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General introduction






INTRODUCTION

The ability to understand the phenomena induced by the interaction between light and
matter constitutes a key step to the global understanding of our immediate environment.
Light is constituted of photons which carry quanta of energy. The interaction between
a photon and matter is complex and involves processes such as absorption, emission or
scattering. In fact, at the scale of a molecule, classical physics does not apply anymore
and a quantum description of matter with discrete energy levels is required. Assuming
a system in its ground state (the state of minimal energy), the absorption of a photon
induces the excitation of the system to a state of higher energy. Once in this excited

state, several processes can occur:

e The system can return to its ground state (or a lower excited state) by a non-
radiative transition where no light is emmited (internal conversion, intersystem
crossing or vibrational relaxation) or by a radiative transition with the emmision of
a photon (fluorescence or phosphorescence) as summarized in the Perrin-Jablonski
diagram in Figure 1. In these processes, the system conserves its “integrity” as no
chemical bonds are broken. This defines therefore photophysical phenomena. They
are extremely interesting as they are responsible for instance for the light emission
of stars, for the color of the objects surrounding us and are involved in the design
of photovoltaic cells where a material (often a semiconductor) absorbs photons in
sunlight to create a difference of potential. Photophysical processes are also widely
used as analytic tools in spectroscopy experiments to extract useful information
on a system as they provide a “probe” to study the ground and excited states.
Depending on the experimental set-up (energy range, direction of observation),
different kinds of information can be extracted as for instance the energy levels of
the electronic states (bold lines in Figure 1) which describe the electronic configu-
ration of the system, or in the case of a molecule in gas phase, of the ro-vibrational
ones (thin lines) which characterize its rotations and its vibrations.

e In some cases, when the system gets excited by absorption of a photon, it does
not go back to its original ground state and uses this extra energy to initiate a
chemical reaction either by itself (photoisomerization) or involving other reactants
(photoactivation). Photochemistry is the branch of chemistry which studies such
phenomena. The most famous example of a photochemical reaction is probably
given by the photosynthesis but in fact many processes requires a photoactivation
such as the degradation of plastics or the formation of vitamin D with sunlight.
A wide research area is also interested in using light to control a reaction in order
to promote a particular product. This can improves the reaction yields so that
less reactants are needed and less waste is produced. This approach is therefore of
particular interest for a “green” chemistry.

In all these phenomena, the number of electrons in the system remains constant. How-
ever, if the energy of the excitation is strong enough, an electron can be ejected from
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Figure 1 — Perrin-Jablonski diagram. The bold lines represent the electronic singlet
ground state Sy, the first singlet (S; and S;) and triplet (73) excited states. The thin
lines are the vibrationnal states. The possible radiative (with emission or absorption
of light) and non-radiative transitions between these states are represented by different
arrows.

the system as in photoemission spectroscopy experiments which provide other kinds of
information such as electron affinities. However, such processes will not be considered
in the framework of this thesis and we will focus only on electronic excitation energies
in a molecular system. The energy range of these excitations is usually in the visi-
ble or ultraviolet part of the spectrum and they are experimentally studied by UV-vis
spectroscopy.

The prediction or the analysis of experimental electronic spectra by computer sim-
ulation is nowadays an active area of research either to help with the interpretation
of some experiments, to design new compounds with interesting biological or structural
properties or to study hostile environments where experiments are difficult or impossible
to perform as for instance in space, in extreme temperature or pressure conditions or
in strong magnetic fields. In order to get quantitative results, computational chemists
need reliable methods with a low computational cost in order to be able to treat rela-
tively large systems. In order to compute an electronic excitation spectrum, two kinds
of information are required: the excitation energies and the probability of the transition
which is given by the oscillator strengths. The transition probabilities can vary a lot
over a small range of excitation energies and therefore can affect significantly the final
spectrum. This is related to the concept of forbidden or allowed transitions.

In practice, the calculation of the excitation energies of a system is often a two-step

4



INTRODUCTION

Reaction coordinate
Ground State

Figure 2 — Representation of a vertical transition. At the time scale of the nuclear
motion, an electronic excitation can be considered instantaneous. It is thus vertical
with respect to the reaction coordinate (which describe the positions of the nuclei). The
transition between the electronic ground and excited states (bold line) is then represented
by a vertical arrow.

procedure. First, the system is calculated in its ground state, then vertical excitation
energies are calculated at the same geometry assuming that these excitations are in-
stantaneous in comparison with the time scale of nuclear motion. However, when in an
excited state, the geometry of the system may relaxes as shown in Figure 2 such that in
principle, a potential energy surface is required to grasp the whole physics of the system.
Moreover, in order to get as close as possible to a real spectrum the rovibronics effects
and the broadening should be taken into account. However in this thesis, we will focus
only on the determination of electronic excitation energies and of oscillator strengths of
a molecule in gas phase, at zero temperature and fixed geometry.

The whole complexity of quantum calculations consists in the description of the cor-
related motion of the electrons, due to their electrostatic interaction and to their intrinsic
quantum nature. Historically, quantum chemists have used methods based on wave func-
tions by refining more and more the well-known Hartree-Fock (HF) method where the
correlation is completely absent. Post-HF (multi-reference) methods reintroduce (part
of) this correlation and have the undeniable advantage that they can systematically be
improved and can give very accurate results. However, they are usually computationally
expensive as they depend on the coordinates of all the electrons of the system. Therefore,
they scale pretty badly with the size of the system and become often impractical for cal-
culations on medium and big systems such as solids or compounds of biological interest.
Nevertheless active research is undergoing in order to reduce the computational cost of
such methods using for instance the density-fitting scheme or exploiting the localization
of the orbitals.

Another kind of approach is provided by density-functional theory (DFT) which is
based on the electron density of the system in its ground state instead of the electronic
wave function. The electron density can be seen as the average number of electron

5



INTRODUCTION

by volume element. It therefore depends only on one (spin)-space coordinate whatever
the number of electrons of the system is. Such an approach decreases dramatically
the computational cost. However, the price to pay is that the whole complexity of
the calculation is now hidden in an unknown object, the energy functional. Within
the approach proposed by Kohn and Sham, the calculation uses a fictitious system of
non-interacting electrons having the same ground-state density. The idea is to calculate
exactly the maximum of things so that the remaining unknown part will be as small
as possible and in principle easier to approximate. To reproduce the physical system,
what is missing is the effects coming from the electron-electron interaction which is then
taken into account by the Hartree-exchange-correlation functional which needs to be
approximated. A wide variety of approximate functionals such as local density (LDA)
or generalized gradient (GGA) approximations has been developed in the past decades
and usually allows DFT to provide results with a reasonable accuracy. Its good ratio
cost/accuracy has thus made DFT very popular for complex systems.

In its original time-independent formulation, DFT provides only the ground-state
electron density and energy. However, in their famous theorems, Hohenberg and Kohn
also showed that the ground-state electron density contains in fact all the information
on the system, and in particular the excitation energies. With the introduction of
time dependence, it is possible to extract these excitation energies from the density
for instance with linear-response theory. In this approach, the response of the electron
density of the system to a small oscillatory time-dependent perturbation is studied.
If the frequency of the perturbation corresponds to an energy difference between the
ground state and an excited state, the system changes state so the change in density will
be important while otherwise it remains very small. In linear-response time-dependent
density-functional theory (TDDFT), one can then detect the excitation energies as the
frequencies where the change of density is large.

Similarly to the time-independent case, this method requires a functional, called
the Hartree-exchange-correlation kernel, to treat the effects coming from the electron-
electron interaction. Rigorously, the kernel cannot be determined from the ground-state
energy functional and in practice an adiabatic approximation is performed for the kernel
on top on the approximations which have already been made for the energy functionals.
In this approximation, the kernel becomes independent of the frequency of the considered
perturbation which leads to several shortcomings. However, within the usual adiabatic
LDA or GGA approximations, the excitation energies are nevertheless generally well
reproduced for low-lying states (valence states), but are underestimated for high-lying
states (Rydberg states). A second problem is the reproduction of the charge-transfer
excitation energies and a third one occurs when multiple excitations are involved.

The first two problems are mostly due to the poor behavior of the approximate
functionals at long electron-electron distance, while the third one is directly related to
the adiabatic approximation. For an isolated system in its equilibrium geometry, double
(or higher-order) excitations are not so common in the lowest part of the excitation
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spectra. They are for instance present for linear polyenes but do not play an important
role in most systems. However, when one is interested in chemical reactivity and reaction
paths, things get more complicated. In fact, along a reaction path, the excited states
of a system are subject to crossings and/or conical intersection in the vicinity of which
multiple excitations are more likely to occur as several states are close to each other. It
is then crucial to be able to describe this region properly as it is usually a critical region
to understand the reaction mechanism. TDDFT within the usual approximations is not
able to account for these multiple excitations and can produce poor quality results in
this case.

One possible strategy to cope with these issues is to divide the electron-electron
interaction into a short-range part where the electrons are close to each other and a
long-range part when they are faraway. Within the usual approximations, DFT is able
to describe the short-range part of the electron-electron interaction with a good accuracy
but fails for the long-range one. This part can then be treated by wave-function methods
or many-body perturbation theory. The range of the separation can then be adjusted
by a range-separation parameter. This range-separation technique has successfully been
applied to ground-state calculations but is still being explored for excited-state ones.
When applied to the exchange part of the kernel with the introduction of a long-range HF
exchange kernel, range separation improves the description of the Rydberg and charge-
transfer excitation energies as it allows to recover the correct asymptotic behavior of the
potential at large electron-electron distance.

In this thesis, we want to explore the effects of range separation on the description
of excitation energies both in a time-independent and a time-dependent formulation. In
particular, we want to apply range separation on the TDDFT correlation kernel in order
to improve the description of excitation energies involving contributions from double
excitations by introducing a long-range frequency-dependent kernel. In order to do so,
this work has been divided in three main parts.

In the first part of this thesis, the effects of range separation on the excitation energies
of a system are studied in the time-independent framework. This is done by following
the evolution of the excited states of a partially interacting system where only the long-
range part of the electron-electron interaction has been introduced along an adiabatic
connection where the ground-state density is kept constant by Lieb optimization of
the potential. This study is first done analytically by expanding the energies around
the two limit cases where no interaction or all the interaction is included. It is then
applied on the helium and beryllium atoms and on the dihydrogen molecule without
any approximations except for the finite basis set one, in order to be able to attribute
our observations to the range separation only. Starting from the obtained energies,
we then explore two possibilities to improve the description of the excitation energies
of the physical system from the ones of the partially interacting system: first-order
perturbation theory is tested and an energy extrapolation scheme is also studied.

In the second part of this thesis, we apply range separation on both the exchange and



INTRODUCTION

correlation TDDF'T kernels within a single determinant approximation. This defines the
time-dependent extension of the range-separated hybrid (RSH) method used for ground-
state calculations. Within this approximation, the long-range part of the exchange
kernel is treated at the Hartree-Fock level while the long-range correlation kernel is
absent. This would thus allow for the perturbative addition of a frequency-dependent
long-range correlation kernel in a second step. In practice, this implies that the long-
range part has to be removed from the usual correlation kernel and is done within
the local-density approximation in the closed-shell case. The time-dependent range-
separated hybrid (TDRSH) method is then applied on a set of five small molecules and
on a charge-transfer dimer in order to study the impact of the removal of the long-range
correlation on their first excitation energies.

In the last part, we design a long-range frequency-dependent correlation kernel and
add it to the TDRSH one. In order to do so, we use many-body perturbation-theory
techniques which are based on one-particle Green’s functions used in the condensed-
matter physics community. In this approach, the excitation energies of the system are
obtained by solving the Bethe-Salpeter equation which structure is very close to the
TDDFT equations, but is however more general. Our motivation to go to this more
complicated formalism is that it allows one to get an explicit frequency-dependent ker-
nel and to circumvent the problematic adiabatic approximation encountered in TDDFT.
As finite molecular systems are concerned, some reformulation is required and the ap-
plicability of the usual approximations made for solids needs to be questioned. In this
part, we derive a dynamical second-order correlation kernel with respect to the electron-
electron interaction which we illustrate on the model system of the dihydrogen molecule
in a minimal basis at each step of the derivation. This kernel is derived algebraically but
most of the technical details are given in the appendices so that only the main steps and
their Feynman diagram interpretations are given in the main text. Finally, this kernel
is applied in a perturbative manner on four small molecules within the range-separation

framework.
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Chapter 1

Theoretical background on
density-functional theory

s N

In this chapter, a brief review of the many-body problem is given. This problem
is encountered by both quantum chemists and physicists, either on finite systems
such as atoms, molecules or supramolecular systems, or on solids. Starting from
the Schrédinger equation in the time-independent non-relativistic case, emphasis is
placed on one of the possible approaches which can be used to solve this equation:
density-functional theory (DFT). As this method lies at the heart of this thesis,
particular care is taken to define all the quantities used throughout this manuscript.
The theoretical and pragmatic aspects of DFT are reviewed together with some of
its possible extensions. In particular, the range-separated DFT scheme is described
in its initial context, namely ground-state calculations.

1.1 Introduction

When calculations are performed on a quantum system composed of several nuclei and
electrons, an extremely complex many-body problem arises from the interactions be-
tween the different constituents of the system. Although the equation governing the
behavior of these particles is known and, in the case of a non-relativistic system, is given
by the Schrodinger equation, no analytic solutions are available in the general case.

In this chapter, first, the many-body problem is recalled in the second quantization
formalism in Section 1.2. Then, the electron density and pair density are introduced
in Section 1.3 as they are the key quantities involved in DFT. The formal foundations
of DFT provided by Hohenberg and Kohn are given in Section 1.4 and the Kohn-Sham
approach is explained in Section 1.5. The local-density approximation with its successes
and its limitations is discussed in Section 1.6. Finally, the extension of the Kohn-Sham
approach by range separation of the electronic interaction is described in Section 1.7.
This method allows one to cope with some of the limitations of DFT within the usual
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CHAPTER 1. BACKGROUND ON DFT

approximations. More mathematical details can be found in Appendix A. For a more
exhaustive review, some articles [1-5] and books [6-11] provide a good introduction on
the subject.

1.2 Schrodinger equation for a N-electron system

1.2.1 Non-relativistic time-independent Schrodinger equation

Our system of interest consists of N non-relativistic electrons and M nuclei interacting
with one another in absence of any time-dependent external field. Each nucleus (A)
is characterized by its atomic number Z4, its mass M4 and its position R4, while the
electrons (i) have a mass m, = 9.11 x 1073'kg and an elementary charge ¢ = —e =
—1.60 x 1071°C and are described by their spin-space coordinates x; = (r;,0;) where
o; = «,f is the spin and r; the spatial coordinates. SI units are not well suited for
quantum systems. It is convenient to work with atomic units which are defined such
that

h=me = e*/(4neg) = 1. (1.1)

This unit system will be used hereinafter.

The way the particles behave and interact with each other is described by the Hamil-
tonian of the system Hi,, which depends in principle on all nuclear and electronic co-
ordinates ({xy},{Ras}). This Hamiltonian splits into two kinds of contributions:

e kinetic terms coming from the motion of both the nuclei and the electrons;

e potential terms due to the nucleus-nucleus and electron-electron repulsion and the
nucleus-electron attraction.

The total Hamiltonian of the system in atomic units in absence of any extra external
field is then

M y
¥ V2 TuTs
H R - _ A Vi _ ZaZp
ol Gk (R == 5 =2 5+ 2 ) R Ty
_;AZ:l|RA—r| ;;m*rﬂ’

where V2 and V? are the Laplacians with respect to the spatial nuclear coordinates
R4 and electronic coordinates r;, respectively. The stationary quantum states of the
system are then obtained by solving the Time-Independent Non-Relativistic Schrédinger

FEquation:

Htot({XN}a {RM})‘I’i,tot({XN}7 {RM}) = Ei,totqji,tot({xN}; {RM})a (1-3)
which is an eigenvalue equation. This equation states that if the system is in a stationary

12



1.2. SCHRODINGER EQUATION FOR A N-ELECTRON SYSTEM

state of energy F; ..t then its wave function ¥, . is an eigenvector of the total Hamil-
tonian and is associated with the eigenvalue E; ... In practice, except for some very
simple systems, it is not possible to solve this equation exactly and one has to design
some efficient approximated resolution schemes.

The first approximation which is usually done concerns the coupling between the
motions of the electrons and the nuclei. The mass of a nucleon is around 1800 times
the mass of an electron. Hence, the coupling between the nuclear and electronic parts
of the Hamiltonian can be neglected as a first approximation such that an electronic
Hamiltonian H, can be constructed in which the positions of the nuclei enter only as

parameters,
N 2 N M N N 1
Vi, P 1.4
({XN} {RM} 1:21 2 + z:zlgl |RA*I‘1‘ ;; ‘I'ifrj| ( )

This means that the electrons still feel the Coulomb interaction coming from the nuclei
but see them fixed. This defines the so-called the Born-Oppenheimer approrimation.
Within this approximation, the total wave function of the system can be factorized into
a nuclear part ¥, and an electronic part ¥, in which the nuclear positions are only

parameters:

Ui ot({xn} {Ru}) = Wi e({xn}; {Rar}) Wi n({Rar }). (1.5)
The electronic Schrédinger equation
He({xn} {Ru D ¥ie({xn}i{Ru}) = Eie (R ) Wi e({xn}; {Rar}) (1.6)

is then solved in a first step. The nuclear kinetic term corresponding to the first term
of the r.h.s. of Equation (1.2) and the nucleus-nucleus potential, are then added back
in a second step so that the Schrodinger equation for the nuclear motion can be solved

[Ta({Rar}) + Van({Rar}) + Bie (R D] Win({Rar}) = Eigor Vin({Rar}).  (1.7)

The electronic wave function ¥.(xi,...,xy) is a complex-valued function which de-
fines a probability amplitude. The quantity |W.(x1,...,xy)|?dx1dxs - --dxy is then the
probability of finding simultaneously electron 1 in the volume element dx; around xi,
electron 2 in dx, around x», etc. As a probability, it must integrates to 1 which leads to
the normalization condition

/\\Ilc(xh...,XN)|2dx1dX2~~~de =1 (1.8)

Moreover, as electrons are fermions, the Pauli principle states that the electronic wave
function must be antisymmetric with respect to the exchange of any two electrons,

We(xlnn-xi.-.Xj.-.XN) = —We(XI..-Xj..-XIL-.-.XN). (1.9)
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In this thesis, we will focus only on the resolution of the electronic Schrodinger equa-
tion (1.6) within the Born-Oppenheimer and non-relativistic frameworks. For the sake
of conciseness, the subscript “e” will therefore be dropped hereinafter.

1.2.2 Electronic Hamiltonian in second quantization

Up to this point, all the quantities were expressed in the first quantization formalism.
An alternative powerful framework is given by second quantization as it provides a
convenient, compact formalism for the study of the electronic problem. It relies on
creation and annihilation field operators Wi (r) and ¥, (r) which respectively creates or
destroys an electron of spin ¢ at the position r. In order to enforce the Pauli principle,
these operators fulfill the following anticommutation relations:

.
[xi:j,(r), bt (r/)} =0 (1.10)
[xifg(r), Wl (r')} = pprdlr 1),

Using this formalism, the electronic Hamiltonian can be expressed as:

H=T+ Vie + Wee, (1.11)
where 7' is the kinetic energy operator

7ot Z/\i:g(r)v2\if,,(r)dr, (1.12)

Vie is the electron-nuclei interaction operator

Vie = Z/xi/j,(r)vne(r) U, (r)dr (1.13)
with the one-electron nuclei-electron potential vne(r) = =, Za/|Ra —r|, and Wee is the
electron-electron operator

W, = %Z / / B (0B, (¢ Y (0,100 (1) 0 (1)l (1.14)
o,0!

with the two-electron interaction wee(r,r’) = wee(|r — r'|) = 1/|r — 1'|.

For the electrons, the field created by the nuclei is external. However, the Coulomb
potential is only one example of an external potential v able to bind N electrons. These
external potentials define a set Vy such that the corresponding Hamiltonians have a

N-electron ground state [12]:

14
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Vn = {v | H[v] has a N-electron ground state}. (1.15)

In this expression, the square bracket notation in H|[v] denotes a functional dependence
of the Hamiltonian H on the potential v. More details on functional calculus are given
in Appendix A.1 or can be found in [6] for instance.

1.2.3 Variational principle

The first step of a quantum calculation is often the determination of the ground state
of the system, i.e., the state with the lowest energy. As its energy is minimal, the
Rayleigh-Ritz variational principle [13] can be used. It means in particular that for
any trial N-electron wave function Wy, satisfying the normalization condition (1.8),
the expectation value of the Hamiltonian over this wave function is higher than the
ground-state energy Fj,

E[Wial) = (Urial | H|Wiriar) > (Vo H| W) = Fo. (1.16)

This inequality sharpens into an equality only for a ground-state wave function ¥, =
Uo. Minimizing the energy over all the N-electron normalized wave functions provides
thus a strategy to find the ground-state wave function. In order to perform the mini-
mization under the normalization constraint, it is convenient to introduce a Lagrange

multiplier £, and then solve the equation
6 [(U|H|W) — E(T|T)| =0 (1.17)

without constraints, where the optimized value of the Lagrange multiplier is the energy
of the state |¥). Unfortunately, it is usually not possible in practice to perform the
minimization over all the possible wave functions and only a subset is considered. Con-
sequently, the calculated ground-state energy is only an upper bound to the true wave
function.

For the past decades, quantum chemists and physicists have designed a multitude of
methods to approach the ground-state wave function. The simplest one is the Hartree-
Fock method in which the considered subset of wave functions is the set of single Slater
determinants, i.e., antisymmetrized products of N one-electron wave functions ¢(x).
These one-electron wave functions are called spin-orbitals and can be decomposed into a
spatial orbital ¢(r) and a spin function x (o) such that ¢(x) = ¢(r)x(c). The Hartree-Fock
reference wave function can then be refined by extending the search subset or by using
perturbation methods.

15
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1.3 Electron density and pair density

The N-electron wave function is a complicated object which depends on all electronic
coordinates. It was soon pointed out that this level of complexity may not be required
to describe the system and that simpler quantities could be used instead of the full wave
function. One of these quantities is the electron density n(r) which was first suggested
by Thomas and Fermi in 1927 [14, 15].

1.3.1 Electron density

Given a normalized N-electron wave function ¥(xy,...,xy), we have already mentioned
that its square modulus |¥(xy,...,xy)|?dx1dxs - - - dxy is the probability of finding simul-
taneously electron 1 in the volume element dx; around x;, electron 2 in dxs; around xa,
etc. As the electrons are indistinguishable, this leads to the definition of the electron
density n(r) by integrating over all the spin variables and all but one of the spatial
variables

n(r) :N/|\Il(x,1»<2,...,x1\;)|2 dodxs -+ - dxy, (1.18)

where the N prefactor accounts for the indistinguishability of the electrons. The quantity
n(r)dr can therefore be interpreted as the average number of electrons with arbitrary spin
in the volume element dr around r. The electron density is considerably simpler than
the electronic wave function as it depends only on the space coordinates of one electron
instead of the spin-space coordinates of all electrons. Moreover, it is an observable of
the system and can be measured experimentally, for instance by X-ray diffraction. It is

to be related to the density operator
i(r) =Y Wh(r)P,(r), (1.19)

as it can be obtained by taking the expectation value of this operator over the wave
function n(r) = (¥|a(r)|¥).
Using the definition of the density operator, the nuclei-electron potential can be

rewritten as

Vie = /vne(r)ﬁ(r)dr. (1.20)

The ground-state density is a function from R3 to R which satisfies several properties:
1. It is a non-negative function, n(r) > 0.
2. It integrates to the total number of electrons, [n(r)dr = N.

3. It fulfills the Kato cusp condition [16]: when an electron is on-top of a nucleus A,
the electron-nuclei potential diverges. This divergence is compensated by a cusp in
the electron density, such that in terms of the spherically averaged density 7n(ra),

16
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where r4 is the distance between the electron and the nucleus,

aﬁ(’l“A>
ora

= —27,4(0). (1.21)
T‘A%O

Hence, in the vicinity of the nucleus A, the electron density behaves like

fi(r) ~ e 2%Ar, (1.22)

4. Tts long-range asymptotic behavior is fixed by the ionization energy [17]: at large
r, the electron density decays exponentially and this decay is governed by the

ionization energy &; of the system n(r) ~ e 2V2I",

The densities coming from an N-electron ground-state wave function define the set

An = {n| n comes from an N-electron ground-state wave function}. (1.23)

Spin density and spin polarization

The electron density does not differentiate electrons with respect to their spin. However,
in particular for open-shell systems, this differenciation can become useful. The prob-
ability density of finding an electron with a specific spin o is given by its spin density
n(x) or ny(r). The sum of the o and 3 spin densities gives back the total density, while

their difference defines the spin polarization (or spin magnetization) density

m(r) = na(r) — ng(r). (1.24)

1.3.2 Pair density

In the electronic Hamiltonian, two-electron interactions are also involved. To describe
them, one needs to know the position of two electrons simultaneously. It is thus conve-
nient to have access to the average number of electron pairs with arbitrary spins around
two positions r and r’. This information is given by the pair density

na(r,r’) = N(N — 1) / |U(x, %', X3, ..,%xn)|?dodo’dx3 - - - dx, (1.25)

up to a normalization factor, where the factor N(N — 1) accounts for the fact that

electrons are indistinguishable. The pair density operator

a(r,r') = S W) ET, (), (1) B, (x)
o (1.26)

=n(r)A(r") — a(r)d(r —r’)
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is directly related to the pair density as the latter is its expectation value ny(r,r’) =
(¥|na(r,r")|¥). It can be used to reformulate the expression of the electron-electron
operator

Wee = %// o (1, ¥/ )wee (1, v/ )drdr’. (1.27)

Due to their fermionic nature and the electron-electron interaction, electrons have
correlated motions. Therefore, the pair density is not simply the product of the two
electron densities: an additional term, the exchange-correlation pair density, na ., enters
its expression to take these effects into account:

na(r,r’) = n(r)n(r’) + no x(r,r’)

(1.28)
n(r)n(e’) + n(r)hye(r, ).

where hy. is the exchange-correlation hole. The pair density has some interesting prop-

erties worth mentioning:
1. It is a non-negative function: ny(r,r’) > 0.
2. It is symmetric with respect to the interchange of its arguments: na(r,r’) = na(r', r).

3. It integrates to the number of pairs: [[ na(r,r')drdr’ = N(N —1).
The exchange-correlation hole normalization is then: [ hy(r,r’)dr’ = —1.

4. When the electrons are on-top of each other, the pair density reduces to the on-
top pair density na(r,r). In this point, the Hamiltonian diverges but the energy of
the system remains finite. This divergence has thus to be counterbalanced by the
derivative of the pair density and defines the electron-electron cusp condition [18].

1.4 Theoretical foundation of density-functional theory

The motivation at the root of density-functional theory is to replace the variational
principle (1.17) where the minimization is done with respect to the wave function, by
a minimization over the electron density. The first mathematical justification for this
approach was given by Kohn and Hohenberg in their famous theorems [19]. Their theory
was later extended by Levy [20] and Lieb [21] in order to minimize over an explicitly
known set and to ensure the existence of an unique solution. A brief overview of these
formal justifications is sketched in the following section. More details can be found for
instance in [6-9, 22, 23]

1.4.1 Hohenberg-Kohn theorems

In order to construct the electronic Hamiltonian of a system, very few information is

really needed. The number of electrons N is all what is required to write down the
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kinetic operator and the electronic interaction, and the external potential v allows the
construction of V;,. The Hamiltonian is therefore a functional of both N and v, H[v, N].

The first Hohenberg-Kohn (HK) theorem states that the ground-state density is in
fact sufficient and can be used instead of v and N to construct the Hamiltonian of the

system.

Theorem 1 (First HK theorem). Each N-electron density is the ground-state density
of at most one Hamiltonian H|[v, N] where the external potential v is determined up

to an additive constant c

n(r)=n'(r) = o()=1(r)+c (1.29)

The proof of this theorem is surprisingly simple and uses a reductio ad adsurdum argu-
ment [19]. This theorem states that the ground-state density no contains by itself all the
information to construct the Hamiltonian of the system H[v, N]. Therefore, one should
be able to extract the number of electrons and the external potential from the ground-
state density. The first is trivial as the density integrates to the number of particles
N. For the latter, it is easy to get an insight in the case of the Coulombic potential
although the HK theorem is more general. In fact, as mentioned in Equation (1.21), the
density presents a cusp at the position of each nucleus R4 which size is proportional to
the atomic number of the given nucleus Z4. The density contains therefore all the infor-
mation needed to construct the electron-nuclei potential so that the Hamiltonian can be
completely determined. This can be summarized as n = [v, N] = H. The consequence of
this theorem is that all the properties of the system, and in particular, the ground-state
energy, are functionals of the density. As the dependence in N of the Hamiltonian is
trivial, it is dropped in the following.

Although the physical interpretation of this theorem can seem straightforward, all its
subtlety lies in the “at most”. It means that only some ground-state densities arise from
an external potential, those which satisfy this condition are said to be v-representable.
It means that there exist some “reasonable” N-electron densities, i.e., which are positive
and L'-integrable, which do not correspond to any physical potential. Actually, in order
to have a ground-state density, the ground state should exist, which means that the
potential should be able to bind N electrons. The first HK theorem therefore defines a
mapping between the set of densities Ay which comes from an N-electron ground-state
wave function and the set of potentials Vy which are able to bind N electrons.

Given an Hamiltonian H[v], with v € Vy, and ¥[n] its ground-state wave function

associated to the density n € Ay, the ground-state energy is
E[v] =(¥[n]|T + Wee + V|¥[n])

L (1.30)
=(U[n]|T + Wee|¥[n]) + [ v(r)n(r)dr.
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In this expression, the part (¥U[n]|T + Weo|¥[n]) = Fux[n] does not depend explicitly on
the external potential. It is called the HK functional and can be seen as an universal
functional as it is system-independent.

The second HK theorem states that the variational principle holds for this universal
functional Fyk(n].

Theorem 2 (Second HK theorem). For any positive integer N and potential v € Vy,
it exists a density functional Fyuk[n] such that Fux[n]+ [ v(r)n(r)dr reaches its minimal
value at the ground-state density of a system composed of N electrons in the potential
v(r). This minimum is then the ground-state energy of this system E[v].

This theorem can be formulated in terms of two equivalent variation principles

E] = nrél%}v {F[n] + /v(r)n(r)dr} , v € Vn, (1.31a)
Fln) = mgx {E[v] - /v(r)n(r)dr} . neAy (1.31D)

These two theorems lay the formal justification for density functional theory. Unfor-
tunately, neither the form of the HK functional nor the two sets Vy and Ay are known.
In order to have explicitly known sets, Levy and Lieb defined weaker conditions on the
potentials and densities which lead first to the Levy-Lieb constrained-search and then
to the Lieb convex-conjugate formulation of DFT.

1.4.2 Levy-Lieb formulation

A generalization of the HK theorem which does not require the density to be v-
representable was proposed, by Levy [20] and Lieb [21] and is usually known as the
Levy or Levy-Lieb constrained-search formulation. Their idea was to extend the set of
potentials from the potentials which give an N-electron ground state to the potentials
which give a finite energy, i = L>® + L3/?> > Vy. For such potentials, as they may not
come anymore from an Hamiltonian which has a ground state, the minimizing wave func-
tion may not exist and the minimum therefore becomes an infimum in the Rayleigh-Ritz
variational principle.

The minimization can be performed into two steps, an outer minimization over n and
an inner minimization over all the wave functions which give the same density n. The
constraint over the density is weaker than in the original HK scheme as it only needs to
be N-representable:

E] = 1rq1,f<\I/|H[v]|\I/> vel

= inf {inf <\D|T+Wee|xp>+/U(r)n<r)dr}. (1.32)

nely (¥Y—n
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The set of N-representable densities is

In = {n| n comes from some N-electron wave function ¥}

1.33
={n|Vr,n(r) > 0,/n(r)dr = N,/|V\/n(r)|2dr < 00} ( )
The Levy-Lieb functional is then
Fln] = inf (U|T 4 Wee|¥), neZIy. (1.34)

V—n

The set of N-representable densities is explicitly known and F[n] = Fuk[n] if n € Ay.
However this functional is still not convex as pointed out by Lieb in [21]. In order to
have an unique solution, Lieb then proposed a convex-conjugate functional, F[n], which
also has an explicitly known domain and can guarantee an unique solution due to its

convexity

F[n] = sup {E[v} — /v(r)n(r)dr} , ne X. (1.35)

veX*
This functional is the convex-envelope of the Levy-Lieb functional and is obtained by
convex-conjugation (or Legendre-Fenchel transform) of the energy [12, 21]. The density
and potential spaces X and X* are then conjugated Banach spaces given by X = L3N L!
and X* = L32 4+ L[> = U and are explicitly known. The HK, Levy-Lieb and Lieb
functionals give the same results for ground-state densities.

1.5 Kohn-Sham approach

The HK theorems provide the formal framework for DFT, but in practice, to be able
to perform calculations, a pragmatic way to construct the universal functional is still
required. To achieve this, in 1965, just one year after the HK theorems, Kohn and Sham
proposed to partition the universal functional, using an auxiliary fictitious system of
non-interacting electrons [24].

1.5.1 Kohn-Sham system

The approach proposed by Kohn and Sham consists in replacing the real system of N
interacting electrons by a much simpler system of N non-interacting electrons. In the
auxiliary system, the electrons move in an effective potential such that its ground-state
density is the one of the real system. A schematic representation of the Kohn-Sham
and real systems is given in Figure 1.1. As the ground-state density contains all the
information thanks to the HK theorems, it is therefore possible in principle to calculate
all the properties of the real system using the auxiliary system, as they have the same
ground-state density.
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interacting
electron

non-interacting
electron

nucleus of the
fictitious molecule

nucleus of the
real molecule

Figure 1.1 — Schematic representation of the Kohn-Sham approach. On the left, the
real system of N interacting electrons moving in the field of the nuclei is represented. On
the right, the fictitious system of N non-interacting electrons is shown. These electrons
move in a modified potential such that both the real and the fictitious system have the
same ground-state density.

The universal functional of the Kohn-Sham (KS) system is explicitly known (though
the dependence in the density is implicit) and reduces to the kinetic contribution of
the non-interacting electrons. In the Levy-Lieb formulation, the KS functional is then
defined as

FXS[n] = inf (U|T|¥) = Ts[n). (1.36)

U—n
As the electrons do not interact with each other, the minimizing wave function can
be represented by a single Slater determinant ®, constructed on the KS orbital basis
set {¢r} such that

1
(I)()(Xl,XQ,...,XN) = Wdet{api(xj)}, (137)
and its density is then given by
n(r) =Yl (1.38)

where the index 4 runs over the occupied orbitals. The non-interacting kinetic functional
Ts[n] can be calculated exactly and when expressed in terms of orbitals, is given by

Tylnl = =3 Y (V1) (1:39)

K2

In this expression, the density dependence of Tg is implicit and is build in through the
orbitals by Equation (1.38).

As the ground-state energy is a functional of the density, it should be the same
whether it is calculated with the real system or the fictitious one. This means that the
KS potential must therefore take care of all the effects coming from the electron-electron
interaction which are not taken into account in the KS functional. With respect to the
external potential v of the real system, the KS potential v%5 needs thus an additional
contribution to describe the interaction. This extra term is called the Hartree-exchange-
correlation potential viy such that v¥5(r) = v(r) +vh..(r). It can be split into its classical
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contribution, the Hartree potential

vH[n}(r):/lf(_rlgl|dr’ (1.40)

which describes the Coulomb interaction, and the exchange and correlation potentials,
whose explicit forms are unknown and which must describe all the non-classical effects.
The ground-state energy can then be expressed equivalently using the real system or the
KS system as

Ey ZI{I;?% {F[n} + /n(r)v(r)dr} , (1.41a)
:?;iﬁ {Ts[n] + Epxc[n] + /n(r)v(r)dr} . (1.41Db)

where the density is obtained in terms of the KS orbitals by Equation (1.38) and, where
the term Epy.[n] is the Hartree-exchange-correlation energy functional and is related to
the corresponding potential by functional differentiation

UHxe[n](r) = (W (1.42)

1.5.2 KS Hamiltonian

The resolution of Equation (1.41b) under the orthonormality constraint: (¢;|¢;) = i
on the KS orbitals leads to the resolution of the set of one-electron KS equations

{—;W + vKS(r)} ©i(r) = g50(r), (1.43)

where the eigenvalues ¢; are the KS orbital energies associated to the KS orbitals ¢;.
This is equivalent to the equation

H*S[n]|®) = (T + VKS[n}) |®) = £%5[n]|®) (1.44)

where H¥S[n] is the KS Hamiltonian, V¥5[n] = [vXS[n](r)i(r)dr is the KS potential
operator and £¥5[n] are the KS eigenvalues. This equation has to be solved iteratively as
the KS potential depends on the orbitals. When convergence is reached, the minimizing
wave function is the KS ground-state wave function and gives back the exact ground-
state density of the real system.

Meaning of the KS wave function and orbital energies

Although it reproduces the exact ground-state density, the KS ground-state wave func-
tion is not the exact ground-state wave function. Similarly the energies of the KS orbital
are not a priori related to the excited-state energies of the real system. However, the
energy of the highest occupied molecular orbital (HOMO) can be intrepreted from the
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extension of Koopmans’ theorem [25, 26|, as the opposite of the ionization energy of
the N-electron system and the opposite of the electronic affinity of the (N — 1)-electron
System.

Asymptotic behavior of the KS potential

The nuclear potential of a neutral N-electron system behaves as —N/r when r — co and
the Hartree potential goes asymptotically as N/r. Therefore, they cancel each other in
this limit. When an electron is very far away from the rest of the system, it should
feel the electrostatic attraction due to the remaining positive ion. Thus, the asymptotic

behavior of the exchange-correlation potential must be

Vxe(r) —— —1. (1.45)

r—00 r

This illustrates the fact that there is no self-interaction in the exact Kohn-Sham formal-

ism as for an 1l-electron system, the Hartree and exchange potentials cancel exactly.

1.5.3 Hartree, exchange and correlation functionals

All the difficulty in the KS scheme lies into the determination of the Hartree-exchange-

correlation functional. The Hartree functional is explicitly known and is given by
_ 1 [fn@nl), .,

Unfortunately, such an expression is not available for the exchange-correlation (xc) func-
tional which is therefore the only remaining unknown quantity. It must take into account
what is missing in the non-interacting kinetic functional and in the classical Hartree in-

teraction

Eyc[n] = Tn| — Ts[n] + Wee[n] — En[n]
= (U|TT) — (@[T|®) + (¥[Wee| V) — B[] (1.47)
= <\I/‘T + I/T/vee‘\lw - <®|T + I/T/ee‘(l)> + <(I)|Wee|q)> - EH[n]

It is usually further decomposed into two contributions, an exchange functional
Ey[n] = (®|Wee|®) — Enln] (1.48)

which must account for the antisymmetry of the wave function with respect to the
exchange of two electrons, and a correlation functional

E.[n] = (U|T + Weo | ) — (B|T 4+ Weo| @), (1.49)
which must describe the effects due to the correlated motion of the electrons.
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Coming back to the definition of the pair density, this implies that the pair density
can also be decomposed in a similar fashion

na(r, ) = n(r)n(r’) + nox(r, ) + ngo(r,r’) = nES(r,1') + ny o (r, ') (1.50)

where nXS(r,r') = (®|ig(r,r’)|®) is the KS pair density. Therefore, the exchange and

correlation pair densities can be expressed as nax(r,r') = n¥S(r,r’) — n(r)n(r’) and

nac(r, 1) = na(r,r’) — nKS(r,r’). In particular, this gives a convenient definition for the

// "T:_r r| drdr’. (1.51)

1.6 Local density approximation

exchange functional as

1.6.1 Principle of the approximation

Since the KS scheme was proposed, the design of good approximations for the exchange-
correlation functional has been a major subject of research. The first approximation
was proposed by Kohn and Sham in the same paper. It is based on a model system, the
uniform electron gas (UEG) in which electrons move on a positive uniformly charged
background such that the total system is neutral and has an electron density n. This
system is of particular interest because it defines in fact a series of systems where the
exchange and correlation functionals are known either exactly or with very high accuracy
for any constant density n. In other systems such as the hydrogen or the helium atom,
the KS potential can also be numerically calculated by a Lieb optimization but provides
only a solution for a specific density.
The exchange energy per particle in an UEG of density n is known explicitly:

ex(n(r)) = —Z (W)V?” (1.52)

s

and was originally derived by Dirac [27] and Slater [28]. Such an explicit expression
is not known for the correlation part, but very accurate quantum Monte-Carlo calcula-
tions were performed by Ceperley and Alder [29] and lead to analytical expressions by
interpolation, the most famous for molecules being the one by Vosko, Wilsk and Nusair
in 1980 [30] and the one by Perdew and Wang in 1992 [31].

The idea underlying the local-density approximation (LDA) is then to divide the
real system onto a grid and substitute the exchange-correlation energy density on each
volume element dr around the position r by the one calculated for an uniform electron
gas of density n(r) as shown in Figure 1.2 such that the LDA exchange-correlation energy
is

Xc

ELPAIp) = /n(r)eUEG(n(r))dr. (1.53)
The Hohenberg-Kohn theorems state that it is in principle possible to determine the
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Figure 1.2 — Schematic representation of the LDA approximation, where the energy
density functional at each grid point is replaced by the one of the uniform electron gas
which has the same density.

total energy using only the total density and not the spin densities. However, when it
comes to designing approximations for the exchange and correlation functionals, using
the spin densities simplifies greatly the task, especially to reproduce the difference of
stability between states of different spin. LDA was therefore extended to spin densities,
which gave rise to the local-spin-density approximation (LSDA). Hereinafter, LSDA
functionals are used but the spin-density dependence will be kept implicit.

1.6.2 Performance of the approximation

Realistic molecular systems are highly heterogeneous, therefore as the LDA functional re-
lies on a homogeneous system, it would be expected to give disastrous results. However,
this approximation turns out to behave extremely well given its level of complexity. In
fact, the LDA functional usually overbinds molecules but gives reasonable structures [4,
32]. It benefits from an error compensation between the underestimation of the total
exchange energy and the overestimation of the correlation. Moreover, in this approxi-
mation, the sum rule for the exchange-correlation hole is satisfied which can also be an
explanation for its overall good performance.

A shortcoming of the LDA functional comes from the wrong asymptotic behavior
of the xc potential at large distances. In fact, as the density decays exponentially, it
is straightforward to show that it will also be the case for the LDA potential while
it should decay as —1/r. This comes from the self-interaction error, as the exchange
potential does not cancel the Hartree potential anymore in a 1-electron system. It also
causes the Kohn-Sham orbital energies to be too low in magnitude and in particular,
the ionization energy is largely underestimated.

It is difficult to provide a recipe to improve systematically the functionals. Introduc-
tion of gradient expansion corrections lead to the generalized-gradient approximations
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(GGA) in an attempt to take into account the system inhomogeneity. The most famous
GGA functionals are BLYP [33, 34] and PBE [35]. However, despite the gain of com-
plexity, the overall improvement of these functionals with respect to the LDA remains
modest [36, 37]. One reason for this is that the sum rule for the exchange-correlation
hole is not fulfilled anymore with these functionals. Even more flexibility can be added
by the introduction of the Laplacian of the density or the kinetic-energy density 7(r)
in meta-GGA approximations, or by introducing some percentage of Hartree-Fock ex-
change in hybrid ones. In the continuity of the hybrid approximations, another approach
relying on the range separation of the electronic interaction can be considered in order

to introduce some exchange and correlation coming from wave-function methods.

1.7 Range separation of the two-electron interaction

1.7.1 Motivation

The local or semi-local approximations to the exchange and correlation functionals may
seem well suited when electrons are close to each other but are less accurate when they
are at large distance. Within these approximations, the DFT scheme seems therefore
adapted to describe the electronic interaction only at short range and alternative meth-
ods should be considered for the long-range part of the interaction. Range-separated
DFT is an extension of the Kohn-Sham formalism which provides in principle an exact
scheme exploiting this statement [38, 39]. The starting point is not the non-interacting
Kohn-Sham system but a partially interacting system where the long-range part of
the Coulomb interaction is included. The Hartree-exchange-correlation functional must
therefore describe what is missing, i.e. the short-range part of the interaction. In order to
remain computationally interesting, not too much of the interaction should be included
in the starting system or one would just end with a problem of the same complexity than
the initial many-body problem. As some interaction is present in the starting system,
its wave function is no longer a single Slater determinant and should require several
(but not too many) determinants. Usual wave function methods such as configuration
interaction (CI) are therefore required for its description [40, 41]. This method can
therefore be seen as a multi-determinant expansion of Kohn-Sham theory which allows
for the rigorous combination of wave-function and density-based methods as represented
in Figure 1.3.

Moreover, one difficulty encountered in the wave function methods is the description
of the electronic cusp when electrons are very close to each other. One advantage of the
range-separated approach is that this phenomenon is described in the density functional
part. In particular, this allows for a faster basis convergence in comparison with the
complete treatment of the problem with pure wave function methods.
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WF/GF

Figure 1.3 — Schematic representation of the range separation of the electron-electron
interaction. At short-range, a DFT treatment is used, at long-range, a wave function
(WF) method (or a manybody method based on Green’s function (GF)) is used. The
range separation parameter p can be seen as the inverse of the cut-off radius.

1.7.2 Range separation of the electronic interaction

In order to split the Coulomb interaction wee(r,r’) = 1/|r — r’| between an electron in r
and another one in r’, into a short-range (sr) and a long-range (Ir) part, several choices
can be made. Introducing a radial function f, the only constraints are that it should
vanish when the electron-electron distance is large and tends to 1 when the distance is

short,
1—f(lr—1')) n f(|r—r’|). (1.54)

: 1
wee(r’ I‘/) = wzg(rv I‘/) + were(r’ I‘/) - |I' — I'/‘ |I' — I'/|

Among the different possibilities, one should mention in particular the use of the Yukawa
potential we (r,r') = e~ /|r — /| [42-44], of the standard error function erf with or
without the addition of a Gaussian function (erfgau) [45] or of a Gaussian attenuated
potential [46].

In this thesis, range separation is made by using the standard error function erf

erf(z) = % /Ox et dt. (1.55)

This choice is convenient since, within a Gaussian basis set, the evaluation of the two-
electron integrals corresponding to the erf interaction requires only a simple change
in the algorithm. In order to control the range of the separation, a range-separation
parameter p € Rt is introduced such that the radial function f is given by f#(jr —r'|) =
erf(ulr — r'|). This parameter can be seen as the inverse of a smooth cut-off radius as
shown in Figure 1.4. If the electron distance is smaller than 1/ then the short-range
part is dominant, while the long-range part is for distances greater than 1/u. The density
is related to the inverse of the Wigner-Seitz radius

m:<3>w7 (1.56)

4mn
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1

Wee (T, 1) = W

1 —erf(ulr —1'|)

— WM (r, 1)
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‘l‘ . I./

1 r —r

1

Figure 1.4 — Full-range, short-range and long-range part of the Coulomb interaction
for a given range separation parameter p in function of the electron-electron distance
[r —r'].

which can itself be related to the mean distance between particles. Although the range-
separated approach is in principle exact for any pu, it is difficult to design approximate
functionals which are able to treat such an inhomogeneous system as a molecule. Ideally,
the range separation should depend locally on the density in each space point. However,
the resolution of such a problem would be very tedious so the choice was made to perform
the range separation globally with a compromise value of the range-separation parameter
L.

With this definition of range separation, it is then possible to define a short-range

and a long-range interaction operator

- 1 S A 1
WEEH =3 // Ao (r, v )wH (r, v )drdr’  and WIH = 5//ﬁg(r,r’)wg;’“(r,r’)drdr’, (1.57)

where the corresponding interactions are given by

. 1—erf —r
wip e = LT T gt ) =

erf(ulr — ')
v |

'

(1.58)

r —r

In particular, one should note that when p — 0, the long-range interaction operator
vanishes, and the short-range interaction tends to the real interaction, while when u —
oo, it is the opposite.

1.7.3 Range-separation of the universal functional

In comparison with the usual KS formalism of section 1.5, the long-range part of the
interaction is kept into the Lieb functional, which defines a long-range universal func-
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tional
F™#n) = inf (W|T + WiH W

v—n

o). (1.59)

Because of the presence of the long-range interaction operator, the minimizing wave func-
tion ¥* is no longer a single Slater determinant. By analogy with the fully-interacting
case, the long-range universal functional can be decomposed into its kinetic, Hartree,
exchange and correlation contributions where the real interaction is replaced by its long-
range equivalent

4 n] = Tsln] + E5*[n] + B[] + B [n, (1.60)

where by analogy to Equations (1.46), (1.48) and (1.49),

Eftn // whH (r, ) drdr’,

E)l(r,u[n] (I)|WIT’M|(I)> Elnu[ ] (161)
B {n] = (AT + WS 0#) — (@[T + Wi|@).

When u goes to 0, the long-range energy functionals vanish and the KS universal func-
tional FXS[n] is recovered. On the contrary, when p — oo, they tend to the full-range
Hartree, exchange and correlation functionals and the long-range universal functional
reduces to the full-range universal functional F[n].

For a given u, the total universal functional is recovered by addition of a comple-
mentary short-range functional F*#[n] which can also be decomposed into

Fomn] = Ep# o] + B[] + B[, (1.62)

where its Hartree, exchange and correlation contributions are given by

Eft"[n] = Buln] — Byy*[n],
B [n) = Ex[n] — B[], (1.63)
EZ[n] = Ecln] = E&H[n).

For the correlation contribution, the complementary short-range functional is not equiv-
alent to the one which would be obtained is the short-range part of the interaction was
kept into the functional instead of the long-range one [47]

Ferin] = inf (W|T + W3 |w). (1.64)

To avoid any confusion, a bar is therefore used for the complementary functional.
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1.7.4 Range-separated ground-state energy

Using these range-separated functionals, the ground-state energy of the system is then
obtained by

o = min { P24+ F 0l 4 [ ona(rinein ) -
= min {q}gfn<\lflf+ WEH W) + Efpt[n] + /Une(r)n(r)dr} . (1.65)

The minimizing wave function corresponds to the ground state solution of equation
HH|OHY = E1|TH), (1.66)

where H™# =T 4 Wkr 4 Vstr is the partially interacting Hamiltonian in which Vsr# =
[ A(r)v-#(r) is the complementary external potential operator which keeps the density
constant. This potential can be split into its nucleus-electron, Hartree, exchange and
correlation contributions % (r) = v (r)+vgy " (r)+vs"# (r)+v:#(r), where the short-range
Hartree, exchange and correlation potentials are obtained by functional differentiation
of the corresponding energy functionals

siptnr) = g, (1.67)

Up to this point, the theory is exact. In practice, a density-functional approximation
is usually used for Ef"[n]. The minimizing multideterminantal wave function ¥* can
then be computed self-consistently with Equation (1.66) using the usual wave-function
methods such as CI [40] or multiconfigurational self-consistent field (MCSCF') [48] or can
be approximated to a single Slater determinant. The latter defines the range-separated-
hybrid approximation (RSH) [43, 48, 49]. Due to the single determinant nature of the
wave function, the ground-state energy then reduces to

EY pan = (@o|T + Vae|®0) + En[no] + E, {ip[®o] + E5t*[no], (1.68)

where @, and ng are the minimizing Slater determinant and associated electron density.
In this approach, the long-range exchange is therefore treated at the Hartree-Fock level
and the long-range correlation is neglected.

One main advantage of such an approach is that the presence of the HF long-range
exchange potential ensures the correct asymptotic behavior of the xc potential in —1/r.

If the range separation is done on the exchange functional only, it defines the so-called
long-range corrected functionals (LC) [50] which can also be referred to as RSHX [51].
In this case, the ground-state energy is given by

Ef o = (®0|T + Vie| o) + Eit[no] + By fip[®o] + B [no] + Ee[no]. (1.69)
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1.8 Conclusion

In this chapter, the time-independent density-functional theory and its range-separated
extension were briefly reviewed. These methods are formally ground-state methods as
they are based on the variational principle. However, the HK theorems state the ground-
state density contain all the information on the system so in particular one should be
able to extract the excitation energies. In the next chapters, we will therefore focus on

how to extract these excitation energies in the framework of range separation.
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Chapter 2

Excitation energies along a
range-separated adiabatic
connection

This chapter is the subject of a publication in collaboration with J. Toulouse, A. M.
Teale, T. Helgaker and A. Savin, and has been submitted to the Journal of Chemical
Physics.

s N

In this chapter, we present a study of the variation of total energies and excita-
tion energies along a range-separated adiabatic connection. This connection links
the non-interacting Kohn-Sham electronic system to the physical interacting system
by progressively switching on the electron-electron interactions whilst simultaneously
adjusting a one-electron effective potential so as to keep the ground-state density
constant. In this work the interactions are introduced in a range-dependent manner,
first introducing predominantly long-range, and then all-range, interactions as the
physical system is approached. Reference data are reported for the He and Be atoms
and the H, molecule, obtained by calculating the short-range effective potential at
the full configuration-interaction level using Lieb’s Legendre-transform approach. As
the strength of the electron-electron interactions increases, the excitation energies,
calculated for the partially interacting systems along the adiabatic connection, offer
increasingly accurate approximations to the exact excitation energies. Importantly,
the excitation energies calculated at an intermediate point of the adiabatic connec-
tion are much better approximations to the exact excitation energies than are the
corresponding Kohn-Sham excitation energies. This is particularly evident in situ-
ations involving strong static correlation effects and states with multiple excitation
character, such as the dissociating H, molecule. These results highlight the utility of
long-range interacting reference systems as a starting point for the calculation of exci-
tation energies and are of interest for developing and analyzing practical approximate
range-separated density-functional methodologies.
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2.1 Introduction

Range-separated density-functional theory (see, e.g., Ref. [45]) constitutes an interesting
alternative to standard Kohn-Sham (KS) density-functional theory (DFT) [19, 24]. In
the standard KS approach, the physical interacting electronic Hamiltonian is replaced
by an effective non-interacting Hamiltonian. By contrast, in range-separated DF'T, the
physical Hamiltonian is instead replaced by a partially interacting Hamiltonian that
incorporates the long-range part of the electron-electron interaction. This corresponds
to an intermediate point along a range-separated adiabatic connection [39, 45, 52-54].
The KS Hamiltonian is linked to the physical Hamiltonian by progressively switching on
the long-range part of the two-electron interaction, whilst simultaneously modifying the
one-electron potential so as to maintain a constant ground-state density. The ground-
state energy of the physical system can then be extracted from the ground state of the
long-range interacting Hamiltonian by using a short-range density functional describing
the complementary short-range part of the electron-electron interaction.

Several short-range density-functional approximations have been developed [39, 45,
55-60] and a diverse range of approaches for calculating the ground state of the long-
range interacting Hamiltonian have been explored. To aid in the description of static
(or strong) correlation effects, which are poorly treated by standard density functionals,
configuration-interaction [39-42, 45, 54, 61] multiconfiguration self-consistent-field (MC-
SCF) [48, 62, 63], density-matrix functional theory (DMFT) [64-66], and constrained-
pairing mean-field theory [67, 68] descriptions of the long-range interacting systems
have been employed. To treat van der Waals interactions, second-order perturbation
theory [49, 69-79], coupled-cluster theory [58, 60, 80-82], and random-phase approxi-
mations [83-93] have been used successfully.

Electronic excitation energies can also be calculated in range-separated DFT by using
the linear-response approach with a time-dependent generalization of the static ground-
state theory [94]. In this case, the excitation energies of the long-range interacting
Hamiltonian act as starting approximations that are then corrected using a short-range
density-functional kernel, just as the KS excitation energies act as starting approxi-
mations in linear-response time-dependent density-functional theory (TDDFT). Several
such range-separated linear-response schemes have been developed in which the short-
range part is described by an approximate adiabatic semilocal density-functional kernel
and the long-range linear-response part is treated in Hartree-Fock [94-97], MCSCF [94,
97], second-order polarization-propagator approximation (SOPPA) [97], or DMFT [98].
These schemes aim at overcoming the limitations of standard linear-response TDDFT
applied with usual adiabatic semilocal approximations for describing systems with static
correlation [99], double or multiple excitations [100], and Rydberg and charge-transfer
excitations [101, 102].

For the purpose of analyzing the above-mentioned linear-response range-separated
DFT approaches, it is desirable to have accurate reference values of the excitation en-
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ergies of the long-range interacting Hamiltonian along the range-separated adiabatic
connection. In this work, we provide and analyze such accurate reference data for the
He and Be atoms and the Hs molecule. Short-range one-electron potentials keeping
the ground-density constant along a range-separated adiabatic connection are calcu-
lated at the full configuration-interaction (FCI) level within Lieb’s Legendre-transform
approach [21, 103, 104]. The excited-state energies of the long-range interacting Hamil-
tonian along the adiabatic connection are then calculated using the FCI method. Several
accurate ground-state calculations have been performed in the past along the standard
adiabatic connection [103-108] and range-separated adiabatic connections [45, 53, 108
110] for small atomic and molecular systems, but accurate calculations of excited-state
energies along adiabatic connections are very scarce (see, however, Refs. [103, 111]).

The chapter is organized as follows. In Section 2.2, range-separated DFT is briefly
reviewed and the definition of the excited states along the range-separated adiabatic
connection is introduced. In Section 2.3, the behavior of the excited-state energies near
the two endpoints of the adiabatic connection, the Kohn-Sham system and the physical
system, is studied analytically. After giving computational details in Section 2.4, results
along the full adiabatic-connection path are presented and discussed in Section 2.5.
Finally, some concluding remarks are made in Section 2.6.

2.2 Range-separated density-functional theory

In range-separated DFT (see, e.g., Ref. [45]), the exact ground-state energy of an N-
electron system is in principle obtained by the following minimization over normalized
multi-determinantal wave functions ¥:

By = min{(UT + Vo + W) + Egfnal . (2.1)

This expression contains the kinetic-energy operator 7', the nuclear-electron interaction
operator Vie = [wne(r)i(r)dr expressed in terms of the density operator 7(r), and a
long-range (Ir) electron-electron interaction operator

S 1
Wég#:i// wéﬁ;”(rlg)ﬁg(rl,rg)drldrg, (22)

expressed in terms of the pair-density operator n(r1,r2). In the present work, we use
the error-function interaction
f
() = SEU12). (2.3)
T12

where p controls the range of the separation, with 1/u acting as a smooth cut-off radius.
The corresponding complementary short-range (sr) Hartree-exchange-correlation density
functional Eft[ng] is evaluated at the density of U: ny(r) = (V]a(r)|P).
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The Euler-Lagrange equation for the minimization of Equation (2.1) leads to the
(self-consistent) eigenvalue equation

A ) = E5108), (2.4)

where U/ and & are the ground-state wave function and associated energy of the par-
tially interacting Hamiltonian (with an explicit long-range electron-electron interaction)

A = T g Vot Wi 4 Tt (25)

It contains the short-range Hartree-exchange-correlation potential operator, evaluated
at the density no(r) = (Uf|a(r)|Ph), which is equal to the ground-state density of the
physical system for all p,

Vi = [ sl ()a(r)ar, 2.
where S ]
ST, [t )’(C n

Ve 1] (r) = 752@) (2.7)

For 1 = 0, H™* reduces to the standard non-interacting KS Hamiltonian, AXS, while for
1 — oo it reduces to the physical Hamiltonian H:

ﬁKS = ﬁ'lr,y,:() = T + Vnc + VHXCa (28)
FI = f{lr,p:oo = T + Vne + Wee- (29)

Varying the parameter . between these two limits, H"™* defines a range-separated adi-
abatic connection, linking the non-interacting KS system to the physical system with
the ground-state density kept constant (provided that the exact short-range Hartree-
exchange-correlation potential o5k (r) is used).

In this work we also consider the excited-state wave functions and energies of the

long-range interacting Hamiltonian
AR = LT, (2.10)

where A'™# is Hamiltonian in Equation (2.5), with the short-range Hartree-exchange-
correlation potential evaluated at the ground-state density ng. In range-separated DFT,
these excited-state wave functions and energies provide a natural first approximation
to the excited-state wave functions and energies of the physical system. For p = 0,
they reduce to the single-determinant eigenstates and associated energies of the non-
interacting KS Hamiltonian,

HXS|9KS) — gkS|pks) (2.11)

while, for u — oo, they reduce to the excited-state wave functions and energies of the
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physical Hamiltonian
H|Uy) = Ej|0y). (2.12)

Note that, since the ionization energy is related to the asymptotic decay of the ground-
state density, the ionization energy of the Hamiltonian in Equation (2.10) is also in-
dependent of u and is equal to the ionization energy of the physical system. This is
an appealing feature since it sets the correct energy window for bound excited states.
Finally, note that the excitation energies A&} = & — &} calculated from Equation (2.10)
constitute a starting point for range-separated linear-response theory based on the time-
dependent generalization of Equation (2.1) [94].

2.3 Excited-state energies near the Kohn-Sham and phys-
ical systems

In this section, we study analytically the behavior of the excited-state energies &I as a
function of the range-separation parameter u near the two endpoints of the adiabatic
connection: the Kohn-Sham system at p = 0 and the physical system when p — co. This
study will aid in the understanding of the numerical results presented in Section 2.5.

2.3.1 Excited-state energies near the Kohn-Sham system

We first derive the expansion of the excited-state energies near p = 0, to see how the KS
energies are affected by the introduction of the long-range electron-electron interaction.
We assume that the system is spatially finite. All the details on the derivations of the
Taylor expansions around the KS system are given in Appendix B.1

We rewrite the long-range interacting Hamiltonian of Equation (2.5) as

e = fKS 4 yyle _plos (2.13)

Hxc»
with the long-range Hartree-exchange-correlation potential operator
Vit = Vi — Vit = [olitonte)dr (214

The expansion of the long-range two-electron interaction is straightforward [45] (valid
for urig K 1)

Ir,p _ erf(/”m) _ 2:“ 3,,.1r,(3) 10) 5 2.15
Wee (T12) 1o \/7? T U Wed (T12) + (:u’ )7 ( . )
with
wh G (r5) = 22 (2.16)
ee 3ﬁ 12
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Next, the expansion of the long-range Hartree-exchange-correlation potential

SERhn]
Ir,p _ Hxc
UHXC(r) - (5”(1') (217)
can be determined from the expansion of the corresponding energy functional ng’é [n].
As derived in Ref. [45], the expansion of the Hartree-exchange part begins at first order

and may be written as

3
+“—// nSS (11, r2)w!®) (r1)drydry + O(1). (2.18)

where n¥5(ry,ry) is the KS pair density, while the expansion of the correlation part only
begins at sixth order (assuming a non-degenerate KS ground state)

E™H[n] = 0+ O(°). (2.19)

If the functional derivative of Ej*[n] is taken with respect to density variations that
preserve the number of electrons, [dn(r)dr = 0, then the first-order term in Equa-
tion (2.18) does not contribute due to the fixed normalization of the KS pair density,
[[ nES(r1,ra)dridry = N(N —1). The derivative is then defined up to an additive (u-
dependent) constant C*, which can be fixed by requiring that a distant electron experi-
ences zero potential interaction in Equation (2.13), amounting to setting the zero-energy
reference. The linear term in p in the long-range Hartree-exchange-correlation potential
can then be determined as follows.

