
HAL Id: tel-01037904
https://theses.hal.science/tel-01037904

Submitted on 23 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling and analysis of techniques to increase
robustness in distributed systems

Riccardo Loti

To cite this version:
Riccardo Loti. Modeling and analysis of techniques to increase robustness in distributed systems.
Other [cs.OH]. Université Nice Sophia Antipolis; Università di Torino (Turin, Italie), 2014. English.
�NNT : 2014NICE4026�. �tel-01037904�

https://theses.hal.science/tel-01037904
https://hal.archives-ouvertes.fr

Modeling and analysis of techniques

to increase robustness in distributed systems.

Riccardo Loti

Università degli Studi di Torino, Dipartimento di Informatica

Université de Nice Sophia Antipolis, c/o INRIA Sophia Antipolis Méditerranée

Thesis submitted for the degree of

Doctor of Philosophy

(26 May 2014)

Advisor UNITO: Thesis reviewers:

Prof. Rossano Gaeta, Prof. John C.S. Lui, CUHK

Associate Professor Prof. Giovanni Chiola, UNIGE

Università degli Studi di Torino

Defense jury:

Advisor UNS: Prof. Giovanni Chiola, UNIGE

Dr. Luigi Liquori, Prof. Rossano Gaeta, UNITO

Research Director Prof. Hung Nguyen Chan, VIELINA

INRIA Sophia Antipolis Méditerranée Prof. Marko Vukolić, EURECOM

Dr. Luigi Liquori, INRIA

Dr. Roberto Roverso, PEERIALISM AB

mailto:loti@di.unito.it
http://www.unito.it
http://www.di.unito.it
http://www.unice.fr
http://www.inria.fr

Abstract

The original “selling point” for decentralized networks has been file

exchange, using the decentralized approach to diffuse the bandwidth

cost between all the participating nodes, augmenting the robustness

by avoiding single point of failures and control by sharing the respon-

sibility between all nodes.

While the most decentralized approaches are very efficient in terms

of resilience, they are, by the same reason, more performance limited

and harder to analyze.

This analysis is usually the prerogative of simulation tools, a quite

inefficient way to analyze the possibility space. We thus developed

and present here a mathematical model for network interconnection,

enabling the study and exploration of equilibriums and, by virtue of

the abstraction of the model, perfectly applicable to any interconnec-

tion of networks, be them communication networks, social networks,

or physical distribution networks.

We also focused on decentralized networks, called MANETs, where

communication between mobile nodes is purely ad-hoc based, exploit-

ing rateless coding to minimize data loss due to transmission unre-

liability, and detecting malicious nodes sending corrupted packets, a

hard to detect and prevent problem in a strongly distributed environ-

ments, using SIEVE, a custom developed algorithm.

Abstract

Le point de départ pour les systèmes decentralisées a eté l’échange des

fichiers, en utilisant cet approche i) pour distribuer la bande passante

entre tous les nodes concernés et ii) pour augmenter la robustesse en

eliminant autant que possible les points individuels de défaillance et

de contrôle et iii) en partageant également les responsabilités entre les

nodes.

Si les approches le plus décentralisés sont très efficaces en termes de

résilience aux pannes, pour la même raison, les performances sont

limités et difficiles à analyser quand on observe plusieurs réseaux in-

terconnectés entre eux, configurations qui peuvent être analysés à

travers des outils de simulation, souvent peu efficaces dans l’analyse

de l’espace de possibilités. Dans cette thèse on a développé un modèle

matematique pour la modélisation de l’interconnexion des réseaux en

permettant l’étude et l’exploration d’équilibres qui - grace à l’abstraction

du modèle - peuvent s’appliquer à l’interconnexion des réseaux de

communications, réseaux de distribution de marchandise ou réseaux

de distribution d’eau.

La thèse se focalise aussi sur les réseaux décentralisés MANET, où la

communication entre noeuds mobiles est purement ⌧ ad-hoc " (ex:

deux voitures communiquant entre eux quand ils sont proches) en

utilisant i) des ⌧ rateless coding " pour augmenter la robustesse et

minimiser la perte ou la corruption de données causées par la non fia-

bilité du moyen de transmission et ii) des algorithmes de ⌧ pollution

detection ", par exemple de detection de noeuds malveillants ou de

paquets corrompus, cette detection et prévention étant très difficile

dans des environnements fortement distribués.

Abstract

L’iniziale “trampolino di lancio” per le reti decentralizzate è stato

la distribuzione di file, un approccio decentralizzato per distribuire i

costi di banda tra tutti i nodi partecipanti, aumentando la robustezza

evitando singoli punti di fallimento e controllo, dividendo la respons-

abilità tra tutti i nodi. Nonostante gli approcci decentralizzati siano

molto efficienti in termini di robustezza, per le medesime ragioni, sono

più ostacolati nelle prestazioni e di più difficile analisi.

Questo tipo di analisi è solitamente prerogativa di strumenti simula-

tivi, piuttosto inefficienti per analizzare lo spazio delle possibilità. Ab-

biamo quindi sviluppato un modello matematico per l’interconnessione

di reti, permettente lo studio e l’esplorazione di equilibri e, in virtù

dell’astrazione del modello, perfettamente applicabile a qualsiasi in-

terconnessione di reti, siano esse di comunicazione, sociali o, di dis-

tribuzione fisica.

Ci siamo inoltre focalizzati su reti decentralizzate, chiamate MANET,

dove la comunicazione tra nodi mobili è puramente ad hoc, sfrut-

tando il “rateless coding” per minimizzare la perdità di dati a causa

dell’inaffidabilità della trasmissione, e rilevando nodi malevoli invianti

pacchetti corrotti, un problema difficile da identificare e prevenire in

ambienti fortemente distribuiti, tramite SIEVE, un algoritmo apposi-

tamente sviluppato.

Contents

Contents i

List of Figures v

I Overview 1

1 Introduction 2

1.1 Opportunities and challenges . 2

1.2 Random graph modeling of overlay networks interconnection . . . 4

1.3 Polluter identification in MANETs 7

1.4 CCN and CCN-TV . 9

1.5 A unifying view of the Thesis . 10

2 State of the art 12

2.1 Random graph modeling of overlay networks interconnection . . . 12

2.2 Polluter identification in MANETs 14

2.3 CCN and CCN-TV . 16

3 Thesis contributions 18

3.1 Random graph modeling of overlay networks interconnection . . . 18

3.2 Polluter identification in MANETs 20

3.3 CCN and CCN-TV . 22

i

CONTENTS

II Detailed works 26

4 Random graph modeling of overlay networks interconnection 27

4.1 Overview . 27

4.2 System description . 29

4.3 System model . 31

4.3.1 One overlay topology . 31

4.3.2 Interconnection of multiple P2P networks 31

4.3.3 Search algorithm . 32

4.3.4 Hit probability . 33

4.3.5 A variation of the search algorithm 34

4.4 Results explained . 34

4.5 Model validation . 35

4.5.1 Simulation methodology 36

4.5.2 Topology generation . 36

4.5.3 Validation results . 37

4.6 Model exploitation . 38

4.6.1 Comparison of different routing policies 38

4.6.2 f -cost based evaluation . 39

4.6.3 Effects of granularity . 41

4.6.4 System design with minimum requirements 42

4.6.5 Routing without propagation 43

4.7 Published works . 44

5 Polluter identification in MANETs 46

5.1 Overview . 46

5.2 LT codes . 49

5.3 A use case for SIEVE . 49

5.3.1 LT based dissemination protocol 50

5.3.2 Malicious nodes . 50

5.4 The SIEVE protocol . 51

5.4.1 LT codes verification mechanism 51

5.4.2 Check construction and reporting 52

ii

CONTENTS

5.4.3 Identification based on belief propagation 52

5.4.4 BP complexity . 56

5.4.5 Incremental BP estimation 56

5.5 Results . 57

5.5.1 Factor graph and performance 57

5.5.2 Simulation methodology 58

5.5.3 Performance indexes . 59

5.5.4 Sensitivity results . 60

5.5.5 Mobility and SIEVE performance 63

5.5.6 Deceiving actions and SIEVE robustness 68

5.5.7 Coding efficiency vs. SIEVE performance 71

5.5.8 Bandwidth, memory and CPU costs 72

5.6 Published works . 75

6 CCN and CCN-TV 77

6.1 Overview . 77

6.2 Basic background on CCN . 79

6.3 CCN-TV architecture . 82

6.3.1 Channel bootstrap . 83

6.3.2 Flow control . 84

6.3.3 Interest routing . 86

6.3.4 CCN-TV messages . 87

6.4 Simulation results . 88

6.4.1 Interest generation process 90

6.4.2 QoS and QoE . 92

6.5 Published works . 95

III Summarizing results and future evolutions 96

7 Summarizing results and future evolutions 97

7.1 Random graph modeling of overlay networks interconnection . . . 97

7.2 Polluter identification in MANETs 99

7.3 CCN and CCN-TV . 101

iii

CONTENTS

7.4 Rateless coding over mobile CCN 103

IV Appendix 106

A Tools used 107

A.1 HSO - Heterogeneous Statistical Optimizer 107

A.2 Network simulator ns-3 . 109

A.2.1 The FountainApplication application 110

A.2.2 The SieveApplication application 112

A.2.3 The ndnSIM module . 113

A.3 The CCNx protocol and library 114

A.3.1 The ccnSim simulator . 115

References 116

iv

List of Figures

4.1 Example of two P2P interconnected networks (X = 2) and one

degree 2 Synapse that belongs to both 30

4.2 phit for different ↵ and si (left) and alternative search algorithm

(right) . 37

4.3 Routing policies comparison: phit for different resource popularities

↵ . 40

4.4 Average number of messages for different routing policies 41

4.5 si comparison at different f . 42

4.6 Performance evaluation with different numbers of overlay X . . . 43

4.7 Distribution of different routing policies with fixed f 44

4.8 Distribution of different routing policies with fixed s1 (left) and

message evaluation at different ↵, for different routing policies (right) 45

5.1 Node operations: LT encoding, decoding and dissemination proto-

col . 51

5.2 Example of factor graph . 54

5.3 Representative accuracy (left), completeness (middle), and time to

identification (right) of SIEVE as a function of w 62

5.4 Accuracy (left), completeness (middle), and time to identification

(right) of SIEVE for best performance, lower energy consumption,

and compromise setting . 63

5.5 Accuracy (left), completeness (middle), and time to identification

(right) of SIEVE for different nodes mobility models 64

5.6 Accuracy (left), completeness (middle), and time to identification

(right) of SIEVE for different nodes speeds in the reference scenario 65

v

LIST OF FIGURES

5.7 Accuracy (left), completeness (middle), and time to identification

(right) of SIEVE where moving nodes range from all fast to all slow 66

5.8 Accuracy (left), completeness (middle), and time to identification

(right) of SIEVE where malicious nodes are either all fast or all slow 67

5.9 Accuracy (left), completeness (middle), and time to identification

(right) of SIEVE for different pollution intensities at the coded

block level (ppoll) . 69

5.10 Accuracy (left), completeness (middle), and time to identification

(right) of SIEVE for different pollution intensities at the chunk

level (cpoll) . 70

5.11 Accuracy (left), completeness (middle), and time to identification

(right) of SIEVE for different lying intensities 71

5.12 Accuracy (left), completeness (middle), and time to identification

(right) of SIEVE for plie = 1 and increasing number of malicious

nodes . 72

5.13 Accuracy (left), completeness (middle), and time to identification

(right) of SIEVE for different disparaging attacks 73

5.14 Accuracy (left), completeness (middle), and time to identifica-

tion (right) of SIEVE for increasing number of colluding malicious

nodes . 74

5.15 Accuracy (left), completeness (middle), and time to identification

(right) of SIEVE for different values of K 76

6.1 Bootstrap handshake . 84

6.2 Sliding window algorithm . 85

6.3 Sliding window example . 86

6.4 Total number of Interest packets sent by clients with playout delay

of (a) 10s and (b) 15s . 93

6.5 Percentage of duplicated Interest packets sent by clients with play-

out delay of (a) 10s and (b) 15s 94

6.6 Chunk loss ratio with playout delay of (a) 10s and (b) 15s 94

6.7 PSNR of the Y components of received videos with playout delay

of (a) 10s and (b) 15s . 95

vi

Part I

Overview

1

Chapter 1

Introduction

Chapter abstract:

In this Chapter we introduce the works this Thesis is composed of and the needs the proposed

solutions arise from.

Each topic is connected to each other in an overall effort to increase robustness and availability

in distributed networks and such underlying “common thread” is analyzed in the final Section

of this Chapter, as a way to see the whole Thesis homogeneously.

Continuing Part I, Chapter 2 briefly introduces the state of the art for each topic, Chapter 3

will give a perspective of each work contribution to each topic. In Part II, Chapters 4 to 6 more

deeply analyze each topic, offering a technical analysis of the contribution and results obtained,

and in Part III, Chapter 7 summarizes the conclusions obtained from the results and future

evolutions.

Finally, Appendix A acts as reference for the tools used in various topics.

1.1 Opportunities and challenges

In computer usage evolution, and its ecosystem in modern society, a particular

place is occupied by communication networks. Especially in the last 5 years,

with the development of smaller and more powerful devices, there has been a

substantial push of the interconnection and mobility aspect of those devices.

New use cases migrate from the traditional single node concept with an op-

2

tional connection to the outside world, to a cloud of nodes, each one part of a

more complex system, usually distributed, which see each participant only as a

functional part of the whole, making the interconnection between them a funda-

mental part of the system.

Such decentralization of the concept of a “computer” opens the road to a

whole range of new applications, usually impossible to realize before using a non-

distributed approach. A list of a few common examples could be:

• a P2P file exchange, where the bandwidth resources load is distributed

and scales with the whole network meanwhile giving the ability to avoid

censorship and publishing delays of traditional channels;

• sensor networks, where every node, usually a low-power nano-sensor, ex-

changes data with others resulting in an exhaustive and robust autonomous

coverage of an area;

• backup and data storage, for a totally distributed, set of files and data that

can be preserved from physical harm and remotely accessed from every

authorized device, everywhere on the globe;

• computational power aggregation, in which research or business institutions

can distribute their computational workload among peers in a network;

• smart-grid / smart-city approach, where services and/or physical devices

are made to talk with each other exchanging information and coordinating

independently, offering a digital representation and access of the physical

world;

• ad-hoc opportunistic wireless networking, like Delay Tolerant Networks

(DTNs) and mesh networks, where interconnection between usually mo-

bile nodes is made on the fly.

As a continual push to decentralization there is the perennial development of

cheaper and more powerful platforms, moving the focus from the hardware, to

the service itself, enabled by the software and this time with the hardware as just

a medium to enable its usage.

3

This interaction between computers rather than on the computer itself introduces

a series of problems, some of which were of minor importance before, while other

are completely new, for example:

• moving externally something that is traditionally considered internal to

the computer, such as processing, storage, and retrieval of data, forces a

particular attention on the performance aspect, where delays and latencies

tend to grow by orders of magnitude, and are hardly estimable in advance,

needing robust and adaptive protocols;

• the protocol having to manage a bigger probability that data will get lost

or corrupted during the transit meanwhile having only minor control over

the process, to the point of not being able to directly act even if negative

behaviors are known;

• the necessity of data security mechanisms, where the presence in the system

of various actor, seldom trusted or known, makes imperative to implement

access limits to transiting data and related control mechanisms, this way

guaranteeing privacy and correctness.

In the scope of augmenting the performance, as well as the efficiency and

robustness of networks, this Thesis adopts a holistic approach, offering a set of

different techniques to be optionally applied both in the planning phase of a net-

work design and in the utilization phase of such network. Such techniques are

applicable or related to a multitude of network topologies and structures, com-

mon denominator between them all the decentralized approach used.

1.2 Random graph modeling of overlay networks

interconnection

First we describe a random graphs based mathematical model we developed for

analyzing network interconnections, where independent networks are connected

together by bridge nodes, belonging to two or more networks.

4

While well known mathematical models exist for modeling individual networks

[1], approaches modeling independent networks interconnected through shared

nodes are few, and focuses on a hierarchical approach between the networks [2],

or proposes a merging into a single equivalent network.

Both approaches are limiting, in the first case networks are considered not on

the same level to each others, and in the second case the networks are either very

similar to start with, or deeply modified by a merging like operation on all the

networks.

The motivations for such model are to be searched in the computational and

time costs associated with validating a specific configurations using simulation

tools or limited scale prototyping, while variance in the building parameters can

greatly influence performances and behaviors and as such justifies optimization

analysis beforehand.

In interconnecting various networks together we are faced with a large number

of combinations of parameters, such as the probability distributions describing the

number of neighbors a node has, the number of nodes in each network belonging

to more than one network, and so on. We focus only on a flooding routing

strategy, common to many unstructured approaches (e.g.: P2P networks), so we

add as parameters, the probability a node will forward a message (a query usually

in communication networks).

Such large number of permutations easily renders any simulative approach

quickly limited in its scope or completely inefficient at treating the optimization

problem extensively enough, especially considering that many interesting behav-

iors emerge only when a considerable amount of nodes is present (in the range

of 100 000 to 1 000 000 in our simulations), raising exponentially the resource

consumption for any simulator or deployment solution.

Essentially, in the simulative approach, each node and each message, or at

least a simplified model of them, must be kept in memory, and many parallel

virtual events are coalesced in fewer processes leading to very intense use of com-

putational resources like memory and computational power.

In our original testings with the the OmNET++ [3] simulator each set of pa-

5

rameters run, on a quad core Intel Xeon workstation with 16GB of RAM, took

about two real-time days for 5 simulated networks of 100 000 nodes each, while

a heavily simplified and parallelized custom simulator written in Erlang [4], op-

timized only to treat message passing and no transmissions details or contents,

took, on the same machine, a few hours for each run, both software completely

using the machine and using up to 8GB or RAM. Also this was only for a sin-

gle run, while to have statistically significant data, at least a few runs for each

parameters set have to be executed and averaged, linearly multiplying the time

needed for the number of run repetition, then multiplying again for each set of

parameters in the selected permutations, easily leading to weeks and weeks of

continuos computing time for just exploring a small subset of all the possible per-

mutations, all with the statistical relevance offered by the number of repetition

for each run allowed.

Clearly this is not the best way to proceed, to this reason we developed a

mathematical model representing the probability a node in a given network will

find the resource he wants (meaning his query will reach a node owning the

resource in a given number of jumps) and the average number of messages sent,

given the number of networks, the probability distribution for neighbor nodes

and for bridge nodes and the forwarding probability for the routing.

It may be noted that the number of nodes is not given as a parameters, as

the model finds the probability a node will be reached in a number of steps, so

it is agnostic to the number of nodes in the real implementation. This aspect

is important to point out as the behavior of the model, explained before, shows

up in the simulator and deployment only when a significative number of nodes is

involved.

The gain in efficiency and pervasiveness is clearly visible as executing the

model over a specific set of parameters takes only a few milliseconds and returns

average values, not needing multiple runs, rendering possible to explore the same

parameters that the simulators took weeks in less than a few hours on the same

machine, with more precise (and reproducible) results obtained.

6

1.3 Polluter identification in MANETs

Another topic of our Thesis focuses on mobile, distributed, ad-hoc networks,

and the inherent challenges in implementing a communication network which is

both decentralized and restructured as possible and at the same time robust and

efficient.

To this effect we initially approached the problem from related points of view:

• from perspective of the used coding, where we introduce the use of rateless

coding to avoid data loss and availability problems in the network;

• from a pollution detection perspective, where we devise an efficient way of

identifying malicious nodes in a completely distributed environment, espe-

cially important while used with the above encodings;

These two works are inherently connected to each other and are thus published,

and presented here, together.

A central step in our study is the utilization of rateless coding techniques in

completely distributed and unstructured networks, where knowledge of neighbors

nodes is not exploited and only probabilistic flooding routing is available, thus

rendering any centralized control or organization unneeded as long as two or more

nodes are in range to communicate.

The chosen encoding is LT Code [5] where encoding server nodes divides a mes-

sage chunk in n blocks, then proceeds to encode packets by combining together

d distinct blocks by logical XOR-ing them, where d < n and is randomly cho-

sen by a Robust Soliton Distribution (RSD), guaranteeing that the chunk will be

decoded in n ·(1+") packets received, where " tends to zero as n tends to infinite.

The server nodes than proceeds to wirelessly send the encoded packets around

(similar to a fountain distributing water streams, from which the fountain coding

synonym) which are received, stored and decoded when possible by decoder client

nodes, which can, based on the scenario parameters, repeat the packets to their

neighborhood to achieve better data diffusion at the cost of higher bandwidth

usage and more difficult detection of eventual malicious nodes.

7

While the transmission overhead in respect to a sequential transmission of

each block would be wasted in a reliable, non-lossy channel scenario between

nodes, the repetition of data in the encoding helps circumvents the shortcomings

of an ad-hoc wireless connection between wireless nodes, where node availability

and transmission correctness can both not be guaranteed, nor expected.

Such peculiarities makes LT Codes a very well fit for all cases where there is a

multitude of nodes, loosely or not hierarchically organized, in which the commu-

nication quality and reliance cannot be assured, such as wireless networks, P2P

communications, and mobile ad-hoc wireless networks. All those topics represents

in some way or another a strong point of this Thesis, making rateless coding a

very helpful tool to have.

A topic which is a natural pairing to our rateless code based protocol is an

efficient way to identify polluters, intended as nodes that voluntarily submit ma-

liciously modified packets to corrupt the decoding process.

The more the network is lacking a central or local organization and collabo-

ration, the clearer it becomes the threat that such malicious actors represents to

the robustness and efficiency of the whole network and the harder it is to identify

reliably bad acting nodes, especially recently appeared ones, either because they

are fast moving or changing identity periodically.

A communication network like the one presented before, or in general any

ad-hoc distributed network, is vulnerable to many attacks at many layers.

While protection against physical and transmission level attacks are out of the

scope of this work and a few solution are available, we focuses on protecting

against attacks on the decoding process by means of malicious nodes voluntarily

sending malformed packets to pollute the overall chunk for unaware listening

honest nodes.

As with many decentralized networks there is a clear advantage for a pollution

detection algorithm to be completely distributed and all computation local to each

node, which SIEVE [6] is, listening to other nodes reports, but constructing its

beliefs only inside the node itself, without depending on any centralized authority.

8

Also, to be usable in a mobile environment such algorithm execution must

be energy efficient, another strong fit for SIEVE being based on simple Belief

Propagation iterations.

Finally the approach, while here mated to our LT Code exploiting protocol,

is not by any mean bound to it. It is usable with any protocol that at any point

of the decoding process, not necessarily at the end, is able to return a check con-

taining a status (polluted or clean) and a list of all the nodes that contributed to

that chunk and how much they contributed. The usage with an erasure fountain

code can be seen as a worst case scenario, as the check can be produced only at

the end of the decoding process and usually a lot of nodes contributes to a single

chunk.

1.4 CCN and CCN-TV

Another topic that we studied in our Thesis is a simulative study of CCN-TV, a

CCN based approach to TV service via internet video streaming.

Content-Centric Networking (CCN) [7] is a promising approach to data-centric

architecture, in which the routing is name based (instead of address based) and

the search is initiated by the data user rather than the data provider, leveraging

intermediary nodes caching techniques to enhance performances exploiting data

locality.

The need for CCNs comes from an average utilization of communication net-

works more and more to deploy and consume contents, be them video, documents,

music or generic data.

In such context the ability to directly research and access wanted contents rather

than having beforehand to know which nodes will serve which contents and then

accessing their address, is indeed welcome.

Consider the case where someone wishes to access a video stream of a given

social event, in the classic internet case he will have to beforehand known a

provider of such service (and its address) or a service offering search services

(and its address) such as a search engine. Once he has obtained the video service

9

provider address he will contact it and request the desired content, awaiting (and

hoping) for a positive reply and only then beginning the data transfer, usually

directly between.

In comparison the CCN approach does not need any previous knowledge as he

would send an Interest packet, stating that he wishes to receive such service, and

the packet is routed, based on a categorization of names, after a certain amount

of hops to a machine who does provide such services.

The machine will send back the data, using previously touched nodes as in-

termediaries, so that if a neighbor of the requester asks for the same content he

will not have to reach back the remote server again, but the first intermediary

node will respond positively to his Interest request.

