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caractérisation de fissures

Sylvain Mezil

Soutenue le 6 novembre 2012 devant le jury composé de :
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General introduction

Ultrasounds are commonly used in nondestructive testing techniques. The use of ultra-

sounds allows to reach high frequencies, with short wavelengths, which is a usual condition

required to detect small defects. The generation and detection of ultrasounds by lasers is

at the basis of the laser ultrasonic techniques, or opto-acoustic techniques, which present

the advantage, among others, of allowing contactless studies of a sample. Such absence of

contacts makes the laser ultrasonic techniques suitable for any pressure and temperature

conditions and suitable for nondestructive testing from a distance. It avoids the use of

contact transducers which are sources of nonlinearities. The optoacoustic technique also

provides a high spatial resolution because of the possibility to focus the beam down to

micrometers. However, optoacoustic methods generally share the limitation to be weakly

sensitive due to the poor optoacoustic conversion efficiency. On the other hand, nonlinear

acoustic methods have been shown to be much more sensitive than linear ones.

Nonlinear optoacoustic techniques for nondestructive testing combine the contactless

aspect of optoacoustics with the high sensitivity of nonlinear methods. Such a tech-

nique should improve the contrast of defect detection, important for many industrial

applications. The present work explores a method for crack detection using a nonlinear

optoacoustic method. The samples selected for the study are glass plates containing a

crack -centimeter length and micrometer thick- prepared by thermal loading.

The developed method is based on the absorption of two light beams, independently

modulated, and focused at the same location on the sample. This causes the generation

of two waves, by thermal expansion.

The first one is a thermo-elastic wave at low frequency fL („ Hz), and the second is an

acoustical one at high frequency fH (tens of kHz). The thermoelastic wave can generate a

crack breathing when a crack is present in the heated zone. The crack is expected to close

when the intensity of the heating laser modulated at fL is important and to open back

when the intensity diminishes. This breathing influences the acoustic wave generated in

the vicinity of the crack at fH . As a result, there is a nonlinear frequency-mixing process,

leading to the generation of new frequencies in the system, fH ˘ nfL (n “ 1, 2,. . . ). The

detection of these mixed-frequencies indicates the presence of a crack.

In a first part, one-dimensional and two-dimensional scans are achieved and demon-

strate a clear crack detection and localization capability of the method. The influence of

the pump frequency fL, and of the beams focusing on the nonlinear sidelobe amplitudes

(or mixed-frequency amplitudes) are theoretically and experimentally analyzed. The
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ii General introduction

spatial resolution, which depends on the method parameters and the crack properties, is

also studied. It is demonstrated that, due to heat diffusion, the crack breathing can be

achieved with a pump beam focused outside of the crack. Acoustic waves generated far

from the crack can also propagate and interact with the breathing crack and in turn lead

to the generation of nonlinear mixed-frequencies.

Two all-optical set-ups are proposed. Detection of the nonlinear mixed-frequencies can be

achieved with vibrometry or deflectometry techniques. Detection by means of a lock-in

amplifier is also realized and allows the use of the phase informations to detect cracks.

In a second part, the influence of the pump power on the nonlinear sidelobe amplitudes

is studied. Nonmonotonous behaviors of the nonlinear sidelobe evolutions as a function of

the pump power are detected and compared with theoretical predictions. The matching

between theoretical and experimental evolutions leads to the evaluation of several crack

parameters. In particular, the crack rigidity and the distance between the crack faces are

estimated. The values of the forces and the temperature rises required to close and open

the crack are also determined.

The evolution of the phase of the nonlinear sidelobes as a function of the pump power

demonstrates the same minima, and also provide the possibility to observe the onset of

the clapping, i.e., when the crack starts to breathe.

In a third part, a theoretical model is developed to consider the situation when the

laser beams are focused at some distance from the crack. The model demonstrates that

two processes can be responsible for the nonlinear frequency-mixing generation: the

modulation of the crack rigidity or the modulation of the crack thermal resistance. The

latter does not play a role for a symmetrical heating. Both phenomena generate the same

nonlinear sidelobe amplitude evolutions as a function of the pump power. However, the

process of thermal resistance modulation becomes dominant as the asymmetry increases.

It is also observed that no acoustic wave can be doubly modulated by the crack rigidity

and the crack thermal resistance modulations.
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List of symbols

The following list summarizes the main mathematical symbols used throughout this

document, with their respective unit and a short description. Where no unit is given, the

symbol is unitless.

General symbols

R Set of real numbers.

N Set of natural numbers.

Z Set of integers numbers.

m,n Elements of N.

ℜepzq Real part of z.

ℑmpzq Imaginary part of z.

Time, frequency, space and wavenumber variables

t s Time.

f s´1 Frequency.

ω rad¨s´1 Circular frequency.

r, φ m Spatial coordinates in cylindrical coordinates system.

x, y m Spatial coordinates in the cartesian coordinates system.

i, j, k m Global coordinates system.

z m Space variable normal to the sample surface.

General physical parameters

T K Temperature.

σ Pa Stress.

u m Mechanical displacement.

U Acoustic strain.

ϕ rad Phase shift.

c m¨s´1 Velocity of longitudinal waves.

F N.m´2 Force acting on a unit surface.

Λ m Acoustic wave wavelength.
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Chapter 1

Introduction

Abstract

This study deals with the non destructive testing (NDT) with the goal of crack detection

by a nonlinear optoacoustic technique. Before introducing the method itself, a summary

of the generation of an acoustic wave by a laser beam in a solid is done. Then, an overview

of the most common acoustic NDT methods in relation with the developed method is

proposed. Finally the experimental set-up, together with a summary of the associated

theoretical model are presented.

1.1 Generation of an acoustic wave by a laser

Optoacoustics and acoustooptics refer to the interactions between optical waves (i.e.,

electromagnetic waves), and acoustical waves. The difference between optoacoustics

and acoustooptics is based on is based on the type of such interaction. An optoacous-

tic phenomenon or technique involves the influence of an electromagnetic wave on an

acoustic wave such as the generation of acoustic waves by a light source. Conversely,

acoustooptics denotes the effects of the propagation of an acoustic wave on an optical wave.

The interaction between these two different type of waves has first been observed by

Bell in 1880 [6]. In his experiment, a closed gas volume is excited by a modulated light

beam and an acoustic wave can be, as a result, heard. This discovery has shortly been

confirmed by Tyndall [57] and Röntgen [49]. Then, a few other studies related to this

observation have been realized but remained limited because of the difficulties to use a

good light source. The apparition of maser in the late 50’s and then of laser, providing a

very good spatially localized amplified light source, opened new possibilities and led to

lots of work on optoacoustics. Among them, the works of Askar’yan and Prokhorov in the

USSR or White [59, 60] in the USA have been pioneer in the theoretical and experimental

studies of optoacoustics.

The generation of an acoustic wave in a solid or a liquid can be achieved with a laser

excitation. The excitation can be realized with a continuous laser modulated in intensity

1



2 1 Introduction

or a pulsed laser, such as picosecond or femtosecond lasers. Several physical mechanisms

can lead to the generation of acoustic waves with a laser excitation. These mechanisms

can either excite an acoustic wave at the same frequency as the electromagnetic wave or at

the intensity modulation frequency, which is at much lower frequency. Piezoelectric and

piezomagnetic mechanisms refer to the first case, whereas electrostriction, magnetostriction

or thermal expansion, for example, to the second case. This work is focused only on the

generation of an acoustic wave in a solid, supposed isotropic, by the thermal effect of a

continuous wave laser (cw laser) modulated in intensity.

1.1.1 Optical excitation of sound in an isotropic solid

The generation of an acoustic wave by a cw intensity modulated laser can be the

consequence of the thermoelastic effect. In the following description, the solid is supposed

to be opaque at the wavelength of the laser: the solid absorbs at least part of the energy

of the electromagnetic wave. This absorbed electromagnetic energy is converted into

a thermal energy, provoking a local rise of the temperature. Consequently, a strain

is created. Due to thermal diffusion, and in order to go back to its equilibrium state,

the heat is transported into the sample. If the intensity of the electromagnetic wave is

modulated at frequency f , the local temperature rise, and consequently the strain, is also

modulated at frequency f . This modulation induces the generation of an acoustic wave

at frequency f in the sample.

Analytically, this can be expressed writing firstly the equation of motion of an elastic

medium:

ρ
B2ui

Bt2 “ Bσik
Bxk

, (1.1)

where the Einstein notation (summation over repeated indexes) is adopted, here and in

the following. The stress is expressed as

σik “ ´KβTδik `Kullδik ` 2µ

ˆ
uik ´ δikull

3

˙
, (1.2)

with

uik “
ˆ Bui

Bxk
` Buk

Bxi

˙ M
2, (1.3)

[27], leading to:

ρB2
tt~u “ ´Kβ∇T `

ˆ
K ` 1

3
µ

˙
∇ p∇ ¨ ~uq ` µ∆~u. (1.4)

The other main equation of the optoacoustic problem is the heat conduction equation.

The heat source is the laser, irradiating the surface sample px, yq. In its three dimensional

form, for cartesian coordinates, and assuming the laser electromagnetic waves propagate

in z direction, normal to the sample surface, the heat equation can be expressed as:

BT
Bt “ χ∆T ` I

ℓρcp
f ptqΨpx, yqe´z{ℓ. (1.5)
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The definition of the laser intensity distribution Ψpx, yq on the surface and its intensity

modulation in time fptq, combined with the sample parameters and the boundary

conditions on temperature, allow to solve Eq. (1.5). The solution of Eq. (1.5) can

be inserted in Eq. (1.4). With this solution, and the boundary conditions on strain it is

possible to solve Eq. (1.4).

1.2 An overview of several relevant nonlinear NDT

methods

Non-destructive testing deals with the detection of defects through the evaluation of some

properties of the tested sample, and without damaging it. Numerous methods, involving

various fields such as electromagnetism, optics, thermodynamics or mechanics have been

developed to control and/or evaluate the sample under interest. Depending on the sample

properties and on those of the defects that could be present in it, one or another technique

can be more appropriate. However, they all share the ultimate goal to be sensitive and to

have a high spatial resolution, relatively to the size of the defects. The need of an early

detection of a defect generation necessitates a sensitive detection with a precise localization.

Nonlinear acoustic techniques are known to be very sensitive in the detection of defects

such as cracks, delaminations, flaws, etc., [10, 34, 36, 55]. Numerous different physical

nonlinear phenomena can be used such as self-action [41], acoustic harmonic generation

[10, 37, 43, 55], acoustic subharmonic generation [53, 55], rectification [35], modulation

transfer [67, 68], . . . Techniques involving nonlinear acoustic approaches already provided

the opportunity to realize two dimensional scans of a surface area and to detect and

localize a defect [16, 34, 36, 48, 55, 70]. A short description of some of these methods are

herein presented.

1.2.1 Nonlinear modulation of high-frequency bursts by a low

frequency wave

The method developed by Kazakov et al. [34] consists in emitting with piezo-transducers

two acoustic waves at very different frequencies. The sinusoidal low frequency wave („ Hz)

is combined with a group of high frequency tone bursts (of „ MHz central frequency).

Phase and amplitude of each reflected tone burst are recorded. If the reflection comes

from a linear scatterer, e.g., a hole or a material boundary, the tone bursts amplitude and

phase remain constant. At the opposite, if they are reflected from a nonlinear scatterer,

they are modulated by the low frequency wave.

The major drawback of this technique is the use of in-contact transducers for the excitation

and the detection, which induces spatial resolution limitations. Firstly, it limits the

size for defect detection: the high frequency wavelength must be similar to or smaller

relative to the defect size to interact efficiently with it. MHz frequency range leads to a

millimetric scale limitation. Secondly, spatial resolution is also limited by the estimation

of the propagation time. In [34], for example, the time is recorded and digitized at rate

0.6 µs. For metals, with a sound velocity around 5000 m.s´1, it gives an uncertainty of

the defect position in the order of some millimeters. Finally, the transducer aperture
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also limits the spatial resolution. In [34], authors indicate a 19 mm beam width, 100 mm

away from the transducer.

1.2.2 Acoustic wave interaction with a defect

Thermographic methods use the local variation of the elastic and thermal properties

[16, 48]. Elastic properties variations modify the stress field which, in turn, influences the

conversion of acoustic energy into heat. As a consequence it results in a local temperature

elevation, around the defect. Moreover, thermal properties variations influence the

thermal waves transport. These two effects induce transient thermal anomalies around

the defect which can be detected via an infrared camera, insuring the crack detection.

This technique allows multiple types of defects detection such as cracks, delaminations,

holes, scratches, . . .

Spatial resolution is firstly limited by the IR camera resolution. In [16], the IR camera

contains a 256ˆ256 InSb focal plane array. Spatial resolution then inversely depends

of the size of the analyzed image. For an image of about 12ˆ12 mm2, it goes down to

about 47 microns by 47 microns per pixel [29]. Unfortunately, the local temperature

elevation depends on the movement of the opposing surfaces of the defect. The distance

and the rigidity between these opposing surfaces evolve along the defect and thus, the

temperature elevation is not initiated at the same moment for the whole crack. Due

to thermal diffusion, this elevation does not stay localized but is transported in the

sample, which directly reduces the spatial resolution. Indeed, the defect presence is

revealed by the mark corresponding to the thermal conversion (Fig. 1.1(a)), broadening

in time as the heat is transported by diffusion process (Fig. 1.1(b) exhibits the same

crack as in Fig. 1.1(a) taken 50 ms after). As a consequence, the spatial resolution of

the images is limited by the detected thermal phenomenon itself. In Fig. 1.1(a), the

spatial resolution can be estimated to „400 µm. Its ultimate resolution, assuming all

the thermal heat is generated at the same time, is proportional to the square root of

the thermal diffusivity of the sample and the time spent between two successive images

from the IR camera. In [16], the delay between two images is of 1 ms and the sample

is Al alloy. Thermal diffusivity of Al alloy is between 0.6 to 1 cm2.s´1. This leads to

an ultimate resolution of 2 ¨
a
χ∆t{π between 280 and 360 µm, where the factor two

describes the energy transport in the two opposite directions along the surface. Smaller

defects would appear, if detected, with these dimensions. This technique allows more a

detection than a localization. Besides, although millimetric length defects are detected,

there are no publications, to our knowledge, demonstrating the feasibility of the technique

for micrometric defects.

1.2.3 Nonlinear acoustic harmonics generation

The method proposed by Krohn et al. [36] and Solodov et al. [55] is an excitation of an

acoustic wave, at frequency f , by transducers in contact with the sample. The detection

of this frequency and the sub-, ultrasub- and/or super-harmonics is then realized by a laser

vibrometer. A process, which is understood only qualitatively, makes some of the sub-

and super-harmonics stay localized nearby the defects, where they have been generated.

The decay of the acoustic wave amplitudes with distance influences this localization but

the localization of these sub- and super-harmonics can be much better than the acoustical
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(a) (b) (c)

Figure 1.1: (a-b): Selection of two frames from [16] of sonic IR images of the crack taken
immediately following the emission of the acoustical pulse (a) and after the 50 ms sonic
excitation (b). (c): Image from [55] of a fatigue crack recorded by the ultrasubharmonic
at 70 kHz and driven by 20 kHz input.

wavelength of the detected harmonic. In [55] for example, a 2,5 mm long, 5 µm thick

crack in Ni-base superalloys is clearly detected with an apparent spatial resolution of

hundreds of micrometers whereas the acoustic wavelength of the ultrasubharmonic at

70 kHz can be estimated at several centimeters (Fig. 1.1(c)). As long as the sub-, super-

and suprasubharmonic localization process remains badly understood, one cannot say if a

better spatial resolution is possible. The detection, realized with a laser vibrometer, can

also play a role. In [55], there is no indication of the beam radius of the vibrometer. It

is possible to focus the beam radius down to „10 µm, but it is not clear if the spatial

resolution would be improved by this focusing or if the spatial resolution is limited by

the harmonic localization.

The main drawback of the method is the contact between the emitter and the sample.

This leads to the generation of spurious harmonics, which then mix with those due to

the defect. These harmonics can also be generated during the wave propagation in the

sample if the acoustic level and the propagation distance are important enough. As a

consequence, there is a non negligible false alarm risk. In [36], on a healthy location,

second and third harmonics are 10 dB over the noise while on a cracked location these

harmonics are 40 dB over the noise. Thus, one cannot say if there is or not a crack

with the result on the healthy location only. Another possible limitation is its spatial

resolution.

1.2.4 Nonlinear interaction of an acoustic wave with a crack

modulated by a heat flux

Zakrzewski et al. [70] suggest an excitation at two different frequencies fL and fH ,

both in a range of several tens of kHz. The first one, the pump wave, is launched by

a piezoelectric transducer, in contact with the sample, whereas the second one, at fH ,

the probe wave, is photoacoustically emitted through heating of the sample surface by

an intensity-modulated laser beam. The amplitude of the pump wave is thus several

orders of magnitude higher than the amplitude of the probe wave because of the low

optoacoustic conversion efficiency. The resulting wave amplitudes at frequencies fH , fL,
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(a) (b)

Figure 1.2: (a-b): Spectra from [36] obtained for a delaminated Glass Fiber Reinforced
Polymer (GFRP) sample when the vibrometer is focused off (a) and on the defect (b).

their harmonics, 2fL, 3fL, 2fH , . . . and also frequency-mixing at fH ˘ fL are detected by

means of an accelerometer or a piezoelectric transducer, glued on the surface.

Several hypotheses have been proposed to explain this parametric modulation of a weak

amplitude wave by a strong amplitude one in the vicinity of the crack. Firstly, the strain

due to the pump wave modulates the crack width at frequency fL. The mechanical strain

of the acoustic wave excited by the piezoelectic transducer has been estimated as 10´6,

sufficient to influence the crack width. The one from the modulated laser, estimated

as 3 ˆ 10´11, does not change the crack properties. This low strain is mainly due to

the aluminium properties, in particular high reflectivity, and thermal diffusion. The

reflection/transmission of acoustic waves incident on the crack is modulated at fL by the

pump wave. The thermal resistance of the crack is also modulated. Because a part of

the laser field penetrates inside the crack, then the optical absorption in the vicinity of

the crack could be also modulated by the pump wave. The combination of these three

phenomena induces a modulation at frequency fL of the acoustic waves of frequency fH .

This method offers a high spatial resolution as it is limited by the dimensions of the probe

laser spot („200 µm in diameter in [70]) and not the acoustical wavelength („0.5 m in

[70]). Moreover, the frequency-mixing process avoids problems of harmonic generation

due to contacts between transducers and the sample. The main disadvantage of this

method is the poor contrast obtained between the mixed frequency images and the linear

images. Both linear and nonlinear frequencies have an amplitude contrast around 10 dB.

This indicates that the excited nonlinearities are not much higher than those of the intact

material. This is due to an insufficient modulation of the crack by the pump acoustic

field emitted by the piezoelectric transducer. The mechanical strain is not important

enough to induce at least partial crack closing.

1.3 Principle of the present method

1.3.1 Experimental set-up

The present method was first proposed by Chigarev et al. [14] and is based on the one

proposed by Zakrzewski et al. (Sec. 1.2.4). The set-up has been improved in order to
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Figure 1.3: 1D scans from [14] of the photoacoustic signal at fH (upper curves) and
fH ` fL (lower curves) along the trajectories crossing the crack. The dashed and solid
curves correspond to two trajectories marked in inset (b) respectively. Inset (a): the
experimental set-up.

enhance the acoustical wave amplitudes inducing the nonlinear processes, and thus, the

sensitivity of the method.

In order to avoid the nonlinearities due to contacts between transducers and samples,

optical excitation is chosen in this work. The excitation is all-optical: both frequencies

are photoacoustically generated, with two independent intensity-modulated laser beams

at frequency fL and fH and focused on the same spot. The photo-generated thermoelastic

wave, at frequency fL, and the acoustic wave at fH generated by the second intensity-

modulated laser beam, are referred as the pump and the probe beams, respectively, in

the following.

This technique has important differences with the earlier described (Sec. 1.2.4): the pump

wave is generated with a laser at a lower frequency and the sample is changed for a glass

plate instead of an aluminium plate.

A direct consequence of focusing the excitation is that the thermoelastic strain due to

the pump can be locally much higher. The glass also favours higher strains for a laser

excitation because of its low reflectivity (r ď 10% with a 800 nm laser wavelength as in

[14]) and low thermal diffusion (χ “ 5.0 ¨ 10´7 m2¨s´1) compared to aluminium (r » 0.9,

χ “ 8.42 ¨10´5 m2¨s´1). The strain in the center of the beam is estimated as 10´3, several

orders of magnitude higher than in [70]. The crack can be closed with such a strain. The

radial displacement of the particles in the heated region is estimated up to 100 nm. It

has already been demonstrated that surface crack closing is achievable with thermoelastic

stresses [14, 18, 62, 63].

The frequency fL is chosen several orders of magnitude lower than previously, down to

„ Hz. With a low frequency intensity-modulated laser irradiation it is possible to ensure

successively crack closing and opening. This corresponds to crack breathing [14].

An opened crack can be modeled by to parallel faces separated by a gap. Then, an

acoustic wave with a frequency fH , propagating toward the crack is totally reflected
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fH

fH

(a)

fH

fH

(b)

Figure 1.4: (a): Schematic representation of an acoustic wave reflected by an opened
crack. (b): Schematic representation of an acoustic wave transmitted by a closed crack.

by the crack. The reflected wave propagates from the crack with the same fH fre-

quency (Fig. 1.4(a)).

A completely closed crack can be modeled as if there is no crack. The transmission of the

acoustic wave by the crack is total and does not modify the frequency of the acoustic

wave either (Fig. 1.4(b)). Both opened and closed crack interactions with an acoustic

wave are linear processes.

If the width of the crack is modulated, at frequency fL, from an opened crack to a closed

crack by an external loading, it produces a nonlinear process. The acoustic wave is partly

reflected and partly transmitted. The amplitudes of the reflected and transmitted waves

are modulated low frequency fL. It is common to say that the wave interacting with

the crack is parametrically modulated, i.e., is modulated by the variation of the crack

parameters. The modulation of the monochromatic wave amplitude in the time domain

is equivalent to frequencies mixing in the spectral domain. The frequency of each of

the waves (both of the reflected and of the transmitted), is influenced by its interaction

with the crack, breathing at frequency fL. It results in the nonlinear generation of

the mixed-frequencies fH ˘ fL both in reflection and in transmission. The generation

of nonlinear frequency-mixing by the interaction of an acoustic wave with a breathing

crack has been already demonstrated experimentally [10, 41, 52, 70] and theoretically

[19, 21, 22, 23, 24, 26].

The method is based on the presence of a pump beam, intensity modulated at fL, coincid-

ent with a probe beam, intensity modulated at fH (Fig. 1.5). The pump beam modulates

the crack width in order to provide the crack breathing. The probe beam generates an

acoustic wave which interaction with the breathing crack induces the generation of the

nonlinear mixed-frequencies.

A complete breathing ensures much higher acoustical nonlinearities compared to

only crack width variations [70]. Among the different phenomena evoked in Sec. 1.2.4,

acoustic reflectivity between the crack faces, in particular, varies up to 100% between

an opened crack and a completely closed one. It is theoretically demonstrated that

the changes of the state of the crack, opened or closed, influence the efficiency of the
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Figure 1.5: Schematic representation of the principle of the method.

thermoacoustic conversion, resulting in the frequency-mixing [20]. Consequently, the

contrast of frequency-mixing components compared to linear components is drastically

larger in this technique (Fig. 1.3). The elasticity of the crack and the distance between its

faces are the two parameters influencing the breathing, so the method. Other parameters

which do not influence the crack motion, such as the crack orientation, are irrelevant.

The mixed acoustic frequencies fm˘n “ mfH ˘nfL are necessarily generated by nonlinear

processes and not by a cross-talk between the independent excitation lasers. This is

an advantage in comparison to methods relying on sub- and superharmonic excitation

[36, 53, 55]. Moreover, nonlinearities due to the clapping of a crack are several orders of

magnitude higher than those possible due to the intrinsic sample properties [14].

Another benefit of laser excitation is its spatial resolution. The method is based on the

presence of crack breathing in the acoustic wave generation spot. Consequently, the two

beams must be superposed and can be focused down to diameter of about a hundred

micrometers.

The signal detection is achieved with an accelerometer, placed far enough from the

excitation to receive a small signal amplitude, especially from the thermoelastic wave, in

order to avoid additional nonlinearities.

The method relies on the breathing dependance, „100 nm thick cracks or locally thin

slots, for example, can be detected but not bigger defects or defects such as scratches

where no breathing can occur.

1.3.2 Theoretical model

An analytical model has been developed in order to explain the apparition of the mixed

acoustic frequencies [20]. This section is a brief summary of the main steps to solve this

theoretical problem.

The resolution of the problem is done for a 1D geometry. The sample is assumed infinite
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to ensure no reflected wave by the boundaries for simplicity. The origin of x-axis is defined

as the center of the crack (Fig. 1.6(b)). The sample is separated into two half-infinite

domains, one for x positive and one for x negative. The probe and the pump beams are

supposed to heat the crack symmetrically from each face. Then, it is possible to study

only one of the half-infinite domain. The one for positive x is chosen.

As the sample is supposed infinite, thermal expansion is unrestricted. Then, as the crack

has a certain rigidity, thermal expansion induced by a constant heating is transported

to infinity where the motion is assumed unconstrained. Consequently, the crack width

cannot be influenced by a constant heating. Constant heating due to the laser beams,

especially to the probe beam, can be neglected in this idealized theory.

x
zy

d

2a
Laser beam

(a)

Crack

2a

2u(0)

F F

x

z

(b)

Figure 1.6: (a): Schematic presentation of the relative positions of the laser beam of
radius a, and the crack of the characteristic depth d. (b): Section view presenting the
penetration length ℓ, the force F and the displacement up0q.

The crack is idealized by two parallel faces and, due to the 1D assumptions, infin-

ite in depth. Figure 1.6(a) and 1.6(b) are schematic representations of the problem.

The penetration length of the light is assumed infinite in the z axis. On the surface,

the optical absorption of the laser beam is localized at a distance of one beam radius

for each half-infinite domain. The boundary conditions at the crack faces, at x “ 0,

are specific to this problem. The crack can be seen as two surfaces in x “ 0´ and

x “ 0` interacting through the surface force F rupx “ 0`q ´ upx “ 0´qs depending on

the relative displacement of the faces. The boundary conditions for the total stress can

then be written: σpx “ 0`q “ ´F rupx “ 0`q ´ upx “ 0´qs “ σpx “ 0´q. Due to the

assumption of a symmetrical loading, it follows that upx “ 0´q “ ´upx “ 0`q and thus

σpx “ 0q “ ´F r2upx “ 0qs. Finally, it appears that 2up0q represents the initial crack

width, where the notation up0q refers to upx “ 0q [2, 3, 7, 26, 30, 38, 41, 44].

Now that the boundary conditions are established, the problem can be solved using

Eq. (1.1) and Eq. (1.2) reduced for a one dimensional isotropic solid, so there is only one
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index left. The equations of motion and the boundary condition can then be presented:

B2u

Bx2 ´ 1

c2
B2u

Bt2 “ Kβ

ρc2
BT
Bx , (1.6)

Bu
Bx p0q ´ Kβ

ρc2
T p0q “ ´F r2up0qs

ρc2
. (1.7)

The problem is then solved applying a Fourier transform over time and a Laplace

transform over space. The condition of radiation takes the form:

´
´ω

c

¯
rupω, 0q ´

rF r2up0qs
ρc2

“ ´Kβ

ρc2

´
´ω

c

¯
pT

´
ω,´ω

c

¯
, (1.8)

where pT pω, pq corresponds to the temperature in the Fourier-Laplace domain. The acoustic

strain can also be calculated. It is defined as the derivative of the acoustical displacement

over x: U “ Bu{Bx. The strain spectrum is equal to:

rUpωq “ Kβ

2ρc3
pωq

”
pT

´
ω, 

ω

c

¯
´ pT

´
ω,´ω

c

¯ı
´

rF r2up0qs
ρc2

, (1.9)

where the first terms, containing pT , represent the acoustic strain generated near a mech-

anically free surface and the last term, containing rF , the variation in time of the effective

interaction force F between the crack faces.

The determination of both the crack motion from Eq. (1.7) and the acoustic spectrum

Eq. (1.9) necessitates the evaluation of the laser-induced temperature variations pT pω, pq in
the Fourier-Laplace domain. Eq. (1.5) should then be solved for the 1D model. However,

the temperature growth induced by cw laser heating is saturated due to the 3D character

of the heat conduction process. In the 1D approximation, thermal diffusion does not

compensate the temperature rise. Consequently, the solution of Eq. (1.5) diverges up to

infinity. In order to avoid this issue and take into account the physical saturation, a

characteristic thermal relaxation term is added into the 1D heat equation. This relaxation

time has a sense of cooling time of the laser heated region in the 3D geometry due to the

heat transport in the two additional directions y and z. An estimation of this time, as a

function of the parameters of the heated sample and of the exciting laser, is proposed

in Sec. 5.2.2. Meanwhile, the 3D equation (Eq. (1.5)) modified into a 1D form with the

introduced thermal relaxation time τT becomes:

BT
Bt ` T

τT
“ χ

B2T

Bx2 ` I

ℓρcp
fptqΨpxq. (1.10)

The solution in Fourier-Laplace domain of Eq. (1.10), using the condition of radiation

for thermal waves [31] and the boundary condition BT {Bx “ 0 at x “ 0 (due to the

symmetrical heating) is:

pT pω, pq “ I

ℓκ
¨ 1

p2 ´ pT 2

„
p

pT
pψppT q ´ pΨppq


rfpωq, (1.11)
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with pT “
a

pωT ´ ωq{χ (ℜeppT q ě 0) the thermal wave number and ωT “ 1{τT .

For a monochromatic modulation of laser radiation fptq “ r1 ` x cospωtqs. Eqs. (1.8),
(1.9), and (1.11) lead to the description of the harmonic generation [19, 26, 41]. Eq. (1.8)

can be reduced using (1.11). In the time domain, it has the following form:

Bup0q
Bt ´ 1

ρc
F r2up0qs “ ´|Apωq|Ix cosrωt´ ϕpωqs, (1.12)

with

Apωq “ |Apωq|eϕpωq “ ´ Kβ

ℓκρc2
¨ ω

`
ω
c

˘2 ` pT 2

„
ω{c
pT

pψppT q ` pΨp´ω
c

q

. (1.13)

Eq. (1.12) takes the form of the equation of a nonlinear relaxator driven by a

monochromatic excitation [26]. In this analysis, this equation is generic for the description

of the interaction of the acoustic wave generated in the vicinity of the crack with the

crack itself.

In the case of an excitation by two lasers intensity modulated at two different cyclic

frequencies ωL and ωH , it follows that Ifptq “ ILr1`xL cospωLtqs`IH r1`xH cospωHtq´
ϕHLs where ϕHL is the phase shift. Assuming that, as ωL ! ωH , the presence of additional

high-frequency excitation on the crack motion is negligible compared to the low-frequency

excitation. Mathematically, it can be expressed |ApωHq|IHxH ! |ApωLq|ILxL. We

retrieve Eq. (1.12) written for the low-frequency excitation wave:

BuLp0q
Bt ´ 1

ρc
F r2uLp0qs “ ´|ApωLq|ILxL cosrωLt´ ϕpωLqs. (1.14)

The mechanical relaxation frequency of the crack ωR, proportional to the crack rigidity,

is introduced. At instant t, ωR “ 2η{pρcq, where η “ ηptq can be modified by laser heating.

For a linear interaction between the faces of the crack, F r2up0qs “ ´ηup0q. The acoustic

strain can be rewritten as:

rUpωq “ Kβ

2ρc3
pωq

„
pT

´
ω, 

ω

c

¯
´ pT

´
ω,´ω

c

¯
` 2ωR

ωR ´ ω
pT

´
ω,´ω

c

¯
, (1.15)

where only the third term depends on the rigidity of the crack whereas the first two

describe the sound generation near a mechanically free surface [4]. Consequently, this

third term is the one responsible for the parametric frequency-mixing process and is the

only one studied, denoted with a subscript η. The first two terms are omitted. The

solution for the acoustic strain wave in the time domain -with τ “ t´ x{c the retarded

time frame- and for a monochromatic laser intensity modulation at ωH described as

previously, can be obtained by inverse Fourier transform of Eq. (1.15). It reads:

Uηpτq “ ´1

c
|ApωHq| IHxH

ωR?
ωR

2 ` ωH
2
cos rωHτ ´ ϕpωHq ´ atanpωH{ωRq ´ ϕHLs .

(1.16)

From Eq. (1.16) it follows that both the amplitude and the phase of high-frequency

wave emitted at ωH are affected by the evolution of the mechanical relaxation frequency
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of the crack as it depends on η “ ηptq. So, Eq. (1.16) demonstrates that by changing ηptq,
it is possible to modulate the harmonic signal amplitudes. It is now required to evaluate

the variation of the crack width from Eq. (1.14), and to evaluate the evolution of ωR in

time.

An approximation of the force F between the crack faces as a function of the width

2up0q of the crack is proposed [11, 12, 19, 26, 30, 32, 33, 41, 52]. This model (Fig. 1.7(b))

is a piece-wise linear approximation of a real dependence (Fig. 1.7(a)). The crack is

assumed to be able to be in two different states with different crack widths: opened

or closed. To each state corresponds a different rigidity, ηo (ηc) when the crack is

opened (closed). The transition between the states occurs when the distance between the

faces is hi. Above and below this transition, the crack is considered opened and closed,

respectively. Fig. 1.7(b) is a schematic representation of the evolution of the force F

between the crack faces as a function of the width 2up0q of the crack, where Fc (Fo) is

the force required to close (open) the crack. A pattern of the evolution of F r2up0qs is

2u(0)
hohchi
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F[2u(0)]

(a)

2u(0)
ho

hchi
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F[2u(0)]
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ηc

(b)

2u(0)
hohi
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F [2u(0)]
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B
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Figure 1.7: Interaction force F between the crack faces as a function of the width 2up0q
of the crack. (a): Qualitative realistic representation, (b): the accepted piece-wise linear
approximation, and (c): illustration of the crack width variation under quasistatic loading
assuming the loading force exceeds the force Fc required to close the crack; otherwise,
the rigidity of the crack does not change in time.

presented in Fig. 1.7(c), assuming that the loading force reaches a force F higher than Fc,

required to make the crack breath. Without any external force, the crack is at its stable

position ho, denoted by A in Fig. 1.7(c). Then, when a force is applied, the crack width

diminishes until reaching point ‘B’. If the force still increases, the crack suddenly closes

and ‘jumps’ to position ‘C’. Afterwards, it goes up to position ‘D‘ which corresponds to

the maximum thermal stress of the excitation. The intensity then goes down and the

crack opens back. It opens back beyond position ‘C‘: the crack width 2up0q increases,

but the crack remains in closed state, until position ‘E’. Then, it suddenly goes back to

position ’F’ and continuous to decrease to position ‘A’, its initial position. The path,

’F’Ñ‘A’ however, assumes that the excitation frequency is small enough for the crack to

restore its initial position: the movement is quasistatic. For non-quasistatic cases, the

crack does not retrieve completely its initial width when the excitation process is on, but

goes back to an intermediate position, between ‘F’ and ‘A’.
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For Fo ď F r2up0qs ď Fc three different crack widths are possible in Fig. 1.7(b). However,

as the crack ‘jumps’ from one state to the other (from ‘B’ to ‘C’ or ‘E’ to ‘F’), only two

are stable and the section ’B’ to ‘E’ is not relevant. Mathematically, this behavior can be

described as:

F r2up0qs “
#

´ηor2up0q ´ hos if hi ď 2up0q ď 8,

´ηcr2up0q ´ hcs if 0 ď 2up0q ď hi.
(1.17)

Eq. (1.17), leads to Fc,o “ ηo,cpho,c ´ hiq. It is physically meaningful that the crack is

more rigid in the closed state than in the opened state, which corresponds mathematically

to the condition ηo ! ηc. Mechanical relaxation frequencies of the crack can also be

introduced. They characterize the crack motion in the state, either opened or closed, of

the crack and are defined as: ωo,c “ 2ηo,c{pρcq.
The forces, defined in the problem, correspond to the forces acting on the unit surface.

So the forces are in N.m´2 and the rigidity are in N.m´3.

Assuming that the crack mechanical relaxation frequencies are much higher than the

cyclic frequency ωL at which the probe beam is intensity modulated, ωL ! ωo,c, the

problem is quasistatic. Then, the first term of Eq. (1.14) is omitted, and this equation

becomes:

F r2uLp0qs “ ρc|ApωLq|ILxL cosrωLt´ ϕpωLqs. (1.18)
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Figure 1.8: (a): Graphical evolution of the force under sinusoidal thermoelastic loading

of the crack as a function of the time. The times t
prq
ϕo and t

prq
ϕc correspond to crack

opening and closing, respectively, and include the phase delay. (b): Variation in the
crack mechanical frequency ωR between its value in opened state ωo and in closed state
ωc in response to sinusoidal loading presented in (a).

From Fig. 1.8 and Eq. (1.18), the crack is closed during the time Tc “ rarccospFo{FLq`
arccospFc{FLqs{ωL and is opened during the time To “ 2π{ωL ´ Tc. This model is used

to describe the periodic variation in the mechanical relaxation frequency ωR in time. It is

finally possible to rewrite Eq. (1.16):

Uηpτq “1

c
|ApωHq|IHxH

ωHpωc ´ ωoq?
ωc

2 ` ωH
2
?
ωo

2 ` ωH
2

1

π

`8ÿ

n“´8
|An| ˆ cosrpωH ` nωLqτ`

´ ϕn ´ ϕpωHq ´ nϕpωLq ´ atanpωH{ωcq ´ atanpωH{ωoq ´ ϕHL ´ π{2s, (1.19)
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with

|An| “
ˇ̌
ˇ̌ 1
n
sin

„
n
1

2
ωLTc

ˇ̌
ˇ̌ (1.20a)

“
ˇ̌
ˇ̌ 1
n
sin

„
n
1

2

ˆ
acos

„
Fc

FL


` acos

„
Fo

FL

˙ˇ̌
ˇ̌ (1.20b)

and

ϕn “ ´n1
2

„
acos

ˆ
Fc

FL

˙
´ acos

ˆ
Fo

FL

˙
´ acos

ˆ
An

|An|

˙
. (1.21)
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Figure 1.9: Dependence of the amplitude |An| of the first four sidelobes as a function of
the continuously varying amplitude of the normalized force FL{Fc loading the crack at
frequency fL in the absence of hysteresis between Fc and Fo.

The functions |An| and ϕn describe the dependence of the amplitude and phase,

respectively, of the nth sidelobe as a function of the loading amplitude FL, where the nth

sidelobe corresponds to the sidelobe at frequency ωH ˘ nωL. Both the amplitude and the

phase of a sidelobe are symmetrical between the sidelobes `n and ´n.

