infinite-dimensional or even continuous, our setting
is sufficiently large to covers a wide spectrum of problems and practical appli-
cations in imaging or statistics. It also lends to a unified, generic and rigorous
mathematical analysis.

We model physically the observed data with functions defined on a subspace
Q C R4, where d = 1 for an audio signal, d = 2 for an image, etc. Let us take
the example of images. Intrinsically, a physical image is the projection of an
object on an optical system. Thus, the image is a function f, defined by the
quantity of energy fo(v) received by the focal plane at the point v, defining
a function QO — IR, where Q corresponds to a sub-domain of the focal plane.
From a mathematical point of view, one assumes that f, belongs to some
functional space IH. Typically, we consider f; as a finite energy function, i.e.
H =L*Q).

In order to take into account properties of these signals or images (smooth,
piecewise smooth, oscillating) other richer functional spaces are used. For
instance, one can consider the space of functions with bounded variation, a
Besov or Sobolev space. Sometimes, it is more meaningful to consider fj as a
distribution. One may think for instances of point sources in an astronomical
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image, e.g. stars, which can be seen as a sum of Dirac masses. Another alter-
native, which is not considered in this thesis, is to place a random model on
the signals, which corresponds to the Bayesian approach.

In many modern digital systems, the physical quantity (light) available at the
focal plane, is directly sampled on a discrete cartesian grid (by construction
on CCD or CMOS camera), hence giving directly equi-spaced samples y € R4
of the acquired scene. A general forward model relating the original image fo
to the observations reads

Yy :q](fO)@b/ (1'1)

where V¥ is degradation operator from the signal space H to the observation
space R9, b is a noise term and © is some composition operator between the
degraded data W(fy) and the noise. Typically, this composition is additive or
multiplicative depending on the nature of the acquisition device. The operator
Y model the acquisition device (digital camera, scanner, etc) and typically
entails some sort of degradation and loss of resolution (blurring, missing
pixels, etc). The noise term b may originate from several causes. It models
the fluctuations (deterministic or random) that contaminate the observations
(such as thermal noise).

In the overwhelming majority of applications in image and signal processing,
the forward operator ¥ is considered as linear, either exactly or to a good
approximation, see e.g. (Mallat 2009). Thus, we leave aside the case of non-
linear observations, such as the magnitude of complex measurements, for
instance Fourier in interferometric or diffraction imaging (Hofmann et al.
1993). Moreover, the noise is considered additive in many cases, so that the
forward model (1.1) reduces to the following:

y =Y¥fo+b. (1.2)

In practice, the goal of recovering a continuous function f, is in many cases
hopeless a numerical point of view. Our goal is thus to find a discrete approx-
imation of this function. To achieve that, we set some basis B(L) of a subspace
L of H with dimension n, for instance taking finite elements, e.g. piecewise
constants on a square grid or piecewise affine on a triangulation. Thus, we
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obtain an approximation Bxy of our original signal fo, where xo € R™ are the
coefficients of fy in the basis B(L) and B is the matrix whose columns are the
atoms of the basis. It leads us to consider the following forward model (cf.
Figure 1.1):

y=®>xo+w (1.3)
where
O =YB:R" - R9Y and w=">b+V¥(fy—Bxg). (1.4)

In general, the observation domain R and the computational one R™ are
different (q # n). Indeed, q is dictated by the acquisition device, whereas n
is a choice made by the numerical user, resulting from a trade-off between
computational cost, precision and theoretical limit. This is the forward model
that we will consider throughout this manuscript. Typically, ® is not invertible,
or badly conditioned. Beyond signal processing, the linear model is also used
in statistics and machine learning under the name of regression. One can find
its history in the paper of Seal (1967).

forward model

foﬁxoy

inverse problem

Figure 1.1: Forward and Inverse Problem

From now on, we focus on the problem of recovering Bxo. This thus corre-
sponds to a finite dimensional problem: finding a good approximation of x
from the observation y alone. The behavior when the grid size tends to zero
raises many important and difficult issues, which will be not treated here.