While a complete and general implementation overlaying current internet is

still very difficult, having to face problems such as devising and adopting an

efficient ontology of contents, to permit efficient routing, a more limited scope

implementation, such as video on demand and real-time video services, is very

promising and robust, integrating resource discovery and local caching directly

in the routing protocol.

1.5 A unifying view of the Thesis

The Thesis flows around the central concept of enhancing the robustness and

resilience of distributed networks through distinct techniques, each facing the

problems from a different, sometimes complementary, point of view.

Two main directions are present in this work:

• the first one is using random graph modelization to exhaustively study the

behavior of a system of interconnected networks over a set of common nodes

called bridges; such study works toward efficiency and resilience by offering

the tool needed to accurately study a network topology and its effects before

deployment or modification;

• the second one is focusing on distributed networks by studying the effect of

10

novel routing and content discovery protocol (CCN), and polluter identifi-

cation techniques coupled with rateless coding content distribution.

Both contributions aim to make distributed networks more efficient and robust,

one in the planning and analyzing phase, the other during execution.

Our contribution tackle the problems following both an off-line and on-line ap-

proach, with a set of conceptual tools to be exploited as needed.

Our original contributions, as better explained in the following Chapters, span

over the two main topics.

For the first topic contribution we exploited random graphs to develop a

mathematical model of network interconnection [4, 8], where the model can be use

to efficiently investigate the behavior of a given set of bridge-node interconnected

networks, regarding the probability of finding a resource and the average number

of query packets generated, given a certain number of hops permitted and the

networks defined by a set of parameters.

The second line of work focuses on distributed mobile networks and ways

to maximize their resilience during execution, such as developing a completely

distributed polluter identification scheme called SIEVE [6, 9] which works over a

P2P protocol we implemented base on rateless coding, or exploiting novel routing

and content identification protocols such as CCN, focusing on real-time video

streaming by adapting and studying the protocol in our CCN-TV approach [10],

and successively extending the study to include crowd-sourced generated contents

[11].

11

Chapter 2

State of the art

Chapter abstract:

In this Chapter we analyze, for each topic, the state of the art and related comparable works.

While a more in depth analysis is present in each topic dedicated Chapter in Part II, the present

Chapter helps in pointing out the background of the field as well as strong and lacking points of

related published works.

2.1 Random graph modeling of overlay networks

interconnection

Network interconnection and cooperation is indeed of growing importance in the

future.

The bulk of related modeling literature focuses on evaluating single network

behavior, which limits the statistical analysis to the merging of networks together,

a very expensive and rarely feasible approach.

Inter-cooperation of network instances has been identified in [12, 13] as one

of the future trends in the current Internet architecture development. When

discussing logical networks, various techniques to achieve inter-communication

among them have been presented.

Synergy [14] is an architecture for the inter-cooperation of overlays which

provides a cooperative forwarding mechanism of flows between networks in or-

12

der to improve delay and throughput performances. Co-located nodes are, in

the authors’ opinion, good candidates for enabling such mechanisms and reduce

traffic.

With a similar goal, authors in [15] propose algorithms tailored to file shar-

ing applications, enabling a symbiosis between different overlays networks. They

present hybrid P2P networks cooperation mechanisms and provide interesting

observations on the appropriate techniques to perform network join, peer selec-

tion, network discovery, etc. Their simulations showed the effect of the popularity

of a cooperative peer on the search latency evaluation, that is the more a node

has neighbors, the better, as well as the effect of their caching mechanism which

reduces (when appropriately adjusted) the load on nodes (but interestingly does

not contribute to faster search).

Authors in [16] model an interconnected system by considering spaces with

some degree of intersection between one another. They focus on different strate-

gies to find a path between two overlays, and compare various routing policies

analyzing which trade-offs lead to the best results. Trade-offs are considered in

terms of number of messages, number of hops to find a result and state overhead.

They provide a comparative analytical study of the different policies. They show

that with some dynamic finger caching and with multiple gateways tactfully laid

out in order to avoid bottlenecks due to the overload of a single gateway, they ob-

tain good performances. Their protocol focuses on the interconnection of DHTs,

while we focus on unstructured overlays.

Finally, [17] studies the co-existence of multiple overlay networks, namely

Pastry and an unstructured overlay that uses a gossip protocol to improve its

performance.

The topic of social network interconnection is a specific application of the

network interconnection through bridging which is attracting a lot of interest

due to the availability of multiple, expanded and existing social networks already

deployed and in use.

The advantages offered by social inter-networking are centered about trans-

parently “de-isolate” the single networks, exploiting the preexisting connections,

which are compatible between the networks by mean of being based on the same

13

social structures and relationships, effectively enabling a virtual “over-network”

extending and exploiting all the single social networks contents.

A summary of various works in [18] analyses the social inter-networking from

the point of view of bridge interconnection, yet to the best of our knowledge no

specific modeling tool exists to better study the various behaviors of the overall

system.

2.2 Polluter identification in MANETs

Research in the field of rateless coding is well established in literature, with major

examples being LT Codes [5] and their conceptual evolution Raptor Codes [19].

There have been interest in coupling rateless coding, and the relative concept

of fountain encoding, with various fields interested by communication by many

nodes and variably unreliable transmissions, like video streaming [20] or extending

P2P BitTorrent file transfer [21, 22] and the techniques have been integrated in

part of the error control protocol for LTE mobile networks.

Works in the field have mainly focused on finding more efficient ways of de-

coding (referring to performance to energy consumption ratio) and implementing

encoding and decoding over non fixed sliding-window chunks of data [23].

The next generation of rateless codes implementations after LT codes is com-

monly agreed to be Raptor Codes [19], having linear time encoding and decoding,

but computationally more intensive by using two encoding stages for encoding,

where the second stage is an LT encoding.

MANET are vulnerable to attacks at any layer of the Internet model [24, 25].

In the area of network coding several efforts have been devoted to devise on-the-

fly verification techniques carried out by participants [26, 27, 28, 29, 30, 31, 32]

to identify the sources of corrupted data. The major drawback of these elegant

methods is the high computational costs for verification and the communication

overhead due to pre-distribution of verification information. In [33, 34, 35] previ-

ous works have been extended to limit the communication overhead and achieve

high level of robustness to pollution in the context of network coding applied to

static wireless mesh networks.

14

Error correction (and algebraic) approaches have been devised to deal with

data corruption attacks in network coding [36, 37, 38]; these methods introduce

coding redundancy to allow receivers to correct errors but their effectiveness de-

pends on the amount of corrupted information. Recently, [39] has proposed an

extension of previous work which aims at limiting the communication overhead

required for verification of coded packets.

The data corruption attack we consider in this contribution is a well-known

plague in peer-to-peer streaming systems. Unfortunately, all solutions developed

in that research are not easily adoptable in MANET. The work by Wang et al.

[40] proposes a detection scheme where each peer is able to detect receipt of

corrupted blocks by checking the adherence of the decoded chunk to the specific

formats of the video stream. Peers detecting polluted chunks send alert messages

to the video server and the tracker. Upon receipt of an alert the server computes a

checksum of the original chunk and disseminates it to all peers in the overlay. The

checksum is used by peers to identify which uploader actually sent a corrupted

block. Peers report their suspects to the server and true polluters cannot lie

(the authors developed a non repudiation protocol to ensure that peers cannot lie

when reporting suspects to the servers). Sequence numbers are used to tag alerts

to deal with cycles in the overlay. This solution requires a centralized monitoring

and management point that is not available in MANET. Therefore, it is hard (if

not impossible) to adopt in the context we consider in our work.

The work by Li and Lui [41] presents a distributed detection algorithm and an-

alyzes its performance. The technique is based on simple intersection operations

performed by peers: each peer starts with a set of suspects that is equal to the

entire neighborhood that is shrunk as long as chunks are downloaded from a ran-

dom subset of uploaders independently chosen from the entire set of neighbors.

The scheme allows malicious nodes to send corrupted blocks using a pollution

probability. The technique is analyzed when the number of malicious nodes in

the neighborhood is known in advance and an approximation is proposed when

this quantity is unknown. The same approach has been also adopted in network

coding wireless mesh networks [42, 43], where the analysis is restricted on the

backbone network consisting of stationary (with minimal mobility) mesh routers.

The technique is attractive thanks to its simplicity and fully distributed nature

15

although performance deteriorates when multiple polluter exist. Nonetheless, the

technique works when then neighborhood of a node does not vary with time. Also

in this case a comparison with our work is quite difficult.

The work by Jin et al [44] proposed a monitoring architecture to build and

maintain a reputation system that peers use to select neighbors. The focus of the

paper is on reputation computation, storage and load balancing among monitor-

ing nodes. The results show that the system is able to detect malicious nodes up

to a certain degree of lies. Nevertheless, the technique relies on the assumption

that each peer is able to compute the amount of corrupted blocks received by

each uploader during a monitoring period. Unfortunately, this capability is not

available in the system we consider in our work: the original chunk can only be

obtained if there are no malicious nodes among the chunk providers and if cor-

ruption is detected the honest node only knows that at least one of the chunk

providers is malicious. In this case, comparison with our work is simply not

possible.

Our work instead has been shown here to be very efficient, even with an unrea-

sonably high number of malicious nodes, and computationally cheap, also being

not limited to MANETs networks, but easily applicable to other more common

P2P networks [45, 46].

2.3 CCN and CCN-TV

Internet usage patterns changed a lot in the last decade, where an ever-expanding

multitude of sites and contents offers shifted the focus to content sharing and

consumption, still offered on the IP underlying protocol.

Many Future Internet templates offer evolutions to what the current technical

and social structure is, usually by shifting focus on content itself, rather than on

the content provider, increasing role of P2P connectivity models, enabled by a

greater ever-present connectivity between a plethora of devices, and considering

the paradigm-breaking concept of pervasive mobility.

Many proposals move the data in a primary position, by adopting models

like Publish-Subscribe [47], where a service provider publishes its offers in terms

16

of datas and services and interested nodes subscribes and are then given the

requested service, or caching approaches of Store-and-Forward, original of DTN

networks [48].

Amidst the multitude of proposals a common idea links many of them, where

the contents are made central and are offered by providers and requested by

consumers, adequately routed to each other by intermediary nodes based on their

knowledge of the current offers of services.

Local cache is used to avoid repeated traffic as much as possible if the contents

are already “in the neighborhood”.

The main proposal is this field are CCN, sometimes referred also as Named Data

Networks (NDN), [7].

While promising however the field is still loosely defined by the general rules

of Interest and Data packets exchange and caching usage, but a lot of study is

currently focusing on routing algorithms [49, 50] and even in less or more radical

modifications of the protocol to specific scopes, like our present work on CCN-TV.

A reference software implementation also exists, called CCNx [51], yet works

have mostly been theoretical so far, with yet to assess the success and efficiency

of a real-world deployed in the wild implementation of any kind.

17

Chapter 3

Thesis contributions

Chapter abstract:

In this Chapter we present the original contributions of our works and this Thesis.

While we reserve the more technical details to the Chapters in Part II, we describe the approach

used in each work and, where relevant, the differences with the mainstream implementation (eg.

Section 3.3).

With the aim of making clear how each contribution is constructed we delegate the details to

the specific Chapters, focusing on shortly, but clearly, explaining the whole process.

3.1 Random graph modeling of overlay networks

interconnection

We describe the network by means of its degree distribution pk, i.e. the probability

a randomly chosen node has k connections in the same network, and a probability

distribution si, meaning the fraction on nodes belonging to i distinct overlay, with

1 i X, where X is the number of networks present.

The considered routing algorithm for the queries is flooding base, i.e. a node

starting a search forwards the query (with probability pf (i)) to a random subset

of its adjacent neighbors.

They then forward the query to a random subset of their one-hop neighbors and

so on, until the maximum number of hops, defined as Time To Leave (TTL),

18

eventually forwarding the query up to the TTL if the receiving node has the

resource, depending on the variation of the search algorithm chosen.

To model the search we define the goal as to reach at least one node containing

the desired resource with the queries, which popularity is defined as 0 ↵ 1,

meaning the probability a random node will have the resource.

We model a single network as a random graph degree distribution G0(z) and

derive G1(z) as the probability generating function (p.g.f.) of the adjacent neigh-

bors connections excluding the edge we came from, chaining it to obtain the p.g.f.

of a given TTL neighborhood, e.g. G0(G1(G1(z))) for TTL = 3.

To then model the interconnection we consider that some peers will be bridges,

called Synapses in the original work [52], enabling the query to diffuse in other

networks neighborhoods too. The related p.g.f., relative to probability distribu-

tion si, is F (z), and by combining it with G0(z) we obtain M(z), the p.g.f. for

the number the neighbors considering the bridges too. By extension, combining

with G1(z) too we obtain N(z) the p.g.f. for the neighborhood, excluding the

selected edge. We are then finally able to define the p.g.f. for the number of

neighbors t hops away as Nt(z), such that N1(z) = M(z), N2(z) = M(N(z)),

N3(z) = M(N(N(z))), and so on.

Once we modeled the interconnections, we combine our p.g.f. with our pf

probability the query will be forwarded to define various p.g.f. leading to Qt(z),

the p.g.f. for the probability distribution of the number of neighbors t hops

away from a randomly chosen node that received a query, which product for each

1 t TTL gives us T (z), yielding us the average number of queries m = T 0(1).

Finally by introducing the ↵ resource distribution probability we define the

p.g.f. Ht(z) for the probability distribution of the number of neighbors t hops

away for a randomly chosen node that received a query and also possess a copy of

the requested resource, which product for each 1 t TTL gives us, as before,

H(z), giving us the search hit probability phit = 1−H(0). We also alternatively

defined a different R(z) to also experiment with the variant in which a node own-

ing the resource will not forward the query if it is received. A better description

of the standard version and this variant is present in Section 4.3.3 and 4.3.5.

19

3.2 Polluter identification in MANETs

We exploited the non sequential and redundancy properties of erasure codes, LT

Codes in particular, to raise the robustness and efficiency of unstructured ad-hoc

wireless networks.

Avoiding any kind of routing assumption and only basing our transmission on

flooding patterns makes the approach readily applicable to any topology of net-

works or degree of mobility between the nodes, yet creates new efficiency and

reliance problems, as there are no guarantees that the packet will be received or

that the percentage of lost or corrupted ones will be under a certain threshold.

A server node, i.e. a node that already possesses the chunk of data to be

transmitted and is willing to share it with others, will start encoding the packets

to be sent out continuously. Differently from a direct transmission there is a

sequential flow of packets after which the transmission ends, instead each packet

payload is composed of 1 to n blocks encoded together using a XOR function,

where n is the number of equal size blocks the chunk is divided into and the

number of blocks a packet contains is called degree or d.

Necessary to the decoding in the packet header there is an hash h, identifying

the chunk, the number n of blocks it has been divided into, the degree d of

the current packet and a list L of the d distinct blocks that are encoded in the

payload.

If a particular probability distribution is used to randomly choose the degree

of the generated packets the decoding is mathematically proven to be possible

after having received n · (1 + ✏) packets, where ✏ tends to 0 when n tends to

1, meaning also that the overhead grows smaller the more blocks the chunk

is divided into. Such distribution is called Robust Soliton Distribution (RSD)

and it is a variant of the Soliton Distribution modified to guarantee the previous

decoding assertion [53].

It is to be noted that a packet with d = 1 and L = {k} (where of course

1 k n) contains in the payload the exact k -th block and is the only packet

that is readily decodable (not depending on other blocks to be decoded). For all

d > 1 packets the payload needs at least one already decoded block form its list

L, the exact number depending on the decoding algorithm used, to decode the

20

remaining information (blocks in L not already known), but it can be stored for

later usage, when additional information has been received.

Finally the server broadcasts wirelessly the packet to all nodes who can hear

it (hence the term fountain coding), not expecting any reply or acknowledge and

thus keeping on encoding and sending packets until a certain prefixed condition

has been met, like a timeout or a number of packets sent.

Client decoding works by collecting all the packets received by the client, then

subdividing them by the h identifier, indicating different decoding sessions and

data. Focusing on a specific hash generally the payload and relative metadata

is extracted (degree d and list of blocks L) and passed to the used algorithm, in

order of efficiency:

• Sequential, a very inefficient test-only algorithm only keeping distinct d = 1

blocks and discarding all the others, effectively negating LT Code benefits;

• Belief Propagation, a basic algorithm crossing known decoded blocks with

stored still un-decoded data to progressively trim down blocks;

• Gaussian Elimination, a more efficient comparison algorithm then BP, per-

mitting a faster decoding, even when there is scarcity of degree one blocks.

Then depending on the parameters passed to the nodes a client can, once ob-

tained the decoded chunk, become a server for that chunk, simply repeated heard

packets, be their chunk already decoded or not or simply do nothing other than

receiving.

As seen previously, decoding is an incremental process in which various nodes

collaborate in seeding the decoding pool, and which result is known only when a

certain number of packets has been received, an average of n · (1 + ✏), where n

is the number of blocks the original chunk has been divided into if the decoding

and ✏ an overhead dependent on n.

The whole SIEVE [6] approach is based on the concept of checks, which are

produced by the receiving node and can be negative or positive, respectively if

the decoding is successful or fail as soon as an inconsistency in the underlying

system of linear equations for the decoding is found.

21

Each node internally maintains a list Ln of all internally created checks and, to

raise the availability of checks data, broadcasts the check each time it is produced

and periodically, once every Ts seconds, a set of random Q checks in Ln.

The checks in Ln and all received checks are used to build the bipartite factor

graph Gn=(U,C,E), where vertex set U is the set of uploader nodes, vertex set C

is the set of checks, and an undirected edge {i, I} 2 E exists if and only if check

I 2 C depends on uploader i 2 U. We also refer to the set of uploaders involved

in check I as UI and the set of checks that node i contributes as an uploader as

Ci.

The goal of the inference problem of identifying malicious nodes from a given

number of checks is to estimate the hidden state of the nodes (malicious or not)

and we adopt the Belief Propagation (BP) algorithm for the task [46].

From a neutral value of 0.5 for the probability of each node of being malicious

and honest each check works towards implying the set uploader nodes as honest

or malicious depending if negative or positive, finally extracting an estimate after

a reasonable amount of iterations has been collected.

To face the constantly changing environment the BP estimation is designed to

be incremental, rather than a single iterative instance, utilizing a sliding window

approach over a certain amount of time. Each time a given node is considered to

be a suspect polluter over a certain threshold the node is included in the list of

probable polluters or, if already present, its counter increased by one, then, the

overall ranking, is produced based on sorting the counter value of each node in

the probable polluter list.

We currently do not integrate a way to phase out probable polluters over time,

if ever this is to be considered a feature it would be easy to decrease the counter

based on some heuristic, for example every given amount of time.

3.3 CCN and CCN-TV

In keeping in line with the content centric CCN vision the communication is

initiated by the client, who generates an Interest message and expects to receives

a Data message, the only two type of messages used.

22

The issued Interest packet serves to request a specific content and is routed by

successive nodes until a provider for that content is found. The server will then

reply with Data packets which will follow the inverse path of the Interest packet

back to the original client requesting them. All the message exchanges happens

between the nodes faces, which are the CCN equivalent of a network interface.

Every intermediate node is allowed, and usually expected if able, to keep in

its cache the forwarded content, such that a subsequent independent Interest

packet for the same content reaching the node won’t have to be forwarded up to

the server, but will be replied by the cached Data packets, thus easily resolving

congestion on popular contents and raising data availability and speed for locally

available contents.

In this scheme a few issues are of great importance and directly influences

the overall performance of the protocol. The first and foremost is routing and by

extension namespace definition, as the Interest packet is routed node by node by

using the content requested as an “address”, where usually a hierarchy of cate-

gories (e.g.: /media/video/sport/curling/olympics2006) is defined in a namespace

and such layers are used to route to nodes which are in the specific routing Tables

responsible for that root name, in a manner reminiscent of subnet addressing in

common IP routing.

Our specific approach, aimed at realtime video streaming, and called CCN-

TV, specifies a few aspects of the base CCN protocol and adds a few fields to the

Interest and Data to manage client bootstrap and requirements of live video feeds.

Such addition are anyway easily adaptable to classic CCN message structure

by merging them as additional fields in the content name and specifying a no-

caching, direct forward policy on participating nodes for Interest packets working

as bootstrap messages for a client.

Internally the node keeps the same structures as a standard CCN node:

• a Content Store (CS) which is a cache memory for received contents and

managed by a chosen replacement policy;

• a Forwarding Information Base (FIB) which is a forwarding Table, different

from the IP one as a given content name can have more faces to allow

23

Interests to be forwarded to more potential sources;

• a Pending Interest Table (PIT) which is a Table keeping track of the for-

warded Interest packets and the faces they come from, to be able to route

back Data replies.

At the reception of an Interest the node searches its CS if the requested content

is already available, and if found is sent back to the requesting node.

Otherwise the PIT is consulted to see if the node has already received other

Interest packets for the same content, if yes the received Interest arrival face is

added to the PIT and nothing more.

If not the FIB is consulted to find the a matching entry to forward the Interest to,

if one is found the Interest is added to the PIT and sent to the appropriate node,

otherwise it is dropped, not being able to either satisfy of forward the request.

Before starting the real data transfer in the CCN-TV approach a client node

bootstraps the channel between him an the server, by sending a particular Inter-

est with the desired domain (the content provider) and channelID (the specific

channel), the Status and Nonce (the added custom fields we noted before) respec-

tively set to “BOOTSTRAP” and a random, but reasonably unique, numerical

identifier, ensuring each distinct bootstrap request for the same content will be

distinguishable.

The bootstrap Interest is specially treated by the intermediate nodes by sim-

ply forwarding it up to the server node, ignoring the caches for the same content

they may have in the CS. This is to avoid sending the client a video frame not

suitable to start the playing, i.e.: a frame which is not a key frame (called in

jargon I-frame) or a stale (already expired) I-frame. The chunkID of the chunk

containing the last generated not expired I-frame and the index for that frame is

then sent back to the client with a Data packet, which will start the standard re-

questing exchange, with the only difference that the Interest is sent only once for

a stream of Data packets to reduce network load, acting more like a subscription.

A mechanism based on the delay on the bootstrap (and subsequent request)

messages works as flow control, setting the size for the sliding window buffer of

received frames, essential in live-streaming video, which must be big enough to

avoid emptying it by delayed Data packets, but not too big to put un unreasonable

24

delay in the video playing.

The last addition to the standard CCN scheme to conform to real-time video

streaming is the ability to request a retransmission of a given chunk. By setting

the Status field of an Interest packet to “Retransmission” the intermediate nodes

replies with the content if the have it in their CS, otherwise they forward the

Interest (if they a matching face in the FIB) regardless, eventually adding it to

their PIT.

25

Part II

Detailed works

26

Chapter 4

Random graph modeling of

overlay networks interconnection

4.1 Overview

Interconnection of multiple P2P networks has recently emerged as a viable so-

lution to increase system reliability and fault-tolerance as well as to increase

resource availability. In this Thesis we consider interconnection of large scale

unstructured P2P networks by means of special nodes (called Synapses) that

are co-located in more than one overlay. Synapses act as trait d’union by send-

ing/forwarding a query to all the P2P networks they belong to. Modeling and

analysis of the resulting interconnected system is crucial to design efficient and ef-

fective search algorithms and to control the cost of interconnection. To this end,

we develop a generalized random graph based model that is validated against

simulations and it is used to investigate the performance of search algorithms for

different interconnection costs and to provide some insight in the characteristics

of the interconnection of a large number of P2P networks.

Useful applications of interconnecting unstructured P2P networks spans from

interoperability of existing data-bases ensuring backward compatibility, to the

“hot” topic of Typed Smart Grid where users can be aware of the “type” of

energy they want to produce and buy.

The last decade has seen the rise of peer to peer networks with a variety of ap-

27

plications, such as file sharing, resource lookup, real time services, up to the most

recent research in SmartGrids. Common issues which affect all P2P systems, such

as scalability, fault tolerance and security, arise from the different peculiarities

each class of applications might expose. Increasing the locality properties of such

systems, be it geographical, semantic, network, or social-based locality, is one of

the most valued approaches to face such challenges: by grouping together peers

representing users, and increasing their connections with one another, one can

improve scalability, fault tolerance, and security (consider the possible creation

of a “circle of trust” amongst nearby peers).

