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Abstract

Interventional magnetic resonance imaging (MRI) aims at performing minimally invasive
percutaneous interventions, such as tumor ablations and biopsies, under MRI guidance.
During such interventions, the acquired MR image planes are typically aligned to the surgical
instrument (needle) axis and to surrounding anatomical structures of interest in order to
efficiently monitor the advancement in real-time of the instrument inside the patient’s body.
Object tracking inside the MRI is expected to facilitate and accelerate MR-guided interventions
by allowing to automatically align the image planes to the surgical instrument.
In this PhD thesis, an image-based workflow is proposed and refined for automatic image
plane alignment. An automatic tracking workflow was developed, performing detection and
tracking of a passive marker directly in clinical real-time images. This tracking workflow is
designed for fully automated image plane alignment, with minimization of tracking-dedicated
time. Its main drawback is its inherent dependence on the slow clinical MRI update rate. First,
the addition of motion estimation and prediction with a Kalman filter was investigated and
improved the workflow tracking performance. Second, a complementary optical sensor was
used for multi-sensor tracking in order to decouple the tracking update rate from the MR image
acquisition rate. Performance of the workflow was evaluated with both computer simulations
and experiments using an MR compatible testbed. Results show a high robustness of the
multi-sensor tracking approach for dynamic image plane alignment, due to the combination
of the individual strengths of each sensor.

Resumé

En imagerie par résonance magnétique (IRM) interventionnelle, des interventions percu-
tanées minimalement-invasives (biopsies, ablations de tumeurs,...) sont réalisées sous guidage
IRM. Lors de l’intervention, les plans de coupe acquis sont alignés sur l’outil chirurgical et
les régions anatomiques d’intérêt afin de surveiller la progression de l’outil dans le corps du
patient en temps réel. Le suivi d’objets dans l’IRM facilite et accélère les interventions guidées
par IRM en permettant d’aligner automatiquement les plans de coupe avec l’outil chirurgical.
Dans cette thèse, un système d’alignement automatique des plans de coupe établi sur une
séquence IRM clinique est développé. Celui-ci réalise automatiquement la détection et le suivi
d’un marqueur passif directement dans les images IRM tout en minimisant le temps d’imagerie
dédié à la détection. L’inconvénient principal de cette approche est sa dépendance au temps
d’acquisition de la séquence IRM clinique utilisée. Dans un premier temps, les performances
du suivi ont pu être améliorées grâce à l’estimation et la prédiction du mouvement suivi par un
filtre de Kalman. Puis un capteur optique complémentaire a été ajouté pour réaliser un suivi
multi-capteurs, découplant ainsi la fréquence de rafraichissement du suivi de la fréquence de
rafraichissement des images IRM. La performance du système développé a été évaluée par
des simulations et des expériences utilisant un banc d’essai compatible IRM. Les résultats
montrent une bonne robustesse du suivi multi-capteurs pour l’alignement des plans de coupe
grâce à la combinaison des qualités individuelles de chaque capteur.
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Introduction

Interventional radiology

Interventional radiology consists in using medical imaging for the guidance of minimally
invasive surgical procedures. Typical procedures such as biopsies, infiltrations and ablations
of tumors can be performed for diagnostic or therapeutic reasons. They are performed
through percutaneous access and are directly monitored through an imaging device. The
used imaging modalities include ultrasound (US), computer tomography (CT) or magnetic
resonance imaging (MRI). Advantages of MRI-guidance for interventional radiology include
absence of ionizing radiation exposure for both patient and medical staff, better soft tissue
contrast and free image plane orientation and positioning during acquisitions.

Interventional MRI and thesis motivation

Nevertheless, procedures under MRI guidance can be time consuming. One to three succes-
sive image planes are continuously acquired to monitor the real-time procedure. Typically,
physicians are interested in the image planes being aligned to the main axis of the inter-
ventional instrument to obtain a "3D-like" vision of the instrument, target lesion and the
surrounding anatomical structures of interest. As the physician is occupied with the surgical
procedure, he/she cannot at the same time align the image planes to the performed instru-
ment movements. In order to monitor the advancement of the instrument inside the patient’s
body, the image planes are thus manually aligned by a technologist at the MRI console. Due to
visual occlusion by the MRI scanner and the surrounding machines (e.g. for monitoring of
vital signs of the patient), the technologist cannot observe the movements of the physician’s
hand in order to alter the image planes accordingly. Vocal communication between physician
inside the MRI room and the technologist at the MRI console is usually possible over the
standard patient intercom system. In that case, the physician cannot talk to the technologist
during image acquisition due to the strong noise inside the MRI room. Thus positioning and
orientation of image planes is often performed with the physician using sign language. As
a consequence, the quality of the alignment of the image plane to the instrument strongly
depends on the experience of the technologist at the MRI console, on his/her communication
means with the physician and on the experience of them together as a team.
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Introduction

Hence, we propose throughout this thesis the development of a real-time image plane align-
ment method, allowing to control the real-time MR image planes automatically from inside
the MRI room.

(a) (b)

Figure 1: (a) Interventional MRI environment: physician inside the MRI room performing
the intervention and technologist at the MRI console in the MRI control room. (b) Interven-
tion in MRI with the physician lying inside the magnet to advance the needle based on the
images displayed in real-time. The physician uses sign language for communication with the
technologist in the MRI control room.

Thesis Organization

The first chapter, presents an overview of recent developments, technical constraints and
typical procedures in interventional MRI. Assistance for entry point positioning, automatic
image plane alignment and automatic detection of the interventional tool are highly inter-
esting features in order to facilitate and eventually improve the accuracy of such procedures.
Specifically a literature review of tracking systems for interventional MRI is proposed before
the thesis objectives are presented.

In the second chapter, an automatic image plane alignment workflow is presented using a
detection and tracking algorithm for a passive marker and resonant micro-coils. This image-
based tracking workflow is designed for fully automated image plane alignment, with mini-
mization of tracking-dedicated time. The principles of the workflow as well as the developed
detection algorithm are detailed. The implementation of the workflow in a C++ program for
communication with the MRI console PC is then described. The tracking performance of the
presented workflow is evaluated with simulations and experiments using an MRI compatible
testbed.

The presented workflow is then extended with a Kalman filter for improvement of its tracking

2
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performance. Chapter 3 starts with an introduction of the Kalman filter and its benefits.
The integration of the filter in the image plane alignment workflow is then described. In
order to account for disparities in the measurement confidence for different image planes,
a dynamic adaptation of the measurement noise covariance matrix of the Kalman filter has
been investigated for the presented workflow. The benefits of the Kalman filter for image
plane alignment are then highlighted with the same simulations and experiments as those
performed for the initial workflow.

Due to the slow image acquisition rate of the clinical MRI sequence, it is proposed in chapter 4
to decouple the tracking from the MR images alone, through use of an additional sensor. For
this reason, an RGB-D sensor is integrated into the initial workflow. The integration of the RGB-
D sensor into the existing workflow is presented in its different aspects, i.e. MRI compatibility,
3D position measurement and registration. An online registration step is performed in order
to use the RGB-D sensor measurements in the MRI frame. Furthermore, measurements based
on the RGB-D sensor and on the MR images are fused using an Information filter. This hybrid
workflow, combining active and passive tracking approaches is then experimentally validated.

3





1 Interventional Magnetic Resonance
Imaging (MRI)

1.1 Current status of interventional MRI

1.1.1 Interventional radiology and interventional MRI

In interventional radiology, different imaging modalities such as ultrasound (US), X-ray com-
puter tomography (CT) or magnetic resonance imaging (MRI) are used for guidance of mini-
mally invasive percutaneous procedures including biopsies, infiltrations, ablations and also
intravascular interventions. MRI has several benefits over other imaging modalities (CT, US),
starting with its excellent soft-tissue contrast and a high image resolution. Both anatomic and
physiologic information can be acquired. It is thus possible to assess functional parameters
such as flow velocities, thermal imaging, perfusion and diffusion. Compared to CT, MRI
is a non-ionizing medical imaging modality, thus preserving both patient and practitioner
from radiations during image acquisition. Moreover, MRI allows to image any 3D volume
or single slice imaging plane in space as the image plane orientation and position can be
freely chosen. Due to these advantages, MRI has become an attractive imaging modality for
diagnostic and therapeutic image-guided procedures. However, interventional MRI remains
clinically confidential due to strong economical (aspect not covered in this work) and technical
constraints, such as the high permanent magnetic field and the radio-frequency (RF) pulses
used for imaging, and the restrained spatial access to the patient.

1.1.2 Technical constraints in the MRI environment

Interventional procedures in MRI include thus the use of surgical tools and machines within
the MRI environment. As a high permanent magnetic field, transient gradient magnetic fields,
and radio frequency (RF) pulses are used for MR imaging, multiple technical constraints have
to be respected for the use of additional tools inside the MRI room ([Daa01]).

The permanent magnetic field (B0) of the MRI scanner is probably the most constraining
property of this imaging modality due to its field strength typically between 0.1 T and 3 T

5



Chapter 1. Interventional Magnetic Resonance Imaging (MRI)

for interventional MRI scanners. Strength of attraction of a material by the MRI scanner
magnet depends on the magnetic properties of the material and the scanner field strength.
Paramagnetic materials are only weakly attracted to the magnetic field in contrast to ferromag-
netic materials, which are subject to high attraction. Furthermore, the use of ferromagnetic
materials in the proximity of the permanent magnetic field causes a disturbance of its ho-
mogeneity resulting in geometrical distortions of the acquired images. Static disturbances
of metallic materials can be compensated through shim coils, whereas dynamic motion of
metallic materials causes local disturbances of the field homogeneity, which result in artifacts
within the MR image.

During MR imaging, RF pulses between ∼8 MHz (0.1 T) and ∼123 MHz (3 T) are used for
excitation of the hydrogen nucleus. Instrumentation inside the MRI room must not only
endure these pulses but must also be resistant against RF induced heating. Furthermore,
data transmission inside the MRI room can be compromised through the RF pulses. Thus
instrumentation has to be shielded against RF noise. Due to the high sensitivity of the recep-
tion antennas of the MRI scanner, shielding is also important for protection of the MR image
quality with respect to electromagnetic noise produced through electrical appliances used
within the MRI room. Furthermore, disturbances from outside the MRI room must be avoided.
Hence, data transmission between the MRI room and the outside must be performed with
shielded cables and RF filters or with optical fiber cables in order to sustain the functionality
of the Faraday cage surrounding the MRI room.

The typical MRI bore is a small radius long tunnel in which access to the patient is rendered
extremely difficult for the interventionalist. Even in recent "open-bore" MR systems, spatial
access to the patient remains constrained.

The last typical constraint of the MRI environment is the strong acoustic noise of due to fast
current switches in the gradient coils. This noise impedes oral communication between staff
members inside and/or outside the MRI room, but also between the staff and awaken patient.
Both patient and practitioner must wear noise protecting headsets or earplugs.

Apart from the technical constraints, the patient herself/himself must not present any con-
traindications to the MRI exam such as metallic implants (metallic cardiac valves, vascular
clips,...), pacemakers or other non-MR safe electrical medical implants inside the body.

Despite these constraints, interventional MRI has emerged over the years thanks to the evolu-
tion of MRI imaging sequences, hardware and software [MTKB08].

1.1.3 Technical developments in interventional MRI

First interventional MRI scanners were C-arm type magnets where the permanent magnetic
field is oriented vertically between two magnet pole shoes. Further developments resulted
in double-donut MRI scanners where two solenoid coils with a vertical gap in between are
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used for image acquisition (Figure 1.1a). The advantage of such systems is that they allow to
access the patient from several directions and are thus well suited for biopsies or ablations.
However due to their low permanent magnetic field strength of under 1 T, these systems had a
lower image quality and acquisition speed than diagnostic systems with a field strength of 1.5
T or more. A C-arm type with a field strength of 1 T has been developed (Philips Panorama
MR, Philips Healthcare, Best, Netherlands), but the pole shoes are much larger than for the
initial C-arm type and restrain access to the patient (Figure 1.1b). Interventional solenoid
magnets with short (length of ∼1.5 m) and wide (diameter of ∼0.7 m) bores have then been
developed allowing to acquire MRI images of higher quality at a field strength of 1.5 T with
the possibility for the physician to access the patient within the MRI scanner from the tunnel
opening (Figure 1.1c).
Besides the development of interventional MRI scanners, further efforts have been made to

(a) (b) (c)

Figure 1.1: Interventional MRI scanners. (a): Double donut MRI scanner (Signa SP, GE, Little
Chalfont, UK). Reprinted from [SGKU02]. (b): MRI scanner with horizontal gap (Panorama,
Philips, Best, Netherlands). Reprinted from [htt13a]. (c): Open bore MRI scanner (MAG-
NETOM Espree, Siemens AG, Erlangen, Germany) with the physician accessing the patient
through the tunnel opening.

furnish the interventional MRI room with compatible hardware such as shielded monitors for
MR image display to the physician inside the MRI room. Furthermore, MR-compatible input
devices such as table controls, keyboards and foot switches have been developed allowing to
change imaging parameters interactively from within the MRI room. Accordingly, software
protocols for real-time communication with the MRI console PC have been opened to the re-
search community allowing to develop software interfaces for interactive control of sequence
parameters in real-time. As presented in [BG12], several commercial solutions are available
for interactive real-time control of MR imaging parameters.
One of the major requirements for interventional MRI was the development of interventional
imaging pulse sequences allowing to acquire MR images rapidly with a high soft tissue con-
trast. For this purpose, great efforts have been made for the development of rapid imaging
sequences allowing to acquire different types of contrasts such as T1-weighted, mixed T1- and
T2-weighted and T2∗-weighted images ([BG12]). Interventional pulse sequences have been
developed for interactive alteration of image plane position and orientation, as well as image
contrast. Such pulse sequences typically allow to successively acquire and display several
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image planes in order to monitor the needle advancement in percutaneous procedures.

Thanks to these developments, interventional MRI is today a powerful tool for therapeutic
procedures and part of the clinical routine for cancer treatment.

1.1.4 Clinical workflow of MR-guided percutaneous procedures

Typical therapeutic and diagnostic percutaneous procedures under MR-guidance are biopsies,
infiltrations, ablations and intravascular interventions ([Jol98]). Biopsies, infiltrations and
ablations are typically performed in the prostate, liver, kidney and breast. Intra-vascular
interventions are performed in order to deliver stents, vena cava filters or embolization
materials using catheters.
During a biopsy, a sample of tissue or bone is retrieved from a suspicious area for examination.
The sample is retrieved through a puncture with a hollow needle extracting a core of the
suspicious area. During ablations, one or several needles are placed within a tumor, which is
then destroyed either through RF ablation, cryoablation, laser ablation, high-intensity focused
ultrasound (HIFU) or brachytherapy. For an RF ablation, a needle is placed within the tumor
and an electrical current is applied in order to heat the tissue. In the same manner, laser
ablation and HIFU rely on tissue heating for destruction of tumors. During a cryoablation, the
tissue is destroyed through freezing. For this purpose a gas (e.g. argon) is led through a hollow
needle into the tumor and freezes the surrounding tissues. Thawing cycles can be alternated
with freezing until destruction of the tissue ([GTA+12]). During brachytherapy, radioactive
seeds are implanted into the tumor in order to destroy the surrounding tissues.

Hence, typical interventional tools for MR-guided procedures are either rigid, such as needles,
or flexible, such as catheters and guidewires. During the procedures, it is mandatory to
correctly detect the position and orientation of the interventional tool in order to monitor its
advancement. For that matter, the image planes are typically aligned to the tool main axis or
perpendicular to it (Figure 1.2).
A typical workflow of a percutaneous intervention can be described as follows:

1. Pre-operative planning
The patient is installed inside the MRI scanner. A 3D volume acquisition of the zone
of interest is acquired and the needle insertion point and path are planned in the MR
images.

2. Marking of the needle insertion point
The point of needle insertion is then marked manually on the patient’s skin by identifying
the insertion point through placement of an MR-visible marker on the patient. The zone
around the needle insertion point is sterilized. A local anesthesia is administered to the
location of the needle insertion point.

3. Procedure and real-time MRI-guidance
An incision is performed at the needle insertion point in order to facilitate needle ad-
vancement and limit needle bending. The needle is then inserted and its advancement
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Figure 1.2: Images of a liver biopsy under MRI-guidance. The image planes at the left and right
are orthogonal to each other and aligned to the main axis of the needle. The image plane in
the middle is oriented perpendicular to the needle axis. The needle artifact is indicated with
yellow arrows.

is monitored through the MR images. MR image plane position and orientation are
dynamically manually updated for the physician to have a precise view of its needle
advancement within the surrounding anatomy. Typically, two image planes are aligned
to the needle main axis and orthogonal to each other in order to depict the anatomy
surrounding the needle in a 3D-like fashion. Once the needle reaches the targeted
region of interest, the treatment or sampling is performed. The needle is eventually
retracted.

1.1.5 Current needs in MR-guided percutaneous procedures

Very little dedicated solutions are commercially available to facilitate the described clinical
workflow, so that interventional MRI remains clinically limited to highly trained centers.
Several difficulties remain for the clinical teams performing percutaneous procedures under
MR-guidance.
The exact marking of the needle insertion point on the patient’s skin is manual and can
therefore be time consuming and prone to error. The insertion point determined in pre-
operative planning images has to be located in the MRI coordinates. Two manual methods
are used for patient skin marking of the entry point. The first method relies on the MRI laser
normally used for isocenter definition relative to the patient. The patient table is manually
moved so that the entry point lies underneath the laser plane. Then the right-left position
of the entry point is measured with a ruler from the laser cross. For the second method, MR
images of the insertion plane are continuously acquired while the physician palpates the
patient’s body until detecting his finger in the MR image. Then he/she translates his finger
to the appropriate right-left position, before marking the entry point on the patient skin.
Once the entry point is correctly marked, the practitioner relies on his/her own experience to
introduce the needle with the correct angulation in order to reach the targeted lesion. Laser
pointers are commercially available in CT but not for MRI so far.
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Manual tracking of the needle insertion and real-time image plane alignment is a tedious
task as the physician has no means for controlling the image planes. Interfaces allowing to
control the MR images planes from within the MRI room exist, but the physician is occupied
with the needle insertion and has thus not the possibility to manipulate them. The real-
time image plane orientation and positioning is thus performed manually by a technologist
at the MRI console and its time efficiency strongly relies on the experience of physician
and technologist as a team as no communication is possible during image acquisition in a
normal MRI scanner setup. A dedicated interventional MRI headphone system using optical
microphones for avoiding interference with the image acquisition is commercially available
(IMROC IR from Optoacoustics, Or Yehuda, Israel). Nevertheless, image plane alignment based
on oral communication remains tedious. Fast and accurate localization of and automatic
image plane alignment to the interventional tool are thus of high interest for interventional
MRI. An overview over the research carried out in this domain is given in section 1.2.

1.2 Literature review of tracking systems for interventional MRI

Numerous efforts have been made for automatic interventional tool detection and image plane
alignment. The presented works can be grouped in active and passive strategies ([DLF06],
[KKR11], [DWL02]). As this classification is not unique in the literature, classification for this
review is realized as follows. Active strategies are defined as relying on additional electrical
hardware connected to the MRI scanner or another measurement device in order to track
interventional tools and adjust image planes automatically. In contrast, passive strategies rely
on detection and tracking directly in the MR images based on contrast enhancement and do
not use additional active devices. The following overview over the literature in this domain
has been inspired from existing literature ([BW08],[KKR11]).

1.2.1 Active tracking systems

Active tracking systems rely on different principles such as gradient field measurements,
tracking RF coils or optical tracking.

Spatially varying gradients that are applied for imaging or specifically for tracking can be used
in order to determine position and orientation of the surgical device to which the sensor is
attached. In [SKH+13] a Hall sensor is used for measurement of three specific gradients applied
along the three axes of the MRI. The challenge in this approach is to accurately measure the
magnetic gradients in the presence of the high permanent magnetic field of the MRI scanner.
For this purpose, bipolar pulses are applied sequentially along each axis of MRI and a specific
conditioning circuit is used (Figure 1.3). This signal conditioning circuit outputs one analog
signal proportional to the magnitude of the applied gradient for every magnetic component.
The output signal is transmitted via optical fiber cable outside of the MRI room. Currently,
this tracking device could typically be attached to a needle holder and used for percutaneous
procedures such as biopsies, ablations and infiltrations.
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(a) (b)

Figure 1.3: Gradient measurement using a 3D Hall sensor. (a): The sensor and the conditioning
circuit. (b): The dedicated bipolar magnetic gradient pulse and the synchronization signal
used for gradient measurements. Reprinted from [SKH+13].

In [BUS+06], the Faraday effect is used for measurement of the gradient fields using a non-
magnetic, non-electrically conducting optical sensor. The position of the device can be
determined as the polarization plane in an optically active material depends on the local
magnetic field. This type of sensor is typically usable for intravascular procedures as it is very
small and can be included into a catheter (Figure 1.4).

(a) (b)

Figure 1.4: Gradient measurement using the Faraday effect. (a): The polarization plane in
an optically active material is rotated by an angle θ, depending on the strength of the local
magnetic field. The position of the sensor can thus be determined according to the transmitted
light. (b): Prototype of a Faraday sensor connected to an optical fiber cable. Its small size
allows to integrate it into a catheter. Reprinted from [BUS+06].

Another possibility for gradient measurement is the use of pick up coils measuring induced
voltages during gradient switching. The EndoScout (Robin Medical, Baltimore, MD) and
CathScout (Robin Medical, Baltimore, MD) systems are commercially available solutions
using three orthogonal pick up coils for tracking of rigid interventional tools and catheters,
respectively (Figure 1.5). The induced voltages are measured and compared to a gradient
control signal for determination of position and orientation of the sensor.
Advantages of gradient-based tracking systems are that either no extra-time or only short
extra-time for application of tracking gradients is consumed. Furthermore, the Faraday sensor
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(a) (b)

Figure 1.5: Commercial solution from Robin Medical (Baltimore, MD) using pick up coils for
gradient measurement. (a): Three orthogonal coils integrated into a cube sensor or into a
microsensor for integration into a catheter. (b): Working principle of the EndoScout system:
the system compares the emitted and measured gradient signals, determines position and
orientation of the sensor and sends an image plane alignment command to the MRI console
PC. Reprinted from [htt13b].

is completely made of non-conducting material, which prevents RF heating. For the Hall
sensor and pick up coils, heating can be a problem and are a risk for the patient and the device.
Furthermore the physical link between the sensors and a measuring device either through
optical fiber or electrical cables restrain the free motion of the device. A further drawback of
the Faraday sensor is the fragility of the used optical fiber cable.

Small tracking and profiling RF coils can be integrated in interventional devices and can be
used for detection and tracking applications. The coils are directly connected to the receiver
system of the MRI scanner. Their detection is realized with dedicated RF pulses that are
interleaved with the imaging parts of an MRI sequence. In [BVZ+04] a catheter with three
integrated RF coils is presented in combination with a dedicated real-time pulse sequence
and a user interface allowing to automatically align the acquired image planes according to
the performed catheter motion (Figure 1.6).
The advantage of this approach is the possibility to track a device automatically within a very
short time. The coils can be used within catheters when miniaturized and for tracking of
rigid interventional tools when attached to them. A possible risk of this technique is potential
RF heating due to the conducting cables between the coils and the MRI receiver channels.
Furthermore the detection of the coils requires dedicated tracking sequences.

Optical tracking systems use cameras and markers for tracking of holding devices for rigid
percutaneous interventional tools used for biopsies, ablations and infiltrations. In [VBR+07]
a stereoscopic camera system consisting in four CCD monochromic cameras is used for
detection of an infrared LED attached to the distal end of a needle inside a C-arm MRI scanner.
The presented system also provides a laser pointer for indication of the needle insertion point
on the patient’s skin (Figure 1.7). In [BSKO+02] a similar system using only one camera and
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(a) (b)

Figure 1.6: Catheter tracking with RF coils. (a): Catheter with three integrated RF coils con-
nected via coaxial cables to the MRI receiver unit. (b): In-vivo tracking experiment using an
active catheter with one coil (green cross). Reprinted from [BVZ+04].

several markers attached to a biopsy tool is presented.
Advantages of optical tracking systems are their high accuracy and the ability to track the
interventional tool outside the patient. No pulse sequence alteration is necessary as the optical
system is totally independent from the MRI technology. Their drawbacks are the need for a
line-of-sight link between marker and camera and thus their limited usability for closed-bore
scanners. Furthermore a registration step is necessary between the camera system and the
MRI scanner.

Common advantages of active tracking systems are their high accuracy and their indepen-
dency from MR image contrast. Their drawbacks are the need for additional and often costly
hardware that must be made compatible with the specific MRI set-up and pulse sequences.

(a) (b) (c)

Figure 1.7: Optical tracking of needle insertion (a): Disposition of the CCD cameras and the
laser pointing device in the MRI room. (b): Needle insertion point indicated by a laser pointer.
The needle is tracked by the camera with a infrared LED attached to its distal end. (c): A
calibration frame, visible for the cameras and for the MRI is used for permanent registration
of the camera system with the MRI scanner. Reprinted from [VBR+07].

13



Chapter 1. Interventional Magnetic Resonance Imaging (MRI)

1.2.2 Passive tracking systems

Passive tracking approaches track interventional tools directly in MR images through signal
enhancement or attenuation. The existing systems rely on paramagnetic markers or MRI
contrast-agents, inductively coupled coils or application of currents in a wire.

Paramagnetic markers cause local field distortions of the permanent magnetic field and
are depicted as dark spots on the MR images resulting from the signal loss in the region
surrounding the marker. Due to this negative contrast they can be used for tracking of catheters
within surrounding tissue. In [VdWBV01] dysprosium-oxide markers are used for tracking of a
guidewire in an intra-vascular intervention.
A positive contrast can be obtained when a dephasing gradient is applied in the slice selection
direction during image acquisition ([SVB03]). This dephasing gradient causes a signal loss in
the image, and results in a bright marker on a dark image background.
Another possibility of tracking paramagnetic markers within an MR image is to use a selective
excitation of paramagnetic equipotential curves caused by a magnetized marker such as a
ferromagnetic sphere ([FMBM08]). An RF excitation tuned to the desired equipotential curve
is applied and acquisition of three central k-space lines is sufficient for 3D tracking (Figure
1.8).

(a) (b)

Figure 1.8: Passive catheter tracking using a magnetized ferromagnetic marker and the selec-
tive excitation method. (a): Transversal (left) and sagittal (right) images of a ferromagnetic
sphere marker. (b): In-vivo tracking experiment showing the initial (left) and the final (right)
position of a catheter with a ferromagnetic marker at its tip. Reprinted from [FMBM08].

The advantage of paramagnetic markers is their small size. They can thus easily be used within
catheters. Their drawback is the need for dedicated tracking images.

Contrast agents based on paramagnetic substances (e.g. gadolinium) are often used as passive
markers for signal amplification in MR images due to their short T1 relaxation time. In
[DSF+07], a stereotactic frame consisting in acrylic plastic with seven embedded contrast
agent-filled glass cylinders is used for dynamic scan plane alignment (Figure 1.9). The unique
intersection points of the glass cylinders with only one scan plane allow to determine the
position and orientation of the frame. This stereotactic frame is presented in the context of
a robot-assisted navigation system for MRI-guided prostate biopsy and brachytherapy but
could also be used for tracking of a rigid interventional tool when attached to it.
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(a) (b)

Figure 1.9: Passive tracking using a contrast agent-filled stereotactic frame. (a): Stereotactic
frame made of acrylic plastic with seven embedded contrast agent-filled glass cylinders and a
corresponding MR image of the cross section of the frame. (b): The image plane follows the
motion of the stereotactic frame. Reprinted from [DSF+07].

The advantage of this technique is that the device can be tracked directly in clinical images
without the need for dedicated tracking images. Its strong drawback is the bulkiness of the
stereotactic frame.
In [dORB+08a], a commercially available prostate biopsy passive marker (PBPM) is used for
implementation of an automatic image plane alignment workflow. The PBPM is a contrast
agent-filled hollow cylinder through which the needle is passed. Two tracking-dedicated
image planes orthogonal to the main axis of the PBPM are acquired. The ring shaped PBPM is
then detected through phase-only cross-correlation on both image planes in order to align
a third clinical image plane to the needle axis (Figure 1.10a,b). In [dORB+08b] this system is
extended with an additional marker in order to track motions of the PBPM along its main
axis (Figure 1.10c). In [MKdO+09] this marker is then adapted for percutaneous interventions
through addition of a second cylindrical marker that is attached to the hollow cylinder at an
angle of 15◦. This allows to detect additionally the rotation of the device around its main axis
(Figure 1.10d). The initial PBPM is used in [MKS+11] for tracking motions along its main axis
without any hardware modifications. This is realized with a projection of the PBPM signal to
its main axis in order to determine the device position in needle direction.
The advantage of these techniques is their simplicity as they are based on a commercially
available marker. The drawback is that two dedicated tracking images have to be used for
tracking and image plane alignment.

Inductively coupled coils are untethered RLC circuits that are tuned to the Larmor frequency
of the MRI scanner. They rely on mutual inductance between aligned coils in order to transmit
a signal from one coil to another. In this manner the coils couple inductively to the transmit
coil of the MRI scanner and locally amplify the flip angle within their windings ([BCY96]). This
allows to acquire dedicated low flip angle tracking images where only little signal is measured
from tissue or liquids surrounding the coils and where the interior of the coils appear as bright
points. A single loop coil is used in [QZK+05b] for visualization of a catheter. In [RME+08] two
coils are attached to an endorectal probe for prostate biopsies (Figure 1.11). In [QZK+05a] a
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(a) (b)

(c) (d)

Figure 1.10: Passive needle tracking using a commercially available prostate biopsy passive
marker. (a): Device for prostate biopsies (top) and detail of passive marker with needle
(bottom). (b): Corresponding MR images during phantom experiment with the needle aligned
image plane (left). The two tracking planes (yellow) are depicted at the right. Reprinted
from [dORB+08a]. (c): Extension of the marker allowing to track motions along its main axis.
Reprinted from [dORB+08b]. (d): Extension of the marker allowing to track rotations around
its main axis. Reprinted from [MKS+11].
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technique for wireless decoupling of the resonant circuit using two crossed diodes is presented
in order to avoid image artifacts in the vicinity of the coil during conventional imaging.