To first order in u, the long-range electron-electron interaction tends to a constant,
2u/y/m. A distant electron (with 1 < ri5 < 1/p) then experiences a constant interac-
tion 2(N — 1)p//m with the remaining N — 1 other electrons. This constant must be
exactly compensated by the long-range Hartree-exchange-correlation potential in Equa-
tion (2.13), so that its first-order term in p must also be 2(N — 1)u/y/7. The expansion
of vj# (r) therefore takes the form

2N —1 .
o) = 2 s O )+ o), (2.20)

where vgx(f’ )(r) is the third-order contribution.
Combining Equations (2.15) and (2.20), we arrive at the following expansion of the

long-range interacting Hamiltonian of Equation (2.13):

™0 = {KS 4 i) 4 3G L o), (2.21)
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with a constant first-order correction

N(N - 1)

a0 = — 7 (2.22)
and the following third-order correction
G =3yl @ ) (2.23)
W™ = % / /w,g;;@ (r12)fa(r1, r2)drdrs, (2.24)
Vi) / o ® ()a(r)dr. (2.25)

Since the first-order correction in the Hamiltonian is a constant, it does not affect the
associated wave functions. The expansion of the wave functions therefore begins at third
order in pu:

Ul =K 4 120 4 o@P). (2.26)

Using normalized KS wave functions (®X5|@KS) = 1, the expansion of the total energy
for the state k is then

N(N - 1)
NG

The first-order contribution is the same for all states, cancelling out in the differences

£l = €S - o IS O |9KS) 1+ O(1%). (2.27)

between the energies of two states. As a result, the corrections to the KS excitation
energies are third order in p.

For closed shells, the expansion of the difference between the singlet and triplet
energies associated with the single excitation i — a can be obtained by applying Equa-
tion (2.27) with the spin-adapted KS wave functions '®¥S = (0X$ + ®X5_) /\/2, for the
singlet state, and *1®XS = X% _for the triplet state with spin projection Mg = 1. Only
the two-electron term then contributes:

AE = 2 (il P ai) + O(i°)
8N3 o 2 5
3.7z (i)l + 06, (2.28)

where we have used 72, = r? + rZ — 2r; - ro. The appearance of the transition dipole
moment integral in Equation (2.28) means that, for an atomic system, the singlet-triplet
energy splitting appears at third order in y if the difference between the angular moment
of the orbitals p; and ¢, is Al = +1 or —1. Otherwise, the splitting appears at a higher
order in u.
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2.3.2 Excited-state energies near the physical system

We now derive the asymptotic expansion of the excited-state energies when p — oo,
which shows how the exact excited-state energies are affected by the removal of the very
short-range part of the electron-electron interaction. All the details of the derivation
can be found in Appendix B.2.
For this purpose, we rewrite the long-range interacting Hamiltonian of Equation (2.5)
as
Y™ = H — Wb 4 VSk, (2.29)

where H is the Hamiltonian of the physical system,
Wbt = // oc ! (r12)N2(r1, T2)dr1drs (2.30)

is the short-range electron-electron interaction operator defined with the complementary
error-function interaction

wzg,u(rlg) — M’ (2_31)

12

and ffgﬁc(’f is the short-range Hartree-exchange-correlation potential operator in Equa-
tion (2.6). The first term in the asymptotic expansion of wsi*(ri2) can be written in
terms of a delta function [45] (valid for uris > 1)

STy, 1
w ”(7"12) MZ (5([‘12) —+ O (‘u?’> , (232)
while the expansion of o5 (r) = §Ef;k[n]/dn(r) can be obtained from that of Efj%[n]. As
derived in Ref. [45], the expansion of the long-range Hartree-exchange energy is
EXHn] = —— / nKS(rr)dr+ 0 (= (2.33)
Hx 2,“2 2 /J
KS

where n5>(r,r) is the KS on-top pair density, while the expansion of the long-range

correlation energy is
U 1
E3om . 2.34
= 5 [ractrnar+0 (). (2.31)

where ny .(r,r) is the on-top correlation pair density of the physical system. Therefore,
the expansion of the short-range Hartree-exchange-correlation potential takes the form

1 g (- 1
L) = T )+ O (u) , (2.35)

where @?;;(((;2) (r) is the p=2 contribution formally obtained by taking the functional deriva-

tive of Equations (2.33) and (2.34).
Substituting Equations (2.32) and (2.35) into Equation (2.29), we obtain the asymp-
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totic expansion of the long-range interacting Hamiltonian as

. . 1 . 1
e — 1 + 72H1T7(—2) +0 <3> , (236)
1 7
where H'™(-2) = — 12 4 15202 g composed of an on-top two-electron term and a
one-electron term:
WEn(-2) = g / fia (r, 1)dr, (2.37)
Vi = / o (r)a(r)dr. (2.38)

The expansion of the Hamiltonian in Equation (2.36) suggests a similar expansion for
the excited-state wave functions, ¥} = ) + M‘Q\I/,(;Q) + O(n=?). However, as shown
in Ref. [112], this expansion is not valid for r12 < 1/u. The contribution of the wave
function for small 715 to the integral for the total energy £ = (W¥|H'™*|¥") nevertheless
vanishes in the limit 4 — oo, and the asymptotic expansion of the total energy of the
state k is

El = Ep + %@kmlr’(*?)\w +0 (;) , (2.39)

where the wave function ¥, is normalized to unity.

2.4 Computational details

The calculations were performed for the He and Be atoms and for the Hy; molecule
with a development version of the DALTON program [113], using the implementation
described in Refs. [104, 110]. First, a FCI calculation was performed to determine the
exact ground-state density within the basis set considered, followed by a Lieb optimiza-
tion [103] of the short-range potential v*"#(r) = vye(r) + vpli(r) also at the FCI level
to reproduce the FCI ground-state density in the presence of the long-range electron-
electron interaction w*(ry3). The FCI excited-state energies were then calculated using
the partially interacting Hamiltonian with the interaction w!%#(r12) and effective poten-
tial v0# ().

The Lieb maximization was performed using the short-range analogue of the algo-
rithm of Wu and Yang [114], in which the potential is expanded as

V() = Une (1) + Upe" (1) + D bige(r). (2.40)

where the reference potential is the short-range analogue of the Fermi-Amaldi potential

N -1
vl (r) = v no(r ) wiH (v — r'|)dr’, (2.41)

calculated for a fixed N-electron density ng, to ensure the correct asymptotic behaviour.
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The same Gaussian basis set {g;} is used for the expansion of the potential and the
molecular orbitals. The coefficients b; are optimized by the Newton method, using a
regularized Hessian with a truncated singular-value-decomposition cutoff of 10~7 for He
and 10~% for Be and H,.

Even-tempered Kaufmann basis sets [115] and uncontracted correlation consistent
Dunning basis sets [116] augmented with diffuse functions were tested extensively for
the He atom, especially to converge the lowest P state. No significant differences were
observed using the two basis sets and only the Dunning basis sets are used in the fol-
lowing. The basis sets used are: uncontracted t-aug-cc-pV5Z for He, uncontracted
d-aug-cc-pVDZ for Be, and uncontracted d-aug-cc-pVTZ Dunning basis sets for H,.

Calculations were performed for about 30 values of p between 0 to 10 bohr=! (with
about half the points between 0 and 1 where the energies vary the most). Cubic spline
interpolation has been used on this calculated data when plotting the total and exci-
tation energies as a function of u. For later use, analytical expressions were also fitted
to the calculated total energies and excitation energies. The forms used in the fitting
were chosen to satisfy the expansions at small and large u values as presented in Equa-
tions (2.27) and (2.39). The details of these fits are given in the supplementary material
in Appendix C.

2.5 Results and discussion

2.5.1 Range-separated adiabatic connection for the helium atom
Total energies

The total energies of the ground state 1S and of the first Rydberg-like singlet and triplet
S and P excited states of the He atom are plotted as a function of the range-separation
parameter p in Figure 2.1. At u = 0, the KS non-interacting total energies are obtained.
Being sums of orbital energies with a resulting double counting of electron repulsion,
these quantities are well above the total energies of the physical system (higher by about
1 hartree). When the long-range electron-electron interaction is added by increasing
p from p = 0, the total energies decrease linearly with p with a slope of —2/y/7, in
accordance with the linear term in the expansion of Equation (2.27) for N = 2. For
larger 1 values, the total energy curves flatten and approach the energies of the physical
system asymptotically as 1/u% as u — oo, in accordance with Equation (2.39). The total
energies along the adiabatic connection are poor approximations to the total energies of
the physical system unless the range-separation parameter u is large. Specifically, u > 6
is required to be within 10 mhartree of the exact total energies.
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Figure 2.1 — Ground- and excited-state total energies & (in hartree) of the He atom
as a function of x (in bohr~!). The total energies of the physical system Ej = /7>
are plotted as horizontal dotted lines (top). The slope at u = 0 is shown in dotted line
(bottom).
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Figure 2.2 — Firt S (top) and P (bottom) excitation energies A&} = &£ — &} (in hartree)
of the He atom as a function of x (in bohr!). The excitation energies of the physical
system AEj, = AELT™ are plotted as horizontal dotted lines. An error of +1 mHartree
is colored around each exact limit.

44



2.5. RESULTS AND DISCUSSION

003 T T T T
5}
g
g
2 0.025 1
k=
2
2 0.02 | e
G 25
5 0015 | T
Q
=
[}
ks 0.01 | .
=
=
£ 0,005 f -
&b
=t
.(7)
O 1 1 1 1
0 1 2 3 4 5

4 in bohr—!

Figure 2.3 — Singlet-triplet energy splittings (in hartree) for the He atom as a function
of u (in bohr™1).

Excitation energies

The lowest singlet and triplet excitation energies are plotted in Figure 2.2. The KS
singlet and triplet excitation energies are degenerate and, as already observed for a few
atomic systems in Refs. [117-119], are bracketed by the singlet and triplet excitation
energies of the physical system. As p increases from p = 0, the excitation energies
vary as u® since the linear term in Equation (2.27) cancels out for energy differences.
The singlet-triplet degeneracy is lifted and the excitation energies converge to the exact
singlet and triplet excitation energies when p — co. Whereas a monotonic variation of the
excitation energy with p can be observed for the singlet and triplet 1S— 2S excitations
and for the triplet 1!'S — 13P excitation, a non-monotonic variation is observed for
the singlet 1'S — 1'P excitation. This behaviour could be an artefact of the basis-set
expansions (either orbital or potential), noting that a similar behaviour was observed for
other excitations in a smaller basis set and was removed by enlarging the basis set. In line
with previous observations in Refs. [117, 119] for the KS system, the excitation energies
for Rydberg-type states along the adiabatic connection are rather good approximations
to the excitation energies of the physical system (the maximal error is about 0.02 hartree
at u = 0 for the triplet 1'S — 23S excitation), becoming better and better for high-lying

states as they must eventually converge to the exact ionization energy.
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Figure 2.4 — Ground- and excited-state total energies £ (in hartree) of the Be atom
as a function of x (in bohr~'). The total energies of the physical system Ej, = £~ are
plotted as horizontal dotted lines. The slope at x = 0 is shown in dashed line.

Singlet-triplet splitting

The singlet-triplet energy splittings for the 2S and 1P states are plotted in Figure 2.3.
The expansion at small u of Equation (2.28) predicts the singlet-triplet splitting to
increase as u? for the 1P state since it corresponds to the 1s — 2p excitation in the KS
system, so that A¢ = 1. By contrast, the singlet-triplet splitting should increase at most
as u® for the 2S state since it corresponds to the 1s — 2s excitation in the KS system,
so that A¢ = 0. This difference is clearly visible in Figure 2.3, where the 2S curve for
the singlet-triplet splitting initially increases more slowly than the 1P curve.

2.5.2 Range-separated adiabatic connection for the valence excitation
of the Beryllium atom

Total energies

The total energies of the ground state 1'S and of the valence singlet and triplet 1P excited
states of the Be atom are plotted in Figure 2.4. The KS total energies are approximately
6 hartree above the physical energies. At small u, an initial slope of —12/,/7 is observed
for all states, in accordance with Equation (2.27) with N = 4. However, convergence
to the physical energies with increasing p is much slower than for the He atom, owing
to the short inter-electronic distances in the Be 1s core region, which are consequently

probed at larger p values.

46



2.5. RESULTS AND DISCUSSION

0-22 T T T T
&
B
= 0.18 } -
B
8 0.16 }
'zq;:)o 1S — 13P
g — 1S > 1'P
5} 0.14 e
=
.S
= 012 ¢f -
k)
=
= 01 } l
008 1 1 1 1
0 1 2 3 4 5

4 in bohr—!

Figure 2.5 — Excitation energies A&l = & — &) (in hartree) of the Be atom as a
function of 4 (in bohr=!). The excitation energies of the physical system AE, = A&
are plotted as horizontal dotted lines.

Excitation energies

The singlet and triplet excitation energies are plotted in Figure 2.5. As for He, the KS
excitation energies are bracketed by the singlet and triplet excitation energies of the
physical system. Not surprisingly, the KS excitation energies are poorer approximations
to the exact excitation energies for these valence excitations in Be than for the Rydberg
excitations in He. As p increases, the KS excitation energies rapidly converge to the
physical excitation energies. Clearly, the slow convergence of the core energies does not
affect the convergence of the valence excitation energies.

Close to the KS system, at u = 0, the excitation energies are quite sensitive to
the introduction of a small portion of electron-electron interaction in the Hamiltonian,
which may be interpreted as a sign of static correlation. For p ~ 0.4 — 0.5, a typical u
value in range-separated DFT calculations [48, 51], the calculated excitation energies
are significantly better approximations to the exact excitation energies than are the
KS excitation energies. This observation justifies range-separated multi-determinantal
linear-response DFT calculations, which take these excitation energies as a starting

point.
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Figure 2.6 — Excitation energies A& = &' — €' (in hartree) of the Hy molecule at the
equilibrium internuclear distance as a function of p (in bohr=1). The excitation energies
of the physical system AE;, = A&~ are plotted as horizontal dotted lines.

2.5.3 Range-separated adiabatic connection for the dihydrogen
molecule along the dissociation

Equilibrium distance

The first few excitation energies of Hy at the equilibrium bond distance are plotted
against p in Figure 2.6. As for the atoms, the valence excitations energies vary much
more along the adiabatic connection than do the Rydberg-like excitation energies. Note
also that the energetic ordering of the states changes along the adiabatic connection.
With our choice of basis set, we also observe that the higher singlet excitation ener-
gies do not depend monotonically on u, approaching the physical limits from above, as
observed for He. Again, the excitation energies around p = 0.4 — 0.5 represent better
approximations to the exact excitation energies than the KS excitation energies.

Stretched geometry

Finally, we consider the interesting case of the dissociation of the Hs molecule. The
first excitation energies at three times the equilibrium distance are shown in Figure 2.7.
With increasing bond distance, the 1o, and 1o, molecular orbitals become degenerate.
Consequently, the KS excitation energy for the single excitation 1o, — 1o, goes to zero.
Moreover, the KS excitation energy for the double excitation (1o,)* — (10,)? also goes to
zero (albeit more slowly). This behaviour is in contrast to that of the physical system,
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Figure 2.7 — Excitation energies A&} = &' — &' (in hartree) of the H, molecule at 3
times the equilibrium internuclear distance as a function of p (in bohr=1). The excitation
energies of the physical system AE, = AELT> are plotted as horizontal dotted lines. An
error of 5 mHartree is colored around these limits.

where only the excitation energy to the triplet 13X1 state goes to zero, whilst those to
the singlet 1'S state and the 2'S} state (the latter connected to the double excitation
in the KS system) go to finite values.

Clearly, the excitation energies of KS theory are poor approximations to the exact
excitation energies, making it difficult to recover from these poor starting values in
practical linear-response TDDFT calculations. As p increases from p = 0, the excitation
energies to the singlet 1'Y and 2'S} states vary abruptly, rapidly approaching the
physical values. This sensitivity to the inclusion of the electron-electron interaction
is a clear signature of strong static correlation effects, emphasizing the importance of
a multi-determinantal description in such situations. At u ~ 0.4 — 0.5, the 1!} and
2'2f excitation energies, although still too low, are much better approximations than
the KS excitation energies, constituting a strong motivation for range-separated multi-
determinantal approaches in linear-response theory.

2.6 Conclusion

We have studied the variation of total energies and excitation energies along a range-
separated adiabatic connection, linking the non-interacting KS system (u = 0) to the

physical system (p — oo) by progressively switching on the long-range part of the
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electron-electron interaction with the range-separation parameter u, whilst keeping the
ground-state density constant. This behaviour is of interest for the development and
analysis of range-separated DF'T schemes for the calculation of excitation energies, such
as the linear-response range-separated schemes of Refs. [94, 95, 97].

Reference calculations were performed for the He and Be atoms and the Hy molecule.
Except when p is large, the ground- and excited-state total energies along the adiabatic
connection are poor approximations to the corresponding energies of the physical system.
On the other hand, the excitation energies are good approximations to the excitation
energies of the physical system for most of the adiabatic connection curve, except close
to the KS system (¢ = 0). In particular, the excitation energies obtained at p ~ 0.4 —0.5,
typically used in range-separated DF'T calculations, are significantly better approxima-
tions to the exact excitation energies than are the KS excitation energies. This behaviour
appears to be particularly evident for situations involving strong static correlation effects
and double excitations, as observed for the dissociating H, molecule.

These observations suggest that the excitation energies of the long-range interacting
Hamiltonian in range-separated DFT may be useful as first estimates of the excitation
energies of the physical system. However, if one cannot afford to use large p values (u >
2 — 3), these excitation energies should be considered only as starting approximations,
suitable for correction by, for example, linear-response range-separated theory.

In future work, we will utilize the present reference data to assess the approximations
made in practical linear-response range-separated schemes, where the long-range contri-
bution is treated, for example, at the Hartree-Fock, MCSCF or SOPPA levels of theory,
while the short-range part is described by semi-local density-functional approximations.
We will also use the results of this work to guide the development of time-independent
range-separated DFT methods for the calculation of excitation energies as alternatives to
linear-response schemes—in particular, for methods based on perturbation theories [112,
118] (see Chapter 3) or extrapolations [120, 121] along the adiabatic connection (see
Chapter 4).
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Chapter 3

Perturbation theory along the
range-separated adiabatic
connection

In this chapter, the effect of a first-order perturbative correction is assessed along
the range-separated adiabatic connection. Starting from the energies of the partially
interacting Hamiltonian defined in the previous chapter, a first-order correction is de-
fined with two variants of perturbation theory: the “usual” perturbation theory, and
an extension of the Gorling-Levy one which has the advantage of keeping the ground-
state density constant at each order of perturbation. Only the first, simpler, variant
is tested on the systems defined in the previous chapter. The first-order correction
within this perturbation theory improves significantly the total state energies of the
different systems. However, the excitation energies are mostly deteriorated with re-
spect to the zeroth-order ones which may be explained by the fact that the ionization
energy is not correct anymore. The second variant of the perturbation theory should
improve these results but has not been tested yet along the range-separated adiabatic
connection.

3.1 Introduction

In density-functional theory (DFT) of quantum electronic systems, the most widely used
approach for calculating excitation energies is nowadays linear-response time-dependent
density-functional theory (TDDFT) (see, e.g., Refs. [122, 123]). However, in spite of
many great successes, when applied with usual adiabatic semilocal approximations,
linear-response TDDFT has serious limitations for describing systems with static (or
strong) correlation [99], double or multiple excitations [100], and Rydberg and charge-
transfer excitations [101, 102]. Besides, the Hohenberg-Kohn theorem [19] states that
the time-independent ground-state density contains all the information on the system
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so that time dependence is in principle not required to describe excited states. Several
time-independent DFT approaches for calculating excitation energies exist and are still
being developed.

A first strategy consists in simulatenously optimizing an ensemble of states. This
ensemble DFT was pionnered by Theophilou [124] and Gross, Oliveira and Kohn [125]
and is still a subject of current research [126-129], but it is hampered by the absence
of appropriate approximate ensemble functionals. A second strategy consists in self-
consistently optimizing a single excited state. This approach was started by Gunnarsson
and Lundqvist [130] who extended ground-state DFT to the lowest-energy state in each
symmetry class, and developed into the pragmatic (multiplet-sum) ASCF method [131,
132] (still in use today [133]) and related methods [134-136]. Great efforts have been
made by Nagy, Gorling, Levy, Ayers and others to formulate a rigorous self-consistent
DFT theory of an arbitrary individual excited state [137-149] but one major difficulty
is the need for development of approximate functionals for a specific excited state (see
Ref. [150] for a proposal of such excited-state functionals). A third strategy, first pro-
posed by Grimme, consists in using configuration-interaction (CI) schemes in which
modified Hamiltonian matrix elements include information from DFT [151-154].

A fourth possible approach, proposed by Gorling [155], is to calculate the excita-
tion energies from Gérling-Levy (GL) perturbation theory [156, 157] along the standard
adiabatic connection using the non-interacting Kohn-Sham (KS) Hamiltonian as the
zeroth-order Hamiltonian. In this approach, the zeroth-order approximation to the ex-
act excitation energies is provided by KS orbital energy differences (which, for accurate
KS potentials, is known to be already a fairly good approximation [119]). It can then
be improved by perturbation theory at a given order in the coupling constant of the
adiabatic connection. Filippi, Umrigar, and Gonze [118] showed that the GL first-order
corrections provide a factor of two improvement to the KS zeroth-order excitation en-
ergies for the He, Li", and Be atoms when using accurate KS potentials. For (near)
degenerate states, Zhang and Burke [111] proposed to use degenerate second-order GL
perturbation theory and showed that it works well on a simple one-dimensional model.
This approach is conceptually simple as it uses the standard adiabatic connection along
which the ground-state density is kept constant (in contrast to approaches introduc-
ing generalized adiabatic connections keeping an excited-state density constant [137,
138, 140, 145]). In spite of promising early results, this approach has not been further
explored, maybe because it can be considered an approximation to TDDFT [158].

In this work, we explore further this density-functional perturbation theory approach
for calculating excitation energies. We introduce one key modification in comparison to
the earlier work of Refs. [118, 155]: As a zeroth-order Hamiltonian, instead of using the
non-interacting KS Hamiltonian, we use a partially interacting Hamiltonian incorporat-
ing the long-range part of the Coulomb electron-electron interaction, and corresponding
to an intermediate point along a range-separated adiabatic connection [39, 45, 52-54].
The partially interacting zeroth-order Hamiltonian is of course closer to the exact Hamil-
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tonian than the non-interacting KS Hamiltonian is, and therefore less demand is put on
perturbation theory. In particular, the zeroth-order Hamiltonian can already incorpo-
rate some static correlation. The downside of this is that a many-body method such
as CI is required for finding the eigenstates and eigenvalues of the zeroth-order Hamil-
tonian. However, if the partial electron-electron interaction is only a relatively weak
long-range interaction, one expects a faster convergence of the eigenstates and eigenval-
ues with respect to the one- and many-electron CI expansion than for the full Coulomb
interaction [45], so that a small CI or multi-configuration self-consistent field (MCSCF)
calculation would be sufficiently accurate. When using a semi-local density-functional
approximation for the effective potential of the range-separated adiabatic connection,
the presence of an explicit long-range electron-electron interaction in the zeroth-order
Hamiltonian also has the advantage of avoiding the collapse of the high-lying Rydberg
excitation energies. In contrast to adiabatic TDDFT, double or multiple excitations can
be described with this density-functional perturbation theory approach, although this
possibility was not explored in Refs. [118, 155]. Finally, approximate excited-state wave
functions are obtained in this approach, which is useful for interpretative analysis and
for the calculation of properties.

We envisage using this density-functional perturbation theory to calculate excited
states after a range-separated ground-state calculation combining long-range CI [40, 41]
or long-range MCSCF [48, 62] with a short-range density functional. This would be a
simpler alternative to linear-response range-separated MCSCF [94, 97] for calculations of
excitation energies. In this work, we study in details the two variants of range-separated
density-functional perturbation theory and test the first, simpler variant on the He and
Be atoms and on the Hy; molecule using accurate calculations along a range-separated
adiabatic connection, without introducing density-functional approximations as done in
Chapter 2.

The range-separated extension of both variants of the perturbation theory is pre-
sented in Section 3.2. In particular, Taylor expansions of the energies are given around
the Kohn-Sham and the real systems for the first variant. Except for the finite basis
approximation, no other approximation is introduced. The calculation are performed in
the same manner than for the zeroth order and the results obtained for the helium and
beryllium atoms, and for the dihydrogen molecule are discussed in Section 3.3.

3.2 Excited states from perturbation theory

In standard KS theory, the single-determinant eigenstates and associated energies of the

non-interacting KS Hamiltonian,
H'S|9)) = £ |0)®), (3.1)
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where HXS = T'+ Vio + Virxe, give a first approximation to the eigenstates and associated
energies of the physical Hamiltonian. Two variants of perturbation theory using the
KS Hamiltonian as zeroth-order Hamiltonian were proposed to calculate excitation en-
ergies [118, 155]. We provide below the extension of these two variants of perturbation
theory to range-separated DFT. In this case, as a first approximation, it is natural to use
the excited-state wave functions and energies of the long-range interacting Hamiltonian

) = v, (3.2)

where H™* =T + Vi + f/fliﬁ + W is the same Hamiltonian as in Equation (2 5), i.

where the short-range Hartree-exchange-correlation potential VI}’Xé‘ J ok ng|n(r)dr, is
evaluated at the ground-state density ng. These excited-state wave functions and energies
can then be improved by defining perturbation theories in which the Hamiltonian A+

is used as zeroth-order Hamiltonian.

3.2.1 First variant of perturbation theory

The simplest way of defining such a perturbation theory is to introduce the following
Hamiltonian depending on a coupling constant A

E — Fiv AT (33)
where the short-range perturbation operator Wsr# is
W = W = Vi, (34)

with the short-range electron-electron interaction Wsnm =
(1/2) [ wEEt(r12)na(r1, r2)dridry defined with the complementary error-function in-
teraction wihH(r) = erfe(ur)/r. When varying A, Equation (3.3) defines an adiabatic
connection linking the long-range interacting Hamiltonian at A\ = 0, H**=9 = A™#  to
the physical Hamiltonian at A = 1, H**=! = H, for all x, but the ground-state density
is mot kept constant along this adiabatic connection.

The exact eigenstates and associated eigenvalues of the physical Hamiltonian can
then be found by standard Rayleigh-Schrodinger perturbation theory, i.e. Taylor ex-
panding in \ the eigenstates and eigenvalues of the Hamiltonian H#* and setting A = 1

W) = | + Z [w )y (3.5a)
Ey =&+ Z B (3.5b)
n=1

in which ¥} = \112"(0) and &' = B} (0 act as zeroth-order eigenstates and energies. Using
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orthonormalized zeroth-order eigenstates (¥|¥}") = d;; and assuming non-degenerate
zeroth-order eigenstates, the first-order energy correction for the state k is

B = (wp e wg), (3.6)

so that, as usual, the zeroth—+first-order energy is simply given by the expectation value
of the physical Hamiltonian over the zeroth-order eigenstate

,(0+1 1, (1 Fy
B0 =g 4 EPY = (wyH|wy). (3.7)

This last expression can be seen as a multi-determinantal extension of the exact-exchange
KS energy expression for the state k, which was already proposed and studied for the
ground state [57, 63, 159]. The second-order energy correction is

Z ‘ \Ijulwhr”‘l}uﬂ , (3.8)

1#£k

and the first-order wave-function correction is (using intermediate normalization so that
(T MY = 0 for all n > 1)

\I,u| by sr,,u|\IjH>
ey _ 5 (W k) gy .
o) = -3 e (39)

For = 0, this perturbation theory reduces to the first variant of the KS pertubation
theory studied by Filippi et al. [Equation (5) of Ref. [118]].

Taylor expansion of the energies around the KS system

The total energies up to the first order of the perturbation theory are given by the
expectation value of the full Hamiltonian over the zeroth order wave functionsin Equa-
tion (3.6). Using the Taylor expansion of the wave function W* = ®KS 4 ;30 1 0(45)
around the KS wave function (cf. Equation (2.26)), it implies that the zeroth+first-order
energies are thus given by

B = (@1 H|®[) + 20" (@[ H] ) + O(u”), (3.10)

where \Il,(f’) is the contribution entering at the third power of p in the zeroth-order
wave function. With respect to the Taylor expansion of the zeroth-order energies given
in Equation 2.27, no linear contribution in p is present anymore and the energies are
expanded around the corrected KS energies (®KS|H|®KS) instead of the bare KS energies
& = (PFS|HRS|2)55).
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CHAPTER 3. PERTURBATION THEORY ALONG THE AC

Taylor expansion of the energies around the real system

From the Taylor expansion of the wave function ¥} = ¥, + M‘Q\Il,(;” + O(u=?), which
is valid almost everywhere (the coalescence needs to be treated carefully) given in Sec-
tion 2.3.2, the first correction to the zeroth+first-order energies enter at the fourth power
of u
1 _ 1
(041 0+1,—4
B >=Ek+EE,§ )+(’)<M6>, (3.11)

where ES)H’*‘I) is the correction entering at the fourth power of 1/u.

3.2.2 Second variant of perturbation theory

A second possibility is to define a perturbation theory based on a lightly more com-
plicated adiabatic connection between the long-range interacting Hamiltonian and the
physical Hamiltonian which keeps the ground-state density constant. This adiabatic
connection is explained in Appendix D. The end result is that the Hamiltonian of Equa-
tion (3.3) is replaced by the following Hamiltonian

HPA = [0 NS — P (3.12)

c,md

where the operator W * is now defined as
L - (3.13)

with a short-range “multi-determinantal (md) Hartree-exchange” potential operator

) B
pronn / Brsmalnol (3.14)

Hx,md = 5n(r)

and an additional short-range “multi-determinantal correlation” potential operator

. SESHA
oA _ / Zemd 701 [nO}ﬁ(r)dr, (3.15)

emd on(r)

which depends non linearly on X\ in such a way so that the ground-state density ng is
kept constant for all 4 and A. The density functionals By 4[n] and Eifl’l’fé’\ [n] are defined

in Appendix D. One can show that, for non-degenerate ground-state wave functions Wf,

the expansion of XA/;f;]’g’\ in X for A — 0 starts at second order:

Vsr,y,)x _ )\2 VSR%@) R (316)

c,md c,md

Hence, the Hamiltonian of Equation (3.12) appropriately reduces to the long-range in-
teracting Hamiltonian at A = 0, H#*=0 = F™r_ At X\ = 1, it correctly reduces to the

physical Hamiltonian, H#*=* = H. This is so because the short-range Hartree-exchange-
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3.2. EXCITED STATES FROM PERTURBATION THEORY

correlation potential in the Hamiltonian H™* can be decomposed as

Vit = Vit + Vo (3.17)

c,md’

where V;in’é = %ﬁ;’é”\:l, and is therefore cancelled out by the perturbation terms for
A = 1. Equation (3.17) corresponds to an alternative decomposition of the short-
range Hartree-exchange-correlation energy into “Hartree-exchange” and “correlation”
contributions based on the multideterminant wave function ¥f instead of the single-
determinant KS wave function ®§° [57, 63, 159], which is a more natural decomposition
in range-separated DFT. Here this decomposition is especially relevant since it sepa-
rates the perturbation into a “Hartree-exchange” contribution that is linear in A and a
“correlation” contribution containing all the higher-order terms in A.
The first-order energy correction is still given by Equation (3.6) using the perturba-
tion operator of Equation (3.13). The zeroth-first-order energy is now given by
B0 —gr g — w4

c,md

o, (3.18)
The second-order energy correction of Equation (3.8) is replaced by

\I/M Wsr S \I,/t .
E,ﬁ’@) Z I | | >| <\IJ“\VS b (Z)I\If@,

c,md
l#k

and the expression of the first-order wave function correction is still given by Equa-
tion (3.9) using the perturbation operator of Equation (3.13).

For u = 0, this perturbation theory reduces to the second variant of the KS pertu-
bation theory proposed by Gérling [155] and studied by Filippi et al. [Equation (6) of
Ref. [118]], which is nothing else that the application of GL perturbation theory [156,
157] to excited states. In Ref. [118], it was found that the first-order energy correc-
tions in this second variant of KS pertubation theory provided on average a factor of
two improvement to the KS zeroth-order excitation energies for the He, LiT, and Be
atoms when using accurate KS potentials, whereas the first-order energy corrections in
the first variant of KS perturbation theory deteriorated on average the KS excitation
energies. The good results obtained with the second variant of KS pertubation theory
may be at least partly explained by one good feature of GL perturbation theory which
is that the ionization potential remains exact at all order in A\. This feature applies
as well in the range-separation case, so that the second variant of range-separated per-
turbation theory should in principle be preferred. However, it requires the separation
of the short-range Hartree-exchange-correlation potential into the “multideterminan-
tal Hartree-exchange” and “multideterminantal correlation” contributions (according to
Equation (3.17)), which we have not done for accurate potentials or calculations along
the double adiabatic connection with a partial interaction defined by W# 4+ AW+ (cf.
Appendix D). We thus only use the first variant of range-separated perturbation theory
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CHAPTER 3. PERTURBATION THEORY ALONG THE AC

in this work. Note, however, that the second variant of range-separated perturbation
theory could easily be applied with density-functional approximations, using for example
the local-density approximation that has been constructed for the “multideterminantal
correlation” functional [59].

3.3 Results and discussion

In what follows, all the calculations were performed with the quantum chemistry pack-
age DALTON [113] with the same basis sets and the same thresholds as in Section 2.4.
Starting from the zeroth-order energies obtained in Chapter 2, the first variant of per-
turbation theory detailed in Section 3.2 is applied on the helium and beryllium atoms
and on the dihydrogen molecule in its equilibrium and stretched geometries.

3.3.1 Range-separated adiabatic connection for the helium atom
Total energies

The zeroth+first-order ground- and excited-state total energies of the helium atom along
the range-separated adiabatic connection are shown in Figure 3.1. In the Kohn-Sham
limit, when p = 0, the total state energies are significantly improved with respect to the
zeroth-order ones given in Figure 2.1. In fact, as shown for the ground-state energy,
the zeroth-order total energies were off by approximately 1.2 hartree with respect to
the energies of the physical system. When the first-order correction is added, the error
becomes smaller then 0.06 hartree for all the states. Moreover, for the excited states, the
singlet and triplet energies are not degenerated anymore. When the range-separation
parameter is increased, a faster convergence toward the total state energies of the physi-
cal system is also observed for all states. The description of the total energies is therefore
much better with the first-order correction. In fact, the linear correction in yu is no longer
present in the Taylor expansion of the energies at small 4 (cf. Equation (3.10)) and the
first correction enters at the third power of u. At large p, the error with respect to the
physical energies enters in 1/u* instead of 1/u? in the zeroth-order case which explains
the observed faster convergence with respect to the zeroth-order curves.

Excitation energies

The excitation energies of the helium atom at zeroth and zeroth-+first order are given
in Figure 3.2. For the KS system, at u = 0, the singlet and triplet excitation energies
are degenerate at zeroth order. The introduction of the first-order correction allows
one to open the gap between the singlet and triplet energies. However, the singlet and
triplet excitation energies at zeroth+first order now overestimate the physical excitation
energies of the system by 0.1-0.2 hartree such that the error is actually larger than at
zeroth order. For the 1'S — 13P excitation energy, one can even note that the correction
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Figure 3.1 — Zeroth+first-order ground- (top) and excited-state (bottom) total energies
£O%D (in hartree) of the helium atom as a function of 4 (in bohr=1). The zeroth-order
energy &) is recalled for the ground state in plain line and the total energies of the
physical system Ej are plotted as horizontal dotted lines.
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(dashed line) excitation energies A" Y (in hartree) of the helium atom as a function
of p (in bohr=!). The excitation energies of the physical system AEj are plotted as

horizontal dotted lines.
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is going in the wrong direction. The singlet-triplet splitting is also too large by about a
factor 1.5.

When the very long-range part of the Coulombic interaction is switched on, the
initial overestimation is corrected. In fact, for small values of u, all the excitation
energies decrease in the third power of y which is in agreement with Equation (3.10).
Although, when p ~ 0.5—1, this correction becomes too large and the excitation energies
of the partially interacting system become lower then the energies of the physical system
obtained when p — oco. If p is further increased such that more and more interaction
is included, the excitation energies begin to increase again and finally converge toward
their exact limits from below. In the meanwhile, the zeroth-order excitation energies,
which do not present this oscillation at small u, converge monotonically toward their
physical limit and are in average more accurate then the zeroth+first order excitation
energies. Altogether, the first-order correction does not constitute an improvement for
the excitation energies although the total energies were improved.

This failure of the first-order-correction to describe the excitation energies correctly
should be connected to the fact that, as the ground-state density is not kept constant
at each order of perturbation, the ionization potential is not constant anymore at the
zeroth+first order along the adiabatic connection . This results in an unbalanced treat-
ment between the ground state and the excited states. Moreover, the Rydberg excitation
energies which are high in energy, are susceptible to be even more sensible to this effect
and the higher they are, the more affected, as can be seen for the transitions to the P
state. The second variant of perturbation theory should therefore improves this behavior
as it keeps the density constant at each order as it was shown in the KS case [118, 157].

3.3.2 Range-separated adiabatic connection for the beryllium atom

The first-order perturbation correction is then applied to the ground state and valence
excited states of the beryllium atom. The total energies are once again improved by the
introduction of this perturbation but are not show here. The valence excitation energies
are shown in Figure 3.3 at the zeroth and the zeroth+first orders as a function of the
range-separation parameter .

As valence excitations are concerned instead of Rydberg ones in the case of the
helium atom, they are less sensitive to a bad description of the ionization energy. At
p = 0, the singlet excitation energy is slightly improved by the introduction of the first-
order correction. However, the triplet one is not described any better as instead of being
overestimated at zeroth order, it is now underestimated by almost the same amount.

When the interaction is switched on, a bump is also observed for small values of u
for the singlet excitation energy but not the triplet excitation energy which goes mono-
tonically to its physical limit. In this case the convergence of the energies with respect
to p is improved in comparison with the zeroth-order excitation energies, especially for

the singlet one.
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Figure 3.3 — Valence excitation energies of the beryllium atom (in hartree) at zeroth
order AE! (plain line) and zeroth+first order AE*®*Y (dashed line), as a function of 4
(in bohr~1). The excitation energies of the physical system AFE}, are plotted as horizontal
dotted lines.

3.3.3 Range-separated adiabatic connection for the dihydrogen
molecule

Finally, the first-order correction is applied to the excitation energies of the dihydrogen
molecule at its equilibrium and a stretched geometry. The first excitation energies are
shown in Figure 3.4 at the equilibrium distance R.q (top) and in a stretched geometry
at 3R.q (bottom).

At the equilibrium geometry, the first-order correction works relatively well. It goes
in the correct direction at p = 0, the triplet excitation energy is lowered while the singlet
one is increased and the error is smaller than for the zeroth-order excitation energies for
almost any value of u. Unfortunately, when the bond is stretched, this is not the case
anymore. At 3R.q, the first excitation energy 1'Sf — 1°S} becomes negative for small
values of 1 and the error with respect to the physical excitation energy is higher than
in the zeroth-order case. Moreover, the ordering of the two singlet excitation energies
is incorrect at small p and they present a strong oscillation when the interaction is
switched on. Therefore, in this case, the zeroth-order excitation energies are in fact

better approximations to the physical energies once again.
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Figure 3.4 — Zeroth-order A" (plain line) and zeroth-first-order AV (dashed
line) excitation energies of the dihydrogen molecule (in hartree) as a function of u in
bohr~! at the equilibrium distance (top) and three times the equilibrium distance (bot-
tom). The excitation energies of the physical system AEj are plotted as horizontal
dotted lines.
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3.4 Conclusion

In this chapter, we have developed two variants of a first-order perturbation theory
along the range-separated adiabatic connection. The first, simpler, variant based on the
usual Rayleigh-Schrodinger perturbation theory was tested on the helium and beryllium
atoms and on the dihydrogen molecule at equilibrium and stretched geometries. It
appears that although the total energies are improved with this first-order correction,
this perturbation theory is not able to improve systematically the zeroth-order excitation
energies as it does not keep the density constant along the adiabatic connection at each
order of perturbation. In particular, it would be interesting to look at the evolution
of the ionization potential in this case in order to understand better the effect of this
variant of the perturbation theory on our systems of interest.

The second variant of the perturbation theory based on the Gorling-Levy pertur-
bation theory should in this sense improves significantly the results as by construction
the ground-state density is kept constant at any order of the perturbation [157]. This
perturbation theory was tested on the Kohn-Sham system and was proved to improve
significantly the excitation energies [118]. However, its effects have not been explored
along the range-separated adiabatic connection yet. It would be particularly interesting
to test this variant on the different systems presented previously though we had not have
time to explore this possibility yet.

An alternative to perturbation theory to improve the excitation energies along the
adiabatic connection is provided by extrapolation schemes which make uses of the be-
havior of the energies around the physical system to estimate the exact energies from
the energy of the partially interacting system at a given p and its first-order derivative
with respect to p. This approach is explored in the next chapter.
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Chapter 4

Energy extrapolation along the
adiabatic connection

In this chapter, we propose an alternative method to improve the estimation of the
energies of a physical system from the energies of a partially interacting one where
only the long-range part of the Coulombic interaction is included. The energies of
the partially interacting system have already been studied in Chapters 2 and 3 at
zeroth- and zeroth+first-order of perturbation theory. From the analysis of their
Taylor expansion around the physical system, the energies of the physical system can
be further more extrapolated from the ones on the partially interacting system by
using their first-order derivative with respect to the range-separation parameter u. A
similar scheme is also studied in the case of the linear adiabatic connection where it
in fact becomes equivalent to the extension of first-order Gorling-Levy perturbation
theory on an intermediate point of this connection.

The extrapolation scheme is then applied on the zeroth-order range-separated ener-
gies of the helium and beryllium atoms and of the dihydrogen molecule at its equi-
librium and stretched geometries. It improves significantly the convergence rate of
the energies toward their exact limit with respect to the range-separation parame-
ter and allows one to estimate the excitation energies of the physical system at the
same accuracy with respect to the “bare” partially interacting excitation energies
with a range-separation parameter divided by about a factor 2. When applied on the
zeroth+first order excitation energies of the helium atom obtained along the range-
separated adiabatic connection, the results remain disappointing as the quality of
the starting point is inferior and the extrapolation correction is smaller than in the
zeroth-order case. Finally, the extrapolation scheme was applied on the excitation
energies of the helium atom along a linear adiabatic connection where the interaction
is scaled by a factor A going from 0 to 1. It works remarkably well in this case as
both the starting energies are almost linear and therefore their behavior is easier to
extrapolate.
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4.1 Introduction

In order to calculate the excitation energies of a physical system in the time-independent
DFT framework, a possible approach consists in starting from the KS orbital energy
differences of the non-interacting system. In this case, Gorling-Levy perturbation the-
ory [118, 155-157] has been shown to successfully improve the description of the exci-
tation energies as was mentioned in the previous chapter. Although, instead a starting
from a non-interacting system, it is also possible to consider the excitation energies of a
partially interacting system as the zeroth order of the perturbation theory. In this sys-
tem, part of the interaction is already present so that its excitation energies are better
approximations to the energies of the physical one. The adiabatic connection between
the non-interacting and the physical system can be done linearly, where the interaction
is scaled by a factor A going from 0 to 1, or by including more and more of the long-
range part of the Coulombic interaction with a range-separation parameter p going from
0 to infinity. On both cases, the potential is adjusted in order to keep the ground-state
density of the system constant.

The analysis of the Taylor expansions of the energies with respect to the range-
separation parameter around the real system (u — o) performed in Chapter 2, has shown
that the energy of the partially interacting system were converging toward their physical
limit in x=2. Using this information, it is possible to develop a scheme to extrapolate
the energies of the physical system from the energies of the partially interacting one
following the idea of Refs. [120, 121]. This extrapolation scheme involves the first-order
derivative of the energies with respect to the range-separation parameter and constitutes
an alternative to perturbation theory presented in Chapter 3 and to the linear-response
time-dependent density-functional theory extended to the range-separation case which
will be presented in the next part of this thesis.

Moreover, this extrapolation technique is not limited to the zeroth-order energies and
could also be applied to the zeroth—+first order energies resulting from a perturbation
theory. From the Taylor expansions of the zeroth—+first order energies studied in the first
variant of perturbation theory in Chapter 3, an extrapolation scheme is thus proposed
starting from these energies. Finally, a similar study is also performed on the linear
adiabatic connection where the almost linear behavior of the excitation energies with
respect to the scaling parameter X is well-suited for such extrapolation techniques. The
analysis of the excitation energies around )\ = 1 provides then the required information
and be exploited to improve the estimation of the energies of the physical system from
an intermediate point of the connection.

The development of the extrapolation scheme is given in Section 4.2 both for the
range-separated and the linear adiabatic connections. It is then applied to the range-
separated energies obtained in the previous chapters on the helium and beryllium atoms
and on the dihydrogen molecule at its equilibrium and stretched geometries, and on the
helium atom along a linear adiabatic connection. The results are discussed in Section 4.3
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starting either directly from the energies of the partially interacting system or from the
energies where a perturbative first-order correction has already been applied.

4.2 Energy extrapolation

4.2.1 Range-separated adiabatic connection

Starting from the Hamiltonian of the partially interacting system H™# = 7'+ Vo + W+ 4
Vg;g‘, where only the long-range interaction W # is included and where the short-range
Hartree-exchange-correlation potential ‘Q/ﬁié‘ ensures that the ground-state density is
kept constant along the adiabatic connection, the Taylor expansions of the partially
interacting energies around the Kohn-Sham and the physical system were derived in
Chapter 2. In particular, it was shown that they behave as

1 1
5;;:Ek+EE,§ 2>+0(u3>, (4.1)

around the physical system, where E,(f_Q) is the correction entering at the second power
of 1/u. Following the scheme proposed in the recent articles [120, 121], it is possible to
estimate the energy of the physical system Fj from the energy of the partially interacting
system & and its first-order derivative with respect to p. From the Taylor expansion of
the energies when u — oo, we know that the first-order derivative of the energies with
respect to p behave as

oEr 2 _(-2) 1

around the real system. Therefore, inserting this in Equation (2.39), the exact energy

E) can be written as a function of the energies along the adiabatic connection and of
their first-order derivative as

_on ﬁﬂ 1
Bo=gl+ 50 +0<u3 . (4.3)

This therefore defines the extrapolated energies

B =gl + g%glf, (4.4)
which are correct up to the third power of 1/u with respect to the energies of the
physical system. The correction given by the extrapolation scheme is null at 4 = 0 by
construction, but should improve the description of the energies as soon as the interaction
is switched on. More elaborated schemes could be developed by using higher-order
derivatives or by using several points with different values of x but in what follows only
the simpler case is applied.

Similarly, for the zeroth-+first order energies obtained in Chapter 3, using their Taylor
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expansion around the physical system

,(0+1 I o (0+1,-4 1
E;:( ):Ek—‘y—EE](C )+O E ) (45)
given in Equation (3.11), it is possible to define an extrapolated energies at Oth+1st

order. By differentiation of the energies with respect to u,

aE}:a(O+1) 4 (041,—4) 1
el R N o= 4.6
o por " <N7> ’ (4.6)

the extrapolated zeroth—+first-order energy is given as

aE#’(O"Fl)
EEE5H5(0+1) — E)u's(0+1) B k 4.7
k k + 4 5,u ’ ( )
which defines an extrapolation scheme for the first-order corrected energies. This ex-
trapolated energy has a very similar form with respect to the zeroth-order one given in
Equation (4.3) as only the prefactor of the correction changes from 1/2 to 1/4.

4.2.2 Linear adiabatic connection

If the more usual linear adiabatic connection is performed, then the partially interacting
Hamiltonian is defined as H* = T + AW, + V* where V* is adjusted to keep the ground-
state density constant. This potential can be expressed in terms of the connecting
parameter X\ as

VA = Voo + (1= Vi + Ve = V2 (4.8)

where V) enters at second order in A and is equal to V. at A = 1. The energies of the
partially interacting system can then be expanded around the physical system as

& = Ep+(1—-NEV +0((1-1)?), (4.9)

where Elil) is the contribution entering in the first power of (1—\). Similarly to the range-
separated case, by differentiation with respect to A, it is then possible to extrapolate the
energies of the physical system as

o0&

EFFA =&+ (1 -2k (4.10)

oA
One should note that is this case, the extrapolation is equivalent to the first-order of
the Gorling-Levy perturbation theory [118, 157], i.e. the second variant of perturbation
theory shown in Chapter 3.

68



4.3. RESULTS AND DISCUSSION

—1.8 T T

— 118
------ Extrapolation

Total energies in hartree

Figure 4.1 — Result of the extrapolation (dashed line) for the ground-state total energy
of the helium atom (in hartree) as a function of u (in bohr=!). The “bare” energy is
recalled in plain line, the energy of the physical system is given as an horizontal dotted
line and an error of +10 millihartree around his limit is given by the colored region.

4.3 Results and discussion

The “bare” energies of the partially interacting systems are calculated with of the DAL-
TON program [113] as detailed in Section 2.4 for the zeroth order and following the
first variant of perturbation theory given in Chapter 3 for the zeroth+first order. The
ground-state and excitation energies are then fitted following the procedure given in
Appendix C. Starting from the analytical form of the fit, it is then straightforward to
calculate the analytical derivative of the energies. The extrapolated energies are then
calculated using Equations (4.3), (4.7) or (4.10) for the total and excitation energies of
the helium and beryllium atoms and for the dihydrogen molecule at equilibrium and

stretched geometries.

4.3.1 Range-separated extrapolation of the helium atom
Zeroth-order total energies

The result of the extrapolation scheme on the zeroth-order ground-state total energy of
the helium atom is shown in Figure 4.1. By construction, the extrapolation correction
has no effect at p = 0 so that the ground-state energy of the KS system is not affected
by the extrapolation correction. However, for any non-zero value of yu, the extrapolated
energy shows a systematic improvement with respect to the “bare” ground-state energy.
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Figure 4.2 — Result of the extrapolation (dashed line) on the first S (top) and P
(bottom) excitation energies (in hartree) of the helium atom as a function of p (in
bohr=!). The “bare” excitation energies are recalled in plain line, the excitation energies
of the physical system are given by horizontal dotted lines and an error of +1 millihartree
is colored around each exact limit.
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Without the extrapolation correction, a value of about 6 bohr~! was needed for the
range-separation parameter in order to have an error smaller than 10 millihartree with
respect to the energy of the physical system. When the extrapolation correction is added,
a range-separation parameter greater than 2.8 bohr~! becomes sufficient to reproduce
the same level of accuracy.

Moreover, the extrapolated energy is strictly decreasing with respect to the range-
separation parameter y and thus goes to its asymptotic limit from above. Due to this
monotonic behavior, using the second-order derivative (or higher-order derivative) should
in principle improves further more the results. Additionally, several points could be used
to perform the extrapolation instead of one to increase the accuracy of the extrapolated

energies.

Zeroth-order excitation energies

The extrapolation scheme is now applied on the first S and P excitation energies of
the helium atom and the obtained extrapolated energies are shown in Figure 4.2. Both
singlet and triplet S excitation energies have a monotonic behavior with respect to pu,
the improvement due to the extrapolation correction is then systematic as the sign of
the derivative pulls the excitation energies toward their physical limits. The triplet
P excitation energy also has a monotonic behavior so the extrapolation also provides
a systematic improvement. The 1!S — 1'P excitation energy, however, shows a non-
monotonic behavior and presents a “bump” for small values of  which is probably due
to the size of the finite basis set as discussed earlier. As a consequence, this excitation
energy goes to its physical limit from above and its first-order derivative changes sign at
about 0.7 bohr—!. In this region, the extrapolated energy becomes worse than the “bare”
one. However, this only happens in a small region of the range-separation parameter and
as soon as the excitation energy recovers a monotonic convergence towards its physical
limit (i.e. for p larger than 0.7 bohr=!), the energy is improved by the extrapolation
and converges faster to its physical limit. In all cases, a range-separation parameter of
about 2 bohr~! becomes sufficient to have an error smaller than 1 millihartree on the

-1

excitation energies while a value of about 4 bohr~! is required otherwise.

Zeroth+first-order excitation energies

As shown in Equation (4.7), it is also possible to apply this extrapolation technique
not starting from the zeroth-order energies of the partially interacting system but its
zeroth+first-order energies. The extrapolated 1S — 2S excitation energies of the helium
atom are shown in Figure 4.3. In this case, the effect of the extrapolation correction is
less important as the derivative is multipled by p/4 instead of 1/2 in the zeroth-order
case. Moreover, as the “bare” zeroth+first energies are worse starting points than the
zeroth-order one, the correction should be more important to reproduce the physical
energies of the system with a good accuracy.
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Figure 4.3 — Result of the extrapolation scheme (dashed line) along the range-separated
adiabatic connection for the first excitation energies (in hartree) of the helium atom as
a function of x (in bohr~!) starting from the zeroth-+first order excitation energies. The
“bare” excitation energies are recalled in dot-dashed line, the excitation energy of the
physical system is given by an horizontal dotted line and the result of the first-order
correction of the first variant of perturbation theory is given in dot-dashed line for
comparison ans an error of +1 millihartree is colored around each exact limit.

At small p, the “bare” energies show an oscillation around their physical limit so that
their first-order derivative changes sign. Because of this, the extrapolated energies are in
fact worse than the “bare” energies around this region. However, as p increases and that
the “bare” energies begin to converge monotonically toward the physical energies of the
system, then the extrapolation provides an improvement and allows to reproduce the
exact energies with an error smaller than 1 millihartree for a range-separation parameter
of 2.5 bohr~! instead of 4 bohr~1.

Consequently, it is better to perform the extrapolation on the zeroth-order curves,
where the starting point is better and the correction larger by construction. In what

follows, only zeroth-order extrapolated energies will therefore be shown.

4.3.2 Range-separated adiabatic connection for the valence excitation
of the beryllium atom

The result of the extrapolation scheme is shown for the ground-state energy of the beryl-
lium atom in Figure 4.4 (top). Once again, the convergence of the energy with respect
to p is systematically improved along the range-separated adiabatic connection with re-
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Figure 4.4 — Valence total state energies &I (top) and excitation energies AEL = Ef' — &Y
of the beryllium atom (in hartree) as a function of p (in bohr=!). The “bare” energies
are recalled in plain line, the result of the extrapolation for the ground-state energy is
plotted in dashed line. The energies of the physical system are given as horizontal dotted
lines and an error of £2 millihartree is colored around the physical excitation energies.
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spect to the “bare” energy. As the beryllium atom has a core orbital, the convergence of
the total energy is slower than in the helium atom as the density is more contracted and
a larger range-separation parameter is needed to describe correctly this region. However,
the extrapolation allows to recover an error smaller than 50 millihartree with respect to
the ground-state energy of the physical system for a value of p of about 5 bohr=! which
is about ten times smaller than without the extrapolation correction but remains very
large. Fortunately, the effect of the core cancels out in the excitation energies.

The effect of the extrapolation on the valence excitation energies of the beryllium
atom is shown in Figure 4.4 (bottom). As the effect of the core orbitals disappears in the
excitation energies, the “bare” energies already have a faster convergence toward their
physical limits than the total energies. When the extrapolation correction is added, the
value of p required to ensure an error smaller than 2 millihartree is about 0.5 bohr—!
which is particularly small as for the same value of u, the total state energies of the
beryllium atom are still off by about 4 hartrees. In this system, the static correlation
plays a significant role and the multiconfigurational character of the wave function is

quickly recovered when the interaction is switched on as shown in Ref. [48].

4.3.3 Range-separated adiabatic connection for the dihydrogen
molecule along the dissociation

Finally, the extrapolation scheme is applied on the first zeroth-order energies of the di-
hydrogen molecule along the range-separated adiabatic connection both at equilibrium
and at a stretched geometry. The result of the extrapolation on the singlet and triplet
Y5 — X} excitation energies of the dihydrogen molecule at its equilibrium geometry are
shown in Figure 4.5 (top). The extrapolation correction provides a systematic improve-
ment of the excitation energies toward their physical limit so that a value of 2 bohr~!
for the range-separation parameter becomes sufficient to reproduce the physical ener-
gies with a maximum error of 1 millihartree. The internuclear bond of the dihydrogen
molecule is then stretched to three times the equilibrium distance. The extrapolation
scheme is then applied on the first three excitation energies corresponding to the first
singlet and triplet excitations to the 1% state and to the double excitation to the 257
state. The extrapolated excitation energies are shown in the bottom of Figure 4.5. Once
again, the improvement is systematic except for u = 0 where the correction is null.
The triplet extrapolated energy shows a monotonic behavior with respect to p while
the singlet ones show a slight bump around 0.8 bohr—!. However, all the extrapolated
excitation energies present a faster convergence rate toward their physical limits than
the “bare” ones which are recalled in plain lines. In this case, the extrapolation scheme
works remarkably well as it allows one to recover an error smaller than 5 millihartree
with respect to the physical limits for values of u as small as 0.6 bohr~! when a range

-1

separation parameter of 2 bohr~! is needed otherwise. In particular, it allows one to

describe the double excitation energy with a comparable accuracy than the single exci-
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Figure 4.5 — Excitation energies A& = & — &' (in hartree) of the Hy molecule at
the equilibrium internuclear distance (top) and three times the equilibrium distance

(bottom) as a function of x (in bohr=!).

The excitation energies of the physical sys-

tem AE, = AET™ are plotted as horizontal dotted lines. An error of +1 millihartree
is colored around the physical excitation energies at equilibrium and an error of +5
millihartree at stretched geometry.
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tation energies.

4.3.4 Linear adiabatic connection for the helium atom

In order to apply the extrapolation scheme on the linear adiabatic connection, the zeroth-
order total and excitation energies of the helium atom along this connection are calcu-

lated following the procedure described in Chapter 2 and are shown in Figure 4.6.

Zeroth-order total energies

The total energies of the helium atom along the linear adiabatic connection are given
in Figure 4.6 (top). When X\ = 0, no interaction is included, so the KS energies are
recovered as it was the case for u = 0. On the other hand, when A = 1, the full interaction
is present and the energies of the physical system are recovered, which corresponds to
the limit gy — co. The two limit cases are therefore identical in the two methods but
the way they are connected differs. The evolution of the total energies with respect to
) appears almost linear. Although, this behavior is easier to predict and should provide
an efficient framework for extrapolations, the value of A required to have an error of
10 millihartreertree is very close to 1 while in the range-separation case a intermediate
value of p was sufficient. As almost all the interaction would be included, the complexity
of the calculation would therefore not be improved with respect to a FCI calculation.

Excitation energies

The excitation energies of the helium atom along the linear adiabatic connection are
given in Figure 4.6 (bottom). Similarly to the total energies, the end points are common
with the range-separated connection but the behavior of the energies along the connec-
tion is also more linear. One could note that as in the range-separation case, the singlet
P energy does not have a monotonic behavior with respect to the connecting parameter.
The basis set might be responsible for this behavior as discussed earlier.

Extrapolation and comparison with the range-separated case

The extrapolation scheme is then applied on the first excitation energy of the helium
atom along the linear adiabatic connection and is also compared with the results obtained
with the range-separated adiabatic connection in Figure 4.7. Without extrapolation, the
value of the scaling parameter A needs to be greater than 0.95 to reproduce correctly
the energies with an error smaller than 1 millihartree, while for the range-separated one,
as a small change of i implies an important change in the energies when close to the
KS, a range separation parameter of 2 bohr—! is sufficient to ensure the same accuracy.
In a way, this means that the range-separated connection adds the most significant
region of the interaction first, while the linear connection treats equally the interaction
independently of its importance for the excitation energies. When the extrapolation
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Figure 4.7 — Error on the triplet S excitation energy (in hartree) along the range-
separated and linear adiabatic connections for the helium atom as functions of x (in
bohr=!) or A. The “bare” energies are given in plain lines and the extrapolated ones in
dashed lines. An error smaller than 1 millihartree around the physical limit is given by
the colored region.

correction is added, a systematic improvement of the energy is observed and the amount
of interaction required to reproduce the physical limit with an accuracy of 1 millihartree
now drops to 50%. Moreover one should note that contrary to the range-separated case,
the KS extrapolated excitation energy also benefits from this correction as in this case the
correction does not go to zero in this limit. At A = 0, the extrapolated excitation energy
matches the results obtained in [118] with the first-order Gorling-Levy perturbation
theory as expected.

For the KS system, it is obviously better to use the extrapolated linear connection as
the extrapolation correction has no effect at u = 0. For a partially interacting system, it
is difficult to compare the two connections, it seems however that the linear connection

works in fact better than the range-separated one except for large values of \.

4.4 Conclusion

In this chapter, we made use of the asymptotic behavior of the energies of a partially
interacting system along the range-separated adiabatic connection to design an energy
correction which allows us to extrapolate the physical energies of the system from its
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partially interacting ones. The simplest possible extrapolation was obtained by using
only the first-order derivative of the energies with respect to the range-separation param-
eter in one point. This extrapolation correction can be applied directly on the energies
of the partially interacting system or after they have been corrected by a first-order
perturbation.

This extrapolation scheme was tested on the helium and beryllium atom and on the
dihydrogen molecule at both its equilibrium and a stretched geometry where no approx-
imation were done except for the basis set. When applied on the zeroth-order energies,
this extrapolation scheme was shown to be very successful as it improves significantly
the convergence rate of the energies toward their physical limits. Moreover, this im-
provement is almost systematic, except at p = 0 where the extrapolation correction is
null by construction and in some cases where the partially interacting energies present
a “bump” at small g which is probably due to the basis set. However, in all cases, the
extrapolated energies where able to reproduce the physical energies of the system for a
given accuracy with a range-separation parameter reduced by approximately a factor of
2 with respect to the “bare” energies.

When applied on the zeroth+first-order energies of the partially interacting system,
the extrapolation correction overall improves their convergence rate. However, as the
quality of the starting point is inferior than in the zeroth-order case as discussed in
Chapter 3, and that the correction is smaller, the convergence is slower than in the
previous case. Finally the extrapolation scheme was applied along the linear adiabatic
connection where it also improves significantly the description of the excitation energies
along the connection.