In this Thesis, we consider the interconnection of large-scale unstructured P2P

networks by means of special nodes called Synapses [52], which are co-located in

more than one network, and act as connectors by sending or forwarding a query

to some or all the P2P networks they belong to. Modeling and analysis of the

resulting interconnected system is crucial to design efficient and effective search

algorithms and to control the cost of network interconnection. Yet, simulation

and/or prototype deployment based analysis can be very difficult - if not impos-

sible - due to the size of each component (we consider large scale systems that

can be composed of millions of nodes) and to the complexity arising from the

interconnection of several such complex systems.

Our contribution

To overcome this strong limitation, we develop a generalized random graph based

model to represent the topology of one unstructured P2P network, the partition

of nodes into Synapses, the probabilistic flooding based search algorithms, and

the resource popularity. We validate our model against simulations and prove

that its predictions are reliable and accurate. We use the model to investigate

the performance and the cost of different search strategies in terms of the prob-

ability of successfully locating at least one copy of the resource and the number

of queries as well as the interconnection cost. We also gain interesting insights

on the dependency between interconnection cost and statistical properties of the

distribution of Synapses. Finally, we show that thanks to our model we can ana-

lyze the performance of a system composed of a large number of P2P networks.

28

To the best of our knowledge, this is the first work on model-based analysis of

interconnection of large scale unstructured P2P networks.

The topic is organized as follows: Section 4.2 describes our system, Section

4.3 presents the mathematical derivation of the generalized random graph model

we develop, Section 4.4 contains model validation through simulation, as well as

model exploitation to study the performance of three search algorithms, Section

2.1 discusses related works, and in Section 7.1, we draw conclusions and outline

ongoing activities that extend the current work.

4.2 System description

In this Thesis, we focus on unstructured P2P networks where peers organize into

an overlay network by establishing application level connections among them.

The topological properties of an overlay network are represented by the number

of connections of any of its participants. To this end, we describe an overlay by

means of the degree distribution {pk} that can be interpreted as the probability

that a randomly chosen peer has k connections in the overlay (
P1

k=1 pk = 1).

We consider a set of X unstructured P2P networks that are interconnected

thanks to a subset of peers that belong to multiple overlays (these special peers

are denoted as Synapses). Any peer may then belong to i 2 {1, . . . , X} overlays:

we denote i as the Synapse degree of a peer. The interconnected system is then

described by {si} (i 2 {1, . . . , X}) where si is the fraction of peers belonging to

i overlays (
PX

i=1 si = 1).

The search algorithm we consider is flooding-based. A peer starting a search

sends queries to a randomly chosen subset of its one-hop neighbors. These nodes

forward the queries to a randomly chosen subset of their one-hop neighbors,

excluding the query originator, and so on until the maximum number of allowed

hops, i.e. the query time-to-live (TTL). A simple schema of interconnection

through Synapses and search is depicted in Figure 4.1.

We also consider a variation of this search algorithm where a query is not

forwarded by peers that own a copy of the resource. We focus on probabilistic

versions of this general algorithm where any peer flips a coin before sending or

forwarding a query to a specific neighbor. We allow the weight of this coin to

29

be dependent on the Synapse degree of a peer; hence, a peer that belongs to i

overlays sends/forwards a query to a particular neighbor with probability pf (i)

(i 2 {1, . . . , X}). Please note that {pf (i)} (i 2 {1, . . . , X}) is not a probability

distribution hence in general
PX

i=1 pf (i) 6= 1.

The goal of a search is to localize at least one resource related to the key

we are looking for. There could be more replicas of the same resource hosted

by different peers for two reasons: a resource is popular and/or is owned by

peers located in different P2P networks. We represent resource popularity by

0 ↵ 1, the average fraction of nodes that globally hold a copy of a given

resource, and interpret it as the probability that a randomly chosen peer owns a

copy of the resource.

Query originator

Overlay 1

Overlay 2

Degree 2 synapse

Query message

Figure 4.1: Example of two P2P interconnected networks (X = 2) and one degree
2 Synapse that belongs to both

30

4.3 System model

This Section illustrates the random graph modeling approach to represent one

overlay topology, the interconnection of X P2P networks, the search algorithm,

and resource popularity as described in Section 4.2.

4.3.1 One overlay topology

Each P2P network is organized into an overlay that we model as a generalized

random graph whose degree distribution is {pk} that can be interpreted as the

probability that a randomly chosen peer has k connections in the overlay. The

random graph degree distribution is a probability distribution therefore we con-

sider its probability generating function (henceforth denoted as p.g.f.) that is

equal to G0(z) =
P1

k=0 pk z
k. To correctly characterize the neighborhood of a

randomly chosen peer we also need to characterize the probability distribution

of the number of connections of a peer reached by randomly choosing an edge of

the overlay. This probability is proportional to the degree of the peer (kpk) and

it can be proved that its p.g.f. is given by
P

k kpkz
k

P
k kpk

= z
G0

0
(z)

G0
0
(1)

where G0
0(z) denotes

the first derivative of G0(z) with respect to z and G0
0(1) yields the average value

of distribution {pk}. Finally, to characterize the number of connections excluding

the edge we chose we obtain the p.g.f. G1(z) =
G0

0
(z)

G0
0
(1)

. Starting from Equations

defining G0(z) and G1(z) we can compute the p.g.f. for the number of two hops

neighbors of a randomly chosen peer as G0(G1(z)). Similarly, the p.g.f. for three

hops neighbor is given by G0(G1(G1(z))), and so on.

For a detailed overview on analyzing generalized random graphs using gener-

ating functions, we refer the reader to [54].

4.3.2 Interconnection of multiple P2P networks

To interconnect multiple overlays we consider some peers as Synapses nodes:

these peers belong to multiple P2P networks hence the interconnected system

can be modeled by the probability distribution {si} (with i 2 {1, . . . X}). The

elements of this distribution describe the fraction of nodes belonging to multiple

P2P networks: si is the fraction of nodes that belong to k P2P networks. Its

31

p.g.f. is given by F (z) =
P1

i=0 si z
i. If we consider one of the X P2P networks

including the Synapse nodes then the p.g.f. for the number of connections of a

randomly chosen peer can be written as

M(z) = s1G0(z) + s2G
2
0(z) + . . .+ sXG

X
0 (z) = F (G0(z))

that is, if the chosen node is a degree 1 Synapse (this event has probability

s1) then the number of connections is represented by G0(z). If the node is a

degree 2 Synapse (this event has probability s2), then the number of connections

is represented by the sum of two independent random variables whose p.g.f. is

G0(z); it is well-known that the generating function of the sum of two independent

random variables is equal to the product of the respective generating functions

yielding the G2
0(z) factor in the equation for M(z). The same reasoning is valid

for Synapses whose degree is greater than 2.

A similar expression can be written for the neighborhood of a node reached

by following one randomly chosen edge excluding the selected edge:

N(z) = s1G1(z) + s2G1(z)G0(z) + . . .+ sXG1(z)G
X−1
0 (z) =

G1(z)

G0(z)
F (G0(z)).

If we denote as Nt(z) the p.g.f. for the probability distribution of the number of

neighbors t hops away from a randomly chosen node we have that: N1(z) = M(z),

and N2(z) = M(N(z)), and N3(z) = M(N(N(z))), and so on. From these

p.g.f. the average number of neighbors can be computed by evaluating their first

derivative w.r.t. z in z = 1.

As such, each probability distribution {si} induces an interconnection cost

that we define as the average number of P2P networks a randomly chosen node

belongs to:

f = F 0(1). (4.1)

4.3.3 Search algorithm

To model a flooding-based search in the interconnected system, we consider the

set of probabilities {pf (i)}, where i 2 {1, . . . X}. A peer belonging to i overlays

32

sends/forwards a query to a particular neighbor with probability pf (i), where

i 2 {1, . . . X}). Therefore, {pf (i)} is not a probability distribution.

We denote as qh the probability that h first hop neighbors received a query

from the peer that started the search. If the peer belongs to i overlays, it sends

a query to one of its neighbors with probability pf (i). Therefore, the number of

neighbors that receive the query follows a binomial distribution with parameter

pf (i). Therefore, it is well known that the probability distribution {qh} has p.g.f.

given by [54] Q(z) =
PX

i=1 siG
i
0(1 + pf (i)(z − 1)).

Similarly, for the p.g.f. of the probability distribution describing the number

of queries sent by a node reached by following a randomly chosen edge, we obtain:

R(z) =
X
X

i=1

si G1(1 + pf (i)(z − 1))Gi−1
0 (1 + pf (i)(z − 1)). (4.2)

If we denote as Qt(z) the p.g.f. for the probability distribution of the number

of neighbors t hops away from a randomly chosen peer that received a query, we

have that: Q1(z) = Q(z), Q2(z) = Q(R(z)), and Q3(z) = Q(R(R(z))), etc. As

a special case, we may consider constant forwarding probabilities, i.e. pf (i) =

pf , 8i 2 {1, . . . X}. In this case, we would obtain: Q(z) = M(1 + pf (z − 1)) and

R(z) = N(1 + pf (z − 1)). Since the p.g.f. of the probability distribution of the

sum of independent random variables is given by the product of the corresponding

p.g.f., the total number of queries generated by a search issued by a randomly

chosen peer is described by: T (z) =
QTTL

t=1 Qt(z) yielding the average number of

queries

m = T 0(1). (4.3)

4.3.4 Hit probability

We model resource popularity by 0 ↵ 1 that is the average fraction of

peers that globally hold the given resource. We interpret this parameter as the

probability that a randomly chosen node owns a copy of the resource.

If we denote as wh the probability that h first hop neighbors hold a copy

of the requested resource and received a query from a peer that belongs to i

overlays we note that the number of such neighbors follows a binomial distribution

33

with parameter ↵pf (i). If we denote as Ht(z) the p.g.f. for the probability

distribution of the number of neighbors t hops away from a randomly chosen peer

that received a query and hold a copy of the requested resource then we have that:

H1(z) = Q1(1 + ↵(z − 1)), H2(z) = Q2(1 + ↵(z − 1)), H3(z) = Q3(1 + ↵(z − 1)),

and so on. Therefore, the total number of search hits is described by a probability

distribution whose p.g.f. is given by: H(z) =
QTTL

t=1 Ht(z) yielding the search hit

probability

phit = 1−H(0). (4.4)

4.3.5 A variation of the search algorithm

To model a search algorithm where peers that own a copy of the resource do

not forward a query message it suffices to redefine R(z) in Equation 4.2. In

particular, when a peer owns a copy of the resource the number of its neighbors

that receive the query is equal to 0: this happens with probability ↵. In Equation

4.5 this is represented by the term ↵ that can be written as ↵ ·p0 · z
0 with p0 = 1.

With probability 1− ↵ Equation 4.2 holds, therefore we obtain the p.g.f. of the

probability distribution describing the number of queries sent by a node reached

by following a randomly chosen edge as:

R(z) = ↵ + (1− ↵)
X
X

i=1

siG1(1 + pf (i)(z − 1))Gi−1
0 (1 + pf (i)(z − 1)). (4.5)

The definition of Qt(z), and T (z), and m remains unchanged.

4.4 Results explained

In Sections 4.5 and 4.6, we will first show the results of the model validation,

performed via a heavily multi-threaded simulator, written in Erlang, that repro-

duces, in terms of message routing, the exact behavior of a system described by

our model. Also, we will show the results of some broad system evaluations made

possible by the use of our model to compute metrics that would otherwise, if

performed by means of simulations, require too much in terms of simulation time

and computational power.

34

In our analysis, we consider different routing policies that can be employed

in our scenarios, modeled by defining the pf (i) mentioned in Section 4.2. Those

are:

• pf (i) =
1

i
, henceforth referred to as 1/i, i.e. the probability of selecting a

neighbor is inversely proportional to the number of overlays a node is con-

nected to. This routing tends to maintain a constant number of messages,

but “flattens” the interconnected topology, not allowing Synapse nodes to

exploit the extended neighborhood.

• pf (i) = min(1,
zmax

zi
), henceforth referred to as zmax, where z = E[{pk}]

is the average number of neighbors for a node based on the current degree

distribution and zmax is a system parameter, specified upon design, indicat-

ing the upper bound for the average number of forwarded messages. This

policy allows for a better exploitation of Synapse nodes, while still finely

limiting the number of messages in the system. In our evaluations, zmax

has been set to 2z, twice the average number of neighbors per node.

• pf (i) = 1, henceforth referred to as flood, i.e. a routing where every node

selects forwards a message to every neighbor, regardless of the number of

connected overlays.

In both simulations and evaluations, the individual overlays have been modeled

following the neighbors degree distribution measured in [55] from real world ap-

plications and used already in [56], in order to have an accurate overlay model.

4.5 Model validation

In order to evaluate the accuracy of our model in predicting the performance in-

dexes of a real network, we validated the obtained results by means of simulation.

The simulator employs standard statistical procedures to estimate 68% and 95%

confidence intervals for the phit and m indexes defined in Section 4.3.

35

4.5.1 Simulation methodology

The simulator has been developed from scratch in Erlang. The choice of Er-

lang has been driven by its native multi-threading capabilities and inter-process

communication model based on the message passing paradigm embedded in the

language, thus allowing for a rapid implementation of an accurate network model

made of node processes running independently and exchanging messages with

one another. Each process has a list of other processes it can exchange messages

with, that constitutes its neighborhood.

We considerNs independent realizations for the interconnected overlay topolo-

gies (in our experiments Ns = 30); each interconnected topology is used to obtain

one realization of m and phit. The hth realization is obtained as follows:

• We first generate a new topology, made of X overlays interconnected by

Synapse nodes, using as input parameter the number of nodes N = 500000,

the nodes degree distribution {pk} [55], and the {si} to be validated;

• From the generated topology file, the simulator instantiates N node pro-

cesses and assigns each the corresponding list of neighbors;

• One or more resources are then seeded in the system, according to their

respective popularity ↵, by sending a PUT(value) message to N↵ random

nodes;

• Separate worker processes take care of sending a query message SEARCH(value,TTL)

to each node process in the network.

• Meanwhile, a listener process receives then the responses, either the resource

being found or the TTL being reached, and of computes the statistics.

4.5.2 Topology generation

The generation of a network made of interconnected overlays mainly consists

of generating first X individual overlay topologies, and then connecting them

by “merging” nodes from different overlays in one Synapse node, thus creating

nodes with extended neighborhoods spanning across all the connected overlays.

36

↵

10−1

100

p h
it

Sk = S1

X = 4, TTL = 3

Model

Simulator

↵

10−1

100

p h
it

Sk = S2
Model

Simulator

10−1 10−2 10−3 10−4 10−5

↵

10−1

100

p h
it

Sk = S3
Model

Simulator

↵

10−1

100

p h
it

X = 4, TTL = 3, Sk = S2

Model

Simulator

0.5 10−1 10−2 10−4 10−5

↵

1000

2000

3000

4000

4500

m
Figure 4.2: phit for different ↵ and si (left) and alternative search algorithm
(right)

In order to generate X random graphs with a specified degree {pk} we relied

on the algorithm presented in [57], that provides short generation times while

guaranteeing the respect of the specified degree.

4.5.3 Validation results

The first validation we performed was conducted for a system with only one

overlay (X = 1). For the sake of brevity we only show the results for the flood

routing strategy, ↵ = 0.0001, and TTL = 3. Table 4.1 shows the model is very

accurate and faithfully predicts results when compared to the simulation output.

We then validated various scenarios with a higher number of interconnected

overlays (X = 4), at TTL = 3, 4 and with different values of ↵, different routing

policies and different distributions {si}. We considered the distribution for the

degree of Synapses summarized in Table 4.2.

Table 4.1: m for different si distributions: comparison between model and simu-
lation

Model Simulation (95% C.I.)
phit 0.3733 0.373552± 0.003852

m 4822.63 4821.57± 0.0498

37

Figure 4.2 (left) shows a comparison between the computed phit for different

values of ↵ and the corresponding simulation results, while Table 4.3 summarizes

the same comparison for m. The results show that both performance metrics fall

within the confidence interval of the simulation results.

Furthermore, we validate the system against the alternative search algorithm

detailed in Subsection 4.3.5. For the sake of brevity, we are showing results only

for S2 since the same conclusions can be drawn for S1 and S3. Figure 4.2 (right)

shows both phit and m against different values of ↵, since with this algorithm the

number of message is dependent of the resource popularity. Even in this scenario,

the model results fall within the confidence interval estimated by the simulator.

Therefore, we can safely conclude that our model is accurate in predicting

the behavior of the performance indexes in a broad range of different scenarios.

Furthermore, while simulations required hours of CPU time to complete solving

our model took less than one second with a solver implemented in C.

4.6 Model exploitation

After validating the model we conducted a few analysis to show its usefulness in

the design phase of the interconnection of several peer-to-peer networks.

4.6.1 Comparison of different routing policies

A first evaluation concerns the choice of a specific routing policy in the system,

i.e. the definition of different pf (i). In this case, we want to compare for values

of ↵ down to 10−6, the performances in terms of phit and m for the distribution

of degree of Synapses S1 (results for the other two distributions suggested similar

considerations and are omitted for the sake of brevity), X = 10, and TTL = 3.

Please note that to achieve a reliable measurement via simulation for ↵ = 10−6

Table 4.2: Definition of the {si} distributions used for validation
S1 s1 = 0.7, s2 = 0.1, s3 = 0.1, s4 = 0.1
S2 s1 = 0.4, s2 = 0.3, s3 = 0.2, s4 = 0.1
S3 s1 = 0.1, s2 = 0.2, s3 = 0.3, s4 = 0.4

38

we would need to conduct complex simulations (at least 1000000 nodes) for a

long simulation time (ideally each of them to be queried individually for multiple

topology realizations).

Figure 4.3 show the values of phit for the 3 different policies and different

resource popularities, while Figure 4.4 depicts the average number of messages

for the 3 policies in the case of propagation of queries up to TTL hops (Figure

4.4(b)) and for the query propagation that stops when reaching a node holding a

copy of the resource (Figure 4.4(a)) modeled in Subsection 4.3.5. In the former

case, the number of messages is independent of the resource popularity while in

the latter case we note that reduction of the number of query messages can be

obtained for popular resources, i.e., for ↵ > 0.01.

In this case, the model allows for a simple cost/benefit evaluation, based on

the expected popularity of a resource. For one, we can notice an almost tenfold

increase in the number of messages between the zmax and the flood policy, to

which it does not correspond a proportional increase in the phit.

4.6.2 f-cost based evaluation

In a cost/benefit analysis of the interconnected system, we consider phit as our

benefit metric whereas m and f are considered as costs. Another kind of evalua-

tion we performed consists of fixing the f cost and analyzing which distributions

{si} lead to better performances (phit) and minimum cost (m).

To this end we considered all distributions {si} that can be defined for X = 5

where the individual probabilities are non-zero multiple of 0.05. We considered

3 values of f (namely, f = 2, 3, 4) and compared the performances of every

distribution {si} with given f for TTL = 2. Again, please note that this analysis

Table 4.3: m for different si distributions: comparison between model and simu-
lation

Model Simulation (95% C.I.)
S1 4598.02 4596.77± 2.38

S2 4701.82 4700.96± 0.49

S3 4449.57 4453.58± 3.41

39

10−1 10−2 10−3 10−4 10−5 10−6

↵

0.0

0.2

0.4

0.6

0.8

1.0

p h
it

X = 10, TTL = 3, Sk = S1

Routing=1/i

Routing=zmax

Routing=flood

Figure 4.3: Routing policies comparison: phit for different resource popularities
↵

would have required days of CPU time to be completed by means of simulation

since even with a coarse granularity in the definition of {si} (0.05) we tested

hundreds of different distributions. This analysis required only a few seconds to

complete with our model.

Figures 4.5(a) and 4.5(b) show a subset of these distributions (each point in

the graph corresponds to a particular distribution {si}). We only plotted the

ones with the highest phit; it appears that the interconnection cost f alone is

not directly bound to an increase in performances. There are, as a matter of

fact, different configurations with f = 3 that perform equally (sometimes very

slightly better) than those with a f = 4. Furthermore, within the configuration

with f = 2 some are better than others in terms of performance and costs.

Nevertheless, a clear relation exists between message cost m and phit: the larger

the average number of messages the higher the phit.

40

10−1 10−2 10−3 10−4 10−5 10−6

↵

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

m

X = 10, TTL = 3, Sk = S1

Routing=1/i

Routing=zmax

Routing=flood

(a) Query propagation for TTL hops

10−1 10−2 10−3 10−4 10−5 10−6

↵

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

m

X = 10, TTL = 3, Sk = S1

Routing=1/i

Routing=zmax

Routing=flood

(b) Query propagation of Subsection 4.3.5

Figure 4.4: Average number of messages for different routing policies

The behavior shown in the Figures can be explained as following: the routing

policy called zmax limits the number of messages that can be issued by a node

to the value zmax, which is set in our evaluations to 2z. Therefore, increasing

the number connections in the interconnected system (f) beyond certain values

does not lead to a significant performance increase. That is why we observe a

proportionally higher increase in the phit from f = 2 to f = 3 than from f = 3

to f = 4.

4.6.3 Effects of granularity

Another aspect we analyze is a performance comparison as the number of overlays

to interconnect increases. In this case we chose to analyze the behavior of the

zmax routing policy, in a system with TTL = 3 and ↵ = 0.0001, for an increasing

number of overlays (X) and for different distributions {si}, characterized by

an increasing percentage of non-Synapse nodes s1, while the remainder of the

distribution is equally distributed across the remaining si.

Figures 4.6(a) and 4.6(b) show four different configurations, with an increasing

number of non-Synapse nodes in the system. The parameter s1 indicates the share

of non Synapses nodes, while the remaining part (1 − s1) is equally distributed

among the remaining X − 1 values, i.e., si =
1−s1
X−1

for 1 < i X. It can be noted

that at each given ratio of Synapses vs non-Synapses nodes the system behavior is

41

si

0.06

0.07

0.08

0.09

0.10

p h
it

X = 5, TTL = 2, ↵ = 10−4, Routing=zmax

f = 2

f = 3

f = 4

(a) Hit probability phit (b) Number of messages m

Figure 4.5: si comparison at different f

roughly the same regardless the number of overlays. The efficiency is still tightly

bound to the number of messages and both increase as s1 decreases.

4.6.4 System design with minimum requirements

Thanks to the high number of different configurations that can be evaluated with

our model in a relatively short time, we conduct a further analysis to support the

design of the interconnection of several peer-to-peer networks.

For instance, we set the number of overlays X and the resource popularity

↵; by setting a bound for the minimum desired phit, we can compare different

routing policies and TTL values and find the one that minimizes the average

number of messages m.

Figures 4.7 and 4.8 (left) show a classification of distributions {si} for two

different routing policies and two different TTL values with respect to phit and

m for X = 10 and ↵ = 0.0001 (each point in the graphs represents a particular

distribution {si}). In the first case (Figure 4.7), we decided to fix a cost factor

and set f = 4, whereas in the second case (Figure 4.8 left), the fixed factor is the

ratio of expected non-Synapse nodes in the system s1. We are able to discriminate

immediately those distributions {si} that do not satisfy the imposed criteria of

having phit > 0.9. We also discriminate among those that do the distributions

{si} that minimize the number of messages m, as shown in Figure 4.7(b).

42

2 4 6 8 10 12 14 16 18 20
X

0.0

0.2

0.4

0.6

0.8

1.0

p h
it

TTL = 3, ↵ = 10−4, Routing = zmax

s1 = 0.8

s1 = 0.6

s1 = 0.4

s1 = 0.2

(a) phit vs. X

2 4 6 8 10 12 14 16 18 20
X

0

5000

10000

15000

20000

25000

30000

m

TTL = 3, ↵ = 10−4, Routing = zmax

s1 = 0.8

s1 = 0.6

s1 = 0.4

s1 = 0.2

(b) m vs. X

Figure 4.6: Performance evaluation with different numbers of overlay X

4.6.5 Routing without propagation

We briefly present some evaluation results based on the model variation presented

in Subsection 4.3.5. In the first version of our model, the routing of a message

is assumed to continue until the TTL expires, regardless of a resource being

found or not. This leads to an Ht(z) able to describe different cases, such as

the probability of finding multiple copies of a resource. However the system is

not optimal message-wise. In case we are interested only in the first hit of a

search query, and we want to optimize the number of messages employed, with

the variant of R(z) described in Subsection 4.3.5 we are able to evaluate the

system under the conditions that the routing in a node stops whenever a resource

is found.

