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Eléonore, Aude, Marie-Laure et tant d’autres pour avoir contribué à la vie étudiante du
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INTRODUCTION

The ability to understand the phenomena induced by the interaction between light and

matter constitutes a key step to the global understanding of our immediate environment.

Light is constituted of photons which carry quanta of energy. The interaction between

a photon and matter is complex and involves processes such as absorption, emission or

scattering. In fact, at the scale of a molecule, classical physics does not apply anymore

and a quantum description of matter with discrete energy levels is required. Assuming

a system in its ground state (the state of minimal energy), the absorption of a photon

induces the excitation of the system to a state of higher energy. Once in this excited

state, several processes can occur:

• The system can return to its ground state (or a lower excited state) by a non-

radiative transition where no light is emmited (internal conversion, intersystem

crossing or vibrational relaxation) or by a radiative transition with the emmision of

a photon (fluorescence or phosphorescence) as summarized in the Perrin-Jablonski

diagram in Figure 1. In these processes, the system conserves its “integrity” as no

chemical bonds are broken. This defines therefore photophysical phenomena. They

are extremely interesting as they are responsible for instance for the light emission

of stars, for the color of the objects surrounding us and are involved in the design

of photovoltaic cells where a material (often a semiconductor) absorbs photons in

sunlight to create a difference of potential. Photophysical processes are also widely

used as analytic tools in spectroscopy experiments to extract useful information

on a system as they provide a “probe” to study the ground and excited states.

Depending on the experimental set-up (energy range, direction of observation),

different kinds of information can be extracted as for instance the energy levels of

the electronic states (bold lines in Figure 1) which describe the electronic configu-

ration of the system, or in the case of a molecule in gas phase, of the ro-vibrational

ones (thin lines) which characterize its rotations and its vibrations.

• In some cases, when the system gets excited by absorption of a photon, it does

not go back to its original ground state and uses this extra energy to initiate a

chemical reaction either by itself (photoisomerization) or involving other reactants

(photoactivation). Photochemistry is the branch of chemistry which studies such

phenomena. The most famous example of a photochemical reaction is probably

given by the photosynthesis but in fact many processes requires a photoactivation

such as the degradation of plastics or the formation of vitamin D with sunlight.

A wide research area is also interested in using light to control a reaction in order

to promote a particular product. This can improves the reaction yields so that

less reactants are needed and less waste is produced. This approach is therefore of

particular interest for a “green” chemistry.

In all these phenomena, the number of electrons in the system remains constant. How-

ever, if the energy of the excitation is strong enough, an electron can be ejected from

3
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Figure 1 – Perrin-Jablonski diagram. The bold lines represent the electronic singlet
ground state S0, the first singlet (S1 and S2) and triplet (T1) excited states. The thin
lines are the vibrationnal states. The possible radiative (with emission or absorption
of light) and non-radiative transitions between these states are represented by different
arrows.

the system as in photoemission spectroscopy experiments which provide other kinds of

information such as electron affinities. However, such processes will not be considered

in the framework of this thesis and we will focus only on electronic excitation energies

in a molecular system. The energy range of these excitations is usually in the visi-

ble or ultraviolet part of the spectrum and they are experimentally studied by UV-vis

spectroscopy.

The prediction or the analysis of experimental electronic spectra by computer sim-

ulation is nowadays an active area of research either to help with the interpretation

of some experiments, to design new compounds with interesting biological or structural

properties or to study hostile environments where experiments are difficult or impossible

to perform as for instance in space, in extreme temperature or pressure conditions or

in strong magnetic fields. In order to get quantitative results, computational chemists

need reliable methods with a low computational cost in order to be able to treat rela-

tively large systems. In order to compute an electronic excitation spectrum, two kinds

of information are required: the excitation energies and the probability of the transition

which is given by the oscillator strengths. The transition probabilities can vary a lot

over a small range of excitation energies and therefore can affect significantly the final

spectrum. This is related to the concept of forbidden or allowed transitions.

In practice, the calculation of the excitation energies of a system is often a two-step

4
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Reaction coordinate

E

Ground State

Excited State

Figure 2 – Representation of a vertical transition. At the time scale of the nuclear
motion, an electronic excitation can be considered instantaneous. It is thus vertical
with respect to the reaction coordinate (which describe the positions of the nuclei). The
transition between the electronic ground and excited states (bold line) is then represented
by a vertical arrow.

procedure. First, the system is calculated in its ground state, then vertical excitation

energies are calculated at the same geometry assuming that these excitations are in-

stantaneous in comparison with the time scale of nuclear motion. However, when in an

excited state, the geometry of the system may relaxes as shown in Figure 2 such that in

principle, a potential energy surface is required to grasp the whole physics of the system.

Moreover, in order to get as close as possible to a real spectrum the rovibronics effects

and the broadening should be taken into account. However in this thesis, we will focus

only on the determination of electronic excitation energies and of oscillator strengths of

a molecule in gas phase, at zero temperature and fixed geometry.

The whole complexity of quantum calculations consists in the description of the cor-

related motion of the electrons, due to their electrostatic interaction and to their intrinsic

quantum nature. Historically, quantum chemists have used methods based on wave func-

tions by refining more and more the well-known Hartree-Fock (HF) method where the

correlation is completely absent. Post-HF (multi-reference) methods reintroduce (part

of) this correlation and have the undeniable advantage that they can systematically be

improved and can give very accurate results. However, they are usually computationally

expensive as they depend on the coordinates of all the electrons of the system. Therefore,

they scale pretty badly with the size of the system and become often impractical for cal-

culations on medium and big systems such as solids or compounds of biological interest.

Nevertheless active research is undergoing in order to reduce the computational cost of

such methods using for instance the density-fitting scheme or exploiting the localization

of the orbitals.

Another kind of approach is provided by density-functional theory (DFT) which is

based on the electron density of the system in its ground state instead of the electronic

wave function. The electron density can be seen as the average number of electron

5



INTRODUCTION

by volume element. It therefore depends only on one (spin)-space coordinate whatever

the number of electrons of the system is. Such an approach decreases dramatically

the computational cost. However, the price to pay is that the whole complexity of

the calculation is now hidden in an unknown object, the energy functional. Within

the approach proposed by Kohn and Sham, the calculation uses a fictitious system of

non-interacting electrons having the same ground-state density. The idea is to calculate

exactly the maximum of things so that the remaining unknown part will be as small

as possible and in principle easier to approximate. To reproduce the physical system,

what is missing is the effects coming from the electron-electron interaction which is then

taken into account by the Hartree-exchange-correlation functional which needs to be

approximated. A wide variety of approximate functionals such as local density (LDA)

or generalized gradient (GGA) approximations has been developed in the past decades

and usually allows DFT to provide results with a reasonable accuracy. Its good ratio

cost/accuracy has thus made DFT very popular for complex systems.

In its original time-independent formulation, DFT provides only the ground-state

electron density and energy. However, in their famous theorems, Hohenberg and Kohn

also showed that the ground-state electron density contains in fact all the information

on the system, and in particular the excitation energies. With the introduction of

time dependence, it is possible to extract these excitation energies from the density

for instance with linear-response theory. In this approach, the response of the electron

density of the system to a small oscillatory time-dependent perturbation is studied.

If the frequency of the perturbation corresponds to an energy difference between the

ground state and an excited state, the system changes state so the change in density will

be important while otherwise it remains very small. In linear-response time-dependent

density-functional theory (TDDFT), one can then detect the excitation energies as the

frequencies where the change of density is large.

Similarly to the time-independent case, this method requires a functional, called

the Hartree-exchange-correlation kernel, to treat the effects coming from the electron-

electron interaction. Rigorously, the kernel cannot be determined from the ground-state

energy functional and in practice an adiabatic approximation is performed for the kernel

on top on the approximations which have already been made for the energy functionals.

In this approximation, the kernel becomes independent of the frequency of the considered

perturbation which leads to several shortcomings. However, within the usual adiabatic

LDA or GGA approximations, the excitation energies are nevertheless generally well

reproduced for low-lying states (valence states), but are underestimated for high-lying

states (Rydberg states). A second problem is the reproduction of the charge-transfer

excitation energies and a third one occurs when multiple excitations are involved.

The first two problems are mostly due to the poor behavior of the approximate

functionals at long electron-electron distance, while the third one is directly related to

the adiabatic approximation. For an isolated system in its equilibrium geometry, double

(or higher-order) excitations are not so common in the lowest part of the excitation

6
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spectra. They are for instance present for linear polyenes but do not play an important

role in most systems. However, when one is interested in chemical reactivity and reaction

paths, things get more complicated. In fact, along a reaction path, the excited states

of a system are subject to crossings and/or conical intersection in the vicinity of which

multiple excitations are more likely to occur as several states are close to each other. It

is then crucial to be able to describe this region properly as it is usually a critical region

to understand the reaction mechanism. TDDFT within the usual approximations is not

able to account for these multiple excitations and can produce poor quality results in

this case.

One possible strategy to cope with these issues is to divide the electron-electron

interaction into a short-range part where the electrons are close to each other and a

long-range part when they are faraway. Within the usual approximations, DFT is able

to describe the short-range part of the electron-electron interaction with a good accuracy

but fails for the long-range one. This part can then be treated by wave-function methods

or many-body perturbation theory. The range of the separation can then be adjusted

by a range-separation parameter. This range-separation technique has successfully been

applied to ground-state calculations but is still being explored for excited-state ones.

When applied to the exchange part of the kernel with the introduction of a long-range HF

exchange kernel, range separation improves the description of the Rydberg and charge-

transfer excitation energies as it allows to recover the correct asymptotic behavior of the

potential at large electron-electron distance.

In this thesis, we want to explore the effects of range separation on the description

of excitation energies both in a time-independent and a time-dependent formulation. In

particular, we want to apply range separation on the TDDFT correlation kernel in order

to improve the description of excitation energies involving contributions from double

excitations by introducing a long-range frequency-dependent kernel. In order to do so,

this work has been divided in three main parts.

In the first part of this thesis, the effects of range separation on the excitation energies

of a system are studied in the time-independent framework. This is done by following

the evolution of the excited states of a partially interacting system where only the long-

range part of the electron-electron interaction has been introduced along an adiabatic

connection where the ground-state density is kept constant by Lieb optimization of

the potential. This study is first done analytically by expanding the energies around

the two limit cases where no interaction or all the interaction is included. It is then

applied on the helium and beryllium atoms and on the dihydrogen molecule without

any approximations except for the finite basis set one, in order to be able to attribute

our observations to the range separation only. Starting from the obtained energies,

we then explore two possibilities to improve the description of the excitation energies

of the physical system from the ones of the partially interacting system: first-order

perturbation theory is tested and an energy extrapolation scheme is also studied.

In the second part of this thesis, we apply range separation on both the exchange and

7
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correlation TDDFT kernels within a single determinant approximation. This defines the

time-dependent extension of the range-separated hybrid (RSH) method used for ground-

state calculations. Within this approximation, the long-range part of the exchange

kernel is treated at the Hartree-Fock level while the long-range correlation kernel is

absent. This would thus allow for the perturbative addition of a frequency-dependent

long-range correlation kernel in a second step. In practice, this implies that the long-

range part has to be removed from the usual correlation kernel and is done within

the local-density approximation in the closed-shell case. The time-dependent range-

separated hybrid (TDRSH) method is then applied on a set of five small molecules and

on a charge-transfer dimer in order to study the impact of the removal of the long-range

correlation on their first excitation energies.

In the last part, we design a long-range frequency-dependent correlation kernel and

add it to the TDRSH one. In order to do so, we use many-body perturbation-theory

techniques which are based on one-particle Green’s functions used in the condensed-

matter physics community. In this approach, the excitation energies of the system are

obtained by solving the Bethe-Salpeter equation which structure is very close to the

TDDFT equations, but is however more general. Our motivation to go to this more

complicated formalism is that it allows one to get an explicit frequency-dependent ker-

nel and to circumvent the problematic adiabatic approximation encountered in TDDFT.

As finite molecular systems are concerned, some reformulation is required and the ap-

plicability of the usual approximations made for solids needs to be questioned. In this

part, we derive a dynamical second-order correlation kernel with respect to the electron-

electron interaction which we illustrate on the model system of the dihydrogen molecule

in a minimal basis at each step of the derivation. This kernel is derived algebraically but

most of the technical details are given in the appendices so that only the main steps and

their Feynman diagram interpretations are given in the main text. Finally, this kernel

is applied in a perturbative manner on four small molecules within the range-separation

framework.

8
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Chapter 1

Theoretical background on

density-functional theory

In this chapter, a brief review of the many-body problem is given. This problem
is encountered by both quantum chemists and physicists, either on finite systems
such as atoms, molecules or supramolecular systems, or on solids. Starting from
the Schrödinger equation in the time-independent non-relativistic case, emphasis is
placed on one of the possible approaches which can be used to solve this equation:
density-functional theory (DFT). As this method lies at the heart of this thesis,
particular care is taken to define all the quantities used throughout this manuscript.
The theoretical and pragmatic aspects of DFT are reviewed together with some of
its possible extensions. In particular, the range-separated DFT scheme is described
in its initial context, namely ground-state calculations.

1.1 Introduction

When calculations are performed on a quantum system composed of several nuclei and

electrons, an extremely complex many-body problem arises from the interactions be-

tween the different constituents of the system. Although the equation governing the

behavior of these particles is known and, in the case of a non-relativistic system, is given

by the Schrödinger equation, no analytic solutions are available in the general case.

In this chapter, first, the many-body problem is recalled in the second quantization

formalism in Section 1.2. Then, the electron density and pair density are introduced

in Section 1.3 as they are the key quantities involved in DFT. The formal foundations

of DFT provided by Hohenberg and Kohn are given in Section 1.4 and the Kohn-Sham

approach is explained in Section 1.5. The local-density approximation with its successes

and its limitations is discussed in Section 1.6. Finally, the extension of the Kohn-Sham

approach by range separation of the electronic interaction is described in Section 1.7.

This method allows one to cope with some of the limitations of DFT within the usual
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CHAPTER 1. BACKGROUND ON DFT

approximations. More mathematical details can be found in Appendix A. For a more

exhaustive review, some articles [1–5] and books [6–11] provide a good introduction on

the subject.

1.2 Schrödinger equation for a N-electron system

1.2.1 Non-relativistic time-independent Schrödinger equation

Our system of interest consists of N non-relativistic electrons and M nuclei interacting

with one another in absence of any time-dependent external field. Each nucleus (A)

is characterized by its atomic number ZA, its mass MA and its position RA, while the

electrons (i) have a mass me = 9.11 × 10−31kg and an elementary charge qe = −e =

−1.60 × 10−19C and are described by their spin-space coordinates xi = (ri, σi) where

σi = α, β is the spin and ri the spatial coordinates. SI units are not well suited for

quantum systems. It is convenient to work with atomic units which are defined such

that

~ = me = e2/(4πε0) = 1. (1.1)

This unit system will be used hereinafter.

The way the particles behave and interact with each other is described by the Hamil-

tonian of the system Htot, which depends in principle on all nuclear and electronic co-

ordinates ({xN}, {RM}). This Hamiltonian splits into two kinds of contributions:

• kinetic terms coming from the motion of both the nuclei and the electrons;

• potential terms due to the nucleus-nucleus and electron-electron repulsion and the

nucleus-electron attraction.

The total Hamiltonian of the system in atomic units in absence of any extra external

field is then

Htot({xN}, {RM}) = −
M
∑

A=1

∇2
A

2MA
−

N
∑

i=1

∇2
i

2
+

M
∑

A=1

M
∑

B>A

ZAZB

|RA −RB |

−
N
∑

i=1

M
∑

A=1

ZA

|RA − ri|
+

N
∑

i=1

N
∑

j>i

1

|ri − rj |
,

(1.2)

where ∇2
A and ∇2

i are the Laplacians with respect to the spatial nuclear coordinates

RA and electronic coordinates ri, respectively. The stationary quantum states of the

system are then obtained by solving the Time-Independent Non-Relativistic Schrödinger

Equation:

Htot({xN}, {RM})Ψi,tot({xN}, {RM}) = Ei,totΨi,tot({xN}, {RM}), (1.3)

which is an eigenvalue equation. This equation states that if the system is in a stationary
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state of energy Ei,tot then its wave function Ψi,tot is an eigenvector of the total Hamil-

tonian and is associated with the eigenvalue Ei,tot. In practice, except for some very

simple systems, it is not possible to solve this equation exactly and one has to design

some efficient approximated resolution schemes.

The first approximation which is usually done concerns the coupling between the

motions of the electrons and the nuclei. The mass of a nucleon is around 1800 times

the mass of an electron. Hence, the coupling between the nuclear and electronic parts

of the Hamiltonian can be neglected as a first approximation such that an electronic

Hamiltonian He can be constructed in which the positions of the nuclei enter only as

parameters,

He({xN}; {RM}) = −
N
∑

i=1

∇2
i

2
+−

N
∑

i=1

M
∑

A=1

ZA

|RA − ri|
+

N
∑

i=1

N
∑

j>i

1

|ri − rj |
. (1.4)

This means that the electrons still feel the Coulomb interaction coming from the nuclei

but see them fixed. This defines the so-called the Born-Oppenheimer approximation.

Within this approximation, the total wave function of the system can be factorized into

a nuclear part Ψn and an electronic part Ψe in which the nuclear positions are only

parameters:

Ψi,tot({xN}, {RM}) = Ψi,e({xN}; {RM})Ψi,n({RM}). (1.5)

The electronic Schrödinger equation

He({xN}; {RM})Ψi,e({xN}; {RM}) = Ei,e({RM})Ψi,e({xN}; {RM}) (1.6)

is then solved in a first step. The nuclear kinetic term corresponding to the first term

of the r.h.s. of Equation (1.2) and the nucleus-nucleus potential, are then added back

in a second step so that the Schrödinger equation for the nuclear motion can be solved

[Tn({RM}) + Vnn({RM}) + Ei,e({RM})] Ψi,n({RM}) = Ei,totΨi,n({RM}). (1.7)

The electronic wave function Ψe(x1, . . . ,xN ) is a complex-valued function which de-

fines a probability amplitude. The quantity |Ψe(x1, . . . ,xN )|2dx1dx2 · · · dxN is then the

probability of finding simultaneously electron 1 in the volume element dx1 around x1,

electron 2 in dx2 around x2, etc. As a probability, it must integrates to 1 which leads to

the normalization condition

∫

|Ψe(x1, . . . ,xN )|2dx1dx2 · · · dxN = 1. (1.8)

Moreover, as electrons are fermions, the Pauli principle states that the electronic wave

function must be antisymmetric with respect to the exchange of any two electrons,

Ψe(x1 · · ·xi · · ·xj · · ·xN ) = −Ψe(x1 · · ·xj · · ·xi · · ·xN ). (1.9)
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In this thesis, we will focus only on the resolution of the electronic Schrödinger equa-

tion (1.6) within the Born-Oppenheimer and non-relativistic frameworks. For the sake

of conciseness, the subscript “e” will therefore be dropped hereinafter.

1.2.2 Electronic Hamiltonian in second quantization

Up to this point, all the quantities were expressed in the first quantization formalism.

An alternative powerful framework is given by second quantization as it provides a

convenient, compact formalism for the study of the electronic problem. It relies on

creation and annihilation field operators Ψ̂†
σ(r) and Ψ̂σ(r) which respectively creates or

destroys an electron of spin σ at the position r. In order to enforce the Pauli principle,

these operators fulfill the following anticommutation relations:

[

Ψ̂σ(r), Ψ̂σ′(r
′)
]

+
= 0,

[

Ψ̂†
σ(r), Ψ̂

†
σ′(r

′)
]

+
= 0,

[

Ψ̂σ(r), Ψ̂
†
σ′(r

′)
]

+
= δσ,σ′δ(r− r′).

(1.10)

Using this formalism, the electronic Hamiltonian can be expressed as:

Ĥ = T̂ + V̂ne + Ŵee, (1.11)

where T̂ is the kinetic energy operator

T̂ = −1

2

∑

σ

∫

Ψ̂†
σ(r)∇2Ψ̂σ(r)dr, (1.12)

V̂ne is the electron-nuclei interaction operator

V̂ne =
∑

σ

∫

Ψ̂†
σ(r)vne(r)Ψ̂σ(r)dr (1.13)

with the one-electron nuclei-electron potential vne(r) = −∑A ZA/|RA− r|, and Ŵee is the

electron-electron operator

Ŵee =
1

2

∑

σ,σ′

∫∫

Ψ̂†
σ(r)Ψ̂

†
σ′(r

′)wee(r, r
′)Ψ̂σ′(r

′)Ψ̂σ(r)drdr
′. (1.14)

with the two-electron interaction wee(r, r
′) = wee(|r− r′|) = 1/|r− r′|.

For the electrons, the field created by the nuclei is external. However, the Coulomb

potential is only one example of an external potential v able to bind N electrons. These

external potentials define a set VN such that the corresponding Hamiltonians have a

N -electron ground state [12]:
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VN = {v | Ĥ[v] has a N -electron ground state}. (1.15)

In this expression, the square bracket notation in Ĥ[v] denotes a functional dependence

of the Hamiltonian Ĥ on the potential v. More details on functional calculus are given

in Appendix A.1 or can be found in [6] for instance.

1.2.3 Variational principle

The first step of a quantum calculation is often the determination of the ground state

of the system, i.e., the state with the lowest energy. As its energy is minimal, the

Rayleigh-Ritz variational principle [13] can be used. It means in particular that for

any trial N -electron wave function Ψtrial satisfying the normalization condition (1.8),

the expectation value of the Hamiltonian over this wave function is higher than the

ground-state energy E0,

E[Ψtrial] = 〈Ψtrial|Ĥ|Ψtrial〉 ≥ 〈Ψ0|Ĥ|Ψ0〉 = E0. (1.16)

This inequality sharpens into an equality only for a ground-state wave function Ψtrial =

Ψ0. Minimizing the energy over all the N -electron normalized wave functions provides

thus a strategy to find the ground-state wave function. In order to perform the mini-

mization under the normalization constraint, it is convenient to introduce a Lagrange

multiplier E, and then solve the equation

δ
[

〈Ψ|Ĥ|Ψ〉 − E〈Ψ|Ψ〉
]

= 0 (1.17)

without constraints, where the optimized value of the Lagrange multiplier is the energy

of the state |Ψ〉. Unfortunately, it is usually not possible in practice to perform the

minimization over all the possible wave functions and only a subset is considered. Con-

sequently, the calculated ground-state energy is only an upper bound to the true wave

function.

For the past decades, quantum chemists and physicists have designed a multitude of

methods to approach the ground-state wave function. The simplest one is the Hartree-

Fock method in which the considered subset of wave functions is the set of single Slater

determinants, i.e., antisymmetrized products of N one-electron wave functions φ(x).

These one-electron wave functions are called spin-orbitals and can be decomposed into a

spatial orbital ϕ(r) and a spin function χ(σ) such that φ(x) = ϕ(r)χ(σ). The Hartree-Fock

reference wave function can then be refined by extending the search subset or by using

perturbation methods.
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1.3 Electron density and pair density

The N -electron wave function is a complicated object which depends on all electronic

coordinates. It was soon pointed out that this level of complexity may not be required

to describe the system and that simpler quantities could be used instead of the full wave

function. One of these quantities is the electron density n(r) which was first suggested

by Thomas and Fermi in 1927 [14, 15].

1.3.1 Electron density

Given a normalized N -electron wave function Ψ(x1, . . . ,xN ), we have already mentioned

that its square modulus |Ψ(x1, . . . ,xN )|2dx1dx2 · · · dxN is the probability of finding simul-

taneously electron 1 in the volume element dx1 around x1, electron 2 in dx2 around x2,

etc. As the electrons are indistinguishable, this leads to the definition of the electron

density n(r) by integrating over all the spin variables and all but one of the spatial

variables

n(r) = N

∫

|Ψ(x,x2, . . . ,xN )|2 dσdx2 · · · dxN , (1.18)

where the N prefactor accounts for the indistinguishability of the electrons. The quantity

n(r)dr can therefore be interpreted as the average number of electrons with arbitrary spin

in the volume element dr around r. The electron density is considerably simpler than

the electronic wave function as it depends only on the space coordinates of one electron

instead of the spin-space coordinates of all electrons. Moreover, it is an observable of

the system and can be measured experimentally, for instance by X-ray diffraction. It is

to be related to the density operator

n̂(r) =
∑

σ

Ψ̂†
σ(r)Ψ̂σ(r), (1.19)

as it can be obtained by taking the expectation value of this operator over the wave

function n(r) = 〈Ψ|n̂(r)|Ψ〉.
Using the definition of the density operator, the nuclei-electron potential can be

rewritten as

V̂ne =

∫

vne(r)n̂(r)dr. (1.20)

The ground-state density is a function from R
3 to R which satisfies several properties:

1. It is a non-negative function, n(r) ≥ 0.

2. It integrates to the total number of electrons,
∫

n(r)dr = N .

3. It fulfills the Kato cusp condition [16]: when an electron is on-top of a nucleus A,

the electron-nuclei potential diverges. This divergence is compensated by a cusp in

the electron density, such that in terms of the spherically averaged density ñ(rA),
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where rA is the distance between the electron and the nucleus,

∂ñ(rA)

∂rA

∣

∣

∣

∣

rA→0

= −2ZAñ(0). (1.21)

Hence, in the vicinity of the nucleus A, the electron density behaves like

ñ(r) ∼ e−2ZAr. (1.22)

4. Its long-range asymptotic behavior is fixed by the ionization energy [17]: at large

r, the electron density decays exponentially and this decay is governed by the

ionization energy EI of the system n(r) ∼ e−2
√

2EIr.

The densities coming from an N -electron ground-state wave function define the set

AN = {n| n comes from an N -electron ground-state wave function}. (1.23)

Spin density and spin polarization

The electron density does not differentiate electrons with respect to their spin. However,

in particular for open-shell systems, this differenciation can become useful. The prob-

ability density of finding an electron with a specific spin σ is given by its spin density

n(x) or nσ(r). The sum of the α and β spin densities gives back the total density, while

their difference defines the spin polarization (or spin magnetization) density

m(r) = nα(r)− nβ(r). (1.24)

1.3.2 Pair density

In the electronic Hamiltonian, two-electron interactions are also involved. To describe

them, one needs to know the position of two electrons simultaneously. It is thus conve-

nient to have access to the average number of electron pairs with arbitrary spins around

two positions r and r′. This information is given by the pair density

n2(r, r
′) = N(N − 1)

∫

|Ψ(x,x′,x3, . . . ,xN )|2dσdσ′dx3 · · · dxN , (1.25)

up to a normalization factor, where the factor N(N − 1) accounts for the fact that

electrons are indistinguishable. The pair density operator

n̂2(r, r
′) =

∑

σ,σ′
Ψ̂†

σ(r)Ψ̂
†
σ′(r

′)Ψ̂σ′(r
′)Ψ̂σ(r)

=n̂(r)n̂(r′)− n̂(r)δ(r− r′)

(1.26)
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is directly related to the pair density as the latter is its expectation value n2(r, r
′) =

〈Ψ|n̂2(r, r
′)|Ψ〉. It can be used to reformulate the expression of the electron-electron

operator

Ŵee =
1

2

∫∫

n̂2(r, r
′)wee(r, r

′)drdr′. (1.27)

Due to their fermionic nature and the electron-electron interaction, electrons have

correlated motions. Therefore, the pair density is not simply the product of the two

electron densities: an additional term, the exchange-correlation pair density, n2,xc, enters

its expression to take these effects into account:

n2(r, r
′) = n(r)n(r′) + n2,xc(r, r

′)

= n(r)n(r′) + n(r)hxc(r, r
′).

(1.28)

where hxc is the exchange-correlation hole. The pair density has some interesting prop-

erties worth mentioning:

1. It is a non-negative function: n2(r, r
′) ≥ 0.

2. It is symmetric with respect to the interchange of its arguments: n2(r, r
′) = n2(r

′, r).

3. It integrates to the number of pairs:
∫∫

n2(r, r
′)drdr′ = N(N − 1).

The exchange-correlation hole normalization is then:
∫

hxc(r, r
′)dr′ = −1.

4. When the electrons are on-top of each other, the pair density reduces to the on-

top pair density n2(r, r). In this point, the Hamiltonian diverges but the energy of

the system remains finite. This divergence has thus to be counterbalanced by the

derivative of the pair density and defines the electron-electron cusp condition [18].

1.4 Theoretical foundation of density-functional theory

The motivation at the root of density-functional theory is to replace the variational

principle (1.17) where the minimization is done with respect to the wave function, by

a minimization over the electron density. The first mathematical justification for this

approach was given by Kohn and Hohenberg in their famous theorems [19]. Their theory

was later extended by Levy [20] and Lieb [21] in order to minimize over an explicitly

known set and to ensure the existence of an unique solution. A brief overview of these

formal justifications is sketched in the following section. More details can be found for

instance in [6–9, 22, 23]

1.4.1 Hohenberg-Kohn theorems

In order to construct the electronic Hamiltonian of a system, very few information is

really needed. The number of electrons N is all what is required to write down the
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kinetic operator and the electronic interaction, and the external potential v allows the

construction of V̂ne. The Hamiltonian is therefore a functional of both N and v, Ĥ[v,N ].

The first Hohenberg-Kohn (HK) theorem states that the ground-state density is in

fact sufficient and can be used instead of v and N to construct the Hamiltonian of the

system.

Theorem 1 (First HK theorem). Each N -electron density is the ground-state density

of at most one Hamiltonian Ĥ[v,N ] where the external potential v is determined up

to an additive constant c

n(r) = n′(r) ⇒ v(r) = v′(r) + c. (1.29)

The proof of this theorem is surprisingly simple and uses a reductio ad adsurdum argu-

ment [19]. This theorem states that the ground-state density n0 contains by itself all the

information to construct the Hamiltonian of the system Ĥ[v,N ]. Therefore, one should

be able to extract the number of electrons and the external potential from the ground-

state density. The first is trivial as the density integrates to the number of particles

N . For the latter, it is easy to get an insight in the case of the Coulombic potential

although the HK theorem is more general. In fact, as mentioned in Equation (1.21), the

density presents a cusp at the position of each nucleus RA which size is proportional to

the atomic number of the given nucleus ZA. The density contains therefore all the infor-

mation needed to construct the electron-nuclei potential so that the Hamiltonian can be

completely determined. This can be summarized as n⇒ [v,N ] ⇒ Ĥ. The consequence of

this theorem is that all the properties of the system, and in particular, the ground-state

energy, are functionals of the density. As the dependence in N of the Hamiltonian is

trivial, it is dropped in the following.

Although the physical interpretation of this theorem can seem straightforward, all its

subtlety lies in the “at most”. It means that only some ground-state densities arise from

an external potential, those which satisfy this condition are said to be v-representable.

It means that there exist some “reasonable” N -electron densities, i.e., which are positive

and L1-integrable, which do not correspond to any physical potential. Actually, in order

to have a ground-state density, the ground state should exist, which means that the

potential should be able to bind N electrons. The first HK theorem therefore defines a

mapping between the set of densities AN which comes from an N -electron ground-state

wave function and the set of potentials VN which are able to bind N electrons.

Given an Hamiltonian Ĥ[v], with v ∈ VN , and Ψ[n] its ground-state wave function

associated to the density n ∈ AN , the ground-state energy is

E[v] =〈Ψ[n]|T̂ + Ŵee + V̂ |Ψ[n]〉

=〈Ψ[n]|T̂ + Ŵee|Ψ[n]〉+
∫

v(r)n(r)dr.
(1.30)
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In this expression, the part 〈Ψ[n]|T̂ + Ŵee|Ψ[n]〉 = FHK[n] does not depend explicitly on

the external potential. It is called the HK functional and can be seen as an universal

functional as it is system-independent.

The second HK theorem states that the variational principle holds for this universal

functional FHK[n].

Theorem 2 (Second HK theorem). For any positive integer N and potential v ∈ VN ,

it exists a density functional FHK[n] such that FHK[n]+
∫

v(r)n(r)dr reaches its minimal

value at the ground-state density of a system composed of N electrons in the potential

v(r). This minimum is then the ground-state energy of this system E[v].

This theorem can be formulated in terms of two equivalent variation principles

E[v] = min
n∈AN

{

F [n] +

∫

v(r)n(r)dr

}

, v ∈ VN , (1.31a)

F [n] = max
v∈VN

{

E[v]−
∫

v(r)n(r)dr

}

, n ∈ AN . (1.31b)

These two theorems lay the formal justification for density functional theory. Unfor-

tunately, neither the form of the HK functional nor the two sets VN and AN are known.

In order to have explicitly known sets, Levy and Lieb defined weaker conditions on the

potentials and densities which lead first to the Levy-Lieb constrained-search and then

to the Lieb convex-conjugate formulation of DFT.

1.4.2 Levy-Lieb formulation

A generalization of the HK theorem which does not require the density to be v-

representable was proposed, by Levy [20] and Lieb [21] and is usually known as the

Levy or Levy-Lieb constrained-search formulation. Their idea was to extend the set of

potentials from the potentials which give an N -electron ground state to the potentials

which give a finite energy, U = L∞ + L3/2 ⊃ VN . For such potentials, as they may not

come anymore from an Hamiltonian which has a ground state, the minimizing wave func-

tion may not exist and the minimum therefore becomes an infimum in the Rayleigh-Ritz

variational principle.

The minimization can be performed into two steps, an outer minimization over n and

an inner minimization over all the wave functions which give the same density n. The

constraint over the density is weaker than in the original HK scheme as it only needs to

be N-representable:

E[v] = inf
Ψ
〈Ψ|H[v]|Ψ〉 v ∈ U

= inf
n∈IN

{

inf
Ψ→n

〈Ψ|T̂ + Ŵee|Ψ〉+
∫

v(r)n(r)dr

}

.
(1.32)
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The set of N -representable densities is

IN = {n | n comes from some N -electron wave function Ψ}

= {n | ∀r, n(r) ≥ 0,

∫

n(r)dr = N,

∫

|∇
√

n(r)|2dr <∞}.
(1.33)

The Levy-Lieb functional is then

F̃ [n] = inf
Ψ→n

〈Ψ|T̂ + Ŵee|Ψ〉, n ∈ IN . (1.34)

The set of N -representable densities is explicitly known and F̃ [n] = FHK[n] if n ∈ AN .

However this functional is still not convex as pointed out by Lieb in [21]. In order to

have an unique solution, Lieb then proposed a convex-conjugate functional, F [n], which

also has an explicitly known domain and can guarantee an unique solution due to its

convexity

F [n] = sup
v∈X∗

{

E[v]−
∫

v(r)n(r)dr

}

, n ∈ X. (1.35)

This functional is the convex-envelope of the Levy-Lieb functional and is obtained by

convex-conjugation (or Legendre-Fenchel transform) of the energy [12, 21]. The density

and potential spaces X and X∗ are then conjugated Banach spaces given by X = L3 ∩L1

and X∗ = L3/2 + L∞ = U and are explicitly known. The HK, Levy-Lieb and Lieb

functionals give the same results for ground-state densities.

1.5 Kohn-Sham approach

The HK theorems provide the formal framework for DFT, but in practice, to be able

to perform calculations, a pragmatic way to construct the universal functional is still

required. To achieve this, in 1965, just one year after the HK theorems, Kohn and Sham

proposed to partition the universal functional, using an auxiliary fictitious system of

non-interacting electrons [24].

1.5.1 Kohn-Sham system

The approach proposed by Kohn and Sham consists in replacing the real system of N

interacting electrons by a much simpler system of N non-interacting electrons. In the

auxiliary system, the electrons move in an effective potential such that its ground-state

density is the one of the real system. A schematic representation of the Kohn-Sham

and real systems is given in Figure 1.1. As the ground-state density contains all the

information thanks to the HK theorems, it is therefore possible in principle to calculate

all the properties of the real system using the auxiliary system, as they have the same

ground-state density.
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nucleus of the
real molecule

interacting
electron

nucleus of the
fictitious molecule

non-interacting
electron

Figure 1.1 – Schematic representation of the Kohn-Sham approach. On the left, the
real system of N interacting electrons moving in the field of the nuclei is represented. On
the right, the fictitious system of N non-interacting electrons is shown. These electrons
move in a modified potential such that both the real and the fictitious system have the
same ground-state density.

The universal functional of the Kohn-Sham (KS) system is explicitly known (though

the dependence in the density is implicit) and reduces to the kinetic contribution of

the non-interacting electrons. In the Levy-Lieb formulation, the KS functional is then

defined as

FKS[n] = inf
Ψ→n

〈Ψ|T̂ |Ψ〉 = TS[n]. (1.36)

As the electrons do not interact with each other, the minimizing wave function can

be represented by a single Slater determinant Φ0 constructed on the KS orbital basis

set {ϕk} such that

Φ0(x1,x2, . . . ,xN ) =
1√
N !

det{ϕi(xj)}, (1.37)

and its density is then given by

n(r) =
∑

i

|ϕi(r)|2 (1.38)

where the index i runs over the occupied orbitals. The non-interacting kinetic functional

TS[n] can be calculated exactly and when expressed in terms of orbitals, is given by

TS[n] = −1

2

∑

i

〈ϕi|∇2|ϕi〉. (1.39)

In this expression, the density dependence of TS is implicit and is build in through the

orbitals by Equation (1.38).

As the ground-state energy is a functional of the density, it should be the same

whether it is calculated with the real system or the fictitious one. This means that the

KS potential must therefore take care of all the effects coming from the electron-electron

interaction which are not taken into account in the KS functional. With respect to the

external potential v of the real system, the KS potential vKS needs thus an additional

contribution to describe the interaction. This extra term is called the Hartree-exchange-

correlation potential vHxc such that vKS(r) = v(r)+vHxc(r). It can be split into its classical
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contribution, the Hartree potential

vH[n](r) =

∫

n(r′)

|r− r′|dr
′ (1.40)

which describes the Coulomb interaction, and the exchange and correlation potentials,

whose explicit forms are unknown and which must describe all the non-classical effects.

The ground-state energy can then be expressed equivalently using the real system or the

KS system as

E0 =min
{ϕi}

{

F [n] +

∫

n(r)v(r)dr

}

, (1.41a)

=min
{ϕi}

{

TS[n] + EHxc[n] +

∫

n(r)v(r)dr

}

. (1.41b)

where the density is obtained in terms of the KS orbitals by Equation (1.38) and, where

the term EHxc[n] is the Hartree-exchange-correlation energy functional and is related to

the corresponding potential by functional differentiation

vHxc[n](r) =
δEHxc[n]

δn(r)
. (1.42)

1.5.2 KS Hamiltonian

The resolution of Equation (1.41b) under the orthonormality constraint: 〈ϕi|ϕj〉 = δij

on the KS orbitals leads to the resolution of the set of one-electron KS equations

[

−1

2
∇2 + vKS(r)

]

ϕi(r) = εiϕi(r), (1.43)

where the eigenvalues εi are the KS orbital energies associated to the KS orbitals ϕi.

This is equivalent to the equation

ĤKS[n]|Φ〉 =
(

T̂ + V̂ KS[n]
)

|Φ〉 = EKS[n]|Φ〉 (1.44)

where ĤKS[n] is the KS Hamiltonian, V̂ KS[n] =
∫

vKS[n](r)n̂(r)dr is the KS potential

operator and EKS[n] are the KS eigenvalues. This equation has to be solved iteratively as

the KS potential depends on the orbitals. When convergence is reached, the minimizing

wave function is the KS ground-state wave function and gives back the exact ground-

state density of the real system.

Meaning of the KS wave function and orbital energies

Although it reproduces the exact ground-state density, the KS ground-state wave func-

tion is not the exact ground-state wave function. Similarly the energies of the KS orbital

are not a priori related to the excited-state energies of the real system. However, the

energy of the highest occupied molecular orbital (HOMO) can be intrepreted from the
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extension of Koopmans’ theorem [25, 26], as the opposite of the ionization energy of

the N -electron system and the opposite of the electronic affinity of the (N − 1)-electron

system.

Asymptotic behavior of the KS potential

The nuclear potential of a neutral N -electron system behaves as −N/r when r → ∞ and

the Hartree potential goes asymptotically as N/r. Therefore, they cancel each other in

this limit. When an electron is very far away from the rest of the system, it should

feel the electrostatic attraction due to the remaining positive ion. Thus, the asymptotic

behavior of the exchange-correlation potential must be

vxc(r) −−−→
r→∞

−1

r
. (1.45)

This illustrates the fact that there is no self-interaction in the exact Kohn-Sham formal-

ism as for an 1-electron system, the Hartree and exchange potentials cancel exactly.

1.5.3 Hartree, exchange and correlation functionals

All the difficulty in the KS scheme lies into the determination of the Hartree-exchange-

correlation functional. The Hartree functional is explicitly known and is given by

EH[n] =
1

2

∫∫

n(r)n(r′)

|r− r′| drdr
′. (1.46)

Unfortunately, such an expression is not available for the exchange-correlation (xc) func-

tional which is therefore the only remaining unknown quantity. It must take into account

what is missing in the non-interacting kinetic functional and in the classical Hartree in-

teraction

Exc[n] = T [n]− TS[n] +Wee[n]− EH[n]

= 〈Ψ|T̂ |Ψ〉 − 〈Φ|T̂ |Φ〉+ 〈Ψ|Ŵee|Ψ〉 − EH[n]

= 〈Ψ|T̂ + Ŵee|Ψ〉 − 〈Φ|T̂ + Ŵee|Φ〉+ 〈Φ|Ŵee|Φ〉 − EH[n].

(1.47)

It is usually further decomposed into two contributions, an exchange functional

Ex[n] = 〈Φ|Ŵee|Φ〉 − EH[n] (1.48)

which must account for the antisymmetry of the wave function with respect to the

exchange of two electrons, and a correlation functional

Ec[n] = 〈Ψ|T̂ + Ŵee|Ψ〉 − 〈Φ|T̂ + Ŵee|Φ〉, (1.49)

which must describe the effects due to the correlated motion of the electrons.
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Coming back to the definition of the pair density, this implies that the pair density

can also be decomposed in a similar fashion

n2(r, r
′) = n(r)n(r′) + n2,x(r, r

′) + n2,c(r, r
′) = nKS

2 (r, r′) + n2,c(r, r
′) (1.50)

where nKS
2 (r, r′) = 〈Φ|n̂2(r, r

′)|Φ〉 is the KS pair density. Therefore, the exchange and

correlation pair densities can be expressed as n2,x(r, r
′) = nKS

2 (r, r′) − n(r)n(r′) and

n2,c(r, r
′) = n2(r, r

′) − nKS
2 (r, r′). In particular, this gives a convenient definition for the

exchange functional as

Ex[n] =
1

2

∫∫

n2,x(r, r
′)

|r− r′| drdr′. (1.51)

1.6 Local density approximation

1.6.1 Principle of the approximation

Since the KS scheme was proposed, the design of good approximations for the exchange-

correlation functional has been a major subject of research. The first approximation

was proposed by Kohn and Sham in the same paper. It is based on a model system, the

uniform electron gas (UEG) in which electrons move on a positive uniformly charged

background such that the total system is neutral and has an electron density n. This

system is of particular interest because it defines in fact a series of systems where the

exchange and correlation functionals are known either exactly or with very high accuracy

for any constant density n. In other systems such as the hydrogen or the helium atom,

the KS potential can also be numerically calculated by a Lieb optimization but provides

only a solution for a specific density.

The exchange energy per particle in an UEG of density n is known explicitly:

εx(n(r)) = −3

4

(

3n(r)

π

)1/3

, (1.52)

and was originally derived by Dirac [27] and Slater [28]. Such an explicit expression

is not known for the correlation part, but very accurate quantum Monte-Carlo calcula-

tions were performed by Ceperley and Alder [29] and lead to analytical expressions by

interpolation, the most famous for molecules being the one by Vosko, Wilsk and Nusair

in 1980 [30] and the one by Perdew and Wang in 1992 [31].

The idea underlying the local-density approximation (LDA) is then to divide the

real system onto a grid and substitute the exchange-correlation energy density on each

volume element dr around the position r by the one calculated for an uniform electron

gas of density n(r) as shown in Figure 1.2 such that the LDA exchange-correlation energy

is

ELDA
xc [n] =

∫

n(r)εUEG
xc (n(r))dr. (1.53)

The Hohenberg-Kohn theorems state that it is in principle possible to determine the
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C C
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H

Figure 1.2 – Schematic representation of the LDA approximation, where the energy
density functional at each grid point is replaced by the one of the uniform electron gas
which has the same density.

total energy using only the total density and not the spin densities. However, when it

comes to designing approximations for the exchange and correlation functionals, using

the spin densities simplifies greatly the task, especially to reproduce the difference of

stability between states of different spin. LDA was therefore extended to spin densities,

which gave rise to the local-spin-density approximation (LSDA). Hereinafter, LSDA

functionals are used but the spin-density dependence will be kept implicit.

1.6.2 Performance of the approximation

Realistic molecular systems are highly heterogeneous, therefore as the LDA functional re-

lies on a homogeneous system, it would be expected to give disastrous results. However,

this approximation turns out to behave extremely well given its level of complexity. In

fact, the LDA functional usually overbinds molecules but gives reasonable structures [4,

32]. It benefits from an error compensation between the underestimation of the total

exchange energy and the overestimation of the correlation. Moreover, in this approxi-

mation, the sum rule for the exchange-correlation hole is satisfied which can also be an

explanation for its overall good performance.

A shortcoming of the LDA functional comes from the wrong asymptotic behavior

of the xc potential at large distances. In fact, as the density decays exponentially, it

is straightforward to show that it will also be the case for the LDA potential while

it should decay as −1/r. This comes from the self-interaction error, as the exchange

potential does not cancel the Hartree potential anymore in a 1-electron system. It also

causes the Kohn-Sham orbital energies to be too low in magnitude and in particular,

the ionization energy is largely underestimated.

It is difficult to provide a recipe to improve systematically the functionals. Introduc-

tion of gradient expansion corrections lead to the generalized-gradient approximations
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(GGA) in an attempt to take into account the system inhomogeneity. The most famous

GGA functionals are BLYP [33, 34] and PBE [35]. However, despite the gain of com-

plexity, the overall improvement of these functionals with respect to the LDA remains

modest [36, 37]. One reason for this is that the sum rule for the exchange-correlation

hole is not fulfilled anymore with these functionals. Even more flexibility can be added

by the introduction of the Laplacian of the density or the kinetic-energy density τ(r)

in meta-GGA approximations, or by introducing some percentage of Hartree-Fock ex-

change in hybrid ones. In the continuity of the hybrid approximations, another approach

relying on the range separation of the electronic interaction can be considered in order

to introduce some exchange and correlation coming from wave-function methods.

1.7 Range separation of the two-electron interaction

1.7.1 Motivation

The local or semi-local approximations to the exchange and correlation functionals may

seem well suited when electrons are close to each other but are less accurate when they

are at large distance. Within these approximations, the DFT scheme seems therefore

adapted to describe the electronic interaction only at short range and alternative meth-

ods should be considered for the long-range part of the interaction. Range-separated

DFT is an extension of the Kohn-Sham formalism which provides in principle an exact

scheme exploiting this statement [38, 39]. The starting point is not the non-interacting

Kohn-Sham system but a partially interacting system where the long-range part of

the Coulomb interaction is included. The Hartree-exchange-correlation functional must

therefore describe what is missing, i.e. the short-range part of the interaction. In order to

remain computationally interesting, not too much of the interaction should be included

in the starting system or one would just end with a problem of the same complexity than

the initial many-body problem. As some interaction is present in the starting system,

its wave function is no longer a single Slater determinant and should require several

(but not too many) determinants. Usual wave function methods such as configuration

interaction (CI) are therefore required for its description [40, 41]. This method can

therefore be seen as a multi-determinant expansion of Kohn-Sham theory which allows

for the rigorous combination of wave-function and density-based methods as represented

in Figure 1.3.

Moreover, one difficulty encountered in the wave function methods is the description

of the electronic cusp when electrons are very close to each other. One advantage of the

range-separated approach is that this phenomenon is described in the density functional

part. In particular, this allows for a faster basis convergence in comparison with the

complete treatment of the problem with pure wave function methods.
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WF/GF

DFT

1/µ

Figure 1.3 – Schematic representation of the range separation of the electron-electron
interaction. At short-range, a DFT treatment is used, at long-range, a wave function
(WF) method (or a manybody method based on Green’s function (GF)) is used. The
range separation parameter µ can be seen as the inverse of the cut-off radius.

1.7.2 Range separation of the electronic interaction

In order to split the Coulomb interaction wee(r, r
′) = 1/|r − r′| between an electron in r

and another one in r′, into a short-range (sr) and a long-range (lr) part, several choices

can be made. Introducing a radial function f , the only constraints are that it should

vanish when the electron-electron distance is large and tends to 1 when the distance is

short,

wee(r, r
′) = wsr

ee(r, r
′) + wlr

ee(r, r
′) =

1− f(|r− r′|)
|r− r′| +

f(|r− r′|)
|r− r′| . (1.54)

Among the different possibilities, one should mention in particular the use of the Yukawa

potential wsr
ee(r, r

′) = e−α|r−r
′|/|r− r′| [42–44], of the standard error function erf with or

without the addition of a Gaussian function (erfgau) [45] or of a Gaussian attenuated

potential [46].

In this thesis, range separation is made by using the standard error function erf

erf(x) =
2√
π

∫ x

0

e−t2dt. (1.55)

This choice is convenient since, within a Gaussian basis set, the evaluation of the two-

electron integrals corresponding to the erf interaction requires only a simple change

in the algorithm. In order to control the range of the separation, a range-separation

parameter µ ∈ R
+ is introduced such that the radial function f is given by fµ(|r− r′|) =

erf(µ|r − r′|). This parameter can be seen as the inverse of a smooth cut-off radius as

shown in Figure 1.4. If the electron distance is smaller than 1/µ then the short-range

part is dominant, while the long-range part is for distances greater than 1/µ. The density

is related to the inverse of the Wigner-Seitz radius

rs =

(

3

4πn

)1/3

, (1.56)
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wee(r, r
′) =

1

|r− r′|

wlr,µ
ee (r, r′) =

erf(µ|r− r′|)
|r− r′|

wsr,µ
ee (r, r′) =

1− erf(µ|r− r′|)
|r− r′|

|r− r′|1

µ

Figure 1.4 – Full-range, short-range and long-range part of the Coulomb interaction
for a given range separation parameter µ in function of the electron-electron distance
|r− r′|.

which can itself be related to the mean distance between particles. Although the range-

separated approach is in principle exact for any µ, it is difficult to design approximate

functionals which are able to treat such an inhomogeneous system as a molecule. Ideally,

the range separation should depend locally on the density in each space point. However,

the resolution of such a problem would be very tedious so the choice was made to perform

the range separation globally with a compromise value of the range-separation parameter

µ.

With this definition of range separation, it is then possible to define a short-range

and a long-range interaction operator

Ŵ sr,µ
ee =

1

2

∫∫

n̂2(r, r
′)wsr,µ

ee (r, r′)drdr′ and Ŵ lr,µ
ee =

1

2

∫∫

n̂2(r, r
′)wlr,µ

ee (r, r′)drdr′, (1.57)

where the corresponding interactions are given by

wsr,µ
ee (r, r′) =

1− erf(µ|r− r′|)
|r− r′| and wlr,µ

ee (r, r′) =
erf(µ|r− r′|)

|r− r′| . (1.58)

In particular, one should note that when µ → 0, the long-range interaction operator

vanishes, and the short-range interaction tends to the real interaction, while when µ →
∞, it is the opposite.

1.7.3 Range-separation of the universal functional

In comparison with the usual KS formalism of section 1.5, the long-range part of the

interaction is kept into the Lieb functional, which defines a long-range universal func-
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tional

F lr,µ[n] = inf
Ψ→n

〈Ψ|T̂ + Ŵ lr,µ
ee |Ψ〉. (1.59)

Because of the presence of the long-range interaction operator, the minimizing wave func-

tion Ψµ is no longer a single Slater determinant. By analogy with the fully-interacting

case, the long-range universal functional can be decomposed into its kinetic, Hartree,

exchange and correlation contributions where the real interaction is replaced by its long-

range equivalent

F lr,µ[n] = TS[n] + Elr,µ
H [n] + Elr,µ

x [n] + Elr,µ
c [n], (1.60)

where by analogy to Equations (1.46), (1.48) and (1.49),

Elr,µ
H [n] =

1

2

∫∫

n(r)n(r′)wlr,µ
ee (r, r′)drdr′,

Elr,µ
x [n] = 〈Φ|Ŵ lr,µ

ee |Φ〉 − Elr,µ
H [n],

Elr,µ
c [n] = 〈Ψµ|T̂ + Ŵ lr,µ

ee |Ψµ〉 − 〈Φ|T̂ + Ŵ lr,µ
ee |Φ〉.

(1.61)

When µ goes to 0, the long-range energy functionals vanish and the KS universal func-

tional FKS[n] is recovered. On the contrary, when µ → ∞, they tend to the full-range

Hartree, exchange and correlation functionals and the long-range universal functional

reduces to the full-range universal functional F [n].

For a given µ, the total universal functional is recovered by addition of a comple-

mentary short-range functional F̄ sr,µ[n] which can also be decomposed into

F̄ sr,µ[n] = Esr,µ
H [n] + Esr,µ

x [n] + Ēsr,µ
c [n], (1.62)

where its Hartree, exchange and correlation contributions are given by

Esr,µ
H [n] = EH[n]− Elr,µ

H [n],

Esr,µ
x [n] = Ex[n]− Elr,µ

x [n],

Ēsr,µ
c [n] = Ec[n]− Elr,µ

c [n].

(1.63)

For the correlation contribution, the complementary short-range functional is not equiv-

alent to the one which would be obtained is the short-range part of the interaction was

kept into the functional instead of the long-range one [47]

F sr,µ[n] = inf
Ψ→n

〈Ψ|T̂ + Ŵ sr,µ
ee |Ψ〉. (1.64)

To avoid any confusion, a bar is therefore used for the complementary functional.
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1.7.4 Range-separated ground-state energy

Using these range-separated functionals, the ground-state energy of the system is then

obtained by

E0 = min
n

{

F lr,µ[n] + F̄ sr,µ[n] +

∫

vne(r)n(r)dr

}

= min
n

{

inf
Ψ→n

〈Ψ|T̂ + Ŵ lr,µ
ee |Ψ〉+ Ēsr,µ

Hxc [n] +

∫

vne(r)n(r)dr

}

.

(1.65)

The minimizing wave function corresponds to the ground state solution of equation

Ĥ lr,µ|Ψµ〉 = Eµ|Ψµ〉, (1.66)

where Ĥ lr,µ = T̂ + Ŵ lr,µ
ee + V̂ sr,µ is the partially interacting Hamiltonian in which V̂ sr,µ =

∫

n̂(r)vsr,µ(r) is the complementary external potential operator which keeps the density

constant. This potential can be split into its nucleus-electron, Hartree, exchange and

correlation contributions v̄sr,µ(r) = vne(r)+v
sr,µ
H (r)+vsr,µx (r)+v̄sr,µc (r), where the short-range

Hartree, exchange and correlation potentials are obtained by functional differentiation

of the corresponding energy functionals

v̄sr,µHxc[n](r) =
δĒsr,µ

Hxc [n]

δn(r)
. (1.67)

Up to this point, the theory is exact. In practice, a density-functional approximation

is usually used for Ēsr,µ
Hxc [n]. The minimizing multideterminantal wave function Ψµ can

then be computed self-consistently with Equation (1.66) using the usual wave-function

methods such as CI [40] or multiconfigurational self-consistent field (MCSCF) [48] or can

be approximated to a single Slater determinant. The latter defines the range-separated-

hybrid approximation (RSH) [43, 48, 49]. Due to the single determinant nature of the

wave function, the ground-state energy then reduces to

Eµ
0,RSH = 〈Φ0|T̂ + V̂ne|Φ0〉+ EH[n0] + Elr,µ

x,HF[Φ0] + Ēsr,µ
xc [n0], (1.68)

where Φ0 and n0 are the minimizing Slater determinant and associated electron density.

In this approach, the long-range exchange is therefore treated at the Hartree-Fock level

and the long-range correlation is neglected.

One main advantage of such an approach is that the presence of the HF long-range

exchange potential ensures the correct asymptotic behavior of the xc potential in −1/r.

If the range separation is done on the exchange functional only, it defines the so-called

long-range corrected functionals (LC) [50] which can also be referred to as RSHX [51].

In this case, the ground-state energy is given by

Eµ
0,LC = 〈Φ0|T̂ + V̂ne|Φ0〉+ EH[n0] + Elr,µ

x,HF[Φ0] + Esr,µ
x [n0] + Ec[n0]. (1.69)
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1.8 Conclusion

In this chapter, the time-independent density-functional theory and its range-separated

extension were briefly reviewed. These methods are formally ground-state methods as

they are based on the variational principle. However, the HK theorems state the ground-

state density contain all the information on the system so in particular one should be

able to extract the excitation energies. In the next chapters, we will therefore focus on

how to extract these excitation energies in the framework of range separation.
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Chapter 2

Excitation energies along a

range-separated adiabatic

connection

This chapter is the subject of a publication in collaboration with J. Toulouse, A. M.

Teale, T. Helgaker and A. Savin, and has been submitted to the Journal of Chemical

Physics.

In this chapter, we present a study of the variation of total energies and excita-
tion energies along a range-separated adiabatic connection. This connection links
the non-interacting Kohn-Sham electronic system to the physical interacting system
by progressively switching on the electron-electron interactions whilst simultaneously
adjusting a one-electron effective potential so as to keep the ground-state density
constant. In this work the interactions are introduced in a range-dependent manner,
first introducing predominantly long-range, and then all-range, interactions as the
physical system is approached. Reference data are reported for the He and Be atoms
and the H2 molecule, obtained by calculating the short-range effective potential at
the full configuration-interaction level using Lieb’s Legendre-transform approach. As
the strength of the electron-electron interactions increases, the excitation energies,
calculated for the partially interacting systems along the adiabatic connection, offer
increasingly accurate approximations to the exact excitation energies. Importantly,
the excitation energies calculated at an intermediate point of the adiabatic connec-
tion are much better approximations to the exact excitation energies than are the
corresponding Kohn-Sham excitation energies. This is particularly evident in situ-
ations involving strong static correlation effects and states with multiple excitation
character, such as the dissociating H2 molecule. These results highlight the utility of
long-range interacting reference systems as a starting point for the calculation of exci-
tation energies and are of interest for developing and analyzing practical approximate
range-separated density-functional methodologies.
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2.1 Introduction

Range-separated density-functional theory (see, e.g., Ref. [45]) constitutes an interesting

alternative to standard Kohn-Sham (KS) density-functional theory (DFT) [19, 24]. In

the standard KS approach, the physical interacting electronic Hamiltonian is replaced

by an effective non-interacting Hamiltonian. By contrast, in range-separated DFT, the

physical Hamiltonian is instead replaced by a partially interacting Hamiltonian that

incorporates the long-range part of the electron-electron interaction. This corresponds

to an intermediate point along a range-separated adiabatic connection [39, 45, 52–54].

The KS Hamiltonian is linked to the physical Hamiltonian by progressively switching on

the long-range part of the two-electron interaction, whilst simultaneously modifying the

one-electron potential so as to maintain a constant ground-state density. The ground-

state energy of the physical system can then be extracted from the ground state of the

long-range interacting Hamiltonian by using a short-range density functional describing

the complementary short-range part of the electron-electron interaction.

Several short-range density-functional approximations have been developed [39, 45,

55–60] and a diverse range of approaches for calculating the ground state of the long-

range interacting Hamiltonian have been explored. To aid in the description of static

(or strong) correlation effects, which are poorly treated by standard density functionals,

configuration-interaction [39–42, 45, 54, 61] multiconfiguration self-consistent-field (MC-

SCF) [48, 62, 63], density-matrix functional theory (DMFT) [64–66], and constrained-

pairing mean-field theory [67, 68] descriptions of the long-range interacting systems

have been employed. To treat van der Waals interactions, second-order perturbation

theory [49, 69–79], coupled-cluster theory [58, 60, 80–82], and random-phase approxi-

mations [83–93] have been used successfully.

Electronic excitation energies can also be calculated in range-separated DFT by using

the linear-response approach with a time-dependent generalization of the static ground-

state theory [94]. In this case, the excitation energies of the long-range interacting

Hamiltonian act as starting approximations that are then corrected using a short-range

density-functional kernel, just as the KS excitation energies act as starting approxi-

mations in linear-response time-dependent density-functional theory (TDDFT). Several

such range-separated linear-response schemes have been developed in which the short-

range part is described by an approximate adiabatic semilocal density-functional kernel

and the long-range linear-response part is treated in Hartree-Fock [94–97], MCSCF [94,

97], second-order polarization-propagator approximation (SOPPA) [97], or DMFT [98].

These schemes aim at overcoming the limitations of standard linear-response TDDFT

applied with usual adiabatic semilocal approximations for describing systems with static

correlation [99], double or multiple excitations [100], and Rydberg and charge-transfer

excitations [101, 102].

For the purpose of analyzing the above-mentioned linear-response range-separated

DFT approaches, it is desirable to have accurate reference values of the excitation en-
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ergies of the long-range interacting Hamiltonian along the range-separated adiabatic

connection. In this work, we provide and analyze such accurate reference data for the

He and Be atoms and the H2 molecule. Short-range one-electron potentials keeping

the ground-density constant along a range-separated adiabatic connection are calcu-

lated at the full configuration-interaction (FCI) level within Lieb’s Legendre-transform

approach [21, 103, 104]. The excited-state energies of the long-range interacting Hamil-

tonian along the adiabatic connection are then calculated using the FCI method. Several

accurate ground-state calculations have been performed in the past along the standard

adiabatic connection [103–108] and range-separated adiabatic connections [45, 53, 108–

110] for small atomic and molecular systems, but accurate calculations of excited-state

energies along adiabatic connections are very scarce (see, however, Refs. [103, 111]).

The chapter is organized as follows. In Section 2.2, range-separated DFT is briefly

reviewed and the definition of the excited states along the range-separated adiabatic

connection is introduced. In Section 2.3, the behavior of the excited-state energies near

the two endpoints of the adiabatic connection, the Kohn-Sham system and the physical

system, is studied analytically. After giving computational details in Section 2.4, results

along the full adiabatic-connection path are presented and discussed in Section 2.5.

Finally, some concluding remarks are made in Section 2.6.

2.2 Range-separated density-functional theory

In range-separated DFT (see, e.g., Ref. [45]), the exact ground-state energy of an N -

electron system is in principle obtained by the following minimization over normalized

multi-determinantal wave functions Ψ:

E0 = min
Ψ

{

〈Ψ|T̂ + V̂ne + Ŵ lr,µ
ee |Ψ〉+ Ēsr,µ

Hxc [nΨ]
}

. (2.1)

This expression contains the kinetic-energy operator T̂ , the nuclear-electron interaction

operator V̂ne =
∫

vne(r)n̂(r)dr expressed in terms of the density operator n̂(r), and a

long-range (lr) electron-electron interaction operator

Ŵ lr,µ
ee =

1

2

∫∫

wlr,µ
ee (r12)n̂2(r1, r2)dr1dr2, (2.2)

expressed in terms of the pair-density operator n̂2(r1, r2). In the present work, we use

the error-function interaction

wlr,µ
ee (r12) =

erf(µr12)

r12
, (2.3)

where µ controls the range of the separation, with 1/µ acting as a smooth cut-off radius.

The corresponding complementary short-range (sr) Hartree-exchange-correlation density

functional Ēsr,µ
Hxc [nΨ] is evaluated at the density of Ψ: nΨ(r) = 〈Ψ|n̂(r)|Ψ〉.
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The Euler-Lagrange equation for the minimization of Equation (2.1) leads to the

(self-consistent) eigenvalue equation

Ĥ lr,µ|Ψµ
0 〉 = Eµ

0 |Ψµ
0 〉, (2.4)

where Ψµ
0 and Eµ

0 are the ground-state wave function and associated energy of the par-

tially interacting Hamiltonian (with an explicit long-range electron-electron interaction)

Ĥ lr,µ = T̂ + V̂ne + Ŵ lr,µ
ee + ˆ̄V sr,µ

Hxc . (2.5)

It contains the short-range Hartree-exchange-correlation potential operator, evaluated

at the density n0(r) = 〈Ψµ
0 |n̂(r)|Ψµ

0 〉, which is equal to the ground-state density of the

physical system for all µ,
ˆ̄V sr,µ
Hxc =

∫

v̄sr,µHxc[n0](r)n̂(r)dr, (2.6)

where

v̄sr,µHxc[n](r) =
δĒsr,µ

Hxc [n]

δn(r)
. (2.7)

For µ = 0, Ĥ lr,µ reduces to the standard non-interacting KS Hamiltonian, ĤKS, while for

µ→ ∞ it reduces to the physical Hamiltonian Ĥ:

ĤKS = Ĥ lr,µ=0 = T̂ + V̂ne + V̂Hxc, (2.8)

Ĥ = Ĥ lr,µ=∞ = T̂ + V̂ne + Ŵee. (2.9)

Varying the parameter µ between these two limits, Ĥ lr,µ defines a range-separated adi-

abatic connection, linking the non-interacting KS system to the physical system with

the ground-state density kept constant (provided that the exact short-range Hartree-

exchange-correlation potential v̄sr,µHxc(r) is used).

In this work we also consider the excited-state wave functions and energies of the

long-range interacting Hamiltonian

Ĥ lr,µ|Ψµ
k〉 = Eµ

k |Ψ
µ
k〉, (2.10)

where Ĥ lr,µ is Hamiltonian in Equation (2.5), with the short-range Hartree-exchange-

correlation potential evaluated at the ground-state density n0. In range-separated DFT,

these excited-state wave functions and energies provide a natural first approximation

to the excited-state wave functions and energies of the physical system. For µ = 0,

they reduce to the single-determinant eigenstates and associated energies of the non-

interacting KS Hamiltonian,

ĤKS|ΦKS
k 〉 = EKS

k |ΦKS
k 〉, (2.11)

while, for µ → ∞, they reduce to the excited-state wave functions and energies of the
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physical Hamiltonian

Ĥ|Ψk〉 = Ek|Ψk〉. (2.12)

Note that, since the ionization energy is related to the asymptotic decay of the ground-

state density, the ionization energy of the Hamiltonian in Equation (2.10) is also in-

dependent of µ and is equal to the ionization energy of the physical system. This is

an appealing feature since it sets the correct energy window for bound excited states.

Finally, note that the excitation energies ∆Eµ
k = Eµ

k −Eµ
0 calculated from Equation (2.10)

constitute a starting point for range-separated linear-response theory based on the time-

dependent generalization of Equation (2.1) [94].

2.3 Excited-state energies near the Kohn-Sham and phys-

ical systems

In this section, we study analytically the behavior of the excited-state energies Eµ
k as a

function of the range-separation parameter µ near the two endpoints of the adiabatic

connection: the Kohn-Sham system at µ = 0 and the physical system when µ→ ∞. This

study will aid in the understanding of the numerical results presented in Section 2.5.

2.3.1 Excited-state energies near the Kohn-Sham system

We first derive the expansion of the excited-state energies near µ = 0, to see how the KS

energies are affected by the introduction of the long-range electron-electron interaction.

We assume that the system is spatially finite. All the details on the derivations of the

Taylor expansions around the KS system are given in Appendix B.1

We rewrite the long-range interacting Hamiltonian of Equation (2.5) as

Ĥ lr,µ = ĤKS + Ŵ lr,µ
ee − V̂ lr,µ

Hxc , (2.13)

with the long-range Hartree-exchange-correlation potential operator

V̂ lr,µ
Hxc = V̂Hxc − ˆ̄V sr,µ

Hxc =

∫

vlr,µHxc(r)n̂(r)dr. (2.14)

The expansion of the long-range two-electron interaction is straightforward [45] (valid

for µr12 ≪ 1)

wlr,µ
ee (r12) =

erf(µr12)

r12
=

2µ√
π
+ µ3wlr,(3)

ee (r12) +O(µ5), (2.15)

with

wlr,(3)
ee (r12) = − 2

3
√
π
r212. (2.16)
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Next, the expansion of the long-range Hartree-exchange-correlation potential

vlr,µHxc(r) =
δElr,µ

Hxc[n]

δn(r)
(2.17)

can be determined from the expansion of the corresponding energy functional Elr,µ
Hxc[n].

As derived in Ref. [45], the expansion of the Hartree-exchange part begins at first order

and may be written as

Elr,µ
Hx [n] =

µ√
π

∫∫

nKS
2 (r1, r2)dr1dr2

+
µ3

2

∫∫

nKS
2 (r1, r2)w

lr,(3)
ee (r12)dr1dr2 +O(µ5). (2.18)

where nKS
2 (r1, r2) is the KS pair density, while the expansion of the correlation part only

begins at sixth order (assuming a non-degenerate KS ground state)

Elr,µ
c [n] = 0 +O(µ6). (2.19)

If the functional derivative of Elr,µ
Hx [n] is taken with respect to density variations that

preserve the number of electrons,
∫

δn(r)dr = 0, then the first-order term in Equa-

tion (2.18) does not contribute due to the fixed normalization of the KS pair density,
∫∫

nKS
2 (r1, r2)dr1dr2 = N(N − 1). The derivative is then defined up to an additive (µ-

dependent) constant Cµ, which can be fixed by requiring that a distant electron experi-

ences zero potential interaction in Equation (2.13), amounting to setting the zero-energy

reference. The linear term in µ in the long-range Hartree-exchange-correlation potential

can then be determined as follows.

To first order in µ, the long-range electron-electron interaction tends to a constant,

2µ/
√
π. A distant electron (with 1 ≪ r12 ≪ 1/µ) then experiences a constant interac-

tion 2(N − 1)µ/
√
π with the remaining N − 1 other electrons. This constant must be

exactly compensated by the long-range Hartree-exchange-correlation potential in Equa-

tion (2.13), so that its first-order term in µ must also be 2(N − 1)µ/
√
π. The expansion

of vlr,µHxc(r) therefore takes the form

vlr,µHxc(r) =
2(N − 1)µ√

π
+ µ3v

lr,(3)
Hxc (r) +O(µ5), (2.20)

where vlr,(3)Hxc (r) is the third-order contribution.