For some problem, it is important to take in account the random nature of the
noise, and thus to consider the stochastic forward model

Y = dxog+ W, (1.5)
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where the noise W is a random vector with realizations taking values in R9.
Supposing that the noise follows a centered Gaussian density, W ~ N(0, o%1d),
we obviously have Y ~ N(®x,, 021d). This classical model is studied in details
in (Trevor et al. 2009). Others noise models are considered in image process-
ing, such as Poisson noise for short noise (e.g. CCD cameras, computerized
tomography), and multiplicative noise in SAR imaging. We refer to (Refregier
et al. 2004) and (Boncelet 2005) for a more comprehensive account on noise
models in imaging systems.

When no noise corrupts the data, which is hardly the case for real life appli-
cations, the forward model becomes

Yy = Dxp. (16)

We now list some classical examples of the forward operator ® used in image
processing.

Denoising. The denoising problem is among the most intensively studied
in the image processing literature. This step may prove crucial prior to more
high-level image analysis and processing tasks, e.g. object segmentation or
detection. The model (1.3) thus reduces to

Yy =xo+w.

In other words, the operator @ is nothing more than the identity ® = Id.

Deconvolution. In the case of photography, we observe a blur when the cam-
era is not adequately stabilized (motion blur), but also a blur due to the point
spread function (PSF) of the acquisition system. A reasonable approximation
allows to model this degradation as a convolution operator, i.e. ®x = K¢ *x,
where K¢ is the blurring kernel. In particular, the high frequency content
of xo may be seriously damaged. An important property of the convolution
is the fact that it is shift invariant. Estimating both x¢ and K¢, a.k.a blind-
deconvolution, is a difficult problem, but we are solely here concerned with
the case where X¢ is known. The deconvolution procedure is popular in
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many fields in science and engineering (Biemond et al. 1990), for instance
in astronomy (Starck et al. 2002), in geophysics (Santosa et al. 1986) or mi-
croscopy (Agard 1984).

Inpainting. In presence of occlusion or damages pixels, the inpainting pro-
cedure aims at recovering such parts. In this case, ® is a binary diagonal
operator such that ®@;; is 1 if the data are preserved, o otherwise. This oper-
ator can be deterministic, or the realization of a random mask. Inpainting is
commonly used in many applications, such as medical fluroscopy (Chan et al.
1993), in colorization (Sapiro 2005) or in data compression (Liu et al. 2007).

Compressed Sensing. The conventional wisdom in signal processing is that
for a continuous band-limited signal to be reconstructed perfectly from its
equi-spaced samples, it has to be acquired at a frequency at least twice its
bandwidth; this is the celebrated Shannon (1948)-Nyquist (1928) theorem.
This theory however precludes many signals of interests that are not band-
limited, but whose intrinsic dimension is small, think for instance of a sparse
signal, or of a smooth signal away from a few singularities. The compressed
sensing theory (Candés et al. 2006a; Donoho 2006) asserts that for such sig-
nals, exact and stable reconstruction is possible, hence allowing to break the
Shannon-Nyquist limit. The reconstruction is moreover achieved by solving a
computationally tractable convex optimization problem. The sampling opera-
tor can be modeled with a matrix ® which is the realization of an appropriate
random ensemble, such i.i.d. Gaussian or Bernoulli entries, or partial random
Fourier or Hadamard matrices. The corresponding inverse problem can be
shown to be efficiently regularized by some popular low complexity priors
discussed in the next section. This theory has sparkled a whole research field,
and hardware proofs of concept have been also developed. The first one is
the single pixel camera (Wakin et al. 2006) at Rice University, which measures
directly random projections on a single CCD element with a binary reflector
composed of micro-mirrors. Figure 1.2 illustrates this process. Compressed
sensing has been also used for Dirac train recovery in ultrasonic imagery (Tur
et al. 2011). Introducing a partial randomization of the measurements (Lustig
et al. 2007) is also promising in medical imaging applications such as fMRI.
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Low-cost, fast, sensitive
optical detection

Xmitr

Compressed, encoded
image data sent via RF
for reconstruction

"""" ‘ (((Y—-

Figure 1.2: One Pixel Camera project. Source: Rice University

Image encoded by DMD
and random basis

Compressed sensing is also used in astronomy (Bobin et al. 2008), in particular
on the telescope Herschel.

Tomography. Tomography is commonly used in medical imaging (Newton
et al. 1981). Popular CT scanners are X-ray and PET modalities. In this case,
the operator @ is a discrete Radon transform (Herman 2009), possibly with
a sub-sampling to model incomplete measurements. In practice, only a few
measurements can be collected, leading to an increase of the ill-posedness of
the (continuous) forward operator V.