All these results have been obtained without any approximate functionals. The
promising method should now be tested in a more pragmatic case where the potential is
obtained from a (semi)local approximations. The effects of the inclusion of higher-order
derivatives and of multiple points on this extrapolation should also be explored.
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Chapter 5

Theoretical background on
time-dependent linear-response
density-functional theory

In this chapter, the time-dependent extension of density-functional theory is described
and emphasis is placed on linear-response theory. This method is used to describe the
response of a system initially in its ground state to a small time-dependent oscillatory
perturbation, for instance a weak laser field. In particular, it allows one to extract the
absorption spectrum of the system by providing both the excitation energies and the
associated oscillator strengths. The theoretical foundations of the method are briefly
recalled together with its formulation in the Kohn-Sham scheme. The usual adiabatic
(semi-)local approximations are then discussed together with their successes and their
limitations as in particular, they cannot deal with multiple excitations and/or charge-
transfer excitations. Finally, the extension of the range-separated scheme to the time-
dependent case is briefly sketched in its more common variant where separation is
done on the exchange kernel only.

5.1 Introduction

In this original time-independent formulation, density-functional theory (DFT) is a
ground-state method. However, the Hohenberg-Kohn theorem states that the ground-
state electron density contains all the information on the system so that it is in principle
possible to calculate any property of the system from this density, and in particular ex-
citation energies. The most commonly used approach to compute excitation energies in
the density-functional framework is to extend DFT to a time-dependent formalism and
to use either real-time propagation or linear-response theory. In this thesis, we focus on
the latter which is relevant when the system is subject to a weak electromagnetic field.
In this case, a small time-dependent perturbation is applied on the system and its den-
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CHAPTER 5. BACKGROUND ON TDDFT

sity response is analyzed. As the system has quantized energy levels, the response of the
system is then intrinsically different if the frequency of the perturbation matches or not
a level energy difference. This is the phenomenon which is exploited in linear-response
time-dependent density-functional theory (TDDFT).

This chapter is intended to give a brief review of the TDDFT formalism within
the linear-response framework. First, the time-dependent framework is laid down in
Section 5.2, then the time-dependent KS scheme is explained in Section 5.3. As we are
interested in reproducing the excitation energies of a system subject to a weak laser
field, linear response can be used and is detailed in Section 5.4. Then the resolution in
the case of finite molecular systems is given in Section 5.5 and the usual approximations,
together with their deficiencies and possible remedies are given in Sections 5.6 and 5.7.

More details can be found for instance in [1-8].

5.2 Time-dependent framework

5.2.1 Time-dependent Schrodinger equation

The stationary many-electron problem was introduced in Chapter 1 where the Hamilto-
nian of the system was time-independent. It allows one to obtain the eigenstates of the
system by solving Equation (1.6). When the system evolves in a time-dependent field,
its behavior is ruled by the time-dependent version of the Schrédinger equation given by

9] .
iE\I/i(xh P ,XN,t) = H(t)\I/i(Xl, e ,XN7t), (51)
where the time-dependent Hamiltonian is H(t) = T+ V (t) + Wee. Its kinetic and electron-
electron interaction operators are the same as in the static Hamiltonian (1.11), but the

external potential operator is now explicitly time dependent,

V(t) = /ﬁ(r)v(r,t)dr. (5.2)

The time-dependent Schrédinger equation represents the propagation of an initial wave
function of the system W¥(¢y) under the influence of a time-dependent potential v(r,t).
Note that the initial wave function is not necessarily the ground state.

It is furthermore convenient to decompose the potential and the Hamiltonian into
their time-independent and time-dependent parts

V(t)=V+6V(t
/ (t) A A( ) (5.3)
H(t) = H + 6V ().
The density of such a system is then also time dependent and is given by
n(r,t) = (U(t)|(r)[¥(t)). (5.4)
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5.2. TIME-DEPENDENT FRAMEWORK

5.2.2 Representation of the time-dependent system

In order to describe the time evolution of the wave function and of the observables of
the system, different representations can be used where either the states, the operators
or both are evolving in time. One should note that these representations are also useful
in the stationary case as, even if the Hamiltonian is time independent, the eigenstates
evolve in time. Indeed, for an eigenstate ¥, of energy Ej, its phase rotates in time as
Uy (t) = Uy (t = 0)e *Ekt.

Schrédinger picture

In the Schrédinger representation, when calculating a time-dependent observable P(t) =
(U|P|®), the time evolution is contained in the state vectors and the operators are kept
constant with respect to time. This evolution of the state vectors is described by the

unitary time evolution operator U(t,t,) (or just U(t) when t, = 0) such that
(W (t)) = U(t, o) ¥ (to))- (5.5)

In the most general case, i.e. when the Hamiltonian is time dependent and the Hamil-

tonians at different times do not commute, this operator is given by
A A t A
Ul(t,ty) =T exp —i/ H(tdt' |, (5.6)
t0

where 7' is the Wick time-ordering operator [9, 10] which orders the operators with larger
times on the left. Whereas if the Hamiltonian is time independent, the time evolution

operator reduces simply to U(t, to) = exp (—iH(t - to)).

Heisenberg picture

Another useful representation when time evolution is concerned is the Heisenberg picture.
In this representation, the operators depend on time and the state vectors are time
independent. In particular, the time-dependent creation and annihilation field operators
are given by
(1) = U(t1,t0) sy (r1)U(t1, o), (5.7a)
UT(1) = U (ty, t0) W], (r1)U (11, to), (5.7b)
where the variable 1 stands for the spin, space, and time coordinates of the electron

(1‘1,0'17t1).

Interaction picture

The last possibility is given by the interaction picture where both the state vectors and
the operators are time dependent. However, this picture will not be used hereinafter.
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5.3 Time-dependent density-functional theory formalism

5.3.1 Runge-Gross theorem

Starting from an initial wave function ¥(ty), if a time-dependent external perturbation
v(r,t) is applied and propagated through the time-dependent Hamiltonian, the evolved
wave function ¥(¢) can be obtained at an ulterior time ¢ > ¢y;. From this wave function,
the time-dependent density n(r,t) can be calculated by applying the density operator.
For a given (i), there is thus a mapping v(r,t) — n(r,t), from the time-dependent
potential to the time-dependent density.

The first Hohenberg-Kohn theorem states the invertibility of this mapping in the
time-independent case and gives the formal foundations for density-functional theory.
The analog of this theorem for time-dependent potential and density is the Runge-Gross
theorem [11] which proves the existence of the reverse mapping.

Theorem 3 (Runge-Gross theorem). For a system of N interacting electrons, the
densities n(r,t) and n'(r,t) evolving from a common initial state ¥y = ¥(¢) under the
influence of two external time-dependent potentials v(r,t) and v'(r,t), are always dif-
ferent provided that the potentials differ by more than an additive spatially constant
time-dependent function c().

This theorem applies to potentials that are Taylor expandable about the initial time
t = ty, where ty is assumed to be finite, i.e.

> v®)(r
ICHESY il )(tfto)k. (5.8)

k!
k=0

For such potentials, it provides a one-to-one mapping between the densities and the
potentials. It thus allows one to express the time-dependent potential as a functional of
the time-dependent density and of the initial state

v(r,t) = vin, ¥ol(r, t). (5.9)

Moreover, if the initial wave function is the ground-state one then the first HK theo-
rem states that it is also a functional of the ground-state density and the initial state
dependence can therefore be dropped. The wave function ¥(¢) is then determined up to
a phase factor by n alone. The time-dependent Hamiltonian can then be written as a
density functional, and the expectation value of a given operator P is given by a unique
functional of the density as the ambiguity in the phase of the wave function cancels out

(L[n)()|P1Y[n](1)) = Pla](t). (5.10)

Some questions remain however unanswered by this theorem. For instance, it does not
provide a way to treat potentials which are switched on adiabatically at ¢y = —oo [12] as
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the Taylor expandability of these potentials about ¢ty = —oco is not ensured anymore. The
question of v-representability for time-dependent densities is also not dealt with. Van
Leeuwen theorem [13-16] solves this issue in the case of a Kohn-Sham system. It relies
on Taylor-expandable time-dependent densities and provides a formal framework for
the time-dependent Kohn-Sham formalism. The Runge-Gross theorem of TDDFT has
been proved for finite systems, where the density vanishes at infinity [15, 16]. However,
it does not apply when a uniform homogeneous field acts on a periodic system [17].
This limitation of the Runge-Gross theorem can however be circumvented by using
time-dependent current density-functional theory which also allows for the treatment of
magnetic fields [17].

5.3.2 Variational principle

The time-dependent analog of the variational principle given by the second HK theorem
is provided by a stationary condition on the quantum mechanical action integral. The
solution of the time-dependent Schrodinger equation with the initial condition ¥(¢y) = ¥q
corresponds to a stationary point of the action which is a density functional thanks to
the Runge-Gross theorem

Al = [ i)y - AO0)ar (5.11)
and can be rewritten as
Aln] = Bin] —/tl /v(r,t)n(r,t)drdt, (5.12)

where the internal action B is universal as it is independent of the external potential v.
The correct density should then be obtained by applying the Dirac-Frenkel variational
principle and solving the Euler equation

dA[n]
on(r,t)

=0 (5.13)

with appropriate boundary conditions. The potential would then be given by

0Bn]
n(r,t)’

v(r,t) = (5.14)
This implies that the external potential, which is a functional of the density from the
Runge-Gross theorem, is the functional derivative of the internal action B with respect to
the density. However, this definition is problematic as it leads to a causality paradox [2]
when calculating the response of a system to an external perturbation. In fact, it can be
shown that the second derivative of the action with respect to density 62A4/dn(r,t)dn(x’,t')
can be related to the response of the system. This derivative however is symmetric by the
interchange of the time variables while the system should not respond to a perturbation
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Figure 5.1 — The exchange-correlation potential at time ¢ depends on all the densities
at times to < t’ <t and on the initial interacting and Kohn-Sham states. If the initial
states are the ground states, then their dependence is included in the density dependence
due to the HK theorems and can be omitted.

before it has actually happened. The problem arises from the fact that the Frenkel
variational principle is valid only for variations of |¥) that vanish at the end points of
the time interval under consideration. Several solutions were proposed to circumvent this
paradox, the most famous being van Leeuwen’s Keldysh action [18, 19] and Vignale’s
real-time resolution [20, 21]. As in this thesis TDDFT will be only applied within an
adiabatic approximation discussed in Section 5.6.2, we will not explore this aspect of the
theory any deeper.

5.3.3 Kohn-Sham approach

The Kohn-Sham scheme provides a very successful framework when time-independent
calculations are concerned (cf. Section 1.5) and its time-dependent formulation is very
similar. The one-to-one mapping between the time-dependent densities and potentials
given by the Runge-Gross theorem is valid for any interaction and in particular in the
case of non-interacting electrons. Therefore the exact time-dependent density can be
reproduced by a system of N non-interacting electrons moving in a time-dependent
effective potential v¥S[n](t) which is uniquely determined. However, the Runge-Gross
theorem ensures only the uniqueness of v%° for all the v-representable densities but not
its existence for an arbitrary time-dependent density n(r,t). Assuming the existence of
such a potential, the time-dependent density is then given by

n(r,t) =3 leir, ) (5.15)
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where the time-dependent one-particle Kohn-Sham orbitals ¢;(r,t) are solutions of the
set of time-dependent Kohn-Sham equations

i%%(r,t)z —%+va[n](r,t) @i(r, ). (5.16)

The time-dependent Kohn-Sham potential can be decomposed analogously to its time-

independent counterpart into its external, Hartree, exchange and correlation parts, as

vKS[n](n t) =v[n](r,t) + vixe[n](r, t)

(5.17)
=v[n](r,t) + va[n](r,t) + ve[n](r,t) + ve[n](r,t),
where the Hartree potential is given by
_ [ n(D)
vg[n](r,t) = / = r’|dr , (5.18)

and the exchange-correlation potential is unknown. In principle, this potential is a
functional of the entire history of densities, and of the initial many-body and Kohn-
Sham wave functions ¥(to) and ®(ty), as illustrated in Figure 5.1. If the initial state
U(tg) is the ground state, then the dependence ¥(ty) and ®(¢y) is embedded in the density
dependence which allows us to write the potential as a functional of the time-dependent
density only.

The history dependence of the time-dependent exchange-correlation potential in-
creases greatly the complexity with respect to the time-independent case as the poten-
tial cannot even be related to the energy functional anymore. Therefore, even if the
exact ground-state functional were known, the time-dependent potential would remain

unknown.

5.4 Linear-response TDDFT

5.4.1 Linear-response theory

In usual absorption spectroscopy, one is interested to the response of the system (usually
in its ground state) to a weak electromagnetic field. As the strength of the field is small,
the exchange-correlation potential needs to be calculated only in the vicinity of the
ground state and the well-known Rayleigh-Schrédinger perturbation theory can be used
to calculate the response of the system and extract its excitation energies. On the other
hand, if the strength of the laser field is of the same order of magnitude or greater than
the potential due to the nuclei, then perturbation theory no longer applies and one falls
into the field of real-time dynamics in non-perturbative fields. However, in this thesis,
only the linear-response regime is considered. The derivation of the linear-response
equations is done in the spin formalism. The conventions used for Fourier transforms

can be found in Appendix A.2 together with a brief review of contour integration in the
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k)

AE,

Figure 5.2 — Schematic representation of the density response of the benzene molecule
to an external perturbation dv(w).

framework of complex analysis.
Assume a system in its ground-state, with the spin densities no(x). A real time-
dependent external perturbation dv is switched on at time ¢t = ¢y, such that

v(x,t) = = (5.19)

This potential is related to its Fourier transform by
dw —iwt
dv(x,t) = 2—5v(x,w)e . (5.20)
™

In particular, as dv(x,t) is real, its Fourier transform must satisfy the relation dv(x,w) =
dv*(x,—w). When subject to such a perturbation, the system experiences some small
time-dependent changes. In particular, the density becomes time dependent and can be
expanded in order of perturbation as

n(x,t) = no(x) + ni(x,t) + na(x,t) + - (5.21)

where ng(x) is the initial time-independent density, ni(x,t) is the first-order density,
na(x,t) is the second-order one, etc. When the perturbation is small enough, the first
order is then assumed to dominate. In linear-response theory, the change of density is
therefore calculated up to the first order only

dn(x,t) = ni(x,t). (5.22)

The change in density in one spin-space point x is not only due to the perturbation at this
point but is the result of the perturbation on the whole system. How this perturbation is
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propagated in time and space through the system is described by the retarded response
function x(x,x’,t —t') such that the change of density is then given by

t
on(x,t) :/ /X(x, x' t —t)ov(x', t")dx'dt’, (5.23)
to

where the response function depends only on the time difference because of time trans-
lation invariance. For excitation energy calculations, one is usually more interested by
the frequency-dependent response function than the time-dependent one

on(x,w) :/x(x7x’,w)6v(x',w)dx’, (5.24)

where the explicit expressions of the Fourier transforms are given in the next section.
The response function is therefore formally defined as the functional derivative of the
density with respect to the external field evaluated at the external potential

n(x,w)
ov(x!,w)

(5.25)

x(x,x' w) =

v[ng]

Before deriving the expression of this response function, some insights on its physical
interpretation and how excitation energies can be extracted from it might be worth
mentioning.

Suppose that the system is originally in its non-degenerate ground-state. Depending
on the frequency of the perturbation, two cases can occur:

e either the frequency does not match any energy difference between an excited
state and the ground state, then the change in density remains infinitesimal and
the response function is finite;

e or the frequency matches an excitation energy from the ground state, then the
system can change state and the change of density is important. This implies that
the response function diverges for this frequency, i.e. it has a pole at this value of

w.

The basic idea of time-dependent linear-response density-functional theory is therefore
to find the poles of the response function of the system to obtain the excitation energies,

or equivalently to find the zeros of the inverse response function

(5.26)

XX w) =

Expression of the linear response function

The initial Hamiltonian H has eigenvectors |k) and eigenvalues Ej. In absence of any
perturbation, these eigenstates evolve in time by a phase transformation depending on
their energy, and at given time ¢, their expression is |k(t)) = e *Fkt|k).
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The time evolution of a state vector |¥(t)) of the time-dependent Hamiltonian H(t)

can be given by a linear combination of the time-evolved unperturbed eigenvectors |k(t))
ch |k‘ ch ZEktU{J (527)

The evolution of the coefficients ¢ (¢) is obtained from the time-dependent Schrédinger

equation (5.1) such that
t
= ci(to) — iZ/ (k|5V (') |n)e {En—BR ¢ (1')at'. (5.28)
n “Yt0

For an adiabatically switched potential at ¢ty — —oo, the first-order corrections to the
coefficients when the initial conditions are co(tg) = 1 and Vk # 0, cx(tp) = 0 are then given
by .

V(1) = —i / (k|oV (£)|0Ye " Eo—BR) gy [ £ 0. (5.29)

The first-order expansion of the wave function at time t is given by |[¥(¢)) = [0(¢)) +
(W (t)), where [W(t)) = 3, ¢ AV ()|k(t)). The first-order change of the density is
therefore

on(x,t) = (0()|(x) L (1)) + (LD (0)(x)[0(2). (5.30)

Substituting the expression of the wave-function with its first-order coefficients, we get

/ /Z )| (k| (x)|0) e~ B =E) =) 5y (x’ ') dt'dx’ + c.c.  (5.31)

k#£0

where c.c. stands for the complex conjugate. The upper bound of the integration can be
extended to +oco by introduction of an Heaviside step function (¢ — ¢'). The first-order

change in density is then
n(x,t) —z//@ t—t') |(x) |6 (k| (x) |0y~ Er =) =) (! ') dt dx’ + c.c.
Ic;éO
(5.32)

The Fourier transform of the first-order density is then

0l () k) (kA (x)|0)  (OIaG)IR) KA - ) o,
n(x,w) /’;0 [w (B — Eo) + 0+ w+ (Ey — Eo) + 0+ dv(x',w)dx". (5.33)

With the definition of the response function given in Equation (5.24) the Fourier-

transformed linear response function is therefore

(0]A(x)|k) (k|a(x)|0)  (0]a(x)|k) (klA(x)[0)
Zw_(Ek_EO)+iO+_w+(Ek_EO)_|_i0+‘ (534)

X(x, %', w) =
k0
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This function admits poles at the excitation energies wy = E,— Ey and at the deexcitation
energies —wy. Therefore, assuming its invertibility, solving the equation x~!(w) = 0 allows
one to extract the excitation energies from the retarded response function.

5.4.2 Kohn-Sham response function

Within the Kohn-Sham framework, the external potential can be rewritten as the differ-
ence between the Kohn-Sham potential and the Hartree-exchange-correlation potential,
which in the frequency space gives v[n](x,w) = v¥5[n](x,w) — vhxe[n](x,w). Using this
decomposition in the expression of the inverse response function in Eq. (5.26), it gives

¥ [n](x, w)  Ounxe[n](x,w)

—1 / _
XX w) = on(x',w) n(x',w)

0 (5.35)

0

:X;(é(x7 Xl?“) - fHXC(Xax/7w)~

The first part of the right hand side is the inverse of the Kohn-Sham response function
Xks(x,x’,w) which describe the response of the non-interacting electrons. As the states
are single Slater determinants, its expression in the KS spin-orbital basis reduces to

;o 0 (X)pa(X) @i (X )@, (X)) i(x) @ (%) 9; (X)) pa(X')
XKS(X,X,w)i’Za{ o= (ea—e) 0" wt(ea—e)ri0r | (5.36)

The second part of the right hand side defines the Hartree-exchange-correlation kernel

VR[] (X, W)

n(x',w) o ’

Trxe (%, X, w) = (5.37)
which is in principle dependent of the spin densities, the initial states, two spin-space
coordinates and the frequency and should describe all the effects due to the electronic
interaction. This kernel is formally defined as the functional derivative of the frequency-
dependent Hartree-exchange-correlation potential with respect to the time-dependent

spin densities, evaluated at the ground-state spin densities. The zeros of xy !

in Equa-
tion (5.35) give the excitation energies of the real system which are constructed from
the excitation energies of the Kohn-Sham system corresponding to the poles of the
Kohn-Sham response function corrected by the Hartree-exchange-correlation kernel. The
Kohn-Sham response function is known, but one still need to deal with the Hartree-

exchange-correlation kernel and time-dependent potential.

5.5 Resolution for a finite molecular system

5.5.1 Projection in a spin-orbital basis set

In a finite system framework, it is useful to reformulate this problem in a matrix

form [1]. Consider the spin-orbital products g, (x1,x}) = ¢} (x})@a(x1) and gai(x1,x}) =

101



CHAPTER 5. BACKGROUND ON TDDFT

©* (x])pi(x1) which can be seen as excitation and de-excitation between ¢; and ¢,. They
form a complete orthogonal basis with respect to the scalar product

{9palgrs) = / Pp(X1) g (x1) 7 (%1 )ps (x1)dx1dX) = Oprdgs. (5.38)

In this basis, the Kohn-Sham response function can be rewritten as

/ _ gia(x7 X)g;ka(xl7xl) _ gai(x,x)g;(x’,x’)
Xks(x,x,w) = Z [w a1 0F wt (e ri0] (5.39)

i,a

and can be represented by a diagonal matrix xks(w) whose inverse is given by

Xics (W) = — [(AOE Al) —w (01 _Olﬂ , (5.40)

with the first block corresponding to the g;, functions and the second to the g,; functions,
and Ag;q b = (6a—¢i)0i;045. To obtain the inverse response function of the real system, the
contribution of the Hartree-exchange-correlation kernel is added via the coupling matrix
K whose matrix elements are obtained by projection of the kernel on the product basis

K jo(w) = / / 161 (31) Frtne (X1, X2, )25 (x2) 25 (Xa)dx1dcs = (ib] frtxe () [ag).  (5.41)

As the potential is real-valued, it is straightforward to show that so is the kernel. In
particular, this implies that
K,-(ij(w) = Kai’bj(—w)*. (542)

Using this relation, the matrix representation of the inverse response function is

( Alw) B(w) >w<1 0 )]
B(—w)* A(-w)* 0 -1 (5.43)

== (A(W) - WA) )

X Hw) =~

with A js(w) = (g4 — €i)0ij0ab + Kiq jp(w) and Big jp(w) = Kiqpj(w). The name of the
matrices A and B are inherited from the random phase approximation (RPA) theory also
called time-dependent Hartree-Fock (TDHF). However, the presence of the exchange-
correlation kernel f,.(w) changes significantly the problem as the matrix A and B are
then frequency dependent. This forms therefore a non-linear problem where the number
of solutions is greater than the size of the matrix. This is of crucial importance for
the treatment of multiple excitations which is not possible otherwise. The zeros of
Equation (5.43) are then obtained by solving the equation

( Aw) Bw) ) <X<w)> w(l 0) (XW)), (5.44)
B(—w)* A(—w)* Y(w) 0 -1 Y(w)
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Finding the spectral decomposition of x~!(w) reduces therefore to solving the system

{A(@X@) 4+ BW)Y(w) = wX(w) (5.45)
B(—w)*X(w) + A(—w)*Y(w) = —wY (w),
which is invariant by conjugation and the transformation

fw=-w ; Xw) —=Y(-w" ; Yw) = X(—w)*}. (5.46)

Its solutions thus come by pairs: the excitation energy w, associated with the eigen-
vector (X,,Y,), and the deexcitation energy —w, associated with (X_,,Y_,). In
practice, these equations should be solved self-consistently for each w,. When con-
vergence is reached, each matrix A(w,) has a set of eigenvalues and eigenvectors
{wi, (Xk(wn), Yi(wp)} such that it exists one k which satisfies wy = w,. The associ-
ated eigenvector (Xy(wy), Yi(wy,)) then defines (X,,,Y,). The eigenvector associated to
the deexcitation energies (X_,,Y_,) is then obtained as (Y,X>).

5.5.2 Resolution for real orbitals

If the KS orbitals are real, the system of Equations (5.45) can be further reduced as
A(—w)* = A(w) and B(—w)* = B(w). By addition and substraction of its two equations,
it can thus be rewritten as

{<A<w> +B(w) (X() + YW) = w(X(@) = Y()) (5.47)
(A(w) = B(w))(X(w) = Y(w)) = w(X(w) + Y(w))
Moreover, if the matrix (A (w) — B(w)) is definite positive then

(A(w) + Bw))(X(w) + Y(w)) = w*(A(w) = Bw)) ™ (X(w) + Y(w)), (5.48)

so that Equation (5.44) can conveniently be transformed into a half-size symmetric

eigenvalue equation [1], although still non linear
M(w)Z(w) = w?Z(w), (5.49)

with M(w) = (A(w) — B(w))"?(A(w) + B(w))(A(w) — B(w))'/?, and the normalized eigen-
vector Z(w) = Vw(A(w) — B(w))"Y?(X(w) + Y(w)). Within this scheme, the vectors X (w)
and Y (w) are not computed separately but as shown in the next section, their sum is in
fact sufficient to calculate the relevant properties.

For the excitation and deexcitation energies to be real, the matrix M needs to be
definite positive which is the case if the two stability conditions, (A(w)+ B(w)) and
(A(w) — B(w)) definite positive, are satisfied.
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5.5.3 Polarizability and oscillator strengths

The mean dynamic dipole polarizability a(w) can be expressed using the sum-over-state
theorem [1] of optical physics by

a(w) = ; w%f — (5.50)
where f,, is the oscillator strength associated with the excited state ¥,, and the excitation
energy w,. It is given by the average of the diagonal elements of the polarizability tensor
a(w) by a(w) = 3 (ags(w) + ayy(w) + azz(w)), where the gg component of the tensor is
given by

Qgq(w) = —/x(r,r’,w)rqr;drdr’. (5.51)

Using the spectral decomposition of the response function for real KS orbitals, this

element can be rewritten as

2w (pildlea) (0513l 06) (Xn + Y0 )ia(Xn + Yy

2,2
Wi —w

n ia,jb
By identification in Equation (5.50), the oscillator strengths are then given by
) 2
In= 3 Z <Z<@i|(j|@a>(xn "’Yn)ia> Wn (5'53)
q 1a

In particular, they should fulfill the Thomas-Reiche-Kuhn (TRK) sum rule > f, = N.
They can be expressed in function of the transition moment thanks to Fermi golden rule

2 R
= = 3 Holalw) P, (5.54)
q
where the transition moments are

<\IIO|(j|\IIn> = Z<Sﬁz|‘i|@a>(xn + Yn)m (555)

5.6 Usual approximations

5.6.1 Tamm-Dancoff approximation

The Tamm-Dancoff approximation (TDA) [22] consists in neglecting the coupling be-
tween the excitations and the de-excitations, i.e. setting B = 0 so that the TDDFT
equations simply reduces to

A(wn) X, = wp Xy, (5.56)

This approximation often helps to correct the deficiencies which are introduced by the

approximations made on the exchange-correaltion kernel. It therefore often gives bet-
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ter excitation energies despite the fact that the sum rule is no longer satisfied. It is
particularly efficient when a triplet instability arises [23]. We note in passing, that
TDA can also be viewed as a non-self-consistent approximation to the static (multiplet-
sum) ASCF method, which identifies the excited states with stationary points on the
ground-state energy surface as a function of the orbital parameters [24, 25].

5.6.2 Adiabatic approximation

As shown in Section 5.3.3, the time-dependent exchange-correlation potential vy.[n](x, t)
depends, in principle, on densities everywhere in space and at all previous times ¢’ < ¢.
In order to provide a practical scheme for TDDFT calculations, the most widely used
approximation is the adiabatic approxrimation where the potential is approximated to
the ground-state potential evaluated at the instantaneous time-dependent density [,
26]

Vxe[n] (X, 1) = Uxe[n()](x). (5.57)

and therefore is related to the exchange-correlation functional E,. by

(8]0 = S

(5.58)

n(x,t)

The exchange-correlation kernel can thus be expressed as the second derivative of the
energy with respect to the density as

82 Eye[n(t))]

Svse[n(t)](x)
n(x,t)on(x’,t)

/ A Y
fxc(xax 7tat)* 5(t t) 6n(x’,t)

=6(t—t) , (5.59)

n, 0 n 0

where the locality in time becomes even more obvious. The Fourier transform of the adi-
abatic exchange-correlation kernel is thus frequency independent and so are the matrices
A and B. Equation (5.44) then turns into a linear problem

EHE-EIE
B* A~ Y, 0 -1 Y,

Equation (5.60) can be reformulated as a pseudo-hermitian problem A~'AC,, = w,C,,

A:(A B) and A:<1 0). (5.61)
B* A~ 0 -1

As A is hermitian and B is symmetric, the matrix A is hermitian, and so is A.

Pseudo-hermiticity

where

Definition (Pseudo-hermiticity). A matrix II is said to be pseudo-Hermitian with
respect to an invertible matrix Q if and only if I = QIIQ~!.
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Let P = A7'A. It is easy to show that P is pseudo-Hermitian with respect to A
APA™ = AAT'AA ' = AA T = (A7'A) = P (5.62)

Using this relation, if A is definite positive then we can define the pseudo-hermitian
matrix Q = A~/2PTA/2 which is similar to P

P =A"'PTA = A7V2QAY2 (5.63)

Consequently, as € has real eigenvalues due to its hermiticity, so has P. In other words,
it means that the excitation and de-excitation energies are real if A is definite positive.

5.6.3 Adiabatic local-density approximation

Even if the adiabatic approximation already simplifies greatly the determination of the
exchange-correlation kernel, further approximations are still required as it was the case
for ground-state DFT. If the local-density approximation is used for the ground-state
functional, this then gives rise the adiabatic local-density approximation (ALDA) where

the kernel is not only local in time but also in space

52 Erixe [n] Local Density

Adiabatic
n(x)én(x') ng Approx.

Approx.

frxe(x)d(r — '), (5.64)

foC(X7 X/,OJ) foC(X7 X/) = 5
Semi-local and hybrid approximations can also be used instead of the LDA one in a
similar way. In any case, the approximation on the kernel remains drastic and leads to
a number of deficiencies which will be discussed in the next section together with some

possible solutions.

5.7 Known deficiencies and remedies

The usual adiabatic (semi)-local approximations usually give reasonable results for the
low-lying (valence) excitation energies with a mean absolute error of 0.3-0.4 eV [27] but
break down for Rydberg excitations or when charge transfer or multiple excitations are
involved [28]. In the following, the origin of these deficiencies is briefly analyzed together
with how range separation can help in these matters.

5.7.1 Main deficiencies
Rydberg excitations

The first shortcoming encountered in TDDFT concerns the Rydberg excitation ener-
gies. As these states are high in energy, they are particularly sensible to the asymptotic
behavior of the potential. In Section 1.6, we mentioned that the LDA potential de-
cays exponentially while the exact exchange-correlation potential should decays as —1/r.
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TDDFT inherits from this flaw of the potential which leads to a strong underestimation
of the Rydberg excitation energies [29, 30]. This can be circumvented by a correction
of the asymptotic behavior of the potential [31-34] or with the hybrid approximations
where a fraction « of the HF exchange potential is present. The potential then decays
as —a/r which, even if not exact, is still better than an exponential decay [35]. The
long-range corrected functionals have, on the other hand, an exact asymptotic behavior
as will be detailed in the next section.

Charge-transfer excitations

Another deficiency of TDDFT in the (semi)-local approximations is their inability to
describe excitations with a charge-transfer character [23, 36-38]. In such excitations,
the charge moves spatially from the donor (D) to the acceptor (A) which can be either
two parts of the same molecule or two separated entities. For an initial neutral system,
where the donor and the acceptor are separated by a large distance R, the excitation
energy is given by the difference between the ionization potential of the donor £;p and the
electronic affinity of the acceptor £g4 plus the electrostatic interaction energy between
the two fragments which are now charged

W(R) ——— &p —Epa — % (5.65)
In TDDFT, however, within (semi-)local approximations, the overlap between the two
main contributing orbitals exponentially vanishes and therefore the kernel contribution
goes to 0. The excitation energy reduces then to the bare difference between the Kohn-
Sham orbital energies e —e” which explains why the charge transfer is usually strongly
underestimated with LDA or GGA functionals as their HOMO-LUMO gap is too low.
To solve this problem, non-local exchange needs to be introduced. Hybrid approxima-

tions [35, 39] therefore behave much better and so do range-separated ones [40-42].

Double excitations

Another main problem encountered in TDDFT concerns the treatment of multiple ex-
citations. One could think that these excitations are very high in energies and are of no
interest when one wants only the lowest part of the spectrum. However, in some cases,
they play an important role as for example in linear polyenes [43-45], during the disso-
ciation of molecules (for instance the dihydrogen molecule [46]) or for radicals [47] and
are completely missed in adiabatic TDDFT [48, 49]. This deficiency originates from the
adiabatic approximation which turns the non-linear problem given in Equation (5.44)
into a linear one. This implies that the number of solutions is exactly equals to the
size of the matrix and that only excitations originating from single excitations in the
KS system are described. Large efforts are made to circumvent the adiabatic approx-
imation and at least treat double excitations. Several proposals can be found in the
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literature for the treatment of molecular double excitations. One of them is dressed
TDDFT [25, 43, 50-52] where a frequency-dependent kernel is build manually in a small
subspace to describe the case where a double excitation mixes with a single one and is
well separated from the others. However, this method is valid only in the limit of a weak
electron-electron interaction and one need to know a prior: where the double excitation
is missing and to build the kernel explicitly for this particular excitation. Gritsenko et
al [53] also proposed a non-adiabatic treatment of the double excitations based on the
common energy denominator approximation (CEDA) [54, 55]. As the complete manifold
of excited states is included in this kernel, it can be seen as an extension of the dressed
TDDFT kernel.

Outside of the TDDFT framework (without talking of wave-function methods such as
EOM-CCSD), other solutions are provided by many-body perturbation theory as for in-
stance by the extended algebraic diagrammatic construction (ADC) [44, 56], by Green’s
function based methods [57-59] or propagator-based methods such as SOPPA [60-64].

5.7.2 Range-separated methods

The success of range-separated functionals for ground-state calculations, due in particu-
lar to the inclusion of long-range Hartree-Fock exchange [65], lead to their extension to
the time-dependent scheme in the case where range separation is done only on the ex-
change functional (LC methods). Starting from Equation (1.69), Tawada et al. proposed
the LC-TDDFT method [40], where the LC kernel is given by

flivewc = fu+ fiiie + F501 + fe, (5.66)

where fg and f. are the usual Hartree and correlation kernels, and where the exchange
kernel has been divided in a short-range part f:"* treated by DFT and o long-range
part f)lf}’{F treated in HF. They proposed three functionals, LC-BOP, LC-PBEOP and
LC-BLYP starting respectively from the pure functionals BOP [66, 67], PBEOP [68]
and BLYP [69]. It was also explored by Yanai et al [70] which proposed the Coulomb-
attenuating B3LYP (CAM-B3LYP) method and by Vydrov and Scuseria [71] who de-
rived the functional LC-wPBE starting from PBE. Head-Gordon and its collaborators
proposed the wB97 functionals [22, 72, 73] and extended it to double hybrid func-
tionals [74]. A review of the behavior of these functionals is given in [75]. All these
functionals are able to cope with the Rydberg and charge-transfer problems, however
they still do not describe multiple excitations and may suffer from triplet instabilities

because of the inclusion of the HF exchange.

5.8 Conclusion

In this chapter, we have briefly reviewed the TDDFT formalism and its successes and
shortcomings when applied in the adiabatic (semi-)local approximation. Range separa-
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tion of the exchange kernel is already able to make up for most of these shortcomings
but the treatment of double- or higher-order excitations remains problematic. In the
next chapter, we propose to extend the range separation to the correlation kernel in
the same fashion as it is done in ground-state DFT within the RSH scheme. This does
not solve the problem of double excitations but lays the appropriate framework for the
perturbative addition of a long-range frequency-dependent correlation kernel as will be
show in the last part of this thesis.
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Chapter 6

Electronic excitations from a
linear-response range-separated
hybrid scheme

This chapter is the subject of a publication in Molecular Physics (2013), 111, Pp.
1219-1234. in collaboration with A. Savin and J. Toulouse.

In this chapter, we study linear-response time-dependent density-functional the-
ory (DFT) based on the single-determinant range-separated hybrid (RSH) scheme,
i.e. combining a long-range Hartree-Fock exchange kernel with a short-range DF'T
exchange-correlation kernel, for calculating electronic excitation energies of molecular
systems. It is an alternative to the more common long-range correction (LC) scheme
which combines a long-range Hartree-Fock exchange kernel with a short-range DFT
exchange kernel and a standard full-range DFT correlation kernel. We discuss the
local-density approximation (LDA) to the short-range exchange and correlation ker-
nels, and assess the performance of the linear-response RSH scheme for singlet —
singlet and singlet — triplet valence and Rydberg excitations in the Ny, CO, H,CO,
CyHy, and CgHg molecules, and for the first charge-transfer excitation in the CoHy-
CyF, dimer. For these systems, the presence of long-range LDA correlation in the
ground-state calculation and in the linear-response kernel has only a small impact
on the excitation energies and oscillator strengths, so that the RSH method gives
results very similar to the ones given by the LC scheme. Like in the LC scheme,
the introduction of long-range HF exchange in the present method corrects the un-
derestimation of charge-transfer and high-lying Rydberg excitation energies obtained
with standard (semi-)local density-functional approximations, but also leads to un-
derestimated excitation energies to low-lying spin-triplet valence states. This latter
problem is largely cured by the Tamm-Dancoff approximation which leads to a rel-
atively uniform accuracy for all excitation energies. This work thus suggests that
the present linear-response RSH scheme is a reasonable starting approximation for
describing electronic excitation energies, even before adding an explicit treatment of
long-range correlation.
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6.1 Introduction

Range-separated density-functional theory (see, e.g., Ref. [76] and references therein)
constitutes an alternative to standard Kohn-Sham (KS) density-functional theory
(DFT) [77] for ground-state electronic-structure calculations. It consists in combin-
ing wave-function-type approximations for long-range electron-electron interactions with
density-functional approximations for short-range electron-electron interactions, using a
controllable range-separation parameter. For example, in the single-determinant range-
separated hybrid (RSH) scheme [78], the long-range Hartree-Fock (HF) exchange energy
is combined with a short-range exchange-correlation density-functional approximation.
The long-range correlation energy is missing in this scheme, but it can be added in
a second step by many-body perturbation theory for describing van der Waals disper-
sion interactions for instance [78-83]. A simpler approach is the long-range correction
(LC) scheme [65], also called RSHX [84], which consists in applying range separation
on exchange only, i.e. combining the long-range HF exchange energy with a short-range
exchange density-functional approximation and using a standard full-range correlation
density functional. More complicated decompositions of the exchange energy have also
been proposed, such as in the CAM-B3LYP approximation [70].

Range separation is also applied in linear-response time-dependent density-functional
theory (TDDFT) [85] for calculating excitation energies and other response properties.
The first and probably most widely used range-separated TDDFT approach is based
on the LC scheme [40], and involves a long-range HF exchange kernel combined with
a short-range DFT exchange kernel and a standard full-range DFT correlation kernel.
It has also been proposed to use in this scheme an empirically modified correlation
density functional depending on the range-separation parameter [86]. The CAM-B3LYP
scheme and other similar schemes have also been applied in linear-response theory for
calculating excitation energies [70, 72, 87-97]. In all these schemes, the presence of long-
range HF exchange greatly improves Rydberg and charge-transfer excitation energies, in
comparison to time-dependent Kohn-Sham (TDKS) calculations using standard local or
semilocal density-functional approximations in which they are strongly underestimated
(see, e.g., Ref. [28]).

In this chapter, we study a range-separated linear-response TDDFT method based
on the RSH scheme, i.e. combining a long-range HF exchange kernel with a short-range
DFT exchange-correlation kernel with no long-range correlation kernel. The motiva-
tion for this range-separated TDDF'T approach is that, as for exchange, the long-range
part of standard correlation density-functional approximations such as the local-density
approximation (LDA) is usually inaccurate [76, 98, 99], so one may as well remove it.
This can be viewed as a first-level approximation before adding a more accurate treat-
ment of long-range correlation, e.g., by linear-response density-matrix functional theory
(DMFT) [100] or linear-response multiconfiguration self-consistent field (MCSCF) the-
ory [101]. These last approaches are capable of describing excited states of double excita-
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tion character, which are out of reach within a single-determinant linear-response scheme
using adiabatic exchange-correlation kernels (except in a spin-flip formulation [25, 102]).

The main goal of this chapter is to test whether the range-separated TDDFT method
based on the RSH scheme is a reasonable starting approximation for calculating excita-
tion energies of molecular systems, even before adding explicit long-range correlations.
For this purpose, we apply the method to singlet — singlet and singlet — triplet valence
and Rydberg excitations in the Ny, CO, H,CO, CsH,4, and C¢Hg molecules, and to the
first charge-transfer (CT) excitation in the CoHy-CoF,4 dimer, and compare with the LC
scheme, as well as non-range-separated methods. In particular, we study the effect of
dropping long-range LDA correlation in comparison to the LC scheme.

The chapter is organized as follows. The working equations of the linear-response
RSH scheme are laid down in Section 6.2, and the short-range DFT exchange and cor-
relation kernels are discussed in Section 6.3. After giving computational details in Sec-
tion 6.4, we report and discuss our results in Section 6.5. Section 6.6 summarizes our
conclusions. Technical details are given in Appendix E. Hartree atomic units are as-
sumed throughout unless otherwise indicated.

6.2 Linear-response range-separated hybrid scheme

6.2.1 Ground-state range-separated scheme

In the RSH scheme [78], the ground-state energy is approximated as the following min-
imum over single-determinant wave functions @,

Blisy =min {(B[T + Vie|®) + Bulno] + By fiel®] + B [na, ma] } (6.1)

where T is the kinetic energy operator, Vi is the external potential operator due to the
electron-nuclei interaction, Ey[n] is the Hartree energy density functional,

Eyuln] = 1 /n(rl)n(rg)weeﬂrl — r3|)dridra, (6.2)

2
with the Coulombic electron-electron interaction wee(Jr1 — r2|) = 1/|r; — ral, E}i’ﬁ‘F[CI)] is

the long-range HF exchange energy
r 1 . .
B[ @] = —3 / (@[ (x1,%2) | @) Pwi# (v — ro|)dx1dxa, (6.3)

with the one-particle density-matrix operator 7n;(x;,x2) and a long-range electron-
electron interaction w*(|r; —rs|), and ES9#[n,m] is the short-range exchange-correlation
energy functional depending on the total density n(r) = n(r) + n (r) and the (collinear)
spin magnetization density m(r) = nq4(r) — ny(r), written with the spin densities n,(r) =
n(x) for the space-spin coordinate x = (r, o). In this work, the long-range interaction will
be taken as wl#(r) = erf(ur)/r, where the parameter ; can be interpreted as the inverse
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of a smooth “cut-off” radius, but other interactions have also been considered [103-105].
What is neglected in Equation (6.1) is the long-range correlation energy E* but it can
be added a posteriori by perturbative methods [78-83, 106, 107].

In the LC scheme [65], range separation is applied to the exchange energy only and
the ground-state energy is expressed as

Eli =min (@[T + Viel®) + Eulna] + E}fin[®] + B [ne,mo] + Eefne,mal} . (6.4)

where ES%#[n,m] is the short-range exchange energy functional, and E.[n,m] is the full-

range correlation energy functional.

6.2.2 Linear-response theory

Just like in standard TDDFT [85], time-dependent linear-response theory applied to the
RSH scheme leads to a familiar Dyson-like equation for the frequency-dependent 4-point
linear response function x(xi,xs2;x},x5;w) to a time-dependent perturbation (dropping
the space-spin coordinates for simplicity)

XTHw) = X0t @)~ — fle — (6.5)
where xo(w) is the non-interacting RSH response function, fy is the Hartree kernel,
fu(xr, x2; %), x5) = Wee(|r1 — r2|)d(x1 — x7)d(x2 — %5), (6.6)
irlij is the long-range HF exchange kernel,
Fiie (%1, %2330, x5) = —wgg” (Jra — r2)) (a1 — x5)3(x) — xa), (6.7)

and f55# is the short-range exchange-correlation kernel which is frequency independent

in the adiabatic approximation,
el (%1, %23 X7, X5) = frof (x1,%2)0(x1 — x7)6(x2 — X5), (6.8)

with the 2-point kernel
82 ES5H [n, m]
ST, f4 — xC )
w1 xe) = S o) (6.9)
Note that a 4-point formalism is required here because of the HF exchange kernel. The
excitation energies are given by the poles of y(w) in w. Working in the basis of the

RSH spin orbitals {¢x(x)}, the poles can be found by the pseudo-Hermitian eigenvalue

EOE-ENE e
B* A~ Y, 0o -1 Y,
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6.2. LINEAR-RESPONSE RANGE-SEPARATED HYBRID SCHEME

whose solutions come in pairs: the excitation energy w, associated with the eigenvec-
tor (X,,Y,), and the deexcitation energy —w, associated with (Y},X*). The matrix
elements of A and B are

Ajajv = (€a — €i)0ij0ab + Kia jb, (6.11)

Bia,jb = Kiapj,

where i, j and a, b refer to occupied and virtual spin orbitals, respectively, ¢ is the energy
of the spin orbital k, and K is the coupling matrix accounting for the contributions of
the different kernels,

Kia, b = (aj| fulib) + (aj| {5 |i0) + {ad| £ iD) (6.12)
= (ajleelib) — (ajldbe |bi) + (aj| fi*|ib),

where (aj|wee|ib) and (ajlwl:*|bi) are the two-electron integrals for the Coulombic and

long-range interactions, respectively, and (aj|fs#|ib) are the matrix elements of the

short-range exchange-correlation kernel,

(aj] fish|ib) = /¢Z(X1)¢§(X2)fiﬁ’”(xhX2)¢i(xl)¢b(x2)d><1dx2- (6.13)

For real-valued orbitals, and if A +B and A — B are positive definite, Equation (6.10) is
conveniently transformed into a half-size symmetric eigenvalue equation [1]

MZ, = w2 Zy,, (6.14)

with M = (A- B)l/2 (A+B)(A- B)l/2 and the normalized eigenvectors Z, =
Jan (A —B)"*(X, +Y,). The Tamm-Dancoff approximation (TDA) [22] consists in
neglecting the coupling between the excitations and the de-excitations, i.e. setting B = 0.
We note, in passing, that the TDA can also be viewed as a non-self-consistent approxi-
mation to the static (multiplet-sum) ASCF method, which identifies the excited states
with stationary points on the ground-state energy surface as a function of the orbital
parameters [24, 25].

The same equations apply identically to the LC scheme except that the short-range
correlation kernel f5"# has to be replaced by the full-range one f. [40].

6.2.3 Spin adaptation for closed-shell systems

For spin-restricted closed-shell calculations, Equation (6.14) can be decoupled into two
independent eigenvalue equations for singlet — singlet excitations and for singlet —
triplet excitations, respectively [3, 26, 108] (see Appendix E.1). For simplicity, they will
be referred to as “singlet excitations” and “triplet excitations”. The modifications for
spin adaptation are located in the expression of the coupling matrix K, which becomes,
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for singlet excitations,
K o = 2(aj|iee|ib) — (ajlibg |bi) +2(aj] * f2ot|ib), (6.15)
and, for triplet excitations,
¥ Kia o = —{ajlig bi) + 2(aj| * frotib), (6.16)

where the indices i, j, a, b refer now to spatial orbitals and the singlet and triplet short-

range exchange-correlation kernels are

02 et [n, m]

1 psr,p _
xc (1‘1,1‘2) (571(1‘1)5’/1(1‘2)7 (617)
and
3 g S EZet[n,m]
e (r1,r2) = (6.18)

— om(r)dm(rs)’
where the derivatives are taken at zero spin magnetization density, m(r) = 0. Be-
cause the spin-dependent exchange functional E#[n,m] is constructed from the spin-
independent one E#[n] = ES#[n,m = 0] via the spin-scaling relation [109], E5#[n, m] =
(EZF[2n4] 4+ EZ9#[2n,]) /2, one can show that the singlet and triplet exchange kernels
are identical, and, for closed-shell systems, can be written with the spin-independent

functional, ,
f (e, re) = 1 (en,wo) = P f (e, 10) = m (6.19)
Therefore, contrary to the case of the correlation functional, the dependence on the
spin magnetization density does not need to be considered in practice in the exchange
functional for closed-shell systems.
The oscillator strength f,, for state n is zero for a triplet excitation, and it is calculated

with the following formula for a singlet excitation (in the dipole length form) [1]

fn = % > (Z doia [(1A —1B)"/? 1zn} ) , (6.20)

K3
a=w,y,z

where dy o = [ ¢i(r)ra¢.(r)dr is the a-component of the transition dipole moment be-
tween the spatial occupied and virtual orbitals ¢;(r) and ¢,(r).

6.3 Short-range adiabatic exchange-correlation kernels

We will consider here the short-range adiabatic exchange and correlation kernels in the
local-density approximation (LDA).
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Figure 6.1 — Second-order derivatives of the full-range (full line) and short-range (u =
0.4, dashed line) LDA exchange energy density with respect to the density n as functions
of the Wigner-Seitz radius rs.

6.3.1 Exchange kernel

The short-range spin-independent LDA exchange energy functional is written as

Exfoaln] = [ )i, (6:21)

where ei#(n) = ne#(n) is the short-range energy density defined with the exchange
energy per particle €#(n) of the homogeneous electron gas (HEG) with the short-range
electron-electron interaction wiH* = we. — wih#. The analytic expression of €5#(n) is
known [104, 110] and is recalled in Appendix E.2.1. The short-range adiabatic LDA
exchange kernel is given by the second-order derivative of the energy density with respect
to the density,

0%es* (n(r))

5 5(r—r'). (6.22)

f;fﬁ%A(r’r/) =
Just like its full-range LDA counterpart, the short-range exchange LDA kernel is thus
strictly local in space. However, this is here a less drastic approximation than for
the full-range case. Indeed, by using the asymptotic expansion of the exact short-
range spin-independent exchange density functional for u — oo [76, 111], ESV#[n] =
—7/(4p?) [n(r)®dr + O (1/p), one can see that the ezact adiabatic short-range exchange
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kernel has the following expansion in 1/,

Fori (e, r) = 7# Sr—r')+ 0 (;) , (6.23)
i.e., in the limit of a very short-range electron-electron interaction, it also becomes
strictly local. More than that, the short-range LDA kernel of Equation (6.22) is exact
for the leading term of Equation (6.23), as shown in Appendix E.2.1.

The short-range LDA exchange kernel for a fixed value of the range-separation
parameter p = 0.4 is shown in Figure 6.1 as a function of the Wigner-Seitz radius
rs = (3/ (47771))1/ ® and compared with the full-range LDA exchange kernel. The LDA
exchange kernel is always negative, which is a consequence of the concavity of the LDA
exchange energy density curve as a function of the density n. For high enough densities
such that r, < 1/u, the short-range LDA exchange kernel reduces to the full-range one
(see Appendix E.2.1). For larger values of r4, the short-range LDA exchange kernel is
reduced compared to the full-range one, and, in the low-density limit r, — oo, it tends
to the finite value of —n/2u? while the full-range LDA exchange kernel diverges to —oo.

6.3.2 Correlation kernel

The short-range spin-dependent LDA correlation energy functional is written as
E;ibaln,m] = /EE’“’“(n(r),m(r))dr, (6.24)

where e (n,m) = ne.(n,m) — ne#(n,m) is the complement short-range correlation
energy density, obtained from the correlation energy per particle of the standard homo-
geneous electron gas (HEG), e.(n,m), [112] and the correlation energy per particle of
the HEG with the long-range electron-electron interaction, €X*(n,m), as parametrized
from quantum Monte Carlo calculations by Paziani et al. [113]. Its expression is recalled
in Appendix E.2.2. The singlet and triplet short-range adiabatic LDA correlation ker-
nels are local functions given by the second-order derivatives of the energy density with
respect to the density n and the spin magnetization m, respectively,

o , 9%estH (n(r), m(r ,
! C,I:lf)A(r’ r ) = (87(1,2) ( )) 5(1‘ -r )7 (625)

o , 9%estH (n(r), m(r ,
o) - PO o

For closed-shell systems, these kernels need to be evaluated only at zero spin mag-

netization, m = 0. Again, it can be argued that the strictly local form of the LDA
correlation kernels of Equation (6.25) and (6.26) is more appropriate for the short-range
kernels than for the full-range ones. Using the asymptotic expansion of the exact short-
range correlation functional for p — oo [76, 114], ES#[n,m] = 7/(2u?) [ nac(r,r)dr +
2v27/(3u%) [ na(r,r)dr + O (1/p*), and the total and correlation on-top pair densities in
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the strong-interaction limit of the adiabatic connection A — oo (or for fully spin-polarized
systems n = |m|) [115, 116], na(r,r) — 0 and nac(r,r) — —n(r)?/2 + m(r)?/2, it is easy
to show that the leading terms in the expansions of the ezact adiabatic short-range cor-
relation kernels for p — oo, in the strong-interaction (or low-density) limit, are strictly

local 1
1 psr,p / _L - —_—
faor(r, ") m o2 o(r r)—i—(’)(lﬁ), (6.27)
3 sr,u(r I‘/) , LCS(I‘—I‘/) + 0O i . (628)
¢ ’ A— 00 2/12 /~L4

The short-range LDA correlation kernels of Equations (6.25) and (6.26), using the
parametrization of Ref. [113], are exact for these leading terms.

The singlet and triplet short-range LDA correlation kernels are plotted in Figure 6.2,
and compared with the full-range LDA correlation kernels. The singlet LDA correlation
kernel is always negative while the triplet LDA correlation kernel is always positive,
reflecting the fact that the LDA correlation energy density is concave when plotted as
a function of the density n and convex when plotted as a function of the spin mag-
netization m. As for the exchange kernels, the singlet and triplet short-range LDA
correlation kernels reduce to the full-range kernels in the high-density limit r; — 0 (see
Appendix E.2.2). In the low-density limit r; — oo, they tend to the finite values of
Fr /22, while the full-range kernels diverge to Foo.

6.4 Computational details

The spin-adapted linear-response RSH scheme with the short-range LDA kernels has
been implemented in a development version of the quantum chemistry program MOL-
PRO [118] for closed-shell systems. The implementation includes as special cases:
standard TDKS with the LDA exchange-correlation functional, and time-dependent
Hartree-Fock (TDHF). The implementation also includes the possibility to perform
linear-response LC calculations (with the full-range LDA correlation functional). Each
calculation is done in two steps: a self-consistent ground-state calculation is first per-
formed with a chosen energy functional, and then a linear-response excited-state calcu-
lation is performed with a chosen kernel and using the previously calculated orbitals.
For compactness, “T'D” will be dropped in the names of the methods and “LDA” will
also be omitted in the names as it is the only density functional used here. Therefore,
“KS” will denote a TDKS calculation using the LDA exchange-correlation functional,
“HF” will stand for a TDHF calculation, “RSH” will denote a linear-response RSH calcu-
lation using the short-range LDA exchange-correlation functional, and “LC” will stand
for a linear-response LC calculation using the short-range LDA exchange functional and
the full-range LDA correlation functional. We will call “RSH-TDA” a linear-response
RSH calculation with the Tamm-Dancoff approximation. For all these methods, the
same functional is used for the ground-state energy calculation and the linear-response
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Figure 6.3 — Singlet (a) and triplet (b) excitation energies of Ny (in eV) with respect
to the range-separation parameter p (in bohr~!) calculated by the linear-response RSH

method with the short-range LDA exchange-correlation functional at the equilibrium
geometry [117] and with the Sadlej+ basis set.
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calculation. In addition, we will call “RSH-fHx” a linear-response RSH calculation
where only the Hartree-exchange part of the RSH kernel is used (no correlation kernel)
but evaluated with regular RSH orbitals (including the short-range correlation energy
functional).

We calculate vertical excitation energies and oscillator strengths of five small
molecules, No, CO, H,CO, CyHy, and CgHg, which have already been extensively stud-
ied theoretically [28, 29, 40, 61, 119, 120] and experimentally [121-124]. In order to
have unique, comparable references, equation-of-motion coupled-cluster singles doubles
(EOM-CCSD) calculations were done in the same basis with the quantum chemistry
program Gaussian 09 [125]. For each molecule, we report the first 14 excited states
found with the EOM-CCSD method. Following Ref. [1], we define the coefficient of the

(spin-orbital) single excitation i — a in the wave function of the excited state n to be

1

Cn,ia = Xn,ia + Yn,ia =
Wn,

(A-B)"z,] | (6.29)

ia

ﬂ

but other choices for analyzing the eigenvectors are possible, such as defining the weight
— Y2, [126]. Each excited state

of the single excitation i — a to be wy,;, = X2 2 ia
was thus assigned by looking at its symmetry and the leading orbital contributions

njia
to the excitation. When several excited states of the same symmetry and the same
leading orbital contributions were obtained, the assignment was done by increasing order
of energy. Some assignments for CoHy and CgHg were difficult and are explained in
Tables 6.4 and 6.5. The Sadlej basis sets [127, 128] were developed to describe the
polarizability of valence-like states. As the description of Rydberg states requires more
flexibility, they were augmented with more diffuse functions to form the Sadlej+ basis
sets [29] that we use here. The molecules are taken in their experimental geometries [117,
129-131].

The CyH4-CoF, dimer [36, 40, 132] was studied in its cofacial configuration along
the intermolecular distance coordinate R in the standard 6-31G* basis set. A geometry
optimization was performed during the self-consistent ground-state calculation for each
method. The CT excitation was identified by assigning the molecular orbitals involved in
the excitations either to CoHy or CoF 4, using the visualization program MOLDEN [133].

6.5 Results and discussion

6.5.1 Variation of the RSH excitation energies with the range-
separation parameter

When the range-separation parameter is zero, p = 0, the long-range HF exchange van-
ishes and the short-range exchange-correlation functional reduces to the usual full-range
one, therefore the RSH method is equivalent to the standard KS method in this limit.
With the LDA functional, linear-response KS gives good results for the low-lying valence
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1.6 } — Total |
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Figure 6.4 — Mean absolute deviation (MAD) in eV of the first 14 excitation energies
of the Ny, CO, H,CO, C;H, and CgHg molecules calculated by the linear-response RSH
method with the short-range LDA exchange-correlation functional with respect to the
EOM-CCSD reference as a function of the range-separation parameter pu.

excitation energies but underestimates the high-lying Rydberg excitation energies. This
underestimation is known to be due to the incorrect exponential asymptotic decay of
the LDA exchange potential [29]. When u increases, long-range HF exchange replaces
LDA exchange and long-range LDA correlation is removed. In the limit p — +o0o, RSH
becomes equivalent to a HF calculation, in which Rydberg excitation energies are usually
better described than in LDA but valence excitation energies can be poorly described,
especially the triplet ones which can be strongly underestimated and can even become
imaginary due to instabilities (A +B in Equation (6.14) are no longer positive definite).

The variation of the first few singlet and triplet RSH excitation energies of Ny with
respect to the range-separation parameter p is shown in Figure 6.3. The evolution of the
excitation energies is similar for both spin states, however three different trends are seen
for these excitations depending on their valence or Rydberg character and their spatial
symmetry. The excitation energies to the Rydberg excited states ('3, 'II,,'S}, 3%,
3%+ 311, ) which are underestimated in KS show a significant increase with u for > 0.1.
This behavior is quite independent of the spin and spatial symmetry of the state. The
valence excited states (I, 'S, 'A,, 35F, 3, 3A,, 351 ,311,) which are correctly de-
scribed in KS are less affected by the introduction of long-range HF exchange. However,
we observe two opposite behaviors depending on the orbital character of the excitation:
all the valence II states (corresponding to o — m orbital transitions) have excitation
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Figure 6.5 — Singlet (a) and triplet (b) excitation energies of Ny, CO, H,CO, CyH,
and CgHg calculated by linear-response HF and KS (with the LDA functional), by the

linear-response range-separated method RSH (with the short-range LDA functional and
p = 0.4 bohr=1), as compared with the EOM-CCSD reference calculations.
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energies that slowly increase with p, while for valence ¥ and A states (corresponding to
7 — m orbital transitions) the excitation energies decrease with u. As a consequence, the
ordering of the states changes significantly with x. One should note that the variation of
the excitation energies with u have two causes: the variation of the orbital eigenvalues
with u in the ground-state calculation, and the variation of the kernel with u in the
linear-response calculation. Both effects can be significant.

The choice of the range-separation parameter y is important. It has been proposed to
adjust the value of p for each system by imposing a self-consistent Koopmans’ theorem
condition [41, 134]. This approach is appealing but it has the disadvantage of being
non size-consistent, so we prefer to use a fixed value of pu, independent of the system.
In Figure 6.4, the mean absolute deviation (MAD) of the RSH excitation energies with
respect to the EOM-CCSD reference is plotted as a function of p for each molecule and
for the total set. The global minimum is obtained around p ~ 0.3 —0.4 bohr~!. In all the
following, we use a fixed value of u = 0.4, which is identical or similar to the value used
in other range-separated TDDFT approaches [93, 100, 101]. We note however that the
fact that the minimum of the MAD for CgHg is around p = 0.2 shows that the optimal
value of ;1 can substantially depend on the system. In particular, the presence of a triplet
near-instability favors smaller values of p.

6.5.2 Accuracy of the RSH excitation energies and oscillator strengths

The excitation energies and oscillator strengths for each method and each molecule
are given in Tables 6.1-6.5. Mean absolute deviations with respect to the EOM-CCSD
reference are also given for the valence, the Rydberg and all the excitation energies. We
also report the position of the ionization threshold for each DFT method, as given by
the opposite of the HOMO orbital energy. The excitation energies for all molecules are
also plotted in Figure 6.5. As expected, KS gives reasonably small errors for the valence
excitation energies (MAD between 0.36 and 0.73 eV) but deteriorates for the Rydberg
ones (MAD between 0.49 and 1.83 eV) which are largely underestimated, as seen in
Figure 6.5. As well known [29], in KS with the LDA functional, the ionization energy
is much too small, resulting in most of the Rydberg states and some of the valence
states being in the continuum above the ionization threshold, and which are thus very
much dependent on the basis set. This problem is absent in HF and range-separated
approaches which correctly push up the ionization threshold. The HF excitation energies
are usually larger than the reference ones except for the first triplet excitation energies
which are much too small or even imaginary because of the HF triplet (near-)instability.
Overall, HF gives relatively large total MADs (between 0.59 and 1.62 eV).

The RSH excitation energies are in general intermediate between KS and HF ones
and in good agreement with the EOM-CCSD ones. The valence and Rydberg excita-
tion energies are treated with a more uniform accuracy (MAD between 0.06 and 0.61
eV). However, the first triplet excitation energies are affected by the HF triplet near-
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instability and can be very underestimated. This effect is particularly important for the
first triplet excitation energy of CoHy and CgHg as shown in Tables 6.4 and 6.5. This
underestimation is largely cured by the Tamm-Dancoff approximation, as shown by the
RSH-TDA results. The quality of the other excitation energies is not deteriorated with
this approximation, so that RSH-TDA gives overall smallest MADs than RSH. However,
the oscillator strengths which were relatively good in RSH tend to be overestimated for
excitations to valence states in RSH-TDA. This has been connected with the fact that
the TDA oscillator strengths violate the Thomas-Reiche-Kuhn sum rule. The present
RSH results give thus very much the same trends already observed with other types of
range-separated TDDFT approaches [40, 75, 86, 89, 135].