Combining Equations (2.15) and (2.20), we arrive at the following expansion of the

long-range interacting Hamiltonian of Equation (2.13):

Ĥ lr,µ = ĤKS + µĤ lr,(1) + µ3Ĥ lr,(3) +O(µ5), (2.21)
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with a constant first-order correction

Ĥ lr,(1) = −N(N − 1)√
π

(2.22)

and the following third-order correction

Ĥ lr,(3) = Ŵ lr,(3)
ee − V̂

lr,(3)
Hxc , (2.23)

Ŵ lr,(3)
ee =

1

2

∫∫

wlr,(3)
ee (r12)n̂2(r1, r2)dr1dr2, (2.24)

V̂
lr,(3)
Hxc =

∫

v
lr,(3)
Hxc (r)n̂(r)dr. (2.25)

Since the first-order correction in the Hamiltonian is a constant, it does not affect the

associated wave functions. The expansion of the wave functions therefore begins at third

order in µ:

Ψµ
k = ΦKS

k + µ3Ψ
(3)
k +O(µ5). (2.26)

Using normalized KS wave functions 〈ΦKS
k |ΦKS

k 〉 = 1, the expansion of the total energy

for the state k is then

Eµ
k = EKS

k − N(N − 1)√
π

µ+ µ3〈ΦKS
k |Ĥ lr,(3)|ΦKS

k 〉+O(µ5). (2.27)

The first-order contribution is the same for all states, cancelling out in the differences

between the energies of two states. As a result, the corrections to the KS excitation

energies are third order in µ.

For closed shells, the expansion of the difference between the singlet and triplet

energies associated with the single excitation i → a can be obtained by applying Equa-

tion (2.27) with the spin-adapted KS wave functions 1ΦKS =
(

ΦKS
i→a +ΦKS

ī→ā

)

/
√
2, for the

singlet state, and 3,1ΦKS = ΦKS
ī→a

, for the triplet state with spin projection MS = 1. Only

the two-electron term then contributes:

∆Eµ,1−3
i→a = 2µ3〈ia|ŵlr,(3)

ee |ai〉+O(µ5)

=
8µ3

3
√
π
|〈i|r̂|a〉|2 +O(µ5), (2.28)

where we have used r212 = r21 + r22 − 2r1 · r2. The appearance of the transition dipole

moment integral in Equation (2.28) means that, for an atomic system, the singlet-triplet

energy splitting appears at third order in µ if the difference between the angular moment

of the orbitals ϕi and ϕa is ∆ℓ = +1 or −1. Otherwise, the splitting appears at a higher

order in µ.
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2.3.2 Excited-state energies near the physical system

We now derive the asymptotic expansion of the excited-state energies when µ → ∞,

which shows how the exact excited-state energies are affected by the removal of the very

short-range part of the electron-electron interaction. All the details of the derivation

can be found in Appendix B.2.

For this purpose, we rewrite the long-range interacting Hamiltonian of Equation (2.5)

as

Ĥ lr,µ = Ĥ − Ŵ sr,µ
ee + ˆ̄V sr,µ

Hxc , (2.29)

where Ĥ is the Hamiltonian of the physical system,

Ŵ sr,µ
ee =

1

2

∫∫

wsr,µ
ee (r12)n̂2(r1, r2)dr1dr2 (2.30)

is the short-range electron-electron interaction operator defined with the complementary

error-function interaction

wsr,µ
ee (r12) =

erfc(µr12)

r12
, (2.31)

and ˆ̄V sr,µ
Hxc is the short-range Hartree-exchange-correlation potential operator in Equa-

tion (2.6). The first term in the asymptotic expansion of wsr,µ
ee (r12) can be written in

terms of a delta function [45] (valid for µr12 ≫ 1)

wsr,µ
ee (r12) =

π

µ2
δ(r12) +O

(

1

µ3

)

, (2.32)

while the expansion of v̄sr,µHxc(r) = δĒsr,µ
Hxc [n]/δn(r) can be obtained from that of Ēsr,µ

Hxc [n]. As

derived in Ref. [45], the expansion of the long-range Hartree-exchange energy is

Esr,µ
Hx [n] =

π

2µ2

∫

nKS
2 (r, r)dr+O

(

1

µ4

)

, (2.33)

where nKS
2 (r, r) is the KS on-top pair density, while the expansion of the long-range

correlation energy is

Ēsr,µ
c [n] =

π

2µ2

∫

n2,c(r, r)dr+O
(

1

µ3

)

, (2.34)

where n2,c(r, r) is the on-top correlation pair density of the physical system. Therefore,

the expansion of the short-range Hartree-exchange-correlation potential takes the form

v̄sr,µHxc(r) =
1

µ2
v̄
sr,(−2)
Hxc (r) +O

(

1

µ3

)

, (2.35)

where v̄sr,(−2)
Hxc (r) is the µ−2 contribution formally obtained by taking the functional deriva-

tive of Equations (2.33) and (2.34).

Substituting Equations (2.32) and (2.35) into Equation (2.29), we obtain the asymp-

40



2.4. COMPUTATIONAL DETAILS

totic expansion of the long-range interacting Hamiltonian as

Ĥ lr,µ = Ĥ +
1

µ2
Ĥ lr,(−2) +O

(

1

µ3

)

, (2.36)

where Ĥ lr,(−2) = −Ŵ sr,(−2)
ee + ˆ̄V

sr,(−2)
Hxc is composed of an on-top two-electron term and a

one-electron term:

Ŵ sr,(−2)
ee =

π

2

∫

n̂2(r, r)dr, (2.37)

ˆ̄V
sr,(−2)
Hxc =

∫

v̄
sr,(−2)
Hxc (r)n̂(r)dr. (2.38)

The expansion of the Hamiltonian in Equation (2.36) suggests a similar expansion for

the excited-state wave functions, Ψµ
k = Ψk + µ−2Ψ

(−2)
k + O(µ−3). However, as shown

in Ref. [112], this expansion is not valid for r12 ≪ 1/µ. The contribution of the wave

function for small r12 to the integral for the total energy Eµ
k = 〈Ψµ

k |Ĥ lr,µ|Ψµ
k〉 nevertheless

vanishes in the limit µ → ∞, and the asymptotic expansion of the total energy of the

state k is

Eµ
k = Ek +

1

µ2
〈Ψk|Ĥ lr,(−2)|Ψk〉+O

(

1

µ3

)

, (2.39)

where the wave function Ψk is normalized to unity.

2.4 Computational details

The calculations were performed for the He and Be atoms and for the H2 molecule

with a development version of the DALTON program [113], using the implementation

described in Refs. [104, 110]. First, a FCI calculation was performed to determine the

exact ground-state density within the basis set considered, followed by a Lieb optimiza-

tion [103] of the short-range potential vsr,µ(r) = vne(r) + v̄sr,µHxc(r) also at the FCI level

to reproduce the FCI ground-state density in the presence of the long-range electron-

electron interaction wlr,µ
ee (r12). The FCI excited-state energies were then calculated using

the partially interacting Hamiltonian with the interaction wlr,µ
ee (r12) and effective poten-

tial vsr,µ(r).

The Lieb maximization was performed using the short-range analogue of the algo-

rithm of Wu and Yang [114], in which the potential is expanded as

vsr,µ(r) = vne(r) + vsr,µref (r) +
∑

t

btgt(r). (2.40)

where the reference potential is the short-range analogue of the Fermi-Amaldi potential

vsr,µref (r) =
N − 1

N

∫

n0(r
′)wsr,µ

ee (|r− r′|)dr′, (2.41)

calculated for a fixed N -electron density n0, to ensure the correct asymptotic behaviour.
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The same Gaussian basis set {gt} is used for the expansion of the potential and the

molecular orbitals. The coefficients bt are optimized by the Newton method, using a

regularized Hessian with a truncated singular-value-decomposition cutoff of 10−7 for He

and 10−6 for Be and H2.

Even-tempered Kaufmann basis sets [115] and uncontracted correlation consistent

Dunning basis sets [116] augmented with diffuse functions were tested extensively for

the He atom, especially to converge the lowest P state. No significant differences were

observed using the two basis sets and only the Dunning basis sets are used in the fol-

lowing. The basis sets used are: uncontracted t-aug-cc-pV5Z for He, uncontracted

d-aug-cc-pVDZ for Be, and uncontracted d-aug-cc-pVTZ Dunning basis sets for H2.

Calculations were performed for about 30 values of µ between 0 to 10 bohr−1 (with

about half the points between 0 and 1 where the energies vary the most). Cubic spline

interpolation has been used on this calculated data when plotting the total and exci-

tation energies as a function of µ. For later use, analytical expressions were also fitted

to the calculated total energies and excitation energies. The forms used in the fitting

were chosen to satisfy the expansions at small and large µ values as presented in Equa-

tions (2.27) and (2.39). The details of these fits are given in the supplementary material

in Appendix C.

2.5 Results and discussion

2.5.1 Range-separated adiabatic connection for the helium atom

Total energies

The total energies of the ground state 11S and of the first Rydberg-like singlet and triplet

S and P excited states of the He atom are plotted as a function of the range-separation

parameter µ in Figure 2.1. At µ = 0, the KS non-interacting total energies are obtained.

Being sums of orbital energies with a resulting double counting of electron repulsion,

these quantities are well above the total energies of the physical system (higher by about

1 hartree). When the long-range electron-electron interaction is added by increasing

µ from µ = 0, the total energies decrease linearly with µ with a slope of −2/
√
π, in

accordance with the linear term in the expansion of Equation (2.27) for N = 2. For

larger µ values, the total energy curves flatten and approach the energies of the physical

system asymptotically as 1/µ2 as µ→ ∞, in accordance with Equation (2.39). The total

energies along the adiabatic connection are poor approximations to the total energies of

the physical system unless the range-separation parameter µ is large. Specifically, µ & 6

is required to be within 10 mhartree of the exact total energies.
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Figure 2.1 – Ground- and excited-state total energies Eµ
k (in hartree) of the He atom

as a function of µ (in bohr−1). The total energies of the physical system Ek = Eµ→∞
k

are plotted as horizontal dotted lines (top). The slope at µ = 0 is shown in dotted line
(bottom).
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Figure 2.2 – Firt S (top) and P (bottom) excitation energies ∆Eµ
k = Eµ

k −Eµ
0 (in hartree)

of the He atom as a function of µ (in bohr−1). The excitation energies of the physical
system ∆Ek = ∆Eµ→∞

k are plotted as horizontal dotted lines. An error of ±1 mHartree
is colored around each exact limit.
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Figure 2.3 – Singlet-triplet energy splittings (in hartree) for the He atom as a function
of µ (in bohr−1).

Excitation energies

The lowest singlet and triplet excitation energies are plotted in Figure 2.2. The KS

singlet and triplet excitation energies are degenerate and, as already observed for a few

atomic systems in Refs. [117–119], are bracketed by the singlet and triplet excitation

energies of the physical system. As µ increases from µ = 0, the excitation energies

vary as µ3 since the linear term in Equation (2.27) cancels out for energy differences.

The singlet-triplet degeneracy is lifted and the excitation energies converge to the exact

singlet and triplet excitation energies when µ→ ∞. Whereas a monotonic variation of the

excitation energy with µ can be observed for the singlet and triplet 1S→ 2S excitations

and for the triplet 11S → 13P excitation, a non-monotonic variation is observed for

the singlet 11S → 11P excitation. This behaviour could be an artefact of the basis-set

expansions (either orbital or potential), noting that a similar behaviour was observed for

other excitations in a smaller basis set and was removed by enlarging the basis set. In line

with previous observations in Refs. [117, 119] for the KS system, the excitation energies

for Rydberg-type states along the adiabatic connection are rather good approximations

to the excitation energies of the physical system (the maximal error is about 0.02 hartree

at µ = 0 for the triplet 11S → 23S excitation), becoming better and better for high-lying

states as they must eventually converge to the exact ionization energy.
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Figure 2.4 – Ground- and excited-state total energies Eµ
k (in hartree) of the Be atom

as a function of µ (in bohr−1). The total energies of the physical system Ek = Eµ→∞
k are

plotted as horizontal dotted lines. The slope at µ = 0 is shown in dashed line.

Singlet-triplet splitting

The singlet-triplet energy splittings for the 2S and 1P states are plotted in Figure 2.3.

The expansion at small µ of Equation (2.28) predicts the singlet-triplet splitting to

increase as µ3 for the 1P state since it corresponds to the 1s → 2p excitation in the KS

system, so that ∆ℓ = 1. By contrast, the singlet-triplet splitting should increase at most

as µ5 for the 2S state since it corresponds to the 1s → 2s excitation in the KS system,

so that ∆ℓ = 0. This difference is clearly visible in Figure 2.3, where the 2S curve for

the singlet-triplet splitting initially increases more slowly than the 1P curve.

2.5.2 Range-separated adiabatic connection for the valence excitation

of the Beryllium atom

Total energies

The total energies of the ground state 11S and of the valence singlet and triplet 1P excited

states of the Be atom are plotted in Figure 2.4. The KS total energies are approximately

6 hartree above the physical energies. At small µ, an initial slope of −12/
√
π is observed

for all states, in accordance with Equation (2.27) with N = 4. However, convergence

to the physical energies with increasing µ is much slower than for the He atom, owing

to the short inter-electronic distances in the Be 1s core region, which are consequently

probed at larger µ values.
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Excitation energies

The singlet and triplet excitation energies are plotted in Figure 2.5. As for He, the KS

excitation energies are bracketed by the singlet and triplet excitation energies of the

physical system. Not surprisingly, the KS excitation energies are poorer approximations

to the exact excitation energies for these valence excitations in Be than for the Rydberg

excitations in He. As µ increases, the KS excitation energies rapidly converge to the

physical excitation energies. Clearly, the slow convergence of the core energies does not

affect the convergence of the valence excitation energies.

Close to the KS system, at µ = 0, the excitation energies are quite sensitive to

the introduction of a small portion of electron-electron interaction in the Hamiltonian,

which may be interpreted as a sign of static correlation. For µ ≈ 0.4 − 0.5, a typical µ

value in range-separated DFT calculations [48, 51], the calculated excitation energies

are significantly better approximations to the exact excitation energies than are the

KS excitation energies. This observation justifies range-separated multi-determinantal

linear-response DFT calculations, which take these excitation energies as a starting

point.
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2.5.3 Range-separated adiabatic connection for the dihydrogen

molecule along the dissociation

Equilibrium distance

The first few excitation energies of H2 at the equilibrium bond distance are plotted

against µ in Figure 2.6. As for the atoms, the valence excitations energies vary much

more along the adiabatic connection than do the Rydberg-like excitation energies. Note

also that the energetic ordering of the states changes along the adiabatic connection.

With our choice of basis set, we also observe that the higher singlet excitation ener-

gies do not depend monotonically on µ, approaching the physical limits from above, as

observed for He. Again, the excitation energies around µ ≈ 0.4 − 0.5 represent better

approximations to the exact excitation energies than the KS excitation energies.

Stretched geometry

Finally, we consider the interesting case of the dissociation of the H2 molecule. The

first excitation energies at three times the equilibrium distance are shown in Figure 2.7.

With increasing bond distance, the 1σg and 1σu molecular orbitals become degenerate.

Consequently, the KS excitation energy for the single excitation 1σg → 1σu goes to zero.

Moreover, the KS excitation energy for the double excitation (1σg)
2 → (1σu)

2 also goes to

zero (albeit more slowly). This behaviour is in contrast to that of the physical system,
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where only the excitation energy to the triplet 13Σ+
u state goes to zero, whilst those to

the singlet 11Σ+
u state and the 21Σ+

g state (the latter connected to the double excitation

in the KS system) go to finite values.

Clearly, the excitation energies of KS theory are poor approximations to the exact

excitation energies, making it difficult to recover from these poor starting values in

practical linear-response TDDFT calculations. As µ increases from µ = 0, the excitation

energies to the singlet 11Σ+
u and 21Σ+

g states vary abruptly, rapidly approaching the

physical values. This sensitivity to the inclusion of the electron-electron interaction

is a clear signature of strong static correlation effects, emphasizing the importance of

a multi-determinantal description in such situations. At µ ≈ 0.4 − 0.5, the 11Σ+
u and

21Σ+
g excitation energies, although still too low, are much better approximations than

the KS excitation energies, constituting a strong motivation for range-separated multi-

determinantal approaches in linear-response theory.

2.6 Conclusion

We have studied the variation of total energies and excitation energies along a range-

separated adiabatic connection, linking the non-interacting KS system (µ = 0) to the

physical system (µ → ∞) by progressively switching on the long-range part of the
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electron-electron interaction with the range-separation parameter µ, whilst keeping the

ground-state density constant. This behaviour is of interest for the development and

analysis of range-separated DFT schemes for the calculation of excitation energies, such

as the linear-response range-separated schemes of Refs. [94, 95, 97].

Reference calculations were performed for the He and Be atoms and the H2 molecule.

Except when µ is large, the ground- and excited-state total energies along the adiabatic

connection are poor approximations to the corresponding energies of the physical system.

On the other hand, the excitation energies are good approximations to the excitation

energies of the physical system for most of the adiabatic connection curve, except close

to the KS system (µ = 0). In particular, the excitation energies obtained at µ ≈ 0.4−0.5,

typically used in range-separated DFT calculations, are significantly better approxima-

tions to the exact excitation energies than are the KS excitation energies. This behaviour

appears to be particularly evident for situations involving strong static correlation effects

and double excitations, as observed for the dissociating H2 molecule.

These observations suggest that the excitation energies of the long-range interacting

Hamiltonian in range-separated DFT may be useful as first estimates of the excitation

energies of the physical system. However, if one cannot afford to use large µ values (µ >

2 − 3), these excitation energies should be considered only as starting approximations,

suitable for correction by, for example, linear-response range-separated theory.

In future work, we will utilize the present reference data to assess the approximations

made in practical linear-response range-separated schemes, where the long-range contri-

bution is treated, for example, at the Hartree-Fock, MCSCF or SOPPA levels of theory,

while the short-range part is described by semi-local density-functional approximations.

We will also use the results of this work to guide the development of time-independent

range-separated DFT methods for the calculation of excitation energies as alternatives to

linear-response schemes–in particular, for methods based on perturbation theories [112,

118] (see Chapter 3) or extrapolations [120, 121] along the adiabatic connection (see

Chapter 4).
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Chapter 3

Perturbation theory along the

range-separated adiabatic

connection

In this chapter, the effect of a first-order perturbative correction is assessed along
the range-separated adiabatic connection. Starting from the energies of the partially
interacting Hamiltonian defined in the previous chapter, a first-order correction is de-
fined with two variants of perturbation theory: the “usual” perturbation theory, and
an extension of the Görling-Levy one which has the advantage of keeping the ground-
state density constant at each order of perturbation. Only the first, simpler, variant
is tested on the systems defined in the previous chapter. The first-order correction
within this perturbation theory improves significantly the total state energies of the
different systems. However, the excitation energies are mostly deteriorated with re-
spect to the zeroth-order ones which may be explained by the fact that the ionization
energy is not correct anymore. The second variant of the perturbation theory should
improve these results but has not been tested yet along the range-separated adiabatic
connection.

3.1 Introduction

In density-functional theory (DFT) of quantum electronic systems, the most widely used

approach for calculating excitation energies is nowadays linear-response time-dependent

density-functional theory (TDDFT) (see, e.g., Refs. [122, 123]). However, in spite of

many great successes, when applied with usual adiabatic semilocal approximations,

linear-response TDDFT has serious limitations for describing systems with static (or

strong) correlation [99], double or multiple excitations [100], and Rydberg and charge-

transfer excitations [101, 102]. Besides, the Hohenberg-Kohn theorem [19] states that

the time-independent ground-state density contains all the information on the system
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so that time dependence is in principle not required to describe excited states. Several

time-independent DFT approaches for calculating excitation energies exist and are still

being developed.

A first strategy consists in simulatenously optimizing an ensemble of states. This

ensemble DFT was pionnered by Theophilou [124] and Gross, Oliveira and Kohn [125]

and is still a subject of current research [126–129], but it is hampered by the absence

of appropriate approximate ensemble functionals. A second strategy consists in self-

consistently optimizing a single excited state. This approach was started by Gunnarsson

and Lundqvist [130] who extended ground-state DFT to the lowest-energy state in each

symmetry class, and developed into the pragmatic (multiplet-sum) ∆SCF method [131,

132] (still in use today [133]) and related methods [134–136]. Great efforts have been

made by Nagy, Görling, Levy, Ayers and others to formulate a rigorous self-consistent

DFT theory of an arbitrary individual excited state [137–149] but one major difficulty

is the need for development of approximate functionals for a specific excited state (see

Ref. [150] for a proposal of such excited-state functionals). A third strategy, first pro-

posed by Grimme, consists in using configuration-interaction (CI) schemes in which

modified Hamiltonian matrix elements include information from DFT [151–154].

A fourth possible approach, proposed by Görling [155], is to calculate the excita-

tion energies from Görling-Levy (GL) perturbation theory [156, 157] along the standard

adiabatic connection using the non-interacting Kohn-Sham (KS) Hamiltonian as the

zeroth-order Hamiltonian. In this approach, the zeroth-order approximation to the ex-

act excitation energies is provided by KS orbital energy differences (which, for accurate

KS potentials, is known to be already a fairly good approximation [119]). It can then

be improved by perturbation theory at a given order in the coupling constant of the

adiabatic connection. Filippi, Umrigar, and Gonze [118] showed that the GL first-order

corrections provide a factor of two improvement to the KS zeroth-order excitation en-

ergies for the He, Li+, and Be atoms when using accurate KS potentials. For (near)

degenerate states, Zhang and Burke [111] proposed to use degenerate second-order GL

perturbation theory and showed that it works well on a simple one-dimensional model.

This approach is conceptually simple as it uses the standard adiabatic connection along

which the ground-state density is kept constant (in contrast to approaches introduc-

ing generalized adiabatic connections keeping an excited-state density constant [137,

138, 140, 145]). In spite of promising early results, this approach has not been further

explored, maybe because it can be considered an approximation to TDDFT [158].

In this work, we explore further this density-functional perturbation theory approach

for calculating excitation energies. We introduce one key modification in comparison to

the earlier work of Refs. [118, 155]: As a zeroth-order Hamiltonian, instead of using the

non-interacting KS Hamiltonian, we use a partially interacting Hamiltonian incorporat-

ing the long-range part of the Coulomb electron-electron interaction, and corresponding

to an intermediate point along a range-separated adiabatic connection [39, 45, 52–54].

The partially interacting zeroth-order Hamiltonian is of course closer to the exact Hamil-
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tonian than the non-interacting KS Hamiltonian is, and therefore less demand is put on

perturbation theory. In particular, the zeroth-order Hamiltonian can already incorpo-

rate some static correlation. The downside of this is that a many-body method such

as CI is required for finding the eigenstates and eigenvalues of the zeroth-order Hamil-

tonian. However, if the partial electron-electron interaction is only a relatively weak

long-range interaction, one expects a faster convergence of the eigenstates and eigenval-

ues with respect to the one- and many-electron CI expansion than for the full Coulomb

interaction [45], so that a small CI or multi-configuration self-consistent field (MCSCF)

calculation would be sufficiently accurate. When using a semi-local density-functional

approximation for the effective potential of the range-separated adiabatic connection,

the presence of an explicit long-range electron-electron interaction in the zeroth-order

Hamiltonian also has the advantage of avoiding the collapse of the high-lying Rydberg

excitation energies. In contrast to adiabatic TDDFT, double or multiple excitations can

be described with this density-functional perturbation theory approach, although this

possibility was not explored in Refs. [118, 155]. Finally, approximate excited-state wave

functions are obtained in this approach, which is useful for interpretative analysis and

for the calculation of properties.

We envisage using this density-functional perturbation theory to calculate excited

states after a range-separated ground-state calculation combining long-range CI [40, 41]

or long-range MCSCF [48, 62] with a short-range density functional. This would be a

simpler alternative to linear-response range-separated MCSCF [94, 97] for calculations of

excitation energies. In this work, we study in details the two variants of range-separated

density-functional perturbation theory and test the first, simpler variant on the He and

Be atoms and on the H2 molecule using accurate calculations along a range-separated

adiabatic connection, without introducing density-functional approximations as done in

Chapter 2.

The range-separated extension of both variants of the perturbation theory is pre-

sented in Section 3.2. In particular, Taylor expansions of the energies are given around

the Kohn-Sham and the real systems for the first variant. Except for the finite basis

approximation, no other approximation is introduced. The calculation are performed in

the same manner than for the zeroth order and the results obtained for the helium and

beryllium atoms, and for the dihydrogen molecule are discussed in Section 3.3.

3.2 Excited states from perturbation theory

In standard KS theory, the single-determinant eigenstates and associated energies of the

non-interacting KS Hamiltonian,

ĤKS|ΦKS
k 〉 = EKS

k |ΦKS
k 〉, (3.1)
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where ĤKS = T̂ + V̂ne + V̂Hxc, give a first approximation to the eigenstates and associated

energies of the physical Hamiltonian. Two variants of perturbation theory using the

KS Hamiltonian as zeroth-order Hamiltonian were proposed to calculate excitation en-

ergies [118, 155]. We provide below the extension of these two variants of perturbation

theory to range-separated DFT. In this case, as a first approximation, it is natural to use

the excited-state wave functions and energies of the long-range interacting Hamiltonian

Ĥ lr,µ|Ψµ
k〉 = Eµ

k |Ψ
µ
k〉, (3.2)

where Ĥ lr,µ = T̂ + V̂ne +
ˆ̄V sr,µ
Hxc + Ŵ lr,µ

ee is the same Hamiltonian as in Equation (2.5), i.e.

where the short-range Hartree-exchange-correlation potential ˆ̄V sr,µ
Hxc =

∫

v̄sr,µHxc[n0]n̂(r)dr, is

evaluated at the ground-state density n0. These excited-state wave functions and energies

can then be improved by defining perturbation theories in which the Hamiltonian Ĥ lr,µ

is used as zeroth-order Hamiltonian.

3.2.1 First variant of perturbation theory

The simplest way of defining such a perturbation theory is to introduce the following

Hamiltonian depending on a coupling constant λ

Ĥµ,λ = Ĥ lr,µ + λŴ sr,µ, (3.3)

where the short-range perturbation operator Ŵ sr,µ is

Ŵ sr,µ = Ŵ sr,µ
ee − ˆ̄V sr,µ

Hxc , (3.4)

with the short-range electron-electron interaction Ŵ sr,µ
ee =

(1/2)
∫∫

wsr,µ
ee (r12)n̂2(r1, r2)dr1dr2 defined with the complementary error-function in-

teraction wsr,µ
ee (r) = erfc(µr)/r. When varying λ, Equation (3.3) defines an adiabatic

connection linking the long-range interacting Hamiltonian at λ = 0, Ĥµ,λ=0 = Ĥ lr,µ, to

the physical Hamiltonian at λ = 1, Ĥµ,λ=1 = Ĥ, for all µ, but the ground-state density

is not kept constant along this adiabatic connection.

The exact eigenstates and associated eigenvalues of the physical Hamiltonian can

then be found by standard Rayleigh-Schrödinger perturbation theory, i.e. Taylor ex-

panding in λ the eigenstates and eigenvalues of the Hamiltonian Ĥµ,λ and setting λ = 1

|Ψk〉 = |Ψµ
k〉+

∞
∑

n=1

|Ψµ,(n)
k 〉, (3.5a)

Ek = Eµ
k +

∞
∑

n=1

E
µ,(n)
k , (3.5b)

in which Ψµ
k ≡ Ψ

µ,(0)
k and Eµ

k ≡ E
µ,(0)
k act as zeroth-order eigenstates and energies. Using
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orthonormalized zeroth-order eigenstates 〈Ψµ
k |Ψ

µ
l 〉 = δkl and assuming non-degenerate

zeroth-order eigenstates, the first-order energy correction for the state k is

E
µ,(1)
k = 〈Ψµ

k |Ŵ sr,µ|Ψµ
k〉, (3.6)

so that, as usual, the zeroth+first-order energy is simply given by the expectation value

of the physical Hamiltonian over the zeroth-order eigenstate

E
µ,(0+1)
k = Eµ

k + E
µ,(1)
k = 〈Ψµ

k |Ĥ|Ψµ
k〉. (3.7)

This last expression can be seen as a multi-determinantal extension of the exact-exchange

KS energy expression for the state k, which was already proposed and studied for the

ground state [57, 63, 159]. The second-order energy correction is

E
µ,(2)
k = −

∑

l 6=k

|〈Ψµ
l |Ŵ sr,µ|Ψµ

k〉|2
Eµ
l − Eµ

k

, (3.8)

and the first-order wave-function correction is (using intermediate normalization so that

〈Ψµ
k |Ψ

µ,(n)
k 〉 = 0 for all n ≥ 1)

|Ψµ,(1)
k 〉 = −

∑

l 6=k

〈Ψµ
l |Ŵ sr,µ|Ψµ

k〉
Eµ
l − Eµ

k

|Ψµ
l 〉. (3.9)

For µ = 0, this perturbation theory reduces to the first variant of the KS pertubation

theory studied by Filippi et al. [Equation (5) of Ref. [118]].

Taylor expansion of the energies around the KS system

The total energies up to the first order of the perturbation theory are given by the

expectation value of the full Hamiltonian over the zeroth order wave functionsin Equa-

tion (3.6). Using the Taylor expansion of the wave function Ψµ
k = ΦKS

k + µ3Ψ
(3)
k +O(µ5)

around the KS wave function (cf. Equation (2.26)), it implies that the zeroth+first-order

energies are thus given by

E
µ,(0+1)
k = 〈ΦKS

k |Ĥ|ΦKS
k 〉+ 2µ3〈ΦKS

k |Ĥ|Ψ(3)
k 〉+O(µ5), (3.10)

where Ψ
(3)
k is the contribution entering at the third power of µ in the zeroth-order

wave function. With respect to the Taylor expansion of the zeroth-order energies given

in Equation 2.27, no linear contribution in µ is present anymore and the energies are

expanded around the corrected KS energies 〈ΦKS
k |Ĥ|ΦKS

k 〉 instead of the bare KS energies

Ek = 〈ΦKS
k |ĤKS|ΦKS

k 〉.
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Taylor expansion of the energies around the real system

From the Taylor expansion of the wave function Ψµ
k = Ψk + µ−2Ψ

(−2)
k + O(µ−3), which

is valid almost everywhere (the coalescence needs to be treated carefully) given in Sec-

tion 2.3.2, the first correction to the zeroth+first-order energies enter at the fourth power

of µ

E
µ,(0+1)
k = Ek +

1

µ4
E

(0+1,−4)
k +O

(

1

µ6

)

, (3.11)

where E(0+1,−4)
k is the correction entering at the fourth power of 1/µ.

3.2.2 Second variant of perturbation theory

A second possibility is to define a perturbation theory based on a lightly more com-

plicated adiabatic connection between the long-range interacting Hamiltonian and the

physical Hamiltonian which keeps the ground-state density constant. This adiabatic

connection is explained in Appendix D. The end result is that the Hamiltonian of Equa-

tion (3.3) is replaced by the following Hamiltonian

Ĥµ,λ = Ĥ lr,µ + λŴ sr,µ − V̂ sr,µ,λ
c,md , (3.12)

where the operator Ŵ sr,µ is now defined as

Ŵ sr,µ = Ŵ sr,µ
ee − V̂ sr,µ

Hx,md, (3.13)

with a short-range “multi-determinantal (md) Hartree-exchange” potential operator

V̂ sr,µ
Hx,md =

∫

δEsr,µ
Hx,md[n0]

δn(r)
n̂(r)dr, (3.14)

and an additional short-range “multi-determinantal correlation” potential operator

V̂ sr,µ,λ
c,md =

∫

δEsr,µ,λ
c,md [n0]

δn(r)
n̂(r)dr, (3.15)

which depends non linearly on λ in such a way so that the ground-state density n0 is

kept constant for all µ and λ. The density functionals Esr,µ
Hx,md[n] and E

sr,µ,λ
c,md [n] are defined

in Appendix D. One can show that, for non-degenerate ground-state wave functions Ψµ
0 ,

the expansion of V̂ sr,µ,λ
c,md in λ for λ→ 0 starts at second order:

V̂ sr,µ,λ
c,md = λ2 V̂

sr,µ,(2)
c,md + · · · . (3.16)

Hence, the Hamiltonian of Equation (3.12) appropriately reduces to the long-range in-

teracting Hamiltonian at λ = 0, Ĥµ,λ=0 = Ĥ lr,µ. At λ = 1, it correctly reduces to the

physical Hamiltonian, Ĥµ,λ=1 = Ĥ. This is so because the short-range Hartree-exchange-
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correlation potential in the Hamiltonian Ĥ lr,µ can be decomposed as

ˆ̄V sr,µ
Hxc = V̂ sr,µ

Hx,md + ˆ̄V sr,µ
c,md, (3.17)

where ˆ̄V sr,µ
c,md = V̂ sr,µ,λ=1

c,md , and is therefore cancelled out by the perturbation terms for

λ = 1. Equation (3.17) corresponds to an alternative decomposition of the short-

range Hartree-exchange-correlation energy into “Hartree-exchange” and “correlation”

contributions based on the multideterminant wave function Ψµ
0 instead of the single-

determinant KS wave function ΦKS
0 [57, 63, 159], which is a more natural decomposition

in range-separated DFT. Here this decomposition is especially relevant since it sepa-

rates the perturbation into a “Hartree-exchange” contribution that is linear in λ and a

“correlation” contribution containing all the higher-order terms in λ.

The first-order energy correction is still given by Equation (3.6) using the perturba-

tion operator of Equation (3.13). The zeroth+first-order energy is now given by

E
µ,(0+1)
k = Eµ

k + E
µ,(1)
k = 〈Ψµ

k |Ĥ + ˆ̄V sr,µ
c,md|Ψ

µ
k〉. (3.18)

The second-order energy correction of Equation (3.8) is replaced by

E
µ,(2)
k = −

∑

l 6=k

|〈Ψµ
l |Ŵ sr,µ|Ψµ

k〉|2
Eµ
l − Eµ

k

− 〈Ψµ
k |V̂

sr,µ,(2)
c,md |Ψµ

k〉,

and the expression of the first-order wave function correction is still given by Equa-

tion (3.9) using the perturbation operator of Equation (3.13).

For µ = 0, this perturbation theory reduces to the second variant of the KS pertu-

bation theory proposed by Görling [155] and studied by Filippi et al. [Equation (6) of

Ref. [118]], which is nothing else that the application of GL perturbation theory [156,

157] to excited states. In Ref. [118], it was found that the first-order energy correc-

tions in this second variant of KS pertubation theory provided on average a factor of

two improvement to the KS zeroth-order excitation energies for the He, Li+, and Be

atoms when using accurate KS potentials, whereas the first-order energy corrections in

the first variant of KS perturbation theory deteriorated on average the KS excitation

energies. The good results obtained with the second variant of KS pertubation theory

may be at least partly explained by one good feature of GL perturbation theory which

is that the ionization potential remains exact at all order in λ. This feature applies

as well in the range-separation case, so that the second variant of range-separated per-

turbation theory should in principle be preferred. However, it requires the separation

of the short-range Hartree-exchange-correlation potential into the “multideterminan-

tal Hartree-exchange” and “multideterminantal correlation” contributions (according to

Equation (3.17)), which we have not done for accurate potentials or calculations along

the double adiabatic connection with a partial interaction defined by Ŵ lr,µ
ee + λŴ sr,µ

ee (cf.

Appendix D). We thus only use the first variant of range-separated perturbation theory
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CHAPTER 3. PERTURBATION THEORY ALONG THE AC

in this work. Note, however, that the second variant of range-separated perturbation

theory could easily be applied with density-functional approximations, using for example

the local-density approximation that has been constructed for the “multideterminantal

correlation” functional [59].

3.3 Results and discussion

In what follows, all the calculations were performed with the quantum chemistry pack-

age DALTON [113] with the same basis sets and the same thresholds as in Section 2.4.

Starting from the zeroth-order energies obtained in Chapter 2, the first variant of per-

turbation theory detailed in Section 3.2 is applied on the helium and beryllium atoms

and on the dihydrogen molecule in its equilibrium and stretched geometries.

3.3.1 Range-separated adiabatic connection for the helium atom

Total energies

The zeroth+first-order ground- and excited-state total energies of the helium atom along

the range-separated adiabatic connection are shown in Figure 3.1. In the Kohn-Sham

limit, when µ = 0, the total state energies are significantly improved with respect to the

zeroth-order ones given in Figure 2.1. In fact, as shown for the ground-state energy,

the zeroth-order total energies were off by approximately 1.2 hartree with respect to

the energies of the physical system. When the first-order correction is added, the error

becomes smaller then 0.06 hartree for all the states. Moreover, for the excited states, the

singlet and triplet energies are not degenerated anymore. When the range-separation

parameter is increased, a faster convergence toward the total state energies of the physi-

cal system is also observed for all states. The description of the total energies is therefore

much better with the first-order correction. In fact, the linear correction in µ is no longer

present in the Taylor expansion of the energies at small µ (cf. Equation (3.10)) and the

first correction enters at the third power of µ. At large µ, the error with respect to the

physical energies enters in 1/µ4 instead of 1/µ2 in the zeroth-order case which explains

the observed faster convergence with respect to the zeroth-order curves.

Excitation energies

The excitation energies of the helium atom at zeroth and zeroth+first order are given

in Figure 3.2. For the KS system, at µ = 0, the singlet and triplet excitation energies

are degenerate at zeroth order. The introduction of the first-order correction allows

one to open the gap between the singlet and triplet energies. However, the singlet and

triplet excitation energies at zeroth+first order now overestimate the physical excitation

energies of the system by 0.1-0.2 hartree such that the error is actually larger than at

zeroth order. For the 11S → 13P excitation energy, one can even note that the correction
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Figure 3.1 – Zeroth+first-order ground- (top) and excited-state (bottom) total energies

Eµ,(0+1)
k (in hartree) of the helium atom as a function of µ (in bohr−1). The zeroth-order
energy Eµ

0 is recalled for the ground state in plain line and the total energies of the
physical system Ek are plotted as horizontal dotted lines.
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Figure 3.2 – Zeroth-order (plain line) excitation energies ∆Eµ
k and zeroth+first-order

(dashed line) excitation energies ∆Eµ,(0+1)
k (in hartree) of the helium atom as a function

of µ (in bohr−1). The excitation energies of the physical system ∆Ek are plotted as
horizontal dotted lines.
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is going in the wrong direction. The singlet-triplet splitting is also too large by about a

factor 1.5.

When the very long-range part of the Coulombic interaction is switched on, the

initial overestimation is corrected. In fact, for small values of µ, all the excitation

energies decrease in the third power of µ which is in agreement with Equation (3.10).

Although, when µ ≃ 0.5−1, this correction becomes too large and the excitation energies

of the partially interacting system become lower then the energies of the physical system

obtained when µ → ∞. If µ is further increased such that more and more interaction

is included, the excitation energies begin to increase again and finally converge toward

their exact limits from below. In the meanwhile, the zeroth-order excitation energies,

which do not present this oscillation at small µ, converge monotonically toward their

physical limit and are in average more accurate then the zeroth+first order excitation

energies. Altogether, the first-order correction does not constitute an improvement for

the excitation energies although the total energies were improved.

This failure of the first-order-correction to describe the excitation energies correctly

should be connected to the fact that, as the ground-state density is not kept constant

at each order of perturbation, the ionization potential is not constant anymore at the

zeroth+first order along the adiabatic connection . This results in an unbalanced treat-

ment between the ground state and the excited states. Moreover, the Rydberg excitation

energies which are high in energy, are susceptible to be even more sensible to this effect

and the higher they are, the more affected, as can be seen for the transitions to the P

state. The second variant of perturbation theory should therefore improves this behavior

as it keeps the density constant at each order as it was shown in the KS case [118, 157].

3.3.2 Range-separated adiabatic connection for the beryllium atom

The first-order perturbation correction is then applied to the ground state and valence

excited states of the beryllium atom. The total energies are once again improved by the

introduction of this perturbation but are not show here. The valence excitation energies

are shown in Figure 3.3 at the zeroth and the zeroth+first orders as a function of the

range-separation parameter µ.

As valence excitations are concerned instead of Rydberg ones in the case of the

helium atom, they are less sensitive to a bad description of the ionization energy. At

µ = 0, the singlet excitation energy is slightly improved by the introduction of the first-

order correction. However, the triplet one is not described any better as instead of being

overestimated at zeroth order, it is now underestimated by almost the same amount.

When the interaction is switched on, a bump is also observed for small values of µ

for the singlet excitation energy but not the triplet excitation energy which goes mono-

tonically to its physical limit. In this case the convergence of the energies with respect

to µ is improved in comparison with the zeroth-order excitation energies, especially for

the singlet one.
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Figure 3.3 – Valence excitation energies of the beryllium atom (in hartree) at zeroth

order ∆Eµ
k (plain line) and zeroth+first order ∆Eµ,(0+1)

k (dashed line), as a function of µ
(in bohr−1). The excitation energies of the physical system ∆Ek are plotted as horizontal
dotted lines.

3.3.3 Range-separated adiabatic connection for the dihydrogen

molecule

Finally, the first-order correction is applied to the excitation energies of the dihydrogen

molecule at its equilibrium and a stretched geometry. The first excitation energies are

shown in Figure 3.4 at the equilibrium distance Req (top) and in a stretched geometry

at 3Req (bottom).

At the equilibrium geometry, the first-order correction works relatively well. It goes

in the correct direction at µ = 0, the triplet excitation energy is lowered while the singlet

one is increased and the error is smaller than for the zeroth-order excitation energies for

almost any value of µ. Unfortunately, when the bond is stretched, this is not the case

anymore. At 3Req, the first excitation energy 11Σ+
g → 13Σ+

u becomes negative for small

values of µ and the error with respect to the physical excitation energy is higher than

in the zeroth-order case. Moreover, the ordering of the two singlet excitation energies

is incorrect at small µ and they present a strong oscillation when the interaction is

switched on. Therefore, in this case, the zeroth-order excitation energies are in fact

better approximations to the physical energies once again.
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Figure 3.4 – Zeroth-order ∆Eµ
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k (dashed
line) excitation energies of the dihydrogen molecule (in hartree) as a function of µ in
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3.4 Conclusion

In this chapter, we have developed two variants of a first-order perturbation theory

along the range-separated adiabatic connection. The first, simpler, variant based on the

usual Rayleigh-Schrödinger perturbation theory was tested on the helium and beryllium

atoms and on the dihydrogen molecule at equilibrium and stretched geometries. It

appears that although the total energies are improved with this first-order correction,

this perturbation theory is not able to improve systematically the zeroth-order excitation

energies as it does not keep the density constant along the adiabatic connection at each

order of perturbation. In particular, it would be interesting to look at the evolution

of the ionization potential in this case in order to understand better the effect of this

variant of the perturbation theory on our systems of interest.

The second variant of the perturbation theory based on the Görling-Levy pertur-

bation theory should in this sense improves significantly the results as by construction

the ground-state density is kept constant at any order of the perturbation [157]. This

perturbation theory was tested on the Kohn-Sham system and was proved to improve

significantly the excitation energies [118]. However, its effects have not been explored

along the range-separated adiabatic connection yet. It would be particularly interesting

to test this variant on the different systems presented previously though we had not have

time to explore this possibility yet.

An alternative to perturbation theory to improve the excitation energies along the

adiabatic connection is provided by extrapolation schemes which make uses of the be-

havior of the energies around the physical system to estimate the exact energies from

the energy of the partially interacting system at a given µ and its first-order derivative

with respect to µ. This approach is explored in the next chapter.
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Chapter 4

Energy extrapolation along the

adiabatic connection

In this chapter, we propose an alternative method to improve the estimation of the
energies of a physical system from the energies of a partially interacting one where
only the long-range part of the Coulombic interaction is included. The energies of
the partially interacting system have already been studied in Chapters 2 and 3 at
zeroth- and zeroth+first-order of perturbation theory. From the analysis of their
Taylor expansion around the physical system, the energies of the physical system can
be further more extrapolated from the ones on the partially interacting system by
using their first-order derivative with respect to the range-separation parameter µ. A
similar scheme is also studied in the case of the linear adiabatic connection where it
in fact becomes equivalent to the extension of first-order Görling-Levy perturbation
theory on an intermediate point of this connection.
The extrapolation scheme is then applied on the zeroth-order range-separated ener-
gies of the helium and beryllium atoms and of the dihydrogen molecule at its equi-
librium and stretched geometries. It improves significantly the convergence rate of
the energies toward their exact limit with respect to the range-separation parame-
ter and allows one to estimate the excitation energies of the physical system at the
same accuracy with respect to the “bare” partially interacting excitation energies
with a range-separation parameter divided by about a factor 2. When applied on the
zeroth+first order excitation energies of the helium atom obtained along the range-
separated adiabatic connection, the results remain disappointing as the quality of
the starting point is inferior and the extrapolation correction is smaller than in the
zeroth-order case. Finally, the extrapolation scheme was applied on the excitation
energies of the helium atom along a linear adiabatic connection where the interaction
is scaled by a factor λ going from 0 to 1. It works remarkably well in this case as
both the starting energies are almost linear and therefore their behavior is easier to
extrapolate.
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4.1 Introduction

In order to calculate the excitation energies of a physical system in the time-independent

DFT framework, a possible approach consists in starting from the KS orbital energy

differences of the non-interacting system. In this case, Görling-Levy perturbation the-

ory [118, 155–157] has been shown to successfully improve the description of the exci-

tation energies as was mentioned in the previous chapter. Although, instead a starting

from a non-interacting system, it is also possible to consider the excitation energies of a

partially interacting system as the zeroth order of the perturbation theory. In this sys-

tem, part of the interaction is already present so that its excitation energies are better

approximations to the energies of the physical one. The adiabatic connection between

the non-interacting and the physical system can be done linearly, where the interaction

is scaled by a factor λ going from 0 to 1, or by including more and more of the long-

range part of the Coulombic interaction with a range-separation parameter µ going from

0 to infinity. On both cases, the potential is adjusted in order to keep the ground-state

density of the system constant.

The analysis of the Taylor expansions of the energies with respect to the range-

separation parameter around the real system (µ→ ∞) performed in Chapter 2, has shown

that the energy of the partially interacting system were converging toward their physical

limit in µ−2. Using this information, it is possible to develop a scheme to extrapolate

the energies of the physical system from the energies of the partially interacting one

following the idea of Refs. [120, 121]. This extrapolation scheme involves the first-order

derivative of the energies with respect to the range-separation parameter and constitutes

an alternative to perturbation theory presented in Chapter 3 and to the linear-response

time-dependent density-functional theory extended to the range-separation case which

will be presented in the next part of this thesis.

Moreover, this extrapolation technique is not limited to the zeroth-order energies and

could also be applied to the zeroth+first order energies resulting from a perturbation

theory. From the Taylor expansions of the zeroth+first order energies studied in the first

variant of perturbation theory in Chapter 3, an extrapolation scheme is thus proposed

starting from these energies. Finally, a similar study is also performed on the linear

adiabatic connection where the almost linear behavior of the excitation energies with

respect to the scaling parameter λ is well-suited for such extrapolation techniques. The

analysis of the excitation energies around λ = 1 provides then the required information

and be exploited to improve the estimation of the energies of the physical system from

an intermediate point of the connection.

The development of the extrapolation scheme is given in Section 4.2 both for the

range-separated and the linear adiabatic connections. It is then applied to the range-

separated energies obtained in the previous chapters on the helium and beryllium atoms

and on the dihydrogen molecule at its equilibrium and stretched geometries, and on the

helium atom along a linear adiabatic connection. The results are discussed in Section 4.3
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starting either directly from the energies of the partially interacting system or from the

energies where a perturbative first-order correction has already been applied.

4.2 Energy extrapolation

4.2.1 Range-separated adiabatic connection

Starting from the Hamiltonian of the partially interacting system Ĥ lr,µ = T̂+V̂ne+Ŵ
lr,µ
ee +

ˆ̄V sr,µ
Hxc , where only the long-range interaction Ŵ lr,µ

ee is included and where the short-range

Hartree-exchange-correlation potential ˆ̄V sr,µ
Hxc ensures that the ground-state density is

kept constant along the adiabatic connection, the Taylor expansions of the partially

interacting energies around the Kohn-Sham and the physical system were derived in

Chapter 2. In particular, it was shown that they behave as

Eµ
k = Ek +

1

µ2
E

(−2)
k +O

(

1

µ3

)

, (4.1)

around the physical system, where E(−2)
k is the correction entering at the second power

of 1/µ. Following the scheme proposed in the recent articles [120, 121], it is possible to

estimate the energy of the physical system Ek from the energy of the partially interacting

system Ek and its first-order derivative with respect to µ. From the Taylor expansion of

the energies when µ → ∞, we know that the first-order derivative of the energies with

respect to µ behave as
∂Eµ

k

∂µ
= − 2

µ3
E

(−2)
k +O

(

1

µ4

)

, (4.2)

around the real system. Therefore, inserting this in Equation (2.39), the exact energy

Ek can be written as a function of the energies along the adiabatic connection and of

their first-order derivative as

Ek = Eµ
k +

µ

2

∂Eµ
k

∂µ
+O

(

1

µ3

)

. (4.3)

This therefore defines the extrapolated energies

EEE,µ
k = Eµ

k +
µ

2

∂Eµ
k

∂µ
, (4.4)

which are correct up to the third power of 1/µ with respect to the energies of the

physical system. The correction given by the extrapolation scheme is null at µ = 0 by

construction, but should improve the description of the energies as soon as the interaction

is switched on. More elaborated schemes could be developed by using higher-order

derivatives or by using several points with different values of µ but in what follows only

the simpler case is applied.

Similarly, for the zeroth+first order energies obtained in Chapter 3, using their Taylor
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expansion around the physical system

E
µ,(0+1)
k = Ek +

1

µ4
E

(0+1,−4)
k +O

(

1

µ6

)

, (4.5)

given in Equation (3.11), it is possible to define an extrapolated energies at 0th+1st

order. By differentiation of the energies with respect to µ,

∂E
µ,(0+1)
k

∂µ
= − 4

µ5
E

(0+1,−4)
k +O

(

1

µ7

)

, (4.6)

the extrapolated zeroth+first-order energy is given as

E
EE,µ,(0+1)
k = E

µ,(0+1)
k +

µ

4

∂E
µ,(0+1)
k

∂µ
, (4.7)

which defines an extrapolation scheme for the first-order corrected energies. This ex-

trapolated energy has a very similar form with respect to the zeroth-order one given in

Equation (4.3) as only the prefactor of the correction changes from 1/2 to 1/4.

4.2.2 Linear adiabatic connection

If the more usual linear adiabatic connection is performed, then the partially interacting

Hamiltonian is defined as Ĥλ = T̂ + λŴee + V̂ λ where V̂ λ is adjusted to keep the ground-

state density constant. This potential can be expressed in terms of the connecting

parameter λ as

V̂ λ = V̂ne + (1− λ)V̂Hx + V̂c − V̂ λ
c (4.8)

where V̂ λ
c enters at second order in λ and is equal to V̂c at λ = 1. The energies of the

partially interacting system can then be expanded around the physical system as

Eλ
k = Ek + (1− λ)E

(1)
k +O

(

(1− λ)2
)

, (4.9)

where E(1)
k is the contribution entering in the first power of (1−λ). Similarly to the range-

separated case, by differentiation with respect to λ, it is then possible to extrapolate the

energies of the physical system as

EEE,λ
k = Eλ

k + (1− λ)
∂Eλ

k

∂λ
. (4.10)

One should note that is this case, the extrapolation is equivalent to the first-order of

the Görling-Levy perturbation theory [118, 157], i.e. the second variant of perturbation

theory shown in Chapter 3.
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Figure 4.1 – Result of the extrapolation (dashed line) for the ground-state total energy
of the helium atom (in hartree) as a function of µ (in bohr−1). The “bare” energy is
recalled in plain line, the energy of the physical system is given as an horizontal dotted
line and an error of ±10 millihartree around his limit is given by the colored region.

4.3 Results and discussion

The “bare” energies of the partially interacting systems are calculated with of the DAL-

TON program [113] as detailed in Section 2.4 for the zeroth order and following the

first variant of perturbation theory given in Chapter 3 for the zeroth+first order. The

ground-state and excitation energies are then fitted following the procedure given in

Appendix C. Starting from the analytical form of the fit, it is then straightforward to

calculate the analytical derivative of the energies. The extrapolated energies are then

calculated using Equations (4.3), (4.7) or (4.10) for the total and excitation energies of

the helium and beryllium atoms and for the dihydrogen molecule at equilibrium and

stretched geometries.

4.3.1 Range-separated extrapolation of the helium atom

Zeroth-order total energies

The result of the extrapolation scheme on the zeroth-order ground-state total energy of

the helium atom is shown in Figure 4.1. By construction, the extrapolation correction

has no effect at µ = 0 so that the ground-state energy of the KS system is not affected

by the extrapolation correction. However, for any non-zero value of µ, the extrapolated

energy shows a systematic improvement with respect to the “bare” ground-state energy.
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Figure 4.2 – Result of the extrapolation (dashed line) on the first S (top) and P
(bottom) excitation energies (in hartree) of the helium atom as a function of µ (in
bohr−1). The “bare” excitation energies are recalled in plain line, the excitation energies
of the physical system are given by horizontal dotted lines and an error of ±1 millihartree
is colored around each exact limit.
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Without the extrapolation correction, a value of about 6 bohr−1 was needed for the

range-separation parameter in order to have an error smaller than 10 millihartree with

respect to the energy of the physical system. When the extrapolation correction is added,

a range-separation parameter greater than 2.8 bohr−1 becomes sufficient to reproduce

the same level of accuracy.

Moreover, the extrapolated energy is strictly decreasing with respect to the range-

separation parameter µ and thus goes to its asymptotic limit from above. Due to this

monotonic behavior, using the second-order derivative (or higher-order derivative) should

in principle improves further more the results. Additionally, several points could be used

to perform the extrapolation instead of one to increase the accuracy of the extrapolated

energies.

Zeroth-order excitation energies

The extrapolation scheme is now applied on the first S and P excitation energies of

the helium atom and the obtained extrapolated energies are shown in Figure 4.2. Both

singlet and triplet S excitation energies have a monotonic behavior with respect to µ,

the improvement due to the extrapolation correction is then systematic as the sign of

the derivative pulls the excitation energies toward their physical limits. The triplet

P excitation energy also has a monotonic behavior so the extrapolation also provides

a systematic improvement. The 11S → 11P excitation energy, however, shows a non-

monotonic behavior and presents a “bump” for small values of µ which is probably due

to the size of the finite basis set as discussed earlier. As a consequence, this excitation

energy goes to its physical limit from above and its first-order derivative changes sign at

about 0.7 bohr−1. In this region, the extrapolated energy becomes worse than the “bare”

one. However, this only happens in a small region of the range-separation parameter and

as soon as the excitation energy recovers a monotonic convergence towards its physical

limit (i.e. for µ larger than 0.7 bohr−1), the energy is improved by the extrapolation

and converges faster to its physical limit. In all cases, a range-separation parameter of

about 2 bohr−1 becomes sufficient to have an error smaller than 1 millihartree on the

excitation energies while a value of about 4 bohr−1 is required otherwise.

Zeroth+first-order excitation energies

As shown in Equation (4.7), it is also possible to apply this extrapolation technique

not starting from the zeroth-order energies of the partially interacting system but its

zeroth+first-order energies. The extrapolated 1S → 2S excitation energies of the helium

atom are shown in Figure 4.3. In this case, the effect of the extrapolation correction is

less important as the derivative is multipled by µ/4 instead of µ/2 in the zeroth-order

case. Moreover, as the “bare” zeroth+first energies are worse starting points than the

zeroth-order one, the correction should be more important to reproduce the physical

energies of the system with a good accuracy.
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Figure 4.3 – Result of the extrapolation scheme (dashed line) along the range-separated
adiabatic connection for the first excitation energies (in hartree) of the helium atom as
a function of µ (in bohr−1) starting from the zeroth+first order excitation energies. The
“bare” excitation energies are recalled in dot-dashed line, the excitation energy of the
physical system is given by an horizontal dotted line and the result of the first-order
correction of the first variant of perturbation theory is given in dot-dashed line for
comparison ans an error of ±1 millihartree is colored around each exact limit.

At small µ, the “bare” energies show an oscillation around their physical limit so that

their first-order derivative changes sign. Because of this, the extrapolated energies are in

fact worse than the “bare” energies around this region. However, as µ increases and that

the “bare” energies begin to converge monotonically toward the physical energies of the

system, then the extrapolation provides an improvement and allows to reproduce the

exact energies with an error smaller than 1 millihartree for a range-separation parameter

of 2.5 bohr−1 instead of 4 bohr−1.

Consequently, it is better to perform the extrapolation on the zeroth-order curves,

where the starting point is better and the correction larger by construction. In what

follows, only zeroth-order extrapolated energies will therefore be shown.

4.3.2 Range-separated adiabatic connection for the valence excitation

of the beryllium atom

The result of the extrapolation scheme is shown for the ground-state energy of the beryl-

lium atom in Figure 4.4 (top). Once again, the convergence of the energy with respect

to µ is systematically improved along the range-separated adiabatic connection with re-
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Figure 4.4 – Valence total state energies Eµ
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k = Eµ
k −Eµ

0
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are recalled in plain line, the result of the extrapolation for the ground-state energy is
plotted in dashed line. The energies of the physical system are given as horizontal dotted
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spect to the “bare” energy. As the beryllium atom has a core orbital, the convergence of

the total energy is slower than in the helium atom as the density is more contracted and

a larger range-separation parameter is needed to describe correctly this region. However,

the extrapolation allows to recover an error smaller than 50 millihartree with respect to

the ground-state energy of the physical system for a value of µ of about 5 bohr−1 which

is about ten times smaller than without the extrapolation correction but remains very

large. Fortunately, the effect of the core cancels out in the excitation energies.

The effect of the extrapolation on the valence excitation energies of the beryllium

atom is shown in Figure 4.4 (bottom). As the effect of the core orbitals disappears in the

excitation energies, the “bare” energies already have a faster convergence toward their

physical limits than the total energies. When the extrapolation correction is added, the

value of µ required to ensure an error smaller than 2 millihartree is about 0.5 bohr−1

which is particularly small as for the same value of µ, the total state energies of the

beryllium atom are still off by about 4 hartrees. In this system, the static correlation

plays a significant role and the multiconfigurational character of the wave function is

quickly recovered when the interaction is switched on as shown in Ref. [48].

4.3.3 Range-separated adiabatic connection for the dihydrogen

molecule along the dissociation

Finally, the extrapolation scheme is applied on the first zeroth-order energies of the di-

hydrogen molecule along the range-separated adiabatic connection both at equilibrium

and at a stretched geometry. The result of the extrapolation on the singlet and triplet

Σ+
g → Σ+

u excitation energies of the dihydrogen molecule at its equilibrium geometry are

shown in Figure 4.5 (top). The extrapolation correction provides a systematic improve-

ment of the excitation energies toward their physical limit so that a value of 2 bohr−1

for the range-separation parameter becomes sufficient to reproduce the physical ener-

gies with a maximum error of 1 millihartree. The internuclear bond of the dihydrogen

molecule is then stretched to three times the equilibrium distance. The extrapolation

scheme is then applied on the first three excitation energies corresponding to the first

singlet and triplet excitations to the 1Σ+
u state and to the double excitation to the 2Σ+

g

state. The extrapolated excitation energies are shown in the bottom of Figure 4.5. Once

again, the improvement is systematic except for µ = 0 where the correction is null.

The triplet extrapolated energy shows a monotonic behavior with respect to µ while

the singlet ones show a slight bump around 0.8 bohr−1. However, all the extrapolated

excitation energies present a faster convergence rate toward their physical limits than

the “bare” ones which are recalled in plain lines. In this case, the extrapolation scheme

works remarkably well as it allows one to recover an error smaller than 5 millihartree

with respect to the physical limits for values of µ as small as 0.6 bohr−1 when a range

separation parameter of 2 bohr−1 is needed otherwise. In particular, it allows one to

describe the double excitation energy with a comparable accuracy than the single exci-
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tation energies.

4.3.4 Linear adiabatic connection for the helium atom

In order to apply the extrapolation scheme on the linear adiabatic connection, the zeroth-

order total and excitation energies of the helium atom along this connection are calcu-

lated following the procedure described in Chapter 2 and are shown in Figure 4.6.

Zeroth-order total energies

The total energies of the helium atom along the linear adiabatic connection are given

in Figure 4.6 (top). When λ = 0, no interaction is included, so the KS energies are

recovered as it was the case for µ = 0. On the other hand, when λ = 1, the full interaction

is present and the energies of the physical system are recovered, which corresponds to

the limit µ → ∞. The two limit cases are therefore identical in the two methods but

the way they are connected differs. The evolution of the total energies with respect to

λ appears almost linear. Although, this behavior is easier to predict and should provide

an efficient framework for extrapolations, the value of λ required to have an error of

10 millihartreertree is very close to 1 while in the range-separation case a intermediate

value of µ was sufficient. As almost all the interaction would be included, the complexity

of the calculation would therefore not be improved with respect to a FCI calculation.

Excitation energies

The excitation energies of the helium atom along the linear adiabatic connection are

given in Figure 4.6 (bottom). Similarly to the total energies, the end points are common

with the range-separated connection but the behavior of the energies along the connec-

tion is also more linear. One could note that as in the range-separation case, the singlet

P energy does not have a monotonic behavior with respect to the connecting parameter.

The basis set might be responsible for this behavior as discussed earlier.

Extrapolation and comparison with the range-separated case

The extrapolation scheme is then applied on the first excitation energy of the helium

atom along the linear adiabatic connection and is also compared with the results obtained

with the range-separated adiabatic connection in Figure 4.7. Without extrapolation, the

value of the scaling parameter λ needs to be greater than 0.95 to reproduce correctly

the energies with an error smaller than 1 millihartree, while for the range-separated one,

as a small change of µ implies an important change in the energies when close to the

KS, a range separation parameter of 2 bohr−1 is sufficient to ensure the same accuracy.

In a way, this means that the range-separated connection adds the most significant

region of the interaction first, while the linear connection treats equally the interaction

independently of its importance for the excitation energies. When the extrapolation
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correction is added, a systematic improvement of the energy is observed and the amount

of interaction required to reproduce the physical limit with an accuracy of 1 millihartree

now drops to 50%. Moreover one should note that contrary to the range-separated case,

the KS extrapolated excitation energy also benefits from this correction as in this case the

correction does not go to zero in this limit. At λ = 0, the extrapolated excitation energy

matches the results obtained in [118] with the first-order Görling-Levy perturbation

theory as expected.

For the KS system, it is obviously better to use the extrapolated linear connection as

the extrapolation correction has no effect at µ = 0. For a partially interacting system, it

is difficult to compare the two connections, it seems however that the linear connection

works in fact better than the range-separated one except for large values of λ.

4.4 Conclusion

In this chapter, we made use of the asymptotic behavior of the energies of a partially

interacting system along the range-separated adiabatic connection to design an energy

correction which allows us to extrapolate the physical energies of the system from its
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partially interacting ones. The simplest possible extrapolation was obtained by using

only the first-order derivative of the energies with respect to the range-separation param-

eter in one point. This extrapolation correction can be applied directly on the energies

of the partially interacting system or after they have been corrected by a first-order

perturbation.

This extrapolation scheme was tested on the helium and beryllium atom and on the

dihydrogen molecule at both its equilibrium and a stretched geometry where no approx-

imation were done except for the basis set. When applied on the zeroth-order energies,

this extrapolation scheme was shown to be very successful as it improves significantly

the convergence rate of the energies toward their physical limits. Moreover, this im-

provement is almost systematic, except at µ = 0 where the extrapolation correction is

null by construction and in some cases where the partially interacting energies present

a “bump” at small µ which is probably due to the basis set. However, in all cases, the

extrapolated energies where able to reproduce the physical energies of the system for a

given accuracy with a range-separation parameter reduced by approximately a factor of

2 with respect to the “bare” energies.

When applied on the zeroth+first-order energies of the partially interacting system,

the extrapolation correction overall improves their convergence rate. However, as the

quality of the starting point is inferior than in the zeroth-order case as discussed in

Chapter 3, and that the correction is smaller, the convergence is slower than in the

previous case. Finally the extrapolation scheme was applied along the linear adiabatic

connection where it also improves significantly the description of the excitation energies

along the connection.

All these results have been obtained without any approximate functionals. The

promising method should now be tested in a more pragmatic case where the potential is

obtained from a (semi)local approximations. The effects of the inclusion of higher-order

derivatives and of multiple points on this extrapolation should also be explored.
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P. 244108.
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Excitation energies from

linear-response time-dependent
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Chapter 5

Theoretical background on

time-dependent linear-response

density-functional theory

In this chapter, the time-dependent extension of density-functional theory is described
and emphasis is placed on linear-response theory. This method is used to describe the
response of a system initially in its ground state to a small time-dependent oscillatory
perturbation, for instance a weak laser field. In particular, it allows one to extract the
absorption spectrum of the system by providing both the excitation energies and the
associated oscillator strengths. The theoretical foundations of the method are briefly
recalled together with its formulation in the Kohn-Sham scheme. The usual adiabatic
(semi-)local approximations are then discussed together with their successes and their
limitations as in particular, they cannot deal with multiple excitations and/or charge-
transfer excitations. Finally, the extension of the range-separated scheme to the time-
dependent case is briefly sketched in its more common variant where separation is
done on the exchange kernel only.

5.1 Introduction

In this original time-independent formulation, density-functional theory (DFT) is a

ground-state method. However, the Hohenberg-Kohn theorem states that the ground-

state electron density contains all the information on the system so that it is in principle

possible to calculate any property of the system from this density, and in particular ex-

citation energies. The most commonly used approach to compute excitation energies in

the density-functional framework is to extend DFT to a time-dependent formalism and

to use either real-time propagation or linear-response theory. In this thesis, we focus on

the latter which is relevant when the system is subject to a weak electromagnetic field.

In this case, a small time-dependent perturbation is applied on the system and its den-
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sity response is analyzed. As the system has quantized energy levels, the response of the

system is then intrinsically different if the frequency of the perturbation matches or not

a level energy difference. This is the phenomenon which is exploited in linear-response

time-dependent density-functional theory (TDDFT).

This chapter is intended to give a brief review of the TDDFT formalism within

the linear-response framework. First, the time-dependent framework is laid down in

Section 5.2, then the time-dependent KS scheme is explained in Section 5.3. As we are

interested in reproducing the excitation energies of a system subject to a weak laser

field, linear response can be used and is detailed in Section 5.4. Then the resolution in

the case of finite molecular systems is given in Section 5.5 and the usual approximations,

together with their deficiencies and possible remedies are given in Sections 5.6 and 5.7.

More details can be found for instance in [1–8].

5.2 Time-dependent framework

5.2.1 Time-dependent Schrödinger equation

The stationary many-electron problem was introduced in Chapter 1 where the Hamilto-

nian of the system was time-independent. It allows one to obtain the eigenstates of the

system by solving Equation (1.6). When the system evolves in a time-dependent field,

its behavior is ruled by the time-dependent version of the Schrödinger equation given by

i
∂

∂t
Ψi(x1, . . . ,xN , t) = Ĥ(t)Ψi(x1, . . . ,xN , t), (5.1)

where the time-dependent Hamiltonian is Ĥ(t) = T̂ + V̂ (t)+Ŵee. Its kinetic and electron-

electron interaction operators are the same as in the static Hamiltonian (1.11), but the

external potential operator is now explicitly time dependent,

V̂ (t) =

∫

n̂(r)v(r, t)dr. (5.2)

The time-dependent Schrödinger equation represents the propagation of an initial wave

function of the system Ψ(t0) under the influence of a time-dependent potential v(r, t).

Note that the initial wave function is not necessarily the ground state.

It is furthermore convenient to decompose the potential and the Hamiltonian into

their time-independent and time-dependent parts

V̂ (t) = V̂ + δV̂ (t)

Ĥ(t) = Ĥ + δV̂ (t).
(5.3)

The density of such a system is then also time dependent and is given by

n(r, t) = 〈Ψ(t)|n̂(r)|Ψ(t)〉. (5.4)
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5.2.2 Representation of the time-dependent system

In order to describe the time evolution of the wave function and of the observables of

the system, different representations can be used where either the states, the operators

or both are evolving in time. One should note that these representations are also useful

in the stationary case as, even if the Hamiltonian is time independent, the eigenstates

evolve in time. Indeed, for an eigenstate Ψk of energy Ek, its phase rotates in time as

Ψk(t) = Ψk(t = 0)e−iEkt.

Schrödinger picture

In the Schrödinger representation, when calculating a time-dependent observable P(t) =

〈Ψ|P̂|Ψ〉, the time evolution is contained in the state vectors and the operators are kept

constant with respect to time. This evolution of the state vectors is described by the

unitary time evolution operator Û(t, t0) (or just Û(t) when t0 = 0) such that

|Ψ(t)〉 = Û(t, t0)|Ψ(t0)〉. (5.5)

In the most general case, i.e. when the Hamiltonian is time dependent and the Hamil-

tonians at different times do not commute, this operator is given by

Û(t, t0) = T̂ exp

(

−i
∫ t

t0

Ĥ(t′)dt′
)

, (5.6)

where T̂ is the Wick time-ordering operator [9, 10] which orders the operators with larger

times on the left. Whereas if the Hamiltonian is time independent, the time evolution

operator reduces simply to Û(t, t0) = exp
(

−iĤ(t− t0)
)

.

Heisenberg picture

Another useful representation when time evolution is concerned is the Heisenberg picture.

In this representation, the operators depend on time and the state vectors are time

independent. In particular, the time-dependent creation and annihilation field operators

are given by

Ψ̂(1) = Û†(t1, t0)Ψ̂σ1
(r1)Û(t1, t0), (5.7a)

Ψ̂†(1) = Û †(t1, t0)Ψ̂
†
σ1
(r1)Û(t1, t0), (5.7b)

where the variable 1 stands for the spin, space, and time coordinates of the electron

(r1, σ1, t1).

Interaction picture

The last possibility is given by the interaction picture where both the state vectors and

the operators are time dependent. However, this picture will not be used hereinafter.
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5.3 Time-dependent density-functional theory formalism

5.3.1 Runge-Gross theorem

Starting from an initial wave function Ψ(t0), if a time-dependent external perturbation

v(r, t) is applied and propagated through the time-dependent Hamiltonian, the evolved

wave function Ψ(t) can be obtained at an ulterior time t > t0. From this wave function,

the time-dependent density n(r, t) can be calculated by applying the density operator.

For a given Ψ(t0), there is thus a mapping v(r, t) → n(r, t), from the time-dependent

potential to the time-dependent density.