Figure 4.8 (right) shows the trend ofm for different ↵, and two routing policies

for X = 10, TTL = 3, and distribution S1. While the number of messages was

unrelated to the resource popularity before, here we see that, as routing stops

upon first hit, the more popular a resource, the lower the number of messages

per query.

43

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
phit

0

10000

20000

30000

40000

50000

60000

70000

80000

m

X = 10, ↵ = 10−4, f = 4

TTL=3, Routing=1/i

TTL=4, Routing=1/i

TTL=2, Routing=zmax

TTL=3, Routing=zmax

(a) Overall view

0.9
phit

26000

27000

28000

29000

30000

31000

32000

33000

m

X = 10, ↵ = 10−4, f = 4

TTL=3, Routing=1/i

TTL=4, Routing=1/i

TTL=2, Routing=zmax

TTL=3, Routing=zmax

(b) Zoomed view

Figure 4.7: Distribution of different routing policies with fixed f

4.7 Published works

The mathematical model was originally presented as a poster and short paper

titled “Modeling and analysis of large scale interconnected unstructured p2p net-

works” [8].

The full paper was subsequently published as “Interconnection of Large Scale

Unstructured P2P Networks: Modeling and Analysis” [4].

44

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
phit

0

10000

20000

30000

40000

50000

60000

70000

80000

m

X = 10, ↵ = 10−4, s1 = 0.1

TTL=3, Routing=zmax

TTL=4, Routing=1/i

TTL=2, Routing=zmax

TTL=3, Routing=1/i

0.5 10−1 10−2 10−3 10−4 10−5 10−6

↵

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

m

X = 10, TTL = 3, Sk = S1

Routing=1/i

Routing=zmax

Figure 4.8: Distribution of different routing policies with fixed s1 (left) and mes-
sage evaluation at different ↵, for different routing policies (right)

45

Chapter 5

Polluter identification in

MANETs

5.1 Overview

We consider the following problem: nodes in a MANET must disseminate data

chunks using rateless codes but some nodes are assumed to be malicious, i.e.,

before transmitting a coded packet they may modify its payload. Nodes receiv-

ing corrupted coded packets are prevented from correctly decoding the original

chunk. We propose SIEVE, a fully distributed technique to identify malicious

nodes. SIEVE is based on special messages called checks that nodes periodi-

cally transmit. A check contains the list of nodes identifiers that provided coded

packets of a chunk as well as a flag to signal if the chunk has been corrupted.

SIEVE operates on top of an otherwise reliable architecture and it is based on

the construction of a factor graph obtained from the collected checks on which an

incremental belief propagation algorithm is run to compute the probability of a

node being malicious. Analysis is carried out by detailed simulations using ns-3.

We show that SIEVE is very accurate and discuss how nodes speed impacts on

its accuracy. We also show SIEVE robustness under several attack scenarios and

deceiving actions.

Mobile Ad-hoc Networks (MANET) are characterized by open, distributed

46

and dynamic architectures, built on top of the shared wireless medium; all features

contribute to make MANET very vulnerable to attacks at any layer of the Internet

model [24, 25].

We consider a particular type of active, non-cryptography related attack,

where insider nodes corrupt data at the application level (this is also known

as pollution attack). In this Chapter we deem as a use case a data dissemination

application over a MANET. Nodes generate data chunks to be disseminated to all

participants using rateless codes; some malicious nodes deliberately modify coded

packets of a chunk before relaying them to prevent honest nodes from obtaining

the original information.

In this Chapter we propose SIEVE a decentralized, accurate and robust tech-

nique to identify malicious nodes on top of an otherwise reliable and attacker-free

architecture. Each node in SIEVE dynamically creates a bipartite graph (factor

graph) whose vertexes are checks and uploading nodes. A check is a report cre-

ated by a node upon decoding a data chunk; a check contains a variable length

list of nodes identifiers that provided parts of the data as well as a flag to signal

if the data chunk has been corrupted. Detection of the compromised chunks is

achieved exploiting the constraints imposed by linear channel coding.

The factor graph is periodically and independently analyzed by each node

running an incremental version of the Belief Propagation (BP) algorithm [58, 59,

60, 61]. The proposed algorithm allows each node to compute the probability

of any other node being malicious; these latter probabilities are used to derive

a suspect ranking of nodes in the MANET. Each node updates its local factor

graph using the checks obtained by its own decoding operations as well as checks

that are periodically gossiped by neighbor nodes.

The major contributions of the Chapter are the recasting of the problem of

malicious nodes identification in terms of the estimation of the marginal prob-

abilities on a bipartite graph and the proposal of a decentralized and accurate

solution based on the BP algorithm. It is worth pointing out that the selected

data dissemination application is just a quite popular use case [62, 63], whereas

the proposed approach is by no means constrained to a single scenario. In par-

ticular, SIEVE can be used in any application that uses multi-party download

47

or collaboration, provided that is possible to detect that a given set of collab-

orating entities is compromised by at least one malicious node. As opposed to

cryptographic/algebraic techniques proposed in the area of network coding based

wireless mesh networks, e.g., [33, 34, 35, 39] SIEVE does not rely on verification

tools to check the integrity of every coded block. In SIEVE the BP algorithm is

used to infer the identity of the malicious nodes resting upon only on a simple

pollution detection mechanism; as an example, in our reference scenario, pol-

lution detection is achieved as a by product of the data dissemination protocol

based on rateless codes. Furthermore, the aforementioned solutions may not be

suitable for MANET since mobility is likely to affect key predistribution, routing

mechanisms, attack behavior, etc.

SIEVE fits well two key MANETs features that must be accounted for when

devising any security solution: it is fully decentralized and does not rely on any

infrastructure (as opposed to some solutions in the area of peer-to-peer streaming

where special well known nodes are necessary, e.g., [40]). Furthermore, SIEVE

requires small computational, storage, and communication costs for implementa-

tion.

Chapter contributions are completed by a comprehensive experimental inves-

tigation of SIEVE capabilities. Our analysis is carried out by detailed simulations

using ns-3; we show that SIEVE is accurate in letting each honest node identify

all malicious nodes under several scenarios. We analyze the sensitivity of SIEVE

performance to the nodes speed and we stress test SIEVE under several deceiving

actions, colluding attacks launched by malicious nodes, and increasing number of

malicious nodes. We also discuss an interesting trade-off between rateless code

efficiency and SIEVE performance. The SIEVE technique has been partially pre-

sented in [64]. This Chapter includes a richer set of experimental results and

a more detailed analysis of the obtained performance indexes, worked out on a

larger set of system settings.

The Chapter is organized as follows: Section 5.3 describes the system model

we consider, Section 5.4 presents the SIEVE technique, Section 5.5 discusses the

simulation methodology and the accuracy, reactivity, and robustness results we

obtained, Section 2.2 summarizes other works related to SIEVE, finally Section

7.2 draws conclusions and outlines directions for future developments.

48

5.2 LT codes

LT codes have been proposed in [53] and represents one of the first embodiment

of the class of rateless codes: these are a particular family of erasure codes where

the rate is not fixed by design, so that the number of coded packets can be de-

cided and changed on the fly. LT codes are rateless based on the binary Galois

field GF(2), i.e., coded packets are computed with simple binary XOR of random

subsets of theK original data blocks. In [53] it is shown that selecting the number

of blocks to be combined, termed as the packet degree d, according to the Robust

Soliton Distribution (RSD)1, one gets optimal asymptotic decoding performance.

By optimal performance we mean that the so called decoding overhead, i.e. the

number of coded packets to be received in excess of K, turns to be negligible for

asymptotically large K. In particular, the original chunk can be obtained by any

node able to collect any set of M = K · (1+ ✏) coded packets (on average), where

✏ is defined as the code overhead. The decoding algorithm can be viewed as the

solution of a system of linear equations with K unknowns (the K original data

blocks) and M ≥ K equations. In [53] it is shown that a simple method based

on the recursive cancellation of equations corresponding to packets with degree

1, i.e. representing one original data blocks, guarantees the desired asymptotic

performance.

5.3 A use case for SIEVE

In this Chapter we consider a MANET composed of N wireless nodes moving in

a given area. A set of Nsource nodes periodically produces a new data chunk to

be disseminated to all others once every h seconds. All nodes cooperate to the

diffusion of the data chunks by running a distributed dissemination algorithm

based on Luby Transform (LT) codes [53]. Data is transmitted by source nodes

using LT codes [53]: a chunk (whose size in bytes is fixed and is denoted as S)

is divided in K equally sized blocks. The source node then creates and forwards

1RSD is derived by the Ideal Soliton Distribution and depends on two free parameters
usually identified with constants c and δ.

49

coded packets using LT codes [53], combining random subsets of the K blocks;

the size of each coded packet is Scb =
S
K
.

5.3.1 LT based dissemination protocol

The rateless principle and randomness of LT codes (see Section 5.2) is used for

spreading data in the MANET by letting source nodes transmit novel coded

packets that can be generated randomly and on the fly. A coded packet conveys

the XORed payloads of the corresponding original packets as well as a header

signaling the indexes of the combined packets. The original chunk can be obtained

by any node able to collect any set of K · (1+ ✏) coded packets without requiring

any coordination among the source nodes. In turn, whenever a node is able

to successfully decode a chunk, it can behave as a new source for the chunk,

generating and disseminating novel coded blocks.

In Figure 5.1 the algorithmic steps of the LT based dissemination protocol

implemented by a node are graphically sketched. Each node can simultaneously

collect coded packets for different chunks; to this end a window based mechanism

is used where the wr most recent chunks can be concurrently downloaded and

progressively decoded. As soon as a given chunk is decoded (this event happens

on average when K · (1 + ✏) coded blocks of the chunk have been buffered), the

corresponding data blocks are moved into a buffer storing the wt data chunks

that have been decoded most recently. A simple round robin scheduling policy

is used on the transmitter side, where one of the data chunk is selected, a novel

LT coded packet is encoded and transmitted. A new coded packet is transmitted

every Ttx ms using UDP over an 802.11g wireless communication interface yielding

an average transmission range of r meters.

5.3.2 Malicious nodes

The proposed dissemination protocol is an example of a distributed and collab-

orative approach that has the potential to simplify and accelerate the spreading

of the information in the MANET thanks to node mobility. On the other hand,

few malicious nodes may try to break the system by polluting, i.e. modifying

some coded packets. In this Chapter we assume that a subset of P nodes, with

50

Coded packets

receiver
LT decoder

LT encoder
Coded packets

transmitter

w
r

chunks in decoding

w
t

completed chunk

K(1+)ε

K

decoded chunks

Figure 5.1: Node operations: LT encoding, decoding and dissemination protocol

P < N , is composed of malicious nodes, that deliberately modify the payload

of the coded packets to prevent honest nodes from correctly reconstructing the

original chunk. In the presence of coding even a single corrupted coded packet

can prevent an honest node from decoding the original chunk.

5.4 The SIEVE protocol

SIEVE uses LT codes decoding mechanism to detect modified chunks and exploits

the Belief Propagation (BP) algorithm [58] to identify malicious nodes.

5.4.1 LT codes verification mechanism

According to the dissemination strategy described in Section 5.3 every node keeps

collecting from different uploaders sets of coded blocks corresponding to different

chunks. LT codes can be exploited to detect if modified blocks have been collected

without the need of any supplementary verification mechanism.

Indeed, a node is able to detect pollution as soon as an inconsistency is found

in the solution of the underlying system of linear equations. In particular, accord-

ing to the procedure [53] the decoder keeps canceling out all the already known

51

data packets. This is achieved by observing that a coded packet with a degree 1

equation represents a data packet in the clear. Such data packet can be simplified

from all the incoming equations. Since LT codes have a certain overhead some

coded packets that are linearly dependent on the ones received previously are

always collected before successful decoding; this amount to the reception of some

equations whose terms are all already known. As soon as this condition is met

the LT decoder can check the consistency of the payload carried by the coded

packet; in other words, the same linear combination must be obtained combining

a set of already known packets. If this constraint is violated the whole chunk is

recognized as corrupted. Please note that the receiver node is not able to identify

the corrupted block(s) but only that at least one of them has been maliciously

manipulated.

5.4.2 Check construction and reporting

SIEVE is based on the concept of checks that are reports created by nodes upon

decoding a chunk. A check contains the list of the identifiers of nodes that

provided coded blocks of a chunk and a flag to label such chunk as corrupted or

not. A check describing a corrupted chunk is called a positive check while it is

termed a negative check otherwise. Each nodes n maintains a list of all checks

created that is denoted as Ln.

Each node, besides accumulating the checks from its local decoding operations,

gossips them in the neighborhood. Each node n in the MANET transmits its

checks in two cases:

• as soon as n decodes a chunk it inserts it in Ln and broadcasts it;

• once every Ts seconds n randomly selects Q checks in Ln and transmits

them.

5.4.3 Identification based on belief propagation

The checks in Ln and all checks received by n are used to build a factor graph

Gn=(U,C,E). Gn is a bipartite graph where the vertex set U is the set of uploader

52

nodes, the vertex set C is the set of checks, and an undirected edge {i, I} ∈ E

exists if and only if check I ∈ C depends on uploader i ∈ U.

In the following we will refer to the set of uploaders involved in check I as UI

and the set of checks that node i contributes as an uploader as Ci. An example of

factor graph with four uploaders (circles) and two checks (squares) is show in Fig-

ure 5.2. The factor graph can be progressively created while decoding the chunks.

In Figure 5.2 we assume that a node has decoded two chunks corresponding to

two checks in its local factor graph. The filled square represents a positive check

due to the detection of a modified chunk concurrently downloaded by three nodes

(in the Figure we assume that the rightmost node is malicious). The remaining

check is a negative one, appended when a chunk has been decoded successfully.

From the point of view of any decoding node, each uploader i can be in one of

two hidden states xi = 1 or xi = 0, depending on whether uploader i is or is not

a malicious node. Each check can report one of two observations cI = 0 or cI = 1

in case of negative or positive pollution detection, respectively.

The problem of identifying the malicious nodes from a given number of checks

can be recast as an inference problem. The goal of the inference is the estimation

of the hidden state of the nodes, i.e. being malicious or not, given a set of

observations corresponding to the checks. Each check can be interpreted as an

accusation raised against a set of uploader nodes by a witness node. In this

Chapter we adopt the BP algorithm [58, 59, 60, 61], that has been used to solve

a number of inference problems in many different fields, e.g., iterative channel

decoding [65], Bayesian networks [58] and computer vision [66] to mention a few.

The BP algorithm can be used to estimate from the factor graph the so called

variable marginals P (xi)i2U, i.e. the probability of node i being malicious. BP

is an iterative algorithm based on the exchange of probability estimates (also

called messages or beliefs), along the edges of the bipartite graph Gn. In case

of a Bayesian network BP represents a closed-form solution for the marginals.

Nonetheless, the same algorithm has proven to be a robust estimator for the

variable marginals of general factor graph [60, 61].

In our setting it is convenient to distinguish between two classes of messages:

message from uploader i to check I, mx
iI , that is meant to be the probability

that uploader i is in state x, given the information collected via checks other

53

C
i

I
U

Uploaders

Checks

i

I

Figure 5.2: Example of factor graph

than check I (Ci \ I); message from check I to uploader i, mx
Ii is defined as the

probability of check I having value cI if uploader i is considered in state x and all

the other uploader states have a separable distribution given by the probabilities

{mx
i0I : i

0 ∈ UI \ i}.

The BP algorithm is based on iterative refinements of the check messages mx
Ii

based on the current values of the node messages mx
iI (check pass), followed by

updating of mx
iI as a function of mx

Ii (node pass). For the first check pass the

messages are initialized to the values m0
iI = m1

iI = 0.5, since we assume that no

prior information on the number and identity of the malicious nodes is available.

The check pass is based on the estimation of the probabilities mx
Ii as follows:

mx
Ii =

X

{xi0 :i
02UI\i}

P (cI |xi = x, {x0
i : i

0 ∈ UI \ i})
Y

i02UI\i

m
x0
i

i0I (5.1)

Equation (5.1) depends on the probability of observing a certain check value cI ,

given the states of the uploaders of such check.

Given that a check turns out to be positive as soon as at least one of the

uploaders is a malicious node, we can write:

P (cI = 1|{xi : i = 1, . . . , k}) =

(

0, if xi = 0, ∀i

1, otherwise
(5.2)

54

Analogously, observing that a check can be negative if and only if all the uploaders

are not malicious, we get

P (cI = 0|{xi : i = 1, . . . , k}) =

(

1, if xi = 0, ∀i

0, otherwise
(5.3)

Plugging the last two expressions into Equation (5.1) we can simplify the check

pass computation as follows:

mx
Ii =

8

>

>

>

>

>

<

>

>

>

>

>

:

Q

i02UI\i
m0

i0I if cI = 0, x = 0

0 if cI = 0, x = 1

1−
Q

i02UI\i
m0

i0I if cI = 1, x = 0

1 otherwise

(5.4)

The next BP step is constituted by the updating of the probabilitiesmx
iI , using

information from previous computation in the checks (node pass), according to

(5.5):

mx
iI =

Y

I02Ci\I

mx
I0i (5.5)

After any node pass it is possible to get an estimate of the marginal P (xi = x)

according to:

P (xi = x) =
Y

I02Ci

mx
I0i (5.6)

We recall that the probability estimates given by Equation (5.5) and (5.6) are

not guaranteed to be normalized; in the practical implementation we use proper

normalization constants to avoid numerical issues as suggested in [59].

To conclude, the BP algorithm initializes the values of mx
iI , then keeps iterat-

ing using Equations (5.4) and (5.5). A reliable estimate of P (xi = x) is computed

after a certain number of such iterations using Equation (5.6). In all the exper-

iments reported in this Chapter 3 iterations have been used to strike a balance

between estimation accuracy and complexity.

55

5.4.4 BP complexity

The computational cost of single message update using Equation (5.4) amounts

to |UI | − 1 multiplications, where operator | · | evaluates the cardinality of a set.

Since messages are associated to each edge of the bipartite graph we can conclude

that the overall check pass takes on average |E|(zU − 1) multiplications, zU being

the average number of uploaders per check.

Using the same reasoning from (5.5) one can compute the cost of the node

pass as |E|(zC − 1) multiplications, where zC is the average number of checks per

node. Analogously, the final estimate in (5.6) takes |E|zC multiplications.

Finally, taking into accounts all the BP steps and assuming 3 iterations the

overall computational complexity amounts to 3(|E|(zU − 1) + |E|(zC − 1)) + |E|zC

multiplications.

5.4.5 Incremental BP estimation

In the previous description of the BP we have assumed that the factor graph Gn is

known in advance and kept fixed for all the iterations. In practice this assumption

is not met in the proposed scenario. Nonetheless, the proposed algorithm can be

implemented using an incremental (or sliding window) approach as follows.

Each node n keeps receiving checks from the other ones and it is allowed to

run the BP on Gn every T seconds considering only the checks received and cre-

ated in a time window of the past w seconds. At time t, depending on the checks

stored during a time window w, an updated factor graph Gn,t,w is obtained by

removing the old checks and adding the new ones; then, the corresponding esti-

mates Pt,w(xi = x) are computed through BP. The belief values mx
iI are initialized

to 0.5 when the i-th node is met for the first time; then, the partial estimates of

mx
iI are stored in memory and propagated to all the iterations and computation

windows where such values are needed.

After every BP estimation of P (xi = x), a list of suspect nodes is obtained

by setting a threshold on the probability Pt,w(xi = 1) ≥ ⌘. Each node n keeps

a counter for each of its uploader nodes i: the nodes in the list of suspects after

the BP run have their counter increased by 1. Finally, a suspects ranking Rn over

uploader nodes is defined by sorting their counters in decreasing order. As an

56

example, the first node in the suspects ranking at time t is the uploader that more

often has been included in the list of suspects after all the BP runs performed up

to time t.

5.5 Results

In this Section we describe the simulation methodology and the indexes we defined

to evaluate the accuracy, reactivity, and robustness of SIEVE. In particular, we

show how the structural properties of the factor graph Gn and mobility impact the

performance of SIEVE as well as how robust it is with respect to several deceiving

actions operated by malicious nodes. Finally, we show a trade-off between coding

efficiency and SIEVE accuracy.

5.5.1 Factor graph and performance

According to [67] when short cycles are absent in the factor graph Gn it is best

to have high degree nodes (i.e., uploaders that contribute to many checks) and

low degree checks (i.e., checks obtained from a small number of uploaders). High

degree nodes (both malicious and honest) tend to their correct marginal prob-

ability P (xi)i2U (i.e. the probability of node i being malicious) quickly; on the

other hand, the lower the number of uploaders in a check the more valuable the

information it conveys.

Unfortunately, the actual factor graphs computed by nodes do contain cycles

and it is well known that cycles in the factor graph negatively impact on the

accuracy of the probability estimates yielded by the BP algorithm [67]. The

shortest length of a cycle in a bipartite graph with at most one edge between any

two nodes is 4 and is due to the presence of at least two common uploaders in a

pair of checks, i.e. the cardinality of the intersection between the uploaders of a

pair of checks is at least 2. If the cardinality of the intersection is x > 2, then

each of the
(

x
2

)

pairs defines one length 4 cycle. Equivalently, a cycle forms if

any two nodes contributed to provide blocks of at least two common checks. It

is easy to note that the higher the degree of nodes and/or checks the higher the

number of cycles in the factor graph.

57

In this context, the benefits of high degree nodes and low degree checks are

counter-balanced by the negative effects of cycles. Indeed, increasing the average

number of checks per node improves the performance of the BP algorithm up to

a point where the number of cycles increases too much and lowers the accuracy

of the BP algorithm. Similarly, the benefits of a lower average check degree are

offset by a high number of cycles.

5.5.2 Simulation methodology

The performance of SIEVE have been investigated by simulations using ns-3 ver-

sion 3.12 [68] on a Red Hat 4.4.6-3 machine using standard variable settings.

In particular, we developed a node object implementing the sender and receiver

functionalities according to the protocol described in Sections 5.3 and 5.4. The

MANET is composed of N wireless nodes placed in a square area whose side

length is l meters. Nodes move using different average speeds. Nfast nodes mov-

ing at Vfast m/s (e.g., cars, buses, motorcycles), Nslow nodes at Vslow m/s (e.g.,

pedestrian, bikes), and Nstill fixed nodes (e.g., sensors, relay stations, shops). As

a consequence we have N = Nfast + Nslow + Nstill. All non-fixed nodes move-

ments are described by the same mobility model and moving nodes are randomly

distributed across the simulation area at the beginning of the experiment. Still

nodes are distributed on a grid to avoid clustering in a particular region. We

used the ns-3 default transmission model composed of a propagation delay model

(a constant value model) and a propagation loss model (based on a log distance

model with a reference loss of 46.677 dB at a distance of 1 meter). Under these

settings we derived the maximal transmission range r as 175 meters.

We conducted simulation experiments that terminate after 1 hour of simu-

lated time. We used the independent replication method to obtain NEXP = 30

executions and computed 95% confidence intervals. Each execution is obtained

with different streams of the random number generator provided by ns-3. The

simulation output is made of a log file containing all checks received by each

node that is post-processed by our analysis software to run the SIEVE protocol

to detect malicious nodes.

All results have been obtained by setting as initial data sources only the Nstill

58

Parameter Description Value

Nfast, Nslow Number of fast/slow nodes 100
Nstill Number of still nodes 50

Pfast, Pslow Number of fast/slow polluters 5
Pstill Number of still polluters 0
K Number of blocks 100
Scb Size of blocks 500 Bytes
Ttx Time between transmissions of blocks 100 ms
c, δ RSD parameters for LT encoder 0.01
l Square area side length 2000 m
h Time between data chunk generation 600 s
wr Window size for concurrent chunk downloading 50
wt Window size for concurrent chunk uploading 6
r Maximal transmission range 175 m

Vfast Fast nodes speed [10-40] m/s
Vslow Slow nodes speed [1-5] m/s

- Mobility model 2D RW

Table 5.1: Parameter values for the reference scenario

still nodes; allN nodes contribute to the spreading of the information according to

the policy described in Section 5.3. A subset of nodes (P = Pfast+Pslow+Pstill <

N) are simulated as malicious nodes that modify the coded packets. All the

system parameter values of the reference scenario considered in the following are

summarized in Table 5.1.