The first singlet CT excitation energy in the CoH4-C5F 4 dimer along the intermolecu-
lar distance coordinate R, for R between 5 and 10 A (i.e. between 9.45 and 18.90 bohr), is
given in Figure 6.6. This excitation corresponds to an electron transfer from the HOMO
of CoFy4 to the LUMO of CsHy. Therefore, its energy must behave asymptotically as
Ioyry — Acyn, — 1/R, where Ic,r, is the ionization potential of the tetrafluoroethylene
and Ac, g, is the electron affinity of ethylene. A fit of the form a + b/R was performed
and the fitted parameters are shown in Figure 6.6. The well-known deficiency of KS with
the LDA functional to describe the —1/R dependence of such excitations is observed as
it gives a parameter b close to zero, while HF and RSH both give the expected correct
asymptotic behavior in —1/R thanks to the non-locality of their exchange kernel [36].

6.5.3 Effect of the LDA correlation

Tables 6.1-6.5 also report results obtained with the LC scheme using the short-range
exchange LDA functional and the full-range LDA correlation functional. The comparison
with the RSH results allows one to see the global effect of long-range LDA correlation
in the ground-state calculation and in the linear-response kernel. The RSH and LC
excitation energies are globally quite close to each other, the largest difference being of
0.2 eV for the *II Rydberg state of the CO molecule. In most cases, the LC excitation
energies are slightly larger than the RSH ones. In comparison to the RSH scheme,
the LC scheme gives slightly smaller MADs (by 0.01 to 0.08 eV) for valence excitation
energies, but with the exception of CO it gives larger MADs (by 0.07 to 0.09 eV) for
Rydberg excitation energies. The RSH and LC oscillator strengths are quite similar.
This shows that long-range LDA correlation has a quite small effect for the systems and
states considered here, and can be disregarded without much consequence.

The first CT excitation energy in the CoHy4-CoF4 dimer obtained with the LC scheme
is also reported in Figure 6.6. Not surprisingly, the RSH and LC curves have the same
—1/R behavior, which is given by the long-range HF exchange kernel, and are essentially
on-top on each other, showing that long-range LDA correlation has almost no effect on
the HOMO and LUMO orbital energies.

To investigate the effect of the short-range LDA correlation kernel, Tables 6.1-6.5
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Figure 6.6 — First charge transfer excitation energy of the CoH4-CoFy dimer calculated
by linear-response HF and KS (with the LDA functional) and by the linear-response
range-separated methods RSH and LC (with the short-range LDA functional and u =
0.4 bohr—!) using the 6-31G* basis. A fit of the form a + b/R was performed. The fitted
parameters a and b are given in atomic units.

also report RSH-fHx results obtained with regular RSH orbitals but no correlation kernel
at all. Removing the short-range LDA correlation kernel tends to yield larger singlet
excitation energies and smaller triplet excitation energies. This is not unexpected since
the singlet LDA correlation kernel is negative and the triplet LDA correlation kernel is
positive, as shown in Figure 6.2. In comparison to the RSH results, RSH-fHx gives quite
similar singlet valence excitation energies and Rydberg excitation energies, but much
lower triplet valence excitation energies (sometimes by as much as 0.5 eV), leading to
significantly larger MADs for valence excitations. The short-range part of the LDA
correlation kernel is thus important and cannot be neglected.

6.6 Conclusion

We have studied a linear-response range-separated scheme, which combines a long-range
HF exchange kernel with a short-range LDA exchange-correlation kernel, for calculating
electronic excitation energies and oscillator strengths of molecular systems. It is a first-
level approximation before adding an explicit treatment of long-range correlation. It
can also been seen as an alternative to the widely used linear-response LC scheme which
combines a long-range HF exchange kernel with a short-range DFT exchange functional
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and a full-range DF'T correlation functional.
Tests on the N, CO, H,CO, CsH,, and CsHg molecules have shown that a reason-

1 which is consistent with

able value for the range-separation parameter is ;1 = 0.4 bohr~
what was previously reported in the literature for other types of range-separated TDDF'T
methods. Just like in the LC scheme, the introduction of long-range HF exchange in the
present method corrects the well-known underestimation of high-lying Rydberg excita-
tion energies of standard TDDFT using (semi)local density-functional approximations,
but also leads to underestimated excitation energies to low-lying spin-triplet valence
states. This latter problem is known to be associated with the presence of HF triplet
near-instabilities and is largely cured by the Tamm-Dancoff approximation which leads
to a relatively uniform accuracy for all excitation energies, but possibly at the cost of
deteriorating the oscillator strengths. As expected, tests on the first CT excitation en-
ergy in the CoHy-CoF4 have shown that the present range-separated TDDFT method
also correctly describe this kind of excitations.

For the systems and states considered here the presence of long-range LDA correla-
tion in the ground-state calculation and in the linear-response kernel has a quite small
effect, so that the present method gives results very similar to the ones given by the
LC scheme. Long-range LDA correlation can therefore be disregarded. In contrast,
the short-range LDA correlation kernel is important for singlet — triplet valence ex-
citation energies and cannot be neglected. This work thus suggests that the present
range-separated TDDFT scheme is a reasonable starting approximation for describing
electronic excitation energies. The next step of this work is then to add to the present
method an explicit frequency-dependent long-range correlation kernel derived from per-
turbation theory, e.g. in the spirit of Refs. [52, 57], which would add the possibility of
describing double excitations.
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State  Tramsition | KS  RSH RSH-TDA LC RSHfHx HF EOM-CCSD |

Valence excitation energies (eV)

6¢1

3y 1my — 1mg 7.87 7.19 7.63 7.31 6.65 3.47 7.72
M, B0, > 1lmy | 754 7.84 7.90 788 767 7.62 8.16
3AL 1my — 1mg 8.82 8.26 8.45 8.31 8.03 5.86 9.07
I, 30 — lmg 9.05 9.43 9.57 9.43 9.47 9.77 9.55
3y 1y — 1mg 9.65 9.23 9.26 9.22 9.23 7.94 10.00
Iy 1y — 1mg 9.65 9.23 9.26 9.22 9.23 7.94 10.24
1A, 1m, — 1mg 10.22 9.90 9.91 9.90 9.95 8.78 10.66
311, 20y — 1mg 10.36 10.77 10.86 10.82 10.53 11.28 11.36
Rydberg excitation energies (eV)
32; 30, — 4o, 10.28 11.78 11.79 11.94 11.73 13.05 11.74
12; 30s — 40, 10.39 12.26 12.29 12.38 12.26 13.98 12.15
3y 30, — 304 10.62 12.63 12.64 12.87 12.59 14.16 12.70
311, 30 — 2my 10.99 12.62 12.62 12.83 12.59 14.56 12.71
I, 30, — 2, 10.98 12.74 12.74 12.87 12.75 13.21 12.77
Iy 30, — 304 10.62 12.76 12.77 12.89 12.78 14.00 12.82

Ionization threshold: —egomo (eV)

‘ 10.38 15.34 15.34 15.76 15.34 16.74

MAD of excitation energies with respect to EOM-CCSD (eV)

"SOI[RYI UI POJRIIPUL 918 PIOYSOIY) UOIJRZIUOL 9} dAO(R SIISIOUS UOIYRIIIXT]

Valence 0.49 0.61 0.49 0.58 0.75 1.82 -
Rydberg 1.83 0.06 0.07 0.15 0.07 1.35 -
Total 1.06 0.38 0.31 0.40 0.46 1.62 -
Oscillator strengths (x1072)
I, 30, — 2y 2.41 9.49 9.42 12.77 9.00 8.42 8.51
Iy 30, — 304 1.06 21.11 19.17 27.59 19.94 73.31 17.36
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| State Transition | KS RSH RSH-TDA LC RSH-fHx HF EOM-CCSD |
Valence excitation energies (eV)
311 5a1(0) = 2e1(x*) | 595  5.95 6.10 6.06 562 528 6.45
0 lei(n) — 2e,(n%) | 838 8.5 8.43 822 772 6.33 8.42
B0l 5a1(0) = 2e1(x*) | 818  8.49 8.73 849 855  8.80 8.76
3A lep(m) = 2e1(7*) 9.16 8.99 9.11 9.02 8.80 7.87 9.39
39— leg(m) — 2eq(m) 9.84 9.77 9.79 9.75 9.77 9.37 9.97
1y ley(n) = 2e(x*) | 9.8/  9.77 9.79 975 977  9.37 10.19
A ley(n) = 2e1(x*) | 10.81 1031 1031 1029  10.35  9.96 10.31
dil 4ay (o) — 2e1(7*) 11.40 12.05 12.10 12.05 11.91 13.05 12.49
Rydberg excitation energies (eV)
3y 5a1(0) = 6a1 (o) 9.55 10.55 10.57 10.72 10.46 11.07 10.60
Iy+ 5a1(0) — 6a1 (o) 9.93 11.32 11.38 11.36 11.34 12.23 11.15
3y 5a1(0) = Tay (o) 10.26 11.34 11.35 11.51 11.29 12.40 11.42
g+ bai(0) — Tar(o) | 1047 1158  11.59  11.63  11.60  12.78 11.64
31 5ax(0) — 3e1(r) 10.39 1153 1154 1173 1149  12.52 11.66
I 5a1(0) — 3e1(m) 10.48 11.72 11.73 11.81 11.73 12.87 11.84

Ionization threshold: —egomo (eV)

‘ 9.12 13.83 13.83 14.27 13.83 15.11

MAD of excitation energies with respect to the EOM-CCSD calculation (eV)

"SOI[R)L UI POJRIIPUL 918 PIOYSOIY]} UOIJRZIUOL Y} dAOCR SIISIOUS UOIYRIIIXT]

Valence 0.36 0.31 0.20 0.29 0.45 0.89 -
Rydberg 1.21 0.10 0.10 0.09 0.13 0.92 -
Total 0.73 0.22 0.16 0.20 0.31 091 -
Oscillator strengths (x1072)
7| 5a1(0) = 2e1(x7) | 8.60 864 1147 873 849 855 8.66
gt 5ai1(o) — 6ai (o) 1.84  4.26 4.27 370 385  10.58 0.58
g+ 5a1(0) = Tar(0) | 1253 1373 14.39  15.86  13.73  9.39 20.71
B0l 5a1(o) — e () 271 472 445 545 458 5.4 4.94
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State Transition ‘ KS RSH RSH-TDA LC RSH-fHx HF EOM-CCSD ‘
Valence excitation energies (eV)
34, 2ba(n) — 2by (7*) 3.06 3.17 3.22 3.16 3.08 3.44 3.56
14, %o(n) — 2by(r*) | 3.67 3.84 3.88 3.82 3.86  4.41 4.03
34, 161 (m) — 2b1(7%) 6.22 5.65 6.01 5.74 5.25 2.15 6.06
3B, 5ai(o) — 2by(r*) | 7.7 8.11 8.16 8.11 7.99 8.19 8.54
Rydberg excitation energies (eV)
3B, 2by(n) — 6a1(0) 5.84 7.06 7.07 7.7 7.01 8.09 6.83
1By 2ba(n) — 6aq (o) 5.92 7.26 7.27 7.30 7.28 8.55 7.00
3B, 2by(n) — Ta1 (o) 6.96 7.91 7.92 7.99 7.86 8.98 7.73
34, 2ba(n) — 3ba(0) 6.73 8.01 8.01 8.17 7.96 9.19 7.87
1B, 2ba(n) — Ta1 (o) 7.04 8.15 8.16 8.17 8.17 9.39 7.93
LA, 2b2(n) — 3ba(0) 6.77 8.18 8.19 8.27 8.19 9.28 7.99
LAy 2ba(n) — 3by () 7.55 8.58 8.58 8.67 8.58 10.04 8.45
34, 2b9(n) — 3by(m) 7.58 8.57 8.57 8.70 8.56 9.84 8.47
3B, by (n) — Say (o) 7.97  9.12 9.14 924  9.06  10.24 8.97
1B, 20y (1) — 8as(c) 8.17  9.42 9.44 949 944  10.84 9.27

Ionization threshold: —egomo (eV)

\ 6.30 10.63 10.63 11.06 10.63 12.04

MAD of excitation energies with respect to EOM-CCSD (eV)

Valence 0.46 0.36 0.23 0.34 0.50 1.19 -
Rydberg .00 0.18 0.19 026  0.16  1.39 ]
Total 0.84 0.23 0.20 0.29 0.26 1.34 -
Oscillator strengths (x1072)
B, 205 (1) — 6a1(0) 313 177 1.91 188 1.6 2.99 2.15
1B, 2b(n) — Tar (o) 2.05  4.58 ATT 504 447 4.46 4.12
14, %5 (n) = 3bs(0) 434 535 5.82 607 518  21.31 5.70
1B, 2bs(n) — 8ay (o) 427 401 4.45 408 388  6.65 4.22
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y Transition | KS RSH RSH-TDA LC RSH-fHx HF EOM-CCSD |
Valence excitation energies (eV)
Lbsa (1) — Lbag() 162 3.78 424 392 401 0.16 141
1bgy () — 1bog(m™) 7.45 7.60 8.07 7.59 8.14 7.35 8.00
1b3g(07) — Lbog () 718 8.03 8.04 815 802  8.36 8.21
1bsg(0) = 1bog(n®)@ | 747 8.15 8.17 822 818  9.36 8.58
Rydberg excitation energies (eV)
1b3a(7) — darg(0) 658  7.32 7.33 744 730  6.87 7.16
1b3a(7) — darg(0) 6.65  7.49 7.49 754 750 713 7.30
1b3y () = 2b2y(0) 6.97 7.51 7.54 7.50 7.47 7.63 791
1b3a () — 3b1a (o) 710 8.16 8.17 829 815  7.75 7.93
1bga(r) — 2bou(0)® | 719  8.04 8.05 802 807  7.74 7.97
1b3a () — 3b1u (o) 7.15 827 8.27 838 828 791 8.01
1bgy () — 2b3y () 8.03 8.55 8.56 8.76 8.51 7.97 8.48
1b3a () — 203y () 8.27 895 8.99 9.02 901 857 8.78
1bsa(7) — Sag() 8.26  9.08 9.09 920 905 871 9.00
1b3a(7) — 5arg(0) 8.28  9.22 9.23 930 924  8.92 9.07
Ionization threshold: —egomo (eV)
[ 689 1061 1061  11.07  10.61  10.23 |
MAD of excitation energies with respect to EOM-CCSD (eV)

0.73 0.41 0.20 0.33 0.28 1.46 -

0.71 0.18 0.19 0.27 0.18 0.24 -

0.72 0.24 0.19 0.29 0.21 0.59 -

Oscillator strengths (x1072)

1b3y () — 1bog (1) 30.34 35.42 49.11 35.77 35.10 39.99 36.29
1b3a(7) — darg(0) 6.69  7.64 7.88 822 738  9.08 8.16
1b3u (1) — 5arg (o) 0.08  1.26 1.25 207 114  0.63 0.61
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State  Transition [ KS  RSH RSH-TDA LC RSH-fHx HF BOM-CCSD |
Valence excitation energies (eV)

5Bra  leg(m) = lesa(n) | 435 3.37 4.06 349 2.88 - 3.96

3F1u lejg(m) = legy (%) 4.69 4.81 4.85 4.84 4.69 4.68 4.90

Byy  leyg(m) — lesu(n®) | 520  5.45 5.56 545 547  5.78 5.15

3By, leng(n) — lesa(n®) | 494  5.02 5.20 505 495  5.02 5.78

B ley(n) — lesu(n®) | 597  6.25 6.49 624 629 584 6.52

B leyg(m) — lesu(n®) | 6.80 7.4 7.65 713 716 7.34 7.30
Rydberg excitation energies (eV)

Fig leig(m) = dag(o) 6.01 7.00 7.00 7.10 7.00 6.46 6.40
1By, leng(n) — day(o) 6.03  7.08 7.08 714 709 6.59 6.46
3430 lerg(n) — dera(o) 6.52  7.43 7.43 756 743 6.87 6.92

Ase  leyg(m) — deru(o) 6.5/,  7.53 7.53 763 753 7.01 7.00
SBae leng(m) — dera(o) 6.5/  7.68 7.68 783 768 7.7 7.06
By leyg(m) — deru(o) 6.55 771 7.71 784 771 7.21 7.08
A leyg(n) — der(o) 6.59  7.90 7.90 805  7.90  7.43 7.18
3414 leyg(m) — deyy(0) 6.59 7.90 7.90 8.05 7.90 7.43 7.19

Ionization threshold: —egomo (eV)
| 650 9.72 9.72 1018 972 9.15
MAD of excitation energies with respect to EOM-CCSD (eV)

Valence 0.39 0.32 0.22 0.29 0.43 0.93 -
Rydberg 0.49 0.61 0.62 0.74 0.62 0.12 -

Total 0.45 0.49 0.45 0.55 0.54 0.47 -

Oscillator strengths (x1072)
TFra lerg(n) — leau(n™) | 5578 6274  91.09  63.00 6242  71.49 66.41
pe  leyg(m) — deru(o) 211  7.10 7.44 827 687  7.69 7.04
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Chapter 7

Theoretical background on
Green’s function methods

An alternative approach to time-dependent density-functional theory (TDDFT) to
compute electronic excitation energies is provided by many-body perturbation the-
ory which is widely used in the condensed-matter physics community. One main
advantage of this approach is that it is in principle able to describe double excita-
tions which are absent in TDDFT within the usual adiabatic approximation, and
that its formalism is close to the TDDFT one. In this chapter, we study its trans-
fer from solids to finite molecular systems where the equations need to be projected
onto a gaussian spin-orbital basis set, and where the validity of the approximations
made in physics for solids has to be questioned. We introduce here the concepts
of quasiparticle and of Green’s functions on which is based this theory. We then
recall the working equations of many-body perturbation theory for the one-particle
case (Dyson equation) and the two-particle case (Bethe-Salpeter equation) and intro-
duce the self-energy and Bethe-Salpeter kernel which are the key quantities of this
method. The equations are derived in a four-point formalism in order to prepare for
their applications to finite molecular systems and the correspondence with Feynman
diagrams is made along the derivation. We then recall Hedin’s equations which pro-
vide a set of five coupled equations which should in principle allows one to calculate
the self-energy.

7.1 Introduction

Time-dependent density-functional theory (TDDFT) [1] within the linear-response for-
malism [2—4] is nowadays the most widely used approach to the calculation of electronic
excitation energies of molecules and solids. Applied within the adiabatic approximation
and with the usual local or semilocal density functionals, TDDFT gives indeed in many
cases excitation energies with reasonable accuracy and low computational cost. However,

several serious limitations of these approximations are known, e.g. for molecules: too low
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charge-transfer excitation energies [5], lack of double excitations [6], and wrong behavior
of the excited-state surface along a bond-breaking coordinate (see, e.g., Ref. [7]). Several
remedies to these problems are actively being explored, including: long-range corrected
TDDFT [8, 9] which improves charge-transfer excitation energies, dressed TDDFT [6,
10, 11] which includes double excitations, and time-dependent density-matrix functional
theory (TDDMFT) [12-16] which tries to address all these problems.

In the condensed-matter physics community, the Bethe-Salpeter equation (BSE) ap-
plied within the GW approximation (see, e.g., Refs. [17-19]) is often considered as the
most successful approach to overcome the limitations of TDDFT. Although it has been
often used to describe excitons (bound electron-hole pair) in periodic systems, it is also
increasingly applied to calculations of excitation energies in finite molecular systems [20—
34]. In particular, the BSE approach is believed to give accurate charge-transfer exci-
tation energies in molecules [29, 31], and when used with a frequency-dependent ker-
nel it is in principle capable of describing double excitations [35, 36]. A second-order
Bethe-Salpeter kernel was recently tested by Zhang et al [37] within the Tamm-Dancoff
approximation, in a perturbative approach.

We start by giving a brief review of Green’s function many-body theory for calcu-
lating excitation energies. For more details, see e.g. Refs. [17, 19, 38]. The concepts of
one-particle and two-particle Green’s functions are introduced in Sections 7.2 and 7.3.
Their equations of motion, namely the Dyson and Bethe-Salpeter equations are derived
in Sections 7.4 and 7.5. These equations involve the exchange-correlation self-energy
as a main ingredient which calculation is possible by solving the coupled set of Hedin’s
equations as detailed in Section 7.6.

7.2 One-particle Green’s function

Let |N) be the normalized ground-state wave function for a system of N electrons de-
scribed by the Hamiltonian H. The time-ordered one-particle equilibrium Green’s func-
tion at zero temperature is defined as

iG(1,2) = (N|TTE(1)¥1 (2)]|N)

7.
= 0(t1 — t2) (N|W(1)WF(2)|N) — O(t2 — t1)(N|TT(2)(1)|N). ()

Index 1 stands for space, spin and time coordinates (ri,o01,%1) = (x1,%1). T is the
Wick time-ordering operator which orders the operators with larger times on the left
and 6 is the Heaviside step function. The whole time-dependence is contained in
F(1) = 1 (x; )t and ¥t(2) = eflt2¥1 (x,)e"iA*2, the annihilation and creation
field operators in the Heisenberg representation which were introduced in Section 5.2.
If ¢; is greater than t,, an electron is added at time ¢, at the position x, to the
system in its ground state. This extra negative charge interacts with its environnement
and create a depletion in the charge density around it to form a quasi-electron which
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1
TN Xot xi,t, A
\. 2,12 " 1 1./
Quasi-electron 2
2
.(—'\\ Xl,tl ST {/‘.
1

Quasi-hole

Figure 7.1 — Schematic and Feynman representation of the one-particle Green’s func-
tion G(1,2).

is propagated through the system. An electron is then removed at time t; and position
x;1. The probability amplitude to find an electron in (x3,t;) when an electron was
added in (xo,t2) is then given by the one-particle Green’s function G(1,2). Its Feynman
representation is given a thick arrow going from 2 to 1 hereinafter, where the time axis
is vertical as shown in Figure 7.1. On the other hand, if ¢, is greater than ¢; then G(1,2)
is the probability amplitude to find a hole in (x5,t3) when an electron was removed
in (x1,t1) and represents the propagation of a quasi-hole in the system. Its Feynman
representation is then a thick going down arrow. One should note that the one-particle
Green’s function is not defined if ¢; = ¢, and is related to the ground-state density by
n(x1) = —iG(1,1%) where 17 stands for (x;,t]) with t] =¢; +0%.

In the absence of external potential, the system is invariant under time translation,
therefore the Green’s function depends only on 7 = ¢; — t5. By introducing the closure
relation for excited states with N —1 or N + 1 particles, one can get

iG(x1,%2;7) =0(7) Y _(NJth(x1)|N + 1, AY(N + 1, Ay (xg) [N )e PN +1,47 N7
A
= 0(=7) Y (N[t (x2) [N = 1, (N = 1, I (x1)| N)e " EN—EN—LDT,
I

(7.2)

where Ey, Eni1.4 and Ey_;1; are the energies of the ground state |N), of the A-th
excited state with N + 1 particles |N + 1, 4) and of the I-th excited state with N —1
particles [N —1, 1), respectively. The Lehmann representation of the one-particle Green’s
function is obtained by Fourier transform

fA X1 fA X2 fIX1 f1 X2
G, xz5w Z —Ea 4140t Zw Er—iot’ (7.3)
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2 o
1
1/
X X1P
Figure 7.2 — Schematic and Feynman representations of the hole-electron full-

interacting and independent-particle ph/hp propagators x(1,2;1’,2') and xip(1,2;1',2').

where fa(x) = (N|{)(x)|N + 1, A) and f;(x) = (N — 1, 1|¢)(x)|N) form a complete basis set
for the N + 1-electron states, and €4 = Eny1.4 — Exy and & = Ey — Ex_1,; are minus
the electron affinities and ionization energies, respectively. The conventions for Fourier
transforms can be found in Appendix A.2.

As G is a one-particle quantity it seems natural that it describes one-particle processes
only. However, as we are interested in electronic excitations which corresponds to the
propagation of a hole and an electron simultaneously, a two-particle Green’s function is

therefore needed.

7.3 Two-particle Green’s function

The time-ordered two-particle Green’s function is defined as

i2Gy(1,2;1',2) = (N|T[ (1) ¥ (2) ¥ (2) ¥t (1)) N). (7.4)

Depending on the time ordering, it describes the propagation of a pair of holes, of
electrons or of a hole and an electron. In the case of optical absorption, one is only
interested in the propagation of a hole-electron pair. Let x be the 4-point polarizability,

x(1,2:1,2) =iGy(1,2;1,2') —iG(1,1)G(2,2)). (7.5)

It describes the coupled motion of two particles minus the motion of the independent
ones. In order to describe the propagation of a hole and an electron, it requires ¢} > ¢; and
to >t} or the other way around. In this particular case, the 4-point polarizability reduces
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to a particle-hole/hole-particle propagator where the times can be further contracted.
If, in particular, the creation and annihilation of the hole and the electron are quasi-
simultaneous, as in an electronic excitation, t; = ¢ and ¢, = t5 . In this case, the 4-point
polarizability reduces to the linear response function!

x(x1,X2; X1, X5; 7) = x(X1, t1, X2, t2; X1, 11, %5, ). (7.6)

The Lehmann representation of the response function explicitly gives the excitation

energies as poles in w,

(N B ()W (1) |V, K) (N, K[ () W (x2) | V)
w — (EN,K EN) + 430t

X1, X235, X w) = 3
K#0

B Z (N () ¥ () [N, ) (N, KT (7)) 0 (320 ) | V)

w+(ENK EN)—ZO+ ’

(7.7)

K#0

where |N, K) is the K-th excited state with N particles of energy En k. The ground
state |N,0) = |[N) is excluded from the sum.

It is also useful to define the independent-particle (IP) polarizability xip(1,2;1,2') =
—iG(1,2")G(2,1’) where the two particles propagate independently with each other but
in interaction with the rest of the system?. The schematic and Feynman represen-
tation of the full-interacting and independent-particle response functions are given
in Figure 7.2 in the case of a hole-electron propagation. The Lehmann represen-
tation of the independent-particle response function is easily obtained by calculat-
ing x1p(x1,x2; X1, x5;7) = —iG(x1,x5;7)G(x2,x]; —7) with equation (7.2) and taking the

Fourier transform

Z fr(x1)fa(xa) fA(x5) f1(x2)

!
X1, X9, X, X5 w
XIp (X1, %2; X7, Xy w—(Ea— &) +10F

J7(x5) fa(x2) fa(x1) f1(x1)
Z : w2+ (€a *;1) izO* ' (7.8)

Details of the Fourier transforms of the polarizability, propagator and response function
are given in Appendix F. The distinction between polarizability, propagator and response
function is made explicit in Figure 7.3 in the independent-particle case.

In practice, the one-particle and two-particle Green’s function can be calculated with
equations of motion, namely the Dyson and Bethe-Salpeter equations.

'One should be aware that this defines a time-ordered quantity while in TDDFT a retarded response
function is used. This distinction changes the position of the poles with respect to the real axis in the
complex plane, however, when inverse response functions are considered, as will be done in the following,
this distinction is not important anymore.

2x1p should rather be called an independent-quasi-particle polarizability but for the sake of consis-
tency with the literature we will keep the usual denomination
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2 2 1
2/ 1 2/ 2 2/
1 / 1 I 1
Y X 2 9 1
Polarizability ph/hp propagator pp / hh Response function
propagators

Figure 7.3 — Nomenclature for polarizability, propagators and response function for
xip(1,2;1,2") = —iG(1,2')G(2,1’). The one-particule Green’s function is represented by
a thick arrow. The time axis is going from the bottom to the top. As the time ordering
is undetermined for the polarizability it is not represented in terms of Green’s function.
For the ph/hp propagator, t, > t; and ty >t} (or the other way around but not shown)
but the respective positions of t; w.r.t. ¢] and ¢, w.r.t. ¢, are undefined. For the response
function t, > ¢; and ¢, >t} (or the other way around but not shown) and | = ¢/ and
ty, = t5. The particle-particle and hole-hole propagators (pp/hh) are also shown as they
will be used in the next chapters.

7.4 Dyson equation

To make easier the connection with expressions in a finite spin-orbital basis, we sys-
tematically use 4-point indexes for all the two-electron quantities, however the more
conventional 2-point derivation can be found for instance in [17]. The starting point is

therefore a fully non-local time-dependent Hamiltonian,

H(t) = /dxldl’\iﬁ(l)h(l,l’)@(l’)
. (7.9)
- 5/dx1d2dl’d2’\iﬁ(1)\iﬁ(2)wee(1,2;1’,2’)@1(1’)@1(2’),

where wee(1,2;1,2") = wee(|r1 — r2])d(t1,t2)0(1,17)5(2,2’) is the spin-independent instanta-
neous Coulomb electron-electron interaction and h(1,1’) is the one-electron Hamiltonian
which contains the electron kinetic operator and the nuclei-electron interaction V;,
vQ
h(1,1") = —6(1, 1’)?1 +6(1,1")Vae(ry). (7.10)

Using the equations of motion for the Heisenberg creation and annihilation operators
in the expression of the derivative of G with respect to time [17], one can obtain the

following equation,

i/d35(1,3)§6’(372) —/d3h(1,3)G(3,2)
3

(7.11)
+i/d3d1’d3’wee(1,3;1’,3’)G2(1’,3’+;2,3++) =6(1,2),
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where ** stands for tJ +0%. A whole series of equations can be derived for the Green’s
functions, relating the one-particle Green’s function to the two-particle Green’s function,
the two-particle one to the three-particle one, etc. But solving this set of equations is
not wanted.

To avoid this, one can use the Schwinger derivative technique [39, 40]. Introducing
an external time-dependent potential U(1,1") = U(xt],x}t1)6(t1,t}), one can express the
two-particle Green’s function in terms of the one-particle one and of its derivative with
respect to U, evaluated at U = 0,

5G(1,2)
3U(3,4)

= —Ga(1,4:2,3) + G(1,2)G(4, 3). (7.12)

Using this relation in Equation (7.11), one can get

/d3 {mu,g);; - h(1,3)] G(3,2)

5G(1',2)

T UGB, 3 =46(1,2) (7.13)

+i/d3d1’d3’wee(1,3;1’,3’) [G(l’,2)G(3’+,3++)
/ds [i5(1,3)£ - h(l,s)] G(3,2) — /d:’:. Yhxe(1,3)G(3,2) = 6(1,2),
3

where Ypy(1,2) is the Hartree-exchange-correlation self-energy which takes into account
all the two-particle effects. It can be decomposed into a Hartree contribution

Su(1,2) = —z’/d3d3’wee(1,3;2,3’)G(3’+,3++) (7.14)

and an exchange-correlation one

5G(1',4)

WG*WL@). (7.15)

Sye(1,2) = z‘/d3d1’d3’d4wee(1,3; 1,3

Note that these self-energies are functionals of the Green’s function and should be written

formally as Yyy[G].

7.4.1 Non-interacting Green’s function

One can define a Green’s function G, which shows no two-particle effects and therefore
follows the equation of motion

/d3 [i6(1,3)£l Ch(1,3)| Ga(3,2) = 6(1,2). (7.16)

We choose its Feynman representation to be a dotted arrow. Using this relation in Equa-

tion (7.13), one finally gets the Dyson equation for the one-particle Green’s function,
/d3 (G (1,3) — SreclGI(1,3)] G(3,2) = 5(1,2). (7.17)
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A

G Gy, Hartree Exchange 2nd-order correlation

Figure 7.4 — Feynman representation of the perturbative expansion of the Dyson equa-
tion where 3 is expanded in order of w. but not G. The fully interacting Green’s function
is drawn as a thick arrow and the non-interacting one as a dotted one. The dashed line
represents the Coulombic interaction. The self-energy is in red.

This equation is also often used under the forms
G(1,2) = Gi(1,2) +/d3d4Gh(1,3)ZHXC[G](3,4)G(4,2), (7.18)

or
G7H(1,2) = G, 1(1,2) — Zu[G](1,2). (7.19)

It is convenient to use perturbation theory with respect to the electron-electron
interaction to understand this equation. This is shown in Figure 7.4 up to the second
order where the interaction is represented by a horizontal dashed line. At zeroth order,
the particle does not interact with the system and is therefore represented by the non-
interacting Green’s function Gj,. At first order, it interacts with the charge density of the
system which is represented by a loop as n(x3) = G(3,3") and may be exchanged with
another particle which gives rise to the Hartree and exchange terms. The higher orders
of perturbation describe the correlation. At the second order, the particle can create
a hole-electron pair via a first interaction and destroys it later via a second interaction
where exchange may also occurs. The fully interacting Green’s function G can therefore
be expanded around the non-interacting one. From Equation (7.18), the parts of diagram
between the Gj, arrow and the G arrow (in red) represents the self-energy. More details
can be found in [41] for instance.

7.4.2 Hartree-Fock Green’s function

In practice, the non-interacting Green’s function Gy, is rarely used and it is more common
to encounter the Hartree-Fock (HF) Green’s function for finite system (or Kohn-Sham
Green’s functions or even Hartree Green’s functions in the case of solid-state physics)
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Figure 7.5 — Feynman representation of the perturbative expansion of the Dyson equa-
tion with the Hartree-Fock Green’s function as reference. The fully interacting Green’s
function is drawn as a thick arrow and the Hartree-Fock one as a dotted arrow. The
dashed line represents the Coulombic interaction. The self-energy is in red.

denoted by GHY which satisfies the equation

/d3 {15(1, 3)% —h(1,3) — SHEGEF)(1,3) | GEF(3,2) = 6(1,2)
? (7.20)
/d3 G 1(1,3) — SHFGHF)(1,3)] GHF(3,2) = 6(1,2)

where SHYGHF] is the HF Hartree-exchange self-energy. The HF Green’s function is
thus related to the non-interacting one by

(Go") 71 (1,2) = G3 1 (1,2) - B [GRT (1, 2). (7.21)

X

where the HF self-energy is given by [38, 42]

YEFIGHF)(1,2) = fz‘/deS’wee(l,3;2,3’)GSIF(3’+,3++)

X

(7.22)
+i / d3d3'wee(3,1;2,3)GHF (3,37 ).

The consequences on the Dyson equation is schematically represented in Figure 7.5 for
the HF Green’s function G{'¥ represented by a thin arrow. This also defines the HF
polarizability,

o (1,2;17,2") = —iGEF (1,2)GHF (2,17, (7.23)

where the particles are only interacting via a mean field. In what follows, the HF
superscript is dropped for conciseness as only HF Green’s function will be considered.
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7.5 Bethe-Salpeter Equation

In presence of the external time-dependent potential U(1,1") the Dyson equation (7.19),
rewrites as
GH1,1) =G, (1,1) = U(1,1) — Snxe(1,1). (7.24)

The polarizability® of the system is then given by the change in the Green’s function
induced by the external potential U. Taking the derivative with respect to U of the
Dyson equation and using the chain rule with respect to G, it becomes

,0G71(1,1) 6G(2,2)) s 085 (1, 1) 0G(2,2))
/d2d2 527 5U(3’3/)6(1,3)5(1,3)/d2d2 Gy U3 3) (7.25)

Using the derivative of the inverse (A.8) and the relation (A.5), the left-hand-side term
can be written in terms of the independent response function

5G71(17 1/) _ —1 / —1 N _ ..o —1 .1 o

W = 7G (1,2 )G (2, ]. ) = ZXIP (1,271 ,2 ) (726)
As G;l is independent of U, using the definition of the polarizability (7.5) together with
Schwinger’s relation (7.12), one can then get the so-called Bethe-Salpeter equation (see,
e.g., Ref. [42])

N1, 21,2 = xgp (1,2, 1,2)) — Exe(1, 2517, 2), (7.27)

or equivalently
x(1,2;1',2) :XIP(1,2;1’,2')+/d3456>ap(1,4; 1',3)ZHxe(3,6:4,5)x(5,2:6,2),  (7.28)

where =g, is the Hartree-exchange-correlation Bethe-Salpeter kernel, defined as

0 Hxc(3,4)

e (3,64, 5) = j—x 2
el ) = G 65.6)

(7.29)
Using once again in the perturbation picture, the fully interacting response function can
be constructed from the independent-particle response function yp as represented in
Figure 7.6. At zeroth order, the particles interact with the rest of the system but not
with each other. The interaction between the two quasi-particles can then built in the
order of the electron-electron interaction similarly to what was done for the self-energy
in Figure 7.4.

7.6 Hedin’s equations

We now have equations of motion for the one- and two-particle Green’s functions. They
depend on the Hartree-exchange-correlation self-energy. Its Hartree and exchange parts

3Beware that the times are implicitly ordered through the external potential.
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° = ° + o-8 +
= + +
X X1P X1P 2 X

Figure 7.6 — Schematic and Feynman representation of the Bethe-Salpeter equation.

are known but a practical way of calculating its correlation part is needed. Hedin
proposed a scheme which yields to a set of coupled equations and allows in principle for
the calculation of the exact self-energy [43]. This scheme can be seen as a perturbation
theory in terms of the screened interaction W instead of the bare Coulomb interaction
Wee. We show a generalization of this derivation for the case of a non-local potential.

Let V(5,6) = U(5,6) — i [ d3d3'wee(5, 3;6,3)G(3',3") be the non-local classical poten-
tial. Using the chain rule in the exchange-correlation self-energy, we get:

§G1(4,2) 6§V (5,6)
5V (5,6) oU(3++,3)

Yie(1,2) = —i / d3d1'd3' d4d5d6w..(1,3;1,3)G(1,4)
(7.30)
- i/d3d1’d3’d4d5d6wee(1,3; 1',3)G(1',4)T'(4,6;2,5)e(5,3";6,3%).

where the inverse dielectric function e~ which screens the bare Coulomb interaction wee

and the irreducible vertex function I' are defined by

sV (1,3) ) | 5G71(1,3)

~11,2;3,4) = [(1,2;3,4) = — 2=, 31
€ ( ) 737 ) 6U(4,2) and ( ) ’3’ ) 5‘/(4’2) (73 )
We can therefore define a dynamically screened potential
W(1,2;1,2) = /d3d3’e_1(1,3; 1,3 wee (2,332, 3)
(7.32)

= /d3d3'e_1(1,3; 1,3 Mwee(3',2:3,2'),
where the symmetry of the Coulomb interaction we, has been used, and we get the
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Figure 7.7 — Self-consistent solution of Hedin’s set of coupled equations.

expression of the exchange-correlation self-energy,

Yee(1,2) = i/dl’d3d3’d4G(1’,4)F(4, 3,2,3)W(3,1;3,1"). (7.33)

We still need to express the dielectric function and the irreducible vertex function without
the use of V and U. To achieve this, we define the irreducible polarizability x(1,2;3,4) =
—16G(1,3)/6V (4,2), which, with the properties of the inverse and the definition of the

vertex correction, can be rewritten as
¥(1,2;3,4) = fi/d5d5’G(1,5)G(5’,3)f(5,2;5’,4). (7.34)
Using this relation, one can rewrite the dielectric function as
€(1,2;3,4) = §(1,4)0(2,3) — /d5d5’wee(1,5;3,5’);2(5’,2;5*,4), (7.35)
and the irreducible vertex correction as

e , 05e(1,3) . o

[(1,2;3,4) = §(1,4)6(2,3) z/d5d676G(5’6) X(5,2;6,4). (7.36)
We now have a set of five coupled equations (7.32) to (7.36) to calculate the self-energy
which is represented in Figure 7.7.

7.7 Conclusion

In this chapter, we have introduced the one- and two-particle Green’s function formalism
and recalled the corresponding equations of motion for these two quantities, the Dyson
equation and the Bethe-Salpeter equation. As in Kohn-Sham approach in density func-
tional theory, a non-interacting system is taken as a reference system and the effects
of the electron-electron interaction is included via the self-energy or the Bethe-Salpeter
kernel. Hedin’s equations provide an explicit approach to compute the self-energy which
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can then be used to evaluate the Bethe-Salpeter kernel. With respect to the TDDFT
kernel, the expression of the Bethe-Salpeter kernel is exactly known from the self-energy
while the TDDFT kernel was explicitly related to the energy functional only within the
adiabatic approximation which is therefore not required here. This implies that one can
obtain a frequency-dependent kernel in this formalism. Moreover, TDDFT and BSE
formalisms are very close so that a Bethe-Salpeter kernel could be used in the TDDFT
formalism [19, 34-36, 44-50].

In practice, Hedin’s set of equations is never solved exactly and approximations
are made for the derivation of the self-energy and of the kernel. The effects of these
approximations are discussed in the following chapters and assessed on the model system
given by Hs in a minimal basis. In Chapter 8, the expressions of the self-energy is derived
within the most famous approximation (GW) and one of its variants (GWx). The static
Bethe-Salpeter kernel is then obtained by differentiation where part of the derivative is
neglected as usually done is the condensed-matter physics community. It is projected
onto a spin-orbital basis set and its performance is assessed on Hs in a minimal basis
for different starting Green’s functions. In Chapter 9, a perturbative approach is used
in order to derive working equations for the static kernel up to the second order. In
this case, all the terms are kept in the differentiation of the self-energy and their effects
in assessed again with the model of system of H,. Finally, a dynamic Bethe-Salpeter
kernel is discussed in Chapter 10 together with the quasiparticle effects due to the
starting response function yip or yo on which the Bethe-Salpeter kernel is added.
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Chapter 8

Static GW-BSE kernel in a finite
orbital basis

Except for the part on the GWx approximation, this work was the subject to a publi-
cation in S. K. Ghosh & P. K. Chattaraj (Eds.), Electronic Structure and Reactivity
(p. 367). CRC Press. (2013) in collaboration with J. Toulouse, and A. Savin.

s N

The most widely used approximation in the context of Bethe-Salpeter calculations
is the static GW approximation. In this approximation, the vertex corrections are
neglected into the expression of the self-energy which is then obtained as the product
of G and W and the Hedin’s equations are not solved self-consistently but only one
iteration of the cycle is performed.

In this chapter, the self-energy is computed in the GW approximation, and in a
variant (GWx) where exchange is included in the definition of the dielectric matrix.
In both cases, the kernel is then obtained in its static approximation by considering
the screened interaction as local in time and the derivative of W with respect to G is
neglected such that the response of the screening to the perturbation is neglected. As
the self-energy is not build self-consistently, the choice of the starting Green’s function
plays a significant role and the effect of using the Hartree-Fock Green’s function with
respect to the exact one will be assessed. In each case, the equations are projected
on a spin-orbital basis and applied on the model system of Hy in a minimal basis.

8.1 Introduction

In the Bethe-Salpeter formalism, similarly to linear-response time-dependent density-
functional theory, one can compute the neutral excitation energies of a system by the
means of the poles of the response function. The Bethe-Salpeter equation links the
response function of non-interacting quasi-particles to the one of the physical system
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via the Hartree-exchange-correlation Bethe-Salpeter kernel which therefore contains all
the effects due to the interaction. This kernel is explicitly related to the self-energy by
first-order derivative and one has therefore to compute first this self-energy in order to
access the kernel. Hedin’s cycle provides a way to compute the self-energy by solving its
five coupled equations as was mentioned in the previous chapter. However, when giving
a closer look to these equations two difficulties emerge: first, as these equations a cou-
pled, they should in principle be solved self consistently (with all the convergence issues
that it implies), second, it involves the first-order derivative of the self-energy ¥ with re-
spect to the Green’s function G. Therefore, one should first expand the self-energy with
respect to G up to a given order analytically, takes its first-order derivative and then
numerically solves this already approximated set of equations self consistently without
any guaranty that it will converge to the physical solution. It is needless to say that
it requires a formidable analytic and computational effort. The simplest approximation
was proposed by Hedin himself [43] and consists in assuming the vertex operator T to
be delta functions in spin, space and time so that the first-order derivative of ¥ with
respect to G is neglected. The exchange-correlation self-energy is then the product of G
and W and the approximation is therefore called the GW approxzimation. Usually, the
self-energy is not calculated self-consistently but with only one iteration of Hedin’s cycle
which hence defines the GoWq approximation. For one-particle properties, these calcu-
lations [51-55] were shown to perform relatively well in comparison with self-consistent
GW calculations [56-62]. However, the choice of the starting Green’s function then plays
an important role in the determination of the self-energy. Additionally, it is also possible
to define a variant for the self-energy where exchange is included (GWx). In particular,
this removes the self-screening effects which occur otherwise [63—65].

Once an approximate expression is chosen for the self-energy, the Bethe-Salpeter
kernel can be found by functional differentiation with respect to G. Additional approx-
imations can be made at this step, and the simplest case is obtained if the screened
interaction is assumed to be static and if the derivative of W with respect to G is ne-
glected. This approximation is called the static BSE-GW method and corresponds to
the most widely used approximation for the kernel in the context of solids [66-69]. In
this chapter, we are interested into the applications of these different approximations for
a molecular finite system. The expressions of the GoW, and GoWyx self-energies and of
the corresponding static kernels are first derived in real space in Section 8.2 and are then
projected in a spin-orbital basis in Section 8.3. Finally, they are applied on the model
system of H, in a minimal basis in Section 8.4 with either the Hartree-Fock Green’s func-
tion as a starting point, or the exact one obtained from a full configuration-interaction
calculation in order to assess the effect of the starting Green’s function.
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8.2 Static GW approximation

In the GW approximation, the vertex function is assumed to be diagonal in spin, space
and time coordinates I'(1,2;3,4) = 6(1,4)d(2, 3) which simplifies greatly Hedin’s equations.
The irreducible polarizability becomes x(1,2;3,4) = —iG(1,4)G(2,3) = x1pr(1,2;3,4) and
contains only the response of the quasi-particles but does not take into account how their
interaction is affected by the change of potential. The exchange-correlation self-energy
becomes

Sye(1,2) :i/dl’d3G(1’,3)W(3,1;2,1’) (8.1)

where in comparison to the Hartree-Fock case, the bare interaction we, has been replaced
by a dynamically screened interaction W. If the derivative of W with respect to G is
further neglected, as usually done, the corresponding Bethe-Salpeter kernel is then

Ehxc(1,2;1,2)) = wee(1,2;17,2") — W(2,1;1',2'), (8.2)

where W is obtained from Equation (7.32) and ¢! with Equation (7.35) in which ¥ is
replaced by xip. The Coulomb interaction is instantaneous and the one-particle Green’s
functions depends only of the time difference, therefore the time dependence of the

screened interaction is
W(1,2;1,2") = W(xq, x2; X}, X5; 7)0(t1, )0 (t2, t5), (8.3)

where 7 = t; — t5. If one considers the time dependence in W, the Fourier transform of
the Bethe-Salpeter equation is not straightforward [35]. We will only consider here the
usual COHSEX approximation where the screened interaction is static, i.e.,

W(1,2;1,2") = W(x1,x0; X, x5)0(t1, 1] )0(t2, 5)d(t1, t2). (8.4)

To summarize, the Fourier-space Bethe-Salpeter equation in the static GW approxima-

tion writes
Xﬁl(X17X2;X3,X4;w) = Xﬁal(xlax2;x37x4;w) — Efxe (X1, X2; X3, X4), (8~5)

where the kernel SEpyxc(x1,X2;X3,X4) = Wee(X1,X2;X3,%4) — W(x2,X1;X3,X4) contains the

static screened interaction W calculated from
- AN / _—1 — / / . /
W (x1,X2; X7, X5) = /dX3dX36 (X1, X35 X}, X5)Wee (X5, X2; X3, X5), (8.6)

and

€(X1,X2; X3, X4) = 0(X1,X4)(x2,X3)
(8.7)

/ ) / I o
_/dXSdX5w6e<X1aX57X3aX5)X1P(X57X27X57X47w =0).
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We will refer to the approach of Equations (8.5)-(8.7) as the BSE-GW method. Although
Hedin’s equations may be solved self-consistently in the GW approximation [56, 60, 70—
72], it is not usually the case. When only one iteration of the cycle is performed, the
one-particle Green’s function G in xp = —iGG has to be specified. Different choices
can be made. The simplest option is to use a non-interacting Green’s function Gy from
a Hartree-Fock (HF) or Kohn-Sham (KS) calculation. In this case, yip = —iGoGo =
Xo is just the non-interacting HF or KS response function. In the condensed-matter
physics literature, the usual recipe is to use xo in Equation (8.7) but an improved yip in
Equation (8.5) from a GW calculation. In the case of Hy in a minimal basis, it is simple
enough to use xrp constructed with the exact one-particle Green’s function G.

We note that the dielectric function of Equation (8.7) could be alternatively de-
rived by including the HF exchange in addition to the Coulomb interaction, i.e. using
the antisymmetrized electron-electron interaction wee(x1,Xs; X3, X5) = Wee (X1, X5; X3, X5) —
Wee (X5, X1; X3, X5) (see, e.g., Ref. [55]), which removes the “self-screening error” for one-
electron systems [64]. A bar will be added to the quantities where exchange is included.

The dielectric function therefore becomes:

€(x1,X2;X3,X4)
(8.8)

=0(x1,%4)0(x2,X3) — /dX5dX'5U7ee(X1,X5;X3,X/5)XIP(X/57X2;X57X4;W =0).

This method will be referred to as BSE-GWx.

8.3 Expressions in a finite orbital basis

8.3.1 Spin-orbital basis

In order to solve the Bethe-Salpeter equation for finite systems, all the equations are
projected onto an orthonormal spin-orbital basis {¢,}. As the equations are 4-point
equations relating two-particle quantities, they are in fact projected onto the basis of
products of two spin orbitals. Each matrix element is thus indexed by two double indices.

We consider the simplest case for which yp = xo. The Lehmann representation of

Xo is

Z‘ﬁ* X4)0u061)63 ()01 (x2) _ 61 (4)0uCe2) 3400 0x1) g g1

X X'X/ X
Xo(X1,X2; X, X5; W w— (£q — &) + 0T w+ (g —g) —i0t 7

where ¢; is the i-th occupied spin-orbital of energy e; and ¢, is the a-th virtual spin-
orbital of energy ¢,. One can notice that y, is expanded only on occupied-virtual (ov)
and virtual-occupied (vo) products of spin-orbitals. The matrix elements of x, are given
by

X0 (@) g s = /dxldx1dx2dxz¢p(xl)¢ (1) X0 (X1, X2 X7, X5 W) hy (X2) Ps (X3). (8.10)
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The matrix representation of its inverse, in the (ov,vo) subspace, is

1 B Ae O 1 0
Xo (w)——[( 0 AE)—w(() . )] (8.11)

where Ag;q i = Acqipj = (€4 — €i)0i;045, Where 4, j refer to occupied spin-orbitals and
a,b to virtual orbitals. The dimension of the matrix is thus 2M,M, x 2M,M, where M,
and M, are the numbers of occupied and virtual spin orbitals, respectively. To build
the matrix x~!, one then needs to construct the matrix elements of the Bethe-Salpeter
kernel =g, which are given by

(Eixc)pg,rs = Wee,pg,rs — Wpr,gs, (8-12)

where wee pg,rs = (qr|ps) are the usual two-electron integrals, and the matrix elements of
W can be obtained from Equation (8.6)

Whg,rs = /dxldx'ldXQdX'zcﬁp(X'l)cﬁZ(Xl)W(Xl7Xz;Xi,Xé)¢?(X2)¢s(X'2)

= / dx1dx] dxadxhdxsdxd, (x))oh (x1)e " (x1, X35 x], x5) (8.13)

X Wee (X3, X2; X3, X5) Py (X2) s (X5).

1

To decouple the common coordinates in e~ and we., one can introduce two delta func-

tions d(x3,x4) and 6(x5,x}) and use the closure relations 0(xs3,x4) = Y, ¢} (x3)¢:(x4) and

5(xh,x4) = Y, du(x5)0%(x)). By doing so, the matrix elements of v and ¢! appear
explicitly and we get
Whars = Z G;ql,tuwee,tu,rs~ (8.14)
tu

Similarly, for the dielectric function, we have

€pq,rs = 5pr5qs - Z Wee,pq,tu [XO(W = O)]tu,rs = 6pr6qs — Wee,pq,rs [XO(W = O)]rs,rs ) (815)

tu
where the last equality comes from the fact that xo has only diagonal elements. It can
be seen that the static screened interaction consists of an infinite-order perturbation

expansion in the Coulomb interaction, namely using matrix notations,

W=¢"! - Wee
(8.16)

= Wee + Wee * XO(W = O) * Wee + Wee * XO(UJ = O) * Wee * XO(W = 0) *Wee + -y

the first term in this expansion corresponding to linear-response time-dependent Hartree-
Fock (TDHF). The matrix representation of the inverse of the interacting response func-
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tion, in the (ov,vo) subspace, is then
A B 1 0

( ) _w ( )] , (3.17
B* A* 0 -1

Aiajb = A€ia jb + Weeia,jb — Wijab, (8.18a)

X (W) =-

with the matrices

Bia,jb = Wee,iab; — Wibaj- (8.18b)

The block structure of Equation (8.17) is a consequence of the symmetry of the Coulomb

*

interaction, Wee gp sr = W and of the static screened interaction, Wy, ,» = W

ee,pq,rs? prigs”

. . .. . R
Moreover, the matrix A is Hermitian (because wee,iq,jb» = Wi b ia and Wij o = Wji’ba) and
the matrix B is symmetric (because wee ia,pj = Wee,jb,ai AN Wip aj = Wiapi). The excita-

tion energies w, are thus found by solving the usual linear-response pseudo-Hermitian
eigenvalue equation, just as in TDDF'T,

GG
B* A* Y, 0 -1 Y,

whose solutions come in pairs: excitation energies w, with eigenvectors (X,,Y,), and
de-excitation energies —w, with eigenvectors (Y, X’ ). For real spin-orbitals and if A+B
and A — B are positive definite, the eigenvalues are guaranteed to be real numbers and
the pseudo-Hermitian eigenvalue equation (8.19) can be transformed into a half-size
symmetric eigenvalue equation [3].

If instead of starting from g, one starts from y;p = —iGG with the exact one-particle
Green’s function G, the equations get more complicated since the matrix representation
of x1p is generally not diagonal and not only has contributions in the (ov,vo) subspace
of spin-orbital products but also in the occupied-occupied (0o) and virtual-virtual (vv)
subspace of spin-orbital products. The dimension of the matrices thus becomes M? x M?
where M is the total number of (occupied and virtual) spin orbitals. In this case, the
number of solutions of the response equations is generally higher than the number of
single excitations, and in particular double excitations might be obtained even without
a frequency-dependent kernel. Spurious excitations can also be found. This is similar to
what happens in linear-response TDDMFT [12-15]. We will show this later in the case
of Hs in a minimal basis.

When exchange is included, similar equations can be derived, where W), ., is substi-
tuted by W, s with

= 1
Whpa,rs = E Wee,pq,tuCtu,rs (820)
tu
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and

g;:ql,rs = 5PT5q5 - wee,pq,rs [XO (w = 0”7"5,7’3 (821)

where the wee pg,rs = (gr||ps) are the usual antisymmetrized two-electron integrals.

8.3.2 Spin adaptation

We give now the expressions for spin-restricted closed-shell calculations. For four fixed
spatial orbitals referred to as p, ¢, r, s, the Bethe-Salpeter kernel has the following spin

structure
EquT,rTsT EPTQTJ’isi 0 0
= B 0 0
plal,rtst  Splalrls) ~ _ , (8.22)
0 0 Sptal,rtsl  Eptal,rlst
0 0 Eplat,rtsl  Spigtrist

which can be brought to a diagonal form after rotation (see, e.g., Refs. [42, 73, 74])

s O 0 0
0 354w O 0
e , (8.23)
0 0 Zpgrs 0
0 0 0 3Zpgrs

with a spin-singlet term 'Z,,,s = 2Wee pgrs — Wprgs and three degenerate spin-triplet
terms 32,5 = —Wprgs. It has been used that the Coulomb interaction v and the

screened interaction W are spin independent: wee pgrs = Weeptqtrtst = Wee ptat,risi =

Wee,plql,rtst = Weeplql,risl A0 Wigrs = Wprgrrrst = Worgtrist = Wotgrrtst = Woiglrlsl-
The spin-adapted screened interaction is obtained by

1 -1
WP(LTS = Z 6pq,tuwee,tu,rs ) (824)
tu

where ¢ and u refer to spatial orbitals, and the singlet dielectric function ‘e q.s =

€ptat,rtst + Eptat,ris) 18 given by
Lepgrs = Oprlgs = Wee,pg,rs [Xo(w = O (8.25)

where the singlet interaction is given by 1%, . .. = 2Wee pg.rs- The bottom line is that
the linear-response eigenvalue equation (8.19) fully decouples into a singlet eigenvalue

A B X, ) 1 0 X,

with the matrices

equation

YAiajb = Aia b + 2Wee ia jb — Wij.abs (8.27a)
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'Bia.jb = 2Wee.iapj — Wib.aj (8.27D)

and a triplet eigenvalue equation
3A °B 3X,, . 1 0 3%,
= 3w, , (8.28)
3SB* SA* Y, 0 —1 Y,

3 Aiajb = Aeiajb — Wijabs (8.29a)

with the matrices

®Biajb = —~Wib,aj, (8.29b)

where the absence of the Hartree contribution is responsible for the singlet-triplet split-
ting in the excitation energies. When exchange is included, the spin-adapted screened
interaction is obtained by

WPQ;TS = Z 1€;q1,tuwee,tu,rs ) (830)
tu
where
lgpqms = 5pr5qs _1 wee,pq,rs [Xo(w = 0)],,_577,8 . (831)

1- _
where 'Wee,pg,rs = (2Wee, pg,rs — Wee,pr.gs)-

8.4 Example of H; in a minimal basis

As a pedagogical example, we apply the BSE-GW method to the calculation of the
excitation energies of Hy in a minimal basis consisting of two Slater basis functions, ¢,
and ¢y, centered on each hydrogen atom and with the same exponent ¢ = 1. This is a
closed-shell molecule, therefore all the calculations are done with spin adaptation in a
spatial orbital basis. The molecular orbitals are 11 = (¢4 + ¢3)/1/2(1 + Sup) (symmetry
og) and Yo = (pa — p)//2(1 — Sup) (symmetry o,) where S, is the overlap between
v, and ¢,. The matrix representations of all two-electron quantities in the space of

spatial-orbital products are of the following form

P11 P | Pz Paa

P22,12 P22 21

2 (8.32)

Pi212 Pi2o1

Py 11 P2

Pis11 P22

Pri11 Poioo | Por,12 Poion

and we refer to the upper left block as the (0oo,vv) block, and to the bottom right block as
the (ov,vo) block. All the values of the integrals as a function of the internuclear distance
R can be found in Ref. [75]. Note that, in the condensed-matter physics literature, a

simplified version of Hs in a minimal basis with only on-site Coulomb interaction is often
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used under the name “half-filled two-site Hubbard model” (see, e.g., Refs. [64, 76, 77]),
where with the notations used here, the Hubbard model is obtained for Ae = 2t and
Ji1 = Jao = K12 = Ji2 = U/2 where t is the hopping parameter and U is the on-site
Coulomb interaction.

8.4.1 BSE-GW method using the non-interacting Green’s function

The simplest approximation in the BSE-GW method is to start from the non-interacting
HF Green’s function Gg, leading to the non-interacting HF linear response function

xip = —iGoGp = xo whose matrix representation reads
0 0 0
0 0 0 0
xow) = |y o1 | (8.33)
w— Ae
0 0 —
w+ Ae

where Ae = g5 — ¢ is the difference between the energies of the molecular orbitals o
and ;. The non-interacting linear response function has non-vanishing matrix elements
only in the (ov,vo) block, but it will be necessary to consider the other blocks as well
for the screened interaction W. The matrix of the Coulomb interaction is

Jiu Jiz| 0 0
J J: 0 0
Weo = | —2 222 , (8.34)
0 0 | Ki2 Ki2
0 0 | Ki2 Ki2

where J,, = (pq|pq) and K,, = (pqg|qp) are the usual Coulomb and exchange two-electron
integrals over the molecular orbitals ; and v». The off-diagonal blocks of v are zero
by symmetry for Hy in a minimal basis, but this is not the case in general. By matrix
product and inversion, we get the static singlet dielectric matrix

1 0 0 0
0 1 0 0
16 = 2K12 2K12 (835)
1 )

N

12 12

1

00 Ae + Ae
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which, in this case, is block diagonal with the (0o,vv) block being the identity. By using
its inverse, we finally get the static screened interaction matrix

Jin Ji2 0 0
W — 0 0 Ko Ko , (8.36)
1+4K12/A5 1+4K12/A6
0 0 Ko Ko
1—|—4K12/A€ 1+4K12/A€

which is block diagonal and the (0oo,vv) block is just the bare Coulomb interaction in the
case of Hy in a minimal basis, but this is not generally true. We have then everything
to construct the !4 and !B matrices of Equation (8.26) for singlet excitations, which in
the present case are just one-dimensional

1A= Ace + 2K15 — J19, (837&)
1 _ Ky
B = 2K - s (8.37h)

and the 34 and *B matrices of Equation (8.28) for triplet excitations

3A = Ae — J12, (838&)
3, Ko
B = iR A (8.38b)

Solving then the response equations by the standard Casida approach [3], we get the
singlet excitation energy

K K
L, — _ 2 _ M2
w = \/(A€+4K12 J12 1 —|—4K12/ 5‘> (A€ J12 + 1 —|—4K12/ E>’ (839)

and the triplet excitation energy

K K
3 . . B 12 i 12
w = \/(A{f J12 71 T 4K12/ 5) (AE J12 + 71 T 4K12/ E) . (840)

Note that, for this simple system, the A terms have the usual TDHF or configuration
interaction singles (CIS) forms, and the screening has an effect only on the B terms,
decreasing the exchange integral K, by a factor of 1+4K;5/Ae. Therefore, in the Tamm-
Dancoff approximation [78], which consists in neglecting B, the effect of screening would
be lost and the method would be equivalent to CIS. It is interesting to analyze the effect
of the screening as a function of the internuclear distance R. For small R, the orbital
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energy difference Ae is much greater than the exchange integral K5, so the screening
factor 1+ 4K5/Ac¢ is close to 1 and TDHF excitation energies are recovered. For large
R (dissociation limit), Ae goes to zero, so the screening factor diverges and the term
Ki2/(1 4 4K12/A¢) vanishes.