The first Hohenberg-Kohn theorem states the invertibility of this mapping in the

time-independent case and gives the formal foundations for density-functional theory.

The analog of this theorem for time-dependent potential and density is the Runge-Gross

theorem [11] which proves the existence of the reverse mapping.

Theorem 3 (Runge-Gross theorem). For a system of N interacting electrons, the

densities n(r, t) and n′(r, t) evolving from a common initial state Ψ0 = Ψ(t0) under the

influence of two external time-dependent potentials v(r, t) and v′(r, t), are always dif-

ferent provided that the potentials differ by more than an additive spatially constant

time-dependent function c(t).

This theorem applies to potentials that are Taylor expandable about the initial time

t = t0, where t0 is assumed to be finite, i.e.

v(r, t) =

∞
∑

k=0

v(k)(r)

k!
(t− t0)

k. (5.8)

For such potentials, it provides a one-to-one mapping between the densities and the

potentials. It thus allows one to express the time-dependent potential as a functional of

the time-dependent density and of the initial state

v(r, t) = v[n,Ψ0](r, t). (5.9)

Moreover, if the initial wave function is the ground-state one then the first HK theo-

rem states that it is also a functional of the ground-state density and the initial state

dependence can therefore be dropped. The wave function Ψ(t) is then determined up to

a phase factor by n alone. The time-dependent Hamiltonian can then be written as a

density functional, and the expectation value of a given operator P̂ is given by a unique

functional of the density as the ambiguity in the phase of the wave function cancels out

〈Ψ[n](t)|P̂|Ψ[n](t)〉 = P[n](t). (5.10)

Some questions remain however unanswered by this theorem. For instance, it does not

provide a way to treat potentials which are switched on adiabatically at t0 = −∞ [12] as
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the Taylor expandability of these potentials about t0 = −∞ is not ensured anymore. The

question of v-representability for time-dependent densities is also not dealt with. Van

Leeuwen theorem [13–16] solves this issue in the case of a Kohn-Sham system. It relies

on Taylor-expandable time-dependent densities and provides a formal framework for

the time-dependent Kohn-Sham formalism. The Runge-Gross theorem of TDDFT has

been proved for finite systems, where the density vanishes at infinity [15, 16]. However,

it does not apply when a uniform homogeneous field acts on a periodic system [17].

This limitation of the Runge-Gross theorem can however be circumvented by using

time-dependent current density-functional theory which also allows for the treatment of

magnetic fields [17].

5.3.2 Variational principle

The time-dependent analog of the variational principle given by the second HK theorem

is provided by a stationary condition on the quantum mechanical action integral. The

solution of the time-dependent Schrödinger equation with the initial condition Ψ(t0) = Ψ0

corresponds to a stationary point of the action which is a density functional thanks to

the Runge-Gross theorem

A[n] =

∫ t1

t0

〈Ψ[n](t)|i ∂
∂t

− Ĥ(t)|Ψ[n](t)〉dt, (5.11)

and can be rewritten as

A[n] = B[n]−
∫ t1

t0

∫

v(r, t)n(r, t)drdt, (5.12)

where the internal action B is universal as it is independent of the external potential v.

The correct density should then be obtained by applying the Dirac-Frenkel variational

principle and solving the Euler equation

δA[n]

δn(r, t)
= 0 (5.13)

with appropriate boundary conditions. The potential would then be given by

v(r, t) =
δB[n]
δn(r, t)

. (5.14)

This implies that the external potential, which is a functional of the density from the

Runge-Gross theorem, is the functional derivative of the internal action B with respect to

the density. However, this definition is problematic as it leads to a causality paradox [2]

when calculating the response of a system to an external perturbation. In fact, it can be

shown that the second derivative of the action with respect to density δ2A/δn(r, t)δn(r′, t′)
can be related to the response of the system. This derivative however is symmetric by the

interchange of the time variables while the system should not respond to a perturbation
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Time
t0 t

Ψ(t0),Φ(t0)

vxc[n,Ψ(t0),Φ(t0)](r, t)

n(t0) n(t′) n(t)

Figure 5.1 – The exchange-correlation potential at time t depends on all the densities
at times t0 ≤ t′ ≤ t and on the initial interacting and Kohn-Sham states. If the initial
states are the ground states, then their dependence is included in the density dependence
due to the HK theorems and can be omitted.

before it has actually happened. The problem arises from the fact that the Frenkel

variational principle is valid only for variations of |Ψ〉 that vanish at the end points of

the time interval under consideration. Several solutions were proposed to circumvent this

paradox, the most famous being van Leeuwen’s Keldysh action [18, 19] and Vignale’s

real-time resolution [20, 21]. As in this thesis TDDFT will be only applied within an

adiabatic approximation discussed in Section 5.6.2, we will not explore this aspect of the

theory any deeper.

5.3.3 Kohn-Sham approach

The Kohn-Sham scheme provides a very successful framework when time-independent

calculations are concerned (cf. Section 1.5) and its time-dependent formulation is very

similar. The one-to-one mapping between the time-dependent densities and potentials

given by the Runge-Gross theorem is valid for any interaction and in particular in the

case of non-interacting electrons. Therefore the exact time-dependent density can be

reproduced by a system of N non-interacting electrons moving in a time-dependent

effective potential vKS[n](t) which is uniquely determined. However, the Runge-Gross

theorem ensures only the uniqueness of vKS for all the v-representable densities but not

its existence for an arbitrary time-dependent density n(r, t). Assuming the existence of

such a potential, the time-dependent density is then given by

n(r, t) =
∑

i

|ϕi(r, t)|2 (5.15)
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where the time-dependent one-particle Kohn-Sham orbitals ϕi(r, t) are solutions of the

set of time-dependent Kohn-Sham equations

i
∂

∂t
ϕi(r, t) =

[

−∇2

2
+ vKS[n](r, t)

]

ϕi(r, t). (5.16)

The time-dependent Kohn-Sham potential can be decomposed analogously to its time-

independent counterpart into its external, Hartree, exchange and correlation parts, as

vKS[n](r, t) =v[n](r, t) + vHxc[n](r, t)

=v[n](r, t) + vH[n](r, t) + vx[n](r, t) + vc[n](r, t),
(5.17)

where the Hartree potential is given by

vH[n](r, t) =

∫

n(r′, t)

|r− r′|dr
′, (5.18)

and the exchange-correlation potential is unknown. In principle, this potential is a

functional of the entire history of densities, and of the initial many-body and Kohn-

Sham wave functions Ψ(t0) and Φ(t0), as illustrated in Figure 5.1. If the initial state

Ψ(t0) is the ground state, then the dependence Ψ(t0) and Φ(t0) is embedded in the density

dependence which allows us to write the potential as a functional of the time-dependent

density only.

The history dependence of the time-dependent exchange-correlation potential in-

creases greatly the complexity with respect to the time-independent case as the poten-

tial cannot even be related to the energy functional anymore. Therefore, even if the

exact ground-state functional were known, the time-dependent potential would remain

unknown.

5.4 Linear-response TDDFT

5.4.1 Linear-response theory

In usual absorption spectroscopy, one is interested to the response of the system (usually

in its ground state) to a weak electromagnetic field. As the strength of the field is small,

the exchange-correlation potential needs to be calculated only in the vicinity of the

ground state and the well-known Rayleigh-Schrödinger perturbation theory can be used

to calculate the response of the system and extract its excitation energies. On the other

hand, if the strength of the laser field is of the same order of magnitude or greater than

the potential due to the nuclei, then perturbation theory no longer applies and one falls

into the field of real-time dynamics in non-perturbative fields. However, in this thesis,

only the linear-response regime is considered. The derivation of the linear-response

equations is done in the spin formalism. The conventions used for Fourier transforms

can be found in Appendix A.2 together with a brief review of contour integration in the
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|k〉

|0〉

∆Ek

δvext(ω)

Figure 5.2 – Schematic representation of the density response of the benzene molecule
to an external perturbation δv(ω).

framework of complex analysis.

Assume a system in its ground-state, with the spin densities n0(x). A real time-

dependent external perturbation δv is switched on at time t = t0, such that

v(x, t) =







v(x)+δv(x, t) t ≤ t0

v(x) + δv(x, t) t > t0.
(5.19)

This potential is related to its Fourier transform by

δv(x, t) =

∫

dω

2π
δv(x, ω)e−iωt. (5.20)

In particular, as δv(x, t) is real, its Fourier transform must satisfy the relation δv(x, ω) =

δv∗(x,−ω). When subject to such a perturbation, the system experiences some small

time-dependent changes. In particular, the density becomes time dependent and can be

expanded in order of perturbation as

n(x, t) = n0(x) + n1(x, t) + n2(x, t) + · · · (5.21)

where n0(x) is the initial time-independent density, n1(x, t) is the first-order density,

n2(x, t) is the second-order one, etc. When the perturbation is small enough, the first

order is then assumed to dominate. In linear-response theory, the change of density is

therefore calculated up to the first order only

δn(x, t) = n1(x, t). (5.22)

The change in density in one spin-space point x is not only due to the perturbation at this

point but is the result of the perturbation on the whole system. How this perturbation is
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propagated in time and space through the system is described by the retarded response

function χ(x,x′, t− t′) such that the change of density is then given by

δn(x, t) =

∫ t

t0

∫

χ(x,x′, t− t′)δv(x′, t′)dx′dt′, (5.23)

where the response function depends only on the time difference because of time trans-

lation invariance. For excitation energy calculations, one is usually more interested by

the frequency-dependent response function than the time-dependent one

δn(x, ω) =

∫

χ(x,x′, ω)δv(x′, ω)dx′, (5.24)

where the explicit expressions of the Fourier transforms are given in the next section.

The response function is therefore formally defined as the functional derivative of the

density with respect to the external field evaluated at the external potential

χ(x,x′, ω) =
δn(x, ω)

δv(x′, ω)

∣

∣

∣

∣

v[n0]

. (5.25)

Before deriving the expression of this response function, some insights on its physical

interpretation and how excitation energies can be extracted from it might be worth

mentioning.

Suppose that the system is originally in its non-degenerate ground-state. Depending

on the frequency of the perturbation, two cases can occur:

• either the frequency does not match any energy difference between an excited

state and the ground state, then the change in density remains infinitesimal and

the response function is finite;

• or the frequency matches an excitation energy from the ground state, then the

system can change state and the change of density is important. This implies that

the response function diverges for this frequency, i.e. it has a pole at this value of

ω.

The basic idea of time-dependent linear-response density-functional theory is therefore

to find the poles of the response function of the system to obtain the excitation energies,

or equivalently to find the zeros of the inverse response function

χ−1(x,x′, ω) =
δv(x, ω)

δn(x′, ω)

∣

∣

∣

∣

n0

. (5.26)

Expression of the linear response function

The initial Hamiltonian Ĥ has eigenvectors |k〉 and eigenvalues Ek. In absence of any

perturbation, these eigenstates evolve in time by a phase transformation depending on

their energy, and at given time t, their expression is |k(t)〉 = e−iEkt|k〉.
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The time evolution of a state vector |Ψ(t)〉 of the time-dependent Hamiltonian Ĥ(t)

can be given by a linear combination of the time-evolved unperturbed eigenvectors |k(t)〉

|Ψ(t)〉 =
∑

k

ck(t)|k(t)〉 =
∑

k

ck(t)e
−iEkt|k〉. (5.27)

The evolution of the coefficients ck(t) is obtained from the time-dependent Schrödinger

equation (5.1) such that

ck(t) = ck(t0)− i
∑

n

∫ t

t0

〈k|δV̂ (t′)|n〉e−i(En−Ek)t
′
cn(t

′)dt′. (5.28)

For an adiabatically switched potential at t0 → −∞, the first-order corrections to the

coefficients when the initial conditions are c0(t0) = 1 and ∀k 6= 0, ck(t0) = 0 are then given

by

c
(1)
k (t) = −i

∫ t

−∞
〈k|δV̂ (t′)|0〉e−i(E0−Ek)t

′
dt′, k 6= 0. (5.29)

The first-order expansion of the wave function at time t is given by |Ψ(t)〉 = |0(t)〉 +
|Ψ(1)(t)〉, where |Ψ(1)(t)〉 =

∑

k 6=0 c
(1)
k (t)|k(t)〉. The first-order change of the density is

therefore

δn(x, t) = 〈0(t)|n̂(x)|Ψ(1)(t)〉+ 〈Ψ(1)(t)|n̂(x)|0(t)〉. (5.30)

Substituting the expression of the wave-function with its first-order coefficients, we get

δn(x, t) = −i
∫ t

−∞

∫

∑

k 6=0

〈0|n̂(x)|k〉〈k|n̂(x′)|0〉e−i(Ek−E0)(t−t′)δv(x′, t′)dt′dx′ + c.c. (5.31)

where c.c. stands for the complex conjugate. The upper bound of the integration can be

extended to +∞ by introduction of an Heaviside step function θ(t − t′). The first-order

change in density is then

δn(x, t) =− i

∫∫

θ(t− t′)
∑

k 6=0

〈0|n̂(x)|k〉〈k|n̂(x′)|0〉e−i(Ek−E0)(t−t′)δv(x′, t′)dt′dx′ + c.c.

(5.32)

The Fourier transform of the first-order density is then

δn(x, ω) =

∫

∑

k 6=0

[ 〈0|n̂(x)|k〉〈k|n̂(x′)|0〉
ω − (Ek − E0) + i0+

− 〈0|n̂(x′)|k〉〈k|n̂(x)|0〉
ω + (Ek − E0) + i0+

]

δv(x′, ω)dx′. (5.33)

With the definition of the response function given in Equation (5.24) the Fourier-

transformed linear response function is therefore

χ(x,x′, ω) =
∑

k 6=0

〈0|n̂(x)|k〉〈k|n̂(x′)|0〉
ω − (Ek − E0) + i0+

− 〈0|n̂(x′)|k〉〈k|n̂(x)|0〉
ω + (Ek − E0) + i0+

. (5.34)
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This function admits poles at the excitation energies ωk = Ek−E0 and at the deexcitation

energies −ωk. Therefore, assuming its invertibility, solving the equation χ−1(ω) = 0 allows

one to extract the excitation energies from the retarded response function.

5.4.2 Kohn-Sham response function

Within the Kohn-Sham framework, the external potential can be rewritten as the differ-

ence between the Kohn-Sham potential and the Hartree-exchange-correlation potential,

which in the frequency space gives v[n](x, ω) = vKS[n](x, ω) − vHxc[n](x, ω). Using this

decomposition in the expression of the inverse response function in Eq. (5.26), it gives

χ−1(x,x′, ω) =
δvKS[n](x, ω)

δn(x′, ω)

∣

∣

∣

∣

n0

− δvHxc[n](x, ω)

δn(x′, ω)

∣

∣

∣

∣

n0

=χ−1
KS(x,x

′, ω)− fHxc(x,x
′, ω).

(5.35)

The first part of the right hand side is the inverse of the Kohn-Sham response function

χKS(x,x
′, ω) which describe the response of the non-interacting electrons. As the states

are single Slater determinants, its expression in the KS spin-orbital basis reduces to

χKS(x,x
′, ω) =

∑

i,a

[

ϕ∗
i (x)ϕa(x)ϕi(x

′)ϕ∗
a(x

′)

ω − (εa − εi) + i0+
− ϕi(x)ϕ

∗
a(x)ϕ

∗
i (x

′)ϕa(x
′)

ω + (εa − εi) + i0+

]

. (5.36)

The second part of the right hand side defines the Hartree-exchange-correlation kernel

fHxc(x,x
′, ω) =

δvHxc[n](x, ω)

δn(x′, ω)

∣

∣

∣

∣

n0

, (5.37)

which is in principle dependent of the spin densities, the initial states, two spin-space

coordinates and the frequency and should describe all the effects due to the electronic

interaction. This kernel is formally defined as the functional derivative of the frequency-

dependent Hartree-exchange-correlation potential with respect to the time-dependent

spin densities, evaluated at the ground-state spin densities. The zeros of χ−1 in Equa-

tion (5.35) give the excitation energies of the real system which are constructed from

the excitation energies of the Kohn-Sham system corresponding to the poles of the

Kohn-Sham response function corrected by the Hartree-exchange-correlation kernel. The

Kohn-Sham response function is known, but one still need to deal with the Hartree-

exchange-correlation kernel and time-dependent potential.

5.5 Resolution for a finite molecular system

5.5.1 Projection in a spin-orbital basis set

In a finite system framework, it is useful to reformulate this problem in a matrix

form [1]. Consider the spin-orbital products gia(x1,x
′
1) = ϕ∗

i (x
′
1)ϕa(x1) and gai(x1,x

′
1) =
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ϕ∗
a(x

′
1)ϕi(x1) which can be seen as excitation and de-excitation between ϕi and ϕa. They

form a complete orthogonal basis with respect to the scalar product

〈gpq|grs〉 =
∫

ϕp(x
′
1)ϕ

∗
q(x1)ϕ

∗
r(x

′
1)ϕs(x1)dx1dx

′
1 = δprδqs. (5.38)

In this basis, the Kohn-Sham response function can be rewritten as

χKS(x,x
′, ω) =

∑

i,a

[

gia(x,x)g
∗
ia(x

′,x′)

ω − (εa − εi) + i0+
− gai(x,x)g

∗
ai(x

′,x′)

ω + (εa − εi) + i0+

]

, (5.39)

and can be represented by a diagonal matrix χKS(ω) whose inverse is given by

χ−1
KS(ω) = −

[(

∆ε 0

0 ∆ε

)

− ω

(

1 0

0 −1

)]

, (5.40)

with the first block corresponding to the gia functions and the second to the gai functions,

and ∆εia,jb = (εa−εi)δijδab. To obtain the inverse response function of the real system, the

contribution of the Hartree-exchange-correlation kernel is added via the coupling matrix

K whose matrix elements are obtained by projection of the kernel on the product basis

Kia,jb(ω) =

∫ ∫

ϕ∗
i (x1)ϕa(x1)fHxc(x1,x2, ω)ϕj(x2)ϕ

∗
b(x2)dx1dx2 = 〈ib|fHxc(ω)|aj〉. (5.41)

As the potential is real-valued, it is straightforward to show that so is the kernel. In

particular, this implies that

Kia,jb(ω) = Kai,bj(−ω)∗. (5.42)

Using this relation, the matrix representation of the inverse response function is

χ−1(ω) =−
[(

A(ω) B(ω)

B(−ω)∗ A(−ω)∗

)

− ω

(

1 0

0 −1

)]

=− (Λ(ω)− ω∆) ,

(5.43)

with Aia,jb(ω) = (εa − εi)δijδab + Kia,jb(ω) and Bia,jb(ω) = Kia,bj(ω). The name of the

matrices A and B are inherited from the random phase approximation (RPA) theory also

called time-dependent Hartree-Fock (TDHF). However, the presence of the exchange-

correlation kernel fxc(ω) changes significantly the problem as the matrix A and B are

then frequency dependent. This forms therefore a non-linear problem where the number

of solutions is greater than the size of the matrix. This is of crucial importance for

the treatment of multiple excitations which is not possible otherwise. The zeros of

Equation (5.43) are then obtained by solving the equation

(

A(ω) B(ω)

B(−ω)∗ A(−ω)∗

)(

X(ω)

Y(ω)

)

= ω

(

1 0

0 −1

)(

X(ω)

Y(ω)

)

. (5.44)
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Finding the spectral decomposition of χ−1(ω) reduces therefore to solving the system







A(ω)X(ω) +B(ω)Y(ω) = ωX(ω)

B(−ω)∗X(ω) +A(−ω)∗Y(ω) = −ωY(ω),
(5.45)

which is invariant by conjugation and the transformation

{ω → −ω ; X(ω) → Y(−ω)∗ ; Y(ω) → X(−ω)∗} . (5.46)

Its solutions thus come by pairs: the excitation energy ωn associated with the eigen-

vector (Xn,Yn), and the deexcitation energy −ωn associated with (X−n,Y−n). In

practice, these equations should be solved self-consistently for each ωn. When con-

vergence is reached, each matrix Λ(ωn) has a set of eigenvalues and eigenvectors

{ωk, (Xk(ωn),Yk(ωn)} such that it exists one k which satisfies ωk = ωn. The associ-

ated eigenvector (Xk(ωn),Yk(ωn)) then defines (Xn,Yn). The eigenvector associated to

the deexcitation energies (X−n,Y−n) is then obtained as (Y∗
n,X

∗
n).

5.5.2 Resolution for real orbitals

If the KS orbitals are real, the system of Equations (5.45) can be further reduced as

A(−ω)∗ = A(ω) and B(−ω)∗ = B(ω). By addition and substraction of its two equations,

it can thus be rewritten as







(A(ω) +B(ω))(X(ω) +Y(ω)) = ω(X(ω)−Y(ω))

(A(ω)−B(ω))(X(ω)−Y(ω)) = ω(X(ω) +Y(ω)).
(5.47)

Moreover, if the matrix (A(ω)−B(ω)) is definite positive then

(A(ω) +B(ω))(X(ω) +Y(ω)) = ω2(A(ω)−B(ω))−1(X(ω) +Y(ω)), (5.48)

so that Equation (5.44) can conveniently be transformed into a half-size symmetric

eigenvalue equation [1], although still non linear

M(ω)Z(ω) = ω2Z(ω), (5.49)

with M(ω) = (A(ω)−B(ω))1/2(A(ω) +B(ω))(A(ω)−B(ω))1/2, and the normalized eigen-

vector Z(ω) =
√
ω(A(ω)−B(ω))−1/2(X(ω) +Y(ω)). Within this scheme, the vectors X(ω)

and Y(ω) are not computed separately but as shown in the next section, their sum is in

fact sufficient to calculate the relevant properties.

For the excitation and deexcitation energies to be real, the matrix M needs to be

definite positive which is the case if the two stability conditions, (A(ω) + B(ω)) and

(A(ω)−B(ω)) definite positive, are satisfied.
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5.5.3 Polarizability and oscillator strengths

The mean dynamic dipole polarizability ᾱ(ω) can be expressed using the sum-over-state

theorem [1] of optical physics by

ᾱ(ω) =
∑

n 6=0

fn
ω2
n − ω2

(5.50)

where fn is the oscillator strength associated with the excited state Ψn and the excitation

energy ωn. It is given by the average of the diagonal elements of the polarizability tensor

α(ω) by ᾱ(ω) = 1
3 (αxx(ω) + αyy(ω) + αzz(ω)) , where the qq component of the tensor is

given by

αqq(ω) = −
∫

χ(r, r′, ω)rqr
′
qdrdr

′. (5.51)

Using the spectral decomposition of the response function for real KS orbitals, this

element can be rewritten as

αqq(ω) =
∑

n

∑

ia,jb

2ωn〈ϕi|q̂|ϕa〉〈ϕj |q̂|ϕb〉(Xn +Yn)ia(Xn +Yn)jb
ω2
n − ω2

. (5.52)

By identification in Equation (5.50), the oscillator strengths are then given by

fn =
2

3

∑

q

(

∑

ia

〈ϕi|q̂|ϕa〉(Xn +Yn)ia

)2

ωn. (5.53)

In particular, they should fulfill the Thomas-Reiche-Kuhn (TRK) sum rule
∑

n fn = N.

They can be expressed in function of the transition moment thanks to Fermi golden rule

fn =
2

3

∑

q

|〈Ψ0|q̂|Ψn〉|2ωn, (5.54)

where the transition moments are

〈Ψ0|q̂|Ψn〉 =
∑

ia

〈ϕi|q̂|ϕa〉(Xn +Yn)ia. (5.55)

5.6 Usual approximations

5.6.1 Tamm-Dancoff approximation

The Tamm-Dancoff approximation (TDA) [22] consists in neglecting the coupling be-

tween the excitations and the de-excitations, i.e. setting B = 0 so that the TDDFT

equations simply reduces to

A(ωn)Xn = ωnXn. (5.56)

This approximation often helps to correct the deficiencies which are introduced by the

approximations made on the exchange-correaltion kernel. It therefore often gives bet-
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ter excitation energies despite the fact that the sum rule is no longer satisfied. It is

particularly efficient when a triplet instability arises [23]. We note in passing, that

TDA can also be viewed as a non-self-consistent approximation to the static (multiplet-

sum) ∆SCF method, which identifies the excited states with stationary points on the

ground-state energy surface as a function of the orbital parameters [24, 25].

5.6.2 Adiabatic approximation

As shown in Section 5.3.3, the time-dependent exchange-correlation potential vxc[n](x, t)

depends, in principle, on densities everywhere in space and at all previous times t′ ≤ t.

In order to provide a practical scheme for TDDFT calculations, the most widely used

approximation is the adiabatic approximation where the potential is approximated to

the ground-state potential evaluated at the instantaneous time-dependent density [1,

26]

vxc[n](x, t) ≃ vxc[n(t)](x). (5.57)

and therefore is related to the exchange-correlation functional Exc by

vxc[n(t)](x) =
δExc[n]

δn(x, t)

∣

∣

∣

∣

n(x,t)

. (5.58)

The exchange-correlation kernel can thus be expressed as the second derivative of the

energy with respect to the density as

fxc(x,x
′, t, t′) ≃ δ(t− t′)

δvxc[n(t)](x)

δn(x′, t)

∣

∣

∣

∣

n0

= δ(t− t′)
δ2Exc[n(t)]

δn(x, t)δn(x′, t)

∣

∣

∣

∣

n0

, (5.59)

where the locality in time becomes even more obvious. The Fourier transform of the adi-

abatic exchange-correlation kernel is thus frequency independent and so are the matrices

A and B. Equation (5.44) then turns into a linear problem

(

A B

B∗ A∗

)(

Xn

Yn

)

= ωn

(

1 0

0 −1

)(

Xn

Yn

)

. (5.60)

Pseudo-hermiticity

Equation (5.60) can be reformulated as a pseudo-hermitian problem ∆−1ΛCn = ωnCn,

where

Λ =

(

A B

B∗ A∗

)

and ∆ =

(

1 0

0 −1

)

. (5.61)

As A is hermitian and B is symmetric, the matrix Λ is hermitian, and so is ∆.

Definition (Pseudo-hermiticity). A matrix Π is said to be pseudo-Hermitian with

respect to an invertible matrix Q if and only if Π† = QΠQ−1.
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Let P = ∆−1Λ. It is easy to show that P is pseudo-Hermitian with respect to Λ

ΛPΛ−1 = Λ∆−1ΛΛ−1 = Λ∆−1 =
(

∆−1Λ
)†

= P†. (5.62)

Using this relation, if Λ is definite positive then we can define the pseudo-hermitian

matrix Ω = Λ−1/2P†Λ1/2 which is similar to P

P = Λ−1P†Λ = Λ−1/2ΩΛ1/2. (5.63)

Consequently, as Ω has real eigenvalues due to its hermiticity, so has P. In other words,

it means that the excitation and de-excitation energies are real if Λ is definite positive.

5.6.3 Adiabatic local-density approximation

Even if the adiabatic approximation already simplifies greatly the determination of the

exchange-correlation kernel, further approximations are still required as it was the case

for ground-state DFT. If the local-density approximation is used for the ground-state

functional, this then gives rise the adiabatic local-density approximation (ALDA) where

the kernel is not only local in time but also in space

fHxc(x,x
′, ω)

Adiabatic−−−−−−→
Approx.

fHxc(x,x
′) =

δ2EHxc[n]

δn(x)δn(x′)

∣

∣

∣

∣

n0

Local Density−−−−−−−−−→
Approx.

fHxc(x)δ(r− r′). (5.64)

Semi-local and hybrid approximations can also be used instead of the LDA one in a

similar way. In any case, the approximation on the kernel remains drastic and leads to

a number of deficiencies which will be discussed in the next section together with some

possible solutions.

5.7 Known deficiencies and remedies

The usual adiabatic (semi)-local approximations usually give reasonable results for the

low-lying (valence) excitation energies with a mean absolute error of 0.3-0.4 eV [27] but

break down for Rydberg excitations or when charge transfer or multiple excitations are

involved [28]. In the following, the origin of these deficiencies is briefly analyzed together

with how range separation can help in these matters.

5.7.1 Main deficiencies

Rydberg excitations

The first shortcoming encountered in TDDFT concerns the Rydberg excitation ener-

gies. As these states are high in energy, they are particularly sensible to the asymptotic

behavior of the potential. In Section 1.6, we mentioned that the LDA potential de-

cays exponentially while the exact exchange-correlation potential should decays as −1/r.
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TDDFT inherits from this flaw of the potential which leads to a strong underestimation

of the Rydberg excitation energies [29, 30]. This can be circumvented by a correction

of the asymptotic behavior of the potential [31–34] or with the hybrid approximations

where a fraction α of the HF exchange potential is present. The potential then decays

as −α/r which, even if not exact, is still better than an exponential decay [35]. The

long-range corrected functionals have, on the other hand, an exact asymptotic behavior

as will be detailed in the next section.

Charge-transfer excitations

Another deficiency of TDDFT in the (semi)-local approximations is their inability to

describe excitations with a charge-transfer character [23, 36–38]. In such excitations,

the charge moves spatially from the donor (D) to the acceptor (A) which can be either

two parts of the same molecule or two separated entities. For an initial neutral system,

where the donor and the acceptor are separated by a large distance R, the excitation

energy is given by the difference between the ionization potential of the donor EIP and the

electronic affinity of the acceptor EEA plus the electrostatic interaction energy between

the two fragments which are now charged

ω(R) −−−−→
R→∞

EIP − EEA − 1

R
. (5.65)

In TDDFT, however, within (semi-)local approximations, the overlap between the two

main contributing orbitals exponentially vanishes and therefore the kernel contribution

goes to 0. The excitation energy reduces then to the bare difference between the Kohn-

Sham orbital energies εA− εD which explains why the charge transfer is usually strongly

underestimated with LDA or GGA functionals as their HOMO-LUMO gap is too low.

To solve this problem, non-local exchange needs to be introduced. Hybrid approxima-

tions [35, 39] therefore behave much better and so do range-separated ones [40–42].

Double excitations

Another main problem encountered in TDDFT concerns the treatment of multiple ex-

citations. One could think that these excitations are very high in energies and are of no

interest when one wants only the lowest part of the spectrum. However, in some cases,

they play an important role as for example in linear polyenes [43–45], during the disso-

ciation of molecules (for instance the dihydrogen molecule [46]) or for radicals [47] and

are completely missed in adiabatic TDDFT [48, 49]. This deficiency originates from the

adiabatic approximation which turns the non-linear problem given in Equation (5.44)

into a linear one. This implies that the number of solutions is exactly equals to the

size of the matrix and that only excitations originating from single excitations in the

KS system are described. Large efforts are made to circumvent the adiabatic approx-

imation and at least treat double excitations. Several proposals can be found in the
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literature for the treatment of molecular double excitations. One of them is dressed

TDDFT [25, 43, 50–52] where a frequency-dependent kernel is build manually in a small

subspace to describe the case where a double excitation mixes with a single one and is

well separated from the others. However, this method is valid only in the limit of a weak

electron-electron interaction and one need to know a priori where the double excitation

is missing and to build the kernel explicitly for this particular excitation. Gritsenko et

al [53] also proposed a non-adiabatic treatment of the double excitations based on the

common energy denominator approximation (CEDA) [54, 55]. As the complete manifold

of excited states is included in this kernel, it can be seen as an extension of the dressed

TDDFT kernel.

Outside of the TDDFT framework (without talking of wave-function methods such as

EOM-CCSD), other solutions are provided by many-body perturbation theory as for in-

stance by the extended algebraic diagrammatic construction (ADC) [44, 56], by Green’s

function based methods [57–59] or propagator-based methods such as SOPPA [60–64].

5.7.2 Range-separated methods

The success of range-separated functionals for ground-state calculations, due in particu-

lar to the inclusion of long-range Hartree-Fock exchange [65], lead to their extension to

the time-dependent scheme in the case where range separation is done only on the ex-

change functional (LC methods). Starting from Equation (1.69), Tawada et al. proposed

the LC-TDDFT method [40], where the LC kernel is given by

fµHxc,LC = fH + f lr,µx,HF + f sr,µx + fc, (5.66)

where fH and fc are the usual Hartree and correlation kernels, and where the exchange

kernel has been divided in a short-range part f sr,µx treated by DFT and o long-range

part f lr,µx,HF treated in HF. They proposed three functionals, LC-BOP, LC-PBEOP and

LC-BLYP starting respectively from the pure functionals BOP [66, 67], PBEOP [68]

and BLYP [69]. It was also explored by Yanai et al [70] which proposed the Coulomb-

attenuating B3LYP (CAM-B3LYP) method and by Vydrov and Scuseria [71] who de-

rived the functional LC-ωPBE starting from PBE. Head-Gordon and its collaborators

proposed the ωB97 functionals [22, 72, 73] and extended it to double hybrid func-

tionals [74]. A review of the behavior of these functionals is given in [75]. All these

functionals are able to cope with the Rydberg and charge-transfer problems, however

they still do not describe multiple excitations and may suffer from triplet instabilities

because of the inclusion of the HF exchange.

5.8 Conclusion

In this chapter, we have briefly reviewed the TDDFT formalism and its successes and

shortcomings when applied in the adiabatic (semi-)local approximation. Range separa-
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tion of the exchange kernel is already able to make up for most of these shortcomings

but the treatment of double- or higher-order excitations remains problematic. In the

next chapter, we propose to extend the range separation to the correlation kernel in

the same fashion as it is done in ground-state DFT within the RSH scheme. This does

not solve the problem of double excitations but lays the appropriate framework for the

perturbative addition of a long-range frequency-dependent correlation kernel as will be

show in the last part of this thesis.
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Chapter 6

Electronic excitations from a

linear-response range-separated

hybrid scheme

This chapter is the subject of a publication in Molecular Physics (2013), 111, Pp.

1219–1234. in collaboration with A. Savin and J. Toulouse.

In this chapter, we study linear-response time-dependent density-functional the-
ory (DFT) based on the single-determinant range-separated hybrid (RSH) scheme,
i.e. combining a long-range Hartree-Fock exchange kernel with a short-range DFT
exchange-correlation kernel, for calculating electronic excitation energies of molecular
systems. It is an alternative to the more common long-range correction (LC) scheme
which combines a long-range Hartree-Fock exchange kernel with a short-range DFT
exchange kernel and a standard full-range DFT correlation kernel. We discuss the
local-density approximation (LDA) to the short-range exchange and correlation ker-
nels, and assess the performance of the linear-response RSH scheme for singlet →
singlet and singlet → triplet valence and Rydberg excitations in the N2, CO, H2CO,
C2H4, and C6H6 molecules, and for the first charge-transfer excitation in the C2H4-
C2F4 dimer. For these systems, the presence of long-range LDA correlation in the
ground-state calculation and in the linear-response kernel has only a small impact
on the excitation energies and oscillator strengths, so that the RSH method gives
results very similar to the ones given by the LC scheme. Like in the LC scheme,
the introduction of long-range HF exchange in the present method corrects the un-
derestimation of charge-transfer and high-lying Rydberg excitation energies obtained
with standard (semi-)local density-functional approximations, but also leads to un-
derestimated excitation energies to low-lying spin-triplet valence states. This latter
problem is largely cured by the Tamm-Dancoff approximation which leads to a rel-
atively uniform accuracy for all excitation energies. This work thus suggests that
the present linear-response RSH scheme is a reasonable starting approximation for
describing electronic excitation energies, even before adding an explicit treatment of
long-range correlation.
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6.1 Introduction

Range-separated density-functional theory (see, e.g., Ref. [76] and references therein)

constitutes an alternative to standard Kohn-Sham (KS) density-functional theory

(DFT) [77] for ground-state electronic-structure calculations. It consists in combin-

ing wave-function-type approximations for long-range electron-electron interactions with

density-functional approximations for short-range electron-electron interactions, using a

controllable range-separation parameter. For example, in the single-determinant range-

separated hybrid (RSH) scheme [78], the long-range Hartree-Fock (HF) exchange energy

is combined with a short-range exchange-correlation density-functional approximation.

The long-range correlation energy is missing in this scheme, but it can be added in

a second step by many-body perturbation theory for describing van der Waals disper-

sion interactions for instance [78–83]. A simpler approach is the long-range correction

(LC) scheme [65], also called RSHX [84], which consists in applying range separation

on exchange only, i.e. combining the long-range HF exchange energy with a short-range

exchange density-functional approximation and using a standard full-range correlation

density functional. More complicated decompositions of the exchange energy have also

been proposed, such as in the CAM-B3LYP approximation [70].

Range separation is also applied in linear-response time-dependent density-functional

theory (TDDFT) [85] for calculating excitation energies and other response properties.

The first and probably most widely used range-separated TDDFT approach is based

on the LC scheme [40], and involves a long-range HF exchange kernel combined with

a short-range DFT exchange kernel and a standard full-range DFT correlation kernel.

It has also been proposed to use in this scheme an empirically modified correlation

density functional depending on the range-separation parameter [86]. The CAM-B3LYP

scheme and other similar schemes have also been applied in linear-response theory for

calculating excitation energies [70, 72, 87–97]. In all these schemes, the presence of long-

range HF exchange greatly improves Rydberg and charge-transfer excitation energies, in

comparison to time-dependent Kohn-Sham (TDKS) calculations using standard local or

semilocal density-functional approximations in which they are strongly underestimated

(see, e.g., Ref. [28]).

In this chapter, we study a range-separated linear-response TDDFT method based

on the RSH scheme, i.e. combining a long-range HF exchange kernel with a short-range

DFT exchange-correlation kernel with no long-range correlation kernel. The motiva-

tion for this range-separated TDDFT approach is that, as for exchange, the long-range

part of standard correlation density-functional approximations such as the local-density

approximation (LDA) is usually inaccurate [76, 98, 99], so one may as well remove it.

This can be viewed as a first-level approximation before adding a more accurate treat-

ment of long-range correlation, e.g., by linear-response density-matrix functional theory

(DMFT) [100] or linear-response multiconfiguration self-consistent field (MCSCF) the-

ory [101]. These last approaches are capable of describing excited states of double excita-
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tion character, which are out of reach within a single-determinant linear-response scheme

using adiabatic exchange-correlation kernels (except in a spin-flip formulation [25, 102]).

The main goal of this chapter is to test whether the range-separated TDDFT method

based on the RSH scheme is a reasonable starting approximation for calculating excita-

tion energies of molecular systems, even before adding explicit long-range correlations.

For this purpose, we apply the method to singlet → singlet and singlet → triplet valence

and Rydberg excitations in the N2, CO, H2CO, C2H4, and C6H6 molecules, and to the

first charge-transfer (CT) excitation in the C2H4-C2F4 dimer, and compare with the LC

scheme, as well as non-range-separated methods. In particular, we study the effect of

dropping long-range LDA correlation in comparison to the LC scheme.

The chapter is organized as follows. The working equations of the linear-response

RSH scheme are laid down in Section 6.2, and the short-range DFT exchange and cor-

relation kernels are discussed in Section 6.3. After giving computational details in Sec-

tion 6.4, we report and discuss our results in Section 6.5. Section 6.6 summarizes our

conclusions. Technical details are given in Appendix E. Hartree atomic units are as-

sumed throughout unless otherwise indicated.

6.2 Linear-response range-separated hybrid scheme

6.2.1 Ground-state range-separated scheme

In the RSH scheme [78], the ground-state energy is approximated as the following min-

imum over single-determinant wave functions Φ,

Eµ
RSH =min

Φ

{

〈Φ|T̂ + V̂ne|Φ〉+ EH[nΦ] + Elr,µ
x,HF[Φ] + Esr,µ

xc [nΦ,mΦ]
}

, (6.1)

where T̂ is the kinetic energy operator, V̂ne is the external potential operator due to the

electron-nuclei interaction, EH[n] is the Hartree energy density functional,

EH[n] =
1

2

∫

n(r1)n(r2)wee(|r1 − r2|)dr1dr2, (6.2)

with the Coulombic electron-electron interaction wee(|r1 − r2|) = 1/|r1 − r2|, Elr,µ
x,HF[Φ] is

the long-range HF exchange energy

Elr,µ
x,HF[Φ] = −1

2

∫

|〈Φ|n̂1(x1,x2)|Φ〉|2wlr,µ
ee (|r1 − r2|)dx1dx2, (6.3)

with the one-particle density-matrix operator n̂1(x1,x2) and a long-range electron-

electron interaction wlr,µ
ee (|r1−r2|), and Esr,µ

xc [n,m] is the short-range exchange-correlation

energy functional depending on the total density n(r) = n↑(r) + n↓(r) and the (collinear)

spin magnetization density m(r) = n↑(r)− n↓(r), written with the spin densities nσ(r) =

n(x) for the space-spin coordinate x = (r, σ). In this work, the long-range interaction will

be taken as wlr,µ
ee (r) = erf(µr)/r, where the parameter µ can be interpreted as the inverse
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of a smooth “cut-off” radius, but other interactions have also been considered [103–105].

What is neglected in Equation (6.1) is the long-range correlation energy Elr,µ
c , but it can

be added a posteriori by perturbative methods [78–83, 106, 107].

In the LC scheme [65], range separation is applied to the exchange energy only and

the ground-state energy is expressed as

Eµ
LC =min

Φ

{

〈Φ|T̂ + V̂ne|Φ〉+ EH[nΦ] + Elr,µ
x,HF[Φ] + Esr,µ

x [nΦ,mΦ] + Ec[nΦ,mΦ]
}

, (6.4)

where Esr,µ
x [n,m] is the short-range exchange energy functional, and Ec[n,m] is the full-

range correlation energy functional.

6.2.2 Linear-response theory

Just like in standard TDDFT [85], time-dependent linear-response theory applied to the

RSH scheme leads to a familiar Dyson-like equation for the frequency-dependent 4-point

linear response function χ(x1,x2;x
′
1,x

′
2;ω) to a time-dependent perturbation (dropping

the space-spin coordinates for simplicity)

χ−1(ω) = χ−1
0 (ω)− fH − f lr,µx,HF − f sr,µxc , (6.5)

where χ0(ω) is the non-interacting RSH response function, fH is the Hartree kernel,

fH(x1,x2;x
′
1,x

′
2) = wee(|r1 − r2|)δ(x1 − x′

1)δ(x2 − x′
2), (6.6)

f lr,µx,HF is the long-range HF exchange kernel,

f lr,µx,HF(x1,x2;x
′
1,x

′
2) = −wlr,µ

ee (|r1 − r2|)δ(x1 − x′
2)δ(x

′
1 − x2), (6.7)

and f sr,µxc is the short-range exchange-correlation kernel which is frequency independent

in the adiabatic approximation,

f sr,µxc (x1,x2;x
′
1,x

′
2) = f sr,µxc (x1,x2)δ(x1 − x′

1)δ(x2 − x′
2), (6.8)

with the 2-point kernel

f sr,µxc (x1,x2) =
δ2Esr,µ

xc [n,m]

δn(x1)δn(x2)
. (6.9)

Note that a 4-point formalism is required here because of the HF exchange kernel. The

excitation energies are given by the poles of χ(ω) in ω. Working in the basis of the

RSH spin orbitals {φk(x)}, the poles can be found by the pseudo-Hermitian eigenvalue

problem [1]
(

A B

B∗ A∗

)(

Xn

Yn

)

= ωn

(

1 0

0 −1

)(

Xn

Yn

)

, (6.10)
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whose solutions come in pairs: the excitation energy ωn associated with the eigenvec-

tor (Xn,Yn), and the deexcitation energy −ωn associated with (Y∗
n,X

∗
n). The matrix

elements of A and B are

Aia,jb = (εa − εi)δijδab +Kia,jb,

Bia,jb = Kia,bj ,
(6.11)

where i, j and a, b refer to occupied and virtual spin orbitals, respectively, εk is the energy

of the spin orbital k, and K is the coupling matrix accounting for the contributions of

the different kernels,

Kia,jb = 〈aj|f̂H|ib〉+ 〈aj|f̂ lr,µx,HF|ib〉+ 〈aj|f̂ sr,µxc |ib〉
= 〈aj|ŵee|ib〉 − 〈aj|ŵlr,µ

ee |bi〉+ 〈aj|f̂ sr,µxc |ib〉,
(6.12)

where 〈aj|ŵee|ib〉 and 〈aj|ŵlr,µ
ee |bi〉 are the two-electron integrals for the Coulombic and

long-range interactions, respectively, and 〈aj|f̂ sr,µxc |ib〉 are the matrix elements of the

short-range exchange-correlation kernel,

〈aj|f̂ sr,µxc |ib〉 =
∫

φ∗a(x1)φ
∗
j (x2)f

sr,µ
xc (x1,x2)φi(x1)φb(x2)dx1dx2. (6.13)

For real-valued orbitals, and if A+B and A−B are positive definite, Equation (6.10) is

conveniently transformed into a half-size symmetric eigenvalue equation [1]

MZn = ω2
n Zn, (6.14)

with M = (A−B)
1/2

(A+B) (A−B)
1/2 and the normalized eigenvectors Zn =

√
ωn (A−B)

−1/2
(Xn +Yn). The Tamm-Dancoff approximation (TDA) [22] consists in

neglecting the coupling between the excitations and the de-excitations, i.e. setting B = 0.

We note, in passing, that the TDA can also be viewed as a non-self-consistent approxi-

mation to the static (multiplet-sum) ∆SCF method, which identifies the excited states

with stationary points on the ground-state energy surface as a function of the orbital

parameters [24, 25].

The same equations apply identically to the LC scheme except that the short-range

correlation kernel f sr,µc has to be replaced by the full-range one fc [40].

6.2.3 Spin adaptation for closed-shell systems

For spin-restricted closed-shell calculations, Equation (6.14) can be decoupled into two

independent eigenvalue equations for singlet → singlet excitations and for singlet →
triplet excitations, respectively [3, 26, 108] (see Appendix E.1). For simplicity, they will

be referred to as “singlet excitations” and “triplet excitations”. The modifications for

spin adaptation are located in the expression of the coupling matrix K, which becomes,
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for singlet excitations,

1Kia,jb = 2〈aj|ŵee|ib〉 − 〈aj|ŵlr,µ
ee |bi〉+ 2〈aj| 1f̂ sr,µxc |ib〉, (6.15)

and, for triplet excitations,

3Kia,jb = −〈aj|ŵlr,µ
ee |bi〉+ 2〈aj| 3f̂ sr,µxc |ib〉, (6.16)

where the indices i, j, a, b refer now to spatial orbitals and the singlet and triplet short-

range exchange-correlation kernels are

1f sr,µxc (r1, r2) =
δ2Esr,µ

xc [n,m]

δn(r1)δn(r2)
, (6.17)

and
3f sr,µxc (r1, r2) =

δ2Esr,µ
xc [n,m]

δm(r1)δm(r2)
, (6.18)

where the derivatives are taken at zero spin magnetization density, m(r) = 0. Be-

cause the spin-dependent exchange functional Esr,µ
x [n,m] is constructed from the spin-

independent one Esr,µ
x [n] = Esr,µ

x [n,m = 0] via the spin-scaling relation [109], Esr,µ
x [n,m] =

(Esr,µ
x [2n↑] + Esr,µ

x [2n↓]) /2, one can show that the singlet and triplet exchange kernels

are identical, and, for closed-shell systems, can be written with the spin-independent

functional,

f sr,µx (r1, r2) =
1f sr,µx (r1, r2) =

3f sr,µx (r1, r2) =
δ2Esr,µ

x [n]

δn(r1)δn(r2)
. (6.19)

Therefore, contrary to the case of the correlation functional, the dependence on the

spin magnetization density does not need to be considered in practice in the exchange

functional for closed-shell systems.

The oscillator strength fn for state n is zero for a triplet excitation, and it is calculated

with the following formula for a singlet excitation (in the dipole length form) [1]

fn =
4

3

∑

α=x,y,z

(

∑

ia

dα,ia

[

(

1A− 1B
)1/2 1Zn

]

ia

)2

, (6.20)

where dα,ia =
∫

φi(r)rαφa(r)dr is the α-component of the transition dipole moment be-

tween the spatial occupied and virtual orbitals φi(r) and φa(r).

6.3 Short-range adiabatic exchange-correlation kernels

We will consider here the short-range adiabatic exchange and correlation kernels in the

local-density approximation (LDA).
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Figure 6.1 – Second-order derivatives of the full-range (full line) and short-range (µ =

0.4, dashed line) LDA exchange energy density with respect to the density n as functions
of the Wigner-Seitz radius rs.

6.3.1 Exchange kernel

The short-range spin-independent LDA exchange energy functional is written as

Esr,µ
x,LDA[n] =

∫

esr,µx (n(r))dr, (6.21)

where esr,µx (n) = n ǫsr,µx (n) is the short-range energy density defined with the exchange

energy per particle ǫsr,µx (n) of the homogeneous electron gas (HEG) with the short-range

electron-electron interaction wsr,µ
ee = wee − wlr,µ

ee . The analytic expression of ǫsr,µx (n) is

known [104, 110] and is recalled in Appendix E.2.1. The short-range adiabatic LDA

exchange kernel is given by the second-order derivative of the energy density with respect

to the density,

f sr,µx,LDA(r, r
′) =

∂2esr,µx (n(r))

∂n2
δ(r− r′). (6.22)

Just like its full-range LDA counterpart, the short-range exchange LDA kernel is thus

strictly local in space. However, this is here a less drastic approximation than for

the full-range case. Indeed, by using the asymptotic expansion of the exact short-

range spin-independent exchange density functional for µ → ∞ [76, 111], Esr,µ
x [n] =

−π/(4µ2)
∫

n(r)2dr+O
(

1/µ4
)

, one can see that the exact adiabatic short-range exchange
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kernel has the following expansion in 1/µ,

f sr,µx (r, r′) = − π

2µ2
δ(r− r′) +O

(

1

µ4

)

, (6.23)

i.e., in the limit of a very short-range electron-electron interaction, it also becomes

strictly local. More than that, the short-range LDA kernel of Equation (6.22) is exact

for the leading term of Equation (6.23), as shown in Appendix E.2.1.

The short-range LDA exchange kernel for a fixed value of the range-separation

parameter µ = 0.4 is shown in Figure 6.1 as a function of the Wigner-Seitz radius

rs = (3/(4πn))
1/3 and compared with the full-range LDA exchange kernel. The LDA

exchange kernel is always negative, which is a consequence of the concavity of the LDA

exchange energy density curve as a function of the density n. For high enough densities

such that rs ≪ 1/µ, the short-range LDA exchange kernel reduces to the full-range one

(see Appendix E.2.1). For larger values of rs, the short-range LDA exchange kernel is

reduced compared to the full-range one, and, in the low-density limit rs → ∞, it tends

to the finite value of −π/2µ2 while the full-range LDA exchange kernel diverges to −∞.

6.3.2 Correlation kernel

The short-range spin-dependent LDA correlation energy functional is written as

Esr,µ
c,LDA[n,m] =

∫

esr,µc (n(r),m(r))dr, (6.24)

where esr,µc (n,m) = n ǫc(n,m) − n ǫlr,µc (n,m) is the complement short-range correlation

energy density, obtained from the correlation energy per particle of the standard homo-

geneous electron gas (HEG), ǫc(n,m), [112] and the correlation energy per particle of

the HEG with the long-range electron-electron interaction, ǫlr,µc (n,m), as parametrized

from quantum Monte Carlo calculations by Paziani et al. [113]. Its expression is recalled

in Appendix E.2.2. The singlet and triplet short-range adiabatic LDA correlation ker-

nels are local functions given by the second-order derivatives of the energy density with

respect to the density n and the spin magnetization m, respectively,

1f sr,µc,LDA(r, r
′) =

∂2esr,µc (n(r),m(r))

∂n2
δ(r− r′), (6.25)

3f sr,µc,LDA(r, r
′) =

∂2esr,µc (n(r),m(r))

∂m2
δ(r− r′). (6.26)

For closed-shell systems, these kernels need to be evaluated only at zero spin mag-

netization, m = 0. Again, it can be argued that the strictly local form of the LDA

correlation kernels of Equation (6.25) and (6.26) is more appropriate for the short-range

kernels than for the full-range ones. Using the asymptotic expansion of the exact short-

range correlation functional for µ → ∞ [76, 114], Esr,µ
c [n,m] = π/(2µ2)

∫

n2,c(r, r)dr +

2
√
2π/(3µ3)

∫

n2(r, r)dr+O
(

1/µ4
)

, and the total and correlation on-top pair densities in
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Figure 6.2 – Second-order derivatives of the full-range (full line) and short-range (µ =

0.4, dashed line) LDA correlation energy densities with respect to the density n (top) and
to the spin magnetization m (bottom) evaluated at m = 0 as functions of the Wigner-
Seitz radius rs.
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the strong-interaction limit of the adiabatic connection λ→ ∞ (or for fully spin-polarized

systems n = |m|) [115, 116], n2(r, r) → 0 and n2,c(r, r) → −n(r)2/2 + m(r)2/2, it is easy

to show that the leading terms in the expansions of the exact adiabatic short-range cor-

relation kernels for µ → ∞, in the strong-interaction (or low-density) limit, are strictly

local
1f sr,µc (r, r′) −−−−→

λ→∞
− π

2µ2
δ(r− r′) +O

(

1

µ4

)

, (6.27)

3f sr,µc (r, r′) −−−−→
λ→∞

π

2µ2
δ(r− r′) +O

(

1

µ4

)

. (6.28)

The short-range LDA correlation kernels of Equations (6.25) and (6.26), using the

parametrization of Ref. [113], are exact for these leading terms.

The singlet and triplet short-range LDA correlation kernels are plotted in Figure 6.2,

and compared with the full-range LDA correlation kernels. The singlet LDA correlation

kernel is always negative while the triplet LDA correlation kernel is always positive,

reflecting the fact that the LDA correlation energy density is concave when plotted as

a function of the density n and convex when plotted as a function of the spin mag-

netization m. As for the exchange kernels, the singlet and triplet short-range LDA

correlation kernels reduce to the full-range kernels in the high-density limit rs → 0 (see

Appendix E.2.2). In the low-density limit rs → ∞, they tend to the finite values of

∓π/2µ2, while the full-range kernels diverge to ∓∞.

6.4 Computational details

The spin-adapted linear-response RSH scheme with the short-range LDA kernels has

been implemented in a development version of the quantum chemistry program MOL-

PRO [118] for closed-shell systems. The implementation includes as special cases:

standard TDKS with the LDA exchange-correlation functional, and time-dependent

Hartree-Fock (TDHF). The implementation also includes the possibility to perform

linear-response LC calculations (with the full-range LDA correlation functional). Each

calculation is done in two steps: a self-consistent ground-state calculation is first per-

formed with a chosen energy functional, and then a linear-response excited-state calcu-

lation is performed with a chosen kernel and using the previously calculated orbitals.

For compactness, “TD” will be dropped in the names of the methods and “LDA” will

also be omitted in the names as it is the only density functional used here. Therefore,

“KS” will denote a TDKS calculation using the LDA exchange-correlation functional,

“HF” will stand for a TDHF calculation, “RSH” will denote a linear-response RSH calcu-

lation using the short-range LDA exchange-correlation functional, and “LC” will stand

for a linear-response LC calculation using the short-range LDA exchange functional and

the full-range LDA correlation functional. We will call “RSH-TDA” a linear-response

RSH calculation with the Tamm-Dancoff approximation. For all these methods, the

same functional is used for the ground-state energy calculation and the linear-response
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Figure 6.3 – Singlet (a) and triplet (b) excitation energies of N2 (in eV) with respect
to the range-separation parameter µ (in bohr−1) calculated by the linear-response RSH
method with the short-range LDA exchange-correlation functional at the equilibrium
geometry [117] and with the Sadlej+ basis set.
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CHAPTER 6. EXCITATION ENERGIES FROM TDRSH

calculation. In addition, we will call “RSH-fHx” a linear-response RSH calculation

where only the Hartree-exchange part of the RSH kernel is used (no correlation kernel)

but evaluated with regular RSH orbitals (including the short-range correlation energy

functional).

We calculate vertical excitation energies and oscillator strengths of five small

molecules, N2, CO, H2CO, C2H4, and C6H6, which have already been extensively stud-

ied theoretically [28, 29, 40, 61, 119, 120] and experimentally [121–124]. In order to

have unique, comparable references, equation-of-motion coupled-cluster singles doubles

(EOM-CCSD) calculations were done in the same basis with the quantum chemistry

program Gaussian 09 [125]. For each molecule, we report the first 14 excited states

found with the EOM-CCSD method. Following Ref. [1], we define the coefficient of the

(spin-orbital) single excitation i→ a in the wave function of the excited state n to be

cn,ia = Xn,ia + Yn,ia =
1√
ωn

[

(A−B)
1/2

Zn

]

ia
, (6.29)

but other choices for analyzing the eigenvectors are possible, such as defining the weight

of the single excitation i → a to be wn,ia = X2
n,ia − Y 2

n,ia [126]. Each excited state

was thus assigned by looking at its symmetry and the leading orbital contributions

to the excitation. When several excited states of the same symmetry and the same

leading orbital contributions were obtained, the assignment was done by increasing order

of energy. Some assignments for C2H4 and C6H6 were difficult and are explained in

Tables 6.4 and 6.5. The Sadlej basis sets [127, 128] were developed to describe the

polarizability of valence-like states. As the description of Rydberg states requires more

flexibility, they were augmented with more diffuse functions to form the Sadlej+ basis

sets [29] that we use here. The molecules are taken in their experimental geometries [117,

129–131].

The C2H4-C2F4 dimer [36, 40, 132] was studied in its cofacial configuration along

the intermolecular distance coordinate R in the standard 6-31G* basis set. A geometry

optimization was performed during the self-consistent ground-state calculation for each

method. The CT excitation was identified by assigning the molecular orbitals involved in

the excitations either to C2H4 or C2F4, using the visualization program MOLDEN [133].

6.5 Results and discussion

6.5.1 Variation of the RSH excitation energies with the range-

separation parameter

When the range-separation parameter is zero, µ = 0, the long-range HF exchange van-

ishes and the short-range exchange-correlation functional reduces to the usual full-range

one, therefore the RSH method is equivalent to the standard KS method in this limit.

With the LDA functional, linear-response KS gives good results for the low-lying valence
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Figure 6.4 – Mean absolute deviation (MAD) in eV of the first 14 excitation energies
of the N2, CO, H2CO, C2H4 and C6H6 molecules calculated by the linear-response RSH
method with the short-range LDA exchange-correlation functional with respect to the
EOM-CCSD reference as a function of the range-separation parameter µ.

excitation energies but underestimates the high-lying Rydberg excitation energies. This

underestimation is known to be due to the incorrect exponential asymptotic decay of

the LDA exchange potential [29]. When µ increases, long-range HF exchange replaces

LDA exchange and long-range LDA correlation is removed. In the limit µ → +∞, RSH

becomes equivalent to a HF calculation, in which Rydberg excitation energies are usually

better described than in LDA but valence excitation energies can be poorly described,

especially the triplet ones which can be strongly underestimated and can even become

imaginary due to instabilities (A±B in Equation (6.14) are no longer positive definite).

The variation of the first few singlet and triplet RSH excitation energies of N2 with

respect to the range-separation parameter µ is shown in Figure 6.3. The evolution of the

excitation energies is similar for both spin states, however three different trends are seen

for these excitations depending on their valence or Rydberg character and their spatial

symmetry. The excitation energies to the Rydberg excited states (1Σ+
g ,

1Πu,1Σ+
u ,

3Σ+
g ,

3Σ+
u ,

3Πu) which are underestimated in KS show a significant increase with µ for µ & 0.1.

This behavior is quite independent of the spin and spatial symmetry of the state. The

valence excited states (1Πg, 1Σ−
u ,

1∆u, 3Σ+
u ,

3Πg, 3∆u, 3Σ−
u ,

3Πu) which are correctly de-

scribed in KS are less affected by the introduction of long-range HF exchange. However,

we observe two opposite behaviors depending on the orbital character of the excitation:

all the valence Π states (corresponding to σ → π orbital transitions) have excitation
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Figure 6.5 – Singlet (a) and triplet (b) excitation energies of N2, CO, H2CO, C2H4

and C6H6 calculated by linear-response HF and KS (with the LDA functional), by the
linear-response range-separated method RSH (with the short-range LDA functional and
µ = 0.4 bohr−1), as compared with the EOM-CCSD reference calculations.
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energies that slowly increase with µ, while for valence Σ and ∆ states (corresponding to

π → π orbital transitions) the excitation energies decrease with µ. As a consequence, the

ordering of the states changes significantly with µ. One should note that the variation of

the excitation energies with µ have two causes: the variation of the orbital eigenvalues

with µ in the ground-state calculation, and the variation of the kernel with µ in the

linear-response calculation. Both effects can be significant.

The choice of the range-separation parameter µ is important. It has been proposed to

adjust the value of µ for each system by imposing a self-consistent Koopmans’ theorem

condition [41, 134]. This approach is appealing but it has the disadvantage of being

non size-consistent, so we prefer to use a fixed value of µ, independent of the system.

In Figure 6.4, the mean absolute deviation (MAD) of the RSH excitation energies with

respect to the EOM-CCSD reference is plotted as a function of µ for each molecule and

for the total set. The global minimum is obtained around µ ≈ 0.3−0.4 bohr−1. In all the

following, we use a fixed value of µ = 0.4, which is identical or similar to the value used

in other range-separated TDDFT approaches [93, 100, 101]. We note however that the

fact that the minimum of the MAD for C6H6 is around µ = 0.2 shows that the optimal

value of µ can substantially depend on the system. In particular, the presence of a triplet

near-instability favors smaller values of µ.

6.5.2 Accuracy of the RSH excitation energies and oscillator strengths

The excitation energies and oscillator strengths for each method and each molecule

are given in Tables 6.1-6.5. Mean absolute deviations with respect to the EOM-CCSD

reference are also given for the valence, the Rydberg and all the excitation energies. We

also report the position of the ionization threshold for each DFT method, as given by

the opposite of the HOMO orbital energy. The excitation energies for all molecules are

also plotted in Figure 6.5. As expected, KS gives reasonably small errors for the valence

excitation energies (MAD between 0.36 and 0.73 eV) but deteriorates for the Rydberg

ones (MAD between 0.49 and 1.83 eV) which are largely underestimated, as seen in

Figure 6.5. As well known [29], in KS with the LDA functional, the ionization energy

is much too small, resulting in most of the Rydberg states and some of the valence

states being in the continuum above the ionization threshold, and which are thus very

much dependent on the basis set. This problem is absent in HF and range-separated

approaches which correctly push up the ionization threshold. The HF excitation energies

are usually larger than the reference ones except for the first triplet excitation energies

which are much too small or even imaginary because of the HF triplet (near-)instability.

Overall, HF gives relatively large total MADs (between 0.59 and 1.62 eV).

The RSH excitation energies are in general intermediate between KS and HF ones

and in good agreement with the EOM-CCSD ones. The valence and Rydberg excita-

tion energies are treated with a more uniform accuracy (MAD between 0.06 and 0.61

eV). However, the first triplet excitation energies are affected by the HF triplet near-
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instability and can be very underestimated. This effect is particularly important for the

first triplet excitation energy of C2H4 and C6H6 as shown in Tables 6.4 and 6.5. This

underestimation is largely cured by the Tamm-Dancoff approximation, as shown by the

RSH-TDA results. The quality of the other excitation energies is not deteriorated with

this approximation, so that RSH-TDA gives overall smallest MADs than RSH. However,

the oscillator strengths which were relatively good in RSH tend to be overestimated for

excitations to valence states in RSH-TDA. This has been connected with the fact that

the TDA oscillator strengths violate the Thomas-Reiche-Kuhn sum rule. The present

RSH results give thus very much the same trends already observed with other types of

range-separated TDDFT approaches [40, 75, 86, 89, 135].

The first singlet CT excitation energy in the C2H4-C2F4 dimer along the intermolecu-

lar distance coordinate R, for R between 5 and 10 Å (i.e. between 9.45 and 18.90 bohr), is

given in Figure 6.6. This excitation corresponds to an electron transfer from the HOMO

of C2F4 to the LUMO of C2H4. Therefore, its energy must behave asymptotically as

IC2F4
− AC2H4

− 1/R, where IC2F4
is the ionization potential of the tetrafluoroethylene

and AC2H4
is the electron affinity of ethylene. A fit of the form a + b/R was performed

and the fitted parameters are shown in Figure 6.6. The well-known deficiency of KS with

the LDA functional to describe the −1/R dependence of such excitations is observed as

it gives a parameter b close to zero, while HF and RSH both give the expected correct

asymptotic behavior in −1/R thanks to the non-locality of their exchange kernel [36].

6.5.3 Effect of the LDA correlation

Tables 6.1-6.5 also report results obtained with the LC scheme using the short-range

exchange LDA functional and the full-range LDA correlation functional. The comparison

with the RSH results allows one to see the global effect of long-range LDA correlation

in the ground-state calculation and in the linear-response kernel. The RSH and LC

excitation energies are globally quite close to each other, the largest difference being of

0.2 eV for the 3Π Rydberg state of the CO molecule. In most cases, the LC excitation

energies are slightly larger than the RSH ones. In comparison to the RSH scheme,

the LC scheme gives slightly smaller MADs (by 0.01 to 0.08 eV) for valence excitation

energies, but with the exception of CO it gives larger MADs (by 0.07 to 0.09 eV) for

Rydberg excitation energies. The RSH and LC oscillator strengths are quite similar.

This shows that long-range LDA correlation has a quite small effect for the systems and

states considered here, and can be disregarded without much consequence.

The first CT excitation energy in the C2H4-C2F4 dimer obtained with the LC scheme

is also reported in Figure 6.6. Not surprisingly, the RSH and LC curves have the same

−1/R behavior, which is given by the long-range HF exchange kernel, and are essentially

on-top on each other, showing that long-range LDA correlation has almost no effect on

the HOMO and LUMO orbital energies.

To investigate the effect of the short-range LDA correlation kernel, Tables 6.1-6.5
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Figure 6.6 – First charge transfer excitation energy of the C2H4-C2F4 dimer calculated
by linear-response HF and KS (with the LDA functional) and by the linear-response
range-separated methods RSH and LC (with the short-range LDA functional and µ =

0.4 bohr−1) using the 6-31G* basis. A fit of the form a+ b/R was performed. The fitted
parameters a and b are given in atomic units.

also report RSH-fHx results obtained with regular RSH orbitals but no correlation kernel

at all. Removing the short-range LDA correlation kernel tends to yield larger singlet

excitation energies and smaller triplet excitation energies. This is not unexpected since

the singlet LDA correlation kernel is negative and the triplet LDA correlation kernel is

positive, as shown in Figure 6.2. In comparison to the RSH results, RSH-fHx gives quite

similar singlet valence excitation energies and Rydberg excitation energies, but much

lower triplet valence excitation energies (sometimes by as much as 0.5 eV), leading to

significantly larger MADs for valence excitations. The short-range part of the LDA

correlation kernel is thus important and cannot be neglected.

6.6 Conclusion

We have studied a linear-response range-separated scheme, which combines a long-range

HF exchange kernel with a short-range LDA exchange-correlation kernel, for calculating

electronic excitation energies and oscillator strengths of molecular systems. It is a first-

level approximation before adding an explicit treatment of long-range correlation. It

can also been seen as an alternative to the widely used linear-response LC scheme which

combines a long-range HF exchange kernel with a short-range DFT exchange functional
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and a full-range DFT correlation functional.

Tests on the N2, CO, H2CO, C2H4, and C6H6 molecules have shown that a reason-

able value for the range-separation parameter is µ = 0.4 bohr−1, which is consistent with

what was previously reported in the literature for other types of range-separated TDDFT

methods. Just like in the LC scheme, the introduction of long-range HF exchange in the

present method corrects the well-known underestimation of high-lying Rydberg excita-

tion energies of standard TDDFT using (semi)local density-functional approximations,

but also leads to underestimated excitation energies to low-lying spin-triplet valence

states. This latter problem is known to be associated with the presence of HF triplet

near-instabilities and is largely cured by the Tamm-Dancoff approximation which leads

to a relatively uniform accuracy for all excitation energies, but possibly at the cost of

deteriorating the oscillator strengths. As expected, tests on the first CT excitation en-

ergy in the C2H4-C2F4 have shown that the present range-separated TDDFT method

also correctly describe this kind of excitations.