5.5.3 Performance indexes

For each node n in the system we define:

• p(n) an indicator function whose value is equal to 1 if node n is not malicious

and 0 otherwise;

• cn(t) an indicator function whose value is equal to 1 if Rn is non empty at

time t and 0 otherwise;

• an(t) the number of actual malicious nodes correctly identified by node n

at time t. More precisely, an(t) = x if x nodes in the top P positions of Rn

are truly malicious;

• rn(t) the number of actual malicious nodes correctly identified in the top

positions of Rn at time t. More precisely, rn(t) = x if top x nodes in Rn

are all actually malicious. If SIEVE at time t has identified P − 1 out of P

59

malicious nodes (an(t) = P − 1) but the first node in Rn is not malicious

then rn(t) = 0;

• tn,trigger the time node n received the very first positive check that triggered

the SIEVE activation;

• tn,hit(x) = mint{t : rn(t) ≥ x}, that is, the minimum time to identify at

least x malicious nodes in the top x positions of Rn.

In each independent replication trial we compute the following averages:

• c(i)(t) =
PN

n=1
p(n)cn(t)

PN
n=1

p(n)
, i.e., the fraction of honest nodes that detected the

attack and have a non empty R;

• a(i)(t) = 1
P

PN
n=1

p(n)cn(t)an(t)
PN

n=1
p(n)cn(t)

, i.e., the average accuracy of honest nodes with

non empty R. When a(i)(t) = 1 it means that all honest nodes with non

empty R have correctly identified all malicious nodes;

• tsi(i)(x) =
PN

n=1
p(n)(tn,hit(x)−tn,trigger)

PN
n=1

p(n)
, i.e., the average time honest nodes re-

quire to unambiguously identify x malicious nodes.

Finally, we computed averages and 95% confidence intervals over NEXP execu-

tions and considered c(t), a(t), and tsi(x) that we call completeness, accuracy,

and time to identification, respectively. In all computations we set ⌘ = 0.99 (⌘

is the threshold on the probability Pt,w(xi = 1) for suspect identification) and

iterated each run of the BP algorithm on a specific factor graph three times.

5.5.4 Sensitivity results

The first analysis we conducted is on the sensitivity of c(t), a(t), and tsi(x) to

parameters w, T , Ts, and Q used by SIEVE as defined in Section 5.4. To this end

we considered integer multiples of 10s values for w ranging from 10s to 90s, T =

{5, 10}s, Ts = {5, 10, 15}s, and Q = {5, 10}. We analyzed all 108 combinations

and observed that SIEVE performance is most sensitive to the value w.

Figure 5.3 shows the performance indexes a(t), c(t), and tsi(x) for some values

of w, when T = Ts = 10 s and Q = 10 (all 108 configurations yielded similar

results so we selected a representative set of curves). It can be noted that too

60

w |C| zU |U| zC length 4 cycles

10 83.1688 8.53656 173.7 3.8633 1175.57
30 247.617 8.55307 216.824 9.29914 8899.69
60 492.807 8.5262 231.687 17.3395 32021.6
90 735.944 8.49615 236.444 25.3386 68064.4

Table 5.2: Structural properties of Gn for increasing values of w

small or too large values for w yield the worst performance for all the performance

indexes. Indeed, small window sizes do not allow the factor graph to include

enough checks and nodes to accurately infer the node status; on the other hand,

large values of w provide more checks and nodes in Gn but increase the number of

cycles in the factor graph which in turn impact on the accuracy of the probability

estimates yielded by the BP algorithm, as discussed in Subsection 5.5.1.

We summarized the structural properties of Gn in Table 5.2. It can be noted

that the average number of nodes per check zU is not dependent on w (it mostly

depends on the overall number of nodes, the mobility patterns, and the data

exchange protocols). On the contrary, the size of Gn (|C| and |U|) increases as w

increases although the number of nodes saturates since it is upper bounded by N .

Accordingly, the average number of checks per node zC increases and it positively

impacts on SIEVE accuracy up to the value w = 60; for larger values the average

number of cycles in the factor graph increases and nullifies the increase of zC.

It can also be noted that c(t) approaches 1 after about 4 minutes; the behavior

of c(t) clearly depends on the delay after which a node has collected a sufficient

amount of checks to start its own suspect ranking. As for SIEVE reactivity, we

observe that w = 60s yields the lowest values for the time to identification tsi(x)

(all graphs for tsi(x) are computed for the maximum x such that for each honest

node n it is true at the end of the simulation experiment that rn = x). Based

on the above discussion on the impact of w on the performance of SIEVE, we

selected w = 60s as the value for all the following experiments.

Figure 5.4 shows a comparison among different choices of the values for pa-

rameters T , Ts, and Q (please recall that each node executes a BP estimation

once every T seconds and transmits a selection of Q checks once every Ts sec-

61

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

Time (sec)

Accuracy a(t)

w=90
w=60
w=30
w=10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

Time (sec)

Completeness c(t)

w=90
w=60
w=30
w=10

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 1 2 3 4 5 6

malicious

Time to identification tsi(x)

w=90
w=60
w=30
w=10

Figure 5.3: Representative accuracy (left), completeness (middle), and time to
identification (right) of SIEVE as a function of w

onds). In particular, we selected three settings for three different values of the

number of checks transmitted per seconds (Q
Ts

= 2, 1, 0.33). It can be noted that

performance of SIEVE achieve their best when the BP estimation is run more

frequently (T = 5s) and the the number of checks transmitted per seconds is

the highest. Nevertheless, improved performance come at the cost of increased

computation and communication burden on nodes; this may cause concerns for

battery operated nodes whose lifetime could be shortened. Based on the above

reasoning, we selected a compromise between performance and energy consump-

tion awareness using the following setting for the rest of the work: w = 60s,

T = Ts = 10s, Q = 10.

62

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

Time (sec)

Accuracy a(t)

w=60, T=Ts=5, Q=10
w=60, T=Ts=10, Q=10

w=60, T=10, Ts=15, Q=5
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

Time (sec)

Completeness c(t)

w=60, T=Ts=5, Q=10
w=60, T=Ts=10, Q=10

w=60, T=10, Ts=15, Q=5

 0

 100

 200

 300

 400

 500

 600

 0 1 2 3 4 5 6

malicious

Time to identification tsi(x)

w=60, T=Ts=5, Q=10
w=60, T=Ts=10, Q=10

w=60, T=10, Ts=15, Q=5

Figure 5.4: Accuracy (left), completeness (middle), and time to identification
(right) of SIEVE for best performance, lower energy consumption, and compro-
mise setting

5.5.5 Mobility and SIEVE performance

The first interesting observations we made is that mobility affects SIEVE perfor-

mance. In particular, the performance depends not only on the speed but also

on the mobility model adopted for nodes.

Figure 5.5 shows the performance of SIEVE in the reference scenario with dif-

ferent mobility models available in ns-3, i.e. 2D random walk, random direction,

Gauss-Markov and steady state random waypoint; clearly, all mobility models

have been compared for the same node speeds. It can be noted that the 2D ran-

dom walk mobility model selected for the reference scenario yields slightly worse

performance with respect to other mobility models that more closely represent

mobility in a urban environment.

63

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500

Time (sec)

Accuracy a(t)

reference scenario
random direction

Gauss-Markov
steady-state random waypoint

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

Time (sec)

Completeness c(t)

reference scenario
random direction

Gauss-Markov
steady-state random waypoint

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 1 2 3 4 5 6

malicious

Time to identification tsi(x)

reference scenario
random direction

Gauss-Markov
steady-state random waypoint

Figure 5.5: Accuracy (left), completeness (middle), and time to identification
(right) of SIEVE for different nodes mobility models

Figure 5.6 shows the performance of SIEVE in the reference scenario but

averaged over nodes in the same speed class (fast, slow, still). It can be noted

that accuracy of fast nodes is higher with respect to slow and still nodes. Reaction

times are also lower for fast moving nodes.

Figure 5.7 shows the overall performance of SIEVE in the reference scenario

and in scenarios with different mixes of fast and slow nodes. The system where

all moving nodes are fast yields much higher accuracy and much lower reaction

times with respect to other extreme case where all nodes move slowly. Neverthe-

less, SIEVE accuracy is 0.83 at the end of the one hour long experiments and

approaches 1 for longer runs.

Figure 5.8 shows results in the reference scenario and in scenarios where all

malicious nodes are either fast or slow. This results show that malicious nodes can

64

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500

Time (sec)

Accuracy a(t)

fast
slow
still

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

Time (sec)

Completeness c(t)

fast
slow
still

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 1 2 3 4 5 6

malicious

Time to identification tsi(x)

fast
slow
still

Figure 5.6: Accuracy (left), completeness (middle), and time to identification
(right) of SIEVE for different nodes speeds in the reference scenario

delay their identification if they move slowly; on the other hand if all malicious

nodes move fast all of them are quickly identified.

Although SIEVE is able to identify all malicious nodes in the long run in any

setting, in all three cases we can conclude that high speed is key to obtain both

high accuracy and low reaction delays by honest nodes.

Why is higher speed beneficial for SIEVE performance of honest nodes but

detrimental for malicious nodes? Consider the case where different mixes of

fast and slow nodes (Figure 5.7) are compared and assume an extreme scenario

composed of all still nodes. Since nodes do not move it is possible to define a

static geometric graph O describing connections among nodes where vertexes are

nodes and an undirected edge between two vertexes exists if the corresponding

nodes are within the transmission radio range r. For any node n ∈ O let N(n)

65

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500

Time (sec)

Accuracy a(t)

reference scenario
Nfast=50, Nslow=150
Nfast=150, Nslow=50
Nfast=5, Nslow=195
Nfast=195, Nslow=5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

Time (sec)

Completeness c(t)

reference scenario
Nfast=50, Nslow=150
Nfast=150, Nslow=50

Nfast=5, Nslow=195
Nfast=195, Nslow=5

 0

 200

 400

 600

 800

 1000

 1200

 0 1 2 3 4 5 6

malicious

Time to identification tsi(x)

reference scenario
Nfast=50, Nslow=150
Nfast=150, Nslow=50

Nfast=5, Nslow=195
Nfast=195, Nslow=5

Figure 5.7: Accuracy (left), completeness (middle), and time to identification
(right) of SIEVE where moving nodes range from all fast to all slow

denote the set of nodes connected to n (the neighborhood of n).

Consider one data source s and a chunk c; clearly, when s has transmitted

K · (1 + ✏) coded packets, c is decoded by all nodes in N(s); in turn, these nodes

start transmitting fresh coded packets for c and, if O is connected, all nodes will

be able to decode c after some time. It can be noted that all coded packets

produced by s will follow the same paths in O. This means that for any node n ∈

O chunks originating from s will be provided to n by the same set of uploaders

Us(n) that is a subset of N(n). Of course, the same reasoning is valid for all

checks describing chunks produced by any data source other than s. The final

effect is that the set of checks created by each node n upon decoding chunks (Ln)

is such that strong intersections exist among the uploaders of different checks

(given that O is static and N(n) does not change over time); this translates into

66

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500

Time (sec)

Accuracy a(t)

reference scenario
slow malicious
fast malicious

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

Time (sec)

Completeness c(t)

reference scenario
slow malicious
fast malicious

 0

 100

 200

 300

 400

 500

 600

 0 1 2 3 4 5 6

malicious

Time to identification tsi(x)

reference scenario
slow malicious
fast malicious

Figure 5.8: Accuracy (left), completeness (middle), and time to identification
(right) of SIEVE where malicious nodes are either all fast or all slow

a high number of short cycles in the factor graph used by SIEVE that is a well

known cause of poor performance of the BP algorithm, as discussed in Subsection

5.5.1.

Instead, when nodes move the geometric graph O becomes dynamic, i.e., for

any node n its N(n) varies with time. Speed translates into higher rate of changes

in N(n) that, in turn, reduces the number intersections among the uploaders of

different checks (hence of short cycles in Gn) and increases the accuracy of BP

algorithm. For the reference scenario we computed the structural properties of

Gn that are summarized in Table 5.3. It can be noted that the average number

of nodes per check (zU) and the average number of checks per node (zC) for still

nodes would suggest better performance with respect to fast and slow nodes.

Nevertheless, the average number of length four cycles is much higher for still

67

speed |C| zU |U| zC length 4 cycles

fast 434.14 8.6891 232.594 15.8041 23240.5
slow 428.937 8.91507 230.292 15.8437 29242.7
still 737.88 7.42264 232.663 23.4016 55141.4

Table 5.3: Structural properties of Gn for different nodes speed in the reference
scenario

nodes and this is the main reason for worse performance.

5.5.6 Deceiving actions and SIEVE robustness

Besides following the data dissemination and SIEVE protocols, malicious nodes

may also implement disturbing actions aiming at preventing or delaying their

identification. In the following a number of deceiving actions are investigated.

• Reduced pollution intensity at the coded packet level: a malicious node

modifies a coded packet with probability ppoll (the reference scenario is

analyzed with ppoll = 1). Figure 5.9 shows how SIEVE performs when nodes

lower their pollution intensity to ppoll = 0.5, 0.25, 0.125 in the attempt of

making their identification harder. It can be noted that SIEVE is able

to spot malicious nodes in all cases although very low pollution intensities

delay identification. Nevertheless, it is worth pointing out that tuning the

pollution intensity yields a natural trade-off between speed of identification

and average damage caused to honest nodes, i.e., the lower ppoll the lower

the number of polluted chunks and the longer the time to identification.

• Reduced pollution intensity at the chunk level: a malicious node pollutes a

chunk with probability cpoll and the corresponding coded packets are modi-

fied with probability ppoll. In Figure 5.10 we show results for cpoll = 0.75, 0.5

and ppoll = 1, comparing them to the reference scenario (analyzed with

cpoll = ppoll = 1). Also in this case, we observe that malicious nodes are

identified by SIEVE albeit at the price of some delay for low values of cpoll.

• Check status falsification: with probability plie a positive check obtained by

a malicious node is forwarded as negative and viceversa. Figure 5.11 shows

68

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000

Time (sec)

Accuracy a(t)

reference scenario
ppoll=0.5

ppoll=0.25
ppoll=0.125

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

Time (sec)

Completeness c(t)

reference scenario
ppoll=0.5

ppoll=0.25
ppoll=0.125

 0

 500

 1000

 1500

 2000

 2500

 0 1 2 3 4 5 6

malicious

Time to identification tsi(x)

reference scenario
ppoll=0.5

ppoll=0.25
ppoll=0.125

Figure 5.9: Accuracy (left), completeness (middle), and time to identification
(right) of SIEVE for different pollution intensities at the coded block level (ppoll)

that this trick is ineffective: indeed, the only effect is a limited increase in

the values of tsi(x). Figure 5.12 also shows that SIEVE is able to achieve

high accuracy even in extreme cases when half of the moving nodes is ma-

licious. Indeed, provided that the system operates for long enough time,

SIEVE is able to allow every node to identify all existing malicious nodes.

• Honest nodes disparaging: malicious nodes always produce dummy positive

checks involving a set of honest nodes. In this case malicious nodes flip a

coin and, with probability pdisparage, they replace the actual uploaders of a

check with a set of honest nodes; the detection flag is marked as positive.

Figure 5.13 shows SIEVE performance when pdisparage = 1 and honest nodes

are either randomly chosen or chosen in the same fixed order followed by

69

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000

Time (sec)

Accuracy a(t)

reference scenario
cpoll=0.75

cpoll=0.5
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

Time (sec)

Completeness c(t)

reference scenario
cpoll=0.75
cpoll=0.5

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 1 2 3 4 5 6

malicious

Time to identification tsi(x)

reference scenario
cpoll=0.75
cpoll=0.5

Figure 5.10: Accuracy (left), completeness (middle), and time to identification
(right) of SIEVE for different pollution intensities at the chunk level (cpoll)

all malicious nodes (this is a colluding attack to honest nodes). It can be

noted that, by colluding, malicious nodes only succeed in slightly delay their

identification. As a matter of fact, SIEVE is able to correctly identify all

malicious nodes anyway at the end of the simulation experiments.

• Increasing the number of malicious nodes: the last stress test for SIEVE

is to consider its performance for an increasing number of malicious nodes

that coordinate to launch the colluding attack. In Figure 5.14 we show

results for up to P = 100 malicious nodes in the system (in all cases,

Pfast = Pslow = P
2
). It can be noted that SIEVE reaches high accuracy at

the end of the simulation experiments with an increase of the tsi(x) values,

provided that the system runs for a long enough time.

70

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500

Time (sec)

Accuracy a(t)

reference scenario
plie=0.5

plie=1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

Time (sec)

Completeness c(t)

reference scenario
plie=0.5

plie=1

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 1 2 3 4 5 6

malicious

Time to identification tsi(x)

reference scenario
plie=0.5

plie=1

Figure 5.11: Accuracy (left), completeness (middle), and time to identification
(right) of SIEVE for different lying intensities

5.5.7 Coding efficiency vs. SIEVE performance

Coding efficiency is defined as the capability of decoding with the smallest possible

overhead ✏. It is well known that LT codes overhead decreases as K increases

[53]; therefore high values of K are preferred in most cases. We compared the

SIEVE performance for different values of K and Scb to keep the chunk size

constant; in particular, Figure 5.15 shows results for K = 50, Scb = 1000 and

K = 200, Scb = 250. It can be noted that small values of K yield better accuracy

and lower reaction times.

Table 5.4 summarizes the structural properties of Gn for different values of K.

It can be noted K = 50 yields both lower average number of nodes per check and

length four cycles.

As a side effect of using a smaller value for K, the probability of receiving a

71

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000

a(
t)

Time (sec)

Accuracy

reference scenario
P=20
P=40
P=60
P=80

P=100
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

c(
t)

Time (sec)

Completeness

reference scenario
P=20
P=40
P=60
P=80

P=100

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 0.05 0.1 0.15 0.2 0.25 0.3

T
S

I(
x

)
(s

e
c
)

Fraction of malicious

Time to safe identification

reference scenario
P=20
P=40
P=60
P=80

P=100

Figure 5.12: Accuracy (left), completeness (middle), and time to identification
(right) of SIEVE for plie = 1 and increasing number of malicious nodes

coded packet from a malicious node is lower as confirmed by the attack damage,

i.e., the average fraction of corrupted decoded chunks, that is equal to 0.20 for

K = 50 and 0.33 for K = 200.

5.5.8 Bandwidth, memory and CPU costs

The bandwidth overhead required by a node to implement SIEVE is determined

by the number of bits necessary to transmit a check when decoding a data chunk

plus the bits required by the broadcasting of Q checks every Ts seconds. In our

simulations a check I is represented by using a message whose payload size is

equal to bI = 32|UI| + 1 bits; in this expression 32|UI| bits are required to store

the node identifiers represented as integers and one bit is used for the chunk

corruption flag.

72

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500

Time (sec)

Accuracy a(t)

no disparage
random innocents

same innocents
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

Time (sec)

Completeness c(t)

no disparage
random innocents

same innocents

 0

 100

 200

 300

 400

 500

 600

 700

 0 1 2 3 4 5 6

malicious

Time to identification tsi(x)

no disparage
random innocents

same innocents

Figure 5.13: Accuracy (left), completeness (middle), and time to identification
(right) of SIEVE for different disparaging attacks

From the simulations of the reference scenario, we measured an average value

of the bandwidth overhead equal to 301 bps per node (95% confidence interval

[193, 408]). We also measured the average throughput, defined as the number of

decoded bits (of data chunks) per second, that is equal to 20483 bps (95% con-

fidence interval [13162, 27803]). It follows that SIEVE communication overhead,

defined as the ratio between bandwidth overhead and throughput, is limited to

about 1.5%. It is worth noticing that one contribution to the bandwidth overhead

depends on Q and Ts and can therefore be traded-off. As an example, the SIEVE

communication overhead for Q = 5 and Ts = 15s (see Figure 5.4) turns out to be

about the 0.5%.

One of the main requirements a solution for MANET must satisfy is to have

a low computational and memory cost. We measured the average CPU time

73

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000

a(
t)

Time (sec)

Accuracy

reference scenario
P=20
P=40
P=60
P=80

P=100
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

c(
t)

Time (sec)

Completeness

reference scenario
P=20
P=40
P=60
P=80

P=100

 0

 500

 1000

 1500

 2000

 2500

 0 0.05 0.1 0.15 0.2

T
S

I(
x

)
(s

e
c
)

Fraction of malicious

Time to safe identification

reference scenario
P=20
P=40
P=60
P=80

P=100

Figure 5.14: Accuracy (left), completeness (middle), and time to identification
(right) of SIEVE for increasing number of colluding malicious nodes

experienced to run SIEVE on a single factor graph in our C++ implementation

on an Intel(R) Core i5 2.80GHz CPU: we obtained 25ms. Of course, MANET

nodes do not have the same computational power of a desktop PC but newer

CPUs equipping Tablets and smart phones are reducing the gap, e.g., the ARM

Cortex-A9 MPCore has up to 4 cores, 2 GHz clock, and 10,000 DMIPS.

Furthermore, storage requirements are very low: the average number of checks

in Gn for fast, slow, and still nodes is 435, 423, and 742, respectively. The average

number of nodes in Gn is equal to 227, 224, and 228, respectively. The factor

graph must be represented as a dynamic undirected bipartite graph. Several data

structures can be used. In our implementation for each check I (received during

the last w seconds) we store the set of uploaders i ∈ UI , each one representing

an arc of the factor graph (represented as the pair of identifiers (I, i)). Each

74

K |C| zU |U| zC length 4 cycles
50 499.447 6.10647 230.457 12.9598 11508.5
100 492.807 8.5262 231.687 17.3395 32021.6
200 480.232 11.3097 229.752 22.1949 94461.8

Table 5.4: Structural properties of Gn for different values of K

node/check identifier is represented as a 32 bit integer; therefore, the number of

bits for storing the factor graph is equal to 2 · 32 · |E| bits. In our experiments,

the average number of arcs of the factor graph is equal to 3823, 3962, and 5790

(for fast, slow and still nodes respectively). It follows that the average memory

requirements is equal to 30.5 kB, 31.7 kB, and 46.3 kB, respectively.

5.6 Published works

The work on polluter identification, based on the SIEVE protocol and our Foun-

tainApplication module for the ns-3 simulator has been originally published in

“SIEVE: a distributed, accurate, and robust technique to identify malicious nodes

in data dissemination on MANET” [6].

Subsequently it evolved further and the expanded evolution has been publised

in journal “Exploiting rateless codes and belief propagation to infer identity of

polluters in MANET” [9].

75

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500

Time (sec)

Accuracy a(t)

reference scenario
K=50

K=200
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

Time (sec)

Completeness c(t)

reference scenario
K=50

K=200

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 1 2 3 4 5 6

malicious

Time to identification tsi(x)

reference scenario
K=50

K=200

Figure 5.15: Accuracy (left), completeness (middle), and time to identification
(right) of SIEVE for different values of K

76

Chapter 6

CCN and CCN-TV

6.1 Overview

Content-Centric Networking (CCN) [7] is a promising data-centric architecture,

based on in-network caching, name-driven routing, and receiver-initiated sessions,

which can greatly enhance the way Internet resources are currently used, making

support for a broader set of users with increasing traffic demands possible.

The CCN vision is, currently, attracting the attention of many researchers

across the world, since it has all the potential to become ready to the market, to

be gradually deployed in the Internet of today, and to facilitate a graceful tran-

sition from a host-centric networking rationale to a more effective data-centric

working behavior.

At the same time, several issues have to be investigated before CCN can be

safely deployed at the Internet scale. They include routing, congestion control,

caching operations, name-space planning, and application design. With reference

to application-related facets, it is worth noticing that the demand for TV services

is growing at an exponential rate over time, thus requiring a very careful analysis

of their performance in CCN architectures.

To this end, in the present contribution we deploy a CCN-TV system, capable

of delivering real-time streaming TV services, and we evaluate its performance

through a simulation campaign based on real-world topologies.

77

Due to the relevant importance that content sharing applications are going

to play in the upcoming future [69, 70], the Content Centric Networking (CCN)

rationale [71] has been proposed as a possible way to drive the current host-

centric Internet paradigm towards a novel content-centric behaviour. It is based

on in-network caching operations, receiver initiated data exchange, hierarchical

content naming, and native support to security and privacy.

In a CCN, contents are split in chunks which are requested using opposite

Interest messages, generated at the client side. Each Interest is then routed un-

til it reaches a node which has, in its own cache, a copy of the requested item.