The excitation energies from the ground state 'S to the first singlet ' and triplet
3%F excited states are plotted as a function of R in Figure 8.1. The reference curves
are from a full configuration-interaction (FCI) calculation giving the exact excitation
energies in this basis. In a minimal basis, the singlet '3F excited state is constrained
to dissociate into the ionic configuration H—... HT, and so in the dissociation limit
R — oo the exact singlet excitation energy goes to a constant, I — A ~ 0.625 hartree
where I and A are the ionization energy and electron affinity of the hydrogen atom.
The triplet 32 dissociates into the neutral configuration H®... H®, as does the ground
state, and so the exact triplet excitation energy goes to zero in the dissociation limit.
TDHF gives accurate excitation energies for small R, but gives qualitatively wrong
curves in the dissociation limit. For the singlet state, the TDHF excitation energy
goes to zero, a wrong behavior inherited from the vanishing Ae in this limit. For the
triplet state, the TDHF response equation suffers from a triplet instability for R > 4
bohr and the excitation energy becomes imaginary. It is known that TDDFT with
standard density-functional approximations gives similarly incorrect energy curves [7,
76, 79-81]. The BSE-GW method using the non-interacting HF Green’s function Gy
gives accurate excitation energies at small R, but fails in the dissociation limit. The
singlet excitation energy becomes imaginary for R > 4.9 bohr. Indeed, in the dissociation
limit, Ae goes to zero and Equation (8.39) leads to a negative term under the square
root: ‘w — /(4K — Ji2)(—Ji2). Similarly, the BSE-GW triplet excitation energy is

imaginary between R = 4.0 and R = 4.9 bohr, and incorrectly tends to a non-zero value

in the dissociation limit.

8.4.2 BSE-GWx method using the non-interacting Green’s function

In what follows, the effect of adding exchange in the dielectric matrix is investi-
gated. The singlet electron-electron interaction is then given by @ee(x1,x5;x3,%5) =
Wee (X1, X5; X3, X5 ) — Wee(Xs5,X1; X3, X5). Its spin-adapted matrix representation in the min-

imal basis set is then

Ji1 2J12 — Kq2 0 0
2J19 — K J: 0 0
. — 12 12 22 (8.41)
0 0 2K15 — Jia Ko
0 0 Ko 2K — K2

With respect to the matrix of the interaction when the antisymmetrization is not taken
into account, the self-screening has been removed in this representation. The non-

interacting response function is unchanged so the antisymmmetrized dielectric matrix
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Figure 8.1 — Excitation energies of the singlet !>+ (top) and the triplet 3% (bottom)
states of Hy in a minimal basis as a function of the internuclear distance R calculated
by FCI, TDHF, and BSE-GW with the non-interacting HF Green’s function Gy.
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is

0 0
0 1 0 0
le= 2K12 — Ji2 Kia (8.42)
0O 0|14+ ————= —
0 0 K 1 12 — Ji2
Ae + Ae
and the matrix of the screening is
Juu Jiz| 0O 0
_ J J: 0 0
W= 12 Jo2 | | A (8.43)
0 0 | Wiz Wie
0 0 | Wia Wi

Ky

1 + (3K12 — le)/A&f
was accounted for, the exchange integral K5 is now screened by 1+ (3K2—J12)/Ac instead

where Wiy = . With respect to the BSE-GW case where no exchange

of 1+ 4K,5/Ae. The screening is therefore reduced by K5+ Ji2 as the self-screening has
been removed. Using this screened interaction into Equations (8.26) and (8.28), the

singlet and triplet matrices A and B can be constructed and are given by

1A= Ace + 2K19 — J1io

B ok, Kio (8.44)
14 (3K — Ji2)/Ac
in the singlet case, and by
3A=Ae - Jpy
sg_ K1 (8.45)

1+ (3K12 — Jlg)/Aé"

in the triplet case. Solving Casida’s equation [3], the singlet excitation is then

K K

Ly = A AKyg — Jig — —— 2 Ae — J L 8.46
w €+ 12 12 1+3K127J12 9 12+1+3K127J12 ( )

Ae Ae

and the triplet equation is
K K
3 _ _ 12 B 12

w = Ae J12 —3K12 — J12 Ae J12 + —3K12 — J12 (847)

1+ 22 14 ===

Ae Ae

These excitation energies are plotted in Figure 8.2 together with the FCI and TDHF
curves for the sake of comparison. With respect to the initial curves given in Figure 8.1,

very similar patterns are observed. The excitation energies still become imaginary when
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the bond is stretched but at slightly different values of the internuclear distance. The
singlet excitation energy becomes imaginary ar R = 5.3 bohr when it was 4.9 bohr when
exchange was not included and is not significantly improved. The triplet excitation
energy on the other hand, is slightly worsened as it now becomes imaginary at R=3.7
bohr instead of 4 bohr. The overall effect of the inclusion of exchange in the dielectric
matrix is therefore rather small in this case.

The BSE-GW method using the non-interacting HF Green’s function Gy thus badly
fails for Hy in the dissociation limit, with or without exchange in the dielectric matrix.
As this method is based on a single-determinant reference, this should not come as a
surprise. Moreover, the double excitation is also completely absent from this method.
However, the BSE approach also allows one to start from an interacting Green’s function
G taking into account the multiconfigurational character of stretched Hy. We will now
test this alternative approach.

8.4.3 BSE-GW method using the exact Green’s function
Independent-particle response function

We apply the BSE-GW equations (8.5)-(8.7) with the independent-particle response
function yp = —iGG constructed from the exact one-particle Green’s function G, and
which can be calculated by the Lehmann formula (7.8) using the N-electron ground
state and the (N + 1)-electron states. The states to consider for Hy in a minimal basis
are given in Figure 8.3. The ground state is composed of two Slater determinants, its
energy is Ex = 2e1 — J11 + E. where E. = A — /A2 + K%, is the correlation energy with
2A = 2Ae + Ji1 + Jog — 4J12 + 2K12. The coefficients of the determinants are determined
by o = 1 K12/(A + /K% + A?) and ¢} + c3 = 1. The energies of the two (N + 1)-electron
states are: Eny11 = 2e1+e2—J11 and Enyi1,2 = 260461 —J11+J22—2J12+ K12. The energies
of the two (N — 1)-electron states are: En_11 =¢1 — Ji1 and En_19 = €3 — 2J12 + Kio.
We thus obtain four poles for the exact one-particle Green’s function. Two of them

correspond to minus the electron affinities,
82 = EN+1,1 — EN = &9 — E]c7 (848&)

gé = EN+172 — EN = 252 — &1+ J22 — 2J12 + K12 — EC, (848b)
and the other two correspond to minus the ionization energies,
E1=FEN — EN_1,1 =¢e + FE,, (849&)

g{ = EN — EN,LQ == 261 — &2 — Ju + 2J12 - K12 + Ec. (849b)

In condensed-matter physics, £ and & are associated with “quasi-particle” peaks of
photoelectron spectra, while & and &) are associated with “satellites”. The Dyson
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Figure 8.2 — Excitation energies of the singlet 'S} (top) and the triplet 3%+ (bottom)

states of Hy in a minimal basis as a function of the internuclear distance R calculated
by FCI, TDHF, and BSE-GWx with the non-interacting HF Green’s function Gy.
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— # + =+
T T

Figure 8.3 — N-electron ground state, and (IV + 1)-electron states for Hy in a minimal
basis.

c1|11) + ¢22)

orbitals are also easily calculated, and we finally arrive at the matrix representation of
x1p in the basis of the products of spatial orbitals

le,n(w) 0 0 0
le(w) _ 0 XIP,22(W) 0 0 (8 50)
0 0 x1p,12(w) 0 7
0 0 0 X1p,21(w)
with the matrix elements
2.2 2.2
_ C1C3 _ CiC3
xip11(w) = D (€& wrE-&) (8.51a)
2.2 2.2
C1C2 C1C2
_ _ , 8.51b
Xip 22 () = 2 (E2—&) w+(E—§&) ( )
4 4
€1 Ca
_ _ 5l
Xipae(w) = S ey T 0T E =&y (851c)
4 4
Xip.21 (W) = 2 “ (8.51d)

w—(E—&) wt(E—&)

Therefore, whereas xo(w) has only one positive pole, x1p(w) has four distinct positive
poles (and four symmetric negative poles). These poles are plotted in Figure 8.4. The
lowest one, £,—&1, called fundamental gap in the condensed-matter physics literature, can
be considered as an approximation to a neutral single excitation energy since in the limit
of non-interacting particles it equals the difference of the orbital eigenvalues Ae = e5—¢;.
The two intermediate poles, & — & and & — &1, can be interpreted as approximations
to a double excitation energy since they reduce to 2Ae¢ in the limit of non-interacting
particles. Surprisingly, the highest pole, & — &, reduces to 3Ae in this limit and it is thus
tempting to associate it with a triple excitation even though the system contains only
two electrons! In the dissociation limit R — oo, the four poles tends to the same value,
i.e. I—A = 0.625 hartree which is also minus twice the correlation energy —2F., showing
that the non-vanishing fundamental gap in this limit is a correlation effect. Note that
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Figure 8.4 — Positive poles of the independent-particle linear response function in
function of the internuclear distance R

it has been shown [64] that the non-self-consistent GW approximation (GoWy) to the
one-particle Green’s function gives a fundamental gap which is too small by a factor of
2 in the dissociation limit, so we do not consider this approximation here.

Excitation energies

Having calculated the independent-particle response function, the next steps of the BSE-
GW calculation of the excitation energies proceed similarly as in Section 8.4.1, even
though the expressions get more complicated. From the matrix xp(w = 0) and the
Coulomb interaction matrix (8.34), we calculate the singlet dielectric matrix which is
still block diagonal but the upper left block is no longer the identity matrix. We calculate
then the static screened interaction matrix which is still block diagonal but the elements
of its upper left block are now also affected by screening. We can then construct the cor-
responding singlet and triplet Bethe-Salpeter kernel !Z and 3Z. The response eigenvalue
equations (8.26) and (8.28) are no longer applicable, so the singlet excitation energies
are found by searching the values of w giving vanishing eigenvalues of the inverse singlet
linear-response matrix 'x(w)~! = x1p(w)~! — 12, and the triplet excitation energies are
found by searching the values of w giving vanishing eigenvalues of the inverse triplet

1 -1 and

linear-response matrix 3x(w)~! = xp(w) ! —3E. For H, in a minimal basis, 'x(w)
3x(w)~! are 4 x 4 matrices which are block diagonal, the (0o,vv) block being uncoupled to
the (ov,vo) block. For both the singlet and triplet cases, the four positive poles of xip(w)

transform into four excitation energies (plus four symmetric de-excitation energies).
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Figure 8.5 — Excitation energy of the singlet !X state of Hy in a minimal basis as a
function of the internuclear distance R calculated by FCI and BSE-GW with the exact
Green’s function. The lowest pole of xip(w), the fundamental gap & — &, is also plotted
for comparison.

Among the two positive excitation energies coming from the (ov,vo) block of the
matrix 'x(w)~!, the lowest one is identified with the first singlet !X excitation energy,
which is called the optical gap. It is plotted in Figure 8.5 and compared with the
reference FCI excitation energy and also with the fundamental gap & — &; to highlight
the effect of the Bethe-Salpeter kernel. At small internuclear distance, R < 3 bohr,
the Bethe-Salpeter kernel brings the BSE-GW curve very close to the FCI curve. For
large R, the BSE-GW excitation energy follows the curve of the fundamental gap, which
slightly overestimates the excitation energy at R = 10 bohr but eventually goes to the
correct limit 7 — A when R — co. Thus, contrary to the BSE-GW method using the non-
interacting Green’s function, the obtained excitation energy curve has now a correct
shape. This relies on the fundamental gap being a good starting approximation to the
optical gap. As regards the second excitation energy coming from the (ov,vo) block of
the matrix !x(w)~! which is connected to highest pole &£ — & of yip(w), it is a spurious
excitation due to the approximate Bethe-Salpeter kernel used.

The lowest positive excitation energy coming from the (0o,vv) block of the matrix
"x(w)~! is identified with the second singlet '¥} excited state which has a double ex-
citation character. It is plotted in Figure 8.6 and compared with the FCI excitation
energy for this state and with the poles & — & and & — & of xip(w). It is noteworthy
that the BSE-GW method starting from xip(w) instead of xo(w) but using a frequency-
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Figure 8.6 — Excitation energy of the second singlet 'S} state of Hy in a minimal
basis as a function of the internuclear distance R calculated by FCI and BSE-GW with
the exact Green’s function. The poles & — & and & — &] of xip(w) are also plotted for
comparison.

independent kernel does describe this double-excitation state with an overall correct
shape for the energy curve. However, the BSE-GW excitation energy is almost identical
to the two poles & — & and & — &. The Bethe-Salpeter kernel in the static GW ap-
proximation thus brings virtually no improvement for this state over the starting poles
of x1p(w). The (00,vv) block of the matrix 'x(w)~! also gives a second higher excitation
energy that is spurious.

We finally consider the triplet excited state 3:F. The lowest positive excitation
energy coming from the (ov,vo) block of the matrix 3x(w)~! should be identified with
this state. It is plotted in Figure 8.7 and compared with the FCI excitation energy
for this state and with the fundamental gap & — &. For small internuclear distances,
R < 3 bohr, the BSE-GW method gives an accurate excitation energy, but for larger R,
instead of going to zero, the BSE-GW excitation energy follows the fundamental gap
until the excitation energy becomes imaginary for R > 6.5 bohr. The problem is that the
poles of x1p(w) are the same for both the singlet and triplet cases, and the fundamental
gap & — & is not a good starting approximation to the triplet excitation energy in the
dissociation limit. The Bethe-Salpeter kernel in the static GW approximation is not
able of compensating for this bad starting point. In addition to this excitation energy,
the BSE-GW method gives three other spurious triplet excitation energies.
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Figure 8.7 — Excitation energy of the triplet 3XF state of Hy in a minimal basis as a
function of the internuclear distance R calculated by FCI and BSE-GW with the exact
Green’s function. The lowest pole of xip(w), the fundamental gap & — &, is also plotted
for comparison.

Effect of the inclusion of exchange

A similar study was performed when exchange is included in the dielectric response
function as was done in the non-interacting case. The excitation energy to the singlet
Iyt state is shown in Figure 8.8. It does not present a bump anymore but its large R
value overestimates the exact FCI energy. Its asymptotic limit is higher than without
exchange which was already too high. However, the effect of the kernel does not cancel
out anymore at large R but goes in the wrong direction with the respect of the poles
of the non-interacting response function. The excitation energy to the second singlet
'3} state is shown in Figure 8.9. As for the singlet 'S excitation, its behavior at large
R is not improved by the inclusion of the exchange. The effect of the kernel does not
cancel anymore at large R but goes in the wrong direction with respect to the poles of
xip- The excitation energy to the triplet *$} state is shown in Figure 8.10. It becomes
imaginary for a smaller value of R than without exchange as was also observed with the
non-interacting Green’s function.

In all these cases, the correct asymptotic limit is not recovered for the excitation
energies. In fact, as will be seen in the next chapter in the perturbative framework,
the inclusion of exchange in the dielectric matrix needs to be done together with the
inclusion of the derivative of W with respect to G in order to have a consistent expression

for the kernel.
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Figure 8.8 — Excitation energy of the singlet !X state of Hy in a minimal basis as a
function of the internuclear distance R calculated by FCI and BSE-GWx with the exact
Green’s function. The lowest pole of xip(w), the fundamental gap & — &, is also plotted
for comparison.
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Figure 8.9 — Excitation energy of the second singlet 'S} state of Hy in a minimal
basis as a function of the internuclear distance R calculated by FCI and BSE-GWx with
the exact Green’s function. The poles & — & and & — &] of xip(w) are also plotted for
comparison.
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Figure 8.10 — Excitation energy of the triplet 321 state of Hy in a minimal basis as a
function of the internuclear distance R calculated by FCI and BSE-GWx with the exact
Green’s function. The lowest pole of xip(w), the fundamental gap & — &, is also plotted
for comparison.

8.5 Conclusion

In this chapter, we have applied the BSE approach in the static GW approximation for
the calculation of the excitation energies on the toy model of Hy in a minimal basis.
We were essentially interested to the effects of the different approximations that are
made on the self-energy but did not investigate the ones made during the derivation of
the kernel. We have tested two variants for the starting one-particle Green’s function:
the non-interacting HF one and the exact one, and have also assessed the effect of
the inclusion of exchange in the dielectric matrix for these two variants. Around the
equilibrium internuclear distance, both variants give accurate excitation energies to the
first singlet 'S and triplet 3S} excited states. In the dissociation limit, however, the
two variants differ. The first variant, starting from the non-interacting one-particle
Green’s function, badly fails in this limit for both the singlet and triplet states, giving
imaginary excitation energies. The second variant, starting from the exact one-particle
Green’s function, gives a qualitatively correct energy curve for the singlet !X} excited
state up to the dissociation limit. This relies on the fact that the fundamental gap
(given by the one-particle Green’s function) is a good starting approximation to the first
singlet excitation energy. However, the same variant gives an incorrect energy curve
for the triplet 3%} excited state in the dissociation limit. In this case, the fundamental

gap is a bad starting approximation to the first triplet excitation energy. The inclusion
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of exchange in the GWx variant does not help with these deficiencies and even gives
imaginary excitation energies for smaller intermolecular distances.

The second BSE variant using the exact one-particle Green’s function gives more
excitation energies that the first BSE variant. Most of them are spurious excitations
due to the approximate Bethe-Salpeter kernel which is used and is not number conserving
when the derivative of the self-energy is dropped [35, 36, 82, 83]. However, one of them
can be identified with the excitation energy to the singlet 'S} excited state which has
a double excitation character. It is remarkable that such a double excitation can be
described at all within a static approximation. This was made possible by using a multi-
configurational wave function for the construction of the Green’s function. However,
the Bethe-Salpeter kernel in the static GW approximation is insufficient to describe
accurately the energy curve of this state, even around the equilibrium distance.

Staying in the static approximation, one major approximation remains on kernel as
the derivative of W with respect to G was neglected up to this point. Its effect is assessed
in the next chapter in a perturbative approach where all the quantities are given up to
the second order of the interaction.
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Chapter 9

Second-order static BSE kernel

In this chapter, the self-energy and static Bethe-Salpeter kernel are expanded in
a perturbative way up to second order with respect to the bare electron-electron
interaction. The derivation is first done in real space where the exchange may or
may not be included in the self-energy and where the derivative of W with respect
to G is or is not included. The resulting equations are then projected onto a spin-
orbital basis. The inclusion of exchange into the correlation self-energy leads to a
spin-orbital representation where the two-electron integrals are antisymmetrized but
is not sufficient by itself to ensure the same for the second-order correlation Bethe-
Salpeter kernel. In fact, for the Bethe-Salpeter kernel, a fully antisymmetrized form
is obtained only when both the exchange in the correlation self-energy and the term
dW /G in its derivative are included. In this case, the conservation laws are fulfilled.
If only one of these contributions is taken into account an unbalanced expression
where only part of the integrals is antisymmetrized is obtained. This confirms that
both effects have to be taken into account together in order to treat finite molecular
systems for which the exchange terms are imporant. This antisymmetrized static
second-order kernel is once again illustrated on Hy in a minimal basis set where in
the static approximation it is found to have a non-physical form. Most of the technical
details can be found in Appendix G.

9.1 Introduction

The response function of a system describes how it is affected by a change potential,
for instance by addition of an electromagnetic field. In the Bethe-Salpeter approach,
the description of this response involves a kernel which describes the interaction be-
tween the quasi-particles and how this interaction is affected by the perturbation. It is
formally given by differentiation of the self-energy which can be calculated in principle
via the exact set of coupled equations provided by Hedin’s cycle (cf Chapter 7). As
it is not possible to find a straightforward solution to this problem, different kinds of

approximations can be introduced for the construction of the self-energy depending on

181



CHAPTER 9. SECOND-ORDER STATIC BSE KERNEL

the physical system to describe and/or the available computational power. The GW
approximation was introduced in the last chapter and consists in neglecting the vertex
corrections which account for the change of interaction of the quasi-particles induced by
a change of potential. Other approximations can be made by expressing Hedin’s equa-
tions as eitheir finite or infinite series of the non-interacting (or Hartree-Fock) Green’s
function Gy and of the bare interaction we. [17, 84, 85|, or of the screened interaction
W [45, 48, 86]. When such approximations are designed, one has to make sure that they
are conserving approximations [39, 87, 88] which means that given quantities such as
the number of particles or the total energy will be conserved by these approximations.
These conservation laws can be related to the Thomas-Reiche-Kuhn sum rule present
in time-dependent density-functional theory (TDDFT). In particular, when the kernel
is derived from the self-energy, the first-order derivative of W with respect to G is often
dropped, which means that the change in screening due to the perturbation is neglected.
However, in order to design a conserving approximation, this term should in principle
be kept.

In the framework of finite molecular systems, we expand the correlation self-energy
(in Section 9.2) and Bethe-Salpeter kernel (in Section 9.3) up to second order with
respect to the bare Coulomb interaction we, and the Hartree-Fock Green’s function G
and project them onto a spin-orbital basis. The effects of the inclusion of exchange
into the correlation self-energy (GWx) and of the inclusion of the derivative of W with
respect to G into the kernel are assessed. As the resulting correlation Bethe-Salpeter
kernel is frequency dependent, it requires in principle to solve the dynamical Bethe-
Salpeter equation. However, in this chapter, a static approximation of the kernel is used
by setting w to 0 in the correlation kernel and is inserted in the Bethe-Salpeter equation.
The effects of the inclusion of exchange in the self-energy and of the derivative of W
with respect to G are tracked through the derivation in order to show their respective
importance. The dynamical case will be treated in the next chapter. The effects of the
second-order approximation is then assessed on the model system of Hy in a minimal
basis in Section 9.4 and compared to the results obtained in Chapter 8 when neither
the exchange or éW/dG are included. Then, the kernel, where both contributions are
included, is also illustrated on this model system. Technical details of the derivation of
the second-order self-energy and kernel can be found in Appendix G.

This perturbative expansion in terms of the bare electron-electron interaction will
be especially interesting in the range-separated context where the interaction will be
replaced by its (smaller) long-range part as our end goal, afterall, is to design a long-
range correlation Bethe-Salpeter kernel which will be added pertubatively to the range-
separated TDDFT kernel (cf Chapter 6). This could also justify why an expansion in

terms of the bare interaction is performed and not in terms of the screened interaction.
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9.2 Second-order self-energy

9.2.1 Second-order self-energy in real space

From the previous chapter, the Hartree-exchange-correlation self-energy, within the
GWx approximation, is given in the time domain by

YHxe[G](1,2) = —i/d3d3’wee(1,3;2,3’)G(3’+,3++) +i/d1’d3G(1’,3)W(3,1;2, 1), (9.1)
where the screened potential W is given by
W(1,2;1,2) = /d3d3’g*1(1,3;1’,3/+)wee(3’72;3,2’), (9.2)
and the antisymmetrized dielectric function is
€(1,2;3,4) = §(1,4)6(2,3) —/d5d5’wee(1,5;3,5’)X1p(5’,2;5+,4). (9.3)

In order to expand the self-energy at second order with respect to the electron-electron
interaction wee, the inverse dielectric function needs to be expanded up to the first order
and is then given by

(g<1>)‘1(1,2;3,4) =6(1,4)8(2,3) +/d5d5’wee(1,5;3,5’)X1p(5’72;5+74). (9.4)

When inserted into the expression of the Hartree-exchange-correlation self-energy, it

gives rise to four contributions: the Hartree self-energy
Yu[G](1,2) = —z’/d3d3’wee(1,3;2,3’)G(3’+,3++), (9.5)
and the exchange self-energy
. [G](1,2) = i/dl’d3G(1’,3)wee(3, 12, 1) (9.6)

which contribute at first order with respect to we., the second-order direct correlation

self-energy

»CY[@)(1,2) =i / d1'd3d4d4’ d5d5' G (1, 3)wee(3, 5; 2,5 ) x1p (57, 4; 57, 4/ wee (47, 1;4,1)
(9.7)

and the second-order “exchanged” correlation self-energy

»2)[G](1,2) = —i/dl’d3d4d4’d5d5’G(1’,3)wee(573;2,5’)xlp(5’,4; 5T, 4 M wee (4,15 4,17),
(9.8)
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1
ZH Zx ES?(I) E()QX)

Figure 9.1 — Feynman diagrams of the second-order self-energy. The colored dots are
the outer variables. These diagrams represents in fact the self-energy contributions to
the Green’s function of an electron. In order to have the full diagrammatic expansion
of the self-energy, diagrams with reverse arrows should also be included to account for
the contributions of the Green’s function of a hole.

which arise from the antisymmetrisation of the two-electron interaction in the dielectric
function. The Feynman diagrams of these contributions are recalled in Figure 9.1 where
the order of perturbation can be easily found by counting the number of interaction
lines (dashed line) which enter in each diagram. If the dielectric function is not anti-
symmetrized, the “exchanged” correlation contribution disappears, i.e. the last diagram
in Figure 9.1 is removed. In here, we have kept the explicit functional dependence of
the self-energy with respect to the full-interacting Green’s function G as to obtain the
kernel, we need to differentiate with respect to G. However, if one’s goal is to get the
self-energy at second order, then the self-energy has to be evaluated at G = Gy.

As the Hartree and exchange self-energy are not affected by the second-order ex-
pansion and have already been given in the previous chapter, only the second-order
correlation will be detailed hereinafter.

9.2.2 Projection onto a spin-orbital basis

In what follows, we are interested in the projection onto the spin-orbital basis set of the
Fourier transform of the second-order self-energy evaluated at G = Gy. The convention
for the Fourier transform can be found in Appendix A.2. The matrix elements are then
obtained in the spin-orbital basis with the convention

V(W) = // dx1dx2X (X1, X2, w) @ (X1)pu(X2). (9.9)

The details of the derivation can be found in Appendix G.1.

Direct correlation self-energy

The real-space expression of the direct correlation self-energy in the time domain is given
by Equation (9.7). When the time variables are made explicit, it can be rewritten as

22 [G)(x1,x2,T) :G(X17X277)/dx4dX5G(X57X4a_T)G(XAL;XS,T_0+)wee(r27r5)wee<r4;rl)7
(9.10)
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Figure 9.2 — Spin-orbital interpretation of the diagrammatic expansion of the second-
order correlation self-energy.

where 7 = t; —t5. When evaluated at G = Gy, the matrix elements of its Fourier transform
in the spin-orbital basis set are then given by

5 _ (aclvj)(ujlac) (ik|vb) (ubik)
2&33((*1) _gw—(fa—5j+€c)+i0+ +%W_(5i_5b+5k)_i0+
aclvj){ujlac ik|vb) (ublik
=S (aclvj)(uj|ac) _Z—w+< |[vb) (ublik)

Ww—€q+¢e; —eg.+ 10T (e; —ep+eg) +i0t

(9.11)

ajc

These two terms correspond to the first two diagrams of Figure 9.2. The two two-
electron integrals in the numerator corresponds to the two interaction lines present in
each diagram. The three orbital energies correspond to the particle and hole lines where
an occupied orbital is given by an down-going arrow and a virtual orbital corresponds to
an up-going arrow. The outer variables 1 and 2 have been replaced by their corresponding
orbitals u and v following the convention given in Equation (9.9). On these diagrams,

one can also *

‘read” the two-electron integrals. For instance, for the top interaction line
of the first diagram, the orbitals a and v are integrated together and so are the orbitals
j and ¢, this can then be “translated” in the equation by the term (ac|vj).

In this expression however, the two-electron integrals are not antisymmetrized as only
the direct part of the correlation self-energy was taken into account. Let now consider

the “exchanged” part.

“Exchanged” correlation self energy

Similarly to the direct case, the real-space expression of the “exchanged” correlation
self-energy with explicit time variables is given by

Zgzx) [G(x1,%x2,7) = —/dx?,dx4G(x1,)(3,7')G(X3,X47 —7)G (X4, X2, T)Wee(r2, I'3)Wee (T4, T1).
(9.12)

Its matrix elements in the frequency space when evaluated at G = Gy are then given by

) (ug ki|vb) (ublik)
2 () — (calug) (ulac) <
cuo(w) azj;w—(ea—ej—l—ec)—l—iOJf %w—(ei—eb+ek)—i0+

(9.13)

calvj{ujlac ki|vb) (ublik
B (calvj)(ujlac) 'y (ki|vb)(ublik)

~w—eqt+ej—e.+i0t L= —w+te —ey+ep 40t
ajc ibk
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Figure 9.3 — Feynman diagrams of the function @ from which the correlation self-energy
can be obtained by differentiation with respect to G.

which corresponds to the antisymmetric counterpart of the direct correlation self-energy.
These two terms correspond to the last two diagrams of Figure 9.2. As in the direct case,
a spin-orbital interpretation of the diagrams can be made and matches the expression
found in Equation (9.13). The minus sign comes from the absence of loop in these
diagrams with respect to the direct ones.

Total second-order correlation self-energy

When both the direct and the “exchanged” contributions are taken together, the ma-
trix elements of the total second-order correlation self-energy evaluated at G = G, are
therefore

£ (W) _1 3 — (acf|vj) (ujllac) 1 Z — (ik||vb) (ubl|ik) (9.14)

— (ea —&j +e0) +i0F " 2 ‘e (€i —ep+ex) — 0’
where (pg||rs) = (pg|rs) — (pg|sr) so that all the two-electron integrals are now antisym-
metrized. Taking either the direct correlation only or the total correlation, can be a
relevant approximation depending on either one is dealing with a finite or infinite sys-
tem. Moreover, each of these two possibilities constitutes a conserving approximation
which means that they are consistent with the general (number, momentum and energy)
conservation laws. A sufficient condition on the self-energy operator to be a conserv-
ing approximation is to be ®-derivable, i.e. there exists a functional ® of G such that
¥ = §®/6G [87]. This condition can also be checked diagrammatically following the rules
introduced by Baym [88]. The Feynman diagrams of the direct and “exchanged” part of
the function ® are given in Figure 9.3 and are homomorphic to the well-known Goldstone
diagrams for the Mgller-Plesset correlation energy at second order [89-91].

9.3 Second-order Bethe-Salpeter kernel

9.3.1 Second-order Bethe-Salpeter kernel in real space

Knowing the second-order self-energy, the second-order Hartree-exchange-correlation
Bethe-Salpeter kernel can then be obtained as

(2)
S (1,652,5) = Z—§G(5,6) , (9. 5)
G=Gy
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Figure 9.4 — Feynman representation of the second-order Bethe-Salpeter kernel. The
colored dots are the outer variables. In order to have the full diagrammatic expansion,
the diagrams with reverse Green’s functions should also be accounted for.

if the exchange and the derivative of W with respect to G are included then the
corresponding Feynman diagrams are given in Figure 9.4 where “differentiating with
respect to G” can be interpreted as removing a G arrow from the self-energy diagrams.
The tail of the removed arrow is replaced by a brown point corresponding to the
variable 6 and the head is replaced by a green point corresponding to the variable
5. Therefore, starting with the diagrammatic expansion of the self-energy given in
Figure 9.1, one can obtained the kernel by removing the G arrow in the Hartree and
exchange parts and by removing either one of the three G arrows for the direct and
exchanged correlation self-energy which gives rise to six diagrams for the correlation
part of the kernel. Similarly to the self-energy, an approximation to the kernel is said to
be conserving if there exists a functional ® such that the kernel can be expressed as the
second-order derivative of ® with respect to G. Therefore, starting from a conserving
approximation of the self-energy, the kernel will be conserving if all the terms are kept
in the differentiation of ¥ with respect to G.

As we are interested in the matrix elements of the frequency-dependent kernel,
the algebraic derivation of the kernel is a two-step procedure: first, the Fourier
transform is performed following the conventions given in Appendix A.2, and then the
matrix elements are obtained with the convention

Epgrs(w) = /XmdXQdX5dX6(pp(X2)(p;(Xl)E(Xl,X6;X27X5;w)(pj(X6)(ps(X5). (9.16)
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Hartree kernel
With explicit time variables, the Hartree kernel is given in real space as

o 6%w(1,2)

=u(1,6;2;5) =1 5G5.6) 8(1,2)8(5,6)5(t1 — t5)wee(r1,T5), (9.17)
and is local in time. It corresponds to the first diagram of the right-hand-side of Fig-
ure 9.4. With the convention given in Equation (9.16), its matrix elements are simply

given by the two-electron integrals Zy ,q.-s = (gr|ps).

Exchange kernel
In the same way, the exchange kernel is given by

05(1,2
= (1,6:2:5) = ZdG((5,6)) = —3(6,2)3(1,5)0(t1 — t2)weo(r1,T2), (9.18)
and is also local in time. It corresponds to the second diagram of the right-hand-side of
Figure 9.4 where the points 2 and 5 have been exchanged with respect to the Hartree
term. Its matrix elements are then given by Zy ,4.rs = —(¢r|sp), and corresponds to the

antisymmetric counterpart of the Hartree kernel.

Correlation kernel

The second-order correlation Bethe-Salpeter kernel can be split into a direct and an
“exchanged part”, coming naturally from the decomposition of the self-energy

EP)(1,6:2;5) = EPV(1,6;2;5) + EF(1,6;2;5)

=" 5G(5,6) "8G (5,6)
G=Gy

=Gy

Each of these parts will be treated separately in the following. Moreover, as the second-
order self-energy is a product G times the second-order screened interaction W2, in each
differentiation, two terms occur, one coming from (§G/6G) W which will be denoted
as ,Z and one coming from G (§W? /5G) which is denoted as ,=. A summary of the
decompositions is given in Figure 9.5 in terms of Feynman diagrams. The first contri-
bution .= corresponds to the interaction between the quasi-hole and the quasi-electron
and is represented by the “buble” diagram (and its antisymmetrized counterpart) in
Figure 9.5. The second contribution 4= takes into accounts the change in the interaction
induced by the perturbation and corresponds to the “ladder” diagrams in Figure 9.5.
The distinction between these two contributions is made explicit in order to be able to
identify the effects of the derivative of W with respect to G which is usually neglected in
the literature for solid systems. However, it can be forgotten if one is not interested in
this comparison. Finally, the kernels also decompose into in a ph/hp part which corre-
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Figure 9.5 — Diagrammatic decomposition of the second-order Bethe-Salpeter correla-
tion kernel, into direct and exchanged part (in red), into pp/hh and ph/ph contributions
(in green) and into the parts coming from W and from GSW/4G (in orange).

sponds to the propagation of an electron and a hole and a pp/hh where either two holes
or two electrons are propagated simultaneously. The details of the derivations are given
in Appendix G.2.

Direct correlation BSE kernel The direct correlation Bethe-Salpeter kernel can be
split into three contributions

ECD(1,6;2;5) =0(t2, t6)d(t1, t5)sEPIP/IP) (x1, x4 X2, X551 — to)
+ 0(t2,t6)0(t1, ts)quQd’ph/hp) (x1,X6;X2,X55t1 — t2) (9.20)
+ O(ta, t5)8(t1, t6) dECVPP/EN) (%1 x5 %0, X355 t1 — ).

The first two terms are ph/hp terms and have the same delta functions on the time
variables. They correspond to the propagation of a hole and an electron together. The
third term has different delta functions on the time variables and corresponds to the
propagation of either two holes or two electrons together, it is thus a pp/hh term. These
terms will need to be treated separately when the Fourier transform is performed as
detailed in Appendix G.2 and when inserted in the Bethe-Salpeter equation except in
the static case where an additional delta function on ¢; and ¢, solves this issue. Moreover,
one should note that Z{P*"™[G] and =P""P)[G] arise from the derivative of W with
respect to G and are usually neglected in the literature of condensed-matter physics.
With the convention given by Equation (9.16), the matrix elements of the frequency-
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Figure 9.6 — Spin-orbital interpretation of the diagrammatic expansion of the direct
second-order correlation kernel.

dependent second-order direct correlation kernel are then given by

JEELR/R) () - § {gk|sc) (rc|pk) 'y (rklpc)(gc|sk)

©Pa,Ts —w— (ec — &) +i0t o w+ (e. —ep) —i0t’ (9.21)
which corresponds to the top and bottom left diagrams of Figure 9.6,
_=(2dph/hp) B (cr|pk)(gk|cs) (kr|pc)(gclks)
Sepirs (@)= %{;w—(ec—ek)—l—im+§;w+(£c—5k)—i0+’ (9.22)
which corresponds to the middle diagrams of Figure 9.6 and
=(2d,pp/hh) (cdps)(gr|ed) (kl|ps)(qr|kl)
Sepir (@)= Zw—(£c+£d)+i0+ zl:w—(ak—&—sl)—i0+’ (9.23)

cd

for the right diagrams. As in the self-energy case, it is possible to make a spin-orbital
interpretation of the diagrams and the diagrammatic and algebraic formulations are

equivalent.

“Exchanged” correlation BSE kernel A similar decomposition can be done for
the second-order “exchanged” correlation kernel such that

E((:zx)(l, 6, 2, 5) :5(t27t6)5(t17t5)DE(2X’ph/hp) (Xl X6, X2, X5; tl — tg)
+ (ta,t6)0(t1,t5)q EgQX ph/hp)(x17x6;x2,X5;t1 —19) (9.24)
+ 0(t, t5)d (L1, t6) X

—
—

R hh . .
xpp/ )(Xl,X67x23X5;t1 - t2)7

which also has ph/hp and pp/hh contributions. Once the Fourier transform is performed
as detailed in Appendix G.2, the matrix elements of the frequency-dependent second-
order “exchanged” correlation kernel are obtained by projection onto the spin-orbital
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Figure 9.7 — Spin-orbital interpretation of the diagrammatic expansion of the “ex-
changed” second-order correlation kernel.

basis and are given by

_=(@xph/hp) () — {erlpk){gklsc) (kr|pc){gelsk)
epirs () ;w— (ec —ex) +1i0F gw—l—(sc—sk) —i0t’ (9-25a)

—(2x,ph/hp) [, \ _ (rclpk)(gkles) (rk|pc)(gclks)
SEP) (w) %:w_(gc_gk)ﬂw %:wﬂac—sk)—iw' (9.25b)

=(2x,pp/hh) (Y _ _ {cdlps){gricd) (Kl|ps)(qr|k)
—c,pq,rs (W) Z w— (€c i €d) T 0+ + Zl w— (Ek + 5[) — Z.O+a (925C)

cd
which correspond respectively to the left, middle and right diagrams of Figure 9.7.
These terms correspond to the antisymmetric counterpart of the direct terms which

diagrammatic expansions were given in Figure 9.6.

Total correlation kernel By combination of the direct and exchanged terms, the
total second-order correlation kernel is therefore given by

=@ (w)=-Y (rellpk)(gk||sc) 'y (rk|[pc)(gcl|sk)

Tepars — w — (ec —ex) +10F w+ (ec —ex) —i0F

r||ed){cd||ps 1 r||kl) (kl||ps
L1 Z il |lps) s (grl|k){kl||ps)

w — ECJrEd JrZOJr 2 o wf(€k+€l)*i0+.

(9.26)

The first two contributions constitute the ph/hp part while the last two terms are the
pp/hh part. In this equation, all the electron-electron integrals are antisymmetrized. If
neither the antisymmetrization of the self-energy nor the derivative of W with respect
to G are included, then the kernel is given by Equation (9.21). If only one of these
contributions is accounted for, then an unbalanced form is obtained where only half of
the integrals are antisymmetrized. This acknowledges the fact that both contributions
have to be taken into account together in order to have a kernel in which direct and
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exchanged terms are treated on an equal footing. Moreover, as the second-order self-
energy provides a conserving approximation and that all the terms were accounted for

in its differentiation, this kernel is also conserving.

Spin adaptation For spin-restricted closed-shell calculations, the spin-adapted kernel
is obtained by rotation in spin-space as was done in Section 8.3.2. For four fixed spatial
orbitals referred to as p, q, r, s, the spin-singlet kernel is therefore obtained by

@) = Bttt @)+ 21100 (@) (9:27)
and the triplet kernel by

P2 s (©) = g1 (@) — gt (@), (9.28)
The term EE’Q;T srpst(@) and ES;T g1.r1s, (W) are calculated in Appendix G.3 for the ph/hp

and the pp/hh contributions to the kernel. The singlet and triplet ph/hp kernels are then
obtained by sum and difference, and are given by

) -

2 : 2wee,pr,ckwee,sq,kc — Wee,pr,ckWee,cq,ks — Wee,kr,cpWee,sq,kc T 2wee,kr,cpwee,cq,ks

— w— (gc —ex) +i0 (9.29a)

b

+ 2 : 2wee,pr,kcwee,sq,ck — Wee,pr,kcWee,kq,cs — Wee,cr,kpWee,sq,ck + 2wee,cr,kpwee,k:q,cs

— w+ (ec —eg) — 10T

3:(27ph/hp)( ) _ 2wee,pr,ckwee,sq,kc — Wee,pr,ckWee,cq,ks — Wee,kr,cpWee,sq,kc
=T @) == W — (€0 — e5) + 107

kc

(9.29D)

+ 2wee,p'r,kcwee,sq,ck — Wee,pr,kcWee,kq,cs — Wee,cr,kpWee,sq,ck
Zk w+ (€. —ex) —i0F '
c

Similarly, the spin-adapted pp/hh kernels are given by

Erl®

1 Z 2wcc,cq,rdwcc,pc,d5 — Wee,cq,rdWee,sc,dp — Wee,dq,rcWee,pc,ds + 2wcc,dq,rcwcc,sc,dp
2

— w— (ec +&4) +i0F

)

. 1 Z 2wee,kq,rlwee,pk7ls — Wee,kq,rlWee,sk,lp — Wee,lq,rkWee,pk,ls + 2wee,lq,rkwee7sk7lp
2

o w— (ex +e)—i0t

(9.30a)

3=(2,pp/hh) (w) _ } Z Wee,cq,rdWee,sc,dp T Wee,dq,rcWee,pe,ds
c,pg,rs w— (ce + €q) + 10T

2
(9.30b)

cd
1 Wee, kq,rlWee, sk,lp + Wee,lq,rkWee,pk,ls
T3 Z 0+
2 o w— (ex +&)—1i0

As this kernel is frequency-dependent, it cannot be inserted straightforwardly into the
Bethe-Salpeter equation and convolution products in frequency space need to be done.
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9.4. APPLICATION TO H, IN A MINIMAL BASIS

However, it is already interesting to look at its behavior in the static approximation.
First, this allows us to evaluate the effects of the second-order approximation in com-
parison to the kernel derived in Chapter 8. Moreover, it is also possible to study the
effect of the inclusion of the derivative of W. The effects of the second-order kernel are
thus illustrated on our usual model system given by Hs in a minimal basis set.

9.4 Application to Hy in a minimal basis

9.4.1 Effects of the perturbative expansion

In order to have comparable quantities, the second-order correlation kernel where neither
the antisymmetrized self-energy not the derivative of W are included, is considered and
is applied with Gy as a starting Green’s function, this method will be reffered to as
GoWo?. Ts is compared to the GoWy method detailed in the Chapter 8 where the same
ingredients are included but where the kernel was not truncated at second order. In this
case, the singlet excitation energy was given by

K K
1. B B 12 B 12
w = \/(AE + 4K12 J12 71 T 4K12/ €> <A€ J12 + 71 T 4K12/ 8>7 (931)

and the triplet excitation energy by

K K
3. . . 12 . 12
w = \/(A&‘ J12 71 T 4K12/ 5> (AFJ J12 + 71 T 4K12/ E) . (932)

In the second-order case, the inverse of the dielectric matrix is expanded for small K5. It
is straightforward to see that such an expansion will not be valid when H is dissociated
as the difference of orbital energies goes to 0 but K5 does not such that Ae < Ky5. The
singlet excitation energy is then given as

4K? 4K?
1w(2) = \/(AE + 3K19 — Jio + A;2> (AE —Jig+ Kq9 — A;2)7 (933)
and the triplet one as
5 (2) 4K AK?,
w\ = Ae — Jig — K15 + Ae Ae — Jio + K9 — Ae ) (934)

These energies are plotted in Figure 9.8 together with the TDHF and FCI references.
Around the equilibrium distance, where Ac is large, the second-order energies reproduce
correctly the non-perturbative energies. However, when the bond is stretched and that
the orbital energy difference smaller and smaller, the singlet excitation energy becomes
imaginary for a smaller internuclear distance than is the non-perturbative case, at about
4 bohr instead of 4.8 bohr. The triplet excitation energy becomes also imaginary for
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Figure 9.8 — Excitation energies of the singlet '~ (top) and the triplet 3% (bottom)
states of H, in a minimal basis as a function of the internuclear distance R calculated
by FCI, TDHF, GoW, and GoW,?.
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9.4. APPLICATION TO H, IN A MINIMAL BASIS

the same value of R of about 4 bohr which corresponds to the distance where Ae — Ji5 +
Ko —4K%,/Ae = 0. However, in this case, the non-perturbative triplet excitation energy
is not behaving any better and both curves are very similar.

Comparison with the FCI perturbative expansion

It is also insightful to compare these expansions with an expansion of the FCI energies at
second order with repect to the electron-electron interaction. The ground- and excited-
state FCI energies are given by

Ey=2e1 — A1 + E.
1E1 =€1 +E&9— )\(Ju + Jia — 2K12) (935)
3By =¢e1 +e2 — A(Ji1 + Ji2)

where A is an ordering parameter and E. = A — /A2 + A\2K%, such that

Jir + Jag —4J12 + 2K 2

A=cg—e1+ A 5

(9.36)

Therefore, the Taylor expansion of the excitation energies up to the second order are
given by
K2
LWFOLR) = Ag + N(=J1a + 2K12) + AQﬁ + O3
) < (9.37)

K
3, FCI,(2) 2012 3
w =Ae = AJ12) + A 9Ae +0O(X\°).

If a similar expansion is performed for the Bethe-Salpeter second-order energies, one can

obtain

K2
1@ = Ae 4+ N(=Jig + 2K12) — )\Qﬁ +0(\®)
) € (9.38)

K
303 = Ae — 22 3
w e—A(J12) — A 5A- +0O(X\°).

The second order correction goes in the wrong direction as pointed out by Brand et
al [92] in the TDHF case. This means that at this level some terms are missing in the

second-order expansion or are not described properly within the static approximation.

9.4.2 Effects of the derivative of W
Matrix elements of the correlation kernel

As the matrix representation of the electron-electron is diagonal by block in the case of
H; in a minimal basis set, the matrix elements = 112+, 1121 (w) and Z¢ 1121,112) (w) are equal
to 0 and therefore the correlation kernel does not contribute in the block A as it was
also the case in Section 8.4.1 and 8.4.2. In the block B however, its contribution remains
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and in the static approximation is given by

1=(2) 2(Ki2 +Ji2)  Ja2 | I
= =0)=K _ = =4 9.39
ei2,01(w=0) 12 ( Az 9, + 9%, ( )
in the singlet case, and by
b= o e (2K = D) Jn \
Eeizo(w=0) 12 ( Az + 20y 22, ) (9.40)
in the triplet case. The matrix A and B are then given by
A= Ae+ 2K19 — Jio
'B=2K — K1» <1 - 72(1{12‘; Niz) | ‘2% - 2‘];1)
2 (9.41)
3A = Ae — J12
2(Ki2 —Ji2)  Jo2 | Jnn
3SB= K, 1= 22222 “ie) Ze2 vl
12 Ae 29 + 2e1

Excitation energies

The singlet excitation energy in the static approximation at second order with exchange
and with the inclusion of the derivative of W with respect to G is therefore given by

1w: Ag+4K12_J12_K12 1_M+@_£
Ae 289 2eq
(9.42)
2(Kio+ Ji2) | Ja2  Jn
Ace — Ko 12222 o) 722 <11
x \/ €~ Juzt Kz ( Ae + 2e9 251>
and the triplet one is given by
3w¢Mhm4l2mqum+hﬁ
Ace 289 26
(9.43)
X%E_Jlmz (1 M=) e )
Ae 2e9  2e1

These excitation energies show an unphysical form where the e; and e, are present by
themselves while only the orbital energy difference Ae should be present. This effect
is due to the static approximation as the kernel is not convoluted with the response
functions in the Bethe-Salpeter equation. In fact, as will be shown in the next chapter,
if the convolution is properly done, then the correlation kernel depends only on energy
differences between occupied and virtual orbitals as one would expect.

The singlet and triplet excitation energies are plotted for the dihydrogen molecule as
functions of the internuclear distance R in Figure 9.9. Due to their unphysical expression,

they probably provide the worse results among all the approximations tested up to this
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Figure 9.9 — Excitation energies of the singlet '~} (top) and the triplet 3%} (bottom)
states of Hy in a minimal basis as a function of the internuclear distance R calculated
by FCI, TDHF, and BSE-GWx with the derivative of W with respect to G with the
non-interacting HF Green’s function Gj.
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point. The singlet excitation energy is very similar to the TDHF excitation energy up
to 3.5 bohr, then show a slight improvement up to 4 bohr and finally goes abruptly to 0
and becomes imaginary for distances larger than 4.3 bohr. In the meanwhile, the triplet
excitation energy is worse than the TDHF reference for any value of the internuclear
distance and becomes imaginary for R = 3.2 bohr which is the smallest breaking distance
ever encountered so far. After 5.2 bohr, an unphysical solution corresponding in fact to
the deexcitation appears.

9.5 Conclusion

In this chapter, a second-order correlation Bethe-Salpeter kernel has been derived and
illustrated on the model system of Hy in a minimal basis in the static approximation.
In order to get a conserving approximation well-suited for finite molecular system, it
was shown that both the antisymmetrization of the electron-electron interaction in the
correlation self-energy and the totality of the contribution in its first-order derivative
with respect to G were to be taken into account conjointly.

The effect of the truncation at second order was assessed on the dihydrogen molecule
and shows no effect around the equilibrium distance where the GoW, approximation
works correctly but has a larger effect when the bond is stretched for the singlet exci-
tation in the region where the GoyW, approximation is also breaking down. However as
the second-order expansion is valid when the electron-electron integrals are much smaller
than the orbital energy difference, it is obvious that such a level of approximation would
not be able to describe correctly the dissociation of Hy or similar systems where strong
correlation plays a significant role.

Still at second order with respect to the electron-electron interaction, the effect of
the inclusion of exchange into the dielectric function and of the derivative of the self-
energy with respect to G was then assessed. This defines a conserving approximation for
the Bethe-Salpeter kernel. However, within the static approximation, it shows a very
unphysical form as the excitation energies do not depend only on energy differences but
also on orbitals energies by themselves. The singlet and triplet excitation energies of the
dihydrogen molecule obtained with this kernel shows a good agreement with the FCI
reference calculation around equilibrium distance but then deteriorate rapidly when the
bond is stretched.

This confirms that a static second-order Bethe-Salpeter correlation kernel is not well-
suited to describe systems like Hy along the dissociation for two reasons, the first being
the second-order expansion and the second being the static approximation. However, if
such a strongly-correlated system is not at stake and one is interested only in describing
excitations where a double contribution is important, using a second-order correlation
kernel makes sense but only with a dynamical treatment. The derivation of such a
second-order dynamical kernel is the subject of the next chapter.
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Chapter 10

Range-separated dynamical
second-order BSE kernel

In this chapter, we develop an effective dynamical second-order Bethe-Salpeter cor-
relation kernel both in real space and in a spin-orbital basis set. In order to ensure
a number-conserving approximation in the framework of finite molecular systems,
exchange was included in the dielectric matrix and all terms were kept in the con-
struction of the kernel from the second-order self-energy. When the Bethe-Salpeter
equation is solved in a dynamical fashion, the frequency-dependent second-order ker-
nel obtained in the previous chapter needs to be convoluted with two two-frequency
propagators. This convolution product can be reformulated as a product of two re-
sponse functions and of an effective kernel. As this effective kernel depends only
on one frequency, it can be used in TDDFT-like equations in order to calculate the
poles of the response function. If constructed on a range-separated Green’s function
and with the long-range part of the interaction, this kernel can also be used in the
framework of range-separated TDDFT as an effective long-range frequency-dependent
correlation kernel which can be added perturbatively to the TDRSH kernel discussed
in Chapter 6. In both cases, the inclusion of a frequency-dependent kernel raises
some computational issues as one needs to solve a non-linear eigenvalue problem. A
perturbative approach within the Tamm-Dancoff approximation is therefore used in
the calculations. The behavior of the kernel is first illustrated on the model system
of Hy in a minimal basis. In this case, the very symmetric nature of this system
leads to the annihilation of the frequency-dependent part of the kernel. However,
the comparison of the expansion of the excitation energies up to second order with
respect to the interaction, with the expansions of the corresponding FCI energies
highlights what is missing in this dynamical kernel. The kernel is then applied to the
calculation of the first singlet and triplet excitation energies of Ny, CO, H,CO and
CyH, both with and without range separation. For these systems, the addition of the
perturbative kernel induces a systematic increase of the excitation energies. It leads
to a strong deterioration of the excitation energies in the non range-separated case
but improves both the mean absolute deviation and the maximum error when used
with range separation. Details of the derivation and of the implementation can be
found in Appendices H and 1.

N
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10.1 Introduction

It is now well-established in the literature that a frequency-dependent kernel is required
to describe multiple excitations [35, 36, 47, 86] at least when starting from a single-
reference Green’s function. In order to compute the excitation energies of a finite molec-
ular system, a second-order correlation kernel was developed in the previous chapter
where exchange was included in the dielectric matrix and where the effects of the per-
turbation on the screened interaction where taken into account. When used in the static
approximation, this kernel was proven to have a non-physical form and thus requires a
dynamical treatment. In this case, the Fourier transform of the Bethe-Salpeter equation
is not trivial anymore as convolution products need to be performed in the frequency
space between the kernel and two two-frequency propagators. The Fourier transform
of the Bethe-Salpeter equation is performed in Section 10.2 where it is shown that the
previous convolution product can be rewritten as the product of an effective kernel
2®)(w) and of two response functions. The expressions of the matrix elements of the
singlet and triplet correlation effective kernels are then derived in a spin-orbital basis set.
With such a kernel, solving the Bethe-Salpeter equation reduces to solving a non-linear
eigenvalue problem similar to the one encountered in time-dependent density-functional
theory without the adiabatic approximation (cf. Chapter 5). This kernel has been re-
cently studied by Zhang et al [37] although their approach is slightly different and they
limited themselves to the Tamm-Dancoff case starting from a Hartree-Fock (HF') Green’s
function with a quasi-particle GW correction.

Our goal however is to design a long-range frequency-dependent correlation kernel
in order to add it perturbatively to the range-separated-hybrid (RSH) kernel

,RSH Ir, i,
e = fu+ fofr + " (10.1)

designed in Chapter 6 so that we could take into account the effects of the double
excitations entering in the description of the single ones. Such a long-range kernel
can easily be obtained from a full-range kernel by substituting the electron-electron
interaction by its long-range part only and the HF orbital energies by the RSH ones.
The HF case is then recovered in the limit when the range-separation parameter p goes
to infinity. As the orbital energy differences of the range-separated Green’s function
are expected to be a good starting point for the calculation of excitation energies, no
quasi-particle GW correction is performed prior to the Bethe-Salpeter calculation. The
(long-range) second-order effective correlation kernel Cri ’(2)(w) depends only on the
external frequency w such that the Bethe-Salpeter equation can be written in the from

VL) =3 @) — (AR 2 OW)). (10.2)

In this case, an efficient resolution scheme needs to be designed as the usual Casida’s
resolution scheme does not hold anymore with a frequency-dependent kernel. This equa-
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tion defines in fact a non-linear eigenvalue problem which should in principle be solved
self-consistently. However, in this work a simpler approach will be explored. Following
the work of Zhang et al, a perturbative resolution within the Tamm-Dancoftf approxi-
mation is given in Section 10.3 both with and without range separation. To illustrate
the behavior of the dynamical kernel, it is once again applied on the model system given
by the hydrogen molecule in a minimal basis. Even though, the kernel is not expected
to describe correctly the dissociation as it was designed perturbatively at second order,
useful insights can be obtained by comparing for instance the second-order expansions
of the excitation energies with respect to the ones obtained by the exact full-CI method.
This analysis is detailed in Section 10.4. Finally, this dynamical kernel is applied to the
calculation of the first lowest excitation energies of four small molecules N, CO, H,CO
and CyH,4 and compared to the results obtained in Chapter 6 without the long-range cor-
relation kernel. The computational details are given in Section 10.5 and Section 10.6. In
this chapter, only the main steps of the derivation are given and are sketched in terms
of Feynman diagrams. More details on the derivation can be found in Appendix H.
The calculation were performed on a homemade software which is briefly described in
Appendix I.

10.2 Dynamical second-order Bethe-Salpeter kernel

10.2.1 Fourier transform of the Bethe-Salpeter Equation

When a dynamical kernel is introduced in the Bethe-Salpeter equation, its Fourier trans-
form requires some additional efforts. The general Bethe-Salpeter equation in time do-
main is given by

x(1,2;1,2") = x1p(1,2;1',2") + /d3456X1P(1,4; 1',3)ZHxe (3, 65 4,5)x(5,2;6,2'), (10.3)

where x and yip are 4 point-polarizabilities. In the context of excitation energies, such
general quantities are not needed and response functions are sufficient. Hence, the times
are constraint to the case t) =t and #}, =t , so the Bethe-Salpeter equation rewrites as

X(x1t17th2;x'1t1+,X/27t2+) = XIP(X1t17X2t2§X/1t1+7X/2t2+)
+ /dX3dt3dX4dt4dX5dt5dX6dt6XIP(Xltl,X4t4;XlltT,X3t3) (104)
Ehixe (X33, Xgl6; Xata, X5t5) X (X5t5, Xoto; Xele, Xot3 ).

Although the left-hand side and the first term of the right-hand side of this equation
are response functions (depending of only one time difference), the last term involves
propagators depending of two time differences because of the presence of a dynamical
kernel. Their Fourier transform and their matrix elements are given in Appendix F.
When expanded at second order with respect to the electron-electron interaction and
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evaluated at G = Gy, this equation can be rewritten as

X(x1t1, XotoiX ], X5, 15) = xo(X1t1, Xate; X1 1], X515 )
+ / ngdt3dX4dt4dX5dt5dX6dt6X0 (Xltl, X4t4; Xllf,;_, X3t3) (105)
(2)

Ee (X3t3, Xete; Xata, X5t5) X (X5t5, Xat; Xete, xét;).
As the Hartree and exchange kernels are local in time, only the correlation part of the
right-hand side will be detailed here. In the previous chapter, it has been shown that the
second-order correlation kernel can be decoupled into a ph/hp and a pp/hh parts which
exhibit different delta functions on the time variables (cf. Equations (9.20) and (9.24))
such that the second-order correlation kernel is given by

2 (3,6;4;5) = 6(ta, t6)0(t3, t5)EP PP ) (x5, %65 X4, X5 t3 — 1) (10.6)
-+ 5(t4,t5)5(t3 tg)E( ’pp/hh)(Xg,X6;X4,X5;t3 — t4), '

~(2,ph/hp —(2,pp/hh)
=c

where the terms = and include both direct and exchanged contributions
and where the derivative of W was also taken into account. As the delta functions are
different for the ph/ph and pp/hh terms, they need to be treated separately when the
Fourier transform is performed. The details of the Fourier transforms of both contribu-
tions are given in Appendix H.1. Finally, the Fourier transform of the Bethe-Salpeter

equation is given by

—_— /. _ . / /.
X(X17X27X13X2aw) - XO(XlaXQaX17X27w)
! —_ !
+/dX3dX4dX5dX6X0 (x1,X4; X7, X35 W) Zx (X3, X3 X4, X5) X (X5, X2} Xg, X9, W)

dw//
/ / /dxsdx4dx5dX6X0 (X1, %43 X7, X33 =), W', W)

=e ’ph/hp)(x3 X6 X4, X530 — w")x (X5, X2; X6, X5; 0", =1, W)

dw//
/ / /dX3dX4dX5dX6X0(X1,X47X17X37 —n,w’,w)

2 hh . . . .
PP/ )(X37X6,X4,X5,UJ +(JJ )X(X53X25X67X27w 7_n7w)7

(10.7)

where 7 is a small positive quantity. This equation involves the convolution product
of two-frequency propagators and the one-frequency pp/hh and ph/hp Bethe-Salpeter
kernels. This convolution product can then be rewritten in a product of two response
functions and of an effective kernel as pointed out by Romaniello et al in Ref [35, 36].
The main steps of this transformation is recalled in the following and is applied in order
to compute the matrix elements of the effective second-order correlation kernel.

202



10.2. DYNAMICAL SECOND-ORDER BETHE-SALPETER KERNEL

Figure 10.1 — Feynman representation of 7P and TPP/"» ghtained by convolution
of the second-order correlation Bethe-Salpeter kernel with the non-interacting response
functions.

10.2.2 Effective second-order correlation kernel

An effective correlation kernel is then defined by introducing the products xo(w)xg ' (w)
on the left and y(w)~!x(w) on the right in Equation (10.7)

X(w) = xo(w) + Xxo(wW)Znxx(w)

—1 dow d” o \=(@eh/he) (L "o_ -1
+ Xo(w)xo () o o Xo(=n,w',w)E¢ (W —w")x (W, —n,w)x(w) " x(w)
_ dw' dw"” _ _
+ xo(w)xg ' (w) . Xo(—n, w', w)EEPPE (0 W)y (W, =, w)x(w) " x (W),
(10.8)

so that the Bethe-Salpeter equation rewrites as
X(@) = x0(w) + Xo(@)Emax(w) + xo(w@)EPPP ) (@) x(w) + xo(@)EFPPM™ (W)x(w),  (10.9)

where the spin-space variables have been kept implicit for conciseness. When evaluated
at G = Gy, to be consistent with the order of perturbation, the ph/hp and pp/hh second-
order effective correlation kernels are therefore defined as

dw' dw" _
oo Xo(—n, w', w)EFPP) (' — W) xo (w”, =1, w)x0 (W)

= Xg (@) TP (w)xo(w) ",

-1

égz,ph/hp) (w) = Xo_l(w)

(10.10a)
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-1

=(2,pp/hh) -1 dw' dw” / =(2,pp/hh) ¢, v " 7z
= (w) = Xo (w) o o XO(*%W aw):‘c ’ (w +w )XO(W 77775“]))(0((‘))

= X5 (@) TP/ ) o (w)
(10.10b)

These kernels are then computed in a two-step procedure: first, the inner terms 7°/bp
and TPP/Ph are calculated by convoluting the second-order Bethe-Salpeter kernel with
two non-interacting response functions in real space, then their matrix elements are
evaluated and a matrix multiplication is done with the matrices of the inverse non-
interacting response functions.

The details of the first step of the derivation can be found in Appendix H.2. This con-
volution product is represented diagrammatically in Figure 10.1. The second-order cor-
relation kernel ={% (3,6;4,5) derived in the previous chapter is represented in brown and is
multiplied by the two non-interacting response functions x¢(1,4;1’,3) = —iGo(1,3)Go(4,1)
and xo(5,2,6,2") = —iGo(5,2")Go(2,6) which are each represented by two G, arrows.

10.2.3 Expression in a spin-orbital basis

We then evaluate the matrix elements in the ph/hp and pp/hh inner terms in the (ov,ov)
block (corresponding to A) and the (ov,vo) block (corresponding to B). The complete
diagrammatic expansion of the matrix elements of the block A are shown in Figure 10.2
where the time ordering of #; and ¢, has been chosen in order to make sure that i and
j are represented by hole Green’s function (down-going arrows) and that a and b are
represented by electron Green’s functions (up-going arrows).