For the systems and states considered here the presence of long-range LDA correla-

tion in the ground-state calculation and in the linear-response kernel has a quite small

effect, so that the present method gives results very similar to the ones given by the

LC scheme. Long-range LDA correlation can therefore be disregarded. In contrast,

the short-range LDA correlation kernel is important for singlet → triplet valence ex-

citation energies and cannot be neglected. This work thus suggests that the present

range-separated TDDFT scheme is a reasonable starting approximation for describing

electronic excitation energies. The next step of this work is then to add to the present

method an explicit frequency-dependent long-range correlation kernel derived from per-

turbation theory, e.g. in the spirit of Refs. [52, 57], which would add the possibility of

describing double excitations.
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State Transition KS RSH RSH-TDA LC RSH-fHx HF EOM-CCSD

Valence excitation energies (eV)
3Σ+

u 1πu → 1πg 7.87 7.19 7.63 7.31 6.65 3.47 7.72
3Πg 3σg → 1πg 7.54 7.84 7.90 7.88 7.67 7.62 8.16
3∆u 1πu → 1πg 8.82 8.26 8.45 8.31 8.03 5.86 9.07
1Πg 3σg → 1πg 9.05 9.43 9.57 9.43 9.47 9.77 9.55
3Σ−

u 1πu → 1πg 9.65 9.23 9.26 9.22 9.23 7.94 10.00
1Σ−

u 1πu → 1πg 9.65 9.23 9.26 9.22 9.23 7.94 10.24
1∆u 1πu → 1πg 10.22 9.90 9.91 9.90 9.95 8.78 10.66
3Πu 2σu → 1πg 10.36 10.77 10.86 10.82 10.53 11.28 11.36

Rydberg excitation energies (eV)
3Σ+

g 3σg → 4σg 10.28 11.78 11.79 11.94 11.73 13.05 11.74
1Σ+

g 3σg → 4σg 10.39 12.26 12.29 12.38 12.26 13.98 12.15
3Σ+

u 3σg → 3σu 10.62 12.63 12.64 12.87 12.59 14.16 12.70
3Πu 3σg → 2πu 10.99 12.62 12.62 12.83 12.59 14.56 12.71
1Πu 3σg → 2πu 10.98 12.74 12.74 12.87 12.75 13.21 12.77
1Σ+

u 3σg → 3σu 10.62 12.76 12.77 12.89 12.78 14.00 12.82

Ionization threshold: −ǫHOMO (eV)

10.38 15.34 15.34 15.76 15.34 16.74

MAD of excitation energies with respect to EOM-CCSD (eV)

Valence 0.49 0.61 0.49 0.58 0.75 1.82 -
Rydberg 1.83 0.06 0.07 0.15 0.07 1.35 -
Total 1.06 0.38 0.31 0.40 0.46 1.62 -

Oscillator strengths (×10−2)
1Πu 3σg → 2πu 2.41 9.49 9.42 12.77 9.00 8.42 8.51
1Σ+

u 3σg → 3σu 1.06 21.11 19.17 27.59 19.94 73.31 17.36
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State Transition KS RSH RSH-TDA LC RSH-fHx HF EOM-CCSD

Valence excitation energies (eV)
3Π 5a1(σ) → 2e1(π

∗) 5.95 5.95 6.10 6.06 5.62 5.28 6.45
3Σ+ 1e1(π) → 2e1(π

∗) 8.38 8.15 8.43 8.22 7.72 6.33 8.42
1Π 5a1(σ) → 2e1(π

∗) 8.18 8.49 8.73 8.49 8.55 8.80 8.76
3∆ 1e1(π) → 2e1(π

∗) 9.16 8.99 9.11 9.02 8.80 7.87 9.39
3Σ− 1e1(π) → 2e1(π

∗) 9.84 9.77 9.79 9.75 9.77 9.37 9.97
1Σ− 1e1(π) → 2e1(π

∗) 9.84 9.77 9.79 9.75 9.77 9.37 10.19
1∆ 1e1(π) → 2e1(π

∗) 10.31 10.31 10.31 10.29 10.35 9.96 10.31
3Π 4a1(σ) → 2e1(π

∗) 11.40 12.05 12.10 12.05 11.91 13.05 12.49

Rydberg excitation energies (eV)
3Σ+ 5a1(σ) → 6a1(σ) 9.55 10.55 10.57 10.72 10.46 11.07 10.60
1Σ+ 5a1(σ) → 6a1(σ) 9.93 11.32 11.38 11.36 11.34 12.23 11.15
3Σ+ 5a1(σ) → 7a1(σ) 10.26 11.34 11.35 11.51 11.29 12.40 11.42
1Σ+ 5a1(σ) → 7a1(σ) 10.47 11.58 11.59 11.63 11.60 12.78 11.64
3Π 5a1(σ) → 3e1(π) 10.39 11.53 11.54 11.73 11.49 12.52 11.66
1Π 5a1(σ) → 3e1(π) 10.48 11.72 11.73 11.81 11.73 12.87 11.84

Ionization threshold: −ǫHOMO (eV)

9.12 13.83 13.83 14.27 13.83 15.11

MAD of excitation energies with respect to the EOM-CCSD calculation (eV)

Valence 0.36 0.31 0.20 0.29 0.45 0.89 -
Rydberg 1.21 0.10 0.10 0.09 0.13 0.92 -
Total 0.73 0.22 0.16 0.20 0.31 0.91 -

Oscillator strengths (×10−2)
1Π 5a1(σ) → 2e1(π

∗) 8.69 8.64 11.47 8.73 8.49 8.55 8.66
1Σ+ 5a1(σ) → 6a1(σ) 1.84 4.26 4.27 3.70 3.85 10.58 0.58
1Σ+ 5a1(σ) → 7a1(σ) 12.53 13.73 14.39 15.86 13.73 9.39 20.71
1Π 5a1(σ) → 3e1(π) 2.71 4.72 4.45 5.45 4.58 5.14 4.94
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State Transition KS RSH RSH-TDA LC RSH-fHx HF EOM-CCSD

Valence excitation energies (eV)
3A2 2b2(n) → 2b1(π

∗) 3.06 3.17 3.22 3.16 3.08 3.44 3.56
1A2 2b2(n) → 2b1(π

∗) 3.67 3.84 3.88 3.82 3.86 4.41 4.03
3A1 1b1(π) → 2b1(π

∗) 6.22 5.65 6.01 5.74 5.25 2.15 6.06
3B1 5a1(σ) → 2b1(π

∗) 7.74 8.11 8.16 8.11 7.99 8.19 8.54

Rydberg excitation energies (eV)
3B2 2b2(n) → 6a1(σ) 5.84 7.06 7.07 7.17 7.01 8.09 6.83
1B2 2b2(n) → 6a1(σ) 5.92 7.26 7.27 7.30 7.28 8.55 7.00
3B2 2b2(n) → 7a1(σ) 6.96 7.91 7.92 7.99 7.86 8.98 7.73
3A1 2b2(n) → 3b2(σ) 6.73 8.01 8.01 8.17 7.96 9.19 7.87
1B2 2b2(n) → 7a1(σ) 7.04 8.15 8.16 8.17 8.17 9.39 7.93
1A1 2b2(n) → 3b2(σ) 6.77 8.18 8.19 8.27 8.19 9.28 7.99
1A2 2b2(n) → 3b1(π) 7.55 8.58 8.58 8.67 8.58 10.04 8.45
3A2 2b2(n) → 3b1(π) 7.58 8.57 8.57 8.70 8.56 9.84 8.47
3B2 2b2(n) → 8a1(σ) 7.97 9.12 9.14 9.24 9.06 10.24 8.97
1B2 2b2(n) → 8a1(σ) 8.17 9.42 9.44 9.49 9.44 10.84 9.27

Ionization threshold: −ǫHOMO (eV)

6.30 10.63 10.63 11.06 10.63 12.04

MAD of excitation energies with respect to EOM-CCSD (eV)

Valence 0.46 0.36 0.23 0.34 0.50 1.19 -
Rydberg 1.00 0.18 0.19 0.26 0.16 1.39 -
Total 0.84 0.23 0.20 0.29 0.26 1.34 -

Oscillator strengths (×10−2)
1B2 2b2(n) → 6a1(σ) 3.13 1.77 1.91 1.88 1.69 2.99 2.15
1B2 2b2(n) → 7a1(σ) 2.05 4.58 4.77 5.04 4.47 4.46 4.12
1A1 2b2(n) → 3b2(σ) 4.34 5.35 5.82 6.07 5.18 21.31 5.70
1B2 2b2(n) → 8a1(σ) 4.27 4.01 4.45 4.08 3.88 6.65 4.22
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State Transition KS RSH RSH-TDA LC RSH-fHx HF EOM-CCSD

Valence excitation energies (eV)
3B1u 1b3u(π) → 1b2g(π

∗) 4.62 3.78 4.24 3.92 4.01 0.16 4.41
1B1u 1b3u(π) → 1b2g(π

∗) 7.45 7.60 8.07 7.59 8.14 7.35 8.00
3B1g 1b3g(σ) → 1b2g(π

∗) 7.18 8.03 8.04 8.15 8.02 8.36 8.21
1B1g 1b3g(σ) → 1b2g(π

∗)(a) 7.47 8.15 8.17 8.22 8.18 9.36 8.58

Rydberg excitation energies (eV)
3B3u 1b3u(π) → 4a1g(σ) 6.58 7.32 7.33 7.44 7.30 6.87 7.16
1B3u 1b3u(π) → 4a1g(σ) 6.65 7.49 7.49 7.54 7.50 7.13 7.30
3B1g 1b3u(π) → 2b2u(σ) 6.97 7.51 7.54 7.50 7.47 7.63 7.91
3B2g 1b3u(π) → 3b1u(σ) 7.10 8.16 8.17 8.29 8.15 7.75 7.93
1B1g 1b3u(π) → 2b2u(σ)

(b) 7.19 8.04 8.05 8.02 8.07 7.74 7.97
1B2g 1b3u(π) → 3b1u(σ) 7.15 8.27 8.27 8.38 8.28 7.91 8.01
3Ag 1b3u(π) → 2b3u(π) 8.03 8.55 8.56 8.76 8.51 7.97 8.48
1Ag 1b3u(π) → 2b3u(π) 8.27 8.95 8.99 9.02 9.01 8.57 8.78
3B3u 1b3u(π) → 5a1g(σ) 8.26 9.08 9.09 9.20 9.05 8.71 9.00
1B3u 1b3u(π) → 5a1g(σ) 8.28 9.22 9.23 9.30 9.24 8.92 9.07

Ionization threshold: −ǫHOMO (eV)

6.89 10.61 10.61 11.07 10.61 10.23

MAD of excitation energies with respect to EOM-CCSD (eV)

Valence 0.73 0.41 0.20 0.33 0.28 1.46 -
Rydberg 0.71 0.18 0.19 0.27 0.18 0.24 -
Total 0.72 0.24 0.19 0.29 0.21 0.59 -

Oscillator strengths (×10−2)
1B1u 1b3u(π) → 1b2g(π

∗) 30.34 35.42 49.11 35.77 35.10 39.99 36.29
1B3u 1b3u(π) → 4a1g(σ) 6.69 7.64 7.88 8.22 7.38 9.08 8.16
1B3u 1b3u(π) → 5a1g(σ) 0.08 1.26 1.25 2.07 1.14 0.63 0.61
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6.6.
C
O
N
C
L
U
S
IO

N

State Transition KS RSH RSH-TDA LC RSH-fHx HF EOM-CCSD

Valence excitation energies (eV)
3B1u 1e1g(π) → 1e2u(π

∗) 4.35 3.37 4.06 3.49 2.88 - 3.96
3E1u 1e1g(π) → 1e2u(π

∗) 4.69 4.81 4.85 4.84 4.69 4.68 4.90
1B2u 1e1g(π) → 1e2u(π

∗) 5.20 5.45 5.56 5.45 5.47 5.78 5.15
3B2u 1e1g(π) → 1e2u(π

∗) 4.94 5.02 5.20 5.05 4.95 5.02 5.78
1B1u 1e1g(π) → 1e2u(π

∗) 5.97 6.25 6.49 6.24 6.29 5.84 6.52
1E1u 1e1g(π) → 1e2u(π

∗) 6.80 7.14 7.65 7.13 7.16 7.34 7.30

Rydberg excitation energies (eV)
3E1g 1e1g(π) → 4a1g(σ) 6.01 7.00 7.00 7.10 7.00 6.46 6.40
1E1g 1e1g(π) → 4a1g(σ) 6.03 7.08 7.08 7.14 7.09 6.59 6.46
3A2u 1e1g(π) → 4e1u(σ) 6.52 7.43 7.43 7.56 7.43 6.87 6.92
1A2u 1e1g(π) → 4e1u(σ) 6.54 7.53 7.53 7.63 7.53 7.01 7.00
3E2u 1e1g(π) → 4e1u(σ) 6.54 7.68 7.68 7.83 7.68 7.17 7.06
1E2u 1e1g(π) → 4e1u(σ) 6.55 7.71 7.71 7.84 7.71 7.21 7.08
1A1u 1e1g(π) → 4e1u(σ) 6.59 7.90 7.90 8.05 7.90 7.43 7.18
3A1u 1e1g(π) → 4e1u(σ) 6.59 7.90 7.90 8.05 7.90 7.43 7.19

Ionization threshold: −ǫHOMO (eV)

6.50 9.72 9.72 10.18 9.72 9.15

MAD of excitation energies with respect to EOM-CCSD (eV)

Valence 0.39 0.32 0.22 0.29 0.43 0.93 -
Rydberg 0.49 0.61 0.62 0.74 0.62 0.12 -
Total 0.45 0.49 0.45 0.55 0.54 0.47 -

Oscillator strengths (×10−2)
1E1u 1e1g(π) → 1e2u(π

∗) 55.78 62.74 91.09 63.00 62.42 71.49 66.41
1A2u 1e1g(π) → 4e1u(σ) 2.11 7.10 7.44 8.27 6.87 7.69 7.04
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[84] I. C. Gerber and J. G. Ángyán. 2005. Chem. Phys. Lett. 415. Pp. 100–105.

[85] E. K. U. Gross and W. Kohn. 1985. Phys. Rev. Lett. 55. Pp. 2850–2852.

[86] E. Livshits and R. Baer. 2007. Phys. Chem. Chem. Phys. 9. Pp. 2932–41.

[87] T. Yanai, R. J. Harrison, and N. C. Handy. 2005. Mol. Phys. 103. Pp. 413–424.

[88] M. J. G. Peach, T. Helgaker, P. Saλek, et al. 2006. Phys. Chem. Chem. Phys. 8.

Pp. 558–62.

[89] M. J. G. Peach, A. J. Cohen, and D. J. Tozer. 2006. Phys. Chem. Chem. Phys.

8. Pp. 4543–9.

[90] A. W. Lange, M. A. Rohrdanz, and J. M. Herbert. 2008. J. Phys. Chem. B. 112.

Pp. 6304–8.

[91] M. A. Rohrdanz and J. M. Herbert. 2008. J. Chem. Phys. 129. P. 034107.

[92] Y. Akinaga and S. Ten-no. 2008. Chem. Phys. Lett. 462. Pp. 348–351.

[93] M. A. Rohrdanz, K. M. Martins, and J. M. Herbert. 2009. J. Chem. Phys. 130.

P. 054112.

[94] Y. Akinaga and S. Ten-no. 2009. Int. J. Quantum Chem. 109. P. 1905.

[95] R. Peverati and D. G. Truhlar. 2011. J. Phys. Chem. Lett. 2. Pp. 2810–2817.

[96] K. A. Nguyen, P. N. Day, and R. Pachter. 2011. J. Chem. Phys. 135. P. 074109.

[97] Y.-S. Lin, C.-W. Tsai, G.-D. Li, and J.-D. Chai. 2012. J. Chem. Phys. 136.

P. 154109.

138



BIBLIOGRAPHY

[98] J. Toulouse, F. Colonna, and A. Savin. 2005. J. Chem. Phys. 122. P. 14110.

[99] J. Toulouse, F. F. Colonna, and A. Savin. 2005. Mol. Phys. 103. P. 2725.

[100] K. Pernal. 2012. J. Chem. Phys. 136. P. 184105.

[101] E. Fromager, S. Knecht, and H. J. A. Jensen. 2013. J. Chem. Phys. 138. P. 084101.

[102] F. Wang and T. Ziegler. 2004. J. Chem. Phys. 121. Pp. 12191–6.

[103] A. Savin and H.-J. Flad. 1995. Int. J. Quantum Chem. 56. Pp. 327–332.

[104] A. Savin. “On degeneracy, near-degeneracy and density functional theory”. In:

Recent Dev. Appl. Mod. Density Funct. Theory. Ed. by J.M. Seminario. Amster-

dam: Elsevier, 1996, p. 327.

[105] R. Baer and D. Neuhauser. 2005. Phys. Rev. Lett. 94. P. 43002.

[106] E. Fromager and H. J. A. Jensen. 2008. Phys. Rev. A. 78. P. 022504.

[107] J. Paier, B. G. Janesko, T. M. Henderson, et al. 2010. J. Chem. Phys. 132.

P. 094103.

[108] S. van Gisbergen, J. Snijders, and E. Baerends. 1999. Comput. Phys. Commun.

118. Pp. 119–138.

[109] G. Oliver and J. Perdew. 1979. Phys. Rev. A. 20. P. 397.

[110] J. Toulouse, A. Savin, and H.-J. Flad. 2004. Int. J. Quantum Chem. 100. P. 1047.

[111] P. Gill and R. Adamson. 1996. Chem. Phys. Lett. 2614.

[112] J. P. Perdew and Y. Wang. 1992. Phys. Rev. B. 45. Pp. 13244–13249.

[113] S. Paziani, S. Moroni, P. Gori-Giorgi, and G. Bachelet. 2006. Phys. Rev. B. 73.

P. 155111.

[114] P. Gori-Giorgi and A. Savin. 2006. Phys. Rev. A. 73. P. 032506.

[115] K. Burke, J. P. Perdew, and M. Ernzerhof. 1998. J. Chem. Phys. 109. P. 3760.

[116] P. Gori-Giorgi, M. Seidl, and A. Savin. 2008. Phys. Chem. Chem. Phys. 10.

P. 3440.

[117] K.-P. P. Huber and G. Herzberg. Molecular Spectra and Molecular Structure -

IV. Constants of Diatomic Molecules. New York: Van Nostrand Reinhold, 1979.

[118] H.-J. Werner, P. J. Knowles, G. Knizia, et al. MOLPRO, version 2012.1, a pack-

age of ab initio programs. Cardiff, UK, 2012.

[119] O. Parisel and Y. Ellinger. 1996. Chem. Phys. 205. Pp. 323–349.

[120] L. Serrano-Andrés, M. Merchán, I. Nebot-Gil, et al. 1993. J. Chem. Phys. 98.

Pp. 3151–3162.

[121] D. Wilden, P. Hicks, and J. Comer. 1979. J. Phys. B. 1579.

[122] D. J. Clouthier and D. A. Ramsay. 1983. Annu. Rev. Phys. Chem. 34. Pp. 31–58.

[123] S. Taylor, D. G. Wilden, and J. Comer. 1982. Chem. Phys. 70. Pp. 291–298.

139



BIBLIOGRAPHY

[124] C. R. Lessard and D. C. Moule. 1977. J. Chem. Phys. 66. P. 3908.

[125] M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al. Gaussian 09 Revision A.1.

[126] F. Furche and D. Rappoport. “Density functional methods for excited states:

equilibrium structure and electronic spectra”. In: Comput. Photochem. Ed. by

M. Olivucci. Theoretical and Computational Chemistry, Vol. 16. Amsterdam:

Elsevier, 2005, pp. 93–128.

[127] A. J. Sadlej. 1988. Collect. Czechoslov. Chem. Commun. 53. Pp. 1995–2016.

[128] A. J. Sadlej and M. Urban. 1991. J. Mol. Struct. THEOCHEM. 234. Pp. 147–171.

[129] A. Le Floch. 1991. Mol. Phys. 72. Pp. 133–144.

[130] L. V. Gurvich, I. V. Veyts, and C. B. Alcock. Thermodynamic Properties of

Individual Substances, Fouth Edition. Hemisphere Pub. Co., New York, 1989.

[131] G. Herzberg. Molecular spectroscopy and molecular structure; Electronic spectra

end electronic structure of polyatomic molecules, vol. III. New York: van Nostrand

Reinhold, 1966.

[132] N. Mardirossian, J. A. Parkhill, and M. Head-Gordon. 2011. Phys. Chem. Chem.

Phys. 13. P. 19325.

[133] G. Schaftenaar and J. H. Noordik. Molden: a pre- and post-processing program

for molecular and electronic structures. 2000.

[134] T. Stein, L. Kronik, and R. Baer. 2009. J. Chem. Phys. 131. P. 244119.

[135] M. J. G. Peach and D. J. Tozer. 2012. J. Phys. Chem. A. 116. P. 9783.

[136] S. Hamel, M. E. Casida, and D. R. Salahub. 2002. J. Chem. Phys. 116. P. 8276.

140



Part III

Excitation energies from Green’s

function methods





Chapter 7

Theoretical background on

Green’s function methods

An alternative approach to time-dependent density-functional theory (TDDFT) to
compute electronic excitation energies is provided by many-body perturbation the-
ory which is widely used in the condensed-matter physics community. One main
advantage of this approach is that it is in principle able to describe double excita-
tions which are absent in TDDFT within the usual adiabatic approximation, and
that its formalism is close to the TDDFT one. In this chapter, we study its trans-
fer from solids to finite molecular systems where the equations need to be projected
onto a gaussian spin-orbital basis set, and where the validity of the approximations
made in physics for solids has to be questioned. We introduce here the concepts
of quasiparticle and of Green’s functions on which is based this theory. We then
recall the working equations of many-body perturbation theory for the one-particle
case (Dyson equation) and the two-particle case (Bethe-Salpeter equation) and intro-
duce the self-energy and Bethe-Salpeter kernel which are the key quantities of this
method. The equations are derived in a four-point formalism in order to prepare for
their applications to finite molecular systems and the correspondence with Feynman
diagrams is made along the derivation. We then recall Hedin’s equations which pro-
vide a set of five coupled equations which should in principle allows one to calculate
the self-energy.

7.1 Introduction

Time-dependent density-functional theory (TDDFT) [1] within the linear-response for-

malism [2–4] is nowadays the most widely used approach to the calculation of electronic

excitation energies of molecules and solids. Applied within the adiabatic approximation

and with the usual local or semilocal density functionals, TDDFT gives indeed in many

cases excitation energies with reasonable accuracy and low computational cost. However,

several serious limitations of these approximations are known, e.g. for molecules: too low
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charge-transfer excitation energies [5], lack of double excitations [6], and wrong behavior

of the excited-state surface along a bond-breaking coordinate (see, e.g., Ref. [7]). Several

remedies to these problems are actively being explored, including: long-range corrected

TDDFT [8, 9] which improves charge-transfer excitation energies, dressed TDDFT [6,

10, 11] which includes double excitations, and time-dependent density-matrix functional

theory (TDDMFT) [12–16] which tries to address all these problems.

In the condensed-matter physics community, the Bethe-Salpeter equation (BSE) ap-

plied within the GW approximation (see, e.g., Refs. [17–19]) is often considered as the

most successful approach to overcome the limitations of TDDFT. Although it has been

often used to describe excitons (bound electron-hole pair) in periodic systems, it is also

increasingly applied to calculations of excitation energies in finite molecular systems [20–

34]. In particular, the BSE approach is believed to give accurate charge-transfer exci-

tation energies in molecules [29, 31], and when used with a frequency-dependent ker-

nel it is in principle capable of describing double excitations [35, 36]. A second-order

Bethe-Salpeter kernel was recently tested by Zhang et al [37] within the Tamm-Dancoff

approximation, in a perturbative approach.

We start by giving a brief review of Green’s function many-body theory for calcu-

lating excitation energies. For more details, see e.g. Refs. [17, 19, 38]. The concepts of

one-particle and two-particle Green’s functions are introduced in Sections 7.2 and 7.3.

Their equations of motion, namely the Dyson and Bethe-Salpeter equations are derived

in Sections 7.4 and 7.5. These equations involve the exchange-correlation self-energy

as a main ingredient which calculation is possible by solving the coupled set of Hedin’s

equations as detailed in Section 7.6.

7.2 One-particle Green’s function

Let |N〉 be the normalized ground-state wave function for a system of N electrons de-

scribed by the Hamiltonian Ĥ. The time-ordered one-particle equilibrium Green’s func-

tion at zero temperature is defined as

iG(1, 2) = 〈N |T̂ [Ψ̂(1)Ψ̂†(2)]|N〉
= θ(t1 − t2)〈N |Ψ̂(1)Ψ̂†(2)|N〉 − θ(t2 − t1)〈N |Ψ̂†(2)Ψ̂(1)|N〉.

(7.1)

Index 1 stands for space, spin and time coordinates (r1, σ1, t1) = (x1, t1). T̂ is the

Wick time-ordering operator which orders the operators with larger times on the left

and θ is the Heaviside step function. The whole time-dependence is contained in

Ψ̂(1) = eiĤt1Ψ̂(x1)e
−iĤt1 and Ψ̂†(2) = eiĤt2Ψ̂†(x2)e

−iĤt2 , the annihilation and creation

field operators in the Heisenberg representation which were introduced in Section 5.2.

If t1 is greater than t2, an electron is added at time t2 at the position x2 to the

system in its ground state. This extra negative charge interacts with its environnement

and create a depletion in the charge density around it to form a quasi-electron which
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x2, t2

Quasi-electron

x1, t1

2

1

x1, t1

Quasi-hole

x2, t2

1

2

Figure 7.1 – Schematic and Feynman representation of the one-particle Green’s func-
tion G(1, 2).

is propagated through the system. An electron is then removed at time t1 and position

x1. The probability amplitude to find an electron in (x1, t1) when an electron was

added in (x2, t2) is then given by the one-particle Green’s function G(1, 2). Its Feynman

representation is given a thick arrow going from 2 to 1 hereinafter, where the time axis

is vertical as shown in Figure 7.1. On the other hand, if t2 is greater than t1 then G(1, 2)

is the probability amplitude to find a hole in (x2, t2) when an electron was removed

in (x1, t1) and represents the propagation of a quasi-hole in the system. Its Feynman

representation is then a thick going down arrow. One should note that the one-particle

Green’s function is not defined if t1 = t2 and is related to the ground-state density by

n(x1) = −iG(1, 1+) where 1+ stands for (x1, t
+
1 ) with t+1 = t1 + 0+.

In the absence of external potential, the system is invariant under time translation,

therefore the Green’s function depends only on τ = t1 − t2. By introducing the closure

relation for excited states with N − 1 or N + 1 particles, one can get

iG(x1,x2; τ) =θ(τ)
∑

A

〈N |ψ̂(x1)|N + 1, A〉〈N + 1, A|ψ̂†(x2)|N〉e−i(EN+1,A−EN )τ

− θ(−τ)
∑

I

〈N |ψ̂†(x2)|N − 1, I〉〈N − 1, I|ψ̂(x1)|N〉e−i(EN−EN−1,I )τ ,
(7.2)

where EN , EN+1,A and EN−1,I are the energies of the ground state |N〉, of the A-th

excited state with N + 1 particles |N + 1, A〉 and of the I-th excited state with N − 1

particles |N−1, I〉, respectively. The Lehmann representation of the one-particle Green’s

function is obtained by Fourier transform

G(x1,x2;ω) =
∑

A

fA(x1)f
∗
A(x2)

ω − EA + i0+
+
∑

I

fI(x1)f
∗
I (x2)

ω − EI − i0+
, (7.3)
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1′

2
2′

1

χ χIP

Figure 7.2 – Schematic and Feynman representations of the hole-electron full-
interacting and independent-particle ph/hp propagators χ(1, 2; 1′, 2′) and χIP(1, 2; 1

′, 2′).

where fA(x) = 〈N |ψ̂(x)|N + 1, A〉 and fI(x) = 〈N − 1, I|ψ̂(x)|N〉 form a complete basis set

for the N ± 1-electron states, and EA = EN+1,A − EN and EI = EN − EN−1,I are minus

the electron affinities and ionization energies, respectively. The conventions for Fourier

transforms can be found in Appendix A.2.

As G is a one-particle quantity it seems natural that it describes one-particle processes

only. However, as we are interested in electronic excitations which corresponds to the

propagation of a hole and an electron simultaneously, a two-particle Green’s function is

therefore needed.

7.3 Two-particle Green’s function

The time-ordered two-particle Green’s function is defined as

i2G2(1, 2; 1
′, 2′) = 〈N |T̂ [Ψ̂(1)Ψ̂(2)Ψ̂†(2′)Ψ̂†(1′)]|N〉. (7.4)

Depending on the time ordering, it describes the propagation of a pair of holes, of

electrons or of a hole and an electron. In the case of optical absorption, one is only

interested in the propagation of a hole-electron pair. Let χ be the 4-point polarizability,

χ(1, 2; 1′, 2′) = iG2(1, 2; 1
′, 2′)− iG(1, 1′)G(2, 2′). (7.5)

It describes the coupled motion of two particles minus the motion of the independent

ones. In order to describe the propagation of a hole and an electron, it requires t′2 > t1 and

t2 > t′1 or the other way around. In this particular case, the 4-point polarizability reduces
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to a particle-hole/hole-particle propagator where the times can be further contracted.

If, in particular, the creation and annihilation of the hole and the electron are quasi-

simultaneous, as in an electronic excitation, t′1 = t+1 and t′2 = t+2 . In this case, the 4-point

polarizability reduces to the linear response function1

χ(x1,x2;x
′
1,x

′
2; τ) = χ(x1, t1,x2, t2;x

′
1, t

+
1 ,x

′
2, t

+
2 ). (7.6)

The Lehmann representation of the response function explicitly gives the excitation

energies as poles in ω,

χ(x1,x2;x
′
1,x

′
2;ω) =

∑

K 6=0

〈N |Ψ̂†(x′
1)Ψ̂(x1)|N,K〉〈N,K|Ψ̂†(x′

2)Ψ̂(x2)|N〉
ω − (EN,K − EN ) + i0+

−
∑

K 6=0

〈N |Ψ̂†(x′
2)Ψ̂(x2)|N,K〉〈N,K|Ψ̂†(x′

1)Ψ̂(x1)|N〉
ω + (EN,K − EN )− i0+

,

(7.7)

where |N,K〉 is the K-th excited state with N particles of energy EN,K . The ground

state |N, 0〉 = |N〉 is excluded from the sum.

It is also useful to define the independent-particle (IP) polarizability χIP(1, 2; 1
′, 2′) =

−iG(1, 2′)G(2, 1′) where the two particles propagate independently with each other but

in interaction with the rest of the system2. The schematic and Feynman represen-

tation of the full-interacting and independent-particle response functions are given

in Figure 7.2 in the case of a hole-electron propagation. The Lehmann represen-

tation of the independent-particle response function is easily obtained by calculat-

ing χIP(x1,x2;x
′
1,x

′
2; τ) = −iG(x1,x

′
2; τ)G(x2,x

′
1;−τ) with equation (7.2) and taking the

Fourier transform

χIP(x1,x2;x
′
1,x

′
2;ω) =

∑

IA

f∗I (x
′
1)fA(x1)f

∗
A(x

′
2)fI(x2)

ω − (EA − EI) + i0+

−
∑

IA

f∗I (x
′
2)fA(x2)f

∗
A(x

′
1)fI(x1)

ω + (EA − EI)− i0+
. (7.8)

Details of the Fourier transforms of the polarizability, propagator and response function

are given in Appendix F. The distinction between polarizability, propagator and response

function is made explicit in Figure 7.3 in the independent-particle case.

In practice, the one-particle and two-particle Green’s function can be calculated with

equations of motion, namely the Dyson and Bethe-Salpeter equations.

1One should be aware that this defines a time-ordered quantity while in TDDFT a retarded response

function is used. This distinction changes the position of the poles with respect to the real axis in the

complex plane, however, when inverse response functions are considered, as will be done in the following,

this distinction is not important anymore.
2
χIP should rather be called an independent-quasi-particle polarizability but for the sake of consis-

tency with the literature we will keep the usual denomination
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χIP

Polarizability

1′

2
2′

1

ph/hp propagator

1′

2

2′

1
1′

2

2′

1

pp / hh
propagators

1′

2 2′

1

Response function

Figure 7.3 – Nomenclature for polarizability, propagators and response function for
χIP(1, 2; 1

′, 2′) = −iG(1, 2′)G(2, 1′). The one-particule Green’s function is represented by
a thick arrow. The time axis is going from the bottom to the top. As the time ordering
is undetermined for the polarizability it is not represented in terms of Green’s function.
For the ph/hp propagator, t′2 > t1 and t2 > t′1 (or the other way around but not shown)
but the respective positions of t1 w.r.t. t′1 and t2 w.r.t. t

′
2 are undefined. For the response

function t′2 > t1 and t2 > t′1 (or the other way around but not shown) and t′1 = t+1 and
t′2 = t+2 . The particle-particle and hole-hole propagators (pp/hh) are also shown as they
will be used in the next chapters.

7.4 Dyson equation

To make easier the connection with expressions in a finite spin-orbital basis, we sys-

tematically use 4-point indexes for all the two-electron quantities, however the more

conventional 2-point derivation can be found for instance in [17]. The starting point is

therefore a fully non-local time-dependent Hamiltonian,

Ĥ(t1) =

∫

dx1d1
′Ψ̂†(1)h(1, 1′)Ψ̂(1′)

+
1

2

∫

dx1d2d1
′d2′Ψ̂†(1)Ψ̂†(2)wee(1, 2; 1

′, 2′)Ψ̂(1′)Ψ̂(2′),
(7.9)

where wee(1, 2; 1
′, 2′) = wee(|r1 − r2|)δ(t1, t2)δ(1, 1′)δ(2, 2′) is the spin-independent instanta-

neous Coulomb electron-electron interaction and h(1, 1′) is the one-electron Hamiltonian

which contains the electron kinetic operator and the nuclei-electron interaction Vne,

h(1, 1′) = −δ(1, 1′)∇
2
1

2
+ δ(1, 1′)Vne(r1). (7.10)

Using the equations of motion for the Heisenberg creation and annihilation operators

in the expression of the derivative of G with respect to time [17], one can obtain the

following equation,

i

∫

d3δ(1, 3)
∂

∂t3
G(3, 2)−

∫

d3h(1, 3)G(3, 2)

+ i

∫

d3d1′d3′wee(1, 3; 1
′, 3′)G2(1

′, 3′+; 2, 3++) = δ(1, 2),

(7.11)
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where ++ stands for t+3 + 0+. A whole series of equations can be derived for the Green’s

functions, relating the one-particle Green’s function to the two-particle Green’s function,

the two-particle one to the three-particle one, etc. But solving this set of equations is

not wanted.

To avoid this, one can use the Schwinger derivative technique [39, 40]. Introducing

an external time-dependent potential U(1, 1′) = U(x1t
+
1 ,x

′
1t1)δ(t1, t

′
1), one can express the

two-particle Green’s function in terms of the one-particle one and of its derivative with

respect to U , evaluated at U = 0,

δG(1, 2)

δU(3, 4)
= −G2(1, 4; 2, 3) +G(1, 2)G(4, 3). (7.12)

Using this relation in Equation (7.11), one can get

∫

d3

[

iδ(1, 3)
∂

∂t3
− h(1, 3)

]

G(3, 2)

+ i

∫

d3d1′d3′wee(1, 3; 1
′, 3′)

[

G(1′, 2)G(3′+, 3++)− δG(1′, 2)

δU(3++, 3′+)

]

= δ(1, 2)

∫

d3

[

iδ(1, 3)
∂

∂t3
− h(1, 3)

]

G(3, 2)−
∫

d3ΣHxc(1, 3)G(3, 2) = δ(1, 2),

(7.13)

where ΣHxc(1, 2) is the Hartree-exchange-correlation self-energy which takes into account

all the two-particle effects. It can be decomposed into a Hartree contribution

ΣH(1, 2) = −i
∫

d3d3′wee(1, 3; 2, 3
′)G(3′+, 3++) (7.14)

and an exchange-correlation one

Σxc(1, 2) = i

∫

d3d1′d3′d4wee(1, 3; 1
′, 3′)

δG(1′, 4)

δU(3++, 3′+)
G−1(4, 2). (7.15)

Note that these self-energies are functionals of the Green’s function and should be written

formally as ΣHxc[G].

7.4.1 Non-interacting Green’s function

One can define a Green’s function Gh which shows no two-particle effects and therefore

follows the equation of motion

∫

d3

[

iδ(1, 3)
∂

∂t1
− h(1, 3)

]

Gh(3, 2) = δ(1, 2). (7.16)

We choose its Feynman representation to be a dotted arrow. Using this relation in Equa-

tion (7.13), one finally gets the Dyson equation for the one-particle Green’s function,

∫

d3
[

G−1
h (1, 3)− ΣHxc[G](1, 3)

]

G(3, 2) = δ(1, 2). (7.17)
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G

=

Gh

+

Hartree

+

Exchange

+

2nd-order correlation

+ + · · ·

Figure 7.4 – Feynman representation of the perturbative expansion of the Dyson equa-
tion where Σ is expanded in order of wee but not G. The fully interacting Green’s function
is drawn as a thick arrow and the non-interacting one as a dotted one. The dashed line
represents the Coulombic interaction. The self-energy is in red.

This equation is also often used under the forms

G(1, 2) = Gh(1, 2) +

∫

d3d4Gh(1, 3)ΣHxc[G](3, 4)G(4, 2), (7.18)

or

G−1(1, 2) = G−1
h (1, 2)− ΣHxc[G](1, 2). (7.19)

It is convenient to use perturbation theory with respect to the electron-electron

interaction to understand this equation. This is shown in Figure 7.4 up to the second

order where the interaction is represented by a horizontal dashed line. At zeroth order,

the particle does not interact with the system and is therefore represented by the non-

interacting Green’s function Gh. At first order, it interacts with the charge density of the

system which is represented by a loop as n(x3) = G(3, 3+) and may be exchanged with

another particle which gives rise to the Hartree and exchange terms. The higher orders

of perturbation describe the correlation. At the second order, the particle can create

a hole-electron pair via a first interaction and destroys it later via a second interaction

where exchange may also occurs. The fully interacting Green’s function G can therefore

be expanded around the non-interacting one. From Equation (7.18), the parts of diagram

between the Gh arrow and the G arrow (in red) represents the self-energy. More details

can be found in [41] for instance.

7.4.2 Hartree-Fock Green’s function

In practice, the non-interacting Green’s function Gh is rarely used and it is more common

to encounter the Hartree-Fock (HF) Green’s function for finite system (or Kohn-Sham

Green’s functions or even Hartree Green’s functions in the case of solid-state physics)
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G

=

GHF
0

+ +

+ + + · · ·

- -

Figure 7.5 – Feynman representation of the perturbative expansion of the Dyson equa-
tion with the Hartree-Fock Green’s function as reference. The fully interacting Green’s
function is drawn as a thick arrow and the Hartree-Fock one as a dotted arrow. The
dashed line represents the Coulombic interaction. The self-energy is in red.

denoted by GHF
0 which satisfies the equation

∫

d3

[

iδ(1, 3)
∂

∂t3
− h(1, 3)− ΣHF

Hx [G
HF
0 ](1, 3)

]

GHF
0 (3, 2) = δ(1, 2)

∫

d3
[

G−1
h (1, 3)− ΣHF

Hx [G
HF
0 ](1, 3)

]

GHF
0 (3, 2) = δ(1, 2)

(7.20)

where ΣHF
Hx [G

HF
0 ] is the HF Hartree-exchange self-energy. The HF Green’s function is

thus related to the non-interacting one by

(GHF
0 )−1(1, 2) = G−1

h (1, 2)− ΣHF
Hx [G

HF
0 ](1, 2). (7.21)

where the HF self-energy is given by [38, 42]

ΣHF
Hx [G

HF
0 ](1, 2) =− i

∫

d3d3′wee(1, 3; 2, 3
′)GHF

0 (3′+, 3++)

+ i

∫

d3d3′wee(3, 1; 2, 3
′)GHF

0 (3′+, 3++).

(7.22)

The consequences on the Dyson equation is schematically represented in Figure 7.5 for

the HF Green’s function GHF
0 represented by a thin arrow. This also defines the HF

polarizability,

χHF
0 (1, 2; 1′, 2′) = −iGHF

0 (1, 2′)GHF
0 (2, 1′), (7.23)

where the particles are only interacting via a mean field. In what follows, the HF

superscript is dropped for conciseness as only HF Green’s function will be considered.
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7.5 Bethe-Salpeter Equation

In presence of the external time-dependent potential U(1, 1′) the Dyson equation (7.19),

rewrites as

G−1(1, 1′) = G−1
h (1, 1′)− U(1, 1′)− ΣHxc(1, 1

′). (7.24)

The polarizability3 of the system is then given by the change in the Green’s function

induced by the external potential U . Taking the derivative with respect to U of the

Dyson equation and using the chain rule with respect to G, it becomes

∫

d2d2′
δG−1(1, 1′)

δG(2, 2′)

δG(2, 2′)

δU(3, 3′)
= −δ(1, 3)δ(1′, 3′)−

∫

d2d2′
δΣHxc(1, 1

′)

δG(2, 2′)

δG(2, 2′)

δU(3, 3′)
. (7.25)

Using the derivative of the inverse (A.8) and the relation (A.5), the left-hand-side term

can be written in terms of the independent response function

δG−1(1, 1′)

δG(2, 2′)
= −G−1(1, 2′)G−1(2, 1′) = iχ−1

IP (1, 2; 1′, 2′). (7.26)

As G−1
h is independent of U , using the definition of the polarizability (7.5) together with

Schwinger’s relation (7.12), one can then get the so-called Bethe-Salpeter equation (see,

e.g., Ref. [42])

χ−1(1, 2; 1′, 2′) = χ−1
IP (1, 2; 1′, 2′)− ΞHxc(1, 2; 1

′, 2′), (7.27)

or equivalently

χ(1, 2; 1′, 2′) = χIP(1, 2; 1
′, 2′) +

∫

d3456χIP(1, 4; 1
′, 3)ΞHxc(3, 6; 4, 5)χ(5, 2; 6, 2

′), (7.28)

where ΞHxc is the Hartree-exchange-correlation Bethe-Salpeter kernel, defined as

ΞHxc(3, 6; 4, 5) = i
δΣHxc(3, 4)

δG(5, 6)
. (7.29)

Using once again in the perturbation picture, the fully interacting response function can

be constructed from the independent-particle response function χIP as represented in

Figure 7.6. At zeroth order, the particles interact with the rest of the system but not

with each other. The interaction between the two quasi-particles can then built in the

order of the electron-electron interaction similarly to what was done for the self-energy

in Figure 7.4.

7.6 Hedin’s equations

We now have equations of motion for the one- and two-particle Green’s functions. They

depend on the Hartree-exchange-correlation self-energy. Its Hartree and exchange parts

3Beware that the times are implicitly ordered through the external potential.
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χ
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=

χIP
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+ · · ·

χIP Ξχ

Figure 7.6 – Schematic and Feynman representation of the Bethe-Salpeter equation.

are known but a practical way of calculating its correlation part is needed. Hedin

proposed a scheme which yields to a set of coupled equations and allows in principle for

the calculation of the exact self-energy [43]. This scheme can be seen as a perturbation

theory in terms of the screened interaction W instead of the bare Coulomb interaction

wee. We show a generalization of this derivation for the case of a non-local potential.

Let V (5, 6) = U(5, 6) − i
∫

d3d3′wee(5, 3; 6, 3
′)G(3′, 3+) be the non-local classical poten-

tial. Using the chain rule in the exchange-correlation self-energy, we get:

Σxc(1, 2) = −i
∫

d3d1′d3′d4d5d6wee(1, 3; 1
′, 3′)G(1′, 4)

δG−1(4, 2)

δV (5, 6)

δV (5, 6)

δU(3++, 3′+)

= i

∫

d3d1′d3′d4d5d6wee(1, 3; 1
′, 3′)G(1′, 4)Γ̃(4, 6; 2, 5)ǫ−1(5, 3′; 6, 3+).

(7.30)

where the inverse dielectric function ǫ−1 which screens the bare Coulomb interaction wee

and the irreducible vertex function Γ̃ are defined by

ǫ−1(1, 2; 3, 4) =
δV (1, 3)

δU(4, 2)
and Γ̃(1, 2; 3, 4) = −δG

−1(1, 3)

δV (4, 2)
. (7.31)

We can therefore define a dynamically screened potential

W (1, 2; 1′, 2′) =

∫

d3d3′ǫ−1(1, 3; 1′, 3′+)wee(2, 3
′; 2′, 3)

=

∫

d3d3′ǫ−1(1, 3; 1′, 3′+)wee(3
′, 2; 3, 2′),

(7.32)

where the symmetry of the Coulomb interaction wee has been used, and we get the
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Hedin’s cycle Σ

G

Γ̃

χ̃

W

Σxc = iGW Γ̃

G = Gh +GhΣHxcG

Γ̃ = 1 +
δΣxc

δG
χ̃ = −iGGΓ̃
W = v + vχ̃W

Figure 7.7 – Self-consistent solution of Hedin’s set of coupled equations.

expression of the exchange-correlation self-energy,

Σxc(1, 2) = i

∫

d1′d3d3′d4G(1′, 4)Γ̃(4, 3′, 2, 3)W (3, 1; 3′, 1′). (7.33)

We still need to express the dielectric function and the irreducible vertex function without

the use of V and U . To achieve this, we define the irreducible polarizability χ̃(1, 2; 3, 4) =

−iδG(1, 3)/δV (4, 2), which, with the properties of the inverse and the definition of the

vertex correction, can be rewritten as

χ̃(1, 2; 3, 4) = −i
∫

d5d5′G(1, 5)G(5′, 3)Γ̃(5, 2; 5′, 4). (7.34)

Using this relation, one can rewrite the dielectric function as

ǫ(1, 2; 3, 4) = δ(1, 4)δ(2, 3)−
∫

d5d5′wee(1, 5; 3, 5
′)χ̃(5′, 2; 5+, 4), (7.35)

and the irreducible vertex correction as

Γ̃(1, 2; 3, 4) = δ(1, 4)δ(2, 3)− i

∫

d5d6
δΣxc(1, 3)

δG(5, 6)
χ̃(5, 2; 6, 4). (7.36)

We now have a set of five coupled equations (7.32) to (7.36) to calculate the self-energy

which is represented in Figure 7.7.

7.7 Conclusion

In this chapter, we have introduced the one- and two-particle Green’s function formalism

and recalled the corresponding equations of motion for these two quantities, the Dyson

equation and the Bethe-Salpeter equation. As in Kohn-Sham approach in density func-

tional theory, a non-interacting system is taken as a reference system and the effects

of the electron-electron interaction is included via the self-energy or the Bethe-Salpeter

kernel. Hedin’s equations provide an explicit approach to compute the self-energy which
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can then be used to evaluate the Bethe-Salpeter kernel. With respect to the TDDFT

kernel, the expression of the Bethe-Salpeter kernel is exactly known from the self-energy

while the TDDFT kernel was explicitly related to the energy functional only within the

adiabatic approximation which is therefore not required here. This implies that one can

obtain a frequency-dependent kernel in this formalism. Moreover, TDDFT and BSE

formalisms are very close so that a Bethe-Salpeter kernel could be used in the TDDFT

formalism [19, 34–36, 44–50].

In practice, Hedin’s set of equations is never solved exactly and approximations

are made for the derivation of the self-energy and of the kernel. The effects of these

approximations are discussed in the following chapters and assessed on the model system

given by H2 in a minimal basis. In Chapter 8, the expressions of the self-energy is derived

within the most famous approximation (GW) and one of its variants (GWx). The static

Bethe-Salpeter kernel is then obtained by differentiation where part of the derivative is

neglected as usually done is the condensed-matter physics community. It is projected

onto a spin-orbital basis set and its performance is assessed on H2 in a minimal basis

for different starting Green’s functions. In Chapter 9, a perturbative approach is used

in order to derive working equations for the static kernel up to the second order. In

this case, all the terms are kept in the differentiation of the self-energy and their effects

in assessed again with the model of system of H2. Finally, a dynamic Bethe-Salpeter

kernel is discussed in Chapter 10 together with the quasiparticle effects due to the

starting response function χIP or χ0 on which the Bethe-Salpeter kernel is added.
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Chapter 8

Static GW-BSE kernel in a finite

orbital basis

Except for the part on the GWx approximation, this work was the subject to a publi-

cation in S. K. Ghosh & P. K. Chattaraj (Eds.), Electronic Structure and Reactivity

(p. 367). CRC Press. (2013) in collaboration with J. Toulouse, and A. Savin.

The most widely used approximation in the context of Bethe-Salpeter calculations
is the static GW approximation. In this approximation, the vertex corrections are
neglected into the expression of the self-energy which is then obtained as the product
of G and W and the Hedin’s equations are not solved self-consistently but only one
iteration of the cycle is performed.
In this chapter, the self-energy is computed in the GW approximation, and in a
variant (GWx) where exchange is included in the definition of the dielectric matrix.
In both cases, the kernel is then obtained in its static approximation by considering
the screened interaction as local in time and the derivative of W with respect to G is
neglected such that the response of the screening to the perturbation is neglected. As
the self-energy is not build self-consistently, the choice of the starting Green’s function
plays a significant role and the effect of using the Hartree-Fock Green’s function with
respect to the exact one will be assessed. In each case, the equations are projected
on a spin-orbital basis and applied on the model system of H2 in a minimal basis.

8.1 Introduction

In the Bethe-Salpeter formalism, similarly to linear-response time-dependent density-

functional theory, one can compute the neutral excitation energies of a system by the

means of the poles of the response function. The Bethe-Salpeter equation links the

response function of non-interacting quasi-particles to the one of the physical system
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via the Hartree-exchange-correlation Bethe-Salpeter kernel which therefore contains all

the effects due to the interaction. This kernel is explicitly related to the self-energy by

first-order derivative and one has therefore to compute first this self-energy in order to

access the kernel. Hedin’s cycle provides a way to compute the self-energy by solving its

five coupled equations as was mentioned in the previous chapter. However, when giving

a closer look to these equations two difficulties emerge: first, as these equations a cou-

pled, they should in principle be solved self consistently (with all the convergence issues

that it implies), second, it involves the first-order derivative of the self-energy Σ with re-

spect to the Green’s function G. Therefore, one should first expand the self-energy with

respect to G up to a given order analytically, takes its first-order derivative and then

numerically solves this already approximated set of equations self consistently without

any guaranty that it will converge to the physical solution. It is needless to say that

it requires a formidable analytic and computational effort. The simplest approximation

was proposed by Hedin himself [43] and consists in assuming the vertex operator Γ̃ to

be delta functions in spin, space and time so that the first-order derivative of Σ with

respect to G is neglected. The exchange-correlation self-energy is then the product of G

and W and the approximation is therefore called the GW approximation. Usually, the

self-energy is not calculated self-consistently but with only one iteration of Hedin’s cycle

which hence defines the G0W0 approximation. For one-particle properties, these calcu-

lations [51–55] were shown to perform relatively well in comparison with self-consistent

GW calculations [56–62]. However, the choice of the starting Green’s function then plays

an important role in the determination of the self-energy. Additionally, it is also possible

to define a variant for the self-energy where exchange is included (GWx). In particular,

this removes the self-screening effects which occur otherwise [63–65].

Once an approximate expression is chosen for the self-energy, the Bethe-Salpeter

kernel can be found by functional differentiation with respect to G. Additional approx-

imations can be made at this step, and the simplest case is obtained if the screened

interaction is assumed to be static and if the derivative of W with respect to G is ne-

glected. This approximation is called the static BSE-GW method and corresponds to

the most widely used approximation for the kernel in the context of solids [66–69]. In

this chapter, we are interested into the applications of these different approximations for

a molecular finite system. The expressions of the G0W0 and G0W0x self-energies and of

the corresponding static kernels are first derived in real space in Section 8.2 and are then

projected in a spin-orbital basis in Section 8.3. Finally, they are applied on the model

system of H2 in a minimal basis in Section 8.4 with either the Hartree-Fock Green’s func-

tion as a starting point, or the exact one obtained from a full configuration-interaction

calculation in order to assess the effect of the starting Green’s function.
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8.2 Static GW approximation

In the GW approximation, the vertex function is assumed to be diagonal in spin, space

and time coordinates Γ̃(1, 2; 3, 4) = δ(1, 4)δ(2, 3) which simplifies greatly Hedin’s equations.

The irreducible polarizability becomes χ̃(1, 2; 3, 4) = −iG(1, 4)G(2, 3) = χIP(1, 2; 3, 4) and

contains only the response of the quasi-particles but does not take into account how their

interaction is affected by the change of potential. The exchange-correlation self-energy

becomes

Σxc(1, 2) = i

∫

d1′d3G(1′, 3)W (3, 1; 2, 1′) (8.1)

where in comparison to the Hartree-Fock case, the bare interaction wee has been replaced

by a dynamically screened interaction W . If the derivative of W with respect to G is

further neglected, as usually done, the corresponding Bethe-Salpeter kernel is then

ΞHxc(1, 2; 1
′, 2′) = wee(1, 2; 1

′, 2′)−W (2, 1; 1′, 2′), (8.2)

where W is obtained from Equation (7.32) and ǫ−1 with Equation (7.35) in which χ̃ is

replaced by χIP. The Coulomb interaction is instantaneous and the one-particle Green’s

functions depends only of the time difference, therefore the time dependence of the

screened interaction is

W (1, 2; 1′, 2′) =W (x1,x2;x
′
1,x

′
2; τ)δ(t1, t

′
1)δ(t2, t

′
2), (8.3)

where τ = t1 − t2. If one considers the time dependence in W , the Fourier transform of

the Bethe-Salpeter equation is not straightforward [35]. We will only consider here the

usual COHSEX approximation where the screened interaction is static, i.e.,

W (1, 2; 1′, 2′) =W (x1,x2;x
′
1,x

′
2)δ(t1, t

′
1)δ(t2, t

′
2)δ(t1, t2). (8.4)

To summarize, the Fourier-space Bethe-Salpeter equation in the static GW approxima-

tion writes

χ−1(x1,x2;x3,x4;ω) = χ−1
IP (x1,x2;x3,x4;ω)− ΞHxc(x1,x2;x3,x4), (8.5)

where the kernel ΞHxc(x1,x2;x3,x4) = wee(x1,x2;x3,x4) − W (x2,x1;x3,x4) contains the

static screened interaction W calculated from

W (x1,x2;x
′
1,x

′
2) =

∫

dx3dx
′
3ǫ

−1(x1,x3;x
′
1,x

′
3)wee(x

′
3,x2;x3,x

′
2), (8.6)

and

ǫ(x1,x2;x3,x4) = δ(x1,x4)δ(x2,x3)

−
∫

dx5dx
′
5wee(x1,x5;x3,x

′
5)χIP(x

′
5,x2;x5,x4;ω = 0).

(8.7)
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We will refer to the approach of Equations (8.5)-(8.7) as the BSE-GWmethod. Although

Hedin’s equations may be solved self-consistently in the GW approximation [56, 60, 70–

72], it is not usually the case. When only one iteration of the cycle is performed, the

one-particle Green’s function G in χIP = −iGG has to be specified. Different choices

can be made. The simplest option is to use a non-interacting Green’s function G0 from

a Hartree-Fock (HF) or Kohn-Sham (KS) calculation. In this case, χIP = −iG0G0 =

χ0 is just the non-interacting HF or KS response function. In the condensed-matter

physics literature, the usual recipe is to use χ0 in Equation (8.7) but an improved χIP in

Equation (8.5) from a GW calculation. In the case of H2 in a minimal basis, it is simple

enough to use χIP constructed with the exact one-particle Green’s function G.

We note that the dielectric function of Equation (8.7) could be alternatively de-

rived by including the HF exchange in addition to the Coulomb interaction, i.e. using

the antisymmetrized electron-electron interaction w̄ee(x1,x5;x3,x
′
5) = wee(x1,x5;x3,x

′
5)−

wee(x5,x1;x3,x
′
5) (see, e.g., Ref. [55]), which removes the “self-screening error” for one-

electron systems [64]. A bar will be added to the quantities where exchange is included.

The dielectric function therefore becomes:

ǭ(x1,x2;x3,x4)

= δ(x1,x4)δ(x2,x3)−
∫

dx5dx
′
5w̄ee(x1,x5;x3,x

′
5)χIP(x

′
5,x2;x5,x4;ω = 0).

(8.8)

This method will be referred to as BSE-GWx.

8.3 Expressions in a finite orbital basis

8.3.1 Spin-orbital basis

In order to solve the Bethe-Salpeter equation for finite systems, all the equations are

projected onto an orthonormal spin-orbital basis {φp}. As the equations are 4-point

equations relating two-particle quantities, they are in fact projected onto the basis of

products of two spin orbitals. Each matrix element is thus indexed by two double indices.

We consider the simplest case for which χIP = χ0. The Lehmann representation of

χ0 is

χ0(x1,x2;x
′
1,x

′
2;ω) =

∑

ia

φ∗i (x
′
1)φa(x1)φ

∗
a(x

′
2)φi(x2)

ω − (εa − εi) + i0+
− φ∗i (x

′
2)φa(x2)φ

∗
a(x

′
1)φi(x1)

ω + (εa − εi)− i0+
, (8.9)

where φi is the i-th occupied spin-orbital of energy εi and φa is the a-th virtual spin-

orbital of energy εa. One can notice that χ0 is expanded only on occupied-virtual (ov)

and virtual-occupied (vo) products of spin-orbitals. The matrix elements of χ0 are given

by

[χ0(ω)]pq,rs =

∫

dx1dx
′
1dx2dx

′
2φp(x

′
1)φ

∗
q(x1)χ0(x1,x2;x

′
1,x

′
2;ω)φ

∗
r(x2)φs(x

′
2). (8.10)
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The matrix representation of its inverse, in the (ov,vo) subspace, is

χ−1
0 (ω) = −

[(

∆ε 0

0 ∆ε

)

− ω

(

1 0

0 −1

)]

, (8.11)

where ∆εia,jb = ∆εai,bj = (εa − εi)δijδab, where i, j refer to occupied spin-orbitals and

a, b to virtual orbitals. The dimension of the matrix is thus 2MoMv × 2MoMv where Mo

and Mv are the numbers of occupied and virtual spin orbitals, respectively. To build

the matrix χ−1, one then needs to construct the matrix elements of the Bethe-Salpeter

kernel ΞHxc which are given by

(ΞHxc)pq,rs = wee,pq,rs −Wpr,qs, (8.12)

where wee,pq,rs = 〈qr|ps〉 are the usual two-electron integrals, and the matrix elements of

W can be obtained from Equation (8.6)

Wpq,rs =

∫

dx1dx
′
1dx2dx

′
2φp(x

′
1)φ

∗
q(x1)W (x1,x2;x

′
1,x

′
2)φ

∗
r(x2)φs(x

′
2)

=

∫

dx1dx
′
1dx2dx

′
2dx3dx

′
3φp(x

′
1)φ

∗
q(x1)ǫ

−1(x1,x3;x
′
1,x

′
3)

× wee(x
′
3,x2;x3,x

′
2)φ

∗
r(x2)φs(x

′
2).

(8.13)

To decouple the common coordinates in ǫ−1 and wee, one can introduce two delta func-

tions δ(x3,x4) and δ(x′
3,x

′
4) and use the closure relations δ(x3,x4) =

∑

t φ
∗
t (x3)φt(x4) and

δ(x′
3,x

′
4) =

∑

u φu(x
′
3)φ

∗
u(x

′
4). By doing so, the matrix elements of v and ǫ−1 appear

explicitly and we get

Wpq,rs =
∑

tu

ǫ−1
pq,tuwee,tu,rs. (8.14)

Similarly, for the dielectric function, we have

ǫpq,rs = δprδqs −
∑

tu

wee,pq,tu [χ0(ω = 0)]tu,rs = δprδqs − wee,pq,rs [χ0(ω = 0)]rs,rs , (8.15)

where the last equality comes from the fact that χ0 has only diagonal elements. It can

be seen that the static screened interaction consists of an infinite-order perturbation

expansion in the Coulomb interaction, namely using matrix notations,

W = ǫ−1 ·wee

= wee +wee · χ0(ω = 0) ·wee +wee · χ0(ω = 0) ·wee · χ0(ω = 0) ·wee + ...,
(8.16)

the first term in this expansion corresponding to linear-response time-dependent Hartree-

Fock (TDHF). The matrix representation of the inverse of the interacting response func-
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tion, in the (ov,vo) subspace, is then

χ−1(ω) = −
[(

A B

B∗ A∗

)

− ω

(

1 0

0 −1

)]

, (8.17)

with the matrices

Aia,jb = ∆εia,jb + wee,ia,jb −Wij,ab, (8.18a)

Bia,jb = wee,ia,bj −Wib,aj . (8.18b)

The block structure of Equation (8.17) is a consequence of the symmetry of the Coulomb

interaction, wee,qp,sr = w∗
ee,pq,rs, and of the static screened interaction, Wqs,pr = W ∗

pr,qs.

Moreover, the matrix A is Hermitian (because wee,ia,jb = w∗
ee,jb,ia and Wij,ab =W ∗

ji,ba) and

the matrix B is symmetric (because wee,ia,bj = wee,jb,ai and Wib,aj = Wja,bi). The excita-

tion energies ωn are thus found by solving the usual linear-response pseudo-Hermitian

eigenvalue equation, just as in TDDFT,

(

A B

B∗ A∗

)(

Xn

Yn

)

= ωn

(

1 0

0 −1

)(

Xn

Yn

)

, (8.19)

whose solutions come in pairs: excitation energies ωn with eigenvectors (Xn,Yn), and

de-excitation energies −ωn with eigenvectors (Y∗
n,X

∗
n). For real spin-orbitals and if A+B

and A−B are positive definite, the eigenvalues are guaranteed to be real numbers and

the pseudo-Hermitian eigenvalue equation (8.19) can be transformed into a half-size

symmetric eigenvalue equation [3].

If instead of starting from χ0, one starts from χIP = −iGG with the exact one-particle

Green’s function G, the equations get more complicated since the matrix representation

of χIP is generally not diagonal and not only has contributions in the (ov,vo) subspace

of spin-orbital products but also in the occupied-occupied (oo) and virtual-virtual (vv)

subspace of spin-orbital products. The dimension of the matrices thus becomes M2×M2

where M is the total number of (occupied and virtual) spin orbitals. In this case, the

number of solutions of the response equations is generally higher than the number of

single excitations, and in particular double excitations might be obtained even without

a frequency-dependent kernel. Spurious excitations can also be found. This is similar to

what happens in linear-response TDDMFT [12–15]. We will show this later in the case

of H2 in a minimal basis.

When exchange is included, similar equations can be derived, where Wpq,rs is substi-

tuted by W̄pq,rs with

W̄pq,rs =
∑

tu

wee,pq,tuǭ
−1
tu,rs (8.20)
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and

ǭ−1
pq,rs = δprδqs − w̄ee,pq,rs [χ0(ω = 0)]rs,rs (8.21)

where the w̄ee,pq,rs = 〈qr||ps〉 are the usual antisymmetrized two-electron integrals.

8.3.2 Spin adaptation

We give now the expressions for spin-restricted closed-shell calculations. For four fixed

spatial orbitals referred to as p, q, r, s, the Bethe-Salpeter kernel has the following spin

structure












Ξp↑q↑,r↑s↑ Ξp↑q↑,r↓s↓ 0 0

Ξp↓q↓,r↑s↑ Ξp↓q↓,r↓s↓ 0 0

0 0 Ξp↑q↓,r↑s↓ Ξp↑q↓,r↓s↑

0 0 Ξp↓q↑,r↑s↓ Ξp↓q↑,r↓s↑













, (8.22)

which can be brought to a diagonal form after rotation (see, e.g., Refs. [42, 73, 74])













1Ξpq,rs 0 0 0

0 3Ξpq,rs 0 0

0 0 3Ξpq,rs 0

0 0 0 3Ξpq,rs













, (8.23)

with a spin-singlet term 1Ξpq,rs = 2wee,pq,rs − Wpr,qs and three degenerate spin-triplet

terms 3Ξpq,rs = −Wpr,qs. It has been used that the Coulomb interaction v and the

screened interaction W are spin independent: wee,pq,rs = wee,p↑q↑,r↑s↑ = wee,p↑q↑,r↓s↓ =

wee,p↓q↓,r↑s↑ = wee,p↓q↓,r↓s↓ and Wpq,rs = Wp↑q↑,r↑s↑ = Wp↑q↑,r↓s↓ = Wp↓q↓,r↑s↑ = Wp↓q↓,r↓s↓.

The spin-adapted screened interaction is obtained by

Wpq,rs =
∑

tu

1ǫ−1
pq,tuwee,tu,rs , (8.24)

where t and u refer to spatial orbitals, and the singlet dielectric function 1ǫpq,rs =

ǫp↑q↑,r↑s↑ + ǫp↑q↑,r↓s↓ is given by

1ǫpq,rs = δprδqs −1 wee,pq,rs [χ0(ω = 0)]rs,rs , (8.25)

where the singlet interaction is given by 1wee,pq,rs = 2wee,pq,rs. The bottom line is that

the linear-response eigenvalue equation (8.19) fully decouples into a singlet eigenvalue

equation
(

1A 1B
1B∗ 1A∗

)(

1Xn

1Yn

)

= 1ωn

(

1 0

0 −1

)(

1Xn

1Yn

)

, (8.26)

with the matrices

1Aia,jb = ∆εia,jb + 2wee,ia,jb −Wij,ab, (8.27a)
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1Bia,jb = 2wee,ia,bj −Wib,aj , (8.27b)

and a triplet eigenvalue equation

(

3A 3B
3B∗ 3A∗

)(

3Xn

3Yn

)

= 3ωn

(

1 0

0 −1

)(

3Xn

3Yn

)

, (8.28)

with the matrices

3Aia,jb = ∆εia,jb −Wij,ab, (8.29a)

3Bia,jb = −Wib,aj , (8.29b)

where the absence of the Hartree contribution is responsible for the singlet-triplet split-

ting in the excitation energies. When exchange is included, the spin-adapted screened

interaction is obtained by

W̄pq,rs =
∑

tu

1ǭ−1
pq,tuwee,tu,rs , (8.30)

where
1ǭpq,rs = δprδqs −1 w̄ee,pq,rs [χ0(ω = 0)]rs,rs . (8.31)

where 1w̄ee,pq,rs = (2wee,pq,rs − wee,pr,qs).

8.4 Example of H2 in a minimal basis

As a pedagogical example, we apply the BSE-GW method to the calculation of the

excitation energies of H2 in a minimal basis consisting of two Slater basis functions, ϕa

and ϕb, centered on each hydrogen atom and with the same exponent ζ = 1. This is a

closed-shell molecule, therefore all the calculations are done with spin adaptation in a

spatial orbital basis. The molecular orbitals are ψ1 = (ϕa + ϕb)/
√

2(1 + Sab) (symmetry

σg) and ψ2 = (ϕa − ϕb)/
√

2(1− Sab) (symmetry σu) where Sab is the overlap between

ϕa and ϕb. The matrix representations of all two-electron quantities in the space of

spatial-orbital products are of the following form

P =













P11,11 P11,22 P11,12 P11,21

P22,11 P22,22 P22,12 P22,21

P12,11 P12,22 P12,12 P12,21

P21,11 P21,22 P21,12 P21,21













, (8.32)

and we refer to the upper left block as the (oo,vv) block, and to the bottom right block as

the (ov,vo) block. All the values of the integrals as a function of the internuclear distance

R can be found in Ref. [75]. Note that, in the condensed-matter physics literature, a

simplified version of H2 in a minimal basis with only on-site Coulomb interaction is often
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used under the name “half-filled two-site Hubbard model” (see, e.g., Refs. [64, 76, 77]),

where with the notations used here, the Hubbard model is obtained for ∆ε = 2t and

J11 = J22 = K12 = J12 = U/2 where t is the hopping parameter and U is the on-site

Coulomb interaction.

8.4.1 BSE-GW method using the non-interacting Green’s function

The simplest approximation in the BSE-GW method is to start from the non-interacting

HF Green’s function G0, leading to the non-interacting HF linear response function

χIP = −iG0G0 = χ0 whose matrix representation reads

χ0(ω) =

















0 0 0 0

0 0 0 0

0 0
1

ω −∆ε
0

0 0 0
−1

ω +∆ε

















, (8.33)

where ∆ε = ε2 − ε1 is the difference between the energies of the molecular orbitals ψ2

and ψ1. The non-interacting linear response function has non-vanishing matrix elements

only in the (ov,vo) block, but it will be necessary to consider the other blocks as well

for the screened interaction W . The matrix of the Coulomb interaction is

wee =













J11 J12 0 0

J12 J22 0 0

0 0 K12 K12

0 0 K12 K12













, (8.34)

where Jpq = 〈pq|pq〉 and Kpq = 〈pq|qp〉 are the usual Coulomb and exchange two-electron

integrals over the molecular orbitals ψ1 and ψ2. The off-diagonal blocks of v are zero

by symmetry for H2 in a minimal basis, but this is not the case in general. By matrix

product and inversion, we get the static singlet dielectric matrix

1ǫ =

















1 0 0 0

0 1 0 0

0 0 1 +
2K12

∆ε

2K12

∆ε

0 0
2K12

∆ε
1 +

2K12

∆ε

















, (8.35)
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which, in this case, is block diagonal with the (oo,vv) block being the identity. By using

its inverse, we finally get the static screened interaction matrix

W =



















J11 J12 0 0

J12 J22 0 0

0 0
K12

1 + 4K12/∆ε

K12

1 + 4K12/∆ε

0 0
K12

1 + 4K12/∆ε

K12

1 + 4K12/∆ε



















, (8.36)

which is block diagonal and the (oo,vv) block is just the bare Coulomb interaction in the

case of H2 in a minimal basis, but this is not generally true. We have then everything

to construct the 1A and 1B matrices of Equation (8.26) for singlet excitations, which in

the present case are just one-dimensional

1A = ∆ε+ 2K12 − J12, (8.37a)

1B = 2K12 −
K12

1 + 4K12/∆ε
. (8.37b)

and the 3A and 3B matrices of Equation (8.28) for triplet excitations

3A = ∆ε− J12, (8.38a)

3B = − K12

1 + 4K12/∆ε
. (8.38b)

Solving then the response equations by the standard Casida approach [3], we get the

singlet excitation energy

1ω =

√

(

∆ε+ 4K12 − J12 −
K12

1 + 4K12/∆ε

)(

∆ε− J12 +
K12

1 + 4K12/∆ε

)

, (8.39)

and the triplet excitation energy

3ω =

√

(

∆ε− J12 −
K12

1 + 4K12/∆ε

)(

∆ε− J12 +
K12

1 + 4K12/∆ε

)

. (8.40)

Note that, for this simple system, the A terms have the usual TDHF or configuration

interaction singles (CIS) forms, and the screening has an effect only on the B terms,

decreasing the exchange integral K12 by a factor of 1+4K12/∆ε. Therefore, in the Tamm-

Dancoff approximation [78], which consists in neglecting B, the effect of screening would

be lost and the method would be equivalent to CIS. It is interesting to analyze the effect

of the screening as a function of the internuclear distance R. For small R, the orbital
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energy difference ∆ε is much greater than the exchange integral K12, so the screening

factor 1 + 4K12/∆ε is close to 1 and TDHF excitation energies are recovered. For large

R (dissociation limit), ∆ε goes to zero, so the screening factor diverges and the term

K12/(1 + 4K12/∆ε) vanishes.

The excitation energies from the ground state 1Σ+
g to the first singlet 1Σ+

u and triplet
3Σ+

u excited states are plotted as a function of R in Figure 8.1. The reference curves

are from a full configuration-interaction (FCI) calculation giving the exact excitation

energies in this basis. In a minimal basis, the singlet 1Σ+
u excited state is constrained

to dissociate into the ionic configuration H−... H+, and so in the dissociation limit

R → ∞ the exact singlet excitation energy goes to a constant, I − A ≈ 0.625 hartree

where I and A are the ionization energy and electron affinity of the hydrogen atom.

The triplet 3Σ+
u dissociates into the neutral configuration H•... H•, as does the ground

state, and so the exact triplet excitation energy goes to zero in the dissociation limit.

TDHF gives accurate excitation energies for small R, but gives qualitatively wrong

curves in the dissociation limit. For the singlet state, the TDHF excitation energy

goes to zero, a wrong behavior inherited from the vanishing ∆ε in this limit. For the

triplet state, the TDHF response equation suffers from a triplet instability for R ≥ 4

bohr and the excitation energy becomes imaginary. It is known that TDDFT with

standard density-functional approximations gives similarly incorrect energy curves [7,

76, 79–81]. The BSE-GW method using the non-interacting HF Green’s function G0

gives accurate excitation energies at small R, but fails in the dissociation limit. The

singlet excitation energy becomes imaginary for R ≥ 4.9 bohr. Indeed, in the dissociation

limit, ∆ε goes to zero and Equation (8.39) leads to a negative term under the square

root: 1ω →
√

(4K12 − J12)(−J12). Similarly, the BSE-GW triplet excitation energy is

imaginary between R = 4.0 and R = 4.9 bohr, and incorrectly tends to a non-zero value

in the dissociation limit.