Then, this copy is sent, as a Data message, back along the path the Interest had

gone through. Intermediate nodes can cache the Data before forwarding it to the

next node (more details on the CCN working behavior is provided in Section 6.2).

Since its birth, the CCN vision has gained a warm attention from both scien-

tific and industrial communities to discover the bounds of its real potential from

different perspectives.

Many studies have focused on modeling and designing caching strategies and

data-transfer performance such as in [72]-[77]. In that direction, it is now clear

that the cache size may have a major impact on the overall performance of a CCN

even if finding an optimal caching strategy is still an open problem to address.

With respect to congestion control issues, instead, recent studies shown as the

classic additive increase multiplicative decrease algorithm, at the foundation of

TCP, could be inherited by CCN, provided that some countermeasures are em-

ployed to limit unfairness issues that could arise among contents with different

popularities [78, 79]. Another very relevant topic in CCN research covers routing

operations, which are essential to properly drive the dissemination of receiver

generated Interest packets. To this end, the adoption of Bloom filters appears a

promising solution [80, 81] that merits further investigations.

Starting from this premise, it is evident that all facets of CCN are going to

be afforded in an ebullient panorama of activities that cover both the underlying

mechanisms within the protocol architecture and the design of content oriented

applications and services.

78

With reference to application-related features, it is worth to notice that the

demand for TV services is growing at an exponential rate over the time [69],

thus requiring a very careful analysis of their performance in CCN architectures.

A preliminary study presented in [82] addresses time shifted applications only,

whereas live streaming operations are currently under investigation as testified

in the interesting contribution [83]. To complement the research efforts of the

community in a so relevant domain, the present manuscript is intended to design

a complete CCN-TV system encompassing all the main facets of typical live

streaming video services.

The proposed CCN-TV has been tested through a solid simulation campaign

based on real topologies. To this end, the ccnSim simulator [84] has been prop-

erly tailored to our purposes by adding window based flow control, handling of

playout delay and real-time data, advanced logging functions, links with band-

width constraints, and data session bootstrapping. Simulation results shown that

in-network caching seems to play a minor role in live streaming video services,

mainly because cached data looses its utility after the deadline is expired.

On the other hand, the way CCN handles client requests for TV contents helps

improving the performance of the system with respect to a plain IP infrastructure.

The rest of the topic is organized as follows: Section 6.2 illustrates the core

concepts of CCN. Section 6.3 describes the CCN-TV system we propose in this

Thesis, which is then evaluated in Section 6.4. Finally, Section 7.3 summarizes

the main findings of this contribution and draws future research.

6.2 Basic background on CCN

Internet usage has undergone a radical change during the last ten years: content-

sharing applications are now dominant whereas the IP architecture still provides a

connection-less service among remote hosts [70]. Users ask for contents, looking

for what they intend to retrieve from the Internet while the language spoken

by the underlying IP infrastructure provides answers on where a packet should

be sent. This mismatch is actually overcome by a number of workarounds at

79

different levels of the protocol stack, which, indeed, limit the overall efficiency of

the Internet.

The so-called Future Internet represents a family of possible solutions to the

aforementioned issues, embracing novel communication models that can better

accommodate and fulfill users’ requirements related to efficiency, security, support

to mobility, and integrated media experience [70].

At the present stage, many valid proposals for the Future Internet exist, such

as the Publish Subscribe Internet Routing Paradigm, the 4WARD NetInf project,

and the Cache-and-Forward Network Architecture, the Data-Oriented Network

Architecture and the CCN approach [71, 85], having different levels of compati-

bility with the IP paradigm.

Among them, the CCN vision looks promising since, besides being “data-

centric”, it can be gracefully integrated with today’s IP-based Internet. In a

CCN, all content is unambiguously identified by a hierarchical name, allowing

users to retrieve information without being aware about the physical location of

servers (e.g. IP address). Also, commu-nication is receiver-driven and based on

content chunk ex-change, name-based routing, and self-certifying packets [71].

Nevertheless, the real performance bounds of a CCN and the actual benefits

it can bring to the Internet are still not entirely known, mainly because there

are many open issues that surround the CCN architecture, such as those related

to: (i) routing, (ii) congestion control, (iii) strategy layer design, (iv) name space

definition, (v) semantic layer, (vi) accurate models, and (v) fairness among het-

erogeneous applications and contents having different popularities.

As specified before, CCN communications are driven by the consumer of data

and only two types of messages are exchanged (namely Interest and Data). A

user may ask for a content by issuing an Interest, which is routed within the CCN

towards the nodes in posses of the required information, thus triggering them to

reply with Data packets.

The routing operations are performed by the strategy layer only for Interest

packets. Data messages, instead, just follow the reverse path to the requesting

user, allowing every intermediate node to cache the forwarded content.

CCN adopts a hierarchical structure for names, which leads to a name tree.

In particular, it is formed by several components, each one made by a number

80

of arbitrary octets (optionally encrypted), so that every name prefix identifies a

sub-tree in the name space. An Interest can specify the full name of the content

or its prefix, thus accessing to the entire collection of elements under that prefix.

Finally, since contents are exchanged based on their names, multiple nodes

interested in a particular data can share it using multicast suppression techniques

over a broadcast medium. Analyzing a CCN node, it is possible to identify three

main structures [71].

• the Content Store (CS): a cache memory that can implement different re-

placement policies as Least Recently Used (LRU) and Least Frequently

Used (LFU);

• the Forwarding Information Base (FIB): is similar to an IP FIB except for

the possibility to have a list of faces1 for each Content Name entry, thus

allowing Interest packets to be forwarded towards many potential sources

of the required Data;

• the Pending Interest Table (PIT): is a Table used to keep track of the In-

terest packets that have been forwarded upstream towards content sources,

combining them with the respective arrival faces, thus allowing the properly

delivery of backward Data packets sent in response to Interests.

When an Interest packet arrives to a CCN node, the CS is searched to discover

whether a data item is already available as an answer to be sent immediately

back to the requesting user. Otherwise, the PIT is consulted to find out if others

Interest packets, requiring the same content, have been already forwarded towards

potential sources of the required data. In this case, the Interest ’s arrival face is

added to the PIT entry. Otherwise, the FIB is examined to search a matching

entry, indicating the list of faces the Interest has to be forwarded through. At

the end, if there is not any FIB entry, the Interest is discarded.

On the other hand, when a Data packet is received, the PIT Table comes into

play, which, keeping track of all previously forwarded Interest packets, allows to

establish a backward path to the node that requested the data.

1In CCN it is used the term “face” instead of the “interface” because packets are also ex-
changed between application process, besides being forwarded only over real network interfaces.

81

6.3 CCN-TV architecture

Unlike Video-On-Demand, real-time video distribution has to deal with a specific

class of problems to ensure the timely delivery of an ordered stream of chunks.

Video chunks have to be received in playing order and within a given time interval

(the playout delay), before they are actually played, thus “expiring”. A chunk

not delivered before its expiration will result in degradation of the rendered video,

impacting the end user Quality of Experience; the extent of the video degradation

may vary depending on the video codec and the type of the lost frame. To solve

these challenges, client nodes implement a receiving buffer queue where the chunks

are stored in order, that is emptied while the video is being played. Therefore,

any chunk not received before its playing instant becomes useless. To reduce

the chance of chunk loss several mechanisms can be put in place to retransmit

requests for chunks close to expiration. Furthermore, in modern codecs, such as

H.264 [86], there are different types of video frames, encoded using intra-frame or

inter-frame techniques, each having a different level of importance. For example,

the so called I-frames, derived using intra-frame compression techniques, actually

represent a full video image, providing a fundamental reference for subsequent

inter-frame encoded images.

With this in mind in CCN-TV we considered a network of nodes requesting

different real-time video streams, identified by a channelID, served by one or more

broadcast server.

Unlike canonical UDP/TCP-based streaming, in CCN-TV each video chunk,

identified by a progressive chunk number, has to be requested individually, via a

dedicated Interest.

Although this might look costly at a first sight, CCN’s routing mechanisms

ensure that Interests for the same chunk do not propagate twice along the same

routing path (unless under specific conditions, as explained in Subsection 6.3.2),

and the caching strategy implemented by every node can make sure that Interests

for the most popular contents are served before going through the whole routing

path. Moreover, the Interest/data exchange allows for a natural flow control

mechanism, where each node can request for new chunks just when the old ones

have arrived.

82

Herein we thoroughly describe the design rationale and all the details of the

CCN-TV system this Thesis targets. Specifically, in what follows, we present: the

bootstrap phase, the flow control strategy, and the management of retransmitted

Interest packets.

6.3.1 Channel bootstrap

One challenge we are faced with in a real-time scenario is to bootstrap the channel

to be received. Bootstrapping a channel involves the operations of finding a

routing path to the nearest channel provider and locating the first valid chunkID

of the video stream. Due to video codec requirements, the video stream can be

visualized only once the first I-frame has been received. Therefore, a client has

to first gather from the server the first chunk (and the corresponding chunkID)

of the last generated I-frame. To do so, it sends an Interest packet for the

URI: [domain]/[channelID], with the Status field set to BOOTSTRAP and the

Nonce field set by the client, as in in Subsection 6.3.4. An Interest with Status

= BOOTSTRAP would travel unblocked until it reaches the first good stream

repository (i.e. a node who can provide a continuous real-time flow of chunks, not

just cached ones).

To this Interest, the server responds with a data message in the format [domain]

/ [channelID] / [chunkID], with chunkID being the first chunk of the last gen-

erated I-frame, and the corresponding Frame ID field value. Upon receipt, the

node starts asking for subsequent chunks, using the sliding window mechanism

detailed in Subsection 6.3.2. The use of a nonce (a uniquely generated identi-

fier) in the Interest URI allows the Interest to propagate to the server without

being blocked along the routing path, as every bootstrap Interest for the same

channel has a different nonce. It also avoids the retrieval of the data response

from the cache of an intermediate node; the risk, in this case, is the retrieval of

a bootstrap data message for a given channel from a cache containing an already

expired chunk of an I-frame.

83

CCN-TV Client CCN-TV ServerCCN network

last generated

I- frame: 23

chunkID: 234

Start channel:

domain: BBC

channelID: 3

Status: BOOTSTRAP

Nonce: #easd2

INT: bbc.co.uk/3

Status: BOOTSTRAP

Nonce: #easd2

INT: bbc.co.uk/3

Propagate? True

Check cache? False

FrameID: 23

DATA: bbc.co.uk/3/234

FrameID: 23

DATA: bbc.co.uk/3/234

INT: bbc.co.uk/3/235

INT: bbc.co.uk/3/236

RX Start

...

Figure 6.1: Bootstrap handshake

6.3.2 Flow control

From the moment a node receives the bootstrap data message, it can initiate

the sliding window mechanism to request the subsequent chunks in an optimal

way. Each node has a windows of size W to store W pending chunk. We define

pending chunk a chunk whose Interest has been sent by the node, and the window

containing the pending chunks a Pending Window. Together with the chunkID,

we store in the pending window other information, such as the timestamp of the

first request and the timestamp of the last retransmission. Whenever a new data

message is received, the algorithm described in Figure 6.2 runs over the Pending

Window, to perform the following operations:

1. Purge the Pending Window from all the chunks who are expired, i.e., who

have already been played, to free new space in the sliding window.

2. Retransmit all chunks that have not been received for a given timeout (on-

84

ward denoted as windowTimeout.

3. Transmit, for each slot that got freed by the received or expired chunks, the

Interest for a new one.

1: procedure SendInterests(PW,W,WinT,Now, LC)
2: # Remove all expired Interest
3: for all CID in PW do
4: if CID is expired then
5: remove CID from PW
6: end if
7: end for
8: # Resend stale Interests
9: for all CID in PW do

10: if lastTx(CID) < Now −WinT then
11: resend(Int(CID))
12: lastTx(CID) ← Now
13: end if
14: end for
15: # Send Interests for new chunk
16: NNC ← W − size(PW)
17: for i ← 1, NNC do
18: send(Int(LC))
19: lastTx(LC) ← Now
20: add LC to PW
21: LC ← LC + 1
22: end for
23: end procedure

Figure 6.2: Sliding window algorithm

Furthermore, the same operations are performed if a node doesn’t receive

any data for at least windowTimeout seconds, in which case, all the Interests for

non-expired chunks in the Pending Window are retransmitted, together with new

chunks if new slots have been freed due to expired chunks.

Figure 6.2 details the implemented algorithm; for the purpose of brevity and

readability, the variable names have been contracted: PW is the Pending Win-

dow, W is the aforementioned system parameter, indicating how many Interests

should a node have ongoing, WinT is the window timeout, after which Interests in

85

the Pending Window are resent, Int is a new Interest message, CID is a chunkID

in the pending window, lastTx is the transmission time of the most recent Interest

for a given chunkID, LC is the chunkID of the most recent requested chunk and

NNC is the number of new chunks to request, after the pending window has been

purged.

To provide a further insight, we reported in Figure 6.3 an example of the

conceived sliding window algorithm, in which we have set the value of W to be

equal to 3.

6.3.3 Interest routing

As described in Section 6.2, CCN nodes along the routing path of an Interest

will stop the propagation of said Interest, if they have previously routed another

Interest for the same resource, and the correspondent data has note been sent

back yet; instead, they will simply update their Pending Interest Table adding

the face from where this newcomer Interest was originated, so to reroute the data

back recursively along the path the Interest has gone through.

Interest [chunkID=1, status=normal]

Data [chunkID=1]

Timeout

CLIENT SERVER

Interest [chunkID=2, status=normal]

Interest [chunkID=3, status=normal]

Interest [chunkID=4, status=normal]

Interest [chunkID=2, status=normal]

Interest [chunkID=3, status=normal]

Interest [chunkID=4, status=normal]

Interest [chunkID=2, status=retransmit]

Interest [chunkID=3, status=retransmit]

Interest [chunkID=4, status=retransmit]

Interest [chunkID=2, status=retransmit]

Interest [chunkID=3, status=retransmit]

Interest [chunkID=4, status=retransmit]

Data [chunkID=2]

Data [chunkID=3]Lost!

Lost!

Timeout

Interest [chunkID=4, status=retransmit]

Interest [chunkID=5, status=normal]

Interest [chunkID=6, status=normal]

Interest [chunkID=4, status=retransmit]

Interest [chunkID=5, status=normal]

Interest [chunkID=6, status=normal]

1 2 3

window

ROUTER

2 3 4

2 3 4

2 out delay

3 out delay

4 5 6

Figure 6.3: Sliding window example

86

This mechanism ensures flow control and limits the propagation of duplicate

Interests, in case several nodes in the same network are watching the same chan-

nel.

However, to make the Interest retransmission mechanism effective, a retrans-

mitted Interest needs to propagate all the way up to the server, or to the first

node with the desired chunk in cache. Therefore, retransmitted Interests carry

the Status field set to Retransmission to mark if the Interest is a retransmission

or not, and each node along the routing path propagates the Interests marked as

retransmitted, thus skipping the usual CCN mechanism, unless the correspondent

chunk is found in the cache.

Table 6.1: Messages used in CCN-TV
Packet type Field Content

Chunk Interest Content Name [domain]/[channelID]/[chunkID].
nonce Used only for the bootstrap phase.
Publisher Filter Not used.
Status Bootstrap, Normal, Retransmission.

Chunk Data Content Name [domain]/[channelID]/[chunkID].
Publisher ID Optional.
Signature Optional (for increased content authentica-

tion).
Stale Time Set to the frame time of the frame the chunk

belongs to.
Frame ID ID of the frame the chunk belongs to.
Data The request video chunk binary data.

6.3.4 CCN-TV messages

As detailed above, additional functionalities required by the system for real-time

video streaming are implemented on top of existing CCN data and Interest mes-

sages via new fields carrying the required additional information.

However, should the situation require the system to conform to classical CCN

messages, all additional fields can be easily replaced by additional fields in the

content name.

Table 6.1 shows how we made use of the classical CCN message fields, together

with the new fields and their use.

87

In particular, CCN-TV Interests carry an additional Status fields marking if

the Interest is a bootstrap Interest (Subsection 6.3.1), a normal one or a retrans-

mission (Subsection 6.3.3).

Concerning CCN data message, we extended the messages with an additional

field, i.e., Frame ID, containing the ID of the frame to which the embedded chunk

belongs to.

6.4 Simulation results

In this Section, we will evaluate performances of the proposed CCN-TV archi-

tecture. To this end, we implemented it within ccnSim, i.e., an open source and

scalable chunk-level simulator of CCN [84] built on top of the Omnet++ frame-

work [3], dedicated to the evaluation of Video On Demand systems on top of

CCN.

By itself, ccnSim models a complete video distribution systems, with a high

degree of fidelity concerning catalogs, requests and repositories distribution, and

network topologies. Since, however, it did not support the real-time constraints

required by our evaluations, it has been modified and improved in the following

ways:

• we added support for links with bounded capacity and packets with a well

defined size, which was missing in ccnSim, to be able and estimate the CCN

behavior under some bandwidth constraints;

• due to the datarate channels, we implemented a transmission queue for each

face of each node, in order to properly manage the packet transmission;

• we added the support for synthetic video traces, so to be able to transmit

and receive chunk of real videos, and consequently being able to reconstruct

the received video and evaluate its PSNR;

• due to possible expiration of Interests, we implemented a cleanup mecha-

nism for each node’s PIT, to avoid having in long term stale entries due to

expired chunks;

88

• we improved and enriched the logging system, so to be able to record each

node’s received chunks and reconstruct the received video;

• we added more controls server-side, to send a data only for those chunks

who have already been generated.

Furthermore, the following mechanisms, beyond the provided ones, have been

implemented in the simulator:

• the sliding window mechanism described above, and all the related data

structures;

• the Interest forceful propagation in case of retransmission;

• constant data reception, until a channel is changed.

The extended ccnSim simulator is available at [87].

The aim of our study is to evaluate how the behavior of the CCN-TV system

is influenced by (i) the amount of the network bandwidth dedicated to real-time

streaming services, (ii) the windowTimeout adopted by the sliding window mech-

anism, (iii) the playout delay, and (iv) the cache decision policy.

We focus the attention on the GEANT network, which interconnects the Eu-

ropean research and education institutions and it is composed by 22 routers [88].

Every node of the network is considered to be a direct CCN node, i.e. no TCP

or UDP encapsulation is implemented.

We assume the presence of only one small video streaming provider that offers

5 parallel real-time transmissions to remote clients.

It is connected to one of the nodes forming the GEANT topology. In every sim-

ulation round, each video content is mapped to a video stream compressed using

H.264 [86] at a average coding rate randomly chosen in the range [250, 2000] kbps.

Clients, i.e., CCN nodes that download video contents from the server, are

connected to remaining nodes (1 client per node).

In order to catch the behavior of people watching TV, we modeled two groups of

89

users: faithful and zapping.

Faithful users are attached to one video channel for the whole simulation.

Zapping users, instead, change frequently the channel among those offered by the

server according to a Poisson process with parameter λ = 0.0666.

Further, the channel selection process has been modeled considering that con-

tents popularities follow a Zipf distribution, according to [89], the most of works

presented in literature set the parameter ↵ of the Zipf distribution in the range

[0.6, 2.5]. In line with these common settings, we set ↵ = 1.

Once a client decides to watch a specific channel, it performs the bootstrap

process described in the previous Section and then starts sending Interest packets

following the designed sliding window mechanism.

In our tests, we adopted the optimal routing strategy, already available within

the ccnSim framework. According to it, Interest packets are routed towards the

video server along the shortest path. On the other hand, three caching strategies

have been considered in our study: no-cache, LRU, and FIFO [89]. When well

known LRU or FIFO policies are adopted, we set the size of the cache to 100

chunks. The no-cache policy is intended to evaluate the performance of the CCN

without using any caching mechanism.

The window size W has been set to 10, ensuring that faces of the server

are almost fully loaded in all considered scenarios. Also, the transmission queue

length associated to each face, Q, has been set, in order to be larger than

Q = 2 · Lc · PD (6.1)

where Lc and PD represent link capacity and maximum propagation delay in the

considered network topology. All simulation parameters have been summarized

in Table 6.2.

6.4.1 Interest generation process

As a first step, we investigate the impact that the sliding window mechanism has

on the amount of sent Interest packets, which is shown in Figure 6.4. From these

plots it is evident that the highest windowTimeout, the lowest the total number

90

Table 6.2: Summary of simulation parameters
Parameter Value

Topology GEANT with 22 routers
Link capacity 40 Mbps and 100 Mbps
Number of real-time service provides 1
Number of clients 21
Catalog size 5 files
Chunk size 10Kbytes
Video average bit rate 250kbps, 600kbps, 1000kbps and

2000kbps
W (window size) 10
Playout delay 10s and 15s
Window timeout 1s, 3s, and 5s
Caching strategy No cache, LRU, and FIFO
Cache size 100 chunks
Client zapping behavior 50% fixed, 50% changing on average ev-

ery 15s
Simulation time 60s
Number of seeds 5

of Interest messages sent by end users. When the windowTimeout increases,

the probability that a given client does not receive any chunks within such a

time interval decreases and, as a consequence, also the number of retransmitted

Interest packets decreases as well. As a further confirm of this result, Figure

6.5 shows that the percentage of duplicated Interest packets increases when the

windowTimeout decreases due to a high number of chunks that are unable to

reach the client within the expected timeliness.

As expected, the playout delay has a minor impact on the number of gener-

ated Interest messages, which, as is known from the theory on sliding window

mechanisms [90], can be only influenced by window size (W) and windowTimeout.

Also, caching operations do not have any significant impact on the number of

generated Interest messages. The main reason being that chucks stored in cache

memories lose their effectiveness after their deadline is expired.

On the other hand, the link capacity greatly influence the Interest transmis-

sion rate. From Figure 6.4 emerges, in fact, that the number of Interest lowers

91

when the capacity of links decreases. This is because a limited bandwidth reduces

the quota of received chunks, thus preventing a rapid advancement of the sliding

window. In other terms, this result proves, once again, the effectiveness of the

sliding window mechanism in CCN.

6.4.2 QoS and QoE

The first important parameter that describes how CCN-TV settings affect the

quality of service offered to end users is the chunk loss ratio, which represents

the percentage of chunks that have not been received in time (i.e., before the

expiration of the playout delay) by clients.

From Figure 6.6, showing the chunk loss ratio measured in all considered

network scenarios, we note that playout delay plays a fundamental role. When

the playout delay increases, in fact, the client could receive a Data packet within

a longer time interval, thus reducing the amount of chunks discarded because out

of delay.

On the other hand, a slight increment of the chunk loss ratio can be registered

by increasing the windowTimeout. If the client retransmits an Interest packet

after long time, there is the risk that the Data packet will be reached by the

destination after the expiration of the playout delay.

In addition, we note that a reduction of the link capacities leads to a higher

number of lost chunks, due to increased latencies induced by network congestion.

It is very important to remark that the presence of the cache can guarantee

only a small reduction of the chunk loss ratio. With our study, we found that, in

the presence of real-time flows, the cache does not represent an important CCN

feature.

On the other hand, we noticed that the PIT plays a more relevant role. In

fact, in presence of live video streaming services, clients that are connected to a

channel request the same chunks simultaneously. In this case, a CCN router has

to handle multiple Interest messages that, even though sent by different users,

are related to the same content.

92

1 3 5
0

50

100

150

200

Window timeout [s]

N
u

m
b

er
 o

f
In

te
re

st
 p

ac
k

et
s

[1
03

]

1 3 5
0

50

100

150

200

Window timeout [s]

N
u

m
b

er
 o

f
In

te
re

st
 p

ac
k

et
s

[1
03

]

Figure 6.4: Total number of Interest packets sent by clients with playout delay
of (a) 10s and (b) 15s

According to the CCN paradigm, such a node will store all of these requests

into the PIT, waiting for the corresponding Data packet. As soon as the packet

is received, the router will forward it to all users that have requested the chunk

in the past.

Following to these considerations, the use of the cache will not produce a rel-

evant gain of network performances. Indeed, the PIT helps reducing the burden

at the server side by avoiding that many Interest packets for the same chunk are

routed to the server.

To conclude our study, we have computed Peak Signal to Noise Ratio (PSNR),

which is nowadays one of the most diffused metrics for evaluating user satisfaction,

together with interactivity level, in real time video applications [91]. Results

shown in Figure 6.7 are in line with those reported for chunk loss ratio (the

PNSR is higher in the same case in which the chunk loss ratio is lower). Again,

link capacity greatly influences the quality of the TV service provided to users.