(a) (b)

Figure 1.11: Passive tracking using resonant micro-coils. (a): Schematic (left) and photo (right)
of a resonant micro-coil. (b): Endorectal device for prostate biopsies equipped with two
micro-coils. Reprinted from [RME+08].

The advantages of inductively coupled coils are the simplicity of their detection and their
safety against heating as their dimensions are normally chosen smaller than the wavelength
of the MRI scanners. Drawbacks of this technique are that the coupling and thus the signal
amplification is dependent on the orientation of the coils with respect to the permanent
magnetic field of the MRI scanner and that their use is restrained to one MRI scanner field
strength.

For visualization of a catheter during an intra-vascular procedure, Glovinski et al. ([GAB+97])
presented a system where a current is led through a copper wire loop inside a catheter. The cur-
rent creates a local magnetic field that disturbs the homogeneity of the permanent magnetic
field of the MRI scanner. Due to this disturbance the image zone within this local magnetic
field appears dark and is well detectable among the surrounding tissues (Figure 1.12). An
image subtraction technique can then be used in order to monitor the advancement of the
catheter.

(a) (b)

Figure 1.12: Catheter tracking with a wire loop through which current is led. (a): The conduct-
ing wire is wound helically around the catheter. (b): Comparison of the catheter visibility in a
pig study without current (left) and with 150 mA (right). Reprinted from [GAB+97].

Advantages of this technique are its simplicity and cost-effectiveness. The drawbacks are
potential RF heating due to the conducting wire and the doubling of the image acquisition
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time if an image subtraction technique is used.

Image-based needle localization without any additional devices has also been investigated in
the literature. The needle is detected through the artifact it causes through local disturbance
of the permanent magnetic field. Several works have investigated the artifact shape and
its dependency on parameters such as the used MRI sequence and the needle orientation
with respect to the permanent magnetic field ([DKE+05]) or the simulation and modeling of
the needle artifact at the needle tip ([LHMT01]). In [DKE+05] a needle detection algorithm
using the Hough transform for detection of linear structures in the MR image is presented.
In [KGA04], the needle artifact is modeled as a rectangle in the difference image between a
static baseline image and the image acquired during needle insertion. Needle localization
is then performed through localization of the corresponding signal of this rectangle in k-
space, which is a 2D si nc function. Another technique relying on detection in a difference
image in k-space is presented in [SMO+98] where the strongest signal intensity in k-space
is identified as the needle tip. In [SRG+10] initial needle detection is performed on several
parallel image planes orthogonal to the needle axis (Figure 1.13). The needle is detected
using the background subtraction technique and feature analysis for candidate points. The
needle tracking is then performed using three imaging planes, either two parallel and one
orthogonal or two orthogonal and one parallel to the needle. A cylindrical needle model and a
cost function allowing to evaluate the needle position are used for alignment of the imaging
planes.

(a) (b)

Figure 1.13: Needle tracking using needle artifact. (a): Initial needle detection in three image
planes orthogonal to the needle axis. (b): Needle path tracking (red) towards the target (yellow)
with two parallel and one orthogonal image plane to the needle axis. Reprinted from [SRG+10].

The advantage of needle artifact detection is that no additional device is used. Drawbacks
of this technique are that the needle artifact depends on the orientation of the needle with
respect to the permanent magnetic field, and that the detection depends on the robustness
and accuracy of the implemented image processing.
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Common advantages of passive tracking methods are their simplicity and cost-effectiveness.
Their drawbacks are the inherent need for the tracking device to be located inside the tracking
images and the tracking update rate depending on the used MRI sequence. Also, most methods
require dedicated MRI acquisition times, slowing down the update rate even more.

1.3 Thesis objectives

The active approaches presented in the literature need additional and often costly hardware
whereas passive approaches usually need dedicated tracking images and can be bulky. The
objective of this work is to develop a method for dynamic image plane alignment in real-time
that would require only little additional instrumentation, be cost effective and minimize
dedicated tracking time.
For these reasons, a passive workflow has been developed for automatic image plane alignment
without the use of dedicated tracking images.

During interventions, physicians use fast MR imaging sequences acquiring image planes with
a typical slice thickness of 4 mm. This thickness has proven to be a good trade-off between
spatial resolution and image contrast. Indeed, a decrease of the slice thickness improves the
spatial resolution along the direction normal to the image plane but lowers the signal intensity.
Based on the slice thickness and the observable needle artifacts in the MR image with a width
of up to 10 mm, the objective is to achieve an accuracy of 4 mm.

For dynamic research for the needle insertion point on the patient’s skin, the image planes
are required to follow the motions of a target over the patient’s abdomen. The maximally
achievable tracking speed is strongly correlated with the imaging frequency. However, in order
to allow the physician to examine the entire width of the patient’s abdomen (width assumed ∼
300 mm) in about 5 seconds, a tracking speed of 60 mm/s is desirable.
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2 Workflow for automatic image plane
alignment in interventional MRI

An automatic workflow for image plane alignment of two real-time image planes to an MRI
marker is described in this chapter. First, the principle of the developed workflow is presented.
Then, the architecture of the marker and its components is introduced. The MRI scanner, used
scanner settings, the developed workflow and the image processing algorithms for marker
detection are then presented. The remainder of the chapter describes the calculations for
image plane alignment, the developed software architecture and the experimental evaluation
of the workflow.

2.1 Principle of the workflow for image plane alignment

The clinical MR imaging sequence that is used during this work allows to acquire sequentially
three MR image planes and to change interactively their positions and orientations. For
percutaneous interventions, two of these image planes can be oriented orthogonally to each
other in order to use them for monitoring of the needle advancement inside the patient’s body.
This set up allows to depict the needle path and the surrounding tissues in a "3D-like" manner.
The idea for the presented workflow was thus to make use of these orthogonal image planes
for an automatic image-based tracking technique using an MRI marker.
As the planes are orthogonal to each other and sequentially acquired, it is possible to detect the
MRI marker in one image plane and to align the following orthogonal image plane according
to this detection. This alignment step can be repeated for every image plane, and it is thus
possible to implement a tracking workflow aligning the image planes according to the motion
of the MRI marker. No dedicated tracking acquisition is necessary, as the detection of the
MRI marker is performed in two clinically used image planes. In order to avoid a manual
initialization step where a user aligns one of the two image planes to the MRI marker, one
dedicated image is acquired in the beginning for automatic initialization of the tracking.
Hence, the objective of the presented tracking workflow is to automatically align two MR
image planes, orthogonal to each other, to an MRI marker.
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2.2 MRI marker

Two types of MRI markers were used for the presented workflow. In a first approach, an MRI
marker, composed of two micro-coils and a passive marker was assembled. Through the
progress of work the passive marker only, without the micro-coils was used for the presented
workflow.

2.2.1 Micro-coils

Micro-coils are resonant RLC-circuits (resistor, inductor and capacitor) that couple inductively
with the radio-frequency (RF) coils of the MRI scanner, when tuned to its Larmor frequency.
Due to their resonance, they locally amplify the MR signal within their windings and allow to
be detected easily in low flip angle images ([BCY96]).
The micro-coils were built in a similar manner as in [RME+09] and tuned to 63.68 MHz, which
is the Larmor frequency of the 1.5 T MRI scanner used during this work. They were wound
around Eppendorf plastic tubes (Figure 2.1a) as they have appropriate dimensions (diameter:
7.5 mm, length: 16 mm), and the possibility to fill them with a liquid as signal source. A total
of six turns of 0.4 mm diameter enameled copper wire are wound around the plastic tube in
order to obtain an inductance of around 300 nH (total coil length 4 mm). A variable capacitor
with a range from 8 to 45 pF is then soldered in series to the inductance. The micro-coil is
tuned to the Larmor frequency using a loop antenna for inductive coupling and a network
analyzer. Tuning is performed through change of the capacitance of the circuit. The two
fabricated micro-coils have similar quality factors of about 60. This allows to use them in
dedicated low-flip angle acquisitions as the measured MRI signal is amplified within their
windings. The plastic tubes are filled with a contrast agent/water solution (Gd-DTPA 5 mM) as
signal source for the MRI acquisitions.
Nevertheless, as the micro-coils couple inductively to the RF signals of the MRI scanner, the
amplification of the MRI signal depends on their orientation with respect to the RF field.

2.2.2 Passive Marker and Assembled Test Device

The passive marker (Figure 2.1b) is a plastic tube (length: 90 mm, diameter: 35 mm) filled with
the same contrast agent/water solution (Gd-DTPA 5 mM) as the micro-coils. The test device is
made of two resonant micro-coils rigidly fixed at the endings of the passive marker (Figure
2.1c).

2.3 MRI scanner and scanner settings

All experiments during this work were performed in an open bore (short and wide) 1.5 T MRI
scanner (MAGNETOM Aera, Siemens AG, Erlangen, Germany). The RF body coil was used in
transmit/receive mode. An interactive, real-time, multi-slice TrueFISP sequence (Beat_IRTTT
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Figure 2.1: (a): Micro-coil wound around a plastic tube that is filled with contrast agent
solution. (b): Passive marker consisting of a plastic tube that is filled with the same contrast
agent solution. (c): Assembled MRI marker with two micro-coils at both endings of the passive
marker.

[PBS+11], Siemens Corporate Research & Technology, USA) was used for image acquisition.
The passive marker is used for detection in clinical real-time images. Imaging parameters
of the clinical real-time sequence include: matrix 224×202, FOV 450 mm×450 mm, spatial
resolution 2 mm×2 mm, slice thickness 4 mm, TE 2.2 ms, TR 5.3 ms, flip angle 50◦, bandwidth
260 Hz/Px, temporal resolution 812 ms. Image acquisition time is 812 ms but the image update
time is lengthened artificially to 1.2 s in order to allow for image transmission and processing,
scan plane calculation and sending of commands to the MRI before the next image acquisition
starts.
The two micro-coils are used for detection in dedicated low flip angle volume acquisitions with
the same imaging parameters as the clinical real-time images except for their slice thickness
(100 mm) and flip angle (1◦). Due to the low flip angle, only little signal can be measured from
anatomical structures. As a consequence, these volume acquisitions are not clinically usable
by the physician and are only used for initial detection. In this work, these images are named
"dedicated" in reference to the fact that their acquisition time is lost for the image-guidance
of the procedure, and only useful for the automated image plane alignment workflow.

2.4 Image plane alignment workflow

The objective of the presented workflow is to automatically align two image planes, orthogonal
to each other, to the main axis of the MRI marker described in section 2.2. The orientation of
the two scan planes can either be transversal (oblique) or sagittal (oblique) as the marker is
assumed to point towards the MRI table. A purely horizontal marker orientation (aligned to
x-axis of MRI scanner) is thus excluded.
The workflow consists in two stages: first an initialization stage where the initial position of
the marker is detected in dedicated detection images and second a real-time tracking stage
where the passive marker is detected in clinical real-time images.
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Chapter 2. Workflow for automatic image plane alignment in interventional MRI

2.4.1 Initialization

During the initialization stage, the initial position of the marker inside the MRI scanner is
detected. It allows thus for automatic initialization and reinitialization of the image plane
alignment workflow.
The initialization step can be performed in two different manners using either the marker
described in section 2.2 consisting in a passive marker and micro-coils or the passive marker
without the micro-coils.
Note that the marker detection for both approaches is realized in acquisitions with a slice
thickness of 100 mm. During these acquisitions the MRI signal in the image volume is mea-
sured and projected to the image plane. As a consequence a full 3D pose is not reconstructable.
The marker position is thus assumed in the middle of the image volume and the main marker
axis to be coplanar with the image plane. After the initial detection, image plane parameters
of a simple oblique sagittal plane aligned to the marker main axis are calculated and sent to
the MRI scanner.

Initialization with micro-coils

A dedicated low flip angle transversal volume image is acquired at the MRI scanner isocenter.
As can be seen in Figure 2.2a, these acquisitions contain only little signal from anatomical
structures due to their low flip angle. In contrast to this, the signal inside the windings of the
micro-coils is locally amplified and very well detectable. The two micro-coils are detected and
the position and orientation of the marker are calculated.

(a) (b)

Figure 2.2: Typical initialization images using low-flip angle volume images (ST 100 mm, flip
angle 1◦) and micro-coils (a) or volume images (ST 100 mm, flip angle 50◦) and the passive
marker only (b).

Initialization with passive marker

First, a dedicated transversal volume image is acquired (Figure 2.2b) at the MRI scanner
isocenter. Note that this volume image has a slice thickness of 100 mm and the same flip angle
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2.4. Image plane alignment workflow

as the clinical real-time images. All anatomical structures of the patient are thus depicted.
Nevertheless, due to the high slice thickness all measured signal is projected to the image
plane and thus superposed. As a consequence, these volume acquisitions are not clinically
usable, either. The passive marker is detected in the image and its position and orientation
are calculated.
Initialization without the micro-coils was investigated in order to simplify the marker design.

2.4.2 Real-time tracking

Clinically usable real-time image planes are used during the real-time tracking stage of the
workflow. It starts typically with the acquisition of a simple oblique sagittal plane (Image1)
whose parameters have been sent to the MRI scanner at the end of the initialization stage.
The passive marker is then detected in Image1, its 3D pose (Pose1) is computed and the
corresponding pose of a new simple oblique transversal image plane (Image2) aligned with
the marker is calculated. After acquisition of Image2, the current pose (Pose2) of the passive
marker is again detected in the image in order to update position and orientation of a new
sagittal oblique image plane (Image3).
From then on, the acquisition alternates between two orthogonal image planes: a sagittal (odd
image numbers) and a transversal plane (even image numbers). These two planes update
mutually their position and orientation according to the passive marker detection (Figure 2.3).

MRI!
3D pose!

3D pose!
Image2n !

Image2n+1 ! Pose2n+1 !

Pose2n!

Figure 2.3: Principle of Workflow: two orthogonal image planes, transversal (green border) and
sagittal (red border) are alternately acquired. The 3D marker pose is detected on the image
plane. A marker aligned orthogonal image plane is calculated and a corresponding command
is sent to the MRI console PC for acquisition of the next image plane.
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Chapter 2. Workflow for automatic image plane alignment in interventional MRI

2.4.3 Re-initialization

In case of a non-detection of the marker in two consecutive image planes, the initialization step
is repeated. The only difference with the original initialization step being that the projection
volume is centered on the latest detected z-coordinate of the marker.

2.5 Marker detection and image segmentation

The marker has to be detected on several types of images, such as low flip angle volume images,
volume images and clinical real-time images. Note that all images acquired throughout this
work have a size of 224 × 224 pixels.

2.5.1 Detection in low flip angle volume images

Detection of the marker in dedicated low flip angle volume images is realized through detection
of the two attached micro-coils. Detection of the micro-coils is very robust using the phase
only cross-correlation (POCC) technique presented in [CDD94] and [dORB+08a].

The phase correlation can be seen as:

• a translation in the Fourier (or frequency) domain of the cross correlation between two
images in the spatial (or temporal) domain;

• a clever use of the Fourier Shift theorem, which states that a translation in the spatial
domain induces a phase shift in the Fourier domain.

The detection of an object is achieved by a search of the translation (u0, v0) that maximizes
the similarity (cross-correlation) between the image i (u, v) and a template image of the object
t (u, v). The translation (u0, v0) is then the most likely location of the object in the image.
Performing this search in the Fourier domain has computational cost benefits, if the images
are large or readily available in the Fourier domain -as MR Images are. Indeed, the costly
cross-correlation between two images becomes through a Fourier transform (DF T ) a simple
entry-wise multiplication of their Fourier transforms : DF T (t ∗ i ) = DF T (t )∗.DF T (i ).

If T (ku ,kv ) = DF T (t(u, v)) and I (ku ,kv ) = DF T (i (u, v)) are then respectively the Discrete
Fourier transforms of the template image and the image to process, the phase only correlation
is defined by :

POCC (ku ,kv ) = T (ku ,kv )∗

|T (ku ,kv )∗| ·
I (ku ,kv )
|I (ku ,kv )| , (2.1)

with ∗, the complex conjugate operator.

The most likely position (u0, v0) of the object is then assessed by searching the peak of intensity
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2.5. Marker detection and image segmentation

in the spatial normalized cross-correlation image pocc(u, v) = DF T −1(POCC (ku ,kv ) ) :

(u0, v0) = max
u,v

pocc(u, v) . (2.2)

This property is commonly justified and illustrated with the phase correlation of one template
image of size M ×N and one image i (u, v) that is an exact translation of the template image:

i (u, v) = t (u +u0, v + v0)
DF T−−−→ I (ku ,kv ) = T (ku ,kv )ei 2π( ku u0

M + kv v0
N ) (2.3)

POCC (ku ,kv ) = T (ku ,kv )∗

|T (ku ,kv )∗| ·
I (ku ,kv )
|I (ku ,kv )|

POCC (ku ,kv ) = T (ku ,kv )∗

|T (ku ,kv )∗| ·
T (ku ,kv ) ·ei 2π( ku u0

M + kv v0
N )

���T (ku ,kv ) ·ei 2π( ku u0
M + kv v0

N )
���
= |T (ku ,kv )|2

|T (ku ,kv )|2
·ei 2π( ku u0

M + kv v0
N )

POCC (ku ,kv ) = ei 2π( ku u0
M + kv v0

N ) . (2.4)

The translation can then be retrieved from this phase image by computing its inverse Fourier
transform that exhibits a unit impulse located at the translation value:

pocc(u, v) = DF T −1(POCC (ku ,kv )) = δ(u0, v0) (2.5)

More complex approaches have been proposed to retrieve the translation directly from the
phase image and thus avoid an inverse Fast Fourier transform [SOCM01]. Note that the
image to proceed is rarely a simple translation of the template image but a complex scene
with multiple objects. The image pocc(u, v) -close to a normalized cross-correlation image-
has then not only one peak at the object location but multiple peaks whose intensity is a
measurement of similarity between the template and this image region.

Detection of the micro-coils is thus performed by detecting the two highest peaks in the signal
distribution (see Figure 2.4b). The template image t (u, v) has the same pixel matrix size M ×N
than the MR image to process. It is a black background with a white square at the center. The
size of the square corresponds to a previously determined mean size of the micro-coils in the
images.
Depending on their individual quality factors, the two micro-coils produce different signal
intensities. However, the local signal increase is such compared to other structures in the
low-flip angle image that the detection algorithm is robust to this signal variation. Finally, in
order to determine precisely the position of the micro-coils, a weighted mean is calculated on
the original image around the position of the 2 detected peaks.
The distance between the detected micro-coils is compared to their real distance on the marker
in order to ensure correctness of the result. The detected micro-coils allow to determine
position and orientation of the marker (see Figure 2.4c).
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Chapter 2. Workflow for automatic image plane alignment in interventional MRI

(a) (b) (c)

Figure 2.4: Segmentation of micro-coils in a low-flip angle volume image with (a) - the initial
low flip angle volume image, (b) - its phase correlation with the template micro-coil image and
(c) - the final detected position of the micro-coils with the derived orientation of the marker.

2.5.2 Detection in volume images

The detection of the passive marker in the volume images (Figure 2.5a) can be divided in two
parts: first the segmentation and deletion of the patient’s body and second the segmentation
of the passive marker.
For the segmentation of the patient’s body, a histogram-based thresholding is performed on
the image. The threshold is determined in the following manner: the maximum of the his-
togram is detected (pixel intensity with the highest pixel number). Then, the local minimum
after the maximum is detected and defined as the threshold. Note that the pixel intensity
"0" (black pixel) is not taken into account for threshold determination as it can appear very
often in the image background and varies tremendously depending on the patient. Thus,
not considering it, makes the threshold determination more robust against patient size and
position on the image.
After thresholding and application of a hole filling algorithm (Figure 2.5b), the biggest seg-
mented object (patient’s body) on the thresholded image is determined and the corresponding
area is deleted from the original image (Figure 2.5c).
Then the segmentation of the passive marker is performed on the image without the patient’s
body. A thresholding operation using Otsu’s method ([Ots79]) is applied. After thresholding,
length and width of the segmented objects are determined. Then the difference between the
found values and the real length and width of the marker is calculated for every segmented
object. The object whose difference is the smallest is assumed to be the marker (Figure 2.5d).
The difference between the detected marker dimensions and its real dimensions must not
exceed a fifth of the real marker size.

Currently, initialization using micro-coils is more robust against failing detections due to the
higher signal contrast in the dedicated low-flip angle images. Initialization using the passive
marker only is prone to detection errors due to small contrast between the marker and the
hand holding it in the projection images. Small distances between passive marker and the
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2.5. Marker detection and image segmentation

(a) (b) (c) (d)

Figure 2.5: Segmentation of the passive marker in a volume image (a). A first threshold is
applied (b) and the biggest object is deleted from the original image (c). A second threshold is
then applied allowing to separately segment the bright marker from the hand holding it. The
marker is then found through a size criterion (d).

patient’s body can also cause problems for the proposed algorithm, as the marker and body
could be segmented as one object during the first thresholding operation.

Nevertheless, the approach for initialization based on the passive marker gave promising
results and will be further developed. A possible solution to the attachment of the marker
to the body during thresholding could be the use of an active contour method with a shape
constraint. The active contour could e.g. be constrained to keep a rather round shape without
formation of corners. In this manner, the patient’s body could be fitted without the marker
lying within the contour.
A well known active contour approach is the snake algorithm ([KWT88]). This algorithm uses
an energy-minimizing spline that is driven by external constrained forces and influenced
by image-forces. The image forces are obtained from salient image features such as edges,
lines and contours and allow to push the snake towards these features. External constrained
forces allow to put the snake in the proximity of a desired local minimum. They can thus be
based on inputs from a user-interface or in high-level interpretations. Furthermore, internal
forces of a snake allow to impose smoothness constraints of the contour. First tests have
been carried out using the snake algorithm with 100 contour points and a maximum of 150
iterations (Figure 2.6). The parameters for the different forces of the algorithm have been
obtained experimentally.

2.5.3 Detection in clinical real-time images

The passive marker is used for detection in the clinical real-time images. These images typically
depict the marker held by a physician over the patient’s body (Figure 2.8a). The detection
algorithm has thus to be robust against potentially segmented anatomical structures of the
patient or of the physician holding the marker. First step of the detection algorithm is the
image segmentation.
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(a) (b) (c)

Figure 2.6: Passive marker detection in volume images using an active contour method. The
contour is initialized near the edges of the image (a) and starts then moving over the image.
Results after 50 (b) and 150 (c) iterations are presented, where the latter matches well the outer
body limits.

Image segmentation and labeling

Image segmentation starts with a Gaussian blurring step of the image in order to reduce
image noise before the following thresholding operations. Thresholding is performed in
two consecutive steps in order to avoid over-segmentation of the image and to facilitate the
subsequent classification of the segmented objects. A first threshold is determined in order to
separate image foreground and background. Foreground of the image consists in the patient’s
body, the marker and the anatomical structures of the person holding the marker (Figure 2.7a).
This first threshold (T hrLow ) is established at the 0.65-quantile from the histogram of the
image after Gaussian blurring. A second threshold (T hrHi g h) is determined at the 0.9-quantile
of the same histogram (Figure 2.7b). Note that these histogram-based thresholds are also
computed without considering pixel intensity "0", for the same reason as presented in section
2.5.2.
The first threshold is applied on the Gaussian blurred image. Morphological operations are
then performed: first, a hole filling algorithm is applied, followed by a morphological opening
(erosion, then dilation). Hole filling allows to close potential gaps inside the segmented body
parts (Figure 2.8b). The opening step is realized with a structuring element in the order
of 1/10th of the image dimensions. This rather big structuring element allows to delete
segmented marker parts from the image while preserving the kernel of the patient’s body
during the erosion step of the opening (Figure 2.8c). The following dilation allows to rebuild the
approximate shape and size of the patient’s body (Figure 2.8d). The obtained image contains
thus a mask for the segmented patient’s body. This mask is inverted and then multiplied with
the Gaussian blurred image in order to delete the major part of the patient’s body from the
scene (Figure 2.8e).
After deletion of the patient’s body, the second threshold (T hrHi g h) is applied on the obtained
image (Figure 2.8f). As this threshold is a lot higher than the first one, the hand of the person
holding the marker and the passive marker are separated. The segmented objects are then
labeled.
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Figure 2.7: Histogram-based determination of thresholds for the image depicted in (a). The
thresholds are defined at the 0.65-quantile (T hrLow ) and the 0.9-quantile (T hrHi g h) of the
histogram.

(a) (b) (c)

(d) (e) (f)

Figure 2.8: Image segmentation algorithm: The original image (a) is blurred and thresholded
(b). A morphological opening (erosion, then dilation) step is then applied (c,d). The resulting
image is inverted and multiplied with the blurred original image in order to mask out the
principal body parts (e). A higher threshold (T hrHi g h) is then applied on this image in order
to separate the marker clearly from the hand holding it.
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Image classification

After labeling, the geometrical properties of the objects, such as position, intensity weighted
position and mean intensity are determined. Further geometrical properties are determined
using an ellipse fitting algorithm calculating orientation, axes length and eccentricity of the
ellipses fitted to the segmented objects.
The classification of the objects is then achieved with a score system that is based on the
previously determined geometrical features. According to the score, the objects are classified
as marker (only one is expected) or non-marker objects. A score composed of sub-scores for
size (A), intensity (B) and eccentricity (C ) is calculated for every segmented object i .

The size score is defined by

A(i ) =






Si ze(i )
t y pSi ze if Si ze(i )

t y pSi ze ≤ 1

1−
���1− Si ze(i )

t y pSi ze

��� if 1 < Si ze(i )
t y pSi ze ≤ 1.8

0 if Si ze(i )
t y pSi ze > 1.8

(2.6)

where Si ze(i ) is the size of the object in number of pixels and t y pSi ze the expected size of the
marker. As the size of the marker in the images depends on the intersection of the image plane
with the marker, its typical size in the images is determined experimentally in an optimally
marker-aligned image plane. The size score allows to calculate a maximal score for those
objects that have the same size as t y pSi ze. If they are smaller or bigger their score diminishes.
The size score is not directly set to zero when the object is bigger than t y pSi ze, as parts of the
hand holding the marker or the micro-coils could be segmented with the object containing
the marker.

The intensity score is the result of the division between the summed intensity of pixels (Int (i ))
inside a segmented object and its size in the image:

B(i ) = Int (i )
Si ze(i )

. (2.7)

Thus this score is independent of the object size and represents the mean intensity of the
object. Note that after all intensity scores have been computed with the equation here above,
they are normalized to the interval [0;1] through division with the maximal intensity score of
all segmented objects. As a consequence the marker, which is normally the object with the
biggest intensity-size-ratio in the image obtains the biggest intensity score. This score can be
prone to errors, when a part of the hand/arm holding the marker is segmented as an object, as
fat tissue is very intense in the used MRI sequence.

Each segmented object is fitted by an ellipse. The used ellipse fitting algorithm ([PM07]) is
based on the calculation of raw image moments. A raw image moment (Mpq ) is a weighted
average of the image pixel intensities (I (u, v)) that allows to describe image objects after
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segmentation:

Mpq =
�

u

�

v
up v q I (u, v) . (2.8)

Typical geometrical properties that can directly be determined from raw moments are the
sum of intensity values (M00) and the centroid coordinates (u = M10/M00, v = M01/M00) of an
object. In case of a binary image, M00 indicates thus directly the object size in pixels.
For ellipse fitting, the raw image moments are used for calculation of central moments (µpq ),
which describe the distribution of the pixel intensities of an object in a translation-invariant
manner:

µpq =
�

u

�

v
(u −u)p (v − v)q I (u, v) . (2.9)

This distribution is then approximated with an ellipse whose covariance matrix can be com-
puted using the central moments:

cov [I (u, v)] =




µ20
µ00

µ11
µ00

µ11
µ00

µ02
µ00



 . (2.10)

Geometrical features of the ellipse (and thus of the object) can then be obtained from the
eigenvectors (direction of ellipse axes) and eigenvalues (length of the axes) of the covariance
matrix.

The eccentricity score is then calculated based on the object-fitted ellipse:

C (i ) =
�

1− Mi n Ax(i )2

M a j Ax(i )2 , (2.11)

where Mi n Ax(i ) and M a j Ax(i ) represent the length of the minor axis and major axis of
the ellipse, respectively. This score is maximal if the object is elongated and zero when the
segmented object has a circular shape.

The global score is obtained by building the weighted sum of the previously calculated scores:

S(i ) = 0.6 · A(i )+0.3 ·B(i )+0.6 ·C (i ). (2.12)

These weights have been determined experimentally. Note that the size score and eccentricity
score are weighted with factor 2 compared to the intensity score. This is mainly due to
potentially segmented body, arm or hand parts whose fat tissues can obtain big intensity
scores due to their brightness with respect to other segmented objects in the image. Moreover,
the marker can be subject to artifacts that influence heavily on its intensity (Figure 2.9a).
According to its global score, an object is classified as ’marker’ if its score is above a defined
threshold. If more than one object is classified as ’marker’, only the highest score is retained as
marker.
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The presented image segmentation and classification methods have been tested for typical
scenes with a patient’s body and a marker held in hand. The algorithms have been verified
with only four volunteers and have thus still to be tested on a larger sample. A marker with and
without micro-coils has been used during tests. Due to their brightness in the clinical real-time
images, the micro-coils are sometimes segmented as part of the marker, when they are not
distant enough from the passive marker (Figure 2.9b). Since the micro-coils are symmetrically
positioned at both endings of the marker, and since we ultimately aim at using the workflow
without micro-coils, this work did not focus on separating the micro-coils from the passive
marker during thresholding in the clinical real-time images.