8.4.2 BSE-GWx method using the non-interacting Green’s function

In what follows, the effect of adding exchange in the dielectric matrix is investi-

gated. The singlet electron-electron interaction is then given by w̄ee(x1,x5;x3,x
′
5) =

wee(x1,x5;x3,x
′
5)−wee(x5,x1;x3,x

′
5). Its spin-adapted matrix representation in the min-

imal basis set is then

1w̄ee =













J11 2J12 −K12 0 0

2J12 −K12 J22 0 0

0 0 2K12 − J12 K12

0 0 K12 2K12 −K12













. (8.41)

With respect to the matrix of the interaction when the antisymmetrization is not taken

into account, the self-screening has been removed in this representation. The non-

interacting response function is unchanged so the antisymmmetrized dielectric matrix
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Figure 8.1 – Excitation energies of the singlet 1Σ+
u (top) and the triplet 3Σ+

u (bottom)
states of H2 in a minimal basis as a function of the internuclear distance R calculated
by FCI, TDHF, and BSE-GW with the non-interacting HF Green’s function G0.
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is

1ǭ =

















1 0 0 0

0 1 0 0

0 0 1 +
2K12 − J12

∆ε

K12

∆ε

0 0
K12

∆ε
1 +

2K12 − J12
∆ε

















(8.42)

and the matrix of the screening is

W̄ =













J11 J12 0 0

J12 J22 0 0

0 0 W̄12 W̄12

0 0 W̄12 W̄12













(8.43)

where W̄12 =
K12

1 + (3K12 − J12)/∆ε
. With respect to the BSE-GW case where no exchange

was accounted for, the exchange integralK12 is now screened by 1+(3K12−J12)/∆ε instead
of 1+ 4K12/∆ε. The screening is therefore reduced by K12 + J12 as the self-screening has

been removed. Using this screened interaction into Equations (8.26) and (8.28), the

singlet and triplet matrices A and B can be constructed and are given by

1A = ∆ε+ 2K12 − J12

1B = 2K12 −
K12

1 + (3K12 − J12)/∆ε

(8.44)

in the singlet case, and by

3A = ∆ε− J12

3B = − K12

1 + (3K12 − J12)/∆ε
,

(8.45)

in the triplet case. Solving Casida’s equation [3], the singlet excitation is then

1ω =

√

√

√

√

√

√






∆ε+ 4K12 − J12 −

K12

1 +
3K12 − J12

∆ε












∆ε− J12 +

K12

1 +
3K12 − J12

∆ε






(8.46)

and the triplet equation is

3ω =

√

√

√

√

√

√






∆ε− J12 −

K12

1 +
3K12 − J12

∆ε












∆ε− J12 +

K12

1 +
3K12 − J12

∆ε






. (8.47)

These excitation energies are plotted in Figure 8.2 together with the FCI and TDHF

curves for the sake of comparison. With respect to the initial curves given in Figure 8.1,

very similar patterns are observed. The excitation energies still become imaginary when

169



CHAPTER 8. STATIC GW-BSE KERNEL IN A FINITE ORBITAL BASIS

the bond is stretched but at slightly different values of the internuclear distance. The

singlet excitation energy becomes imaginary ar R = 5.3 bohr when it was 4.9 bohr when

exchange was not included and is not significantly improved. The triplet excitation

energy on the other hand, is slightly worsened as it now becomes imaginary at R=3.7

bohr instead of 4 bohr. The overall effect of the inclusion of exchange in the dielectric

matrix is therefore rather small in this case.

The BSE-GW method using the non-interacting HF Green’s function G0 thus badly

fails for H2 in the dissociation limit, with or without exchange in the dielectric matrix.

As this method is based on a single-determinant reference, this should not come as a

surprise. Moreover, the double excitation is also completely absent from this method.

However, the BSE approach also allows one to start from an interacting Green’s function

G taking into account the multiconfigurational character of stretched H2. We will now

test this alternative approach.

8.4.3 BSE-GW method using the exact Green’s function

Independent-particle response function

We apply the BSE-GW equations (8.5)-(8.7) with the independent-particle response

function χIP = −iGG constructed from the exact one-particle Green’s function G, and

which can be calculated by the Lehmann formula (7.8) using the N -electron ground

state and the (N ± 1)-electron states. The states to consider for H2 in a minimal basis

are given in Figure 8.3. The ground state is composed of two Slater determinants, its

energy is EN = 2ε1 − J11 + Ec where Ec = ∆−
√

∆2 +K2
12 is the correlation energy with

2∆ = 2∆ε+ J11 + J22 − 4J12 + 2K12. The coefficients of the determinants are determined

by c2 = c1K12/(∆+
√

K2
12 +∆2) and c21 + c22 = 1. The energies of the two (N + 1)-electron

states are: EN+1,1 = 2ε1+ε2−J11 and EN+1,2 = 2ε2+ε1−J11+J22−2J12+K12. The energies

of the two (N − 1)-electron states are: EN−1,1 = ε1 − J11 and EN−1,2 = ε2 − 2J12 +K12.

We thus obtain four poles for the exact one-particle Green’s function. Two of them

correspond to minus the electron affinities,

E2 = EN+1,1 − EN = ε2 − Ec, (8.48a)

E ′
2 = EN+1,2 − EN = 2ε2 − ε1 + J22 − 2J12 +K12 − Ec, (8.48b)

and the other two correspond to minus the ionization energies,

E1 = EN − EN−1,1 = ε1 + Ec, (8.49a)

E ′
1 = EN − EN−1,2 = 2ε1 − ε2 − J11 + 2J12 −K12 + Ec. (8.49b)

In condensed-matter physics, E1 and E2 are associated with “quasi-particle” peaks of

photoelectron spectra, while E ′
1 and E ′

2 are associated with “satellites”. The Dyson
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Figure 8.2 – Excitation energies of the singlet 1Σ+
u (top) and the triplet 3Σ+

u (bottom)
states of H2 in a minimal basis as a function of the internuclear distance R calculated
by FCI, TDHF, and BSE-GWx with the non-interacting HF Green’s function G0.
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N

+

c1|11̄〉+ c2|22̄〉
|11̄2〉
|11̄2̄〉

N+1,1

|122̄〉
|1̄22̄〉

N+1,2

|1〉
|1̄〉

N-1,1

|2〉
|2̄〉

N-1,2

Figure 8.3 – N -electron ground state, and (N ± 1)-electron states for H2 in a minimal
basis.

orbitals are also easily calculated, and we finally arrive at the matrix representation of

χIP in the basis of the products of spatial orbitals

χIP(ω) =













χIP,11(ω) 0 0 0

0 χIP,22(ω) 0 0

0 0 χIP,12(ω) 0

0 0 0 χIP,21(ω)













, (8.50)

with the matrix elements

χIP,11(ω) =
c21c

2
2

ω − (E ′
2 − E1)

− c21c
2
2

ω + (E ′
2 − E1)

, (8.51a)

χIP,22(ω) =
c21c

2
2

ω − (E2 − E ′
1)

− c21c
2
2

ω + (E2 − E ′
1)
, (8.51b)

χIP,12(ω) =
c41

ω − (E2 − E1)
− c42
ω + (E ′

2 − E ′
1)
, (8.51c)

χIP,21(ω) =
c42

ω − (E ′
2 − E ′

1)
− c41
ω + (E2 − E1)

. (8.51d)

Therefore, whereas χ0(ω) has only one positive pole, χIP(ω) has four distinct positive

poles (and four symmetric negative poles). These poles are plotted in Figure 8.4. The

lowest one, E2−E1, called fundamental gap in the condensed-matter physics literature, can

be considered as an approximation to a neutral single excitation energy since in the limit

of non-interacting particles it equals the difference of the orbital eigenvalues ∆ε = ε2−ε1.
The two intermediate poles, E ′

2 − E1 and E2 − E ′
1, can be interpreted as approximations

to a double excitation energy since they reduce to 2∆ε in the limit of non-interacting

particles. Surprisingly, the highest pole, E ′
2−E ′

1, reduces to 3∆ε in this limit and it is thus

tempting to associate it with a triple excitation even though the system contains only

two electrons! In the dissociation limit R → ∞, the four poles tends to the same value,

i.e. I−A ≈ 0.625 hartree which is also minus twice the correlation energy −2Ec, showing

that the non-vanishing fundamental gap in this limit is a correlation effect. Note that
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Figure 8.4 – Positive poles of the independent-particle linear response function in
function of the internuclear distance R

it has been shown [64] that the non-self-consistent GW approximation (G0W0) to the

one-particle Green’s function gives a fundamental gap which is too small by a factor of

2 in the dissociation limit, so we do not consider this approximation here.

Excitation energies

Having calculated the independent-particle response function, the next steps of the BSE-

GW calculation of the excitation energies proceed similarly as in Section 8.4.1, even

though the expressions get more complicated. From the matrix χIP(ω = 0) and the

Coulomb interaction matrix (8.34), we calculate the singlet dielectric matrix which is

still block diagonal but the upper left block is no longer the identity matrix. We calculate

then the static screened interaction matrix which is still block diagonal but the elements

of its upper left block are now also affected by screening. We can then construct the cor-

responding singlet and triplet Bethe-Salpeter kernel 1Ξ and 3Ξ. The response eigenvalue

equations (8.26) and (8.28) are no longer applicable, so the singlet excitation energies

are found by searching the values of ω giving vanishing eigenvalues of the inverse singlet

linear-response matrix 1χ(ω)−1 = χIP(ω)
−1 − 1Ξ, and the triplet excitation energies are

found by searching the values of ω giving vanishing eigenvalues of the inverse triplet

linear-response matrix 3χ(ω)−1 = χIP(ω)
−1− 3Ξ. For H2 in a minimal basis, 1χ(ω)−1 and

3χ(ω)−1 are 4×4 matrices which are block diagonal, the (oo,vv) block being uncoupled to

the (ov,vo) block. For both the singlet and triplet cases, the four positive poles of χIP(ω)

transform into four excitation energies (plus four symmetric de-excitation energies).
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Figure 8.5 – Excitation energy of the singlet 1Σ+
u state of H2 in a minimal basis as a

function of the internuclear distance R calculated by FCI and BSE-GW with the exact
Green’s function. The lowest pole of χIP(ω), the fundamental gap E2 −E1, is also plotted
for comparison.

Among the two positive excitation energies coming from the (ov,vo) block of the

matrix 1χ(ω)−1, the lowest one is identified with the first singlet 1Σ+
u excitation energy,

which is called the optical gap. It is plotted in Figure 8.5 and compared with the

reference FCI excitation energy and also with the fundamental gap E2 − E1 to highlight

the effect of the Bethe-Salpeter kernel. At small internuclear distance, R ≤ 3 bohr,

the Bethe-Salpeter kernel brings the BSE-GW curve very close to the FCI curve. For

large R, the BSE-GW excitation energy follows the curve of the fundamental gap, which

slightly overestimates the excitation energy at R = 10 bohr but eventually goes to the

correct limit I−A when R→ ∞. Thus, contrary to the BSE-GW method using the non-

interacting Green’s function, the obtained excitation energy curve has now a correct

shape. This relies on the fundamental gap being a good starting approximation to the

optical gap. As regards the second excitation energy coming from the (ov,vo) block of

the matrix 1χ(ω)−1 which is connected to highest pole E ′
2 − E ′

1 of χIP(ω), it is a spurious

excitation due to the approximate Bethe-Salpeter kernel used.

The lowest positive excitation energy coming from the (oo,vv) block of the matrix
1χ(ω)−1 is identified with the second singlet 1Σ+

g excited state which has a double ex-

citation character. It is plotted in Figure 8.6 and compared with the FCI excitation

energy for this state and with the poles E ′
2 − E1 and E2 − E ′

1 of χIP(ω). It is noteworthy

that the BSE-GW method starting from χIP(ω) instead of χ0(ω) but using a frequency-
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Figure 8.6 – Excitation energy of the second singlet 1Σ+
g state of H2 in a minimal

basis as a function of the internuclear distance R calculated by FCI and BSE-GW with
the exact Green’s function. The poles E ′

2 − E1 and E2 − E ′
1 of χIP(ω) are also plotted for

comparison.

independent kernel does describe this double-excitation state with an overall correct

shape for the energy curve. However, the BSE-GW excitation energy is almost identical

to the two poles E ′
2 − E1 and E2 − E ′

1. The Bethe-Salpeter kernel in the static GW ap-

proximation thus brings virtually no improvement for this state over the starting poles

of χIP(ω). The (oo,vv) block of the matrix 1χ(ω)−1 also gives a second higher excitation

energy that is spurious.

We finally consider the triplet excited state 3Σ+
u . The lowest positive excitation

energy coming from the (ov,vo) block of the matrix 3χ(ω)−1 should be identified with

this state. It is plotted in Figure 8.7 and compared with the FCI excitation energy

for this state and with the fundamental gap E2 − E1. For small internuclear distances,

R ≤ 3 bohr, the BSE-GW method gives an accurate excitation energy, but for larger R,

instead of going to zero, the BSE-GW excitation energy follows the fundamental gap

until the excitation energy becomes imaginary for R ≥ 6.5 bohr. The problem is that the

poles of χIP(ω) are the same for both the singlet and triplet cases, and the fundamental

gap E2 − E1 is not a good starting approximation to the triplet excitation energy in the

dissociation limit. The Bethe-Salpeter kernel in the static GW approximation is not

able of compensating for this bad starting point. In addition to this excitation energy,

the BSE-GW method gives three other spurious triplet excitation energies.
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Figure 8.7 – Excitation energy of the triplet 3Σ+
u state of H2 in a minimal basis as a

function of the internuclear distance R calculated by FCI and BSE-GW with the exact
Green’s function. The lowest pole of χIP(ω), the fundamental gap E2 −E1, is also plotted
for comparison.

Effect of the inclusion of exchange

A similar study was performed when exchange is included in the dielectric response

function as was done in the non-interacting case. The excitation energy to the singlet
1Σ+

u state is shown in Figure 8.8. It does not present a bump anymore but its large R

value overestimates the exact FCI energy. Its asymptotic limit is higher than without

exchange which was already too high. However, the effect of the kernel does not cancel

out anymore at large R but goes in the wrong direction with the respect of the poles

of the non-interacting response function. The excitation energy to the second singlet
1Σ+

g state is shown in Figure 8.9. As for the singlet 1Σ+
u excitation, its behavior at large

R is not improved by the inclusion of the exchange. The effect of the kernel does not

cancel anymore at large R but goes in the wrong direction with respect to the poles of

χIP. The excitation energy to the triplet 3Σ+
u state is shown in Figure 8.10. It becomes

imaginary for a smaller value of R than without exchange as was also observed with the

non-interacting Green’s function.

In all these cases, the correct asymptotic limit is not recovered for the excitation

energies. In fact, as will be seen in the next chapter in the perturbative framework,

the inclusion of exchange in the dielectric matrix needs to be done together with the

inclusion of the derivative of W with respect to G in order to have a consistent expression

for the kernel.
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Figure 8.8 – Excitation energy of the singlet 1Σ+
u state of H2 in a minimal basis as a

function of the internuclear distance R calculated by FCI and BSE-GWx with the exact
Green’s function. The lowest pole of χIP(ω), the fundamental gap E2 −E1, is also plotted
for comparison.
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Figure 8.9 – Excitation energy of the second singlet 1Σ+
g state of H2 in a minimal

basis as a function of the internuclear distance R calculated by FCI and BSE-GWx with
the exact Green’s function. The poles E ′

2 − E1 and E2 − E ′
1 of χIP(ω) are also plotted for

comparison.
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Figure 8.10 – Excitation energy of the triplet 3Σ+
u state of H2 in a minimal basis as a

function of the internuclear distance R calculated by FCI and BSE-GWx with the exact
Green’s function. The lowest pole of χIP(ω), the fundamental gap E2 −E1, is also plotted
for comparison.

8.5 Conclusion

In this chapter, we have applied the BSE approach in the static GW approximation for

the calculation of the excitation energies on the toy model of H2 in a minimal basis.

We were essentially interested to the effects of the different approximations that are

made on the self-energy but did not investigate the ones made during the derivation of

the kernel. We have tested two variants for the starting one-particle Green’s function:

the non-interacting HF one and the exact one, and have also assessed the effect of

the inclusion of exchange in the dielectric matrix for these two variants. Around the

equilibrium internuclear distance, both variants give accurate excitation energies to the

first singlet 1Σ+
u and triplet 3Σ+

u excited states. In the dissociation limit, however, the

two variants differ. The first variant, starting from the non-interacting one-particle

Green’s function, badly fails in this limit for both the singlet and triplet states, giving

imaginary excitation energies. The second variant, starting from the exact one-particle

Green’s function, gives a qualitatively correct energy curve for the singlet 1Σ+
u excited

state up to the dissociation limit. This relies on the fact that the fundamental gap

(given by the one-particle Green’s function) is a good starting approximation to the first

singlet excitation energy. However, the same variant gives an incorrect energy curve

for the triplet 3Σ+
u excited state in the dissociation limit. In this case, the fundamental

gap is a bad starting approximation to the first triplet excitation energy. The inclusion
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of exchange in the GWx variant does not help with these deficiencies and even gives

imaginary excitation energies for smaller intermolecular distances.

The second BSE variant using the exact one-particle Green’s function gives more

excitation energies that the first BSE variant. Most of them are spurious excitations

due to the approximate Bethe-Salpeter kernel which is used and is not number conserving

when the derivative of the self-energy is dropped [35, 36, 82, 83]. However, one of them

can be identified with the excitation energy to the singlet 1Σ+
g excited state which has

a double excitation character. It is remarkable that such a double excitation can be

described at all within a static approximation. This was made possible by using a multi-

configurational wave function for the construction of the Green’s function. However,

the Bethe-Salpeter kernel in the static GW approximation is insufficient to describe

accurately the energy curve of this state, even around the equilibrium distance.

Staying in the static approximation, one major approximation remains on kernel as

the derivative of W with respect to G was neglected up to this point. Its effect is assessed

in the next chapter in a perturbative approach where all the quantities are given up to

the second order of the interaction.
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Chapter 9

Second-order static BSE kernel

In this chapter, the self-energy and static Bethe-Salpeter kernel are expanded in
a perturbative way up to second order with respect to the bare electron-electron
interaction. The derivation is first done in real space where the exchange may or
may not be included in the self-energy and where the derivative of W with respect
to G is or is not included. The resulting equations are then projected onto a spin-
orbital basis. The inclusion of exchange into the correlation self-energy leads to a
spin-orbital representation where the two-electron integrals are antisymmetrized but
is not sufficient by itself to ensure the same for the second-order correlation Bethe-
Salpeter kernel. In fact, for the Bethe-Salpeter kernel, a fully antisymmetrized form
is obtained only when both the exchange in the correlation self-energy and the term
δW/δG in its derivative are included. In this case, the conservation laws are fulfilled.
If only one of these contributions is taken into account an unbalanced expression
where only part of the integrals is antisymmetrized is obtained. This confirms that
both effects have to be taken into account together in order to treat finite molecular
systems for which the exchange terms are imporant. This antisymmetrized static
second-order kernel is once again illustrated on H2 in a minimal basis set where in
the static approximation it is found to have a non-physical form. Most of the technical
details can be found in Appendix G.

9.1 Introduction

The response function of a system describes how it is affected by a change potential,

for instance by addition of an electromagnetic field. In the Bethe-Salpeter approach,

the description of this response involves a kernel which describes the interaction be-

tween the quasi-particles and how this interaction is affected by the perturbation. It is

formally given by differentiation of the self-energy which can be calculated in principle

via the exact set of coupled equations provided by Hedin’s cycle (cf Chapter 7). As

it is not possible to find a straightforward solution to this problem, different kinds of

approximations can be introduced for the construction of the self-energy depending on
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the physical system to describe and/or the available computational power. The GW

approximation was introduced in the last chapter and consists in neglecting the vertex

corrections which account for the change of interaction of the quasi-particles induced by

a change of potential. Other approximations can be made by expressing Hedin’s equa-

tions as eitheir finite or infinite series of the non-interacting (or Hartree-Fock) Green’s

function G0 and of the bare interaction wee [17, 84, 85], or of the screened interaction

W [45, 48, 86]. When such approximations are designed, one has to make sure that they

are conserving approximations [39, 87, 88] which means that given quantities such as

the number of particles or the total energy will be conserved by these approximations.

These conservation laws can be related to the Thomas-Reiche-Kuhn sum rule present

in time-dependent density-functional theory (TDDFT). In particular, when the kernel

is derived from the self-energy, the first-order derivative of W with respect to G is often

dropped, which means that the change in screening due to the perturbation is neglected.

However, in order to design a conserving approximation, this term should in principle

be kept.

In the framework of finite molecular systems, we expand the correlation self-energy

(in Section 9.2) and Bethe-Salpeter kernel (in Section 9.3) up to second order with

respect to the bare Coulomb interaction wee and the Hartree-Fock Green’s function G0

and project them onto a spin-orbital basis. The effects of the inclusion of exchange

into the correlation self-energy (GWx) and of the inclusion of the derivative of W with

respect to G into the kernel are assessed. As the resulting correlation Bethe-Salpeter

kernel is frequency dependent, it requires in principle to solve the dynamical Bethe-

Salpeter equation. However, in this chapter, a static approximation of the kernel is used

by setting ω to 0 in the correlation kernel and is inserted in the Bethe-Salpeter equation.

The effects of the inclusion of exchange in the self-energy and of the derivative of W

with respect to G are tracked through the derivation in order to show their respective

importance. The dynamical case will be treated in the next chapter. The effects of the

second-order approximation is then assessed on the model system of H2 in a minimal

basis in Section 9.4 and compared to the results obtained in Chapter 8 when neither

the exchange or δW/δG are included. Then, the kernel, where both contributions are

included, is also illustrated on this model system. Technical details of the derivation of

the second-order self-energy and kernel can be found in Appendix G.

This perturbative expansion in terms of the bare electron-electron interaction will

be especially interesting in the range-separated context where the interaction will be

replaced by its (smaller) long-range part as our end goal, afterall, is to design a long-

range correlation Bethe-Salpeter kernel which will be added pertubatively to the range-

separated TDDFT kernel (cf Chapter 6). This could also justify why an expansion in

terms of the bare interaction is performed and not in terms of the screened interaction.
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9.2 Second-order self-energy

9.2.1 Second-order self-energy in real space

From the previous chapter, the Hartree-exchange-correlation self-energy, within the

GWx approximation, is given in the time domain by

ΣHxc[G](1, 2) = −i
∫

d3d3′wee(1, 3; 2, 3
′)G(3′+, 3++) + i

∫

d1′d3G(1′, 3)W̄ (3, 1; 2, 1′), (9.1)

where the screened potential W̄ is given by

W̄ (1, 2; 1′, 2′) =

∫

d3d3′ǭ−1(1, 3; 1′, 3′+)wee(3
′, 2; 3, 2′), (9.2)

and the antisymmetrized dielectric function is

ǭ(1, 2; 3, 4) = δ(1, 4)δ(2, 3)−
∫

d5d5′w̄ee(1, 5; 3, 5
′)χIP(5

′, 2; 5+, 4). (9.3)

In order to expand the self-energy at second order with respect to the electron-electron

interaction wee, the inverse dielectric function needs to be expanded up to the first order

and is then given by

(

ǭ(1)
)−1

(1, 2; 3, 4) = δ(1, 4)δ(2, 3) +

∫

d5d5′w̄ee(1, 5; 3, 5
′)χIP(5

′, 2; 5+, 4). (9.4)

When inserted into the expression of the Hartree-exchange-correlation self-energy, it

gives rise to four contributions: the Hartree self-energy

ΣH[G](1, 2) = −i
∫

d3d3′wee(1, 3; 2, 3
′)G(3′+, 3++), (9.5)

and the exchange self-energy

Σx[G](1, 2) = i

∫

d1′d3G(1′, 3)wee(3, 1; 2, 1
′) (9.6)

which contribute at first order with respect to wee, the second-order direct correlation

self-energy

Σ(2d)
c [G](1, 2) = i

∫

d1′d3d4d4′d5d5′G(1′, 3)wee(3, 5; 2, 5
′)χIP(5

′, 4; 5+, 4′+)wee(4
′, 1; 4, 1′)

(9.7)

and the second-order “exchanged” correlation self-energy

Σ(2x)
c [G](1, 2) = −i

∫

d1′d3d4d4′d5d5′G(1′, 3)wee(5, 3; 2, 5
′)χIP(5

′, 4; 5+, 4′+)wee(4
′, 1; 4, 1′),

(9.8)
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Figure 9.1 – Feynman diagrams of the second-order self-energy. The colored dots are
the outer variables. These diagrams represents in fact the self-energy contributions to
the Green’s function of an electron. In order to have the full diagrammatic expansion
of the self-energy, diagrams with reverse arrows should also be included to account for
the contributions of the Green’s function of a hole.

which arise from the antisymmetrisation of the two-electron interaction in the dielectric

function. The Feynman diagrams of these contributions are recalled in Figure 9.1 where

the order of perturbation can be easily found by counting the number of interaction

lines (dashed line) which enter in each diagram. If the dielectric function is not anti-

symmetrized, the “exchanged” correlation contribution disappears, i.e. the last diagram

in Figure 9.1 is removed. In here, we have kept the explicit functional dependence of

the self-energy with respect to the full-interacting Green’s function G as to obtain the

kernel, we need to differentiate with respect to G. However, if one’s goal is to get the

self-energy at second order, then the self-energy has to be evaluated at G = G0.

As the Hartree and exchange self-energy are not affected by the second-order ex-

pansion and have already been given in the previous chapter, only the second-order

correlation will be detailed hereinafter.

9.2.2 Projection onto a spin-orbital basis

In what follows, we are interested in the projection onto the spin-orbital basis set of the

Fourier transform of the second-order self-energy evaluated at G = G0. The convention

for the Fourier transform can be found in Appendix A.2. The matrix elements are then

obtained in the spin-orbital basis with the convention

Σuv(ω) =

∫∫

dx1dx2Σ(x1,x2, ω)ϕ
∗
u(x1)ϕv(x2). (9.9)

The details of the derivation can be found in Appendix G.1.

Direct correlation self-energy

The real-space expression of the direct correlation self-energy in the time domain is given

by Equation (9.7). When the time variables are made explicit, it can be rewritten as

Σ(2d)
c [G](x1,x2, τ) =G(x1,x2, τ)

∫

dx4dx5G(x5,x4,−τ)G(x4,x5, τ − 0+)wee(r2, r5)wee(r4, r1),

(9.10)
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Figure 9.2 – Spin-orbital interpretation of the diagrammatic expansion of the second-
order correlation self-energy.

where τ = t1−t2. When evaluated at G = G0, the matrix elements of its Fourier transform

in the spin-orbital basis set are then given by

Σ(2d)
c,uv(ω) =

∑

ajc

〈ac|vj〉〈uj|ac〉
ω − (εa − εj + εc) + i0+

+
∑

ibk

〈ik|vb〉〈ub|ik〉
ω − (εi − εb + εk)− i0+

=
∑

ajc

〈ac|vj〉〈uj|ac〉
ω − εa + εj − εc + i0+

−
∑

ibk

〈ik|vb〉〈ub|ik〉
−ω + (εi − εb + εk) + i0+

.

(9.11)

These two terms correspond to the first two diagrams of Figure 9.2. The two two-

electron integrals in the numerator corresponds to the two interaction lines present in

each diagram. The three orbital energies correspond to the particle and hole lines where

an occupied orbital is given by an down-going arrow and a virtual orbital corresponds to

an up-going arrow. The outer variables 1 and 2 have been replaced by their corresponding

orbitals u and v following the convention given in Equation (9.9). On these diagrams,

one can also “read” the two-electron integrals. For instance, for the top interaction line

of the first diagram, the orbitals a and v are integrated together and so are the orbitals

j and c, this can then be “translated” in the equation by the term 〈ac|vj〉.
In this expression however, the two-electron integrals are not antisymmetrized as only

the direct part of the correlation self-energy was taken into account. Let now consider

the “exchanged” part.

“Exchanged” correlation self energy

Similarly to the direct case, the real-space expression of the “exchanged” correlation

self-energy with explicit time variables is given by

Σ(2x)
c [G](x1,x2, τ) = −

∫

dx3dx4G(x1,x3, τ)G(x3,x4,−τ)G(x4,x2, τ)wee(r2, r3)wee(r4, r1).

(9.12)

Its matrix elements in the frequency space when evaluated at G = G0 are then given by

Σ(2x)
c,uv(ω) =−

∑

ajc

〈ca|vj〉〈uj|ac〉
ω − (εa − εj + εc) + i0+

−
∑

ibk

〈ki|vb〉〈ub|ik〉
ω − (εi − εb + εk)− i0+

=−
∑

ajc

〈ca|vj〉〈uj|ac〉
ω − εa + εj − εc + i0+

+
∑

ibk

〈ki|vb〉〈ub|ik〉
−ω + εi − εb + εk + i0+

,

(9.13)
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Figure 9.3 – Feynman diagrams of the function Φ from which the correlation self-energy
can be obtained by differentiation with respect to G.

which corresponds to the antisymmetric counterpart of the direct correlation self-energy.

These two terms correspond to the last two diagrams of Figure 9.2. As in the direct case,

a spin-orbital interpretation of the diagrams can be made and matches the expression

found in Equation (9.13). The minus sign comes from the absence of loop in these

diagrams with respect to the direct ones.

Total second-order correlation self-energy

When both the direct and the “exchanged” contributions are taken together, the ma-

trix elements of the total second-order correlation self-energy evaluated at G = G0 are

therefore

Σ(2)
c,uv(ω) =

1

2

∑

ajc

〈ac||vj〉〈uj||ac〉
ω − (εa − εj + εc) + i0+

+
1

2

∑

ibk

〈ik||vb〉〈ub||ik〉
ω − (εi − εb + εk)− i0+

, (9.14)

where 〈pq||rs〉 = 〈pq|rs〉 − 〈pq|sr〉 so that all the two-electron integrals are now antisym-

metrized. Taking either the direct correlation only or the total correlation, can be a

relevant approximation depending on either one is dealing with a finite or infinite sys-

tem. Moreover, each of these two possibilities constitutes a conserving approximation

which means that they are consistent with the general (number, momentum and energy)

conservation laws. A sufficient condition on the self-energy operator to be a conserv-

ing approximation is to be Φ-derivable, i.e. there exists a functional Φ of G such that

Σ = δΦ/δG [87]. This condition can also be checked diagrammatically following the rules

introduced by Baym [88]. The Feynman diagrams of the direct and “exchanged” part of

the function Φ are given in Figure 9.3 and are homomorphic to the well-known Goldstone

diagrams for the Møller-Plesset correlation energy at second order [89–91].

9.3 Second-order Bethe-Salpeter kernel

9.3.1 Second-order Bethe-Salpeter kernel in real space

Knowing the second-order self-energy, the second-order Hartree-exchange-correlation

Bethe-Salpeter kernel can then be obtained as

Ξ
(2)
Hxc(1, 6; 2, 5) = i

δΣ
(2)
Hxc[G](1, 2)

δG(5, 6)

∣

∣

∣

∣

∣

G=G0

, (9.15)
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Figure 9.4 – Feynman representation of the second-order Bethe-Salpeter kernel. The
colored dots are the outer variables. In order to have the full diagrammatic expansion,
the diagrams with reverse Green’s functions should also be accounted for.

if the exchange and the derivative of W with respect to G are included then the

corresponding Feynman diagrams are given in Figure 9.4 where “differentiating with

respect to G” can be interpreted as removing a G arrow from the self-energy diagrams.

The tail of the removed arrow is replaced by a brown point corresponding to the

variable 6 and the head is replaced by a green point corresponding to the variable

5. Therefore, starting with the diagrammatic expansion of the self-energy given in

Figure 9.1, one can obtained the kernel by removing the G arrow in the Hartree and

exchange parts and by removing either one of the three G arrows for the direct and

exchanged correlation self-energy which gives rise to six diagrams for the correlation

part of the kernel. Similarly to the self-energy, an approximation to the kernel is said to

be conserving if there exists a functional Φ such that the kernel can be expressed as the

second-order derivative of Φ with respect to G. Therefore, starting from a conserving

approximation of the self-energy, the kernel will be conserving if all the terms are kept

in the differentiation of Σ with respect to G.

As we are interested in the matrix elements of the frequency-dependent kernel,

the algebraic derivation of the kernel is a two-step procedure: first, the Fourier

transform is performed following the conventions given in Appendix A.2, and then the

matrix elements are obtained with the convention

Ξpq,rs(ω) =

∫

dx1dx2dx5dx6ϕp(x2)ϕ
∗
q(x1)Ξ(x1,x6;x2,x5;ω)ϕ

∗
r(x6)ϕs(x5). (9.16)

187



CHAPTER 9. SECOND-ORDER STATIC BSE KERNEL

Hartree kernel

With explicit time variables, the Hartree kernel is given in real space as

ΞH(1, 6; 2; 5) = i
δΣH(1, 2)

δG(5, 6)
= δ(1, 2)δ(5, 6)δ(t1 − t5)wee(r1, r5), (9.17)

and is local in time. It corresponds to the first diagram of the right-hand-side of Fig-

ure 9.4. With the convention given in Equation (9.16), its matrix elements are simply

given by the two-electron integrals ΞH,pq,rs = 〈qr|ps〉.

Exchange kernel

In the same way, the exchange kernel is given by

Ξx(1, 6; 2; 5) = i
δΣx(1, 2)

δG(5, 6)
= −δ(6, 2)δ(1, 5)δ(t1 − t2)wee(r1, r2), (9.18)

and is also local in time. It corresponds to the second diagram of the right-hand-side of

Figure 9.4 where the points 2 and 5 have been exchanged with respect to the Hartree

term. Its matrix elements are then given by Ξx,pq,rs = −〈qr|sp〉, and corresponds to the

antisymmetric counterpart of the Hartree kernel.

Correlation kernel

The second-order correlation Bethe-Salpeter kernel can be split into a direct and an

“exchanged part”, coming naturally from the decomposition of the self-energy

Ξ(2)
c (1, 6; 2; 5) = Ξ(2d)

c (1, 6; 2; 5) + Ξ(2x)
c (1, 6; 2; 5)

= i
δΣ

(2d)
c (1, 2)

δG(5, 6)

∣

∣

∣

∣

∣

G=G0

+ i
δΣ

(2x)
c (1, 2)

δG(5, 6)

∣

∣

∣

∣

∣

G=G0

.
(9.19)

Each of these parts will be treated separately in the following. Moreover, as the second-

order self-energy is a product G times the second-order screened interaction W̄ (2), in each

differentiation, two terms occur, one coming from
(

δG/δG
)

W̄ (2) which will be denoted

as ⊲Ξ and one coming from G
(

δW̄ (2)/δG
)

which is denoted as ⊳Ξ. A summary of the

decompositions is given in Figure 9.5 in terms of Feynman diagrams. The first contri-

bution ⊲Ξ corresponds to the interaction between the quasi-hole and the quasi-electron

and is represented by the “buble” diagram (and its antisymmetrized counterpart) in

Figure 9.5. The second contribution ⊳Ξ takes into accounts the change in the interaction

induced by the perturbation and corresponds to the “ladder” diagrams in Figure 9.5.

The distinction between these two contributions is made explicit in order to be able to

identify the effects of the derivative of W with respect to G which is usually neglected in

the literature for solid systems. However, it can be forgotten if one is not interested in

this comparison. Finally, the kernels also decompose into in a ph/hp part which corre-
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Figure 9.5 – Diagrammatic decomposition of the second-order Bethe-Salpeter correla-
tion kernel, into direct and exchanged part (in red), into pp/hh and ph/ph contributions
(in green) and into the parts coming from W and from GδW/δG (in orange).

sponds to the propagation of an electron and a hole and a pp/hh where either two holes

or two electrons are propagated simultaneously. The details of the derivations are given

in Appendix G.2.

Direct correlation BSE kernel The direct correlation Bethe-Salpeter kernel can be

split into three contributions

Ξ(2d)
c (1, 6; 2; 5) =δ(t2, t6)δ(t1, t5)⊲Ξ

(2d,ph/hp)
c (x1,x6;x2,x5; t1 − t2)

+ δ(t2, t6)δ(t1, t5)⊳Ξ
(2d,ph/hp)
c (x1,x6;x2,x5; t1 − t2)

+ δ(t2, t5)δ(t1, t6)⊳Ξ
(2d,pp/hh)
c (x1,x6;x2,x5; t1 − t2).

(9.20)

The first two terms are ph/hp terms and have the same delta functions on the time

variables. They correspond to the propagation of a hole and an electron together. The

third term has different delta functions on the time variables and corresponds to the

propagation of either two holes or two electrons together, it is thus a pp/hh term. These

terms will need to be treated separately when the Fourier transform is performed as

detailed in Appendix G.2 and when inserted in the Bethe-Salpeter equation except in

the static case where an additional delta function on t1 and t2 solves this issue. Moreover,

one should note that ⊳Ξ
(d,pp/hh)
c [G] and ⊳Ξ

(d,ph/hp)
c [G] arise from the derivative of W with

respect to G and are usually neglected in the literature of condensed-matter physics.

With the convention given by Equation (9.16), the matrix elements of the frequency-
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Figure 9.6 – Spin-orbital interpretation of the diagrammatic expansion of the direct
second-order correlation kernel.

dependent second-order direct correlation kernel are then given by

⊲Ξ
(2d,ph/hp)
c,pq,rs (ω) =−

∑

kc

〈qk|sc〉〈rc|pk〉
ω − (εc − εk) + i0+

+
∑

kc

〈rk|pc〉〈qc|sk〉
ω + (εc − εk)− i0+

, (9.21)

which corresponds to the top and bottom left diagrams of Figure 9.6,

⊳Ξ
(2d,ph/hp)
c,pq,rs (ω) = −

∑

kc

〈cr|pk〉〈qk|cs〉
ω − (εc − εk) + i0+

+
∑

kc

〈kr|pc〉〈qc|ks〉
ω + (εc − εk)− i0+

, (9.22)

which corresponds to the middle diagrams of Figure 9.6 and

⊳Ξ
(2d,pp/hh)
c,pq,rs (ω) =

∑

cd

〈cd|ps〉〈qr|cd〉
ω − (εc + εd) + i0+

−
∑

kl

〈kl|ps〉〈qr|kl〉
ω − (εk + εl)− i0+

, (9.23)

for the right diagrams. As in the self-energy case, it is possible to make a spin-orbital

interpretation of the diagrams and the diagrammatic and algebraic formulations are

equivalent.

“Exchanged” correlation BSE kernel A similar decomposition can be done for

the second-order “exchanged” correlation kernel such that

Ξ(2x)
c (1, 6; 2; 5) =δ(t2, t6)δ(t1, t5)⊲Ξ

(2x,ph/hp)
c (x1,x6;x2,x5; t1 − t2)

+ δ(t2, t6)δ(t1, t5)⊳Ξ
(2x,ph/hp)
c (x1,x6;x2,x5; t1 − t2)

+ δ(t2, t5)δ(t1, t6)⊳Ξ
(2x,pp/hh)
c (x1,x6;x2,x5; t1 − t2),

(9.24)

which also has ph/hp and pp/hh contributions. Once the Fourier transform is performed

as detailed in Appendix G.2, the matrix elements of the frequency-dependent second-

order “exchanged” correlation kernel are obtained by projection onto the spin-orbital
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Figure 9.7 – Spin-orbital interpretation of the diagrammatic expansion of the “ex-
changed” second-order correlation kernel.

basis and are given by

⊲Ξ
(2x,ph/hp)
c,pq,rs (ω) =

∑

kc

〈cr|pk〉〈qk|sc〉
ω − (εc − εk) + i0+

−
∑

kc

〈kr|pc〉〈qc|sk〉
ω + (εc − εk)− i0+

, (9.25a)

⊳Ξ
(2x,ph/hp)
c,pq,rs (ω) =

∑

kc

〈rc|pk〉〈qk|cs〉
ω − (εc − εk) + i0+

−
∑

kc

〈rk|pc〉〈qc|ks〉
ω + (εc − εk)− i0+

. (9.25b)

Ξ(2x,pp/hh)
c,pq,rs (ω) =−

∑

cd

〈cd|ps〉〈qr|cd〉
ω − (εc + εd) + i0+

+
∑

kl

〈kl|ps〉〈qr|lk〉
ω − (εk + εl)− i0+

, (9.25c)

which correspond respectively to the left, middle and right diagrams of Figure 9.7.

These terms correspond to the antisymmetric counterpart of the direct terms which

diagrammatic expansions were given in Figure 9.6.

Total correlation kernel By combination of the direct and exchanged terms, the

total second-order correlation kernel is therefore given by

Ξ(2)
c,pq,rs(ω) =−

∑

kc

〈rc||pk〉〈qk||sc〉
ω − (εc − εk) + i0+

+
∑

kc

〈rk||pc〉〈qc||sk〉
ω + (εc − εk)− i0+

+
1

2

∑

cd

〈qr||cd〉〈cd||ps〉
ω − (εc + εd) + i0+

− 1

2

∑

kl

〈qr||kl〉〈kl||ps〉
ω − (εk + εl)− i0+

.

(9.26)

The first two contributions constitute the ph/hp part while the last two terms are the

pp/hh part. In this equation, all the electron-electron integrals are antisymmetrized. If

neither the antisymmetrization of the self-energy nor the derivative of W with respect

to G are included, then the kernel is given by Equation (9.21). If only one of these

contributions is accounted for, then an unbalanced form is obtained where only half of

the integrals are antisymmetrized. This acknowledges the fact that both contributions

have to be taken into account together in order to have a kernel in which direct and
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exchanged terms are treated on an equal footing. Moreover, as the second-order self-

energy provides a conserving approximation and that all the terms were accounted for

in its differentiation, this kernel is also conserving.

Spin adaptation For spin-restricted closed-shell calculations, the spin-adapted kernel

is obtained by rotation in spin-space as was done in Section 8.3.2. For four fixed spatial

orbitals referred to as p, q, r, s, the spin-singlet kernel is therefore obtained by

1Ξ(2)
c,pq,rs(ω) = Ξ

(2)
c,p↑q↑,r↑s↑(ω) + Ξ

(2)
c,p↑q↑,r↓s↓(ω) (9.27)

and the triplet kernel by

3Ξ(2)
c,pq,rs(ω) = Ξ

(2)
c,p↑q↑,r↑s↑(ω)− Ξ

(2)
c,p↑q↑,r↓s↓(ω). (9.28)

The term Ξ
(2)
c,p↑q↑,r↑s↑(ω) and Ξ

(2)
c,p↑q↑,r↓s↓(ω) are calculated in Appendix G.3 for the ph/hp

and the pp/hh contributions to the kernel. The singlet and triplet ph/hp kernels are then

obtained by sum and difference, and are given by

1Ξ(2,ph/hp)
c,pq,rs (ω) =

−
∑

kc

2wee,pr,ckwee,sq,kc − wee,pr,ckwee,cq,ks − wee,kr,cpwee,sq,kc + 2wee,kr,cpwee,cq,ks

ω − (εc − εk) + i0+

+
∑

kc

2wee,pr,kcwee,sq,ck − wee,pr,kcwee,kq,cs − wee,cr,kpwee,sq,ck + 2wee,cr,kpwee,kq,cs

ω + (εc − εk)− i0+
,

(9.29a)

3Ξ(2,ph/hp)
c,pq,rs (ω) =−

∑

kc

2wee,pr,ckwee,sq,kc − wee,pr,ckwee,cq,ks − wee,kr,cpwee,sq,kc

ω − (εc − εk) + i0+

+
∑

kc

2wee,pr,kcwee,sq,ck − wee,pr,kcwee,kq,cs − wee,cr,kpwee,sq,ck

ω + (εc − εk)− i0+
.

(9.29b)

Similarly, the spin-adapted pp/hh kernels are given by

1Ξ(2,pp/hh)
c,pq,rs (ω)

=
1

2

∑

cd

2wee,cq,rdwee,pc,ds − wee,cq,rdwee,sc,dp − wee,dq,rcwee,pc,ds + 2wee,dq,rcwee,sc,dp

ω − (εc + εd) + i0+

− 1

2

∑

kl

2wee,kq,rlwee,pk,ls − wee,kq,rlwee,sk,lp − wee,lq,rkwee,pk,ls + 2wee,lq,rkwee,sk,lp

ω − (εk + εl)− i0+
,

(9.30a)

3Ξ(2,pp/hh)
c,pq,rs (ω) =− 1

2

∑

cd

wee,cq,rdwee,sc,dp + wee,dq,rcwee,pc,ds

ω − (εc + εd) + i0+

+
1

2

∑

kl

wee,kq,rlwee,sk,lp + wee,lq,rkwee,pk,ls

ω − (εk + εl)− i0+
.

(9.30b)

As this kernel is frequency-dependent, it cannot be inserted straightforwardly into the

Bethe-Salpeter equation and convolution products in frequency space need to be done.
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However, it is already interesting to look at its behavior in the static approximation.

First, this allows us to evaluate the effects of the second-order approximation in com-

parison to the kernel derived in Chapter 8. Moreover, it is also possible to study the

effect of the inclusion of the derivative of W . The effects of the second-order kernel are

thus illustrated on our usual model system given by H2 in a minimal basis set.

9.4 Application to H2 in a minimal basis

9.4.1 Effects of the perturbative expansion

In order to have comparable quantities, the second-order correlation kernel where neither

the antisymmetrized self-energy not the derivative of W are included, is considered and

is applied with G0 as a starting Green’s function, this method will be reffered to as

G0W0
(2). Is is compared to the G0W0 method detailed in the Chapter 8 where the same

ingredients are included but where the kernel was not truncated at second order. In this

case, the singlet excitation energy was given by

1ω =

√

(

∆ε+ 4K12 − J12 −
K12

1 + 4K12/∆ε

)(

∆ε− J12 +
K12

1 + 4K12/∆ε

)

, (9.31)

and the triplet excitation energy by

3ω =

√

(

∆ε− J12 −
K12

1 + 4K12/∆ε

)(

∆ε− J12 +
K12

1 + 4K12/∆ε

)

. (9.32)

In the second-order case, the inverse of the dielectric matrix is expanded for small K12. It

is straightforward to see that such an expansion will not be valid when H2 is dissociated

as the difference of orbital energies goes to 0 but K12 does not such that ∆ε≪ K12. The

singlet excitation energy is then given as

1ω(2) =

√

(

∆ε+ 3K12 − J12 +
4K2

12

∆ε

)(

∆ε− J12 +K12 −
4K2

12

∆ε

)

, (9.33)

and the triplet one as

3ω(2) =

√

(

∆ε− J12 −K12 +
4K2

12

∆ε

)(

∆ε− J12 +K12 −
4K2

12

∆ε

)

. (9.34)

These energies are plotted in Figure 9.8 together with the TDHF and FCI references.

Around the equilibrium distance, where ∆ε is large, the second-order energies reproduce

correctly the non-perturbative energies. However, when the bond is stretched and that

the orbital energy difference smaller and smaller, the singlet excitation energy becomes

imaginary for a smaller internuclear distance than is the non-perturbative case, at about

4 bohr instead of 4.8 bohr. The triplet excitation energy becomes also imaginary for
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Figure 9.8 – Excitation energies of the singlet 1Σ+
u (top) and the triplet 3Σ+

u (bottom)
states of H2 in a minimal basis as a function of the internuclear distance R calculated
by FCI, TDHF, G0W0 and G0W0

(2).
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the same value of R of about 4 bohr which corresponds to the distance where ∆ε−J12 +

K12− 4K2
12/∆ε = 0. However, in this case, the non-perturbative triplet excitation energy

is not behaving any better and both curves are very similar.

Comparison with the FCI perturbative expansion

It is also insightful to compare these expansions with an expansion of the FCI energies at

second order with repect to the electron-electron interaction. The ground- and excited-

state FCI energies are given by

E0 = 2ε1 − λJ11 + Ec

1E1 = ε1 + ε2 − λ(J11 + J12 − 2K12)

3E1 = ε1 + ε2 − λ(J11 + J12)

(9.35)

where λ is an ordering parameter and Ec = ∆−
√

∆2 + λ2K2
12 such that

∆ = ε2 − ε1 + λ
J11 + J22 − 4J12 + 2K12

2
. (9.36)

Therefore, the Taylor expansion of the excitation energies up to the second order are

given by

1ωFCI,(2) = ∆ε+ λ(−J12 + 2K12) + λ2
K2

12

2∆ε
+O(λ3)

3ωFCI,(2) = ∆ε− λ(J12) + λ2
K2

12

2∆ε
+O(λ3).

(9.37)

If a similar expansion is performed for the Bethe-Salpeter second-order energies, one can

obtain

1ω(2) = ∆ε+ λ(−J12 + 2K12)− λ2
K2

12

2∆ε
+O(λ3)

3ω(2) = ∆ε− λ(J12)− λ2
K2

12

2∆ε
+O(λ3).

(9.38)

The second order correction goes in the wrong direction as pointed out by Brand et

al [92] in the TDHF case. This means that at this level some terms are missing in the

second-order expansion or are not described properly within the static approximation.

9.4.2 Effects of the derivative of W

Matrix elements of the correlation kernel

As the matrix representation of the electron-electron is diagonal by block in the case of

H2 in a minimal basis set, the matrix elements Ξc,1↑2↑,1↑2↑(ω) and Ξc,1↑2↑,1↓2↓(ω) are equal

to 0 and therefore the correlation kernel does not contribute in the block A as it was

also the case in Section 8.4.1 and 8.4.2. In the block B however, its contribution remains
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and in the static approximation is given by

1Ξ
(2)
c,12,21(ω = 0) = K12

(

2(K12 + J12)

∆ε
− J22

2ε2
+
J11
2ε1

)

(9.39)

in the singlet case, and by

3Ξ
(2)
c,12,21(ω = 0) = K12

(

2(K12 − J12)

∆ε
+
J22
2ε2

− J11
2ε1

)

. (9.40)

in the triplet case. The matrix A and B are then given by

1A = ∆ε+ 2K12 − J12

1B = 2K12 −K12

(

1− 2(K12 + J12)

∆ε
+
J22
2ε2

− J11
2ε1

)

3A = ∆ε− J12

3B = −K12

(

1− 2(K12 − J12)

∆ε
− J22

2ε2
+
J11
2ε1

)

(9.41)

Excitation energies

The singlet excitation energy in the static approximation at second order with exchange

and with the inclusion of the derivative of W with respect to G is therefore given by

1ω =

√

∆ε+ 4K12 − J12 −K12

(

1− 2(K12 + J12)

∆ε
+
J22
2ε2

− J11
2ε1

)

×
√

∆ε− J12 +K12

(

1− 2(K12 + J12)

∆ε
+
J22
2ε2

− J11
2ε1

)

(9.42)

and the triplet one is given by

3ω =

√

∆ε− J12 −K12

(

1− 2(K12 − J12)

∆ε
− J22

2ε2
+
J11
2ε1

)

×
√

∆ε− J12 +K12

(

1− 2(K12 − J12)

∆ε
− J22

2ε2
+
J11
2ε1

)

.

(9.43)

These excitation energies show an unphysical form where the ε1 and ε2 are present by

themselves while only the orbital energy difference ∆ε should be present. This effect

is due to the static approximation as the kernel is not convoluted with the response

functions in the Bethe-Salpeter equation. In fact, as will be shown in the next chapter,

if the convolution is properly done, then the correlation kernel depends only on energy

differences between occupied and virtual orbitals as one would expect.

The singlet and triplet excitation energies are plotted for the dihydrogen molecule as

functions of the internuclear distance R in Figure 9.9. Due to their unphysical expression,

they probably provide the worse results among all the approximations tested up to this

196



9.4. APPLICATION TO H2 IN A MINIMAL BASIS

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8 9 10

R in bohr

E
x
ci
ta
ti
on

en
er
gi
es

in
h
ar
tr
ee

FCI
TDHF

BSE-GWx with δW
δG from G0

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8 9 10

R in bohr

E
x
ci
ta
ti
on

en
er
gi
es

in
h
ar
tr
ee

FCI
TDHF

BSE-GWx with δW
δG from G0

Figure 9.9 – Excitation energies of the singlet 1Σ+
u (top) and the triplet 3Σ+

u (bottom)
states of H2 in a minimal basis as a function of the internuclear distance R calculated
by FCI, TDHF, and BSE-GWx with the derivative of W with respect to G with the
non-interacting HF Green’s function G0.
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point. The singlet excitation energy is very similar to the TDHF excitation energy up

to 3.5 bohr, then show a slight improvement up to 4 bohr and finally goes abruptly to 0

and becomes imaginary for distances larger than 4.3 bohr. In the meanwhile, the triplet

excitation energy is worse than the TDHF reference for any value of the internuclear

distance and becomes imaginary for R = 3.2 bohr which is the smallest breaking distance

ever encountered so far. After 5.2 bohr, an unphysical solution corresponding in fact to

the deexcitation appears.

9.5 Conclusion

In this chapter, a second-order correlation Bethe-Salpeter kernel has been derived and

illustrated on the model system of H2 in a minimal basis in the static approximation.

In order to get a conserving approximation well-suited for finite molecular system, it

was shown that both the antisymmetrization of the electron-electron interaction in the

correlation self-energy and the totality of the contribution in its first-order derivative

with respect to G were to be taken into account conjointly.

The effect of the truncation at second order was assessed on the dihydrogen molecule

and shows no effect around the equilibrium distance where the G0W0 approximation

works correctly but has a larger effect when the bond is stretched for the singlet exci-

tation in the region where the G0W0 approximation is also breaking down. However as

the second-order expansion is valid when the electron-electron integrals are much smaller

than the orbital energy difference, it is obvious that such a level of approximation would

not be able to describe correctly the dissociation of H2 or similar systems where strong

correlation plays a significant role.

Still at second order with respect to the electron-electron interaction, the effect of

the inclusion of exchange into the dielectric function and of the derivative of the self-

energy with respect to G was then assessed. This defines a conserving approximation for

the Bethe-Salpeter kernel. However, within the static approximation, it shows a very

unphysical form as the excitation energies do not depend only on energy differences but

also on orbitals energies by themselves. The singlet and triplet excitation energies of the

dihydrogen molecule obtained with this kernel shows a good agreement with the FCI

reference calculation around equilibrium distance but then deteriorate rapidly when the

bond is stretched.

This confirms that a static second-order Bethe-Salpeter correlation kernel is not well-

suited to describe systems like H2 along the dissociation for two reasons, the first being

the second-order expansion and the second being the static approximation. However, if

such a strongly-correlated system is not at stake and one is interested only in describing

excitations where a double contribution is important, using a second-order correlation

kernel makes sense but only with a dynamical treatment. The derivation of such a

second-order dynamical kernel is the subject of the next chapter.
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Chapter 10

Range-separated dynamical

second-order BSE kernel

In this chapter, we develop an effective dynamical second-order Bethe-Salpeter cor-
relation kernel both in real space and in a spin-orbital basis set. In order to ensure
a number-conserving approximation in the framework of finite molecular systems,
exchange was included in the dielectric matrix and all terms were kept in the con-
struction of the kernel from the second-order self-energy. When the Bethe-Salpeter
equation is solved in a dynamical fashion, the frequency-dependent second-order ker-
nel obtained in the previous chapter needs to be convoluted with two two-frequency
propagators. This convolution product can be reformulated as a product of two re-
sponse functions and of an effective kernel. As this effective kernel depends only
on one frequency, it can be used in TDDFT-like equations in order to calculate the
poles of the response function. If constructed on a range-separated Green’s function
and with the long-range part of the interaction, this kernel can also be used in the
framework of range-separated TDDFT as an effective long-range frequency-dependent
correlation kernel which can be added perturbatively to the TDRSH kernel discussed
in Chapter 6. In both cases, the inclusion of a frequency-dependent kernel raises
some computational issues as one needs to solve a non-linear eigenvalue problem. A
perturbative approach within the Tamm-Dancoff approximation is therefore used in
the calculations. The behavior of the kernel is first illustrated on the model system
of H2 in a minimal basis. In this case, the very symmetric nature of this system
leads to the annihilation of the frequency-dependent part of the kernel. However,
the comparison of the expansion of the excitation energies up to second order with
respect to the interaction, with the expansions of the corresponding FCI energies
highlights what is missing in this dynamical kernel. The kernel is then applied to the
calculation of the first singlet and triplet excitation energies of N2, CO, H2CO and
C2H4 both with and without range separation. For these systems, the addition of the
perturbative kernel induces a systematic increase of the excitation energies. It leads
to a strong deterioration of the excitation energies in the non range-separated case
but improves both the mean absolute deviation and the maximum error when used
with range separation. Details of the derivation and of the implementation can be
found in Appendices H and I.

199



CHAPTER 10. DYNAMICAL RSH-BSE2 KERNEL

10.1 Introduction

It is now well-established in the literature that a frequency-dependent kernel is required

to describe multiple excitations [35, 36, 47, 86] at least when starting from a single-

reference Green’s function. In order to compute the excitation energies of a finite molec-

ular system, a second-order correlation kernel was developed in the previous chapter

where exchange was included in the dielectric matrix and where the effects of the per-

turbation on the screened interaction where taken into account. When used in the static

approximation, this kernel was proven to have a non-physical form and thus requires a

dynamical treatment. In this case, the Fourier transform of the Bethe-Salpeter equation

is not trivial anymore as convolution products need to be performed in the frequency

space between the kernel and two two-frequency propagators. The Fourier transform

of the Bethe-Salpeter equation is performed in Section 10.2 where it is shown that the

previous convolution product can be rewritten as the product of an effective kernel

Ξ̃(2)(ω) and of two response functions. The expressions of the matrix elements of the

singlet and triplet correlation effective kernels are then derived in a spin-orbital basis set.

With such a kernel, solving the Bethe-Salpeter equation reduces to solving a non-linear

eigenvalue problem similar to the one encountered in time-dependent density-functional

theory without the adiabatic approximation (cf. Chapter 5). This kernel has been re-

cently studied by Zhang et al [37] although their approach is slightly different and they

limited themselves to the Tamm-Dancoff case starting from a Hartree-Fock (HF) Green’s

function with a quasi-particle GW correction.

Our goal however is to design a long-range frequency-dependent correlation kernel

in order to add it perturbatively to the range-separated-hybrid (RSH) kernel

fµ,RSH
Hxc = fH + f lr,µx,HF + f sr,µxc (10.1)

designed in Chapter 6 so that we could take into account the effects of the double

excitations entering in the description of the single ones. Such a long-range kernel

can easily be obtained from a full-range kernel by substituting the electron-electron

interaction by its long-range part only and the HF orbital energies by the RSH ones.

The HF case is then recovered in the limit when the range-separation parameter µ goes

to infinity. As the orbital energy differences of the range-separated Green’s function

are expected to be a good starting point for the calculation of excitation energies, no

quasi-particle GW correction is performed prior to the Bethe-Salpeter calculation. The

(long-range) second-order effective correlation kernel Ξ̃
lr,µ,(2)
c (ω) depends only on the

external frequency ω such that the Bethe-Salpeter equation can be written in the from

χ−1(ω) = χ−1
0 (ω)−

(

fµ,RSH
Hxc + Ξ̃lr,µ,(2)

c (ω)
)

. (10.2)

In this case, an efficient resolution scheme needs to be designed as the usual Casida’s

resolution scheme does not hold anymore with a frequency-dependent kernel. This equa-
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tion defines in fact a non-linear eigenvalue problem which should in principle be solved

self-consistently. However, in this work a simpler approach will be explored. Following

the work of Zhang et al, a perturbative resolution within the Tamm-Dancoff approxi-

mation is given in Section 10.3 both with and without range separation. To illustrate

the behavior of the dynamical kernel, it is once again applied on the model system given

by the hydrogen molecule in a minimal basis. Even though, the kernel is not expected

to describe correctly the dissociation as it was designed perturbatively at second order,

useful insights can be obtained by comparing for instance the second-order expansions

of the excitation energies with respect to the ones obtained by the exact full-CI method.

This analysis is detailed in Section 10.4. Finally, this dynamical kernel is applied to the

calculation of the first lowest excitation energies of four small molecules N2, CO, H2CO

and C2H4 and compared to the results obtained in Chapter 6 without the long-range cor-

relation kernel. The computational details are given in Section 10.5 and Section 10.6. In

this chapter, only the main steps of the derivation are given and are sketched in terms

of Feynman diagrams. More details on the derivation can be found in Appendix H.

The calculation were performed on a homemade software which is briefly described in

Appendix I.

10.2 Dynamical second-order Bethe-Salpeter kernel

10.2.1 Fourier transform of the Bethe-Salpeter Equation

When a dynamical kernel is introduced in the Bethe-Salpeter equation, its Fourier trans-

form requires some additional efforts. The general Bethe-Salpeter equation in time do-

main is given by

χ(1, 2; 1′, 2′) = χIP(1, 2; 1
′, 2′) +

∫

d3456χIP(1, 4; 1
′, 3)ΞHxc(3, 6; 4, 5)χ(5, 2; 6, 2

′), (10.3)

where χ and χIP are 4 point-polarizabilities. In the context of excitation energies, such

general quantities are not needed and response functions are sufficient. Hence, the times

are constraint to the case t′1 = t+1 and t′2 = t+2 , so the Bethe-Salpeter equation rewrites as

χ(x1t1,x2t2;x
′
1t

+
1 ,x

′
2, t

+
2 ) = χIP(x1t1,x2t2;x

′
1t

+
1 ,x

′
2t

+
2 )

+

∫

dx3dt3dx4dt4dx5dt5dx6dt6χIP(x1t1,x4t4;x
′
1t

+
1 ,x3t3)

ΞHxc(x3t3,x6t6;x4t4,x5t5)χ(x5t5,x2t2;x6t6,x
′
2t

+
2 ).

(10.4)

Although the left-hand side and the first term of the right-hand side of this equation

are response functions (depending of only one time difference), the last term involves

propagators depending of two time differences because of the presence of a dynamical

kernel. Their Fourier transform and their matrix elements are given in Appendix F.

When expanded at second order with respect to the electron-electron interaction and
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evaluated at G = G0, this equation can be rewritten as

χ(x1t1,x2t2;x
′
1t

+
1 ,x

′
2, t

+
2 ) = χ0(x1t1,x2t2;x

′
1t

+
1 ,x

′
2t

+
2 )

+

∫

dx3dt3dx4dt4dx5dt5dx6dt6χ0(x1t1,x4t4;x
′
1t

+
1 ,x3t3)

Ξ
(2)
Hxc(x3t3,x6t6;x4t4,x5t5)χ(x5t5,x2t2;x6t6,x

′
2t

+
2 ).

(10.5)

As the Hartree and exchange kernels are local in time, only the correlation part of the

right-hand side will be detailed here. In the previous chapter, it has been shown that the

second-order correlation kernel can be decoupled into a ph/hp and a pp/hh parts which

exhibit different delta functions on the time variables (cf. Equations (9.20) and (9.24))

such that the second-order correlation kernel is given by

Ξ(2)
c (3, 6; 4; 5) = δ(t4, t6)δ(t3, t5)Ξ

(2,ph/hp)
c (x3,x6;x4,x5; t3 − t4)

+ δ(t4, t5)δ(t3, t6)Ξ
(2,pp/hh)
c (x3,x6;x4,x5; t3 − t4),

(10.6)

where the terms Ξ(2,ph/hp)
c and Ξ

(2,pp/hh)
c include both direct and exchanged contributions

and where the derivative of W was also taken into account. As the delta functions are

different for the ph/ph and pp/hh terms, they need to be treated separately when the

Fourier transform is performed. The details of the Fourier transforms of both contribu-

tions are given in Appendix H.1. Finally, the Fourier transform of the Bethe-Salpeter

equation is given by

χ(x1,x2;x
′
1,x

′
2;ω) = χ0(x1,x2;x

′
1,x

′
2;ω)

+

∫

dx3dx4dx5dx6χ0 (x1,x4;x
′
1,x3;ω) ΞHx(x3,x6;x4,x5)χ(x5,x2;x6,x

′
2, ω)

+

∫

dω′

2π

∫

dω′′

2π

∫

dx3dx4dx5dx6χ0 (x1,x4;x
′
1,x3;−η, ω′, ω)

Ξ(2,ph/hp)
c (x3,x6;x4,x5;ω

′ − ω′′)χ(x5,x2;x6,x
′
2;ω

′′,−η, ω)

+

∫

dω′

2π

∫

dω′′

2π

∫

dx3dx4dx5dx6χ0(x1,x4;x
′
1,x3;−η, ω′, ω)

Ξ(2,pp/hh)
c (x3,x6;x4,x5;ω

′ + ω′′)χ(x5,x2;x6,x
′
2;ω

′′,−η, ω),

(10.7)

where η is a small positive quantity. This equation involves the convolution product

of two-frequency propagators and the one-frequency pp/hh and ph/hp Bethe-Salpeter

kernels. This convolution product can then be rewritten in a product of two response

functions and of an effective kernel as pointed out by Romaniello et al in Ref [35, 36].

The main steps of this transformation is recalled in the following and is applied in order

to compute the matrix elements of the effective second-order correlation kernel.
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(2)
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=

+

+

+

+

+

Figure 10.1 – Feynman representation of T ph/hp and T pp/hh obtained by convolution
of the second-order correlation Bethe-Salpeter kernel with the non-interacting response
functions.

10.2.2 Effective second-order correlation kernel

An effective correlation kernel is then defined by introducing the products χ0(ω)χ
−1
0 (ω)

on the left and χ(ω)−1χ(ω) on the right in Equation (10.7)

χ(ω) =χ0(ω) + χ0(ω)ΞHxχ(ω)

+ χ0(ω)χ
−1
0 (ω)

∫

dω′

2π

dω′′

2π
χ0(−η, ω′, ω)Ξ(2,ph/hp)

c (ω′ − ω′′)χ(ω′′,−η, ω)χ(ω)−1χ(ω)

+ χ0(ω)χ
−1
0 (ω)

∫

dω′

2π

dω′′

2π
χ0(−η, ω′, ω)Ξ(2,pp/hh)

c (ω′ + ω′′)χ(ω′′,−η, ω)χ(ω)−1χ(ω),

(10.8)

so that the Bethe-Salpeter equation rewrites as

χ(ω) = χ0(ω) + χ0(ω)ΞHxχ(ω) + χ0(ω)Ξ̃
(2,ph/hp)
c (ω)χ(ω) + χ0(ω)Ξ̃

(2,pp/hh)
c (ω)χ(ω), (10.9)

where the spin-space variables have been kept implicit for conciseness. When evaluated

at G = G0, to be consistent with the order of perturbation, the ph/hp and pp/hh second-

order effective correlation kernels are therefore defined as

Ξ̃(2,ph/hp)
c (ω) = χ−1

0 (ω)

∫

dω′

2π

dω′′

2π
χ0(−η, ω′, ω)Ξ(2,ph/hp)

c (ω′ − ω′′)χ0(ω
′′,−η, ω)χ0(ω)

−1

= χ−1
0 (ω)T ph/hp(ω)χ0(ω)

−1,

(10.10a)
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Ξ̃(2,pp/hh)
c (ω) = χ−1

0 (ω)

∫

dω′

2π

dω′′

2π
χ0(−η, ω′, ω)Ξ(2,pp/hh)

c (ω′ + ω′′)χ0(ω
′′,−η, ω)χ0(ω)

−1

= χ−1
0 (ω)T pp/hh(ω)χ0(ω)

−1.

(10.10b)

These kernels are then computed in a two-step procedure: first, the inner terms T ph/hp

and T pp/hh are calculated by convoluting the second-order Bethe-Salpeter kernel with

two non-interacting response functions in real space, then their matrix elements are

evaluated and a matrix multiplication is done with the matrices of the inverse non-

interacting response functions.

The details of the first step of the derivation can be found in Appendix H.2. This con-

volution product is represented diagrammatically in Figure 10.1. The second-order cor-

relation kernel Ξ(2)
c (3, 6; 4, 5) derived in the previous chapter is represented in brown and is

multiplied by the two non-interacting response functions χ0(1, 4; 1
′, 3) = −iG0(1, 3)G0(4, 1

′)

and χ0(5, 2, 6, 2
′) = −iG0(5, 2

′)G0(2, 6) which are each represented by two G0 arrows.

10.2.3 Expression in a spin-orbital basis

We then evaluate the matrix elements in the ph/hp and pp/hh inner terms in the (ov,ov)

block (corresponding to A) and the (ov,vo) block (corresponding to B). The complete

diagrammatic expansion of the matrix elements of the block A are shown in Figure 10.2

where the time ordering of t1 and t2 has been chosen in order to make sure that i and

j are represented by hole Green’s function (down-going arrows) and that a and b are

represented by electron Green’s functions (up-going arrows).

Finally, as the matrix elements of the two-frequency non-interacting response func-

tions χ0(−η, ω′, ω) and χ0(ω
′′,−η, ω) can be rewritten in function of the matrix elements of

χ0(ω) (cf. Appendix F), it is easy to extract the matrix elements of the effective second-

order correlation Bethe-Salpeter kernel as shown in Figure 10.3 for the first term of the

expansion. Following this procedure, the matrix elements of the effective correlation

kernel in the A block are then given by

Ξ̃
(2)
c,ia,jb(ω) =−

∑

kc

( 〈jk||ic〉〈ac||bk〉
ω − εa + εk − εc + εj + i0+

+
〈jc||ik〉〈ak||bc〉

ω + εi − εc + εk − εb + i0+

)

+
1

2

(

∑

kl

〈aj||kl〉〈kl||ib〉
ω − (εa + εb) + (εk + εl) + i0+

+
∑

cd

〈aj||cd〉〈cd||ib〉
ω + (εi + εj)− (εc + εd) + i0+

)

,

(10.11)

and depends on the frequency ω, four orbital energies ε and two antisymmetrized

electron-electron integrals 〈pq||rs〉 = 〈pq|rs〉−〈pq|sr〉, which is consistent with the order of

expansion. This kernel is identical to the one recently proposed by Zhang et al [37] and

shows some similitude with the SOPPA kernel [93–95] which however contains additional

terms. A clue to understand the differences between this Bethe-Salpeter kernel and the

SOPPA kernel comes from the definition of the second-order expansion. In here, the
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Figure 10.2 – Spin-orbital representation of the convolution of the Bethe-Salpeter
kernel with the response functions in the A block.
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Figure 10.3 – Spin-orbital representation of the effective Bethe-Salpeter kernel in the
A block.
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expansion is done with respect to the electron-electron interaction, leaving the Green’s

function G intact, and then evaluating the obtained expression at G = G0 so that the

independent-particle response function χIP reduces to the non-interacting response func-

tion χ0. However, an alternative approach would be to develop the interacting Green’s

function G in terms of G0 and Σ and to truncate this expansion at second order with

respect to the the electron-electron interaction. In this case, the independent-particle

response function χIP has additional contributions with respect to χ0 coming from the

self-energy corrections up to the second order:

χIP(1, 2; 1
′, 2′) = χ0(1, 2; 1

′, 2′)− iG0(2, 1
′)

∫

d3d4G0(1, 3)Σ
(2)
c (3, 4)G0(4, 2

′)

− iG0(1, 2
′)

∫

d3d4G0(2, 3)Σ
(2)
c (3, 4)G0(4, 1

′).
(10.12)

We are currently exploring this aspect, however it will not be reported hereinafter.