The crack width is influenced by the modulated part of the loading pump. The

evolution of the crack rigidity as a function of the loading is defined in Eq. (1.17), and

results in a non-sinusoidal crack breathing (Fig. 1.8(b)). The spectrum of the signal

depends on the parameters of this breathing (Eq. (1.19)). In particular, the nonlinear

sidelobes amplitude depends on the function sinpnωLTc{2q where n is the rank of the

considered harmonic, and Tc the time spent by the crack in the closed state (Eq. (1.20a)).

For a given sidelobe, and for a fixed frequency of the pump beam, Tc is the only parameter

which can evolve.

From Fig. 1.7, and the definition of Tc (Tc “ racospFo{FLq`acospFc{FLqs{ωL), it appears

that if the loading increases, Tc increases. This demonstrates that it is possible to influence

the time spent in the closed region by varying the pump loading and that such variations

influence the amplitude of the sidelobes (Eq. (1.20a)).

For an infinite loading with a 100% modulation, the crack spends half time of the pump

period in the closed state and the other half in the opened state (Tc “ To “ π{ωL). Then,

by increasing the pump loading, Tc can vary from 0 to TL{2, where TL is the pump period.
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This sinus dependence implies that the evolution of the sidelobes as a function of

the pump loading is non monotonous. Besides, for particular values of Tc, the sidelobe

amplitude can be null. From Eq. (1.20a), this condition is fulfilled if nωLTc{2 “ kπ

(k P R), equivalent to Tc “ k{pn´ kq ¨ To. This indicates that for a specific time spent in

the closed state, a sidelobe amplitude can be null.

A first observation is that if Tc “ 0 or Tc “ 2π{ωL, corresponding to the cases of an

opened and a closed crack, respectively, the amplitude of all sidelobes is null. This

correlates with the previous discussion on these linear cases and the necessity of the crack

breathing. In the following, Tc is assumed to be larger than 0.

For n “ 1, the amplitude is null if the crack spends the whole period in the closed

state which is impossible (as 0 ď Tc ď TL{2). The first sidelobe can never have a zero

amplitude.

The second sidelobe can have a zero amplitude if Tc “ To, corresponding to the case

where the crack spends half time of the pump period in both state. Mathematically, this

is possible for an infinite loading. It can be easily demonstrated that the zero amplitude

for an infinite loading is observed for all even nonlinear sidelobes.

For higher sidelobes, the time spent in the closed state by the crack required to obtain

a zero amplitude decreases. Then, it is possible, by modifying the pump loading, to

observe a zero amplitude, on one sidelobe, at a specific loading. For example, it can be

demonstrated that the amplitude of the third sidelobe is null if the crack spends one

third of the pump period in closed state. Assuming no hysteresis (Fo “ Fc), Eq. (1.20b)

indicates that this condition is fulfilled for FL{Fc “ 2. Consequently, for the particular

case where the maximum of the pump loading equals twice the force Fc required to close

the crack, the amplitude of the third sidelobe is null. The sixth sidelobe amplitude, and

all p3nqth sidelobe amplitudes, are also null for this particular loading.

The same logic is valid for higher sidelobes. As n increases, more minima are observed on

the sidelobes.

An evolution of the sidelobes up to n “ 4, assuming a case without hysteresis, Fc “ Fo,

is presented in Fig. 1.9. The horizontal axis is the ratio FL{Fc, starting when the crack

begins to breathe, for FL “ Fc.

The amplitude minima on the third and fourth sidelobes for FL{Fc “ 2 and 1.41, respect-

ively, is clear. The vanishing of the even sidelobes also appears.

The first nonlinear sidelobes (n “ ˘1) are, as predicted, the only monotonous sidelobes.

Their amplitudes increase as the loading force increases. However, the growth rate reduces

as the loading force increases. Almost 90% of the amplitude maximum is reached for

FL{Fc “ 2. At the opposite, evolutions of higher sidelobes (|n| ą 1) are clearly non

monotonous. The second sidelobes quickly increase until FL{Fc » 1.4 and then slowly

decrease. Consequently, for FL{Fc ą 1.4, an increase of the pump power leads to a

decrease of the second sidelobe amplitudes. For higher sidelobes the behavior becomes

more complicated due to the appearance of the amplitude minima.

This overview of the theoretical model is focused on the parts that are used in the

following and is a summary of [20]. The influence of other parameters, and much deeper

descriptions are proposed in [20].
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Structure of the document

Part I deals with the experimental set-up in order to better understand the influence of

each parameters, the limitation of the technique, and to improve the set-up. In chapter 1,

the experimental set-ups and parameters are described and one-dimensional (1D) and

two-dimensional (2D) scans are achieved. Chapter 2 demonstrates the importance of the

crack breathing and the spatial resolution of the method is evaluated as a function of the

different parameters involved. Finally, thanks to the better understanding of the method,

improvements of the set-up are realized.

Part II discusses the role of the pump power on the evolution of the nonlinear sidelobes.

The theoretical model is improved and compared with experimental results. From this

comparison, the evaluation of crack parameters is achieved. A second chapter studies

the other phenomena related to the pump power. Among them, an important part is

dedicated to experiments with unexpected observations.

Part III consists in the development of the theoretical model. The introduction of

asymmetrical heating, in relation to the crack, into the generation of the frequency-mixing

components is proposed.





Part I

Characterization of the set-up and

propositions for improvements

19





Chapter 2

Presentation of the general set-up

Abstract

The goal of this chapter is to present the experiment in detail, to test it and to

experimentally demonstrate the necessity of both beams. In a first part the two different

set-ups used during the experiments are presented. The experimental parameters are then

described. The validation of the method with a 1D scan is proposed and the importance

of both beams is studied. Two-dimensional scans of a crack are also achieved.

2.1 Optical Excitation

One of the main differences in the excitation of the set-up from [14] is the use of a 532 nm,

2 W cw laser (Coherent Inc., Verdi) for the laser pump. Modulation of pump beam

intensity is realized by an acousto-optic modulator (AA Opto-Electronics Inc., Model

MQ180) controlled by a generator (Agilent 33120A). The 100% modulation is possible

taking advantage of the first order diffracted beam after the AOM. This allows a more

efficient crack breathing as the latter depends on the temperature difference of the heated

point, defined by the difference between the maximum and the minimum temperature rise

in time (see Chap. 3). The use of the first order diffracted beam by the AOM drastically

reduces the power of the pump beam. However, the 2 W possibility of the cw laser,

Figure 2.1: Schematic representation of the set-up denoted as Υ2 and corresponding to
the case where the excitation of the pump and probe beams are achieved by two different
lasers.

21
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compared to the power needed to provide crack breathing (from tens to a few hundreds

of milliwatts in the experiments) is found to be sufficient.

The probe beam is generated by two means, depending on the situation: either as

in [14] with a diode laser (Thorlabs LDC 220) (Fig. 2.1), modulated at high frequency

(„ tens of kHz) by modulation of the current from its power supply with a generator

(Agilent 33120A), either by the Verdi laser (Fig. 2.2) by the use of a second acousto-optic

modulator. In both cases, the probe beam intensity is 100% modulated. As a consequence,

in all the experiments, all the beams are 100% intensity modulated, leading to the fact

that the modulation coefficient x is systematically equal to 1. When both beams are

emitted by the Verdi laser, the initial beam is polarized elliptically with a half-wave

plate. Then the beam is split into two beams by means of a polarizing beamsplitter cube.

This allows to modulate independently both the probe and the pump beam to avoid the

generation of nonlinear frequency-mixing in the excitation device itself. Then, both beams

are merged with the use of a second polarizing beamsplitter cube.

In both cases, the two beams are focused on a single spot on the sample with different

radii for the pump and the probe beams, varying from a few tens micrometers up to

about a hundred micrometers.

In the following, the set-up where the excitation process is realized only with the Verdi

laser, corresponding to Fig. 2.2, is referred as Υ1, whereas the second set-up with the

use of the Verdi and the diode laser, Fig. 2.1, is referred as Υ2. Note that the subscript

corresponds to the number of lasers involved in the experiment.

These two different set-ups, Υ1 and Υ2 have their own advantages and drawbacks. The

bad beam quality of the diode laser provides a lower quality focusing than the one of the

Verdi laser. Consequently, Υ1 offers a set-up where both beams have a high quality and

high focusing. On the other hand, because of the use of a single laser, the power of the

probe and pump beams cannot be controlled independently. This necessitates another

step in the experimental process to optimize the power ratio on each beam (See Sec. 2.4),

and thus Υ2 can be considered more practical for a faster crack detection. The change of

the wavelength, between 800 and 532 nm, does not affect a lot the properties involved in

the experiments -penetration length of light into the sample and reflection coefficient of

light by the sample- (see Sec. 2.2).

Figure 2.2: Schematic representation of the set-up denoted as Υ1 and corresponding to
the case where the excitation of both pump and probe beams are done by the same verdi
laser. The λ{2 plate polarizes the beam, influencing the intensity of one and the other
beam.
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The modulation frequency fH is chosen to maximize the amplitude of the detected

signal. The frequencies used in the experiments are estimated to correspond to one of

the standing wave resonances of the asymmetric Lamb modes propagating parallel to the

long side of the plate. The acoustic resonances due to the symmetric Lamb modes are

expected at frequencies exceeding tens of kHz. The dominant component of the plate

surface motion, induced by the flexural waves, is the out-of-plane surface displacement

which favours its detection by laser.

The choice of frequency fL strongly influences the breathing efficiency. Indeed, the

temperature rise and thermal relaxation are processes with characteristic times of the order

of some seconds. Heating a sample with a continuous beam would provoke a temperature

rise tending toward to its maximum value after some seconds. At the opposite when the

heating stops, some seconds are required to distribute the heat in all the sample and to

cool down the sample to the room temperature by heat conduction processes into air and

into the supports of the sample. Consequently, for a modulated beam, the frequency fL
influences the reached maximum and minimum temperatures because of the characteristic

times involved. Unfortunately, acquisition time increases when diminishing the pump

frequency. As the thermal phenomenon has characteristic times of the order of some

seconds, a frequency of hundreds of mHz induces a temperature difference close to the

maximum. In our experiments, fL is in general of 1 or 2 Hz, which is a good compromise

between the breathing efficiency in relation to acquisition time. A detailed analysis of

the pump frequency influence, theoretical and experimental, is proposed in Sec. 3.3.

The nonlinear acoustic process of the interaction of the acoustic waves of frequency

fH with the thermoelastic motion of the crack at frequency fL results in the excitation of

new spectral components fm˘n “ mfH ˘ nfL [20]. In our experiments the signals with

the highest amplitudes lie at those frequencies f˘n “ fH ˘ nfL, which are inside the

width of the plate resonance, associated to m “ 1 and n ď 10.

In the following, except if the text specifies it, the detection is realized by an accelerometer

of „100 kHz bandwidth glued to the sample. The signal is examined with a spectrum

analyzer (Agilent 89410A). The frequency window considered is fH ˘ 10fL.

The sample is a plate of colored glass. Its surface is of some square centimeters and

is 3 mm thick. The crack is artificially created by thermal shock. It crosses completely

the sample thickness and has a length of several centimeters. The sample is fixed on

a two-dimensional motorized translation stage by the mean of a soft adhesive with a

thickness of a few millimeters, in order to isolate the sample from external vibrations. The

motorized translation stage offers the possibility to map the surface. The basis px, y, zq is

defined relatively to the sample. Axis x and y delimit the plane of the sample surface

where y corresponds to the main direction of the crack and x is orthogonal to y. Axis z is

orientated into the sample depth. Consequently, a 1D scan corresponds to a displacement

along x, and a 2D scan along x and y.

A lot of samples with various configurations have been tested during this work. Thus,

many cracks have been tested in different configurations.
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2.2 Experimental parameters

In the experiments, the same common glass is used for the sample. The exact composition

of this glass is unknown and physical parameters of glass fluctuate a lot, as a function of

its composition. A few experiments have been realized to extract some information on

this glass in order to know which glass it is. Velocity of acoustical longitudinal waves and

linear thermal expansion coefficient have been measured as a function of the temperature.

For the measurement of the velocity of acoustical longitudinal waves, acoustic pulses are

generated in the sample by a sub-nanosecond laser and propagate in the sample. Detected

with a delay at some distances, the velocity of these waves is established. The experiment

is repeated at different temperatures to evaluate the acoustical longitudinal wave velocity

evolution.

In order to measure the linear thermal expansion coefficient α, a micrometer gauge is

fixed on one edge of the sample and detects the linear thermal expansion under thermal

loading. As the sample is assumed isotropic and the considered expansions are small,

β “ 3α, where β is the bulk thermal expansion coefficient.

The sample is heated by a hair-drier and controlled by a thermometer. Both velocity of

acoustical longitudinal waves and linear thermal expansion coefficient are observed to

decrease as the temperature increases. These observations make soda lime silica glass a

good candidate as it is one of the only glasses to have such behavior. This is consistent

with the fact it is one of the most widely used glasses.

Then, parameters involved in the calculations, κ, cp, K, and ν, not experimentally

estimated, come from literature on soda lime silica glass [15, 28, 58].

The sample parameters experimentally estimated are the density and the thermal

linear expansion coefficient.

On the optical part, the power of the beams are measured with a power meter.

The reflection coefficient of light by the sample is quantified comparing the reflection on

a silver mirror, assumed ideal (r “ 1), to the reflection by the glass sample.

Measuring the intensity with and without the material, of thickness h, (Isample and Iempty,

respectively) allows an estimation of the light absorption length ℓ into the sample using

the Beer-Lambert-Bouguer law: Isample “ p1 ´ rq ¨ Iempty ¨ e´h{ℓ.

On the acoustical part, only the velocity of acoustical longitudinal waves are measured.

Tab. 2.1 lists the constant experimental values. All the parameters related to the

sample properties evolve as a function of the temperature. This effect is not taken into

account in order to simplify the calculations. The values are given at room temperature

(T » 293 K). The beam radii, the light intensity modulation frequencies and the beam

powers, controlled by the experiment, are not referenced. However, an order of magnitude

can be proposed. The beam powers are between some tens of up to two hundreds

milliwatts. The light intensity modulation frequency is about 1 Hertz for the pump probe

and several tens of kHz for the probe beam. The beam radii are between few tens and a

hundred micrometers. If the experiment is realized with the set-up Υ1 both beam radii

are similar. On the contrary, when the acoustic wave is generated by the diode laser
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Parameter Value

ℓ532 0.31 mm
ℓ800 0.22 mm
r532 0.11
r800 0.14
κ 1.03 W.m´1.K´1

ρ 2616 kg.m´3

cp 720 J.kg´1.K´1

c 5750 m.s´1

α 5.5 ˆ 10´6 K´1

K 38.9 Gpa
ν 0.22

Table 2.1: Values of sample parameters used in the following, where the subscript
532 (800) indicates the value corresponding to the laser which wavelength is at 532 nm
(800 nm).

(set-up Υ2), the probe beam can be up to „5 times larger than the pump beam due to

the bad quality of the diode laser beam in comparison to the one of the cw laser.

2.2.1 Evaluation of the beam radii

The beam radii are measured with the knife-edge technique. This technique involves the

measurement of the laser intensity with a power meter. A blade is fixed on one edge of

the sample, in the px, yq plan, on the way of the laser beam to the power meter. It first

stops the beam (Fig. 2.3(a)). Then, the blade is moved step by step along the x-axis

(Fig. 2.3(b)) until the complete beam irradiates the power meter (Fig. 2.3(c)). The power

evolution is recorded. The power corresponds to the integral of beam intensity multiplied

by a coefficient b. The intensity follows a Gaussian evolution. Then, the optical power

can be written as a function of px, yq:

P px, yq “
8ż

´8

Xż

´8

b ¨ e´ x2`y2

a2 dxdy

“ b

8ż

´8

e´ y2

a2 dy

»
–

0ż
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a2 dx`
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fi
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2
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2
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ˆ
X

a

˙

“ b
a2
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2

„
1 ` Erf

ˆ
X

a

˙
, (2.1)

where X corresponds to the blade position relatively to the center of the beam. It is

possible to fit the experimental curve with the theoretical one using the beam radius a

and the amplitude coefficient b for parameters. An example of such result is illustrated in

Fig. 2.3(d). This experiment, for example, gives the values of b “ 112.1 and a “ 161 µm.
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Only the value of the beam radius presents an interest and is presented in the following.

The vertical axis in Fig. 2.3(d) is in Volt because the power meter is connected to a

voltmeter in order to automatize the set-up. This only affects the value of b.

The beams are focused on the sample by the mean of a lens with a focal length of

y
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Figure 2.3: Schematics of the method to measure beam radius. (a-c): Schematic
representation of three successive positions of the blade relative to the laser beam, when
the blade stops the beam (a), stops only part of the beam (b), and does not stop the
beam anymore (c). (d): Experimental (ˆ) and corresponding fit ( ) evolution of the
intensity as a function of the relative position of the blade edge and the beam axis.

several centimeters (generally 5 or 10 cm). For a focal length of f=5 cm and the Verdi

laser (λ “ 532 nm), it leads to a beam radius on the sample of a “ λf{pπa0q » 17 µm,

with a0 the beam radius before the lens (a0 » 500 µm). The Rayleigh length is equal to

πa2{λ » 1.7 mm. The blade, used to measure the beam radius is about 100 µm thick.

Then, the blade thickness is negligible in comparison to the Rayleigh length of the beam.

The beam radius, measured on the blade, can thus be considered equal to the one on the

sample surface.

This method gives the 1{e radius as the intensity is decreased by the factor 1{e one radius
far from the beam center.

2.2.2 Spatial resolution of the method

In order to discuss the spatial resolution of the method, the spatial resolution first needs

to be defined. The resolving power of the method is the minimum distance between

distinguishable cracks. However, none of the samples presents two cracks at a known

fixed distance.

The spatial resolution is then defined by the characteristic dimension of the minimum

surface area where the presence of the crack can be guaranteed by our measurements.

The beam radii are estimated by a 1{e decrease of the intensity (Sec. 2.2.1). To a decrease

of 1{e of the nonlinear signal intensity produced by the crack corresponds an amplitude

decrease of 1{?
e. The spatial resolution is defined by 1{?

e fall of the amplitude of

the signal („ 4.3 dB). The 1{?
e fall, instead of the 1{e fall, is also motivated by the

possibility to define the spatial resolution in more cases and for more nonlinear sidelobes.

Due to the finite number of experimental points, the experimental results are fitted by
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a polynomial function in order to smooth the curve and to have a precise result on the

4.3 dB variation. The distance for the 1{?
e amplitude decrease is measured from this

fitted curve and not from the experimental results.

The amplitude of the acoustic strain is proportional to the probe power (Eq. (1.19))

and is influenced by the loading force (Eqs. (1.19) and (1.20b)) which is proportional

by the pump power (Eq. (1.18)). Then, it firstly appears that both pump and probe

amplitudes influence the amplitude of the nonlinear sidelobes.

The theoretical model in [20] assumes the coincident presence of the pump and the probe

beam. Then, the spatial resolution is potentially defined by the overlapping of both

beams (Fig 2.4). In the experiments, both beams are adjusted to be coincident. The

overlap corresponds to the smallest of the beam radii.

The penetration of light into the sample could also play some role by increasing heated

surface area beyond the dimensions of the pump beam radius, when the penetration

depth is larger than the pump beam radius. In general, this condition, a ă ℓ, is fulfilled.

The proposed definition of potential ultimate resolution also neglects the interaction of

acoustic waves propagating toward the breathing crack and interacting with it (in the

case of a probe beam non-overlapping with the crack) or the possibility to provide a

crack breathing outside the pump diameter by heat diffusion (in the case of a pump beam

non-overlapping with the crack).

However, the overlap of both beams appears to be a good opportunity to estimate the

spatial resolution in a first approximation. The influence of each beam radius and power

are discussed in more details in Chap 3.

2.3 Realization of a one-dimensional scan

At first, a 1D scan is performed to validate the set-up. As previously explained, the

beams are focused on a single point. The sample is progressively moved step by step

in a direction perpendicular to the crack faces, (in the x-axis). The step, corresponding

to the distance between the consecutive image points, coincides, in general, to about a

diameter of the smallest radius in order to scan the complete line. At each step, the

signal is acquired by an accelerometer and analyzed by a spectrum analyzer. Fig. 2.5(a)

is a schematic representation of the realization of a 1D scan. For this experiment, the

set-up Υ1 is used in order to demonstrate that the 532 nm laser wavelength provides

the possibility to detect the crack as the possibility with diode lasers has already been

demonstrated [14].

PUMP PROBE

OVERLAP

Figure 2.4: Schematic representation of the overlap region of the pump and probe
beams.
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Figure 2.5: (a): Schematic representation of a 1D scan set-up. (b): Evolution of the main
peak at fH (✕) and of the first three nonlinear left sidelobes fH ´ fL (l), fH ´ 2fL (▽)
and fH ´ 3fL (3) amplitudes as a function of the spot beams relatively to the crack
position. Filled lines: Interpolation of the experimental results. Dashed horizontal lines:
-4.3 dB limit from the maximum of the sidelobe evolution. (c-d): Spectra recorded outside
the crack, at x “ ´0.45 mm (c) and on the crack, at x “ 0 mm (d), related to points A
and B, respectively, in Fig. 2.5(b).

In this experiment, the pump beam has a radius of 95 µm, a power of 90 mW and

frequency fL is chosen at 2 Hz. The probe beam has a radius of 106 µm, a power of

120 mW and a frequency fH of 70.6 kHz, respectively. The step is of 50 µm, which

corresponds to about half of each beam radius.

The evolutions of the main peak and of the nonlinear sidelobes amplitudes as a function

of the distance are analyzed from the corresponding spectrums. The evolution of the

amplitudes of the main peak at fH and of the first three left nonlinear mixed-frequencies

fH ´ fL, fH ´ 2fL and fH ´ 3fL are presented in Fig. 2.5(b). The evolution of the main

peak amplitude does not contain useful information, but the one of the nonlinear sidelobes

clearly demonstrates the presence of the crack and can be used to localize it. The spatial

resolution, for a 1{?
e decrease, is of 191, 203 and 175 µm for the first, second and third

left sidelobe respectively. Results on the right sidelobes are similar on the behavior and

the spatial resolution (193, 189 and 190 µm). These results on the spatial resolution fits

well the diameter of the beams: 212 (190) µm for the probe (pump) beam.
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Figs. 2.5(c), 2.5(d) present two spectra illustrating the generation of the nonlinear side-

lobes on the crack. In the latter spectra, the first four sidelobes are generated.

In other experiments, the generation up to the tenth sidelobe can be observed. The

difference between the main peak amplitude and the nonlinear sidelobes amplitude can

also be much more reduced.

In the following, several experiments are carried out on the evolution of the main peak

and the nonlinear sidelobes amplitudes as a function of one particular parameter. For

such experiments, a 1D scan of the crack is firstly realized and then the sample is moved

in the x direction, in order to make the excitation coincide with the location of the crack,

where the nonlinear sidelobes have their larger amplitude. After that, the study of the

frequency-mixing amplitude as a function of the studied parameter is performed.

2.4 Influence of probe and pump beams powers

A first experiment taking advantage of the presence of the half-wave plate and the polar-

izing beamsplitter cube in the set-up Υ2 (Fig. 2.2) is realized. A change of polarization

of the beam influences the power of one beam, relatively to the other. Evolution of the

main peak and of the nonlinear sidelobe amplitudes as a function of the pump and probe

powers is recorded.
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Figure 2.6: Evolution of the main peak amplitude at fH (a) and the left and right
nonlinear sidelobes (b) at fH ´ fL (l) and fH ` fL (l), respectively, as a function of
the pump and probe beam powers. The beam powers evolve by the change of the beam
polarization before the polarized beamsplitter cube.

In this experiment (Fig. 2.6), only the main peak and the first nonlinear sidelobes

amplitude are presented, corresponding to n “ 0 and n “ ˘1, respectively. The probe

(pump) beam is focused down to 19.4 µm (20.7 µm) and is intensity modulated at fre-

quency 90.4 kHz (1 Hz). The difference between the probe and the pump maximum

power, 165 and 110 mW, respectively, is only due to a better focusing of the probe beam

on the Bragg cell of the AOM.
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The amplitude of the main peak increases monotonously as a function of the probe power

(Fig. 2.6(a)), which is an expected result. The evolution of the nonlinear sidelobe amp-

litudes (Fig. 2.6(b)), on the contrary, is non monotonous. If all the power is on the pump,

the crack easily breathes but, as there is no acoustic wave generation due to the absence

of probe beam, no frequency-mixing can be generated. If all the power is on the probe,

the crack does not breathe, which also prevents the generation of frequency-mixing. Thus,

this confirms that the nonlinear mixed frequencies are generated due to the combination

of both crack breathing and acoustic wave generation, by probe laser beam.

The optimum of the relative powers between both beams, however, cannot be easily

predicted. The crack breathing requires a certain amount of energy, depending on the

crack parameters, in particular the distance between its faces and its rigidity. Once the

probe power is high enough, a first approach would be to let the amount of left energy on

the pump to insure the best breathing possible. The optimum in Fig. 2.6(b) of „90 mW

on the pump and „40 mW on the probe is associated to this particular position on

the crack. However, as long as both beam have a sufficient power (PH,L ě 20 mW in

Fig. 2.6(b)), the crack remains detectable.

In Fig. 2.6(a) the amplitude of the main peak is highly influenced by the pump beam

for very low probe powers. When the probe power evolves from 0 to 1 mW, the amplitude

of the signal at the probe frequency increases by 25 dB. Without the pump beam, the

amplitude increase at fH if only of 2 dB.

This effect is attributed to the crack closing induced by the pump beam, and is discussed in

Sec. 3.1. The experiment is repeated for a pump beam modulated at much higher frequency

(fL “ 1 kHz). The same 25 dB amplitude increases is observed. It is demonstrated in

Chap. 3 that such frequency can provide a closing of the crack but not a crack breathing.

This indicates that this is the crack closing that is responsible for the magnification of

the amplitude.

2.5 Realization of a two-dimensional scan

The detection of a crack in a 1D scan is demonstrated (Sec. 2.3 and [14]) and thus, there

is no additional difficulty to perform 2D scans. It is an important step to evaluate if the

crack can be detected on a whole surface. As the micro-contacts between the crack faces

evolve on a 2D scan, this influences the crack rigidity and the distance between the crack

faces. Evolution of the nonlinear frequency-mixing amplitude should provide qualitative

information on the changes of these parameters along the crack.

An optical image of the scanned surface area, of 1.8 ˆ 8.6 mm2, is presented in

Fig. 2.7(a). It is obtained through the registration of light transmission by a microscope.

The crack has been initiated next to the position x “ 1, y “ 0 mm. In the region denoted

as region ‘A’ in the following (see Fig. 2.7(a)), the crack appears wider, this is due to its

oblique in-depth orientation. In this region, the crack is buried and not present on the

surface where the laser irradiation takes place. The possibility of the crack detection in

this region is discussed.
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Figure 2.7: (a): Photograph of the scanned area with the crack. Areas ‘A’, ‘B’ and ‘C’
are depicted. (b-h): Top: Schematic representation of the analyzed spectrum component.
Middle: Two dimensional scans of the crack achieved by detection of different sidelobes
at fH ˘ nfL. From left to right the first three nonlinear left sidelobes: n “ ´3 (b),
n “ ´2 (c), n “ ´1 pdq, the main peak, at fH (e), and the first three nonlinear right
sidelobes for n “ 1, 2, 3 (f,g,h). All scans are represented with the same amplitude scale.
Amplitude difference between two isolines is of 2 dB for n “ 0, 6 dB for n “ ˘1, and 5
dB for n “ ˘2,˘3. Bottom: Scan section along x for y “ 3 mm (dotted line in middle
figures). All scans are represented with the same amplitude scale.

The results of the crack imaging are presented in Fig. 2.7((b)-(h)). The first three left

and right sidelobes (fH ˘ nfL, n “ 1..3) and the main peak (fH) scans are demonstrated.

In this experiment, the Υ2 set-up is used. The pump beam has a radius of 54 µm, a

power of 76.3 mW and is intensity modulated at 1 Hz. The probe beam parameters are

aH “ 164 µm, PH “ 46.5 mW, and fH “ 25 kHz. The step in both x and y direction is

100 µm, comparable with the pump beam diameter (108 µm).

The two-dimensional scans are presented with isolines. The same colorbar is proposed

for all the scans to exhibit the amplitude differences between the main peak and the

nonlinear sidelobes and to emphasize the amplitude dynamic of each frequency amplitude.

The amplitude between two isolines is 2, 6, 5 and 5 dB for the scans at the main peak

(n “ 0) and sidelobes (n “ ˘1, n “ ˘2 and n “ ˘3), respectively. Thus, Fig. 2.7,

combined with the amplitude difference between two isolines, indicates that the main

peak amplitude variations are much smaller than those of any of the sidelobes. One
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dimensional scans along x, for y “ 3 mm, are also presented in Fig. 2.7 (bottom).

Firstly, the scan images at nonlinear mixed-frequencies exhibit a high sensitivity to

the crack. Similarity of the nonlinear optoacoustic images to the optical one (Fig. 2.7(a))

clearly demonstrates the accuracy of the method. It also appears that the image at the

probe frequency (fH) signal is much less sensitive and precise, and has a rather different

shape than the image of nonlinear sidelobes. The amplitude of the nonlinear sidelobes

tends to decrease as n increases, but, the sidelobes up to n “ 5 clearly detect the crack.

The scan at the main peak frequency fH , has an amplitude contrast of almost 30 dB

(Fig. 2.7(e)). Two distinct phenomena occur. One in the area B and the other in the

areas A and C (see Fig. 2.7(a)).

In areas A and C, the amplitude contrast at fH follows the crack geometry. However, the

amplitude variations are much smaller and take place on much larger distances in com-

parison to nonlinear frequency-mixing (Fig. 2.7, bottom). So crack detection is uncertain

with the information at this only frequency. The phenomenon leading to the amplitude

rise, on the crack, at fH , remains badly understood for the moment. Nevertheless, several

hypothesis can be made. Cascade frequency-mixing process is one of them. For example,

the mixing of frequencies fH ˘ nfL and nfL can generate fH ˘ 2nfL but also fH . So the

amplitude at fH is influenced by cascade nonlinear processes. It could be also influenced

by higher-order nonlinear processes [56].

Besides, interaction between two waves having different frequencies and amplitudes in

a hysteretic nonlinear medium can lead to non-simplex regimes [25, 65]. The presence

of a crack, which is hysteretic and nonlinear, combined with the important difference

of the pump and probe frequencies, can be responsible for such non-simplex regimes.

Increase or decrease of the absorption of one or the other acoustic wave may occur in

this case [25, 65]. This can influence the amplitude of the acoustic wave at fH and/or of

the nonlinear sidelobes. However, the quantification of this phenomenon has not been

realized. In the following, a simplex regime is assumed.

Finally, multiple reflections due to the crack geometry lead to partial capture of laser

irradiation inside the crack. The energy is then more efficiently absorbed than for a

simple reflection on an intact surface.

The other part of the amplitude contrast is the consequence of a fall of 15 dB in area

B. It is directly linked to the choice of fH . The probe frequency is chosen coincident with

a resonance frequency of the sample to maximize the signal-to-noise ratio of the detected

signal.

It is well known that at a resonant frequency, the normal displacement of the solid

depends on the spatial location. Associated with each resonant frequency is a distinct

modal shape (or spatial pattern) that develops in the plate as it vibrates. The modal

shape of displacement is composed of nodes and antinodes where the normal displacement

is null and maximum, respectively, and with smooth variations in-between.

For a forced excitation, induced by a point-source of displacement, the amplitude of the

mechanical wave is proportional to the normal displacement at this location. Excitation

on an antinode maximizes the amplitude of the acoustic wave. At the opposite, it is

impossible to excite the solid at one of its resonant frequencies by exciting it on a node of
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displacement as the displacement is null. It is possible to map a surface with a point-source

in order to reconstruct the modal shape.

The same logic is valid with a local source of deformation and the modal shape of de-

formation, associated to the resonant frequency. The resonant frequencies of the solid are

identical but the modal shape varies as the deformation corresponds to the derivative of

the displacement. The reasoning is also similar for the detection: it is maximized on an

antinode.

In the present experiment, the resonant frequency is chosen to maximize the amplitude

of the probe wave. The thermoelastic generation corresponds to a thermal stress. This

stress induces a dilatation, resulting in a deformation. In other words, the optoacoustics

process depends on the deformation in the spot zone. If the excitation is on an antinode

of deformation, the amplitude of the acoustic wave at fH is amplified. This is the reason

to choose a probe frequency at a resonant frequency of the sample.

For the detection, the accelerometer is sensitive to the acceleration, and thus, to the

displacement. It appears that the ideal resonance frequency fH corresponds to a maximum

of deformation at the excitation point and a maximum of displacement at the detection

point.

On large scanned areas, the deformation pattern evolves. This evolution provokes vari-

ations in the generation efficiency of the high-frequency acoustic wave by the probe

beam. It results changes in the amplitude of the main peak at fH , as observed in the

experiments.

In the particular case where a deformation node is present in the excitation zone, no

acoustic wave is generated. In this case, it would be necessary to realize another scan

at another resonance frequency (with another modal shape) to provide the missing in-

formation. As nonlinear mixed-frequencies are detectable in area B, the second scan is

unnecessary in this experiment.

Numerical estimations demonstrate that for a probe frequency in the tens of kHz range,

and with similar dimensions of the sample, the modes correspond to one of the first

mechanical resonances of the plate. Therefore, the number of nodes and antinodes are

small and they are distant in a centimeter scale. It is not possible to alternate deformation

node and antinode in very small distances.

Finally, these main peak amplitude variations on the scan are not problematic because

they are not used to detect the crack. These variations influence the nonlinear frequency-

mixed amplitudes, which is why the excitation on antinodes of displacement is the ideal

case, but not their generation, which is the indicator of the presence of a crack. Taking

advantage of the modal shape also offers the possibility to reduce the irradiated energy

of the probe beam. A too large irradiated energy could close the crack (Chap. 3) or

damage the sample. Thus, the probe energy must be as low as possible, as long as the

signal-to-noise ratio is good enough.

The first nonlinear sidelobes, at fH ˘ fL (Figs. 2.7(d), 2.7(f)), have a 40 dB contrast

and very precise spatial localization, even if their amplitudes are „20 dB lower than the

one of the main peak. The spatial resolution evolves along the crack. For y ď 5 mm,

the mean value is 190 µm, in-between the pump and probe diameter, with a standard

deviation of 40 µm. The extrema, in the same region are 120 and 340 µm. The maximum

then corresponds to the probe diameter.
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The first nonlinear sidelobe amplitudes are supposed to increase monotonously as a

function of ratio of the loading force on the forces Fc and Fo required to close and open

the crack, respectively (Sec. 1.3.2). These forces are proportional to the crack rigidity and

the distance between the crack faces. As the loading is constant during the experiment,

the amplitude of the first nonlinear sidelobe on the crack increases if the forces Fc,o

decrease. It appears from Figs. 2.7(d) and 2.7(f) that the maximum of the first nonlinear

sidelobe amplitudes is in the region y P r2; 5s mm. This can be attributed to lower forces

Fc and Fo in this region.

The amplitude of the nonlinear sidelobes falls down in the area A. As explained previously,

the crack is buried in this area. Nevertheless, the detection is still possible in the present

case, but the crack localization is less accurate. The mean spatial resolution in this region

is around 450 µm, larger than the beam diameters, and much larger than the spatial

resolution in area A.

It can be observed that even far from the crack, the first nonlinear sidelobes are generated.

This phenomenon is discussed in the next chapter (Sec. 3.5).

The other sidelobes (Figs. 2.7(b), 2.7(c), 2.7(g), 2.7(h)) also reveal the crack presence,

with a precise localization and with a reduced, but nevertheless high, amplitude contrast:

„30 dB for the second, „25 dB for the third and the fourth sidelobes over the whole

scan. In some areas, even if the signal amplitude is lower than for the first nonlinear

sidelobes, the spatial localization can be better because the amplitude evolution is more

sharpened. In Fig. 2.7 bottom, the spatial resolutions are of 190, 100 and 175 µm for

the first, second and third left sidelobes, respectively. The spatial resolution for n “ 2

is twice better than for n “ 1. The lowest spatial resolutions along the whole crack are

of 75 and 95 µm for the second and third left sidelobes, respectively, in comparison to

120 µm for the first one. These values are smaller than both beam diameters. In general,

the higher sidelobes are more spatially localized than the first one. However, because of

the lower amplitudes involved, some scans, even if the crack is detected, do not have a

4.3 dB dynamic, and thus, no spatial resolution can be determined.

For example, one can see that the detection in the previously discussed area C is almost

not possible for these higher harmonics.

The evolution of the nonlinear-frequency sidelobes for n ą 1 present non-monotonous

behavior as a function of the ration FL{Fc (Sec. 1.3.2). Consequently, the previous

observations on the crack parameters as a function of the amplitude of fH ˘ fL is not

possible anymore this way. Evolution of these higher sidelobes as a function of the loading

force, in order to extract crack parameters, is presented in Part II.

The symmetry of the sidelobes, at fH ` nfL and fH ´ nfL (@ n), is clearly noticeable

on the scans (Fig. 2.7), as theoretically predicted [20] and is also observed in the spatial

resolution values.
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Conclusion

The experimental set-up, consisting in two laser beams, independently intensity-modulated

at fL and fH , and focused on a single spot is described. Both laser wavelengths, 532 and

800 nm, demonstrate the possibility to provide the crack breathing and to generate an

acoustic wave. This leads to the generation of the mixed-frequencies. The experimental

set-up is validated on one and two-dimension scans.

The glass parameters used in the experiments are reported for further estimations.

The importance of the two beams, in the nonlinear frequency-mixing process, is demon-

strated. Both crack breathing and acoustic wave generation are required to generate the

nonlinear sidelobes.

The spatial resolution is defined as the minimum distance required to observe an

amplitude decrease of 4.3 dB from the maximum. Its evolution is studied as a function of

the sidelobe and of the crack parameters evolution. Higher sidelobes appear to have a

better spatial resolution than the first nonlinear sidelobes.

The first nonlinear sidelobe, associated to fH ˘ fL is monotonously increasing with

the ratio of the pump loading over the force required to close the crack. Its evolution

along the crack, for a two-dimensional scan, qualitatively informs on the evolution of the

forces Fc and Fo, required to close and open the crack, respectively.





Chapter 3

Importance and optimization of

the breathing

Abstract

In this chapter, the importance of the crack breathing is studied. In a first part,

an all-optical set-up demonstrates this breathing and its importance on the nonlinear

frequency-mixing.

In order to evaluate the influence of the pump frequency or the pump power, the 3D

heat equation is solved. It allows estimation of the temperature rise for any parameter

dependence and at any location and time in the sample. Theoretical estimations on the

influence of the pump frequency and the beam focusing is performed and compared to

experimental results. Finally, the influence of the powers and the positions of the beam

on the nonlinear frequency-mixing process and the spatial resolution is discussed.