(a) (b)

Figure 2.9: Challenges of marker segmentation and detection. The passive marker can be
subject to artifacts influencing its intensity (a). Moreover, when micro-coils are not distant
enough from the passive marker, they can be segmented as one object (b).

In addition, depending on the orientation of the hand/arm holding the marker more or less of
these structures are depicted in the image and the algorithm can fail and detect these body
parts as the marker. A perspective to solve this issue is the use of a shape-based detection of
the marker in the images. Thus, an active contour method using a shape-prior could be used
in order to segment the rectangular or elliptical form of the marker in the image. Initial tests
of marker shape approximation with a superellipse ([RW95]) have been carried out but are
not conclusive at this stage. The advantage of a superellipse parametrization of the contour
is its ability to form different shapes such as rectangles, ellipses, diamonds or transitional
shapes in between. Mainly the transition between a rectangle and an ellipse is interesting
for approximation of the marker shape. Real-time ability of such an approach has to be
evaluated.

Another challenge is the insufficient masking of the patient’s body inside the images, which
results in elongated and bright body parts that stay in the scene after segmentation and
are subsequently evaluated through the classification algorithm. A possible solution to this
problem is the segmentation of the patient’s body with an active contour method as presented
in section 2.5.2. The approximation of the patient’s body in an initial image plane with a
parameterized 3D shape would allow to project this shape on an arbitrarily oriented image
plane in order to delete the body in every subsequent image plane.
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2.6 Calculations for image plane alignment

In order to define the new position and orientation of an MR image plane, the used Siemens
interface requires the following parameters:

• the 3D position of the new image center,
• the rotation between a pure transversal plane and the new image plane (in axis/angle

representation).

They must be sent to the MRI console PC in order to align an image plane to a marker pose
(position and orientation). As the presented workflow assumes no motion of the marker
between two consecutive image planes, the detected 3D pose of the marker in the current
image defines the 3D pose of the next image plane. Thus, the following calculation steps have
to be performed in order to align the next image plane to the currently detected 3D marker
pose:

• conversion of the 2D position of the marker (in image frame) to its 3D position (in MRI
frame),

• calculation of the marker-aligned image plane orientation,
• determination of the rotation between a pure transversal image plane and the marker-

aligned image plane.

The results of image plane position and orientation computation can then be sent to the
Siemens interface for image plane alignment.

2.6.1 Computation of the new image plane position

In order to represent a point from an MR image in 3D, three coordinate systems are defined
(Figure 2.10). The first coordinate system is two-dimensional and is linked to the upper left
corner of the image (FC : u, v). The second is three-dimensional and is also linked to the
MR image (FI : r ow ,col ,nor ) but has its origin in the center of the image. The frame of
reference is three-dimensional, linked to the MRI scanner (FM : x , y , z) and has its origin in
the isocenter of the MRI. FC is used for clarity, as most image processing libraries define the
image origin in an image corner instead of its center. See Appendix A for further illustrations
and details about the used coordinate systems. The transformation between a point in the MR
image C P = [u, v]T (in pixels) and its 3D correspondence M P = [x, y, z]T (in mm) is given by
the following equation in homogenous coordinates





x
y
z
1




= M M I · I MC ·S ·




u
v
1



 (2.13)

where:
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Figure 2.10: Coordinate systems for image plane calculations. Coordinate systems FC and
FI are linked to the upper left corner and the center of the image, respectively. Coordinate
system FM is linked to the isocenter of the MRI scanner. The transformations between the
implied coordinate systems are represented by the homogeneous matrices I MC and M M I .

• M M I is the homogenous matrix describing rotation (M R I ) and translation (M t I ) be-
tween the image frame FI and the MRI frame FM

M M I =
�

M R I
M t I

0 1

�

=





r owx colx norx tx

r owy coly nory ty

r owz colz norz tz

0 0 0 1




, (2.14)

• I MC is the homogenous matrix describing translation (I tC ) between the image frames
FC and FI

I MC =
�

I 3,3
I tC

0 1

�

=





1 0 0 −tu

0 1 0 −tv

0 0 1 0
0 0 0 1




, (2.15)

• and S is the matrix describing the pixel size of the image

S =





P xSi zeu 0 0
0 P xSi zev 0
0 0 0
0 0 1




. (2.16)

The parameters for the construction of matrices M M I and S are given by the information
header that is attached to every MRI image. The parameters P xSi zeu and P xSi zev de-
scribe the size of the pixels in horizontal and vertical direction respectively and are given
in mm/pi xel . The translation between the two image frames, given by tu and tv , is constant
and corresponds to the half of image width and image height (in mm) respectively.
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For simple scan plane positioning, the next image plane position is defined at the current
3D marker position M P = [x, y, z]T . As a consequence, the next image plane will depict the
marker at its center, resulting in one image half that is empty (typically above the patient) and
potentially the patient’s body not entirely depicted in the image.
In order to avoid empty image space a first plane positioning strategy has been implemented:
first the line corresponding to the marker orientation on the image plane is computed. Then
the line normal to the first one and intersecting with the center of the image plane is computed.
Their intersection coordinates on the image plane are calculated and defined as the point
where the next image plane will be centered (Figures 2.11a and 2.11b). Nevertheless, this
method has two flaws: first, when the marker is held near to the image plane center, the
position of the next image plane will be defined very near to the center (Figure 2.11c). The
second is that the distance between the detected marker position (red points in Figure 2.11)
and the new image plane position (blue points) depends on the orientation of the marker on
the image plane.
In order to stabilize the distance between the image plane center and the marker, another
approach is possible: after computation of the line corresponding to the marker orientation
on the image plane, a point on the same line at a pre-defined distance l from the marker
position can be calculated and defined as the next image plane position (Figure 2.11d). In this
manner the distance between the image plane center and the marker depends only on the
marker motion.

(a) (b) (c) (d)

Figure 2.11: Image plane positioning using different strategies. The first strategy (a-c) defines
the position of the next image (blue point) plane at the intersection between the marker axis
(red) and an orthogonal line (yellow) passing through the image plane center. In (c), marker
position and new image plane position coincide and the marker will thus be in the center of
the next image plane. A second strategy avoids this by defining the next image plane position
at a pre-defined length l from the marker position (d).

Depiction of the marker in the upper image half and stabilization of the distance between
marker and the image plane center is of great interest for the workflow as the field of view of
the acquired image planes could eventually be reduced to a minimum, depicting only patient’s
body and the marker. This field of view reduction would result in a reduction of the acquisition
time by reducing the acquisition matrix, or in a higher image resolution by keeping the same
acquisition matrix.
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Chapter 2. Workflow for automatic image plane alignment in interventional MRI

The first image plane positioning strategy has chosen in the beginning of this work. The
second strategy has been developed subsequently and has not been tested yet.

2.6.2 Computation of the image plane orientation

In order to align the used image planes to a detected marker orientation, the planes are rotated
around one of the principal axes of the frame linked to the MRI scanner. See Appendix A for
further details about plane conventions and used coordinate systems.
As the marker is assumed to point towards the MRI table, a purely horizontal marker ori-
entation (aligned to x0z-plane of MRI scanner) is excluded and only two cases have to be
distinguished for the calculation of the orientation of the next image plane. When the current
image plane is a sagittal oblique image plane, the next image plane is a transversal oblique
image plane and vice versa. According to which of the two cases is dealt with, the orientation
computation is slightly different.
The orientation of the new image plane is first defined by computing its orientation vectors
r ow , col and nor . Then the rotation matrix between a pure transversal image plane and
the desired image plane is calculated with Roll, Pitch, Yaw angles. Finally, the matrix repre-
sentation is converted in the axis/angle representation in order to be sent to the Siemens
interface.

MR image plane conventions

The two image plane orientations used during the following computations are transversal
oblique and sagittal oblique image planes (Figure 2.12). A simple oblique transversal image
plane is rotated around the x-axis of the MRI scanner by an angle β. Correspondingly, a simple
oblique sagittal image plane is rotated around the z-axis of the MRI scanner by an angle α.
Their special cases with β= 0 and α= 0 are referred to as pure transversal and pure sagittal
image planes, respectively.

Computation of the orientation of a transversal oblique image plane

When the current image plane is sagittal oblique, the next one is a transversal oblique image
plane. Thus, the orientation of the marker is detected in the current sagittal oblique image
plane and the orientation of the next transversal oblique image plane is then computed
accordingly.
As the orientation of a transversal oblique image plane is defined by the orientation vectors

r ow =




1
0
0



 col =




0

cos(β)
si n(β)



 nor = r ow ×col =




0

−si n(β)
cos(β)



 , (2.17)
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(a) (b)

Figure 2.12: Transversal (a) and sagittal (b) oblique image planes depicted with their col and
r ow vectors in the MRI frame.

the rotation angle β has to be determined in order to define the plane orientation.
The angle β is defined between the y-axis of the MRI and M m�, with M m� being the orthogonal
projection of the marker-axis M m on the plane y0z (Figure 2.13). The marker axis vector is
defined by the marker orientation in the image (γ) and by the orientation of the sagittal image
plane (α). Vector M m is thus obtained as

M m = M R I
I m (2.18)

=




−sin(α) 0 −cos(α)
cos(α) 0 −sin(α)

0 −1 0








cos(γ)
si n(γ)

0





M m =




−cos(γ) si n(α)
cos(γ) cos(α)

−si nγ



 ,

where I m is the marker axis represented in the image frame FI and M R I is the rotation
matrix between the image frame and the MRI scanner frame FM . Accordingly, the orthogonal
projection to the y0z plane is obtained with

M m� =




0

cos(γ) cos(α)
−si nγ



 . (2.19)

Concerning the signs of the components of M m, note that angle γ is defined between the
horizontal image axis and the marker axis in the image plane and rotates around the normal
vector of the sagittal oblique image plane.

39



Chapter 2. Workflow for automatic image plane alignment in interventional MRI

(a) (b) (c)

Figure 2.13: Projection of the detected marker orientation on a simple oblique sagittal image
plane to pure sagittal plane in order to determine the orientation of the next transversal
oblique image plane. (a): Detected marker orientation γ on simple oblique sagittal plane.
(b): Representation of corresponding orientation in 3D when accounting for orientation α of
sagittal oblique plane. (c): Projection (M m�) of the detected marker axis (M m) to the y0z-plane
in order to determine the orientation β of the next transversal oblique image plane.

The angle β is then given by the angle between the y-axis and vector M m�. The cos and si n of
this angle can be calculated based on the dot and cross products of vectors y and M m�. The
dot product allows to calculate cos(β) with

cos(β) = y M m�
��y

�� ��M m��� =
cos(γ) cos(α)

��
cos(γ) cos(α)

�2 + si n(γ)2
. (2.20)

The cross product of both vectors gives a vector that is collinear with the x-axis. In order to
obtain si n(β) directly, we project thus the cross product onto the x-axis:

si n(β) = y ×M m�
��y

�� ��M m��� x = −si n(γ)
��

cos(γ) cos(α)
�2 + si n(γ)2

. (2.21)

Hence, the orientation angle of the next transversal image plane is then obtained with

β= at an
�

si n(β)
cos(β)

�
= at an

� −si n(γ)
cos(γ) cos(α)

�
. (2.22)

The transformation of a pure transversal image plane to an oblique transversal plane is then
obtained by performing a simple rotation around the x-axis by angle β:

R = R (x,β) =




1 0 0
0 cos(β) −sin(β)
0 sin(β) cos(β)



 . (2.23)
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Calculations for orientation of a sagittal oblique image plane

When the current image plane is transversal oblique, the next image plane is a sagittal oblique
image plane. Thus, the orientation of the marker is detected in the current transversal oblique
image plane and the orientation of the next sagittal oblique image plane is then computed
accordingly.
As the orientation of a sagittal oblique image plane is defined by the orientation vectors

r ow =




−si n(α)
cos(α)

0



 col =




0
0
−1



 nor = r ow ×col =




−cos(α)
−si n(α)

0



 , (2.24)

the rotation angleα has to be determined in order to define the plane orientation. The angleα
is defined between the y-axis of the MRI and M m�, with M m� being the orthogonal projection
of the marker-axis M m on the plane x0y (Figure 2.14). The marker axis vector is defined by
the marker orientation in the image (γ) and by the orientation of the transversal image plane
(β). Vector M m is thus obtained as

M m = M R I
I m (2.25)

=




1 0 0
0 cos(β) −sin(β)
0 sin(β) cos(β)








−si n(γ)
cos(γ)

0





M m =




−si n(γ)

cos(β) cos(γ)
si n(β) cos(γ)



 ,

where I m is the marker axis represented in the image frame FI and M R I is the rotation
matrix between the image frame and the MRI scanner frame FM . Accordingly, the orthogonal
projection to the x0y plane is obtained with

M m =




−si n(γ)

cos(β) cos(γ)
0



 . (2.26)

Concerning the signs of the components of M m, note that angle γ is defined between the
vertical image axis and the marker axis in the image plane and rotates around the normal
vector of the transversal oblique image plane.

The angle α is then given by the angle between the y-axis and vector M m�. As previously, the
cos and si n of this angle can be calculated based on the dot and cross products of vectors y
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(a) (b) (c)

Figure 2.14: Projection of the detected marker orientation on a simple oblique transversal
image plane to a pure transversal plane in order to determine the orientation of the next
sagittal oblique image plane. (a): Detected marker orientation γ on a transversal oblique plane.
(b): Representation of corresponding orientation in 3D when accounting for orientation β

of transversal oblique plane. (c): Projection (M m�) of the detected marker axis (M m) to the
x0y-plane in order to determine the orientation α of the next sagittal oblique image plane.

and M m�. The dot product allows to calculate cos(α) with

cos(α) = y M m�
��y

�� ��M m��� =
cos(γ) cos(β)

��
cos(γ) cos(β)

�2 + si n(γ)2
. (2.27)

The cross product of both vectors gives a vector that is collinear with the z-axis. In order to
obtain si n(α) directly, we project thus the cross product onto the z-axis:

si n(α) = y ×M m�
��y

�� ��M m��� z = si n(γ)
��

cos(γ) cos(β)
�2 + si n(γ)2

. (2.28)

Hence, the orientation angle of the next transversal image plane is then obtained with

α= at an
�

si n(α)
cos(α)

�
= at an

�
si n(γ)

cos(γ) cos(β)

�
. (2.29)

The transformation of a pure transversal image plane to a sagittal oblique plane is then
obtained by performing a rotation around the x-axis by −π

2

R (x,− π
2 ) =




1 0 0
0 0 1
0 −1 0



 , (2.30)
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followed by a rotation around the z-axis by π
2

R (z, π2 ) =




0 −1 0
1 0 0
0 0 1



 (2.31)

and a final rotation around the z-axis by angle α

R (z,α) =




cos(α) −sin(α) 0
sin(α) cos(α) 0

0 0 1



 . (2.32)

Note that two consecutive rotations around the z-axis are applied for clarity. The rotation
from a pure transversal image plane to a sagittal oblique plane is thus given by

R = R (x,− π
2 ) R (z, π2 ) R (z,α) =




−sin(α) 0 −cos(α)
cos(α) 0 −sin(α)

0 −1 0



 . (2.33)

The final rotation matrix R is converted to the axis/angle representation in order to be sent to
the Siemens interface.

2.7 System architecture

Communication between the MRI console and an external PC is performed via an Ethernet
connection and a proprietary Siemens protocol (ReModProt, Siemens Corporate Research &
Technology, USA). The MRI console PC sends the acquired images to the external PC where the
images are displayed and image processing and image plane calculations are performed. The
commands for position and orientation of the image plane are sent to the MRI console PC for
an image plane update. The communication interface on the external PC was implemented in
C++ using open source libraries Qt, Insight Toolkit (ITK), Visualization Toolkit (VTK), OpenCV
and boost.
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Figure 2.15: System architecture of the implemented workflow: MRI images are sent to an
external PC via an Ethernet connection. Image processing and image plane calculations are
performed and the created commands are sent to the MRI console in order to align the scan
planes.

2.8 Simulations and Experiments

Tracking performance of the presented workflow is evaluated with the simulation program
described in section 2.8.1 and the experiments presented in section 2.8.2.

2.8.1 MRI simulator

In order to evaluate the accuracy of the image plane alignment through well known and
reproducible motions, a simulation program has been implemented. This program simulates
motion of a cylindrical marker in 3D space. In order to simulate the function of the MRI
scanner, it calculates the intersection of the currently simulated marker pose with alternately
a sagittal oblique or transversal oblique image plane. A computer-generated MR image is
created with black pixels as background and white pixels where the image plane intersects
with the marker. The orientation of the image planes are controlled by the tracking software
presented in section 2.7 with the same protocol as is used for command of the MRI console
PC (Figure 2.16). The simulation program sends the images at the same image frequency
to the tracking software as the MRI scanner, delayed only by a short time for simulation of
the transmission time of the images. Only the image segmentation algorithm of the tracking
software has to be adapted in order to detect the marker correctly in the simulated MR images.
These changes are necessary as the computer-generated images do not contain the patient’s
body. The simulator creates images of the marker over a bottle phantom. The advantage of
this simulation program is that it allows to simulate the performance of the tracking workflow
with reproducible motions and speeds on one PC and with no need for the MRI scanner. One
simulated motion was used throughout this work. Its motion range and speed were chosen in
typical free-hand displacement. Marker velocity was fixed at 9 mm/s, while rotational speed
was 2◦/s. First the marker moves along the xz-diagonal in the MRI coordinates for 10s, with
a continuous rotation motion along α. Then the motion takes place along the y-axis alone,
with a rotation along β, for 6.67s (to ensure the same displacement of 6 cm along the y-axis,
similar to the previous displacement along the x y-diagonal, that caused a displacement of

44



2.8. Simulations and Experiments

Figure 2.16: The simulation program simulates the MRI scanner and sends alternately transver-
sal and sagittal oblique image planes to the tracking program. A 3D marker motion is simulated
and computer-generated MR images are created according to the intersection between the
requested plane from the tracking software and the marker pose.

6 cm along x and z). The diagonal xz motion was chosen as it is the worst case scenario for
the tracking workflow. A maximum of pose components are rendered unavailable on both
orthogonal image planes, through motion perpendicular to the individual image planes.

2.8.2 Experimental testbed

Further experiments were performed using an MRI compatible testbed inside the MRI scanner
to assess the tracking effectiveness and accuracy. The testbed provides a ground-truth that
can be compared to the measurements from the tracking workflow. This MRI compatible
bidirectional translation mechanism allows to manually move a clamp on which the passive
marker can be mounted. The position of the clamp is measured along the axis of translation
using an optical position sensor with a resolution of 0.5 µm (Figure 2.17). The passive marker
can be moved over a distance of 500 mm.
Sending of measurement data from the optical sensor to an external PC inside the MRI control
room is realized via a programmable logic controller connected through a fiber optic cable.
The programmable logic controller is put within a Faraday cage inside the MRI room in
order to shield MR image acquisition from electromagnetic noise. In order to acquire nearly
synchronous position measurements, a synchronization signal has been implemented in
the used MRI sequence. The signal consists in a 2 ms pulse at the beginning of each MR
image acquisition. In this manner, the high measurement acquisition rate of the optical
sensor (1 KHz) can be synchronized with the slower MR image acquisition rate (∼0.8 Hz). The
translation measurement at half of the image acquisition time after the synchronization signal
is compared to the corresponding marker detection of the workflow. This allows to obtain a
better temporal matching between the measurements. The synchronization signal is output on
a trigger output port in the technical room of the MRI. It is then sent to the programmable logic
controller via a fiber optic cable and an fMRI Trigger Converter. A recapitulatory connection
scheme of the experimental setup is presented in Figure 2.18.

45



Chapter 2. Workflow for automatic image plane alignment in interventional MRI

(a) (b)

Figure 2.17: (a): MRI compatible testbed. (b): Testbed in MRI with attached marker.

Figure 2.18: Connection scheme of the experimental setup using an MR compatible testbed
and a programmable logic controller (PLC) inside a Faraday cage. All orange connections are
fiber-optic cables. They pass through the walls of the Faraday cage and of the rooms through
waveguides. The optical sensor is connected to the PLC with an RS-232 cable that passes
inside the Faraday cage via a built-in filter of the cage.
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In order to use the testbed measurements as ground-truth for the marker positions during the
experiments, a calibration step is required between the optical measurement of the marker
holder and the corresponding holder position in the MRI frame. As only a unidimensional
translation is performed, the 3D line equation of the translation parametrized with the value
of the optical sensor has to be computed in the MRI frame. For this purpose, the marker is
mounted on the testbed clamp and its position is measured accurately in the MR images at
different positions on the testbed. Then, a linear regression is computed on the detected
marker positions in the MRI frame. From then on, the marker position can be determined in
the MRI frame based on the translation measured with the optical sensor.
The testbed is positioned inside the MRI tunnel so that the marker performs a diagonal motion
between the x-, y- and z-axis in the MRI frame (Figure 2.17b). All presented experiments have
been performed on a single experimental run, hence ensuring identical testbed position. Two
motion types were manually performed. First, the operator translated the marker trying to
keep the velocity constant. That motion was repeated with increasing speed to try to reach the
maximum speed. During motion, the operator looked at the in-room display screen in order
to verify that the marker remained visible in the real-time MR images. Second, the operator
moved the marker back and forth (oscillatory motion), with increasing speed for each cycle.

2.9 Results

Simulations and experiments as presented in section 2.8 have been carried out in order to
evaluate tracking performance in terms of accuracy and speed.
The workflow to evaluate performs marker detection on sagittal oblique and on transversal
oblique image planes, that are acquired alternately. Hence, the marker is detected on one
plane and the next image plane is then automatically aligned to the detected marker pose.
The MR imaging frequency is set to 0.83 Hz throughout this work, due to the artificial length-
ening of the MR image update time (see section 2.9.1). This lengthening is necessary as the
workflow algorithms have to be performed on an external PC and the resulting command for
image plane alignment has to be sent to the MRI console PC before acquisition of the next
image plane.

First, a timing analysis of the real-time image plane alignment is performed and the robust-
ness of the image processing algorithm for marker detection in clinical real-time images is
evaluated. Then, the results for evaluation of the maximal tracking speed of the workflow are
presented. Finally, the tracking accuracy of the workflow is assessed. Tracking accuracy is
evaluated through comparison of the simulated or real pose and the detected 3D marker pose.
The 3D marker pose consists in the position (x, y ,z) of its center and the orientation of the
marker main axis (α, β).
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2.9.1 Timing analysis of real-time image plane alignment

In order to perform the image plane alignment of consecutive image planes in real-time, the
processing times on the MRI scanner, MRI console PC and the external PC, as well as the
communication times between the PCs have to be analyzed:

• Image acquisition time of the MRI scanner (tAcq )
• Transmission time of the image from MRI scanner to external PC via the MRI console

PC (tTr 1)
• Time for image processing and image plane calculation (tPr oc )
• Transmission and acknowledge time of the image plane alignment command sent from

the external PC to the MRI scanner via the MRI console PC (tTr 2)

The image update time of an MR image is obtained through calculation of tUpd ate = tAcq +
tTr 1 + tPr oc + tTr 2. A recapitulatory timeline of the processing and communication times is
presented in Figure 2.19.

MRI!
scanner!

console PC!
Ethernet!
External PC !

tAcq 

tTr1 

tProc 

tTr2 

tAcq 

tUpdate 

tDelay 

Figure 2.19: Timing schematic for image plane alignment. Image plane acquisition is per-
formed with the scanner (tAcq ), image and image information are sent to the MRI console PC,
that transmits the data to the external PC (tTr 1). Image processing and image plane calcula-
tions are performed (tPr oc ). The image plane alignment command is transmitted to the MRI
scanner via the console PC (tTr 2) before the next image plane acquisition.

In order to account for the image plane alignment command, the MRI scanner PC must obtain
the command before the next image plane acquisition. For this reason, it is not possible to
acquire the MR images directly one after another. In order to allow for image processing,
image plane calculations and data transmission, a delay of tDel ay = tTr 1 + tPr oc + tTr 2 has to
be introduced between two image plane acquisitions.

A timing analysis of the network communications between external PC, MRI console PC and
the scanner allowed to determine the transmission times.
For this purpose 100 image transmissions from MRI scanner to the external PC via the MRI
console PC have been evaluated. The time between sending of the first Ethernet packet con-
taining image data from the MRI scanner and reception of the last packet containing image
data on the external PC is defined to be the transmission time tTr 1. This transmission time
of the MR image and its information (102,036 bytes for a 224 × 224 pixel image) has a mean
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value of 7.8 ms with minimal and maximal values of 6.21 ms and 10.8 ms, respectively.
Similarly, the transmission of 100 image plane alignment commands from the external PC to
the MRI scanner via the MRI console PC have been evaluated in order to determine the trans-
mission and acknowledge time of an image plane alignment command. The time between
sending of the first Ethernet packet containing the image plane alignment command from the
external PC and the reception of the last packet of the command acknowledge on the external
PC is defined as the transmission and acknowledge time tTr 2. This transmission time has a
mean value of 48.3 ms with minimal and maximal values of 18.2 ms and 110.3 ms, respectively.

The time for image processing and image plane calculation tPr oc is defined between the
moment of completed image reception within the workflow program on the external PC and
the sending of the image plane alignment command. This time has been determined through
evaluation of processing of 200 images on the external PC. For image processing and image
plane calculation a mean of 233.2 ms, a maximal value of 284.6 ms and a minimal value of
198.8 ms have been found.

Mean values for transmission and processing times are not significant in this context, as every
image plane alignment command should be accounted for. Particularly, the maximal and
minimal values of tTr 2 and tPr oc differ in the order of ∼90 ms. Hence, the times tTr 1, tTr 2 and
tPr oc are considered with their maximal values of 10.8 ms, 110.3 ms and 284.6 ms, respectively.

The image plane acquisition time (tAcq ) can be obtained from the acquisition software on
the MRI console PC. For the MR imaging sequence used in this work, the acquisition time
is 812 ms. The MR image reconstruction time could not be determined experimentally and
is assumed to be short enough to be included within the acquisition time for the presented
timing analysis.

The determined time values are summed up in Table 2.1.

mean max

tAcq 812 ms —
tTr 1 7.8 ms 10.8 ms
tTr 2 48.3 ms 110.3 ms
tPr oc 233.2 ms 284.6 ms

tDel ay 289.3 ms 405.7 ms

Table 2.1: Results of the timing analysis for real-time image plane alignment

According to the previously determined times for transmission and processing, the delay that
must be introduced in order to account for every image plane alignment command would be
405.7 ms. With an acquisition time of 812 ms considering the used MR imaging sequence, this
would correspond to a lengthening of the image update time from 812 ms to 1217.7 ms.
Note though, that the accuracy of these timing tests depends heavily on the system charge
of the PC’s OS during the measurements. Further experiments have thus been carried out
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in order to determine experimentally the minimal delay allowing to account for each image
plane alignment command. During these experiments, an image update rate of 1200 ms
allowed to account for all image plane alignment commands. This corresponds to a delay of
388 ms. As 95% of the values for tPr oc are smaller than 270 ms, this delay is confirmed with the
previously performed time measurements (270 ms + 10.8 ms +110.3 ms = 391.1 ms). Hence,
for the experiments carried out during this work, an image update time (tUpd ate ) of 1200 ms,
corresponding to a delay (tDel ay ) of 388 ms, was sufficient for performing real-time image
plane alignment.

2.9.2 Robustness assessment of automatic real-time marker detection

The robustness of the image processing algorithm for automatic marker detection in clinical
real-time images, presented in section 2.5.3, is evaluated with experimental image data. During
experiments, the tracking workflow was performed with a person holding the marker in hand
and moving it over the body of two volunteers.
For evaluation of the image processing algorithm, 208 images depicting the volunteer’s body
and the marker were used. The depicted marker area is required to be bigger than 40% of the
marker intersection area in an optimally aligned image plane in order to be considered for the
evaluation of image processing. This size criteria allows to avoid the evaluation of the marker
detection algorithm on badly aligned images, i.e. when the tracking is not effective and the
marker is hardly visible in the images.

First, the automatic detection algorithm is applied to the images. During a post-processing
step, the marker detection is then performed manually within the same images. For manual
segmentation, a polygon consisting in four points is used in order to define the marker
shape. The result of the automatic detection is then evaluated with respect to the manual
segmentation. The automatically detected marker position is considered correct, if it lies
within the boundaries of the manually segmented marker area.

The success rate of the automatic marker detection is 96.15%, in images where at least 40% of
the marker is visible, which corresponds to a successful detection in 200 of 208 images (Table
2.2). In five images (2.4%), the automatic marker detection algorithm could not detect the
marker. In three images (1.4%), the marker was detected at wrong positions within the bodies
of the volunteers.

Correct detection Incorrect detection No detection

Number of images 200 3 5
Rate 96.15% 1.4% 2.4%

Table 2.2: Statistical performance of the marker detection algorithm when at least 40% of the
marker are visible within the images.
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Failed detections are mainly due to a failing deletion of the patient’s body from the image.
If the threshold T hrLow is chosen too low, the mask for deletion of the patient’s body is too
big and may contain parts of the marker. As a consequence the marker is deleted with the
patient’s body and the detection fails. Note that, the false positives were detected on images
where the marker signal was not very bright or affected by motion artifacts and where its size
was just above the lower limit.
In general, it can be concluded that the algorithm can be greatly improved with a better and
more appropriate segmentation of the patient’s body.

2.9.3 Evaluation of the maximal tracking speed

The maximal tracking speed of the workflow was determined with both, simulations and the
experimental testbed.