According to [92], the obtained PSNR values can be translated to a Mean Opinion

Score (MOS) not less than 4, corresponding to satisfactory quality for almost all

users.

93

1 3 5
0

10

20

30

40

50

Window timeout [s]

P
er

ce
n

ta
g

e
o

f
d

u
p

li
ca

te
d

 I
n

te
re

st
 p

ac
k

et
s

1 3 5
0

10

20

30

40

50

Window timeout [s]

P
er

ce
n

ta
g

e
o

f
d

u
p

li
ca

te
d

 I
n

te
re

st
 p

ac
k

et
s

Figure 6.5: Percentage of duplicated Interest packets sent by clients with playout
delay of (a) 10s and (b) 15s

1 3 5
0

10

20

30

40

50

Window timeout [s]

C
h

u
n

k
 l

o
ss

 r
a
ti

o
 [

%
]

1 3 5
0

10

20

30

40

50

Window timeout [s]

C
h

u
n

k
 l

o
ss

 r
a
ti

o
 [

%
]

Figure 6.6: Chunk loss ratio with playout delay of (a) 10s and (b) 15s

94

1 3 5
0

20

40

60

80

100

Window timeout [s]

P
S

N
R

 o
f

th
e

Y
 c

o
m

p
o

n
en

t
[d

B
]

1 3 5
0

20

40

60

80

100

Window timeout [s]

P
S

N
R

 o
f

th
e

Y
 c

o
m

p
o

n
en

t
[d

B
]

Figure 6.7: PSNR of the Y components of received videos with playout delay of
(a) 10s and (b) 15s

6.5 Published works

Our implementation of the CCN protocol to implement a real-time video stream-

ing architecture has been originally published in the article “CCN-TV: a data-

centric approach to real-time video services” [10] and a subsequent extension has

been requested as a book Chapter, integrating crowdsourced content in the in-

frastructure and analyzing the strong and weak points and performances.

The book chapter, “Providing crowd-sourced and real-time media services through

a NDN-based platform” [11], has been accepted and is currently awaiting publi-

cation.

95

Part III

Summarizing results and future

evolutions

96

Chapter 7

Summarizing results and future

evolutions

Chapter abstract:

In this Chapter we summarize the obtained results in the examined topics and discuss possible

and ongoing future evolutions of the works.

For each topic a paragraph presents a sum of the results and evolutions explained in more details

in Chapters 4 for Section 7.1, 5 for Section 7.2, and 6 for Section 7.3.

Furthermore Section 7.4 details an ongoing work to unify the above works for a robust CCN-

based mobile network coded approach.

7.1 Random graph modeling of overlay networks

interconnection

Using our random graphs based model for network interconnection we were able,

after validating it with results obtained with a simple simulator, to generate all

results in a given interval of parameters so to analyze, for various configurations

and interconnections sets, the most efficient parameters to use.

Using the homogenous initial version the results were promising, yet still limited

in real case scenarios by the model own limits. We then removed those limits in

developing the model heterogeneous version, providing for different configuration

for each interconnected network.

97

While in the first case we were only able to demonstrate how, given the same

configuration for all networks, the efficacy of the searches and the number of

messages sent varied globally with changing parameters, with the second version

of the model we were able to also study the influence of different interconnection

topologies between the various network and more in depth the case where a sin-

gle network contains the desired resource and is then connected to a previously

established interconnected network, analyzing the resource diffusion and best pa-

rameters to use for maximize availability.

In this Thesis we considered interconnection of large scale unstructured P2P

networks through co-located nodes called synapses: these nodes send/forward

a query to all the P2P networks they belong to. We developed a generalized

random graph based model to represent the topology of one unstructured P2P

network, the partition of nodes into synapses, the probabilistic flooding based

search algorithms, and the resource popularity. We validated our model against

simulations and proved that its predictions are reliable and accurate. The model

allowed the analysis of very large and complex systems: we believe that simulation

and/or prototype deployment based analysis would be unfeasible in this case.

We are currently working to further extend our model in several directions.

In particular, we are generalizing equations to represent heterogeneous topologies

and resource availability. As a consequence, we are also extending the analysis

to more refined partition of synapses, i.e., to consider the fraction of nodes that

belong to a specific set of P2P networks. Furthermore, we are extending the

model to represent nodes availability due to churning. Last but not least, we

are generalizing the model to represent interconnection of both unstructured and

structured P2P networks.

We are currently working, to be published following to this Thesis, to an het-

erogeneous evolution to the model, where each interconnected network does have

its own interconnection degree distribution and resource availability.

As such queries can be initiated from each network i obtaining the pertinent hit

probability pihit and average number M i of generated messages.

Due to the highly abstract modelization of the networks and their relations, the

model, especially the heterogeneous one, can be used to investigate different sce-

98

narios. We choose to analyze in an ongoing work the interconnections of social

networks, considering each social network as network in the model, the user’s

contacts as the interconnections between nodes and the same user on different

social networks as the “bridge” nodes interconnecting the networks.

Each query TTL is the number of jumps through the user contacts, and contacts’

contacts, until the desired content is reached.

7.2 Polluter identification in MANETs

The results obtained are very encouraging: even in a completely decentralized and

destructured ad-hoc mobile network, the list of most probable polluters correctly

identifies all the active polluters in a reasonable amount of time with a very high

accuracy.

Even if the detection occurs after a few decoding sessions have gone bad and

usually takes in the order of a few minutes we have to consider that in the chosen

encoding scheme there is simply no way to know if a chunk is corrupted until

its decoding, and even then there is no way to directly identify which packet or

packets were responsible for poisoning the blocks pool.

The results are even more positive when we analyze the robustness of the

protocol to coordinated attacks, basically polluters coordinating to send coher-

ent false checks or even worse accusing one or more specific non polluter nodes

to be in fact malicious. If no more than half of the total nodes are malicious

(a quite reasonable assumption) the protocol maintains its efficiency, correctly

identifying all and only the polluter with a relevant margin of certainty, and only

taking more time to correctly guess all of the polluters, even in unrealistically

negative situations (a significant percentage of the nodes are polluters and they

all coordinate, while the honest nodes aren’t even aware of the neighbor presence).

Besides the protocol, being based on the Belief Propagation algorithm of ob-

tained decoding observations is low in computational complexity, so even well

suited for mobile and battery limited devices, and easily adaptable to other dis-

99

tributed transmission protocols, as far as a relative check is produced during or

after the decoding process.

In Chapter 5 we have proposed the novel SIEVE technique for the identifica-

tion of malicious nodes performing a pollution attack within a MANET.

A data dissemination application based on the distribution of LT coded data

packets has been considered as a use case, where malicious nodes aim at prevent-

ing the delivery of the information corrupting, i.e., polluting, coded packets.

In turn, the reception of a single corrupted packet may break down the decoding

of a whole data chunk.

Fortunately, the LT decoding procedure can be used by each node to detect

that a data chuck has been attacked; nonetheless, since parallel downloading form

multiple nodes is used, such detection does not allow to identify the malicious

nodes. This latter represents the core problem solved by SIEVE.

In SIEVE node collaborations are represented by a bipartite graph linking

nodes and detection opportunities, the checks. It is worth pointing out that such

representation is quite general and can be used in many other collaborative sce-

narios other than the data dissemination use case analyzed in this Chapter.

SIEVE is a completely distributed technique that, using statistical inference

based on the belief propagation algorithm, allows each node to independently

analyze local snapshots of the bipartite graph of the collected checks to estimate

the probability of nodes being malicious and to perform a progressive ranking of

the suspect nodes.

Our results, worked out using detailed ns-3 simulations, show that SIEVE is

accurate in letting each honest node identify all malicious nodes under several

scenarios. We have analyzed the sensitivity of SIEVE performance to the nodes

mobility; we have discovered that SIEVE is very robust to several deceiving ac-

tions, colluding attacks launched by malicious nodes, and amount of malicious

nodes inside the network.

Future works will be focused in two main directions. From the one hand we

will complete the design and experimentation of a full system to counteract an

100

active attack within MANET, including both malicious node identification and

their subsequent isolation or removal. The techniques adopted for the identifi-

cation and the following removal of malicious nodes clearly require a joint and

careful design to optimize the overall performance. The other research line will

be devoted to better understand the features of the bipartite graph representa-

tion, e.g. presence of loops, average node and check degrees, that affect SIEVE

accuracy. Such study is expected to let us further improve its performance by

adding the checks in a smart and adaptive way guaranteeing better convergence

of the BP algorithm.

The approach by itself is flexible and efficient, as shown by our results, so

future works will work toward the two complementary directions of raising the

SIEVE accuracy by better analyzing the underlying graph and devising ways to

followup to the detection of polluters, so to pass the useful pollution detection

informations generated by SIEVE to a pollution avoidance mechanism which will

use such informations to actively avoid (or neutralize) polluters.

7.3 CCN and CCN-TV

Using a custom modified ccnSim simulator [87, 93], itself a modified version of the

Omnet++ network simulator [3], we simulated a network, based on the structure

of the GEANT network, composed of CCN-TV nodes (meaning no TCP or UDP

encapsulation) with one video streaming server offering 5 different streams with

specific video parameters and a variable number on clients of two types faithful,

sticking to one channel, and zapping, moving from one channel to another with

a given frequency.

Routing Tables, handled by ccnSim, are always shortest path optimal and we

tested with three different caching strategies for the intermediate nodes no cache,

LRU and FIFO and a cache size of 100 chunks.

The results permitted us to show that the approach is working and to evaluate

the behavior at the variation of the sliding window timeout for the clients and its

impact on the Quality of Service by measuring chunk-loss. We also found that in

101

the presence of real-time streams the cache actually reduces the chunk-loss only

to a small amount, owning to the PIT structure already distributing multiple

request over a single reply, and a very minute amount of subsequent requests for

the same content.

Confronted with a classical CCN approach the CCN-TV alternative of not

sending Interests for every Data allows a sensible amount of bandwidth saving,

leading to better performances and user experience.

In this work, the effectiveness of TV services in a CCN has been investigated.

To this end, the ccnSim simulator has been modified to add several relevant

features such as window-based flow control, handling of playout delay and real-

time data, advanced logging mechanisms, and data session bootstrapping.

Preliminary results reported herein clearly show that the most relevant CCN

feature to TV services is the management of Interest packets through the PIT

data structure. In fact, such a mechanism limits the number of requests for the

same chunk at the server side for multiple clients watching the same TV channel,

thus decreasing the link and the computational load at the server.

Further research will explore: wider scenarios with many users and available

channels, advanced optimization techniques for TV services in CCN (including

routing and congestion control), and the adoption of scalable video coding. More-

over, a more deeply investigation on the relevance of the cache and the PIT in

live TV services will be also conducted.

The CCN protocol, while facing many problems to be solved before becoming

a widespread general network protocol (the promised Future Internet Protocol),

does indeed offers many advantages as presented in this work.

Future works in the real-time video streaming field will focus on better under-

standing the behavior of larger networks with heterogeneous characteristics (mo-

bility of nodes, link speeds and latency, ...) and multiple simultaneous video

streams.

102

7.4 Rateless coding over mobile CCN

All the previous approaches examine a single solution to the wider problem of

increasing robustness and resilience in a distributed decentralized scenario, either

by employing particular encoding not penalized by lack of structural informations

or message losses, by exploiting pollution detection techniques suited for a com-

pletely decentralized and inherently non trusted network, and by more efficient

routing techniques based on contents rather than addresses.

Uniting those techniques together, especially introducing mobility to the CCN

paradigm, and studying their perks and flaws is indeed an interesting and very

applicable evolution, one that we present here as an initial study in such direction.

We called our approach “Rateless coding over mobile CCN” as a mean to

define an open protocol to let use define and analyze the interaction between

mobility, particular encodings and the CCN protocol.

As pointed out, decentralized ad-hoc mobile networks are of growing impor-

tance and interest nowadays. Yet the troubles they face, both in performance

and robustness, requires innovative approaches in order to overcome what are

currently the most central obstacles to wide adoption and deployment, as for

example in urban traffic information scenarios or rural spontaneous network for-

mation where infrastructures are lacking.

Introducing the element of mobility in a communication network greatly com-

plicates the strategies used to ensure a reliable communication with satisfying

performances as it directly reduces to ability to create a durable routing tree and

trust in the neighbor nodes.

If the mobility also comprises from seldom moving slow nodes like hand-held

laptops to continuously unpredictable fast moving nodes, such as vehicles then we

can see that many wireless mesh protocols gradually becomes less and less efficient

by losing their ability to grow a continuos path from source to destination, even

if for the duration of a single transmission.

Promising old and new technologies like network coding and decentralized

polluters detection has been shown in Chapter 5 to be robust and efficient, espe-

cially given the specific constraints of the scenario, while other like CCN can relay

103

more on the contents rather than the inherently abstract address informations,

as shown in Chapter 6.

Considering CCNs/NDNs the concept of introducing an underlying mobility

aspect has been present since their conception [94].

Various relevant work has already been done on pairing mobility with CCNs,

both as general application study [95], or specifically in MANETs [96, 97].

It is generally accepted that CCNs are well suited for mobile environments,

needing few, if any, modification, and very resilient based on their focus on nodes

IDs rather than addresses. For real-time, low latency applications however some

structural decisions must be evaluated carefully during implementation, as they

can impact heavily on the resulting performances.

Regarding coupling network coding with CCNs there are a few works available,

all focusing on the central idea of augmenting data availability by multiple seeding

from different sources [98, 99, 100]. All these approaches are shown to be valid

and a substantial increase in performances over the non-coded case, yet to the

best of our knowledge none of them considers a mobile topology, which could

heavily influence the obtained results.

Focusing on pollution detection and malicious nodes attacks to the best of

our knowledge the current literature is a lot smaller in size, concentrating on spe-

cific attacks similar to the IP-based ones [101, 102] or more inherent to the CCN

protocol structure [103]. All of those approaches focuses on directly identifying

corrupted data once received, which will not be usually possible using rateless

coding, rendering them unapplicable in our case, at least without modifications.

We are analyzing, via a simulator, the behaviors and performances of different

common ad-hoc routing protocols [104], specifically OLSR, DSDV, AODV, and a

custom flooding based one, over a mobile nodes wireless network, while they are

exchanging data using the CCN protocol of Interest/Data to request and receive

packets encoded using network coding, via our FountainApplication module for

the ns-3 simulator.

We are also implementing different scenarios, varying in the ratio of slow and

104

fast moving nodes, the number of different sources presents, as well as the caching

and rebroadcasting policies adopted, to better identify strong and weak points of

each routing protocol when underlying the CCN + coding protocol.

Finally we plan to briefly analyze the detection of malicious polluter nodes

in our set using our SIEVE protocol, in a completely distributed and accurate way.

Preliminary results on the topic are positive, where the CCN model is con-

firmed to be well suited in distributed mobile environments, and initial imple-

mentation of network coding can greatly increase the data throughput, even in

very sparse and fast moving scenarios.

Yet further work is still needed, and ongoing, to better evaluate the interaction

between those aspects and the parameters influencing coding behaviors to avoid

degraded performances or excessive noise.

105

Part IV

Appendix

106

Appendix A

Tools used

A.1 HSO - Heterogeneous Statistical Optimizer

• Tool name: HSO

• Tool authors: R. Loti, and R. Gaeta

• License: (Currently not released to the public)

• Website: Software available on request

To calculate the probability functions generating the the statistical model for

network interconnection we have developed a dedicated software, called HSO

(Heterogeneous Statistical Optimizer).

The tool, evolution of a simpler, also internally developed, nameless tool spe-

cific to the homogeneous networks case, takes as parameters a json formatted

configuration file, the results file name and a few optional parameters regarding

the specific variation of the mathematical model to be used, the verbosity of the

console output and how to manage missing values in the given configuration file.

Following is the help text showing the usage pattern:

Usage: ./HSO -c <conf_file> -o <result_file> [<param> <param_value>]

-c or --config: the json configuration file

-o or --output: the result output file

107

-m or --model: the statistical model to use, 0 for independent,

1 for independent global, 2 for dependent [Default: 2]

-v or --verbose: a flag for having verbose output [Default: false]

-t or --test: a flag for initiating selftest [Default:false]

-n or --noderiv: a flag for reading all parameters from the json file,

not calculating them as standard [Default: false]

The tool has been realized to read all the parameters regarding the instance from

the json file, such as the number of distinct networks, the TTL values to be

calculated, the ↵i resource distribution, Ci,j fraction of nodes that also belong to

network j, the Pi,k distribution for the number of connection of each node, and

pft,i,j or pfi,j, depending if it varies with the TTL t or not, probability that a

node will forward a message from network i to j, for each network i.

With the optimizer, so called as it permits to sweep the space of all param-

eters permutations in a feasible time in respect to a simulator and so to choose

the optimal values range, an entourage of related small tools has been developed,

such a configuration generator, able to generate ranges of json file iteratively,

sets of shell scripts to automate as much as possible the “generate, calculate and

parse” standard iter and also helping parse and group the obtained result files,

and the relative tools and file format documentation.

108

A.2 Network simulator ns-3

• Tool name: ns-3

• Tool authors: M. Lacage, and various authors

• License: GNU GPLv2

• Website: http://www.nsnam.org

ns-3 is a discrete-event network simulator, targeted primarily for research and

educational use.

The software is a C++ library which provides a set of network simulation

models implemented as C++ objects and wrapped through Python.

Users normally interact with this library by writing a C++ or a Python applica-

tion which instantiates a set of simulation models to set up the simulation scenario

of interest, enters the simulation “main loop”, and exits when the simulation is

completed (i.e. no more events are planned in the schedule).

A through and detailed description of the various APIs is present on the offi-

cial site, togheter with a very helpful tutorial for initially understanding the basic

internal organization of the modules.

109

http://www.nsnam.org

A.2.1 The FountainApplication application

• Tool name: FountainApplication (ns-3 module)

• Tool authors: R. Loti

• License: GNU GPLv2 (Currently not released to the public)

• Website: Software available on request

Over the ns-3 models system we wrote the FountainApplication module, as an

Application in ns-3 terms.

A Node with a FountainApplication configured on it can, depending on the

parameters passed, work both as client and server for receiving and decoding,

and encoding and sending chunks, using a specified decoder:

• 0 (Fake): no actual decoding happens, the payload is considered decoded

after n + ✏ packets have been received, where the overhead ✏ is specified

based on statistical patterns relative to n;

• 1 (Linear): only packets of degree d = 1, so containing an uncodified

block in the payload, are considered, waiting for one of each of the n blocks.

Equivalent to a standard n-blocks sequential transmission;

• 2 (Belief Propagation): the packets payload is decoded using the Be-

lief Propagation algorithm, less efficient than the following, but also less

computationally intensive;

• 3 (OFG): the packets payload is decoded using the very efficient, but com-

putationally intensive On-The-Fly Gaussian Elimination algorithm, based

on the simpler, yet less flexible GE (Gaussian Elimination) algorithm;

or encoder:

• 0 (Fake): no actual encoding happens and so the payload is actually of

a specified size, but empty, only populating the header. Usually used in

conjunction with the fake decoder to avoid loading the simulator with big

quantities of data;

110

• 1 (Sequential): only packets of degree d = 1 are generated, while the block

order is random and not guaranteed to be sequential or non repeating before

a full n blocks transmission is functionally similar to a standard, sequential

data transmission;

• 2 (LT Code): standard encoding for LT Codes, using a RSD distribution

a random degree 1 d n is chosen and as many distinct blocks in n are

randomly selected to be xor -encoded in the payload.

111

A.2.2 The SieveApplication application

• Tool name: SieveApplication (ns-3 module)

• Tool authors: R. Loti

• License: GNU GPLv2 (Currently not released to the public)

• Website: Software available on request

In parallel with FountainApplication, but independent from it, we developed the

SieveApplication module, also as a ns-3 Application type.

The application access the methods of the FountainApplication class to re-

trieve received and decoding statistics from each Node that has the application

installed to pass to the SIEVE algorithm to progressively build the probable

polluter list.

112

A.2.3 The ndnSIM module

• Tool name: ndnSIM (ns-3 module)

• Tool authors: A. Afanasyev, I. Moiseenko, and L. Zhang

• License: GNU GPLv2

• Website: http://ndnsim.net

The ndnSIM is a ns-3 module that implements the Named Data Networking

(NDN) communication model [105].

ndnSIM is specially optimized for simulation purposes and has a cleaner and

more extensible internal structure comparing to the existing NDN implementa-

tion (NDNx) as it works internally to ns-3, not as an external library as the

DCE-ccnx module (a similar module for ns-3 in which a software “cradle” in-

tegrates the real ccnx library, see Section A.3), and in which every part of the

protocol is independent and implemented as a distinct, and easily modifiable,

submodule.

113

http://ndnsim.net

A.3 The CCNx protocol and library

• Tool name: CCNx

• Tool authors: V. Jacobson, and various authors

• License: GNU GPLv2, and GNU LGPLv2

• Website: https://www.ccnx.org

The CCNx protocol is the transport protocol for a communications architecture

called Content-Centric Networking (CCN) built on named data.

CCN has no notion of host at its lowest level as a packet address names

content, not location. The CCNx protocol efficiently delivers named content

rather than connecting hosts to other hosts.

Every packet of data may be cached at any CCNx router which combined with

intrinsic support for multicast or broadcast delivery this leads to a very efficient

use of the network when many people are interested in the same content.

114

https://www.ccnx.org

A.3.1 The ccnSim simulator

• Tool name: ccnSim

• Tool authors: R. Chiocchetti, D. Rossi, and G. Rossini

• License: GNU GPLv3

• Website: http://perso.telecom-paristech.fr/~drossi/index.php?n=

Software.CcnSim

ccnSim is a scalable chunk-level simulator of Content Centric Networks (CCN),

written in C++ using the Omnet++ simulator as a base, which allows to assess

CCN performance in scenarios with large orders of magnitude for CCN content

stores and Internet catalog sizes, due to the focus on higher level workings than,

for example, ns-3 [106].

In our works on CCN-TV we extended the ccnSim simulator to include our

extensions of the protocol needed for live-tv streaming, but we maintained the

efficient definition and mechanisms for routing and network structure.

115

http://perso.telecom-paristech.fr/~drossi/index.php?n=Software.CcnSim
http://perso.telecom-paristech.fr/~drossi/index.php?n=Software.CcnSim

References

[1] M. Newman, Networks: an introduction. Oxford University Press, 2010.

[2] I. Martinez-Yelmo, R. Cuevas, C. Guerrero, and A. Mauthe, “Routing per-

formance in a hierarchical dht-based overlay network,” in Parallel, Dis-

tributed and Network-Based Processing, 2008. PDP 2008. 16th Euromicro

Conference on, pp. 508–515, IEEE, 2008.

[3] VV.AA., “Omnet++ home page.” [Online] Available: http://www.

omnetpp.org/, 2014.

[4] V. Ciancaglini, R. Gaeta, R. Loti, and L. Liquori, “Interconnection of large

scale unstructured p2p networks: Modeling and analysis,” in Analytical and

Stochastic Modeling Techniques and Applications, pp. 183–197, Springer,

2013.

[5] M. Luby, “Lt codes,” in Foundations of Computer Science, 2002. Proceed-

ings. The 43rd Annual IEEE Symposium on, pp. 271–280, 2002.

[6] R. Gaeta, M. Grangetto, and R. Loti, “Sieve: a distributed, accurate,

and robust technique to identify malicious nodes in data dissemination on

manet,” in Parallel and Distributed Systems (ICPADS), 2012 IEEE 18th

International Conference on, pp. 331–338, IEEE, 2012.

[7] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,

and R. L. Braynard, “Networking named content,” in Proceedings of the 5th

international conference on Emerging networking experiments and technolo-

gies, pp. 1–12, ACM, 2009.

116

http://www.omnetpp.org/
http://www.omnetpp.org/

REFERENCES

[8] R. Gaeta, R. Loti, and V. Ciancaglini, “Modeling and analysis of large scale

interconnected unstructured p2p networks,” in Parallel and Distributed Sys-

tems (ICPADS), 2012 IEEE 18th International Conference on, pp. 710–711,

IEEE, 2012.

[9] R. Gaeta, M. Grangetto, and R. Loti, “Exploiting rateless codes and belief

propagation to infer identity of polluters in manet,” IEEE Transactions on

Mobile Computing, 2013.