Finally, as the matrix elements of the two-frequency non-interacting response func-
tions xo(—n,w’,w) and xo(w”, —n,w) can be rewritten in function of the matrix elements of
xo(w) (cf. Appendix F), it is easy to extract the matrix elements of the effective second-
order correlation Bethe-Salpeter kernel as shown in Figure 10.3 for the first term of the
expansion. Following this procedure, the matrix elements of the effective correlation
kernel in the A block are then given by

2 @) ==Y <w (7k|lic)(ac]|bk) n (gellik)(ak]|be) >

Teiaygb - —eater—ect+e; +i0F  wHe —ec+ep —ep + 0T
C

; (gl ) (aglled) et
T3 (%:w(sa+5b)+(ek+gl)+io+ §w+(€i+€j)(€c+€d)+i0+> 7

(10.11)

and depends on the frequency w, four orbital energies ¢ and two antisymmetrized
electron-electron integrals (pq||rs) = (pq|rs) — (pq|sr), which is consistent with the order of
expansion. This kernel is identical to the one recently proposed by Zhang et al [37] and
shows some similitude with the SOPPA kernel [93-95] which however contains additional
terms. A clue to understand the differences between this Bethe-Salpeter kernel and the
SOPPA kernel comes from the definition of the second-order expansion. In here, the
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Figure 10.2 — Spin-orbital representation of the convolution of the Bethe-Salpeter
kernel with the response functions in the A block.

Tia,jb

Figure 10.3 — Spin-orbital representation of the effective Bethe-Salpeter kernel in the
A Dblock.
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expansion is done with respect to the electron-electron interaction, leaving the Green’s
function G intact, and then evaluating the obtained expression at G = Gy so that the
independent-particle response function yip reduces to the non-interacting response func-
tion yo. However, an alternative approach would be to develop the interacting Green’s
function G in terms of Gy and ¥ and to truncate this expansion at second order with
respect to the the electron-electron interaction. In this case, the independent-particle
response function xrp has additional contributions with respect to xo coming from the
self-energy corrections up to the second order:

xip(1,2; 1’,2’) = xo(1,2; 1’,2’) —1iGop(2, 1’)/d3d4G0(1,3)2£2)(3,4)G0(4,2’)
(10.12)
—iGo(1, 2’)/d3d400(2,3)252>(3, 4)Go(4,1").

We are currently exploring this aspect, however it will not be reported hereinafter.

In the B block, the matrix elements of the effective kernel are given by

_ (vhlic) (acl k) (b ik) ak )
- ' )

—€q +ep—€ec+e; +i0T g —ec+ e —ep +i0T

=(2)
—c,ia,bj
ke

(10.13)

1 (abl[kl)(K][ij) (ab||cd) (cd)|ij)

and do not depend on the frequency. This can be understood in terms of diagrams as
the indices j and b are exchanged. Therefore, in order to still ensure an up-arrow for j
and a down-arrow for b, the times need to be further contracted and the kernel becomes
local in time and thus frequency independent.

The second-order effective correlation kernel display sums over either one occupied
and one virtual orbital for the ph/hp part or over two occupied or two virtual orbitals
for the pp/hh. The latter scales as N2N* where N, is the number of occupied orbitals
and N, the number of virtual ones. This term will be particularly expensive in a large
basis set as the number of virtual orbitals is important. Moreover, we can note that
the contribution of the kernel in the A block will be particularly important if a double
excitation contributes to the excitation energy w. As shown by Sangalli et al in Ref. [36]
such a kernel can be related to the second RPA approach [96] by Léwdin partitioning [97]
and therefore defines a number-conserving approximation where no spurious excitations
will enter. The Lowdin partitioning technique is recalled briefly in the following as it
could also be used to “unfold” the problem so that a linear eigenvalue problem would

be recovered.
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Lowdin partitioning and second RPA approach

Suppose an eigenvalue problem

(& o)) =) 0

where S spans the Fock space of the single excitations, D the Fock space of double
excitations and C is a coupling matrix between the singles and the doubles. Assuming
C is non-zero and D —w1 is invertible with 1 the identity matrix, this eigenvalue problem
can be rewritten as

(S+ C(wl-D)'CHX =wX. (10.15)

The second-order correlation kernel in the block A given by Equation (10.11) has a sim-
ilar form where the coupling matrices are provided by the matrix of the two-electron
interaction and the matrix D is given by the differences of four orbital energies e. How-
ever, and it will be important in the following, the single and double excitations must
couple with each other in order to have such a folding.

10.2.4 Range-separated kernel

As the kernel is not constructed self-consistently, the starting Green’s function has an
important impact and should be chosen carefully. In this sense, the Hartree-Fock Green’s
function G{!¥ may not be the best choice as the orbital energy differences are not good
approximations to the excitation energies of the system. The local-density approxima-
tion in the DFT framework is also known to underestimate the gap and, without GW
corrections, does not provide a satisfactory starting point either.

On the other hand, the orbital energy differences obtained within range-separated
DFT with the an appropriately chosen range-separation parameter p can provide much
better approximations so that the corresponding RSH Green’s function GF® would be
a better starting point for the kernel. Moreover, in the TDRSH framework, the short-
range part of the correlation kernel is already accounted for, such that the Bethe-Salpeter
kernel must describe the long-range part of the correlation only. It is thus obtained
by substituting the full-range electron-electron interaction we. by its long-range part
whk. This defines a second-order dynamical correlation kernel =2*®(w) which can
then be added pertubatively to the RSH kernel detailed in Chapter 6 such that the total
dynamical RSH kernel is given by

Flie(@) = fu+ [l + fit + 00O (), (10.16)

X7

where fy is the Hartree kernel, f)l(r}’fF is the long-range Hartree-Fock exchange kernel and
24 is the short-range DFT exchange-correlation kernel. This is of particular interest
as it allows one to recover a frequency-dependent kernel in the TDDFT framework.
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10.3 Resolution of the Bethe-Salpeter equation

In what follows, the derivation is given in the range-separated case, the HF case being
recovered when p goes to infinity. As the Hartree, exchange and short-range correlation
kernels are frequency independent, and the long-range effective second-order correlation
kernel depends only on the external frequency w, the inverse response function in the
frequency space can be written as

XTHW) = X0 (W) = fie (@), (10.17)

where x;'(w) is the range-separated response function constructed on the RSH orbitals
and ff . (w) is the corrected RSH kernel given in Equation (10.16).

10.3.1 Matrix representation of the Bethe-Salpeter equation

For a finite system, this equation is projected onto an orthonormal spin-orbital basis set
{¢p} as was done in the static case. This leads to the construction of the matrices A and
B where A is now frequency dependent due to the long-range correlation Bethe-Salpeter
kernel. The resolution of the Bethe-Salpeter equation is thus equivalent to the resolution

of the following non-linear eigenvalue problem

(A(wn) B )(Xn>:wn<1 0 )(X”> (10.18)
B A(-w,)" ) \ Y, o -1 )\ v,

where the matrix elements of A and B are given by

_ I wp | El(2)
Ajajb(w) = Agiq jb + Weeia,jb — W + b T (w),

ee,ij,ab Xc,ia —c,ia,jb 10.19
B ip = Wee i pi — w4 S Zlr,p,(2) (10.19)
ta,jb — Wee,ia,bj ee,ib,aj xc,ia,bj —c,ia,bj *

The resolution of such a problem is much more complicated than in the static case as
the matrix A depends on the eigenvalue w,. It is therefore not possible anymore to
use the standard Casida’s resolution scheme [3] and this equation should in principle
be solved self-consistently. A first simplification of this problem consists in using the
Tamm-Dancoff approximation, i.e. setting the B block to zero so that the coupling
between the excitations and the de-excitations is neglected. In this case, the problem
reduces to

A(wp)X, = wp X, (10.20)

Although, this problem is simpler than the initial one, this equation remains complex
as it still defines a non-linear problem and has to be solved self-consistently. Assume
convergence is reached, the excitation energies would then satisfy the relation

wn = X! A(w,) X (10.21)
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Perturbative treatment

Within the Tamm-Dancoff approximation, the simplest way to cope with Equa-
tion (10.21) is to use a perturbative resolution in terms of w as was done in [37]. The
matrix A(w) can easily be decomposed into a frequency-independent and a frequency-
dependent parts

A(W) — AR‘SHHU’ + élcruu"(2) (u_))7 (1022)

where ARSH corresponds to the matrix A obtained with the TDRSH method detailed in
Chapter 6 and E5*®(w) is the matrix of the effective long-range second-order Bethe-
Salpeter correlation kernel. The excitation energies w, can then be expanded around
the TDRSH excitation energies wy ,, as

aélchl%@) (w)

Wnp = Wo,n + XTynégz) (wom)XOm + Xg),n XO,n (wn - wom), (1023)

Ow
W=wo,n
such that, with the normalization factor Z, given by
e n(2) -

I= M (w)
Zp=|1-X} < Xom | 10.24
0,n Ow 0, ( )

w=wQ p

the corrected excitation energies are obtained as

Wn = Wo,n + ananélcr’“’@) (UJO,n)XO’n. (1025)

An alternative to this perturbative resolution would be to unfold the matrix into the
Fock space of the single and double excitations as mentioned above. However the size
of the matrix would grow rapidly with the number of virtual orbitals which could cause

some other computational issues.

10.3.2 Spin adaptation

As with the static kernels, it is possible to decouple this problem into a singlet and a
triplet case such that solving the Bethe-Salpeter equation becomes equivalent to solving
the singlet and triplet non-linear eigenvalue equations

PA(Cwn) X, = tw, X, (10.26)
AW, X, = 3w, X, (10.27)
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Within the perturbative treatment, the matrix elements of the singlet and triplet ARSH

matrices are given by

RSH L o Ir,p 1 ST,
Aza N Agla’]b + zwee yia,jb wee,ij,ab +2 xc,ia,jb’ (10 28)
RSH o 35T, ’
Am b — AEWJb Wee 17 ab +2 xc,ia,jb"

The spin adaptation of the effective correlation kernel is performed in Appendix H.2.

The matrix elements of the singlet and triplet second-order effective kernels in the block

A are then given by

151r,1,(2) _
=c,ia,jb (w) =
Ir,pe Ir,p R ) Ir,p _ ol Ir,p Ir,pe Ir,p
o Z 2wee,ij,kc ee,ba,ck wee,ij,kc ee,ka,cb Wee, ¢, ki Wee sba,ck + 2wee,cj,kiwee,ka,cb
o W—€qtEr—EcTE;
lr L lr,/_L I Ir, o wlr,,u Ir, + 2w1r,/,L Ir,
_ Z Wee ,ij,ck ee,ba,kc ee,ij,ck " ee,ca,kb ee,kj,ci " ee,ba,kc ee,kj,ci " ee,ca,kb
WH€E —Ec+EL—¢Ep
Ir, Ir,p Ir,p Ir,p Ir,p Ir, Ir, Ir,p
+ 1 Z 2w ee ca,jdwee ic,db wee ca,jdwee be,di weqda,jcwee,ic}db + 2wee,da,jcwee,bc7di
2 & w+ (g, +¢5) — (ec +€q)
Ir,p lr,u lr,p, Ir, ;0 Ir, ;0 Ir,p Ir,p Ir,p
+ 1 Z 2w ee,ka,jl ee,ik,lb Wee Jka,jl Vee,bk,li wee la jkwee ik,lb + 2u}ee la ]k:wee bk,li
)
2 4 w—(eq+ep) + (e +&1)
(10.29a)
Ir,p Ir,p Ir, Ir,p Ir,p Ir,p
3=lr,p,(2) (w) _ Z 2woc,ij,kc ee,ba,ck wcc,ij,kcwcc,ka,cb - wcc,cj,kiwcc,ba,ck
cia,jb — W—€qter—EctE;
2wlr7u Ir,pe _ Ir,p _ wlr,u Ir,p
_ Z ee,ij,ck " ee,ba,kc ee,ij,ck " ee,ca,kb ee,kj,ci " ee,ba,kc
e wH+e —€.+tep—¢€p
1 Ir, 0 Ir, i + W Ir, pt (10'29b)
- Z ee,ca,jd " ee,bc,di ee,da,jc " ee,ic,db
2 &~ w (e +¢5) — (ec +€q)
Ir,p lr,,u Ir,p lr,u
_ } Z wee ka ]l ee,bk,li + Wee laJk: ee,ik,lb
2 " w—(eq +ep) + (e + 1)

The spin-adapted matrix elements of the effective kernel in the B block are not used in

this Tamm-Dancoff pertrurbative approach but can be found in Appendix H.

10.4 Application to Hy; in a minimal basis

As usual, we first assess the behavior of the kernel on the model system of Hy in a minimal

basis set. Unfortunately, due to its very symmetric nature, the two-electron interaction

matrix is block diagonal in this system. This implies in particular that the contribution

of the correlation kernel in the block A is zero and as it is the only frequency-dependent

contribution to the second-order

Bethe-Salpeter kernel, the only “double” effects will
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occur through B.
The matrix elements of the singlet and triplet correlation kernel in the block B are

given by
= 2(Kis + Jia) — Jog — J
1:£,21)2,21 = —Ki2 ( 2 122A€ 2 11) (10.30a)
= 2(Ki2 — Ji2) + Joo + 1
22,01 = — K1 ( e 1) . (10.30D)

Although, this kernel is frequency-independent, it still differs from its static approxima-
tion given in Equations (9.39) and (9.40), which expressions are recalled here:

—(2 2Kz + Ji2)  Ja2  Jun

1:‘£,1)2,21(w = O) = K12 (AE - E + 2781 5 (1031&)
3(2) o = i (22— Ji2) S Jn 10.31
Eci221(w=0) 12( Az + 2oy 22, ) (10.31b)

Two main differences emerge from this comparison:

e the presence of energy differences Ae for all the contributions of the dynamical ker-
nel instead of orbital energies g5 and &; for the last two terms of Equations (10.31a)
and (10.31b). This form of the kernel is therefore much more physical than the

static one ;

e the sign of the correction changes between the static and the dynamical kernel.

The matrices A and B are then given by

1A= Ae +2K19 — Jio

2(K — —
1B:2K12—K12<1+ (K12 + Ji2) — J22 J11>

2A
i (10.32)
3A = Ae — J12
SB— Ky (14 2(K12 — Ji2) + Joo + J11
2Ae
such that the singlet excitation energy is given by
o = | Ae + 4K 1o — Jig — Kuo 1+ 2(Ki2 + J12) — Jaz — Jna
2A¢
(10.33)

2(K Jig) — Jag — J
[ Ae — Jio+ Kia 1+ (K12 + J12) 22 11 ’
2Ae
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and the triplet one by

2(Kq9 — J J. J
3w:\/A5—J12—K12(1+ (K12 1222: 29 + 11)

2(Kqi0 — J J. J
X\/AE—J12+K12 <1+ ( 12 1221‘: 22+ 11).

(10.34)

As was done for the static kernel, it is interesting to compare the Taylor expansions of
these energies with repect to the electron-electron interaction to the expansions of the
FCI energies at the same order recalled here:
K2
LWFOH ) = Ae 4+ N(=J1z + 2K12) + N+ O
) € (10.35)
K12

BFCL@) — A — A(Jpo) + )\2@ +0(\?).

If a similar expansion is performed for the dynamical Bethe-Salpeter second-order ener-
gies, the same expansion then in the static case is recovered despite the change of sign
of the kernel

2
1@ = Ae 4 A(=J1a + 2K15) — )\2% +0(\3)
, 2A¢ (10.36)

K
3@ = Ae — A\(J12) — AQﬁ + O\3).

The second-order contribution exhibits therefore a wrong behavior with respect to the
FCI case. When giving a closer look to the origin of the different contributions of this
expansion, it appears that the second-order contribution comes only from the exchange
kernel. In fact, as the correlation kernel contributes only in the B block, its second-order
contribution cancels out in the excitation energies. This highlights the fact that some im-
portant second-order contributions seem to be missing in this second-order kernel. This
deficiency can have several origins: the GW approximation, the lack of self-consistency,
the choice of the starting Green’s function and the absence of self-energy corrections in
the non-interacting response function. A priori, the GW approximation can be ruled out
as it is redundant with the second-order truncation. Given the fact that the interaction
matrix is block diagonal, the self-consistency is not responsible either. It thus remains
only the choice of the starting point and the self-energy corrections which are in fact
related to each other. We are currently assessing the effects of the later which could to
a partial compensation of the dynamical effects [98], however this study is still under
progress and in the following these corrections are not accounted for.

The singlet and triplet excitation energies are shown as functions of the internuclear
distance R in Figure 10.4. The FCI and TDHF curves are recalled for the sake of
comparison. With this kernel, the singlet excitation energy is improved with respect
to the TDHF one up to 6 bohr~!  then breaks down and becomes rapidly imaginary.
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Figure 10.4 — Excitation energies of the singlet !X (top) and the triplet 2 (bottom)
states of Hy in a minimal basis as a function of the internuclear distance R calculated
by FCI, TDHF, and the dynamic second-order BSE-GWx with the derivative of W with
respect to G with the non-interacting HF Green’s function Gy.
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This was to be expected as the second-order expansion is not valid anymore when the
bond is stretched too much as the orbital energy difference becomes small with respect
to the two-electron integrals. The triplet excitation energy however is deteriorated by
the correlation kernel with respect to the TDHF reference and becomes imaginary for a
smaller internuclear distance.

However, this model system seems not to be sufficient to really assess the behavior
of the kernel as the frequency dependence is lost because of its symmetric nature and of
the size of the basis set, it is thus necessary to go to larger systems.

10.5 Computational details

Starting from a TDRSH calculation in the Tamm-Dancoff approximation with a short-
range LDA functional, the long-range correlation kernel is then added perturbatively,
following the procedure detailed in Section 10.3.1. This is a three-step calculation. First,
a self-consistent ground-state calculation is performed with a development version of the
quantum chemistry program MOLPRO [99] and the orbital energies, the two-electron
integrals and the matrix elements of the singlet and triplet short-range LDA kernels
are dumped into several text files. We then used a homemade software to do the next
two steps, namely the time-dependent range-separated calculation (TDRSH) within the
Tamm-Dancoff approximation and the evaluation of the correction due to the dynamical
long-range correlation kernel using the previously calculated orbitals and two-electron
integrals.

For compactness, “T'D” will be dropped in the names of the methods and “LDA” will
also be omitted in the names as it is the only density functional used here. Moreover, all
the results are obtained within the Tamm-Dancoff approximation within the perturbative
scheme. Therefore, “KS” will denote a TDKS calculation using the LDA exchange-
correlation functional with the Tamm-Dancoff approximation, “HF” will stand for a
TDHF calculation with the Tamm-Dancoff approximation (equivalent to the CI single
method), “RSH” will denote a linear-response RSH calculation using the short-range
LDA exchange-correlation functional with the Tamm-Dancoff approximation. When
the (long-range) second-order Bethe-Salpeter correlation kernel is added perturbatively
on top of the HF (or RSH) calculation, the suffix “BSE2” is appended to the name of
the initial method, following the notation set by Zhang et al [37]. If the normalization
factor Z, is set to 1, it is denoted “BSE2’ ”.

We study four small molecules No, CO, H;CO and Cs;H, in the same geometry
(experimental) and with the same basis set (Sadlej+) than in Chapter 6. The details
on the reference data and basis set can therefore be found in Section 6.4. Results are
not available for C¢Hg and the CoHy-CoF4 dimer yet as this method is computationally
expensive especially in term of memory as the full interaction matrix is needed. As the
range-separation parameter p has been optimized in absence of the long-range correlation
kernel in Chapter 6, it is necessary to check if this optimized value still holds with
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Figure 10.5 — Mean absolute deviation (MAD) in eV of the first 14 excitation energies of
the N,, CO, H,CO and C;H, molecules calculated by the RSH and RSH-BSE2 methods
with the short-range LDA exchange-correlation functional with respect to the EOM-
CCSD reference as a function of the range-separation parameter pu.

the addition of this kernel. The results of this optimization are shown in Figure 10.5.
Without the kernel, the optimal p for this set of molecule is equal to 0.4 bohr~!, however,
with the inclusion of the long-range dynamical kernel, this value is slightly reduced to
0.35 bohr~!. Therefore, all the results are shown with this value of the range-separation

parameter in the following.

10.6 Results and discussion

The excitation energies for each method and each molecule are given in Tables 10.1-
10.4. Mean absolute deviations and maximum absolute deviations with respect to the
EOM-CCSD reference are also given for the valence, the Rydberg and all the excitation
energies. Whatever the starting point, RSH or HF, the correction due to the perturbative
correlation kernel is always positive. Therefore, if the excitation energies were already
too high with respect to the reference, they are deteriorated by the correction, and if
they were too low it depends on the magnitude of the correction.

10.6.1 Effect of the correction on the HF excitation energies

When applied on the excitation energies obtained at the HF level in the Tamm-Dancoff
approximation, the correction due to the correlation kernel is especially large for the
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valence excitation energies and increases them by 2 to 3.7 eV. Although, the valence
excitation energies are often underestimated in HF, the magnitude of the correction is
way too high with respect to the error present in HF which leads to an overall over-
estimation of the valence excitation energies by 1.65-3.15 eV. The Rydberg excitation
energies calculated in HF are usually already too high, therefore when the correction is
applied, they increase furthermore and are deteriorated. However, the magnitude of the
correction is much smaller for the Rydberg excitation energies (0.19-1.75 eV) than for
the valence ones such that their deterioration is less significant. In this case, the effect
of the inclusion of the normalization factor is also important for the valence excitation
energies (up to 0.27 eV) although it remains small for the Rydberg ones.

The difference of magnitude in the valence and Rydberg corrections can be under-
stood as follows. The smallest denominator in the kernel correction is obtained for the
HOMO-LUMO contribution and is given by wy, — 2e"UMO 4 2HOMO = Ag 4]l the TDHF
energies are well below the ionization threshold, the effect of the variation of wy , is not
very significant and in a first approximation, we could consider that the matrix of the
effective second-order correlation is sensibly the same for all the excitations and have
predominant contributions for orbitals close to the HOMO and the LUMO, i.e. valence
orbitals. What changes significantly however when going from a valence to a Rydberg
is the eigenvector X, , which multiplies the effective kernel in Equation (10.25). For a
valence excitation energy, this eigenvector has its major contributions in the subspace of
valence excitations and overlaps significantly with the effective kernel, while in the Ryd-

berg case, this overlap is much smaller and so is the correction to a Rydberg excitation.

10.6.2 Effect of the correction on the RSH excitation energies

When applied on the Tamm-Dancoff range-separated excitation energies, the long-range
correlation correction induces a moderate increase of the excitation energies of 0.04 to
0.30 eV. As in the HF case, the correction is more important for the valence excitation
energies than for the Rydberg ones. The difference of magnitude of the RSH correction
with respect to the HF case is to be attributed to the substitution of the full-range
electron-electron interaction by its long-range part. In this case, the effect of the nor-
malization factor Z, is almost indiscernible because it is very close to 1 and multiply
a correction which is mush smaller than in the HF case. For the chosen value of the
range-separation parameter p of 0.35 bohr~! the excitation energies of the considered
system were mostly slightly underestimated such that the correction overall improves
their description as the global mean absolute deviation decreases by 0.04 to 0.09 eV
except for ethylene were it increases by 0.07 eV such that globally, the MAD is reduced
by about 0.03 eV which is a pretty small improvement. However, when looking at the
maximum absolute deviation, the long-range correction actually provides a systematic
improvement for all the systems which means that the description of the excitation
energies is more even with this method than in standard TDRSH.
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10.7 Conclusion

In this chapter, we have derived an effective second-order Bethe-Salpeter long-range
dynamical correlation kernel which depends only on the external frequency and can be
applied within the range-separated TDDFT framework. When projected into a spin-
orbital basis set, it appears that the frequency-dependence is in fact only present in
the A block and that the B block remains frequency independent. In the A block,
this kernel has now a physical form with respect to its static approximation explored
in the previous chapter which involves a product of two antisymmetrized two-electron
integrals and poles corresponding to double excitation energies in terms of orbital energy
differences. Such a kernel should therefore contributes significantly when the excitation
energy is close to a double excitation.

As the use of such a kernel implies that the resolution of the Bethe-Salpeter equation
defines a non-linear eigenvalue problem, a perturbative resolution was used to circumvent
this issue as a first approximation although the use of Lowdin partitioning technique
should allows one to unfold the matrix and recover a linear eigenvalue problem so that
a self-consistent calculation could be avoided. We have not explored this approach yet
but work is under progress on this aspect. The resolution was done in the Tamm-
Dancoff approximation following the scheme proposed by Zhang et al, however, it would
be of particular interest to be able to solve the Bethe-Salpeter equation without this
approximation. As we have the matrix elements of the effective correlation kernel in
the B block, and they do not depend on the frequency, this step should be relatively
straightforward, although computationally demanding.

We have illustrated the behavior of this kernel on the model system given by the
hydrogen molecule in a minimal basis and seen that some second-order contributions
were missing in order to recover correctly the second-order limit in the excitation energies
with respect to the one obtained in full-CI. We have identified this phenomenon to the
neglection of the self-energy corrections coming from the independent-particle response
function and are currently exploring this deficiency of the method, both on the model
system and in the general case. This should allows us to recover additional contributions
to the second-order kernel which expression whould then be closer to the one of the
SOPPA kernel.

However, the second-order dynamical kernel derived here constitutes a conserving
approximation and improves the description of the excitation energies when applied
perturbatively within the Tamm-Dancoff approximation to the first lowest excitation
energies of the four small molecules studied here. However, the excitations studied
here did not present important contributions from double excitations and it should be
interesting to test this approach on a system where double excitations are important.
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State Transition | KS ~ RSH RSH-BSE2® RSH-BSE2 HF HF-BSE2” HF-BSE2 EOM-CCSD

Valence excitation energies (eV)

81¢

3y lmy — 1my | 8.08  7.74 7.93 7.93 6.23 8.76 8.88 7.72
311, 30 = 1lmg | 7.58  7.85 8.05 8.05 7.99 10.80 10.97 8.16
A, 1lmy = 1mg | 8.88  8.54 8.73 8.74 7.32 9.84 9.96 9.07
1, 30g — 1mg 9.17  9.50 9.68 9.68 10.02 12.31 12.43 9.55
3%o 1lmy = 1mg | 9.65  9.34 9.53 9.53 8.50 10.67 10.77 10.00
DV lmy = 1mg | 9.65  9.34 9.53 9.53 8.50 10.73 10.84 10.24
A 1my — 1mg | 10.25  9.98 10.18 10.18 9.06 11.20 11.30 10.66
310, 20, — 1wy | 10.42 10.77 10.97 10.97 11.74 14.63 14.82 11.36
Rydberg excitation energies (eV)
32; 30y — 4o, | 10.28 11.47 11.56 11.56 13.12 13.93 13.94 11.74
12;‘ 30, = 4o, | 10.40 11.94 11.98 11.98 14.01 14.22 14.22 12.15
3y+ 30, = 30y | 10.63 12.30 12.40 12.40 14.21 15.05 15.07 12.70
311, 30, = 2m, | 10.99 12.30 12.36 12.36 13.04 13.42 13.43 12.71
1, 30, — 2m, | 10.98 12.39 12.44 12.44 13.23 13.45 13.45 12.77
Iyt 30y — 30y | 10.62 12.43 12.51 12.51 14.31 15.02 15.04 12.82
Ionization threshold: —epomo (eV)
‘ 6.30 14.94 14.94 14.94 16.74 16.74 16.74
MAD of excitation energies with respect to EOM-CCSD (eV)

Valence 0.48 047 0.35 0.35 1.14 1.52 1.65 -

Rydberg 1.83  0.34 0.27 0.27 1.17 1.70 1.71 -

Total 1.06 0.41 0.32 0.32 1.15 1.60 1.68 -

Maximum absolute deviation of excitation energies with respect to EOM-CCSD (eV)
2.19 090 0.71 0.71 1.86 3.28 3.47 -
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State  Transition \ KS RSH RSH-BSE2® RSH-BSE2 HF HF-BSE2® HF-BSE2 EOM-CCSD \
Valence excitation energies (eV)
S 5ai(c) — 2e1(m*) | 6.04  6.10 6.32 6.32 5.85 8.15 8.27 6.45
3yt ley(m) — 2e1(7*) | 8.54  8.45 8.63 8.63 7.79 10.26 10.38 8.42
I 5ai(c) — 2e1(m*) | 8.42  8.68 8.88 8.88 9.08 10.86 10.94 8.76
SA ley(m) = 2eq(n*) | 9.20  9.13 9.31 9.31 8.74 11.08 11.19 9.39
3%~ leg(m) — 2e1(7*) | 9.84  9.80 9.97 9.98 9.73 11.68 11.76 9.97
13- leg(m) = 2e1(n*) | 9.84  9.80 9.98 9.98 9.73 11.73 11.82 10.19
A lep(m) = 2e1(7*) | 10.33  10.32 10.50 10.50 10.15 11.98 12.05 10.31
M da1(0) = 2e1(m*) | 11.43  11.96 12.12 12.12 13.31 15.59 15.70 12.49
Rydberg excitation energies (eV)
3yt 5a1(0) — 6ai(o) | 9.56  10.34 10.46 10.46 11.18 12.07 12.09 10.60
Iy+ 5a1(0) — 6a1 (o) 9.95 11.12 11.20 11.20 12.27 12.61 12.61 11.15
3yt 5a1(0) = 7ai(o) | 10.26 11.08 11.17 11.17 12.42 12.82 12.83 11.42
ISt Say(o) — Tai(o) | 10.50 11.30 11.38 1138 1279 1291 12.91 11.64
3 5a1(0) — 3e1(m) | 10.39 11.26 11.34 11.34 12.60 13.19 13.20 11.66
gt 5a1(0) — 3er(m) | 10.50 11.45 11.52 11.52 12.88 13.21 13.21 11.84
Tonization threshold: —egomo (eV)
‘ 9.12 13.49 13.49 13.49 15.11 15.11 15.11
MAD of excitation energies with respect to the EOM-CCSD calculation (eV)

Valence 0.33 0.23 0.16 0.16 0.49 1.92 2.02 -

Rydberg 1.19  0.29 0.22 0.22 0.97 1.42 1.42 -

Total 0.70  0.26 0.19 0.19 0.69 1.70 1.76 -

Maximum absolute deviation of excitation energies with respect to EOM-CCSD (eV)
1.34  0.53 0.37 0.36 1.16 3.10 3.22 -
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State Transition ‘ KS RSH RSH-BSE2’ RSH-BSE2 HF HF-BSE2® HF-BSE2 EOM-CCSD
Valence excitation energies (eV)
34, 2b2(n) — 2by(7*) | 3.08  3.17 3.45 3.45 3.76 6.66 6.86 3.56
Ay 2by(n) = 2by(7*) | 3.70  3.82 4.11 4.11 4.58 7.20 7.37 4.03
3A, 1by(m) — 2by(7*) | 6.35  6.08 6.39 6.39 4.96 8.08 8.30 6.06
3B, bai(o) — 2by(x*) | 777 8.09 8.39 8.40 8.60 12.01 12.28 8.54
Rydberg excitation energies (eV)
5By 2ba(n) = 6ar(0) | 5.85 6.83 6.92 6.92 8.17 8.63 8.63 6.83
'B, 2by(n) — 6ai(o) | 5.93  7.01 7.07 7.08 8.56 8.72 8.72 7.00
3By, 2by(n) = Tar(o) | 6.96 7.69 7.81 7.81 9.04 9.83 9.85 7.73
344 2by(n) — 3ba(o) | 6.73  T.77 7.83 7.83 9.24 9.58 9.58 7.87
1B, 2by(n) = Tai(o) | 7.04 7.1 8.00 8.00 9.41 0.78 9.78 7.93
LA, 2by(n) — 3ba(o) | 6.78  7.93 7.97 7.97 9.53 10.00 10.01 7.99
Ay 2by(n) — 3bi(n) | 7.55  8.32 8.39 8.39 10.04  10.26 10.26 8.45
3A;  2by(n) — 3bi(r) | 7.58 8.31 8.38 8.38 9.93  11.04 11.07 8.47
8B, 2by(n) = 8ar(o) | 7.97 8.90 8.98 8.98 1021 11.89 11.96 8.97
1By, 2bs(n) — S8ai(0) | 8.19 9.17 9.25 9.25 10.86  11.05 11.05 9.27
Ionization threshold: —epomo (eV)
‘ 6.30 10.33 10.33 10.33 12.04 12.04 12.04
MAD of excitation energies with respect to the EOM-CCSD calculation (eV)

Valence 0.47 0.27 0.17 0.17 0.48 2.94 3.15 -

Rydberg 0.99 0.07 0.06 0.06 1.45 2.03 2.04 -

Total 0.84 0.13 0.09 0.09 1.17 2.29 2.36 -

Maximum absolute deviation of excitation energies with respect to EOM-CCSD (eV)
1.21 045 0.33 0.33 1.59 3.47 3.74 -
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State  Transition \ KS RSH RSH-BSE2" RSH-BSE2 HF HF-BSE2’ HF-BSE2 EOM-CCSD \
Valence excitation energies (eV)
3B 1bgy(m) — lbog(n*) | 4.74  4.35 4.73 4.73 3.54 5.92 6.06 4.41
!By 1bgy(m) — lbog(w*) | 7.91  8.07 8.37 8.38 7.70 9.05 9.11 8.00
3Bi,  1bsg(o) — lbog(n*) | 718 7.92 8.04 8.04 8.48 10.33 10.43 8.21
'Big 1bsg (o) — 1bog(n*) | 7.48  8.04 8.24 8.24 9.23 10.74 10.81 8.58
Rydberg excitation energies (eV)
Bsy 1bgy(m) — daig(o) | 6.59  7.21 7.35 7.35 6.91 7.36 7.37 7.16
! B3, 1bgy (1) — daig(o) | 6.65  7.36 7.48 7.48 7.14 7.42 7.43 7.30
3Big 1b3y(m) — 2bgu(o) | 6.98  7.42 7.77 7.78 7.66 8.10 8.10 7.91
3 Bog b3y (1) = 3bru(o) | 7.10  8.03 8.11 8.11 7.79 8.06 8.07 7.93
'Big 1bgy(m) — 2bgu(o) | 7.19  7.92 8.17 8.17 7.75 8.09 8.09 7.97
!By 1bzy(m) = 3byu(o) | 7.15  8.13 8.20 8.20 7.92 8.07 8.07 8.01
34, 1b3y(m) — 2b3u(m) | 8.03  8.46 8.60 8.60 8.02 8.62 8.64 8.48
1A, 1b3y(m) — 2bzu(m) | 8.30  8.87 8.99 8.99 8.61 8.88 8.88 8.78
3 Bsu 1b3y(T) = Baig(o) | 8.26  8.97 9.12 9.12 8.74 9.26 9.26 9.00
!Bs, 1b3y(m) — baig(c) | 8.28  9.09 9.20 9.20 8.92 9.13 9.13 9.07
Ionization threshold: —egomo (eV)
‘ 6.89 10.45 10.45 10.45 10.23 10.23 10.23
MAD of excitation energies with respect to the EOM-CCSD calculation (eV)

Valence 0.64 0.24 0.30 0.30 0.52 1.71 1.80 -

Rydberg 0.71 0.10 0.17 0.17 0.21 0.14 0.14 -

Total 0.69 0.14 0.21 0.21 0.30 0.59 0.62 -

Maximum absolute deviation of excitation energies with respect to EOM-CCSD (eV)
1.10  0.54 0.37 0.38 0.87 2.16 2.23 -
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CONCLUSION

This thesis constitutes a contribution to the treatment of molecular excitation en-
ergies by range-separated methods. By separation of the electron-electron interaction
into a short and a long-range part, these methods allow one to rigorously combine
density-functional methods and wave-function or Green’s function methods. They have
been extensively studied in the ground-state case but are still the object of investi-
gations for their application to excited-state calculations. The field of calculations of
excitation energies from density functional theory is undeniably lead by linear-response
time-dependent density-functional theory. However, it is not the only available option
and many time-independent methods are also explored. In this thesis, range separation
was applied both in the time-independent and the time-dependent case but not with the
same end goal. In the zoo of methods which are nowadays available it is often difficult
to find the origin of a deficiency as many approximations are done simultaneously, the
first part of this thesis was therefore aimed at studying the effect of range separation
on the excitation energies without further approximations. The second and third parts
were in this way much more pragmatic are they were designed to tackle the problem
of multiple excitations present in time-dependent density-functional theory within the
adiabatic approximation. In this case, a local-density approximation was used for the
density functional and a single-determinant approximation was performed for the wave
function part and finally a long-range correlation kernel is added perturbatively.

Range-separated time-independent density-functional theory

The effects of the adiabatic approximation are difficult to assess in the time-dependent
case. Moreover from the Hohenberg-Kohn theorem, the time-independent ground-state
density is in principle able to describe all the properties of the system and in particular
the excitation energies. We therefore first placed ourselves in the time-independent case
where our goal was not to provide a pragmatic method to calculate excitation energies
with range separation, at least not in the short term, but more to come back to the fun-
damentals with minimum approximations, and to do an analytic and numerical study on
some small systems. In this study, the only approximation was the one-electron basis,
so that hopefully with large enough basis sets, our observations could be attributed to
range separation only. This was the object of the first part of this thesis where the exci-
tation energies of a partially interacting system where followed along a range-separated
adiabatic connection linking the non-interacting Kohn-Sham system to the physical sys-
tem. The Taylor expansions of the energies around the two end points of this connection
allowed us to propose an extrapolation scheme able to improve the description of the
excitation energies of the physical system from an intermediate point of the connec-
tion. It also provided some exact conditions that an approximate potential should fulfill
around these two limits. In particular, it allowed us to assess how much of the long-
range interaction should be included in order to describe properly the excitation energies
of the physical system. We are currently assessing how the local-density approximation
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(LDA) and a single-determinant approximation as used in range-separated hybrid meth-
ods (RSH) affect these energies. We hope that this work could help the development
of range-separated methods for excitation energies, either in the time-independent or in
the time-dependent case.

Range-separated time-dependent density-functional theory

The second part of this thesis focused on the application of range separation to time-
dependent density-functional theory (TDDFT) within the adiabatic local density ap-
proximation. When applied on the exchange part of the Hartree-exchange-correlation
kernel (which should takes into account all the effects coming from the electron-electron
interaction), range separation has been proven to be very successful to overcome several
flaws of TDDF'T such as the description of Rydberg or charge-transfer excitation ener-
gies. However, until recently, the correlation kernel was left untouched so that multiple
excitations were still missed by this approach. In the RSH approach where the wave
function is approximated to a single Slater determinant, the long-range part of the corre-
lation kernel vanishes. We thus derived the short-range LDA singlet and triplet kernels,
implement them in the quantum chemistry software Molpro and analyze the effects of
the removal of the long-range LDA correlation on the excitation energies of five small
molecules and of the first charge-transfer excitation of a small dimer. It appeared that
this removal has almost no effect on the energies so that the obtained energies provided
a good starting point for the perturbative addition of a long-range correlation kernel.
In order to design a long-range correlation kernel able to take into account the effect
of double excitations, a frequency-dependent one is required. Such a kernel was then
constructed in the last part of this thesis, using a Green’s function approach.

Long-range second-order Bethe-Salpeter correlation kernel

In order to design a frequency-dependent correlation kernel, the Bethe-Salpeter ap-
proach used in condensed-matter physics seemed very promising as it provides an explicit
frequency-dependent formalism which is very close to the TDDFT one. In the third part
of this thesis, we thus undertook the construction of an effective second-order correlation
kernel in this formalism. As the mapping between the physicist formalism for periodic
systems to the chemist formalism for finite molecular systems was not straightforward,
a first step consisted in transposing the Green’s function formalism to a spin-orbital
formulation and to assess the validity of the usual approximations performed in the
condensed-matter physics community to our systems of interest. It appeared that in the
framework of finite molecular system, the Hartree and exchange contributions should be
treated together in the construction of the dielectric matrix and that the effect of the
perturbation on the screened interaction should not be neglected contrary to what is
done for solids. A second-order correlation Bethe-Salpeter kernel was then constructed
and first tested in its static approximation. It appeared that in this case a non-physical
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kernel was obtained and that a dynamic treatment was indeed required. This dynamical
kernel required additional efforts in order to get an effective second-order kernel which
could be added to the RSH kernel perturbatively. Throughout the derivation, the model
system given by the dihydrogen molecule in a minimal basis was used to illustrate the
main developments. In particular, the effect of the starting Green’s function, of the
inclusion of exchange, of the second-order approximation and of the static approxima-
tion were assessed on this model. The effective second-order correlation kernel was then
implemented in a perturbative fashion within the Tamm-Dancoff approximation and
tested on four small molecules with and without range separation. In these cases, when
applied in a range-separated scheme, the excitation energies were overall improved by
the addition of the perturbative long-range effective Bethe-Salpeter kernel. However in
these systems, no excitation presented a significant double-excitation contribution which

is the very case where the kernel is expected to play an important role.

Open issues

It is hard to put a final point to this thesis where there is still so much to understand
and to do. In the following, I will try to summarize the perspectives which have been
raised by this work and remain on my “T'O DO” list.

Concerning the time-independent part, the usual approximations need to be rein-
troduced one by one in order to follow their effects on the excitation energies and on
the ionization potential. We have seen in the case of the first-order perturbation theory
that a poor description of the ionization potential could have dramatic effects of the
excitation energies, such an effect is also expected with a local density approximation.
The effect of a single-determinant approximation or the use of a truncated configuration
interaction (CI) instead of the full CI are also to be explored. It could provide insights
on the recently-proposed TD-MC-srDFT method which mixes TDDFT at short range
and multi-configurational self-consistent field at long range for the calculation of excited
states and could allow for further developments.

Concerning the second part of this thesis, the derivation and the implementation of
the short-range LDA kernels has been done only in the closed-shell case and it should be
of interest for many applications to have an open-shell code. Short-range GGA kernels
would also be useful.

The last part of this thesis is probably the most frustrating one for me as so much
remains to be done and I will attempt to make a list of what I would have wished to do
if I had a fourth year...

e First of all, the second-order kernel needs to be tested more extensively, and on
systems known to have double excitations in the lower part of their excitation
spectrum.

e Next, a non-perturbative resolution based on a Lowdin “unfolding” would be nice,
also without the Tamm-Dancoff approximation. Moreover, the code was designed
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more in an exploratory perspective than in a efficient way. If the kernel is confirmed

3

to be of interest, the module should be integrated to a “real” quantum chemistry

program.

e Finally, the second-order truncation was done with respect to the electron-electron
interaction but without taking into account the self-energy corrections which enter
in the independent-particle response function and also contribute to the second
order. We are currently working on this aspect. A first step would be to assess
them on the model system given by H, in a minimal basis and then in the general
case. This would be of particular interest to understand the link between the
second-order polarization propagator approach and this work.

This list could probably be longer and I would like that some on these points will be
solved in the short term either by me or my collaborators. I hope that this work will
be of some use for future developments on similar projects.

Paris, 28th April 2014
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Appendix A

Mathematical tools

( )

In this appendix, the main mathematical tools used thoughout this thesis are defined.
Especially, the main formulas of functional calculus are recalled together with the
definition of the underlying Banach space. As many Fourier transforms are done
between the time and frequency spaces, the conventions used for the Fourier transform
together with the contour integration techniques in the framework of complex analysis
are also briefly recalled in the following.

A.1 Functionals

Most of this thesis uses the mathematical concept of functional, either of the density,
of the potential or of a Green’s function. We therefore recalls here the definition of a

functional and of the underlying spaces which are encountered here.

Definition (Functional). A functional F is a function from a vector space V usually

of functions into its underlying scalar field

F: f— F[f] (A1)

A functional can be seen as a function of a function f and is denoted with bracket
notations F[f]. It is the key quantity of functional analysis which studies complete
normed vector spaces over the real or complex numbers, i.e. Banach spaces. In this

thesis, two special kinds of Banach spaces are used:
e Hilbert spaces: where the norm arises from an inner product.

e [P spaces: where the norm is an LP-norm.

239



APPENDIX A. MATHEMATICAL TOOLS

Definition (LP-norm). Given a vector r = (ry,72,...,7,) in the n-dimensional real

vector space R”, for a real number p > 1, the p-norm or LP-norm of r is

Sl

Ieflp = (7 + 75+ 4 77) (A.2)

Throughout the different derivations present in this thesis, a few functional calculus
rules are used and are given here: the functional derivative, the inverse and the chain

rule.

Definition (Functional derivative). Given a Banach space M representing the set
of functions f and a functional F : M — R, the functional derivative (or Fréchet

F
derivative) of F with respect to f, denoted fs—f, is defined by

SF[f] = méf(x)dm. (A.3)

If the change in f is localized, §f(x) = ed(x — z¢), then a more conventional definition

can be given ] [ ( ) ’
OF[f] .. Flf+ed(x—x0)] - FLf

In the case of a two-point quantity, one should note in particular that

5G(1,2)
3G(4,3)

=6(1,4)6(2, 3). (A.5)
As for usual functions, a chain rule can be defined for functional derivatives

(A.6)

SF[G[H]](1) :/d35F[G](1) 6G[H](3)
SH(2) 3G(3) 6H(2)

Another useful object in the framework of this thesis is the inverse of a two- and

four-point functional. For a two-point functional, the inverse is defined by
/d3F(173)F‘1(3,2) = /d3F—1(1,3)F(3,2) =4(1,2), (A7)

and its derivative is given by

5F(1,2)
5G(4,3)

= /d5d6F(1,5)mG(6,2). (A.8)

The inverse of a four-point functional is given by

/d3d3’H(1,3; 1, 3YH1(3,2;3,2) = /d3d3’H*1(1,3; 1/,3)H(3,2;3,2)

= 5(1,2))8(2,1).
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A.2 Fourier transform and complex analysis

A very brief review of complex analysis is given for the application of Fourier integral
evaluation. More details can be found for instance in [1].

A.2.1 Conventions for Fourier transforms

We use the following convention for the Fourier transform of the function f

ft) = ;l%f(w)e_m, (A.10)

which inverse transform is given by

flw) = /dtf(t)eiwt. (A.11)

In particular, it is worth mentioning that the Fourier transform of the Heaviside step

function is given by

—iWwT

do e
21w — 0t

dw e—iwr
0(7’) = — %w T 0+ and 9(—7') =

(A.12)

A.2.2 Method of contour integral

A very powerful approach to evaluate the integral of complex functions is given by the
contour integration technique in the framework of complex analysis. It is briefly recalled
here for our particular case of interest. A few definitions are needed in order to establish

the central theorem of this theory, the Cauchy’s residue theorem.

Definition (Holomorphic function). Suppose € is a simply connected open subset of
C, the function f:Q — C is holomorphic on Q if it is complex differentiable on every

point zy of Q, i.e. the limit

f'(20) = lim 1(2) = 1{z) (A.13)

z—zg zZ— 2y ’

exists for every zp in Q.

Definition (Winding number). Suppose 7 is a closed curve in €, the winding number

of v around a complex number a is

I (a) = — % dz_ (A.14)

zZ—aQa

241



APPENDIX A. MATHEMATICAL TOOLS

Figure A.1 — Contour integration on the upper half-plane.

Definition (Residue). Suppose a punctured disk D = {2]0 < |z — ¢|] < R} in the
complex plane is given and f is a holomorphic function defined on D. The residue
Res(f,c) of f at c is the coefficient a_; of (z —¢)~! in the Laurent series expansion of

f around c.

We know have all the definitions needed to state the main theorem underlying this
theory, the Cauchy’s residue theorem.

Theorem 4 (Cauchy’s residue theorem). Suppose € is a simply connected open
subset of the complex plane, and a1, ...,a, are finitely many points of Q and f is a
function which is defined and holomorphic on {2\ a4, ...,a,}. If v is a closed curve in
Q which does not meet any of the a;, and whose start point equals its endpoint, then

]{ f(z)dz = 2mi le(ak) Res(f, ax). (A.15)
v k=1

Application to Fourier integrals

The idea, when one wants to evaluate an integral on R, is to take only a part of the
integral on [—R, R] and to close the path in the complex plane, usually by a half-circle,
controlling that the additional part will not contribute to the integral. This is possible
thanks to Jordan’s lemma

Lemma. Jordan’s Lemma. Suppose f: C — C is a continuous function on
S={re?; t>0; 0<6, <0<, <}, (A.16)

such that lim,es oo f(2) = 0. If we note v(r) = {re?; 6, < 6 < 6 then
lim, 0o fv(r) f(z)e*dz = 0.
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To evaluate an integral
T= / f(x)e**dz, with k € R, (A.17)

the sign of k is important as the integral on the upper half-plane of f(x)e’** goes to 0
when r — oo only if the real part of ikz is negative. Therefore, if k is positive, the contour
will be closed on the upper half-plane as shown in Figure A.1, and if k is negative, it

will be closed on the lower half-plane, such that

um Z a singularity Res(f(x)eikﬁ, a) ifk>0
/f(x)ezkmdx — in the upper half-plane 4 (Alg)
2w Z a singularity Res(f(m)ezkx7 a) if k<.

in the lower half-plane

A.3 Spherical mean

A last definition which is useful in the framework is the definition of the spherical mean

given in the following:

Definition (Spherical mean). Consider an open set U in the Euclidean space R,, and
a continuous function u defined on U with real or complex values. Let z be a point in
U and r > 0 be such that the closed ball B(z,r) of center z and radius r is contained

in U. The spherical mean over the sphere of radius r centered at x is defined as

1

Wn—1(T)

a(x,r) =

[ uwasw) (A.19)

OB(z,r)

where 9B(z,r) is the (n — 1)-sphere forming the boundary of B(z,r), dS denotes in-
tegration with respect to spherical measure and w,_1(r) is the “surface area” of this
(n — 1)-sphere.
Alternatively,

wn1—1 u(z + ry) dS(y) (A.20)

[lyll=1

u(x,r) =

where w,,_1(r)= is the area of the (n — 1)-sphere of radius 1.
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Appendix B

Taylor expansions of the
range-separated energies

In this appendix, the details of the Taylor expansions of the Hartree-exchange-
correlation potential, of the Hamiltonian, of the wave function and of the energies
are given around the KS and the physical systems for the range-separated adiabatic
connection. It is to be read together with Chapter 2.

B.1 Taylor expansions around the KS system

In the limit where the range-separation parameter p goes to 0, the system is very close
to the Kohn-Sham system. It is then convenient to develop its Hamiltonian around the

Kohn-Sham Hamiltonian as

Flon — T—i—/vne(r)ﬁ(r)dr+/v§x‘é r)dr + // e (r12) g (1, 1) drydry
(B.1

TKS Ir A
=H 7/ Hxi n dI‘ // 7’12 ng rl,rg)drldrg

The Maclaurin series of the long-range interaction around g = 0 is exactly known and is

)

given by

wéreu, Z ( 2n 2n+1 Z w! 2n+1 2n+1
\/7 7’7,'(277/ + ne0 (BQ)
2

2
RGN

r2ud 4+ O (/f’) .

The Taylor expansion of the long-range interaction operator W+ is therefore straight-
forward but the potential contribution needs to be evaluated.
By definition, the long-range Hartree-exchange-correlation potential is the functional
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derivative of the corresponding ground-state energy functional with respect to the den-
sity. If calculated at N fixed, it is then defined up to an additive constant C* which is
a constant with respect to r but can depend on u. The expressions of the long-range
energy functionals are recalled in the following but can also be found in Refs. [2, 3].

B.1.1 Long-range Hartree-exchange-coorelation functionals
Long-range Hartree energy functional

The Hartree energy is given by

_ %// %drldm (B.3)

The long-range Hartree energy functional is obtained by substituting the usual electron-
electron interaction 1/r12 by its long-range counterpart w!5#(r12). By doing so, and using
the Taylor expansion of the interaction (B.2), we get

E‘hrH // 1‘1 I'2 ’LU H(Tlg)dl‘ldl‘g

N2
= 'u, // I'1 1‘2 ledl‘ldrg +O(p )

7T

Long-range exchange energy functional

The long-range exchange energy is given by

,_A

Elr,u 5//712)( I‘1,I'2 ’LU “(rlg)drldm

\F Z nl( 2n—|— 1 Pt //n2x r1,ro)risdridrs (B.5)

//ngx (r1,ra)dridry — —— //ngx (r1,ro r12dr1dr2 +O(u )

Except for the one-electron case where ng«(r1,r2) = —n(r1)n(re) and the two-electron
case where ng x(r1,r2) = —n(r1)n(re)/2, the exchange pair density cannot be expressed as
an explicit functional of n. Using the expression of the exchange pair density in terms
of the exchange hole, the long-range exchange energy rewrites as

1 1
E#[n] :ﬁu/drm(rl)/drghx(rl,rg) - ﬁ;ﬁ //ng,x(rl,rg)rfzdrldrg +0(p®) (B.6)
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where hy(r1,r2) is the exchange hole which is normalized to -1 i.e. [drahy(ry,r2) = —1.

Using this normalization, the long-range exchange energy reduces to

Nl

E}l(r,u[n] = - ﬁ

—u? // N2 (r1, T2)riydridry + O(1°). (B.7)

Long-range correlation energy functional

The long-range correlation energy requires integration along the adiabatic connection as
the correlation part of the two-particle density n. . depends on . It is therefore given
by

Ir,& (4
E"tp / //n2C r1,T2) 811) 85( )drldr2d§ (B.8)

Considering that ngc can be expanded around £ =0 as

> 1 9%nf (r1,r2)
ng,c(rh I‘Q) = Z H ’agk gk: (Bg)
k=1 £=0
then the long-range correlation enegy becomes
E#[n] = 1 i - )" 2t // 0" n“ rl’rQ r2drydry
ﬁ el el n'k" 2n + k' + 1 =0 (Blo)
=0+ 0(u°)

in the case of a non-degenrate Kohn-Sham ground state, where the term at n = 0 is
dropped because [ ny(r1,r2)dridry = 0 and the terms k = 1,2, 4 are zero by identification
in the Taylor expansion of the wave function as shown in [3].

B.1.2 Long-range Hartree-exchange-correlation potential

If the functional derivative of Ep"|

n| is taken with respect to density variations that
preserve the number of electrons, [dn(r)dr =0, then 6N/én = 0. The derivative is then
defined up to an additive (u-dependent) constant C*. To first order in p, the long-
range electron—electron interaction tends to a constant, 2u/y/7. A distant electron (with
1 < 712 < 1/p) then experiences a constant interaction 2(N —1)u//7 with the remaining
N — 1 other electrons. This constant must be exactly compensated by the long-range
Hartree-exchange-correlation potential, so that its first-order term in g must also be
2(N — 1)u/y/7. The expansion of vj* (r) therefore takes the form

2N D1 s ) 4 o), (B.11)

Ir,p

VHxe (I‘) = \/7*1_
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where vH -(3) (r) is the third-order contribution. Note that the constant C* should also

affect the third- and higuer-contributions of the potential and develops as

Cr=CWp4+ 0@ 4. .. (B.12)

B.1.3 Taylor expansion of the Hamiltonian

Substituting Equations (B.2), (B.11) in (B.1), we get the following Taylor expansion for

the Hamiltonian around p = 0:

I:IIr,;L :I:IKS // |: L +w )(T12)M3:| ’fLQ(rlvrQ)drler

1 r R .
- [P o e i + 00 (B.13)
ks NV = 1) e o
=H"® — TM + (Wée’(g) - VHXS’)) +0(1°)
where
Wgé’(?)) — 71 // ;:’/13’&2(1'171‘2)611‘1(11'2. (B14)

The linear correction in yu is a constant. Consequently it affects the energies but not the

wave functions so their first correction is cubic in pu:

W) = [0F5) + [0 1P + 0(1P). (B.15)

B.1.4 Taylor expansion of the energies
The energies corresponding to the state |¥}’) are by definition given by

W[ T

“:< B.16
G = T e (B.16)

where the numerator is

N(N —1) p
v (B.17)
i (2655 (P 05 + (@SR — ViEP|fS) ) + 0(u7)

(UR g = &5 ~

and the denominator is (¥¥|U¥) = 1 4 2,3 (U |6KS) 4 O(4®). Therefore, the Taylor ex-
pansions of the energies around p = 0 are

NN—l

In Equation (B.18), the linear correction is state-independent and depends only of the

17lr lr,
+ (@RS IWE ) — gD [0KS) 1+ 0(u). (B.18)

number of electrons of the system. Therefore in the excitation energies, this term cancels
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out and only the correction in x? remains.
gl — & = 1 [(@SIWE® — VP 0fS) — (afS|Wi® - Vi 0fS)] + 0@, (B.19)

This correction can be divided into a one-electron and a two-electron part where the
one-electron contribution is given by (®XS|Vi(¥)|9KS) and the two-electron contribution

is given by

(BRS | 3) | pKSy — (BKS| / / g (ry, ro)r2ydr dry|BES). (B.20)

3f

Moreover, using the definition of the pair density operator na(ri,ra) = n(r)n(ry) —
fi(r1)d(ry — re2), the latter rewrites as

@SWEO(0K) = - = @] [ [ alea)itra)r dridea 8f)
‘PKSI// i(r1)d(r1 — r2)riydrdrs|@RS) (B.21)
<I>KS|// (1) (re)r2ydry dry | BKS).

Using the scalar product of r; and ry, 72, can be rewritten as 72, = r? + 72 — 2r; - ry

@SWEO(0S) = - oo (@l [ [ a)itea) (o + v dral0f)
(I>Ks|// I‘1 I‘Q ry- I‘erldl‘2|q)KS>
2N
= — ﬁ ( ) 2dI‘+ V @KS|/ I‘1 Ir dI‘l / (1‘2)1‘2 dI‘2|(I)KS>

2N
:_ﬁ ng(r)r dr—&—Z‘ <I>KS|/ rclr|<1>KS

b

(B.22)

where ny is the density of the KS state |®XS) and where the resolution of identity has
been used in the last line.

Taylor expansion of the singlet-triplet splitting

For closed shells, the expansion of the difference between the singlet and triplet energies
associated with the single excitation i — a can be obtained by applying Equation (B.18)
with the spin-adapted KS wave functions '®¥5 = (®KS 4 oK ) /\/2, for the singlet
state, and *1®KS = @K8 for the triplet state with spin projection Mg = 1. As all the
determinants are constructed on the some KS orbitals, the one-electron contribution
vanshes and only the two-electron term then contributes:

AEH1=3 _ 3 <1¢)KS|W£,(3)‘ LpKS) _ <3(I>KS|W;£,(3)| 3¢Ks>] +O(d). (B.23)

1—a
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w4 3 - -

S : :

M, 1 0 0 -1
e, e, el

Figure B.1 — Spin configurations for the single excitation i — a starting from the
Kohn-Sham ground-state.

which then gives

AERLS = 2 ia !y ai) + O(u7)
8 o
= Sl + 00, (B.24)

where we have used rf, = r?+72—2r;-ro. The appearance of the transition dipole moment
integral in Equation (B.24) means that, for an atomic system, the singlet-triplet energy
splitting appears at third order in y if the difference between the angular moment of the
orbitals ¢; and ¢, is A¢ = +1 or —1. Otherwise, the splitting appears at a higher order

in p.

B.2 Taylor expansions near the real system

The Taylor expansion of the short-range interaction when p — oo is given by [2]:

Srp. 4f %) 6(n +0 1
- Z n +2 /’LT”+3 ( )
n= B.25
= " 5(r) — M(g(l)(r) n i(g@)(r) oL
,u2 3,LL3 8N4 ,LL5

B.2.1 Derivative of the short-range Hartree functional

With the definition of the spherical mean given in Appendix A.3, the spherical average

of the density around r; on the sphere of radius 75 is

n(ry,r12) // n(ry + r12y)dS(y). (B.26)

Using this and the change of variable ro — ry2, the short-range Hartree energy becomes

Eftin // n(r1)n(ra)wis* (ri2)dridrs

~2 //47rr12n(r1) (r1, r12) Wik (ryg)drydrya. (B.27)
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and its Taylor expansion when u — oo is then

Egtn] = 2fz n' 0 + 2 // 5(" (ri2)n(ry)i(ry, rig)dridris + O (/@) (B.28)
Moreover, for a C> function f, using successive integrations by parts, one can show

[ 1008 e = (1) 0). (B.29)

The Taylor expansion of the spherical average of the density around ri5 = 0 is given by

n(ri,ri2) = (1 + rlgvm rmvm ) n(ry +r12)|r5—0 (B.30)

Using this relation and the fact that, the spherical mean of the density only develops in

even power of r15 around ri3 =0,

T ( 2n+3

ST ) n 1
E # _QIZ 2n 2n+2) 2n+2/ (2 )(rl,O)n(rl)dr1+(9 W (Bgl)

where

2n
oriy

2n >
72 (r1,0) = <9 Alry, m)> ’ (B.32)
r19=0

and in particular, 2(®) (r1,0) = n(r;). The Taylor expansion of the short-range Hartree

EXFn] = \gr (2) /n(r)er+ @ <ul4)
- 2% /n(r)er +O (;)

and is an explicit functional of n. The Taylor expansion of the short-range Hartree

energy is therefore

(B.33)

potential is thus

o [n] (r) = %n(r) +0 (;) . (B.34)

B.2.2 Derivative of the short-range exchange functional

With the same method, for the exchange energy,
Ebr“ // n2z (r1, r12)wa” (r12)dridryz
(22£2) 1
_2IZ (2n)! 2n+2 2n+2 //n“ (mx)dr +0 (u2m+4> ’
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where ns ,(r, 1) is the exchange on-top pair density, given by — >~ _n2(r). The short-range
energy is then:

ESh[n] = 2”2 /n“(r r)dr + O (: ) (B.36)

The Taylor expansion of the short-range exchange potential is then

VS ) (r) :2%2 / Wdr’ +0 (;) . (B.37)

B.2.3 Derivative of the short-range correlation functional

By definition, the short-range correlation energy functional is obtained by

_ 1 o0
Ezl’“[n] = — 5/ df // ngc(rhrg)angg’g(rlg)drldrg
"

s (B.38)
- / dngsr’E[n].
w08
The derivative of the long-range correlation energy with respect to £ is given by
ST, [
E{””’c // nQC ri,ro) 6w ag(rlz)drldrg
(B.39)

—ﬁ//@rrmﬁzc(rl,rlg)e_ 2T%2dr1drlg
where ﬁg}c is the spherically-averaged correlation pair density and where the derivative
of the short-range interaction with respect to ¢ was taken as:
8wsr’§(’l"12) 2 527“
ee - _ —&7r1g B.40
However, if one uses directly the asymptotic expansion of the exponential in Equa-
tion (B.39), each term of the serie diverges. Therefore, the integration and the summa-

tion cannot be swapped [4]. We define the system-averaged pair density

fo(r12) :/ﬁg(rl,m)drl (B.41)

and its correlated part f&(ri2) = fé(ri2) — fX5(r12). From the cusp condition at the
coalescence, Gori-Giorgi et al [4] showed that the system-averaged pair density for the
modified interaction should behave as

fo(r12) = f(0) <1 + 2r12p1(€r12) + (B.42)

i )
\Fﬂf
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and that the wave-function of the system expands as

1
Wi (ri2) = ¥;(0) [1 + r12p1(pri2) + T + - } (B.43)
where f(0) is the system-averaged on-top pair density and where the function p; is given
by

2
ey —2 1 1
— - B.44
P (y) TR <2 + 4y2> erf(y). (B.44)
By integration over ri; in Equation (B.39) where Equation (B.42) has been used, the
first terms of the Taylor expansion of the derivative of the short-range correlation energy

with respect to ¢ are given by

O zsre _ S0 Q
6%E [n] = & —-2V2r1 +0(€5> (B.45)

By integration along the adiabatic connection, the Taylor expansion of the short-range

correlation energy is thus

Ern] = n i) +ovEndl) <M1)

B.46
s 227 1 ( )
= 22 ng,o(r,r)dr + ET na(r,r)dr + O i)
The corresponding potential is therefore
I _T dngc(r',r') ,  24/2m [ one(r',r)) 1 B.AT
oM n](r) 22 /7571(1') dr’ + 33 5 (E) dr' + O 1) (B.47)

Finally, the Taylor expansion of the short-range Hartree-exchange-correlation potential

near the real system is given by

srou oo [one(rx) o, 2V21 [ one(r) YY) 1
Uch[n](r) — 2,LL2 §n(r) dr + 3 3 6%( ) dr +O ‘Ll,4 . (B48)

B.2.4 Taylor expansion of the Hamiltonian:

By substituting Equations (B.25) and (B.48) into the expression of the Hamiltonian, it
becomes

. . T 2/ N
Hvr —f — // {Mé(rm) — 3\:;5(1)@12)} fig(r1, ro)dridre

T 22 5n2(r’,r’)ﬁr iy’ i
+ [%2 + 37 ]/ o) (r)drd +O(u4> (B.49)

1 1
=0+ —H"2+0 <3>
p p
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B.2.5 Taylor expansion of the energies

In order to evaluate the energies, we divide the integration over ri into two regions,
one going from 0 to 1/u and one going from 1/u to co. In the first region, the Taylor

expansion of W (ri2)wl#(r12) W (r12) around ri» = 0 is given by

2,u+ 2
VT w2

and a contribution in 1/u is present. However, when integrated, it is multiplied by the

Ul (ri2)wih (r12) Wl (ri2) = ¥ (0)? < + i) + O(r12) (B.50)

volume element which goes to 0 when u goes to oo and will not contribute in the energies.
In the second region, 12 > 1/u so the Taylor expansion of W (r12)w# (r12) U (r12) around

i — oo is given by

11 1 1 1
Vi (ri2)wee (r2) Wi (r12) = a(0) (14— + et 5oy + 75— | +0 — ) (B51
5 (ri2)weet (r12) Wy (r12) x(0) + o + et 2T, + T + e ( )

where the first contribution appears in 1/u2. Therefore, the Taylor expansion of the

energies around the real system is given by

1 1
£ = By + EE,E, Y10 <u3) (B.52)
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Appendix C

Fit of the energies along the
adiabatic connection

In this appendix, the details of the fit performed on the energies along the range-
separated adiabatic connection are given. The fitted parameters obtained for the
helium and beryllium atoms and for the dihydrogen molecule at equilibrium and
stretched geometries are also given. It is to be read together with Chapter 2 and
Chapter 4 as the first-order derivative of the energies with respect to the range-
separation parameter are calculated analytically from the form of the fit.