3.1 Evidence of the crack breathing1

A first step to better understand the phenomenon is to clearly demonstrate that the crack

is breathing and that this breathing, combined with the acoustic wave generation, is

responsible for the frequency-mixing process. With this purpose, two experiments are

realized. For both of them, the set-up is very similar. The excitation is realized with

set-up Υ2. The pump radius is estimated of 100 µm. The probe beam is modulated

at 16 kHz. The detection however is changed for a commercial vibrometer (Polytec,

Inc., Model OFV302). This vibrometer utilizes an integrated Mach-Zehnder heterodyne

interferometer. The beam is split by a beamsplitter into a reference beam and the

measurement one. The latter passes through a Bragg cell and a second beamsplitter

and is then focused onto the considered object which reflects it. This reflected beam is

deflected by the previous beamsplitter and is merged with the reference beam thanks to a

third beam splitter. Both beams are finally focused onto a detector. A Doppler frequency

shift, measured at a one wavelength thanks to the Bragg cell, leads to the determination

of the velocity. The interference between the reference and the measurement beams

1This section 3.1 is part of an article published during the thesis [39].

37
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modulates the total intensity on the photodetector and is function of the path length

between both beams and then to the wavelength propagating on the surface.

The challenge is then double: firstly, to demonstrate the predominant role of the crack

breathing on the studied nonlinear process. Secondly, to demonstrate that the amplitudes

of the out-of-plane displacements of the plate surface, that are generated by the acoustic

nonlinearities of the crack are sufficiently high to be detected by a commercial vibrometer.

The use of a vibrometer for the detection is particularly interesting in this set-up in order

to propose an all-optical set-up for crack detection.

The relative variation of the power, linked to the interferometric sensitivity, with a

Mach-Zehnder interferometer, is given by [40, 47]:

∆P

P
“ 4

π
¨ π

2

λ
¨ u. (3.1)
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Figure 3.1: The dependence of the photoacoustic signal amplitude on the power of the
heating laser at frequencies fH (•••), fH ` fL (- -), fH ´ fL ( ). (a): nonmodulated
laser heating, detection by laser vibrometer; (b): modulated laser heating, detection by
laser vibrometer; (c): modulated laser heating, detection by in-contact accelerometer.
The amplitudes of the mixed frequencies in (b) and (c) are multiplied by 4 and by 2,
respectively.

The results of the first experiment, which could be called static, are presented in

Fig. 3.1(a). In this experiment the heating of the crack is generated by a nonmodulated

green laser, fL “ 0 Hz, so that there are no frequency-mixing processes. The dependence

of the acoustic signal on the power of the heating laser at the fundamental frequency

fH “ 16 kHz, which is detected by the vibrometer, is determined. The experimental

data in Fig. 3.1(a) indicate a transition from low to high efficiency of the optoacoustic

conversion at the frequency fH , when the power of the cw heating laser increases from

40 mW to 120 mW. The strongest dependence of the optoacoustic conversion efficiency

on the power of the heating laser is found at approximately 80 mW. This ‘maximization’

phenomenon was documented earlier [14] in the experiments, where the acoustic waves

were detected by a sensitive, in-contact accelerometer. Theory [20] attributes these

observations to heating-induced transition of the crack from an open to a closed state.
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From a physics point of view, thermoelastic generation of sound near the faces of an open

crack is similar to the one near a mechanically free surface and can be very inefficient

[27]. Thermoelastic expansion of the locally heated region could first lead to creation of

a small number of contacts between the crack faces and then to complete local closing

of the gap between them. This process is accompanied by an increasing mechanical

loading of one face of the crack by another, which can be viewed as a process of increasing

the crack rigidity [20], with a consequent increase in the optoacoustic conversion efficiency.

The results presented in Fig. 3.1(a) indicate that the rigidity of the crack is the most

sensitive to external action (the crack is the most nonlinear acoustically) when the power

of the heating laser is about 80 mW. This expectation is confirmed by the results of the

frequency-mixing experiments, presented in Figs. 3.1(b), 3.1(c). In these experiments

the heating green laser is intensity modulated at fL “ 1 Hz and the acoustic signals

at frequencies fH and fH ˘ fL are detected by a laser vibrometer (Fig. 3.1(b)) and by

an in-contact accelerometer for comparison (Fig. 3.1(c)). In Figs. 3.1(b) and 3.1(c) the

amplitudes of the mixed frequencies in (b) and in (c) are multiplied by 4 and by 2,

respectively, for better visibility simultaneously with the fundamental frequency. The

maximum signals at mixed frequencies are detected at approximately 80 mW average

power of the heating laser, where the nonlinear behavior of the crack is the highest.

The results in Fig. 3.1 demonstrate that the crack local nonlinearity, both in the open

and closed states, corresponding to heating powers lower than 40 mW and higher than

120 mW, respectively, is weak in comparison with the nonlinearity of the crack in the

state that is transitional from the open to the closed one. This transitional state is

characterized by the incomplete local contact between the crack faces. Both, in the open

state, where there are no contacts between the asperities located at opposite faces of the

crack, and in the closed state, where the contact between the crack faces is nearly perfect,

crack rigidity weakly depends on elastic loading. Weak nonlinearity of the open state is

due to the absence of the highly nonlinear weakly loaded contacts between the asperit-

ies located at opposite faces of the crack. In the closed state the contacts between the

asperities are strongly loaded, weakly nonlinear, and the material behaves as nearly intact.

One can see that if the results demonstrate the feasibility of the detection of the

vibrometer, the efficiency of this detection is much lower than with an accelerometer. In

3.1(b) and 3.1(c), the loss is of about 50 dB. This explain why the nonlinear signal is

much more noisy than the linear one. Another consequence is that the higher sidelobes

(n “ ˘2,˘3, . . . ) are lost in the noise and cannot be detected without improvement in

the signal-to-noise ratio. In order to allow the detection of numerous sidelobes, and

drastically improve the signal-to-noise ratio without increasing too much the acquisition

time, the following experiments make use of an accelerometer for detection, but one should

emphasize, however, that the crack detection is possible with a commercial vibrometer,

providing a first possibility of an all-optical set-up.

3.2 Resolution of the 3D heat equation

In order to determine the temperature field induced by the lasers in the set-up, the

heat diffusion equation, with an intensity-modulated laser for the heat source, needs to
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be solved (Eq. (3.14) in [27]). Let us rewrite Eq. (1.5) in cylindrical coordinates, more

suitable for a gaussian beam profile:

BT
Bt “ χ∆T ` I

ℓρcp
f ptqΨpr, φqe´z{ℓ. (3.2)

The laser excitation beams, assumed gaussian, (Figs. 1.6(a) and 1.6(b)) can be described

by:

Ψpr, φq “ e´pr{aq2 . (3.3)

The product of the intensity by the spatial distribution needs to be normalized in order

to respect the conservation energy law:

I ¨ Ψpr, φq “ p1 ´ rq ¨ P ¨ Ψpr, φq
8ş
0

2πş
0

rΨpr, φqdrdφ
(3.4a)

“ p1 ´ rq ¨ P

πa2
¨ Ψpr, φq (3.4b)

In the following, the intensity is defined by I “ p1 ´ rq ¨ P {pπa2q. Light intensity

modulation is defined:

fptq “ 1

2
r1 ` x cospωtqs. (3.5)

In our experiments x is always equal to 1, but the calculation is made for the general

case.

The crack is assumed to be at φ “ 0 [π] and the heating, induced by the laser, to be

symmetrical to the axis. The domain can be split into two subdomains : 0 ď φ ď π and

π ď φ ď 2π. Because of the symmetry, results for both half subdomains are equal.

Moreover, the temperature rise is considered to be initially zero and heat flux from the

sample to the air is neglected. Mathematically, it leads to the equations:

T pt “ 0q “ 0, (3.6a)

BzT
ˇ̌
z“0

“ 0, (3.6b)

BφT
ˇ̌
φ“0 rπs “ 0. (3.6c)

With these initial and boundary conditions (Eqs. (3.6)), the Green function of Eq. (3.2)

for 0 ď r ă 8, 0 ď φ ď φ0, and 0 ď z ă 8 is [45]:

Gpr, φ, z, r1, φ1, z1, tq “ 1

2
?
χπt

ˆ
e´ pz´z1q2

4χt ` e´ pz`z1q2
4χt

˙
1

χφ0t
e´ r2`r2

1

4χt

«
1

2
I0

ˆ
rr1

2χt

˙
`

`
8ÿ

n“1

Inπ
φ0

ˆ
rr1

2χt

˙
cos

ˆ
nπφ

φ0

˙
cos

ˆ
nπφ1

φ0

˙ ff
. (3.7)
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Solving the problem requires the evaluation of the following integral:

T pr, φ, z, tq “
tż

0

8ż

0

φ0ż

0

8ż

0

Ir1 ` x cospωt1qs
2ℓρcp

¨ e´p r1
a q2

¨ e´ z1
ℓ ¨Gpr, φ, z, r1, φ1, z1, t´ τq ¨ r1

dr1dz1dφ1dt1. (3.8)

In the present case, φ0 “ π. This simplifies the term depending on φ0 in the infinite

sum. Besides, the laser pulse is φ-independent. Thus, the integral over φ1 in the infinite

sum is reduced to integration of cospnφq between 0 and π leading to only null terms.

After the integral over φ1, the only term remaining is the one containing I0 with a factor π.

Introducing τ “ t´ t1 and isolating the different integrals, it follows:

T pr, z, tq “ I

8ℓρcp
?
πχ3{2

tż

0

1 ` x cosrωpt´ τqs
τ3{2 ¨

„
Ahkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkj

8ż

0

e´ z1
ℓ ¨

ˆ
e´ pz´z1q2

4χτ ` e´ pz`z1q2
4χτ

˙
dz1


ˆ

ˆ
„ 8ż

0

e´p r1
a q2´ r2`r1

2

4χτ I0

ˆ
rr1

2χτ

˙
r1dr1

looooooooooooooooooooomooooooooooooooooooooon
B


dτ. (3.9)

The integral over z1 gives (Sec. A.1)

A “ ?
πχτ ¨ e

χτ

ℓ2 ¨
„
e´ z

ℓ Erfc

ˆ?
χτ

ℓ
´ z

2
?
χτ

˙
` e

z
ℓ Erfc

ˆ?
χτ

ℓ
` z

2
?
χτ

˙
, (3.10)

and the one over r1 (Sec. A.2),

B “ 2χa2τ

a2 ` 4χτ
¨ e´ r2

a2`4χτ . (3.11)

Once all the spatial integrals are solved, the following form is obtained:

T pr, z, tq “ a2I

4ℓρcp

tż

0

1 ` x cosrωpt´ τqs
a2 ` 4χτ

¨ e
χτ

ℓ2 ¨ e´ r2

a2`4χτ ˆ

ˆ
„
e´ z

ℓ ¨ Erfc
ˆ?

χτ

ℓ
´ z

2
?
χτ

˙
` e

z
ℓ ¨ Erfc

ˆ?
χτ

ℓ
` z

2
?
χτ

˙
dτ (3.12)

This last integral, over time, cannot be done analytically. It is possible to estimate

Eq. (3.12) with a numerical approach. Unfortunately, under this form, numerical

estimations do not converge well because of the exponential function. It is analytically

stabilized with the error function, and Eq. (3.12) needs to be rewritten. An interesting

manner is to develop the complementary error function into limited series. From [1], and
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for y P R`, it follows:

Erfcpyq “ e´y2

„
q1

1 ` py
` q2

p1 ` pyq2 ` q3

p1 ` pyq3


` εpyq, (3.13)

where |εpyq| ď 2.5 ¨ 10´5, p “ 0.47047, q1 “ 0.3480242, q2 “ ´0.0958798, q3 “ 0.7478556.

In (3.12) the argument of the first error function is negative for τ ď zℓ{p2χq. Thus, the
limited development of Erfc for a negative argument is required. Using Erfp´yq “ ´Erfpyq,
it can be demonstrated that for y P R´, the limited development of the error function is:

Erfcpyq » 2 ´ e´y2

„
q1

1 ´ py
` q2

p1 ´ pyq2 ` q3

p1 ´ pyq3

. (3.14)

Finally, the integral of Eq. (3.12) is split into two: one for τ P r0 ; zℓ{p2χqs, where
the development of Erfc functions is done with Eq. (3.14) and Eq. (3.13) and one for

τ P rzℓ{p2χq ; ts using Eq. (3.13) for each development. If t ď zℓ{p2χq the second integral

is evidently null. It results:

T pr, z, tq » Ia2

4ℓρcp

¨
˚̊
˝

zℓ
2χż

0

1 ` x cosrωpt´ τqs
a2 ` 4χτ

¨ e´ r2

a2`4χτ ¨

»
—–2e

χτ

ℓ2
´ z

ℓ `

` e´ z2

4χτ ¨
3ÿ

i“1

qi´
1 ` p

” ?
χτ

ℓ
` z

2
?
χτ

ı¯i
´ qi´

1 ´ p
” ?

χτ

ℓ
´ z

2
?
χτ

ı¯i

fi
ffifldτ`

`
tż

zℓ
2χ

1 ` x cosrωpt´ τqs
a2 ` 4χτ

¨

»
—–

3ÿ

i“1

qi ¨ e´
`

r2

a2`4χτ
` z2

4χτ

˘

´
1 ` p

” ?
χτ

ℓ
` z

2
?
χτ

ı¯i
` qi ¨ e´

`
r2

a2`4χτ
` z2

4χτ

˘

´
1 ` p

” ?
χτ

ℓ
´ z

2
?
χτ

ı¯i

fi
ffifl dτ

˛
‹‹‚.

(3.15)

Eq. (3.15) allows to estimate the temperature variations at any point pr, zq in the

sample volume and for any time.

Evaluation of the maximum temperature rise

The temperature can be estimated at any point and for any moment with Eq. (3.15).

However, it has the drawback to require numerical integration. If only the maximum

temperature increase is wanted, e.g., to control that the sample will not burn, it requires

to do this numerical estimation for a time long enough. The numerical calculation can

last several minutes.

The maximum temperature rise is necessary in the center of the spot beam, for r “ 0 and

z “ 0. In order to simplify even more the calculation, it is realized for a nonmodulated

laser: f “ 0 Hz, or fptq “ 1. For a modulated laser, the temperature rise is lower than

this upper limit.
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With these new conditions, Eq. (3.12) becomes:

T pr “ 0, z “ 0, tq “ a2I

ℓρcp

tż

0

e
χτ

ℓ2

a2 ` 4χτ
¨ Erfc

ˆ?
χτ

ℓ

˙
dτ. (3.16)

Even for this simplified case, analytical solution of the maximum temperature as a

function of the time does not appear easy to determine. However, the maximum value,

reached for an infinite time, is easier. It is possible to demonstrate the following limit:

8ż

0

ey

x` y
¨ Erfcp?

yqdy “ e´x ¨
“
πErfip

?
xq ´ Eipxq

‰
. (3.17)

Thus, Eq. (3.16) can be rewritten under this form:

lim
tÑ8

T p0, 0, tq “ a2I

4ℓκ
¨ e´p a

2ℓ q2

¨
«
πErfi

” a
2ℓ

ı
´ Ei

„´ a

2ℓ

¯2
 ff

, (3.18)

with x “ ra{p2ℓqs2, and y “ χτ{ℓ2.

Eq. (3.18) leads to an estimation of the maximum temperature rise, corresponding to

the upper limit reached. This simple evaluation can be used for estimating the temperature

rise and checking that the sample will not be affected by such heating.

If the modulation frequency is high enough, such as for the probe beam, the variations

of temperature can be neglected and the cosinus term in the function fptq is omitted.

Thus, fptq is reduced to 1{2, which corresponds to half of a nonmodulated beam. The

maximum heating for such beam can then be evaluated as half of the temperature rise

estimated by Eq. (3.18):

lim
tÑ8

T p0, 0, tq “ a2I

8ℓκ
e´ra{p2ℓqs2

«
πErfi

” a
2ℓ

ı
´ Ei

„´ a

2ℓ

¯2
 ff

. (3.19)

As a summary, the 3D heat equation is solved. Temperature can be estimated for any

moment and at any place of the sample for a modulated beam heating the sample with a

simple numerical integration.

The maximum temperature rise of a nonmodulated beam and a high frequency modulated

beam is obtained analytically. In particular, the probe beam heating can be estimated

by Eq. (3.19). However, in the theoretical model [20], the constant heating is neglected

because of the assumptions on the infinite dimensions of the sample and the non-null

rigidity of the crack (Sec. 1.3.2).

It is now possible with the theoretical predictions of the temperature field to study the

influence of the parameters on the experiment and to compare theoretical predictions

and experimental results.
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3.3 Influence of the pump frequency

As previously evoked (Sec. 2.1), the choice of the pump frequency influences the breathing

efficiency. In a first approach, the best frequency has been estimated at a few hundreds of

millihertz due to the characteristic times of the temperature rise and thermal relaxation

(9 s). With Eq. (3.15), it is now possible to make numerical simulations of the temperature

evolution at any point of the sample and for any frequency and to compare them with

experimental results.
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Figure 3.2: (a): Temperature evolution as a function of time in the center of the beam
for the frequencies fL “ 0, 0.1, 1, 10 and 1000 Hz. (b): Evolution of the temperature
extrema (maximum TM , minimum Tm and difference TM ´Tm) in the center of the beam
as a function of the modulation frequency. (a-b): Parameters: a “ 20 µm, P “ 100 mW,
r “ 0, z “ 0.

The evolution of the temperature rise as a function of time, at the hottest point, cor-

responding to the center of the beam, is studied for various frequencies. For a continuous

beam, equivalent to fL “ 0 Hz, the temperature rise is monotonously increasing up to the

asymptotic value TM0 determined by Eq. (3.18) (Fig. 3.2(a)). The breathing amplitude

is influenced by the crack face displacements which are themselves influenced by the

temperature difference ∆T “ TM ´ Tm, where TM (Tm) is the maximum (minimum)

temperature rise induced by the heating modulation. The ideal is a frequency for which

TM Ñ TM0 and Tm Ñ 0.

For fL Ñ 8, the variations of the beam intensity are too fast to make temperature

variations: ∆T Ñ 0. However, a constant heating is present. The temperature evolution

as a function of time is similar to the temperature evolution of a continuous beam, divided

by two in intensity due to the modulation (Sec. 3.2). It also corresponds to the average

heat of a heating intensity modulated at any frequency: pTM ` Tmq{2.
For 0 ă fL ă 8, the temperature difference ∆T diminishes as the frequency fL increases,

because of the characteristic times involved in heating and cooling the sample. Fig. 3.2(a)

demonstrates that for a constant heating, the temperature rise lasts several seconds before

it can be considered almost constant. For an infinite time, Eq. (3.18) predicts a maximum

temperature rise TM0 of 141.9 K. Simulations show that it takes „35 seconds to reach

99% of TM0 (T “ 140.5 K), which is considered to be close enough to the asymptotic
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value. It leads to an ideal frequency close to fL “ 14 mHz. However, this estimation is

valid for a laser intensity modulated in a square waveform. For a sinusoidal waveform,

simulations indicate that the frequency is about 3.5 mHz. Simulations are realized for

the parameters of the experiment described below: a “ 20 µm and P “ 100 mW (Fig.

3.2(a)). The evolution of heating for fL “ 0, 0.1, 1, 10 and 103 Hz are presented. The

shift of the maximum and the minimum temperature rise when the frequency increases

clearly appears. As predicted, fL “ 100 mHz is close to provide TM » TM0 and Tm » 0.

The melting point of glass is much higher than the ones reached: for a 140 K increase,

the glass is then at 293 ` 140 » 433 ! 1090 K, where 1090 K is the temperature of fusion

of a borosilicate glass containing 80% of silica.

In Fig. 3.2(b) the temperature maximum TM , minimum Tm and difference, ∆T , is

plotted for frequencies fL P r10´6; 104s Hz. The temperature variations are estimated at

the center of the beam for the same radius and power: a “ 20 µm and P “ 100 mW.

For fL ď 1 mHz, the temperature difference is practically stable because the frequency is

low enough to closely reach the ideal case.

For fL ě 10 mHz, ∆T diminishes as fL increases. For fL P r1; 100s Hz, the decrease

of ∆T can be considered linear on the logarithmic scale: consequently, it follows an

exponential decay.

Beyond fL ě 1 kHz, the temperature oscillations are almost negligible. The temperatures

TM and Tm can be considered equal: TM » Tm. The temperature rise in such case can

be evaluated with Eq. (3.19).

It can be observed that the maximum TM and the minimum Tm, which are functions

of the frequency fL, evolve symmetrically from the maximum temperature rise reached

for an infinitely high-frequency modulated beam. Mathematically, it corresponds to

TM0 ´TM “ Tm ´ 0. It implies that the average heating corresponds to the case fL Ñ 8,

analytically determined by Eq. (3.19).
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Figure 3.3: (a): Evolution of the temperature difference TM ´ Tm in the center of the
beam as a function of the modulation frequency. (b): Evolution of the amplitude on the
left and right sidelobes at fH ´ fL (l) and fH ` fL (l) as a function of the modulation
frequency. (a-b): Parameters: a=20 µm, P “ 100 mW, fL P r0.1; 300s Hz.
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An experiment is realized on a crack at different frequencies between f “ 100 mHz

up to 300 Hz with the Υ1 set-up. The beam diameter and power are of a “ 20 µm and

P “ 100 mW for the pump and of a “ 19.2 µm, P “ 35 mW for the probe beams. The

probe beam intensity modulation frequency is fH “ 90.4 kHz. As previously said, the

simulations of 3.2(b) are performed with these parameters for the pump beam.

In Fig. 3.3(b) the amplitudes of the main peak and of the first nonlinear sidelobes are

plotted as a function of the pump frequency. Fig. 3.3(a) is a zoom of the theoretical

temperature difference for the same range of frequencies.

The main peak remains constant for all the frequencies which is logical as the only

changed parameter is the pump frequency. The amplitudes of first nonlinear sidelobe

amplitudes, can be considered constant for fL ď 1 Hz. The temperature differences

are estimated of 132 and 115 K for fL “ 0.1 and 1 Hz, respectively. The breathing is

influenced by the temperature difference, the distance between the crack faces and the

crack rigidity (Sec. 1.3.2). The crack closing can never be perfect due to the imperfect

crack faces and the numerous micro-contacts. However, as the distance between the

crack faces diminishes, i.e., as the crack closing improves, the rigidity increases, and

then the forces required to improve the closing also increases. For tiny displacements

near a perfect closing, the changes in the loading force can be huge (Fig. 1.7(a)). The

constant amplitude for fL P r0.1; 1s Hz is attributed to this phenomenon. The changes in

the temperature difference as the frequency evolves are not important enough to induce

significative change in the crack closing and thus, in the nonlinear sidelobe amplitudes.

For fL P r1; 100s Hz, the nonlinear sidelobes amplitudes decrease because the breath-

ing quality is affected by the diminution of the temperature difference. Finally, for

fL ą 100 Hz, the nonlinear sidelobe amplitudes are lost in the noise because the temper-

ature rise (TM ă 94 K) is not sufficient to close the crack.

As a conclusion, it is demonstrated that the amplitude of the nonlinear mixed-

frequencies decreases as the frequency fL increases. Unfortunately, the acquisition time

increases as the pump frequency decreases because the considered frequency window,

fH ˘ fL diminishes. As an example, for ten averages of the signal, it takes about half

an hour for f “ 100 mHz, whereas it takes a little more than 3 minutes for f “ 1 Hz

and about 20 seconds for f “ 10 Hz. A compromise between the time spent for the

experiment and the efficiency of the temperature difference of the heating is required.

The importance of the temperature difference, for a given frequency, is influenced by the

beam power, the beam focusing and the sample thermal characteristics. The experimental

parameters a and P influence TM and Tm and thus the time needed to reach them. The

thermal glass parameters influence the required time to heat up to TM and to cool down

to Tm. Simulations and experimental results confirm that fL „ 1 Hz is suitable for our

experiments.

3.4 Influence of focusing on the nonlinear frequency-

mixing amplitude

The focusing affects the spatial resolution of the method and the amplitude of the non-

linear frequency-mixing. The latter influence is discussed herein whereas the former is
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discussed in the next section (Sec. 3.5).

The intensity is defined as I “ P {pπa2q, so it is inversely proportional to the square

of the beam radius. For a constant power, as the focusing increases, the intensity

increases too. Numerical estimations demonstrate that in the near field of the source,

the temperature rise is influenced by the focusing. Indeed, in the spot beam area, the

temperature rise is increased (Fig.3.4(b)). Far from the spot area, the thermal field is

very similar for different focusings because the power is constant. However, it can be

noted that the less focused source induces a temperature rise slightly larger than the more

focused one in the far field (Fig. 3.4(b), Inset). This is the consequence of the energy

conservation.

Considering a quasistatic motion of the crack (ωL ! ωo,c), the crack motion can be

estimated with the evaluation of the sample dilatation. The dilatation corresponds to the

integral of the temperature field multiplied by the thermal expansion coefficient. In one

dimension, it reads:

∆L “ α

8ż

0

T prqdr. (3.20)

The total displacement induced by the heating is twice the result of the integral as each

crack faces dilates under the thermal loading.

The integral of the temperature over the complete volume is independent of the focusing

because of the energy conservation law. Fig. 3.4(a) demonstrates the temperature rise

decreasing as a function of the distance for aL “ 20 µm, PL “ 100 mW and fL “ 1 Hz. In

the 1D approach, the temperature rise is larger in the near field but lower in the far field

(Fig. 3.4(b)). The numerical estimation of the dilatation resulting from Eq. (3.20) for

different focusings demonstrate very similar results: ∆L » 469 and 459 nm for aL “ 20

and 50 µm, respectively.
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Figure 3.4: (a-b-Inset): Theoretical evolution of the maximum temperature rise, TM , as
a function of the distance from the center of the beam for PL “ 100 mW, fL “ 1 Hz and
aL “ 20 µm ( ), aL “ 50 µm (- -).
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The amplitude of the acoustic wave, generated at fH , depends on the magnitude

of the temperature rise of the surface. Neglecting the attenuation, the acoustic wave

amplitude is expected to be enhanced with the focusing as the maximum temperature

rise is increased in the center of the beam.

The acoustic strain is proportional to the probe wave amplitude (Eq. (1.19)) and thus,

the nonlinear sidelobe amplitudes are expected to increase as well.

Then, the nonlinear sidelobes should not be influenced by the focusing of the pump as

the related dilatation is equal, but only by the focusing of the probe which increases the

acoustic wave amplitude.
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Figure 3.5: (a): Experimental dependence of the amplitude of the main peak and of

the first three left p q and right (- -) sidelobes on the focusing of the beams on the
sample. (b): Theoretical evolution of the maximum temperature rise TM in the
center of the beam as a function of the beam radius.

An experiment is realized and presented in Fig. 3.5(a). The sample is moved in the

z-axis to control the focusing of both beams on the crack. The radii vary for both beams

between 16 µm and 457 and 482 µm for the probe and the pump beam, respectively. Both

beams are adjusted to be very close, but the difference between the two radii increases as

the radii increase. The pump beam has the following characteristics: PL “ 100 mW and

fL “ 1 Hz, and the probe beam: PH “ 20 mW and fH “ 91.4 kHz.

The pump power is chosen five times larger than the probe one to enhance the possibility

to evaluate if the crack breathing is affected by the pump focusing.

A 1D scan is realized firstly with the best focusing (aH “ aL “ 16 µm). This insures the

beams to remain focused on the crack as the focusing evolves.

The decrease of the first three sidelobes is similar. The amplitude, in decibels, varies

linearly as a function of the focusing until 300, 200 and 100 µm for the sidelobes associated

to n “ 1, 2 and 3, respectively. Consequently, it demonstrates an exponential decay

of the amplitude of the nonlinear sidelobes as a function of the focusing. Due to their

non-monotonous behavior revealed earlier (Sec1.3.2), the sidelobes for n ą 1 do not neces-

sarily evolve monotonously as a function of the focusing. For large radii (aL ě 300 µm),

the first nonlinear sidelobe is not lost in the noise and its amplitude is constant.
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The main peak also decreases as the focusing decreases. However, the amplitude

variation is much smaller: „4 dB for the main peak in comparison to „32 dB for the

first left nonlinear sidelobe. It corresponds to an influence of the focusing more than 600

times larger on the nonlinear sidelobes than on the main peak.

The previous discussion on the influence of the pump and the probe focusings is then not

valid. This observation shows that the quasistatic assumption is not valid experimentally.

In Chap. 5, a model without this assumption is developed.

However, it is important to also consider the fact that the above discussion concerns an

idealized crack and a 1D geometry. Because of the micro-contacts and the rugosity of

the real crack in the 3D geometry, the theoretical analysis is much more complex. In

particular, the focusing influences the intensity of the laser field penetrating inside the

crack. This should increase the thermoelastic wave amplitude.

In Fig. 3.5(b) the estimated evolution of the maximum temperature rise, at the center

of the beam, for the frequencies involved in the experiment, is presented. One can see the

exponential decay of the temperature as a function of the defocusing, as for the amplitudes

of the main peak and the nonlinear sidelobes. A change of the focusing appears to induce

an important change in the mixed-frequencies generation. It indicates that it influences

importantly the crack breathing quality.

3.5 Spatial resolution determination

The generation of the mixed-frequencies corresponds to the location where the generated

acoustic wave is coincident with the breathing crack. In the scans (Secs. 2.3 and 2.5) the

crack is localized by the maximum of the nonlinear frequency-mixing amplitudes.

The spatial resolution is determined by the 1{?
e decrease of the photoacoustic signal (or

-4.3 dB from the maximum) because these nonlinear mixed-frequencies are also generated

when the beams are focused nearby the crack and not precisely on it. Fig. 2.7 clearly

demonstrates the generation of the first nonlinear sidelobes when both beams are far

from the crack. Fig. 3.6(a) is an example of a spectra where the beams are focused

800 µm far from the crack. The distance is „2.5 and „8 times larger than the probe and

pump diameter, respectively. It corresponds to the spectra from Fig. 2.7, for y “ 1 and

x “ 0.3 mm. The first nonlinear sidelobe is generated with an amplitude of 10 dB over

the noise (Fig. 3.6(a)).

Moreover, for several 1D sections, the first nonlinear sidelobe evolutions demonstrate not

one but two successive locations with the amplitude maxima (Fig. 3.6(b)). Due to the

factor 3 between the pump and probe beam radii, it corresponds to cases where the probe

beam remains on the crack but not the pump beam.

These effects show the possibility to generate the mixed-frequency components without

the condition of both beams focused on the crack. In order to explain the phenomena

involved, a slightly different set-up, based on Υ1, is developed in order to be able to move

one of the beams only (Fig. 3.6(c)).

The fixed beam is focused on the sample in a radius of 19 µm. The second beam is

moved, as for a 1D scan, along the x-axis. The shift is achieved taking advantage of the

imperfections of the lens, by shifting the beam from its center. This technique has the

drawback that the beam radius is modified by this shift. In order to neglect the influence
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of the radius changes on the experiment, the number of steps is limited. It follows that

the radius of the shifted beam is of 20 ˘ 2 µm. Then a 1D scan can be achieved shifting

only one beam. The same 1D scan can be achieved for several powers of each beam,

independently controlled, in order to observe the influence of the pump and the probe

localization and power. The pump beam is intensity-modulated at fL “ 1 Hz and the

probe beam at 91.4 kHz.

First, the influence of the power and the location of the pump beam are analyzed by

shifting and amplifying the latter (Sec. 3.5.1). Second, the same analysis is done inverting

the beams, so that the probe beam is shifted and amplified (Sec. 3.5.2). Third, the

influence of the breathing -controlled by the pump power- and the probe beam location

is studied by shifting the probe beam and increasing the pump beam power (Sec. 3.5.3).

Finally, the conclusions are compared with the influence of the focusing on the spatial

resolution (Sec. 3.5.4).

As the first nonlinear sidelobes are the only one which amplitudes monotonously increase

as a function of the pump loading (Sec. 1.3.2, Fig. 1.9), the interpretations of their

evolutions are easier. The evolution of these sidelobes only is discussed in this section.
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Figure 3.6: (a): Spectrum extracted from Fig. 2.7 for y “ 1 mm, 800 µm far from the
crack. (b): Scan section from Fig. 2.7 along x for y “ 1.6 mm for the first nonlinear
left (l) and right (l) sidelobes. (c): Schematic representation of the new set-up.

3.5.1 Influence of the pump far from the crack

It is firstly necessary to remind that the nonlinear frequency-mixing process is associated

to the modulation of an acoustic wave on a breathing crack. The breathing crack, pro-

voked by the pump loading, is responsible for this nonlinear phenomenon and not directly

the pump beam.

The thermal diffusivity is at the origin of the heat transport in all the sample. In order to

make the crack breath it needs to be periodically heated; a constant heat can just close

it permanently (Sec. 3.1). The modulation of the heat, as the pump beam is intensity

modulated, is propagated for about one thermal wavelength. Beyond, the sample is

constantly heated. The thermal wavelength is defined by λth “ 2
a
πχ{f . This leads to

λth » 2.6 mm for a frequency of 1 Hz, larger than the penetration length of light into the

sample (λth ą 8ℓ) and the beam radius (λth » 50a for a radius of 50 µm). The theory

then predicts there are temperature oscillations at fL “ 1 Hz far from the irradiated area.
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Numerical simulations confirm that at distances larger than the thermal wavelength, there

is almost no more modulation. The thermal wave will additionally decay proportionally

to 1{r (with r the distance from the source). This effect is not taken into account in the

latter formula, so the real value is smaller than 2.6 mm.

Consequently, it should be possible to make the crack breath up to a few hundreds of mi-

crometers far from the crack, assuming the power is sufficient. With the powers involved,

the temperature rise decreases „100 times over a millimeter distance (Fig. 3.4(a)).

For the probe beam, due to the high frequency fH , the thermal wavelength is much

reduced: λth » 26 µm for fH “ 10 kHz. Thus, the temperature oscillations at fH are

only in the region of the direct heating by laser radiation. Besides, these oscillations are

also much reduced in amplitude. Fig. 3.2(b) demonstrates that for fH the temperature

difference is negligible in comparison to the temperature difference induced by the pump

beam, even in the center of the beam. Thus, the probe beam role is to generate the

propagating acoustic waves and not to drive the crack breathing.

To demonstrate that it is possible to make the crack breathe with a pump radius

focused outside of the crack, a first experiment is done. The probe beam is focused on

the crack with a power of 35 mW. The pump beam is moved by a 1D scan shifting.

The same 1D scan is accomplished for several pump powers in order to observe its influence.
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Figure 3.7: (a): Evolution of the first right sidelobe at fH ` fL as a function of the
pump position relatively to the crack position (horizontal direction) and for different
pump powers (vertical direction). The probe beam is focused on the crack at 0 with a
power of 35 mW. (b): Evolution of the maximum temperature rise at the center of the
beam as a function of the distance for P “ 40, 60, 80 and 100 mW. The 50 K temperature
rise limit is marked by a dashed line.

In Fig. 3.7(a) the experiment scans for the powers contained between 10 and 130

mW with power steps of 5 or 10 mW are presented. They show the evolution of the

first nonlinear right sidelobe amplitude. For low powers (P ă 40 mW), the crack is

hardly detectable because the pump is insufficient to make the crack breathing correctly.

However, a slight increase in the nonlinear sidelobe amplitude is noticed. It can be

attributed to partial contacts, i.e., to the creation of few micro-contacts between the
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crack faces. The crack starts to be detected for P » 40 mW. It means that the required

temperature to close the crack is about 50 K which corresponds to the temperature

rise for P “ 40 mW. The consideration of the maximum temperature rise is a very

simplified approach. A better approach for the quasistatic problem would be to estimate

the dilatation induced at this temperature with Eq. (3.20). However, this would not take

into account the location of the pump in comparison to the location of the crack. Besides,

the influence of focusing (Sec. 3.4) indicated that the quasistatic assumption may be

not fulfilled experimentally. Thus, let us, in a first approach, consider that the crack

breathing is related to the temperature rise on the crack. With this information, it is

possible to predict theoretically the distance from the pump beam where this temperature

is reached. In Fig. 3.7(b) the theoretical evolutions of temperature as a function of the

distance are presented for the different powers P “ 40, 60, 80 and 100 mW . These

predictions demonstrate the crack could breathe by a pump beam located rather far from

the crack. This is confirmed by the experimental results, demonstrating a clear decrease

of the spatial resolution with power increase.

For the most important powers, P ě 100 mW, the crack is not detectable anymore

in the experimental results, even when the pump beam is focused 175 µm far from the

crack -corresponding to „8aL. Nonlinear mixed-frequencies are generated all over the

scan with almost the same efficiency, as if the crack breathing is optimum. Fig. 3.7(b)

demonstrates that it is possible to reach the 50 K temperature rise up to „115 µm far

from the center of the beam for P “ 100 mW. This estimation is a bit lower than the

results on the experiment as nonlinearities are clearly detected up to a distance of 175 µm

between the pump beam and the position of the crack for P “ 100 mW. However, the

phenomenon is clearly identified.

For 50 ă P ă 60 mW, the first nonlinear sidelobe starts being generated for a pump

focused outside the crack but the crack remains a little detectable as the amplitude of

the nonlinear sidelobe is larger on the crack. This can be attributed to a better breathing

when the pump is focused on the crack.

If the temperature rise is sufficient to close the crack far from the irradiated region, the

temperature difference decreases with the distance and increases with the power. For

example at P “ 50 mW, the temperature difference at the center of the beam is of 57 K,

whereas for P “ 100 mW and 175 µm far from the center of the beam it is of 25 K.

However, this difference is not visible on the amplitude of the nonlinear sidelobe. It

demonstrates that the amplitude is mainly controlled by the change between the opened

and closed state, and the quality of each state more than the temperature difference.

The spatial resolution can then clearly be affected by the pump power. In this case,

the spatial resolution can be defined only for P “ 35 to 45 mW. It varies between 157

and 201 µm. Below 35 mW, the nonlinear frequency-mixing amplitude is not important

enough to detect a 4.3 dB decrease whereas when the power is larger than 45 mW, the

distance covered by the pump beam is not important enough to make the nonlinear

frequency-mixing amplitude decrease by 4.3 dB. The spatial resolution varies importantly

as a function of the pump power. For example, for a power step of 5 mW (from P “ 35

to 40 mW) the spatial resolution is more than 40 µm better in the latter case. At the

opposite, it increases of „20 µm for another 5 mW increase on the pump power. Thus, the

evolution of the spatial resolution, as a function of the pump power, is not monotonous

(Fig. 3.12(a)).
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This result explains why in the previously described 2D scans, some scans have two

maxima in a row as the probe beam radius is 3 times exceeding the one of the pump and

the step is chosen coincident with the pump diameter (Fig. 3.6(b)).

The main peak amplitude increases monotonously as a function of the pump power (up

to 7 dB for the whole experiments) with a slight maximum of a few dB on the crack, as

predicted and generally observed.
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Figure 3.8: Evolution of the first right sidelobe at fH ` fL as a function of the probe
position relatively to the crack position (horizontal direction) and for different probe
powers (vertical direction). The pump beam is focused at -80 µm from the crack. The
pump power is PL “ 30 mW (a), PL “ 60 mW (b), and PL “ 100 mW (c). All scans are
represented with the same amplitude scale.