1.1.2 Variational Regularizations

Solving an inverse problem from the observations (1.3) corresponds to com-
puting an approximation of xo from the knowledge of y alone. This problem is
said to be well posed (in the sense of Hadamard (1902)) in a space 8 if &x =y
has x¢ as unique solution on §, and if this solution depends continuously on
y. This means that one recovers exactly x = xo when there is no noise, and a
good approximation if w is small. In general, the matrix ® is rank deficient
or ill-conditionned, so that the problem is not well posed on the whole space
8§ = R™. In order to recover well-posedness it is thus necessary to restrict the
inversion process to a well-chosen space 8§ that includes xo. A closely related
procedure, that we describe next, is to set-up a variational inversion process
which is penalized by a well-chosen prior.

A first line of works has considered imposing a random model on the sig-
nal xq. This corresponds to the Bayesian formalism, see for instance the
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monograph (Hunt 1977) for an introduction to these methods. We do not
explore these strategies in this thesis. We rather directly impose some prior
on the (deterministic) xo through some penalty function J. This corresponds to
the usual notion of variational regularization, which was initially introduced
in (Tikhonov et al. 1977) as a way to recover well-posedness of the inverse
problem under investigation.

Within this framework, the computation of an approximation x* to x¢ is ob-
tained by solving the following optimization problem

* : F

X* € Ai'glrlgm F(x,y) + AJ(x). ((Py)\)
Here, F: R™ x RY — Ry is a data fidelity term. Typically, it is a smooth non-
negative convex function. Thus, we expect that F is small when the prediction
®x is close enough from y. The factorization F(x,y) = Fo(®x,y) is commonly
used, where Fp : R9 x R9 — R is smooth, non-negative and strongly convex.
This data fidelity term can be the quadratic loss, the Poisson antilog likely-
hood or the logistic loss. Statistically, one may interpret (9’5,)\) as a Maximum
A Posteriori (MAP). This interpretation can however be misleading, as exem-
plified in (Gribonval 2011), where failures of the MAP approach are analyzed
for sparse distributions.

The function J : R™ — R, is the regularization term imposing some prior on
the signal class. We assume in this thesis that | is a convex function. Convexity
is important to ensure the ability to compute global optima of (iPEJ\) with fast
algorithms, and also enables a fine theoretical analysis of the properties of x*.
It is however important to realize that non-convex penalties, as well as non-
variational methods (e.g. greedy algorithms) are routinely used and often
outperform their convex counterparts. This is however beyond the scope of
this thesis, and we focus here on convex regularizers. Section 1.1.4 details the
basic properties of these regularizers and sketch some important examples.

The scalar A is the regularization parameter (or hyper-parameter) allowing a
trade-off between fidelity and regularization. The choice of A is an important
question, which is treated in the second part of this thesis, and discussed in
Section 1.3.
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Since @ is generally not injective, note that the objective function of the prob-
lem (3’5,)\) is not stricly convex. Thus, it may admits several solutions. It is
also possible to use the constrained version, in opposition to (TS,A) qualified
as penalized or Lagrangian form, coined as the Ivanov form in the inverse
problem litterature (Ivanov et al. 1978). It reads

x* € Argmin J(x) subjectto F(x,y) <e. @5,5
xeR™

We mainly focus on the Lagrangian version in this dissertation. However,
problems (Py, .) and (iP;)\) are equivalent in some sense (Ivanov et al. 1978;
Poljak 1987), but one may take care that the mapping between ¢ and A is
generally not explicit. Some recent work (Ciak et al. 2012) in this direction
exploit the Fenchel-Rockafellar duality to overcome this difficulty in some
particular cases.

When there is no noise, i.e. when the observations follow (1.6), we consider
the constrained version of (P ¢) which reads

x* € Argmin J(x) subjectto ®x=v. (Py,0)
x€R™
As it will be proved formally in Chapter 5 (more precisely Proposition 5.2),
problems (Py ») and (9_"5,5) converge (in an appropriate sense) to (Py ).