Simulations

Before determining the maximal tracking speed through simulations, a theoretical value based
on the marker and image plane geometry is calculated. In order to theoretically determine the
maximal trackable motion speed, this calculation does not account for motion artifacts due to
fast marker motion in the created MR images, or command delays due to transmission times
between PCs. The maximal trackable motion speed depends on several factors, such as

• image acquisition time of the MRI scanner (tAcq )
• transmission time of the image from MRI scanner to external PC via the MRI console PC

(tTr 1)
• time for image processing and image plane calculation (tPr oc )
• transmission and acknowledge time of the image plane alignment command sent from

the external PC to the MRI scanner via the MRI console PC (tTr 2)
• marker diameter (dM ar k ),
• slice thickness (dSl i ce ),
• the marker motion considered with respect to the image planes.

In order to evaluate the theoretical value, a motion at an angle of 45◦ between a transversal
(Figure 2.20a) and the following sagittal image plane (Figure 2.20b) is considered, which is the
worst case scenario for the presented workflow. As previously described, the sagittal plane is
aligned to the position of the marker detected in the transversal image plane. In a simplified
manner, it is assumed that the marker position cannot be determined on the sagittal image
plane when the marker is not intersecting the plane.
It is thus possible to calculate the distance

�
dmax = dM ar k

2 + dSl i ce
2

�
at which the marker is no

longer detectable (Figure 2.20c). The maximal tracking speed can thus be calculated with

vmax =
�

dmax

tAcqu + tTr 1 + tTr 2 + tPr oc

�
1

cos(π4 )
. (2.34)
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(a) (b) (c)

Figure 2.20: Schematic illustration of the calculation of the theoretical maximal tracking speed.
(a): Marker (black) and transversal image plane (green) position at time step k, depicted in the
x-0-y plane of the MRI frame. (b): Marker and sagittal image plane position (red) at time step
k +1, when there is no motion of the marker. (c): Marker and sagittal image plane position at
time step k +1, when the marker moves at 45◦ between sagittal and transversal image plane.

The marker diameter is 35 mm but the MR-measurable section of the liquid inside is 33 mm
(marker wall = 1 mm). The slice thickness of the clinical sequence is 4 mm and the acquisition
time is 812 ms. The experimentally determined delay for transmission times (tTr 1, tTr 2) and
image processing and plane calculation time (tPr oc ) is 388 ms (see section 2.9.1), which results
in an image update rate of 1200 ms.
The maximal theoretical tracking speed is thus 21.8 mm/s. Note that this theoretical value is
calculated for a worst case scenario, i.e. a 45◦ motion between sagittal and transversal image
plane.

The marker motion described here above was then simulated and tracked in order to determine
the maximal tracking speed through simulation. The maximal tracking speed was determined
by performing simulations at different marker speeds until finding the maximum speed value
for which the marker can be tracked. The simulations were carried out with an image update
rate of 1200 ms. The found maximal tracking speed is 19.5 mm/s which is slightly lower than
the calculated value.

In order to evaluate the tracking performance regardless of current hardware, software and MR
imaging constraints, a hypothetical scenario with a a higher image update rate was simulated.
This scenario is based on an image update time of 500 ms including communication and
image processing times, allowing to evaluate the tracking performance of this approach at an
imaging frequency of 2 Hz.
The maximal tracking speed is then determined in the same manner as before, with a diagonal
motion between transversal and sagittal image planes. A maximal tracking speed of 48.5 mm/s
was found for the hypothetical scenario. This value, which is more than twice higher than for
the previous simulations (image update time of 1200 ms), can be explained with the higher
imaging frequency of 2 Hz. As the tracked motion is sampled more often, higher motion
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speeds can be followed.
Such high image update frequencies are expected through optimization of the used MR
imaging sequence (fast parallel imaging, compressed sensing or non-cartesian acquisition
schemes), implementation of the workflow on a single scanner PC (no communication times
between external and MRI scanner PC) and optimization of the image processing algorithms
(reduction of computation times).

Experiments

An experiment for determination of the maximal tracking speed was carried out. For this
purpose an oscillatory motion with increasing speed is manually performed on the testbed, in
order to determine the speed at which the marker cannot be tracked anymore. The translation
curve of the testbed is depicted in Figure 2.21. The determined translation speed on the last
edge before the marker cannot be detected anymore is assumed to be the maximal tracking
speed. The obtained value for the presented workflow is 8.81 mm/s, which is smaller than the
value found during simulations.
The difference can be explained with the fact that the simulator creates computer-generated
images, where the signal intensity of the marker is independent of the intersection volume
between image plane and marker. In real MR images, the signal intensity varies though and
depends on the intersection between marker and plane. As a consequence, the detection in
the computer-generated images works even for small intersections of marker and image plane
which is not the case for real MR images. In addition, no motion artifacts are simulated within
the computer-generated images. Hence, image quality is not degraded with motion in the
simulations.

0 20 40 60 80 100 120 1400

50

100

150

200

trans−         
lation          
[mm]          

time [s]

Maximal speed!

Figure 2.21: Experimental determination of the maximal tracking speed. The oscillatory
motion is performed with increasing speed until the marker cannot be tracked anymore.
The last edge of the motion before the tracking is interrupted is used for maximal speed
computation, which is here 8.81 mm/s.

Nevertheless, the determined maximal tracking speed is approximative as the real maximal
speed is difficult to determine experimentally without the possibility of performing a motion
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at a repeatable and well known speed.

2.9.4 Accuracy assessment

As for the evaluation of the maximal tracking speed, the tracking accuracy of the workflow was
also determined with both, simulations and the experimental testbed.

Simulations

Scan plane alignment accuracy was evaluated with a simulated motion of the marker of 9
mm/s of translational and 2◦/s of rotational speed according to the experimentally determined
maximal tracking speed (Figure 2.22).

The root mean square error (rmse) between the simulated marker pose and the detected
marker pose is presented in Figure 2.22f. The overall rmse of position detection is 5.54 mm.
The corresponding graphs of the detected motion with respect to the simulated motion show
a step pattern during tracking.
This step pattern can be explained through the fact that it is not possible to measure a 3D
position in the image plane with the cylindrical geometry of the marker. This is due to the
intersection of the marker and the image plane, providing no information about the marker
position in the direction of the image normal. Hence, the marker is detected in the image plane
and the unavailable position information is completed with the corresponding information
from the image plane in order to form a 3D position measurement. As the image plane is
aligned to the previously detected marker position, a part of the marker pose stays equal with
respect to the previous image plane. An example for a tracking of a diagonal motion between
the x- and z-axis with pure sagittal and transversal image planes is presented in Figure 2.23.

Furthermore, it is also not possible to detect a change of marker orientation for the orientation
component whose rotation axis is collinear to the rotation axis of the image plane. As a
consequence the angle α of the marker pose cannot be updated with a sagittal image plane
and accordingly the angle β cannot be updated with a transversal image plane.

As the image planes in the presented motion in Figure 2.22 are only slightly inclined, the x-
and α-components cannot be updated with a sagittal image plane. Accordingly the z- and
β-components cannot be updated with a transversal image plane. The y-coordinate can be
updated on both sagittal and transversal image planes and is thus not affected by the step
pattern.

The scan plane alignment accuracy was also evaluated using the hypothetical high image
update frequency (2 Hz) scenario presented in section 2.9.3. In order to compare these results
with the previously performed simulation, the same motion type with a translational speed of
9 mm/s and a rotational speed of 2◦/s were simulated. The results are presented in Table 2.3.
The overall position rmse in the hypothetical scenario is 3 mm. Compared to the values for
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Figure 2.22: Simulation results of a marker motion of 9 mm/s translational and 2◦/s rotational
speed. The simulated marker motion is decomposed to every pose component and depicted
with the green graphs (a-e). The tracked position and orientation values are depicted with
the red graphs. A step pattern is observable for the x-,z-, α- and β components. They are
typically not detectable on both transversal and sagittal image planes when the marker motion
is normal to one of both. For the presented motion, the y-component is detectable on both
image plane types and is thus steadily updated. The rmse for the pose components is depicted
in (f).
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Figure 2.23: Marker motion along diagonal between x-axis and z-axis, tracked with pure
sagittal (red) and pure transversal (green) image planes. At every time step t , the marker
position (Pos(t )) is detected and the following image plane position (OSag (t+1) or OTr a(t+1))
is aligned accordingly. The x- and z-component of the marker pose cannot be updated on
the sagittal and transversal image planes, respectively. As an image plane is positioned at
the previously detected marker position, the unavailable pose component is replaced by its
previous value.
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the previously performed simulations (Table 2.22f), the results in terms of accuracy are better
due to the higher imaging frequency.
During the previous simulations, the y-component could be updated on both sagittal and
transversal image planes due to their small inclination. This corresponds to a duplication of
the update frequency for this component compared to the others that could only be updated
on one of both image planes. For this reason, the improvement of the tracking error in
the hypothetical scenario is less significant for the y-component than for the other pose
components.

rmse of tracking
at 2 Hz at 0.83 Hz

x 2.20 mm 4.28 mm
y 1.15 mm 1.72 mm
z 1.68 mm 3.07 mm
α 0.50◦ 1.03◦

β 2.47◦ 3.44◦

Table 2.3: Tracking accuracy evaluation in simulations with a 2 Hz and 0.83 Hz imaging
frequency.

Experiments

Experimental accuracy evaluation was performed through comparison of the value of the
ground truth of the testbed and the detected marker pose from the presented workflow. Such
a motion is presented in Figure 2.24 for the different position components of the marker pose.
Note that the orientation components are not compared during experimental evaluation as
they are constant over time.
The measured mean speed of the translation is determined on the translation curve of the
testbed and is approximately 8.81 mm/s. The observed step pattern during simulations is
also observable for the experimentally determined x- and z-components. The noise on the
y-component can be explained through its update on every image plane and the image noise
resulting in detection differences of 1 or 2 pixels between the two image plane types. According
to the pixel size of the image planes (2 mm), these detection differences quantify as a position
error between 2 to 4 mm. The two outliers of the y-coordinate are due to image artifacts which
separated the marker in two objects during segmentation and which shifted thus the detected
position value. The overall rmse of this motion is 7.38 mm which can also be computed
separately for every position component: the rmse is 1.72 mm, 3.98 mm and 5.97 for the x-, y-
and z-coordinates, respectively. The higher value for the y-coordinate is due to the two outlier
values of marker detection. The high value for the z-coordinate can be explained with the
translation direction that is primarily along the z-axis of the MRI scanner. The motion speed
as well as the measured alignment errors along this component are thus higher than for the
other two position components.
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Figure 2.24: Experimental results for tracking of a marker motion of approximately 8.81
mm/s. The marker motion is decomposed to every pose component and depicted with the
green curves (a-c). The tracked position values are depicted with the red graphs. As for the
simulations results, a step pattern can be observed for the x- and z-component. The outliers
on the curve of the y-component are due to segmentation errors of the marker shape. The
obtained rmse for the position components is presented in (d).

The motion carried out during the experiment and during the simulation have approximately
the same translation speed. The overall rmse for the position component obtained from
simulation is slightly better than the experimentally determined rmse. This can be explained
with image noise, inconstant marker speed and the two outlier detections during experimental
evaluation. The value found during simulation is better, as no image noise or artifacts are
simulated and the marker pose components are thus not affected by detection noise. The
marker also moves at a constant speed over time during simulations which facilitates its
tracking.
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2.10 Conclusion

In this chapter, a workflow for MR image plane alignment based on detection and tracking in
real-time clinical MR images, without any active tracking device, is presented. A marker, an
image-based tracking algorithm, a software interface and a simulation program have been
developed. The proposed workflow was designed to minimize dedicated acquisition time. In
the ideal case, only one dedicated, non-clinically relevant (low flip angle) volume image is
acquired for initialization. Initial scan plane alignment can be performed automatically with
either resonant micro-coils in combination with a low flip-angle volume acquisition or with a
passive marker in combination with a volume acquisition, hence no manual user initialization
step is required. Tracking is then performed directly in the clinical real-time images through
detection of the passive marker. The proposed workflow has been included in an existing
clinical MRI sequence. Alternating acquisition of transversal and sagittal scan planes allow for
a good spatial depiction of the anatomy, necessary for medical procedure.
The developed automatic marker detection algorithm was evaluated with experimental images
of two volunteers in which at least 40% of the marker is visible and has achieved a success
rate of 96.15%. The failed detections can be explained by an inappropriate patient body
segmentation during which parts of the marker are deleted. Hence, the algorithm could be
greatly improved with a more efficient segmentation of the patient’s body.
Tracking simulations were carried out and revealed an overall rmse of ∼ 5 mm for position
tracking of the marker and a maximal tracking speed of ∼ 19 mm/s. For experimental vali-
dation, an MR compatible testbed was used. The tracking accuracy and maximal tracking
speed obtained during simulations are better than the experimental values, respectively 7.4
mm and 8.8 mm/s. This can be explained through absence of image noise, image artifacts
and transmission times between PCs during simulations. In order to determine the maximal
tracking speed experimentally, the possibility to perform a well known repeatable motion
would be of great benefit. Initial tests with an MR compatible pneumatic stepper motor have
been carried out and will be performed for determination of the maximal tracking speed. For
that purpose, the identification and the command of the system are under process.
Furthermore, tracking simulations in a hypothetical scenario assuming a higher MR image
update rate of 500 ms were carried out. A maximal tracking speed of 48.5 mm/s and an overall
rmse of 3 mm have been found, highlighting the interest of an optimization of the imaging
frequency for this tracking approach.
The proposed workflow allows to use the marker above the patient’s body as an interventional
imaging probe and can thus be used for the search of the needle insertion point on the patient.
The obtained results have also revealed a flaw of the presented tracking method which is
the non-availability of certain pose components on the image planes and the resulting step
pattern during tracking. These incomplete pose measurements deteriorate the rmse and
decrease thus the tracking accuracy of the workflow. Overcoming this effect would be of great
benefit for the tracking accuracy. A solution is presented in the following chapter, where a
Kalman filter is used for image plane alignment.
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3 Kalman Filtering for automatic image
plane alignment in interventional
MRI
The previously presented workflow for MR image plane alignment is based on tracking in two
orthogonal real-time MR images. As pointed out in section 2.10, the main limitation of such
an approach is the inability to detect position changes perpendicular to the acquired image
plane. Indeed due to the desired compact and simple geometry of the marker, the shape of its
cross-section with the image plane does not provide reliable information on its position in the
direction perpendicular to the plane.
In order to overcome this limitation and the resulting step pattern on the tracking trajectory,
a Kalman filter is proposed for improvement of the tracking. The Kalman filter is chosen as
it has proven its benefits as estimation, prediction and data fusion algorithm in numerous
applications. Furthermore, its simplicity and effectiveness make it the first choice for the
presented workflow. In the presented workflow, the Kalman filter is used in order to estimate
and predict the 3D pose of the marker. Hence, the extension of the MR scan plane alignment
workflow through prediction of the marker pose is investigated in this chapter.
First, the Kalman filter and its algorithm are introduced. Then, the extension of the workflow
presented in chapter 2 through the Kalman filter is described and the expected benefits for
the marker detection are explained. The chapter finishes with the obtained simulation and
experimental results.

3.1 Introduction to the Kalman filter

An excellent introduction to the Kalman filter ([Kal60]) is given by Welch and Bishop in form
of a tutorial in [WB01] and by Maybeck in [May82]. The Kalman filter is there presented as an
optimal, recursive data processing algorithm that has found a great variety of applications
in numerous domains. It can be considered as optimal and recursive as it incorporates all
available information, with no need of storing and reprocessing it every time new information
is available.
The Kalman filter has several well known properties. As a filter, it can extract available infor-
mation from noisy measurements. As a data fusion algorithm, it allows to combine available
measurement data from different sources, while accounting for prior knowledge about the
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observed systems and about the measuring devices. An estimate of an observed variable can
be made in such a manner that the estimation error is statistically minimized.
The Kalman filter can be derived for an observed system by assuming simplifying constraints
on the system dynamics: the measurement and process model are assumed to be linear and
subject to zero-mean Gaussian noise. Even if these constraints are often not close to reality,
the Kalman filter is one of the most established estimation and data fusion method and has
been studied in great detail in theoretical and practical applications. This is mainly due to its
simplicity, ease of implementation and optimality in terms of minimization of the estimate
error covariance ([WB01]).
For non-linear systems, approximations have to be made. The Extended Kalman filter lin-
earizes the system around the current state estimate with the first order terms of a Taylor series
([WB01]). The Unscented Kalman filter is an alternative to the Extended Kalman filter, where
mean and covariance are parameterized using a set of discretely sampled points ([JU97]).
The most interesting application of the Kalman filter for the presented tracking workflow is its
ability to make predictions of the awaited marker pose based on the process model and past
measurements.

3.1.1 Kalman Filter algorithm

We assume a discrete-time, controlled process governed by a linear equation such as

x(k) = A(k) x(k −1)+B (k) u(k)+n(k −1) , (3.1)

relating the process state x at time step k −1 to k via the transition matrix A(k). The matrix
B (k) relates an optional control input u(k) to the state.
The measurement matrix H(k) of the system relates the process state to the measurement
z(k) in the following manner:

z(k) = H(k) x(k)+m(k) . (3.2)

Process noise and measurement noise of the system are represented by n(k −1) and m(k), re-
spectively. We assume that both have a Gaussian distribution (N (mean, var i ance)) according
to

n(k) ∼ N (0,Q(k)) (3.3)

m(k) ∼ N (0,R(k)) , (3.4)

where Q(k) and R(k) represent the process and measurement noise covariance matrices,
respectively.
The internal variables of a Kalman filter are the process state x and the estimate error covari-
ance matrix P . The algorithm enables an optimal estimate of the state vector x(k) from its
prediction and the available measurement z(k) .It consists thus in a prediction step and an
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estimation step :

Prediction Step

x̂(k|k −1) = A(k) x̂(k −1|k −1)+B (k) u(k) (3.5)

P (k|k −1) = A(k) P (k −1|k −1) AT (k) +Q(k) (3.6)

Estimation Step

x̂(k|k) = [I −K (k) H(k)] x̂(k|k −1)+K (k) z(k) (3.7)

P (k|k) = P (k|k −1)−K (k) S(k) K T (k) (3.8)

with K (k) and S(k) known as the gain and innovation covariance matrices,
respectively:

K (k) = P (k|k −1) H T (k) S−1(k)

S(k) = H(k) P (k|k −1) H T (k)+R(k)

The notations x̂(k|k −1) and x̂(k|k) define the state prediction for time step k given the mea-
surements up to time step k −1 and the state estimate for time step k given the measurements
up to time step k, respectively. The same notation is used accordingly for the estimate error
covariance matrix.
The algorithm is initialized with initial estimates for x̂(k −1|k −1) and P (k −1|k −1) and starts
with the prediction step.

3.2 Kalman extended MR image plane alignment workflow

Due to its ease of use, optimal and well-known characteristics, the Kalman filter is used for
improvement of the workflow for automatic image plane alignment presented in section 2.4.
The workflow still consists in two stages: an initialization step as presented in section 2.4.1 and
then a real-time tracking stage. Only the real-time tracking using two orthogonal MR images
changes with respect to the alignment strategy of the initial workflow.

3.2.1 Formalization of workflow

In order to introduce the Kalman filter adapted to the image plane alignment workflow,
a formalization step is presented in this section. The introduced formalism is then used
throughout the following sections. The image plane alignment workflow is based on the
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measurement of the marker pose xPose :

xPose =
�

xPosi t i on

xOr i ent

�

(3.9)

with

xPosi t i on =




x
y
z



 and xOr i ent =
�
α

β

�

. (3.10)

Vector xPosi t i on consists thus in the position components (x, y , z) of the marker center in the
MRI frame. Vector xOr i ent contains the orientation components (α, β ) of the marker main
axis in the MRI frame (Figure 3.1). Angle α is the angle between the marker axis projected to a
pure transversal plane and the y-axis of the MRI frame. Correspondingly, angle β is the angle
between the marker axis projected to a pure sagittal plane and the y-axis of the MRI frame.
The angles of the marker pose correspond thus to those presented for image plane alignment
in section 2.6.2.
The marker pose can be fully described with only two orientation components as the marker
is cylindrical and the rotation around its axis is not considered and free. The pose of a simple
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Figure 3.1: 3D pose of the marker consisting in its 3D position given by [x, y, z]T and its
orientation given by [α,β]T

oblique image plane can be described with only four components, as the plane undergoes
only one rotation around one axis of the MRI frame. For coherence of the notation, the
image plane pose is described with the same components than the marker and will be noted
xPl ane = [x, y, z,α,β]T . Depending on which type of plane is described, one of the orientation
components is set to zero for xPl ane :

xSag Pl ane (k) = xPl ane (k) with β→ 0 for the sagittal plane

xTr aPl ane (k) = xPl ane (k) with α→ 0 for the transversal plane.
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Initial workflow description

With the initial tracking presented in section 2.4, the image plane at time step k is aligned to
the previously estimated pose of the marker from time step k −1 (Figure 2.23):

xPl ane (k) = x̂Pose (k −1|k −1) (3.11)

So one assumption of this workflow is that motion of the marker is slow enough that at
step time k the marker still intersects the image plane acquired at the previous marker pose
x̂Pose (k −1).

A second assumption of the workflow is that the position of the marker is given by its inter-
section of coordinates I xPosi t i on = [xI yI 0]T in frame FI with the current image plane. As
the current image plane position and orientation are chosen equal to the previous position
x̂Posi t i on(k −1) and orientation M R I (k −1) of the marker, the position of the marker in the
scanner frame is:

x̂Posi t i on(k) = x̂Posi t i on(k −1) + M R I (k −1) I xPosi t i on (3.12)

x̂Posi t i on(k) = x̂Posi t i on(k −1) + M R I (k −1)




xI (k)
yI (k)

0



 (3.13)

with M R I , the rotation matrix between FM and FI (see section 2.6).

From equation 3.13, the estimate of the marker position is the sum of the marker position at
the previous time step and the 2D measurement from the image. As one measurement in the
normal direction of the image is unavailable and set to zero, the marker position is constrained
within a plane defined by M R I (k −1) and including x̂Posi t i on(k −1).

As example, with M R I (k −1) = I 3,3, the current image is a pure transversal plane and the cross
section between the plane and the marker does not provide position information in the z-axis
direction orthogonal to the plane. From equation 3.13, the marker position along the z-axis is
ẑ(k) = ẑ(k −1) and thus is considered equal to its previous value.

An illustration for a diagonal motion between the x- and z-axis, that is the causes of the step
effect depicted in the tracking of the previous chapter, is given in Figure 2.23.
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Proposed workflow with prediction

Assuming a model of the motion is known, a prediction of the marker pose for time step k can
be used for image plane alignment instead of using the previous pose from time step k −1 :

xPl ane (k) = x̂Pose (k|k −1) , (3.14)

where x̂Pose (k|k −1) is the prediction of the marker pose for time step k, given measurements
up to time step k −1.

As the missing pose information is completed with the corresponding information from
the image plane, it is no longer kept equal with respect to the previous time step. Instead,
as the image plane position and orientation is based on a prediction of the marker pose
(x̂Pose (k|k −1)) from the previous time step, the missing information is now completed with
this prediction. As a consequence, the step pattern on the tracking trajectory is avoided.

However, this workflow is based on the assumption that a prediction can be made using a
marker motion model. As the Kalman filter is an optimal estimation and prediction algorithm,
it is thus chosen to be integrated in the workflow using a constant velocity model for marker
motion approximation.

3.2.2 Application of Kalman filtering to the presented workflow

As freehand motions of the marker are tracked, sudden speed changes are expected, and no
process model for the marker motion is known. We thus approximate the process with a
constant velocity model.

Adapted to the presented workflow, the state of the process corresponds to the marker pose
xPose = [x, y, z,α,β]T and its derivative:

x(k) =
�

xPose (k)
ẋPose (k)

�

. (3.15)

with a transition matrix of the following form:

A =
�

I 5×5 δt · I 5×5

05×5 I 5×5

�

, (3.16)

where δt is the time step between two acquisitions of the MRI scanner, I 5×5 is a 5×5 identity
matrix and 05×5 is a 5×5 zero matrix.
The marker pose is assumed to be measured directly inside the MR images (z(k) = xPose (k))
resulting in an observation matrix of the form

H =
�

I 5×5 05×5

�
. (3.17)
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The presented workflow can thus be described with the following equations:

x(k) = A(k) x(k −1)+n(k −1) , (3.18)

z(k) = H(k) x(k)+m(k) . (3.19)

The Kalman filter algorithm is then used in order to predict the pose of the marker for the next
time step and eventually calculate an image plane aligned to this prediction.

For this purpose, the filter has to be updated with the 3D pose of the marker at each image
acquisition. However, as described in section 2.9, only a subset of the 3D pose is available on
each acquired image.
In this workflow, the missing components in the measurement z(k) are replaced by their
estimates from x̂(k|k −1) due the acquisition of the image plane at the predicted marker pose.

As the Kalman filter requires the complete 3D pose of the marker in the measurement vector,
available and missing (replaced by their estimates) pose components are used as measure-
ments. The measurement vector contains thus pose components with different measurement
confidence. In [Wel96], Welch highlights that the measurement covariance matrix is linked to
a particular instant in time and can be estimated in real-time during operation of the Kalman
filter in order to account for changing measurement noise. A dynamic adaptation of the
measurement covariance matrix is thus expected to improve the tracking performance of the
Kalman filter, as it allows to account for different measurement confidences in both - the same
measurement vector, and in consecutive measurement vectors at different time instants.
Hence, in order to account for disparities in measurement confidence, measurements can be
weighted differently for computation of the state estimate and the estimate error covariance
matrix according to equations 3.7 and 3.8, respectively. For this purpose the measurement
noise covariance matrix R is adapted dynamically to every measurement. As a consequence
the gain matrix K changes and the measurement vector’s influence on the state estimate and
the estimate error covariance is defined through R .
The measurement noise covariance matrix can be weighted with different strategies.
One possibility is to calculate the direction of the marker motion and determine at which
extent it is normal to the current image plane. In this manner it is possible to admit only little
confidence to the normal components of the image plane when the determined motion is
majorly normal to the image plane. In the presented workflow the drawback of this approach
is the slow image acquisition rate of the MR images and the resulting time delayed marker
motion update.
Another strategy is to evaluate the marker shape after image segmentation and marker de-
tection in order to assess measurement confidence. In this manner it would be possible to
weight the measurement according to the similarity between the detected marker shape to its
typical shape. A drawback of this method is the MR image noise altering the segmented shape
of the marker. Furthermore, parameterization of a detected marker shape requires higher
computation time.

67



Chapter 3. Kalman Filtering for automatic image plane alignment in interventional MRI

For the presented workflow, a last strategy is chosen: as marker pose components normal to
the image plane cannot be updated, their measurement confidence is adapted accordingly.
As pointed out in section 2.9, the spatial components of the normal vector depends on the
orientation of the simple oblique image plane. Hence, measurement noise covariance values
for position components normal to the image plane vary on an interval [10−5;1] and are a
function of α and β for sagittal and transversal image planes, respectively. As an orientation
component can either be detected or not on an image plane, its measurement noise covariance
is not gradually adapted but set to the interval boundaries in a binary manner. Thus, R is
obtained as

R =





10−a 0 0 0 0
0 10−b 0 0 0
0 0 10−c 0 0
0 0 0 10−d 0
0 0 0 0 10−e




(3.20)

with a = 5, b = 5cos(β), c = 5
��si n(β)

��, d = 5, e = 0 for transversal image planes and a =
5 |si n(α)|, b = 5cos(α), c = 5, d = 0, e = 5 for sagittal image planes.
The process noise covariance matrix Q is constant over time and set experimentally to

Q = I 10×10 ·10−5 . (3.21)

3.2.3 Real-time tracking with Kalman filter

Real-time tracking starts with the acquisition of a simple oblique sagittal plane (Image1) whose
parameters have been sent to the MRI scanner at the end of the initialization stage.
The passive marker is then detected, its 3D pose (Pose1) is computed and used for initialization
of the Kalman filter. The Kalman filter state is thus initialized with the first measured pose
Pose1 and a speed equal to zero. The initial estimate error covariance matrix is set to the
identity matrix in order to quickly converge afterwards. A first prediction is then made by the
Kalman algorithm, but as this prediction is based on zero speed of the marker, the predicted
marker pose (Prediction1) is exactly the same as the first detected one, similar to the original
workflow without Kalman filter. Therefore the following simple oblique transversal image
plane (Image2) is aligned on the first detected marker pose. After acquisition of Image2, the
new marker pose is detected (Pose2) and handed to the Kalman filter as measurement. The
Kalman filter then corrects its previous prediction according to this measurement and com-
putes an estimation of the process state. Based on this estimation a prediction (Prediction2) of
the marker state is performed and the next sagittal oblique image plane (Image3) is aligned to
the predicted marker pose.
From then on, the two orthogonal image planes (sagittal/transversal) alternate and update
their positions and orientations mutually according to the predicted marker pose from the
Kalman filter (Figure 3.2).
In case of a non-detection of the marker, the measurement for the Kalman filter is unavailable.
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3.3. Marker detection

Nevertheless, in order to generate a prediction for the next marker pose, the previous predic-
tion of the Kalman filter is handed in as measurement and the measurement covariance is set
to a very high value. In this manner, the Kalman filter will ignore this measurement according
to eq.3.7 and eq.3.8 and generates a prediction of the next marker pose, based on its internal
process model only.

MRI!
3D pose!

3D pose!

Estimation! Prediction!

Image2n!

Image2n+1 ! Pose2n+1!

Pose2n!

KF!

Figure 3.2: Principle of the Kalman extended workflow: two orthogonal image planes, transver-
sal (green border) and sagittal (red border) are alternately acquired. The 3D marker pose
is detected on the image plane and fed into the Kalman filter. The Kalman filter computes
an estimate and a prediction of the marker pose. An orthogonal image plane aligned to the
predicted marker pose is calculated and a corresponding command is sent to the MRI for
acquisition of the next image plane.