Another experiment is realized. The pump beam is fixed 80 µm outside the crack

(„4aL) and the probe is shifted as for a 1D scan (Fig. 3.8). The power of each beam is inde-

pendently modified. In Fig. 3.8 the position of the pump beam is indicated: x “ ´80 mm,

the crack is at x “ 0 mm. The same 1D scan for different probe powers (vertical direction)

and pump powers (horizontal direction between the Figs) are presented.

As predicted, for a low pump and probe power (PL “ 30 mW, PH “ 30 mW), the crack

does not breathe and is not detected. When the pump increases the detection of the

crack is achieved (PL “ 100 mW, PH “ 30 mW). This demonstrates again the possibility

to achieve the crack breath with a pump beam focused outside of the crack. It also

demonstrates that the probe beam is a limiting factor in the spatial resolution as the

crack is detected only when the probe is focused on it. The nonlinear mixed-frequencies

generation increases on and outside the crack when the pump power increases and/or

when the probe power increases. In both case, this effect is attributed to the improvement

of the crack breathing.

It can also be observed that if the pump power is low (PL “ 30 mW, Fig. 3.8(a)),

the crack is detected only for a high probe power. For a more important probe power

(PH “ 75 mW), the crack is detected in each scan. The nonlinear mixed-frequency amp-

litude maximum increases as the probe power increases in the former case (Fig. 3.8(a)).

The nonlinear sidelobe amplitude maximum is obtained for PH “ 75 mW. At the contrary,
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in the latter case (Fig. 3.8(c)), this maximum is for PH “ 60 mW, and the amplitude of

the nonlinear sidelobes diminishes for P “ 75 mW. Fig. 3.8(b) looks closely similar to

Fig. 3.8(c) shifted for higher probe powers and with a more important change between

PH “ 30 and 45 mW than between PH “ 60 and 75 mW.

Theoretically, the nonlinear sidelobe amplitude is supposed to be proportional to the probe

power (Eq. (1.19)). However, Fig. 3.8 demonstrates that this increase is not independent

of the pump power: the amplitude rise between PH “ 30 and 75 mW is of „15 dB for

PL “ 30 mW (Fig. 3.8a) and of „6 dB for PL “ 60 mW (Fig. 3.8b).

These experiments also demonstrate the possibility to realize 1D scans for a pump beam

spot situated next to the crack. This result confirms the capacity of the thermoelastic

wave, generated by the pump beam, to make the crack breath. It also demonstrates that

the probe beam is a limiting factor as the scan accurately localize the crack depending on

the only probe position.

The reduced number of experimental points does not allow the possibility to estimate the

spatial resolution for this experiment.

3.5.2 Influence of the probe power

It has been just demonstrated in the last experiments that the nonlinear sidelobe amp-

litude is not always proportional to the probe power (Fig. 3.8c), and that the amplitude

variations due to probe power changes depend on the pump power too (Figs. 3.8a and

3.8b). Both results are different from the theoretical predictions (Eq. (1.19)).

For a monochromatic modulation of the laser intensity in time, Ifptq “ Ir1 `
x cospωtqs{2. The spectrum envelope, in the Fourier domain, can be written rfpωq “
π pδp0q ` x{2 ¨ rδpω ´ ω0q ` δpω ` ω0qsq. Consequently, the effect of an intensity modu-

lated beam heating on a sample can be separated into two parts: a constant part (9 δp0q)
and a modulated one (9 δpω ˘ ω0q). In [20] the constant part is neglected because the

sample is supposed infinite (Sec. 1.3.2).

It has been demonstrated that the heating of a beam, intensity modulated at a fre-

quency of tens of kHz (as for the probe beam), is similar to a heating of a nonmodulated

beam with half of the intensity (Secs. 3.2 and 3.3). A constant beam heating a crack can

close it (Sec. 3.1). Then, a probe beam is also expected to be able to close the crack.

An experiment similar to the previous one (Sec. 3.5.1) is achieved. This time, the

pump beam is fixed and focused on the crack and the probe beam is shifted in order to

realize a 1D scan (Fig. 3.9). The scan is repeated at different probe beam powers. The

beams are inverted in comparison to the previous experiment, then the radii are inverted

too: the pump radius is of 19 µm, the probe beam radius of 20 ˘ 2 µm.

Fig. 3.9 exhibits the evolution of the first nonlinear right sidelobe as a function of the

position of the probe and as a function of the probe power. One can see that even for

very low probe power, the crack is detected. This demonstrates the important efficiency

of the nonlinear frequency-mixing generation when the crack breathes.
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Figure 3.9: Evolution of the first right sidelobe at fH ` fL as a function of the probe
position relatively to the crack position (horizontal direction) and for different probe
powers (vertical direction). The pump beam is focused on the crack at 0 with a power of
50 mW.

Then, as the probe power increases (for PH ď 80 mW), the crack remains clearly detected

and the amplitude of fH ` fL logically increases as predicted by the theory (Eq. (1.19)).

For PH P r10; 50s mW, the increase of the first nonlinear sidelobe amplitude is of „13 dB.

The nonlinear mixing-frequency generation for a probe next to the crack is also observed.

The pump is focused on the crack to provide the breathing. The acoustic wave, generated

far from the crack, propagates in all the directions. The part of the acoustic wave

propagating toward the part of the crack which is locally breathing then interacts with it

to generate the nonlinear sidelobes. The interaction of the acoustic wave with a crack

when the probe beam is focused far from the crack is discussed in Sec. 3.5.3.

For a probe power of PH “ 80 mW, in the crack area, the nonlinear sidelobe amplitude

decreases in comparison to PH “ 70 mW. The difference is of 2 dB on the crack and is

also observed next to the crack in the same order of difference.

For PH ą 80 mW, the nonlinear sidelobe amplitude suddenly importantly falls down and

the crack is not detected anymore. For probe powers of 70 and 90 mW and a 22 µm

radius spot, the temperature rise, in the center of the beam, is estimated at „48 and

„62 K, respectively. The crack is expected to close around 50 K -although this estimation

did not take into account the temperature rise from the probe beam. The crack is closed

by the probe and cannot breathe. The mixed-frequencies can no longer be generated.

This is consistent with the explanations above: the distance between the crack faces can

be influenced by constant heating provided by the probe beam.

Consequently, if the pump beam power is not important enough to make the crack

breath efficiently, an important probe power can reduce the distance between the crack

faces and improve the breathing efficiency.

In the previous section, in Fig. 3.8(a), the pump power (PL “ 30 mW) is not focused

on the crack and is weak to influence strongly the distance between the crack faces

and the crack rigidity. Then, for a weak probe power the crack is almost not detected.

The maximum of the nonlinear sidelobe is observed for the maximum probe power as it

reduces the distance between the crack faces and favors the crack breathing induced by

the pump beam.



56 3 Importance and optimization of the breathing

If the pump power is already large enough, a diminution of the distance between the

crack faces by an important probe power reduces the crack breathing amplitude and thus

the nonlinear frequency-mixing process. In Fig. 3.8(c), with PL “ 100 mW, the maximum

of fH ` fL amplitude is for PH “ 60 mW and not 75 mW as previously. This is also

confirmed by the diminution of the nonlinear frequency-mixing amplitude when the probe

power changes from P “ 70 mW to 80 mW in Fig. 3.9.

The spatial resolution is not much affected by the increase of the pump power for

P P r0.7; 80s mW. Even for PH “ 0.7 mW, the crack is detectable and the dynamic

offers the possibility to define a spatial resolution: 83 µm for the first right nonlinear

sidelobe. It is not as good as the following ones, e.g., 66 µm for the same sidelobe for

PH “ 10 mW. However, it demonstrates the important effect of the breathing on the

acoustic wave modulation efficiency.

As the probe power increases, for PH P r10; 70s mW, the spatial resolution slowly dimin-

ishes, from 69 µm to 116 µm by steps of „10 µm as the probe power increases by 10 mW.

For PH “ 80 mW, just before the closing, it suddenly falls to 147 µm. Then, as the crack

is closed, no spatial resolution can be determined anymore (Fig. 3.12(a)). The decrease

of the amplitude of the nonlinear sidelobes as the probe power increases from PH “ 70 to

80 mW can be attributed to the distance decrease between the crack faces. The decrease

of the spatial resolution, for PH P r10; 70s mW, is discussed in the next section (Sec. 3.5.3).

3.5.3 Influence of the acoustic wave generated far from a

breathing crack

It is clear from the different experiments that the nonlinear sidelobes can be generated

when the probe beam is focused far from the crack (Figs. 2.7 and 3.9). Similarly as when

the acoustic wave is generated on the crack, the involved phenomenon is the interaction of

the acoustic wave with a breathing crack. The amplitude of the acoustic wave decreases

with the distance (in 1{r for a spherical wave). Then, the part of the acoustic wave

interacting with the breathing crack reduces as the distance between the crack and the

spot where the probe beam is focused increases. Consequently, the nonlinear sidelobe

amplitudes decrease.

It has been demonstrated that on a crack, and for probe power close to zero, the

acoustic wave amplitude at fH is importantly influenced, depending on either the crack

is breathing or no. The generation of frequency-mixing component appears possible even

for very low probe powers. In Sec. 2.4, with a probe power of only 1 mW, the amplitude

of the acoustic wave at fH is 25 dB over the noise, providing a „18 dB amplitude for

the first nonlinear sidelobe. Similarly, in the previous section (Sec. 3.5.2), the crack is

localized with a probe power of 0.7 mW. The amplitude of the nonlinear sidelobes is a

function of the probe power (Sec. 3.5.2) but their generation remains possible for very

low probe powers.

On the contrary, in order to efficiently generate the fH ˘ nfL components when the

probe beam is focused outside from the crack, the acoustic wave amplitude must be
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large enough. As the distance increases, the nonlinear process requires more probe power

to be efficient. This is experimentally shown in Fig. 3.9 with the triangle shape of the

highest amplitudes of the first right nonlinear sidelobe: as the probe power increases,

the efficiency of this interaction increases, and the distance where the generation of

nonlinear frequency components is possible also increases. This explains the decrease

of the spatial resolution as a function of the probe power. Except for when the probe

power is sufficient to close the crack (PH ě 90 mW in Fig. 3.9), the maximum of the

nonlinear sidelobe remains on the crack because the acoustic wave amplitude is necessar-

ily higher when generated on the crack. Then, the crack is always detected by a maximum.

The spatial resolution is affected by the probe power in Fig. 3.9 because the amplitude

of the acoustic waves generated next to the crack increases with the probe power. At

the opposite, the spatial resolution is not expected to be affected by the quality of the

breathing for a 1D scan with the probe beam. Another experiment is realized in that

sense. Similarly as the previous one (Sec. 3.5.2), the probe beam is shifted with a pump

constantly focused on the crack. Instead of changing the probe power for each 1D scan,

the pump power, so the breathing efficiency, is modified. The probe power is fixed at

PH “ 35 mW in order to reduce the influence of the probe beam on the distance between

the crack faces when the probe is focused on them. Results are presented in Fig. 3.10.
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Figure 3.10: Evolution of the first right sidelobe at fH ` fL as a function of the probe
position relatively to the crack position (horizontal direction) and for different pump
powers (vertical direction). The pump beam is focused on the crack at 0 and the probe
beam is of 35 mW.

Again, a triangle shape is observed: for low pump power the breathing is not efficient

enough to generate nonlinear sidelobes efficiently. Only the case when the probe beam

is focused on the crack generate detectable nonlinear sidelobes. As the pump increases,

the breathing quality increases. This increases the amplitude of the nonlinear frequency-

mixing sidelobes. It also increases the distance from the crack for which the interaction

of the acoustic wave at fH with the breathing crack in the nonlinear process is efficient.

As predicted the amplitude of the nonlinear sidelobes increases monotonously as the pump

power increases. The spatial resolution can be defined for all scans, even for a pump

power of 120 mW. It decreases as a function of the pump power, which is not expected,

but remains contained between „75 and „126 µm. However, the decrease of the spatial

resolution by a factor 1.7 needs to be compared to the increase of the pump power by



58 3 Importance and optimization of the breathing

a factor 10. This is the only case (compared to Secs. 3.5.1 and 3.5.2) where the spatial

resolution can be defined for each experimental power.

For PL ď 70 mW, the spatial resolutions of this experiment (Fig. 3.10) and the previous

one (Fig. 3.9) are close (Fig. 3.12(a)). For important pump powers (PL ě 100 mW), the

spatial resolution is improving as the pump increases, which is yet unexplained.
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Figure 3.11: Evolution of the first right sidelobe at fH ` fL as a function of the pump
position relatively to the crack position (horizontal direction) and for different pump
powers (vertical direction). The probe beam is focused at -60 µm from the crack. The
probe power varies from PH “ 20 mW (a), to PH “ 60 mW (b).

Finally, another experiment is realized, similarly to the second one proposed in

Sec. 3.5.1. In this case, the beams are inverted: the probe beam is focused 60 µm away

from the crack („3a) and the pump beam is shifted along the x-axis. Different pump

and probe powers are tested. Results are presented in Fig. 3.11.

For low pump powers the crack can be detected. This is due to the quality of the

crack breathing: if the power is small, the breathing is more efficient on the crack

and the interaction with the acoustic wave is more efficient, offering the possibility to

detect the crack. The amplitudes of the nonlinear sidelobes are reduced compared to the

configuration where the probe is focused on the crack.

As the pump power increases, the distance from which the crack starts breathing increases

(Sec. 3.5.1). Thus for important pump power the crack is no more detected because the

probe beam is focused outside the crack and the pump beam provides the crack breath

far from the crack.

As previously, due to the reduced number of points, the spatial resolution determination

is not possible for this experiment.

Higher Sidelobes

These sections only dealt with the first nonlinear sidelobe evolutions. This choice was

made because of the monotonous evolution of the sidelobe amplitude as a function of

the pump loading. Fig. 3.12(a) presents the different results on the spatial resolution of
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the previous experiments. The higher sidelobes, associated to n “ 2, 3, . . . can also be

considered.

For very low powers (around P ď 20 mW), the higher order nonlinear sidelobes amplitude

dynamics are usually too low to localize the crack with a 1{?
e decrease. However, for

larger powers, their spatial resolution is much better than the one of the first sidelobe.

There are no clear explanation yet to this recurrent observation.

0 40 80 120

40

80

120

160

200

POWER (mW)

S
P
A
T

IA
L
 R

E
S
O

L
U

T
IO

N
 (

µ
m

)

(a)

0 40 80 120

40

80

120

PUMP POWER (mW)

S
P
A
T

IA
L
 R

E
S
O

L
U

T
IO

N
 (

µ
m

)

(b)

Figure 3.12: (a): Evolution of the spatial resolution as a function of the pump power (l,
△), and the probe power (l), relatively to the previous experiments illustrated earlier in
Fig. 3.7(a) (l), Fig. 3.9 (l), and Fig. 3.10 (△). (b): Evolution of the spatial resolution
as a function of the pump power in Fig. 3.10 for the first right sidelobe (l), the second
right sidelobe (D), and the third right sidelobe (△). (a-b): Missing datas correspond to
cases without definition of the spatial resolution.

In Fig. 3.12(b) the first, the second and the third sidelobe in the experiment where

the probe is shifted and the pump power evolves is presented (Fig. 3.10 for the first right

sidelobe evolution). They demonstrate that higher sidelobes have a better resolution

on the crack localization. For PL P r35; 60s mW, the third sidelobe has a better spatial

resolution than the second one. The spatial resolution differences can be improved a

lot: for PL “ 55 mW, it gives 111, 85 and 48 µm for the first, second and third sidelobe,

respectively.

Some deviations from the general tendencies occur for particular powers. They can be

attributed to the non-monotonous behavior of these sidelobes under the loading evolution

(Sec. 1.3.2, Fig. 1.9): the analysis of the spatial resolution evolution is much more complex.

As a conclusion, if, for a given scan, the amplitude of higher sidelobes is sufficient to

define a spatial resolution, it usually provides a better crack localization.

3.5.4 Influence of the focusing on the spatial resolution

The influence of the localization and the power of each beam has been analyzed above. It

remains to evaluate the influence of the beams focusing on the spatial resolution. The

same set-up is used to control the focusing of one beam, by changing the distance between

two lenses -as for a telescope. Unfortunately, it is not possible, with the installed set-up

to defocus one beam and to move it by moving the lens. This implies too important



60 3 Importance and optimization of the breathing

optical aberrations. Thus, the set-up is used to influence one of the beams focusing but

the sample is moved. This corresponds to the general 1D or 2D scan experiments with

set-up Υ1.

The sample is moved, which is equivalent to displace both beams at the same time. The

previous discussed phenomena -probe or pump shift- evolve together and the analysis is

more complex.

Experiment Parameters Results (µm)

number
2a (µm) P (mW) Sidelobe n

2aL 2aH PL PH +1 +2 +3

1 44 38 78 57 92 71 37
2 124 38 57 57 96 74 132
3 124 38 75 57 95 73 61
4 38 124 64 57 211 135 /
5 38 124 75 57 350 150 /

Table 3.1: Evolution of the spatial resolution of the first three nonlinear sidelobes as a
function of different set of parameters.

The goal of these experiments is mainly to check the tendency of the spatial resolution

depending on the focusing and the pump power. The same 1D is achieved in the following

experiments. In particular, the step between each point is constant to 40 µm.

The powers are chosen relatively large so that nonlinear mixed-frequencies can be gen-

erated when either the pump and/or the probe is focused outside the crack: the probe

power is of 57 mW, the pump power is between 57 and 75 mW.

In a first time a 1D scan is realized with similar focusing: 22 and 19 µm for the pump

and probe radii, respectively. The location on the crack is different from the previous

experiments. The results are in Tab. 3.1. The improvement of the spatial resolution as

the order of the sidelobes increases is observed. The resolution on the first sidelobe is

approximately equal to twice the diameter of the beams. This confirms that the chosen

power are large enough to generate nonlinear mixed-frequencies outside the crack.

In a second time the pump beam is defocused, up to aL “ 62 µm and the scan is done

twice at two different powers: PL “ 57 and 75 mW. In each case the first and second

right sidelobe is not influenced. The third one evolves. This can be attributed to the non

monotonous behavior of the sidelobe amplitude as the pump loading changes. With the

increase of the pump power, one can see the third sidelobe spatial resolution improves at

61 µm.

Finally, the beams are inverted in order to defocus the probe beam. The experiment is

firstly realized for a pump beam of 64 mW. The spatial resolution is drastically diminished

to 211 µm, almost twice the probe diameter. The spatial resolution of the second sidelobe

is close to the probe diameter, and the one of the third sidelobe is not even possible to

define.

In a second time, the scan is repeated for a larger pump power: 75 mW. The spatial

resolution is clearly even worse: almost three times the probe diameter.
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Conclusion

An important result of this chapter is the resolution of the heat equation. The influence

of the pump parameters -focusing, intensity-modulation frequency, and power- are well

understood. The parameters influencing the spatial resolution are also clearly identified.

It is demonstrated that the pump beam can close the crack. The transition zone

between the open and closed states corresponds to the optimal configuration for the

nonlinear mixing-frequency generation. The quality of the breathing highly influences the

generation of these mixed-frequencies. The breathing is controlled by the temperature

difference, corresponding to the difference between the temperature extrema (maximum

and minimum) on a spot as a function of time. Several parameters can influence the

breathing amplitude:

• the pump intensity-modulation frequency fL. The lower the frequency is the larger

the temperature difference is. A lower frequency affects both extrema of temperature.

The experimental choice of fL „ 1 Hz is demonstrated to be suitable.

• the pump beam power. The intensity of the beam is proportional to the beam power

(I9P ). Thus, the quality of the crack closure is influenced by the beam power. Low

powers create only some contacts, whereas high powers close the crack efficiently.

• the pump beam focusing. The intensity of the beam on the sample is inversely

proportional to the square of the radius (I91{a2). Focusing the pump beam affects

the breathing similarly to the beam power. It also affects the amplitude of the

acoustic wave generated by the probe beam.

• the pump beam location. The thermal wavelength (λth » 2.6 mm) significantly

exceeds the beam radii and the penetration length of light in the sample. It

is demonstrated that it is possible to make the crack breath for a pump beam

focused far from the crack. However, the temperature difference and the maximum

temperature decrease as the distance increases.

• the probe beam power. The modulation of heat due to the probe beam can be

neglected, but not the constant heat delivered to the sample. For large enough

powers, the distance between the crack faces can be reduced, or the crack can even

be closed by the probe beam only.

It is observed that the acoustic wave generated far from the crack can also interact

efficiently with the breathing crack to generate the nonlinear mixed-frequencies. This

can influence the spatial resolution. However, the probe beam generates nonlinear mixed-

frequencies with a larger amplitude when focused on the crack because the acoustic wave

amplitude decreases with distance.

The spatial resolution is also affected by the probe beam focusing as it defines the

area of the acoustic wave generation. The pump radius is not as important in the spatial

resolution because of the larger thermal wave which does not reduce the crack breathing

in the pump spot. However, its evolution can induce changes in the breathing of the crack.

As a conclusion, the spatial resolution of the method is very complex. It depends

nonlinearly on several parameters. Although we cannot predict clearly what is the spatial
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resolution related with a set of parameters, their influence is demonstrated. In general,

increasing the pump and/or probe power does not provide a better spatial resolution.

However, it can provide a larger amplitude of the higher sidelobes which, once they

exhibit a 4.3 dB decrease, have a much better spatial resolution than the first one.

It appears that for the set-up Υ2, the probe and the pump beam should be inverted:

the acoustic wave should be generated by the Verdi laser whereas the crack breathing

should be provided by the diode laser. This should lead to a better spatial resolution.



Chapter 4

Improvement of the experimental

set-up

Abstract

The experimental set-up has some drawbacks. Some are inherent to the technique itself

such as the difficulty to detect buried cracks, and some can be improved.

A first improvement is the realization of another all-optical set-up. A first proposal

has already been presented in the chapter 3 (Sec. 3.1). The detection was achieved with

a vibrometer but the signal-to-noise ratio could be improved. In order to realize a sensit-

ive all-optical set-up, an alternative detection technique, deflectometry, is presented in

Sec. 4.1. The possibility to perform the excitation with a single beam, doubly modulated,

is also demonstrated.

Another drawback is the required acquisition time of the method. This limitation is

due to the choice of the low pump frequency, in order to achieve the crack breathing,

combined with the spectrum analyzer. Indeed in order to reach a good signal-to-noise

ratio with a good resolution, the recorded spectrum has been chosen to be about fH ˘10fL
with a resolution of 0.2fL and with „10 averages. For fL of 1 Hz, it leads to a registration

time of about 3 minutes for each experimental point. It can be improved with a decreased

resolution and reduced number of averages, but it will still last at least several tens of

seconds. Another detection technique, with a lock-in amplifier is proposed. It also allows

an original detection method using the phase of the signal.

4.1 1D all-optical scan1

In this experiment two important changes are realized on the set-up: one on the excitation

and another on the all-optical detection. The excitation is realized with a single beam

focused on the sample with a beam spot radius of about 100 µm. In order to achieve the

generation of an acoustic wave at fH and the crack breathing at fL, the beam is twice

1This part is closely similar to the second part (with Sec. 3.1) of a published article [39]. Some figures
and comments, however, are added in the present section.
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intensity modulated. It is intensity modulated, as previously, at the probe frequency fH ,

and intensity modulated a second time, at low frequency fL, with a square waveform

(Fig. 4.2). Due to the modulation of a sinus modulated by square function, odd sidelobes

are present in the light intensity envelope (Fig. 4.1(a)). Thus, the presence of cracks is

revealed by the nonlinear generation of even sidelobes (Fig. 4.1(b)).
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Figure 4.1: (a-b): Spectra recorded by the deflectometry technique with an excitation
realized with a single beam and focused outside the crack (a) and on the crack (b).
(c): Schematic illustration of the deflection.

The detection, is realized with the deflectometry technique. The use of two lasers for

excitation and detection at different wavelengths (λ “ 800 nm and λ “ 532 nm for the

excitation and detection, respectively) is motivated to avoid a possible illumination of

the detector by the excitation beam. In the present case, a proper filter guarantees that

any detected signal comes from the laser beam used for this purpose.

Deflection technique is based on the detection a beam, reflected by the sample surface at

an angle ϑ. The incident beam is not normal to the sample surface: ϑ ‰ 0. If an acoustic

wave propagates, the surface is locally modified, inducing surface inclination, and thus, a

slight modification of the beam reflexion angle (Fig. 4.1(c)). The deflection depends on

the amplitude and the frequency of the signal. After the reflection, a knife is installed to

stop exactly one half of the optical power. The distance from the surface to the knife is

Figure 4.2: Schematic representation of the experimental set-up developed for an
excitation with a single beam and a deflectometry detection.
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L. The intensity remaining after the knife is acquired by a photodetector. If the reflexion

angle ϑ is modified, the detected intensity increases or decreases. Consequently, it is

possible to link the angle, and thus the frequency and amplitude of the wave, to the

intensity on the photodetector.

The parameters important for optimization of the deflection technique [50, 61] are the

laser spot radius a at the surface and the distance L. The relative variation of the power

on the photo-diode, introduced after the knife, is described by ∆P {P “ ∆x{a1, where
∆x is the lateral displacement of the beam at the surface of the knife caused by a change

in the angle of the probe beam reflection induced by acoustic vibration of the sample,

where a1 “ a
a
1 ` pL{Ldq2 is the radius of diffracted laser beam, and Ld “ πa2{λ is

the diffraction length. The maximum displacement of the probe beam ∆x “ 2ϑL is

determined by the maximum value of angle of the deflection of the surface ϑ “ 2πu{Λ,
where Λ is the wavelength of the acoustic wave and u is the amplitude of the surface

displacement [51]. It follows that ∆P {P is given by:

∆P

P
“ 4aπ2

λΛ
¨ L
Ld

¨ ua
1 ` pL{Ldq2

. (4.1)

Formula (4.1) predicts that the strategy for maximizing the sensitivity of the deflection

method is to use a laser beam of maximum radius a « Λ{4 and observation distances

exceeding the diffraction length. For the third flexural resonance of the glass plate Λ{4 is

approximately 8 mm. Thus, the maximum sensitivity π2pu{λq in the set-up depicted in

Fig. 4.2 can be obtained by broadening of the initial 1 mm radius of the cw green laser

nearly by an order of magnitude and using observation distances exceeding 600 m. This

possible optimization has appeared unnecessary, because even 10 times lower sensitivity,

experimentally achieved with a beam of 1 mm radius at 10 m observation distance, is

sufficient for the monitoring of the nonlinear acoustic phenomena by deflectometry with

a high signal-to-noise ratio. Nevertheless, it can be increased.

Due to the distance L involved in the experiment (10 m), the Verdi laser is used for the

detection. The excitation beam, provided by the diode laser, has a worse focusing, while

in order to avoid important diffraction after 10 m length, the laser beam quality used for

the detection is required to be good enough.

In Fig. 4.3 the results of one-dimensional photoacoustic scan of a crack are presented.

In this experiment, the diode laser is intensity modulated simultaneously at fL “ 2 Hz

and fH “ 18 kHz. The nonlinear mixed frequencies, fH ˘ 2fL, are detected by the

probe beam deflection technique, which is tuned for the detection of the flexural waves

propagating along the longest axis of the sample (Fig. 4.2). The position of the excitation

beam relative to the crack is progressively modified in 50 µm steps. From the data

presented in Fig. 4.3 it follows that only the detection of mixed frequencies provides

sufficient contrast for reliable determination of the position of the crack.
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Figure 4.3: Dependence of the photoacoutic signal amplitude on the relative position
between the common focus spot of the laser heating and sound-generating beams and the
crack at frequencies fH (✕), fH ` fL (l), and fH ´ fL (l). Detection is accomplished
by an optical deflectometer.

4.2 Detection with a synchronous amplifier

In order to save time in the signal recording process, an interesting solution is the use

of a lock-in amplifier, Signal Recovery SR7280, instead of a spectrum analyzer. The

lock-in amplifier can record only one specific frequency but much faster than the spectrum

analyzer. The main difficulty is the synchronization with the referencing frequency.

The nonlinear mixed-frequencies are not present in the excitation signal. Consequently,

only the frequencies fH and fL can be directly processed with the lock-in amplifier.

Unfortunately, the latter do not present interest in the crack detection.

Figure 4.4: Experimental set-up to detect the signal with a synchronous amplifier.

In order to get rid of that problem, a specific set-up is proposed. The experimental set-

up is the set-up Υ2, with two laser beams to perform excitation. This has no consequence

for the following. The detection is achieved by an accelerometer to simplify the set-up.
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The detected signal is multiplied by the initial probe signal. It follows:

S “ A1 cosrpωH ˘ nωLqts ¨A2 cosrωHts, (4.2)

where A1,2 are the amplitudes of each signal. Using the trigonometric formulas, one can

rewrite Eq. (4.2):

S “ A1A2

2
pcosrnωLts ` cosrp2ωH ˘ nωLqtsq . (4.3)

Eq. (4.3) is particularly interesting as the first nonlinear sidelobes, associated to n “ 1,

can directly be synchronized from the generator of the pump wave at fL. The amplitude

of the signal is modified, but the interest is not on the amplitude value but on its evolution.

A low-pass filter (Krohn-Hite Model 3945) is introduced after the multiplier. Then, the

resulting signal is analyzed by the lock-in amplifier (Fig. 4.4). Finally, it appears that

the synchronous amplifier is synchronized with the first nonlinear sidelobe.

However, this technique does not differentiate between fH ` fL and fH ´ fL. As they are

theoretically assumed identical (Sec. 1.3.2), and generally observed in the experiments

(Fig. 2.7 for example), there is no information loss. The synchronous amplifier can lock-in

the harmonics of the synchronized signal. From Eq. (4.3) it follows that the harmonics

of ωL correspond to the nonlinear sidelobe harmonics (n “ 2, 3,. . . ). Consequently, the

higher sidelobes can also be studied. However, it must be underlined that as the lock-in

amplifier records only one frequency, each sidelobe evolution requires a new measurement.

A first limitation of this new technique concerns the low-frequency limitation of the

lock-in amplifier. The used lock-in amplifier has a bandwidth from 0.5 Hz up to 2 MHz.

Thus, the pump frequency has a lower limit. The frequency fL must be in the multiplier

bandwidth.

In order to get a confident signal, the integration time must contain about ten periods

of the required signal. For fL “ 1 Hz, it leads to about ten seconds per point. One can

see that this set-up is much faster, even if a 2D scan still lasts several minutes, especially

if we are interested in the evolution of several sidelobes.

Another possibility is to multiply the signal by the initial pump signal from the

generator. This has advantages and drawbacks. In this last case, the resulting signal is:

S̆ “ A1A2

2
pcosrωHt˘ pn´ 1qωLts ` cosrωHt˘ pn` 1qωLtsq . (4.4)

Thus, the first harmonic can be synchronized with the probe generator lock-in but for

higher harmonics, associated to n ě 2, there are no possibilities to synchronize them as

the resulting frequencies of higher sidelobes are not harmonics from the first one. This is

the main drawback: this set-up can only detect the first nonlinear sidelobe.

However, the set-up associated to Eq. (4.4) offers two advantages. Firstly, with this

configuration, there is no low limitation on the frequency fL. Then, the time acquisition

of about ten periods now lasts some millisecond only. Surely, one should wait, at least,

one closing of the crack to guarantee the nonlinear sidelobes generation, so for fL “ 1 Hz,
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the signal can be acquired after about one second. However, the signal would not be

optimum because the temperature rise lasts some seconds to be in the steady state and

one should be careful about the acquisition time.

In the next experiments, a particular attention is turned to the evolution of different

sidelobes. Indeed, their evolution as a function of the pump power contain important

information (Part. II). The low frequency limitation and time acquisition are not prob-

lematic. Then, the first set-up (Fig. 4.4), corresponding to Eq. (4.3) is chosen.

Another advantage of the use of a lock-in amplifier is that it can simultaneously record

the amplitude and the phase of the signal. The spectrum analyzer should allow such

possibility but it has not been successfully managed in the experiments.
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Figure 4.5: Dependence of the amplitude and the unwrapped phase of the nonlinear
sidelobes on the relative position between the spots of the pump and probe beam
and the crack. (top): Detection with the spectrum analyzer of fH ´ nfL (l) and
fH `nfL (l). (middle-bottom): Detection with the lock-in amplifier. The dashed vertical
lines distinguish the position of the beams relatively to the crack. The errorbars are
estimated within a same position and are plotted on the mean value in the interval.

The signals acquired from the lock-in amplifier and from the spectrum analyzer differ.

For an experimental point, the spectrum, obtained from the spectrum analyzer, is the

result of the signal averaged a number of times (usually ten). Consequently, it has only

one amplitude for each frequency.

On the contrary, the values of the magnitude and of the phase on the lock-in amplifier

evolve in time and several successive values are registered. The acquisition of the signal

is realized as follows: once the set-up is on the location we want to record the signal, a
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first pause, lasting the duration of the integration time, is done. The integration time is

chosen to last several breathing periods (generally ten). Then, during several seconds,

numerous points are recorded.

In Fig. 4.5 the evolution of the second and the fourth sidelobe as a function of the

position is presented. The sample is moved to realize a 1D scan. The amplitude (middle)

and the phase (bottom) evolutions detected by the lock-in amplifier are demonstrated.

The amplitude of the signal, detected by the spectrum analyzer (top) is presented for

comparison. The agreement between both amplitudes confirms the potential of this new

set-up. The apparent differences between the amplitudes is due to the presentation of

the results.

For one point, e.g., x “ 0 mm, the spectrum analyzer gives only one value, due to the

averaging. On the contrary, the lock-in amplifier signal consists of several points. The

vertical dashed lines correspond to the position of the beams relatively to the crack posi-

tion along the x-axis. In-between, the successive points recorded by the lock-in amplifier

are plotted. When the beams are focused on the crack (x “ 0 mm), the amplitudes of

the nonlinear sidelobes, detected by the spectrum analyzer is maximum. The amplitude

recorded by the lock-in amplifier increases with the time. Similarly, when the beams are

shifted away, at x “ 0.5 mm, it is decreasing with time. In both cases, the amplitude

does not reach a stable value. For longer times on the same spot, it stabilizes. This

observation first explains the apparent shift: for x “ 0 mm, the maximum of the lock-in

amplifier is when the time spent on this spot is maximum, corresponding to the right

limit of the interval, whereas the value from the spectrum analyzer is plotted in the center

of the interval. It follows that the crack is detected at x “ 0 mm in both cases.

Secondly, this observation also indicates a dynamic motion of the crack, not noticeable

with the spectrum analyzer detection. Indeed, when nonlinear frequency-mixing are

generated, i.e., on the crack, the signal amplitude increases for a while. Recording several

successive points demonstrates whether the amplitude is stabilized or not. Similarly,

when the beams are shifted away, the signal amplitude decreases during a moment too. In

this experiment, the time spent at each position if of several tens of seconds. It indicates

that it is a slow dynamic motion. It would be possible to automatize the set-up, with

the software, in order to wait the necessary time for the stabilization of the signal. This

option is not developed here. However, considering the last value registered on each point,

it can be speculated, that it could improve the spatial resolution because the amplitude

difference between two successive points would increase.

The phase evolution offers a new way of detecting the crack. One can clearly localize

the crack with the phase information (Fig. 4.5 (bottom)). However, the maximum of the

nonlinear sidelobe amplitudes is not necessarily detected, but only the zone where the

sidelobes are generated. Indeed, the phase is supposed stable if the nonlinear frequency-

mixing are generated and not proportional to the amplitude. For the second sidelobe

(Fig. 4.5(b)) the phase does not reach its stable value, unlike the fourth sidelobe phase

evolution (Fig. 4.5(b)). The time spent in each cases is equal.

In both cases, the phase information allows the detection of the crack even if the spatial

resolution is a bit less accurate once the phase has reached its stable value, as no maximum

is detected. As for the amplitude, a larger wait on each point should improve the spatial
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resolution.

It can be observed from Fig. 4.5(b) (middle and bottom) that when no nonlinear sidelobes

are generated (zero amplitude), the phase fluctuates importantly.

Waiting for the stabilization of the signal could provide a better spatial resolution

on the amplitude and the phase detection. It may also offer the possibility to determine

characteristic time of the crack motion.

However, the first goal of this set-up was to be faster. If it appears possible to do so, the

sensitivity to the crack reduces as the time spent on a location diminishes, because of the

time required to reach high amplitudes.
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Conclusion

Two important improvements of the technique are proposed: a faster set-up combined

with the phase detection and an all-optical set-up. The latter demonstrates the efficiency

of an all-optical method for detecting cracks. Another important point is the use of a

single beam to achieve the excitation. This technique prevents the possibility to control

independently the pump and probe beam, especially their power. However, it allows a

much easier set-up. A single beam with an accelerometer for detection would provide a

very simple set-up.

The former set-up uses the lock-in amplifier for detection. It allows to evaluate both

amplitude and phase evolution. The information on the phase, so as the one on the

amplitude, is reliable to detect cracks. This set-up can also be much faster than the

original one.

The use of a lock-in amplifier highlights a slow dynamic crack motion as the phase and

amplitude variations, for a constant position, evolve as a function of time for several tens

of second.

Finally, although these experiments have been conducted separately, they could be

combined in a single set-up, faster and all-optical.





Part II

Influence of the pump power
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Chapter 5

Evaluation of crack parameters

Abstract

The influence of the pump power on the linear and nonlinear sidelobes is studied. It

has already been theoretically predicted that the amplitude of the nonlinear sidelobes as

a function of the input loading is highly non-monotonous. For particular loadings and

sidelobes, the amplitude evolution can contain minima. Theoretically, the amplitude is

null for this specific loading and sidelobe [20], [54]. However, there is no, to the authors’

knowledge, evidence of any experiment demonstrating such behaviors. This chapter

demonstrates these non monotonous evolutions with minima, as predicted by the theory

[20]. A more advanced model is proposed to avoid the assumption ωL ! ωo,c. The fitting

of this new model with the experimental results offers the possibility to reach different

crack parameters.

5.1 Experimental evolution of the pump amplitude

The nonlinear sidelobe amplitude evolutions, as a function of the pump power, are theor-

etically expected to be highly non monotonous (see Eq. (1.20b) and Fig. 5.1(a)). They

are function of the forces Fc and Fo, required to close and open the crack, respectively.

Consequently, it can be expected that fitting experimental results to theoretical ones will

then provide quantitative informations on Fc and Fo.

An experiment with varying the pump power, and based on the set-up Υ1, is realized.

The evolution of the pump power cannot be controlled by the laser power output because

it would also change the probe power. Consequently, the input voltage of the acousto-

optic modulator is changed to control the pump beam power. The power of the beam

is proportional to the input voltage of the AOM. In this experiment, the pump beam is

intensity modulated at 0.5 Hz and focused on the sample with a radius of 95 µm. The

pump beam power on the sample evolves between 2 and 304 mW. The power step is

between 1.9 and 13 mW. The probe beam has a radius of 106 µm, the frequency fH is of

80.6 kHz, and the power is of 121 mW.
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Figure 5.1: Theoretical (a) and experimental (b) dependences of the amplitude of the
first six left sidelobes on the varying amplitude of the normalized force FL{Fc loading the
crack (a) and the pump power (b).