1.1.3 Data Fidelity

The data fidelity is linked to the forward model (1.3). We find in the statistical
literature several data fidelity term for the problem (iPS/A). Note that many
of them does not assume that the forward model is of the form (1.3). This
will discussed in details in Chapter 8. One naturally thinks to generalized
linear models (GLMs) introduced by Nelder et al. (1972) which assume that
conditionally on @, Y; are independent with distribution that belongs to a
given (one-parameter) standard exponential family. Well-known examples
are Gaussian distribution (linear model), the reciprocal link (Gamma and
exponential distributions), and the logit link (Bernoulli distribution, logistic
regression).

10
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When the noise is the realization of a white Gaussian noise, it is common to
use the quadratic loss as a data fidelity term.

1
Foliy) = S lu—yl3.

The functional Fy can also be chosen for instance as the logistic loss

q
Folry) =) _log (1+exp(i)) — (y, w),

i=1

or Huber loss (smoothed) or a P loss. Note that £ loss is not smooth for
p < 1. From a deterministic point of view, Fy can be chosen from the prior on
the noise in the continuous case (for instance a noise in a Banach space) or in
the discrete setting considered, as a prior of {P-boundness.

In the case where Fy is the quadratic loss, the problem (J’E,)\) reads

1
x* € Argmin il\y — d)xH% + AJ(x). (Py)
x€R™

This variational formulation is at the core of the first part of this thesis.

1.1.4 Low Complexity Priors
1.1.4.1 Combinatorial Model Selections

Penalizing in accordance to some notion of complexity is a key idea, whose
roots can be traced back for instance to the statistics literature (Mallows 1973;
Akaike 1973). This complexity is measured using a functional pen(T) where
T is some linear subspace containing x, and chosen among a fixed collection
of spaces 7. This approach typically makes use of hierarchy of models of
increasing complexity, which should be designed in accordance to some prior
knowledge about the data x( to recover. A union of linear models is a collec-
tion T of subspaces of R™ which is usually finite but very large, in the case of
finite dimensional problems. These subspaces typically account for some kind
of smoothness or simplicity of the signal. A key example is sparsity, which, in

11
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its simplest form, corresponds to a problem of selecting few of active variables
in the data. In this setting, a subspace T has the form T = {x | supp(x) = I} for
some set of indexes I indicating the active variables. With such a set of model
at hand, one can use the following prior

J(x) = inf pen(T). (1.7)

x€T

The problem (P ») can be recast as a model selection problem

: 2
Te}}}fg Ily — ©x||~ + Apen(T).
The model selection literature (Birgé et al. 1997; Barron et al. 1999; Birgé
et al. 2007) proposes many significant results to quantify the performance
of these approaches. A major bottleneck of this class of approaches is that
the corresponding ] function defined in (1.7) is non-convex, thus typically
leading to intractable, often NP-hard problems. For instance, the sparsity of
coefficients x € R™ is measured using the ° pseudo-norm

Jo(x) = lIxllo = [supp(x)|.

Minimizing (Pya) or (Pye) with ] = Jo is known to be NP-hard, see for
instance (Natarajan 1995). There is a wide variety of approaches to tackles di-
rectly non-convex optimization problems. A line of research considers greedy
algorithms. The most popular ones are Matching Pursuit (Mallat et al. 1993)
and Orthogonal Matching Pursuit (Pati et al. 1993; Davis et al. 1994), see also
the comprehensive reviews Needell et al. (2008) and references therein. An-
other line of research, which is the one under study in this thesis, consists in
considering convexified versions of (1.7).

1.1.4.2 Convex Encoding of Models

For any subspace T of a real vector space E, we denote Pt the orthogonal
vector on T, x1 = P1(x) and @1 = ® P1. We now introduce the model tangent
subspace at a point x for some finite-valued convex functional J.
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1.1 Inverse Problems and Regularization

DEFINITION 1.1 — MODEL TANGENT SUBSPACE For any vector x €
RN, we denote ey its model vector,

ex = argmin |le||,
ecaff 0] (x)

where aff 0](x) is the affine hull of the subdifferential (see Definition 2.12)
of J at x, and
Ty = span(dJ(x))*.

T is coined the model tangent subspace of x associated to J.