3.3 Marker detection

Through use of a marker pose prediction from the Kalman filter, additional prior knowledge is
available during image segmentation and interpretation and can be of great benefit for these
steps. Hence, it is possible to implement either a restrained search window on an image plane
or an additional position criterion for the marker detection algorithm.

3.3.1 Region of interest for image segmentation

A restrained region of interest can be implemented in order to facilitate the image segmen-
tation step, as the patient’s body can almost entirely be deleted from the image to analyze
(Figure 3.3a). For this purpose, the predicted 3D position of the marker in the MRI frame is
computed as pixel position on the image plane for which it is predicted. A square region of
interest of twice the marker length is then computed around the pixel position of the marker.
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The region of interest is deliberately chosen of this size, as smaller windows increase the risk
of obliterating parts of the marker. The image content outside of the region of interest is then
set to zero in order to keep only the image content inside for further analysis. The resulting
image contains then typically the passive marker with the hand of the person holding it. The
thresholds for the image segmentation are determined in the same manner as described in
section 2.5.3 but only the threshold established at the 0.9-quantile is applied to the restrained
window in order to segment the passive marker and the hand of the person holding it sepa-
rately. Segmentation can thus easily be realized, if the patient’s body is not depicted inside the
region of interest.

3.3.2 Position score for image interpretation

Another approach for application of the prior knowledge is the implementation of a position
criterion during image interpretation. For this purpose the predicted 3D position of the
marker in the MRI frame is computed as pixel position on the image plane for which it is
predicted. Then there are two options: either all segmented objects whose centroid lie outside
a predefined region of interest are directly excluded from the image interpretation step, or
an additional position score is integrated in the proposed score system in section 2.5.3. The
position score can be calculated as a function of the distance between the detected and
predicted marker position for an image plane.

Use of the prior knowledge during image interpretation is more useful than its use during
image segmentation. This is due to potentially remaining body parts inside the region of
interest for image segmentation (Figure 3.3b) that cause problems for the image interpretation
method presented in section 2.5.3. The position criterion for the marker detection has no such
robustness problems and was thus selected for integration of prior knowledge gained by the
Kalman filter.

(a) (b)

Figure 3.3: (a): Region of interest during image segmentation thanks to prior knowledge of the
marker position according to the Kalman prediction. (b): Potentially remaining body parts
after image segmentation may be problematic for the following image interpretation step.
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3.4 Results

In order to assess the performance of the Kalman Filter for image plane alignment, simulations
and experiments are performed with the same protocol as presented in section 2.8.1 and
section 2.8.2, respectively.
The workflow again is based on marker detection in sagittal oblique and in transversal oblique
image planes, that are acquired alternately. The marker is detected on one plane and its
current pose is estimated by a Kalman filter. Then, the Kalman filter generates a prediction of
the marker pose for the acquisition time of the next image plane. The next image plane is then
aligned to the predicted marker pose.
The maximal tracking speed of the workflow and its tracking accuracy are assessed in the same
manner as in section 2.9 in order to compare the obtained results.

3.4.1 Timing analysis of real-time image plane alignment

Correspondingly to section 2.9.1, an analysis of the time that is necessary for execution of the
Kalman filter algorithm was performed. For this purpose, the execution time of 165 estimation
and prediction steps was measured. The additional processing time due to the use of the
Kalman filter is less than 250 µs and thus negligible, as expected.
Hence, the experimental image update time remains 1200 ms for the Kalman filter approach
for image plane alignment.

3.4.2 Evaluation of the maximal tracking speed

The maximal tracking speed of the Kalman extended workflow is determined with both,
simulations and the experimental testbed.

Simulations

Simulations were carried out for determination of the maximal tracking speed for a motion at
an angle of 45◦ between the transversal and sagittal image planes in the same manner as in
section 2.9.3. The obtained simulated maximal tracking speed is 21.6 mm/s which is 2.1 mm/s
higher than the value for the initial workflow. The maximal tracking speed for the Kalman filter
is limited due to its convergence time to a steady state when initialized with a null speed. With
a progressive increase of the marker speed or a state initialization with the speed of the marker,
the Kalman filter could track even higher speeds for this strictly linear and unidirectional
motion type. In return, such simulations are not realistic with regard to the final application of
this workflow, which is tracking of freehand motions of the marker.

Correspondingly to section 2.9.3, the maximal tracking speed of the Kalman approach is
evaluated with simulations of the hypothetical high update frequency (2 Hz) scenario. For
an image update frequency of 2 Hz, the maximal tracking speed is obtained at 52 mm/s.
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Compared to the maximal tracking speed in the hypothetical scenario of the initial workflow,
the value is 3.5 mm/s higher.

Experiments

The maximal tracking speed is determined experimentally in the same manner as in section
2.9.3, using an oscillatory motion with increasing speeds. The translation curve of the per-
formed oscillatory motion on the testbed is depicted in Figure 3.4. The obtained value for
the presented workflow is 21.24 mm/s which is more than twice of the value for the initial
workflow. This value is very similar to the maximal tracking speed calculated for the diagonal
motion in the previous simulations.

0 40 80 120 1600
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trans−         
lation          
[mm]          

time [s]

Maximal speed!

Figure 3.4: Experimental determination of the maximal tracking speed. The oscillatory motion
is manually performed along the testbed axis with increasing speed until the marker cannot
be tracked anymore. The last edge of the motion before the tracking is interrupted is used for
maximal speed computation. Maximal speed in this case is 21.2 mm/s.

3.4.3 Accuracy assessment

The tracking accuracy of the Kalman extended workflow is also determined with both, simula-
tions and the experimental testbed.

Simulations

In order to assess the accuracy of the Kalman Filter for image plane alignment, simulations
were performed for the same simulated motion as in section 2.9.4. A comparison of tracking
performance of the workflow with and without Kalman filtering is presented in Figure 3.5.
The step pattern observed for the initial workflow is compensated through the use of the
Kalman filter (Figure 3.5a - 3.5e). The overall 3D root mean square error (rmse) of position
detection is 3.05 mm, which is an interesting improvement with respect to the initial workflow
(5.54 mm). Tracking results in terms of rmse benefit from the Kalman filter for all pose
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rmse of tracking
w/o Kalman with Kalman

x 4.28 mm 1.97 mm
y 1.72 mm 1.32 mm
z 3.07 mm 1.93 mm
α 1.03◦ 0.72◦

β 3.44◦ 1.58◦

(f)

Figure 3.5: Simulation results of a marker motion of 9 mm/s translational and 2◦/s rotational
speed for tracking without and with Kalman filtering. The simulated marker motion is decom-
posed to every pose component and depicted with the green graphs (a-e). The tracked position
and orientation values are depicted for tracking without (red graphs) and tracking with the
Kalman filter (blue graphs). The observed step pattern for different components of the initial
tracking workflow is compensated through Kalman filtering. Nevertheless, overshoot can be
observed for the Kalman filter, due to its the constant velocity model and the low MR image
acquisition frequency. The comparison of the rmse for the pose components is depicted in (f).
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components (Figure 3.5f). The rmse for the x and β-components is halved through use of the
Kalman filter.
Nevertheless, overshoot is observable for the x-,z-,α- and β-components. Overshoot typically
occurs when the motion changes in direction or speed and is due to the implemented constant
velocity model and the slow image acquisition rate. The Kalman filter takes two or three images
of transition time before adapting to the new motion and coming back to steady state. The
transition time for the position components depends on the orientation of the MR image
relative to the marker motion. If a changing position component cannot be detected on
the next image plane (i.e. component orthogonal to image plane), transition time may be
longer than for an immediate detection on the next image plane. In the same manner as the
y-component is less affected by the step pattern due to its update on both orthogonal MR
images, it is also less affected by the overshoot of the Kalman filter.

In order to evaluate the effect of the dynamic adaptation of the measurement noise covariance
matrix (R) according to the current image plane (section 3.2.2), further simulations have been
carried out again with the same motion. The tracking accuracy is compared for the Kalman
filter with dynamic adaptation of the covariance matrix and without adaptation (Table 3.1).

rmse of tracking using Kalman Filter
without adaptation of R with adaptation of R

x 2.44 mm 2.26 mm
y 1.11 mm 1.08 mm
z 1.44 mm 1.47 mm
α 0.87◦ 0.75◦

β 2.22◦ 1.9◦

Table 3.1: Comparison of the rmse of the tracking using the Kalman filter with and without
dynamic adaptation of the measurement noise covariance matrix R .

The dynamic adaptation of the measurement noise covariance matrix with the chosen method
results only in slight improvement of the image plane alignment performance in submil-
limetric order for the position component (overall rmse improvement of ∼0.13 mm). The
obtained result is below the expectations towards this method and not convincing. As its use
makes no significant difference for the presented tracking workflow, dynamic adaptation of
the measurement noise covariance has not been used in order to optimize the calculation
time of the workflow.

Correspondingly to section 2.9.4, the accuracy assessment of the Kalman approach is also
performed in the hypothetical scenario where an image update rate of 2 Hz is simulated.
The results in terms of rmse errors are compared to the initial workflow in Table 3.2. The
overall position rmse is 2.14 mm, which is almost 1 mm smaller than for the initial workflow
in the hypothetical scenario. Thus, a higher imaging frequency is also highly profitable for the
Kalman tracking approach.
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One can notice that the value for the rmse of the β-component of the Kalman filter approach
is slightly higher at a 2 Hz imaging frequency than at 0.83 Hz. This is mainly due to the match
between the initial instant of change of the component speed and the acquisition of a sagittal
image plane when running at 0.83 Hz. It enables the Kalman filter to readily detect and account
for the motion change. On the contrary, at 2 Hz, the initial change of the β-component speed
unfortunately matches the acquisition of a transversal image plane, where the component
change cannot be detected. Hence, the change can only be detected on the next sagittal image
plane.

rmse of tracking at 2 Hz rmse of tracking at 0.83 Hz
w/o Kalman with Kalman w/o Kalman with Kalman

x 2.20 mm 1.27 mm 4.28 mm 1.97 mm
y 1.15 mm 1.13 mm 1.72 mm 1.32 mm
z 1.68 mm 1.30 mm 3.07 mm 1.93 mm
α 0.50◦ 0.30◦ 1.03◦ 0.72◦

β 2.47◦ 1.65◦ 3.44◦ 1.58◦

Table 3.2: Tracking accuracy evaluation of the initial and Kalman extended workflow in simu-
lations with a 2 Hz and 0.83 Hz imaging frequency.

Experiments

For evaluation of the benefits of the Kalman extended workflow, its performance is assessed
with the same test setup using the MR compatible testbed as presented in section 2.8.2. First,
the operator manually translates the marker, trying to keep a constant velocity. The operator
iteratively tested several increasing speeds, while trying to ensure tracking of the marker
through visualization of both real-time MR images on the in-room display screen. The per-
formed motion and tracking are presented in Figure 3.6 for the different position components
of the marker pose.
The measured mean speed of the motion is determined on the translation curve of the testbed
and is approximately 17.5 mm/s. As for the simulations, it can be observed that the step pat-
tern of the x- and z- components is compensated through the use of the Kalman filter at the
cost of slight overshoot during motion changes. The measurement noise on the y-component
can be explained in the same manner as for the experiments in section 2.9.4 through its update
on every image plane and through image noise resulting in detection differences.
The overall 3D rmse of this motion is 3.7 mm which can also be computed separately for every
component: the rmse is 1.2 mm, 2 mm and 2.8 mm for the x-, y- and z-coordinates, respec-
tively. Even though the performed marker motion is more than twice as fast as the marker
motion for the initial workflow (8.81 mm/s), the rmse for the Kalman extended workflow is
clearly better than without the Kalman filter.
Nevertheless, the improvement of the tracking depends on the compliance of the motion and
its model in the Kalman filter, i.e. a motion with constant velocity. As a consequence rmse can

75



Chapter 3. Kalman Filtering for automatic image plane alignment in interventional MRI

rise if the marker motion exhibits strong acceleration. Smooth free-hand motions are then
suggested to the person operating the marker.
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Figure 3.6: Experimental results for tracking of a marker motion of approximately 17.5 mm/s
using the Kalman filter. The marker motion is decomposed to every pose component and
depicted with the green curves (a-c). The tracked position values are depicted with the red
graphs. The step pattern observed for the initial workflow for the x- and z-components are
compensated. The obtained rmse (d) is smaller than the one for the initial workflow, even
though a much faster marker motion is performed.

3.5 Conclusion

In this chapter, the workflow for MR image plane alignment is extended through a Kalman
filter. The Kalman filter is chosen due to its optimal characteristics, its easy-to-implement
algorithm and its widespread use in tracking applications. It allows to overcome the tracking
inaccuracies inherent to the initial workflow due to the unavailability of the marker pose com-
ponents perpendicular to the MR image planes. The chosen constant velocity process model
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performs well for weak accelerations of the tracked marker motion. The filtering effect of the
Kalman filter allows to generate optimal marker pose estimates increasing the robustness of
the tracking against measurement noise.
The Kalman filter also shows its benefits for the facilitation of the marker detection algorithm
due to prior knowledge of the marker position according to the Kalman prediction.
Furthermore, a weighting technique based on dynamic adaptation of the measurement covari-
ance matrix according to the used image plane and its inherent unavailable pose components
is investigated. Its effect on the estimation and prediction is verified and found to be negligible,
for the considered tracking with a low update frequency of the Kalman Filter.
The improvement of the image plane alignment is obtained at the cost of slight overshoots due
to accelerations of the marker motion. The overshoots are mainly due to the used constant
velocity model which is a rather strong simplification of the tracked freehand motion and the
low image acquisition rate of the MR images.

In order to improve the reactivity of the image plane alignment workflow, decoupling of the
tracking frequency from the MR image acquisition frequency would be of great use. For this
reason the combination of the presented workflow with an additional sensor is presented in
the next chapter.
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4 Extension of the workflow through an
RGB-D sensor

The Kalman extended workflow has shown benefits for the alignment of the image plane to
the marker. Nevertheless, the slow acquisition rate of the clinical MRI sequence limits the
speed of the motion that can be tracked. In order to overcome this limit, an additional tracking
sensor with a higher acquisition frequency should be used. In order to minimize additional
hardware cost and avoid modification of the MRI hardware and sequences, an RGB-D sensor
has been chosen as it proposes a cheap and easy solution for 3D pose measurements and has
been abundantly used in tracking applications over a wide area of research fields.
The purely MR image based approach presented in chapter 2 is thus combined with an RGB-D
sensor based approach. In this manner the advantages of a passive and active approach are
combined and they mutually compensate for their inherent drawbacks.

This chapter gives first an insight on the technique of RGB-D sensors and their applications.
Second, a hybrid image plane alignment workflow combining the passive workflow presented
in chapter 2 and an RGB-D sensor based approach is presented. Then, the detection algorithm
for the RGB-D sensor is presented, as well as the registration approach between RGB-D and
MRI frames and the developed system architecture. Focus is then put on the fusion of the MR
image and RGB-D sensor based measurements through use of an Information filter. In this
context a general introduction to multi-sensor data fusion is presented. The chapter is ended
with the presentation of the achieved results and the conclusion.

4.1 RGB-D sensor

An RGB-D sensor delivers RGB images and a depth image of an observed scene. It combines
an RGB camera with an infrared (IR) projector and an IR camera. The IR projector and
camera work together as a depth sensor: an IR speckle dot pattern is projected on a scene and
the reflected speckles are captured by the IR camera. The spatial relationship between the
projector and camera is known thanks to an offline calibration. The projected dot pattern and
the camera observed dot pattern are compared. Due to a position shift of the observed dot
pattern that is a function of the distance of the object to the RGB-D sensor, it is possible to
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determine the depth of the object (Figure 4.1).1320 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 43, NO. 5, OCTOBER 2013

Fig. 3. Illustration of Kinect depth measurement.

library. Currently, there are several available tools including
OpenNI [8], Microsoft Kinect SDK [9] and OpenKinect
(LibFreeNect) [10]. OpenNI always works together with a
Compliant middleware called NITE, and its highest version
until March 2013 is 2.0. Microsoft Kinect SDK is released
by Microsoft, and its current version is 1.7. OpenKinect is a
free, open source library maintained by an open community
of Kinect people. Since the majority of users are using the
first two libraries, we provide details concerning OpenNI and
Microsoft SDK. The Microsoft SDK (version 1.7) is only
available for Windows whereas OpenNI (version 2.0) is a
multiplatform and open-source tool. Table I gives a compar-
ison between these two tools in terms of their algorithmic
components.

In general, most corresponding components provided by
these two libraries are functionally comparable. Here, we men-
tion a few differences between them. For example, OpenNI’s
skeletal tracker requires a user to hold a predefined calibration
pose until the tracker identifies enough joints. The calibration
time varies greatly depending on environment conditions and
processing power. On the contrary, Microsoft SDK does not
need a specific pose initialization. However, it is more prone
to false positives than OpenNI, especially when the initial
pose of a human is too complicated. Moreover, the newest
version of the Microsoft SDK is capable of tracking a user’s
upper body (ten joints) in case the lower body is not visible.
This is particularly useful when analyzing human postures
with a sitting position. Furthermore, OpenNI focuses on hand
detection and hand-skeletal tracking whereas Microsoft SDK
realizes simple gesture recognition, such as “grip” and “push”
recognition.

It is worth highlighting that the new version of OpenNI (2.0)
allows users to install Microsoft Kinect SDK on the same
machine and run both packages using the Microsoft Kinect
driver, which means that the OpenNI is now compatible with
the Kinect driver. By doing so, switching between two drivers
is not necessary anymore even when users want to benefit from
both packages.

TABLE I

Comparisons of the OpenNI Library and the Microsoft SDK

OpenNI Microsoft SDK
Camera calibration

√ √

Automatic body calibration × √

Standing skeleton
√

(15 joints)
√

(20 joints)
Seated skeleton × √

Body gesture recognition
√ √

Hand gesture analysis
√ √

Facial tracking
√ √

Scene analyzer
√ √

3-D scanning
√ √

Motor control
√ √

C. Kinect Performance Evaluation

There are a few papers that evaluate the performance of
Kinect from either the hardware or the software perspective.
These evaluations help us to understand both the advantages
and limitations of the Kinect sensor and thus to better design
our own system for a given application.

In [11], the authors experimentally investigate the depth
measurement of Kinect in terms of its resolution and precision.
Moreover, they make a quantitative comparison of the 3-D
measurement capability for three different cameras, including
a Kinect camera, a stereo camera, and a TOF camera. The
experimental results reveal that Kinect is superior in accuracy
to the TOF camera and close to a medium-resolution stereo
camera. In another paper, Stoyanov et al. [12] compare the
Kinect sensor with two other TOF 3-D ranging cameras. The
ground truth data is produced by a laser range sensor with
high accuracy, and the test is performed in an uncontrolled
indoor environment. The experiments yield these conclusions.
1) the performance of the Kinect sensor is very close to that of
the laser for short range environments (distance< 3.5 meters);
2) the two TOF cameras have slightly worse performance in
the short range test; and 3) no sensor achieves performance
comparable to the laser sensor at the full distance range. This
implicitly suggests that Kinect might be a better choice (over
the TOF cameras) if the application only needs to deal with
short range environments, since TOF cameras are usually more
expensive than the Kinect sensor. Instead of comparing Kinect
with other available depth cameras, Khoshelham et al. [13]
provide an insight into the geometric quality of Kinect depth
data based on analyzing the accuracy and resolution of the
depth signal. Experimental results show that the random error
of depth measurement increases when the distance between the
scene and the sensor increases, ranging from a few millimeters
at close range to about 4 cm at the maximum range of the
sensor.

Another cluster of papers focus on studying the software
capability of Kinect, especially the performance of skeletal
tracking algorithm. It is indeed important when applying
Kinect to human posture analysis in a context other than
gaming, where the posture may be more arbitrary. In [14], the
3-D motion capturing capability offered by Kinect is tested in
order to know if the Kinect sensor has comparable accuracy
of existing marker-based motion acquiring systems. The result

Figure 4.1: Depth measurement with an RGB-D sensor. The left-right shift of the observed dot
pattern allows to reconstruct the depth of the reflecting surface (reprinted from [HSXS13]).

There are several RGB-D sensors available on the market. The most popular are the Microsoft
Kinect and the Asus Xtion Pro Live. During this work the Asus Xtion Pro Live (Figure 4.2) was
chosen as it is directly powered via the USB cable used for data transmission and does not
need an additional power supply as the Microsoft Kinect does. The sensor delivers RGB and
depth images with a resolution of 640×480 pixels at an acquisition frequency of 30 Hz. Depth
sensor range lies between 800 mm up to 3500 mm. Detailed specifications of the sensor can
be found on the website of the manufacturer ([htt13c]). Calibration of the RGB camera was

Figure 4.2: RGB-D sensor Asus Xtion Pro Live with infrared projector, RGB camera, infrared
camera and microphones (reprinted from [htt13c]).

performed in order to determine its intrinsic parameters (see section 4.1.4 for details). The
RGB camera and the IR camera are horizontally separated by a few centimeters, which makes
the determination of the extrinsic parameters between them necessary in order to correlate
the depth images to the RGB images. During this work, the manufacturer delivered set of
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extrinsic parameters has been used.
As RGB-D sensors provide RGB images and synchronized depth images of a scene at a high
acquisition rate and at low material cost, they have been used extensively in a widespread area
of research during the last years.

4.1.1 Literature review of RGB-D sensors in research applications

In [HSXS13], Han et al. present a review of Kinect-based computer vision algorithms and
applications on which is based the following literature review. They highlight that the comple-
mentary and synchronized RGB and depth information can be used in order to find solutions
to classical problems in computer vision at a lower cost than with traditional 3D cameras
such as stereo cameras and time-of-flight (TOF) cameras. The type of problems that can be
addressed or whose solution can be improved include object tracking and recognition, human
activity analysis , hand-gesture recognition, and indoor 3D mapping (Figure 4.3). In its first

Figure 4.3: Type of problems that are currently under investigation through RGB-D sensor-
based research (reprinted from [HSXS13]).

section the review presents research focussed on performance evaluation:
In [SJP11], the resolution and precision of Kinect depth measurement is investigated. In terms
of resolution the quantization step q , which is the distance between two consecutive depth
values, was evaluated. The function q , describing the quantization step as a function of depth
z was found to be non-linear : q(z) = 2.73z2 +0.74z (Figure 4.4a). The authors also compared
the Kinect camera precision to a stereo camera and a TOF camera. The authors found the
Kinect to be superior in accuracy to the TOF camera and close to the performance of the stereo
camera.
In [SLAL11], the authors compare the Kinect and two TOF cameras to an actuated laser range

sensor. Their results reveal that none of the devices can compete with the laser range sensor
in terms of accuracy, when its full range is evaluated. When environments of a constrained
size (within a sphere of radius 3.5 m) are considered, the Kinect has an accuracy similar to the
one, obtained through the actuated laser range sensor.
Khoshelham et al . explain the depth measurement by triangulation in [KE12] and highlight
possible error sources and their influence. The three main sources for erroneous depth mea-
surement are related to the sensor, the measurement setup and the properties of the observed
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(a) (b)

Figure 4.4: (a): Kinect quantization step as function of target distance, given for a distance
interval from 500 mm to 5000 mm (reprinted from [SJP11]). (b): Standard deviation of depth
measurements as function of distance between sensor and object (black squares). The theo-
retical random error and resolution of individual depth measurements at different distances
from the sensor are derived and depicted as red and blue graphs, respectively (reprinted from
[KE12]).

object surface. Sensor errors refer to an inadequate calibration and inaccurate measurement
of disparities for depth reconstruction. For measurement setup errors, the authors mention
mainly the lighting conditions (influencing the disparity measurement) and the imaging
geometry. Imaging geometry includes the distance between the object and the sensor and
occlusions of or shadows on parts of the scene (due to invisible pattern parts for the IR cam-
era). Both occlusions and shadows result in gaps in the depth image. In the same manner,
smooth and shiny object surfaces make the disparity measurement impossible and their depth
values can neither be reconstructed. Experiments were carried out in order to evaluate the
random error in depth measurement as a function of distance between object and sensor.
For this purpose, depth values of a planar surface were observed at different distances and
the standard deviation of 4,500 samples was calculated for every distance (Figure 4.4b). The
results reveal that the random error in depth measurement increases with increasing distance
between object and sensor from a few mm at close range to 4 cm at maximum range of 5 m.
Major progress has been made in image segmentation with the facilitation of background
subtraction methods. These algorithms could be improved and made more robust against
lighting condition changes and lack of contrast, which are difficult problems for algorithms
based on traditional images without depth information. Main application of these new algo-
rithms is people detection, either based on depth images only or on combined use of RGB and
depth images.
Few medical applications are known up to now. In [WCW13] a semantic map of the environ-
ment of a wheelchair is built based on the acquired data by an RGB-D sensor. In [MNB+11],
three RGB-D sensors are used in order to track personnel in a surgical environment. In [LR13],
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an approach for detection and localization of equipment in an interventional room using
RGB-D sensors is presented in the context of an X-ray monitoring system.

Due to its low cost, good accuracy and ease of use, the RGB-D sensor is a valuable additional
sensor for integration in the MR image plane alignment workflow as it allows direct 3D mea-
surements of an observed scene. The results found in terms of precision and depth resolution
seem to be convenient for our application as the typical working distance between marker
and sensor won’t exceed 1.6 m where a maximal quantization step of ∼8 mm is expected
according to Figure 4.4. As currently an RGB-D sensor has not yet been used within an MRI
room, compatibility tests of the sensor within a 1.5 T MRI environment are performed.

4.1.2 Use of an RGB-D sensor in the 1.5 T MRI environment

Compatibility tests are performed in order to evaluate functionality and interference with MR
images of the RGB-D sensor inside the MRI room. The RGB-D sensor is positioned at a typical
working distance of ∼1.5 m on the MRI z-axis to the MRI scanner isocenter. Connection of
the RGB-D sensor to an external PC inside the MRI control room is realized via an active USB
extension cable that is passed through the waveguide of the MRI room.
The RGB-D sensor works normally during and outside MR image acquisition. Furthermore,
only minor image artifacts are visible on MR images acquired during operation of the RGB-D
sensor (see Figure 4.5). The real-time MRI sequence for clinical interventions is used for
assessing the artifacts of the RGB-D sensor in the MR images. The observed artifacts are
mainly caused by the passage of the USB extension cable through the waveguide of the MRI
room. When the USB cable is passed through the waveguide but neither connected to the
external PC nor to the RGB-D sensor, the acquired MR images are attained by the same type of
artifacts but less intense than during operation of the RGB-D sensor (compare Figure 4.5 b
and c). When the USB cable is removed from the waveguide no artifacts appear. A possible
explanation is that the copper-containing USB extension cable compromises the shielding
function of the MRI room and introduces noise to it. The observed artifacts do not interfere
with the marker detection in the MR images.
Use of an optical fiber and a transducer to convert the USB2 electric signal in an optical signal
for transmission of the RGB-D sensor data outside the MRI room could be assessed. In this
manner, passing the USB cable through the waveguide and thus comprising the Faraday shield
of the MRI room could be avoided in order to suppress the artifacts from the MR images.

4.1.3 Three-dimensional position measurement with the RGB-D sensor

The RGB camera image is formed according to the camera model presented in Appendix B,
where a point in camera coordinates (C P = [x, y, z]T ) and its projection in image coordinates
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(a) (b) (c)

Figure 4.5: Evaluation of MR image artifacts due to operation of the RGB-D sensor inside the
MRI room. MR images for three scenarios are depicted: First, no active device is inside the
MRI room (a). Second, the USB extension cable is passed through the waveguide of the MRI
room with no devices connected at its ends (b). Third, RGB-D sensor and external PC are
connected via USB through the waveguide and turned on (c). The image artifacts in (b) and
(c) are similar but slightly more intense for (c) where the RGB-D sensor is active.

(I P � = [u, v]T ) are related through the following equation:


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z
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where parameter s is an arbitrary scale factor. Matrix C is called the calibration matrix and
contains the intrinsic parameters of the camera:

C =




αu 0 u0

0 αv v0

0 0 1



 . (4.2)

The intrinsic parameters of the RGB camera are obtained during one-time calibration (de-
scribed in section 4.1.4): parameters αu and αv are scale factors along the u and v axes of the
image frame, respectively. The coordinates of the image center in pixels in the image frame are
given by the parameters u0 and v0. The image center, also called principal point, is defined by
the intersection of the camera optical axis and the image plane. The following equations are
thus obtained for the coordinates u and v of point I P �:

u =αu
x
z
+ u0 (4.3)

v =αv
y
z

+ v0 . (4.4)

84



4.1. RGB-D sensor

Note that [u, v]T is given in pixels and [x, y, z]T in mm.
Inversely, in order to measure a 3D position based on the RGB image we can change equations
4.3 and 4.4 to

x
z
= u − u0

αu
(4.5)

y
z
= v − v0

αv
, (4.6)

where only the relations x
z and y

z can be obtained from the image coordinates. Thus, without
further information about the observed scene, it is not possible to reconstruct the 3D position
of a point, based only on its 2D position from the image plane.
This is where the depth measurement of the RGB-D sensor can be employed. As the RGB-D
sensor measures the depth (z) of an observed scene directly in the camera frame, equations
4.5 and 4.6 can be solved:

x = u − u0

αu
z (4.7)

y = v − v0

αv
z . (4.8)

Thus, the RGB-D sensor allows to directly measure a 3D position of an object in the camera
frame.
It would also be possible to reconstruct the 3D position of an object with a single camera
instead of an RGB-D sensor through the intrinsic parameters of the camera and a prior
knowledge of one characteristic dimension of the object (e.g. in [BCG07]). This distinctive
dimension can be an external size of the object (width, height, radius) or a distance between
two features on the object. Such approach is described below.
Assume the known width (in mm) of an object in the camera frame as xd = x1 −x2, where x1

and x2 are the points attached to the extremities of the object along the x axis of the camera
frame. The corresponding distance ud = u1 −u2 (in pixels) can be measured in the image.
According to eq.4.7, the points in camera frame and their projections in the image plane can
be related:

x1 =
(u1 − u0)

αu
z1 (4.9)

x2 =
(u2 − u0)

αu
z2 (4.10)

Thus, if they are written as distance xd , the following equation is obtained:

xd = x1 −x2

xd = (u1 − u0)
αu

z1 − (u2 − u0)
αu

z2 (4.11)

If it is assumed that the object is spherical, it is possible to measure its diameter independently
from its orientation with respect to the camera. An equal z coordinate is assumed for both
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extremities of the object :

z = z1 = z2 . (4.12)

Accordingly eq.4.11 can be simplified to

xd = z
αu

[(u1 − u0) − (u2 − u0)] (4.13)

xd = z
αu

(u1 − u2) , (4.14)

which can be written as

z = xd αu

ud
. (4.15)

It is thus possible to calculate the z coordinate (in mm) of the object in the camera frame by
measuring its size ud (in pixels) in the image frame. With the obtained z coordinate, eq.4.7
and eq.4.8 can be applied in order to reconstruct the 3D position of the object.