C.1 Form of the fit

The total energies &' and excitation energies A& = &' — &' of the partially-interacting
Hamiltonian given in Equation (2.5) have been calculated with the DALTON program as a
function of the range-separation parameter u for the helium and beryllium atoms and for
the dihydrogen molecule. The computational details can be found in Section 2.4. The
total ground-state energies were then fitted to the following analytical expression which
satisfies the form of the expansions at small p and large p given in Equations (2.27)
and (2.39)
E(Ifs — Eg+ cipp+ cop® + cap®

1+ dyp+ dop? + dap? + dap* + dsp®’

where ¢; = —~N(N — 1)//7 + (5 — Eg)dy and ¢y = —N(N — 1)d,/\/7 + (EKS — Ey)d; are
fixed by the small-p expansion, Ey and X5 give the ground-state total energies of the

& =Eo+

physical system and of the Kohn-Sham (KS) system, and N is the number of electrons.

The excitation energies were fitted to the expression

AERS — AEL + cip+ cop® + ez

AEY = AEy + :
F MU T dop ot dop® + dapd + dapt + dspd
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where ¢; = di(AEXS — AE)) and ¢z = do(AEKS — AE}) to ensure the correct behavior at
small p, and AE, and AEKS give the excitation energies of the physical system and of
the KS system.

C.2 Fitted parameters

The fits were performed on about 30 points for a range of x going from 0 to 10 bohr=1.
The parameters of the fit can be found in Tables C.1, C.2, C.3 and C.4, and reproduce
the calculated curves shown in the article with a maximum error of about 0.1 mhartree.

All the energies are in hartree and y is in bohr=!.
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Table C.1 — Fitted parameters of the ground-state and excitation energies along the range-separated adiabatic connection for the
helium atom using an uncontracted triple-augmented quintuple zeta basis set and a truncated singular-value decomposition cutoff of
1077.

| Ground-state | &5 | Eo | c3 | di | dy | ds | da | ds \

B | -1.813977 | -2.902589 | 0.2886122 | -0.5256672 | 1.267965 | 0.7302989 | 1.729618 | 0.6215862 |

| Transition [ AEKS | AE; | cs | di | da | ds | dy | ds |
1'S - 2°S 0.7476677 [ 0.7281453 [ 0.06186663 [ -1.148460 | 0.7875350 | 3.601280 | -0.8453350 | 3.279870
1S - 21§ 0.7476670 | 0.7576321 | -0.09598863 | -1.799520 | 3.139774 | 9.153716 | 6.331953 | 8.164700

'S — 13P 0.7787323 | 0.7701976 | 0.2572886 -4.517757 | 11.06152 | 37.53672 | -27.73374 | 90.37671
'S — 1P 0.7787322 | 0.7795772 | 0.05426567 | 11.97447 -47.11893 | 114.6076 | -82.48554 | 51.72106

Table C.2 — Fitted parameters of the ground-state and excitation energies along the range-separated adiabatic connection for the
beryllium atom using an uncontracted double-augmented double zeta basis set and a truncated singular-value decomposition cutoff of
1076,

’ Ground-state ‘ g(E(S ‘ EO ‘ C3 ‘ d1 ‘ d2 ‘ d3 ‘ d4 ‘ d5 ‘
[ 1'S | -9.124165 [ -14.65438 | 46.83671 | -0.2090221 | -1.923411 [ 3.658671 | 10.96260 | 5.215731 |
’ Transition ‘ A(SES ‘ AEk ‘ C3 ‘ d1 ‘ d2 ‘ d3 ‘ d4 ‘ d5 ‘

1S — 1P 0.1336714 | 0.1009080 | -0.02498641 | 2.675899 -1.103249 | 66.59735 | -39.94845 | 24.42414
1S — 1P 0.1336461 | 0.1974410 | -0.3142418 | 2.670149 -5.243878 | 40.77140 | -44.04497 | 36.69480
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Table C.3 — Fitted parameters of the excitation energies along the range-separated adiabatic connection for the dihydrogen molecule
at the equilibrium distance using an uncontracted double-augmented triple zeta basis set and a truncated singular-value decomposition
cutoff of 1076,

Transition AERS AE) s dy dsy ds dy ds

112;r — 135+ | 0.4359619 | 0.3890173 | 0.2799389 1.767023 13.40149 19.23359 | 24.79910 | 19.29466
112;r — 112+ | 0.4359571 | 0.4677408 | -0.01241781 | 1.264479 -0.4431237 | 21.85013 | -16.49858 | 12.33904
112§L — 23Eg+ 0.4740336 | 0.4598110 | 0.2481387 0.9229492 | -10.10530 21.52073 | -16.87971 | 25.28795
llEg — 212]; 0.4740150 | 0.4814739 | 0.04156341 | -5.018161 | 10.11410 -3.755105 | -2.033443 | 8.145262
112;' — 1311, | 0.480003 0.4670848 | 0.1376852 30.80894 -13.52176 121.4909 | -67.14926 | 32.50543
1122' — 1M1, | 0.4799835 | 0.4852236 | 0.01995048 | 0.5766261 | -5.036269 37.87564 | -20.46073 | 10.75388

Table C.4 — Fitted parameters of the excitation energies along the range-separated adiabatic connection for the dihydrogen molecule
at three times the equilibrium distance using an uncontracted double-augmented triple zeta basis set and a truncated singular-value
decomposition cutoff of 107°.

Transition ‘ AEKS ‘ AE;, 3 dy ds ds dy ds

112;r — 135t 0.05176212 | 0.01700837 | 0.6515038 | -1.415220 | 4.923966 | 118.7312 | -176.1438 | 667.7109
112;r — 11xt 0.05174852 | 0.2813186 | -9.042050 | -9.080417 | 27.82670 | 57.35565 | -188.3668 | 718.6815
llEg — 2322(03“)2 0.1034820 0.2988327 -8.364428 | -6.876502 | 37.68192 | 51.86662 | -151.0807 | 783.8883
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Appendix D

Double adiabatic connection
keeping the density constant

In this appendix, we present a double adiabatic connection, depending on two param-
eters, which keeps the ground-state density constant. The second variant of pertur-
bation theory of Section 3.2.2 is based on this double adiabatic connection. Another
form of a double adiabatic connection keeping the density constant was previously
considered in Refs. [5, 6].

The Levy-Lieb universal density functional for the Coulomb electron-electron inter-
action W, writes [7-9]

Fln] = min(¥|T + We|¥)

V—n

= (YT + Wee| ¥[n]), (D.1)

where 7' is the kinetic energy operator. We generalize it to the interaction Wb+ + AT+
where W!# and W2 are long-range and short-range electron-electron interactions,
respectively, which depends on both a range-separation parameter p, and on a linear

parameter A,

F“’A[n]

min (O[T + WEH 4 XV 0)
U—n

= (U [n]|T + WeEH + AWM @A ).
(D.2)

The Coulomb universal density functional F[n| is then decomposed into the functional
F*A[n] and a p- and A-dependent complement short-range Hartree-exchange-correlation

density functional Ej**[n]
Fln] = F"[n] + B [n), (D3)
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leading to following expression for the exact ground-state energy of an electronic system
Bo = min{ (|7 + Voo + Wi + AW ) + B [na] |, (D.4)

where V. is the nuclei-electron interaction operator and the minimization is performed
over normalized multideterminant wave functions. The Euler-Lagrange equation corre-
sponding to this minimization is

A = g4 g, (D.5)

where U4 and £ are the ground-state wave function and energy of the Hamiltonian
HI = T4 Voo + Wi 4+ AW 4 Vi, (D.6)

where XQ/I_SILQM = [SE ng]/én(r)n(r)dr is short-range Hartree-exchange-correlation po-
tential operator, evaluated at the density no(r) = (U5 |a(r)| s} which is the ground-
state density of the physical system for all 4 and A\. The Hamiltonian H** of Equa-
tion (D.6) thus defines a double adiabatic connection keeping the ground-state density
constant.

The range-separated ground-state DFT formalism of Section 2.2 is recovered in the
limit A = 0. For the purpose of applying a pertubation theory in A\ starting from this
limit A = 0, we want to rewrite the Hamiltonian A#* of Equation (D.6) as the sum of
the Hamiltonian at A = 0, H™* = H#*=0_ and a perturbation operator. For this, the

density functional Ejj;**[n] is written as

B ) = Bl ™" nd = B ), (D7)
which defines a new density functional Ej**[n]. The Hamiltonian H#* can then be
rewritten as

HW = HM 4 Wbt — Viaho?, (D.8)

where Vii? = [ §Ei [ng] /on(r)a(r)dr is the short-range Hartree-exchange-correlation
potential operator associated with the density functional Ei**[n] introduced in Equa-
tion (D.7). The dependence on X of this density functional can be made more explicit.
It is easy to show that Ef**[n] has the following expression

Eittn) = (UPA]|T + Wk + AW H WA n])
AT 4 W A0,
(D.9)
which leads to the following decomposition
B 0] = MEglaln] + B ), (D.10)
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where Efph o [n] = (0#A=0[n][Wsh# [ T#A=0[n]) is a multideterminantal (md) generalization
of the usual short-range Hartree-exchange functional [10-12]. Using the variational
property of the wave function ¥**[n], and for non-degenerate wave functions ¥**=C[n],
the expansion in A of EZ7*[n] at A = 0 starts at second order: EZ/4[n] = /\2E§rn’fd(2)[ ]+

-+, as in standard Gérling-Levy (GL) perturbation theory [13, 14]. The Hamiltonian
H# of Equation (D.8) can then be rewritten as

FPA = FI 4 AT e (D.11)
where the perturbation operator Ws# = T¥sH — Vf&’fﬁnd with Vf&’fiﬂd =

J 0By walnol/on(r)a(r)dr has been introduced to collect all the linear terms in A, and
the remaining perturbation operator V" * = [ 5E2r;rl1td)\ [no]/dn(r)n(r)dr contains all the

C,m

higher-order terms in .
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Appendix E

Range-separated kernels

In this appendix, the spin adaptation of the short-range exchange and correlation
kernels is given. Details of their derivation in the LDA case together with their
asymptotic behavior close to the KS and the physical kernel are also given. This
appendix is to be read together with Chapter 6.

E.1 Spin-adapted kernels

For spin-restricted closed-shell calculations, spin-singlet and spin-triplet excitations can
be decoupled [15-17] (see also Refs. [18, 19]). The non-spin-flip part of the coupling
matrix K of Eq. (6.12) has the following spin block structure

K — (KM Km) 7 (E.1)

K+ K,

where the matrix blocks K, ,/ have elements of the form K 1ver With 4, j, and a,

10 a0, jo
b referring to occupied and virtual spatial orbitals, respectively. The matrix K can be

brought to a block diagonal form by rotation in spin space

_ ('K o
K = ( . 3K> 7 (E.2)

with a singlet component

_ K A Ky K Ky

'K
2

(E.3)

and a triplet component

_ K Ky —Kyp + Ky

3
K
2

(E.4)
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This directly leads to the singlet and triplet RSH coupling matrices of Egs. (6.15)
and (6.16), where the singlet and triplet short-range exchange-correlation kernels are
defined as

f)s(f;:’%(rh ra) + fiz’fh(l‘l» ry) + fiz:lj¢(rla ra) + fié’,ﬁ(l‘l, ro)

Lt (v ) = 1 : (E.5)
and

) Joob (v, r0) — folk (r1,re) — fool(re,va) + fi0H (r1,r

dfig,y (1'1, r2) _ cﬁT( 1, 2) C,TJ,( 1 2) CnLT( 1, 2) C,J,J,( 1 2) ' (EG)

4

The different spin components of the kernel can be expressed with the second-order
functional derivatives of the corresponding energy functional ES:#[n, m] with respect to
the density n and the spin magnetization density m,

2 st 2 st 2 st 2 Isr,p
fiﬁ"ﬁ(rhm) _ §*ESH n, m] _ 02 ESbH n, m] 02 ESbH [, m) 02 ESbH n, m] (®T)
d dnqg(r1)dng(ra)  dn(ri)on(ra) on(ri)om(ry)  om(ry)om(rsy)
and
52 ES5H n, m) 52 ES5H I, m) 82 ES5H [n, m]
ST, 4 _ pST,u o xXC ) o xc ) - xc )
Frleroma) = Bl ers) = e Sy (ea) ~ Saleonra)  SmGrpmira) )
and
2 st p 2 rsr,p 2 st 2 st
fif;’ﬁi(l‘hrz) _ 5 ES5H n, m] _ SCEZMn,m] | STER I, m] 02 ESLH n, m)] . (E.9)
’ 6ni(r1)5n¢(r2) 671(1‘1)5’&(1‘2) 5n(r1)5m(r2) 5m(r1)5m(r2)

The mixed derivative with respect to n and m cancels out in Egs. (E.5) and (E.6) and
we finally obtain the singlet and triplet kernels of Eqgs. (6.17) and (6.18).

E.2 Short-range LDA exchange-correlation functional

E.2.1 Short-range LDA exchange

The short-range spin-independent LDA exchange energy density is a function of the
density n (or equivalently of the Wigner-Seitz radius 7, = (3/(47n))'/?) and of the range-

separation parameter p, and writes
eESH = (e — €M), (E.10)

where ¢, is the full-range exchange energy per particle of the homogeneous electron gas,

2702
167’

(E.11)

€Ex =

264



E.2. SHORT-RANGE LDA EXCHANGE-CORRELATION FUNCTIONAL

with a = (4/(97))'/3, and €™* is the long-range exchange energy per particle of the

homogeneous electron gas [20, 21]

902 A

Ts

Ir,p
et =—

[Vrert (;4) + (24— 44%) V0D _ 34 4 407, (E.12)

with A=apurs/2.

Large p behavior

In the limit of a very short-range interaction (u — +o0) or in the low-density limit (n — 0
or rs — 00), i.e. A — oo, the short-range exchange energy density eS"# goes to zero with

the following asymptotic expansion

3n 9n 1
ShH = — o|\— E.13
©x 16r§p2+320a2r§u4+ (/ﬁ)’ ( )

and the corresponding short-range exchange kernel, i.e. the second-order derivative with

respect to n, expands as

92estm T T 1
X =4+ — . E.14
on? 2u2+6a2r§,u4+0< ) ( )

Small i behavior

In the limit of the Coulombic interaction (x — 0) or in the high-density limit (n — +oo
or rs — 0), i.e. A — 0, the short-range exchange energy density eS"* reduces to the
full-range exchange energy density e, = n e, with the following expansion

3 2 4 2

and the short-range exchange kernel behaves as

82 ST, [ 82 . 2
;;;2 = 81162 +ratriy®+0 (eil/” ), (E.16)

with the full-range exchange kernel

2
‘?9;; — ra?rl (E.17)

Taking the ratio of Egs. (E.16) and (E.17), it is seen the short-range exchange kernel
reduces to the full-range one when

?ur? <1, (E.18)
ie. ry < 4.8 for p=0.4.
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E.2.2 Short-range LDA correlation

The short-range spin-dependent LDA correlation energy density is a function of the
density n, the spin magnetization density m (or equivalently of ry and ¢ = m/n), and of
the range-separation parameter u, and writes

e = n (e, — €M), (E.19)

where ¢. is the full-range correlation energy per particle of the homogeneous electron
gas [22], and €* is the correlation energy per particle of a homogeneous electron gas with
the long-range electron-electron interaction, as fitted by Paziani et al. [23] on quantum
Monte Carlo calculations with imposed exact limits,

<MKVQ<gXS)+aﬂu£nﬁ+aﬂm£nﬁ+adminﬁ+adu£nﬁ+admiﬁﬁ
L+ B (ra)se2)

Ir,p
6C7 =

4 ’

(E.20)

where ¢2(¢) = [(1 +¢)?/® + (1 — ¢)?/3]/2 and the other functions are given in Ref. [23].
The derivatives of e# with respect to n and m are easily expressed in terms of the
derivatives of e+ with respect to r; and ¢. The first-order derivatives are

D 0
on 3 or, <
86?’# _6€zr,u (E21)
om  oC "’
and the second-order derivatives are
82 eSStk T OeSHH aQesr,u
c —_ 5 [9Z=¢ — 7, c ,
on? In or, or? £.99
aQeir,u 1 aQGir,u ( : )
om®  n 9C?

For spin-restricted closed-shell calculations, we just need to evaluate them at ¢ = 0.

Large u behavior

The leading terms of the asymptotic expansion for u — +oo of the short-range correlation
energy density e¥* can be expressed with the on-top pair-density of the homogeneous
electron gas [23]. In the low-density limit ry — +oco (or the strong-interaction limit
A — 400 of the adiabatic connection), it simplifies to

__30=¢)n <1> , (E.23)

oSTH —
¢ lrsotoo 1673 p? 1
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In this limit, the associated singlet and triplet short-range correlation kernels, i.e. the
second-order derivatives of e5*# with respect to n and m evaluated at ¢ = 0, have the

following expansions

92estot T ( 1 )
c - " 4o~ (E.24)
2 2 4 ’
on ¢=0,rs—+00 2u H
e . ( 1 >
c - " 1o(4). (E.25)
2 2 4
am ¢=0,rs—+o00 2” H

Small i behavior

In the limit p — 0, the short-range correlation energy density e3*# reduces to the full-
range correlation energy density e. = ne. with the following expansion [23]

2
e = e + —30‘@(;“ P24 o). (E.26)

It can easily be shown that the singlet and triplet short-range correlation kernels, eval-

uated at ¢ = 0, approach the corresponding full-range kernels with the same leading

term
2 ST, 2
");712 _ ?9 ol _ratriu? 4 0@, (E.27)
n _ n —o
D2esm 2. ,
T =52 —matr? y® 4+ 0(u?). (E.28)
= ¢=0

In the high-density limit rs — 0, the expansion of the full-range correlation energy
density has the form [22]

ec =nleo(Q)Inrs —c1(¢) + O (rslnry)]. (E.29)

The expansion of the singlet full-range correlation kernels is

8%e,

on?

=—co(0)m?®r? + O(rtinr,), (E.30)
¢=0

with ¢(0) = (1 — In2)/72, and the expansion of the triplet full-range correlation kernels

is found from the the correlation part of the spin stiffness a.(rs) = (9%€./9¢?)¢c=o

9%e.
om?2

=3r2a’rd ac(ry)

¢=0 (E.31)
=3r2a rf,’ [AoInrs + Co + O(rglnr,)],

where A, = —1/(67%) and C,, = 0.0354744 [24]. Comparing Egs. (E.27) and (E.30), it is
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seen the singlet short-range correlation kernel reduces to the full-range one when

Tars u?
1—In2

< 1, (E.32)

ie. ry < 1.2 for p = 0.4, and, comparing Eqs. (E.28) and (E.31), the triplet short-range
correlation kernel reduces to the full-range one when

2

ars
Sr(Aainr, +Cy) 0 (E.33)

ie. ry < 2.4 for p=0.4.
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Appendix F

Fourier transform of the
non-interacting polarizability

s N

In this appendix, the Fourier transforms of the non-interacting polarizability, prop-
agators and response function are given since they are often used throughout this
thesis. The case of the propagation of a hole and a particle is first detailed, with
different degrees of contraction on the time variables, then the propagation of two
holes or two electrons is studied. The matrix elements of the different quantities in
the frequency space are also given and are summarized at the end of this appendix.

| J

F.1 Non-interacting polarizablity

When the time variables are made explicit, the non-interacting polarizability is given by
X0 (Xltl, X2t2; Xlltll, X/Qt/z) = —iGo(Xl, tl, X’2, tIQ)GO (XQ, tg, Xll, tll) (F].)

When the times are contracted, two situations can occur,

e cither ¢; is contracted with ¢}, and ¢, is contracted with ¢,: in this case, the Green’s
functions have an opposite time ordering and x corresponds to the propagation
of a hole and an electron. This term will be denoted ph/hp for particle-hole/hole-

particle propagator ;

e or ¢; is contracted with to and #| with t}: in this case, both Green’s function
have the same time ordering and yo corresponds to the propagation of either two
holes or two electrons. This term is thus denoted pp/hh which stands for particle-

particle/hole-hole propagation.

The first case is by far more common when optical transition are concerned and is

detailed in the next section.
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F.2 Particle-hole or hole-particle propagator

When a particle-hole propagator is concerned, it is convenient to express it in terms of
time differences. It then rewrites as
Xo(X1t1, Xata; Xy 1], Xoty) = Xo (X1, X2; X, Xy, T1, T2, T) (F.2)

. t t t t . .
with 7 = ¢ —t), 2 =t2 —t, and 7 = 1; L 2;— 2. With these conventions, the

propagator can be written in terms of Green’s function as

. T+ T2 T1 + T2
/ / / /
Xo(X1,X2; X}, X5, 71, T2, T) = —iGo (xl,xz; 5+ 7'> Go (xz,xl; 5 T (F.3)
As it depends on three time differences, its Fourier transform is therefore defined as
! / " / / /
Xo(x1,X2; X}, x5, " W' w) = /dTldngTeW 71 i 26Ty (X1, X2; X}, X, 71, T2, 7). (F.4)
By successive changes of variables, this can be rewritten as

A N
XO(X17X2;X17X27(“J ,w,w)
. i(w +w/2)r i(wllfw/2)7'1 i(wlfw//)‘rz /. /
=—1 [ dridrdre e e Go(x1,%x5;7)Go(x2,x7,71)  (F.5)

=—iGy (xl,x2,w + 2) Go <x2,x'1,w" — %) 278 (w’ — W').

In the context of this thesis, some particular cases are of interest and are detailed

hereinafter.

F.2.1 Case t) =t

By definition of the Fourier transform given in Equation (A.10), the propagator is given
in this case by

1"

dw" .
! ! _ / _ iw Lo/ / "o
XO(X17X27X15X277-1 __nvwaw) _/ ot € nXO(XlaX27X17X2aw ,(JJ,W)
(F.6)
_ i VA w G / R w iw/n
= —1Go [ X1,X5;Ww —|—§ 0| X7, X2 w —5 e .

Spin-orbital expression

Using the Lehmann representation of the non-interacting Green’s function

<,0a X1 v X2 4,07 X1 % X2
Golx1, X2, w Z w—gq —:20+ Z w—g; —i0t’ (F.7)
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in Equation (F.6) and using the relation

(w—a)l(w—b)_aib(wiawl_b» (F.8)

the propagator reduces to

ol /
XO(X17X2,X17X2, —-n,w 7(*)

Pa(X1) @y (X3) o6 (x2) 05 (x1) 1 _ 1

w’ +§—sa+10+ w’—§—5b+i0+

1 1

. ZZ Qpa(xl)‘pa(xﬁ@J X2 SDJ

w L w .
py —w+6a*€a*20+ W+§_5a+7lo+ w’—g—ga‘—zm (F.9)
Zcpz x1) ¢ (x5)pn(x2) 5 (x1) 1 _ 1
—w+e; —ep +i07 w+%—ei—z‘o+ w’—%—sb—I-z’OJr
_ Z 901 X1 901 X2 SDJ(XQ)QOJ(Xl 1 . 1 eiw/n
Wt —E; er%fsiinJr w’f%fsjfi(ﬁ

In particular, its matrix elements in the (ov,ov) block and in the (vo,vo) block can be

expressed in terms of the matrix elements of the one-frequency response function as

. 1 1 o
X0,ja,ja (=1 W', W) = iX0,ja,ja (W) = - = e (F.10a)
w’+575a+i0+ w’fifesjfio+

. 1 1 iwl
X0,bi,bi (=1, W', W) = iX0,bi,bi (W) o - o e, (F.10b)
W - —g =0T W= —g 410"
2 2
where .
ja,ja = B 5 F.1la
X0,5a,ja(w) W—eqte; +i0T ( )
1
Xo,b,"(,i(w) = — (Fllb)

w—¢g; +ep —i0tT

F.2.2 Case t, =t]

A similar derivation can be done in the case where t, = tJ. The propagator is then given

by

/
dﬁ iw'n

ol "o
o1 XO(X17x27X1;X27w 7w7w)

XO(X1,X2;X/1,X/27W//772 = *77700) :/
Dyerw'"n (F.12)

)GO(Xanlaw - 9

= —iGo(x1,x5;w" + 5

Lol ol _ "
:XO(X17X27X17X27T1 =W 7(4))
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and has the same spin-orbital expression than in the case ] = t{.

F.2.3 Case t, =t and t, =t;

If both times are contracted, then the response function is obtained as

dw’
Y gioon i "Go(xl,XQ,w + w)Go(x2,x/1;w’ - f) (F.13)
21w 2 2

XO(X17 X235 Xl17 X/27 =1, —T],Cd) = Z/
which by integration over w’ in the upper half complex plane gives

! <! _ _
Xo(X1,X2,X1,X2,T1 =—-N,T2= —1N,W )

_ Z (pa X1 900, X2)@J(X2)(pj Xl “077 Z (pz X1 907, X2 (pb(XQ)(pb(Xl)eiwn (F14)
w—gq+ej+i0F w—¢g; +ep —i0T '

F.3 Particle-particle or hole-hole propagator

A pp/hh propagator can also be encountered in the derivation of the Bethe-Salpeter
kernel in the case x7p(x1t1, Xet1; Xs5t5 , Xot2). In terms of time differences, this propagator

rewrites as
Xo(X1t1, Xet1; X5ty , Xata) = — iGo (X1, X2, 7)Go (X6, X5, T — 1) (F.15)

where 7 = ¢; — t3. Its Fourier transform is thus given by

Xo(X1,X6; X5, X2;w) = — i/dTeinGO(XlaXQ»T)GO(X67X5aT )
Qs / / (F.16)
=-— Z/ 5 e Gy (x1,X2,w — w')Go (x4, X5, w),
™
which by integration over w’ over the upper half complex plane gives

, 0o (x1) 0% (x2) 06 (x6) @ (X5) pi(x1)¢; (x2) 95 (x6) 9] (X5)

Xo(x1, Xo; X5, X2, ) Z w— (€ +€p) + 10T ; w— (g +¢ej)—i0t
(F.17)
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F.4 Summary

e ph/hp propagator in the general case

w w
/ / 1 / . ’ 1 / 1 / 1
Xo(x1,X2; X7, X5, w" W' w) = —iGy <x1,x2;w +5> Gy (Xg,xl,w —5) 2o (W' —Ww').

(F.18)

e ph/hp propagator when one time difference is contracted

A / /
XO(X17x27X1aX27_T}aW 7w = Xo X17X27X1ax23 7—7’],(&1)

ZZ Pa(x1) 5 (x5) b (x2) 05 (1) 1 _ 1
—W+Eq—€p +E_€a+i0+ W'—g—€b+i0+

2
1 1

w’ +§—5a+10+ w’ —g—aj—zOJr

712 Pa(x1) P, (x5) ) (x2) SOJ (x1)

- —w+eq —e; —i0F
aj

Z% x1); (X3)pp(x2) 3 (x 1 .
—w e —ep +i0F w+g—si—i0+ w’fffsbJrzO*
712 ‘PZ(XI)QOz (X2)SOJ X2 (Pj X1 1
i —wteE—g w’—l—%—si—iOJr w—f—5]—20+

(F.19)
e ph/hp response function
XO(X17 XQ;X/D X/27 =, —-nw )

_ Z Ya(x1)h Xz)‘PJ(X2)% x1) ciwn Z ©i(x1)p; (x5 Sob(XQ)‘Pb(Xl)emn
w—¢gq +€j +i0F w—¢&; +ep — 10t ’

(F.20)

e pp/hh response function

Z Pa(x1) 0k (X2) 00 (X6) 0 (X5) Jrz pi(x1)p; (x2) 0 (x6) 9 (x5)
w— (eq +ep) +140T w— (g; +¢5) —i0F ’

(F.21)

XO(X1,X6;X5,X27
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Appendix G

Second-order self-energy and
static BSE kernel

In this appendix, the details of the derivation of the second-order correlation self-
energy and Bethe-Salpeter kernel are given. It requires the Fourier transform con-
ventions given in Appendix A.2 and the Fourier transforms of the response functions
with different possible time ordering given in Appendix F. A summary of the formulas
of interest for the rest of this thesis is given at the end of this appendix.

G.1 Correlation self-energy
G.1.1 Direct correlation self-energy
The second-order direct correlation self-energy is by definition

»CD@)(1,2) = i/dl’d3d4d4’d5d5’G(1’, 3)Wee(3,5:2,5 ) x1p (5, 4; 51, 4" ) wee (47,154, 17).
(G.1)

With the explicit time dependence, it becomes

ES:Zd) [G] (le X2, T) (G 2)

= i/dXALdXSG(Xl,X% T)x1p (X5, X4; X5, X43 =1, —1), =T )Wee (Y2, I'5)Wee (rs, 1)

where 7 = t; — t, and n = 0T is a small real positive quantity. Following the conventions

given in Appendix A.2, its Fourier transform is thus given by
2V [G] (%1, %2, w)
(G.3)

= i/dX4dX5dT€WG(X17X2,7)X1P(X57X4;X5,X4; —1), =1, =T )Wee (T2, T'5)Wee (T4, 1)
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By making explicit the Fourier transform of xip and using this in G, it then becomes
2PV [G](x1, X2, w)
!/

. dw’ . o
=1 / dX4dX5dT§€W€M TG(x1,%X2, T)X1P (X5, X4; X5, X435 —1), —1), W ) Wee (T2, T'5 ) Wee (s, T1)

, dw'’
=1 / dX4dX5%G(X1, X, W + W/)XIP (X57 X43X5,Xg4; —1, —1), W/)wee(r% r5)wee(r4, rl)v

(G.4)
which by integration over w’ over the upper half complex plane becomes
E(2d) [G] (Xla X2, w)
A(x1) f4(x2) fr(x5) 7 (xa) fo (xa) £ (x5)
= d d ee ) ee Y
g%/ ™ w—(Ea— &+ Eo) +i0T WeelF2 P wee(rarT1) (o oy
1(x1) f7 (x2) [ (%5) [ (%4) [ (%4) [ (%5)
+u;(/dx 4dx5 w— (€1 —En +Ex) —i0° Wee (T2, I's)Wee(Tq, T1).
When evaluated for G = Gy, its matrix elements are therefore given by
£2iw) = [ [ bt a,xew)e a)p )
_y~_ ladvi)ugladd 5~ (ik{ob)ublit) (G-6)
B LW (€a —€j +&c) + 10T W — (e; —ep+eg) —i0t
G.1.2 Exchanged correlation self-energy
The exchanged correlation self-energy is by definition
2CI[G)(1,2) / 1/ d3dAd4 d5d5' G(1', 3)we (5, 3: 2,5 )i (5, 4: 5, 4 Yweo (4,154, 17).
(G.7)
With explicit time variables, it is thus given by
2P [G)(x1, %2, 7)
(G.8)
= _i/dXSdX4G(X1aXB»T)XIP(XIS,X4§X27X47_777 —1), —T)Wee (T2, I'3)Wee (T4, T1),
which by Fourier transform leads to
E (QX) [G](Xl,XQ, )
_ A(x1) 3 (x3)fr(x3) f] (%) fo(xa) [ (%2)
= Z /ngdX o — (SA — SJ + gc) T ZO+ wcc(r27r3)wcc(r4a rl) (Gg)

AJC

- Z /dX3dx 1(x1)f7 (%3) [ (x3) f5 (xa) i (x4) i (x2)

W — (SI — 53 I SK) — ZOJF wee(r23r3)wee(r47r1)-

IBK
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When evaluated at G = Gy, its matrix elements are

(20 () — _ (calvj)(ug|ac) B (il vb) (ublik)
Beun () ; — (a — €5 + &) +i0T % w—(g; —ep +ex) — 0’ (G-10)
such tthat the total second-order self-energy is given by
1 {ac||vj)(ujllac) 1 (ik|[vb) (ubl|ik)
@ (w) == - .
e () 2Zw—(sa—sj+sc)+io+ +22w—(5i_5b+5k)_i0+ (G-11)

ajc ibk

G.2 Correlation kernel

G.2.1 Direct correlation kernel

By differentiating the second-order direct correlation self-energy with respect to G and
evaluating this derivative at G = Gq, the second-order direct correlation kernel is ob-

tained as
ECY(1,6;2;5)
- /dl’d3d4d4’d7d7’6(1’,5)6(3,6)wee(3,7;2,7’)><0(7’,4; T A ) wee (4, 154,17)

) [wee(ga 77 27 7I)X1P<7l7 47 7+, 4/+)wee(4/7 17 4a 1/)]
5G(5,6) -
(G.12)

- / d1'd3dad4’ dsd5' G(1',3)

and can be decoupled into two parts, =229 which corresponds to the first term of the

r.h.s. of this equation and arise from (§G/6G)W, and E2Y which corresponds to the
second term and comes from G(6W/6G).
The first part of the derivative is given by
DE(Qd)(l, 6; 2, 5) = — 5(t2, tﬁ)é(tl, t5)(5(X67 X2)5(X1, X5)

C
/dX3dX4wee(r2,I'3)X0(X3752,X4t1;X3t;,X4tf)wee(r4,r1) (G.13)
=0(ta, t6)0(t1, t5)s TP MP) (x), XG5 Xa, X535 £y — t2)

which defines DEf;Zd’ph/ hp) (x1,x%g; X2, X5;t1 — t2) by taking out the delta functions on the

times. The time ordering in the response function corresponds to the propagation of a
hole and an electron, therefore this term is denoted ph/hp.
The second part of the derivative corresponds to the term GéW/6G

EPY(1,6;2;5)

Oxip(7,4;77,47) (G.14)
5G(5.6) o—cn Wee(ra,r1)0(t1,t4).

=-— G(1,2)/d4d7wee(r2,r7)5(t2,t7)

When the differentiation is done, two kinds of terms arise depending on the time ordering
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of the response functions,
E2D(1,6;2;5)
:iG(l, 2) / d4d7wee(r2, I‘7)(5(t2, t7)(5(4, 5)(5(7+, 6)G(7, 4+)wee(r4, I‘1)(5(7’51, t4) (G15)

+ iG(l, 2) / d4d7wee(r2, I'7)5(t2, t7)5(7, 5)5(4+, 6)G(4, 7+)wee(r4, I‘1)5(t1, t4).
If the time variables are made explicit, this rewrites as

E0CD(1,6;2;5) =iG(x1t1, Xat2)Wee (ra, 16)0(t5 , t6) G (Xata, X5t] )wee (T5, 1) (t1, t5)
+ iG (X111, Xot2 ) Wee (T2, T5)3 (t2, t5) G (Xet1, X5ty )Wee (e, 1) (t], to)

o on/h (G.16)
=5(t5,t6)0(t1, t5)aE2VPY/IP) (%1 x5 X0, X55t1 — t2)
+ 3t t5)0(t], t6) o EPHPP/M (1, X6 X2, X551 — t2),
where the first
QEQIPR/R) (%) X659, X53t1 — ta) = — Wee (T2, T6) X0 (X111, Xot2; X5t , Xot2)wee (v, 1), (G.17)

corresponds to a ph/hp term as the time ordering is different in the two Green’s function,
while the second term

<E£2d’pp/hh)(xl7X6;X2,X5; t1 — t2) = — Wee (T2, 5) X0 (X1t1, X6t1; X5t5 , Xata)Wee (L6, T1), (G.18)

is a pp/hh term as the time difference is the same in both Green’s functions. Using
the Fourier transforms of the ph/hp and pp/hh propagators given in Appendix A.2; the
Fourier transforms of the contributions of the direct second-order kernel are therefore

pECAPR/IR) () x6: %0, X355 W) = 6(X6, X2)d (X1, X5) /dX3dX4wee(I‘27I‘3)wee(I'4,1‘1)

] | (G.19a)

Z[@k(xdsﬂZ(X:’a)%(st)sﬁZ(X4) Pe(x4) Py (X3)pr (X3) Pk (X4)
w+ (gc —e) — 0T w— (gc —ex) + 0T

ke

JERAP/IP) (31 %61 X0, X5;W) = Wee (T2, T'g)Weo (L5, T1)

ok (X1) 5 (X2) e (X6) 0 (X5)  @e(x1)@r (X2) Pk (X6) P (X5) (G.19Db)
| }

w4 (ec —e) —i0t w— (e, —eg) +i0t

ke

JECEPP/EN) () x4 X9, X53 W) = Wee (T2, r5)wee(r6> r1)

Z QOC X1 SDC X2 Sod XG Sad Z Sﬁk X1 (pk X9 (pl(x,a)(pl (X5) (G19C)
w—€+€d +ZO+ w — €k+5l)_20+

Therefore, the corresponding matrix elements are given by

=etmm ) =y~ akba)tralok) s~ (ki aalsh

©PaTS w—(ec —ex) +i0T 4= w+(ec —ex) — 0T

(G.20a)
ke
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(ar|pk){qk|as) (kr|pa){qalks)

=(2d,ph/hp) - _
<=c,pq,rs (CU) ; w (Ec — Ek) T 0t + ; W+ (50 — Ek) — 0+ (GQOb)
=(2d,pp/hh) () _ {ablps){grlab) (Kl|ps) (qr|kl)
<—c,pq,rs (W) Z W — (5c + 5(1) + 40+ zl: W — (5k + 5l) — 0t (GQOC)

cd

G.2.2 Exchanged correlation kernel

A similar derivation is performed for the the second-order exchanged correlation ker-
nel. By differentiation of the corresponding self-energy and evaluation at G = Gy, the

exchanged correlation kernel is then obtained as

Z.(1,6;2;5)

- / d1'd3d4da’d7d7'5(1',5)5(3, 6)wee(T, 3; 2, 7 )x0 (7', 4; 7, 4" wee (47, 1;4,17)

5XIP(7I74; 7+74/+) (G21)

0GE.6)  lomgy

+ / d1'd3d4d4’ d7d7 G(1, 3)wee(7, 3;2,7') Wee(4',1;4,1)

— E(QX)(I 6:2;5) + gQX)(1,6;2;5),

which can be decoupled into two parts coming either from the derivative of G or the
derivative of W. The first part of the exchanged second-order correlation kernel is

therefore
E?(1,6;2,5)
25(t27t6)5(t17t5)5(X1,X5)/dX4wee(1"2,I‘6)X0(X4t1,X6t2;X4t1+7X2t2+)wee(I'4,Pl) (G.22)
=8 (ta, t6)d(t1, t5)s ZFOPYIP) (x1 X1 X0, X551 — t2),

(2x ph/hp)

where , is obtained by taking the delta functions on the time variables out,

>5£2X’ph/hp) (x1,X6; X2,X5;t1 — t2)
(G.23)

25(X1,X5)/dX4wee(r27r6)Xo(X4t1,X6t2;X4tT7X2t§r)wee(r4,1‘1)-

It is a ph/hp term as the time ordering in the response function corresponds to the
propagation of a hole and an electron together. Its Fourier transform is thus given by

pEPOPR/P) () x4 x0, X5, w) = 5(X17x5)/dx4wee(r27r6)wee(r4arl)

« . G.24
> polx) e (x)onxe)et(x)  prlxiibedxoeix) ] (Y
w— (€. — k) +i0F w+ (e. — &) — 0t ’
and its matrix elements are given by
—(2x,ph/hp) (, )\ _ (ar|pk){qk|sa) (kr|pa)(qa|sk)
>—c,pq,rs (w) Z o (Ec — Ek) + 0+ Z (G25)

-~ T~ W+ (ec — ) —i0t
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The second part of the the exchanged correlation kernel arise from the derivative of W

and is given by
E9(1,6;2,5)
=—1 / d3d4G0(1, 3)’(1)86(1‘2, I‘3)(5(t3, t2)G0(4, 2+)(5(3, 5)(5(4+, 6)wee(r4, I‘1)6(t1, t4) (G26)

—1 / dSGo(l, 3)wee(r2, I'3)5(t3, t2)5(2+, 6)G0(3, 5+)wee(r5, rl)d(tl, t5).
By making the time variables explicit, it rewrites as

E9(1,6;2,5)
= — iGo(x1t1, X5t2)Wee (T2, T5)I(t5, ta) Go (X6t 1, Xaty )Wee(Te, T1)5(t], )
- i/dX3G0(x1t1,X3,t2)wee(r2, r3)8(t5, t6)Go(x3ta, X5t )wee (r5,11)d(t1,t5)  (G.27)
=0(ts,t2)0(t1,t6) EZPP/M) (x1 x5 %o, X531 — t2)
+ (b1, t5)0(ta, t6) aZZOPH/IP) (x) X0 X0, X531 — to)
where

—(2x, hh . .
<1‘:'((; pp/ )(X17X67X2;X57t1 - tQ)

(G.28)
=Wee (T2, T5)X0(X6t1, X1t1; X5ta, Xots )Wee (L6, 1)
and
<Eg2x’ph/hp) (x1,X6;X2, X5 t1 — t2)
(G.29)
=5(X2,X6)/dX:awee(I‘z,I‘3)X0(X1t1,X3t2;X5tfax3t2)wee(r57r1)
Their Fourier transforms are then given by
JEEOPP/IN) (3 X6 X, X55 W)
:wee(rQa rs)wee(r67 rl)
Z ve(X6)pr (X2)pa(Xx1) @y (xs5) o1 (X6)Pr (x2) 01 (x1) 9] (X5)
w— (. +eq) +1i0F w— (ex +¢;) —i0F ’
(G.30a)
JE@RPI/IP) () x6: %0, X5; W)
=0(x2,x /erwee I, I'3)Wee(Ts5, T
(x2,Xg) 3Wee (T2, T3)Wee (T'5,T1) (G.30b)

[Z pe(x1)pE (x3) ok (3) 0 (%) sok<xl>soz<><3>soc<x$>w:<X5>1 |

w— (e, —eg)+i0t w+ (ec — &) —i0t
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and their matrix elements are

=@rp/i) () = — 3 (cd|ps)(gr|dc) 3 (kl|ps)(gr|lk)

a=cpars (e tea) Fi0F | 2o (et o) —i0F (G.31a)
—(2x.ph/hp) [, 1y _ (relpk)(gkles) (rk|pc)(gclks)
Eepirs () Z w—(ec —ex) +1i0F Z w4 (ec —eg) — 0+ (G.31b)

ke ke

G.2.3 Total correlation kernel

Combining the direct and exchanged contributions, the ph/hp contribution to the corre-

lation kernel is thus given by

—2.ph/hp( \ _ (re|lpk)(gk||sc) (rk|lpc)(gc||sk)
Zepairs (@) ; ©—(eo—ep) L 0% © ; W+ (cc —en) — 0%’ (G.32)
and the pp/hh contribution by
= 1 {grl|cd)(cd]|ps) 1 {qr||kL){K||ps)
—2,pp/hh —Z _Z
Zepnrs (<) Z w— (ec+eq4) +i0+ 2 Z w— (ex + &) —i0t" (G.33)

2
cd

kl

G.3 Spin-adaptation of the correlation kernel

For spin-restricted closed-shell calculations, the spin-adapted kernel is obtained by ro-
tation in the spin space as was done in Section 8.3.2. For four fixed spatial orbitals
referred to as p, q, r, s, the spin-singlet and triplet kernels are therefore obtained by

1=(2 _ =2 =(2)

‘—‘g,[))q,rs (w) - ‘—‘c,quT,T'TsT(w) + “c,quT,7'Ls¢(w)’ (G34a‘)
- =(2 =(2

B s (W) = :i,z)quT,rTST(w) - :a(:,zzm,r¢s¢(w)' (G.34b)

G.3.1 Ph/hp spin-adapted kernel

With the convention
Wee,pq,rs ((U) - / XmdXQdX5dX6(pp(X2)(pZ (Xl)wee(xla X6, X2, X5; w)@:i (X6)<)OS (X5)a (G35)

the spin contribution to the ph/hp kernel are obtained from Equation (G.40) when the
sum over i and a is done for all possible spins and are given by

=(2,ph/hp) -
Zeptat.rtst (W) =

- 2wee,pr,ckwee,sq,kc — Wee,pr,ckWee,cq,ks — Wee,kr,cpWee,sq,kc + Wee, kr,cpWee,cq,ks

Z w— (ec —ex) +10F (G.36a)

+§ : 2wee,pr,kcwee,sq,ck — Wee, pr,kcWee,kq,cs — Wee,cr,kpWee,sq,ck T Wee,cr,kpWee, kq,cs
w+ (gc —eg) — 0T

ke

ke
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—(2) Wee, kr,cpWee,cq, ks Wee,cr,kpWee, kq,cs
= w) = — .
cotatrist (@) ) W — (€0 — x) + 40T > W+ (0 — x) — 0T (G.36b)

c ke

The singlet and triplet ph/hp kernels are then obtained by sum and difference of these

two terms and are given by

TEGENIP) (w) =

2 : 2wee,p7',ckwee,sq,kc — Wee,pr,ckWee,cq,ks — Wee,kr,cpWee,sq,kc T 2wee,k7‘,cpwee,cq,ks

— w— (e, — k) +1i0t

j : 2wee,pr,kcwee,sq,ck — Wee,pr,kcWee,kq,cs — Wee,cr,kpWee,sq,ck + 2wee,cr,kpwee,kq,cs
w+ (ec —e) —i0t

)

ke
(G.37a)
3:(2,ph/hp)( ) _ Z 2wee7pr,ckwee,sq,k:c — Wee,pr,ckWee,cq,ks — Wee,kr,cpWee,sq,kc
TepeTs N n w— (gc — ex) +i0T
: (G.37h)

Z 2wcc,pr,kcwcc,sq,ck — Wee,pr,kcWee,kq,cs — Wee,cr,kpWee,sq,ck

- w+ (ec —eg) —i0T

G.3.2 Pp/hh spin-adapted kernel

Similarly, in Equation (G.41), the sums are performed over all spin-orbitals. The term

=(2,pp/hh) =(2,pp/hh) ;
Eepratrtst (W) and E¢ ron ) () are given by

—(2,pp/hh) o 1 wcc,cq,rdwcc,pc,ds 1 wcc,kq,rlwcc,pk,ls
= ptatatst(@) D) ; w— (e +eq) +i0T 2 ; w— (e + &) —i0F’ (G.38a)
E(Z,pp/hh) ( ) :} Z Wee,cq,rdWee,pc,ds + Wee,dq,rcWee,sc,dp
ewtatrsi ) =5 w— (6 +24) + 10T
od (G.38b)
B 1 Z Wee,kq,rlWee,pk,ls + Wee,lq,rkWee,sk,lp
2 4 w— (ex + &) —i0t ’

where Wee pg,rs stands for wee pg.rs — Weepr,qs- 1he spin-adapted pp/hh kernels are thus

given by

S ()

_1 Z 2wee,cq,rdwee,pc,ds — Wee,cq,rdWee,sc,dp — Wee,dq,rcWee,pc,ds + 2wee,dq7rcwee,sc,dp
2

— w— (ec +€&q) +1i0F

)

12 : 2wee,kq,rlwee,pk,ls — Wee,kq,rlWee,sk,lp — Wee,lq,rkWee,pk,ls T 2wee,lq,7‘kwee,sk,lp
2 4 w— (e +e)—1i0T

(G.39a)

3=(2,pp/hh) (w) _ 1 Wee,cq,rdWee,sc,dp + Wee,dq,rcWee,pc,ds
Spars 52 W — (2o +24) + 107

(G.39Db)

cd
1 Wee,kq,rlWee,sk,lp T Wee,lq,rkWee,pk,ls
+ = g P,
2 o w—(Ek—f—El)—ZO
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G.4 Summary

e ph/hp second-order correlation kernel

—2,ph/hp(, y _ _ (rellpk) (gk||sc) (rk||pc) {gcl|sk)

Zepaira’ () % w—(ec —ep) +1407F * ZC w+ (€. — ) — 0T’ (G.40)
e pp/hh second-order correlation kernel

- 1 (gr|lcd){cd]|ps) 1 (gr||k1) (Kl |ps)

—2,pp/hh —Z _Z

Zepiirs (@) 2 zd: w— (ec +eq) +i0+ 2 %: w— (e + &) —i0F (G41)

C

e ph/hp singlet second-order correlation kernel

! E'g,z;z;gflr/shp) (w) =

B Z 2wce,pr,ckwcc,sq,kc — Wee,pr,ckWee,cq,ks — Wee,kr,cpWee,sq,kc + 2wcc,kr,cpwec,cq,ks

> w—(ec — k) + 10T

2wee7p7‘,k:cwee,sq,ck: — Wee,pr,kcWee, kq,cs — Wee,cr,kpWee,sq,ck T Qwee7cr7kpwee,kq,cs
Z w4 (e. —eg) —i0t

)

ke
(G.42)
e ph/hp triplet second-order correlation kernel
3=(2,ph/hp) (OJ) _ Z 2wee,pr,ckwee,sq,kc — Wee,pr,ckWee,cq,ks — Wee,kr,cpWee,sq,kc
—c,pq,rs — w — (60 — 6k) + ZO+
(G.43)

2 : 2wee,pr,kcwee,sq,ck — Wee,pr,kcWee,kq,cs — Wee,cr,kpWee,sq,ck

— w+ (ec —e) —i0F

e pp/hh singlet second-order correlation kernel

ECERN ()

1 Z 2wcc,cq,rdwcc,pc,ds — Wee,cq,rdWee,sc,dp — Wee,dq,rcWee,pc,ds + 2wcc,dq,rcwec,sc,dp
2

— w— (ec +eq) +i0F

)

_ 1 Z 2weech,rlwee,plc,ls — Wee, kq,rlWee,sk,lp — Wee,lq,rkWee,pk,ls T 2wee,lq7rkwee,sk,lp
2 W*(Ek +€l)*i0+

kl
(G.44)
e pp/hh triplet second-order correlation kernel
35(2,pp/hh) (w) _ 1 Z Wee,cq,rdWee,sc,dp + Wee,dq,rcWee,pec,ds
e.pa.rs 2 w— (2o +24) + 07 .
45

cd
+ 1 Z Wee, kq,rlWee,sk,lp T Wee,lq,rkWee,pk,ls
2 ) w—(€k+61)—i0+
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Appendix H

Dynamic BSE

( )

In this appendix, the details of the Fourier transform of the Bethe-Salpeter equation
with a dynamical second-order kernel which depends on one frequency are given.
The derivation of the effective second-order dynamical Bethe-Salpeter kernel in a
spin-orbital basis set is also detailed. This appendix is to be read with Chapter 10
and requires the equations derived in Appendices F and G. A summary of the main
formulas is given at the end of this appendix.

H.1 Fourier transform of the Bethe-Salpeter Equation

In this section, we are interested in evaluating the Fourier transform of the response
function y at second-order with respect to the electronic interaction defined through the
Bethe-Salpeter equation as

X(X1t1, Xota; X4 ], X5, 13 ) =Xo(Xit1, Xata: X\ t], X515 )
—|—/dX3dt3dX4dt4dX5dt5dX6dt6X0(X1t1,X4t4;X/ltT,X3t3) (Hl)
(2)

Elwe(X3ts, Xate; Xata, Xsts) X (Xsts, Xato; Xete, Xotg ).
As the Hartree and exchange kernels are static, only the correlation part is detailed
hereinafter. From Chapter 9, we know that the second-order correlation kernel can be
decoupled into a ph/hp and a pp/hh part which exhibits different delta functions on the
time variables
=P (3,6;4;5) =5(ta, t6)d(ts, t5) 2P/ (x5, x65 X4, X355 b3 — t4) (H.2)

+ 6(ta, t5)0(t3, t6)5(2’pp/hh) (X3, X6;X4,X55t3 — 14).

C

(2,ph/hp)

In this equation, the terms Zg and Z(2Pp/bh)

include both direct and exchanged
contributions, where the derivative of W was also taken into account. As the delta
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functions are different for the ph/hp and pp/hh terms, they need to be treated separately

when the Fourier transform is performed.

H.1.1 Evaluation of the particle-hole term

We first evaluate the ph/hp contribution to the Bethe-Salpeter equation given by
Tph/hp(X17X2,X/1,X/2;t1 —t9)
:/dX3dtng4dt4dx5dt5dx6dt6X0(Xltl,X4t4; xit], xst3) (H.3)
8(ta, t6)d(ts, t5) PP/ MP) (x5, %63 X4, X5 t3 — ta) X (Xsts, Xota; Xete, Xht3 ),
which will be referred as TP*/"? in the following. In terms of time differences, it becomes

h/h / /.
" / p(X17X2,X17X27t1 _t2)

(H.4)

2t — ts +t
=/dX3dt3dX4dt4dX5dx6xO (X17X4;X’1,X3;—?7,t4 — b3, 2 n_Bt 4)

2 2
t3+t4_2t2_77)
2 2 '

=(2,ph . . . /.
_‘é P )(X3,X6,X4,X57t3 - t4)X(X57X27X67X27t3 - t47 -1,

In order to perform the Fourier transform of this quantity, it is convenient to do a change
of variables given by

t3—>7‘3:t3—t4 ; t4—>T4:t4—t2+T3;—n ; T:tl—tz, (H5)
such that it can be rewritten as

h/h / / /
TPYPP (%1 x0: X, Xb:T) = / dxgdrsdxsdrydxsdxexo (X1, X4; X, X3, =1, —T3, T — T4)
(H.6)
=(2,ph/h . . . /.
‘:‘S: ph/hp) (X37 X6; X4, X5, T3)X(X57 X2;X6,X9; T3, —1], T4)‘
As it depends only on one time difference, its Fourier transform is then given by

h/h vl ol j ! .
TPh/ P(x1,X9; X7, X5;w) —/dTe“’”/dX3dngX4dT4dx5dX6X0 (X1,X4;X7,X3; =1, —T3, T — T4)

—(2,ph/h . . . /.
:E ph/ p)(X37X67X4aX57T3)X(X5>X2,X67X27T37_7777-4>‘

(H.7)
Making explicit the Fourier transform of yo and Z, it becomes
d / d " d "
Tph/hp(xl,XQ;xll,x’Q;w) i/dengT4%%;TdX3dX4dX5dx6
Xo (X1, X4 Xlla x3; —1), W', W“) Egph/hp)(x?n X6; X4, X553 wm) <H8)

i(w’—w)r —i(w"
(&

. ! /i
i /. - —w')Tg W' T,
X(X57X27X67X2a7—37_7777—4)€ ( ) 3e 47
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which by integration over the time variables and w” gives

dw’ dw"”
/
——dxgdxadxsdxeXo (X1,X4; X}, X3; =1, w', w)

o 2m (H.9)

—=(2,ph/h . o " . rLn
‘:‘g ph/ p)(x37X67X4;X5aw —w )X(X57X2aX6aX2?w 7_77’("))

h/h !l
TPY/BP (%) x0: X), Xh; w) =

In the second-order approximation, only the zeroth-order term contributes in y as the
correlation kernel contributes at the second order. Therefore, making advantage of the
diagonal character of yo, the matrix elements of this term are

dw' dw" _
T]?qhv/”};p (w) = 5 9 X0pa. pa(—n, W, w):ﬁi’,ﬁfﬂlp) (W' — W) x0,rs,rs (W, =1, w). (H.10)

H.1.2 Evaluation of the particle-particle/hole-hole term

We note TPP/P® the term coming from the convolution of the pp/hh correlation kernel,
given by

Tpp/hh(xh X2, Xll, X/Q; tl — tg) = / dX3dt3dX4dt4dX5dX6XQ (Xltl,X4t4; Xllt-li_, X3t3)

Ef’pp/hh) (X3, X6; X4, X5; t3 — t4) X (Xsta, Xato; Xets, Xats ).

(H.11)
In terms of time differences, and with the change of variables
Ta=1ts—t3 ; T3=t3—t2+7—4;n ;o T =11 — g, (H.12)
it can be rewritten as
TP/ (x1, X, X], Xh; T) :/dX3d73dX4dT4dX5dX6X0(X1,X4;X'17X3; —1,T4,T — T3) ( )
H.13
EEPP/MN) (x5, X6; X4, X35 —74) X(X5, X25 Xg, Xb3 T, — 1, T3).
Similarly to the ph/ph case, its Fourier transform is therefore
dw/l
j"pp/hh()cl’)(2’)(/17)(27 / / /ngdX4dX5dX6XO(X17X47Xlax?)a —n,w ,CU)
(H.14)
Eg2,pp/hh) (X37 X6; X4, X5 w +w )X(X5’ X2; X6, X2a -n,w )a
and its matrix elements are given by
dw' dw" -
qup{“?h( )= o o1 X0.pa,p0( = n,w’,w) t(22z;£)1pr/shh)(w +w’ )XOJS,TS(WH;_U’W)' (H'15)
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H.2 Matrix elements of the effective kernel

In a first step, the integral over «’ is evaluated in the case pq = ja, where the matrix
elements of yo are given in Equation (F.10a). Then, the integration over w” is done
either with rs = ib for the matrix elements of the block (ov,ov) corresponding to the
matrix A, or with rs = bi for the matrix elements of the block (ov,vo) which correspond
to the B block.

H.2.1 Particle-hole effective kernel
Integration over «’ for pq = ia

Using the expression of the matrix elements of y, given in Equation (F.10a), and of the
ph/ph correlation kernel given in Equation (G.40), the matrix elements of TP"/"P are

. dw' dw” i
51} 7{;‘13 Z / o0 o - X0,ia za( )XO,TS,TS (w//a -, w)e K
1 1
— — - — - (H.16)
w’—|—§—6a+10+ w’—g—si—z()*‘
(rkl|ic){ac||sk) 3 (rel|ik) (ak||sc)
W —w" + (. —eg) — 0T W — W’ — (e, —&x) +i0T ’

Using the relation (F.8) and by integration on the upper complex half-plane, it gives

1
ph/hp 2 : dw "
Za,é XO ia, m XOrs rs( 7*7]7‘*))

H.17
(rk|lic)(ac||sk) B (rel|ik)(ak||sc) ( )
—w”—§+sa+sc—sk—i0+ —w”+%+5i—5c+5k+i0+

Integration over w” for rs = jb

The matrix elements in the (ov,ov) block are then obtained by doing the second inte-

1"

gration over w” in the case rs = jb, using Equation (F.10a) for the matrix elements of

Xo- In this case, the matrix elements of the ph/ph term are given by

h/h . dw”
TRMP (W) = — Z/ D X0siaia(@)X0,50,56(w)

2m
kc
(7 lic) (ac|[bk) N {jcllik) (ak][be)
w”+%—sa—sc+sk+i0+ w”—%—8i+sc—5k—i0+ (H.18)
1 1 i

— (&
w w
w"+§—sb+i0+ w/'—§—€j—i0+
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and by integration over the upper complex plane, it finally gives

h/h
,‘Tilzz,_y/b p(w) = XO,ia,ia(w)Xoyijb(w)
3 (jkl|ic)(ac||bk) (jcl|ik)(ak||bc) (H.19)
— w—eqtep—ec+e;+i0F  wHe —ect+ep—ep+i0t )

Integration over w” for rs = bj

In order to have the (ov,vo) matrix elements, the second integration is now done with
rs = bj instead of rs = bj. The matrix elements of y, are now given by Equation (F.10b).
The matrix elements of the term ph/ph in the (ov,vo) block are thus obtained by

h/h [ dw”
T;;J{j Pw) =— Z/ Z X0,ia,ia (W) X0,bj,b5 (W)

2m
kc
(bk||ic) {ac|| k) B {bel|ik) {ak]|jc)
w”+§—sa—sc+€k+i0+ w”—%—si+sc—sk—10+ (H.20)
1 _ 1 eiw”n.

w”—l—%—fsj—iOJr w”—%—€b+i0+

and by integration over the upper complex plane, it finally gives

ph/hp

Tia,bj (w) =— XO,ia,ia(w)XO,bj,bj (W)
S OklieNacllsh)  Gellib)ablse (1.21)
Eo —Ept+ec—e;—i0t g —ecter—ep+i0T )7

ke

It is worth mentioning that this term depends on w only via the two response functions
which means that the ph/ph effective kernel does not depend on w in the B block at the

second order of perturbation.