This terminology will be clear after we define partly smooth function in Sec-
tion 1.2.2. When | is Gateaux-differentiable at x, i.e. 0J(x) = {V](x)}, ex = V]J(x)
and T, = RN. On the contrary, when J is not smooth at x, the dimension of T,
is of smaller dimension, and the regularizing functional ] essentially promotes
elements living on or close to the affine space x + T,. Table 1.1 exemplifies
Definition 1.1 on several regularizers that are popular in the literature. The
details of the exact derivations is provided in Chapter 3.

] Ty ex Comment

[ nl V¢l n; =0} sign(x) I = supp(x)

IID*-][v | Ker(Di.) PKer(ch) sign(D*x) | I =supp(D*x)
-2 | {nl ViéLn =0} (N(xb))bes [={geB| xg #0}
-1l {z] uizv, =0} uv- x = UAV*

Il - lloo {oc| o = psy for p € R} | sign(x)/[1| [={i] [xil = lIxlloo}

Table 1.1: Examples of Model Tangent Subspace. The notations are precised in
the following sections.

1.1.4.3 Sparsity

A dictionary D = (d;)!_, is a (possibly redundant, i.e. when p > n) collection
of p atoms d; € R™. It can also be viewed as a linear mapping from RP to R™

13



Chapter 1 Introduction

which is used to synthesize a signal x € Im(D) C R™ as
P
x=D«x = Z X4 di,
i=1

where « is the coefficient vector that synthesizes x from the dictionary D. Note
that if D is redundant, there is an infinite number of coefficients « such that
x = Da. An issue beyond our work is to build a good dictionary. We may cite
the wavelet transform (Mallat 1989) and the curvelet transform (Candes et al.
2000) for images that are piecewise smooth away from smooth edge curves,
local Fourier basis for sounds (Allen 1977), or union of dictionaries for im-
age and signal decomposition, see for instance cartoon+texture decomposion
in (Elad et al. 2005).

Synthesis sparsity. When considering sparsity in the canonical basis, i.e.
D =1d, the model subspace and model vector read

Tc = {x"| supp(x’) =supp(x)} and ey =sign(x).

Looking for the sparsest representation of x in the dictionary D amounts to
solving

min ||«llp subjectto x =Da.
x€RP

Replacing the €° norm by the ¢! norm leads to a convex problem. The sparsest
set of coefficients, according to the ¢' norm, defines a signal prior which is
the image of ||.|[y under D,

Js(x) = min |||y subjectto x =Da.
xeRP

Therefore any solution x of (Py5) using ] = Js can be written as x = Dx where
« is a solution of

1
in =y — ®D«l|3 + Alldl;. 8
min 2IIy od|5 + Alledly (1.8)
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1.1 Inverse Problems and Regularization

Note that || - ||; is the convexification of || - ||o restricted to the (*°-ball. Prob-
lem (1.8) was introduced in the statistical community in (Tibshirani 1996)
where it was coined Lasso. Note that it was originally introduced as an ¢'-ball
constrained optimization and in the over-determined case. It is also known
in the signal processing community as Basis Pursuit DeNoising (Chen et al.
1999). Such a problem corresponds to the so-called sparse synthesis regular-
ization, as sparsity is assumed on the coefficients « that synthesize the signal
x = Da. In the noiseless case, the constrained problem (P, o) becomes

min ||«lly subjectto y=®D«, (1.9)
xeRP

which goes by the name of Basis Pursuit after (Chen et al. 1999).

Sparse regularization is a popular class of priors to model natural signals and
images, see for instance (Mallat 2009). The idea of ¢' regularization finds its
root in the seismic imaging literature (Santosa et al. 1986) for deconvolution. It
is also used in many applications, see (Starck et al. 2010) for a comprehensive
account.

A key problem of active research is to learn and optimize the dictionary in
order to represent optimally a set of given exemplar. We refer to the book
of (Elad 2010, Chapter 12) for a recent overview of the relevant literature.

Analysis sparsity. Analysis regularization corresponds to using | = Ja in
(Py,A) where

P
Ja(x) =ID*xlly = > I(ds, x)l,
i=1

It imposes the sparsity of the correlations ((d;, x))j—1,..., between x and the

7o

atoms in a dictionary D. In this case,

Te = {x'| supp(D*x’) =supp(D*x)} and ey =sign(D*x).
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Note that synthesis and analysis regularizations are different as soon as D is
not an invertible square matrix. Hence, (P,5) reads

o
min =|jy — ©x||? + A[D*x||;. (1.10)
x€Rn 2

In the noiseless case, the {'-analysis equality-constrained problem is
min [[D*x|ly subjectto ®x=vy. (1.11)
xeR™

In (Nam et al. 2013), the term cosparse is used, motivated by the role played
by the complement of the support (i.e. cosupport) of the vector D*x in the
theoretical analysis of (1.11).