Nevertheless, the precision of the camera approach depends highly on the accuracy of the
object segmentation in the image, the object size and the image resolution. The additional
depth measurement from the RGB-D sensor is thus clearly an advantage over this method.

4.1.4 RGB camera calibration

Camera calibration allows to determine the intrinsic parameters of a camera. Zhang’s method
([Zha00]) was used for calibration of the RGB camera of the RGB-D sensor.
This technique allows to calibrate a camera through observation of a planar pattern at a few (at
least two) different orientations. The feature points of the pattern are detected in the obtained
images and the intrinsic and extrinsic parameters of the camera are obtained through an
analytical solution. The image deformation due to radial distortion is then estimated. Finally,
the determined parameters are refined through a non-linear optimization approach.
At the end of this calibration method, the intrinsic parameters of the camera are obtained,
namely the coordinates of the principal point (u0,v0), the scale factors αu and αv in image
coordinates (pixels) and the skewness factor γ of the image axes. The skewness factor defines
the angle between the image x-axis and y-axis. The coefficients of the radial distortion k1, k2

are also obtained. The radial distortion due to the optical system induces a shift of the pixel
position compared to a perfect pinhole model (more details in annex B).
Following this method, the results presented in Table 4.1 are obtained for the RGB camera of
the Asus Xtion Pro Live RGB-D sensor. The calibration has been performed for two resolutions
of the camera. For each resolution a checkerboard calibration pattern has been observed in 13
different orientations.
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Resolution 640 × 480 pixels 1280 × 1024 pixels

Coordinates principal point (u0,v0) in pixels 313.25, 241.104 634.549, 513.768
Scale factors (αu , αv ) in pixels 540.519, 539.709 1082.703, 1081.662
Skewness factor (γ) 0 0
Radial distortion coefficients (k1, k2) 0.055, 0.106 0.029, -1.028

Table 4.1: Results for calibration of RGB camera of Asus Xtion Pro Live according to Zhang’s
method described in [Zha00].

4.2 Hybrid image plane alignment workflow

A hybrid workflow for automatic scan plane alignment has been developed combining the
passive workflow presented in chapter 2 with an active tracking approach based on measure-
ments of an RGB-D sensor. Main drawback of the purely MR image based approach is the
coupling of the tracking speed to the slow image acquisition rate of the clinical MRI sequence.
The inherent drawback of an RGB-D sensor based approach is the need for an unobstructed
line-of-sight between sensor and tracking marker. Combination of both approaches is ex-
pected to compensate for their respective drawbacks and to combine their advantages. The
hybrid approach allows to use the MRI or the RGB-D sensor either as stand-alone tracking
modalities or to use them simultaneously by fusing their measurements through use of an
Information filter.

4.2.1 RGB-D sensor installation

Due to the need for a line-of-sight between the RGB-D sensor and the marker, best position of
the RGB-D sensor is in the back of the MRI scanner at a typical distance of about 1.5 m between
the sensor and the MRI scanner isocenter along the MRI z-axis (Figure 4.6a). Positioned there,
the risk for occlusion of the marker through the person holding it, is minimized. An installation
scheme of the RGB-D sensor and its connection to the external PC is presented in Figure 4.6b.

4.2.2 Marker

The marker used for tracking has to be detected in MR images and in RGB-D sensor images.
Thus to validate the concept, a cylindrical marker (length: 109 mm, diameter: 40 mm) filled
with a contrast agent / water solution (Gd-DTPA 5 mM) and two pink balls (diameter: 40
mm) attached at its distal ends is used (Figure 4.7). The exterior dimensions of the cylindrical
marker are slightly bigger than those of the marker presented in section 2.2.2 but the interior
dimensions determining the contained liquid volume are exactly the same. The ball positions
are symmetric with respect to the center of the marker.
The MR contrast agent solution and the pink balls are well detectable in MR images and RGB
images from the RGB-D sensor, respectively.
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(a)

MRI room ! MRI control room!

RGB-D !
sensor!
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(b)

Figure 4.6: (a): RGB-D sensor positioned behind MRI scanner inside the MRI room. Typical
distance between the RGB-D sensor and the MRI scanner isocenter is about 1.5 m. (b):
Schematic of the RGB-D sensor in the MRI environment. An external PC is connected via USB
to the RGB-D sensor. The USB connector is passed through the waveguide inside the MRI
room.

Figure 4.7: Marker containing an MR contrast agent solution for detection in MR images, with
two pink balls at its distal ends for detection in RGB images from the RGB-D sensor.
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4.2.3 Initialization

The RGB-D sensor is positioned inside the MRI room and connected via an USB cable, passed
through the waveguide, to the PC inside the MRI control room. The initial position of the
marker inside the MRI tunnel is determined through volume images as presented for the MR
image based workflow (section 2.4.1). After alignment of the first real-time scan plane to the
marker, the MR image based tracking starts.

4.2.4 Real-time scan plane alignment

An online registration approach is performed during the real-time scan plane alignment stage
as described in section 4.4 in order to determine the rigid transformation between the MRI
and RGB-D sensor frames. As this transformation is unknown in the beginning, real-time
tracking starts based on MR images only: alternating clinical real-time images are aligned
according to the detected marker pose in the MR images (section 2.4.2). Simultaneously, the
marker pose is detected by the RGB-D sensor. As soon as enough matched marker positions
have been acquired in both modalities, the registration can be performed.
After successful registration, the marker pose that is detected with the RGB-D sensor (section
4.3) can be transformed to the MRI frame and is thus available for scan plane alignment, too.
The detected 3D poses from the MR image and from the RGB-D sensor are then fed to an
Information filter (see section 4.5) that fuses them and predicts the next 3D pose of the marker.
Alternately, transversal and sagittal oblique scan planes, aligned to the predicted marker pose,
are calculated and corresponding commands are sent to the MRI scanner (Figure 4.8).

3D pose!

MRI!

RGB-D !
sensor!

3D pose!

3D pose!

Fusion/
Estimation! Prediction!

Information Filter!

Figure 4.8: Principle of Workflow: two orthogonal image planes, transversal (green) and sagittal
(red) are alternately acquired. The 3D marker pose is detected both, in the MR image plane and
by the RGB-D sensor. The detected 3D marker pose from the RGB-D sensor is transformed to
the MRI frame. Depending on their availability, the 3D poses are then fused in an Information
filter and the corresponding command for the position and orientation update of the next
image plane is then sent to the MRI.
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The working frequency of the Information filter is set to the faster modality which is the RGB-D
sensor. Due to this principle and the difference of the acquisition frequencies between the RGB-
D sensor and the MRI, the fusion algorithm has to deal with unavailable MRI measurements.
Thus, in between two MR image acquisitions the workflow relies on detected 3D poses from
the RGB-D sensor, only.
Generally, in case of an unavailable measurement (due to a failed detection, e.g.) from one
modality the Information filter will continue working with the measurements of the other
modality. When the marker cannot be detected inside both, MR images and RGB-D sensor
images, no commands are sent to the MRI console until one of both measurements becomes
available again.
As a consequence, the frequency of the sent commands depends on the availability of the
measurements. An example of a typical timeline is depicted in Figure 4.9.

RGB-D measurement! a a a a a a a a a a a a a a a a
MRI measurement! b b b b

Fusion! a a a a a
b a a a a a

b b a a a a a
b a

Command available! x x x x x x x x x x x x x x x x x

t!t3!t2!t1!

Figure 4.9: Example timeline of commands that are sent to the MRI console PC depending on
the available measurements. Between t1 and t2 both RGB-D (a) and MRI (b) measurements
are available. The measurement fusion algorithm fuses them if an MR image is acquired
during an RGB-D image acquisition period. During the intervals where MRI measurements
are not available, the measurement fusion algorithm only accounts for the available RGB-D
measurements. Between t2 and t3 MRI the measurement fusion algorithm only accounts for
MRI measurements as RGB-D measurements are unavailable. From t3 on, all measurements
are available again. Commands are only sent to the MRI console PC if at least one modality
delivers available measurements.

4.3 Detection algorithm for RGB-D sensor images

In order to measure the 3D pose of the marker with the RGB-D sensor, positions of the two
pink balls are detected in the images and their 3D positions are calculated in the camera frame
as described in section 4.1.3. Note that the RGB-D sensor operates with its minor resolution of
640 × 480 pixels for RGB images as this corresponds directly to the maximal resolution of the
depth images. In this manner the RGB and depth images are temporally synchronized and
acquired with the higher frame rate of 30 frames per second. Using a higher resolution for the
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RGB images would decrease their frame rate to 15 frames per second.
Detection of the two pink balls starts with the transformation of the RGB image (Figure
4.10a) to Hue Saturation Value (HSV) color space and the application of an experimentally
determined threshold. The HSV space revealed as the most intuitive color representation
for the research of a threshold. After thresholding (Figure 4.10c) a morphological opening is
performed (Figure 4.10d) using a circular structuring element with a diameter of 5 pixels in
order to erase potential noise.
Then a contour detection algorithm is applied (Figure 4.10e) performing a least-square fitting
of ellipses to the segmented contours ([FPF99]). The length of the major and minor axes of the
ellipses are then verified with respect to an admitted ball diameter interval. This interval is
calculated based on the diameter of the ball in the camera frame, on its maximal and minimal
allowed distance to the RGB-D sensor and on the scale factors of the image axes. The scale
factors are obtained during camera calibration and may be different for the image axes, but
are assumed equal for this calculation (for further details about camera calibration see section
4.1.4). The minimal and maximal ball diameter is thus determined for the u axis of the image
frame and adopted for the v axis:

umi n = xbal l αu

zmax
(4.16)

umax = xbal l αu

zmi n
. (4.17)

The variables umi n and umax are the minimal and maximal ball diameter (in pixels), respec-
tively. The ball diameter (in mm) is given by xbal l , the minimal and maximal admitted distance
between the camera and the ball by zmi n (800 mm) and zmax (2000 mm), respectively.
If the balls are segmented, the 2D positions inside the image frame of the centers of their
fitted ellipses is determined. In order to reconstruct the 3D positions of the balls, as described
in section 4.1.3, the depth of the segmented balls must be determined. For this purpose,
the depth image (Figure 4.10b) of the scene is accessed and the depth pixels with the same
position than those inside the detected contours in the RGB image are verified (Figure 4.10f).
First must be verified if they are valid values as the depth map can be incomplete due to a
failed reconstruction of the depth by the RGB-D sensor. This typically happens for strongly
reflecting surfaces where the emitted IR pattern cannot be captured by the RGB-D sensor.
For both balls the depth values inside their detected contours are collected and their median
values are determined. The median has revealed as a better depth measurement than the
mean value of all collected depth values. This is mainly due to its robustness against depth
value outliers at the edges of the balls, where the projected IR pattern cannot be detected on
the balls themselves but potentially on a reflecting surface behind the ball (Figure 4.11).
These depth measurements are used for reconstruction of the 3D positions of the balls. Note
that with greater distance between the ball and the RGB-D sensor, the number of available
depth values for the ball decreases due to the resolution of the structured light pattern used
for depth reconstruction. Furthermore, as not the whole surface of an object can be detected
on the depth map, but only the side facing the RGB-D sensor, an offset in depth between the
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: RGB (a) and depth image (b) of a typical workflow scene: the marker is held inside
the MRI scanner by a person who can control the scan planes through marker motions. The
RGB image is transformed to HSV color space and thresholded (c). A morphological opening
is performed on the thresholded image in order to reduce noise from thresholding (d). The
ball contours are highlighted in the RGB image (e) and the corresponding pixels in the depth
image (f) are collected for calculation of their median value.
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Figure 4.11: Simplified representation in one plane of the projection of the structured light
pattern on the ball. The red points can be reconstructed on the ball’s surface and correspond
thus to its actual depth values.The edges of the ball cannot be reconstructed in this manner due
to their lack of reflection of the structured light pattern on the ball surface. The reconstructed
depth value of the ball edges on the depth image might thus correspond to a reflecting surface
behind the ball. (a): Ball at a small distance from RGB-D sensor. A small shift between the
real center and the available values for calculation of the detected center on the z axis can
be observed. (b): Ball at a greater distance from RGB-D sensor. The number of available
depth points has decreased and the shift between real ball center and the available values for
calculation of the detected center has increased.
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real center of the ball and its detected center is introduced. The offset is a function of the
distance between the ball and the RGB-D sensor (Figure 4.11). During the registration process
of the RGB-D sensor with the MRI (section 4.4), a mean value for this offset is identified as
part of the translation between the MRI frame and the RGB-D sensor frame. This offset is then
assumed to be constant over the depth range of the marker workspace.
The orientation of the marker is computed by defining a vector from the 3D position of the
upper ball pointing towards the position of the lower ball. The 3D marker position is defined
as the middle position between the two detected ball positions.

4.4 Registration between MRI and RGB-D sensor

As presented in [Tro12], registration consists in the determination of a geometrical relation
between two frames using a transformation. Rigid transformations include rotations and
translations. The transformation can also be non-rigid, which means that it is non-Euclidean
and searched between objects among whose at least one is deformable. In order to register the
MRI frame with the RGB-D sensor frame the 3D rigid transformation between both frames has
to be determined. This transformation is represented with three parameters for the translation
and three parameters for the rotation.
The registration between the MRI frame and the RGB-D sensor frame can be performed
offline or online. As presented in [VBR+07] and [Daa01], offline registration between a camera
system and an MRI consists in determination of the transformation between them and can be
performed with a dedicated registration frame. The transformation is determined once after
installation of the camera system and is thus constant over time. The drawback of an offline
registration is that in case of a displacement of the camera, the found transformation between
the camera and the MRI frame is no longer valid and the registration step has to be repeated.
As a permanent installation of the RGB-D sensor behind the MRI machine is currently not
compatible with the clinical workflow and thus not feasible, an offline registration would have
to be performed before every intervention.
On the contrary, an online registration consists in finding and updating the transformation
between the MRI frame and the RGB-D sensor frame online during the intervention. Initially,
the intervention is performed using MRI data only. At the beginning of the intervention, a
number of matched points (at least three) has to be acquired in both the MRI frame and the
RGB-D sensor frame in order to determine the 3D rigid transformation between the point
sets. In our case, a pair of matched points is composed of the marker center coordinates in
both modalities and detected during the same RGB-D acquisition period. After successful
registration, the intervention is performed using data from both modalities. An advantage of
the chosen approach is that the point sets in both frames are extended and updated during
the entire intervention allowing to improve and refine the registration result over time. Hence,
the online registration allows to change the position of the RGB-D sensor at any time during a
procedure in order to achieve an optimal line-of-sight between sensor and intervention zone.
Due to its flexibility, an online registration approach has been proposed.
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The transformation between the MRI frame and the RGB-D sensor frame is given by the
homogenous matrix

MRI M RGB−D =
�

MRI RRGB−D
MRI t RGB−D

0 1

�

, (4.18)

where MRI RRGB−D is the rotation matrix and MRI t RGB−D the translation between the frames
(Figure 4.12).

MRI! RGBD !
sensor !

MriMRgbd

Mri x
Mri y
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Rgbd z

Rgbd y

Rgbd x

Figure 4.12: Spatial relationship between MRI and RGB-D sensor frame that is determined
during registration and represented in the homogeneous matrix Mr i M Rg bd .

In [HM11], Horaud and Monga present the registration problem as the search for an optimal
correspondence transformation between two 3D point clouds describing the same observa-
tions but acquired in different frames. The ordered lists of 3D points C = [C1,C2, ...,Cn] and
O = [O1,O2, ...,On] are represented in the frames of their respective sensors FC and FO . The
research for the transformation between the two point clouds is presented as the following
optimization problem:

Q∗ = min
R ,t

n�

i
|Ci − C RO Oi − C t O |2 , (4.19)

where Q∗ depends on the rotation C RO and translation C t O . When expressing the sets of
coordinates, Ci and Oi , with respect to their respective centers of mass, Cmc and Omc , this
cost function can be split and the optimal rotation and translation are obtained through the
following equations

min
R

n�

i
|C �

i −
C RO O�

i |
2 , (4.20)

and

t =Cmc − C RO Omc (4.21)
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with

Cmc =
1
n

n�

i
Ci (4.22)

Omc =
1
n

n�

i
Oi (4.23)

C �
i =Ci −Cmc (4.24)

O�
i =Oi −Omc . (4.25)

Thus, in a registration step, we typically start by searching for the optimal rotation between
the frames, before computing the translation.

4.4.1 Determination of the optimal rotation between the frames

Based on eq.4.20, Horaud and Monga demonstrate that at least three non aligned matched
points are needed for the determination of all rotation parameters between two distinct frames.
When this condition is met, matched point sets can be inserted in the following equation.
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. (4.26)

The least-square solution to eq.4.26 is

N = M+P , (4.27)

where M+ is the pseudo-inverse of matrix M . This equation allows to find the rotation axis n∗

and rotation angle θ∗, given by

n∗ = N
|N | (4.28)

θ∗ =±2at an (|N |) . (4.29)

The residual error can be evaluated through calculation of the rmse between both point clouds,
with the point clouds being represented in the same frame thanks to the found transformation.
The residual error is used for determination of the sign of the rotation angle. For this purpose,
the residual error is computed for both transformations, one with a positive and one with a
negative rotation angle. The transformation resulting in a better residual error between the
point clouds is the one with the correct rotation angle. The according rotation matrix C RO

between both frames can then be obtained through the Rodrigues formula.
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The method for determination of the optimal rotation of Horaud and Monga is based on a
work for robot hand/eye calibration, presented in [TL89] by Tsai and Lenz. They explain that
this method has an exceptional case for a rotation of ±π around the rotation axis. In this case
the resulting vectors of the additions of O�

i and C �
i are collinear for all distinct point sets i and

eq.4.26 cannot be used. The rotation axis is then given directly by O�
i +C �

i and the rotation
angle is π. Nevertheless, in practice it is complicated to verify this collinearity for all distinct
point sets, due to the measurement noises of both modalities.
For this reason and in order to use this approach regardless of its exceptional case, an avoid-
ance mechanism is implemented. This mechanism consists in searching for the approximate
rotation between the framesFC andFO before searching for the optimal rotation using eq.4.26
and eq.4.27. If the approximate rotation angle is near ±π, the points linked to FO are repre-
sented in an intermediate frame FI allowing to avoid the singularity. The rotation according
to the method here above is then calculated between FC and FI . The final rotation between
FC and FO can then be derived.
The approximate solution ([Nag13]) to the registration problem is based on the definition of a
frame Fei g that is linked to the point cloud. Three non-aligned matched points are used for
definition of this frame with the vectors

uO = O1 O2

|O1 O2|
, wO = O1 O3

|O1 O3|
, vO = wO ×uO ,

uC = C1 C2

|C1 C2|
, wC = C1 C3

|C1 C3|
, vC = wC ×uC .

The rotation matrices ORei g = [uO , vO , wO] and C Rei g = [uC , vC , wC ] represent the rotation
between Fei g and the frames FO and FC , respectively. The approximate rotation matrix
between the frames FC and FO can thus be calculated with

C RO appr ox = C Rei g
�ORei g

�T
. (4.30)

Note that this method is referred to as approximate as it relies only on three matched points
instead of all the available points and is thus highly sensitive to measurement errors on the
chosen points. The rotation matrix C RO appr ox is then converted to the axis-angle representa-
tion in order to determine the rotation angle between the frames FC and FO . If this angle is
within ±0.2 rad near ±π, the aforementioned method is near its exceptional case. In order to
avoid the exception, the point cloud O is represented in an intermediate frame FI , rotated
by −π around the approximate rotation axis. For this purpose the approximate rotation axis
is multiplied with π and then converted to the rotation matrix I RO . The points O are then
represented in the frame FI with

I O = I RO O . (4.31)

The rotation matrix C R I is then searched between the point clouds C and I O according to
eq.4.26 ff. Eventually, the final rotation matrix between the point clouds C and O can be
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calculated by accounting for the intermediate frame in the following manner:

C RO = C R I
I RO . (4.32)

4.4.2 Determination of translation between the frames

The translation between the two frames is then obtained by computing eq.4.21 with the
previously obtained rotation.

4.4.3 Registration point list

The matched points and their spatial distribution heavily influence the quality of the registra-
tion. It is therefore important to dispose of point sets that are spatially spread but not too dis-
tant to the MRI scanner isocenter as MR image quality (and thus quality of MRI measurements)
decreases with increasing distance to the isocenter, due to magnetic field inhomogeneity.
Algorithm 1 shows the chosen approach for management of the point list. The maximal
number of points has been set to 20. Arriving points are verified with respect to their distance
to the MRI isocenter and the distance to the other points in the list. If the list is already full,
it is tested if the arriving point would improve spatial distribution of the point list. If so, an
existing point in the list will be replaced by the arriving point.
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Algorithm 1: Pointlist update
Data: Point list L containing points that are used for registration, Arriving matched point P

containing RGB-D (RGB−D P ) and MRI (MRI P ) coordinates , Maximal distance d I soctr of
MRI P from MRI isocenter, Minimal distance d mi n of P to points in L, Current number
numO f P t s of points in list, Max number maxLi stSi ze of points in list

Result: Updated pointlist L
begin

if (abs
�MRI P

�
< d I soctr ) then

for P i in L do
d i ←Distance between P i and P
if d i < d mi n then

exit
end
d P tLi st ← d P tLi st ∪ d i

end
if numO f P t s < maxLi stSi ze then

Add P to L
Increment numO f P t s

else
P n ← Find nearest neighbor of P in L
P n1, P n2 ← Find 2 nearest neighbors of P n in L
d i st Pn1, d i st Pn2 ← Distances between P n and P n1, P n2

d i st P 1, d i st P 2 ← Distances between P and P n1, P n2

if (d i st P 1 > d i st Pn1) && (d i st P 2 > d i st Pn2) then
Replace P n by P in L

end

end

end

end

4.5 Multi-sensor Data Fusion

In this section, theory of multi-sensor fusion is developed with the aim of combining MRI data
with RGB-D sensor data. An improved tracking performance is expected through this fusion.

4.5.1 Introduction to multi-sensor data fusion

Multi-sensor data fusion aims at combining information coming from different sensors in
order to improve the estimate of the process that is monitored. Robotics, computer vision,
maneuvering of unmanned vehicles, supervision of manufacturing processes and medical
applications are fields in which multi-sensor data fusion is commonly used. In [HHL09] an
extensive introduction to multi-sensor data fusion, its various techniques, principles and
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example applications is given. Khaleghi et al . ([KKKR13]) refer to [HHL09] and give a generic
overview of contemporary data fusion approaches as well as recent trends in research. The
Joint Directors of Laboratories (JDL) model for data fusion with its four layers of abstraction
for data fusion is there deemed to be too restrictive and too restrained to military applications.
Instead, authors propose a new taxonomy for data fusion methodologies, based on the differ-
ent data-related challenges in multi-sensor data fusion (Figure 4.13).

Figure 4.13: Taxonomy for data fusion methods. They are classified according to the four
main challenges linked to input data, specified by Khaleghi et al. as data imperfection, data
correlation, data inconsistency and data disparateness (reprinted from [KKKR13]).

The challenges in data fusion are grouped in imperfection, correlation, inconsistency and
disparateness of data. Imperfect data can either be uncertain, imprecise or prone to fusion
errors due to different data granularity. Many data fusion algorithms rely either on indepen-
dence of data or on prior knowledge of its cross-covariances in order to generate consistent
estimates. An often encountered problem is that data may be correlated with an unknown
covariance, e.g. the observations of different sensors observing different physical variables
may be exposed to the same external noise biasing the measurements. If data correlation is
not addressed, it can result in biased estimation. Spurious or conflicting data is grouped under
the term data inconsistency. Data gathered by different types of sensors (physical sensors,
human operators) is referred to as disparate data.
According to Khaleghi et al ., the most challenging problem is the inherent imperfection of
data which is treated in most of the works on data fusion. From this research, different theories
have emerged for representation of data imperfection, such as probability theory, fuzzy set
theory, possibility theory, rough set theory and Dempster-Shafer evidence theory.
In this introduction, we will restrain the focus on probabilistic fusion methods as they are well
adapted for our system and a presentation of all data fusion methods (as realized in [KKKR13])
would exceed the scope of this work. In probabilistic fusion methods, data uncertainty is
represented as probability distribution or density functions. These methods are also referred
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to as Bayesian Fusion as they rely on the Bayes estimator.
The Kalman filter as a particular case of the Bayes filter as well as the approximations and
techniques used for dealing with non-linear systems have been introduced in section 3.1.
Non-linear probability distributions can also be approximated using grid-based methods
([Mah07]), Sequential Monte Carlo (SMC) ([DDFG01]) or Markov Chain Monte Carlo (MCMC)
([Ber04]) algorithms. A widely known recursive implementation of an SMC algorithm is the
Particle filter ([CD02]), which approximates the posterior probability of the system state as a
weighted sum of random samples. These random samples are predicted through the process
model from the prior density and are then converted to predicted measurements through the
measurement model. Weights of the random samples are updated according to the likelihood
of their corresponding measurements with respect to the actual measurement. Compared
to the Kalman filter, a Particle filter may be less performing in terms of computation time, as
a large number of random samples may be necessary for a good estimation of the posterior
probability.
MCMC algorithms are an alternative to Particle filters for high-dimensional non-linear systems.
The probability density of interest is here approximated through samples that are obtained
by means of a Markov chain. The Markov chain generates the samples through a transition
kernel with Markovian property, meaning that the transition probabilities between samples
depends only on their current state. After a certain number of iterations a well-designed
Markov chain converges to a stationary density of interest ([Ber04]). Well known algorithms
are the Metropolis-Hastings ([Has70]) algorithms and the Gibbs sampling algorithm ([CG92]).

As the treated data fusion problem is neither high-dimensional nor a multi-target tracking
application, we decided to choose a simple, easy-to-implement and well studied data fusion
algorithm, which is the Kalman filter. Furthermore, as a random free-hand motion of the
marker is tracked, we do not possess a reliable process model. Thus we assume a simple linear
model for which the Kalman filter is an appropriate choice. The Kalman Filter algorithm and
some of its tracking applications are presented in sections 3.1.1 and 3.1, respectively. The
Kalman filter has already been used in different variations for multi-sensor fusion ([RDW91],
[LOCBR00], [DMC00], [WCD76]).
The Information filter is another form of the Kalman filter but is more adapted to multi-sensor
fusion problems than the Kalman filter itself. Mutambara derives the Information filter from
the Kalman filter and presents its characteristics in great detail in [Mut98]. Algebraically the
Information filter is identical to the Kalman Filter, but instead of estimating a state directly, it
estimates the amount of information about a state that is contained in a measurement (Fisher
information). According to Mutambara, the main advantages of the Information filter over the
Kalman filter are the following:

• The estimation equations for the Information filter are simpler than those for the Kalman
filter and can be easily partitioned in order to use them for decentralized multi-sensor
data fusion.

• Initialization of the Information filter is very simple as the information estimates (matrix
and state) can be easily set to zero information in the beginning. In practice though, in
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order to make the Information matrix invertible it is initialized with very small non-zero
diagonal elements.

• If the state dimension is smaller than the observation dimension (which is often the case
in multi-sensor systems), then the matrices that have to be inverted in the Information
filter are smaller than the matrices in the Kalman filter.

In [SK08], Durrant-Whyte reveals the simplicity of the update stage of the Information filter as
its main advantage over the Kalman filter: "For a system with n sensors, the fused information
state update is exactly the linear sum of information contributions from all sensors". As a con-
sequence, the Information filter is a highly flexible and robust algorithm that can deal easily
with unavailable sensor measurements. This is a crucial point, as the presented workflow
fuses information coming from two different modalities with very different acquisition rates
(Figure 4.9).
Despite its potential, the Information filter has not found many applications and is not very
well covered in the literature. In [BSLK04] and [May82] the Information filter is briefly pre-
sented. Grocholsky discussed the filter in more detail in the context of multi-sensor multi-
vehicle systems ([Gro02]). Another application of the Information filter presented by Prat in
[Pra10] is the fusion of data of a laser scanner and a camera in the context of object and hazard
detection in driving context.