Results are presented in Fig. 5.1(b). The main peak amplitude is not presented. It

increases monotonously by „5 dB, as a function of the pump power, and saturates for

PL ě 200 mW. The first six nonlinear left sidelobes are shown. The theoretical evolutions,

from Eq. (1.20b) are introduced in Fig. 5.1(a) for comparison.

In a first approach, a general good agreement between the experimental and theoretical

curves is observed. They exhibit similar evolutions containing saturations, local minima

and local maxima. For example, the first nonlinear sidelobe saturates in both cases.

The third nonlinear sidelobe has a local minima for PL “ 77.3 mW experimentally.

Theoretically, its amplitude is null for FL{Fc “ 2.

Three spectra are proposed in Fig. 5.2 for the minimum pump power PL “ 2 mW

(Fig. 5.2(a)), for a particular pump power (PL “ 128.9 mW) corresponding to the minima

of the sixth sidelobe (Fig. 5.2(b)) and for the maximum pump power, PL “ 303.8 mW

(Fig. 5.2(c)).

Some discrepancies also appear. The experimental first sidelobe slightly diminishes for

high powers (PL ě 250 mW). This decrease, for important powers, is not predicted by

the theory. From Eq. (1.20a), it also follows that the even sidelobes are supposed to tend

to zero. This is not observed either.

Other discrepancies on higher sidelobes can also be noted: the second sidelobe does

not go through a local maximum to vanish afterwards, as for the theoretical prediction.

The fourth experimental sidelobe has more minima than predicted -three experimentally

compared to one theoretically- and does not tend to zero either.

Results of the evolution for the right sidelobes are, as expected, rather similar. For

example, each sidelobe present the same behaviors and the same amount of minima.

However, some differences are observed.

The first right sidelobe has a larger diminution for high powers compared to the left one:

6.6 dB (compared to 1.6 dB previously).

Some of the minima are shifted to lower or larger pump power. For example, the

sixth right sidelobe has three minima. The first one is shifted from PL “ 58.9 mW to
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Figure 5.2: Spectra of the photoacoustic signal for points A, B, and C in Fig. 5.1(b)
corresponding to the first observed spectrum at PL “ 2 mW (a), the amplitude minimum
of the sixth left and right sidelobe at PL “ 128.9 mW (b), and the maximum pump power
at PL “ 303.8 mW (c), respectively.

PL “ 68.8 mW whereas its third minimum from PL “ 243.5 mW to PL “ 233.4 mW.

The differences of the minima positions can appear relatively important (up to „10 mW)

but in fact concern only two successive experimental points. Thus, it can be concluded

that the symmetry is approximately conserved. A larger number of points would provide

a higher agreement in the symmetry and a higher precision in the position of the minima.

Several minima are better or worse defined comparing the left or the right sidelobe.

In order to fit the theoretical and the experimental results, it has been chosen to focus

on the minima of the first nonlinear sidelobes because they are well defined theoretically

and experimentally. It is also easier to fit some point position than to compare curve

tendencies especially because of their high non monotonous behaviors. Tab. 5.1 references

the different experimental (Tab. 5.1(a)) and theoretical (Tab. 5.1(b)) locations of the

minima. The experimental data are functions of the pump power, whereas the theoretical

ones are functions of the ratio FL{Fc. The theory predicts a symmetry between left and

right sidelobe so there is only one column in Tab. 5.1(b).

The comparison of these tables clearly exhibits differences in the number of minima.

Nevertheless, it also demonstrates a reasonable agreement even if some minima are not

predicted.

In a first approach, a fit between the theoretical and experimental results, assuming

the absence of hysteresis, has been realized. As the number of minima is different, all the

configurations are tested. For each one, the ratio of the position of the experimental and

the theoretical minimum is calculated. This induces an estimation of the link between Fc,

the required force to close the crack, and the power loading the crack. Without hysteresis,

it also provides an estimation of the force Fo required to open the crack as Fo “ Fc. The

final standard deviation is calculated for each combination and the case with the lowest

one is taken.

Then, for the power required to close the crack, for PLpFL “ Fcq, the temperature

elevation is calculated thanks to Eq. (3.15). Using the temperature rise profile, it is

possible to estimate the induced dilatation ∆L of a heated 1D sample next to a free
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SIDELOBE POWER (mW)
n fH ´ nfL fH ` nfL
1 - -
2 - -
3 77.3 77.3

4
22.8 22.8
97.4 86.6
215.1 205.5

5
34.9 42.1
150.7 140.7

6
58.9 68.8
128.9 128.9
243.5 233.4

(a)

SIDELOBE FORCE RATIO
n FL{Fc

1 -
2 -
3 2

4 1.41

5
1.23
3.23

6
1.15
2

(b)

Table 5.1: Table presenting the different minima of the amplitude as a function of the
loading and the considered sidelobe for the experiment (a) and the theory from [20] (b).

surface with Eq. (3.20) and multiplied the result by 2 to consider both crack faces.

Finally, the open rigidity, which is the ratio of Fc and ho ´ hi (Eq. (1.17)), is evaluated

and so for the crack mechanical relaxation frequency in the open state (ωo “ 2ηo{ρc).
The fact that the estimation of the dilatation is achieved assuming a free surface, even

though a crack rigidity is then estimated, is not contradictory. It is known that the

rigidities of the crack, in opened and closed states, are several order lower than rigidity

of the sample [69].

However, this approach estimates the crack mechanical relaxation frequency to

ωo “ 12 s´1. In this experiment (Fig. 5.1(b)), ωL “ 3.14 s´1. Thus, the condition

ωL ! ωo,c is clearly in disagreement with initial theoretical assumptions. This means that

an upgraded model must be developed without this assumption.

This improved model may also predict more minima and/or a different behavior on the

nonlinear sidelobe evolutions.

5.2 Theoretical development of the nonlinear side-

lobes evolutions

The aim of this section is to improve the theoretical model from [20] in order to avoid

any assumption between the crack mechanical relaxation frequencies, ωo and ωc and the

intensity modulation frequency of the pump beam, fL.
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5.2.1 Evolution of the time spent in the closed region as a

function of the crack parameters

It is important to note that only the assumption concerning the crack mechanical

relaxation frequencies and the pump frequency, mathematically ωL ăă ωo,c, is modified.

The calculation remains developed in one dimension for an infinite sample. The crack is

modeled by two parallel faces with an infinite depth and a penetration length of the light

infinite too. The crack rigidity model is bistable with the same evolution as previously

(Eq. (1.17), Fig.1.7), and the probe beam has a weak influence on the crack motion. Thus,

Eq. (1.14) remains valid:

BuLp0q
Bt ´ 1

ρc
F r2uLp0qs “ ´|ApωLq|IL xL cosrωLt´ ϕpωLqs. (5.1)

If the evolution of the nonlinear sidelobes is different, its generic definition remains

(Eq. (1.20a)):

|An| “
ˇ̌
ˇ̌ 1
n
sin

„
n
1

2
ωLTc

ˇ̌
ˇ̌ . (5.2)

The validity of this equation without the assumption ωL ăă ωo,c is demonstrated in

Chap. 7.

The evolution of the time spent by the crack in the closed region over a pump period, as

a function of the loading force, directly provides the evolution of the nonlinear sidelobes.

As the model is not assumed quasistatic anymore, the first term in Eq. (5.1) cannot be

neglected as in [20]. Introducing the crack mechanical relaxation frequencies and the

definition of the forces Fc,o (Eq. (1.17)), Eq. (5.1) can be rewritten as:

Bp2uLp0q ´ ho,cq
Bt ` ωo,cp2uLp0q ´ ho,cq “ ´2|ApωLq|IL xL cosrωLt´ ϕpωLqs. (5.3)

The resolution of the problem is closely similar to [19]. Solving the differential

equation (5.3) leads to:

2uLp0q “ ho,c ` Co,ce
´ωo,ct ´ 2|ApωLq|IL xLa

ωL
2 ` ωo,c

2
cosrωLt´ ϕpωLq ´ fo,cs, (5.4)

with fo,c “ arctan pωL{ωo,cq and Co,c the integration constants.

In the case where the loading is not important enough to insure clapping, i.e., if during

a complete acoustic period 2uLp0q “ hi is not realized, the integration constants are equal

to zero, due to the periodicity condition. Mathematically, it can be expressed:

2uLp0q “ ho,c ´ 2|ApωLq|IL xLa
ωL

2 ` ωo,c
2
cosrωLt´ ϕpωLq ´ fo,cs. (5.5)

The clapping starts when the condition 2uLp0q “ hi is fulfilled. If so, the loading

intensity IL “ Ic,o and the cos term is maximum. It follows:
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2|ApωLq|Ic,o xL “ κo,c ¨ pho,c ´ hiq
b
ωL

2 ` ωo,c
2, (5.6)

with κo,c “ sgnpho,c ´ hiq. Necessarily, κo “ 1 but κc “ ˘1, depending on the sign

of Fo which can be positive or negative.

For larger loading amplitudes, corresponding to the clapping regime, the exponential term

from Eq. (5.4) must be considered. The crack is supposed to change from the closed to the

opened region at time t “ t1. Then, the last transition between the opened to the closed

region occurred at t “ t1 ´Tc and the next transition will be at time t “ t1 `To, where To
(Tc) is the time spent in the opened (closed) region (Fig. 5.3). Besides, To ` Tc “ 2π{ωL.

Consequently, the new equations can be read in the following system:

$
’’’’&
’’’’%

hi “ hc ` Cce
´ωcpt1´Tcq ´ κcphc ´ hiqIL{Io cosrθ1 ´ ωLTcs,

hi “ hc ` Cce
´ωct1 ´ κcphc ´ hiqIL{Io cosrθ1s,

hi “ ho ` Coe
´ωot1 ´ κopho ´ hiqIL{Ic cosrθ1 ` Θφs,

hi “ ho ` Coe
´ωopt1`Toq ´ κopho ´ hiqIL{Ic cosrθ1 ` Θφ ` ωLTos.

(5.7)

with θ1 “ ωLt1 ´ ϕpωLq ´ fc and Θφ “ fc ´ fo.

T
c

T
o

2π/ω
L

t
1

t

close

open

state

t
1
-T

c
t
1
+T

o

Figure 5.3: Schematic representation of the evolution of the crack state as a function of
time.

Thanks to the system of Eq. (5.7), it is possible to exclude the integration constants

and to rewrite the remaining equations into a matrix form:

„
κcp1 ´ cosrωLTcse´ωcTcq ´κc sinrωLTcse´ωcTc

cosrωLTo ` Θφs ´ cosrΘφse´ωoTo sinrΘφse´ωoTo ´ sinrωLTo ` Θφs


¨
„
cosrθ1s
sinrθ1s


“

˜
Io
IL

p1 ´ e´ωcTcq
Ic
IL

p1 ´ e´ωoToq

¸
. (5.8)

To gain some space, κo, necessarily equal to 1, is deleted. Then the system

can be solved for the unknowns cosrθ1s and sinrθ1s. The trigonometric identity
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cosrθ1s2 ` sinrθ1s2 “ 1 leads to a relation linking the time spent by the crack in the closed

region, Tc, and the loading intensity IL. For that, Io needs to be written as a function of

Ic (or the opposite). It can be demonstrated that:

Io “ κc

κo

ωo

ωc

d
ωL

2 ` ωc
2

ωL
2 ` ωo

2

Fo

Fc

Ic. (5.9)

It follows: „
IL

Ic

2

“ N

D2
, with:

N “ ωo
2

`
ωL

2 ` ωc
2
˘2

ωc
2

¨
ˆ
Fo

Fc

˙2

¨
`
1 ´ e´ωcTc

˘2 ¨
”
1 ´ 2 cosrωLTose´ωoTo ` e´2ωoTo

ı
`

`
`
ωL

2 ` ωc
2
˘

¨
`
ωL

2 ` ωo
2
˘

¨
`
1 ´ e´ωoTo

˘2 ¨
”
1 ´ 2 cosrωLTcse´ωcTc ` e´2ωcTc

ı
`

` 2ωo

`
ωL

2 ` ωc
2
˘

ωc

¨ Fo

Fc

¨
`
1 ´ e´ωcTc

˘
¨

`
1 ´ e´ωoTo

˘
¨
ˆ
ωL pωc ´ ωoq ¨ sinrωLTcsˆ

ˆ
`
1 ´ e´ωoTo´ωcTc

˘
`

`
ωc ωo ` ωL

2
˘
¨
”
e´ωoTo`e´ωcTc´cosrωLTcs¨

`
1 ` e´ωoTo´ωcTc

˘ ı˙
,

D “
`
ωc ωo ` ωL

2
˘

¨ sinrωLTcs ¨
`
1 ´ e´ωoTo´ωcTc

˘
`

` ωLpωo ´ ωcq
“
e´ωoTo ` e´ωcTc ´ cosrωLTcs ¨

`
1 ` e´ωoTo´ωcTc

˘‰
. (5.10)

Eq. (5.10) links the excitation (IL, ωL) as a function of the crack parameters (ωo, ωc, Fc,

Fo, Ic) and the time spent in the opened and closed region (To, Tc), where To and Tc are

connected by the equation To ` Tc “ 2π{ωL.

In order to solve Eq. (5.2), the expression should be reversed to get Tc as a function of

the loading intensity and the crack parameters. This does not appear to be analytically

possible. Nevertheless, for a given set of parameters for the loading and the crack, it is

possible to estimate IL{Ic as a function of Tc. Then, with the numerical calculation, it is

easy to inverse the curve. It results the prediction of the evolution of Tc as a function the

loading intensity IL.

Several curves, with different open rigidities, are plotted in Fig. 5.4(a). Due to the

modulated excitation, a peak always appears. It means it is not possible to maintain the

crack closed during a full period. This conclusion is coherent with the assumption of the

negligible influence of the probe beam on the crack motion and with the 100% intensity

modulation assumption of the pump beam. Depending on the crack characteristics and

the frequency fL, this peak can be shifted to shorter or longer times. For example, for

the set of parameters in Fig. 5.4(b), it is impossible to maintain the crack closed half of

the time period.

Reversion of the curve to get IL{Ic as a function of Tc is made for the first part of the

curve.
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Figure 5.4: (a): Evolution of the logarithm of the normalized acoustic intensity as a
function of the time spent by the interface in the closed region over a pump period (in %)
for Fo{Fc “ ´8, ωL “ 1 Hz, ωc{ωo “ 100 and ωo “ 2 mHz ( ), ωo “0,02 Hz p- -q, and
ωo “0,2 Hz (•••). (b): Zoomed of the case in (a) with ωo “ 2 mHz for Tc ď π{3.

In the general case, Fc ‰ Fo: hysteresis is present (Fig. 5.4). This leads to a different

path when the pump increases or decreases. In Fig. 5.4(b), when the pump amplitude

increases there is an abrupt passage from ‘A’ to ‘B’. The time spent by the interface in

the closed region suddenly passes from zero to more than 12% of the duration of a period.

Then, loading amplitude increase produces an increase of the time spent by the crack

in the closed region. The evolution follows the curve until reaching ‘C’, which is the

maximum pump amplitude. While the amplitude loading decreases, the time spent by

the crack in the closed region diminishes too. It goes back through ‘B’ and continues to

diminish until ‘D’. Afterwards, for lower amplitude the clapping stops, at a lower acoustic

amplitude than the one which is needed to initiate the breathing.

The time spent by the crack in the closed region as a function of the loading is needed

to evaluate the nonlinear sidelobe evolutions (Eq. (5.2)). Then, the curve AÑBÑC

or CÑDÑE must be inverted if the loading pump amplitude increases or decreases,

respectively. The evolution of the nonlinear sidelobes as a function of the loading pump,

for any set of the parameters, is obtained with Eq. (5.2).

With this theoretical work, one can compare experimental results to theoretical ones.

The optimization is possible by changing the parameters Fo{Fc and ωo,c as ωL is fixed

by the experiment. The best fit gives these parameters of the crack. With the crack

mechanical relaxation frequencies, the crack rigidities in opened and closed states are

estimated. Then, Ic,o and ηo,c are deduced. It appears possible to evaluate the distances

pho,c ´ hiq, where pho ´ hiq is the crack width diminution necessary to close the crack

-initially opened- and phc ´ hiq is the crack width diminution in the closed state of the

crack. This is directly related to the thickness of the crack. For that, one can use Eq. (5.6)

where the amplitude term is defined as in Eq. (1.13). The distances can be expressed, in

their complete form, as:
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ho,c ´ hi “ κo,cIc,o xLa
ωL

2 ` ωo,c
2

ˆ

ˆ

ˇ̌
ˇ̌
ˇ̌
Kβ

ℓκρc2
ωL`

ωL

c

˘2 ` ωT ´ωL

χ

»
– ωL{cb

ωT ´ωL

χ

pΨ
ˆc

ωT ´ ωL

χ

˙
` pΨ

´
´ωL

c

¯
fi
fl

ˇ̌
ˇ̌
ˇ̌ . (5.11)

A factor 1{2 is introduced because we used fptq “ r1 ` x cospωtqs{2, contrary to [20]

where fptq “ 1 ` x cospωtq.
Ic and Io are supposed evaluated and the other sample and experimental parameters are

known. Then, if ωT is estimated, it follows, from Eq. (5.11), an estimation of pho,c ´ hiq.
The crack mechanical relaxation frequencies ωo,c and the distances pho,c ´ hiq lead to an

estimation of Fc and Fo (Eq. (1.17)):

Fc,o “ ρc

2
¨ ωo,c ¨ pho,c ´ hiq . (5.12)

Providing the frequency ωT is determined, the forces required to open and close the

crack, the distances of the crack faces in opened and closed state and the rigidities of

the crack in both states are evaluated by the mean of the fit on the minima between the

experimental results and the theoretical predictions.

5.2.2 Estimation of the thermal relaxation frequency

In order to estimate the thermal relaxation frequency, a comparison of the 3D equation

to the 1D one is realized. Solution of the 1D heat equation, with the additional term,

(Eq. (1.10)) is required:

BT
Bt ` T

τT
“ χ

B2T

Bx2 ` I

ℓρcp
fptqΨpxq, (5.13)

with

Ψpxq “ e´p x
a q2

, (5.14)

and with fptq, as for the 3D case: fptq “ r1 ` x cospωtqs{2 (Eq. (3.5)) and ωT “ 1{τT .
The initial and boundary conditions are:

T pt “ 0q “ 0, (5.15a)

BxT
ˇ̌
x“0

“ 0, (5.15b)

leading to the following Green function:

Gpx, x1, tq “ e´t{τT

2
?
πχt

ˆ
e´ px´x1q2

4χt ` e´ px`x1q2
4χt

˙
. (5.16)
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It follows that the solution of Eq. (5.13) is:

T px, tq “
tż

0

8ż

0

I

ℓρcp
¨ fpt1q ¨ Ψpx1q ¨Gpx, x1, t´ t1q dx1dt1. (5.17)

Simplified 1D heat equation

The goal of this section is to estimate τT . There is no reason to solve this equation in its

complete form. The simplifications are also motivated by the fact that the 3D general

equation, solved in Sec. 3.2, does not give an analytical solution for the general case. The

maximum temperature rise evaluation, in the center of a nonmodulated beam, and for an

infinite time has been analytically solved (Eq. (3.18)). Solving the 1D equation in the

same condition as for the 3D case will provide an analytical determination of τT .

Consequently, the new conditions are x “ 0 and fptq “ 1. Eq. (5.17) is reduced to:

T px “ 0, tq “ I

ℓρcp
?
πχ

¨
tż

0

8ż

0

e
´

´
t´t1
τT

¯
2

?
t´ t1

¨ e´x1
2

´
1

a2
` 1

4χpt´t1q

¯

dx1dt1. (5.18)

For t Ñ 8, it leads to (Sec B):

lim
tÑ8

T px “ 0, tq “ Ia

2ℓρcp

c
πτT

χ
¨ e

a2

4χτT ¨ Erfc
ˆ

a

2
?
χτT

˙
. (5.19)

The characteristic thermal relaxation time has been introduced in the 1D heat equation

in order to avoid the heat rise to diverge up to infinity. Then, τt can be evaluated by

equalizing the two maximum temperature rises under the same condition. It corresponds

to equating Eq. (3.18) and Eq. (B.7). It leads to:

e´p a
2ℓ q2

¨
«
πErfi

” a
2ℓ

ı
´ Ei

„´ a

2ℓ

¯2
 ff

“ 2
?
πχτT

a
¨ e

a2

4χτT ¨ Erfc
ˆ

a

2
?
χτT

˙
, (5.20)

where τT is the only unknown. The characteristic thermal relaxation time depends on

the sample thermal characteristics (χ, κ), the light penetration length (ℓ) but also on the

beam radius (a). Consequently, ωT needs to be re-evaluated each time the beam radius

is modified.

It is numerically observed that as the beam radius diminishes, the thermal relaxation

frequency ωT increases. This is consistent with physical expectations: the shorter is the

spatial scale, the higher is the relaxation frequency.

5.2.3 Evaluation of the spatial beam distribution function

For an estimation of the forces Fc and Fo from the intensities Ic and Io, it remains to

evaluate the laser distribution Ψpxq in the Laplace domain. If the beam profile is assumed

gaussian, it follows:

Ψpxq “ e´p x
a q2

, (5.21a)
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and thus:

pΨppq “ a
?
π

2
¨ epap{2q2 ¨ Erfc

”ap
2

ı
. (5.21b)

At the opposite of Eq. (3.12) in Sec. 3.2, Eq. (5.21b) converges due to the small argument

in the exponential function.

5.3 Optimization of theory and experiment for crack

characterization

A beam distribution is now determined. The thermal relaxation frequency, ωT “ 1{τT ,
is evaluated. As explained in the end of Sec. 5.2, it is now possible to estimate the

parameters Fc, Fo, ηo, ηc, pho ´ hiq and phc ´ hiq. As the 3D heat equation is solved

(Sec. 3.2), it is also possible to evaluate the temperature rise induced at Fc and Fo, when

the crack closes and opens, respectively.

5.3.1 Theoretical predictions

A numerical program is developed. The fitted parameters are ωo, ωc and Fo{Fc. The

frequency ωL is fixed by the experiment. For each set of values, the evolution of IL{Ic
as a function of the time spent in the closed region is calculated with Eq. (5.10). The

maximum time spent by the crack in the closed region, associated to the limit when the

ratio IL{Ic diverges to infinity, is evaluated. The curve from 0 to this limit is inverted in

order to get the evolution Tc as a function of the normalized loading intensity IL{Ic. In
presence of a hysteresis, two curves can be realized: one when the loading increases and

one when it decreases (Sec. 5.2). Finally with Eq. (5.2), the evolution of the nth sidelobe

as a function of the loading intensity can be evaluated. In this case, the evaluation is

realized up to the sixth sidelobe. Then, for each sidelobe the number of minima with

their corresponding locations is evaluated .

When all these cases are evaluated, the fit between the experimental and these theoretical

predications values is realized. In a first step, for one theoretical prediction the intensity

Ic required to close the crack is estimated for all minima. The mean value of Ic and

the associated standard deviation among all the minima are calculated. The standard

deviation value is then compared to other theoretical cases. At the end, the set of

parameters with the minimum standard deviation corresponds to the crack parameters.

For a given sidelobe, if the theory does not predict as many minima as the experiment, the

evaluation is made for each combination given by the corresponding binomial coefficient.

The minimum standard deviation is considered.

Similarly, as the left and the right sidelobes do not have the exact same minima location,

the evaluation of Ic is realized for both case and the one with the smallest standard

deviation is compared to the other cases.

Finally, if several cases have a very close standard deviation to the minimum one, it is

possible to plot these few cases and to compare visually the tendencies to choose the best

one.
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It is important to notice that the path BÑC is identical in the increase or decrease of

pump power. The ‘return’ path, when the loading decreases, is longer as it corresponds

to CÑBÑD. The rest of the paths (AÑB and DÑE) are abrupt jumps from one state

to another. It follows that the evolution of the nonlinear sidelobes amplitude is identical

for the part [Po;8[ -where Po is the required power to close the crack- whether the pump

amplitude increases or decreases. In particular, the minima are not affected. However, in

the part ]0;Po] some changes occur due to the presence of the path BÑD when the pump

decreases. Some new minima could appear.

In our case, evaluation concerns only the increase. The possible combinations of these

different parameters are evaluated: ωL is fixed by the experiment (ωL “ 2π ¨ 0.5 Hz

in this case), ωo “ p1, 2, . . . , 9q ˆ 10´4,...,`5 Hz, ωc “ p5, 10q ˆ 100,...,4 ˆ ωo Hz, and the

hysteresis Fo{Fc “ r´10,´9, . . . ,´1s Y r0.1, 0.2, . . . , 1s where Fo{Fc is: negative if Fc ą 0

and Fo ă 0, positive if Fc,o ą 0, and equal to 1 for the case without hysteresis.

The importantly wide range of magnitudes possible for the crack mechanical relaxation

frequencies is motivated by the lack of known real values of these parameters.

Even if the theoretical predictions do not restrain any assumption on the crack mechanical

relaxation frequencies, the assumption ωc ą ωo is kept for evident physical reasons. Indeed,

the crack rigidity must be necessarily stronger in the closed state than in the opened one.

Case
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Sidelobe n

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 1 1 1 1 1 1 1
4 0 0 0 0 1 1 1 0 0 1 1 1 1 1
5 0 0 1 1 0 1 1 0 1 0 1 1 2 2
6 0 1 0 1 0 0 1 1 1 1 1 2 1 2

Table 5.2: Theoretical predictions of the different number of minima as a function of
the loading for the first six sidelobes.

All theoretical possible predictions of the number of minima as a function of an

increased loading are reported into Tab. 5.2. For the thousands considered cases, only

fourteen different combinations are possible. The influence of the parameters are studied.

Some cases, such as, for example, number 14 (‘0-0-1-1-2-2’), is possible only for a positive

hysteresis. Some other, cases 2 and 4 only if ωc " ωo.

The model also predicts cases where a nth sidelobe have more minima than the pn` 1qth
-cases 5-6, 8-10 and 13. This is observed in our experiment, even though with a different

number of minima.

The first and the second sidelobe never got any minimum (Tab. 5.2). Thus monitoring

the first and the second sidelobe evolution, on a scan, the crack is visible whatever are

the crack parameters and the loading from the pump (providing it breathes). In any case

the first sidelobe amplitude increases with the loading.
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The first case, ‘0-0-0-0-0-0’, has the evident drawback that it cannot provide any

fit between the experiment and the theory with the actual program. The second, third

and fifth cases also have this drawback they got only one minimum, preventing a fitting

either. However, all the different experiments exhibit several minima. Experimentally,

more minima than in the case 14 are always observed.

It is also possible that some other cases could be theoretically predicted for other sets of

parameters. Nevertheless, a high number of parameters with a large amount of orders of

magnitude is already tested.

One could believe that evaluating up to the sixth sidelobe has the drawback to take

into account sidelobes having rather small energy, which evolutions are then less accurate.

However, in order to get good estimations, it is required to get several minima. As, the

first two sidelobes are not having any and the third has only one, there is a necessity to

go up to higher sidelobes. Moreover, higher sidelobes provide opportunity to discriminate

between several parameter combinations (Tab. 5.2).

5.3.2 Experimental evaluation of the crack parameters

With this extended theory and this set of parameters, it appears that the number of

minima on the first six sidelobes cannot be increased, but only reduced. The case 14,

with the highest number of minima, predicts the combination ‘0-0-1-1-2-2’ as in [20].

Among the different crack parameter combinations, the evolution of the nonlinear sidelobes

amplitude as a function of the loading for the cases corresponding to a standard deviation,

σ ď σm ` 1 (where σm is the smallest standard deviation), are observed.

The best fit has the following parameters: ωc “ 300 Hz, ωo “ 6 Hz and Fo{Fc “ 1. With

these parameters, Ic is reached for PL “ 26.0 mW with a standard deviation σ “ 13.5 mW.

This fit is related to the experimental left minima. Only the first (22.8 mW) and the first

two (58.9 and 128.9 mW) minima on the fourth and the sixth sidelobe, respectively, are

predicted.

Some cases propose a better standard deviation, down to 12.8mW, but predict a vanishing

of the odd sidelobes for large loadings. Conversely, with these parameters, and as in the

experiment, the odd sidelobe amplitudes do not vanish (Fig. 5.5). Among the observed

cases, only ωo “ 6 Hz predicts such behavior. If the crack mechanical relaxation frequency

in the open state increases to 7 Hz, the vanishing of odd sidelobes for high powers appears.

If it diminishes to 5 Hz, the standard deviation increases. Different crack mechanical

relaxation frequencies in the closed state predict a relatively similar behavior, ωc “ 300 Hz

is the smallest one and induces the smallest standard deviation. However, the difference

with other frequencies is small. This makes the results more confident on the opened

state than on the closed one. This can be attributed to the fact that the considered case

could be interpreted as ωc " ωo,L.

If the possible number of minima with this new developed model is not increased from

[20], the final estimations ωo » 2ωL, confirms the necessity to get rid of the previous

condition ωo,c " ωL.

One can note that nonlinear mixed-frequencies are generated in the experiment for powers

below the required one to reach Fc. This is not possible theoretically. It can be attributed
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to the presence of asperities which are touching, at least partially, for low powers [64].

The theory supposes an ideal crack with two parallel faces so that the change between

opened and closed is abrupt which is far from the real geometry of the crack. Then, the

estimated Fc corresponds to a ‘real’ crack closing but touching of surface asperities can

occur at lower forces than Fc, generating nonlinearities.
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Figure 5.5: Experimental (a) and theoretical (b) dependences of the amplitude of the
first six left sidelobes on the pump power (a) and the normalized intensity IL{Ic loading
the crack (b). Theoretical evolutions are obtained with ωo “ 6 Hz, ωc “ 300 Hz and
Fo{Fc “ 1.

A power of 26.0 mW, required to close the crack, corresponds, in this configuration,

to a temperature rise of „18 K.

With the crack mechanical relaxation frequencies, the opened and closed rigidities are

directly deduced:

ηo “ ωoρc

2
» 45.1 MN.m´3, (5.22a)

ηc » 2.3 GN.m´3. (5.22b)

Eq. (5.9) leads to Io{Ic » 0.89.

The intensities Ic,o can be easily calculated now for the experimentally known powers:

Ic “ PLpIL “ Icq
πa2

¨ p1 ´ rq » 818 kW.m2, (5.23a)

Io “ Io

Ic
¨ Ic » 724 kW.m2. (5.23b)

Then, it is possible to estimate PLpIL “ Ioq “ pIoπa2q{p1 ´ rq “ 23 mW.

With Eq. (5.20), τT is evaluated: τT » 0.035 s, and ωT “ 1{τT » 29 Hz.

The distances pho ´ hiq and phc ´ hiq can be deduced from Eq. (5.11). It follows:

ho ´ hi » 13.9 nm, (5.24a)

hc ´ hi » 0.28 nm. (5.24b)
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Finally, with Eq. (5.12) the forces Fc and Fo are estimated:

Fc “ Fo » 1.3 N.m´2. (5.25)

The dimensions of the rigidities and the force are not usual because they correspond

to those acting on a unit surface (Sec. 1.3.2). It is interesting to have an estimation of the

‘real’ values. In order to reach such estimation, an application surface of the considered

force needs to be defined. It is chosen to consider a beam diameter multiplied by a

penetration length of light in the sample. This corresponds approximately to the surface

of the crack irradiated by the beam. It follows:

ηo “ 2aˆ ℓˆ ηo » 2.7 N.m´1. (5.26a)

ηc » 132.9 N.m´1. (5.26b)

This obtained ‘real’ opened rigidity is logically smaller than the closed one. These rigidities

need to be compared to the one of the glass sample. The ‘real’ rigidities of the crack

are associated to solid mechanics and link forces to displacement. On the contrary, the

elastic modulus (or Young modulus), mathematically equal to 3K ¨ p1 ´ 2νq, is a function

of the strain and stress. However, it is possible to compare the elastic modulus to the

equivalent rigidity by multiplying the former by the ratio of the cross-sectional area to

the length of the element:

ηglass “ 2aˆ ℓˆ 3K ¨ p1 ´ 2νq
ho ´ hi

» 278 GN.m´1. (5.26c)

Both opened and closed ‘real’ rigidities are several orders of magnitude lower than the

one of the glass. This predictable result justifies the possibility to estimate, in quasistatic

regime, the dilatation associated to a temperature profile neglecting the rigidity of the

crack (Eq. (3.20)).

Similarly as for the rigidity it is possible to estimate a ‘real’ force acting on the crack

to open and close it. This leads to:

Fc,o “ 2aˆ ℓˆ Fc,o » 74.0 nN. (5.26d)

The value of the ‘real’ force is very weak because the displacement is nanometric. This

must not conceal the fact that the stress is, in reality, locally high because focused in a

micrometric spot.

The distance pho ´ hiq corresponds to the distance covered by the crack faces under

the pump loading action to close the crack. It does not consider the constant heat due

to the pump or the probe beams. It has been demonstrated in Chap. 3 that a constant

heat influences the distance between the crack faces. In particular, the probe beam can

permanently change the distance between the crack faces during the loading (Sec. 3.5.3).

This effect is not taken into account in this theory. Thus, considering the distance

pho ´ hiq as the distance between the crack faces at temperature room would lead to an
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underestimation.

The total induced temperature change is composed of a constant increase in temperature

(considered constant for long enough times) and of an oscillating temperature change

(related to the fact that the laser beam is intensity modulated at some finite frequency).

The constant heat induced by the pump laser beam corresponds to the minimum of

the total induced relative temperature change (oscillating + constant). Ideally, the

temperature should be null when the intensity of the pump is null. However, due to the

pump power and frequency involved, this minimum is not 0. Consequently, there could

be an influence of the constant heating on the constant distance between the crack faces

around which the crack dynamic breathing occurs. In the current case, the minimum of

the induced temperature change for the pump beam, at the power required to close the

crack (26 mW) is of 2.5 K. Then, it can be neglected in the calculation.

On the contrary, the probe beam has a constant power of 121 mW and needs to be

considered. In the following calculation, it is assumed to correspond to a beam intensity-

modulated at frequency f Ñ 8 to simplify the calculation. Then, the displacement due

to the probe beam can be estimated with the use of the dilatation equation (Eq. (3.20)).

The maximum temperature rise is up to „46 K. This leads to:

∆L » 448.1 nm. (5.27a)

Consequently, the distance between the crack faces without external loading and at room

temperature, reads:

h “ ho ´ hi ` ∆L » 462.0 nm. (5.27b)

This final result leads to one of the most interesting evaluated parameters for NDT&E

applications: the distance between the crack faces. In this case, this distance is equal

to „0.5 µm. This evaluation is consistent with the estimation from literature [42]. The

ratio of the distance between the crack faces and the length of the crack is in the order

of magnitude of 10´3 ´ 10´4 [64]. For a centimeter length crack, it leads to a distance

between the crack faces down to a micrometer.
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Conclusion

The evolution of the amplitude of the nonlinear sidelobes as a function of the pump power

exhibit clear non monotonous behavior, as predicted by the theory. The evidence of

minima, for particular pump powers and sidelobes is clear and their position is studied.

The development of the theory provides the evolution of the nonlinear sidelobes, as a

function of the pump power, independently of the crack mechanical relaxation frequencies

ωo,c. Without this quasistatic assumption, it is possible to fit the experimental result

with the theoretical ones.

It directly follows an estimation of the crack mechanical relaxation frequencies and

the hysteresis Fc{Fo. With these informations it is then possible to estimate the opened

and closed rigidity ηo,c, and the intensities Ic,o, and the forces Fc,o required to close

and open the crack. Also, the displacement of the crack faces in the opened and closed

state, pho ´ hiq and phc ´ hiq, respectively, are evaluated. The temperature inducing the

crack closing and opening is also provided. Finally, combined with the estimation of the

dilatation of the crack faces induced by the probe beam, the distance between the crack

faces, at the steady state and without loading, is obtained.

The new theoretical model provides better estimations but some discrepancies remain.

In particular the presence of some minima are not explained with the actual theory. Due

to the many ‘extra’-minima, it appears that the assumptions on the model are still too

numerous and have an important role in the evolution of the nonlinear sidelobes as a

function of the loading. In particular, the asymmetrical heating could be a candidate to

influence the nonlinear sidelobe behaviors. Nevertheless, it is worth emphasizing the fact

that several crack parameters are estimated by this method.





Chapter 6

Other phenomena related to the

increase of pump amplitude

Abstract

In this chapter, other phenomena related to the increase of the pump amplitude are

observed and analyzed. Firstly the intensity Ic, required to close the crack, is determined.

Then, the evolution of the phase is studied for higher powers.

The influence of the pump frequency on the position of the amplitude minima is also

experimentally and theoretically evaluated.

In a third section, a particular crack which exhibits a sudden change in the nonlinear

sidelobes evolution for high pump powers is described. The main peak evolution appears

to be affected by this behavior. The repeatability, the influence of the maximum pump

power, the increase and decrease of the pump power and the modulation frequency are

studied in order to analyze these unexpected behaviors.

Along the whole chapter, the experiments are conducted with the set-up Υ1 and with

the parameters: aH “ 34 µm, fH “ 24.9 kHz and PH “ 35 mW for the probe beam,

aL “ 36 µm and fL “ 1 or 1.5 Hz for the pump beam. The pump power evolves between

PL “ 1 and 125 mW maximum but some experiments are conducted with a reduced

amplitude. Only these two latter parameters, the pump frequency and the pump power,

are indicated in the following.

6.1 Determination of the intensity required to close

the crack

The evolution of the sidelobes under the pump amplitude action allows estimations of

crack parameters. The theory assumes that the nonlinear frequency-mixing starts when

the loading force FL equals the one required to close the crack, Fc. Thus, an abrupt

change should be observable in the evolution of the amplitude. The detection of this effect

would allow a direct estimation of the intensity Ic, proportional to Fc. In the previous

93
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experiment (Sec. 5.1), this effect has not been observed. The absence of an abrupt change

in the amplitude evolution has been attributed to the existence of micro-contacts in the

crack before the ‘complete’ crack closing.

The analysis of the amplitude and phase evolutions with the lock-in amplifier, by the

mean of the set-up (Sec. 4.2) may allow better results than with a spectrum analyzer.

The numerous points taken at each measurement should allow to detect the step in the

generation of nonlinear mixed-frequencies more easily. The phase evolution, should also

allow a detection differently: as long as the mixed-frequencies are not generated the phase

values are incoherent and the standard deviation among the values is important. Once

the clapping starts, the mixed-frequencies are generated, the phase becomes stable. An

experiment, on another crack, is realized. The pump beam modulation frequency is of

1 Hz. The pump power evolves from 1 to 109 mW.
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Figure 6.1: Dependence of the amplitude and the unwrapped phase of the nonlinear
sidelobes on the pump power. (top): Detection with the spectrum analyzer of the
fH ´ nfL p q and fH ` nfL (- -). (middle-bottom): Detection with the lock-in amplifier.
(b): Zoom for the powers lower than 40 mW.