The adjoint of any synthesis dictionary (see above) can be used to define
analysis sparsity prior. Analysis sparsity allows for more intricate operators
D* because D* is not required to be a stable frame of the signal space. One of
the most popular is the finite difference operator used in the total variation
seminorm, first introduced for denoising (in a continuous setting) by Rudin
et al. (1992). Typically, for 1-D discrete signals, D can be taken as a dictionary
of forward finite differences Dpr where

+1
-1 +1

Dprr = -1 - . (1.12)

o+

0 —1
The corresponding prior Jo favors piecewise constant signals and images. A
comprehensive review of total variation regularization can be found in (Cham-
bolle et al. 2010). One can also use a wavelet dictionary D which is shift-
invariant, such that the corresponding regularization Jo can be see as a multi-
scale total variation in the case of the Haar wavelet (Steidl et al. 2004) for 1D
signals. When using wavelets with m vanishing moment, the corresponding
priors favors discrete piecewise polynomial signals of degree m. A numerical
exploration of the relative performances of analysis and synthesis regular-
ization is performed in (Elad et al. 2007). Selesnick et al. (2009) report an
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1.1 Inverse Problems and Regularization

extensive numerical exploration where they use shift invariant wavelet dictio-
naries to compare analysis and synthesis sparsity priors for several inverse
problems (e.g. deconvolution and inpainting). As a last example of sparse
analysis regularization, we would like to mention the Fused Lasso (Tibshirani
et al. 2005), where D is the concatenation of Dpr and a weighted identity. The
corresponding prior Jo promotes both sparsity of the signal and its derivative,
hence favoring the grouping of non-zero coefficients in blocks over which the
signal is constant.

Structured sparsity. To further improve the performance of sparse regu-
larization, it is useful to group the coefficients, imposing the sparsity in a
block-wise manner. It has been first proposed by Hall et al. (1997, 1999); Cai
(1999) for wavelet block shrinkage. For over-determined regression of the
form (1.3), it has been introduced by Bakin (1999); Yuan et al. (2005). Block
regularization is popular in image processing because wavelet coefficients
of a natural image have a group structure (Mallat 2009). Indeed, edges and
textures induce strong local dependencies between coefficients. In multi-task
learning (Obozinski et al. 2010), it is used to control the sparsity pattern of
the covariates. In audio processing, it is also useful to deal with multi-channel
data as studied by Gribonval, Rauhut, et al. (2008) which is also known as the
multiple measurements vector (MMV) model, see for instance (Cotter et al.
2005; Chen et al. 2006).

Suppose what we split the signal space R™ into groups without overlapping.
We formalize this splitting by a disjoint partition B of {1,...,n}, i.e.

Jbo={1,....,n} and ¥b,b’€B, bnb =0
beB

Then, we define the ¢! — {? norm as | = ] where

Js(x) = Z lIxpll, (1.13)

beB

where xy, is a vector of size |b| containing the entries indexed by b. Thus, the
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model space and model vector reads

Tx:{x’IVbeB,xb:ij{,:O} and ex:<xb) ,
Ixvll ) pes

where we take the convention that if x, = 0 then H%H =
to replace the ¢* norm with more general functionals, such as (P norms for
p > 1 (Turlach et al. 2005; Negahban et al. 2011; Vogt et al. 2012) or to use

analysis block sparsity

0. It is possible

Ju(x) =) IID{xull,

beB
where D}, are linear operators from R®l — IRP. For instance, one can express
the 2D isotropic total variation by defining D} x € R? to be an approximation
by finite differences of the gradient of the image x at the pixel indexed by
b. This block analysis sparsity allows us also to take into account overlap-
ping groups (Jenatton et al. 2011; Cai et al. 2001), or groups structured in a
tree (Peyré et al. 2011; Zhao et al. 2009).

1.1.4.4 Beyond Sparsity

While sparsity has become mainstream in imaging sciences and machine
learning, there is now a flurry of activity to develop novel priors to take int