In the B block, the matrix elements of the effective kernel are given by

Ξ̃
(2)
c,ia,bj =

∑

kc

( 〈bk||ic〉〈ac||jk〉
−εa + εk − εc + εj + i0+

+
〈bc||ik〉〈ak||jc〉

εi − εc + εk − εb + i0+

)

+
1

2

(

∑

kl

〈ab||kl〉〈kl||ij〉
(εa + εb)− (εk + εl)− i0+

+
∑

cd

〈ab||cd〉〈cd||ij〉
(εc + εd)− (εi + εj)− i0+

)

,

(10.13)

and do not depend on the frequency. This can be understood in terms of diagrams as

the indices j and b are exchanged. Therefore, in order to still ensure an up-arrow for j

and a down-arrow for b, the times need to be further contracted and the kernel becomes

local in time and thus frequency independent.

The second-order effective correlation kernel display sums over either one occupied

and one virtual orbital for the ph/hp part or over two occupied or two virtual orbitals

for the pp/hh. The latter scales as N2
oN

4
v where No is the number of occupied orbitals

and Nv the number of virtual ones. This term will be particularly expensive in a large

basis set as the number of virtual orbitals is important. Moreover, we can note that

the contribution of the kernel in the A block will be particularly important if a double

excitation contributes to the excitation energy ω. As shown by Sangalli et al in Ref. [36]

such a kernel can be related to the second RPA approach [96] by Löwdin partitioning [97]

and therefore defines a number-conserving approximation where no spurious excitations

will enter. The Löwdin partitioning technique is recalled briefly in the following as it

could also be used to “unfold” the problem so that a linear eigenvalue problem would

be recovered.
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Löwdin partitioning and second RPA approach

Suppose an eigenvalue problem

(

S C

C† D

)(

X

Y

)

= ω

(

X

Y

)

, (10.14)

where S spans the Fock space of the single excitations, D the Fock space of double

excitations and C is a coupling matrix between the singles and the doubles. Assuming

C is non-zero and D−ω1 is invertible with 1 the identity matrix, this eigenvalue problem

can be rewritten as
(

S+C(ω1−D)−1C†)X = ωX. (10.15)

The second-order correlation kernel in the block A given by Equation (10.11) has a sim-

ilar form where the coupling matrices are provided by the matrix of the two-electron

interaction and the matrix D is given by the differences of four orbital energies ε. How-

ever, and it will be important in the following, the single and double excitations must

couple with each other in order to have such a folding.

10.2.4 Range-separated kernel

As the kernel is not constructed self-consistently, the starting Green’s function has an

important impact and should be chosen carefully. In this sense, the Hartree-Fock Green’s

function GHF
0 may not be the best choice as the orbital energy differences are not good

approximations to the excitation energies of the system. The local-density approxima-

tion in the DFT framework is also known to underestimate the gap and, without GW

corrections, does not provide a satisfactory starting point either.

On the other hand, the orbital energy differences obtained within range-separated

DFT with the an appropriately chosen range-separation parameter µ can provide much

better approximations so that the corresponding RSH Green’s function GRSH
0 would be

a better starting point for the kernel. Moreover, in the TDRSH framework, the short-

range part of the correlation kernel is already accounted for, such that the Bethe-Salpeter

kernel must describe the long-range part of the correlation only. It is thus obtained

by substituting the full-range electron-electron interaction wee by its long-range part

wlr,µ
ee . This defines a second-order dynamical correlation kernel Ξ̃

lr,µ,(2)
c (ω) which can

then be added pertubatively to the RSH kernel detailed in Chapter 6 such that the total

dynamical RSH kernel is given by

fµHxc(ω) = fH + f lr,µx,HF + f sr,µxc + Ξ̃lr,µ,(2)
c (ω), (10.16)

where fH is the Hartree kernel, f lr,µx,HF is the long-range Hartree-Fock exchange kernel and

f sr,µxc is the short-range DFT exchange-correlation kernel. This is of particular interest

as it allows one to recover a frequency-dependent kernel in the TDDFT framework.
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10.3 Resolution of the Bethe-Salpeter equation

In what follows, the derivation is given in the range-separated case, the HF case being

recovered when µ goes to infinity. As the Hartree, exchange and short-range correlation

kernels are frequency independent, and the long-range effective second-order correlation

kernel depends only on the external frequency ω, the inverse response function in the

frequency space can be written as

χ−1(ω) = χ−1
0 (ω)− fµHxc(ω), (10.17)

where χ−1
0 (ω) is the range-separated response function constructed on the RSH orbitals

and fµHxc(ω) is the corrected RSH kernel given in Equation (10.16).

10.3.1 Matrix representation of the Bethe-Salpeter equation

For a finite system, this equation is projected onto an orthonormal spin-orbital basis set

{ϕp} as was done in the static case. This leads to the construction of the matrices A and

B where A is now frequency dependent due to the long-range correlation Bethe-Salpeter

kernel. The resolution of the Bethe-Salpeter equation is thus equivalent to the resolution

of the following non-linear eigenvalue problem

(

A(ωn) B

B∗ A(−ωn)
∗

)(

Xn

Yn

)

= ωn

(

1 0

0 −1

)(

Xn

Yn

)

, (10.18)

where the matrix elements of A and B are given by

Aia,jb(ω) = ∆εia,jb + wee,ia,jb − wlr,µ
ee,ij,ab + f sr,µxc,ia,jb + Ξ̃

lr,µ,(2)
c,ia,jb (ω),

Bia,jb = wee,ia,bj − wlr,µ
ee,ib,aj + f sr,µxc,ia,bj + Ξ̃

lr,µ,(2)
c,ia,bj .

(10.19)

The resolution of such a problem is much more complicated than in the static case as

the matrix A depends on the eigenvalue ωn. It is therefore not possible anymore to

use the standard Casida’s resolution scheme [3] and this equation should in principle

be solved self-consistently. A first simplification of this problem consists in using the

Tamm-Dancoff approximation, i.e. setting the B block to zero so that the coupling

between the excitations and the de-excitations is neglected. In this case, the problem

reduces to

A(ωn)Xn = ωnXn. (10.20)

Although, this problem is simpler than the initial one, this equation remains complex

as it still defines a non-linear problem and has to be solved self-consistently. Assume

convergence is reached, the excitation energies would then satisfy the relation

ωn = X†
nA(ωn)Xn. (10.21)
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Perturbative treatment

Within the Tamm-Dancoff approximation, the simplest way to cope with Equa-

tion (10.21) is to use a perturbative resolution in terms of ω as was done in [37]. The

matrix A(ω) can easily be decomposed into a frequency-independent and a frequency-

dependent parts

A(ω) = ARSH,µ + Ξ̃lr,µ,(2)
c (ω), (10.22)

where ARSH corresponds to the matrix A obtained with the TDRSH method detailed in

Chapter 6 and Ξ̃
lr,µ(2)
c (ω) is the matrix of the effective long-range second-order Bethe-

Salpeter correlation kernel. The excitation energies ωn can then be expanded around

the TDRSH excitation energies ω0,n as

ωn = ω0,n +X†
0,nΞ̃

(2)
c (ω0,n)X0,n +X†

0,n

∂Ξ̃
lr,µ,(2)
c (ω)

∂ω

∣

∣

∣

∣

∣

ω=ω0,n

X0,n(ωn − ω0,n), (10.23)

such that, with the normalization factor Zn given by

Zn =



1−X†
0,n

∂Ξ̃
lr,µ,(2)
c (ω)

∂ω

∣

∣

∣

∣

∣

ω=ω0,n

X0,n





−1

, (10.24)

the corrected excitation energies are obtained as

ωn = ω0,n + ZnX
†
0,nΞ̃

lr,µ,(2)
c (ω0,n)X0,n. (10.25)

An alternative to this perturbative resolution would be to unfold the matrix into the

Fock space of the single and double excitations as mentioned above. However the size

of the matrix would grow rapidly with the number of virtual orbitals which could cause

some other computational issues.

10.3.2 Spin adaptation

As with the static kernels, it is possible to decouple this problem into a singlet and a

triplet case such that solving the Bethe-Salpeter equation becomes equivalent to solving

the singlet and triplet non-linear eigenvalue equations

1A(1ωn)
1Xn = 1ωn

1Xn, (10.26)

3A(3ωn)
3Xn = 3ωn

3Xn. (10.27)
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Within the perturbative treatment, the matrix elements of the singlet and triplet ARSH

matrices are given by

1ARSH
ia,jb = ∆εia,jb + 2wee,ia,jb − wlr,µ

ee,ij,ab + 2 1f sr,µxc,ia,jb,

3ARSH
ia,jb = ∆εia,jb − wlr,µ

ee,ij,ab + 2 3f sr,µxc,ia,jb.
(10.28)

The spin adaptation of the effective correlation kernel is performed in Appendix H.2.

The matrix elements of the singlet and triplet second-order effective kernels in the block

A are then given by

1Ξ̃
lr,µ,(2)
c,ia,jb (ω) =

−
∑

kc

2wlr,µ
ee,ij,kcw

lr,µ
ee,ba,ck − wlr,µ

ee,ij,kcw
lr,µ
ee,ka,cb − wlr,µ

ee,cj,kiw
lr,µ
ee,ba,ck + 2wlr,µ

ee,cj,kiw
lr,µ
ee,ka,cb

ω − εa + εk − εc + εj

−
∑

kc

2wlr,µ
ee,ij,ckw

lr,µ
ee,ba,kc − wlr,µ

ee,ij,ckw
lr,µ
ee,ca,kb − wlr,µ

ee,kj,ciw
lr,µ
ee,ba,kc + 2wlr,µ

ee,kj,ciw
lr,µ
ee,ca,kb

ω + εi − εc + εk − εb

+
1

2

∑

cd

2wlr,µ
ee,ca,jdw

lr,µ
ee,ic,db − wlr,µ

ee,ca,jdw
lr,µ
ee,bc,di − wlr,µ

ee,da,jcw
lr,µ
ee,ic,db + 2wlr,µ

ee,da,jcw
lr,µ
ee,bc,di

ω + (εi + εj)− (εc + εd)

+
1

2

∑

kl

2wlr,µ
ee,ka,jlw

lr,µ
ee,ik,lb − wlr,µ

ee,ka,jlw
lr,µ
ee,bk,li − wlr,µ

ee,la,jkw
lr,µ
ee,ik,lb + 2wlr,µ

ee,la,jkw
lr,µ
ee,bk,li

ω − (εa + εb) + (εk + εl)
,

(10.29a)

3Ξ
lr,µ,(2)
c,ia,jb (ω) =−

∑

kc

2wlr,µ
ee,ij,kcw

lr,µ
ee,ba,ck − wlr,µ

ee,ij,kcw
lr,µ
ee,ka,cb − wlr,µ

ee,cj,kiw
lr,µ
ee,ba,ck

ω − εa + εk − εc + εj

−
∑

kc

2wlr,µ
ee,ij,ckw

lr,µ
ee,ba,kc − wlr,µ

ee,ij,ckw
lr,µ
ee,ca,kb − wlr,µ

ee,kj,ciw
lr,µ
ee,ba,kc

ω + εi − εc + εk − εb

− 1

2

∑

cd

wlr,µ
ee,ca,jdw

lr,µ
ee,bc,di + wlr,µ

ee,da,jcw
lr,µ
ee,ic,db

ω + (εi + εj)− (εc + εd)

− 1

2

∑

kl

wlr,µ
ee,ka,jlw

lr,µ
ee,bk,li + wlr,µ

ee,la,jkw
lr,µ
ee,ik,lb

ω − (εa + εb) + (εk + εl)
.

(10.29b)

The spin-adapted matrix elements of the effective kernel in the B block are not used in

this Tamm-Dancoff pertrurbative approach but can be found in Appendix H.

10.4 Application to H2 in a minimal basis

As usual, we first assess the behavior of the kernel on the model system of H2 in a minimal

basis set. Unfortunately, due to its very symmetric nature, the two-electron interaction

matrix is block diagonal in this system. This implies in particular that the contribution

of the correlation kernel in the block A is zero and as it is the only frequency-dependent

contribution to the second-order Bethe-Salpeter kernel, the only “double” effects will
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occur through B.

The matrix elements of the singlet and triplet correlation kernel in the block B are

given by
1Ξ̃

(2)
c,12,21 = −K12

(

2(K12 + J12)− J22 − J11
2∆ε

)

(10.30a)

3Ξ̃
(2)
c,12,21 = −K12

(

2(K12 − J12) + J22 + J11
2∆ε

)

. (10.30b)

Although, this kernel is frequency-independent, it still differs from its static approxima-

tion given in Equations (9.39) and (9.40), which expressions are recalled here:

1Ξ
(2)
c,12,21(ω = 0) = K12

(

2(K12 + J12)

∆ε
− J22

2ε2
+
J11
2ε1

)

, (10.31a)

3Ξ
(2)
c,12,21(ω = 0) = K12

(

2(K12 − J12)

∆ε
+
J22
2ε2

− J11
2ε1

)

. (10.31b)

Two main differences emerge from this comparison:

• the presence of energy differences ∆ε for all the contributions of the dynamical ker-

nel instead of orbital energies ε2 and ε1 for the last two terms of Equations (10.31a)

and (10.31b). This form of the kernel is therefore much more physical than the

static one ;

• the sign of the correction changes between the static and the dynamical kernel.

The matrices A and B are then given by

1A = ∆ε+ 2K12 − J12

1B = 2K12 −K12

(

1 +
2(K12 + J12)− J22 − J11

2∆ε

)

3A = ∆ε− J12

3B = −K12

(

1 +
2(K12 − J12) + J22 + J11

2∆ε

)

(10.32)

such that the singlet excitation energy is given by

1ω =

√

∆ε+ 4K12 − J12 −K12

(

1 +
2(K12 + J12)− J22 − J11

2∆ε

)

×
√

∆ε− J12 +K12

(

1 +
2(K12 + J12)− J22 − J11

2∆ε

)

,

(10.33)
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and the triplet one by

3ω =

√

∆ε− J12 −K12

(

1 +
2(K12 − J12) + J22 + J11

2∆ε

)

×
√

∆ε− J12 +K12

(

1 +
2(K12 − J12) + J22 + J11

2∆ε

)

.

(10.34)

As was done for the static kernel, it is interesting to compare the Taylor expansions of

these energies with repect to the electron-electron interaction to the expansions of the

FCI energies at the same order recalled here:

1ωFCI,(2) = ∆ε+ λ(−J12 + 2K12) + λ2
K2

12

2∆ε
+O(λ3)

3ωFCI,(2) = ∆ε− λ(J12) + λ2
K2

12

2∆ε
+O(λ3).

(10.35)

If a similar expansion is performed for the dynamical Bethe-Salpeter second-order ener-

gies, the same expansion then in the static case is recovered despite the change of sign

of the kernel

1ω(2) = ∆ε+ λ(−J12 + 2K12)− λ2
K2

12

2∆ε
+O(λ3)

3ω(2) = ∆ε− λ(J12)− λ2
K2

12

2∆ε
+O(λ3).

(10.36)

The second-order contribution exhibits therefore a wrong behavior with respect to the

FCI case. When giving a closer look to the origin of the different contributions of this

expansion, it appears that the second-order contribution comes only from the exchange

kernel. In fact, as the correlation kernel contributes only in the B block, its second-order

contribution cancels out in the excitation energies. This highlights the fact that some im-

portant second-order contributions seem to be missing in this second-order kernel. This

deficiency can have several origins: the GW approximation, the lack of self-consistency,

the choice of the starting Green’s function and the absence of self-energy corrections in

the non-interacting response function. A priori, the GW approximation can be ruled out

as it is redundant with the second-order truncation. Given the fact that the interaction

matrix is block diagonal, the self-consistency is not responsible either. It thus remains

only the choice of the starting point and the self-energy corrections which are in fact

related to each other. We are currently assessing the effects of the later which could to

a partial compensation of the dynamical effects [98], however this study is still under

progress and in the following these corrections are not accounted for.

The singlet and triplet excitation energies are shown as functions of the internuclear

distance R in Figure 10.4. The FCI and TDHF curves are recalled for the sake of

comparison. With this kernel, the singlet excitation energy is improved with respect

to the TDHF one up to 6 bohr−1, then breaks down and becomes rapidly imaginary.
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Figure 10.4 – Excitation energies of the singlet 1Σ+
u (top) and the triplet 3Σ+

u (bottom)
states of H2 in a minimal basis as a function of the internuclear distance R calculated
by FCI, TDHF, and the dynamic second-order BSE-GWx with the derivative of W with
respect to G with the non-interacting HF Green’s function G0.
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This was to be expected as the second-order expansion is not valid anymore when the

bond is stretched too much as the orbital energy difference becomes small with respect

to the two-electron integrals. The triplet excitation energy however is deteriorated by

the correlation kernel with respect to the TDHF reference and becomes imaginary for a

smaller internuclear distance.

However, this model system seems not to be sufficient to really assess the behavior

of the kernel as the frequency dependence is lost because of its symmetric nature and of

the size of the basis set, it is thus necessary to go to larger systems.

10.5 Computational details

Starting from a TDRSH calculation in the Tamm-Dancoff approximation with a short-

range LDA functional, the long-range correlation kernel is then added perturbatively,

following the procedure detailed in Section 10.3.1. This is a three-step calculation. First,

a self-consistent ground-state calculation is performed with a development version of the

quantum chemistry program MOLPRO [99] and the orbital energies, the two-electron

integrals and the matrix elements of the singlet and triplet short-range LDA kernels

are dumped into several text files. We then used a homemade software to do the next

two steps, namely the time-dependent range-separated calculation (TDRSH) within the

Tamm-Dancoff approximation and the evaluation of the correction due to the dynamical

long-range correlation kernel using the previously calculated orbitals and two-electron

integrals.

For compactness, “TD” will be dropped in the names of the methods and “LDA” will

also be omitted in the names as it is the only density functional used here. Moreover, all

the results are obtained within the Tamm-Dancoff approximation within the perturbative

scheme. Therefore, “KS” will denote a TDKS calculation using the LDA exchange-

correlation functional with the Tamm-Dancoff approximation, “HF” will stand for a

TDHF calculation with the Tamm-Dancoff approximation (equivalent to the CI single

method), “RSH” will denote a linear-response RSH calculation using the short-range

LDA exchange-correlation functional with the Tamm-Dancoff approximation. When

the (long-range) second-order Bethe-Salpeter correlation kernel is added perturbatively

on top of the HF (or RSH) calculation, the suffix “BSE2” is appended to the name of

the initial method, following the notation set by Zhang et al [37]. If the normalization

factor Zn is set to 1, it is denoted “BSE2’ ”.

We study four small molecules N2, CO, H2CO and C2H4 in the same geometry

(experimental) and with the same basis set (Sadlej+) than in Chapter 6. The details

on the reference data and basis set can therefore be found in Section 6.4. Results are

not available for C6H6 and the C2H4-C2F4 dimer yet as this method is computationally

expensive especially in term of memory as the full interaction matrix is needed. As the

range-separation parameter µ has been optimized in absence of the long-range correlation

kernel in Chapter 6, it is necessary to check if this optimized value still holds with
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Figure 10.5 – Mean absolute deviation (MAD) in eV of the first 14 excitation energies of
the N2, CO, H2CO and C2H4 molecules calculated by the RSH and RSH-BSE2 methods
with the short-range LDA exchange-correlation functional with respect to the EOM-
CCSD reference as a function of the range-separation parameter µ.

the addition of this kernel. The results of this optimization are shown in Figure 10.5.

Without the kernel, the optimal µ for this set of molecule is equal to 0.4 bohr−1, however,

with the inclusion of the long-range dynamical kernel, this value is slightly reduced to

0.35 bohr−1. Therefore, all the results are shown with this value of the range-separation

parameter in the following.

10.6 Results and discussion

The excitation energies for each method and each molecule are given in Tables 10.1-

10.4. Mean absolute deviations and maximum absolute deviations with respect to the

EOM-CCSD reference are also given for the valence, the Rydberg and all the excitation

energies. Whatever the starting point, RSH or HF, the correction due to the perturbative

correlation kernel is always positive. Therefore, if the excitation energies were already

too high with respect to the reference, they are deteriorated by the correction, and if

they were too low it depends on the magnitude of the correction.

10.6.1 Effect of the correction on the HF excitation energies

When applied on the excitation energies obtained at the HF level in the Tamm-Dancoff

approximation, the correction due to the correlation kernel is especially large for the
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valence excitation energies and increases them by 2 to 3.7 eV. Although, the valence

excitation energies are often underestimated in HF, the magnitude of the correction is

way too high with respect to the error present in HF which leads to an overall over-

estimation of the valence excitation energies by 1.65-3.15 eV. The Rydberg excitation

energies calculated in HF are usually already too high, therefore when the correction is

applied, they increase furthermore and are deteriorated. However, the magnitude of the

correction is much smaller for the Rydberg excitation energies (0.19-1.75 eV) than for

the valence ones such that their deterioration is less significant. In this case, the effect

of the inclusion of the normalization factor is also important for the valence excitation

energies (up to 0.27 eV) although it remains small for the Rydberg ones.

The difference of magnitude in the valence and Rydberg corrections can be under-

stood as follows. The smallest denominator in the kernel correction is obtained for the

HOMO-LUMO contribution and is given by ω0,n − 2εLUMO + 2εHOMO. As all the TDHF

energies are well below the ionization threshold, the effect of the variation of ω0,n is not

very significant and in a first approximation, we could consider that the matrix of the

effective second-order correlation is sensibly the same for all the excitations and have

predominant contributions for orbitals close to the HOMO and the LUMO, i.e. valence

orbitals. What changes significantly however when going from a valence to a Rydberg

is the eigenvector X0,n which multiplies the effective kernel in Equation (10.25). For a

valence excitation energy, this eigenvector has its major contributions in the subspace of

valence excitations and overlaps significantly with the effective kernel, while in the Ryd-

berg case, this overlap is much smaller and so is the correction to a Rydberg excitation.

10.6.2 Effect of the correction on the RSH excitation energies

When applied on the Tamm-Dancoff range-separated excitation energies, the long-range

correlation correction induces a moderate increase of the excitation energies of 0.04 to

0.30 eV. As in the HF case, the correction is more important for the valence excitation

energies than for the Rydberg ones. The difference of magnitude of the RSH correction

with respect to the HF case is to be attributed to the substitution of the full-range

electron-electron interaction by its long-range part. In this case, the effect of the nor-

malization factor Zn is almost indiscernible because it is very close to 1 and multiply

a correction which is mush smaller than in the HF case. For the chosen value of the

range-separation parameter µ of 0.35 bohr−1, the excitation energies of the considered

system were mostly slightly underestimated such that the correction overall improves

their description as the global mean absolute deviation decreases by 0.04 to 0.09 eV

except for ethylene were it increases by 0.07 eV such that globally, the MAD is reduced

by about 0.03 eV which is a pretty small improvement. However, when looking at the

maximum absolute deviation, the long-range correction actually provides a systematic

improvement for all the systems which means that the description of the excitation

energies is more even with this method than in standard TDRSH.
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10.7 Conclusion

In this chapter, we have derived an effective second-order Bethe-Salpeter long-range

dynamical correlation kernel which depends only on the external frequency and can be

applied within the range-separated TDDFT framework. When projected into a spin-

orbital basis set, it appears that the frequency-dependence is in fact only present in

the A block and that the B block remains frequency independent. In the A block,

this kernel has now a physical form with respect to its static approximation explored

in the previous chapter which involves a product of two antisymmetrized two-electron

integrals and poles corresponding to double excitation energies in terms of orbital energy

differences. Such a kernel should therefore contributes significantly when the excitation

energy is close to a double excitation.

As the use of such a kernel implies that the resolution of the Bethe-Salpeter equation

defines a non-linear eigenvalue problem, a perturbative resolution was used to circumvent

this issue as a first approximation although the use of Löwdin partitioning technique

should allows one to unfold the matrix and recover a linear eigenvalue problem so that

a self-consistent calculation could be avoided. We have not explored this approach yet

but work is under progress on this aspect. The resolution was done in the Tamm-

Dancoff approximation following the scheme proposed by Zhang et al, however, it would

be of particular interest to be able to solve the Bethe-Salpeter equation without this

approximation. As we have the matrix elements of the effective correlation kernel in

the B block, and they do not depend on the frequency, this step should be relatively

straightforward, although computationally demanding.

We have illustrated the behavior of this kernel on the model system given by the

hydrogen molecule in a minimal basis and seen that some second-order contributions

were missing in order to recover correctly the second-order limit in the excitation energies

with respect to the one obtained in full-CI. We have identified this phenomenon to the

neglection of the self-energy corrections coming from the independent-particle response

function and are currently exploring this deficiency of the method, both on the model

system and in the general case. This should allows us to recover additional contributions

to the second-order kernel which expression whould then be closer to the one of the

SOPPA kernel.

However, the second-order dynamical kernel derived here constitutes a conserving

approximation and improves the description of the excitation energies when applied

perturbatively within the Tamm-Dancoff approximation to the first lowest excitation

energies of the four small molecules studied here. However, the excitations studied

here did not present important contributions from double excitations and it should be

interesting to test this approach on a system where double excitations are important.
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Valence excitation energies (eV)
3Σ+

u 1πu → 1πg 8.08 7.74 7.93 7.93 6.23 8.76 8.88 7.72
3Πg 3σg → 1πg 7.58 7.85 8.05 8.05 7.99 10.80 10.97 8.16
3∆u 1πu → 1πg 8.88 8.54 8.73 8.74 7.32 9.84 9.96 9.07
1Πg 3σg → 1πg 9.17 9.50 9.68 9.68 10.02 12.31 12.43 9.55
3Σ−

u 1πu → 1πg 9.65 9.34 9.53 9.53 8.50 10.67 10.77 10.00
1Σ−

u 1πu → 1πg 9.65 9.34 9.53 9.53 8.50 10.73 10.84 10.24
1∆u 1πu → 1πg 10.25 9.98 10.18 10.18 9.06 11.20 11.30 10.66
3Πu 2σu → 1πg 10.42 10.77 10.97 10.97 11.74 14.63 14.82 11.36

Rydberg excitation energies (eV)
3Σ+

g 3σg → 4σg 10.28 11.47 11.56 11.56 13.12 13.93 13.94 11.74
1Σ+

g 3σg → 4σg 10.40 11.94 11.98 11.98 14.01 14.22 14.22 12.15
3Σ+

u 3σg → 3σu 10.63 12.30 12.40 12.40 14.21 15.05 15.07 12.70
3Πu 3σg → 2πu 10.99 12.30 12.36 12.36 13.04 13.42 13.43 12.71
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u 3σg → 3σu 10.62 12.43 12.51 12.51 14.31 15.02 15.04 12.82

Ionization threshold: −ǫHOMO (eV)

6.30 14.94 14.94 14.94 16.74 16.74 16.74

MAD of excitation energies with respect to EOM-CCSD (eV)

Valence 0.48 0.47 0.35 0.35 1.14 1.52 1.65 -
Rydberg 1.83 0.34 0.27 0.27 1.17 1.70 1.71 -
Total 1.06 0.41 0.32 0.32 1.15 1.60 1.68 -

Maximum absolute deviation of excitation energies with respect to EOM-CCSD (eV)

2.19 0.90 0.71 0.71 1.86 3.28 3.47 -
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10.7.
C
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N

State Transition KS RSH RSH-BSE2’ RSH-BSE2 HF HF-BSE2’ HF-BSE2 EOM-CCSD

Valence excitation energies (eV)
3Π 5a1(σ) → 2e1(π

∗) 6.04 6.10 6.32 6.32 5.85 8.15 8.27 6.45
3Σ+ 1e1(π) → 2e1(π

∗) 8.54 8.45 8.63 8.63 7.79 10.26 10.38 8.42
1Π 5a1(σ) → 2e1(π

∗) 8.42 8.68 8.88 8.88 9.08 10.86 10.94 8.76
3∆ 1e1(π) → 2e1(π

∗) 9.20 9.13 9.31 9.31 8.74 11.08 11.19 9.39
3Σ− 1e1(π) → 2e1(π

∗) 9.84 9.80 9.97 9.98 9.73 11.68 11.76 9.97
1Σ− 1e1(π) → 2e1(π

∗) 9.84 9.80 9.98 9.98 9.73 11.73 11.82 10.19
1∆ 1e1(π) → 2e1(π

∗) 10.33 10.32 10.50 10.50 10.15 11.98 12.05 10.31
3Π 4a1(σ) → 2e1(π

∗) 11.43 11.96 12.12 12.12 13.31 15.59 15.70 12.49

Rydberg excitation energies (eV)
3Σ+ 5a1(σ) → 6a1(σ) 9.56 10.34 10.46 10.46 11.18 12.07 12.09 10.60
1Σ+ 5a1(σ) → 6a1(σ) 9.95 11.12 11.20 11.20 12.27 12.61 12.61 11.15
3Σ+ 5a1(σ) → 7a1(σ) 10.26 11.08 11.17 11.17 12.42 12.82 12.83 11.42
1Σ+ 5a1(σ) → 7a1(σ) 10.50 11.30 11.38 11.38 12.79 12.91 12.91 11.64
3Π 5a1(σ) → 3e1(π) 10.39 11.26 11.34 11.34 12.60 13.19 13.20 11.66
1Π 5a1(σ) → 3e1(π) 10.50 11.45 11.52 11.52 12.88 13.21 13.21 11.84

Ionization threshold: −ǫHOMO (eV)

9.12 13.49 13.49 13.49 15.11 15.11 15.11

MAD of excitation energies with respect to the EOM-CCSD calculation (eV)

Valence 0.33 0.23 0.16 0.16 0.49 1.92 2.02 -
Rydberg 1.19 0.29 0.22 0.22 0.97 1.42 1.42 -
Total 0.70 0.26 0.19 0.19 0.69 1.70 1.76 -

Maximum absolute deviation of excitation energies with respect to EOM-CCSD (eV)

1.34 0.53 0.37 0.36 1.16 3.10 3.22 -

T
a
b
le

1
0
.2

–
E
x
citatio

n
en

ergies
of

C
O

calcu
lated

b
y
lin

ear-resp
on

se
H
F
an

d
K
S
(w

ith
th
e
L
D
A

fu
n
ctio

n
al),

b
y
th
e
lin

ear-resp
on

se
ran

ge-sep
arated

m
eth

o
d
s
R
S
H
,
R
S
H
-B

S
E
2’

a
n
d
R
S
H
-B

S
E
2
(w

ith
th
e
sh
ort-ra

n
ge

L
D
A

fu
n
ction

al
an

d
µ
=

0
.35

b
oh

r −
1)

w
ith

in
th
e

T
a
m
m
-D

an
coff

a
p
p
rox

im
a
tion

,
an

d
b
y
E
O
M
-C

C
S
D
tak

en
as

referen
ce,

u
sin

g
th
e
S
ad

lej+
b
a
sis

set.
219



C
H
A
P
T
E
R

10.
D
Y
N
A
M
IC

A
L
R
S
H
-B

S
E
2
K
E
R
N
E
L

State Transition KS RSH RSH-BSE2’ RSH-BSE2 HF HF-BSE2’ HF-BSE2 EOM-CCSD

Valence excitation energies (eV)
3A2 2b2(n) → 2b1(π

∗) 3.08 3.17 3.45 3.45 3.76 6.66 6.86 3.56
1A2 2b2(n) → 2b1(π

∗) 3.70 3.82 4.11 4.11 4.58 7.20 7.37 4.03
3A1 1b1(π) → 2b1(π

∗) 6.35 6.08 6.39 6.39 4.96 8.08 8.30 6.06
3B1 5a1(σ) → 2b1(π

∗) 7.77 8.09 8.39 8.40 8.60 12.01 12.28 8.54

Rydberg excitation energies (eV)
3B2 2b2(n) → 6a1(σ) 5.85 6.83 6.92 6.92 8.17 8.63 8.63 6.83
1B2 2b2(n) → 6a1(σ) 5.93 7.01 7.07 7.08 8.56 8.72 8.72 7.00
3B2 2b2(n) → 7a1(σ) 6.96 7.69 7.81 7.81 9.04 9.83 9.85 7.73
3A1 2b2(n) → 3b2(σ) 6.73 7.77 7.83 7.83 9.24 9.58 9.58 7.87
1B2 2b2(n) → 7a1(σ) 7.04 7.91 8.00 8.00 9.41 9.78 9.78 7.93
1A1 2b2(n) → 3b2(σ) 6.78 7.93 7.97 7.97 9.53 10.00 10.01 7.99
1A2 2b2(n) → 3b1(π) 7.55 8.32 8.39 8.39 10.04 10.26 10.26 8.45
3A2 2b2(n) → 3b1(π) 7.58 8.31 8.38 8.38 9.93 11.04 11.07 8.47
3B2 2b2(n) → 8a1(σ) 7.97 8.90 8.98 8.98 10.21 11.89 11.96 8.97
1B2 2b2(n) → 8a1(σ) 8.19 9.17 9.25 9.25 10.86 11.05 11.05 9.27

Ionization threshold: −ǫHOMO (eV)

6.30 10.33 10.33 10.33 12.04 12.04 12.04

MAD of excitation energies with respect to the EOM-CCSD calculation (eV)

Valence 0.47 0.27 0.17 0.17 0.48 2.94 3.15 -
Rydberg 0.99 0.07 0.06 0.06 1.45 2.03 2.04 -
Total 0.84 0.13 0.09 0.09 1.17 2.29 2.36 -

Maximum absolute deviation of excitation energies with respect to EOM-CCSD (eV)

1.21 0.45 0.33 0.33 1.59 3.47 3.74 -
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10.7.
C
O
N
C
L
U
S
IO

N

State Transition KS RSH RSH-BSE2’ RSH-BSE2 HF HF-BSE2’ HF-BSE2 EOM-CCSD

Valence excitation energies (eV)
3B1u 1b3u(π) → 1b2g(π

∗) 4.74 4.35 4.73 4.73 3.54 5.92 6.06 4.41
1B1u 1b3u(π) → 1b2g(π

∗) 7.91 8.07 8.37 8.38 7.70 9.05 9.11 8.00
3B1g 1b3g(σ) → 1b2g(π

∗) 7.18 7.92 8.04 8.04 8.48 10.33 10.43 8.21
1B1g 1b3g(σ) → 1b2g(π

∗) 7.48 8.04 8.24 8.24 9.23 10.74 10.81 8.58

Rydberg excitation energies (eV)
3B3u 1b3u(π) → 4a1g(σ) 6.59 7.21 7.35 7.35 6.91 7.36 7.37 7.16
1B3u 1b3u(π) → 4a1g(σ) 6.65 7.36 7.48 7.48 7.14 7.42 7.43 7.30
3B1g 1b3u(π) → 2b2u(σ) 6.98 7.42 7.77 7.78 7.66 8.10 8.10 7.91
3B2g 1b3u(π) → 3b1u(σ) 7.10 8.03 8.11 8.11 7.79 8.06 8.07 7.93
1B1g 1b3u(π) → 2b2u(σ) 7.19 7.92 8.17 8.17 7.75 8.09 8.09 7.97
1B2g 1b3u(π) → 3b1u(σ) 7.15 8.13 8.20 8.20 7.92 8.07 8.07 8.01
3Ag 1b3u(π) → 2b3u(π) 8.03 8.46 8.60 8.60 8.02 8.62 8.64 8.48
1Ag 1b3u(π) → 2b3u(π) 8.30 8.87 8.99 8.99 8.61 8.88 8.88 8.78
3B3u 1b3u(π) → 5a1g(σ) 8.26 8.97 9.12 9.12 8.74 9.26 9.26 9.00
1B3u 1b3u(π) → 5a1g(σ) 8.28 9.09 9.20 9.20 8.92 9.13 9.13 9.07

Ionization threshold: −ǫHOMO (eV)

6.89 10.45 10.45 10.45 10.23 10.23 10.23

MAD of excitation energies with respect to the EOM-CCSD calculation (eV)

Valence 0.64 0.24 0.30 0.30 0.52 1.71 1.80 -
Rydberg 0.71 0.10 0.17 0.17 0.21 0.14 0.14 -
Total 0.69 0.14 0.21 0.21 0.30 0.59 0.62 -

Maximum absolute deviation of excitation energies with respect to EOM-CCSD (eV)

1.10 0.54 0.37 0.38 0.87 2.16 2.23 -
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CONCLUSION

This thesis constitutes a contribution to the treatment of molecular excitation en-

ergies by range-separated methods. By separation of the electron-electron interaction

into a short and a long-range part, these methods allow one to rigorously combine

density-functional methods and wave-function or Green’s function methods. They have

been extensively studied in the ground-state case but are still the object of investi-

gations for their application to excited-state calculations. The field of calculations of

excitation energies from density functional theory is undeniably lead by linear-response

time-dependent density-functional theory. However, it is not the only available option

and many time-independent methods are also explored. In this thesis, range separation

was applied both in the time-independent and the time-dependent case but not with the

same end goal. In the zoo of methods which are nowadays available it is often difficult

to find the origin of a deficiency as many approximations are done simultaneously, the

first part of this thesis was therefore aimed at studying the effect of range separation

on the excitation energies without further approximations. The second and third parts

were in this way much more pragmatic are they were designed to tackle the problem

of multiple excitations present in time-dependent density-functional theory within the

adiabatic approximation. In this case, a local-density approximation was used for the

density functional and a single-determinant approximation was performed for the wave

function part and finally a long-range correlation kernel is added perturbatively.

Range-separated time-independent density-functional theory

The effects of the adiabatic approximation are difficult to assess in the time-dependent

case. Moreover from the Hohenberg-Kohn theorem, the time-independent ground-state

density is in principle able to describe all the properties of the system and in particular

the excitation energies. We therefore first placed ourselves in the time-independent case

where our goal was not to provide a pragmatic method to calculate excitation energies

with range separation, at least not in the short term, but more to come back to the fun-

damentals with minimum approximations, and to do an analytic and numerical study on

some small systems. In this study, the only approximation was the one-electron basis,

so that hopefully with large enough basis sets, our observations could be attributed to

range separation only. This was the object of the first part of this thesis where the exci-

tation energies of a partially interacting system where followed along a range-separated

adiabatic connection linking the non-interacting Kohn-Sham system to the physical sys-

tem. The Taylor expansions of the energies around the two end points of this connection

allowed us to propose an extrapolation scheme able to improve the description of the

excitation energies of the physical system from an intermediate point of the connec-

tion. It also provided some exact conditions that an approximate potential should fulfill

around these two limits. In particular, it allowed us to assess how much of the long-

range interaction should be included in order to describe properly the excitation energies

of the physical system. We are currently assessing how the local-density approximation
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(LDA) and a single-determinant approximation as used in range-separated hybrid meth-

ods (RSH) affect these energies. We hope that this work could help the development

of range-separated methods for excitation energies, either in the time-independent or in

the time-dependent case.

Range-separated time-dependent density-functional theory

The second part of this thesis focused on the application of range separation to time-

dependent density-functional theory (TDDFT) within the adiabatic local density ap-

proximation. When applied on the exchange part of the Hartree-exchange-correlation

kernel (which should takes into account all the effects coming from the electron-electron

interaction), range separation has been proven to be very successful to overcome several

flaws of TDDFT such as the description of Rydberg or charge-transfer excitation ener-

gies. However, until recently, the correlation kernel was left untouched so that multiple

excitations were still missed by this approach. In the RSH approach where the wave

function is approximated to a single Slater determinant, the long-range part of the corre-

lation kernel vanishes. We thus derived the short-range LDA singlet and triplet kernels,

implement them in the quantum chemistry software Molpro and analyze the effects of

the removal of the long-range LDA correlation on the excitation energies of five small

molecules and of the first charge-transfer excitation of a small dimer. It appeared that

this removal has almost no effect on the energies so that the obtained energies provided

a good starting point for the perturbative addition of a long-range correlation kernel.

In order to design a long-range correlation kernel able to take into account the effect

of double excitations, a frequency-dependent one is required. Such a kernel was then

constructed in the last part of this thesis, using a Green’s function approach.

Long-range second-order Bethe-Salpeter correlation kernel

In order to design a frequency-dependent correlation kernel, the Bethe-Salpeter ap-

proach used in condensed-matter physics seemed very promising as it provides an explicit

frequency-dependent formalism which is very close to the TDDFT one. In the third part

of this thesis, we thus undertook the construction of an effective second-order correlation

kernel in this formalism. As the mapping between the physicist formalism for periodic

systems to the chemist formalism for finite molecular systems was not straightforward,

a first step consisted in transposing the Green’s function formalism to a spin-orbital

formulation and to assess the validity of the usual approximations performed in the

condensed-matter physics community to our systems of interest. It appeared that in the

framework of finite molecular system, the Hartree and exchange contributions should be

treated together in the construction of the dielectric matrix and that the effect of the

perturbation on the screened interaction should not be neglected contrary to what is

done for solids. A second-order correlation Bethe-Salpeter kernel was then constructed

and first tested in its static approximation. It appeared that in this case a non-physical
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kernel was obtained and that a dynamic treatment was indeed required. This dynamical

kernel required additional efforts in order to get an effective second-order kernel which

could be added to the RSH kernel perturbatively. Throughout the derivation, the model

system given by the dihydrogen molecule in a minimal basis was used to illustrate the

main developments. In particular, the effect of the starting Green’s function, of the

inclusion of exchange, of the second-order approximation and of the static approxima-

tion were assessed on this model. The effective second-order correlation kernel was then

implemented in a perturbative fashion within the Tamm-Dancoff approximation and

tested on four small molecules with and without range separation. In these cases, when

applied in a range-separated scheme, the excitation energies were overall improved by

the addition of the perturbative long-range effective Bethe-Salpeter kernel. However in

these systems, no excitation presented a significant double-excitation contribution which

is the very case where the kernel is expected to play an important role.

Open issues

It is hard to put a final point to this thesis where there is still so much to understand

and to do. In the following, I will try to summarize the perspectives which have been

raised by this work and remain on my “TO DO” list.

Concerning the time-independent part, the usual approximations need to be rein-

troduced one by one in order to follow their effects on the excitation energies and on

the ionization potential. We have seen in the case of the first-order perturbation theory

that a poor description of the ionization potential could have dramatic effects of the

excitation energies, such an effect is also expected with a local density approximation.

The effect of a single-determinant approximation or the use of a truncated configuration

interaction (CI) instead of the full CI are also to be explored. It could provide insights

on the recently-proposed TD-MC-srDFT method which mixes TDDFT at short range

and multi-configurational self-consistent field at long range for the calculation of excited

states and could allow for further developments.

Concerning the second part of this thesis, the derivation and the implementation of

the short-range LDA kernels has been done only in the closed-shell case and it should be

of interest for many applications to have an open-shell code. Short-range GGA kernels

would also be useful.

The last part of this thesis is probably the most frustrating one for me as so much

remains to be done and I will attempt to make a list of what I would have wished to do

if I had a fourth year...

• First of all, the second-order kernel needs to be tested more extensively, and on

systems known to have double excitations in the lower part of their excitation

spectrum.

• Next, a non-perturbative resolution based on a Löwdin “unfolding” would be nice,

also without the Tamm-Dancoff approximation. Moreover, the code was designed
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more in an exploratory perspective than in a efficient way. If the kernel is confirmed

to be of interest, the module should be integrated to a “real” quantum chemistry

program.

• Finally, the second-order truncation was done with respect to the electron-electron

interaction but without taking into account the self-energy corrections which enter

in the independent-particle response function and also contribute to the second

order. We are currently working on this aspect. A first step would be to assess

them on the model system given by H2 in a minimal basis and then in the general

case. This would be of particular interest to understand the link between the

second-order polarization propagator approach and this work.

This list could probably be longer and I would like that some on these points will be

solved in the short term either by me or my collaborators. I hope that this work will

be of some use for future developments on similar projects.

Paris, 28th April 2014
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Journal of Chemical Physics, 138, p.194106 (2013).
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Appendix A

Mathematical tools

In this appendix, the main mathematical tools used thoughout this thesis are defined.
Especially, the main formulas of functional calculus are recalled together with the
definition of the underlying Banach space. As many Fourier transforms are done
between the time and frequency spaces, the conventions used for the Fourier transform
together with the contour integration techniques in the framework of complex analysis
are also briefly recalled in the following.

A.1 Functionals

Most of this thesis uses the mathematical concept of functional, either of the density,

of the potential or of a Green’s function. We therefore recalls here the definition of a

functional and of the underlying spaces which are encountered here.

Definition (Functional). A functional F is a function from a vector space V usually

of functions into its underlying scalar field

F : f 7→ F [f ]. (A.1)

A functional can be seen as a function of a function f and is denoted with bracket

notations F [f ]. It is the key quantity of functional analysis which studies complete

normed vector spaces over the real or complex numbers, i.e. Banach spaces. In this

thesis, two special kinds of Banach spaces are used:

• Hilbert spaces: where the norm arises from an inner product.

• Lp spaces: where the norm is an Lp-norm.
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Definition (Lp-norm). Given a vector r = (r1, r2, . . . , rn) in the n-dimensional real

vector space R
n, for a real number p ≥ 1, the p-norm or Lp-norm of r is

||r||p = (rp1 + rp2 + · · ·+ rpn)
1
p (A.2)

Throughout the different derivations present in this thesis, a few functional calculus

rules are used and are given here: the functional derivative, the inverse and the chain

rule.

Definition (Functional derivative). Given a Banach space M representing the set

of functions f and a functional F : M 7→ R, the functional derivative (or Fréchet

derivative) of F with respect to f , denoted
δF

δf
, is defined by

δF [f ] =

∫

δF [f ]

δf(x)
δf(x)dx. (A.3)

If the change in f is localized, δf(x) = ǫδ(x − x0), then a more conventional definition

can be given
δF [f ]

δf(x0)
= lim

ǫ→0

F [f + ǫδ(x− x0)]− F [f ]

ǫ
. (A.4)

In the case of a two-point quantity, one should note in particular that

δG(1, 2)

δG(4, 3)
= δ(1, 4)δ(2, 3). (A.5)

As for usual functions, a chain rule can be defined for functional derivatives

δF [G[H]](1)

δH(2)
=

∫

d3
δF [G](1)

δG(3)

δG[H](3)

δH(2)
. (A.6)

Another useful object in the framework of this thesis is the inverse of a two- and

four-point functional. For a two-point functional, the inverse is defined by

∫

d3F (1, 3)F−1(3, 2) =

∫

d3F−1(1, 3)F (3, 2) = δ(1, 2), (A.7)

and its derivative is given by

δF (1, 2)

δG(4, 3)
= −

∫

d5d6F (1, 5)
δF−1(5, 6)

δG(4, 3)
G(6, 2). (A.8)

The inverse of a four-point functional is given by

∫

d3d3′H(1, 3; 1′, 3′)H−1(3′, 2; 3, 2′) =

∫

d3d3′H−1(1, 3; 1′, 3′)H(3′, 2; 3, 2′)

= δ(1, 2′)δ(2, 1′).

(A.9)
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A.2 Fourier transform and complex analysis

A very brief review of complex analysis is given for the application of Fourier integral

evaluation. More details can be found for instance in [1].

A.2.1 Conventions for Fourier transforms

We use the following convention for the Fourier transform of the function f

f(t) =

∫

dω

2π
f(ω)e−iωt, (A.10)

which inverse transform is given by

f(ω) =

∫

dtf(t)eiωt. (A.11)

In particular, it is worth mentioning that the Fourier transform of the Heaviside step

function is given by

θ(τ) = −
∫

dω

2πi

e−iωτ

ω + i0+
and θ(−τ) =

∫

dω

2πi

e−iωτ

ω − i0+
, (A.12)

A.2.2 Method of contour integral

A very powerful approach to evaluate the integral of complex functions is given by the

contour integration technique in the framework of complex analysis. It is briefly recalled

here for our particular case of interest. A few definitions are needed in order to establish

the central theorem of this theory, the Cauchy’s residue theorem.

Definition (Holomorphic function). Suppose Ω is a simply connected open subset of

C, the function f : Ω → C is holomorphic on Ω if it is complex differentiable on every

point z0 of Ω, i.e. the limit

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0
, (A.13)

exists for every z0 in Ω.

Definition (Winding number). Suppose γ is a closed curve in Ω, the winding number

of γ around a complex number a is

Iγ(a) =
1

2πi

∮

γ

dz

z − a
. (A.14)

241



APPENDIX A. MATHEMATICAL TOOLS

ℑ(ω)

ℜ(ω)

eiω0+ −−−−−−→
ℑ(ω)→∞

0

Figure A.1 – Contour integration on the upper half-plane.

Definition (Residue). Suppose a punctured disk D = {z|0 < |z − c| < R} in the

complex plane is given and f is a holomorphic function defined on D. The residue

Res(f, c) of f at c is the coefficient a−1 of (z − c)−1 in the Laurent series expansion of

f around c.

We know have all the definitions needed to state the main theorem underlying this

theory, the Cauchy’s residue theorem.

Theorem 4 (Cauchy’s residue theorem). Suppose Ω is a simply connected open

subset of the complex plane, and a1, . . . , an are finitely many points of Ω and f is a

function which is defined and holomorphic on {Ω \a1, . . . , an}. If γ is a closed curve in

Ω which does not meet any of the ak, and whose start point equals its endpoint, then

∮

γ

f(z) dz = 2πi

n
∑

k=1

Iγ(ak)Res(f, ak). (A.15)

Application to Fourier integrals

The idea, when one wants to evaluate an integral on R, is to take only a part of the

integral on [−R,R] and to close the path in the complex plane, usually by a half-circle,

controlling that the additional part will not contribute to the integral. This is possible

thanks to Jordan’s lemma

Lemma. Jordan’s Lemma. Suppose f : C → C is a continuous function on

S = {reiθ; t ≥ 0; 0 ≤ θ1 ≤ θ ≤ θ2 ≤ π}, (A.16)

such that limz∈S→∞ f(z) = 0. If we note γ(r) = {reiθ; θ1 ≤ θ ≤ θ2 then

limr→∞
∫

γ(r)
f(z)eizdz = 0.
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To evaluate an integral

I =

∫

f(x)eikxdx, with k ∈ R, (A.17)

the sign of k is important as the integral on the upper half-plane of f(x)eikz goes to 0

when r → ∞ only if the real part of ikz is negative. Therefore, if k is positive, the contour

will be closed on the upper half-plane as shown in Figure A.1, and if k is negative, it

will be closed on the lower half-plane, such that

∫

f(x)eikxdx =











2iπ
∑

a singularity
in the upper half-plane

Res(f(x)eikx, a) if k > 0

2iπ
∑

a singularity
in the lower half-plane

Res(f(x)eikx, a) if k < 0.
(A.18)

A.3 Spherical mean

A last definition which is useful in the framework is the definition of the spherical mean

given in the following:

Definition (Spherical mean). Consider an open set U in the Euclidean space Rn and

a continuous function u defined on U with real or complex values. Let x be a point in

U and r > 0 be such that the closed ball B(x, r) of center x and radius r is contained

in U . The spherical mean over the sphere of radius r centered at x is defined as

ũ(x, r) =
1

ωn−1(r)

∫

∂B(x,r)

u(y) dS(y) (A.19)

where ∂B(x, r) is the (n − 1)-sphere forming the boundary of B(x, r), dS denotes in-

tegration with respect to spherical measure and ωn−1(r) is the “surface area” of this

(n− 1)-sphere.

Alternatively,

ũ(x, r) =
1

ωn−1

∫

||y||=1

u(x+ ry) dS(y) (A.20)

where ωn−1(r)= is the area of the (n− 1)-sphere of radius 1.
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Taylor expansions of the

range-separated energies

In this appendix, the details of the Taylor expansions of the Hartree-exchange-
correlation potential, of the Hamiltonian, of the wave function and of the energies
are given around the KS and the physical systems for the range-separated adiabatic
connection. It is to be read together with Chapter 2.

B.1 Taylor expansions around the KS system

In the limit where the range-separation parameter µ goes to 0, the system is very close

to the Kohn-Sham system. It is then convenient to develop its Hamiltonian around the

Kohn-Sham Hamiltonian as

Ĥ lr,µ = T̂ +

∫

vne(r)n̂(r)dr+

∫

v̄sr,µHxc(r)n̂(r)dr+
1

2

∫∫

wlr,µ
ee (r12)n̂2(r1, r2)dr1dr2

= ĤKS −
∫

vlr,µHxc(r)n̂(r)dr+
1

2

∫∫

wlr,µ
ee (r12)n̂2(r1, r2)dr1dr2.

(B.1)

The Maclaurin series of the long-range interaction around µ = 0 is exactly known and is

given by

wlr,µ
ee (r) =

2√
π

∞
∑

n=0

(−1)n

n!(2n+ 1)
r2nµ2n+1 =

∞
∑

n=0

w(2n+1)
ee (r)µ2n+1

=
2√
π
µ− 2

3
√
π
r2µ3 +O

(

µ5
)

.

(B.2)

The Taylor expansion of the long-range interaction operator Ŵ lr,µ
ee is therefore straight-

forward but the potential contribution needs to be evaluated.

By definition, the long-range Hartree-exchange-correlation potential is the functional
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derivative of the corresponding ground-state energy functional with respect to the den-

sity. If calculated at N fixed, it is then defined up to an additive constant Cµ which is

a constant with respect to r but can depend on µ. The expressions of the long-range

energy functionals are recalled in the following but can also be found in Refs. [2, 3].

B.1.1 Long-range Hartree-exchange-coorelation functionals

Long-range Hartree energy functional

The Hartree energy is given by

EH[n] =
1

2

∫∫

n(r1)n(r2)

r12
dr1dr2. (B.3)

The long-range Hartree energy functional is obtained by substituting the usual electron-

electron interaction 1/r12 by its long-range counterpart wlr,µ
ee (r12). By doing so, and using

the Taylor expansion of the interaction (B.2), we get

Elr,µ
H [n] =

1

2

∫∫

n(r1)n(r2)w
lr,µ
ee (r12)dr1dr2

=
1√
π

∞
∑

n=0

(−1)n

n!(2n+ 1)
µ2n+1

∫∫

n(r1)n(r2)r
2n
12 dr1dr2

=
N2[n]√

π
µ− 1

3
√
π
µ3

∫∫

n(r1)n(r2)r
2
12dr1dr2 +O(µ5).

(B.4)

Long-range exchange energy functional

The long-range exchange energy is given by

Elr,µ
x [n] =

1

2

∫∫

n2,x(r1, r2)w
lr,µ
ee (r12)dr1dr2

=
1√
π

∞
∑

n=0

(−1)n

n!(2n+ 1)
µ2n+1

∫∫

n2,x(r1, r2)r
2n
12 dr1dr2

=
1√
π
µ

∫∫

n2,x(r1, r2)dr1dr2 −
1

3
√
π
µ3

∫∫

n2,x(r1, r2)r
2
12dr1dr2 +O(µ5).

(B.5)

Except for the one-electron case where n2,x(r1, r2) = −n(r1)n(r2) and the two-electron

case where n2,x(r1, r2) = −n(r1)n(r2)/2, the exchange pair density cannot be expressed as

an explicit functional of n. Using the expression of the exchange pair density in terms

of the exchange hole, the long-range exchange energy rewrites as

Elr,µ
x [n] =

1√
π
µ

∫

dr1n(r1)

∫

dr2hx(r1, r2)−
1

3
√
π
µ3

∫∫

n2,x(r1, r2)r
2
12dr1dr2 +O(µ5) (B.6)
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where hx(r1, r2) is the exchange hole which is normalized to -1 i.e.
∫

dr2hx(r1, r2) = −1.

Using this normalization, the long-range exchange energy reduces to

Elr,µ
x [n] = −N [n]√

π
µ− 1

3
√
π
µ3

∫∫

n2,x(r1, r2)r
2
12dr1dr2 +O(µ5). (B.7)

Long-range correlation energy functional

The long-range correlation energy requires integration along the adiabatic connection as

the correlation part of the two-particle density n2,c depends on µ. It is therefore given

by

Elr,µ
c [n] =

1

2

∫ µ

0

∫∫

nξ2,c(r1, r2)
∂wlr,ξ

ee (r12)

∂ξ
dr1dr2dξ (B.8)

Considering that nξ
2,c can be expanded around ξ = 0 as

nξ
2,c(r1, r2) =

∞
∑

k=1

1

k!

∂knξ
2,c(r1, r2)

∂ξk

∣

∣

∣

∣

∣

ξ=0

ξk (B.9)

then the long-range correlation enegy becomes

Elr,µ
c [n] =

1√
π

∞
∑

n=1

∞
∑

k=1

(−1)n

n!k!(2n+ k + 1)
µ2n+k+1

∫∫

∂knµ
2,c(r1, r2)

∂µk

∣

∣

∣

∣

∣

µ=0

r2n12 dr1dr2

= 0 +O(µ6)

(B.10)

in the case of a non-degenrate Kohn-Sham ground state, where the term at n = 0 is

dropped because
∫

n2,c(r1, r2)dr1dr2 = 0 and the terms k = 1, 2, 4 are zero by identification

in the Taylor expansion of the wave function as shown in [3].

B.1.2 Long-range Hartree-exchange-correlation potential

If the functional derivative of Elr,µ
Hx [n] is taken with respect to density variations that

preserve the number of electrons,
∫

δn(r)dr = 0, then δN/δn = 0. The derivative is then

defined up to an additive (µ-dependent) constant Cµ. To first order in µ, the long-

range electron–electron interaction tends to a constant, 2µ/
√
π. A distant electron (with

1 ≪ r12 ≪ 1/µ) then experiences a constant interaction 2(N −1)µ/
√
π with the remaining

N − 1 other electrons. This constant must be exactly compensated by the long-range

Hartree-exchange-correlation potential, so that its first-order term in µ must also be

2(N − 1)µ/
√
π. The expansion of vlr,µHxc(r) therefore takes the form

vlr,µHxc(r) =
2(N − 1)µ√

π
+ µ3v

lr,(3)
Hxc (r) +O(µ5), (B.11)
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where vlr,(3)Hxc (r) is the third-order contribution. Note that the constant Cµ should also

affect the third- and higuer-contributions of the potential and develops as

Cµ = C(1)µ+ C(3)µ3 + · · · (B.12)

B.1.3 Taylor expansion of the Hamiltonian

Substituting Equations (B.2), (B.11) in (B.1), we get the following Taylor expansion for

the Hamiltonian around µ = 0:

Ĥ lr,µ =ĤKS +
1

2

∫∫ [

2√
π
µ+ wlr,(3)

ee (r12)µ
3

]

n̂2(r1, r2)dr1dr2

−
∫ [

2(N − 1)√
π

µ+ v
lr,(3)
Hxc (r)µ3

]

n̂(r)dr+O(µ5)

=ĤKS − N(N − 1)√
π

µ+ µ3
(

Ŵ lr,(3)
ee − V̂

lr,(3)
Hxc

)

+O(µ5)

(B.13)

where

Ŵ lr,(3)
ee = −1

2

∫∫

2r212
3
√
π
n̂2(r1, r2)dr1dr2. (B.14)

The linear correction in µ is a constant. Consequently it affects the energies but not the

wave functions so their first correction is cubic in µ:

|Ψµ
k〉 = |ΦKS

k 〉+ |Ψ(3)
k 〉µ3 +O(µ5). (B.15)

B.1.4 Taylor expansion of the energies

The energies corresponding to the state |Ψµ
k〉 are by definition given by

Eµ
k =

〈Ψµ
k |Ĥ lr,µ|Ψµ

k〉
〈Ψµ

k |Ψ
µ
k〉

(B.16)

where the numerator is

〈Ψµ
k |Ĥ lr,µ|Ψµ

k〉 = EKS
k − N(N − 1)√

π
µ

+ µ3
(

2EKS
k 〈Ψ(3)

k |ΦKS
k 〉+ 〈ΦKS

k |Ŵ lr,(3)
ee − V̂

lr,(3)
Hxc |ΦKS

k 〉
)

+O(µ5)

(B.17)

and the denominator is 〈Ψµ
k |Ψ

µ
k〉 = 1 + 2µ3〈Ψ(3)

k |ΦKS
k 〉 + O(µ5). Therefore, the Taylor ex-

pansions of the energies around µ = 0 are

Eµ
k =EKS

k − N(N − 1)√
π

µ+ µ3〈ΦKS
k |Ŵ lr,(3)

ee − V̂
lr,(3)
Hxc |ΦKS

k 〉+O(µ5). (B.18)

In Equation (B.18), the linear correction is state-independent and depends only of the

number of electrons of the system. Therefore in the excitation energies, this term cancels
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out and only the correction in µ3 remains.

Eµ
k − Eµ

0 = µ3
[

〈ΦKS
k |Ŵ lr,(3)

ee − V̂
lr,(3)
Hxc |ΦKS

k 〉 − 〈ΦKS
0 |Ŵ lr,(3)

ee − V̂
lr(3)
Hx |ΦKS

0 〉
]

+O(µ4). (B.19)

This correction can be divided into a one-electron and a two-electron part where the

one-electron contribution is given by 〈ΦKS
k |V̂ lr,(3)

Hxc |ΦKS
k 〉 and the two-electron contribution

is given by

〈ΦKS
k |Ŵ lr,(3)

ee |ΦKS
k 〉 = − 1

3
√
π
〈ΦKS

k |
∫∫

n̂2(r1, r2)r
2
12dr1dr2|ΦKS

k 〉. (B.20)

Moreover, using the definition of the pair density operator n̂2(r1, r2) = n̂(r1)n̂(r2) −
n̂(r1)δ(r1 − r2), the latter rewrites as

〈ΦKS
k |Ŵ lr,(3)

ee |ΦKS
k 〉 =− 1

3
√
π
〈ΦKS

k |
∫∫

n̂(r1)n̂(r2)r
2
12dr1dr2|ΦKS

k 〉

+
1

3
√
π
〈ΦKS

k |
∫∫

n̂(r1)δ(r1 − r2)r
2
12dr1dr2|ΦKS

k 〉

=− 1

3
√
π
〈ΦKS

k |
∫∫

n̂(r1)n̂(r2)r
2
12dr1dr2|ΦKS

k 〉.

(B.21)

Using the scalar product of r1 and r2, r212 can be rewritten as r212 = r21 + r22 − 2r1 · r2

〈ΦKS
k |Ŵ lr,(3)

ee |ΦKS
k 〉 =− 1

3
√
π
〈ΦKS

k |
∫∫

n̂(r1)n̂(r2)(r
2
1 + r22)dr1dr2|ΦKS

k 〉

+
2

3
√
π
〈ΦKS

k |
∫∫

n̂(r1)n̂(r2)r1 · r2dr1dr2|ΦKS
k 〉

=− 2N

3
√
π

∫

nk(r)r
2dr+

2

3
√
π
〈ΦKS

k |
∫

n̂(r1) r1 dr1 ·
∫

n̂(r2) r2 dr2|ΦKS
k 〉

=− 2N

3
√
π

∫

nk(r)r
2dr+

2

3
√
π

∑

j

∣

∣

∣

∣

〈ΦKS
k |
∫

n̂(r) r dr|ΦKS
j 〉
∣

∣

∣

∣

2

,

(B.22)

where nk is the density of the KS state |ΦKS
k 〉 and where the resolution of identity has

been used in the last line.

Taylor expansion of the singlet-triplet splitting

For closed shells, the expansion of the difference between the singlet and triplet energies

associated with the single excitation i→ a can be obtained by applying Equation (B.18)

with the spin-adapted KS wave functions 1ΦKS =
(

ΦKS
i→a +ΦKS

ī→ā

)

/
√
2, for the singlet

state, and 3,1ΦKS = ΦKS
ī→a

, for the triplet state with spin projection MS = 1. As all the

determinants are constructed on the some KS orbitals, the one-electron contribution

vanshes and only the two-electron term then contributes:

∆Eµ,1−3
i→a = µ3

[

〈 1ΦKS|Ŵ lr,(3)
ee | 1ΦKS〉 − 〈 3ΦKS|Ŵ lr,(3)

ee | 3ΦKS〉
]

+O(µ5). (B.23)
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εi

εa

Ms 1

ΦKS
ī→a

0

ΦKS
ī→ā

0

ΦKS
i→a

-1

ΦKS
i→ā

Figure B.1 – Spin configurations for the single excitation i → a starting from the
Kohn-Sham ground-state.

which then gives

∆Eµ,1−3
i→a = 2µ3〈ia|ŵlr,(3)

ee |ai〉+O(µ5)

=
8µ3

3
√
π
|〈i|r̂|a〉|2 +O(µ5), (B.24)

where we have used r212 = r21+r
2
2−2r1 ·r2. The appearance of the transition dipole moment

integral in Equation (B.24) means that, for an atomic system, the singlet-triplet energy

splitting appears at third order in µ if the difference between the angular moment of the

orbitals ϕi and ϕa is ∆ℓ = +1 or −1. Otherwise, the splitting appears at a higher order

in µ.

B.2 Taylor expansions near the real system

The Taylor expansion of the short-range interaction when µ→ ∞ is given by [2]:

wsr,µ
ee (r) = 4

√
π

m
∑

n=0

(−1)nΓ
(

n+3
2

)

n!(n+ 2)µn+2
δ(n)(r) +O

(

1

µm+3

)

=
π

µ2
δ(r)− 4

√
π

3µ3
δ(1)(r) +

3π

8µ4
δ(2)(r) +O

(

1

µ5

)

(B.25)

B.2.1 Derivative of the short-range Hartree functional

With the definition of the spherical mean given in Appendix A.3, the spherical average

of the density around r1 on the sphere of radius r12 is

ñ(r1, r12) =
1

4π

∫∫

n(r1 + r12y)dS(y). (B.26)

Using this and the change of variable r2 → r12, the short-range Hartree energy becomes

Esr,µ
H [n] =

1

2

∫∫

n(r1)n(r2)w
sr,µ
ee (r12)dr1dr2

=
1

2

∫∫

4πr212n(r1)ñ(r1, r12)w
sr,µ
ee (r12)dr1dr12.

(B.27)
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and its Taylor expansion when µ→ ∞ is then

Esr,µ
H [n] = 2

√
π

m
∑

n=0

(−1)nΓ
(

n+3
2

)

n!(n+ 2)µn+2

∫∫

δ(n)(r12)n(r1)ñ(r1, r12)dr1dr12 +O
(

1

µm+3

)

(B.28)

Moreover, for a C∞ function f , using successive integrations by parts, one can show

∫

f(r)δ(n)(r)dr = (−1)nf (n)(0). (B.29)

The Taylor expansion of the spherical average of the density around r12 = 0 is given by

ñ(r1, r12) =

(

1 +
1

3!
r212∇2

r12
+

1

5!
r412∇4

r12
+ · · ·

)

n(r1 + r12)|r12=0 (B.30)

Using this relation and the fact that, the spherical mean of the density only develops in

even power of r12 around r12 = 0,

Esr,µ
H [n] = 2

√
π

m
∑

n=0

Γ
(

2n+3
2

)

(2n)!(2n+ 2)µ2n+2

∫

ñ(2n)(r1, 0)n(r1)dr1 +O
(

1

µ2m+4

)

(B.31)

where

ñ(2n)(r1, 0) =

(

∂2nñ(r1, r12)

∂r2n12

)

r12=0

, (B.32)

and in particular, ñ(0)(r1, 0) = n(r1). The Taylor expansion of the short-range Hartree

energy is therefore

Esr,µ
H [n] =

√
π

µ2
Γ

(

3

2

)∫

n(r)2dr+O
(

1

µ4

)

=
π

2µ2

∫

n(r)2dr+O
(

1

µ4

) (B.33)

and is an explicit functional of n. The Taylor expansion of the short-range Hartree

potential is thus

vsr,µH [n](r) =
π

µ2
n(r) +O

(

1

µ4

)

. (B.34)

B.2.2 Derivative of the short-range exchange functional

With the same method, for the exchange energy,

Esr,µ
x [n] =

1

2

∫∫

ñ2,x(r1, r12)w
sr,µ
ee (r12)dr1dr12

= 2
√
π

m
∑

n=0

Γ
(

2n+3
2

)

(2n)!(2n+ 2)µ2n+2

∫∫

n
(2n)
2,x (r, r)dr+O

(

1

µ2m+4

)

,

(B.35)
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where n2,x(r, r) is the exchange on-top pair density, given by −
∑

σ n
2
σ(r). The short-range

energy is then:

Esr,µ
x [n] =

π

2µ2

∫

n2,x(r, r)dr+O
(

1

µ4

)

. (B.36)

The Taylor expansion of the short-range exchange potential is then

vsr,µx [n](r) =
π

2µ2

∫

δn2,x(r
′, r′)

δn(r)
dr′ +O

(

1

µ4

)

. (B.37)

B.2.3 Derivative of the short-range correlation functional

By definition, the short-range correlation energy functional is obtained by

Ēsr,µ
c [n] =− 1

2

∫ ∞

µ

dξ

∫∫

nξ
2,c(r1, r2)∂ξw

sr,ξ
ee (r12)dr1dr2

=−
∫ ∞

µ

dξ
∂

∂ξ
Ēsr,ξ

c [n].