4.5.2 Information filter

The Information filter is simply a formulation of the Kalman filter that uses information
measurements to represent the states of the system. The implementation of the Information
filter proposed in [MDW93] and [Mut98] was selected. Analogically to the Kalman filter
(section 3.1.1), the following linear process model (without control input) is assumed

x(k) = A(k) x(k −1)+n(k −1) , (4.33)

where x(k) is the process state and A is the transition matrix (relating process state from time
k −1 to k), with a measurement equation

z(k) = H(k) x(k)+m(k) . (4.34)

Measurement z(k) is obtained by multiplying the process state with the observation matrix
H(k). Variables n(k) and m(k) represent process noise and measurement noise, respectively.
Their Gaussian probability distributions are

n(k) ∼ N (0,Q(k)) . (4.35)

m(k) ∼ N (0,R(k)) (4.36)

R(k) and Q(k) are the measurement noise covariance and the process noise covariance matri-
ces, respectively.
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Instead of the state estimate x̂ and the estimate error covariance matrix P , that are the internal
variables of the Kalman filter, the Information filter uses the information state vector ŷ and
the information matrix Y . These variables are related through the following equations:

Y = P−1 (4.37)

ŷ = Y x̂ . (4.38)

The prediction and estimation steps of an Information filter for a system of N sensors can
then be represented as follows (from [Mut98]):

Prediction Step

ŷ(k|k −1) = L(k|k −1) ŷ(k −1|k −1) (4.39)

Y (k|k −1) =
�

A(k) Y −1(k −1|k −1) AT (k)+Q(k)
�−1

(4.40)

with local propagation coefficient L(k|k −1) given by:

L(k|k −1) = Y (k|k −1) A(k) Y −1(k −1|k −1)

Estimation Step

ŷ(k|k) = ŷ(k|k −1)+
N�

j=1
i j (k) (4.41)

Y (k|k) = Y (k|k −1)+
N�

j=1
I j (k) (4.42)

with local information state contribution i j (k) and the associated information
matrix I j (k):

i j (k) = H T
j (k) R−1

j (k) z j (k)

I j (k) = H T
j (k) R−1

j (k) H j (k)

(4.43)

The algorithm is initialized with initial information estimates ŷ(k|k) and Y (k|k) and starts
with the prediction step. One can observe that the estimation of the information state is an
algebraic sum of the information contributions of the different sensors and of the predicted
information state (eq.4.41, eq.4.42). This is why the Information filter is so well adapted to
multi-sensor fusion problems and why it is used in our case.
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4.5.3 Information filter for fusion of tracking data from RGB-D sensor and MR
images

Adapted to our application the state of the process corresponds to the marker pose xPose =
[x, y, z,α,β]T and its derivative :

x(k) =
�

xPose (k)
ẋPose (k)

�

(4.44)

A constant velocity model is chosen as the process model. Thus the transition matrix is given
by:

A =
�

I 5×5 δt · I 5×5

05×5 I 5×5

�

, (4.45)

where δt is the time step between 2 acquisitions of the RGB-D sensor , I 5×5 is a 5×5 identity
matrix and 05×5 is a 5×5 zero matrix.
The marker pose is directly measured in the MR and RGB-D images. Their observation
matrices are therefore equal:

H = H MRI = H RGB−D =
�

I 5×5 05×5

�
(4.46)

In our two sensor case, the sums of the local information states and information matrices
(eq.4.41 and eq.4.42) can be expressed as:

N�

j=1
i j (k) = i MRI (k)+ i RGB−D (k) (4.47)

= H T
MRI (k) R−1

MRI (k) z MRI (k)+H T
RGB−D (k) R−1

RGB−D (k) zRGB−D (k)
N�

j=1
I j (k) = I MRI (k)+ I RGB−D (k) (4.48)

= H T
MRI (k) R−1

MRI (k) H MRI (k)+H T
RGB−D (k) R−1

RGB−D (k) H RGB−D (k)

In case of an unavailable measurement due to a failed detection for example, the correspond-
ing term of the unavailable sensor measurement is simply retracted from these sums.
The impact of the sensors on the Information filter can be controlled by weighting their
measurement noise covariance matrices (R MRI and RRGB−D ). The optimal weights for both
sensors have been determined experimentally.

4.6 System architecture

Communication between the MRI console PC and an external PC is performed in the same
manner as described in section 2.7. Additionally, the connection between RGB-D sensor and
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external PC is performed via an USB cable, that is passed through the waveguide of the MRI
room (Figure 4.6b).
The external PC receives MR images and image information as well as RGB and depth images
from the RGB-D sensor. The detection results from both modalities are fused and used for
tracking of the marker (Figure 4.14).
The communication interface with the RGB-D sensor was included in the existing C++ pro-
gram, using open source libraries such as OpenNI, NITE and PCL (Point Cloud Library).

Image and 
Information!

Orientation !
Position!

MRI console!

External PC!

• Image processing !
 (MRI, RGB, Depth images)!
!
• Fusion of MRI & RGB-D data!

• Image plane calculation !

RGB-D sensor !

RGB and 
Depth 
Images!

Figure 4.14: System architecture of the implemented hybrid workflow: The external PC receives
MR images from the MRI console PC via Ethernet and images from the RGB-D sensor via an
USB connection. Image plane control is performed, based on fused detection results from
both modalities.

4.7 Results

Results for the registration quality between RGB-D sensor and MRI frame are presented.
Furthermore, the maximal tracking speed and the tracking accuracy for the workflow presented
in this chapter are experimentally evaluated.
The workflow is based on marker detection in sagittal oblique and in transversal oblique image
planes, that are acquired alternately with acquisition frequency of 0.83 Hz. The marker is
simultaneously detected on RGB-D images with an acquisition frequency of 30 Hz. The marker
pose is estimated by an Information filter, based on measurements from both modalities. The
MR image planes are aligned to the marker pose that is predicted by the Information filter.

4.7.1 Timing analysis of real-time image plane alignment

The combined use of MR images and measurements from an RGB-D sensor adds new elements
to the timeline presented in section 2.9.1:

• Image acquisition time of the RGB-D sensor (tA)
• Time for image processing of the RGB-D images (tI )
• Time for data fusion of the measurements from MR images and from RGB-D images

and for marker pose prediction (tF )
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A multi-thread implementation has been chosen, allowing to perform RGB-D image reception
and processing in parallel to the MR image reception and processing. The Information filter
algorithm is triggered after the image processing of the RGB-D images and fuses the available
measurements. Thus, compared to the initial workflow, the addition of the RGB-D sensor does
lengthen the overall processing time for calculation of an image plane alignment command
only by the data fusion time (tF ).

The analysis of more than 2000 fusion and prediction steps revealed that the average additional
processing time due to the use of the Information filter is less than 250 µs and thus negligible.
Hence, the image update time for MR images remains the same than for the initial workflow
(1200 ms).

A recapitulatory timeline of the processing and communication times is presented in Figure
4.15.
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Figure 4.15: Timing schematic for image plane alignment. MR image and RGB-D image
acquisitions are performed in parallel. The RGB-D images are acquired and transmitted to
the external PC (tA) and then processed (tI ). The Information filter algorithm is triggered (tF )
after processing of the RGB-D images.

It would be possible to acquire one MR image after another without any delay, as the mea-
surements of the RGB-D sensor allow to control the MR image planes at a higher frequency.
Nevertheless, if no delay is introduced, accounting for an MR image based measurement
would be impossible, during an occlusion between the marker and the RGB-D sensor.

4.7.2 Online registration evaluation

The online registration presented in section 4.4, with the aim of determining the rigid transfor-
mation between the MRI scanner and the RGB-D sensor frames is evaluated. This transforma-
tion is mandatory to translate the RGB-D data in the MRI frame of reference where the tracking
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is performed. Registration quality is assessed with the rmse between a point set acquired in
the MRI frame and the corresponding one in the RGB-D sensor frame back projected to the
MRI frame with the rigid transformation to evaluate.
The registration quality of 14 workflows (mean duration 1.5 min) performed by a user displac-
ing the tracking target in a free-hand-motion was evaluated. During each workflow the rigid
transformation between MRI and RGB-D sensor frames is refined over time due to updates
in the pointlist used for registration. The transformation resulting in the best rmse for each
workflow is determined (Figure 4.16a). Hence, a mean registration error of 7.04 mm is obtained
for the 14 workflows.
A typical evolution of the root mean square error (rmse) during a workflow is presented in
Figure 4.16b. The rigid transformation is updated when an update of the pointlist improves
the rmse. Hence, the rmse improves with every new transformation update.
Note that, the computed rmse characterize the registration quality and not the overall tracking
performance of the system which is evaluated in section 4.7.3. An initial rigid transformation
was typically obtained after approximately 70 s, depending on the performed free-hand-
motion of the user.
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Figure 4.16: Evaluation of rmse of registration. (a): The rmse of the best rigid transformation
is depicted for every workflow (red). The mean registration error (blue) is 7.04 mm. (b):
Typical evolution of the registration error during a workflow with respect to the number of the
transformation update between MRI and RGB-D sensor frames.

4.7.3 Experimental evaluation with testbed

Evaluation of the maximal tracking speed

The maximal tracking speed is determined experimentally in the same manner as in section
2.9.3. Note that the maximal tracking speed for the hybrid workflow is only limited by the
command acknowledge rate of the MRI interface as the marker can always be tracked in the
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RGB-D images. Even if the marker is not depicted in one or several MR images it is either
continually tracked with the RGB-D sensor or can be re-detected easily after an occlusion in the
RGB-D images. Hence, a maximal tracking speed does not exist in the same manner as for the
other workflow versions, where the marker cannot be tracked anymore and a reinitialization
step has to be performed. The maximal tracking speed for the hybrid workflow is thus assumed
to be the speed at which the MRI console PC cannot align the MR image planes to the marker
anymore. The translation curve of the performed oscillatory motion on the testbed is depicted
in Figure 4.17. The achieved maximal tracking speed is 45.3 mm/s which is more than twice
the value of the initial workflow.
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Figure 4.17: Experimental determination of the maximal tracking speed. The oscillatory
motion is performed with increasing speed until the marker cannot be tracked in the MRI
images anymore. The last edge of the motion before the tracking is interrupted is used for
maximal speed computation. Maximal speed in this case is 45.3 mm/s.

Accuracy assessment

In order to evaluate the workflow combining MR image based tracking and tracking based on
the RGB-D sensor, the tracking performance is assessed with the same setup as used for the
initial and the Kalman extended workflow (section 2.8.2).
Registration between the RGB-D sensor and the MRI frame was achieved through an initial
coarse 3D rigid transformation between both frames by comparing RGB-D and MRI position
measurements. The transformation was then adjusted interactively until the image planes are
well aligned to the marker.
The performed motion and tracking are presented in Figure 4.18 for the different position
components of the marker pose. The measured mean speed of the motion is determined
on the translation curve of the testbed and is approximately 15.1 mm/s. No step pattern
or overshoot is observed due to the image acquisition rate of the RGB-D sensor and the
predictions of the Information filter. Also, the curves of the x- and z-coordinate follow the real
trajectory closely. The curve of the y-coordinate reveals a systematic error of about 3.5 mm
due to an inaccurate manual registration between the frame of the RGB-D sensor and the MRI

108



4.7. Results

frame.

0 5 10 15 20 25 3020

30

40

50

60

70

80

time [s]

x         
[mm]         

 

 
Real Trajectory
Tracking w/ 
Information filter

Missing MRI!
measurement!

(a)

0 5 10 15 20 25 30−60

−50

−40

−30

−20

−10

0

y         
[mm]         

time [s]

Missing MRI !
measurement!

(b)

0 5 10 15 20 25 30−150

−100

−50

0

50

100

150

z         
[mm]         

time [s]

Missing MRI!
measurement!

(c)

rmse of tracking

x 0.8 mm
y 3.9 mm
z 4 mm

(d)

Figure 4.18: Experimental results for tracking of a marker motion of approximately 15.1
mm/s. The marker motion is decomposed to every pose component and depicted with the
green curves (a-c). The tracked position values are depicted with the red graphs. One MRI
measurement could not be included in the estimations due to an image artifact and the
resulting non-detection. A systematic registration error along the y-axis can be observed. The
other tracking curves follow the real trajectory closely. The obtained rmse is represented in
(d).

The overall rmse of the position tracking is 5.7 mm which can also be computed separately
for every component: the rmse is 0.77 mm, 3.91 mm and 4.04 mm for the x-, y- and z-
coordinates, respectively. Note that the motion has almost the same speed than the motion
for experimental evaluation of the Kalman extended workflow in section 3.4.3. The rmse is
higher though. This can also be partly explained with the systematic registration error along
the y-axis which can be observed in the rmse for this component. Minor registration errors
along the other axes may also affect the result. A failed detection in the MR image after 10.8 s,
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Chapter 4. Extension of the workflow through an RGB-D sensor

due to an artifact separating the marker in half, also influenced the rmse negatively as the MRI
part lacks for the estimation of the marker pose. Furthermore, the quantization step of the
RGB-D sensor at a distance between 1.3 and 1.5 m (∼ 7 mm) can influence the rmse along the
z-axis.

Another point is the prediction of the marker pose to which the following image plane is
aligned. Currently the prediction of the Information filter is performed for the acquisition of
the next RGB-D sensor image (1/30 s in the future). The MR image plane alignment command
sent to the MRI console PC is thus also based on a prediction for the time of the next RGB-D
sensor image. This results in an MR image plane aligned to a predicted marker pose that has
been made for a time before the MR image acquisition. This slight temporal shift of the image
plane alignment quantifies in a slight spatial shift of the image plane with respect to the actual
marker position. This effect may also contribute to the higher rmse of this workflow version
with respect to the Kalman extended workflow. This has been initially implemented in this
manner as the time limit after which the MRI console PC does not acknowledge a command
anymore is not exactly known (Figure 4.19).

Figure 4.19: Qualitative timeline of the predictions performed by the information filter. Cur-
rently the prediction steps are performed according to the frequency of the RGB-D sensor
and are sent to the MRI console PC. The time between the last accepted command for image
plane alignment and the MR image plane acquisition is denominated ttr 2. The commands
based on the predictions made after the red line and sent to the MRI console PC are not taken
in account anymore (red arrows). The last possible command should thus be based on the
prediction made for the next acquisition time of an MR image plane such as the green arrow
indicates.

Instead, the image plane alignment command should be based on the prediction of the marker
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pose for the time of the next MR image acquisition. For this reason, the transmission and
acknowledge time for the image plane alignment command, denominated ttr 2 in section 2.9.3,
must be experimentally determined. A prediction can then be made for the time of acquisition
of the next MR image plane and the corresponding command can be sent to the MRI console
PC before the acknowledgment limit.

4.8 Conclusion

In this chapter has been presented the use of an RGB-D sensor integrated in an MR image
plane alignment workflow. The RGB-D sensor can be used in an MRI room without any func-
tionality problems and without affecting MR image quality. The few image artifacts linked
to the use of the RGB-D sensor are caused by the USB connection cable passed through the
waveguide of the MRI room but do not interfere with the MR image-based detection of the
marker.
A marker, trackable in both MR images and RGB-D images, is used in order to integrate the
RGB-D sensor in the MR image-based workflow. The extension of the workflow with the RGB-
D sensor allows to decouple the tracked marker motion from the slow image acquisition rate
of the clinical MRI sequence. Much higher motion speeds than with the workflow versions pre-
sented in chapters 2 and 3 can be tracked. Furthermore, the tracking does not reveal any step
pattern or overshoot as could be observed for the previous versions. No reinitialization step
using a dedicated volume image is necessary as the marker can nearly always be re-detected
with the RGB-D sensor.
The registration of the RGB-D sensor with the MRI is performed online in order to avoid an
explicit time-consuming registration step. Moreover, the chosen approach allows to refine the
determined transformation over time.
An Information filter is used in order to fuse synchronous data from both modalities. This
highly flexible algorithm makes the proposed workflow very robust against unavailable mea-
surements.
The presented tracking workflow is thus highly reactive and can be used for research of the
needle insertion point on the patient’s skin combining the advantages of an active and passive
tracking approach for MR image plane alignment. However it is highly sensitive to the quality
of the registration between the MRI and RGB-D sensor frames.
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5 Conclusion

5.1 Conclusions

In this work, a method for automatic image plane alignment in real-time is proposed for inter-
ventional MRI. Advantages of the proposed method are that it requires only little additional
instrumentation, causes little material cost and minimizes the dedicated image acquisition
tracking time.

The developed tracking method is based on a device combining a passive marker and resonant
micro-coils for automatic image plane alignment in real-time. An image-based tracking
algorithm and the software for its implementation with an MRI scanner were developed.
Shortly, the method is based on the successive acquisition of two orthogonal image planes
aligned to the marker axis, based on the marker detection in the previously acquired image.
A simulation program was implemented, allowing to evaluate the tracking performance in
controlled and reproducible conditions. An MRI compatible testbed was used for experimental
evaluation of the workflow. Currently, the proposed method allows to use the marker as an
interventional imaging probe for dynamic alignment of two orthogonal MR image planes. It is
thus possible to search interactively for the needle insertion point on the patient.

Due to the use of two orthogonal 2D MR image planes during tracking, only a partial knowledge
of the marker pose is measured in each individual successive image plane. Given the current
slow MR image acquisition rate, the impossibility to measure the displacement normal to the
image plane strongly limits the performance of the object tracking. In order to improve the
image plane alignment, the presented approach was thus extended with a Kalman filter in
order to benefit from its optimal filtering, estimation and prediction characteristics. For this
purpose, a formalization of the existing workflow was realized in order to include the Kalman
filter in the control loop. As expected, use of the Kalman filter resulted in an improvement of
the tracking performance during simulations and experimental validation. The Kalman filter
performed well during weakly accelerated marker motions. Nevertheless, due to the slow MR
image acquisition rate and the chosen constant velocity model for the marker motion, the
Kalman filter reacts with overshoot when a sudden change in motion occurs. This can result
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in a marker loss during tracking.

The shortcoming of this method, common to all passive approaches, is its slow update rate
and its dependency on the MR imaging sequence. In order to decouple the tracked motion
from the MR image acquisition, an RGB-D sensor was integrated into the proposed tracking
workflow. The sensor was chosen as it is a cost effective and easily implementable solution
for direct measurements of the 3D pose of the marker. Furthermore, the RGB-D sensor can
be used inside the MRI room. An online registration approach was implemented in order
to facilitate a potential integration of the proposed system into the clinical workflow. As a
consequence, no explicit registration step has to be performed before every intervention
and after every position change of the RGB-D sensor. The integration of the RGB-D sensor
to the existing workflow has been realized with an Information filter for data fusion of the
measurements based on MR and RGB-D sensor images. In this manner, both modalities
contribute to the estimation of the marker pose and the corresponding image plane alignment.
Furthermore, due to the high acquisition rate of the RGB-D sensor, tracking robustness is
greatly improved.

It has to be acknowledged that the purely passive image plane alignment workflow lacks of
reactivity for fast and wide marker motions due to the low acquisition rate of the MR images.
When the marker is moved at moderate velocities, this approach could be a practicable
option for tracking. The combination of a passive and active tracking approach for image
plane alignment in interventional MRI overcomes this restrained reactivity and has shown
encouraging results. The flexible fusion of the measurements of both modalities allows thus
to increase the robustness of the image plane alignment by combining the individual strength
of both methods.

5.2 Perspectives

MR image based detection of the marker is still subject to ongoing work. In order to improve
the robustness of the object segmentation and image interpretation, the marker and the
patient’s body can be segmented using an active contour method such as a snake algorithm.
Their parametrization with superellipses is expected to result in a higher robustness and
accuracy of the image segmentation. Tests for the real-time compatibility of such an approach
have to be carried out. Besides, the active contour segmentation is expected to strengthen the
marker segmentation in the initialization volume images, based on the passive marker alone
without the micro-coils.

The timing analyses of the different workflow versions have shown that the communication
times between the PCs cannot be easily estimated and are inconstant, due to the use of no real-
time Ethernet protocol and computer systems. The image plane alignment performance could
be greatly improved if the marker pose could be predicted for the middle of the next image
acquisition period. Hence, the implementation of the developed workflows on the MRI console
PC would allow to avoid transmission times. Eventually, this would lead to an acceleration of
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the image update rate and to a facilitation of the implementation of the workflows. Therefore,
simulations at an hypothetical 2 Hz imaging frequency have been performed and shown
the interest of working with the highest possible MR imaging frequency. In this context, an
optimization of the MR imaging sequence could be considered. A good compromise between
image quality and acquisition time should be found in close collaboration with the physicians.

The proposed system can be used in order to search interactively for the needle insertion point
on the patient’s skin. A marking device must thus be attached to the tracking device. For this
reason, further developments for the optimization of the marker are necessary.

In this work, the passive marker design was chosen so that it corresponds to a simple, already
sterile syringe filled with a contrast agent dilution. Further work on an optimal compact
marker design is required, especially to propose a marker design compatible with its use
for tracking of an interventional needle. Ultimately such needle tracking marker could be
combined with a needle artifact detection algorithm in order to precisely monitor the trajectory
of the MR-compatible flexible needle.
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A Conventions in MRI

A.1 Coordinate systems

The basic coordinate systems in an MRI context are given hereunder. As long as no precision
is made, their coordinates are given in mm.

• a coordinate system linked to the MRI scanner (FM : x , y , z) with its origin at the isocen-
ter of the MRI scanner

• a coordinate system linked to the image plane (FI : r ow ,col ,nor ) with its origin at the
center of the image plane

• a second coordinate system linked to the image plane (FC : u, v ), which is two-dimensional
and has its origin at the upper left corner of the image plane. Its coordinates are repre-
sented in Pixels.

(a) (b)

Figure A.1: Image and Machine coordinate systems used during this work. (a): Coordinate
systems FC and FI , both linked to the image plane are represented. (b): Coordinate system
linked to the MRI scanner FM is represented.
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The image position of an MR image plane defines the x, y , and z coordinates of the center of
the central image voxel. The orientation of an MR image plane is defined through direction
cosines given in the row and column vectors of the FM frame.

A.2 Plane conventions

In MRI, in contrast to CT scan, not only volume projection can be acquired but thin image
planes that are fully orientable in space. The basic orientations of a scan plane are defined as
transversal, sagittal and coronal (see Figure A.2).

(a) (b) (c)

Figure A.2: Representation of the different MRI image planes inside the MRI scanner tunnel.
Orientation of r ow and col vectors (shifted to image corners for clarity) with respect to the
coordinate system linked to the MRI scanner are given for transversal (a), sagittal (b) and
coronal (c) image planes.

Every image plane is described by 3 orthogonal vectors, namely r ow , col and nor . These
vectors describe respectively the row, column and normal direction of an image plane. The
r ow vector is oriented along the horizontal image axis, the col vector is oriented along the
vertical image axis and the nor vector is described by their cross product.
An image plane that is rotated around one of the principal axes of the MRI scanner is called
a simple oblique image plane (see Figure A.3). In this work are mainly used simple oblique
transversal and sagittal image planes. Their orientations are described by the angles al pha
and bet a.
Note, that there are also double oblique image planes which are rotated around two of the
principal axes of the MRI scanner. This type of image plane is not used during this work.
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A.2. Plane conventions

Transversal image plane

A pure transversal image plane is described by the following vectors, represented in the MRI
scanner frame:

r ow =




1
0
0



 col =




0
1
0



 nor = r ow ×col =




0
0
1



 (A.1)

A simple oblique transversal image plane is rotated around the x-axis by an angle β and has
thus the following image plane vectors:

r ow =




1
0
0



 col =




0

cos(β)
si n(β)



 nor = r ow ×col =




0

−si n(β)
cos(β)



 (A.2)

Sagittal image plane

A pure sagittal image plane is described by the following vectors, represented in the MRI
scanner frame:

r ow =




0
1
0



 col =




0
0
−1



 nor = r ow ×col =




−1
0
0



 (A.3)

A simple oblique sagittal image plane is rotated around the z-axis by an angle α and has thus
the following image plane vectors:

r ow =




−si n(α)
cos(α)

0



 col =




0
0
−1



 nor = r ow ×col =




−cos(α)
−si n(α)

0



 (A.4)
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(a) (b)

Figure A.3: Transversal (a) and sagittal (b) oblique image planes depicted with their col and
r ow vectors in the MRI frame.
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B Geometrical camera model

A geometrical camera model as presented in [HM11] is described in this Annex and taken as
reference for this work.
Two transformations are used in order to describe the geometrical model of the camera.
First, a perspective projection of a 3D point onto the image plane of the camera and second, a
transformation from the camera frame to the image frame.
The frame Fc = {x, y, z} is the camera frame with its origin O at the point of aperture of the
camera. The image plane of the camera is placed behind its point of aperture at a distance − f
along the z axis, corresponding to the focal length of the camera (see Fig.B.1a).

B.1 Perspective projection of a 3D point onto the image plane

A point A = (x, y, z)T is projected through the aperture of the camera onto its image plane. The
image plane is parallel to the plane passing through the x and y axes of the camera frame.
The point A� = (x �, y �, z �)T is the projection represented in the camera frame. The coordinates
of the projected point A� are given by the following equations:

x � = −x
z

f

y � = − y
z

f

z � = − f
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Appendix B. Geometrical camera model

Note, that the negative components of A� correspond to an inversion of the observed scene on
the image plane. This transformation can be represented in a matrix P , when homogeneous
coordinates are used for the points (Ã, Ã�). The transformation can thus be written as

Ã� = P Ã




s x �

s y �

s z �

s




=





1 0 0 0
0 1 0 0
0 0 1 0
0 0 − 1

f 0









x
y
z
1





where the Cartesian coordinates of the point A� can be obtained through division of the
homogeneous coordinates by their scale factor s:

A� =





s x �

s
s y �

s
s z �

s





B.2 Transformation from camera to image frame

The image frame Fi = {u, v, w} has its origin in the upper left corner of the image plane. Its
coordinates are given in pixels. The image plane is intersected by the z axis of the camera
frame in the principal point Pp = (u0, v0, w0). In order to convert the coordinates from the
camera frame, given in mm, to coordinates in the image frame, given in pixels, the parameters
ku and kv are introduced. They correspond to the pixel size of the image sensor ([pixels/mm])
for the u and v axes, respectively.
Thus, the transformation from the camera frame to the image frame can be written as:




u
v
w



=




ku 0 0
0 kv 0
0 0 0








1 0 0
0 −1 0
0 0 −1








x �

y �

z �



+




u0

v0

w0



 (B.1)

This transformation represents a rescaling, rotation and translation. As the w component will
always be 0 in the image frame, the third line of this transformation can be discarded. The
combined transformation between the 3D camera frame and the 2D image frame corresponds
thus to:




s u
s v
s



= K





x �

y �

z �

1




(B.2)
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with

K =




ku 0 0 u0

0 −kv 0 v0

0 0 0 1



 (B.3)

B.3 The intrinsic parameters

When the two transformations K and P are multiplied, we obtain the following transformation
matrix:

K P =





ku 0 −u0
f 0

0 −kv − v0
f 0

0 0 − 1
f 0



 (B.4)

By multiplying the obtained transformation with -f (which doesn’t change the transformation
due to the use of homogeneous coordinates), the camera matrix I c is obtained:

I c =




αu 0 u0 0
0 αv v0 0
0 0 1 0



 (B.5)

where αu =−ku f and αv = kv f . I c gives the relationship between the 3D point A and its
projection onto the image plane in image coordinates i A� = (u, v):




s u
s v
s



= I c





x
y
z
s




(B.6)

If camera coordinates such as

xc =
x
z

yc =
y
z

zc = 1 (B.7)

are used, the relationship between these camera coordinates and their image coordinates is
given by the equations

u =αu xc +u0 (B.8)

v =αv yc + v0 (B.9)
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This can be written in matrix form as




u
v
1



=C




xc

yc

1



 (B.10)

with the calibration matrix C , containing the intrinsic parameters of the camera:

C =




αu 0 u0

0 αv v0

0 0 1



 (B.11)

I c can thus be decomposed in a projective transformation and the calibration matrix C

I c =




αu 0 u0

0 αv v0

0 0 1





� �� �
C




1 0 0 0
0 1 0 0
0 0 1 0



 (B.12)

Note that in this model, perfect orthogonality between the u and v axes is assumed and thus
no skew factor is introduced.
If radial distortion of the camera sensor is accounted for, equations B.8 and B.9 have to be
replaced by:

u =αu xc +u0 +K1r 2 (u −u0) (B.13)

v =αv yc + v0 +K1r 2 (v − v0) (B.14)

where r 2 = (u −u0)2 + (v − v0)2 is the squared distance of the point i A� = (u, v) from the
principal point Pp in the image frame.

B.4 The extrinsic parameters

In order to represent an observed point from the surrounding world in the camera frame,
the transformation between the world and the camera frame must be known. This transfor-
mation corresponds to a rotation c R w and a translation c T w , which can be represented in a
homogeneous matrix (see Fig. B.1b).

c M w =
�

c R w
c T w

0 1

�

(B.15)

The represented 3 rotations and 3 translations inside the homogeneous matrix are the extrinsic
parameters of the camera.
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Figure B.1: (a): Geometrical model of the camera with the image frame {u, v, w} and the camera
frame {x, y, z}. The image plane is situated at a distance corresponding to the focal length f
along the z axis, which intersects the image plane in the principal point Pp . The point A is
projected through the aperture of the camera (O) onto the image plane where the projection
lies on the image plane in the point A�.
(b): The spatial relationship between the camera frame and the world frame is described by
the homogeneous matrix c M w .
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C Custom software for image plane
alignment in interventional MRI

During this work, a custom C++ program has been developed in order to perform the de-
veloped workflow on an external PC connected to the MRI console PC. The final program
performs automatic marker detection in MR images and in images from an RGB-D sensor. The
detected marker poses are then fused by an Information filter and an image plane alignment
command is sent to the MRI.
Hence, the realized functionalities of this program are:

• Reception of MR images from the MRI console PC
• Marker detection in the MR images
• Reception of images from the RGB-D sensor
• Marker detection in the RGB-D images
• Calculation of MR image plane alignment commands according to the marker detection
• Sending of the image plane alignment commands to the MRI console PC

These functionalities are implemented in an automatic workflow, that requires no user inter-
action.