Effective ph/hp correlation kernel

Z(2Ph/hP) which matrix elements in the

This therefore defines an effective ph/hp kernel =¢
block A are given by

SERhR) ()~ § ( (7k|lic)(ac]|bk) n (gcl|ik) (ak|[bc)

Tejiagb —~ \w—¢cat+ep —Ecte;+i0F w+€i—ac+5k—fsb+i0+>’ (11.22)

and in the block B by

EEph/ie) _ § < (bk| |ic)(ac||jk) 4 Sbellik){ak]ljc) ) .

cia.by —€q+ep —€c+e; +i0T g —e. e —ep +i0T

(H.23)

kc

It is straightforward to show that the kernel contribution to the block A is then hermitian
such that Z3PYEP) () = E@PE/R) ()« and symmetric and frequency-independent for the

—c,ia,jb —c,jbia
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block B, i.e. ~£215};,§hp) ngg%hp)'

Spin adaptation

Following the same procedure as in Appendix G.3, the matrix elements of the singlet
and triplet ph/hp effective correlation kernels in the block A are given by

1%(2,ph/hp) _
‘—‘c,z’zlz),jb P (w) =

_ 2 : 2wee,ij,k:cwee,ba,ck — Wee,ij,kcWee,ka,cb — Wee,cj,kiWee,ba,ck + 2wee,cj,kiwee,ka,cb

— W—€q+Ep —Ect+e; +i0F (H.24a)

. Z 2wee,ij,ckwee,ba,kc — Wee,ij,ckWee,ca,kb — Wee, kj,ciWee,ba,kc T 2wee,kj,ciwee,ca,kb
)

. Wte —€ect+e —ep+i0t

c

3=(2, ph/hp)( ) _ Z 2wee,ij,kcwee7ba,ck — Wee,ij,kcWee,ka,cb — Wee,cj,kiWee,ba,ck
Teiajb w—¢€q+er—ec+e;+10TF

(H.24D)

_ Z 2wee,ij,ck‘wee,ba,kc — Wee,ij,ckWee,ca,kb — Wee,kj,ciWee,ba,kc
wHe; —ectep—ep+i0T

)

and the matrix elements of the singlet and triplet ph/hp effective correlation kernels in

the block B are given by

1=(2,ph/hp) _
—c,ia,bj

j : 2wee,ib,kcwee,ja,ck — Wee,ib,kcWee,ka,cj — Wee,cb,kiWee,ja,ck + 2wee,cb,kiwee,ka,cj

— —€q+ €k — Ec + €5 +10T (H.25a)

+ Z 2wee,ib,ck'LUee,ja,kc — Wee,ib,ckWee,ca,kj — Wee,kb,ciWee,ja, ke T 2wee,kb,ciwee,ca,kj
€ —Ect+ep —ep +10T

)

ke

3%(2,ph/hp) __ Z 2wcc,ib,kcwcc,ja,ck — Wee,ib,kcWee,ka,cj — Wee,cb,kiWee,ja,ck

Teiaby = —€q+ €k —€c+¢e; +i0T

(H.25b)

2wee,ib,ckwee,ja,kc — Wee,ib,ckWee,ca,kj — Wee,kb,ciWee,ja, k:c
_l’_

. € — Ec+ep —ep +1i0T
cC

H.2.2 Particle-particle/hole-hole effective kernel

Its matrix elements to the second-order of perturbation are given by

dw'! _
T/ @) = [ 92 [ %o ZEE W+ sl ). (H.26)

where the matrix elements of the different contributions are given in Equations (G.41),
(F.10a) and (F.10b). Following the same steps as in the ph/ph case, its matrix elements
in the (ov—ov) and (ov—vo) blocks are therefore given by

Tpp/hh

ia.jb = X0,ia,ia (W) X0,jb,jb(w)

(w
1 (||l (k1| ib) (aj||cd) (cd]|ib) (H.27a)
2 (;w— (€a + &) + (e + &) +i0T +%:W+(5i+5j) - (€c+€d)+i0+>
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hh
f;%j (W) = X0,ia,ia(W)X0,b5,b5 (W)

1 ab||kl) (kl||ij ab||cd) (cd||i] (H.27b)
(Z( (abl K1) (k) o (abl|ed){ed] i) )

2 €a +ep) — (e + &) —i0F gc+eq)— (e +¢5) —i0t
The matrix elements of the effective pp/hh correlation kernel are thus

=(2, pp/hh)( )

—c,ia,jb
iy (ajl K1) (ki ib) iy (ajlcd) {cd] ib) (H.282)
) '~ w— (eq +eb) + (e +&1) Ti0F = wt(ei +e5) — (ec +ea) +i0F

=(2,pp/hh)

—c,ia,bj

Ly (IRl o~ (b ed i) (H.28b)
-2 \47 (eatep) = (en +er) —i0F (ec +eq) — (i +¢5) —i0F |~

As it was the case for the ph/hp effective kernel, the contributions to the A block are

hermitian, and are frequency-independent and symmetric in the block B.

Spin adaptation

The matrix elements of the singlet and triplet pp/hh effective correlation kernels in the
block A are given by
1=(2,pp/hh)
“c,iclzgg’b (w)
:1 Z 2wee,ca,jdwee,ic,db — Wee,ca,jdWee,be,di — Wee,da,jcWee,ic,db + 2wee,da,jcwee,bc,di
w+ (e;+¢5) — (ec +€q) +i07F (H.29a)

cd

+= Z 2wee ka,jlWee,ik,lb — Wee,ka,jlWee,bk,li — Wee,la,jkWee,ik,lb + 2wee,la,jkwee,bk,li
w—(eq + ) + (e + 1) + 00T

Y

kl
3=(2,pp/hh) (w) _ 1 Z Wee,ca,jdWee,be,di T Wee,da,jcWee,ic,db
e ia,jb 24~ wH (g +ej) — (ec +eq) +i0F
c
(HL.29D)
o 1 Z Wee,ka,jlWee,bk,li + Wee,la,jkWee,ik,lb
24~ w-— (6q +&b) + (e + &) +i0T
and in the block B by
1=(2,pp/hh)
—c,ia,bj
_ lz 2'wee,ca,balu}ee,iadj — Wee,ca,bdWee,jc,di — Wee,da,bcWee,ic,dj + 2'wee,da7bcu]ee,jc,di
— (ei+¢€j) — (ec +eq) +1i0F (H.30a)
o 12 2wee,ka,blwee,ik,lj — Wee,ka,blWee,jk,li — Wee,la,bkWee,ik,lj + zwee,la,bkwee,jk,li
—(gq +ep) + (e + &) +140T ’
3,—\(2 pp/hh) L Z Wee,ca,bdWee,jc,di + Wee,da,bcWee,ic,dj
¢ ia,bj (ei +¢e5) — (ec +eq) +1i0F
(HL.30Db)

4= Z Wee, ka bl Wee, jk i + Wee,la,bkWee,ik,lj
—(eq +ep) + (e + &) +i0t
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H.3 Summary

e second-order correlation kernel in the block A
é¢(:,2i)a,jb( ):
-y < (jkl|ic) (ac||bk) . (jel|ik)(ak||bec) )

w—€gter—€ct+e;+10T  wHe —ec+er—ep+ 00T

kc
1 (ajl[kl)(kl]|ib) (aj||ed)(cd||ib)
+ 2 (%:w— (o +ep) + (e + &) + 10T +%:w+(€i—|—5j) —(ec+eq)+i0t |-
(H.31)
e second-order correlation kernel in the block B
so) 5o (__OHlidlaclit)  @clik)atllig
Toiaby "~ \—€ateér—ccte;+i0% & —ectep —ep +i0F
(H.32)

1 (abl|k1) ([|i7) (abl|cd)(cd]|ij)
3 (%3 (Ca t0) — (e +21) — 07 +§d: ot ea)— (e tej)—i07 |
e singlet second-order correlation kernel in the block A

1=(2) (W) =

—c,ia,jb -

_ 2 : 2wee,ij,kcwee,ba,ck — Wee,ij,kcWee,ka,cb — Wee,cj,kiWee,ba,ck + 2wee,cj,kiwee,ka,cb

w—¢cq+er—ec+e;+10F
kc

_ Z 2wee,ij,ckwee,ba,kc — Wee,ij,ckWee,ca,kb — Wee,kj,ciWee,ba,kc T 2wee,kj,ciwee,ca,kb
wHe; —ectep—ep+i0T

ke
+ 1 Z 2wee,ca,jdwee,ic,db — Wee,ca,jdWee,be,di — Wee,da,jcWee,ic,db + 2U-)ee,da,jc'wee,bc,di
2 w (g, +¢5) — (ec +eq) +1i0TF

9

cd
n 1 Z 2Wee, ka,jlWee,ik,lb — Wee,ka,jlWee,bk,li — Wee,la,jkWee,ik,lb T 2Wee,la,jkWee,bk,li
24 w— (eq +ep) + (e + &) + 00T

(H.33)
e triplet second-order correlation kernel in the block A
3=(2) (w) _ Z 2wee,ij,kcwee,ba,ck — Wee,ij,kcWee,ka,cb — Wee,cj,kiWee,ba,ck
e,1a,5b — W—¢€q+ep—ect+e; +i0F
N Z 2wee,ij,ck:wee,ba,kc — Wee,ij,ckWee,ca,kb — Wee,kj,ciWee,ba,kc
— w+e; —e.+ep —ep+i0T
(H.34)

. 1 Z Wee,ca,jdWee,be,di T Wee,da,jcWee,ic,db
24~ wHt (& +¢ej) — (ec +€q) + 10T

b

1 2 : Wee,ka,jlWee,bk,li + Wee,la,jkWee,ik,lb

2 ™ w—(eq +ep) + (e + &) + 10T
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e singlet second-order correlation kernel in the block B
1=(2)
—c,ia,bj
Z 2wee,ib,kcwee,ja,ck¢ — Wee,ib,kcWee,ka,cj — Wee,cb,kiWee,ja,ck + 2wee,cb,kiwee,ka,cj
—€q +ep — €.+ €5 +1i0T
ke

+ Z 2wee,ib,ckwee,ja,kc — Wee,ib,ckWee,ca,kj — Wee,kb,ciWee,ja,kc + 2wee,kb,ciwee,ca,kj
- & —Ec+ e —ep +i0t
c

o 12 : 2wee,ca,bdwee,ic,dj — Wee,ca,bdWee,jc,di — Wee,da,bcWee,ic,dj + 2wee,da,bcwee,jc,di
2 (ei +¢e5) — (ec +eq) +1i0F

cd
1 Z 2wee,ka,blwee,ik,lj — Wee,ka,blWee,jk,li — Wee,la,bkWee,ik,lj + 2wee,la,bkwee,jk,li
. )
2 4 —(ea +ep) + (ex + &) +1i0F

(H.35)
e triplet second-order correlation kernel in the block B
3&(2) _2 : 2wee,ib,kcwee,ja,ck — Wee,ib,kcWee,ka,cj — Wee,cb,kiWee,ja,ck
cia,bj " —€q + e —€c €5 +i0F
+ 2 : 2wee,ib,ckwee,ja,kc — Wee,ib,ckWee,ca,kj — Wee,kb,ciWee,ja,kc
€ —Ec+ e —egp + 10T
(H.36)

kc

1 Wee,ca,bdWee,jc,di + Wee,da,bcWee,ic,dj
t3 Z 0+

2 ~ (e;+¢€5) — (ec +&q) +140

1 Wee, ka,blWee, jk,li T Wee,la,bkWee,ik,lj
+3 Z 0+
2 4 —(eq +€p) + (e + 1) +140
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Appendix I

MolExc manual

In this appendix, a user manual is provided for my program MolExc. This program
relies on Molpro for the SCF calculation in order to get the two-electron integrals over
the molecular orbitals, the orbital energies and the matrix elements of the short-range
kernels. MolExc is then able to perform the linear-response calculation for HF, RSH,
static and dynamic second-order BSE. Typical inputs for MolExc and for Molpro are
given here.

1.1 Presentation

MolExc is a homemade package able to deal with the linear-response part of a quantum
chemistry calculation. It was designed in order to test the different variants of the
Bethe-Salpeter kernels. For now, it relies on a development version of Molpro [25] for the
ground-state SCF calculations in order to get the two-electron integrals on the molecular
orbitals via the FCIdump [26, 27|, the orbital energies and the matrix elements of the
short-range kernels. However, it could be interfaced with any quantum software able
to “dump” these quatities. MolExc is able to perform linear-response time-dependent
RSH calculations with or without the Tamm-Dancoff approximation, different variants
of static Bethe-Salpeter calculation (with or without the inclusion of exchange and of
the derivative of W with respect to G, with or without range separation, or in TDA) and
dynamical second-order (range-separated) Bethe-Salpeter calculations within the TDA
perturbative approach detailed in Chapter 10.

As the ground-state calculation is done with Molpro, the two-electron integrals, the
orbital energies and eventually the matrix elements of the short-range singlet and triplet
kernels must be given in the input file, together with the kind of calculation to be
performed. It is possible to ask for specific excitations to be calculated or a given
number of excitations.

This software was developed using the OCaml programming language [28] and in
particular the package Lacaml [29] which provides a binding to the BLAS and LAPACK
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libraries. It uses the IRP programming technique proposed by Colonna et al [30-32].

1.2 MolExc input syntax

MolExc takes a unique file in input which should contain several fields. The order of
the fields is not important, but each field should be on written on a new line. The input

format is case insensitive. A typical input file is

method = RSH_dynamic_bsegw

tda

int_file = N2_sadlejplus.dump2
eps_file = N2_sadlejplus.out
erf_file = N2_sadlejplus.dump

ker_sing_file = N2_sadlejplus.kersing
ker_trip_file = N2_sadlejplus.kertrip
acc_eps_file = N2_sadlejplus.eps

exc =1

I.2.1 The method field

The method field can accept different method names:
e tdhf: Time-dependent Hartree-Fock
e tdrsh: Time-dependent RSH
e bse-gw | bsegw | bse_gw: Static BSE-GW calculation
e rsh_bsegw: Static range-separated BSE-GW calculation
e dynamic_bsegw: Dynamic second-order BSE-GW calculation
e rsh_dynamic_bsegw: Dynamic range-separated second-order BSE-GW calculation

The static (range-separated) BSE-GW calculation can take additional op-
tions to control which contributions are included in the kernel when
the keyword with is used on the same line. The available options are
exchange, order_2, direct_order_2, dwdg, static_freq. The Tamm-Dancoff
approximation is available for all the methods and the key tda should be written on a

separate line.

1.2.2 The integral, orbital energies and kernel files

The following fields give the files where the orbital energies, the matrix elements of
the two-electron integrals and of the singlet and triplet exchange-correlation kernels.
Without range separation, only the int_file and eps_file are required. The int_file
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is the FCIDUMP file produced by Molpro when the command {fci;dump} is called. It
contains the matrix elements of all two-electron integrals in the format

float intl int2 int3 int4

where the float is the value of the integral and the four integers are the orbital indices.
Only non-redundant elements are given. The convention for the indices ordering is that
the two first indices correspond to electron 1 and the last two correspond to electron
2 in decreasing order. The header of the FCIDUMP file contains the symmetry of the
orbitals. It is possible to use symmetry for non range-separated calculations but some
issues remain for range-separated ones.

The eps_file is just the output file of Molpro. The orbital energies and occupation
are recovered in this file. However, the default precision of the orbital energies is low. It
is therefore possible to provide an additional file where accurate orbital energies are given
in acc_eps_file. Molpro was modified in order to produce this file in the rpa-tddft
routine when the option ker=dump is given, together with the short-range singlet and
triplet kernels in the case of a range-separation calculation.

I.2.3 debug, nexc and exc options

It is possible to print intermediate matrices, essentially for debugging. As they are
usually huge, only a subblock is printed via the debug =n command where n is the size
of the submatrices to be printed.

It is also possible to ask for the n first excitation energies of a system via the com-
mand nexc=n. It affects only the printing for static calculations but for dynamical BSE
calculations only the corrections to the first n excitation energies (the costly part of the
calculation) are computed.

Similarly, it is possible to ask for specific excitations with the keyword exc=i,j, k
where 7,7 and k are the indices of the excitation energies to be computed. This is

possible only for the dynamical part.

I.3 Molpro input syntax

Concerning the SCF calculation with Molpro, after definition of the molecule and of the

basis, the syntax is:

I Fix the range-separation parameter
mu=0.35

I Compute long-range two-electron integrals
{int

erf,mu;

save}
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! orbital record
orbrec=2101.2

! RSH calculation
{rks,exerf,ecerf;
rangehybrid;
orbital,orbrec;
orbprint,100;}

! Dump long-range two-electron integrals
{fci;

orbit,orbrec

core,0

thr,1.4-10

dump; }

! Compute full-range two-electron integrals
int

! Dump full-range two-electron integrals
{fci;

orbit,orbrec

core,0

thr,1.4-10

dump; }

! Reset the range-separation parameter to mu=0.35
setmu,mu;

! Dump orbital energies, singlet and triplet sr xc kernels
{rpa-tddft;

orb,orbrec;

core,0;

excit,method=rs-tddft,ker=dump;

kernelxc,ldaxerf,ldacerf}

When entering the rpa-tddft routine with the ker=dump option, the orbital epsilons are
dumped, the singlet and triplet exchange-correlation kernel are evaluated and dumped
into two separate files but the calculation of the excitation energies is not performed in
order to save time.

MolExc is licensed under the GNU General Public License and can be found at

http://www.lct. jussieu.fr/pagesperso/rebolini/molexc/.
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Introduction

L’étude des phénomenes induits par l'interaction lumiere-matiére constitue une étape
clé pour la compréhension globale de notre environnement immédiat. La lumiere est
constituée de photons qui transportent des quanta d’énergie. L’interaction entre la
matiére et un photon peut donner lieu a des phénomenes complexes tels que ’absorption,
I’émission ou la diffusion. A ’échelle d’une molécule, la physique classique ne s’applique
plus et une description quantique de la matiere est requise dans laquelle les niveaux
d’énergies sont discrets. Si l'on considére un systeme dans son état fondamental (son
état de plus basse énergie), I’absorption d’un photon entraine ’excitation du systéme

vers un état de plus haute énergie. Plusieurs phénomenes peuvent alors avoir lieu :

e Le systéme peut retourner dans son état fondamental (ou dans un niveau de plus
basse énergie) par une transition non-radiative (par relaxation vibrationnelle, par
croisement inter-systémes ou par conversion interne), ou par une transition radia-
tive ot un photon est émis (soit par fluorescence, soit par phosphorescence). Dans
tous ces processus, aucune liaison chimique n’est brisée ou créée et le systeme
conserve son intégrité. Ceci définit par conséquent la famille des processus pho-
tophysiques. Ces mécanismes sont extrémement intéressants car ils sont respon-
sables de nombreux phénomenes tels que I’émission lumineuse des étoiles ou la
couleur des objets, et interviennent notamment dans la conception des panneaux
photovoltaiques ot un matériau (souvent un semi-conducteur) convertit 1’énergie
lumineuse en une différence de potentiel. Les processus photophysiques sont aussi
largement utilisés a des fins analytiques puisqu’ils permettent de sonder les états
de la matiere. Selon le dispositif expérimental (la gamme d’énergie ou la direc-
tion d’observation), différents types d’informations peuvent étre obtenus comme
par exemple la position des niveaux électroniques (qui décrivent la configuration
électronique du systéme) ou, dans le cas d’'une molécule en phase gaz, celle des
niveau ro-vibroniques qui caractérisent les rotations et les vibrations de cette

molécule.

e Dans certains cas, le systeme excité ne retourne pas dans son état initial et uti-
lise cette énergie supplémentaire pour initier une réaction chimique, seul (photo-
isomérisation) ou avec d’autres réactifs (photoactivation). La photochimie est la
branche de la chimie responsable de 1’étude de ce type de processus. L’exemple
le plus connu est probablement la photosynthése mais en réalité de nombreuses
réactions nécessitent une photoactivation comme par exemple la synthese de la
vitamine D ou la dégradation des matieres plastiques. Grace aux progres techno-

logiques réalisés ces dernieres années, un nouveau champ de recherche a également
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vu le jour et a pour but d’utiliser la lumiére pour controler une réaction afin de
favoriser la formation d’un certain produit et donc d’augmenter son rendement.
Comme moins de réactifs sont consommés et que moins de déchets sont produits,

cette approche est particulierement intéressante dans le cadre de la chimie verte.

Dans tous les phénomeénes mentionnés ci-dessus, le nombre d’électrons dans le systeme
reste constant. Cependant si on augmente suffisamment la quantité d’énergie apportée
au systeme, un électron peut également étre éjecté comme par exemple dans la spec-
troscopie de photo-émission. Cela permet alors d’extraire d’autres types d’informations
comme par exemple les affinités électroniques. Cependant, dans le cadre de cette these,
de tels phénomenes ne seront pas abordés et nous nous concentrerons uniquement sur
les énergies d’excitation électroniques dans le cas de systemes moléculaires. La gamme
d’énergie de ces excitations correspond a la partie visible du spectre et aux rayonnements
ultra-violets. Elles sont donc étudiées expérimentalement par spectroscopie UV-visible

La prédiction ou I’analyse d’un spectre UV-visible par un calcul sur ordinateur consti-
tue a présent un domaine de recherche actif, soit pour aider les expérimentateurs dans
I'interprétation de leurs résultats, soit pour la conception de nouveaux composés d’intérét
biologique ou industriel, soit enfin pour étudier des environnements hostiles pour lesquels
il est difficile voire impossible de réaliser des expériences (par exemple dans ’espace, dans
des conditions extrémes de température et de pression ou dans des champs magnétiques
intenses). Afin d’obtenir des résultats quantitatifs, les théoriciens ont alors besoin de
méthodes fiables avec un colt de calcul faible pour pouvoir étudier des systemes rela-
tivement grands. Afin de simuler un spectre UV-visible, deux types d’information sont
nécessaires, les énergies d’excitation électroniques et la probabilité que ces excitations
alent lieu (ce qui est donné en pratique par les forces d’oscillateur). La probabilité
d’une transition électroniques peut varier énormément dans une gamme d’énergie tres
restreinte et influence donc significativement 1’allure finale du spectre. Ces probabilités
sont reliées au concept de transitions permises ou interdites présent en spectroscopie et
aux regles de sélection qui en découlent.

En pratique, le calcul des énergies d’excitation d’un systeme se fait généralement en
deux étapes. Dans un premier temps, le systéme est étudié dans son état fondamen-
tal, puis des énergies de transition verticales sont calculées en gardant la géométrie du
systeme fixée et en considérant que le phénomene d’excitation est instantané par rap-
port a I’échelle de temps du mouvement des noyaux. Cependant, la géométrie la plus
stable du systeme dans un état excité differe en général de celle de 1’état fondamental ce
qui implique qu’une surface d’énergie potentielle est en principe nécessaire pour décrire
précisément la physique du systeme. De plus, pour reproduire un spectre expérimental,

les effets des niveaux ro-vibroniques et d’élargissement des raies devraient étre pris en
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compte. Cependant dans cette these, nous nous intéressons uniquement au calcul des
énergies d’excitation électroniques et des forces d’oscillateur d’une molécule en phase
gaz, & température nulle et a géométrie fixée.

Toute la difficulté d’un calcul quantique réside dans la description du mouvement
corrélé des électrons a cause de leur interaction et de leur nature quantique intrinseque.
Historiquement, les chimistes théoriciens ont utilisés des méthodes basées sur la fonction
d’onde électronique en raffinant de plus en plus la méthode Hartree-Fock (HF) dans
laquelle le traitement de la corrélation est completement absent. Les méthodes post-HF
et multi-configurationnelles réintroduisent (en partie) cette corrélation et ont I’avantage
indéniable de pouvoir étre améliorées de facon systématique et de pouvoir produire des
résultats tres précis. Cependant, ces méthodes sont tres gourmandes en temps de calcul
car elles dépendent des coordonnées de chaque électron. Leur complexité polynomiale
par rapport a la taille du systeme les rend donc rapidement inutilisables pour des calculs
sur des systemes de grande taille comme des solides ou des protéines. Néanmoins, elles
font I'objet d’une recherche active afin de réduire leur cott de calcul par des méthodes
de < density-fitting > ou en exploitant la localisation des orbitales.

Un autre type d’approche est proposée par la théorie de la fonctionnelle de la densité
(DFT) qui est basée sur la densité électronique du systéme dans son état fondamen-
tal au lieu de sa fonction d’onde. La densité électronique représente le nombre moyen
d’électrons par élément de volume et ne dépend que d’une seule coordonnée d’espace et
de spin quelque soit le nombre d’électrons dans le systeme. Une telle approche réduit
donc significativement le coiit de calcul. Cependant, le prix a payer est que toute la
complexité du calcul est maintenant cachée dans une fonctionnelle d’énergie inconnue.
Dans 'approche de Kohn et Sham, le calcul est réalisé en utilisant un systeme auxiliaire
fictif d’électrons sans interaction mais reproduisant la densité électronique du systeme
réel. L’idée dans cette approche est de calculer de facon exacte la majorité de 1’énergie
afin que la partie inconnue soit la plus petite possible et donc en principe plus facile a
approximer. Pour reproduire le systeme physique, il reste donc & prendre en compte les
effets de l'interaction électronique qui sont alors décrits par la fonctionnelle de Hartree-
échange-corrélation. De nombreuses fonctionnelles approchées ont été développées depuis
quelques dizaines d’années, basées essentiellement sur des approximations locales (LDA)
ou semi-locales (GGA). Elles permettent & la DFT de produire de bons résultats avec
un cout de calcul moindre ce qui a permis son essor rapide.

Dans sa formulation originelle, indépendante du temps, la DFT permet de calculer
la densité électronique et I’énergie de I'état fondamental. Cependant, les théoremes de
Hohenberg et Kohn montrent que la densité du fondamental contient la totalité de I'in-

formation sur le systéme et donc en particulier ses énergies d’excitation. L’introduction
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d’une dépendance en temps permet d’extraire ces énergies d’excitation a partir de la
densité en utilisant par exemple la théorie de la réponse linéaire. Dans cette approche,
on étudie la réponse de la densité du systéme a une perturbation périodique dépendante
du temps. Si la fréquence de cette perturbation correspond a une différence d’énergie
entre ’état fondamental et un état excité du systeme, celui-ci change d’état et sa densité
électronique est donc fortement affectée alors qu’a une fréquence quelconque le change-
ment de densité est faible. La méthode de la théorie de la fonctionnelle de la densité
dépendante du temps (TDDFT) en réponse linéaire exploite ce phénomene et détecte les
énergies d’excitation comme les fréquences ou la densité du systéme change beaucoup.

Comme dans le cas indépendant du temps, cette méthode nécessite une fonctionnelle
approchée pour décrire les effets de 'interaction électronique. Cette fonctionnelle est
appelée le noyau de Hartree-échange-corrélation. En toute rigueur, ce noyau ne peut pas
étre calculé a partir de la fonctionnelle d’énergie. Cependant, en pratique, une approxi-
mation adiabatique est utilisée pour contourner cette difficulté. Dans cette approxima-
tion, le noyau devient indépendant de la fréquence de la perturbation ce qui entraine un
certain nombre de problemes. Avec les approximations usuelles, les énergies d’excitation
vers les états de valence (bas en énergie) sont néanmoins généralement bien décrites mais
celles vers les états de Rydberg (plus hauts en énergie) sont largement sous-estimées. De
plus les excitation a transfert de charge ou a caractere multiple ne sont pas reproduites
correctement.

La mauvaise description des excitations de Rydberg et a transfert de charge est essen-
tiellement due au mauvais comportement asymptotique du potentiel & longue distance
inter-électronique dans les approximations locales et semi-locales. La non-description
des excitations multiples est en revanche directement liée & 'approximation adiabatique.
Dans le cas d’un systéme isolé a sa géométrie d’équilibre, les excitations doubles (ou plus
généralement multiples) ne sont pas fréquentes dans la partie basse du spectre d’excita-
tion. Elles interviennent par exemple dans les polyenes linéaires mais ne joue pas un role
important dans la plupart des systemes. Cependant, lorsqu’on s’intéresse a la réactivité
chimique et a la description d’un mécanisme réactionnel, les choses se compliquent. En
effet, lorsque les liaisons sont étirées, les états excités peuvent se croiser ou produire
des intersections coniques. Au voisinage de ces régions, les excitations multiples sont
plus probables puisque plusieurs états peuvent étre extrémement proches. Il est alors
important de pouvoir les prendre en compte afin de décrire ces régions correctement,
d’autant plus que ces dernieres sont en général cruciales pour comprendre le mécanisme
réactionnel. La TDDFT dans 'approximation adiabatique n’est pas capable de décrire
ces excitations multiples et peut produire des résultats de qualités médiocres dans ces

régions.
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Un angle d’attaque possible pour résoudre (au moins partiellement) ces différents
problemes est de diviser l'interaction électronique en une partie de courte portée quand
les électrons sont proches et une partie de longue portée lorsqu’ils sont éloignés. Dans
les approximations usuelles, la DFT décrit relativement bien la partie de courte portée
mais échoue pour la longue portée. Dans ’approche a séparation de portée, cette partie
est donc traitée par des méthodes fonction d’onde ou de théorie de la perturbation a
plusieurs corps, qui sont plus adaptées. La portée de la séparation peut étre ajustée par
un parametre de séparation de portée. Cette approche a été appliquée avec succes pour
des calculs sur I'état fondamental et est explorée depuis quelques années pour les états
excités. Quand elle est appliquée sur le noyau d’échange, par introduction d’un noyau
d’échange HF de longue portée, elle permet d’améliorer la description des excitations
de Rydberg et a transfert de charge puisque le bon comportement du potentiel est alors
assuré.

Dans cette these, nous voulons explorer les effets de la séparation de portée sur la
description des énergies d’excitation a la fois dans une approche dépendante du temps
et dans une approche indépendante du temps. En particulier, nous voulons appliquer la
séparation de portée au noyau de corrélation TDDFT afin d’améliorer la description des
excitations présentant des contributions doubles, en introduisant un noyau de corrélation
dépendant de la fréquence a longue portée. Dans cette optique, cette these est divisée
en trois parties.

Dans la premiere partie de cette these, les effets de la séparation de portée sont étudiés
dans le cas indépendant du temps. Ceci est réalisé en suivant I’évolution des énergies des
états excités d’un systéme en interaction partielle ou seule la longue portée de 'interac-
tion électronique a été introduite. La densité électronique est maintenue constante par
optimisation du potentiel le long de la connexion adiabatique. Tout d’abord, un travail
analytique est réalisé en étudiant les développements de Taylor des énergies au voisinage
des deux cas limites ol soit toute 'interaction est présente soit elle est complétement
absente. Une étude numérique est également réalisée sur de petits systémes. Dans ce cas,
aucune approximation n’est utilisée a part la projection sur une base finie d’orbitales
afin de pouvoir attribuer nos observations aux effets de la séparation de portée unique-
ment. Dans un deuxieéme temps, nous explorons différentes possibilités pour améliorer la
description des énergies d’excitation du systeme physique a partir de celles du systeme
en interaction partielle, soit par théorie de la perturbation soit par une technique d’ex-
trapolation.

Dans la deuxieme partie de cette these, nous appliquons la séparation de portée
sur les noyaux d’échange et de corrélation TDDFT dans une approximation mono-

déterminantale. Ceci définit I'extension dépendante du temps de la méthode <range-
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separated hybrids> (RSH) utilisée pour des calculs sur I’état fondamental. Dans cette
approximation, la partie de longue portée du noyau d’échange est traitée au niveau
Hartree-Fock alors que le noyau de corrélation de longue portée est absent. Dans un
deuxiéme temps, il sera alors possible d’ajouter de facon perturbative un noyau de
corrélation de longue portée dépendant de la fréquence. En pratique, le noyau de longue
portée doit étre enlevé du noyau usuel, ce qui est réalisé dans I'approximation LDA dans
le cas couches fermées. Cette méthode (TDRSH) est alors appliquée sur un ensemble
de cing petites molécules et sur un dimere a transfert de charge afin d’analyser 1’im-
pact du retrait de la longue portée du noyau de corrélation sur leurs premieres énergies
d’excitation.

Dans la derniére partie, nous proposons un noyau de corrélation de longue portée
dépendant de la fréquence et I’ajoutons au noyau TDRSH obtenu précédemment. Pour ce
faire, nous utilisons la théorie de la perturbation a plusieurs corps (MBPT) qui est basée
non plus sur la densité électronique mais sur la fonction de Green a une particule. Cette
méthode est largement utilisée en physique de la matiere condensée mais reste marginale
en chimie. Dans cette approche, les énergies d’excitation du systéeme sont obtenues par
résolution de I’équation de Bethe-Salpeter dont la forme est tres proche des équations
utilisées en TDDFT mais qui est cependant plus générale. Nous avons choisi d’utiliser
ce formalisme plus complexe car dans ce cadre il est possible d’obtenir un noyau de
corrélation dépendant de la fréquence et donc de contourner ’approximation adiabatique
présente en TDDFT. Puisque nous considérons des systémes moléculaires finis et non des
solides infinis, les approximations habituelles utilisées par les physiciens ont besoin d’étre
remise en question dans ce cas. Dans cette partie, nous proposons un noyau de corrélation
dynamique au deuxieéme ordre par rapport & 'interaction électronique. A chaque étape
de sa construction, ce noyau est illustré sur le systeme modele donné par la molécule
de dihydrogene en base minimale. Cette construction est réalisée de facon algébrique et
comporte de nombreuses étapes techniques qui sont essentiellement données en annexe.
Seules les grandes lignes de cette construction et leur interprétation en diagrammes de
Feynman sont détaillées dans le corps du texte pour plus de lisibilité. Ce noyau est enfin
appliqué dans le cadre de la séparation de portée sur un ensemble de quatre petites

molécules.
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Partie I : Energies d’excitation en théorie de la fonctionnelle

de la densité indépendante du temps

Chapitre 1 : Généralités sur la théorie de la fonctionnelle de la densité

Dans ce chapitre, le probleme électronique a plusieurs corps est rappelé brievement.
Ce probleme est rencontré a la fois par les chimistes et le physiciens que ce soit sur
des systemes finis ou sur des systemes infinis et implique la résolution de 1’équation de
Schrédinger. Dans une approche non-relativiste indépendante du temps, plusieurs classes
de méthodes sont disponibles pour traiter ce probleme. Dans le cadre de cette these, nous
nous concentrons essentiellement sur les méthodes basées sur la densité électronique. Par
conséquent, ce chapitre rappelle la théorie de la fonctionnelle de la densité (DFT), avec
tout d’abord ses fondements théoriques donnés par les théoremes de Hohenberg et Kohn
puis 'approche de Kohn et Sham ainsi que son extension par séparation de portée de
I'interaction électronique. Les aspects pratiques et les approximations usuelles sont aussi

discutés.

Chapitre 2 : Energies d’excitation le long de la connexion adiabatique

a séparation de portée

Dans ce chapitre, nous étudions les variations des énergies des états excités et des énergies
d’excitation le long d’une connexion adiabatique a séparation de portée. Cette connexion
relie le systeme fictif de Kohn-Sham d’électrons non-interagissants au systéme physique
d’électrons en interaction, en incluant progressivement l'interaction électronique tout en
ajustant le potentiel effectif afin de maintenir la densité du fondamental constante. Dans
ce travail, 'interaction est introduite en fonction de sa portée. Tout d’abord la longue
portée de l'interaction est introduite majoritairement, jusqu’a ce que la totalité de I'in-
teraction soit présente, au voisinage du systeme physique. Dans le cas de I'hélium, du
béryllium et de la molécule de dihydrogene, des données de référence sont fournies. Elles
ont été obtenues en calculant le potentiel effectif de courte portée par interaction de
configuration complete en utilisant ’approche de la transformée de Legendre introduite
par Lieb. Quand la portée de 'interaction augmente, les énergies d’excitation du systéeme
en interaction partielle le long de la connexion adiabatique décrivent de mieux en mieux
les énergies exactes du systeme physique. De ce fait, les énergies d’excitation calculées
a un point intermédiaire de la connexion adiabatique sont de bien meilleures approxi-
mations aux énergies exactes que ne ’étaient les énergies Kohn-Sham correspondantes.
Ceci est particulierement évident dans des situations impliquant des effets importants
de corrélation statique ou des états ayant des caracteres d’excitations multiples comme

la molécule de dihydrogene a la dissociation. Ces résultats mettent en évidence I'utilité
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de systemes en interaction partielle de longue portée comme références pour le calcul
des énergies d’excitation, et sont intéressants pour le développement et ’analyse des

méthodes pratiques approchées basées sur la DFT a séparation de portée.

Chapitre 3 : Théorie de la perturbation le long d’une connexion adia-

batique a séparation de portée

Dans ce chapitre, les effets d’une correction perturbative au premier ordre sont évalués
le long de la connexion adiabatique a séparation de portée. Le point de départ est
donné par les énergies d’excitation du systeme en interaction partielle défini au chapitre
précédent. Une correction de premier ordre est alors définie avec deux variantes de
la théorie de perturbation : la théorie de perturbation standard et une extension de
la théorie de perturbation a la Gorling-Levy qui a l'avantage de maintenir la densité
du fondamental constante a chaque ordre de perturbation. Seule la premiere variante,
plus simple, est testée sur les systemes définis précédemment. Les énergies des états
excités sont fortement améliorées par I'ajout de cette correction cependant les énergies
d’excitation s’en trouvent détériorées par rapport a ’ordre zéro. Ceci peut s’explique par
le fait que le potentiel d’ionisation n’est pas maintenu constant dans ce cas. La deuxieme
variante de la théorie de perturbation devrait améliorer ces résultats mais n’a pas été

testée pour le moment.

Chapitre 4 : Extrapolation des énergies le long de la connexion adiaba-

tique

Dans ce chapitre, nous proposons une méthode alternative pour améliorer 1’estimation
des énergies d’excitation du systeme physique a partir des énergies du systeme en in-
teraction partielle ou seule la partie de longue portée de I'interaction électronique est
présente. Les énergies de ce systeme ont d’ores et déja été étudiées dans les chapitres
2 et 3 a lordre zéro et a l'ordre zéro+un de la théorie de perturbation «standards.
A partir de l'analyse de leur développements de Taylor au voisinage du systeme phy-
sique, les énergies du systeme physique peuvent étre extrapolées a partir des énergies du
systeme en interaction partielle et de leur dérivée premiere par rapport au parametre de
séparation de portée. Une méthode similaire est également étudiée dans le cadre d’une
connexion adiabatique linéaire. Dans ce cas, cette technique est équivalente au premier
ordre de la théorie de perturbation & la Gorling-Levy étendue a un systeme en interaction
partielle.

Cette extrapolation est ensuite appliquée sur les énergies d’ordre zéro de ’hélium,
du béryllium et du dihydrogene. La convergence de ces énergies vers leur limite exacte

est alors améliorée de fagon significative, ce qui permet d’estimer les énergies du
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systeme physique a la méme précision que sans extrapolation mais avec un parametre
de séparation réduit de moitié. Lorsqu’on applique ’extrapolation sur les énergies de
I’hélium obtenues a l'ordre zéro+un de perturbation, les résultats restent médiocres
puisqu’une d’une part, le point de part est moins bon, et d’autre part, la correction est
plus faible par construction que dans le cas de 'ordre zéro. Enfin, 'extrapolation est
appliquée sur les énergies d’excitation de I’hélium le long d’une connexion adiabatique
linéaire ou l'interaction est multipliée par un factor d’atténuation allant de 0 a 1. L’ex-
trapolation marche particulierement bien dans ce cas puisque le point de départ a un

comportement quasi-linéaire par rapport au parametre et est donc plus facile a prévoir.

Partie II : Energies d’excitation en théorie de la fonction-

nelle de la densité dépendante du temps

Chapitre 5 : Généralités sur la théorie de la fonctionnelle de la densité

dépendante du temps

Dans ce chapitre, les grands principes de la théorie de la fonctionnelle de la densité
dépendante du temps (TDDFT) sont rappelés en particulier dans le cadre de la théorie
de la réponse linéaire. Cette méthode est utilisée pour décrire la réponse d’un systeme
initialement dans son état fondamental & une petite perturbation dépendante du temps,
typiquement une irradiation par un laser de faible intensité. Les fondements théoriques
de la méthode sont rappelés brievement ainsi que sa formulation dans 1’approche de
Kohn-Sham. Les approximations adiabatiques semi-locales usuelles sont présentées ainsi
que leurs succes et leurs limitations. En particulier, elles ne décrivent pas correctement les
excitations a transfert de charge ou présentant un caractere multiple. Enfin, ’extension
de la séparation de portée au cas dépendant du temps est présentée dans sa variante la

plus commune ou la séparation n’est réalisée que sur le noyau d’échange.

Chapitre 6 : Energies d’excitation en théorie de la réponse linéaire
pour la théorie de la fonctionnelle de la densité dépendante du temps a

séparation de portée

Dans ce chapitre, nous étudions la TDDFT dans le cadre de la réponse linéaire, basée
sur une méthode mono-déterminantale & séparation de portée (RSH), c¢’est-a-dire com-
binant un noyau d’échange HF de longue portée avec un noyau d’échange-corrélation
DFT de courte portée, pour le calcul des énergies d’excitation électroniques de systemes
moléculaires. Cette méthode constitue une alternative a la méthode «long-range cor-

rected> (LC) plus commune, qui combine un noyau d’échange HF de longue portée
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avec un noyau d’échange DFT de courte portée et un noyau de corrélation DFT stan-
dard de portée totale. Nous étudions les effets de approximation locale (LDA) sur les
noyaux de courte portée et évaluons la performance de cette méthode sur les premieres
énergies d’excitation vers des états de valence, ou de Rydberg, singulets ou triplets pour
les molécules de Ny, CO, HyCO, CyHy, et CgHg et sur la premiere énergie d’excita-
tion a transfert de charge du dimere CoH4-CoF,4. Pour ces systemes, la présence de la
corrélation LDA de longue portée dans le calcul du fondamental et du noyau n’a quasi-
ment pas d’impact sur les énergies d’excitation et les forces d’oscillateur. Les résultats
en RSH sont donc tres similaires & ceux obtenus en LC. De méme qu’avec la méthode
LC, l'introduction du noyau d’échange HF de longue portée corrige la sous-estimation
des énergies d’excitation a transfert de charge et de Rydberg obtenue avec les approxi-
mation semi-locales habituelles. Cependant elle entraine également la sous-estimation
des énergies d’excitation vers les états de valence triplets. Ce probléeme est résolu dans
le cadre de 'approximation Tamm-Dancoff qui permet une description relativement ho-
mogene de toutes les énergies d’excitation. Ce travail suggere que cette méthode est
donc un point de départ raisonnable pour la description des énergies d’excitation, méme

avant I’ajout d’un noyau de corrélation de longue portée.

Partie 111 : Energies d’excitation en théorie de la perturba-

tion a plusieurs corps

Chapitre 7 : Généralités sur les méthodes de type fonction de Green

La théorie de la perturbation a plusieurs corps constitue une approche alternative a la
TDDEFT pour le calcul des énergies d’excitation électroniques et est largement utilisée
dans la communauté de la physique de la matiere condensée. Un avantage important de
cette approche est qu’elle est en principe capable de décrire les excitations doubles qui
sont absentes en TDDFT dans 'approximation adiabatique. De plus, son formalisme
est proche de celui de la TDDFT. Dans ce chapitre, nous étudions le transfert de cette
méthode, des solides infinis vers des systéemes moléculaires finis ou les équations sont
projetées sur une base gaussienne de spin-orbitales, et ou la validité des approximations
utilisées sur les solides doit étre remise en question. Nous introduisons ici les concepts de
quasi-particule et de fonction de Green sur lesquels repose cette théorie. Nous rappelons
ensuite les équations principales dans le cas & une particule (équation de Dyson) et a
deux particules (équation de Bethe-Salpeter) et introduisons les concepts de self-énergie
et de noyau de Bethe-Salpeter qui sont les quantités clés de cette approche. Toutes
les équations sont exprimées dans un formalisme a quatre points afin de faciliter leur

projection dans une base de spin-orbitales et la correspondance avec les diagrammes de
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Feynman est également explicitée. Nous rappelons également les équations de Hedin qui
procurent un ensemble de cinq équations couplées qui permettent en théorie de calculer

la self-énergie.

Chapitre 8 : Noyau Bethe-Salpeter GW statique dans une base de spin-

orbitales

L’approximation la plus utilisée dans la cadre de la méthode Bethe-Salpeter est ’approxi-
mation GW statique. Dans cette approximation, les corrections de vertex sont négligées
dans ’expression de la self-énergie tant et si bien que celle-ci se réduit au produit d’une
fonction de Green G et de l'interaction écrantée W. De plus, en général, le cycle de Hedin
n’est pas résolu de facon auto-cohérente et une seule itération est réalisée.

Dans ce chapitre, la self-énergie est calculée au niveau GW et dans une variante
GWx ou I’échange est inclus dans la définition de la matrice diélectrique. Dans les deux
cas, le noyau Bethe-Salpeter est obtenu dans son approximation statique en considérant
I'interaction écrantée comme étant locale en temps. De plus, la réponse de ’'interaction
écrantée par rapport a la perturbation, c’est-a-dire la dérivée de W par rapport a G,
est négligée comme habituellement fait en physique. Comme la self-énergie n’est pas
obtenue de fagon auto-cohérente, le choix de la fonction de Green de départ joue un
role important. Nous comparons par conséquent la fonction de Green HF et la fonction
de Green exacte. Dans chaque cas, les équations sont projetées dans une base de spin-

orbitales et appliquées sur le systeme modele donné par Hy en base minimale.

Chapitre 9 : Noyau Bethe-Salpeter statique au deuxieme ordre de per-

turbation

Dans ce chapitre, la self-énergie et le noyau de Bethe-Salpeter statique sont développés
de fagon perturbative au deuxieme ordre par rapport a l'interaction électronique. Ce
développement est d’abord fait dans I’espace réel en prenant compte ou non de I'inclusion
de I’échange dans la self-énergie et de la dérivée de W par rapport a G dans le noyau.
Les différentes expressions obtenues sont ensuite projetées sur une base de spin-orbitales.
L’inclusion de I’échange dans la self-énergie de corrélation aboutit a une expression dans
laquelle toutes les intégrales sont antisymétrisées. Cependant, cela ne suffit pas pour le
noyau de corrélation de Bethe-Salpeter qui nécessite également l'inclusion de la dérivée
de W par rapport a G afin d’avoir une forme totalement antisymétrisée satisfaisant alors
les lois de conservations. Si une seule de ces deux contributions est prise en compte, alors
seule une partie des intégrales est antisymétrique, ce qui confirme que ces deux termes
doivent étre traités simultanément pour des systemes moléculaires finis pour lesquels

cette antisymétrisation est importante. Le noyau obtenu est alors illustré sur le systeme
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modele donné par H, en base minimale ot ’on montre que dans ’approximation statique

une forme non physique est obtenue.

Chapitre 10 : Noyau Bethe-Salpeter dynamique de longue portée au

deuxiéme ordre

Dans ce chapitre, nous développons un noyau dynamique effectif de corrélation Bethe-
Salpeter dans ’espace réel et dans une base de spin-orbitales. Afin de satisfaire les lois
de conservation dans le cadre de systemes moléculaires finis, I’échange est inclus dans la
matrice diélectrique et les effets de la perturbation sur I'interaction écrantée sont pris en
compte dans la construction du noyau a partir de la self-énergie de corrélation. Quand
I’équation de Bethe-Salpeter est résolue de fagon dynamique, le noyau au deuxieme ordre
dépendant de la fréquence obtenu précédemment est convolué avec deux propagateurs
dépendant de deux fréquences. Ce produit de convolution peut étre reformulé comme
le produit d’un noyau effectif et de deux fonctions de réponse ne dépendant que d’une
seule fréquence. Ce noyau effectif ne dépend que d’une seule fréquence et est compa-
tible avec la formulation TDDFT afin de calculer les poles de la fonction de réponse. Si
ce noyau est construit & partir d’'une fonction de Green a séparation de portée et des
intégrales de longue portée, ce noyau peut étre utilisé dans le cadre de la TDDFT a
séparation de portée comme un noyau effectif de corrélation de longue portée dépendant
de la fréquence et étre ajouté de fagon perturbative au noyau TDRSH défini au chapitre
6. Dans les deux cas, l'inclusion d’un noyau dépendant de la fréquence complique la
résolution numérique étant donné qu’un probléme non-linéaire aux valeurs propres est
alors obtenu. Nous adoptons par conséquent un approche perturbative dans I’approxi-
mation Tamm-Dancoff. Le comportement de ce noyau est illustré sur le systeme modele
donné par H, en base minimale. Dans ce cas, le caractere symétrique de ce systeme
entraine la disparition de la partie dépendante de la fréquence du noyau. Cependant, la
comparaison du développement de Taylor au deuxieme ordre des énergies d’excitation
par rapport a l'interaction, et du développement des énergies exactes permet de mettre
en évidence les limites de ce noyau. Il est ensuite appliqué au calcul des premieres
énergies d’excitation de Ny, CO, HyCO et CoH,y avec et sans séparation de portée. Pour
ces systemes, l'addition perturbative du noyau de corrélation dépendant en fréquence
entraine une augmentation systématique des énergies d’excitation. Sans séparation de
portée, elle conduit & une détérioration importante des énergies d’excitation obtenues
en Hartree-Fock. En revanche, lorsqu’elle est appliquée dans le cadre de la séparation de

portée, elle améliore ’erreur moyenne et ’erreur maximale.
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Conclusion générale et perspectives

Cette these contribue au traitement des énergies d’excitation électroniques dans des
systemes moléculaires finis par les méthodes a séparation de portée. En séparant l'in-
teraction électronique en une partie de courte et de longue portée, ces méthodes per-
mettent de combiner rigoureusement la théorie de la fonctionnelle de la densité (DFT)
avec des méthodes basées sur la fonction d’onde ou les fonctions de Green. Elles ont été
étudiées de fagon intensive pour les calculs sur I'état fondamental mais sont toujours
en cours de développement pour les états excités. Les calculs des énergies d’excitation
par les méthodes DFT sont largement dominés par les calculs en théorie de la fonc-
tionnelle de la densité dépendante du temps (TDDFT) dans la théorie de la réponse
linéaire. Cependant cette méthode ne constitue pas la seule approche possible et de nom-
breuses méthodes indépendantes du temps sont également explorées. Dans cette these,
la séparation de portée a été appliquée dans les cas dépendant et indépendant du temps
mais dans des buts différents. Dans la multitude de méthodes disponibles, il est souvent
difficile d’identifier la source d’un probleme a cause du grand nombre d’approximations
faites simultanément. La premiere partie de cette these avait donc pour but d’étudier les
effets de la séparation de portée sur les énergies d’excitation en s’affranchissant de toute
approximation. Les deuxiéme et troisieme parties étaient en ce sens bien plus pragma-
tiques puisqu’elles visaient a améliorer le traitement des excitations multiples présent
en TDDFT dans ’approximation adiabatique. Dans ce cas, ’approximation locale a été
utilisée pour la fonctionnelle et une approximation mono-déterminantale pour la fonction

d’onde.

Séparation de portée en DFT indépendante du temps

Les effets de I'approximation adiabatique sont difficiles a analyser et & corriger dans une
approche dépendante du temps. De plus celle-ci n’est en principe pas nécessaire pour ob-
tenir des énergies d’excitation. En effet, les théoremes de Hohenberg-Kohn prouvent que
la densité électronique du fondamental contient toute I'information du systeme et donc
en particulier les énergies d’excitation. Nous nous sommes donc placés dans un premier
temps dans un approche indépendante du temps o1 notre but n’était pas de concevoir une
nouvelle méthode pragmatique pour calculer des énergies d’excitation avec la séparation
de portée, tout du moins a court terme, mais plutot de s’affranchir d’'un maximum
d’approximations et de réaliser une étude analytique et numérique poussée sur de tres
petits systemes. Dans cette étude, la seule approximation réalisée concerne la base. Par
conséquent, on peut espérer qu’avec une base suffisamment grande, les effets observés
ne seront pas dis a la base mais uniquement a la séparation de portée. La premiere

partie de cette these contient les résultats de cette étude dans laquelle nous avons suivi
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les énergies d’excitation d’un systeéme en interaction partielle le long d’une connexion
adiabatique a séparation de portée reliant le systéme de Kohn-Sham et le systeme phy-
sique. Les développements de Taylor des énergies autour de ces deux limites nous a
permis entre autres de proposer une technique d’extrapolation qui améliore la descrip-
tion des énergies d’excitation du systeme physique a partir d’un point intermédiaire de
la connexion adiabatique ou seule la partie de longue partie de I'interaction est présente.
Cela nous a aussi permis de démontrer quelques conditions exactes que des énergies
approchées devraient satisfaire autour des deux limites, et d’évaluer la proportion de
I'interaction qui doit étre incluse pour décrire correctement les énergies d’excitation du
systeme physique. Nous sommes actuellement en train d’évaluer les effets de 'approxi-
mation LDA et de I’approximation mono-déterminantale utilisée dans la méthode RSH,
sur les énergies d’excitation. Nous espérons que ce travail aidera au développement et
a la compréhension des méthodes a séparation de portée pour le calcul des énergies

d’excitation, que ce soit dans le cas indépendant ou dépendant du temps.

Séparation de portée et DFT dépendante du temps

La deuxieme partie de cette these portait sur I’application de la séparation de portée a la
TDDFT dans I’approximation locale adiabatique. Lorsqu’elle est appliquée sur la partie
d’échange du noyau de Hartree-échange-corrélation (qui doit prendre en compte les ef-
fets venant de 'interaction électronique), la séparation de portée permet de d’améliorer
significativement plusieurs points faibles de la TDDFT comme la description des exci-
tations de Rydberg et a transfert de charge. Cependant jusqu’a récemment, le noyau de
corrélation était uniquement traité en DFT et donc les excitations a caractere multiple
ne pouvaient pas étre décrites correctement. Dans 'approche RSH, du fait de "approxi-
mation mono-déterminantale, le noyau de corrélation de longue portée disparait. Nous
avons par conséquent déterminé les noyaux singulet et triplet de courte portée LDA et
les avons implémentés dans le logiciel de chimie quantique Molpro. L’effet du retrait de la
corrélation de longue portée LDA a ensuite été étudié sur les énergies d’excitation de cing
petites molécules et d'un dimere a transfert de charge. Nous avons observé que ce retrait
n’a quasiment pas d’effet sur les énergies d’excitation qui constituent par conséquent un
bon point de départ pour ’addition perturbative d’un noyau de corrélation de longue
portée dépendant de la fréquence capable de prendre en compte l'effet des excitations

doubles. La construction d’un tel noyau fut 'objet de la derniére partie de cette these.

Noyau de corrélation Bethe-Salpeter au deuxiéme ordre de longue portée

Afin de concevoir un noyau de corrélation dépendant de la fréquence, nous nous sommes

tournés vers 'approche Bethe-Salpeter utilisée en physique de la matiére condensée qui
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fournit un formalisme dépendant explicitement de la fréquence et tres proche de celui
utilisé en TDDFT. Dans la troisieme partie de cette these, nous avons donc entreprit la
construction d’un noyau de corrélation effectif au deuxieme ordre dans cette approche.

La correspondance entre le formalisme de la physique de la matiére condensée et
celui de la chimie des systemes moléculaires n’étant pas triviale, une premiere étape
a consisté a transposer le formalisme des fonctions de Green dans une formulation en
spin-orbitales et a vérifier la validité des approximations réalisées en physique dans le
cas d’une molécule. Nous en avons conclu que pour un systeme moléculaire fini, il était
préférable de considérer simultanément les contributions de Hartree et d’échange dans
la matrice diélectrique et que l'effet de la perturbation sur l'interaction écrantée n’était
pas négligeable. Un noyau de corrélation Bethe-Salpeter au deuxieéme ordre a alors été
construit et testé dans un premier temps dans ’approximation statique. Dans ce cas
une forme non physique fut obtenue ce qui confirma la nécessité d’un traitement dyna-
mique. Ce noyau dynamique nécessita un effort supplémentaire afin d’obtenir un noyau
de corrélation effectif compatible avec le formalisme TDDFT. Les étapes principales de
sa construction furent illustrées sur le systeme modele de Hy en base minimale. En par-
ticulier, les effets du choix de la fonction de Green initiale, de I'inclusion de I’échange, de
la troncation a 'ordre deux, et de 'approximation statique furent évalués sur ce modele.
Le noyau dynamique fut ensuite implémenté dans une approche perturbative dans I’ap-
proximation Tamm-Dancoff et testé sur quatre petites molécules avec et sans séparation
de portée. Pour ces systemes dans le cas a séparation de portée, les énergies d’excitation
furent globalement améliorées par I’addition perturbative de ce noyau. Cependant, aucun
de ces systemes ne présentait des contributions doubles importantes pour les énergies

étudiées alors que le noyau est censé jouer un role prédominant dans ce cas.

Perspectives

Il est difficile de mettre un point final & cette these ou tant de choses restent a faire et
a explorer. Je vais essayer ici de résumer les perspectives que ce travail a engendrées et
qui restent sur ma “TO DO” liste.

Concernant la partie dépendante du temps, il faudrait réintroduire les approxima-
tions usuelles une par une afin d’évaluer leurs effets sur les énergies d’excitation et sur le
potentiel d’ionisation. Nous avons observé dans le cas de la théorie de perturbation au
premier ordre qu’une mauvaise description de ce potentiel pouvait avoir des conséquences
importantes sur les énergies d’excitation. On peut s’attendre & une observation similaire
dans le cas d’'une approximation locale. Il faut également explorer les effets d’une ap-
proximation mono-déterminantale ou de 'utilisation d’une interaction de configuration

(IC) tronquée au lieu d’une IC complete. Cela permettrait d’apporter un éclairage nou-
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veau sur la méthode TD-MC-stDFT qui a été proposée récemment et qui couple la
TDDFT a courte portée avec une méthode multi-configurationelle (MCSCF) & longue
portée. Cela pourrait aussi amener au développement de nouvelles méthodes.

Concernant la deuxieéme partie de cette these, la construction et I'implémentation
des noyaux de courte portée LDA n’a été réalisée que dans le cas couches fermées.
Cependant, un code couches ouvertes et I'implémentation de noyaux de courte portée
GGA seraient utiles pour de nombreuses applications.

La derniere partie de cette these reste probablement la plus frustrante pour moi
puisque tant de choses restent a faire. Je vais donc essayer de faire une liste de ce que

j’aurais voulu faire pendant une hypothétique quatrieme année...

e Tout d’abord, le noyau effectif a besoin d’étre testé de facon plus approfondie et
sur des systemes connus pour avoir des excitations doubles sans la partie basse de

leur spectre d’absorption.

e Ensuite, je voudrais tester une résolution non-perturbative basée sur un
<dépliement> de Lowdin et sans ’approximation Tamm-Dancoff. De plus, le code
a été congu a des fins d’exploration et non d’efficacité, si le noyau s’avere réellement

utile, ce module devrait étre intégré dans un <vrai> code de chimie quantique.

e Enfin, la troncation au deuxieéme ordre a été faite par rapport a l'interaction
électronique mais sans tenir compte des corrections de self-énergie qui pouvaient
intervenir dans la fonction de réponse des quasi-particules sans interaction. Nous
travaillons en ce moment sur cet aspect afin d’évaluer, tout d’abord dans le cas de
H, puis dans le cas général, 'effet de ces corrections. Ceci serait particulierement
intéressant afin de mieux comprendre le lien entre cette méthode et les méthodes

de propagateurs au deuxieme ordre de type SOPPA.

Cette liste pourrait étre bien plus longue et j’espére que certains de ces points seront
résolus dans les prochains mois par mes collaborateurs ou moi-méme. J’espere que ce

travail sera d’'une quelconque utilité pour le développement futur de projets similaires.
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Range-separated density-functional theory for molecular excitation en-
ergies

Linear-response time-dependent density-functional theory (TDDFT) is nowadays a
method of choice to compute molecular excitation energies. However, within the
usual adiabatic semi-local approximations, it is not able to describe properly Rydberg,
charge-transfer or multiple excitations. Range separation of the electronic interaction
allows one to mix rigorously density-functional methods at short range and wave
function or Green’s function methods at long range. When applied to the exchange
functional, it already corrects most of these deficiencies but multiple excitations
remain absent as they need a frequency-dependent kernel. In this thesis, the effects of
range separation are first assessed on the excitation energies of a partially-interacting
system in an analytic and numerical study in order to provide guidelines for future
developments of range-separated methods for excitation energy calculations. It is
then applied on the exchange and correlation TDDFT kernels in a single-determinant
approximation in which the long-range part of the correlation kernel vanishes. A
long-range frequency-dependent second-order correlation kernel is then derived from
the Bethe-Salpeter equation and added perturbatively to the range-separated TDDFT
kernel in order to take into account the effects of double excitations.

Keywords: excitation energies, range separation, TDDFT, Bethe-Salpeter
kernel, double excitation

Théorie de la fonctionnelle de la densité a séparation de portée pour les
énergies d’excitation moléculaires

La théorie de la fonctionnelle de la densité dépendante du temps (TDDFT) est au-
jourd’hui une méthode de référence pour le calcul des énergies d’excitation électroniques.
Cependant, dans les approximations usuelles, elle n’est pas capable de décrire cor-
rectement les excitations de Rydberg, a transfert de charge ou présentant un caractere
multiple. La séparation de portée de l'interaction électronique permet de combiner
rigoureusement les méthodes fonctionnelles pour décrire la courte portée de 'interaction
et les méthodes fonctions d’onde ou fonctions de Green pour la longue portée. Dans
cette these, les effets de cette séparation de portée sur les énergies d’'un systeme en
interaction partielle sont d’abord étudiés le long de la connexion adiabatique dans le
cas indépendant du temps afin d’aider le développement des méthodes a séparation de
portée pour les énergies d’excitation. La séparation de portée est ensuite appliquée
dans le cadre de la TDDFT aux noyaux d’échange et de corrélation, ou dans le cas
d’une approximation monodéterminentale, la longue portée du noyau de corrélation
est absente. Afin de prendre en compte l'effet des doubles excitations, un noyau de
corrélation de longue portée dépendant de la fréquence est développé en s’inspirant
du noyau Bethe-Salpeter. Ce noyau est alors ajouté de fagon perturbative au noyau
TDDFT a séparation de portée afin de prendre en compte les effets des excitations
doubles.

Mots-clés : énergies d’excitation, séparation de portée, TDDFT, noyau
Bethe-Salpeter, excitation double
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