[10] V. Ciancaglini, G. Piro, R. Loti, L. A. Grieco, and L. Liquori, “Ccn-tv: a

data-centric approach to real-time video services,” In Proc. of IEEE AINA,

2013.

[11] G. Piro, V. Ciancaglini, R. Loti, L. A. Grieco, L. Liquori, et al., “Provid-

ing crowd-sourced and real-time media services through a ndn-based plat-

form,” MODELLING AND PROCEESING FOR NEXT GENERATION

BIG DATA TECHNOLOGIES AND APPLICATIONS, 2013.

[12] M. Siekkinen, V. Goebel, T. Plagemann, K. Skevik, M. Banfield, and I. Bru-

sic, “Beyond the Future Internet–Requirements of Autonomic Networking

Architectures to Address Long Term Future Networking Challenges,” in In-

ternational Workshop on Future Trends of Distributed Computing Systems,

pp. 89–98, 2007.

[13] A. Fonte, M. Curado, and E. Monteiro, “Interdomain Quality of Service

Routing: Setting the Grounds for the Way Ahead,” Annals of Telecommu-

nications, vol. 63, no. 11, pp. 683–695, 2008.

[14] M. Kwon and S. Fahmy, “Synergy: an Overlay Internetworking Architec-

ture,” in Proc. of International Conference on Computer Communications

and Networks, pp. 401–406, 2005.

[15] K. Junjiro, W. Naoki, and M. Masayuki, “Design and Evaluation of a Co-

operative Mechanism for Pure P2P File-Sharing Networks,” IEICE Trans

Commun (Inst Electron Inf Commun Eng), vol. E89-B, no. 9, pp. 2319–

2326, 2006.

117

REFERENCES

[16] P. Furtado, “Multiple Dynamic Overlay Communities and Inter-space

Routing,” Lecture Notes in Computer Science, vol. 4125, pp. 38–49, 2007.

[17] B. Maniymaran, M. Bertier, and A. Kermarrec, “Build one, get one free:

Leveraging the coexistence of multiple p2p overlay networks,” in Proc. of

IEEE ICDCS’07, pp. 33–40, 2007.

[18] F. Buccafurri, V. D. Foti, G. Lax, A. Nocera, and D. Ursino, “Bridge anal-

ysis in a social internetworking scenario,” Information Sciences, vol. 224,

pp. 1–18, 2013.

[19] A. Shokrollahi, “Raptor codes,” Information Theory, IEEE Transactions

on, vol. 52, no. 6, pp. 2551–2567, 2006.

[20] M. Grangetto, R. Gaeta, and M. Sereno, “Rateless codes network coding for

simple and efficient p2p video streaming,” in Multimedia and Expo, 2009.

ICME 2009. IEEE International Conference on, pp. 1500–1503, IEEE,

2009.

[21] A. Magnetto, S. Spoto, R. Gaeta, M. Grangetto, and M. Sereno, “Fountains

vs torrents: the p2p toroverde protocol,” in Modeling, Analysis & Simu-

lation of Computer and Telecommunication Systems (MASCOTS), 2010

IEEE International Symposium on, pp. 417–420, IEEE, 2010.

[22] S. Spoto, R. Gaeta, M. Grangetto, and M. Sereno, “Bittorrent and foun-

tain codes: friends or foes?,” in Parallel & Distributed Processing, Work-

shops and Phd Forum (IPDPSW), 2010 IEEE International Symposium

on, pp. 1–8, IEEE, 2010.

[23] A. Fiandrotti, V. Bioglio, M. Grangetto, R. Gaeta, and E. Magli, “Band

codes for energy-efficient network coding with application to p2p mobile

streaming,” 2013.

[24] B. Wu, J. Chen, J. Wu, and M. Cardei, “A survey of attacks and coun-

termeasures in mobile ad hoc networks,” in Wireless Network Security

(Y. Xiao, X. S. Shen, and D.-Z. Du, eds.), Signals and Communication

Technology, pp. 103–135, Springer US, 2007.

118

REFERENCES

[25] H. Yang, H. Luo, F. Ye, S. Lu, and L. Zhang, “Security in mobile ad

hoc networks: challenges and solutions,” IEEE Wireless Communications,

vol. 11, no. 1, pp. 38–47, 2004.

[26] M. N. Krohn, M. J. Freedman, and D. Mazieres, “On-the-fly verification of

rateless erasure codes for efficient content distribution,” IEEE Symposium

on Security and Privacy, 2004.

[27] C. Gkantsidis and P. Rodriguez, “Cooperative security for network coding

file distribution,” in IEEE INFOCOM 2006, 2006.

[28] Q. Li, D.-M. Chiu, and J. Lui, “On the practical and security issues of

batch content distribution via network coding,” in 14th IEEE International

Conference on Network Protocols, ICNP ’06., 2006.

[29] D. Kamal, D. Charles, K. Jain, and K. Lauter, “Signatures for network

coding,” in 40th Annual Conference on Information Sciences and Systems,

2006, 2006.

[30] Z. Yu, Y. Wei, B. Ramkumar, and Y. Guan, “An efficient signature-based

scheme for securing network coding against pollution attacks,” in IEEE

INFOCOM 2008, 2008.

[31] E. Kehdi and B. Li, “Null keys: Limiting malicious attacks via null space

properties of network coding,” in IEEE INFOCOM 2009, 2009.

[32] Z. Yu, Y. Wei, B. Ramkumar, and Y. Guan, “An efficient scheme for se-

curing xor network coding against pollution attacks,” in IEEE INFOCOM

2009, 2009.

[33] S. Agrawal and D. Boneh, “Homomorphic macs: Mac-based integrity for

network coding,” in Applied Cryptography and Network Security, pp. 292–

305, Springer, 2009.

[34] J. Dong, R. Curtmola, and C. Nita-Rotaru, “Practical defenses against

pollution attacks in intra-flow network coding for wireless mesh networks,”

in Proceedings of the second ACM conference on Wireless network security,

pp. 111–122, ACM, 2009.

119

REFERENCES

[35] Y. Li, H. Yao, M. Chen, S. Jaggi, and A. Rosen, “Ripple authentication for

network coding,” in INFOCOM, 2010 Proceedings IEEE, pp. 1–9, IEEE,

2010.

[36] T. Ho, B. Leong, R. Koetter, M. Medard, M. Effros, and D. Karger, “Byzan-

tine modification detection in multicast networks with random network cod-

ing,” IEEE Transactions on Information Theory, vol. 54, pp. 2798 –2803,

june 2008.

[37] S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, M. Medard, and M. Ef-

fros, “Resilient network coding in the presence of byzantine adversaries,”

IEEE Transactions on Information Theory, vol. 54, pp. 2596 –2603, june

2008.

[38] R. Koetter and F. Kschischang, “Coding for errors and erasures in ran-

dom network coding,” IEEE Transactions on Information Theory, vol. 54,

pp. 3579 –3591, august 2008.

[39] A. Newell and C. Nita-Rotaru, “Split null keys: A null space based de-

fense for pollution attacks in wireless network coding,” in Sensor, Mesh

and Ad Hoc Communications and Networks (SECON), 2012 9th Annual

IEEE Communications Society Conference on, pp. 479–487, 2012.

[40] Q. Wang, L. Vu, K. Nahrstedt, and H. Khurana, “MIS: Malicious nodes

identification scheme in network-coding-based peer-to-peer streaming,” in

IEEE INFOCOM 2010, pp. 1–5, march 2010.

[41] Y. Li and J. C. Lui, “Stochastic analysis of a randomized detection algo-

rithm for pollution attack in P2P live streaming systems,” Performance

Evaluation, vol. 67, no. 11, pp. 1273 – 1288, 2010.

[42] Y. Li and J. Lui, “Identifying pollution attackers in network-coding enabled

wireless mesh networks,” in 20th International Conference on Computer

Communications and Networks (ICCCN), pp. 1 –6, aug 2011.

120

REFERENCES

[43] Y. Li and J. Lui, “Epidemic attacks in network-coding enabled wireless

mesh networks: Detection, identification and evaluation,” IEEE Transac-

tions on Mobile Computing, vol. PP, no. 99, p. 1, 2012.

[44] X. Jin and S.-H. G. Chan, “Detecting malicious nodes in peer-to-peer

streaming by peer-based monitoring,” ACM Trans. Multimedia Comput.

Commun. Appl., vol. 6, pp. 9:1–9:18, March 2010.

[45] R. Gaeta, M. Grangetto, L. Bovio, et al., “Dip: Distributed identification of

polluters in p2p live streaming,” ACM Transaction Multimedia Computing,

2014.

[46] R. Gaeta and M. Grangetto, “Identification of malicious nodes in peer-to-

peer streaming: A belief propagation-based technique,” Parallel and Dis-

tributed Systems, IEEE Transactions on, vol. 24, no. 10, pp. 1994–2003,

2013.

[47] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The many

faces of publish/subscribe,” ACM Computing Surveys (CSUR), vol. 35,

no. 2, pp. 114–131, 2003.

[48] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, K. Fall,

and H. Weiss, “Delay-tolerant networking architecture,” RFC4838, April,

2007.

[49] J. Choi, J. Han, E. Cho, T. Kwon, and Y. Choi, “A survey on content-

oriented networking for efficient content delivery,” Communications Maga-

zine, IEEE, vol. 49, no. 3, pp. 121–127, 2011.

[50] A. Baid, T. Vu, and D. Raychaudhuri, “Comparing alternative approaches

for networking of named objects in the future internet,” in Computer Com-

munications Workshops (INFOCOM WKSHPS), 2012 IEEE Conference

on, pp. 298–303, IEEE, 2012.

[51] VV.AA., “Ccnx home page.” [Online] Available: https://www.ccnx.org/,

2014.

121

https://www.ccnx.org/

REFERENCES

[52] L. Liquori, C. Tedeschi, L. Vanni, F. Bongiovanni, V. Ciancaglini, and

B. Marinkovic, “Synapse: A scalable protocol for interconnecting heteroge-

neous overlay networks,” in Proc. of Networking ’10, pp. 67–82, 2010.

[53] M. Luby, “LT codes,” in 43rd Annual IEEE Symposium on Foundations of

Computer Science, FOCS 2002, pp. 271–280, 2002.

[54] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, “Random graphs with

arbitrary degree distributions and their applications,” Phys. Rev. E, vol. 64,

no. 2, p. 026118, 2001.

[55] R. Bolla, R. Gaeta, A. Magnetto, M. Sciuto, and M. Sereno, “A mea-

surement study supporting p2p file-sharing community models,” Computer

Networks, vol. 53, no. 4, pp. 485–500, 2009.

[56] R. Gaeta and M. Sereno, “Generalized probabilistic flooding in unstruc-

tured peer-to-peer networks,” IEEE Transactions on Parallel and Dis-

tributed Systems, vol. 22, no. 12, pp. 2055–2062, 2011.

[57] F. Viger and M. Latapy, “Efficient and simple generation of random sim-

ple connected graphs with prescribed degree sequence,” in Computing and

Combinatorics, vol. 3595 of Lecture Notes in Computer Science, pp. 440–

449, Springer Berlin / Heidelberg, 2005.

[58] J. Pearl, Probabilistic reasoning in intelligent systems: networks of plausible

inference. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,

1988.

[59] D. MacKay, Information Theory, Inference and Learning Algorithms. Cam-

bridge University Press, 2003.

[60] J. Yedidia, W. Freeman, and Y. Weiss, “Constructing free-energy approxi-

mations and generalized belief propagation algorithms,” IEEE Transactions

on Information Theory, vol. 51, no. 7, pp. 2282 – 2312, 2005.

[61] J. Yedidia, W. Freeman, and Y. Weiss, “Understanding belief propagation

and its generalizations,” in Exploring Artificial Intelligence in the New Mil-

lennium, Science & Technology Books, ch. 8, Elsevier, 2003.

122

REFERENCES

[62] T. Schierl, S. Johansen, A. Perkis, and T. Wiegand, “Rateless scalable video

coding for overlay multisource streaming in manets,” Journal of Visual

Communication and Image Representation, vol. 19, no. 8, pp. 500–507,

2008.

[63] V. R. Syrotiuk, C. J. Colbourn, and S. Yellamraju, “Rateless forward error

correction for topology-transparent scheduling,” IEEE/ACM Transactions

on Networking, vol. 16, no. 2, pp. 464–472, 2008.

[64] R. Gaeta, M. Grangetto, and R. Loti, “SIEVE: a distributed, accurate,

and robust technique to identify malicious nodes in data dissemination on

manet,” in IEEE ICPADS 2012, pp. 331–338, 2012.

[65] R. Gallager, Low-Density Parity-Check Codes. Cambridge: M.I.T. Press,

1963.

[66] W. T. Freeman, E. C. Pasztor, and O. T. Carmichael, “Learning low-level

vision,” International Journal of Computer Vision, vol. 40, pp. 25–47, 2000.

[67] M. Luby, M. Mitzenmacher, M. Shokrollahi, and D. Spielman, “Improved

low-density parity-check codes using irregular graphs,” IEEE Transactions

on Information Theory, vol. 47, pp. 585 –598, feb 2001.

[68] G. F. Riley and T. R. Henderson, “The ns-3 network simulator,” inModeling

and Tools for Network Simulation, pp. 15–34, Springer Berlin Heidelberg,

2010.

[69] C. Systems, “Cisco visual networking index: Forecast and methodology,

2010-2015.” White Paper, Jun. 2011.

[70] B. Ahlgren, P. A. Aranda, P. Chemouil, S. Oueslati, L. M. Correia, H. Karl,

M. Sollner, and A. Welin, “Content, connectivity, and cloud: ingredients

for the network of the future,” IEEE Commun. Mag., vol. 49, Jul. 2011.

[71] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,

and R. L. Braynard, “Networking named content,” in ACM CoNEXT ’09,

2009.

123

REFERENCES

[72] G. Carofiglio, M. Gallo, L. Muscariello, and D. Perino, “Modeling data

transfer in content-centric networking,” in Int. Teletraffic Congress, (ITC),

2011.

[73] L. Muscariello, G. Carofiglio, and M. Gallo, “Bandwidth and storage shar-

ing performance in information centric networking,” in ACM SIGCOMM

workshop on Information-centric networking (ICN ’11), 2011.

[74] M. Varvello, I. Rimac, U. Lee, L. Greenwald, and V. Hilt, “On the design

of content-centric manets,” in Int. Conf. on Wireless On-Demand Network

Systems and Services, (WONS), Jan. 2011.

[75] G. Carofiglio, V. Gehlen, and D. Perino, “Experimental evaluation of mem-

ory management in content-centric networking,” in IEEE ICC, 2011.

[76] M. Tortelli, I. Cianci, L. A. Grieco, G. Boggia, and P. Camarda, “A fairness

analysis of content centric networks,” in Proc. of Int. Conf. on Network of

the Future, NOF, (Paris, France), Nov. 2011.

[77] D. Rossi and G. Rossini, “On sizing CCN content stores by exploiting topo-

logical information,” in IEEE INFOCOM, NOMEN Worshop, 2012.

[78] L. A. Grieco, D. Saucez, and C. Barakat, “AIMD and CCN: past and

novel acronyms working together in the Future Internet,” in Capacity Shar-

ing Workshop 2012 (CSWS’12) co-located with ACM SIGCOMM CoNEXT

2012., Dec. 2012.

[79] G. Carofiglio, M. Gallo, and L. Muscariello, “Joint hop-by-hop and receiver-

driven interest control protocol for content-centric networks,” in ACM SIG-

COMM, ICNı́12 workshop., 2012.

[80] M. Tortelli, L. A. Grieco, and G. Boggia, “CCN forwarding engine based on

bloom filters,” in Proc. of ACM Int. Conf. on Future Internet Technologies,

CFI, (Seoul, Korea), Sep. 2012.

[81] W. You, B. Mathieu, P. Truong, J. Peltier, and G. Simon, “Dipit: A dis-

tributed bloom-filter based pit table for ccn nodes,” in Computer Commu-

124

REFERENCES

nications and Networks (ICCCN), 2012 21st International Conference on,

pp. 1 –7, 30 2012-aug. 2 2012.

[82] Z. Li and G. Simon, “Time-shifted TV in content centric networks:the case

for cooperative in-network caching,” in Proc. of IEEE ICC, Jun. 2011.

[83] H. Xu, Z. Chen, R. Chen, and J. Cao, “Live streaming with content cen-

tric networking,” in Proc. 3rd Int. Conf. on Networking and Distributed

Computing, Hangzhou, China, 2012., 2012.

[84] G. Rossini and D. Rossi, “Large scale simulation of ccn networks,” in In

Algotel 2012, 2012.

[85] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman,

“A survey of information-centric networking,” Communications Magazine,

IEEE, vol. 50, pp. 26 –36, july 2012.

[86] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the

H.264/AVC video coding standard,” IEEE Trans. on Circuits and Systems

for Video Technology, vol. 13, pp. 560 –576, Jul. 2003.

[87] VV.AA., “Ccn-tv home page.” [Online] Available: http://telematics.

poliba.it/ccn-tv/, 2014.

[88] VV.AA., “Geant project website.” [Online] Available: http://www.geant.

net/, 2014.

[89] D. Rossi and G. Rossini, “Caching performance of content centric networks

under multi-path routing (and more),” in Technical report, Telecom Paris-

Tech, 2011.

[90] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Ap-

proach. Addison-Wesley Publishing Company, 6th ed., 2012.

[91] G. Piro, L. Grieco, G. Boggia, R. Fortuna, and P. Camarda, “Two-level

Downlink Scheduling for Real-Time Multimedia Services in LTE Networks,”

in IEEE Trans. Multimedia, vol. 13, pp. 1052 – 1065, Oct. 2011.

125

http://telematics.poliba.it/ccn-tv/
http://telematics.poliba.it/ccn-tv/
http://www.geant.net/
http://www.geant.net/

REFERENCES

[92] J. Ohm, Multimedia Communication Technology. Springer, USA, 2004.

[93] VV.AA., “ccnsim home page.” [Online] Available: http://perso.

telecom-paristech.fr/~drossi/index.php?n=Software.CcnSim, 2014.

[94] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. D. Thornton, D. K. Smetters,

B. Zhang, G. Tsudik, D. Massey, C. Papadopoulos, et al., “Named data

networking (ndn) project,” Relatório Técnico NDN-0001, Xerox Palo Alto

Research Center-PARC, 2010.

[95] G. Tyson, N. Sastry, R. Cuevas, I. Rimac, and A. Mauthe, “A survey of

mobility in information-centric networks,” Communications of the ACM,

vol. 56, no. 12, pp. 90–98, 2013.

[96] Z. Zhu, A. Afanasyev, and L. Zhang, “A new perspective on mobility sup-

port,” tech. rep., Technical report, Named-Data Networking Project, 2013.

[97] Y. Lu, X. Li, Y.-T. Yu, and M. Gerla, “Information-centric delay-tolerant

mobile ad-hoc networks,” INFOCOM 2014, Workshop on Name Oriented

Mobility, 2014.

[98] W.-X. Liu, S.-Z. Yu, and P.-Y. Zhu, “Multisource dissemination in content-

centric networking,” in Network of the Future (NOF), 2013 Fourth Inter-

national Conference on the, pp. 1–5, IEEE, 2013.

[99] S. Miyake and H. Asaeda, “Network coding and its application to content

centric networking,” WITMSE 2013, 2013.

[100] Q. Wu, Z. Li, and G. Xie, “Codingcache: multipath-aware ccn cache with

network coding,” in Proceedings of the 3rd ACM SIGCOMM workshop on

Information-centric networking, pp. 41–42, ACM, 2013.

[101] K. Wang, H. Zhou, J. Chen, and Y. Qin, “Rdai: Router-based data aggre-

gates identification mechanism for named data networking,” in Innovative

Mobile and Internet Services in Ubiquitous Computing (IMIS), 2013 Sev-

enth International Conference on, pp. 116–121, IEEE, 2013.

126

http://perso.telecom-paristech.fr/~drossi/index.php?n=Software.CcnSim
http://perso.telecom-paristech.fr/~drossi/index.php?n=Software.CcnSim

REFERENCES

[102] K. Wang, J. Chen, H. Zhou, Y. Qin, and H. Zhang, “Modeling denial-of-

service against pending interest table in named data networking,” Interna-

tional Journal of Communication Systems, 2013.

[103] M. Conti, P. Gasti, and M. Teoli, “A lightweight mechanism for detection

of cache pollution attacks in named data networking,” Computer Networks,

vol. 57, no. 16, pp. 3178–3191, 2013.

[104] S.-J. Lee, W. Su, J. Hsu, M. Gerla, and R. Bagrodia, “A performance com-

parison study of ad hoc wireless multicast protocols,” in INFOCOM 2000.

Nineteenth Annual Joint Conference of the IEEE Computer and Commu-

nications Societies. Proceedings. IEEE, vol. 2, pp. 565–574, IEEE, 2000.

[105] A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnSIM: NDN simulator for

NS-3,” Technical Report NDN-0005, NDN, October 2012.

[106] E. Weingartner, H. Vom Lehn, and K. Wehrle, “A performance comparison

of recent network simulators,” in Communications, 2009. ICC’09. IEEE

International Conference on, pp. 1–5, IEEE, 2009.

127

	Contents
	List of Figures
	I Overview
	1 Introduction
	1.1 Opportunities and challenges
	1.2 Random graph modeling of overlay networks interconnection
	1.3 Polluter identification in MANETs
	1.4 CCN and CCN-TV
	1.5 A unifying view of the Thesis

	2 State of the art
	2.1 Random graph modeling of overlay networks interconnection
	2.2 Polluter identification in MANETs
	2.3 CCN and CCN-TV

	3 Thesis contributions
	3.1 Random graph modeling of overlay networks interconnection
	3.2 Polluter identification in MANETs
	3.3 CCN and CCN-TV

	II Detailed works
	4 Random graph modeling of overlay networks interconnection
	4.1 Overview
	4.2 System description
	4.3 System model
	4.3.1 One overlay topology
	4.3.2 Interconnection of multiple P2P networks
	4.3.3 Search algorithm
	4.3.4 Hit probability
	4.3.5 A variation of the search algorithm

	4.4 Results explained
	4.5 Model validation
	4.5.1 Simulation methodology
	4.5.2 Topology generation
	4.5.3 Validation results

	4.6 Model exploitation
	4.6.1 Comparison of different routing policies
	4.6.2 f-cost based evaluation
	4.6.3 Effects of granularity
	4.6.4 System design with minimum requirements
	4.6.5 Routing without propagation

	4.7 Published works

	5 Polluter identification in MANETs
	5.1 Overview
	5.2 LT codes
	5.3 A use case for SIEVE
	5.3.1 LT based dissemination protocol
	5.3.2 Malicious nodes

	5.4 The SIEVE protocol
	5.4.1 LT codes verification mechanism
	5.4.2 Check construction and reporting
	5.4.3 Identification based on belief propagation
	5.4.4 BP complexity
	5.4.5 Incremental BP estimation

	5.5 Results
	5.5.1 Factor graph and performance
	5.5.2 Simulation methodology
	5.5.3 Performance indexes
	5.5.4 Sensitivity results
	5.5.5 Mobility and SIEVE performance
	5.5.6 Deceiving actions and SIEVE robustness
	5.5.7 Coding efficiency vs. SIEVE performance
	5.5.8 Bandwidth, memory and CPU costs

	5.6 Published works

	6 CCN and CCN-TV
	6.1 Overview
	6.2 Basic background on CCN
	6.3 CCN-TV architecture
	6.3.1 Channel bootstrap
	6.3.2 Flow control
	6.3.3 Interest routing
	6.3.4 CCN-TV messages

	6.4 Simulation results
	6.4.1 Interest generation process
	6.4.2 QoS and QoE

	6.5 Published works

	III Summarizing results and future evolutions
	7 Summarizing results and future evolutions
	7.1 Random graph modeling of overlay networks interconnection
	7.2 Polluter identification in MANETs
	7.3 CCN and CCN-TV
	7.4 Rateless coding over mobile CCN

	IV Appendix
	A Tools used
	A.1 HSO - Heterogeneous Statistical Optimizer
	A.2 Network simulator ns-3
	A.2.1 The FountainApplication application
	A.2.2 The SieveApplication application
	A.2.3 The ndnSIM module

	A.3 The CCNx protocol and library
	A.3.1 The ccnSim simulator

	References