(B.38)

The derivative of the long-range correlation energy with respect to ξ is given by

∂

∂ξ
Ēsr,ξ

c [n] =
1

2

∫∫

nξ
2,c(r1, r2)

∂wsr,µ
ee (r12)

∂ξ
dr1dr2

= − 1√
π

∫∫

4πr212ñ
ξ
2,c(r1, r12)e

−ξ2r212dr1dr12

(B.39)

where ñξ2,c is the spherically-averaged correlation pair density and where the derivative

of the short-range interaction with respect to ξ was taken as:

∂wsr,ξ
ee (r12)

∂ξ
= − 2√

π
e−ξ2r212 . (B.40)

However, if one uses directly the asymptotic expansion of the exponential in Equa-

tion (B.39), each term of the serie diverges. Therefore, the integration and the summa-

tion cannot be swapped [4]. We define the system-averaged pair density

fξ(r12) =

∫

ñξ
2(r1, r12)dr1 (B.41)

and its correlated part fξc (r12) = fξ(r12) − fKS(r12). From the cusp condition at the

coalescence, Gori-Giorgi et al [4] showed that the system-averaged pair density for the

modified interaction should behave as

fξ(r12) = f(0)

(

1 + 2r12p1(ξr12) +
2√
πξ

)

(B.42)
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and that the wave-function of the system expands as

Ψµ
i (r12) = Ψi(0)

[

1 + r12p1(µr12) +
1√
πµ

+ · · ·
]

(B.43)

where f(0) is the system-averaged on-top pair density and where the function p1 is given

by

p1(y) =
e−y2 − 2

2
√
πy

+

(

1

2
+

1

4y2

)

erf(y). (B.44)

By integration over r12 in Equation (B.39) where Equation (B.42) has been used, the

first terms of the Taylor expansion of the derivative of the short-range correlation energy

with respect to ξ are given by

∂

∂ξ
Ēsr,ξ

c [n] =− π
fc(0)

ξ3
− 2

√
2π
f(0)

ξ4
+O

(

1

ξ5

)

. (B.45)

By integration along the adiabatic connection, the Taylor expansion of the short-range

correlation energy is thus

Ēsr,µ
c [n] = π

fc(0)

2µ2
+ 2

√
2π
f(0)

3µ3
+O

(

1

µ4

)

=
π

2µ2

∫

n2,c(r, r)dr+
2
√
2π

3µ3

∫

n2(r, r)dr+O
(

1

µ4

)

.

(B.46)

The corresponding potential is therefore

v̄sr,µc [n](r) =
π

2µ2

∫

δn2,c(r
′, r′)

δn(r)
dr′ +

2
√
2π

3µ3

∫

δn2(r
′, r′)

δn(r)
dr′ +O

(

1

µ4

)

. (B.47)

Finally, the Taylor expansion of the short-range Hartree-exchange-correlation potential

near the real system is given by

v̄sr,µHxc[n](r) =
π

2µ2

∫

δn2(r
′, r′)

δn(r)
dr′ +

2
√
2π

3µ3

∫

δn2(r
′, r′)

δn(r)
dr′ +O

(

1

µ4

)

. (B.48)

B.2.4 Taylor expansion of the Hamiltonian:

By substituting Equations (B.25) and (B.48) into the expression of the Hamiltonian, it

becomes

Ĥ lr,µ =Ĥ −
∫∫ [

π

2µ2
δ(r12)−

2
√
π

3µ3
δ(1)(r12)

]

n̂2(r1, r2)dr1dr2

+

[

π

2µ2
+

2
√
2π

3µ3

]

∫∫

δn2(r
′, r′)

δn(r)
n̂(r)drdr′ +O

(

1

µ4

)

=Ĥ +
1

µ2
Ĥ(−2) +O

(

1

µ3

)

(B.49)
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B.2.5 Taylor expansion of the energies

In order to evaluate the energies, we divide the integration over r12 into two regions,

one going from 0 to 1/µ and one going from 1/µ to ∞. In the first region, the Taylor

expansion of Ψµ
k(r12)w

lr,µ
ee (r12)Ψ

µ
k(r12) around r12 = 0 is given by

Ψµ
k(r12)w

lr,µ
ee (r12)Ψ

µ
k(r12) = Ψk(0)

2

(

2µ√
π
+

2

π3/2µ
+

4

π

)

+O(r12) (B.50)

and a contribution in 1/µ is present. However, when integrated, it is multiplied by the

volume element which goes to 0 when µ goes to ∞ and will not contribute in the energies.

In the second region, r12 > 1/µ so the Taylor expansion of Ψµ
k(r12)w

lr,µ
ee (r12)Ψ

µ
k(r12) around

µ→ ∞ is given by

Ψµ
k(r12)w

lr,µ
ee (r12)Ψ

µ
k(r12) = Ψk(0)

2

(

1 +
1

r12
+

1

4
r12 +

1

2µ2r212
+

1

4µ2r12

)

+O
(

1

µ3

)

(B.51)

where the first contribution appears in 1/µ2. Therefore, the Taylor expansion of the

energies around the real system is given by

Eµ
k = Ek +

1

µ2
E

(−2)
k +O

(

1

µ3

)

(B.52)
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Appendix C

Fit of the energies along the

adiabatic connection

In this appendix, the details of the fit performed on the energies along the range-
separated adiabatic connection are given. The fitted parameters obtained for the
helium and beryllium atoms and for the dihydrogen molecule at equilibrium and
stretched geometries are also given. It is to be read together with Chapter 2 and
Chapter 4 as the first-order derivative of the energies with respect to the range-
separation parameter are calculated analytically from the form of the fit.

C.1 Form of the fit

The total energies Eµ
k and excitation energies ∆Eµ

k = Eµ
k − Eµ

0 of the partially-interacting

Hamiltonian given in Equation (2.5) have been calculated with the DALTON program as a

function of the range-separation parameter µ for the helium and beryllium atoms and for

the dihydrogen molecule. The computational details can be found in Section 2.4. The

total ground-state energies were then fitted to the following analytical expression which

satisfies the form of the expansions at small µ and large µ given in Equations (2.27)

and (2.39)

Eµ
0 = E0 +

EKS
0 − E0 + c1µ+ c2µ

2 + c3µ
3

1 + d1µ+ d2µ2 + d3µ3 + d4µ4 + d5µ5
,

where c1 = −N(N − 1)/
√
π + (EKS

0 − E0)d1 and c2 = −N(N − 1)d1/
√
π + (EKS

0 − E0)d2 are

fixed by the small-µ expansion, E0 and EKS
0 give the ground-state total energies of the

physical system and of the Kohn-Sham (KS) system, and N is the number of electrons.

The excitation energies were fitted to the expression

∆Eµ
k = ∆Ek +

∆EKS
k −∆Ek + c1µ+ c2µ

2 + c3µ
3

1 + d1µ+ d2µ2 + d3µ3 + d4µ4 + d5µ5
,
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where c1 = d1(∆EKS
k −∆Ek) and c2 = d2(∆EKS

k −∆Ek) to ensure the correct behavior at

small µ, and ∆Ek and ∆EKS
k give the excitation energies of the physical system and of

the KS system.

C.2 Fitted parameters

The fits were performed on about 30 points for a range of µ going from 0 to 10 bohr−1.

The parameters of the fit can be found in Tables C.1, C.2, C.3 and C.4, and reproduce

the calculated curves shown in the article with a maximum error of about 0.1 mhartree.

All the energies are in hartree and µ is in bohr−1.
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Table C.1 – Fitted parameters of the ground-state and excitation energies along the range-separated adiabatic connection for the
helium atom using an uncontracted triple-augmented quintuple zeta basis set and a truncated singular-value decomposition cutoff of
10−7.

Ground-state EKS
0 E0 c3 d1 d2 d3 d4 d5

11S -1.813977 -2.902589 0.2886122 -0.5256672 1.267965 0.7302989 1.729618 0.6215862

Transition ∆EKS
k ∆Ek c3 d1 d2 d3 d4 d5

11S → 23S 0.7476677 0.7281453 0.06186663 -1.148460 0.7875350 3.601280 -0.8453350 3.279870

11S → 21S 0.7476670 0.7576321 -0.09598863 -1.799520 3.139774 9.153716 6.331953 8.164700

11S → 13P 0.7787323 0.7701976 0.2572886 -4.517757 11.06152 37.53672 -27.73374 90.37671

11S → 11P 0.7787322 0.7795772 0.05426567 11.97447 -47.11893 114.6076 -82.48554 51.72106

Table C.2 – Fitted parameters of the ground-state and excitation energies along the range-separated adiabatic connection for the
beryllium atom using an uncontracted double-augmented double zeta basis set and a truncated singular-value decomposition cutoff of
10−6.

Ground-state EKS
0 E0 c3 d1 d2 d3 d4 d5

11S -9.124165 -14.65438 46.83671 -0.2090221 -1.923411 3.658671 10.96260 5.215731

Transition ∆EKS
k ∆Ek c3 d1 d2 d3 d4 d5

11S → 13P 0.1336714 0.1009080 -0.02498641 2.675899 -1.103249 66.59735 -39.94845 24.42414

11S → 11P 0.1336461 0.1974410 -0.3142418 2.670149 -5.243878 40.77140 -44.04497 36.69480
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Table C.3 – Fitted parameters of the excitation energies along the range-separated adiabatic connection for the dihydrogen molecule
at the equilibrium distance using an uncontracted double-augmented triple zeta basis set and a truncated singular-value decomposition
cutoff of 10−6.

Transition ∆EKS
k ∆Ek c3 d1 d2 d3 d4 d5

11Σ+
g → 13Σ+

u 0.4359619 0.3890173 0.2799389 1.767023 13.40149 19.23359 24.79910 19.29466

11Σ+
g → 11Σ+

u 0.4359571 0.4677408 -0.01241781 1.264479 -0.4431237 21.85013 -16.49858 12.33904

11Σ+
g → 23Σ+

g 0.4740336 0.4598110 0.2481387 0.9229492 -10.10530 21.52073 -16.87971 25.28795

11Σ+
g → 21Σ+

g 0.4740150 0.4814739 0.04156341 -5.018161 10.11410 -3.755105 -2.033443 8.145262

11Σ+
g → 13Πu 0.480003 0.4670848 0.1376852 30.80894 -13.52176 121.4909 -67.14926 32.50543

11Σ+
g → 11Πu 0.4799835 0.4852236 0.01995048 0.5766261 -5.036269 37.87564 -20.46073 10.75388

Table C.4 – Fitted parameters of the excitation energies along the range-separated adiabatic connection for the dihydrogen molecule
at three times the equilibrium distance using an uncontracted double-augmented triple zeta basis set and a truncated singular-value
decomposition cutoff of 10−6.

Transition ∆EKS
k ∆Ek c3 d1 d2 d3 d4 d5

11Σ+
g → 13Σ+

u 0.05176212 0.01700837 0.6515038 -1.415220 4.923966 118.7312 -176.1438 667.7109

11Σ+
g → 11Σ+

u 0.05174852 0.2813186 -9.042050 -9.080417 27.82670 57.35565 -188.3668 718.6815

11Σ+
g → 23Σ+

g (σ
+
u )

2 0.1034820 0.2988327 -8.364428 -6.876502 37.68192 51.86662 -151.0807 783.8883
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Appendix D

Double adiabatic connection

keeping the density constant

In this appendix, we present a double adiabatic connection, depending on two param-
eters, which keeps the ground-state density constant. The second variant of pertur-
bation theory of Section 3.2.2 is based on this double adiabatic connection. Another
form of a double adiabatic connection keeping the density constant was previously
considered in Refs. [5, 6].

The Levy–Lieb universal density functional for the Coulomb electron-electron inter-

action Ŵee writes [7–9]

F [n] = min
Ψ→n

〈Ψ|T̂ + Ŵee|Ψ〉

= 〈Ψ[n]|T̂ + Ŵee|Ψ[n]〉, (D.1)

where T̂ is the kinetic energy operator. We generalize it to the interaction Ŵ lr,µ
ee +λŴ sr,µ

ee

where Ŵ lr,µ
ee and Ŵ sr,µ

ee are long-range and short-range electron-electron interactions,

respectively, which depends on both a range-separation parameter µ, and on a linear

parameter λ,

Fµ,λ[n] = min
Ψ→n

〈Ψ|T̂ + Ŵ lr,µ
ee + λŴ sr,µ

ee |Ψ〉

= 〈Ψµ,λ[n]|T̂ + Ŵ lr,µ
ee + λŴ sr,µ

ee |Ψµ,λ[n]〉.
(D.2)

The Coulomb universal density functional F [n] is then decomposed into the functional

Fµ,λ[n] and a µ- and λ-dependent complement short-range Hartree-exchange-correlation

density functional Ēsr,µ,λ
Hxc [n]

F [n] = Fµ,λ[n] + Ēsr,µ,λ
Hxc [n], (D.3)
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leading to following expression for the exact ground-state energy of an electronic system

E0 = min
Ψ

{

〈Ψ|T̂ + V̂ne + Ŵ lr,µ
ee + λŴ sr,µ

ee |Ψ〉+ Ēsr,µ,λ
Hxc [nΨ]

}

, (D.4)

where V̂ne is the nuclei-electron interaction operator and the minimization is performed

over normalized multideterminant wave functions. The Euler-Lagrange equation corre-

sponding to this minimization is

Ĥµ,λ|Ψµ,λ
0 〉 = Eµ,λ

0 |Ψµ,λ
0 〉, (D.5)

where Ψµ,λ
0 and Eµ,λ

0 are the ground-state wave function and energy of the Hamiltonian

Ĥµ,λ = T̂ + V̂ne + Ŵ lr,µ
ee + λŴ sr,µ

ee + ˆ̄V sr,µ,λ
Hxc , (D.6)

where ˆ̄V sr,µ,λ
Hxc =

∫

δĒsr,µ,λ
Hxc [n0]/δn(r)n̂(r)dr is short-range Hartree-exchange-correlation po-

tential operator, evaluated at the density n0(r) = 〈Ψµ,λ
0 |n̂(r)|Ψµ,λ

0 〉 which is the ground-

state density of the physical system for all µ and λ. The Hamiltonian Ĥµ,λ of Equa-

tion (D.6) thus defines a double adiabatic connection keeping the ground-state density

constant.

The range-separated ground-state DFT formalism of Section 2.2 is recovered in the

limit λ = 0. For the purpose of applying a pertubation theory in λ starting from this

limit λ = 0, we want to rewrite the Hamiltonian Ĥµ,λ of Equation (D.6) as the sum of

the Hamiltonian at λ = 0, Ĥ lr,µ = Ĥµ,λ=0, and a perturbation operator. For this, the

density functional Ēsr,µ,λ
Hxc [n] is written as

Ēsr,µ,λ
Hxc [n] = Ēsr,µ,λ=0

Hxc [n]− Esr,µ,λ
Hxc [n], (D.7)

which defines a new density functional Esr,µ,λ
Hxc [n]. The Hamiltonian Ĥµ,λ can then be

rewritten as

Ĥµ,λ = Ĥ lr,µ + λŴ sr,µ
ee − V̂ sr,µ,λ

Hxc , (D.8)

where V̂ sr,µ,λ
Hxc =

∫

δEsr,µ,λ
Hxc [n0]/δn(r)n̂(r)dr is the short-range Hartree-exchange-correlation

potential operator associated with the density functional Esr,µ,λ
Hxc [n] introduced in Equa-

tion (D.7). The dependence on λ of this density functional can be made more explicit.

It is easy to show that Esr,µ,λ
Hxc [n] has the following expression

Esr,µ,λ
Hxc [n] = 〈Ψµ,λ[n]|T̂ + Ŵ lr,µ

ee + λŴ sr,µ
ee |Ψµ,λ[n]〉

−〈Ψµ,λ=0[n]|T̂ + Ŵ lr,µ
ee |Ψµ,λ=0[n]〉,

(D.9)

which leads to the following decomposition

Esr,µ,λ
Hxc [n] = λEsr,µ

Hx,md[n] + Esr,µ,λ
c,md [n], (D.10)
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where Esr,µ
Hx,md[n] = 〈Ψµ,λ=0[n]|Ŵ sr,µ

ee |Ψµ,λ=0[n]〉 is a multideterminantal (md) generalization

of the usual short-range Hartree-exchange functional [10–12]. Using the variational

property of the wave function Ψµ,λ[n], and for non-degenerate wave functions Ψµ,λ=0[n],

the expansion in λ of Esr,µ,λ
c,md [n] at λ = 0 starts at second order: Esr,µ,λ

c,md [n] = λ2E
sr,µ,(2)
c,md [n]+

· · · , as in standard Görling-Levy (GL) perturbation theory [13, 14]. The Hamiltonian

Ĥµ,λ of Equation (D.8) can then be rewritten as

Ĥµ,λ = Ĥ lr,µ + λŴ sr,µ − V̂ sr,µ,λ
c,md , (D.11)

where the perturbation operator Ŵ sr,µ = Ŵ sr,µ
ee − V̂ sr,µ

Hx,md with V̂ sr,µ
Hx,md =

∫

δEsr,µ
Hx,md[n0]/δn(r)n̂(r)dr has been introduced to collect all the linear terms in λ, and

the remaining perturbation operator V̂ sr,µ,λ
c,md =

∫

δEsr,µ,λ
c,md [n0]/δn(r)n̂(r)dr contains all the

higher-order terms in λ.

261





Appendix E

Range-separated kernels

In this appendix, the spin adaptation of the short-range exchange and correlation
kernels is given. Details of their derivation in the LDA case together with their
asymptotic behavior close to the KS and the physical kernel are also given. This
appendix is to be read together with Chapter 6.

E.1 Spin-adapted kernels

For spin-restricted closed-shell calculations, spin-singlet and spin-triplet excitations can

be decoupled [15–17] (see also Refs. [18, 19]). The non-spin-flip part of the coupling

matrix K of Eq. (6.12) has the following spin block structure

K =

(

K↑,↑ K↑,↓

K↓,↑ K↓,↓

)

, (E.1)

where the matrix blocks Kσ,σ′ have elements of the form Kiσ aσ, jσ′ bσ′ with i, j, and a,

b referring to occupied and virtual spatial orbitals, respectively. The matrix K can be

brought to a block diagonal form by rotation in spin space

K̃ =

(

1K 0

0 3K

)

, (E.2)

with a singlet component

1K =
K↑,↑ +K↑,↓ +K↓,↑ +K↓,↓

2
, (E.3)

and a triplet component

3K =
K↑,↑ −K↑,↓ −K↓,↑ +K↓,↓

2
. (E.4)
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This directly leads to the singlet and triplet RSH coupling matrices of Eqs. (6.15)

and (6.16), where the singlet and triplet short-range exchange-correlation kernels are

defined as

1f sr,µxc (r1, r2) =
f sr,µxc,↑↑(r1, r2) + f sr,µxc,↑↓(r1, r2) + f sr,µxc,↓↑(r1, r2) + f sr,µxc,↓↓(r1, r2)

4
, (E.5)

and

3f sr,µxc (r1, r2) =
f sr,µxc,↑↑(r1, r2)− f sr,µxc,↑↓(r1, r2)− f sr,µxc,↓↑(r1, r2) + f sr,µxc,↓↓(r1, r2)

4
. (E.6)

The different spin components of the kernel can be expressed with the second-order

functional derivatives of the corresponding energy functional Esr,µ
xc [n,m] with respect to

the density n and the spin magnetization density m,

f sr,µxc,↑↑(r1, r2) =
δ2Esr,µ

xc [n,m]

δn↑(r1)δn↑(r2)
=
δ2Esr,µ

xc [n,m]

δn(r1)δn(r2)
+ 2

δ2Esr,µ
xc [n,m]

δn(r1)δm(r2)
+

δ2Esr,µ
xc [n,m]

δm(r1)δm(r2)
, (E.7)

and

f sr,µxc,↑↓(r1, r2) = f sr,µxc,↓↑(r1, r2) =
δ2Esr,µ

xc [n,m]

δn↑(r1)δn↓(r2)
=
δ2Esr,µ

xc [n,m]

δn(r1)δn(r2)
− δ2Esr,µ

xc [n,m]

δm(r1)δm(r2)
, (E.8)

and

f sr,µxc,↓↓(r1, r2) =
δ2Esr,µ

xc [n,m]

δn↓(r1)δn↓(r2)
=
δ2Esr,µ

xc [n,m]

δn(r1)δn(r2)
− 2

δ2Esr,µ
xc [n,m]

δn(r1)δm(r2)
+

δ2Esr,µ
xc [n,m]

δm(r1)δm(r2)
. (E.9)

The mixed derivative with respect to n and m cancels out in Eqs. (E.5) and (E.6) and

we finally obtain the singlet and triplet kernels of Eqs. (6.17) and (6.18).

E.2 Short-range LDA exchange-correlation functional

E.2.1 Short-range LDA exchange

The short-range spin-independent LDA exchange energy density is a function of the

density n (or equivalently of the Wigner-Seitz radius rs = (3/(4πn))1/3) and of the range-

separation parameter µ, and writes

esr,µx = n (ǫx − ǫlr,µx ), (E.10)

where ǫx is the full-range exchange energy per particle of the homogeneous electron gas,

ǫx = −27α2

16 rs
, (E.11)
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with α = (4/(9π))1/3, and ǫlr,µx is the long-range exchange energy per particle of the

homogeneous electron gas [20, 21]

ǫlr,µx =− 9α2A

rs

[√
π erf

(

1

2A

)

+
(

2A− 4A3
)

e−1/(4A2) − 3A+ 4A3
]

, (E.12)

with A = αµ rs/2.

Large µ behavior

In the limit of a very short-range interaction (µ→ +∞) or in the low-density limit (n→ 0

or rs → ∞), i.e. A→ ∞, the short-range exchange energy density esr,µx goes to zero with

the following asymptotic expansion

esr,µx = − 3n

16 r3s µ
2
+

9n

320α2 r5s µ
4
+O

(

1

µ6

)

, (E.13)

and the corresponding short-range exchange kernel, i.e. the second-order derivative with

respect to n, expands as

∂2esr,µx

∂n2
= − π

2µ2
+

π

6α2 r2s µ
4
+O

(

1

µ6

)

. (E.14)

Small µ behavior

In the limit of the Coulombic interaction (µ → 0) or in the high-density limit (n → +∞
or rs → 0), i.e. A → 0, the short-range exchange energy density esr,µx reduces to the

full-range exchange energy density ex = n ǫx with the following expansion

esr,µx = ex +
µn√
π
− 3α rs µ

2 n

2π
+

µ4

6π3
+O

(

e−1/µ2
)

, (E.15)

and the short-range exchange kernel behaves as

∂2esr,µx

∂n2
=
∂2ex
∂n2

+ π α4 r4s µ
2 +O

(

e−1/µ2
)

, (E.16)

with the full-range exchange kernel

∂2ex
∂n2

= −π α2 r2s . (E.17)

Taking the ratio of Eqs. (E.16) and (E.17), it is seen the short-range exchange kernel

reduces to the full-range one when

α2µ2r2s ≪ 1, (E.18)

i.e. rs ≪ 4.8 for µ = 0.4.
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E.2.2 Short-range LDA correlation

The short-range spin-dependent LDA correlation energy density is a function of the

density n, the spin magnetization density m (or equivalently of rs and ζ = m/n), and of

the range-separation parameter µ, and writes

esr,µc = n (ǫc − ǫlr,µc ), (E.19)

where ǫc is the full-range correlation energy per particle of the homogeneous electron

gas [22], and ǫlr,µc is the correlation energy per particle of a homogeneous electron gas with

the long-range electron-electron interaction, as fitted by Paziani et al. [23] on quantum

Monte Carlo calculations with imposed exact limits,

ǫlr,µc =

φ2(ζ)
3Q

(

µ
√
rs

φ2(ζ)

)

+ a1(rs, ζ)µ
3 + a2(rs, ζ)µ

4 + a3(rs, ζ)µ
5 + a4(rs, ζ)µ

6 + a5(rs, ζ)µ
8

(1 + b20(rs)µ
2)

4 ,

(E.20)

where φ2(ζ) = [(1 + ζ)2/3 + (1− ζ)2/3]/2 and the other functions are given in Ref. [23].

The derivatives of esr,µc with respect to n and m are easily expressed in terms of the

derivatives of ǫsr,µc with respect to rs and ζ. The first-order derivatives are

∂esr,µc

∂n
=− rs

3

∂ǫsr,µc

∂rs
+ ǫsr,µc ,

∂esr,µc

∂m
=
∂ǫsr,µc

∂ζ
,

(E.21)

and the second-order derivatives are

∂2esr,µc

∂n2
= − rs

9n

(

2
∂ǫsr,µc

∂rs
− rs

∂2ǫsr,µc

∂r2s

)

,

∂2esr,µc

∂m2
=

1

n

∂2ǫsr,µc

∂ζ2
.

(E.22)

For spin-restricted closed-shell calculations, we just need to evaluate them at ζ = 0.

Large µ behavior

The leading terms of the asymptotic expansion for µ→ +∞ of the short-range correlation

energy density esr,µc can be expressed with the on-top pair-density of the homogeneous

electron gas [23]. In the low-density limit rs → +∞ (or the strong-interaction limit

λ→ +∞ of the adiabatic connection), it simplifies to

esr,µc

∣

∣

∣

rs→+∞
= −3

(

1− ζ2
)

n

16 r3s µ
2

+O

(

1

µ4

)

. (E.23)

266
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In this limit, the associated singlet and triplet short-range correlation kernels, i.e. the

second-order derivatives of esr,µc with respect to n and m evaluated at ζ = 0, have the

following expansions

∂2esr,µc

∂n2

∣

∣

∣

∣

∣

ζ=0, rs→+∞
= − π

2µ2
+O

(

1

µ4

)

, (E.24)

∂2esr,µc

∂m2

∣

∣

∣

∣

∣

ζ=0, rs→+∞
=

π

2µ2
+O

(

1

µ4

)

. (E.25)

Small µ behavior

In the limit µ → 0, the short-range correlation energy density esr,µc reduces to the full-

range correlation energy density ec = n ǫc with the following expansion [23]

esr,µc = ec +
3αφ2(ζ) rs µ

2 n

2π
+O(µ3). (E.26)

It can easily be shown that the singlet and triplet short-range correlation kernels, eval-

uated at ζ = 0, approach the corresponding full-range kernels with the same leading

term
∂2esr,µc

∂n2

∣

∣

∣

∣

∣

ζ=0

=
∂2ec
∂n2

∣

∣

∣

∣

∣

ζ=0

−π α4 r4s µ
2 +O(µ3), (E.27)

∂2esr,µc

∂m2

∣

∣

∣

∣

∣

ζ=0

=
∂2ec
∂m2

∣

∣

∣

∣

∣

ζ=0

−π α4 r4s µ
2 +O(µ3). (E.28)

In the high-density limit rs → 0, the expansion of the full-range correlation energy

density has the form [22]

ec = n [c0(ζ) ln rs − c1(ζ) +O (rs ln rs)] . (E.29)

The expansion of the singlet full-range correlation kernels is

∂2ec
∂n2

∣

∣

∣

∣

∣

ζ=0

=− c0(0)π
2 α3 r3s +O(r4s ln rs), (E.30)

with c0(0) = (1 − ln 2)/π2, and the expansion of the triplet full-range correlation kernels

is found from the the correlation part of the spin stiffness αc(rs) = (∂2ǫc/∂ζ
2)ζ=0

∂2ec
∂m2

∣

∣

∣

∣

∣

ζ=0

= 3π2 α3 r3s αc(rs)

= 3π2 α3 r3s [Aα ln rs + Cα +O(rs ln rs)] ,

(E.31)

where Aα = −1/(6π2) and Cα = 0.0354744 [24]. Comparing Eqs. (E.27) and (E.30), it is
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seen the singlet short-range correlation kernel reduces to the full-range one when

π α rs µ
2

1− ln 2
≪ 1, (E.32)

i.e. rs ≪ 1.2 for µ = 0.4, and, comparing Eqs. (E.28) and (E.31), the triplet short-range

correlation kernel reduces to the full-range one when

α rs µ
2

3π(Aα ln rs + Cα)
≪ 1, (E.33)

i.e. rs ≪ 2.4 for µ = 0.4.
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Appendix F

Fourier transform of the

non-interacting polarizability

In this appendix, the Fourier transforms of the non-interacting polarizability, prop-
agators and response function are given since they are often used throughout this
thesis. The case of the propagation of a hole and a particle is first detailed, with
different degrees of contraction on the time variables, then the propagation of two
holes or two electrons is studied. The matrix elements of the different quantities in
the frequency space are also given and are summarized at the end of this appendix.

F.1 Non-interacting polarizablity

When the time variables are made explicit, the non-interacting polarizability is given by

χ0(x1t1,x2t2;x
′
1t

′
1,x

′
2t

′
2) = −iG0(x1, t1,x

′
2, t

′
2)G0(x2, t2,x

′
1, t

′
1). (F.1)

When the times are contracted, two situations can occur,

• either t1 is contracted with t′1, and t2 is contracted with t′2: in this case, the Green’s

functions have an opposite time ordering and χ0 corresponds to the propagation

of a hole and an electron. This term will be denoted ph/hp for particle-hole/hole-

particle propagator ;

• or t1 is contracted with t2 and t′1 with t′2: in this case, both Green’s function

have the same time ordering and χ0 corresponds to the propagation of either two

holes or two electrons. This term is thus denoted pp/hh which stands for particle-

particle/hole-hole propagation.

The first case is by far more common when optical transition are concerned and is

detailed in the next section.
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F.2 Particle-hole or hole-particle propagator

When a particle-hole propagator is concerned, it is convenient to express it in terms of

time differences. It then rewrites as

χ0(x1t1,x2t2;x
′
1t

′
1,x

′
2t

′
2) = χ0(x1,x2;x

′
1,x

′
2, τ1, τ2, τ) (F.2)

with τ1 = t1 − t′1, τ2 = t2 − t′2 and τ =
t1 + t′1

2
− t2 + t′2

2
. With these conventions, the

propagator can be written in terms of Green’s function as

χ0(x1,x2;x
′
1,x

′
2, τ1, τ2, τ) = −iG0

(

x1,x
′
2;
τ1 + τ2

2
+ τ

)

G0

(

x2,x
′
1;
τ1 + τ2

2
− τ

)

. (F.3)

As it depends on three time differences, its Fourier transform is therefore defined as

χ0(x1,x2;x
′
1,x

′
2, ω

′′, ω′, ω) =

∫

dτ1dτ2dτe
iω′′τ1eiω

′τ2eiωτχ0(x1,x2;x
′
1,x

′
2, τ1, τ2, τ). (F.4)

By successive changes of variables, this can be rewritten as

χ0(x1,x2;x
′
1,x

′
2, ω

′′, ω′, ω)

=− i

∫

dτ1dτ2dτe
i(ω′′+ω/2)τei(ω

′′−ω/2)τ1ei(ω
′−ω′′)τ2G0(x1,x

′
2; τ)G0(x2,x

′
1, τ1)

=− iG0

(

x1,x
′
2;ω

′′ +
ω

2

)

G0

(

x2,x
′
1, ω

′′ − ω

2

)

2πδ(ω′ − ω′′).

(F.5)

In the context of this thesis, some particular cases are of interest and are detailed

hereinafter.

F.2.1 Case t′1 = t+1

By definition of the Fourier transform given in Equation (A.10), the propagator is given

in this case by

χ0(x1,x2;x
′
1,x

′
2, τ1 = −η, ω′, ω) =

∫

dω′′

2π
eiω

′′ηχ0(x1,x2;x
′
1,x

′
2, ω

′′, ω′, ω)

=− iG0

(

x1,x
′
2;ω

′ +
ω

2

)

G0

(

x′
1,x2;ω

′ − ω

2

)

eiω
′η.

(F.6)

Spin-orbital expression

Using the Lehmann representation of the non-interacting Green’s function

G0(x1,x2, ω) =
∑

a

ϕa(x1)ϕ
∗
a(x2)

ω − εa + i0+
+
∑

i

ϕi(x1)ϕ
∗
i (x2)

ω − εi − i0+
, (F.7)
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in Equation (F.6) and using the relation

1

(ω − a)(ω − b)
=

1

a− b

(

1

ω − a
− 1

ω − b

)

, (F.8)

the propagator reduces to

χ0(x1,x2;x
′
1,x

′
2,−η, ω′, ω)

=− i
∑

ab

ϕa(x1)ϕ
∗
a(x

′
2)ϕb(x2)ϕ

∗
b(x

′
1)

−ω + εa − εb





1

ω′ +
ω

2
− εa + i0+

− 1

ω′ − ω

2
− εb + i0+



 eiω
′η

− i
∑

aj

ϕa(x1)ϕ
∗
a(x

′
2)ϕj(x2)ϕ

∗
j (x

′
1)

−ω + εa − εj − i0+





1

ω′ +
ω

2
− εa + i0+

− 1

ω′ − ω

2
− εj − i0+



 eiω
′η

− i
∑

ib

ϕi(x1)ϕ
∗
i (x

′
2)ϕb(x2)ϕ

∗
b(x

′
1)

−ω + εi − εb + i0+





1

ω′ +
ω

2
− εi − i0+

− 1

ω′ − ω

2
− εb + i0+



 eiω
′η

− i
∑

ij

ϕi(x1)ϕ
∗
i (x

′
2)ϕj(x2)ϕ

∗
j (x

′
1)

−ω + εi − εj





1

ω′ +
ω

2
− εi − i0+

− 1

ω′ − ω

2
− εj − i0+



 eiω
′η

(F.9)

In particular, its matrix elements in the (ov,ov) block and in the (vo,vo) block can be

expressed in terms of the matrix elements of the one-frequency response function as

χ0,ja,ja(−η, ω′, ω) = iχ0,ja,ja(ω)





1

ω′ +
ω

2
− εa + i0+

− 1

ω′ − ω

2
− εj − i0+



 eiω
′η (F.10a)

χ0,bi,bi(−η, ω′, ω) = iχ0,bi,bi(ω)





1

ω′ +
ω

2
− εi − i0+

− 1

ω′ − ω

2
− εb + i0+



 eiω
′η, (F.10b)

where

χ0,ja,ja(ω) =
1

ω − εa + εj + i0+
, (F.11a)

χ0,bi,bi(ω) = − 1

ω − εi + εb − i0+
. (F.11b)

F.2.2 Case t′2 = t+2

A similar derivation can be done in the case where t′2 = t+2 . The propagator is then given

by

χ0(x1,x2;x
′
1,x

′
2, ω

′′, τ2 = −η, ω) =
∫

dω′

2π
eiω

′ηχ0(x1,x2;x
′
1,x

′
2, ω

′′, ω′, ω)

=− iG0(x1,x
′
2;ω

′′ +
ω

2
)G0(x2,x

′
1;ω

′′ − ω

2
)eiω

′′η

=χ0(x1,x2;x
′
1,x

′
2, τ1 = −η, ω′′, ω)

(F.12)
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and has the same spin-orbital expression than in the case t′1 = t+1 .

F.2.3 Case t′1 = t+1 and t′2 = t+2

If both times are contracted, then the response function is obtained as

χ0(x1,x2;x
′
1,x

′
2,−η,−η, ω) =− i

∫

dω′

2π
eiωηeiω

′ηG0(x1,x
′
2;ω

′ +
ω

2
)G0(x2,x

′
1;ω

′ − ω

2
) (F.13)

which by integration over ω′ in the upper half complex plane gives

χ0(x1,x2;x
′
1,x

′
2, τ1 = −η, τ2 = −η, ω)

=
∑

aj

ϕa(x1)ϕ
∗
a(x

′
2)ϕj(x2)ϕ

∗
j (x

′
1)

ω − εa + εj + i0+
eiωη −

∑

ib

ϕi(x1)ϕ
∗
i (x

′
2)ϕb(x2)ϕ

∗
b(x

′
1)

ω − εi + εb − i0+
eiωη.

(F.14)

F.3 Particle-particle or hole-hole propagator

A pp/hh propagator can also be encountered in the derivation of the Bethe-Salpeter

kernel in the case χIP (x1t1,x6t1;x5t
+
2 ,x2t2). In terms of time differences, this propagator

rewrites as

χ0(x1t1,x6t1;x5t
+
2 ,x2t2) =− iG0(x1,x2, τ)G0(x6,x5, τ − η) (F.15)

where τ = t1 − t2. Its Fourier transform is thus given by

χ0(x1,x6;x5,x2;ω) =− i

∫

dτeiωτG0(x1,x2, τ)G0(x6,x5, τ − η)

=− i

∫

dω′

2π
eiω

′ηG0(x1,x2, ω − ω′)G0(x6,x5, ω
′),

(F.16)

which by integration over ω′ over the upper half complex plane gives

χ0(x1,x6;x5,x2, ω) =−
∑

ab

ϕa(x1)ϕ
∗
a(x2)ϕb(x6)ϕ

∗
b(x5)

ω − (εa + εb) + i0+
+
∑

ij

ϕi(x1)ϕ
∗
i (x2)ϕj(x6)ϕ

∗
j (x5)

ω − (εi + εj)− i0+
.

(F.17)

272



F.4. SUMMARY

F.4 Summary

• ph/hp propagator in the general case

χ0(x1,x2;x
′
1,x

′
2, ω

′′, ω′, ω) = −iG0

(

x1,x
′
2;ω

′′ +
ω

2

)

G0

(

x2,x
′
1, ω

′′ − ω

2

)

2πδ(ω′ − ω′′).

(F.18)

• ph/hp propagator when one time difference is contracted

χ0(x1,x2;x
′
1,x

′
2,−η, ω′, ω) = χ0(x1,x2;x

′
1,x

′
2, ω

′,−η, ω)

=− i
∑

ab

ϕa(x1)ϕ
∗
a(x

′
2)ϕb(x2)ϕ

∗
b(x

′
1)

−ω + εa − εb





1

ω′ +
ω

2
− εa + i0+

− 1

ω′ − ω

2
− εb + i0+



 eiω
′η

− i
∑

aj

ϕa(x1)ϕ
∗
a(x

′
2)ϕj(x2)ϕ

∗
j (x

′
1)

−ω + εa − εj − i0+





1

ω′ +
ω

2
− εa + i0+

− 1

ω′ − ω

2
− εj − i0+



 eiω
′η

− i
∑

ib

ϕi(x1)ϕ
∗
i (x

′
2)ϕb(x2)ϕ

∗
b(x

′
1)

−ω + εi − εb + i0+





1

ω′ +
ω

2
− εi − i0+

− 1

ω′ − ω

2
− εb + i0+



 eiω
′η

− i
∑

ij

ϕi(x1)ϕ
∗
i (x

′
2)ϕj(x2)ϕ

∗
j (x

′
1)

−ω + εi − εj





1

ω′ +
ω

2
− εi − i0+

− 1

ω′ − ω

2
− εj − i0+



 eiω
′η.

(F.19)

• ph/hp response function

χ0(x1,x2;x
′
1,x

′
2,−η,−η, ω)

=
∑

aj

ϕa(x1)ϕ
∗
a(x

′
2)ϕj(x2)ϕ

∗
j (x

′
1)

ω − εa + εj + i0+
eiωη −

∑

ib

ϕi(x1)ϕ
∗
i (x

′
2)ϕb(x2)ϕ

∗
b(x

′
1)

ω − εi + εb − i0+
eiωη.

(F.20)

• pp/hh response function

χ0(x1,x6;x5,x2, ω) =−
∑

ab

ϕa(x1)ϕ
∗
a(x2)ϕb(x6)ϕ

∗
b(x5)

ω − (εa + εb) + i0+
+
∑

ij

ϕi(x1)ϕ
∗
i (x2)ϕj(x6)ϕ

∗
j (x5)

ω − (εi + εj)− i0+
.

(F.21)
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Appendix G

Second-order self-energy and

static BSE kernel

In this appendix, the details of the derivation of the second-order correlation self-
energy and Bethe-Salpeter kernel are given. It requires the Fourier transform con-
ventions given in Appendix A.2 and the Fourier transforms of the response functions
with different possible time ordering given in Appendix F. A summary of the formulas
of interest for the rest of this thesis is given at the end of this appendix.

G.1 Correlation self-energy

G.1.1 Direct correlation self-energy

The second-order direct correlation self-energy is by definition

Σ(2d)
c [G](1, 2) = i

∫

d1′d3d4d4′d5d5′G(1′, 3)wee(3, 5; 2, 5
′)χIP(5

′, 4; 5+, 4′+)wee(4
′, 1; 4, 1′).

(G.1)

With the explicit time dependence, it becomes

Σ(2d)
c [G](x1,x2, τ)

= i

∫

dx4dx5G(x1,x2, τ)χIP(x5,x4;x5,x4;−η,−η,−τ)wee(r2, r5)wee(r4, r1)
(G.2)

where τ = t1 − t2 and η = 0+ is a small real positive quantity. Following the conventions

given in Appendix A.2, its Fourier transform is thus given by

Σc
(2d)[G](x1,x2, ω)

= i

∫

dx4dx5dτe
iωτG(x1,x2, τ)χIP(x5,x4;x5,x4;−η,−η,−τ)wee(r2, r5)wee(r4, r1)

(G.3)
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By making explicit the Fourier transform of χIP and using this in G, it then becomes

Σc
(2d)[G](x1,x2, ω)

= i

∫

dx4dx5dτ
dω′

2π
eiωτeiω

′τG(x1,x2, τ)χIP(x5,x4;x5,x4;−η,−η, ω′)wee(r2, r5)wee(r4, r1)

= i

∫

dx4dx5
dω′

2π
G(x1,x2, ω + ω′)χIP(x5,x4;x5,x4;−η,−η, ω′)wee(r2, r5)wee(r4, r1),

(G.4)

which by integration over ω′ over the upper half complex plane becomes

Σ(2d)
c [G](x1,x2, ω)

=
∑

AJC

∫

dx4dx5
fA(x1)f

∗
A(x2)fJ(x5)f

∗
J (x4)fC(x4)f

∗
C(x5)

ω − (EA − EJ + EC) + i0+
wee(r2, r5)wee(r4, r1)

+
∑

IBK

∫

dx4dx5
fI(x1)f

∗
I (x2)fB(x5)f

∗
B(x4)fK(x4)f

∗
K(x5)

ω − (EI − EB + EK)− i0+
wee(r2, r5)wee(r4, r1).

(G.5)

When evaluated for G = G0, its matrix elements are therefore given by

Σ(2d)
c,uv(ω) =

∫∫

dx1dx2Σ
(2d)
c (x1,x2, ω)ϕ

∗
u(x1)ϕv(x2)

=
∑

ajc

〈ac|vj〉〈uj|ac〉
ω − (εa − εj + εc) + i0+

+
∑

ibk

〈ik|vb〉〈ub|ik〉
ω − (εi − εb + εk)− i0+

.
(G.6)

G.1.2 Exchanged correlation self-energy

The exchanged correlation self-energy is by definition

Σ(2x)
c [G](1, 2) = −i

∫

d1′d3d4d4′d5d5′G(1′, 3)wee(5, 3; 2, 5
′)χIP(5

′, 4; 5+, 4′+)wee(4
′, 1; 4, 1′).

(G.7)

With explicit time variables, it is thus given by

Σc
(2x)[G](x1,x2, τ)

= −i
∫

dx3dx4G(x1,x3, τ)χIP(x3,x4;x2,x4,−η,−η,−τ)wee(r2, r3)wee(r4, r1),
(G.8)

which by Fourier transform leads to

Σc
(2x)[G](x1,x2, ω)

=−
∑

AJC

∫

dx3dx4
fA(x1)f

∗
A(x3)fJ(x3)f

∗
J (x4)fC(x4)f

∗
C(x2)

ω − (EA − EJ + EC) + i0+
wee(r2, r3)wee(r4, r1)

−
∑

IBK

∫

dx3dx4
fI(x1)f

∗
I (x3)fB(x3)f

∗
B(x4)fK(x4)f

∗
K(x2)

ω − (EI − EB + EK)− i0+
wee(r2, r3)wee(r4, r1).

(G.9)
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When evaluated at G = G0, its matrix elements are

Σ(2x)
c,uv(ω) =−

∑

ajc

〈ca|vj〉〈uj|ac〉
ω − (εa − εj + εc) + i0+

−
∑

ibk

〈ki|vb〉〈ub|ik〉
ω − (εi − εb + εk)− i0+

, (G.10)

such tthat the total second-order self-energy is given by

Σ(2)
c,uv(ω) =

1

2

∑

ajc

〈ac||vj〉〈uj||ac〉
ω − (εa − εj + εc) + i0+

+
1

2

∑

ibk

〈ik||vb〉〈ub||ik〉
ω − (εi − εb + εk)− i0+

. (G.11)

G.2 Correlation kernel

G.2.1 Direct correlation kernel

By differentiating the second-order direct correlation self-energy with respect to G and

evaluating this derivative at G = G0, the second-order direct correlation kernel is ob-

tained as

Ξ(2d)
c (1, 6; 2; 5)

=−
∫

d1′d3d4d4′d7d7′δ(1′, 5)δ(3, 6)wee(3, 7; 2, 7
′)χ0(7

′, 4; 7+, 4′+)wee(4
′, 1; 4, 1′)

−
∫

d1′d3d4d4′d5d5′G(1′, 3)
δ [wee(3, 7; 2, 7

′)χIP(7
′, 4; 7+, 4′+)wee(4

′, 1; 4, 1′)]

δG(5, 6)

∣

∣

∣

∣

G=G0

(G.12)

and can be decoupled into two parts, ⊲Ξ
(2d)
c which corresponds to the first term of the

r.h.s. of this equation and arise from (δG/δG)W , and ⊳Ξ
(2d)
c which corresponds to the

second term and comes from G(δW/δG).

The first part of the derivative is given by

⊲Ξ
(2d)
c (1, 6; 2, 5) =− δ(t2, t6)δ(t1, t5)δ(x6,x2)δ(x1,x5)

∫

dx3dx4wee(r2, r3)χ0(x3t2,x4t1;x3t
+
2 ,x4t

+
1 )wee(r4, r1)

=δ(t2, t6)δ(t1, t5)⊲Ξ
(2d,ph/hp)
c (x1,x6;x2,x5; t1 − t2)

(G.13)

which defines ⊲Ξ
(2d,ph/hp)
c (x1,x6;x2,x5; t1 − t2) by taking out the delta functions on the

times. The time ordering in the response function corresponds to the propagation of a

hole and an electron, therefore this term is denoted ph/hp.

The second part of the derivative corresponds to the term GδW/δG

⊳Ξ
(2d)
c (1, 6; 2; 5)

=−G(1, 2)

∫

d4d7wee(r2, r7)δ(t2, t7)
δχIP(7, 4; 7

+, 4+)

δG(5, 6)

∣

∣

∣

∣

G=G0

wee(r4, r1)δ(t1, t4).
(G.14)

When the differentiation is done, two kinds of terms arise depending on the time ordering
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of the response functions,

⊳Ξ
(2d)
c (1, 6; 2; 5)

=iG(1, 2)

∫

d4d7wee(r2, r7)δ(t2, t7)δ(4, 5)δ(7
+, 6)G(7, 4+)wee(r4, r1)δ(t1, t4)

+ iG(1, 2)

∫

d4d7wee(r2, r7)δ(t2, t7)δ(7, 5)δ(4
+, 6)G(4, 7+)wee(r4, r1)δ(t1, t4).

(G.15)

If the time variables are made explicit, this rewrites as

⊳Ξ
(2d)
c (1, 6; 2; 5) =iG(x1t1,x2t2)wee(r2, r6)δ(t

+
2 , t6)G(x6t2,x5t

+
1 )wee(r5, r1)δ(t1, t5)

+ iG(x1t1,x2t2)wee(r2, r5)δ(t2, t5)G(x6t1,x5t
+
2 )wee(r6, r1)δ(t

+
1 , t6)

=δ(t+2 , t6)δ(t1, t5)⊳Ξ
(2d,ph/hp)
c (x1,x6;x2,x5; t1 − t2)

+ δ(t2, t5)δ(t
+
1 , t6)⊳Ξ

(2d,pp/hh)
c (x1,x6;x2,x5; t1 − t2),

(G.16)

where the first

⊳Ξ
(2d,ph/hp)
c (x1,x6;x2,x5; t1 − t2) =− wee(r2, r6)χ0(x1t1,x6t2;x5t

+
1 ,x2t2)wee(r5, r1), (G.17)

corresponds to a ph/hp term as the time ordering is different in the two Green’s function,

while the second term

⊳Ξ
(2d,pp/hh)
c (x1,x6;x2,x5; t1 − t2) =− wee(r2, r5)χ0(x1t1,x6t1;x5t

+
2 ,x2t2)wee(r6, r1), (G.18)

is a pp/hh term as the time difference is the same in both Green’s functions. Using

the Fourier transforms of the ph/hp and pp/hh propagators given in Appendix A.2, the

Fourier transforms of the contributions of the direct second-order kernel are therefore

⊲Ξ
(2d,ph/hp)
c (x1,x6;x2,x5;ω) = δ(x6,x2)δ(x1,x5)

∫

dx3dx4wee(r2, r3)wee(r4, r1)

∑

kc

[

ϕk(x4)ϕ
∗
k(x3)ϕc(x3)ϕ

∗
c(x4)

ω + (εc − εk)− i0+
− ϕc(x4)ϕ

∗
c(x3)ϕk(x3)ϕ

∗
k(x4)

ω − (εc − εk) + i0+

]

,
(G.19a)

⊳Ξ
(2d,ph/hp)
c (x1,x6;x2,x5;ω) = wee(r2, r6)wee(r5, r1)

∑

kc

[

ϕk(x1)ϕ
∗
k(x2)ϕc(x6)ϕ

∗
c(x5)

ω + (εc − εk)− i0+
− ϕc(x1)ϕ

∗
c(x2)ϕk(x6)ϕ

∗
k(x5)

ω − (εc − εk) + i0+

]

(G.19b)

⊳Ξ
(2d,pp/hh)
c (x1,x6;x2,x5;ω) = wee(r2, r5)wee(r6, r1)

[

∑

cd

ϕc(x1)ϕ
∗
c(x2)ϕd(x6)ϕ

∗
d(x5)

ω − (εc + εd) + i0+
−
∑

kl

ϕk(x1)ϕ
∗
k(x2)ϕl(x6)ϕ

∗
l (x5)

ω − (εk + εl)− i0+

]

(G.19c)

Therefore, the corresponding matrix elements are given by

⊲Ξ
(2d,ph/hp)
c,pq,rs (ω) =−

∑

kc

〈qk|sa〉〈ra|pk〉
ω − (εc − εk) + i0+

+
∑

kc

〈rk|pa〉〈qa|sk〉
ω + (εc − εk)− i0+

, (G.20a)
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⊳Ξ
(2d,ph/hp)
c,pq,rs (ω) = −

∑

kc

〈ar|pk〉〈qk|as〉
ω − (εc − εk) + i0+

+
∑

kc

〈kr|pa〉〈qa|ks〉
ω + (εc − εk)− i0+ (G.20b)

⊳Ξ
(2d,pp/hh)
c,pq,rs (ω) =

∑

cd

〈ab|ps〉〈qr|ab〉
ω − (εc + εd) + i0+

−
∑

kl

〈kl|ps〉〈qr|kl〉
ω − (εk + εl)− i0+ (G.20c)

G.2.2 Exchanged correlation kernel

A similar derivation is performed for the the second-order exchanged correlation ker-

nel. By differentiation of the corresponding self-energy and evaluation at G = G0, the

exchanged correlation kernel is then obtained as

Ξc
(2x)(1, 6; 2; 5)

=

∫

d1′d3d4d4′d7d7′δ(1′, 5)δ(3, 6)wee(7, 3; 2, 7
′)χ0(7

′, 4; 7+, 4′+)wee(4
′, 1; 4, 1′)

+

∫

d1′d3d4d4′d7d7′G(1′, 3)wee(7, 3; 2, 7
′)
δχIP(7

′, 4; 7+, 4′+)

δG(5, 6)

∣

∣

∣

∣

G=G0

wee(4
′, 1; 4, 1′)

=⊲Ξ
(2x)
c (1, 6; 2; 5) +⊳ Ξ

(2x)
c (1, 6; 2; 5),

(G.21)

which can be decoupled into two parts coming either from the derivative of G or the

derivative of W . The first part of the exchanged second-order correlation kernel is

therefore

⊲Ξc
(2x)(1, 6; 2, 5)

=δ(t2, t6)δ(t1, t5)δ(x1,x5)

∫

dx4wee(r2, r6)χ0(x4t1,x6t2;x4t
+
1 ,x2t

+
2 )wee(r4, r1)

=δ(t2, t6)δ(t1, t5)⊲Ξ
(2x,ph/hp)
c (x1,x6;x2,x5; t1 − t2),

(G.22)

where ⊲Ξ
(2x,ph/hp)
c is obtained by taking the delta functions on the time variables out,

⊲Ξ
(2x,ph/hp)
c (x1,x6;x2,x5; t1 − t2)

=δ(x1,x5)

∫

dx4wee(r2, r6)χ0(x4t1,x6t2;x4t
+
1 ,x2t

+
2 )wee(r4, r1).

(G.23)

It is a ph/hp term as the time ordering in the response function corresponds to the

propagation of a hole and an electron together. Its Fourier transform is thus given by

⊲Ξ
(2x,ph/hp)
c (x1,x6;x2,x5, ω) = δ(x1,x5)

∫

dx4wee(r2, r6)wee(r4, r1)

[

∑

kc

ϕc(x4)ϕ
∗
c(x2)ϕk(x6)ϕ

∗
k(x4)

ω − (εc − εk) + i0+
− ϕk(x4)ϕ

∗
k(x2)ϕc(x6)ϕ

∗
c(x4)

ω + (εc − εk)− i0+

]

,

(G.24)

and its matrix elements are given by

⊲Ξ
(2x,ph/hp)
c,pq,rs (ω) =

∑

kc

〈ar|pk〉〈qk|sa〉
ω − (εc − εk) + i0+

−
∑

kc

〈kr|pa〉〈qa|sk〉
ω + (εc − εk)− i0+ (G.25)
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The second part of the the exchanged correlation kernel arise from the derivative of W

and is given by

⊳Ξ
(2x)
c (1, 6; 2, 5)

=− i

∫

d3d4G0(1, 3)wee(r2, r3)δ(t3, t2)G0(4, 2
+)δ(3, 5)δ(4+, 6)wee(r4, r1)δ(t1, t4)

− i

∫

d3G0(1, 3)wee(r2, r3)δ(t3, t2)δ(2
+, 6)G0(3, 5

+)wee(r5, r1)δ(t1, t5).

(G.26)

By making the time variables explicit, it rewrites as

⊳Ξ
(2x)
c (1, 6; 2, 5)

=− iG0(x1t1,x5t2)wee(r2, r5)δ(t5, t2)G0(x6t1,x2t
+
2 )wee(r6, r1)δ(t

+
1 , t6)

− i

∫

dx3G0(x1t1,x3, t2)wee(r2, r3)δ(t
+
2 , t6)G0(x3t2,x5t

+
1 )wee(r5, r1)δ(t1, t5)

=δ(t5, t2)δ(t1, t6)⊳Ξ
(2x,pp/hh)
c (x1,x6;x2,x5; t1 − t2)

+ δ(t1, t5)δ(t2, t6)⊳Ξ
(2x,ph/hp)
c (x1,x6;x2,x5; t1 − t2)

(G.27)

where

⊳Ξ
(2x,pp/hh)
c (x1,x6;x2,x5;t1 − t2)

=wee(r2, r5)χ0(x6t1,x1t1;x5t2,x2t
+
2 )wee(r6, r1)

(G.28)

and

⊳Ξ
(2x,ph/hp)
c (x1,x6;x2,x5; t1 − t2)

=δ(x2,x6)

∫

dx3wee(r2, r3)χ0(x1t1,x3t2;x5t
+
1 ,x3t2)wee(r5, r1)

(G.29)

Their Fourier transforms are then given by

⊳Ξ
(2x,pp/hh)
c (x1,x6;x2,x5;ω)

=wee(r2, r5)wee(r6, r1)
[

−
∑

cd

ϕc(x6)ϕ
∗
c(x2)ϕd(x1)ϕ

∗
d(x5)

ω − (εc + εd) + i0+
+
∑

kl

ϕk(x6)ϕ
∗
k(x2)ϕl(x1)ϕ

∗
l (x5)

ω − (εk + εl)− i0+

]

,

(G.30a)

⊳Ξ
(2x,ph/hp)
c (x1,x6;x2,x5;ω)

=δ(x2,x6)

∫

dx3wee(r2, r3)wee(r5, r1)

[

∑

kc

ϕc(x1)ϕ
∗
c(x3)ϕk(x3)ϕ

∗
k(x5)

ω − (εc − εk) + i0+
− ϕk(x1)ϕ

∗
k(x3)ϕc(x3)ϕ

∗
c(x5)

ω + (εc − εk)− i0+

]

.

(G.30b)
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and their matrix elements are

⊳Ξ
(2x,pp/hh)
c,pq,rs (ω) =−

∑

cd

〈cd|ps〉〈qr|dc〉
ω − (εc + εd) + i0+

+
∑

kl

〈kl|ps〉〈qr|lk〉
ω − (εk + εl)− i0+

, (G.31a)

⊳Ξ
(2x,ph/hp)
c,pq,rs (ω) =

∑

kc

〈rc|pk〉〈qk|cs〉
ω − (εc − εk) + i0+

−
∑

kc

〈rk|pc〉〈qc|ks〉
ω + (εc − εk)− i0+

. (G.31b)

G.2.3 Total correlation kernel

Combining the direct and exchanged contributions, the ph/hp contribution to the corre-

lation kernel is thus given by

Ξ2,ph/hp
c,pq,rs (ω) =−

∑

kc

〈rc||pk〉〈qk||sc〉
ω − (εc − εk) + i0+

+
∑

kc

〈rk||pc〉〈qc||sk〉
ω + (εc − εk)− i0+

, (G.32)

and the pp/hh contribution by

Ξ2,pp/hh
c,pq,rs (ω) =

1

2

∑

cd

〈qr||cd〉〈cd||ps〉
ω − (εc + εd) + i0+

− 1

2

∑

kl

〈qr||kl〉〈kl||ps〉
ω − (εk + εl)− i0+

. (G.33)

G.3 Spin-adaptation of the correlation kernel

For spin-restricted closed-shell calculations, the spin-adapted kernel is obtained by ro-

tation in the spin space as was done in Section 8.3.2. For four fixed spatial orbitals

referred to as p, q, r, s, the spin-singlet and triplet kernels are therefore obtained by

1Ξ(2)
c,pq,rs(ω) = Ξ

(2)
c,p↑q↑,r↑s↑(ω) + Ξ

(2)
c,p↑q↑,r↓s↓(ω), (G.34a)

3Ξ(2)
c,pq,rs(ω) = Ξ

(2)
c,p↑q↑,r↑s↑(ω)− Ξ

(2)
c,p↑q↑,r↓s↓(ω). (G.34b)

G.3.1 Ph/hp spin-adapted kernel

With the convention

wee,pq,rs(ω) =

∫

dx1dx2dx5dx6ϕp(x2)ϕ
∗
q(x1)wee(x1,x6;x2,x5;ω)ϕ

∗
r(x6)ϕs(x5), (G.35)

the spin contribution to the ph/hp kernel are obtained from Equation (G.40) when the

sum over i and a is done for all possible spins and are given by

Ξ
(2,ph/hp)
c,p↑q↑,r↑s↑(ω) =

−
∑

kc

2wee,pr,ckwee,sq,kc − wee,pr,ckwee,cq,ks − wee,kr,cpwee,sq,kc + wee,kr,cpwee,cq,ks

ω − (εc − εk) + i0+

+
∑

kc

2wee,pr,kcwee,sq,ck − wee,pr,kcwee,kq,cs − wee,cr,kpwee,sq,ck + wee,cr,kpwee,kq,cs

ω + (εc − εk)− i0+
,

(G.36a)
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Ξ
(2)
c,p↑q↑,r↓s↓(ω) =−

∑

kc

wee,kr,cpwee,cq,ks

ω − (εc − εk) + i0+
+
∑

kc

wee,cr,kpwee,kq,cs

ω + (εc − εk)− i0+
. (G.36b)

The singlet and triplet ph/hp kernels are then obtained by sum and difference of these

two terms and are given by

1Ξ(2,ph/hp)
c,pq,rs (ω) =

−
∑

kc

2wee,pr,ckwee,sq,kc − wee,pr,ckwee,cq,ks − wee,kr,cpwee,sq,kc + 2wee,kr,cpwee,cq,ks

ω − (εc − εk) + i0+

+
∑

kc

2wee,pr,kcwee,sq,ck − wee,pr,kcwee,kq,cs − wee,cr,kpwee,sq,ck + 2wee,cr,kpwee,kq,cs

ω + (εc − εk)− i0+
,

(G.37a)

3Ξ(2,ph/hp)
c,pq,rs (ω) =−

∑

kc

2wee,pr,ckwee,sq,kc − wee,pr,ckwee,cq,ks − wee,kr,cpwee,sq,kc

ω − (εc − εk) + i0+

+
∑

kc

2wee,pr,kcwee,sq,ck − wee,pr,kcwee,kq,cs − wee,cr,kpwee,sq,ck

ω + (εc − εk)− i0+
.

(G.37b)

G.3.2 Pp/hh spin-adapted kernel

Similarly, in Equation (G.41), the sums are performed over all spin-orbitals. The term

Ξ
(2,pp/hh)
c,p↑q↑,r↑s↑(ω) and Ξ

(2,pp/hh)
c,p↑q↑,r↓s↓(ω) are given by

Ξ
(2,pp/hh)
c,p↑q↑,r↑s↑(ω) =

1

2

∑

cd

w̄ee,cq,rdw̄ee,pc,ds

ω − (εc + εd) + i0+
− 1

2

∑

kl

w̄ee,kq,rlw̄ee,pk,ls

ω − (εk + εl)− i0+
, (G.38a)

Ξ
(2,pp/hh)
c,p↑q↑,r↓s↓(ω) =

1

2

∑

cd

wee,cq,rdwee,pc,ds + wee,dq,rcwee,sc,dp

ω − (εc + εd) + i0+

− 1

2

∑

kl

wee,kq,rlwee,pk,ls + wee,lq,rkwee,sk,lp

ω − (εk + εl)− i0+
,

(G.38b)

where w̄ee,pq,rs stands for wee,pq,rs − wee,pr,qs. The spin-adapted pp/hh kernels are thus

given by

1Ξ(2,pp/hh)
c,pq,rs (ω)

=
1

2

∑

cd

2wee,cq,rdwee,pc,ds − wee,cq,rdwee,sc,dp − wee,dq,rcwee,pc,ds + 2wee,dq,rcwee,sc,dp

ω − (εc + εd) + i0+

− 1

2

∑

kl

2wee,kq,rlwee,pk,ls − wee,kq,rlwee,sk,lp − wee,lq,rkwee,pk,ls + 2wee,lq,rkwee,sk,lp

ω − (εk + εl)− i0+
,

(G.39a)

3Ξ(2,pp/hh)
c,pq,rs (ω) =− 1

2

∑

cd

wee,cq,rdwee,sc,dp + wee,dq,rcwee,pc,ds

ω − (εc + εd) + i0+

+
1

2

∑

kl

wee,kq,rlwee,sk,lp + wee,lq,rkwee,pk,ls

ω − (εk + εl)− i0+
.

(G.39b)
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G.4 Summary

• ph/hp second-order correlation kernel

Ξ2,ph/hp
c,pq,rs (ω) =−

∑

kc

〈rc||pk〉〈qk||sc〉
ω − (εc − εk) + i0+

+
∑

kc

〈rk||pc〉〈qc||sk〉
ω + (εc − εk)− i0+

, (G.40)

• pp/hh second-order correlation kernel

Ξ2,pp/hh
c,pq,rs (ω) =

1

2

∑

cd

〈qr||cd〉〈cd||ps〉
ω − (εc + εd) + i0+

− 1

2

∑

kl

〈qr||kl〉〈kl||ps〉
ω − (εk + εl)− i0+

. (G.41)

• ph/hp singlet second-order correlation kernel

1Ξ(2,ph/hp)
c,pq,rs (ω) =

−
∑

kc

2wee,pr,ckwee,sq,kc − wee,pr,ckwee,cq,ks − wee,kr,cpwee,sq,kc + 2wee,kr,cpwee,cq,ks

ω − (εc − εk) + i0+

+
∑

kc

2wee,pr,kcwee,sq,ck − wee,pr,kcwee,kq,cs − wee,cr,kpwee,sq,ck + 2wee,cr,kpwee,kq,cs

ω + (εc − εk)− i0+
,

(G.42)

• ph/hp triplet second-order correlation kernel

3Ξ(2,ph/hp)
c,pq,rs (ω) =−

∑

kc

2wee,pr,ckwee,sq,kc − wee,pr,ckwee,cq,ks − wee,kr,cpwee,sq,kc

ω − (εc − εk) + i0+

+
∑

kc

2wee,pr,kcwee,sq,ck − wee,pr,kcwee,kq,cs − wee,cr,kpwee,sq,ck

ω + (εc − εk)− i0+
.

(G.43)

• pp/hh singlet second-order correlation kernel

1Ξ(2,pp/hh)
c,pq,rs (ω)

=
1

2

∑

cd

2wee,cq,rdwee,pc,ds − wee,cq,rdwee,sc,dp − wee,dq,rcwee,pc,ds + 2wee,dq,rcwee,sc,dp

ω − (εc + εd) + i0+

− 1

2

∑

kl

2wee,kq,rlwee,pk,ls − wee,kq,rlwee,sk,lp − wee,lq,rkwee,pk,ls + 2wee,lq,rkwee,sk,lp

ω − (εk + εl)− i0+
,

(G.44)

• pp/hh triplet second-order correlation kernel

3Ξ(2,pp/hh)
c,pq,rs (ω) =− 1

2

∑

cd

wee,cq,rdwee,sc,dp + wee,dq,rcwee,pc,ds

ω − (εc + εd) + i0+

+
1

2

∑

kl

wee,kq,rlwee,sk,lp + wee,lq,rkwee,pk,ls

ω − (εk + εl)− i0+
.

(G.45)
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Appendix H

Dynamic BSE

In this appendix, the details of the Fourier transform of the Bethe-Salpeter equation
with a dynamical second-order kernel which depends on one frequency are given.
The derivation of the effective second-order dynamical Bethe-Salpeter kernel in a
spin-orbital basis set is also detailed. This appendix is to be read with Chapter 10
and requires the equations derived in Appendices F and G. A summary of the main
formulas is given at the end of this appendix.

H.1 Fourier transform of the Bethe-Salpeter Equation

In this section, we are interested in evaluating the Fourier transform of the response

function χ at second-order with respect to the electronic interaction defined through the

Bethe-Salpeter equation as

χ(x1t1,x2t2;x
′
1t

+
1 ,x

′
2, t

+
2 ) =χ0(x1t1,x2t2;x

′
1t

+
1 ,x

′
2t

+
2 )

+

∫

dx3dt3dx4dt4dx5dt5dx6dt6χ0(x1t1,x4t4;x
′
1t

+
1 ,x3t3)

Ξ
(2)
Hxc(x3t3,x6t6;x4t4,x5t5)χ(x5t5,x2t2;x6t6,x

′
2t

+
2 ).

(H.1)

As the Hartree and exchange kernels are static, only the correlation part is detailed

hereinafter. From Chapter 9, we know that the second-order correlation kernel can be

decoupled into a ph/hp and a pp/hh part which exhibits different delta functions on the

time variables

Ξ(2)
c (3, 6; 4; 5) =δ(t4, t6)δ(t3, t5)Ξ

(2,ph/hp)
c (x3,x6;x4,x5; t3 − t4)

+ δ(t4, t5)δ(t3, t6)Ξ
(2,pp/hh)
c (x3,x6;x4,x5; t3 − t4).

(H.2)

In this equation, the terms Ξ
(2,ph/hp)
c and Ξ

(2,pp/hh)
c include both direct and exchanged

contributions, where the derivative of W was also taken into account. As the delta
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functions are different for the ph/hp and pp/hh terms, they need to be treated separately

when the Fourier transform is performed.

H.1.1 Evaluation of the particle-hole term

We first evaluate the ph/hp contribution to the Bethe-Salpeter equation given by

T ph/hp(x1,x2,x
′
1,x

′
2; t1 − t2)

=

∫

dx3dt3dx4dt4dx5dt5dx6dt6χ0(x1t1,x4t4;x
′
1t

+
1 ,x3t3)

δ(t4, t6)δ(t3, t5)Ξ
(2,ph/hp)
c (x3,x6;x4,x5; t3 − t4)χ(x5t5,x2t2;x6t6,x

′
2t

+
2 ),

(H.3)

which will be referred as T ph/hp in the following. In terms of time differences, it becomes

T ph/hp(x1,x2,x
′
1,x

′
2; t1 − t2)

=

∫

dx3dt3dx4dt4dx5dx6χ0

(

x1,x4;x
′
1,x3;−η, t4 − t3,

2t1 − η

2
− t3 + t4

2

)

Ξ(2,ph)
c (x3,x6;x4,x5; t3 − t4)χ(x5,x2;x6,x

′
2; t3 − t4,−η,

t3 + t4
2

− 2t2 − η

2
).

(H.4)

In order to perform the Fourier transform of this quantity, it is convenient to do a change

of variables given by

t3 → τ3 = t3 − t4 ; t4 → τ4 = t4 − t2 +
τ3 + η

2
; τ = t1 − t2, (H.5)

such that it can be rewritten as

T ph/hp(x1,x2;x
′
1,x

′
2; τ) =

∫

dx3dτ3dx4dτ4dx5dx6χ0 (x1,x4;x
′
1,x3;−η,−τ3, τ − τ4)

Ξ(2,ph/hp)
c (x3,x6;x4,x5; τ3)χ(x5,x2;x6,x

′
2; τ3,−η, τ4).

(H.6)

As it depends only on one time difference, its Fourier transform is then given by

T ph/hp(x1,x2;x
′
1,x

′
2;ω) =

∫

dτeiωτ

∫

dx3dτ3dx4dτ4dx5dx6χ0 (x1,x4;x
′
1,x3;−η,−τ3, τ − τ4)

Ξ(2,ph/hp)
c (x3,x6;x4,x5; τ3)χ(x5,x2;x6,x

′
2; τ3,−η, τ4).