Results are presented in Fig. 6.1. They exhibit the evolution of the first and the second

nonlinear sidelobes as a function of the pump power amplitude in Figs. 6.1(a) and 6.1(b),

respectively. Comparison with the spectrum analyzer is proposed. As previously, the

pump power evolves by steps (56 in the present experiment). To each step corresponds

several points recorded by the lock-in amplifier. All the data are presented in Fig. 6.1.

One can see that the signal amplitude saturates for high powers on the spectrum analyzer

(top) whereas it still increases on the lock-in amplifier (middle). There are no yet clear

comprehension of this phenomenon.
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The interest is centered on the low power to detect the nonlinear generation threshold.

For the first nonlinear sidelobe (Fig. 6.1(a)), the spectrum analyzer does not allow an

estimation. For the second sidelobe (Fig. 6.1(b)), it is easier to detect the change of

the crack state, but the threshold is not clearly delimited. On the contrary, the lock-in

amplifier allows an estimation either by the amplitude (when it starts to increase) or by

the phase (when it is stable). Both effects are clearly visible in Figs. 6.1(a) and 6.1(b).

The threshold detected by the amplitude with a lock-in amplifier can be estimated at

11.1 and 12.5 mW for the first and second sidelobe, respectively. This corresponds to two

consecutive experimental points. The phases evolution gives an estimation of 12.5 mW in

both cases, which is consistent with the results on the amplitude. It also fits the results

of the second nonlinear sidelobe evolution with a detection by the spectrum analyzer.

Consequently, it is possible to estimate Ic this way. For PL “ 12.5 mW, it follows

Ic » 2.7 MW.m´2.
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Figure 6.2: Dependence of the unwrapped phase detected with the lock-in amplifier on
the pump power for the second harmonic (n “ 2) when the pump power increases (a)
and decreases (b).

The experiment can be repeated for the case of the pump power decrease. In general,

the clapping starts and stops for the same intensity either the pump power increases

or decreases. Nevertheless, some cases exhibit a hysteresis: the clapping lasts for lower

intensities than Ic, estimated when the pump power increases. In Fig. 6.2 the unwrapped

phase evolution is presented for a different location on the crack and for a frequency

fL “ 1.5 Hz. The pump power successively increases and decreases. Figs. 6.2(a) and

6.2(b) are zooms of the lower powers (for PL ď 16 mW) for the increase and the de-

crease of the pump power, respectively. From the former case, Ic can be estimated at

P pIL “ Icq “ 11.1 mW whereas the clapping stops, on the latter, for PL “ 6.2 mW.

When this hysteresis is observed, the shift of the transition between the clapping and

the non-clapping regime is always for lower pump power when the latter decreases. This

phenomenon can be attributed to the creation and the re-organization of contacts when

the crack faces are touching thanks to the clapping, provided for higher pump powers.

Thus, Ic needs to be evaluated when the pump power increases.
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For several cases, the determination of Ic is not evident because the transition is not

very clear. This can be attributed to the creation of micro-contacts between the crack

faces as the pump power increases. These micro-contacts would induce the generation

of nonlinear mixed-frequencies. Consequently, the nonlinear sidelobe amplitude appears

smoother.

For higher sidelobes, the nonlinear sidelobes generation appears for higher powers. It leads

to another estimation of Ic. For example, PL “ 19.1 mW for the third sidelobe in the first

experiment corresponding to Fig. 6.1. It can be suggested that the correct Ic is detected by

the lower sidelobes as the higher appear only when the signal-to-noise ratio is good enough.

6.2 Evolution of the phase as a function of the pump

power

The phase evolution provides an accurate determination of the intensity required to close

the crack (Sec. 6.1). Its evolution as a function of the pump power is also of interest for

the detection of the minima on the nonlinear sidelobe amplitude evolutions.

In [20], it is predicted that, with the assumption ωL ! ωo,c, the phase evolves under the

loading amplitude action as:

ϕn “ ´n1
2

„
acos

ˆ
Fc

FL

˙
´ acos

ˆ
Fo

FL

˙
´ acos

ˆ
An

|An|

˙
, (6.1)

with An “ 1{n ¨ sinrnωLTc{2s. The last term of Eq. (6.1), acospAn{|An|q, changes from 0

to π when the sign of An changes. This corresponds to an amplitude minimum. It implies

sudden important phase variations. In-between two minima, the phase evolves slowly:

the last term is constant and the first is a function of an arccosinus. Without hysteresis,

only the last term is not null and the phase is supposed either equal to 0 or to π.

It appears that sudden changes in the phase evolution could provide an accurate

determination of the minima position. However, the calculation should be developed

without the quasistatic assumption on the crack motion, as realized for the amplitude in

Sec. 5.2. The phase evolution follows the generic formulation:

ϕn “ n ¨ ωL

ˆ
t1 ´ Tc

2

˙
´ acos

ˆ
An

|An|

˙
, (6.2)

where the notations t1 and Tc are identical to the ones in Sec. 5.2. Thus, t1 and Tc
correspond to the transition between closed and opened state and to the time spent in the

closed region over a period, respectively. The generic definition of the phase (Eq. (6.2)) is

demonstrated in Chap. 7. The parameters t1 and Tc are required to solve Eq. (6.2). If Tc
is already determined (Sec. 5.2), t1 remains undetermined. From Eq. (5.8), it is possible

to rewrite the dependence on Io as:

cosrθ1s ´ cosrθ1 ´ ωLTcs ¨ e´ωcTc “ κc

Io

IL

`
1 ´ e´ωcTc

˘
. (6.3)
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The notations of the previous chapter are conserved, the instant t1 is contained in θ1.

The left part of the equation (6.3) can be rewritten:

b
1 ´ 2 cosrωLTcse´ωcTc ` e´2ωcTc cos

„
θ1 ` atan

ˆ
sinpωLTcqe´ωcTc

1 ´ cospωLTcqe´ωcTc

˙
“

κc

Io

IL

`
1 ´ e´ωcTc

˘
. (6.4)

As IL{Ic (and not IL{Io) is given in Eq. (5.10), it is convenient to write θ1 as a function

of IL{Ic. Isolating θ1 from Eq. (6.4), it follows:

θ1 “ ˘ acos

»
–

ωo

ωc

b
ωL

2`ωc
2

ωL
2`ωo

2 ¨ Fo

Fc
¨
`
1 ´ e´ωcTc

˘
a
1 ´ 2 cosrωLTcs ¨ e´ωcTc ` e´2ωcTc

¨ Ic
IL

fi
fl ` 2pπ`

´ atan

„
sinpωLTcq ¨ e´ωcTc

1 ´ cospωLTcq ¨ e´ωcTc


, (6.5)

with p P Z. As θ1 “ ωLt1 ´ ϕpωLq ´ atanpωL{ωcq, it is finally possible to determine t1
and to get a formula for the phase evolution. The considered sign of the acos should be

‘+’ in order to have ωLt1 P R` for any values of ϕpωLq and atanpωL{ωcq and the 2pπ

term can be neglected in the phase definition, defined modulo 2π. The phase then reads

ϕn “n

¨

a̋cos

»
–

ωo

ωc

b
ωL

2`ωc
2

ωL
2`ωo

2 ¨ Fo

Fc
¨
`
1 ´ e´ωcTc

˘
a
1 ´ 2 cosrωLTcs ¨ e´ωcTc ` e´2ωcTc

¨ Ic
IL

fi
fl´atan

„
sinpωLTcq ¨ e´ωcTc

1 ´ cospωLTcq ¨ e´ωcTc


`

´ ωLTc

2
` ϕpωLq ` atan

„
ωL

ωc

 ˛
‚´ acos

„
An

|An|


. (6.6)

It is interesting to define the phase 9ϕn where only the parts evolving with the change of

pump power are considered:

ϕn “n

¨

a̋cos

»
–

ωo

ωc

b
ωL

2`ωc
2

ωL
2`ωo

2 ¨ Fo

Fc
¨
`
1 ´ e´ωcTc

˘
a
1 ´ 2 cosrωLTcs ¨ e´ωcTc ` e´2ωcTc

¨ Ic
IL

fi
fl´atan

„
sinpωLTcq ¨ e´ωcTc

1 ´ cospωLTcq ¨ e´ωcTc


`

´ ωLTc

2

˛
‚´ acos

„
An

|An|


. (6.7a)

with

ϕn “ 9ϕn ` n ¨
„
ϕpωLq ` atan

ˆ
ωL

ωc

˙
. (6.7b)

It follows from Eq. (6.7a) that a minimum of the amplitude remains associated to a

phase change. It confirms the potential of the phase detection to determine the amp-

litude minima positions. The other terms in Eq. (6.7a) demonstrate that, even without
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Figure 6.3: (a): Theoretical evolution of the phase of the photoacoustic signal of the
nonlinear sidelobes, related to n “ 1 ´ 6, as a function of the pump power. Parameters
are as in Fig. 5.5(b): Fo{Fc “ 1, fL “ 0.5 Hz, ωo “ 6 Hz, ωc “ 300 Hz. (b): Evolution of
the amplitude and the unwrapped phase of the photoacoustic signal of the fifth nonlinear
sidelobe as a function of the pump power. The signal is analyzed with a lock-in amplifier.

hysteresis, the phase can evolve in-between two minima, on the contrary to Eq. (6.1).

Fig. 6.3(a) is an example of theoretical phase evolution of the first nonlinear sidelobes.

The parameters are identical to those determined for the crack in Chap. 5: ωL » 3.14 Hz,

ωo “ 6 Hz, ωc “ 300 Hz.

An experiment is conducted for several sidelobes with an evolution of the pump power.

Fig. 6.3(b) demonstrates the evolution of the phase and the amplitude, detected with the

lock-in amplifier for a pump power between 1 and 125 mW and fL “ 1.5 Hz.

For each minimum of the amplitude corresponds a change of phase. In-between two

successive minima, the phase slowly evolves as assumed by Eq. (6.7a). The experiment

and the theory exhibit the same overall behavior, even though, this experimental example

contains more minima than theoretically predicted (4 on the fifth sidelobe in Fig. 6.3(b)).

This technique allows a particularly interesting alternative to minima detection. It is

very sensitive and precise because the changes are abrupt, important, and concern only

one specific pump power.

As a conclusion for this section, both the evolution of the amplitude and the phase

provide the information on the minima. However, the evolution of the phase is more

sensitive and thus offers a more precise value of the loading corresponding to a minimum

amplitude. It also offers the possibility to detect the transition between non-clapping to

clapping regime. This leads to the determination of the particular loading required to

close the crack.
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6.3 Influence of the pump frequency on the sidelobe

evolutions with the increase of the pump power

The influence of the pump frequency on the crack breathing efficiency has been discussed

in Chapter 3: the time spent by the crack in the closed region evolves as a function of

1{ωL: the lower is ωL, the larger is the time spent in the closed region. The choice of the

pump frequency also influences the nonlinear sidelobe evolutions as they are functions of

ωLTc (Eq. (5.2)) and as Tc is also function of ωL (Eq. (5.10)).

Three different theoretical cases are studied with the following parameters: ωo “ 0.2 Hz,

ωc “ 20 Hz, and ωL “ 0.6, 1 and 2 Hz. No hysteresis is assumed, Fo{Fc “ 1. Its presence

would not affect the conclusions. In Fig. 6.4(a), the evolution of IL{Ic as a function of

the percentage of the time spent by the crack in the closed region over a pump period is

presented. As predicted, the maximum time is inversely proportional to ωL. For these

crack parameters, the crack spends, at the maximum, „27 %, „23 % and „18 % of the

time, over a pump period, in the closed state for ωL “ 0.6, 1 and 2 Hz, respectively.
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Figure 6.4: (a): Evolution of the logarithm of the normalized acoustic intensity as a
function of the time spent by the crack in the closed state for Fo{Fc “ 1, ωo “ 0.2 Hz,
ωc “ 20 Hz and ωL “ 0.6 Hz p q, ωL=1 Hz p- -q and ωL=2 Hz (•••). (Vertical dashed
lines): Time spent (in %) by the crack in the closed state over a pump period to reach
the minima on the fourth (16.7%), fifth (20%) and sixth sidelobes (25%), respectively.
(b): Dependence of the amplitude |An| of the fifth p q and sixth p- -q sidelobes on the
normalized intensity IL{Ic in the conditions Fo{Fc “ 1, ωo “ 0.2 Hz, ωc “ 20 Hz and
ωL “ 0.6, 1 and 2 Hz.

In Fig. 6.4(b) the evolutions of the fifth and sixth sidelobes are presented for these

three pump frequencies. The other sidelobes are not presented to simplify the graph. For

these cases, the nonlinear sidelobes associated to n “ 1, . . . , 3 do not present any minima.

The fourth one has a behavior close to the fifth one. The fifth and the sixth nonlinear

sidelobes exhibit the two possible scenarios.

Firstly, the minima can be shifted to higher powers as the pump frequency increases. For

example, the sixth sidelobe presents a minimum reached for FL{Fc “ 1.76, 2.26 and 6.1
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for ωL “ 0.6, 1 and 2 Hz, respectively.

Secondly, a minimum can disappear as the pump frequency increases. For example, the

fifth nonlinear sidelobe minimum, which is shifted when the pump frequency changes

from ωL “ 0.6 to 1 Hz, is not present for ωL “ 2 Hz.

Both behaviors are related to the decrease of the crack breathing efficiency when the pump

frequency increases. A minimum on a sidelobe amplitude occurs for a particular time

spent in the closed region by the crack over a pump period. It corresponds to a particular

value of the product ωLTc (Sec. 1.3.2). For example, the fifth nonlinear sidelobe has,

for the case ωL “ 0.6 Hz, a minimum for IL{Ic “ 2.47, equivalent to lnpIL{Icq “ 0.904.

From Fig. 6.4(a), it corresponds to a crack closed during 20% of the time over a pump

period.

If ωL increases from 0.6 to 1 Hz, the crack is closed during 20% of the time over a pump

period for IL{Ic “ 4.61. Then, the minimum is shifted towards more important loadings.

For ωL “ 2 Hz, the crack cannot spend more than „18% of time, over a pump period, in

the closed state. The crack needs to be closed 20% of the time over a pump period in

order to provide a minimum to the fifth nonlinear sidelobe. Then, this minimum is not

reachable and disappears over the nonlinear sidelobe evolutions.

In Fig. 6.4(a), the percentage of time required to spend in the closed state, over a pump

period, to reach the minimum of the fourth, the fifth and the sixth sidelobe are plotted.

The minimum on the fourth sidelobe, not presented in Fig. 6.4(b) is present only for the

case ωL “ 0.6 Hz. The minimum on the sixth sidelobe is present in the three cases with

a loading varying as a function of the pump frequency, as previously described.

If the pump frequency continues to increase, fewer minima are expected.

Substituting Eq. (5.10) into Eq. (5.2) leads to the observation that ωL has an influence on

the nonlinear sidelobe evolutions only in the dynamic regime, and not in the quasistatic

one associated to ωL ! ωo,c.

The other nonlinear sidelobe evolutions, even though they do not present minima,

are also affected by the change of the pump frequency. The behaviors are similar but

with different amplitudes. The main nonlinear sidelobes, such as the first and the second

(fH ˘ fL and fH ˘ 2fL, respectively), have their amplitude decreasing due to the crack

breathing efficiency evolution. For example, the first nonlinear sidelobe maximum amp-

litude, for an infinite loading, passes from 0.76 to 0.54.

On the contrary, some higher sidelobes have larger amplitudes. For example, for an

infinite loading, the third sidelobe increases from 0.18 to 0.33.

The proposed theoretical cases are chosen to clearly demonstrate the possible changes

of the evolution of the nonlinear sidelobe amplitudes. However, these changes highly

depend on the crack parameters such as ωo, ωc and Fo{Fc, and more specifically on the

ratios ωo,c{ωL. For other crack parameter combinations, the minima shifting can be lower

or not observable.

Two experiments are realized on the same location with the set-up Υ1. Only the first

three sidelobes are shown at two different frequencies: fL “ 1 and 1.5 Hz. The pump

power varies between 1.1 mW up to 108.9 mW. The power steps, between two successive

experimental points, are between 1.2 and 6.6 mW.
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Figure 6.5: Dependence of the amplitude of the first three sidelobes on the pump power
loading the crack at frequency fL “ 1 Hz ( ) and fL “ 1.5 Hz (- -).

Results are plotted in Fig. 6.5. The shift of the minima is clearly demonstrated as

predicted by the theory. For this case, and this pump power variation, the second

sidelobe contains one minimum and the third two. The minima are shifted from 49.2 to

79.2 mW for the second sidelobe and from 29.2 and 86.4 to 49.2 and 103.2 mW for the

third sidelobe, respectively. There is no evidence of a suppression of a minimum in these

experiments.

The presence of a minimum on the second sidelobe is not theoretically possible in any

case. It corresponds theoretically to a crack closed during half time of a pump period.

As it is a sidelobe with an important energy, the crack parameters determined by the fit

method of Chap. 5 should not be conclusive. Even though, the minima shift is consistent

with the theoretical behavior predications.

The first sidelobe also has an interesting evolution. Indeed, for fL “ 1 Hz, the amplitude

decreases of „9 dB, whereas this attenuation appears, for fL “ 1.5 Hz much after and is

less important: „3 dB. This tends to confirm the possibility of a crack being more and

more closed.

6.4 Other observed phenomenas

Most of the phenomena are understood and explained with the theoretical model. Several

discrepancies are still present but the general behavior and the influence of the parameters

are well described. However, two unexpected phenomena are observed, both on the

same crack and are associated to particular pump powers. One concerns the main peak

amplitude and occurs at low pump power, whereas a second one concerns the nonlinear

sidelobe evolutions for higher pump powers. The latter phenomenon is firstly discussed.

The sample used in the following experiments is, as for the previous ones, a glass plate

with a crack realized by thermal shock.

6.4.1 Second state of the crack

As it has been previously shown in Chap. 5, the evolution of the nonlinear sidelobes as

a function of the pump amplitude is rather well predicted. However, for a particular

sample, the evolution of nonlinear sidelobes appears to be in two possible regimes. Only
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the first one is theoretically predicted. A description of these experimental observations

is proposed. At the end some tentative explanations of the observed phenomena are given.
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Figure 6.6: Dependence of the amplitude of the photoacoustic signal of the first five
sidelobes (a) and the main peak (b) on the pump power loading the crack at frequency
fL “ 1.5 Hz. The vertical dashed-line separates the increase from the decrease of the
pump power.

A first result of the evolution of nonlinear sidelobes for n P r1; 5s is presented on

Fig. 6.6(a). In this experiment, the pump amplitude varies from 1.1 to 143.3 mW with

56 power steps and then decreased down to 1.1 mW with the same 56 steps. The vertical

dashed line is the limit between the pump amplitude increasing and decreasing.

The first part of this curve, for PL ď 125 mW is similar to the previous experiments.

One can note that the sidelobes do not appear all at the same power, as previously

discussed (Sec. 6.2). A small deviation in the evolution is detected in the first and second

sidelobe at PL “ 27 mW, just before the rise of the higher sidelobes. In this first part,

the evolution exhibits minima (see for example Fig. 6.7(b)). In Fig. 6.7(b), corresponding

to PL “ 79.2 mW, all even sidelobes have a simultaneous minimum. This corresponds

theoretically, to a crack closed half time of the pump period (Eq. (1.20a)). It would

indicate that for PL ě 80 mW, the crack is closed more than half time over a pump

period.

The first sidelobe clearly decreases for PL ě 100 mW. Comparison between left and right

sidelobes demonstrate a very good agreement on the position of the nonlinear sidelobe

evolutions. Only the amplitudes are different.

For PL » 125 mW a sudden amplitude decrease appears. This decrease is visible

on all the sidelobes. It is very important: more than 10 dB for the second and third

sidelobe, „15 dB for the third and fourth one (Fig. 6.6(a)). This decrease appears at the

same time for all the sidelobes. Fig. 6.7(c) is the last spectrum before this transition,

for P “ 124.9 mW. Beyond this power, for 125 ă PL ď 143.4 mW, the evolution of

nonlinear sidelobes is relatively monotonous. The first and the second sidelobes can be
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Figure 6.7: Spectra of the photoacoustic signal for points A, B, C and D in Fig. 6.6
corresponding to the drop of the main peak at PL “ 33.8 mW (a), the amplitude minimum
of the second and the fourth sidelobe at PL “ 79.2 mW (b), the last point before the
change of the crack state at PL “ 124.9 mW (c), and the maximum pump power, in the
second state of the crack, at PL “ 143.4 mW (d), respectively.

considered stable in this regime, whereas the fourth and the fifth slowly increases and

decreases, respectively. These evolutions are very small in comparison to the part for

PL ď 125 mW. No minima are present anymore. A spectrum, at the highest pump power,

P “ 143.4 mW, is presented in Fig. 6.7(d). One can see the global decrease and the

absence of the highest sidelobes in comparison to Fig. 6.7(c). However, the nonlinear

mixed-frequencies are still present. Asymmetry of the left and right nonlinear sidelobes is

more pronounced in that second state.

The sudden and important change on all the sidelobes means that an important change

in the crack occurs.

When the pump power decreases, a hysteresis is observed. In Fig. 6.6(a), the passage

from the first to the second state occurs for PL “ 125 mW when the pump amplitude

increases, whereas the return to the first state happens for PL » 110 mW. Depending on

the initial state of the crack, there is a zone where both states appear stables.

Once the crack is back to the first state, a symmetry with the other part of the curve is

observed: the behavior and the minima positions fit. For example, the minima of the

fourth sidelobes are at 41, 79, and 114 mW when the pump power increases and 76 and

41 mW when the pump power decreases. The third minimum, at P “ 114 mW, is absent

because the crack is in this second state.

Some experiments, discussed later, present much stronger hysteresis. The second state

can remain until the pump power decreases down to values under 20 mW.

6.4.2 Changes in the main peak amplitude

The main peak amplitude evolution is highly different from the previous experiments

(Chap. 5). Fig. 6.6(b) demonstrates the evolution of the main peak amplitude as a

function of the pump power for the same experiment presented in Fig. 6.6(a).

The amplitude is maximum when the pump power is maximum, but a huge drop

is present before, for PL “ 34 mW. This loss in amplitude is very important („25 dB

Fig. 6.6(b)), and very sharp: a 2 mW increase or decrease from 34 mW in the pump
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power makes the main peak amplitude increases by „10 dB (amplitude multiplied by

more than 3).

This drop is present when the pump power increases or decreases. The behavior is globally

symmetrical: the drop is at 34 mW when the loading increases and at 31.5 mW when it

decreases. This difference concerns only one pump power step, and may be neglected.

This drop (at PL “ 34 mW) appears after the apparition of the higher sidelobes

(PL “ 27 mW). Then, it does not correspond to the loss of energy by an efficient frequency-

mixing conversion.

One can also note than in this part, the first nonlinear sidelobes have larger amplitudes

than the amplitude of main peak (Fig. 6.7(a)). However, this concerns only a few steps

around this drop.

6.4.3 Evolution of the phase

The evolution of the amplitude and the phase, recorded by the lock-in amplifier, is also

studied. In Fig. 6.8, the evolutions of both amplitude and phase for the fourth and the

fifth sidelobes are presented.
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Figure 6.8: Dependence of the amplitude and the unwrapped phase of the nonlinear
sidelobes on the pump power. (top): Detection with the spectrum analyzer of the
fH ´ nfL p q and fH ` nfL p- -q. (middle-bottom): Detection with the lock-in amplifier.
The vertical dashed-line separates the increase from the decrease of the pump power.

The evolution on the amplitudes detected by the spectrum analyzer and the lock-in

amplifier are very similar.

As previously, the phase evolution presents abrupt changes for each amplitude minimum
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(Fig. 6.8 (bottom)). In the second state of the crack, the phase evolution is monotonous,

either increasing as the pump increases (Fig. 6.8(b) (bottom)) or remaining stable

(Fig. 6.8(a) (bottom)). There is no additional information in the phase evolution. It

only confirms that the nonlinear mixed-frequencies are generated. With the only phase

information, this second state of the crack is not detected.

As the information on the main peak is not recorded by the lock-in amplifier, it is not

possible to evaluate its phase evolution, especially for the drop in the amplitude.

6.4.4 Study of the influence of different parameters on these

phenomena

Because of the use of the lock-in amplifier for five sidelobes, the experiment is realized

five times in a row (Sec. 4.2). Besides, this experiment is repeated several times, with

several hours in-between. The repeatability of this experiment when repeated in a row or

with pauses can be evaluated.

Some parameters are modified to evaluate their influence on the experiments: the

maximum or the minimum pump power, the frequency fL of the pump beam, the location

on the crack, or reversing the pump power evolution, i.e., decreasing and then increasing.

Phenomena associated to the first increase of the pump

We are able to repeat the heating and cooling (increasing and decreasing the pump power)

many times and study the repeatability of our observations. A first observation is the

presence of high discrepancies appearing between some of the first pump power increase

and the following ones. These different evolutions, referred as ‘first increase’, are observed

when the crack has not been heated for several tens of hours before the beginning of the

experiment.
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Figure 6.9: Dependence of the amplitude of the photoacoustic signal of the main peak on
the pump power loading the crack at frequency fL “ 1.5 Hz for five successive increases.

The main peak evolution is different. In Fig. 6.9 the evolution of the main peak

amplitude is presented when the pump power increases for a set of five measurements

realized in a row at the pump frequency fL “ 1.5 Hz. Discussion on the repeatability of

the phenomenon follows in the next section.
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For the first pump power increase, the main peak amplitude evolution does not present a

drop. It increases as a function of the pump power as previously (Sec. 3.1). The following

increases present a drop in the evolution of the main peak (around PL “ 30 mW in

Fig. 6.9).

The drop is present when an experiment has been previously conducted recently. It is

absent only when the crack has been at rest for some tens of hours before the first pump

power increase. This demonstrates a long memory effect of the crack.

Besides, if the pump power starts decreasing, the main peak drop is always observed.

Thus, this effect is somehow related to the high pump powers involved, even though the

pump powers where both effects are present are very distinct. It indicates that the first

increase modifies in some manner the crack, and that this modification is reversible after

several hours at rest.

The general behaviors of the minima on higher sidelobes are also different. The

minima locations are close to the other successive evolutions but discrepancies in the

amplitude appear. In Fig. 6.12(b) one can see the difference of the third left sidelobe first

evolution in comparison to the following ones.
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Figure 6.10: Zooms of the dependence of the amplitude of the photoacoustic signal
of the main peak on the pump power loading the crack to exhibit a soft transition (a)
and an unstable transition (b) between the two states of the crack on the first increase.
Evolutions of the first p q and the second (- -) increase-decrease of the loading power.
The vertical dashed-line separates the increase from the decrease of the pump power.
Pump frequency is of 1 Hz (a) and 1.5 Hz (b).

Finally, the crack transition to the second state also differs in the ‘first increase’. The

second state of the crack is not suddenly reached as in the other increases (Fig. 6.6(a)).

Two cases are observed.

The first one shows a slow transition to the second state (Fig. 6.10(a)). In that case the

amplitude of all sidelobes slowly decreases and the transition is almost invisible. When

the power decreases, and on the successive increases, the abrupt transition appears.

The second case is a transitional zone where the amplitude suddenly increases and de-

creases (Fig. 6.10(b)). The crack seems to oscillate between both states. After several

oscillations, the second state is clearly reached. These oscillations disappear for the
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next transition between these states. This may be due to the reorganization of the

micro-contacts in the crack faces. The difference of the pump power for the transition

between state 2 to 1 in Fig. 6.10(b) is discussed in the next paragraph ‘Influence of the

pump frequency’.

The unstable transition is more frequently observed than the slow one.

As a conclusion of this section, the ‘first increases’ present a different behavior as

a function of the pump power. For low pump powers, the evolution is similar to the

previous one (Chap. 5). For larger powers, the transition to the second state occurs

differently. The four next evolutions are similar. It demonstrates that large enough pump

powers are able to modify some crack properties, when the first increase in pump power

is achieved.

Repeatability

In this section the first increases, corresponding to the cases just discussed above involving

memory, are not discussed. Consequently, the successive experiments presented in the

following consist in four or five identical experiments of pump increase, the first increase

being excluded when exhibiting a different behavior.

A first observation is that for the four (or five) other experiments, the main peak

drop is present for close pump powers. However a little shift is observed: from the first

experiment with this drop to the fifth one, the drop appears at a lower amplitude. For

example, in Fig. 6.9, the drop in the main peak amplitude occurs for pump powers from

36 to 34, 32 and 29 mW. These values slightly vary when the experiment is repeated.

The changes of the pump power, leading to a main peak amplitude minimum, are always

small in a set of five experiments in a row -in general 5 mW maximum- but this shift is

always observed.

The same experiment is repeated for a pump power increase, increase and decrease,

decrease and increase and only decrease. For the first three cases, the shift toward lower

values is always observed. For the only decrease, the shifting of the minimum increases:

from 14 to 15, 17, 19 and 23 mW. Thus, absence of pump increase appears to influence

the behavior of the crack, leading to these changes.

In some cases, the pump power associated to the minimum of the main peak amplitude

remains equal several times, but never on the five experiments. For the experiments with

both increase and decrease, the shift toward lower values is observed for the increase and

the decrease.

Between two sets of experiments, the pump power value associated to the main peak

drop between the fifth experiment and the first new one is different. There is no apparent

memory of this last pump power value. The crack seems restored because the main peak

amplitude drop occurs for similar values in the first increase of each set. For example, for

a set of experiments, the main peak drop occurs for pump power from 23 mW for the

first increase and decrease until 21 mW for the fifth one. Around 30 hours after, the

experiment is repeated. The first minimum on the main peak is for a pump power of

25 mW and decreases until PL “ 21 mW.
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In four experiments having the same characteristics, the fifth evolution minimum is at

20˘1 mW, and half of these experiments, already have this value at the fourth experiment.

This tends to demonstrate that there is a limit value which is reached after some back

and forth.

The transition between the crack states present a different behavior. In general, the

transition between the two states in the first and the second time occurs for a higher

power the second time. In the other successive increases, there is no increase of the

pump power value for the crack state transition between two consecutive experiments:

this value generally slightly decreases or remain equal. No ultimate value appears. The

evolution of the transition is demonstrated in Fig. 6.11.

When the pump power decreases, the transition is more chaotic. It sometimes increases

or decreases without any apparent logical reason. In most cases, the limit does not vary

importantly, as for the increases.
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Figure 6.11: Dependence of the amplitude of the photoacoustic signal of the fifth
nonlinear right sidelobe (n “ 5) on the pump power loading the crack at frequency
fL “ 1 Hz. The pump power increases (thick line) and successively decreases (thin-line).
The five successive back and forth of the fifth nonlinear right sidelobe amplitude evolution
are presented.

The position of the minima is also observed. Fig. 6.11 is an example on the 5th

sidelobe. In each case, the minima are slowly shifting to lower pump power. This can be

interpreted as if the crack rigidity in opened state gets softer. Indeed, simulations of the

nonlinear sidelobes evolutions demonstrate that for the same pump frequency and crack

rigidity in closed state, but two different opened rigidities, the softer crack has its minima

before the harder one. As the pump intensity reaches high levels, this could influence the

local rigidity of the crack for a certain time, long enough to influence the next increase of

the pump power.

When an interval of some tens of hours is present between experiments, the values of

the minima are coming back to the original ones. For example, the second sidelobe

minimum varies from P “ 61 mW to 49 mW. After „30 h, it varies from 61 mW to

47 mW. The evolutions are similar between different sets of experiments. It demonstrates

the repeatability of the effect on the minima position.

The theory predicts that the minima differences, between two opened rigidities, are more

important when occurring at higher pump powers. However, this does not appears in
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Fig. 6.11 or in the other experiments.

When the pump decreases, and when the state 1 is retrieved soon enough to detect minima,

the minima also shifts to lower pump powers. They are generally comparable to their

position for the pump increase, but some cases exhibit noticeable differences. However,

if for both increase and decrease a shift toward lower values is observed, the compar-

ison between the values for an increase and the successive decrease do not present any logic.

It can be concluded that the experiments are repeatable but small differences can be

observed such as slow shifts depending on the past excitation of the crack. The qualitative

features that are repeatably observed are the main peak drop, the second state of the

crack and the presence of minima in the evolution of the nonlinear sidelobes amplitude as

a function of the pump power, in the first state of the crack. Only the pump power, to

which these features occur, changes.

Influence of the pump power limits

In order to check that the transition between the two states is not due to a long heating

process but to a particular power, two experiments are realized. One with the pump

power increase and decrease such as previously but with a maximum power at 109 mW,

before reaching the second state of the crack and a second one where the pump power is

varying between 126 and 143 mW, which should concerns only the second state of the

crack.

Both results follow this logic: in the first one the second state is never reached, whereas

in the second it immediately is in this state.
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Figure 6.12: Dependence of the amplitude of the photoacoustic signal of the main peak
at fH (a) and the third left nonlinear sidelobes at fH ´ 3fL (b) on the pump power
loading the crack at frequency fL “ 1 Hz. The vertical dashed-line separates the increase
from the decrease of the pump power.

Results for the main peak and the third sidelobe evolution when the pump increases

in the experiment with a reduced maximum power are presented in Fig. 6.12. These

experiments were conducted soon after others. As a consequence, the minimum on

the main peak is detectable since the first increase (Fig. 6.12(a)). It appears in all the
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consecutive experiments. Only the first increase demonstrates a slightly different behavior.

Other main peak evolutions are much closer.

The minima of the amplitude sidelobes as a function of the pump power are still shifted

toward lower values. So, the effect related to that shift occurs even if the second state is

not reached.

For the second experiment, with only important powers, the amplitudes of the nonlin-

ear sidelobes mixed-frequencies are close to previous observations and rather constant.

Starting from the second state, nonlinear mixed-frequencies are still generated.

As a conclusion, it is not (only) the presence of the second state of the crack which

influences the shifts of the main peak amplitude drop and of the nonlinear sidelobes

amplitude minima. However, high powers are required to observe these shifts.

Influence of the pump frequency

The influence of the pump frequency on the minima has already been discussed in Sec. 6.3.

In fact, the proposed curves (Fig. 6.5) were part of these experiments, and the part for

high pump powers, with the second state, was not presented.

The aim of the change of the pump frequency, from fL “ 1 Hz to fL “ 1.5 Hz, is to

observe the transition between the two states of the crack. It has been demonstrated that

it is related to high pump powers. Thus, it should be influenced by the pump frequency:

the higher the pump frequency is, the larger the pump power should be to reach the

second state. The hysteresis could also be influenced by the change of frequency: the

backward transition can be expected to occur for higher pump powers. As a consequence,

the transition to the second state should appear for higher power, and the backward

transition for higher pump power when frequency increases.

Results of Fig. 6.10(b) are part of these experiments. One can see that the upper

transition limit is shifted to higher values: from 100-120 mW to 125-140 mW.

An important difference concerns the hysteresis for the crack transition from state 2

to state 1. For fL “ 1 Hz, this transition occurred around 20 mW with a maximum of

34 mW. For fL “ 1.5 Hz, it occurs up to 130 mW in some cases. This clearly means that

the second state is influenced by the pump frequency.

However, the backward transition evolves in the set of successive experiments. It occurs

at PL “ 57, 91, 112, 113 and 115 mW respectively for the five experiments in a row. The

pump power associated to the transition increases from 57 to 112 mW and remains stable.

The same experiment is repeated 30 and then 60 hours after the end of the previous

experiment. The transitions occur from 76 to 115 mW in the first case and from 55 to

128 mW in the second case. Thus, this shift is repeatable.

In each case the first value („50 mW) is much higher than those encountered for fL “ 1 Hz.

It may explain why for the case fL “ 1 Hz, this shift is not observed.

The change of the pump frequency also affects the position of the amplitude drop in

the main peak: it appears for higher powers. With fL “ 1 Hz, it occurs around 20˘5 mW
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whereas for fL “ 1.5 Hz, it occurs for a power about 35 ˘ 5 mW, almost twice higher.

The shift of the nonlinear sidelobes amplitude minima position is observed, as previously.

The pump frequency appears to influence the pump powers involved in the transition

of the crack states and the main peak drop. All phenomena occur for higher pump power.

In particular, the hysteresis is importantly reduced. This is coherent with the diminution

of the breathing efficiency with the pump frequency increase.

Influence of the location of the beam spots relatively to the crack

Finally, a set of five increases and decreases are realized on the same crack but on a

different location. The results are just as the previous exhibited. The first increase is

different from the others ones. The values of the transitions, the main peak drop and the

evolutions of the minima are different but not the observed phenomena.

6.4.5 Tentative explanation

There are no clear explanations for the observation of the second state of the crack, the

main peak amplitude drop, the shifts of this drop and of the nonlinear sidelobe amplitude

minima in the first state of the crack, when the pump power increases.

A first hypothesis is that the crack remains closed for the pump powers corresponding to

the second state of the crack. This hypothesis has two problems.

Firstly, even if the power is very high, due the 100% modulation and the low frequency

(1 Hz), the crack cannot, theoretically, remain closed during the whole period. However,

for very high pump powers, the minimum of temperature Tm in the spot area, could be

sufficient to close the crack. Then, it would remain closed during the whole pump period.

For example, at the maximum pump power (P “ 143 mW), the minimum of the dynamic

temperature in the center of the beam is of „19 K.

Secondly, if the crack remains closed, the nonlinear frequency-mixing should not be

generated, theoretically. This is mainly due to the modeling of the crack by two parallel

idealized crack faces. More realistic crack surfaces involve micro- and nano-asperities

which can provide contacts between the crack faces and be compressed and modified

under the loading. In other words, as the pump loading increases, the crack could be

closed but the number and the quality of the contacts could evolve. Consequently, the

theory is no longer valid, but nonlinear frequency-mixing generation may be possible due

to the evolution of the contacts between the crack faces [64, 66].

Other explanations can be proposed. Local change of the crack properties could

explain part of this phenomenon if the temperature increase is locally important enough

to modify the crack properties temporarily, as the crack state is restored at the end.

The changes of temperature rise due to the change of frequency cannot directly explain

the transition from the first state of the crack to the second one. For fL “ 1 Hz, the

transitions occur for P P r100; 120s mW corresponding to temperature rises between 104

and 125 K. For fL “ 1.5 Hz, the transitions occur for P P r125; 140s mW. It corresponds

to temperature rises between 128 and 143 K. These temperature rises are higher. The

lower limit for fL “ 1.5 Hz (128 K) is close to the upper one for fL “ 1 Hz (125 K).
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The shift of the minima position on the nonlinear sidelobes, or the shift of the main

peak amplitude exhibit processes with a slow dynamics of several hours. The presence or

not of the main peak amplitude is associated to a process occurring for several tens of

hours. These slow dynamic processes could be related to the interface humidity. The

samples are in glass, which is known to exhibit capillarity condensation, i.e., to allow

the formation of a thin film of water on its interface at the nanoscale [13]. Due to the

rugosity and the important surface of the crack, it could be rather difficult to make it

evaporate, unless a long and important heating would act. This interface could play an

important role on the long relaxation time processes.