(H.7)

Making explicit the Fourier transform of χ0 and Ξ, it becomes

T ph/hp(x1,x2;x
′
1,x

′
2;ω) =

∫

dτdτ3dτ4
dω′

2π

dω′′

2π

dω′′′

2π
dx3dx4dx5dx6

χ0 (x1,x4;x
′
1,x3;−η, ω′, ω′′) Ξ(2,ph/hp)

c (x3,x6;x4,x5;ω
′′′)

χ(x5,x2;x6,x
′
2; τ3,−η, τ4)e−i(ω′′−ω)τe−i(ω′′′−ω′)τ3eiω

′′τ4 ,

(H.8)
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which by integration over the time variables and ω′′ gives

T ph/hp(x1,x2;x
′
1,x

′
2;ω) =

∫

dω′

2π

dω′′

2π
dx3dx4dx5dx6χ0 (x1,x4;x

′
1,x3;−η, ω′, ω)

Ξ(2,ph/hp)
c (x3,x6;x4,x5;ω

′ − ω′′)χ(x5,x2;x6,x
′
2;ω

′′,−η, ω)
(H.9)

In the second-order approximation, only the zeroth-order term contributes in χ as the

correlation kernel contributes at the second order. Therefore, making advantage of the

diagonal character of χ0, the matrix elements of this term are

T ph/hp
pq,rs (ω) =

∫

dω′

2π

dω′′

2π
χ0,pq,pq(−η, ω′, ω)Ξ(2,ph/hp)

c,pq,rs (ω′ − ω′′)χ0,rs,rs(ω
′′,−η, ω). (H.10)

H.1.2 Evaluation of the particle-particle/hole-hole term

We note T pp/hh the term coming from the convolution of the pp/hh correlation kernel,

given by

T pp/hh(x1,x2,x
′
1,x

′
2; t1 − t2) =

∫

dx3dt3dx4dt4dx5dx6χ0(x1t1,x4t4;x
′
1t

+
1 ,x3t3)

Ξ(2,pp/hh)
c (x3,x6;x4,x5; t3 − t4)χ(x5t4,x2t2;x6t3,x

′
2t

+
2 ).

(H.11)

In terms of time differences, and with the change of variables

τ4 = t4 − t3 ; τ3 = t3 − t2 +
τ4 + η

2
; τ = t1 − t2, (H.12)

it can be rewritten as

T pp/hh(x1,x2,x
′
1,x

′
2; τ) =

∫

dx3dτ3dx4dτ4dx5dx6χ0(x1,x4;x
′
1,x3;−η, τ4, τ − τ3)

Ξ(2,pp/hh)
c (x3,x6;x4,x5;−τ4)χ(x5,x2;x6,x

′
2; τ4,−η, τ3).

(H.13)

Similarly to the ph/ph case, its Fourier transform is therefore

T pp/hh(x1,x2,x
′
1,x

′
2;ω) =

∫

dω′

2π

∫

dω′′

2π

∫

dx3dx4dx5dx6χ0(x1,x4;x
′
1,x3;−η, ω′, ω)

Ξ(2,pp/hh)
c (x3,x6;x4,x5;ω

′ + ω′′)χ(x5,x2;x6,x
′
2;ω

′′,−η, ω),
(H.14)

and its matrix elements are given by

T pp/hh
pq,rs (ω) =

∫

dω′

2π

dω′′

2π
χ0,pq,pq(−η, ω′, ω)Ξ(2,pp/hh)

c,pq,rs (ω′ + ω′′)χ0,rs,rs(ω
′′,−η, ω). (H.15)
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H.2 Matrix elements of the effective kernel

In a first step, the integral over ω′ is evaluated in the case pq = ja, where the matrix

elements of χ0 are given in Equation (F.10a). Then, the integration over ω′′ is done

either with rs = ib for the matrix elements of the block (ov,ov) corresponding to the

matrix A, or with rs = bi for the matrix elements of the block (ov,vo) which correspond

to the B block.

H.2.1 Particle-hole effective kernel

Integration over ω′ for pq = ia

Using the expression of the matrix elements of χ0 given in Equation (F.10a), and of the

ph/ph correlation kernel given in Equation (G.40), the matrix elements of T ph/hp are

T
ph/hp
ia,rs (ω) =i

∑

kc

∫

dω′

2π

dω′′

2π
χ0,ia,ia(ω)χ0,rs,rs(ω

′′,−η, ω)eiω′η





1

ω′ +
ω

2
− εa + i0+

− 1

ω′ − ω

2
− εi − i0+





( 〈rk||ic〉〈ac||sk〉
ω′ − ω′′ + (εc − εk)− i0+

− 〈rc||ik〉〈ak||sc〉
ω′ − ω′′ − (εc − εk) + i0+

)

.

(H.16)

Using the relation (F.8) and by integration on the upper complex half-plane, it gives

T
ph/hp
ia,rs (ω) =

∑

kc

∫

dω′′

2π
χ0,ia,ia(ω)χ0,rs,rs(ω

′′,−η, ω)




〈rk||ic〉〈ac||sk〉
−ω′′ − ω

2
+ εa + εc − εk − i0+

− 〈rc||ik〉〈ak||sc〉
−ω′′ +

ω

2
+ εi − εc + εk + i0+



 .

(H.17)

Integration over ω′′ for rs = jb

The matrix elements in the (ov,ov) block are then obtained by doing the second inte-

gration over ω′′ in the case rs = jb, using Equation (F.10a) for the matrix elements of

χ0. In this case, the matrix elements of the ph/ph term are given by

T
ph/hp
ia,jb (ω) =− i

∫

dω′′

2π

∑

kc

χ0,ia,ia(ω)χ0,jb,jb(ω)





〈jk||ic〉〈ac||bk〉
ω′′ +

ω

2
− εa − εc + εk + i0+

− 〈jc||ik〉〈ak||bc〉
ω′′ − ω

2
− εi + εc − εk − i0+









1

ω′′ +
ω

2
− εb + i0+

− 1

ω′′ − ω

2
− εj − i0+



 eiω
′′η

(H.18)
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and by integration over the upper complex plane, it finally gives

T
ph/hp
ia,jb (ω) =− χ0,ia,ia(ω)χ0,jb,jb(ω)

∑

kc

( 〈jk||ic〉〈ac||bk〉
ω − εa + εk − εc + εj + i0+

+
〈jc||ik〉〈ak||bc〉

ω + εi − εc + εk − εb + i0+

)

.
(H.19)

Integration over ω′′ for rs = bj

In order to have the (ov,vo) matrix elements, the second integration is now done with

rs = bj instead of rs = bj. The matrix elements of χ0 are now given by Equation (F.10b).

The matrix elements of the term ph/ph in the (ov,vo) block are thus obtained by

T
ph/hp
ia,bj (ω) =− i

∫

dω′′

2π

∑

kc

χ0,ia,ia(ω)χ0,bj,bj(ω)





〈bk||ic〉〈ac||jk〉
ω′′ +

ω

2
− εa − εc + εk + i0+

− 〈bc||ik〉〈ak||jc〉
ω′′ − ω

2
− εi + εc − εk − i0+









1

ω′′ +
ω

2
− εj − i0+

− 1

ω′′ − ω

2
− εb + i0+



 eiω
′′η.

(H.20)

and by integration over the upper complex plane, it finally gives

T
ph/hp
ia,bj (ω) =− χ0,ia,ia(ω)χ0,bj,bj(ω)

∑

kc

( 〈bk||ic〉〈ac||jk〉
εa − εk + εc − εj − i0+

− 〈bc||ik〉〈ak||jc〉
εi − εc + εk − εb + i0+

)

.
(H.21)

It is worth mentioning that this term depends on ω only via the two response functions

which means that the ph/ph effective kernel does not depend on ω in the B block at the

second order of perturbation.

Effective ph/hp correlation kernel

This therefore defines an effective ph/hp kernel Ξ̃(2,ph/hp)
c which matrix elements in the

block A are given by

Ξ̃
(2,ph/hp)
c,ia,jb (ω) =−

∑

kc

( 〈jk||ic〉〈ac||bk〉
ω − εa + εk − εc + εj + i0+

+
〈jc||ik〉〈ak||bc〉

ω + εi − εc + εk − εb + i0+

)

, (H.22)

and in the block B by

Ξ̃
(2,ph/hp)
c,ia,bj =

∑

kc

( 〈bk||ic〉〈ac||jk〉
−εa + εk − εc + εj + i0+

+
〈bc||ik〉〈ak||jc〉

εi − εc + εk − εb + i0+

)

. (H.23)

It is straightforward to show that the kernel contribution to the block A is then hermitian

such that Ξ̃(2,ph/hp)
c,ia,jb (ω) = Ξ̃

(2,ph/hp)
c,jb,ia (ω)∗, and symmetric and frequency-independent for the
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block B, i.e. Ξ̃
(2,ph/hp)
c,ia,bj = Ξ̃

(2,ph/hp)
c,jb,ai .

Spin adaptation

Following the same procedure as in Appendix G.3, the matrix elements of the singlet

and triplet ph/hp effective correlation kernels in the block A are given by

1Ξ̃
(2,ph/hp)
c,ia,jb (ω) =

−
∑

kc

2wee,ij,kcwee,ba,ck − wee,ij,kcwee,ka,cb − wee,cj,kiwee,ba,ck + 2wee,cj,kiwee,ka,cb

ω − εa + εk − εc + εj + i0+

−
∑

kc

2wee,ij,ckwee,ba,kc − wee,ij,ckwee,ca,kb − wee,kj,ciwee,ba,kc + 2wee,kj,ciwee,ca,kb

ω + εi − εc + εk − εb + i0+
,

(H.24a)

3Ξ̃
(2,ph/hp)
c,ia,jb (ω) =−

∑

kc

2wee,ij,kcwee,ba,ck − wee,ij,kcwee,ka,cb − wee,cj,kiwee,ba,ck

ω − εa + εk − εc + εj + i0+

−
∑

kc

2wee,ij,ckwee,ba,kc − wee,ij,ckwee,ca,kb − wee,kj,ciwee,ba,kc

ω + εi − εc + εk − εb + i0+
,

(H.24b)

and the matrix elements of the singlet and triplet ph/hp effective correlation kernels in

the block B are given by

1Ξ̃
(2,ph/hp)
c,ia,bj =
∑

kc

2wee,ib,kcwee,ja,ck − wee,ib,kcwee,ka,cj − wee,cb,kiwee,ja,ck + 2wee,cb,kiwee,ka,cj

−εa + εk − εc + εj + i0+

+
∑

kc

2wee,ib,ckwee,ja,kc − wee,ib,ckwee,ca,kj − wee,kb,ciwee,ja,kc + 2wee,kb,ciwee,ca,kj

εi − εc + εk − εb + i0+
,

(H.25a)

3Ξ̃
(2,ph/hp)
c,ia,bj =

∑

kc

2wee,ib,kcwee,ja,ck − wee,ib,kcwee,ka,cj − wee,cb,kiwee,ja,ck

−εa + εk − εc + εj + i0+

+
∑

kc

2wee,ib,ckwee,ja,kc − wee,ib,ckwee,ca,kj − wee,kb,ciwee,ja,kc

εi − εc + εk − εb + i0+
.

(H.25b)

H.2.2 Particle-particle/hole-hole effective kernel

Its matrix elements to the second-order of perturbation are given by

T pp/hh
pq,rs (ω) =

∫

dω′

2π

∫

dω′′

2π
χ0,pq,pq(−η, ω′, ω)Ξ(2,pp/hh)

c,pq,rs (ω′ + ω′′)χ0,rs,rs(ω
′′,−η, ω). (H.26)

where the matrix elements of the different contributions are given in Equations (G.41),

(F.10a) and (F.10b). Following the same steps as in the ph/ph case, its matrix elements

in the (ov—ov) and (ov—vo) blocks are therefore given by

T
pp/hh
ia,jb (ω) = χ0,ia,ia(ω)χ0,jb,jb(ω)

1

2

(

∑

kl

〈aj||kl〉〈kl||ib〉
ω − (εa + εb) + (εk + εl) + i0+

+
∑

cd

〈aj||cd〉〈cd||ib〉
ω + (εi + εj)− (εc + εd) + i0+

)

(H.27a)
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T
pp/hh
ia,bj (ω) = χ0,ia,ia(ω)χ0,bj,bj(ω)

1

2

(

∑

kl

〈ab||kl〉〈kl||ij〉
(εa + εb)− (εk + εl)− i0+

+
∑

cd

〈ab||cd〉〈cd||ij〉
(εc + εd)− (εi + εj)− i0+

)

.
(H.27b)

The matrix elements of the effective pp/hh correlation kernel are thus

Ξ̃
(2,pp/hh)
c,ia,jb (ω)

=
1

2

(

∑

kl

〈aj||kl〉〈kl||ib〉
ω − (εa + εb) + (εk + εl) + i0+

+
∑

cd

〈aj||cd〉〈cd||ib〉
ω + (εi + εj)− (εc + εd) + i0+

)

(H.28a)

Ξ̃
(2,pp/hh)
c,ia,bj

=
1

2

(

∑

kl

〈ab||kl〉〈kl||ij〉
(εa + εb)− (εk + εl)− i0+

+
∑

cd

〈ab||cd〉〈cd||ij〉
(εc + εd)− (εi + εj)− i0+

)

.
(H.28b)

As it was the case for the ph/hp effective kernel, the contributions to the A block are

hermitian, and are frequency-independent and symmetric in the block B.

Spin adaptation

The matrix elements of the singlet and triplet pp/hh effective correlation kernels in the

block A are given by

1Ξ̃
(2,pp/hh)
c,ia,jb (ω)

=
1

2

∑

cd

2wee,ca,jdwee,ic,db − wee,ca,jdwee,bc,di − wee,da,jcwee,ic,db + 2wee,da,jcwee,bc,di

ω + (εi + εj)− (εc + εd) + i0+

+
1

2

∑

kl

2wee,ka,jlwee,ik,lb − wee,ka,jlwee,bk,li − wee,la,jkwee,ik,lb + 2wee,la,jkwee,bk,li

ω − (εa + εb) + (εk + εl) + i0+
,

(H.29a)

3Ξ̃
(2,pp/hh)
c,ia,jb (ω) =− 1

2

∑

cd

wee,ca,jdwee,bc,di + wee,da,jcwee,ic,db

ω + (εi + εj)− (εc + εd) + i0+

− 1

2

∑

kl

wee,ka,jlwee,bk,li + wee,la,jkwee,ik,lb

ω − (εa + εb) + (εk + εl) + i0+
,

(H.29b)

and in the block B by

1Ξ̃
(2,pp/hh)
c,ia,bj

=− 1

2

∑

cd

2wee,ca,bdwee,ic,dj − wee,ca,bdwee,jc,di − wee,da,bcwee,ic,dj + 2wee,da,bcwee,jc,di

(εi + εj)− (εc + εd) + i0+

− 1

2

∑

kl

2wee,ka,blwee,ik,lj − wee,ka,blwee,jk,li − wee,la,bkwee,ik,lj + 2wee,la,bkwee,jk,li

−(εa + εb) + (εk + εl) + i0+
,

(H.30a)

3Ξ̃
(2,pp/hh)
c,ia,bj =

1

2

∑

cd

wee,ca,bdwee,jc,di + wee,da,bcwee,ic,dj

(εi + εj)− (εc + εd) + i0+

+
1

2

∑

kl

wee,ka,blwee,jk,li + wee,la,bkwee,ik,lj

−(εa + εb) + (εk + εl) + i0+
.

(H.30b)
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H.3 Summary

• second-order correlation kernel in the block A

Ξ̃
(2)
c,ia,jb(ω) =

−
∑

kc

( 〈jk||ic〉〈ac||bk〉
ω − εa + εk − εc + εj + i0+

+
〈jc||ik〉〈ak||bc〉

ω + εi − εc + εk − εb + i0+

)

+
1

2

(

∑

kl

〈aj||kl〉〈kl||ib〉
ω − (εa + εb) + (εk + εl) + i0+

+
∑

cd

〈aj||cd〉〈cd||ib〉
ω + (εi + εj)− (εc + εd) + i0+

)

.

(H.31)

• second-order correlation kernel in the block B

Ξ̃
(2)
c,ia,bj =

∑

kc

( 〈bk||ic〉〈ac||jk〉
−εa + εk − εc + εj + i0+

+
〈bc||ik〉〈ak||jc〉

εi − εc + εk − εb + i0+

)

+
1

2

(

∑

kl

〈ab||kl〉〈kl||ij〉
(εa + εb)− (εk + εl)− i0+

+
∑

cd

〈ab||cd〉〈cd||ij〉
(εc + εd)− (εi + εj)− i0+

)

.

(H.32)

• singlet second-order correlation kernel in the block A

1Ξ̃
(2)
c,ia,jb(ω) =

−
∑

kc

2wee,ij,kcwee,ba,ck − wee,ij,kcwee,ka,cb − wee,cj,kiwee,ba,ck + 2wee,cj,kiwee,ka,cb

ω − εa + εk − εc + εj + i0+

−
∑

kc

2wee,ij,ckwee,ba,kc − wee,ij,ckwee,ca,kb − wee,kj,ciwee,ba,kc + 2wee,kj,ciwee,ca,kb

ω + εi − εc + εk − εb + i0+

+
1

2

∑

cd

2wee,ca,jdwee,ic,db − wee,ca,jdwee,bc,di − wee,da,jcwee,ic,db + 2wee,da,jcwee,bc,di

ω + (εi + εj)− (εc + εd) + i0+

+
1

2

∑

kl

2wee,ka,jlwee,ik,lb − wee,ka,jlwee,bk,li − wee,la,jkwee,ik,lb + 2wee,la,jkwee,bk,li

ω − (εa + εb) + (εk + εl) + i0+
,

(H.33)

• triplet second-order correlation kernel in the block A

3Ξ̃
(2)
c,ia,jb(ω) =−

∑

kc

2wee,ij,kcwee,ba,ck − wee,ij,kcwee,ka,cb − wee,cj,kiwee,ba,ck

ω − εa + εk − εc + εj + i0+

−
∑

kc

2wee,ij,ckwee,ba,kc − wee,ij,ckwee,ca,kb − wee,kj,ciwee,ba,kc

ω + εi − εc + εk − εb + i0+

− 1

2

∑

cd

wee,ca,jdwee,bc,di + wee,da,jcwee,ic,db

ω + (εi + εj)− (εc + εd) + i0+

− 1

2

∑

kl

wee,ka,jlwee,bk,li + wee,la,jkwee,ik,lb

ω − (εa + εb) + (εk + εl) + i0+
,

(H.34)
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• singlet second-order correlation kernel in the block B

1Ξ̃
(2)
c,ia,bj =

∑

kc

2wee,ib,kcwee,ja,ck − wee,ib,kcwee,ka,cj − wee,cb,kiwee,ja,ck + 2wee,cb,kiwee,ka,cj

−εa + εk − εc + εj + i0+

+
∑

kc

2wee,ib,ckwee,ja,kc − wee,ib,ckwee,ca,kj − wee,kb,ciwee,ja,kc + 2wee,kb,ciwee,ca,kj

εi − εc + εk − εb + i0+

− 1

2

∑

cd

2wee,ca,bdwee,ic,dj − wee,ca,bdwee,jc,di − wee,da,bcwee,ic,dj + 2wee,da,bcwee,jc,di

(εi + εj)− (εc + εd) + i0+

− 1

2

∑

kl

2wee,ka,blwee,ik,lj − wee,ka,blwee,jk,li − wee,la,bkwee,ik,lj + 2wee,la,bkwee,jk,li

−(εa + εb) + (εk + εl) + i0+
,

(H.35)

• triplet second-order correlation kernel in the block B

3Ξ̃
(2)
c,ia,bj =

∑

kc

2wee,ib,kcwee,ja,ck − wee,ib,kcwee,ka,cj − wee,cb,kiwee,ja,ck

−εa + εk − εc + εj + i0+

+
∑

kc

2wee,ib,ckwee,ja,kc − wee,ib,ckwee,ca,kj − wee,kb,ciwee,ja,kc

εi − εc + εk − εb + i0+

+
1

2

∑

cd

wee,ca,bdwee,jc,di + wee,da,bcwee,ic,dj

(εi + εj)− (εc + εd) + i0+

+
1

2

∑

kl

wee,ka,blwee,jk,li + wee,la,bkwee,ik,lj

−(εa + εb) + (εk + εl) + i0+
.

(H.36)
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Appendix I

MolExc manual

In this appendix, a user manual is provided for my program MolExc. This program
relies on Molpro for the SCF calculation in order to get the two-electron integrals over
the molecular orbitals, the orbital energies and the matrix elements of the short-range
kernels. MolExc is then able to perform the linear-response calculation for HF, RSH,
static and dynamic second-order BSE. Typical inputs for MolExc and for Molpro are
given here.

I.1 Presentation

MolExc is a homemade package able to deal with the linear-response part of a quantum

chemistry calculation. It was designed in order to test the different variants of the

Bethe-Salpeter kernels. For now, it relies on a development version of Molpro [25] for the

ground-state SCF calculations in order to get the two-electron integrals on the molecular

orbitals via the FCIdump [26, 27], the orbital energies and the matrix elements of the

short-range kernels. However, it could be interfaced with any quantum software able

to “dump” these quatities. MolExc is able to perform linear-response time-dependent

RSH calculations with or without the Tamm-Dancoff approximation, different variants

of static Bethe-Salpeter calculation (with or without the inclusion of exchange and of

the derivative of W with respect to G, with or without range separation, or in TDA) and

dynamical second-order (range-separated) Bethe-Salpeter calculations within the TDA

perturbative approach detailed in Chapter 10.

As the ground-state calculation is done with Molpro, the two-electron integrals, the

orbital energies and eventually the matrix elements of the short-range singlet and triplet

kernels must be given in the input file, together with the kind of calculation to be

performed. It is possible to ask for specific excitations to be calculated or a given

number of excitations.

This software was developed using the OCaml programming language [28] and in

particular the package Lacaml [29] which provides a binding to the BLAS and LAPACK
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libraries. It uses the IRP programming technique proposed by Colonna et al [30–32].

I.2 MolExc input syntax

MolExc takes a unique file in input which should contain several fields. The order of

the fields is not important, but each field should be on written on a new line. The input

format is case insensitive. A typical input file is

method = RSH_dynamic_bsegw

tda

int_file = N2_sadlejplus.dump2

eps_file = N2_sadlejplus.out

erf_file = N2_sadlejplus.dump

ker_sing_file = N2_sadlejplus.kersing

ker_trip_file = N2_sadlejplus.kertrip

acc_eps_file = N2_sadlejplus.eps

exc = 1

I.2.1 The method field

The method field can accept different method names:

• tdhf: Time-dependent Hartree-Fock

• tdrsh: Time-dependent RSH

• bse-gw | bsegw | bse_gw: Static BSE-GW calculation

• rsh_bsegw: Static range-separated BSE-GW calculation

• dynamic_bsegw: Dynamic second-order BSE-GW calculation

• rsh_dynamic_bsegw: Dynamic range-separated second-order BSE-GW calculation

The static (range-separated) BSE-GW calculation can take additional op-

tions to control which contributions are included in the kernel when

the keyword with is used on the same line. The available options are

exchange, order_2, direct_order_2, dwdg, static_freq. The Tamm-Dancoff

approximation is available for all the methods and the key tda should be written on a

separate line.

I.2.2 The integral, orbital energies and kernel files

The following fields give the files where the orbital energies, the matrix elements of

the two-electron integrals and of the singlet and triplet exchange-correlation kernels.

Without range separation, only the int_file and eps_file are required. The int_file
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is the FCIDUMP file produced by Molpro when the command {fci;dump} is called. It

contains the matrix elements of all two-electron integrals in the format

float int1 int2 int3 int4

where the float is the value of the integral and the four integers are the orbital indices.

Only non-redundant elements are given. The convention for the indices ordering is that

the two first indices correspond to electron 1 and the last two correspond to electron

2 in decreasing order. The header of the FCIDUMP file contains the symmetry of the

orbitals. It is possible to use symmetry for non range-separated calculations but some

issues remain for range-separated ones.

The eps_file is just the output file of Molpro. The orbital energies and occupation

are recovered in this file. However, the default precision of the orbital energies is low. It

is therefore possible to provide an additional file where accurate orbital energies are given

in acc_eps_file. Molpro was modified in order to produce this file in the rpa-tddft

routine when the option ker=dump is given, together with the short-range singlet and

triplet kernels in the case of a range-separation calculation.

I.2.3 debug, nexc and exc options

It is possible to print intermediate matrices, essentially for debugging. As they are

usually huge, only a subblock is printed via the debug =n command where n is the size

of the submatrices to be printed.

It is also possible to ask for the n first excitation energies of a system via the com-

mand nexc=n. It affects only the printing for static calculations but for dynamical BSE

calculations only the corrections to the first n excitation energies (the costly part of the

calculation) are computed.

Similarly, it is possible to ask for specific excitations with the keyword exc=i, j, k

where i,j and k are the indices of the excitation energies to be computed. This is

possible only for the dynamical part.

I.3 Molpro input syntax

Concerning the SCF calculation with Molpro, after definition of the molecule and of the

basis, the syntax is:

! Fix the range-separation parameter

mu=0.35

! Compute long-range two-electron integrals

{int

erf,mu;

save}
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! orbital record

orbrec=2101.2

! RSH calculation

{rks,exerf,ecerf;

rangehybrid;

orbital,orbrec;

orbprint,100;}

! Dump long-range two-electron integrals

{fci;

orbit,orbrec

core,0

thr,1.d-10

dump;}

! Compute full-range two-electron integrals

int

! Dump full-range two-electron integrals

{fci;

orbit,orbrec

core,0

thr,1.d-10

dump;}

! Reset the range-separation parameter to mu=0.35

setmu,mu;

! Dump orbital energies, singlet and triplet sr xc kernels

{rpa-tddft;

orb,orbrec;

core,0;

excit,method=rs-tddft,ker=dump;

kernelxc,ldaxerf,ldacerf}

When entering the rpa-tddft routine with the ker=dump option, the orbital epsilons are

dumped, the singlet and triplet exchange-correlation kernel are evaluated and dumped

into two separate files but the calculation of the excitation energies is not performed in

order to save time.

MolExc is licensed under the GNU General Public License and can be found at

http://www.lct.jussieu.fr/pagesperso/rebolini/molexc/.
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Introduction

L’étude des phénomènes induits par l’interaction lumière-matière constitue une étape

clé pour la compréhension globale de notre environnement immédiat. La lumière est

constituée de photons qui transportent des quanta d’énergie. L’interaction entre la

matière et un photon peut donner lieu à des phénomènes complexes tels que l’absorption,

l’émission ou la diffusion. À l’échelle d’une molécule, la physique classique ne s’applique

plus et une description quantique de la matière est requise dans laquelle les niveaux

d’énergies sont discrets. Si l’on considère un système dans son état fondamental (son

état de plus basse énergie), l’absorption d’un photon entrâıne l’excitation du système

vers un état de plus haute énergie. Plusieurs phénomènes peuvent alors avoir lieu :

• Le système peut retourner dans son état fondamental (ou dans un niveau de plus

basse énergie) par une transition non-radiative (par relaxation vibrationnelle, par

croisement inter-systèmes ou par conversion interne), ou par une transition radia-

tive où un photon est émis (soit par fluorescence, soit par phosphorescence). Dans

tous ces processus, aucune liaison chimique n’est brisée ou créée et le système

conserve son intégrité. Ceci définit par conséquent la famille des processus pho-

tophysiques. Ces mécanismes sont extrêmement intéressants car ils sont respon-

sables de nombreux phénomènes tels que l’émission lumineuse des étoiles ou la

couleur des objets, et interviennent notamment dans la conception des panneaux

photovoltäıques où un matériau (souvent un semi-conducteur) convertit l’énergie

lumineuse en une différence de potentiel. Les processus photophysiques sont aussi

largement utilisés à des fins analytiques puisqu’ils permettent de sonder les états

de la matière. Selon le dispositif expérimental (la gamme d’énergie ou la direc-

tion d’observation), différents types d’informations peuvent être obtenus comme

par exemple la position des niveaux électroniques (qui décrivent la configuration

électronique du système) ou, dans le cas d’une molécule en phase gaz, celle des

niveau ro-vibroniques qui caractérisent les rotations et les vibrations de cette

molécule.

• Dans certains cas, le système excité ne retourne pas dans son état initial et uti-

lise cette énergie supplémentaire pour initier une réaction chimique, seul (photo-

isomérisation) ou avec d’autres réactifs (photoactivation). La photochimie est la

branche de la chimie responsable de l’étude de ce type de processus. L’exemple

le plus connu est probablement la photosynthèse mais en réalité de nombreuses

réactions nécessitent une photoactivation comme par exemple la synthèse de la

vitamine D ou la dégradation des matières plastiques. Grâce aux progrès techno-

logiques réalisés ces dernières années, un nouveau champ de recherche a également
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vu le jour et a pour but d’utiliser la lumière pour contrôler une réaction afin de

favoriser la formation d’un certain produit et donc d’augmenter son rendement.

Comme moins de réactifs sont consommés et que moins de déchets sont produits,

cette approche est particulièrement intéressante dans le cadre de la chimie verte.

Dans tous les phénomènes mentionnés ci-dessus, le nombre d’électrons dans le système

reste constant. Cependant si on augmente suffisamment la quantité d’énergie apportée

au système, un électron peut également être éjecté comme par exemple dans la spec-

troscopie de photo-émission. Cela permet alors d’extraire d’autres types d’informations

comme par exemple les affinités électroniques. Cependant, dans le cadre de cette thèse,

de tels phénomènes ne seront pas abordés et nous nous concentrerons uniquement sur

les énergies d’excitation électroniques dans le cas de systèmes moléculaires. La gamme

d’énergie de ces excitations correspond à la partie visible du spectre et aux rayonnements

ultra-violets. Elles sont donc étudiées expérimentalement par spectroscopie UV-visible

La prédiction ou l’analyse d’un spectre UV-visible par un calcul sur ordinateur consti-

tue à présent un domaine de recherche actif, soit pour aider les expérimentateurs dans

l’interprétation de leurs résultats, soit pour la conception de nouveaux composés d’intérêt

biologique ou industriel, soit enfin pour étudier des environnements hostiles pour lesquels

il est difficile voire impossible de réaliser des expériences (par exemple dans l’espace, dans

des conditions extrêmes de température et de pression ou dans des champs magnétiques

intenses). Afin d’obtenir des résultats quantitatifs, les théoriciens ont alors besoin de

méthodes fiables avec un coût de calcul faible pour pouvoir étudier des systèmes rela-

tivement grands. Afin de simuler un spectre UV-visible, deux types d’information sont

nécessaires, les énergies d’excitation électroniques et la probabilité que ces excitations

aient lieu (ce qui est donné en pratique par les forces d’oscillateur). La probabilité

d’une transition électroniques peut varier énormément dans une gamme d’énergie très

restreinte et influence donc significativement l’allure finale du spectre. Ces probabilités

sont reliées au concept de transitions permises ou interdites présent en spectroscopie et

aux règles de sélection qui en découlent.

En pratique, le calcul des énergies d’excitation d’un système se fait généralement en

deux étapes. Dans un premier temps, le système est étudié dans son état fondamen-

tal, puis des énergies de transition verticales sont calculées en gardant la géométrie du

système fixée et en considérant que le phénomène d’excitation est instantané par rap-

port à l’échelle de temps du mouvement des noyaux. Cependant, la géométrie la plus

stable du système dans un état excité diffère en général de celle de l’état fondamental ce

qui implique qu’une surface d’énergie potentielle est en principe nécessaire pour décrire

précisément la physique du système. De plus, pour reproduire un spectre expérimental,

les effets des niveaux ro-vibroniques et d’élargissement des raies devraient être pris en
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compte. Cependant dans cette thèse, nous nous intéressons uniquement au calcul des

énergies d’excitation électroniques et des forces d’oscillateur d’une molécule en phase

gaz, à température nulle et à géométrie fixée.

Toute la difficulté d’un calcul quantique réside dans la description du mouvement

corrélé des électrons à cause de leur interaction et de leur nature quantique intrinsèque.

Historiquement, les chimistes théoriciens ont utilisés des méthodes basées sur la fonction

d’onde électronique en raffinant de plus en plus la méthode Hartree-Fock (HF) dans

laquelle le traitement de la corrélation est complètement absent. Les méthodes post-HF

et multi-configurationnelles réintroduisent (en partie) cette corrélation et ont l’avantage

indéniable de pouvoir être améliorées de façon systématique et de pouvoir produire des

résultats très précis. Cependant, ces méthodes sont très gourmandes en temps de calcul

car elles dépendent des coordonnées de chaque électron. Leur complexité polynomiale

par rapport à la taille du système les rend donc rapidement inutilisables pour des calculs

sur des systèmes de grande taille comme des solides ou des protéines. Néanmoins, elles

font l’objet d’une recherche active afin de réduire leur coût de calcul par des méthodes

de ≪ density-fitting ≫ ou en exploitant la localisation des orbitales.

Un autre type d’approche est proposée par la théorie de la fonctionnelle de la densité

(DFT) qui est basée sur la densité électronique du système dans son état fondamen-

tal au lieu de sa fonction d’onde. La densité électronique représente le nombre moyen

d’électrons par élément de volume et ne dépend que d’une seule coordonnée d’espace et

de spin quelque soit le nombre d’électrons dans le système. Une telle approche réduit

donc significativement le coût de calcul. Cependant, le prix à payer est que toute la

complexité du calcul est maintenant cachée dans une fonctionnelle d’énergie inconnue.

Dans l’approche de Kohn et Sham, le calcul est réalisé en utilisant un système auxiliaire

fictif d’électrons sans interaction mais reproduisant la densité électronique du système

réel. L’idée dans cette approche est de calculer de façon exacte la majorité de l’énergie

afin que la partie inconnue soit la plus petite possible et donc en principe plus facile à

approximer. Pour reproduire le système physique, il reste donc à prendre en compte les

effets de l’interaction électronique qui sont alors décrits par la fonctionnelle de Hartree-

échange-corrélation. De nombreuses fonctionnelles approchées ont été développées depuis

quelques dizaines d’années, basées essentiellement sur des approximations locales (LDA)

ou semi-locales (GGA). Elles permettent à la DFT de produire de bons résultats avec

un coût de calcul moindre ce qui a permis son essor rapide.

Dans sa formulation originelle, indépendante du temps, la DFT permet de calculer

la densité électronique et l’énergie de l’état fondamental. Cependant, les théorèmes de

Hohenberg et Kohn montrent que la densité du fondamental contient la totalité de l’in-

formation sur le système et donc en particulier ses énergies d’excitation. L’introduction
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d’une dépendance en temps permet d’extraire ces énergies d’excitation à partir de la

densité en utilisant par exemple la théorie de la réponse linéaire. Dans cette approche,

on étudie la réponse de la densité du système à une perturbation périodique dépendante

du temps. Si la fréquence de cette perturbation correspond à une différence d’énergie

entre l’état fondamental et un état excité du système, celui-ci change d’état et sa densité

électronique est donc fortement affectée alors qu’à une fréquence quelconque le change-

ment de densité est faible. La méthode de la théorie de la fonctionnelle de la densité

dépendante du temps (TDDFT) en réponse linéaire exploite ce phénomène et détecte les

énergies d’excitation comme les fréquences où la densité du système change beaucoup.

Comme dans le cas indépendant du temps, cette méthode nécessite une fonctionnelle

approchée pour décrire les effets de l’interaction électronique. Cette fonctionnelle est

appelée le noyau de Hartree-échange-corrélation. En toute rigueur, ce noyau ne peut pas

être calculé à partir de la fonctionnelle d’énergie. Cependant, en pratique, une approxi-

mation adiabatique est utilisée pour contourner cette difficulté. Dans cette approxima-

tion, le noyau devient indépendant de la fréquence de la perturbation ce qui entrâıne un

certain nombre de problèmes. Avec les approximations usuelles, les énergies d’excitation

vers les états de valence (bas en énergie) sont néanmoins généralement bien décrites mais

celles vers les états de Rydberg (plus hauts en énergie) sont largement sous-estimées. De

plus les excitation à transfert de charge ou à caractère multiple ne sont pas reproduites

correctement.

La mauvaise description des excitations de Rydberg et à transfert de charge est essen-

tiellement due au mauvais comportement asymptotique du potentiel à longue distance

inter-électronique dans les approximations locales et semi-locales. La non-description

des excitations multiples est en revanche directement liée à l’approximation adiabatique.

Dans le cas d’un système isolé à sa géométrie d’équilibre, les excitations doubles (ou plus

généralement multiples) ne sont pas fréquentes dans la partie basse du spectre d’excita-

tion. Elles interviennent par exemple dans les polyènes linéaires mais ne joue pas un rôle

important dans la plupart des systèmes. Cependant, lorsqu’on s’intéresse à la réactivité

chimique et à la description d’un mécanisme réactionnel, les choses se compliquent. En

effet, lorsque les liaisons sont étirées, les états excités peuvent se croiser ou produire

des intersections coniques. Au voisinage de ces régions, les excitations multiples sont

plus probables puisque plusieurs états peuvent être extrêmement proches. Il est alors

important de pouvoir les prendre en compte afin de décrire ces régions correctement,

d’autant plus que ces dernières sont en général cruciales pour comprendre le mécanisme

réactionnel. La TDDFT dans l’approximation adiabatique n’est pas capable de décrire

ces excitations multiples et peut produire des résultats de qualités médiocres dans ces

régions.
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Un angle d’attaque possible pour résoudre (au moins partiellement) ces différents

problèmes est de diviser l’interaction électronique en une partie de courte portée quand

les électrons sont proches et une partie de longue portée lorsqu’ils sont éloignés. Dans

les approximations usuelles, la DFT décrit relativement bien la partie de courte portée

mais échoue pour la longue portée. Dans l’approche à séparation de portée, cette partie

est donc trâıtée par des méthodes fonction d’onde ou de théorie de la perturbation à

plusieurs corps, qui sont plus adaptées. La portée de la séparation peut être ajustée par

un paramètre de séparation de portée. Cette approche a été appliquée avec succès pour

des calculs sur l’état fondamental et est explorée depuis quelques années pour les états

excités. Quand elle est appliquée sur le noyau d’échange, par introduction d’un noyau

d’échange HF de longue portée, elle permet d’améliorer la description des excitations

de Rydberg et à transfert de charge puisque le bon comportement du potentiel est alors

assuré.

Dans cette thèse, nous voulons explorer les effets de la séparation de portée sur la

description des énergies d’excitation à la fois dans une approche dépendante du temps

et dans une approche indépendante du temps. En particulier, nous voulons appliquer la

séparation de portée au noyau de corrélation TDDFT afin d’améliorer la description des

excitations présentant des contributions doubles, en introduisant un noyau de corrélation

dépendant de la fréquence à longue portée. Dans cette optique, cette thèse est divisée

en trois parties.

Dans la première partie de cette thèse, les effets de la séparation de portée sont étudiés

dans le cas indépendant du temps. Ceci est réalisé en suivant l’évolution des énergies des

états excités d’un système en interaction partielle où seule la longue portée de l’interac-

tion électronique a été introduite. La densité électronique est maintenue constante par

optimisation du potentiel le long de la connexion adiabatique. Tout d’abord, un travail

analytique est réalisé en étudiant les développements de Taylor des énergies au voisinage

des deux cas limites où soit toute l’interaction est présente soit elle est complètement

absente. Une étude numérique est également réalisée sur de petits systèmes. Dans ce cas,

aucune approximation n’est utilisée à part la projection sur une base finie d’orbitales

afin de pouvoir attribuer nos observations aux effets de la séparation de portée unique-

ment. Dans un deuxième temps, nous explorons différentes possibilités pour améliorer la

description des énergies d’excitation du système physique à partir de celles du système

en interaction partielle, soit par théorie de la perturbation soit par une technique d’ex-

trapolation.

Dans la deuxième partie de cette thèse, nous appliquons la séparation de portée

sur les noyaux d’échange et de corrélation TDDFT dans une approximation mono-

déterminantale. Ceci définit l’extension dépendante du temps de la méthode ≪range-
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separated hybrid≫ (RSH) utilisée pour des calculs sur l’état fondamental. Dans cette

approximation, la partie de longue portée du noyau d’échange est traitée au niveau

Hartree-Fock alors que le noyau de corrélation de longue portée est absent. Dans un

deuxième temps, il sera alors possible d’ajouter de façon perturbative un noyau de

corrélation de longue portée dépendant de la fréquence. En pratique, le noyau de longue

portée doit être enlevé du noyau usuel, ce qui est réalisé dans l’approximation LDA dans

le cas couches fermées. Cette méthode (TDRSH) est alors appliquée sur un ensemble

de cinq petites molécules et sur un dimère à transfert de charge afin d’analyser l’im-

pact du retrait de la longue portée du noyau de corrélation sur leurs premières énergies

d’excitation.

Dans la dernière partie, nous proposons un noyau de corrélation de longue portée

dépendant de la fréquence et l’ajoutons au noyau TDRSH obtenu précédemment. Pour ce

faire, nous utilisons la théorie de la perturbation à plusieurs corps (MBPT) qui est basée

non plus sur la densité électronique mais sur la fonction de Green à une particule. Cette

méthode est largement utilisée en physique de la matière condensée mais reste marginale

en chimie. Dans cette approche, les énergies d’excitation du système sont obtenues par

résolution de l’équation de Bethe-Salpeter dont la forme est très proche des équations

utilisées en TDDFT mais qui est cependant plus générale. Nous avons choisi d’utiliser

ce formalisme plus complexe car dans ce cadre il est possible d’obtenir un noyau de

corrélation dépendant de la fréquence et donc de contourner l’approximation adiabatique

présente en TDDFT. Puisque nous considérons des systèmes moléculaires finis et non des

solides infinis, les approximations habituelles utilisées par les physiciens ont besoin d’être

remise en question dans ce cas. Dans cette partie, nous proposons un noyau de corrélation

dynamique au deuxième ordre par rapport à l’interaction électronique. A chaque étape

de sa construction, ce noyau est illustré sur le système modèle donné par la molécule

de dihydrogène en base minimale. Cette construction est réalisée de façon algébrique et

comporte de nombreuses étapes techniques qui sont essentiellement données en annexe.

Seules les grandes lignes de cette construction et leur interprétation en diagrammes de

Feynman sont détaillées dans le corps du texte pour plus de lisibilité. Ce noyau est enfin

appliqué dans le cadre de la séparation de portée sur un ensemble de quatre petites

molécules.
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Partie I : Energies d’excitation en théorie de la fonctionnelle

de la densité indépendante du temps

Chapitre 1 : Généralités sur la théorie de la fonctionnelle de la densité

Dans ce chapitre, le problème électronique à plusieurs corps est rappelé brièvement.

Ce problème est rencontré à la fois par les chimistes et le physiciens que ce soit sur

des systèmes finis ou sur des systèmes infinis et implique la résolution de l’équation de

Schrödinger. Dans une approche non-relativiste indépendante du temps, plusieurs classes

de méthodes sont disponibles pour traiter ce problème. Dans le cadre de cette thèse, nous

nous concentrons essentiellement sur les méthodes basées sur la densité électronique. Par

conséquent, ce chapitre rappelle la théorie de la fonctionnelle de la densité (DFT), avec

tout d’abord ses fondements théoriques donnés par les théorèmes de Hohenberg et Kohn

puis l’approche de Kohn et Sham ainsi que son extension par séparation de portée de

l’interaction électronique. Les aspects pratiques et les approximations usuelles sont aussi

discutés.

Chapitre 2 : Energies d’excitation le long de la connexion adiabatique

à séparation de portée

Dans ce chapitre, nous étudions les variations des énergies des états excités et des énergies

d’excitation le long d’une connexion adiabatique à séparation de portée. Cette connexion

relie le système fictif de Kohn-Sham d’électrons non-interagissants au système physique

d’électrons en interaction, en incluant progressivement l’interaction électronique tout en

ajustant le potentiel effectif afin de maintenir la densité du fondamental constante. Dans

ce travail, l’interaction est introduite en fonction de sa portée. Tout d’abord la longue

portée de l’interaction est introduite majoritairement, jusqu’à ce que la totalité de l’in-

teraction soit présente, au voisinage du système physique. Dans le cas de l’hélium, du

béryllium et de la molécule de dihydrogène, des données de référence sont fournies. Elles

ont été obtenues en calculant le potentiel effectif de courte portée par interaction de

configuration complète en utilisant l’approche de la transformée de Legendre introduite

par Lieb. Quand la portée de l’interaction augmente, les énergies d’excitation du système

en interaction partielle le long de la connexion adiabatique décrivent de mieux en mieux

les énergies exactes du système physique. De ce fait, les énergies d’excitation calculées

à un point intermédiaire de la connexion adiabatique sont de bien meilleures approxi-

mations aux énergies exactes que ne l’étaient les énergies Kohn-Sham correspondantes.

Ceci est particulièrement évident dans des situations impliquant des effets importants

de corrélation statique ou des états ayant des caractères d’excitations multiples comme

la molécule de dihydrogène à la dissociation. Ces résultats mettent en évidence l’utilité
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de systèmes en interaction partielle de longue portée comme références pour le calcul

des énergies d’excitation, et sont intéressants pour le développement et l’analyse des

méthodes pratiques approchées basées sur la DFT à séparation de portée.

Chapitre 3 : Théorie de la perturbation le long d’une connexion adia-

batique à séparation de portée

Dans ce chapitre, les effets d’une correction perturbative au premier ordre sont évalués

le long de la connexion adiabatique à séparation de portée. Le point de départ est

donné par les énergies d’excitation du système en interaction partielle défini au chapitre

précédent. Une correction de premier ordre est alors définie avec deux variantes de

la théorie de perturbation : la théorie de perturbation standard et une extension de

la théorie de perturbation à la Görling-Levy qui a l’avantage de maintenir la densité

du fondamental constante à chaque ordre de perturbation. Seule la première variante,

plus simple, est testée sur les systèmes définis précédemment. Les énergies des états

excités sont fortement améliorées par l’ajout de cette correction cependant les énergies

d’excitation s’en trouvent détériorées par rapport à l’ordre zéro. Ceci peut s’explique par

le fait que le potentiel d’ionisation n’est pas maintenu constant dans ce cas. La deuxième

variante de la théorie de perturbation devrait améliorer ces résultats mais n’a pas été

testée pour le moment.

Chapitre 4 : Extrapolation des énergies le long de la connexion adiaba-

tique

Dans ce chapitre, nous proposons une méthode alternative pour améliorer l’estimation

des énergies d’excitation du système physique à partir des énergies du système en in-

teraction partielle où seule la partie de longue portée de l’interaction électronique est

présente. Les énergies de ce système ont d’ores et déjà été étudiées dans les chapitres

2 et 3 à l’ordre zéro et à l’ordre zéro+un de la théorie de perturbation ≪standard≫.

A partir de l’analyse de leur développements de Taylor au voisinage du système phy-

sique, les énergies du système physique peuvent être extrapolées à partir des énergies du

système en interaction partielle et de leur dérivée première par rapport au paramètre de

séparation de portée. Une méthode similaire est également étudiée dans le cadre d’une

connexion adiabatique linéaire. Dans ce cas, cette technique est équivalente au premier

ordre de la théorie de perturbation à la Görling-Levy étendue à un système en interaction

partielle.

Cette extrapolation est ensuite appliquée sur les énergies d’ordre zéro de l’hélium,

du béryllium et du dihydrogène. La convergence de ces énergies vers leur limite exacte

est alors améliorée de façon significative, ce qui permet d’estimer les énergies du
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système physique à la même précision que sans extrapolation mais avec un paramètre

de séparation réduit de moitié. Lorsqu’on applique l’extrapolation sur les énergies de

l’hélium obtenues à l’ordre zéro+un de perturbation, les résultats restent médiocres

puisqu’une d’une part, le point de part est moins bon, et d’autre part, la correction est

plus faible par construction que dans le cas de l’ordre zéro. Enfin, l’extrapolation est

appliquée sur les énergies d’excitation de l’hélium le long d’une connexion adiabatique

linéaire où l’interaction est multipliée par un factor d’atténuation allant de 0 à 1. L’ex-

trapolation marche particulièrement bien dans ce cas puisque le point de départ a un

comportement quasi-linéaire par rapport au paramètre et est donc plus facile à prévoir.

Partie II : Energies d’excitation en théorie de la fonction-

nelle de la densité dépendante du temps

Chapitre 5 : Généralités sur la théorie de la fonctionnelle de la densité

dépendante du temps

Dans ce chapitre, les grands principes de la théorie de la fonctionnelle de la densité

dépendante du temps (TDDFT) sont rappelés en particulier dans le cadre de la théorie

de la réponse linéaire. Cette méthode est utilisée pour décrire la réponse d’un système

initialement dans son état fondamental à une petite perturbation dépendante du temps,

typiquement une irradiation par un laser de faible intensité. Les fondements théoriques

de la méthode sont rappelés brièvement ainsi que sa formulation dans l’approche de

Kohn-Sham. Les approximations adiabatiques semi-locales usuelles sont présentées ainsi

que leurs succès et leurs limitations. En particulier, elles ne décrivent pas correctement les

excitations à transfert de charge ou présentant un caractère multiple. Enfin, l’extension

de la séparation de portée au cas dépendant du temps est présentée dans sa variante la

plus commune où la séparation n’est réalisée que sur le noyau d’échange.

Chapitre 6 : Energies d’excitation en théorie de la réponse linéaire

pour la théorie de la fonctionnelle de la densité dépendante du temps à

séparation de portée

Dans ce chapitre, nous étudions la TDDFT dans le cadre de la réponse linéaire, basée

sur une méthode mono-déterminantale à séparation de portée (RSH), c’est-à-dire com-

binant un noyau d’échange HF de longue portée avec un noyau d’échange-corrélation

DFT de courte portée, pour le calcul des énergies d’excitation électroniques de systèmes

moléculaires. Cette méthode constitue une alternative à la méthode ≪long-range cor-

rected≫ (LC) plus commune, qui combine un noyau d’échange HF de longue portée
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avec un noyau d’échange DFT de courte portée et un noyau de corrélation DFT stan-

dard de portée totale. Nous étudions les effets de l’approximation locale (LDA) sur les

noyaux de courte portée et évaluons la performance de cette méthode sur les premières

énergies d’excitation vers des états de valence, ou de Rydberg, singulets ou triplets pour

les molécules de N2, CO, H2CO, C2H4, et C6H6 et sur la première énergie d’excita-

tion à transfert de charge du dimère C2H4-C2F4. Pour ces systèmes, la présence de la

corrélation LDA de longue portée dans le calcul du fondamental et du noyau n’a quasi-

ment pas d’impact sur les énergies d’excitation et les forces d’oscillateur. Les résultats

en RSH sont donc très similaires à ceux obtenus en LC. De même qu’avec la méthode

LC, l’introduction du noyau d’échange HF de longue portée corrige la sous-estimation

des énergies d’excitation à transfert de charge et de Rydberg obtenue avec les approxi-

mation semi-locales habituelles. Cependant elle entrâıne également la sous-estimation

des énergies d’excitation vers les états de valence triplets. Ce problème est résolu dans

le cadre de l’approximation Tamm-Dancoff qui permet une description relativement ho-

mogène de toutes les énergies d’excitation. Ce travail suggère que cette méthode est

donc un point de départ raisonnable pour la description des énergies d’excitation, même

avant l’ajout d’un noyau de corrélation de longue portée.

Partie III : Energies d’excitation en théorie de la perturba-

tion à plusieurs corps

Chapitre 7 : Généralités sur les méthodes de type fonction de Green

La théorie de la perturbation à plusieurs corps constitue une approche alternative à la

TDDFT pour le calcul des énergies d’excitation électroniques et est largement utilisée

dans la communauté de la physique de la matière condensée. Un avantage important de

cette approche est qu’elle est en principe capable de décrire les excitations doubles qui

sont absentes en TDDFT dans l’approximation adiabatique. De plus, son formalisme

est proche de celui de la TDDFT. Dans ce chapitre, nous étudions le transfert de cette

méthode, des solides infinis vers des systèmes moléculaires finis où les équations sont

projetées sur une base gaussienne de spin-orbitales, et où la validité des approximations

utilisées sur les solides doit être remise en question. Nous introduisons ici les concepts de

quasi-particule et de fonction de Green sur lesquels repose cette théorie. Nous rappelons

ensuite les équations principales dans le cas à une particule (équation de Dyson) et à

deux particules (équation de Bethe-Salpeter) et introduisons les concepts de self-énergie

et de noyau de Bethe-Salpeter qui sont les quantités clés de cette approche. Toutes

les équations sont exprimées dans un formalisme à quatre points afin de faciliter leur

projection dans une base de spin-orbitales et la correspondance avec les diagrammes de
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Feynman est également explicitée. Nous rappelons également les équations de Hedin qui

procurent un ensemble de cinq équations couplées qui permettent en théorie de calculer

la self-énergie.

Chapitre 8 : Noyau Bethe-Salpeter GW statique dans une base de spin-

orbitales

L’approximation la plus utilisée dans la cadre de la méthode Bethe-Salpeter est l’approxi-

mation GW statique. Dans cette approximation, les corrections de vertex sont négligées

dans l’expression de la self-énergie tant et si bien que celle-ci se réduit au produit d’une

fonction de Green G et de l’interaction écrantée W . De plus, en général, le cycle de Hedin

n’est pas résolu de façon auto-cohérente et une seule itération est réalisée.

Dans ce chapitre, la self-énergie est calculée au niveau GW et dans une variante

GWx où l’échange est inclus dans la définition de la matrice diélectrique. Dans les deux

cas, le noyau Bethe-Salpeter est obtenu dans son approximation statique en considérant

l’interaction écrantée comme étant locale en temps. De plus, la réponse de l’interaction

écrantée par rapport à la perturbation, c’est-à-dire la dérivée de W par rapport à G,

est négligée comme habituellement fait en physique. Comme la self-énergie n’est pas

obtenue de façon auto-cohérente, le choix de la fonction de Green de départ joue un

rôle important. Nous comparons par conséquent la fonction de Green HF et la fonction

de Green exacte. Dans chaque cas, les équations sont projetées dans une base de spin-

orbitales et appliquées sur le système modèle donné par H2 en base minimale.

Chapitre 9 : Noyau Bethe-Salpeter statique au deuxième ordre de per-

turbation

Dans ce chapitre, la self-énergie et le noyau de Bethe-Salpeter statique sont développés

de façon perturbative au deuxième ordre par rapport à l’interaction électronique. Ce

développement est d’abord fait dans l’espace réel en prenant compte ou non de l’inclusion

de l’échange dans la self-énergie et de la dérivée de W par rapport à G dans le noyau.

Les différentes expressions obtenues sont ensuite projetées sur une base de spin-orbitales.

L’inclusion de l’échange dans la self-énergie de corrélation aboutit à une expression dans

laquelle toutes les intégrales sont antisymétrisées. Cependant, cela ne suffit pas pour le

noyau de corrélation de Bethe-Salpeter qui nécessite également l’inclusion de la dérivée

de W par rapport à G afin d’avoir une forme totalement antisymétrisée satisfaisant alors

les lois de conservations. Si une seule de ces deux contributions est prise en compte, alors

seule une partie des intégrales est antisymétrique, ce qui confirme que ces deux termes

doivent être traités simultanément pour des systèmes moléculaires finis pour lesquels

cette antisymétrisation est importante. Le noyau obtenu est alors illustré sur le système
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modèle donné par H2 en base minimale où l’on montre que dans l’approximation statique

une forme non physique est obtenue.

Chapitre 10 : Noyau Bethe-Salpeter dynamique de longue portée au

deuxième ordre

Dans ce chapitre, nous développons un noyau dynamique effectif de corrélation Bethe-

Salpeter dans l’espace réel et dans une base de spin-orbitales. Afin de satisfaire les lois

de conservation dans le cadre de systèmes moléculaires finis, l’échange est inclus dans la

matrice diélectrique et les effets de la perturbation sur l’interaction écrantée sont pris en

compte dans la construction du noyau à partir de la self-énergie de corrélation. Quand

l’équation de Bethe-Salpeter est résolue de façon dynamique, le noyau au deuxième ordre

dépendant de la fréquence obtenu précédemment est convolué avec deux propagateurs

dépendant de deux fréquences. Ce produit de convolution peut être reformulé comme

le produit d’un noyau effectif et de deux fonctions de réponse ne dépendant que d’une

seule fréquence. Ce noyau effectif ne dépend que d’une seule fréquence et est compa-

tible avec la formulation TDDFT afin de calculer les pôles de la fonction de réponse. Si

ce noyau est construit à partir d’une fonction de Green à séparation de portée et des

intégrales de longue portée, ce noyau peut être utilisé dans le cadre de la TDDFT à

séparation de portée comme un noyau effectif de corrélation de longue portée dépendant

de la fréquence et être ajouté de façon perturbative au noyau TDRSH défini au chapitre

6. Dans les deux cas, l’inclusion d’un noyau dépendant de la fréquence complique la

résolution numérique étant donné qu’un problème non-linéaire aux valeurs propres est

alors obtenu. Nous adoptons par conséquent un approche perturbative dans l’approxi-

mation Tamm-Dancoff. Le comportement de ce noyau est illustré sur le système modèle

donné par H2 en base minimale. Dans ce cas, le caractère symétrique de ce système

entrâıne la disparition de la partie dépendante de la fréquence du noyau. Cependant, la

comparaison du développement de Taylor au deuxième ordre des énergies d’excitation

par rapport à l’interaction, et du développement des énergies exactes permet de mettre

en évidence les limites de ce noyau. Il est ensuite appliqué au calcul des premières

énergies d’excitation de N2, CO, H2CO et C2H4 avec et sans séparation de portée. Pour

ces systèmes, l’addition perturbative du noyau de corrélation dépendant en fréquence

entrâıne une augmentation systématique des énergies d’excitation. Sans séparation de

portée, elle conduit à une détérioration importante des énergies d’excitation obtenues

en Hartree-Fock. En revanche, lorsqu’elle est appliquée dans le cadre de la séparation de

portée, elle améliore l’erreur moyenne et l’erreur maximale.
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Conclusion générale et perspectives

Cette thèse contribue au traitement des énergies d’excitation électroniques dans des

systèmes moléculaires finis par les méthodes à séparation de portée. En séparant l’in-

teraction électronique en une partie de courte et de longue portée, ces méthodes per-

mettent de combiner rigoureusement la théorie de la fonctionnelle de la densité (DFT)

avec des méthodes basées sur la fonction d’onde ou les fonctions de Green. Elles ont été

étudiées de façon intensive pour les calculs sur l’état fondamental mais sont toujours

en cours de développement pour les états excités. Les calculs des énergies d’excitation

par les méthodes DFT sont largement dominés par les calculs en théorie de la fonc-

tionnelle de la densité dépendante du temps (TDDFT) dans la théorie de la réponse

linéaire. Cependant cette méthode ne constitue pas la seule approche possible et de nom-

breuses méthodes indépendantes du temps sont également explorées. Dans cette thèse,

la séparation de portée a été appliquée dans les cas dépendant et indépendant du temps

mais dans des buts différents. Dans la multitude de méthodes disponibles, il est souvent

difficile d’identifier la source d’un problème à cause du grand nombre d’approximations

faites simultanément. La première partie de cette thèse avait donc pour but d’étudier les

effets de la séparation de portée sur les énergies d’excitation en s’affranchissant de toute

approximation. Les deuxième et troisième parties étaient en ce sens bien plus pragma-

tiques puisqu’elles visaient à améliorer le traitement des excitations multiples présent

en TDDFT dans l’approximation adiabatique. Dans ce cas, l’approximation locale a été

utilisée pour la fonctionnelle et une approximation mono-déterminantale pour la fonction

d’onde.

Séparation de portée en DFT indépendante du temps

Les effets de l’approximation adiabatique sont difficiles à analyser et à corriger dans une

approche dépendante du temps. De plus celle-ci n’est en principe pas nécessaire pour ob-

tenir des énergies d’excitation. En effet, les théorèmes de Hohenberg-Kohn prouvent que

la densité électronique du fondamental contient toute l’information du système et donc

en particulier les énergies d’excitation. Nous nous sommes donc placés dans un premier

temps dans un approche indépendante du temps où notre but n’était pas de concevoir une

nouvelle méthode pragmatique pour calculer des énergies d’excitation avec la séparation

de portée, tout du moins à court terme, mais plutôt de s’affranchir d’un maximum

d’approximations et de réaliser une étude analytique et numérique poussée sur de très

petits systèmes. Dans cette étude, la seule approximation réalisée concerne la base. Par

conséquent, on peut espérer qu’avec une base suffisamment grande, les effets observés

ne seront pas dûs à la base mais uniquement à la séparation de portée. La première

partie de cette thèse contient les résultats de cette étude dans laquelle nous avons suivi
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les énergies d’excitation d’un système en interaction partielle le long d’une connexion

adiabatique à séparation de portée reliant le système de Kohn-Sham et le système phy-

sique. Les développements de Taylor des énergies autour de ces deux limites nous a

permis entre autres de proposer une technique d’extrapolation qui améliore la descrip-

tion des énergies d’excitation du système physique à partir d’un point intermédiaire de

la connexion adiabatique où seule la partie de longue partie de l’interaction est présente.

Cela nous a aussi permis de démontrer quelques conditions exactes que des énergies

approchées devraient satisfaire autour des deux limites, et d’évaluer la proportion de

l’interaction qui doit être incluse pour décrire correctement les énergies d’excitation du

système physique. Nous sommes actuellement en train d’évaluer les effets de l’approxi-

mation LDA et de l’approximation mono-déterminantale utilisée dans la méthode RSH,

sur les énergies d’excitation. Nous espérons que ce travail aidera au développement et

à la compréhension des méthodes à séparation de portée pour le calcul des énergies

d’excitation, que ce soit dans le cas indépendant ou dépendant du temps.

Séparation de portée et DFT dépendante du temps

La deuxième partie de cette thèse portait sur l’application de la séparation de portée à la

TDDFT dans l’approximation locale adiabatique. Lorsqu’elle est appliquée sur la partie

d’échange du noyau de Hartree-échange-corrélation (qui doit prendre en compte les ef-

fets venant de l’interaction électronique), la séparation de portée permet de d’améliorer

significativement plusieurs points faibles de la TDDFT comme la description des exci-

tations de Rydberg et à transfert de charge. Cependant jusqu’à récemment, le noyau de

corrélation était uniquement traité en DFT et donc les excitations à caractère multiple

ne pouvaient pas être décrites correctement. Dans l’approche RSH, du fait de l’approxi-

mation mono-déterminantale, le noyau de corrélation de longue portée disparâıt. Nous

avons par conséquent déterminé les noyaux singulet et triplet de courte portée LDA et

les avons implémentés dans le logiciel de chimie quantique Molpro. L’effet du retrait de la

corrélation de longue portée LDA a ensuite été étudié sur les énergies d’excitation de cinq

petites molécules et d’un dimère à transfert de charge. Nous avons observé que ce retrait

n’a quasiment pas d’effet sur les énergies d’excitation qui constituent par conséquent un

bon point de départ pour l’addition perturbative d’un noyau de corrélation de longue

portée dépendant de la fréquence capable de prendre en compte l’effet des excitations

doubles. La construction d’un tel noyau fut l’objet de la dernière partie de cette thèse.

Noyau de corrélation Bethe-Salpeter au deuxième ordre de longue portée

Afin de concevoir un noyau de corrélation dépendant de la fréquence, nous nous sommes

tournés vers l’approche Bethe-Salpeter utilisée en physique de la matière condensée qui
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fournit un formalisme dépendant explicitement de la fréquence et très proche de celui

utilisé en TDDFT. Dans la troisième partie de cette thèse, nous avons donc entreprit la

construction d’un noyau de corrélation effectif au deuxième ordre dans cette approche.

La correspondance entre le formalisme de la physique de la matière condensée et

celui de la chimie des systèmes moléculaires n’étant pas triviale, une première étape

a consisté à transposer le formalisme des fonctions de Green dans une formulation en

spin-orbitales et à vérifier la validité des approximations réalisées en physique dans le

cas d’une molécule. Nous en avons conclu que pour un système moléculaire fini, il était

préférable de considérer simultanément les contributions de Hartree et d’échange dans

la matrice diélectrique et que l’effet de la perturbation sur l’interaction écrantée n’était

pas négligeable. Un noyau de corrélation Bethe-Salpeter au deuxième ordre a alors été

construit et testé dans un premier temps dans l’approximation statique. Dans ce cas

une forme non physique fut obtenue ce qui confirma la nécessité d’un traitement dyna-

mique. Ce noyau dynamique nécessita un effort supplémentaire afin d’obtenir un noyau

de corrélation effectif compatible avec le formalisme TDDFT. Les étapes principales de

sa construction furent illustrées sur le système modèle de H2 en base minimale. En par-

ticulier, les effets du choix de la fonction de Green initiale, de l’inclusion de l’échange, de

la troncation à l’ordre deux, et de l’approximation statique furent évalués sur ce modèle.

Le noyau dynamique fut ensuite implémenté dans une approche perturbative dans l’ap-

proximation Tamm-Dancoff et testé sur quatre petites molécules avec et sans séparation

de portée. Pour ces systèmes dans le cas à séparation de portée, les énergies d’excitation

furent globalement améliorées par l’addition perturbative de ce noyau. Cependant, aucun

de ces systèmes ne présentait des contributions doubles importantes pour les énergies

étudiées alors que le noyau est censé jouer un rôle prédominant dans ce cas.

Perspectives

Il est difficile de mettre un point final à cette thèse où tant de choses restent à faire et

à explorer. Je vais essayer ici de résumer les perspectives que ce travail a engendrées et

qui restent sur ma “TO DO” liste.

Concernant la partie dépendante du temps, il faudrait réintroduire les approxima-

tions usuelles une par une afin d’évaluer leurs effets sur les énergies d’excitation et sur le

potentiel d’ionisation. Nous avons observé dans le cas de la théorie de perturbation au

premier ordre qu’une mauvaise description de ce potentiel pouvait avoir des conséquences

importantes sur les énergies d’excitation. On peut s’attendre à une observation similaire

dans le cas d’une approximation locale. Il faut également explorer les effets d’une ap-

proximation mono-déterminantale ou de l’utilisation d’une interaction de configuration

(IC) tronquée au lieu d’une IC complète. Cela permettrait d’apporter un éclairage nou-
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veau sur la méthode TD-MC-srDFT qui a été proposée récemment et qui couple la

TDDFT à courte portée avec une méthode multi-configurationelle (MCSCF) à longue

portée. Cela pourrait aussi amener au développement de nouvelles méthodes.

Concernant la deuxième partie de cette thèse, la construction et l’implémentation

des noyaux de courte portée LDA n’a été réalisée que dans le cas couches fermées.

Cependant, un code couches ouvertes et l’implémentation de noyaux de courte portée

GGA seraient utiles pour de nombreuses applications.

La dernière partie de cette thèse reste probablement la plus frustrante pour moi

puisque tant de choses restent à faire. Je vais donc essayer de faire une liste de ce que

j’aurais voulu faire pendant une hypothétique quatrième année...

• Tout d’abord, le noyau effectif a besoin d’être testé de façon plus approfondie et

sur des systèmes connus pour avoir des excitations doubles sans la partie basse de

leur spectre d’absorption.

• Ensuite, je voudrais tester une résolution non-perturbative basée sur un

≪dépliement≫ de Löwdin et sans l’approximation Tamm-Dancoff. De plus, le code

a été conçu à des fins d’exploration et non d’efficacité, si le noyau s’avère réellement

utile, ce module devrait être intégré dans un ≪vrai≫ code de chimie quantique.

• Enfin, la troncation au deuxième ordre a été faite par rapport à l’interaction

électronique mais sans tenir compte des corrections de self-énergie qui pouvaient

intervenir dans la fonction de réponse des quasi-particules sans interaction. Nous

travaillons en ce moment sur cet aspect afin d’évaluer, tout d’abord dans le cas de

H2 puis dans le cas général, l’effet de ces corrections. Ceci serait particulièrement

intéressant afin de mieux comprendre le lien entre cette méthode et les méthodes

de propagateurs au deuxième ordre de type SOPPA.

Cette liste pourrait être bien plus longue et j’espère que certains de ces points seront

résolus dans les prochains mois par mes collaborateurs ou moi-même. J’espère que ce

travail sera d’une quelconque utilité pour le développement futur de projets similaires.
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Range-separated density-functional theory for molecular excitation en-
ergies

Linear-response time-dependent density-functional theory (TDDFT) is nowadays a
method of choice to compute molecular excitation energies. However, within the
usual adiabatic semi-local approximations, it is not able to describe properly Rydberg,
charge-transfer or multiple excitations. Range separation of the electronic interaction
allows one to mix rigorously density-functional methods at short range and wave
function or Green’s function methods at long range. When applied to the exchange
functional, it already corrects most of these deficiencies but multiple excitations
remain absent as they need a frequency-dependent kernel. In this thesis, the effects of
range separation are first assessed on the excitation energies of a partially-interacting
system in an analytic and numerical study in order to provide guidelines for future
developments of range-separated methods for excitation energy calculations. It is
then applied on the exchange and correlation TDDFT kernels in a single-determinant
approximation in which the long-range part of the correlation kernel vanishes. A
long-range frequency-dependent second-order correlation kernel is then derived from
the Bethe-Salpeter equation and added perturbatively to the range-separated TDDFT
kernel in order to take into account the effects of double excitations.

Keywords: excitation energies, range separation, TDDFT, Bethe-Salpeter
kernel, double excitation

Théorie de la fonctionnelle de la densité à séparation de portée pour les
énergies d’excitation moléculaires

La théorie de la fonctionnelle de la densité dépendante du temps (TDDFT) est au-
jourd’hui une méthode de référence pour le calcul des énergies d’excitation électroniques.
Cependant, dans les approximations usuelles, elle n’est pas capable de décrire cor-
rectement les excitations de Rydberg, à transfert de charge ou présentant un caractère
multiple. La séparation de portée de l’interaction électronique permet de combiner
rigoureusement les méthodes fonctionnelles pour décrire la courte portée de l’interaction
et les méthodes fonctions d’onde ou fonctions de Green pour la longue portée. Dans
cette thèse, les effets de cette séparation de portée sur les énergies d’un système en
interaction partielle sont d’abord étudiés le long de la connexion adiabatique dans le
cas indépendant du temps afin d’aider le développement des méthodes à séparation de
portée pour les énergies d’excitation. La séparation de portée est ensuite appliquée
dans le cadre de la TDDFT aux noyaux d’échange et de corrélation, où dans le cas
d’une approximation monodéterminentale, la longue portée du noyau de corrélation
est absente. Afin de prendre en compte l’effet des doubles excitations, un noyau de
corrélation de longue portée dépendant de la fréquence est développé en s’inspirant
du noyau Bethe-Salpeter. Ce noyau est alors ajouté de façon perturbative au noyau
TDDFT à séparation de portée afin de prendre en compte les effets des excitations
doubles.

Mots-clés : énergies d’excitation, séparation de portée, TDDFT, noyau
Bethe-Salpeter, excitation double
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