Concerning the main peak, the absence of photoacoustic emission is predicted, for

a symmetrically heated crack, at the characteristic frequency ω “
a
ωR ¨ p1{γq ¨ pc{aq

where ωR is the instantaneous mechanical relaxation frequency of the crack, and γ is a

nondimensional parameter depending on the shape of the laser beam [20]. It is equal

to 1{?
π for a Gaussian distribution. This effect is due to destructive interference of

the acoustics waves propagating towards the crack and reflected by the latter in the x

direction and those directly propagating in the x direction.

In this work, the rigidity of the crack follows a bistable model considering only two

rigidities for the opened and closed states of the crack. In reality, this value evolves

as a function of the loading (Fig. 1.7(a), Sec. 1.3.2). Thus, it is possible to have, for a

particular loading, the absence of the photoacoustic emission.

For the probe frequency, it follows that the instantaneous crack rigidity of the crack ηR,

(associated to the instantaneous crack mechanical relaxation frequency, ωR “ 2ηR{pρcq)
would be, at the main peak drop, of

ηR “ 2π3{2 ¨ fH2 ¨ ρ ¨ a » 0.61 GN.m´3. (6.8)

The opened and closed rigidity, evaluated in Chap. 5, were of 45.1 MN.m´3 and

2.3 GN.m´3, respectively. This result is about one order of magnitude larger than

the opened rigidity of the crack and closer, but lower than the closed rigidity. This

instantaneous mechanical relaxation frequency of the crack corresponds to the mean value

over a pump period and for a particular loading. Then, it corresponds to an intermediate

value between ηo and ηc. As the experiments are achieved on different glass samples, the

results appear consistent. However, depending on the temperature at which the thermal

shock occurs -to create the crack-, the structure of the crack is highly different [9]. As the

temperature is not controlled, comparison of different crack rigidities needs to be done

carefully.

The absence of such effect in the ‘first’ increases could be attributed to the absence of

this particular rigidity ηR in the first experiment. Modifications of the rigidity evolution

as a function of the loading, due to the second state of the crack or the high pump powers

involved, could provide the possibility to reach this particular value in the following

increases.

For successive pump power increases, a slight shift of the main peak drop value is observed

toward lower values. It indicates that the rigidity ηR is reached for lower pump powers.

Thus, this demonstrates a hardening of the crack rigidity as the rigidity increases with

the loading (Fig. 1.7). This result is opposed to the conclusion on the shift of the minima.
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The latter is attributed to a softening of the crack rigidity. However, both effects are not

occurring at the same pump power and are not, consequently, necessarily inconsistent.

It is interesting to evaluate the time required by the plate to cool down to the

temperature room via heat conduction and to compare this characteristic time to the one

involved in the described phenomena. The heat conduction occurs into air and into the

supports of the sample. The sample is heated on the opposite face of the supports, and

the latter consist in a several millimeters thick adhesive covering only part of the surface.

Because of that, and in order to simplify the problem, only the heat conduction into air is

considered. The lumped capacitance method is a simple approach to estimate such times

[31]. The essence of this method is the assumption that the temperature of the solid is

uniform at any instant. This assumption is clearly in disagreement with the laser heating.

It is assumed in the following that the sample is uniformly heated at temperature TM
corresponding to the maximum temperature rise in the center of the irradiated beam.

The characteristic time then is not very accurate but still leads to an estimation of the

order of magnitude of cooling time once the laser heat stops.

The lumped capacitance method is valid if the Biot number is smaller than 0.1. The Biot

number is a dimensionless parameter defined as [31]:

Bi “ ❤ ¨ Lc

κ
, (6.9)

with ❤ the convection heat transfer coefficient between the sample surface and the air

and Lc the characteristic length defined as the ratio of the solid’s volume to surface area.

The sample used in the experiments can be approximately considered as a cuboid with

a length L1 “ 35 mm, a height L2 “ 20 mm and a depth h “ 3 mm. The sample is

assumed to be in free space that all its surface is in contact with air. The convection

heat transfer coefficient between glass and air at 298 K is 10 W.m´2.K´1 [31]. It follows

Bi » 1.2 ¨ 10´2, which validates the possibility to use the lumped capacitance method

-assuming a sample uniformly heated. The time required for the solid to reach some

temperature T can be calculated via the following expression:

t “ ρ ¨ Lc ¨ cp
❤

ln

ˆ
TM ´ T8
T ´ T8

˙
, (6.10)

where T8 is the temperature of the air. The maximum temperature rise in the center of

the beam and for P “ 143 mW is estimated at 149 K. The room temperature is controlled

at 293 K. The time required by the sample to cool down from 442 K to T “ 99% of T8
(„ 290 K) is estimated at t » 15 min. This time is not negligible. However, it is several

orders of magnitude lower than the characteristic times observed in the experiments

(tens of hours), and cannot be the effect responsible for the presence of the main peak

amplitude drop in the first increase.

The observed changes in the phenomena at the scale of tens of hours are plausibly

associated with the transitions between different state of the crack induced by thermal

fluctuations.
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Conclusion

It is demonstrated that the monitoring of the amplitude or the phase, via the lock-in

amplifier can allow an estimation of the intensity required to close the crack. The value

is estimated on the amplitude evolution as a function of the pump loading from the step

between the non-clapping to the clapping regime. The phase evolution becomes stable at

the same pump loading, corresponding to the generation of the nonlinear sidelobes.

The phase evolution also provides a very accurate mean to detect the amplitude

minima detecting abrupt phase changes. The phase evolution does not provide additional

information but an alternative and more sensitive possibility to detect the minima.

The influence of the pump frequency on the nonlinear sidelobe evolutions is also

studied theoretically and experimentally. The theory predicts that the crack needs to

spend a precise amount of time on a whole pump period in the closed state in order

for one nonlinear sidelobe to reach a particular minimum. The increase of the pump

frequency reduces the crack breathing amplitude (Sec. 3.3). Consequently, for a same

duration spent in the closed state, the loading should be more important as the frequency

increases. Increase in the pump modulation frequency induces a shift of the minima

position towards larger loading. Suppression of a minimum can also appear with the

increase of the pump frequency because some time duration over the pump period, in the

closed state, are not reachable anymore.

A particular crack, realized similarly as the others, exhibits new phenomena. For

low powers, the nonlinear sidelobe evolutions are similar to previous experiments and

theoretical predictions. For high powers, another state appears. This state is characterized

by an important decrease in the nonlinear mixed-frequencies amplitude and a global

monotonous behavior. For a pump loading increase and decrease, a hysteresis is observed

in the transition between these states. The crack retrieves the first state at a lower pump

power. This observation is repeatable. The transition varies in the experiments. In

particular, the change of the pump frequency importantly influences the pump power

value associated to the crack state transitions, especially for the transition from this new

state to the previous one. A hypothesis is to relate this second state to a crack closed

during the whole pump period and to explain the presence of the mixed-frequencies by

changes in the crack rigidity -in the closed state- over a pump period.

The main peak evolution has a different behavior too. At a particular pump power, much

lower than the crack transition, a sudden drop is observed. This drop is very sharpened

and important („25 dB). When five experiments are achieved in a row, the pump power

associated to this drop softly evolves to lower values. It is demonstrated that this drop

is present only if the crack has been heated at important pump powers within the last

tens of hours. It is also observed that for an increase of the pump frequency, this value is

shifted to higher pump powers. This minimum might be the consequence of a particular

crack rigidity. Theory predicts absence of photoacoustic emission for one particular crack

rigidity associated to one probe frequency [20]. The shift of the minimum, toward lower

pump power values, would indicate a hardening of the crack rigidity.

Finally, the nonlinear sidelobe evolutions, in the first state, are also influenced by
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the experiment. The minima location appears to be shifted to lower values when the

experiment is repeated several times in a row. Theory could attribute this phenomenon

to a softening in the crack rigidity. The minima location shift on the nonlinear sidelobe

amplitudes and on the main peak appears for different pump powers and are not necessarily

contradictory.

The minima shifts on the main peak and the mixed-frequencies appear restored to their

initial values after some hours of pause. At the opposite, the presence of the minima

on the main peak disappear after several tens of hours without heating the sample. It

demonstrates a very long memory effect on the crack. Yet, there is no clear hypothesis

to explain this phenomenon.

An additional effort is required to clearly identify the specific features of the second state

of the crack and of the drop of the main peak. It is probable that this work would lead

to some new estimations of the crack characteristics.
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Development of the theoretical

model
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Chapter 7

Assymetrical heating

Abstract

The theoretical model developed in [20] provides good estimations in the general case of

the evolution of the nonlinear sidelobes. However, it includes an important number of

assumptions. In Chap. 5 an evolution of the nonlinear sidelobes amplitude as a function

of the loading force has been developed in order to get rid of the assumption ωL ! ωo,c.

This improvement allows a better description of the experimental nonlinear sidelobe

evolutions as a function of the pump power, but some discrepancies remain. The model

requires to be upgraded.

Among the assumptions that are made, the symmetric heating of the crack -where the

axis of the laser beams coincide with the plane of the crack- appeared to be a very limiting

one. Besides, it has been experimentally demonstrated that it is possible to generate the

nonlinear sidelobes with the pump and/or the probe beams which are far from the crack.

Then, a first step in the development of the theory is to consider a possible asymmetrical

heating. This is the purpose of the present chapter. We show that it influences the

generation of nonlinear sidelobes.

7.1 Introduction of the calculation

The asymmetrical heating corresponds to the general case where the axis of the laser

beams differs from the plane of the crack. For small asymmetries, the laser beams still

irradiates completely the crack but both crack faces do not receive the same amount of

energy. For larger asymmetries, the laser beams do not irradiate the crack.

The crack is assumed to be at x “ 0 and the beam is focused on a spot of a radius a

which center is situated in x “ x0. A schematic representation of the problem is proposed

in Figs 7.1(a) and 7.1(b).

The problem is then separated in two infinite half-spaces delimited by x “ 0, the

position of the crack.
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Figure 7.1: (a): Schematic presentation of the relative positions of the laser beam of
radius a, and the crack of the characteristic depth d. (b): Section view presenting the
penetration length ℓ, the forces F˘ for an asymmetrical heating.

The development of the calculation is then identical to the one proposed by V. Gusev

and N. Chigarev in [20]. In the following, the subscripts ` and ´ on each parameter

refer to this parameter on the half-space with x ě 0 and x ď 0, respectively. For x “ 0,

the same notation is chosen but with superscripts, as commonly written in mathematics.

7.1.1 Calculation of the displacement

For the asymmetrical heating, the continuity condition for the total stress can be described

as previously:

σ`px “ 0`q “ ´F ru`px “ 0`q ´ u´px “ 0´qs “ σ´px “ 0´q. (7.1)

However, differently from [20], the asymmetry makes the crack face displacements

different: u`px “ 0`q ‰ ´u´px “ 0´q.
In the following, the notation u˘p0˘q, refer to u˘px “ 0˘q.

The equation of motion of an elastic medium, in 1D dimension, in this configuration,

is:

ρ
B2u˘
Bt2 “ Bσ˘

Bx , (7.2)

with the stress including the elastic and thermoelastic parts of each half subdomain,

σ˘ “ ρc2
Bu˘
Bx ´KβT˘. (7.3)

Substitution of Eq. (7.3) in Eq. (7.2) provides

B2u˘
Bx2 ´ 1

c2
B2u˘
Bt2 “ Kβ

ρc2
BT˘
Bx , (7.4)
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and the substitution of Eq. (7.3) in Eq. (7.1) leads to:

Bu˘p0˘q
Bx ´ Kβ

ρc2
T˘p0˘q “ ´F rup0`q ´ up0´qs

ρc2
. (7.5)

To solve the problem (Eqs. (7.4) and (7.5)), a Fourier transform is applied over the

time coordinate, as defined previously. For the spatial coordinate, the following transforms

are applied: pf`pkq “
ş8
0
fpxqekxdx and pf´pkq “

ş0
´8 fpxqekxdx, for x ě 0 and x ď 0,

respectively. They can be interpreted as a Fourier transform of the function multiplied by

an Heaviside function Hpxq or p1 ´ Hpxqq, depending if the integration variable is on the

positive or negative half-domain. It is also close to the Laplace transform, due to the limits

of the integrals. As a consequence of this definition, the first and second differentiation

need to be evaluated. The calculation directly leads to the following definitions:

Bf˘pxq
Bx “ ¯f˘p0˘q ´ k pf˘pkq, (7.6)

and
B2f˘pxq

Bx2 “ ¯Bf˘p0˘q
Bx ˘ kf˘p0˘q ´ k2 pf˘pkq. (7.7)

Once these transformations are applied to Eqs. (7.4) and (7.5), it follows:

pu˘pω, kq “ 1
`
ω
c

˘2 ´ k2

„
˘Bru˘p0˘q

Bx ¯ kru˘p0˘q ¯ Kβ

ρc2
rT˘pω, 0˘q ´ Kβ

ρc2
k pT˘pω, kq


,

(7.8)

and
Bru˘pω, 0˘q

Bx ´ Kβ

ρc2
rT˘pω, 0˘q “ ´

rF rup0`q ´ up0´qs
ρc2

. (7.9)

It is then convenient to use Eq. (7.9) into Eq. (7.8), leading to:

pu˘pω, kq “ 1
`
ω
c

˘2 ´ k2

«
¯kru˘p0˘q ´ Kβ

ρc2
k pT˘pω, kq ¯

rF rup0`q ´ up0´qs
ρc2

ff
. (7.10)

Due to the condition of propagation of the acoustic wave from the crack in the positive

(negative) direction of the x-axis for the positive (negative) half subdomain, the pole

˘ω{c needs to be compensated by a zero value on the nominator of pu˘pω, kq:

´ 
ω

c
ru˘p0˘q ¯ Kβ

ρc2

ω

c
pT˘pω,˘ω

c
q ¯

rF rup0`q ´ up0´qs
ρc2

“ 0. (7.11)

The condition of radiation in Eq. (7.11) can be introduced into Eq. (7.8):

pu˘pω, kq “ 1
`
ω
c

˘2 ´ k2

«
Kβ

ρc2
pkq

”
pT˘pω,˘ω

c
q ´ pT˘pω, kq

ı
`

rF rup0`q ´ up0´qs
ρc

„
k

ω
¯ 1

c

ff
.

(7.12)

The inverse spatial transform , i.e., the Fourier transform in the reciprocal space, can be

applied on Eq. (7.12) in order to describe the spectrum of the generated acoustic waves.
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It is evaluated by the calculation of the residue in the single pole ¯ω{c.

ru˘pω, xq “ 1

2π

`8ż

´8

pu˘pω, kqe´kxdk (7.13)

“ 1

2π
2π

nÿ

i“1

res
`
pu˘pω, kqe´kx, Pi

˘
Ind

`
γ, Pi

˘
(7.14)

“  ¨ lim
kÑ¯ ω

c

pk ˘ ω

c
qpu˘pω, kqe´kx ¨ Indpγ,¯ω

c
q, (7.15)

where γ is the integral contour and where the winding number Ind is consequently equal

to ´1 for x ą 0 and `1 for x ă 0. It follows:

ru˘pω, xq “
˜

˘ Kβ

2ρc2

”
pT˘pω,¯ω

c
q ´ pT˘pω,˘ω

c
q
ı

¯ 1

ω

rF ru`p0`q ´ u´p0´qs
ρc

¸
e˘ω

c
x.

(7.16)

If the exponential phase multiplier of Eq. (7.16) is combined in the inverse Fourier

transform in the frequency domain, it allows to describe the acoustic wave as a function

of the the retarded time τ˘. The acoustic strain is defined by U “ Bu{Bx, thus:

U˘pt, xq “ 1

2π

8ż

´8

rU˘pω, xqe´ωtdω, (7.17a)

“ 1

2π

8ż

´8

˜
Kβ

2ρc3
pωq

”
pT˘pω,¯ω

c
q ´ T˘pω,˘ω

c
q
ı

´
rF ru`p0`q ´ u´p0´qs

ρc2

¸
e˘ω

c
x´ωtdω.

(7.17b)

Defining τ˘ “ t¯ x{c, leads to the strain spectrum description:

U˘pτ˘q “ 1

2π

8ż

´8

rU˘pωqe´ωτ˘dω, (7.17c)

with,

rU˘pωq “ Kβ

2ρc3
pωq

”
pT˘pω,¯ω

c
q ´ T˘pω,˘ω

c
q
ı

´
rF ru`p0`q ´ u´p0´qs

ρc2
. (7.17d)

The first two terms correspond to the definition of an acoustic strain near a mechanically

free surface. The last term, proportional to the force F describe the effect of the crack

faces motion on the acoustic strain.

7.1.2 Determination of the temperature field

It now appears that the temperature distribution needs to be estimated. Because of the

asymmetry of the heating, the temperature rise on each part of the crack faces is different.
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Thus, the thermal resistance of the crack needs to be taken into account. The thermal

flux and thermal resistance at the crack can be defined as:

Qp0`q “ κ
B rT`pω, 0`q

Bx “ κ
B rT´pω, 0´q

Bx “ Qp0´q, (7.18a)

R “
rT`pω, 0`q ´ rT´pω, 0´q

Qp0`q . (7.18b)

The 1D heat equation remains as previously defined (Chap. 1), but with a spatial

distribution of laser heating centered at x´ x0:

BT
Bt ` ωTT “ χ

B2T

Bx2 ` I

ℓρcp
fptqΨpx´ x0q, (7.19)

where ωT is determined as in Chap. 5 (Sec. 5.2.2).

It logically follows that the spatial distribution is defined in the positive (negative) half

subdomain as: pΨ`pk, x0q “
ş8
0
Ψpx´ x0qekxdx (and pΨ´pk, x0q “

ş0
´8 Ψpx´ x0qekxdx).

After these transforms, Eq. (7.19) becomes:

pT˘pω, kq “ 1

k2 ´ kT
2

¨
«

¯B rT˘pω, 0˘q
Bx ˘ k rT˘pω, 0˘q ` I

ℓκ
rfpωqpΨ˘pk, x0q

ff
. (7.20)

with kT “
a

pω ´ ωT q{χ, (ℜepkT q ě 0) the thermal wave number. Using Eqs. (7.18a)

and (7.18b) with Eq. (7.20) leads to:

pT˘pω, kq “ 1

k2 ´ kT
2

¨
«

rT˘pω, 0˘q
ˆ

˘k ´ 1

κR

˙
`

rT¯pω, 0¯q
κR

` I

ℓκ
rfpωqpΨ˘pk, x0q

ff
.

(7.21)

Similarly to the earlier evaluation of the mechanical displacement, the pole p˘kT q needs

to be compensated by the zero of the numerator to avoid divergence:

rT˘pω, 0˘q
ˆ
kT ´ 1

κR

˙
`

rT¯pω, 0¯q
κR

` I

ℓκ
rfpωqpΨ˘p˘kT , x0q “ 0. (7.22)

Addition and subtraction of the temperatures in the positive and negative domains from

Eq. (7.22) provides the temperatures at x “ 0` and x “ 0´:

rT˘pω, 0˘q “ ´ I

2ℓ

ˆ„
1

κkT
¯ R

2 ´ κkTR


pΨ`pkT , x0q`

`
„

1

κkT
˘ R

2 ´ κkTR


pΨ´p´kT , x0q

˙
¨ rfpωq. (7.23)
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Finally, using Eq. (7.23) into Eq. (7.21) leads to:

pT˘pω, kq “ ˘1

k2 ´ kT
2

¨ I

2ℓκ
¨ rfpωq ¨

„ˆ´k
kT

´ 2 ¯ kκR

2 ´ kTκR

˙
pΨ`pkT , x0q`

`
ˆ´k
kT

` 2 ¯ kκR

2 ´ kTκR

˙
pΨ´p´kT , x0q ˘ 2pΨ˘pk, x0q


, (7.24a)

” pθ˘pω, kq ¨ I ¨ rfpωq. (7.24b)

For a given model of the force F , this solution, together with Eq. (7.11), provides the

possibility to determine the variations in the crack width. With Eq. (7.17d), it is also

possible to obtain the solution of the emitted acoustic field. Eq. (7.24a) can be rewritten:

pT˘pω, kq “ ˘1

k2 ´ kT
2

I

2ℓκ
rfpωqˆ

ˆ
«

pT0˘hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj
-k

kT

´
pΨ`pkT , x0q ` pΨ´p´kT , x0q

¯
´

´
pΨ`pkT , x0q ´ pΨ´p´kT , x0q

¯
˘ 2pΨ˘pk, x0q `

´  pkT ¯ kq sR
1 ´ kT sR

”
pΨ`pkT , x0q ´ pΨ´p´kT , x0q

ı

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon
pTR˘

ff
, (7.24c)

with sR “ κR{2. This reformulation is particularly interesting because it demonstrates

that the temperature can be separated in two parts. The first part, independent of the

thermal resistance R, ( pT0˘) corresponds to the part of the laser excitation that cannot be

modulated by thermal resistance variations. The second part ( pTR˘) depends on sR which

is proportional to the thermal resistance. The thermal resistance can be modified because

of the asymmetry of the heating (Eq. (7.18b)). Then, this second part of the equation

corresponds to the part of the temperature field that could be modulated by variation of

the thermal resistance.

It can be observed from Eq. (7.24c) that the temperature changes induced by modulation

of the thermal resistance are of opposite sign on the different sides of the crack.

From Eq. (7.11), it follows that two phenomena can be responsible for the nonlinear

sidelobe generation: the evolution of the loading force F which modulates the crack

rigidity and the crack thermal resistance. These two phenomena are independently

considered (Sec. 7.3 and Sec. 7.4) and the effect of double modulation is then studied

(Sec. 7.5).

7.2 Acoustic harmonics generation

For a monochromatic modulation of the laser intensity in time, fptq “ r1 `
x cospωotqs{2, the higher harmonics are still predicted as in [20]. Indeed, such

modulation has the following spectrum envelope in the Fourier domain: rfpωq “
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π pδp0q ` x{2 ¨ rδpω ´ ω0q ` δpω ` ω0qsq. Then, Eq. (7.11) can be modified with the

use of Eq. (7.24b) and introducing this monochromatic modulation excitation:

´ ωru˘p0˘q ¯
rF rup0`q ´ up0´qs

ρc
“ ´|A1˘pωq|eϕ1˘pωqπIx rδpω ´ ω0q ` δpω ` ω0qs ,

(7.25)

where A1˘pωq “ |A1˘pωq|eϕ1˘pωq “ ¯pωq ¨ rKβ{p2ρc2qs ¨ pθ˘pω,˘ω{cq. As in [20], the

term of the constant heating, proportional to δp0q does not affect the system. This is due

to the assumption of unrestricted sample, and, consequently, of the easy unrestricted

expansion at x “ ˘8.

If we apply an inverse Fourier transform on Eq. (7.25), the following equation is obtained:

Bu˘p0˘q
Bt ¯ F rup0`q ´ up0´qs

ρc
“ ´|A1˘pω0q|Ix cos pω0t´ ϕ1˘pω0qq , (7.26)

which, as previously said in [20], takes the form of the equation for a forced relaxator.

It describes a lot of the experiments on the interaction of powerful acoustic waves

with nonlinear cracks or nonlinear interfaces [26]. The method proposed here, however,

involves two lasers, intensity modulated at different frequencies, to generate the acoustic

mixed-frequencies.

7.3 Acoustic frequency-mixing process induced by

crack rigidity modulations

For the case of two different monochromatic intensity modulations, for I ¨ fptq “
ILr1`xL cospωLtqs{2`IH r1`xH cospωHt´ϕHLqs{2, Eq. (7.26) can be logically written:

Bu˘p0˘q
Bt ¯ F ru`p0`q ´ u´p0´qs

ρc
“ ´|A1˘pωLq|ILxL cos pωLt´ ϕ1˘pωLqq `

´ |A1˘pωHq|IHxH cos pωHt´ ϕ1˘pωHq ´ ϕHLq . (7.27)

In the absence of the high-frequency excitation (xH “ 0), it follows:

BuL˘p0˘q
Bt ¯ F ruL`p0`q ´ uL´p0´qs

ρc
“ ´|A1˘pωLq|ILxL cos pωLt´ ϕ1˘pωLqq , (7.28)

where uL˘p0˘q corresponds to the displacement induced by the pump loading.

If the high-frequency excitation has a weak influence on the crack motion in comparison

to the low-frequency excitation, which corresponds mathematically to |A˘pωHq|IHxH !
|A˘pωLq|ILxL, then, in Eq. (7.27), the force can be developed in the Taylor series:

F rup0`q´up0´qs “ F ruL`p0`q´uL´p0´qs`BF ruL`p0`q ´ uL´p0´qs
Bru`p0`q ´ u´p0´qs ¨ruH`p0`q´uH´p0´qs`. . . ,

(7.29)

where uH˘p0˘q corresponds to the displacement induced by the probe loading.

Then, the difference between Eq. (7.27) and Eq. (7.28), with the use of Eq. (7.29), -where
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the development is limited to the first order- leads to:

BuH˘p0˘q
Bt ¯ 1

ρc

ˆBF ruL`p0`q ´ uL´p0´qs
B ru`p0`q ´ u´p0´qss ¨

“
uH`p0`q ´ uH´p0´q

‰˙
“

´ |A1˘pωHq|IHxH cos pωHt´ ϕ1˘pωHq ´ ϕHLq . (7.30)

The term BF ruL`p0`q ´ uL´p0´qs{B ru`p0`q ´ u´p0´qss has the physical sense of the
instantaneous value of crack rigidity and is defined to be equal to η ruL`p0`q ´ uL´p0´qs.
Identically to [20], the coefficient ωR ” η{pρcq ¨ ruL`p0`q ´ uL´p0´qs, corresponding to

the instantaneous mechanical relaxation frequency of the crack, is also introduced.

With Eq. (7.28), the crack width variations puL`p0`q ´ uL´p0´qq can be determined.

Then, Eq. (7.30) can be solved to find the signal at the frequencies ωH ˘ nωL. In

accordance to Eq. (7.29), the term F ruL`p0`q ´ uL´p0´qs, obtained from Eq. (7.28)

describes the contribution to the acoustic strain signal (Eq. (7.17d)) at ωL and its

harmonics nωL. Conversely, the term pBF ruL`p0`q ´ uL´p0´qs{Bru`p0`q ´ u´p0´qsq,
derived from Eq. (7.30), describes the acoustic strain signal (Eq. (7.17d)) contribution at

ωL and the mixed frequencies ωH ˘ nωL.

7.3.1 Spectral transformation function of photoacoustic conver-

sion

Assuming a linear interaction force between the crack faces, the boundary condition of

the stress at x “ 0 becomes:

F ru`p0`q ´ u´p0`qs “ ´η

2

“
u`p0`q ´ u´p0´q

‰
. (7.31)

In the frequency domain, it takes the form:

´
rF ru`p0`q ´ u´p0´qs

ρc
“ ωR

2

“
ru`p0`q ´ ru´p0´q

‰
. (7.32)

Consequently, Eq. (7.32) and Eq. (7.9) lead to:

Bru˘pω, 0˘q
Bx ´ Kβ

ρc2
rT˘pω, 0˘q “ ωR

2c

“
ru`p0`q ´ ru´p0´q

‰
, (7.33)

and then, Eq. (7.8) can be simplified to the following form,

pu˘pω, kq “ 1
`
ω
c

˘2 ´ k2

„´ωR

2c
¯ k

¯
ru˘pω, 0˘q ´ ωR

2c
ru¯pω, 0¯q ´ Kβ

ρc2
¨ pkq ¨ pT˘pω, kq


.

(7.34)

As previously, the condition of radiation in the positive (negative) half space leads to

the compensation by the numerator of the pole ˘ω{c for pu˘pω, kq. Then adding up and

subtracting the equations on the positive and negative subdomains leads to:

ru˘pω, 0˘q “ Kβ

2ρc2
¨

„¯ pωR ´ 2ωq
ωR ´ ω

pT˘
´
ω,˘ω

c

¯
˘ ωR

ωR ´ ω
pT¯

´
ω,¯ω

c

¯
. (7.35)
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Eq. (7.35) gives the opportunity to rewrite Eq. (7.34) in order to have the mechanical

displacement (in the Fourier-Fourier domain) as a function of the temperature only:

pu˘pω, kq “ 1
`
ω
c

˘2 ´ k2
¨ Kβ
2ρc2

¨
„
2ωk ` ωRpk ˘ ω

c
q

ωR ´ ω
pT˘

´
ω,˘ω

c

¯
`

´ ωR

`
k ¯ ω

c

˘

ωR ´ ω
pT¯

´
ω,¯ω

c

¯
´ 2k pT˘pω, kq

ff
. (7.36)

Then, the Fourier transform in reciprocal space can be applied, as previously, with the

calculation of the residue. The acoustic strain spectrum reads:

rU˘pωq “ Kβ

2ρc3
¨ pωq ¨

„
pT˘

´
ω,¯ω

c

¯
` ω

ωR ´ ω
pT˘

´
ω,˘ω

c

¯
` ωR

ωR ´ ω
pT¯

´
ω,¯ω

c

¯
,

(7.37a)

or, replacing the temperature by a function of the spatial distribution of the excitation

laser (Eq. (7.24a)):

rU˘pω, kq “ Kβ

2ρc3
¨pωq¨ I

ℓκ
¨ rfpωq¨ 1

`
ω
c

˘2 ´ kT
2

¨
« „ ´ω2

ckT pωR ´ ωq ¯ ω
c
κR

2 ´ kTκR


pΨ`pkT , x0q`

`
„ ´ω2

ckT pωR ´ ωq ˘ ω
c
κR

2 ´ kTκR


pΨ´p´kT , x0q ` pΨ˘

´
¯ω

c
, x0

¯
`

` ω

ωR ´ ω
pΨ˘

ˆ˘ω
c
, x0

˙
` ωR

ωR ´ ω
pΨ¯

´
¯ω

c
, x0

¯ ff
. (7.37b)

Eq. (7.37a) can be physically interpreted. The term proportional to pT˘
`
ω,¯ω

c

˘
corres-

ponds to the strain contribution of the acoustic waves generated in the domain ˘ and

propagating in the direction ˘ along the axes, i.e., generated in one subdomain and

propagated away from the crack. For example, pT`
`
ω,´ω

c

˘
deals with the acoustic waves,

generated in the positive domain, and propagating in the direction of the increasing

positive x.

The second term, proportional to pT˘
`
ω,˘ω

c

˘
, concerns the acoustic waves generated in

the same subdomain but propagating toward the crack and then reflected by the latter.

Finally, the term proportional to pT¯
`
ω,¯ω

c

˘
corresponds to the strain contribution of

the acoustic waves generated in one domain, propagating in the direction of the crack

and being transmitted in the other domain.

In the case where the thermal wavelength at the high-frequency modulation is

significantly shorter than the laser beam radius which, in its turn, is significantly shorter

than the acoustic wavelength of the high-frequency modulation, and in the case of a small

asymmetrical heating, Eq. (7.37b) can be simplified. Mathematically, it corresponds to

pω{cq ! p1{aq ! |kT pωq|, so that sound generation region can be considered thermally

thick but acoustically thin. For the typical range of experimental values, ωH “ 2π ¨50 kHz

and a “ 100 µm, and for the glass parameters, it leads to the inequality 50 ! 104 ! 8 ¨ 105
which is fulfilled. Note that, that a focusing around 1 µm, possible experimentally, would
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require to increase the frequency of the excitation in order to maintain such inequality

valid. Under these assumptions, it is possible to demonstrate that the spatial distributions

can be rewritten:

pΨ˘p˘kT , x0q » 0, (7.38a)

pΨ`
´

˘ω

c
, x0

¯
» pΨ`p0, x0q

”
1 ˘ 

ω

c
px0 ` aγ`q

ı
, (7.38b)

pΨ´
´

˘ω

c
, x0

¯
» pΨ´p0, x0q

”
1 ˘ 

ω

c
px0 ` aγ´q

ı
, (7.38c)

where

γ` “

8ş
´x0{a

ξΨpaξqdξ

8ş
´x0{a

Ψpaξqdξ
, and γ´ “

´x0{aş
´8

ξΨpaξqdξ

´x0{aş
´8

Ψpaξqdξ
.

If we implement these simplifications into Eq. (7.37b) and, also considering the

inequality ωT ! ω, fulfilled experimentally too (10 ! 50 ¨ 103), it follows:

rU˘pωq “ ´KβI
2ℓρ2c3cp

¨ rfpωq ¨
„ˆ

ωR ¯ ω
c

px0 ` aγ˘qpωR ´ 2ωq
ωR ´ ω

˙
pΨ˘p0, x0q`

`
ˆ
ωR ¯ ωωR

c
px0 ` aγ¯q

ωR ´ ω

˙
pΨ¯p0, x0q


. (7.39)

Eq. (7.39) can be rewritten:

rU˘pωq “ ´KβI
2ℓρ2c3cp

¨ rfpωqˆ

ˆ
˜
ωR ¯ ω

c
px0 ` aγ˘qpωR ´ 2ωq ` J

“
ωR ¯ ωωR

c
px0 ` aγ¯q

‰

ωR ´ ω

¸

looooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooon
V

¨pΨ˘p0, x0q, (7.40)

where

J “
pΨ¯p0, x0q
pΨ˘p0, x0q

“

´x0ş
´8

Ψpxqdx
8ş

´x0

Ψpxqdx
.

It appears that the frequencies introduced into the mechanical system by laser intensity

modulation spectrum rfpωq are, in the spectral domain, functions of a frequency-dependent

complex multiplier proportional to V. Besides, the term V is influenced by the asymmetry

of the heating. It then follows that the spectral transformation function of the optoacoustic

conversion, in the frequency domain, is proportional to:

rSpωq9 ´
1 ¯ ω

c
px0 ` aγ˘qp1 ´  2ω

ωR
q ` J

“
1 ¯ ω

c
px0 ` aγ¯q

‰

1 ´ ω{ωR

, (7.41a)
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ˇ̌
ˇ rSpωq

ˇ̌
ˇ 9 ´

c´
1 ¯ 2ω2

ωRc
px0 ` aγ˘q ` J

¯2

`
`
ωx0

c
p1 ` Jq ` aω

c
pγ˘ ` Jγ¯q

˘2
a
1 ` pω{ωRq2

, (7.41b)

It is possible to demonstrate that for a particular frequency, influenced by the asymmetry

and the crack instantaneous rigidity, the numerator of Eq. (7.41b) can be null. At

this frequency, the absence of photoacoustic emission is predicted. This corresponds to

destructive interferences between the different acoustic waves. Because of the nonzero

frequency-dependent phase shift from the crack, the acoustic waves propagating through

the crack, and the one reflected by the crack have a phase change in comparison to the

acoustic waves propagating away from the crack. For this particular frequency, this

phase shift provokes the destructive interferences.

7.3.2 Parametric frequency-mixing

It is interesting to go back to Eq. (7.37a) and to rewrite it differently in order to separate

the part describing the sound generation depending on the crack rigidity, responsible for

the frequency-mixing (denoted rUη˘ in Eq. (7.42) and in the following). The other part is

similar to sound generation near a free surface (denoted rU0˘ in Eq. (7.42)):

rU˘pωq“ Kβ

2ρc3
pωq

„
pT˘

´
ω,¯ω

c

¯
´ pT˘

´
ω,˘ω

c

¯

loooooooooooooooomoooooooooooooooon
rU0˘

` ωR

ωR ´ ω

´
pT˘

´
ω,˘ω

c

¯
` pT¯

´
ω,¯ω

c

¯¯

looooooooooooooooooooooooomooooooooooooooooooooooooon
rUη˘


.

(7.42)

Only the term rUη˘ is next analyzed. Eq. (7.42) demonstrates that rigidity modulations

act on the sum of the temperature rises at both sides of the crack. Using Eq. (7.24b) in

order to develop the temperature function it is possible to rewrite rUη˘:

rUη˘pωq “ ¯ Kβ

2ρc3
¨ pωq ¨ ωR

ωR ´ ω
¨ I ¨ rfpωq ¨

”
pθ˘pω,˘ω

c
q ` pθ¯pω,¯ω

c
q
ı
. (7.43)

It can be easily demonstrated that pT˘ pω,˘ω{cq ‰ ˘ pT¯ pω,¯ω{cq in the case of an

asymmetric heating. This implies the same inequality on pθ. In the case of a monochromatic

laser intensity modulation at ωH , so, for I ¨ fptq “ IH r1`xH cospωHt´φHLqs{2, it leads
to:

rUη˘pωq “ ¯ 1

2c
¨ ωR

ωR ´ ω
¨ π ¨ IH ¨ xH ¨ rA1˘pωq `A2˘pωqs ˆ

ˆ
“
δpω ´ ωHqeϕHL ` δpω ` ωHqe´ϕHL

‰
, (7.44)

with A2˘pωq “ |A2˘pωq|eϕ2˘pωq “ ¯pωq ¨ rKβ{p2ρc2qs ¨ pθ¯pω,¯ω{cq.
It is possible to repeat the procedure and to apply an inverse Fourier transform over

the frequency in order to estimate rUη˘pτ˘q. Note that ωR{pωR ´ ωq is replaced by
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ωR{
?
ωR

2 ` ω2 ¨ e atanpω{ωRq. The acoustic strain solution, in the time domain, is:

Uη˘pτ˘q “ ¯1

2c
¨ ωR?
ωR

2 ` ωH
2

¨IHxH

„
|A1˘pωHq| cos

ˆ
ωHτ˘ ´ ϕ1˘pωHq ´ atan

ˆ
ωH

ωR

˙
`

´ ϕHL

˙
` |A2˘pωHq| cos

ˆ
ωHτ˘ ´ ϕ2˘pωHq ´ atan

ˆ
ωH

ωR

˙
´ ϕHL

˙
, (7.45a)

Uη˘pτ˘q “ ¯1

2c
¨ ωR?

ωR
2 ` ωH

2
¨ IHxHˆ

ˆ
2ÿ

i“1

|Ai˘pωHq| cos
„
ωHτ˘ ´ ϕi˘pωHq ´ atan

ˆ
ωH

ωR

˙
´ ϕHL


, (7.45b)

which can also be written in the following form,

Uη˘pτ˘q “ ¯1

2c
¨ IHxH

2ÿ

i“1

|Ai˘pωHq|ℜe
„

ωR

ωR ´ ωH

epωHτ˘´ϕi˘pωHq´ϕHLq

. (7.45c)

The model of the force F is now required to evaluate ωR as a function of the loading,

and thus, the evolution of the amplitude and the phase. The same rigidity model as in

[20] is taken in this calculation:

F ru`p0`q ´ u´p0´qs “
#

´ηoru`p0`q ´ u´p0´q ´ hos if hi ď u`p0`q ´ u´p0´q ď 8,

´ηcru`p0`q ´ u´p0´q ´ hcs if 0 ď u`p0`q ´ u´p0´q ď hi.

(7.46)

Following that model, the term depending on the crack rigidity in Eq. (7.45c),

ωR{pωR ´ ωHq, needs to be expanded into complex exponential Fourier series. Noting

this term by Ω, the variable is then the time t on which ωR depends (ωR “ ωRptq). It

follows:

Ωptq “
8ÿ

n“´8
Ωn ¨ enωLt, (7.47a)

with

Ωn “ ωL

2π
¨
t` 2π

ωLż

t

Ωpt1q ¨ e´nωLt1
dt1. (7.47b)

Thus, if the same evolution of the crack state as in Fig. 5.3 is assumed, the integration

in Eq. (7.47b) between t and t ` 2π{ωL can be modified by the integration between

pt1 ´ TCq and pt1 ` Tcq. Then, it is possible to split the integral into two. The first

one describes the crack in the closed state -from pt1 ´ Tcq to t1-, meanwhile, the crack

mechanical relaxation frequency ωR is equal to ωc. The second one corresponds to the

crack being opened, from t1 to pt1 ` Toq, for which ωR is equal to ωo. Finally, also using

that To ` Tc “ 2π{ωL, it is possible to obtain:

Ωn “ 1

2π
¨ 1

n
¨
ˆ

ωc

ωc ` ωH

´ ωo

ωo ` ωH

˙
¨

”
e´nωLpt1´Tcq ´ e´nωLt1

ı
. (7.48)
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Eq. (7.45c) can be rewritten with the use of Eq. (7.48), and reorganized to obtain:

Uη˘pτ˘q “ ¯1

2πc
IHxH

2ÿ

i“1

8ÿ

n“´8
|Ai˘pωHq| |An| ¨ ωHpωc ´ ωoq?

ωc
2 ` ωH

2
?
ωo

2 ` ωH
2

ˆ

ˆ cos

„
pωH ` nωLqτ˘ ´ ϕn ´ ϕi˘pωHq ´ atan

ˆ
ωH

ωc

˙
´ atan

ˆ
ωH

ωo

˙
´ ϕHL ´ π

2


,

(7.49a)

with

|An| “
ˇ̌
ˇ̌ 1
n
sin

ˆ
nωLTc

2

˙ˇ̌
ˇ̌ , (7.49b)

and;

ϕn “ nωL

ˆ
t1 ´ Tc

2

˙
´ acos

ˆ
An

|An|

˙
. (7.49c)

It can be noted that this result is valid even if the assumption ηc ą ηo is no longer assumed.

The remaining unknowns are t1 and Tc. In order to find them, Eq. (7.28) is split

into two equations (one on each subdomain) and then both equations are subtracted. It

follows:

B ruL`p0`q ´ uL´p0´qs
Bt ´ 2

ρc
F ruL`p0`q ´ uL´p0´qs “

´ IL xL

“
|A1`pωLq| cospωLt´ ϕ1`pωLqq ´ |A1´pωLq| cospωLt´ ϕ1´pωLqq

‰
. (7.50)

One can observe that due to the asymmetry of the heating, A1`pωq ‰ ˘A1´pωq. It
is possible to rewrite the right term of Eq. (7.50) and, using also the rigidity model

(Eq. (7.46)),

B ruL`p0`q ´ uL´p0´q ´ ho,cs
Bt ` ωo,c

“
uL`p0`q ´ uL´p0´q ´ ho,c

‰
“

´ IL xL sgnpDcq
b
Dc

2 `Ds
2 cos

„
ωLt´ atan

ˆ
Ds

Dc

˙
, (7.51a)

where

Dc “ |A1`pωLq| cospϕ1`pωLqq ´ |A1´pωLq| cospϕ1´pωLqq, (7.51b)

and,

Ds “ |A1`pωLq| sinpϕ1`pωLqq ´ |A1´pωLq| sinpϕ1´pωLqq. (7.51c)

Eq. (7.51a) is closely similar to Eq. (5.3) with minor changes: sgnpDcq ¨
a
Dc

2 `Ds
2

instead of 2|ApωLq|, atanpDs{Dcq instead of ϕpωLq, and with 2uLp0q changed for

ruL`p0`q ´uL´p0´qs. Then, the resolution of Eq. (7.51a) can be achieved as for Eq. (5.3)

in Sec. 5.2. This result has several direct consequences.

Firstly, it justifies a posteriori the use of the generic definitions for the amplitude (Eq. (5.2))

and phase (Eq. (6.2)) evolutions as a function of the loading amplitude. Indeed, with or

without asymmetrical heating, Eqs. (7.49b) and (7.49c) are identical.
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Secondly, it demonstrates that the amplitude evolution is independent of the asymmetry

of the heating. Indeed, the ratio IL{Ic in Eq. (5.10) is not function of |ApωLq| or ϕpωLq,
and then, the time spent in closed state, Tc, evolves identically as a function of IL,

independently of the value of x0. In the phase evolution, only the term ϕpωLq is affected.

Eq. (6.7b) becomes: ϕn “ 9ϕn ` n ¨ ratanpDs{Dcq ` atanpωL{ωcqs. However, this term

is not influenced by the evolution of the loading and Eq. (6.7a) for 9ϕn is unchanged.

So, Eq. (6.7a) is still valid and the phase reference only is affected by the asymmetrical

heating. Experimentally this is not detectable, at least without moving the beams. One

could imagine a 1D scan experiment with step small enough to maintain the crack in the

heated region but changing the asymmetry. Theory predicts a phase shift without an

effect on the amplitude of the nonlinear sidelobes. With an additional study, this phase

shift could quantify the evolution of the asymmetry.

These results mean that asymmetrical heating cannot be responsible for the apparition

of new minima in the amplitude evolution as a function of the loading. If this can

be considered disappointing, it also indicates that the method is not influenced, in 1D

approximation, by the heating asymmetry (providing the crack is breathing). This is

very important, because it is (almost) impossible experimentally to realize a symmetrical

heating. As it is not a parameter influencing the results, this method is very suitable for

the crack detection and crack parameters evaluation.

7.3.3 Displacement of each crack face

The distances pho,c ´ hiq are then expressed when the loading force IL “ Ic,o and when

the cos term multiplied by sgn(Dc) is equal to κo,c. Mathematically, it corresponds to

sgnpDcq ¨ cosrωLt´ atanpDs{Dcq ´ atanpωL{ωo,cqs “ κo,c. It follows:

ho,c ´ hi “ κo,c ¨ Ic,o ¨ xL ¨
d

Dc
2 `Ds

2

ωL
2 ` ωo,c

2
, (7.52)

where hi remains the distance of the state transition of the crack even though it is

now defined: hi “ puL`p0`q ´ uL´p0´qq and where the amplitudes and phases |A1˘|
and ϕ1˘, respectively, contained in Ds,c, are proportional to pθ˘, and dependent of the

asymmetry. Then, the forces Fc,o and the distance between the thickness can be evaluated

as previously, with Eq. (5.12), except that the informations on the phase ϕ1˘ are now

required to determine Dc and Ds.

It is also possible, from Eq. (7.28), to sum the equations corresponding to each

subdomain and to obtain,

BruL`p0`q ` uL´p0´qs
Bt “ ´IL xL sgnpScq

b
Sc

2 ` Ss
2 cos

„
ωLt´ atan

ˆ
Ss

Sc

˙
, (7.53a)

where,

Sc “ |A1`pωLq| cospϕ1`pωLqq ` |A1´pωLq| cospϕ1´pωLqq, (7.53b)
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and,

Ss “ |A1`pωLq| sinpϕ1`pωLqq ` |A1´pωLq| sinpϕ1´pωLqq. (7.53c)

Thus, from Eq. (7.53a),

uL`p0`q ` uL´p0´q “ E ´ IL xL sgnpScq
a
Sc

2 ` Ss
2

ωL

sin

„
ωLt´ atan

ˆ
Ss

Sc

˙
, (7.53d)

where E is an integration constant to be determined.

In the case of a symmetrical heating, and due to the definition of A1˘ (see

above), it is possible to demonstrate that A1`pωLq “ ´A1´pωLq. So, |A1`pωLq| “
|A1´pωLq|, and ϕ1´ “ ϕ1` ´ π. It follows that Dc “ 2|A1`pωLq| cosrϕ1`pωLqs,
Ds “ 2|A1`pωLq| sinrϕ1`pωLqs and Sc “ Ss “ 0. Eq. (7.52) thus corresponds to

Eq. (5.6) as expected. In this particular case, uL`p0`q “ ´uL´p0´q, and thus

uL`p0`q ` uL´p0´q “ 0. From, Eq. (7.53d), the condition E “ 0 is deduced.

It is then possible to estimate the displacement of the crack faces on each side. One

just need to use that puL`p0`q ´ uL´p0´qq “ hi occurs for ωLto,c “ patanpDs{Dcq `
atanpωL{ωo,cq ` rsgnpDcq ´ κo,cs ¨ π{2q. Injecting this into Eq. (7.53d), it follows that for

t “ to,c (the instants of changes in the crack states), the displacements, subscripted po, cq,
are

$
’’&
’’%

uLo,c`p0`q ´ uLo,c´p0´q “ hi,

uLo,c`p0`q ` uLo,c´p0´q “ ´Ic,o xL ¨rsgnpScq ¨ sgnpDcq ¨ κo,cs ¨
?

Sc
2`Ss

2

ωL
ˆ

ˆ sin
”
atan

´
Ds

Dc

¯
` atan

´
ωL

ωo,c

¯
´ atan

´
Ss

Sc

¯ı
,

(7.54a)

and thus,

uLo,c`p0`q “ hi

2
´ Ic,o xL

2
¨ rsgnpScq ¨ sgnpDcq ¨ κo,cs ¨

a
Sc

2 ` Ss
2

ωL

ˆ

ˆ sin

„
atan

ˆ
Ds

Dc

˙
` atan

ˆ
ωL

ωo,c

˙
´ atan

ˆ
Ss

Sc

˙
, (7.54b)

uLo,c´p0´q “ ´hi

2
´ Ic,o xL

2
¨ rsgnpScq ¨ sgnpDcq ¨ κo,cs ¨

a
Sc

2 ` Ss
2

ωL

ˆ

ˆ sin

„
atan

ˆ
Ds

Dc

˙
` atan

ˆ
ωL

ωo,c

˙
´ atan

ˆ
Ss

Sc

˙
. (7.54c)

Eqs. (7.54b) and (7.54c) lead to the determination of the displacement of each face

of the crack in order to insure the crack clapping for an asymmetrical heating. If the

heating is symmetrical, these equations logically lead to uLo,c`p0`q “ ´uLo,c´p0´q “ hi{2.

The force involved for each displacement can also be obtained. As the forces acting on

each crack face is extensive, they can be separated from Eq. (7.46) which can be rewrite
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as:

F`ruL`p0`qs “
#

´ηoruL`p0`q ´ bhos if bhi ď uL`p0`q ď 8,

´ηcruL`p0`q ´ bhcs if 0 ď uL`p0`q ď bhi;
(7.55a)

F´ruL´p0´qs “
#
ηoruL´p0´q ` p1 ´ bqhos if p1 ´ bqhi ď ´uL´p0´q ď 8,

ηcruL´p0´q ` p1 ´ bqhcs if 0 ď ´uL´p0´q ď p1 ´ bqhi;
(7.55b)

where b corresponds to the ratio of the displacement of uLo,c`p0`q over the total

displacement to change the state of the crack: b “ uLo,c`p0`q{hi. Thus, for the particular
forces Fc,o, corresponding to the total crack faces displacement of hi, the forces of each

crack face are:

Fc˘ruLo˘p0˘qs “ ηo

2

«
pho ´ hiq ˘ Ic xL ¨ rsgnpScq ¨ sgnpDcq ¨ κos ¨

a
Sc

2 ` Ss
2

ωL

ˆ

ˆ sin

„
atan

ˆ
Ds

Dc

˙
` atan

ˆ
ωL

ωo

˙
´ atan

ˆ
Ss

Sc

˙
¨

ˆ
1 ´ ho

hi

˙ ff
, (7.56a)

Fo˘ruLc˘p0˘qs “ ηc

2

«
phc ´ hiq ˘ Io xL ¨ rsgnpScq ¨ sgnpDcq ¨ κcs ¨

a
Sc

2 ` Ss
2

ωL

ˆ

ˆ sin

„
atan

ˆ
Ds

Dc

˙
` atan

ˆ
ωL

ωc

˙
´ atan

ˆ
Ss

Sc

˙
¨
ˆ
1 ´ hc

hi

˙ ff
. (7.56b)

The forces applied on each face of the crack can then be evaluated. For a symmetrical

heating these forces are both equal to Fc,o˘ “ ηo,c{2.
Finally, the total displacement of the crack faces and the total loading force to insure the

crack closing and opening are determined. Also, for the case of an asymmetrical heating,

the displacement and the loading force of each crack face can also be evaluated.

7.4 Acoustic frequency-mixing process induced by

thermal resistance modulation

Eq. (7.24c) demonstrates that the temperature field contains one part which can be

modulated by varying the thermal resistance and another part which is not influenced

by the thermal resistance. Eq. (7.42) predicts that the acoustic strain contains one part

influenced by the crack rigidity (rUη˘) and another one independent of the crack rigidity

(rU0˘).
The substitution of the temperature field from Eq. (7.24c) in Eq. (7.42) provides the

opportunity to write the acoustic strain and to separate in different parts, depending on

their possibility to be modified by thermal resistance and/or crack rigidity variations:
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rU˘pωq “ Kβ

2ρc3
pωq 1

`
ω
c

˘2 ´ kT
2

I

ℓκ
rfpωq ˆ

«
¯

rU 1
Rhkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkj

ω
c

sR
1´kT sR

´
pΨ`pkT , x0q ` ´pΨ´p-kT , x0q

¯
`

` ω

ckT

´
pΨ`pkT , x0q ` pΨ´p-kT , x0q

¯
` pΨ˘

´
¯ω

c

¯
´ pΨ˘

´
˘ω

c

¯

loooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooon
rU 1
0˘

`

` ωR

ωR´ω

ˆ
-ω

ckT

”
pΨ`pkT , x0q` pΨ´p-kT , x0q

ı
` pΨ˘

´
˘ω

c

¯
` pΨ¯

´
¯ω

c

¯̇

loooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooon
rU 1
η˘

ff
. (7.57)

The influence of the asymmetry on the nonlinear sidelobe generation by the mean

of crack rigidity modulation has been already studied in Sec. 7.3. The asymmetrical

heating also provides the opportunity to generate the nonlinear mixed-frequencies by

crack thermal resistance modulation. If we consider the part influenced by the crack

thermal resistance (proportional to sR), only the term rU 1
R should be considered.

The coefficient sR can be written with Eq. (7.18a) and (7.18b):

sR “ 1

2
¨

”
rT`pω, 0`q ´ rT´pω, 0´q

ı
¨
˜

B rT`pω, 0`q
Bx

¸´1

. (7.58)

Then, the same logic as for the crack rigidity modulation can be applied. The difference

is on the evolution of the crack thermal resistance. In a first approximation, the thermal

resistance evolution can be considered as one of the rigidity. The crack thermal resistance

oscillates between two values depending on either the crack is opened or closed. This

leads to the exactly same nonlinear sidelobe amplitude. However, the main difference is

that the coefficient affecting the amplitude of the nonlinear sidelobes strongly depends on

x0, i.e., it depends on the asymmetry of the heating.

If we consider a spatial distribution Ψpxq “ e´|px´x0q{a|, simpler than a gaussian

distribution, and assuming that x0 ě 0, it follows:

pΨ`pk, x0q “ ´a ¨ e´x0{a

1 ` ak
` 2a ¨ ekx0

1 ` pakq2 , (7.59a)

pΨ´p´k, x0q “ a ¨ e´x0{a

1 ´ ak
. (7.59b)

Fig. 7.2(a) presents the evolution of both coefficients affected by the crack thermal

resistance and the crack rigidity. The former, V1 “ rpΨ`pkT , x0q´ pΨ´p-kT , x0qs, increases
as a function of the asymmetry. On the contrary, the later, V2 “ r-ω{pckT q ¨rpΨ`pkT , x0q`
pΨ´p-kT , x0qs ` pΨ p̆˘ω{cq ` pΨ p̄¯ω{cqs is much less affected by the evolution of the

asymmetry. It is slowly decreased but for distances up to 2 mm far from the crack, it can

be considered constant.
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Figure 7.2: (a): Evolution of the ratio of the coefficients V1{V2px0 “ 0q ( ) and
V2{V2px0 “ 0q p- -q responsible for the modulation of the crack thermal resistance and
the crack rigidity, respectively, as a function of the distance between the center of
the irradiated beam and the crack for a pump beam radius of aL “ 100 µm, intensity
modulated at fL “ 1 kHz and a probe beam intensity-modulated at fH “ 50 kHz.
(b): Schematic representation of the temperature rise induced by the crack thermal
resistance variations.

It appears that for small asymmetries (x0 ď 200 µm), the phenomenon responsible for

the nonlinear sidelobe generation is the crack rigidity modulation, whereas for strong

asymmetries (x0 ě 1 mm), the crack thermal resistance modulation predominates the

nonlinear mixed-frequency generation. The fact that the coefficient V1 strongly increases

with distance -because of the imaginary exponential function in pΨ`pkT , x0q (Eq. (7.59a))

and the fact that in the argument kT P C- is not problematic as the thermal resistance

diminishes because the temperature rises are reduced with the distance.

In-between, for x0 P r0.2; 1s mm, both effect can contribute to the generation of the

mixed-frequencies.

7.5 Double modulation of the signal by crack rigidity

and thermal resistance modulations

It appears from Fig. 7.2(a), that for a range of distances between the laser beams and

the crack, the nonlinear sidelobe generation can be provided by both the crack thermal

resistance and the crack rigidity modulations. However, the two phenomena have been

independently studied. The effect of these two modulations on an acoustic wave should

be considered.

In order to describe the double modulation, let us consider Eq. (7.57). It can be divided

in three parts. The first part, rU 1
0˘ is a term which is not of interest as it cannot be

modulated neither by the crack rigidity nor by thermal resistance (neither by ωR nor by
sR). The term rU 1

η˘, influenced by ωR, leads to the description of the sidelobes due to the

modulation of the crack rigidity as previously discussed. The term rU 1
η˘ described the

sidelobes generated due to the modulation of the crack by the thermal resistance. It can

be described similarly as for the nonlinear sidelobes due to the crack rigidity modulation.

Finally, it appears that the terms corresponding to the double modulation (mixing the
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thermal resistance and the crack rigidity modulations), influenced by ωR and sR are absent

in Eq. (7.57). This indicates the absence of the following process: the nonlinear acoustic

signals caused by the modulation of the thermal resistance are not additionally modulated

by the crack reflectivity variation. In other words, the acoustic signals generated due to

the thermal resistance ‘breathing’ are not influenced by the crack rigidity ‘breathing’.

The formal mathematical explanation for the absence of double modulation is the following.

The part of rUη˘, influenced by the crack rigidity modulation, depends on the sum of

temperatures pT˘pω,˘ω{cq and pT¯pω ¯ ω{cq (Eq. (7.42)). From, Eq. (7.24c), the part of

the temperature field modulated by the thermal resistance (subscripted R) is:

pTR˘
´
ω,˘ω

c

¯
“ ¯ 

`
kT ´ ω

c

˘ sR
1 ´ kT sR

”
pΨ`pkT , x0q ´ pΨ´p´kT , x0q

ı
, (7.60a)

and

pTR¯
´
ω,¯ω

c

¯
“ ˘ 

`
kT ´ ω

c

˘ sR
1 ´ kT sR

”
pΨ`pkT , x0q ´ pΨ´p´kT , x0q

ı
. (7.60b)

It directly follows that pTR˘ pω,˘ω{cq “ ´ pTR¯
`
ω,¯ω

c

˘
. Consequently, their zero sum

in Eq. (7.42) is responsible for the absence of double modulation. Eq. (7.37b) describes

the generation of a non-zero acoustic field modulated by the thermal resistance. Then,

it appears that this acoustic field cannot be additionally modulated by crack rigidity.

These processes can independently lead to the generation of the nonlinear sidelobes but

not mutually.

A plausible physical explanation of this phenomenon is the following. The thermal

resistance variations induce temperature changes of opposite sign at opposite crack faces

(Eq. (7.60), Fig. 7.2(b)). Thus, the acoustic waves of opposite polarities, i.e., in antiphase,

are generated near the opposite faces of the crack. The variations on crack rigidity

influence the reflection and transmission of an acoustic wave interacting with the crack.

If reflection diminishes, then transmission increases.

Then, the resulting signal, registered at some point outside the crack, corresponds to the

sum of the reflected and transmitted waves which appears to be constant. A possible

reflectivity diminution being compensated by an transmission increase and reciprocally.

The complete absence of double-modulation appears to be physically interesting.
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Conclusion

The calculation for the asymmetrical heating is developed. Two phenomena can be

responsible for the nonlinear sidelobe generation.

Firstly, the crack rigidity modulation, as for a symmetrical heating, generates the

mixed-frequencies. It is demonstrated that the amplitude of the nonlinear sidelobes is

independent of the asymmetry in the 1D theory. This does not provide the opportunity

to explain the presence of extra minima but indicates that the method is robust.

The phase is shifted by the asymmetry. However, the evolution of the phase as a function

of the pump loading is not modified. Thus, the previous results on the phase for the

crack detection or the detection of the minima remain valid.

The displacements, and the forces on each crack faces required for the breathing are

independently evaluated as function of the asymmetry.

Secondly, the crack thermal resistance is directly modified by the asymmetry. Its

modulation is also a source of nonlinear mixed-frequencies. The effect is absent in case

of symmetrical heating because of the absence of the heat flux across the crack in sym-

metrical configuration. In a first approach, the crack thermal resistance modulation is

considered to evolve similarly as the crack rigidity under the pump loading. This leads to

the same description of the nonlinear frequency-mixing. However, the amplitude of this

second phenomenon depends on the asymmetry. It importantly grows as the asymmetry

increases, although the heat flux diminishes when the distance from the heating point

increase.

Finally, it is important to note that these two phenomena cannot be combined to

generate nonlinear mixed-frequencies by double modulation. The crack thermal resistance

modulation induces temperature variations of opposite sign between the opposite crack

faces whereas the crack rigidity modulation acts on the sum of the temperature rise. As

a consequence, the rise of the acoustic reflection coefficient is compensated by a decrease

in the transmission and vice versa.



Conclusion

The presented work concerns the development of a nonlinear optoacoustic method for

NDT&E applications. The general principle is to nonlinearly mix opto-thermo-acoustic

waves generated on a sample from two independently modulated laser beams. When

the laser beams are focused far from a crack, this nonlinear mixing process is hardly

detectable, while in the vicinity of a crack an efficient nonlinear frequency mixing process

takes place. The detection of the new mixed frequencies in the radiated ultrasonic waves

is consequently related to the presence of a crack in the vicinity of the laser spots on the

sample. Crack imaging and characterization using this class of methods were among the

objectives of this PhD thesis.

In this work, the clear possibility to detect and characterize cracks is demonstrated.

The method offers the advantages to combine an all-optical excitation with high amplitude

dynamics. The detection of nonlinear frequency-mixing, not generated outside from the

crack, is also very attractive. The possibility of an all-optical set-up is demonstrated

by the use of a vibrometer or the use of the deflectometry technique, adapted for the

frequency range. It is also demonstrated that this technique has important capabilities

concerning the spatial resolution.

The precise study of the heat generation and transport offers very good estimations

particularly interesting to characterize the influence of the pump frequency, power or

focusing on the amplitude dynamics and the spatial resolution. Comparison between

experiments and theoretical predictions are in good agreement.

The possibility to detect cracks with the phase information is also an interesting tool, not

much developed in the literature.

The study of the evolution of the nonlinear sidelobes amplitude versus the pump power

demonstrates very interesting behaviors. For the sidelobes higher than the first one, the

evolutions are non monotonous. A particular effort has been done on the position of the

amplitude minima for specific pump powers. The existent model has been improved to

better fit the experimental results on the minima position. It allows independent choices

of the pump frequency, the crack mechanical frequencies in opened and closed state and

the required force to open and closed the crack. Comparison of the experimental results

with this model makes the crack parameters estimated at the heated point. They lead to

an estimation of the crack rigidity in opened and closed state, the distance between the

crack faces and the forces involved to open and close the crack. As the 3D heat equation

139
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is solved, the involved temperature at specific loading can also be evaluated.

The phase information can also offer the possibility to estimate the position of the minima

very precisely and to estimate the required force to close the crack which is very promising.

A theoretical model for asymmetrical heating between the axis of the beams and to

the plane of the crack has been developed. It demonstrates two distinct phenomena to

generate the nonlinear frequency-mixing. The first one depends on the crack rigidity

variations, evolving as the crack evolves from opened and closed state. This phenomenon

is similar to the symmetrical heating, and it is demonstrated that the evolutions of the

nonlinear sidelobe amplitudes are independent of the asymmetry.

The second phenomenon is related to the change in the crack thermal resistance due to

the asymmetrical heating. In a first approach, it demonstrates the same behaviors for the

nonlinear sidelobe amplitudes but depends on the asymmetry. It explains the possibility

to generate nonlinear frequency-mixing even though the crack is not in the irradiated

area.

No acoustic wave modulated by both phenomena can be generated.

Perspectives, Prospects

Additional efforts on the theory should be done to propose better theoretical predictions

and to explain the unexpected response of some crack under pump loading. Firstly, the

elasticity equation should be investigated to take into account the three dimensional

behavior of the sample in the one dimensional equation similarly to the temperature

equation where an additive term has been included to express the heat transports in the

other dimensions.

The possibility to take into account the boundaries should be included in order to account

for the heating of the probe beam on the crack breathing.

The next step would probably be to develop a more complete and more real model of

the crack rigidity. The ideal case would be to propose a smooth evolution of the crack

rigidity and not only a bistable model. In a first step, one could start with a piece-wise

model with 3 or 4 possible rigidities and then try to increase it.

In a longer term, the possibility of a 2D and then 3D model could be considered. The

finite dimension of the crack will probably render the calculation difficult. However, it

appears to be necessary in order to well understand the limitation of the spatial resolution.

It would certainly help to predict nonlinear sidelobe amplitude evolutions closer than the

experimental observations.

Nevertheless, it is probable that the geometry of the real crack (micro- and nano-contacts,

evolution of the rigidity,. . . ) importantly influences the experimental results. However,

at this point, it is not realistic to consider an analytical model with such level of detail,

due to the multiple reflection and parameter evolutions.

Numerical modeling of the process involved in the nonlinear frequency-mixing, by

finite element method is an interesting axis to develop [8]. It would offer the possibility

to implement a finite crack size and imperfect crack faces. A research project is currently

in progress to provide such numerical model.
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On the experimental part, the study of the method on a wider variety of materials,

such as metals, should be considered. Successful results on aluminium have already been

achieved.

Then, an additional effort should firstly be realized to better control the spatial resolution.

Once this is perfectly understood, the diminution of the sample and crack scale would be

the next step. The method is promising enough to go down to the micrometer scale and

preliminary non destructive testing and evaluation of MEMS are being carried out.

Besides, a specific investigation on the phase evolutions may provide new informations or

an alternative technique which could be faster.

This method uses the resonant frequencies of the sample. An interesting alternative,

especially for thin objects such as MEMS would be the use of the zero group velocity

Lamb wave [5]. Because of the localization of the energy of these waves, it could provide

a better spatial resolution.
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Appendix A

Detailed calculation of the 3D

heat equation integrals

A.1 Integration over z1

We want to calculate integral A (Sec. 3.2, Eq. (3.9)), with

A “
ż 8

0

e´ z1
ℓ

ˆ
e´ pz´z1q2

4χτ ` e´ pz`z1q2
4χτ

˙
dz1 (A.1)

“
ż 8

0

e´
`

z1
ℓ

` pz´z1q2
4χτ

˘
dz1

looooooooooooomooooooooooooon
C

`
ż 8

0

e´
`

z1
ℓ

` pz`z1q2
4χτ

˘
dz1

looooooooooooomooooooooooooon
D

. (A.2)

We now have to calculate two similar integrals . Let us firstly focus on integral C. A

change of variable is realized: q “ pz ´ z1q{p2?
χτq. It follows:

C “
zż

´8

e´
`

z´q
ℓ

` q2

4χτ

˘
dq

“2
?
χτe´ z

ℓ

z
2

?
χτż

´8

e

´
2

?
χτ

ℓ
q´q2

¯

dq. (A.3)

This last form is particularly interesting as it has a known analytical form [17]:

@g P R,

ż
egx´x2

dx “
?
π

2
e

g2

4 ¨ Erf
´
x´ g

2

¯
. (A.4)
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Thus, using the limit of Erf function, lim
xÑ´8

Erfpxq “ ´1, we obtain:

C “?
πχτe´ z

ℓ
` χτ

ℓ2

ˆ
1 ` Erf

„
z

2
?
χτ

´
?
χτ

ℓ

˙

“?
πχτe´ z

ℓ
` χτ

ℓ2 Erfc

„?
χτ

ℓ
´ z

2
?
χτ


. (A.5)

We can proceed the same way for integral ‘D’. In this one, the change of variable is

applied (q “ pz ` z1q{p2?
χτq):

D “ 2
?
χτe

z
ℓ

8ż

z
2

?
χτ

e

´
´ 2

?
χτ

ℓ
q´q2

¯

dq. (A.6)

Eq. (A.4) remains valid and lim
xÑ8

Erfpxq “ 1. It follows:

D “ ?
πχτe

z
ℓ

` χτ

ℓ2 Erfc

„
z

2
?
χτ

`
?
χτ

ℓ


. (A.7)

So, finally, we have:

8ż

0

e´ z1
ℓ

„
e´ pz´z1q2

4χτ ` e´ pz`z1q2
4χτ


dz1 “

?
πχτe

χτ

ℓ2

´
e´ z

ℓ Erfc
”?

χτ

ℓ
´ z

2
?
χτ

ı
` e

z
l Erfc

”?
χτ

ℓ
` z

2
?
χτ

ı¯
. (A.8)

A.2 Integration over r1

We are looking, here, for:

B “
ż 8

0

e´p r1
a q2

e´ r2`r1
2

4χτ I0

ˆ
rr1

2χτ

˙
r1dr1. (A.9)

With the change of variable q “ rr1{p2χτq, Eq. (A.9) becomes:

B “
ˆ
2χτ

r

˙2

e´ r2

4χτ

ż 8

0

qe´ χτ

r2
p1` 4χτ

a2 qq2I0
`
q
˘
dq. (A.10)

This allows to recognize an analytical form [46]:

@g{ℜepgq ą 0,

ż 8

0

qe´gq2
I0pqqdq “ 1

2g
e

1

4g . (A.11)
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As here, g “ χτ
r2

`
1 ` χτ

a2

˘
the condition ℜepgq ą 0 is fulfilled. Then, we finally obtain:

ż 8

0

e´p r1
a q2

e´ r2`r1
2

4χτ I0

ˆ
rr1

2χτ

˙
r1dr1 “ 2χτa2

a2 ` 4χτ
e

´ r2

a2`4χτ . (A.12)





Appendix B

Detailed calculation of the 1D

heat equation integral

We want to integrate:

T px “ 0, tq “ I

ℓρcp
?
πχ

tż

0

8ż

0

e´rpt´t1q{τT s2
?
t´ t1

¨ e´x1
2

´
1

a2
` 1

4χpt´t1q

¯

dx1dt1. (B.1)

The integral over x1 can be realized easily with the change of variable v “
?
Γx1 where

Γ “ 1
a2 ` 1

4χpt´t1q :

bż

0

e´Γx1
2

dx1 “ 1?
Γ

b
?
Γż

0

e´v2

dv @ Γ P R`, (B.2a)

“
?
π

2
?
Γ

¨ Erfpb
?
Γq. (B.2b)

As lim
xÑ8

Erfpxq “ 1, Eq. (B.1) can be rewritten:

T px “ 0, tq “ I

2ℓρcp
?
χ

¨
tż

0

e
´

´
t´t1
τT

¯
2

¨ 1b
t´t1
a2 ` 1

4χ

dt1. (B.3)

With the change of variable v “ 4χpt´ t1q ` a2, it becomes:

T px “ 0, tq “ Ia

4ℓρcpχ
¨ e

a2

4χτT ¨
a2`4χtż

a2

e
´ v

4χτT?
v

dv. (B.4)
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It can be proved that [17]:

ż
e´v{x
?
v
dv “

?
xπ ¨ Erf

ˆc
v

x

˙
, (B.5)

so, the solution is:

T px “ 0, tq “ Ia

2ℓρcp

c
πτT

χ
¨ e

a2

4χτT ¨
«
Erf

˜d
a2 ` 4χt

4χτT

¸
´ Erf

ˆ
a

2
?
χτT

˙ff
. (B.6)

Using the limit of the error function for an infinite argument, it follows:

lim
tÑ8

T px “ 0, tq “ Ia

2ℓρcp

c
πτT

χ
¨ e

a2

4χτT ¨ Erfc
ˆ

a

2
?
χτT

˙
. (B.7)
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[26] Vitalyi E. Gusev, Bernard Castagnède, and Alexei G. Moussatov. Hysteresis in

response of nonlinear bistable interface to continuously varying acoustic loading.

Ultrasonics, 41:643--654, 2003.

[27] Vitalyi E. Gusev and A. A. Karabutov. Laser optoacoustics. American Institute of

Physics, 1993.

[28] Matthias Haldimann, Andreas Luible, and Mauro Overend. Structural use of glass.

International Association for Bridge and Structural Engineering, 2008.

[29] Xiaoyan Han, L. D. Favro, and R. L. Thomas. Thermosonic imaging of cracks:

applications to teeth. In SPIE Press, editor, Hybrid and novel imaging and new

optical instrumentation for biomedical applications, volume 4434 of Proceedings of

SPIE, pages 70--73, 2001.

[30] S. Hirsekorn. Nonlinear transfer of ultrasound by adhesive joints--a theoretical

description. Ultrasonics, 39(57-68), 2001.

[31] F. P. Incropera and D. P. De Witt. Introduction to heat transfer (3rd Ed.). John

Wiley & Sons Inc, 1995.

[32] K. L. Johnson. Theoretical and applied mechanics. W. T. Koiter (North Hollan,

New York), 1976.

[33] K. L. Johnson, K. Kendall, and Roberts A. D. Surface energy and the contact of

elastic solids. Proc. R. Soc. Lond. A, 324(1558):301--313, 1971.

[34] V. V. Kazakov, A. Sutin, and P. A. Johnson. Sensitive imaging of an elastic nonlinear

wave-scattering source in a solid. Appl. Phys. Lett., 81(4):646, 2002.

[35] B. A. Korshak, Igor Yu Solodov, and E. M. Ballad. DC effects, sub-harmonics,

stochasticity and ”memory” for contact acoustic non-linearity. Ultrasonics, 40(1-

8):707--713, 2002.

[36] N. Krohn, R. Stoessel, and G. Busse. Acoustic non-linearity for defect selective

imaging. Ultrasonics, 40(1-8):633--637, 2002.

[37] T. H. Lee and K. Y. Jhang. Experimental investigation of nonlinear acoustic effect

at crack. NDT&E International, 42:757--764, 2009.

[38] F. J. Margetan, R. B. Thompson, J. H. Rose, and T. A. Gray. The interaction of

ultrasound with imperfect interfaces: experimental studies of model structures. J.

Nondestruct. Eval., 11:109--126, 1992.

[39] Sylvain Mezil, Nikolay Chigarev, Vincent Tournat, and Vitalyi Gusev. All-optical

probing of the nonlinear acoustics of a crack. Optics Letters, 36(17):3449--3451,

2011.

[40] Jean-Pierre Monchalin. Optical detection of ultrasound. IEEE Trans. UFFC,

33(5):485, September 1986.



154 References

[41] Alexei Moussatov, Vitalyi Gusev, and Bernard Castagnède. Self-induced hysteresis
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Nonlinear Optoacoustics Method for Crack Detection & Characterization

Sylvain Mezil
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Ultrasounds are commonly used in nondestructive testing techniques. The generation and

detection of ultrasounds by lasers is at the basis of the opto-acoustic techniques, which present

the advantage of allowing contactless studies of a sample. Such absence of contacts makes the

laser ultrasonic techniques suitable for nondestructive testing from a distance and in any external

conditions. The optoacoustic technique also provides a high spatial resolution thanks to the

possibility to focus the beam down to micrometers. However, these methods generally share the

limitation to be weakly sensitive due to the poor optoacoustic conversion efficiency. On the other

hand, nonlinear acoustic methods have been shown to be much more sensitive than linear ones.

Nonlinear optoacoustic techniques for nondestructive testing combine the contactless aspect of

optoacoustics with the high sensitivity of nonlinear methods. Such a technique should improve

the contrast of defect detection. The present work explores a method for crack detection using a

nonlinear optoacoustic method. The samples selected for the study are glass plates containing a

crack -centimeter length and micrometer thick- prepared by thermal loading. The developed

method is based on the absorption of two light beams, independently modulated, and focused at

the same location on the sample. This causes the generation of two waves, by thermal expansion.

The first one is a thermo-elastic wave at low frequency fL („ Hz), and the second is an acoustical

one at high frequency fH (tens of kHz). The thermoelastic wave can generate a crack breathing

when a crack is present in the heated zone. The crack is expected to close when the intensity of

the heating laser modulated at fL is important and to open back when the intensity diminishes.

This breathing influences the acoustic wave generated in the vicinity of the crack at fH . As a

result, there is a nonlinear frequency-mixing process, leading to the generation of new frequencies

in the system, fH ˘ nfL (n “ 1, 2, . . . ). The detection of these mixed-frequencies indicates the

presence of a crack.

In a first part, 1D and 2D scans are achieved and demonstrate a clear crack detection and

localization capability of the method. The influence of the pump frequency fL, and of the beams

focusing on the nonlinear sidelobe amplitudes are theoretically and experimentally analyzed.

The spatial resolution, which depends on the method parameters and the crack properties, is

studied. It is demonstrated that, due to heat diffusion, the crack breathing can be achieved

with a pump beam focused outside of the crack. Acoustic waves generated far from the crack

can also propagate and interact with the breathing crack and in turn lead to the generation of

nonlinear mixed-frequencies. Two all-optical set-ups are proposed. Detection of the nonlinear

mixed-frequencies can be achieved with vibrometry or deflectometry techniques. Detection with

a lock-in amplifier is realized and allows the use of the phase informations to detect cracks.

In a second part, the influence of the pump power on the nonlinear sidelobe amplitudes is

studied. Nonmonotonous behaviors of the nonlinear sidelobe evolutions as a function of the pump

power are detected and compared with theoretical predictions. The matching between theoretical

and experimental evolutions leads to the evaluation of several crack parameters. In particular,

the crack rigidity and the distance between the crack faces are estimated. The values of the

forces and the temperature rises required to close and open the crack are also determined. The

evolution of the phase of the nonlinear sidelobes as a function of the pump power demonstrates

the same minima, and also provide the possibility to observe the onset of the clapping.

In a third part, a theoretical model is developed to consider the situation when the laser

beams are focused at some distance from the crack. The model demonstrates that two processes

can be responsible for the nonlinear frequency-mixing generation: the modulation of the crack

rigidity or the modulation of the crack thermal resistance. Both phenomena generate the same

nonlinear sidelobe amplitude evolutions as a function of the pump power. It is also observed

that no acoustic wave can be doubly modulated by both processes.
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