The program has been developed in a Linux environment using the following open-source
cross-platform libraries:

• Qt: framework for creation of a graphical user interface
• Visualization Toolkit (VTK): framework for 3D computer graphics, image processing

and visualization
• Insight Segmentation and Registration Toolkit (ITK): framework for image segmentation

and registration
• Open Source Computer Vision Library (OpenCV): library of function for real-time com-

puter vision
• Boost: set of C++ libraries for numerous domains such as multi-threading, linear algebra,

asynchronous input and output operations and more
• Point Cloud Library (PCL): framework for acquisition and 3D geometry processing of
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Appendix C. Custom software for image plane alignment in interventional MRI

n-dimensional point clouds
• OpenNI framework: framework providing support for hand gesture recognition, body

tracking and voice command recognition in combination with RGB-D sensors

C.1 General description

The graphical user interface (GUI) of the developed program (Figure C.1) has been realized
using Qt. The program is executed in a Linux environment on a laptop computer that is
connected to the MRI console PC via Ethernet. The MR images are transmitted to the external
PC with a proprietary Siemens data header. The MR image plane alignment commands are
sent from the external PC to the MRI console PC in an ASCII string, in compliance with a
Siemens protocol.

Figure C.1: GUI screenshot of the developed program with the received MR and RGB-D images
at the left and right, respectively. Image information and communication protocols between
external and MRI console PC are depicted in the middle.

The program was developed and further developed according to the different versions of the
workflow presented throughout this work.

C.2 Version 1: MR image plane alignment based on MR images

The first version allows to automatically detect an MRI marker in MR images, calculate its
3D pose and align an image plane according to the detected marker pose. The received MR
images and the according information (position, orientation, etc.) are represented in different
windows on the GUI. Besides the automatic functionality for image plane alignment, the
developed GUI allows the user to interact directly with the MRI console PC. The user can thus
sent MR image plane alignment commands entered in an input window on the GUI.
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C.2. Version 1: MR image plane alignment based on MR images

The functionalities of the program are distributed in different threads (Figure C.2).

Thread 1: Creation of GUI and management of event-loop

The first thread creates the graphical interface and executes its inherent event-loop. The event-
loop handles user interactions with the program (button clicks, etc.) and communication
between other threads. In the context of the presented program it manages the displaying of
the MR images, MR image data and sent commands on the GUI.

Thread 2: MR image reception

This thread opens a socket connection as server using the boost library and waits for a connec-
tion of the MRI console PC. When an MR image is acquired and reconstructed it is represented
on the GUI of the MRI console PC. Synchronously, the MRI console PC connects as client on
the socket server and transmits the MR image and its (proprietary) data header as byte stream
to the external PC. The byte stream is reassembled on the external PC in order to obtain the
MR image and the data header.
After reconstruction of the image and data they are sent to Thread 1 in order to be displayed
on the GUI. Furthermore, the image is processed by a marker detection algorithm that is
based on functions from the ITK library. If the marker is detected, its 3D pose is reconstructed
based on the MR image orientation and position. For vector and matrix calculations, the
OpenCV library is used. Finally, the ASCII command string based on the detected marker pose
is created and sent to thread 3. The thread returns then to waiting for a connection of the MRI
console PC.

Thread 3: Sending of commands

Thread 3 manages sending of image plane alignment commands to the MRI console PC. When
it receives an ASCII command string from another thread, a socket connection is established
between both PCs and the image plane alignment command is transmitted. Depending on
the format of the command string, the MRI console PC answers with an acknowledgement
message or not. The acknowledgment message indicates if the command has been executed
or refused.

The previously presented threads allow to implement the functionalities of the first version of
the workflow, that performs MR image plane alignment, based on MR images, only. Commu-
nication between the threads is performed using the signal/slots mechanism proposed by Qt.
This mechanism allows to define signals and slots that are linked to objects. During initializa-
tion of the program, the connections between signals and slots of different objects/threads
are established. During program execution, a signal can then be emitted asynchronously,
meaning that the emitting thread continues its work right after emitting its signal without
caring by whom it is received.
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A slot is a normal member function of an object. It is called when a signal that is connected
to it, is emitted. This mechanism is an easy way to transmit data from one thread to another.
Note though, when data of a current thread is accessed from another thread, the concerned
data structures have to be protected from concurrent access using mutexes. A mutex is a
variable that protects two or more threads to access a critical section (e.g. shared data) at the
same time.

Figure C.2: Global architecture of the program developed for MR image plane alignment based
on marker detection in MR images.

C.3 Version 2: MR image plane alignment based on MR images and
Kalman filtering

The second version of the workflow performs image plane alignment according to a prediction
of the marker pose from a Kalman filter.
For implementation of this approach the Kalman functionalities are added to thread 2 of the
first program version. Thus after marker detection, the marker pose is sent as measurement to
a Kalman filter algorithm (OpenCV). The Kalman filter algorithm generates then an estimate
and a prediction of the marker pose. As in the first program version, the command string is
then created and sent to thread 3.
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C.4 Version 3: MR image plane alignment based on MR images and
RGB-D images

The third version of the program performs MR image plane alignment based on marker detec-
tion in the MR images and in images from an RGB-D sensor. The marker pose is determined
based on both modalities and the obtained measurement is then fused by an Information
filter. The Information filter then generates a prediction of the marker to which the MR image
plane is aligned.
Hence, version 1 of the program can be used as baseline and extended through the missing
functionalities (Figure C.3). For this purpose, several new threads are created and presented
in the following. Moreover, threads 1 and 2 of program version 1 have to be adapted.

Adaptation of thread 1

In order to display the RGB and depth images, two windows are added to the GUI.

Adaptation of thread 2

In order to allow for data fusion, an Information filter is implemented in thread 6. In order
to work correctly, the Information filter must receive the measured marker pose from both
modalities. For this purpose, the detected marker pose from the MR images has to be sent to
the Information filter in thread 6.
Thread 2 keeps thus its essential functions with two changes. First, the detected marker pose
has to be sent to the Information filter before thread 2 starts waiting for a new MR image.
Second, the image plane alignment command is no longer sent from thread 2.

Thread 4: Reception of images from RGB-D sensor

The OpenNI framework is used in combination with the PCL for reception of the RGB and
depth images from the RGB-D sensor. The PCL proposes a grabber interface providing access
to different RGB-D sensors and their drivers. Shortly, callback functions of the PCL are con-
nected to the OpenNI framework that is the interface to the RGB-D sensor. In this manner it is
possible to receive different data types from the RGB-D sensor such as RGB images, depth im-
ages or point clouds. In the case of this program, a callback function providing synchronously
acquired RGB and depth images is chosen. Furthermore, an option is set so that the depth
image is directly registered to the RGB image. The received images arrive at 30 frames per
second with a resolution of 640×480 pixels.

Thread 4 receives thus continuously RGB and depth images and saves to shared variables.
When an image couple is received Thread 4 notifies thread 5, the image processing thread, that
there is data to process. When notified thread 5 recovers the data from the shared variables
and starts to work. The shared data is protected through a mutex. Image processing cannot
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directly be executed in thread 4 as the image acquisition frequency is too high and there is not
enough time available between the image reception callbacks.

Thread 5: RGB-D image processing

As previously presented, thread 5 is notified by the RGB-D image reception thread that there is
image data to process. The image data is then loaded from the shared variables to thread 5.
Detection of the marker (pink balls) is then performed in the RGB and depth images using
the OpenCV library. If the marker could be detected its 3D pose is reconstructed using the
depth images. The detected marker pose is then sent to the Information filter, implemented
in thread 6.

Thread 6: Data fusion

The data fusion thread receives the detected marker pose based on MR images (thread 2) and
based on RGB-D images (thread 5). The Information filter algorithm is then executed in order
to generate an estimation and a prediction of the marker pose. Based on the predicted marker
pose, an image plane alignment command is created and sent to thread 3 in order to sent it to
the MRI console PC.
The acquisition frequency of the RGB-D sensor (30 Hz) is much higher than the one of the MRI
scanner (∼0.83 Hz). For this reason thread 6 is executed on every update of the marker pose
detected in the RGB-D images. If an MR image is received at the same time, the Information
filter fuses their data. Otherwise, the estimation of the marker pose is based on a measurement
from an RGB-D image, only.
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Figure C.3: Global architecture of the program developed for MR image plane alignment based
on marker detection in MR and RGB-D images.
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D Résumé en français

D.1 Introduction

En radiologie interventionnelle, des procédures chirurgicales minimalement invasives sont
réalisées sous guidage d’un imageur médical. Ces gestes sont typiquement réalisés par accès
percutané pour des fins diagnostiques ou thérapeutiques incluant des biopsies, infiltrations
et ablations. Les modalités d’imagerie utilisées sont l’ultrason (US), la tomodensitométrie
(TDM) et l’imagerie par résonance magnétique (IRM). L’IRM a de nombreux atouts face
aux autres modalités, notamment le contraste excellent des tissus mous, la haute résolution
spatiale et temporelle des images, l’absence de rayonnement ionisant et le positionnement et
l’orientation libre des plans image.
Néanmoins, les interventions sous guidage IRM restent des interventions complexes et de
longue durée: pendant les interventions 1 à 3 plans d’image successifs sont positionnés
manuellement et sont acquis en permanence pour surveiller la procédure en temps-réel. Le
radiologue est typiquement intéressé par des plans images orthogonaux alignés à l’axe de
l’outil d’intervention, à la cible ou aux structures anatomiques d’intérêt autour. Comme le
radiologue est occupé avec la procédure chirurgicale, il n’a pas de moyens d’adapter les plans
image selon ses besoins. C’est donc un(e) technicien(ne) dans la salle commande de l’IRM
qui aligne manuellement les plans image en temps-réel. Les mouvements de la main du
radiologue et de l’aiguille ne sont pas visibles pour le/la technicien(ne) dû au scanner IRM
et aux autres machines pour la surveillance des fonctions vitales du patient. L’alignement
des images se fait donc par l’intermédiaire d’une communication entre la salle de l’IRM et la
salle de commande. Dû au bruit du scanner pendant les acquisitions, le radiologue ne peut
pas parler avec le/la technicien/technicienne ce qui fait qu’ils communiquent par langue des
signes pour aligner les plans images.
Par conséquence l’alignement des plans images dépends fortement de l’expérience de la/du
technicienne/technicien dans la salle de commande de l’IRM, de la communication entre les
personnes impliquées et de leur performance en tant qu’équipe.
De ce fait les systèmes de suivi et d’alignement automatique sont d’un grand intérêt pour
faciliter interventions chirurgicales mini-invasives sous guidages IRM.
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(a) (b)

Figure D.1: (a) Environnement de l’IRM interventionnel: le radiologue dans la salle d’IRM
et une technicienne dans la salle de commande. (b) Intervention en IRM avec le radiologue
penché dans le tunnel pour avancer l’aiguille dans le corps du patient basé sur les images
montrées sur l’écran. Le radiologue utilise la langue des signes pour communiquer avec la
technicienne dans la salle de commande.

Etat de l’art des systèmes de suivi pour l’alignement automatique des plans images

Les systèmes de suivi peuvent être classés en approches actives et passives. Les systèmes actifs
utilisent du matériel électronique additionnel connecté au scanner IRM ou à un dispositif de
mesure pour le tracking des outils interventionnels. Les systèmes passifs se basent sur le suivi
et la détection des outils directement dans les images IRM.

Les systèmes actifs sont établis sur la mesure de gradients, de pulsations RF ou sur le suivi
par caméra pour la mesure de la pose d’un outil interventionnel. Leurs avantages sont la
précision et l’indépendance aux images acquises. Les inconvénients sont le besoin de matériel
additionnel, souvent couteux et nécessitant une mise en service ainsi que des séquences IRM
spécifiques.

Les systèmes passifs sont établis sur la détection des outils interventionnels dans les im-
ages et avec parfois une méthode d’amplification du contraste. Des exemples types sont
les marqueurs paramagnétiques, les marqueurs remplis d’une substance de contraste et les
micro-bobines. Les avantages des approches passives sont leur simplicité et leurs couts bas.
Les inconvénients sont la nécessité pour l’outil de se situer dans le plan image et souvent la
nécessité d’acquérir des plans image dédiés à la détection.
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Objectifs de la thèse

Dans le contexte des problématiques décrites et de l’état de l’art présenté l’objectif de cette
thèse est le suivant: le développement d’un processus d’alignement automatique en temps-
réel des plans image, fondé sur l’asservissement visuel d’un marqueur dans les images IRM
et permettant de contrôler les plans images depuis l’intérieur du scanner IRM. La méth-
ode développée doit en plus minimiser le temps d’imagerie dédié à la détection et être peu
onéreuse.

D.2 Processus pour l’alignement des plans de coupe en IRM inter-
ventionnelle

Principe

Le premier processus pour l’alignement automatique des plans image est fondé sur une
séquence clinique acquérant en alternance deux plans image orthogonaux. Les plans sagittal
et transversal sont utilisés pour suivre un objet composé de deux micro-bobines et/ou d’un
marqueur passif rempli d’une substance de contraste.

MRI!
3D pose!

3D pose!
Image2n !

Image2n+1 ! Pose2n+1 !

Pose2n!

Figure D.2: Principe du processus d’alignement automatique des plans image: 2 plans or-
thogonaux, transversal (vert) et sagittal (rouge), sont acquis en alternance. La pose 3D du
marqueur est détectée dans les images. En fonction de cette pose la position et l’orientation
du prochain plan image sont calculées et une commande d’alignement est envoyée à l’IRM.

137



Appendix D. Résumé en français

Seule l’initialisation est réalisée avec une acquisition spécifique: il s’agit soit d’une acquisition
d’un volume pour la détection du marqueur passif, soit d’une acquisition à faible angle de
bascule d’un volume pour la détection des micro-bobines. L’asservissement des plans images
cliniques est réalisé directement par la détection du marqueur passif dans les images.

Détection du marqueur

La détection dans les images d’initialisation peut être réalisée avec les micro-bobines dans les
acquisitions de volume à faible angle de bascule ou avec le marqueur passif dans les acquisi-
tions de volume.
La détection des micro-bobines est réalisée avec la méthode POCC ("Phase only cross-
correlation") qui permet de détecter les micro-bobines dans une image de corrélation croisée
entre l’image IRM et une image modèle des micro-bobines.
La détection du marqueur passif dans l’acquisition de volume débute avec la soustraction du
corps du patient après un seuillage. Puis un deuxième seuil déterminé à l’aide de la méthode
d’Otsu est utilisé pour segmenter l’image. La détection du marqueur est décidée avec un
critère de taille.

Pour la détection du marqueur dans les images temps-réel cliniques, un algorithme de seg-
mentation et de classification a été développé. Un double seuillage établi sur les 0.65 et 0.9
quantiles de l’histogramme permet d’éliminer le corps du patient de l’image et de séparer par
la suite le marqueur de la main qui le tient. La classification des objets segmentés est réalisée
avec des critères de taille, intensité et excentricité.

Logiciel de suivi

Ce logiciel permet la réception d’images IRM et leurs trames d’informations sur un PC externe
connecté au PC de commande de l’IRM. Le logiciel réalise la segmentation du marqueur ainsi
que les calculs pour l’alignement du prochain plan image. Une commande correspondante
est alors envoyée au PC de commande qui contrôle les plans image de l’IRM.

Evaluation des performances du suivi

Le processus développé est évalué avec des simulations et expériences.

Un simulateur permettant la simulation d’un marqueur a été développé et peut être connecté
au logiciel de suivi. En fonction de l’intersection du plan souhaité et de la position actuelle du
marqueur, une image IRM artificielle est créée et envoyée au logiciel de suivi.
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Figure D.3: Principe du simulateur. Il simule le fonctionnement du scanner IRM et envoie en
alternance des images sagittales et transversales au logiciel de suivi. Un mouvement 3D du
marqueur est défini et des images de synthèse sont créées en fonction de l’intersection entre
le plan souhaité et la pose du marqueur.

Pour les expériences, un banc d’essai compatible IRM a été assemblé. Il permet de réaliser
manuellement des translations avec le marqueur dont le déplacement est mesuré avec un
capteur optique.

(a) (b)

Figure D.4: (a): Banc d’essai compatible IRM (b): Banc d’essai dans le scanner IRM avec le
marqueur monté.

Résultats

Pour évaluer la vitesse maximale du suivi, le cas extrême d’un mouvement du marqueur à 45◦

entre les plans image a été choisi pour les simulations. La vitesse maximale obtenue est de
19.5 mm/s.

Pour l’évaluation expérimentale, un mouvement oscillatoire de vitesse croissante est généré
manuellement. La dernière portion du mouvement qui peut être suivi dans les images IRM
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détermine la vitesse maximale. Pour le processus présenté, une vitesse maximale de 8.81
mm/s a été obtenue.
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Maximal speed!

Figure D.5: Détermination expérimentale de la vitesse maximale du suivi. Le mouvement est
réalisé avec une vitesse croissante jusqu’à ce que le marqueur ne puisse plus être suivi dans
les images. La dernière portion du mouvement avant l’échec du suivi est utilisé pour le calcul
de la vitesse maximale: 8.81 mm/s en l’occurrence.

Pour évaluer la précision du suivi, un mouvement de 9 mm/s et 2◦/s de vitesse de translation
et de rotation a été simulé. La racine carrée de l’erreur quadratique moyenne obtenue pour la
position est de 5.54 mm.

Pour l’évaluation expérimentale de la précision du suivi un mouvement d’une vitesse moyenne
de 8.81 mm/s est réalisé sur le banc d’essai. L’orientation du marqueur est constante au cours
du temps. L’erreur rmse obtenue pour le suivi est de 7.38 mm.

Conclusion

Un processus de suivi automatique basé sur une séquence IRM a été développé. Seule une
image dédiée est utilisée lors de l’initialisation. Des simulations et expériences ont été réalisées
pour l’évaluation de la précision et la vitesse maximale. Les résultats obtenus montrent des
imprécisions dans le suivi.

D.3 Filtrage de Kalman pour l’alignement des plans image en IRM
interventionnelle

Pour améliorer les performances de suivi du marqueur, un filtre de Kalman est utilisé pour
l’alignement des plans image.
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Figure D.6: Résultats de simulation d’un mouvement de 9 mm/s de vitesse de translation et
2◦/s de vitesse de rotation. Le mouvement simulé est représenté en vert dans les graphes (a-e).
Les composantes de position et d’orientation du mouvement détecté sont représentées en
rouge. Des imprécisions du suivi peuvent être observées pour les composantes x,z, α and
β. Ces composantes ne sont pas détectables sur les deux plans images. La composante y
peut être actualisée sur les deux plans dû à leur faible inclinaison. L’erreur rmse pour les
composantes de la pose du marqueur est représentée en (f).
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Figure D.7: Résultats expérimentaux pour le suivi d’un mouvement de vitesse moyenne de 8.81
mm/s. Comme pour les résultats des simulations, des imprécisions peuvent être observées
pour le suivi. Les deux valeurs déviantes de la composante y sont dues à des erreurs de
segmentation. L’erreur rmse sur la position est présentée dans le tableau (d).

Algorithme du filtre de Kalman

Si on assume un système contrôlé, discret et défini avec l’équation linéaire

x(k) = A(k) x(k −1)+B (k) u(k)+n(k −1) , (D.1)

qui met en relation le vecteur état du système x à l’instant k−1 et k par la matrice de transition
A(k). La matrice B (k) relie une consigne optionnelle et l’état du système.
La matrice de mesure H(k) lie le vecteur état du système et la sortie mesurée z(k):

z(k) = H(k) x(k)+m(k) . (D.2)
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Le bruit du processus et bruit de mesure du système sont représentés par n(k −1) and m(k),
respectivement. On assume qu’ils ont une distribution Gaussienne (N (moyenne, var i ance))
selon

n(k) ∼ N (0,Q(k)) (D.3)

m(k) ∼ N (0,R(k)) , (D.4)

où Q(k) et R(k) représentent les matrices de covariance des bruits de processus et de mesure,
respectivement.
Les variables internes du filtre de Kalman sont le vecteur d’état du système x et la matrice
de covariance de l’erreur d’estimation P . L’algorithme permet de réaliser une estimation
optimale du vecteur d’état, établie sur la prédiction et la sortie mesurée disponible z(k).
L’algorithme consiste en une étape de prédiction et une étape d’estimation:

Prédiction

x̂(k|k −1) = A(k) x̂(k −1|k −1)+B (k) u(k) (D.5)

P (k|k −1) = A(k) P (k −1|k −1) AT (k) +Q(k) (D.6)

Estimation

x̂(k|k) = [I −K (k) H(k)] x̂(k|k −1)+K (k) z(k) (D.7)

P (k|k) = P (k|k −1)−K (k) S(k) K T (k) (D.8)

avec K (k) et S(k) dénommé gain de Kalman et matrice de covariance de
l’innovation, respectivement:

K (k) = P (k|k −1) H T (k) S−1(k)

S(k) = H(k) P (k|k −1) H T (k)+R(k)

Les notations x̂(k|k −1) et x̂(k|k) définissent l’état prédit pour l’instant k, étant connu les
mesures jusqu’à l’instant k −1 et l’état estimé à l’instant k, étant connu les mesures jusqu’à
l’instant k, respectivement. La même notation est utilisée pour l’estimation de la matrice de
covariance de l’erreur.
L’algorithme est initialisé avec les estimations initiales pour x̂(k −1|k −1) et P (k −1|k −1) et
démarre avec l’étape de prédiction.

Alignement des plans image avec filtrage Kalman

Le processus de suivi temps-réel avec filtrage Kalman utilise la même séquence IRM clinique
pour l’acquisition des images. L’alignement des plans image fonctionne différemment du
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processus initial. Au lieu de détecter le marqueur dans une image et aligner le prochain plan
image en fonction de la détection, le filtre Kalman intervient pour l’alignement. La pose 3D
du marqueur détectée dans l’image est introduite comme mesure dans le filtre de Kalman. Le
filtre réalise une estimation et une prédiction de la pose prochaine du marqueur. Le prochain
plan image va être aligné en fonction de la prédiction du filtre de Kalman.

MRI!
3D pose!

3D pose!

Estimation! Prediction!

Image2n!

Image2n+1! Pose2n+1!

Pose2n!

KF!

Figure D.8: Principe du processus d’alignement avec filtrage de Kalman: 2 plans orthogonaux,
transversal (vert) et sagittal (rouge), sont acquis en alternance. La pose 3D du marqueur est
détectée dans les images et introduite dans le filtre de Kalman qui réalise une estimation et une
prédiction de la pose du marqueur. En fonction de la prédiction, la position et l’orientation du
prochain plan image sont calculées et une commande d’alignement est envoyée à l’IRM.

Résultats

Les performances du processus d’alignement avec filtrage de Kalman sont évaluées de la
même façon que pour le processus initial.

Pour évaluer la vitesse maximale pour le suivi, le cas extrême d’un mouvement du marqueur à
45◦ entre les plans image est simulé. La vitesse maximale obtenue est de 21.6 mm/s.
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Figure D.9: Détermination expérimentale de la vitesse maximale du suivi. Le mouvement est
réalisé avec une vitesse croissante jusqu’à ce que le marqueur ne puisse plus être suivi dans
les images. La dernière portion du mouvement avant l’échec du suivi est utilisé pour le calcul
de la vitesse maximale: 21.2 mm/s en l’occurrence.

Pour l’évaluation expérimentale, le mouvement oscillatoire est réalisé sur le banc d’essai par
un utilisateur comme précédemment. Pour le processus avec filtrage Kalman, une vitesse
maximale de 21.24 mm/s a été obtenue.

Pour évaluer la précision du suivi, un mouvement de 9 mm/s et 2◦/s de vitesse de translation
et de rotation a été simulé. La racine carrée de l’erreur quadratique moyenne est de 3.05 mm
pour la position.

Pour l’évaluation expérimentale de la précision du suivi un mouvement d’une vitesse moyenne
de 17.5 mm/s est réalisé sur le banc d’essai. L’orientation du marqueur est constante au cours
du temps. L’erreur rmse obtenue pour le suivi est de 3.7 mm.

Conclusion

Grâce à l’utilisation du filtre de Kalman, les imprécisions du suivi observées pour le processus
initial ont pu être atténuées. De plus la vitesse maximale du suivi est plus de deux fois
supérieure grâce au filtre de Kalman.
Néanmoins dû au modèle à vitesse constante utilisé pour le filtre de Kalman et en raison de la
fréquence d’imagerie très basse (0.83 Hz), des dépassements peuvent être constatés.

Dû à cette limitation, l’ajout d’un capteur à haute fréquence externe au scanner IRM a été
décidé.

D.4 Extension du processus par un capteur RGB-D

Un capteur RGB-D a été choisi pour améliorer le processus de suivi précédemment présenté.
Ce capteur va permettre de mesurer à haute fréquence la pose 3D d’un marqueur dans le
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Figure D.10: Résultats de simulation d’un mouvement de 9 mm/s de vitesse de translation
et 2◦/s de vitesse de rotation pour les processus de suivi sans et avec filtre de Kalman. Le
mouvement simulé est représenté en vert dans les graphes (a-e). Les composantes de position
et d’orientation du mouvement suivi sans (rouge) et avec Kalman (bleu) sont représentées. Les
imprécisions du suivi observées pour le processus de suivi intial peuvent être atténuées avec
le filtre de Kalman. Néanmoins, des dépassements peuvent être constatés pour le suivi avec
le filtre de Kalman dus au modèle à vitesse constante et à la fréquence d’imagerie très basse
(0.83 Hz). La comparaison de l’erreur rmse pour les composantes de la pose du marqueur est
représentée en (f).
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tunnel du scanner IRM.

Capteur RGB-D

Un capteur RGB-D est équipé d’une caméra RGB et d’un capteur de profondeur. La profondeur
est déterminée avec un projecteur infra rouge (IR) projetant un motif qui est détecté en syn-
chrone par une caméra IR dans la scène observée. Basée sur la différence entre motif projeté
et détecté, les valeurs de profondeur de la scène sont déterminées. Le pas de quantification
du capteur de profondeur est de 8 mm à 1.6m de distance, distance maximale de suivi dans le
tunnel du scanner IRM.

Des tests de compatibilité du capteur RGB-D avec un environnement IRM de 1.5 T ont été
réalisés pour vérifier son bon fonctionnement et l’absence de perturbations pour le scanner
IRM. Des artéfacts mineurs ont pu être constaté du à l’utilisation du capteur RGB-D dans
la salle d’IRM. La cause principale des ces artéfacts est l’utilisation d’un câble USB passée à
travers le guide d’onde de la salle d’IRM pour connecter le capteur RGB-D à un PC externe
dans la salle de commande de l’IRM.

Pour la détection du marqueur dans les images du capteur RGB-D, celui-ci est équipé de deux
balles à ses extrémités. La détection du marqueur avec le capteur RGB-D consiste à seuiller
l’image RGB et à y segmenter les balles pour ensuite déterminer leur position 3D grâce à
l’image de profondeur correspondante.

Alignement des plans image hybride utilisant scanner IRM et capteur RGB-D

Le processus de suivi temps-réel hybride utilise la même séquence IRM clinique pour l’acquisition
des images. Le principe est de combiner les mesures de la caméra et les détections dans les im-
ages IRM. Dans une première phase, le suivi du marqueur est réalisé en utilisant uniquement
l’imagerie IRM. Pendant cette étape, la position du marqueur est détectée en synchrone dans
les images IRM et par le capteur RGB-D afin de réaliser le recalage entre les deux modalités.
Par la suite, les mesures des deux modalité sont fusionnées pour repousser les limites de
chacun des dispositifs.
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Figure D.11: Principe du processus d’alignement hybride: 2 plans orthogonaux, transversal
(vert) et sagittal (rouge), sont acquis en alternance. La pose 3D du marqueur est détectée dans
les images IRM et par le capteur RGB-D. La pose détectée par le capteur RGB-D est exprimée
dans le repère de l’IRM. Un filtre d’Information fusionne les poses 3D mesurées et réalise une
prédiction de la pose du marqueur. En fonction de cette prédiction, la position et l’orientation
du prochain plan image sont calculées et une commande d’alignement est envoyée à l’IRM.

Comme la qualité du recalage entre les deux modalités (capteur RGB-D, IRM) dépend forte-
ment des points utilisés, une approche de recalage en ligne a été implémentée. Celle-ci permet
d’actualiser la liste des points utilisés pour le recalage au cours du temps. En fonction des
actualisations de cette liste, la transformation entre les systèmes de coordonnées des deux
modalités est recalculée et améliorée au cours du temps pendant le suivi.

Algorithme du filtre d’Information

Pour décrire l’algorithme du filtre d’Information, le même système contrôlé, discret pour le
filtre de Kalman est supposé:

x(k) = A(k) x(k −1)+B (k) u(k)+n(k −1) , (D.9)

z(k) = H(k) x(k)+m(k) . (D.10)

Le vecteur d’état du système x et la matrice de covariance de l’erreur d’estimation P , vari-
ables internes du filtre de Kalman, sont remplacés pour le filtre d’Information par la matrice
d’information Y et le vecteur d’information ŷ :

Y = P−1 (D.11)

ŷ = Y x̂ . (D.12)

L’algorithme du filtre d’Information consiste comme celui du filtre de Kalman en une étape
d’estimation et une étape de prédiction.
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Prédiction

ŷ(k|k −1) = L(k|k −1) ŷ(k −1|k −1) (D.13)

Y (k|k −1) =
�

A(k) Y −1(k −1|k −1) AT (k)+Q(k)
�−1

(D.14)

avec le coefficient de propagation L(k|k −1) défini par:

L(k|k −1) = Y (k|k −1) A(k) Y −1(k −1|k −1)

Estimation

ŷ(k|k) = ŷ(k|k −1)+
N�

j=1
i j (k) (D.15)

Y (k|k) = Y (k|k −1)+
N�

j=1
I j (k) (D.16)

avec la contribution locale au vecteur d’information i j (k) et la matrice
d’information associée I j (k):

i j (k) = H T
j (k) R−1

j (k) z j (k)

I j (k) = H T
j (k) R−1

j (k) H j (k)

(D.17)

Adaptée à l’utilisation hybride des images IRM et du capteur RGB-D, l’étape d’estimation est
définie par:

N�

j=1
i j (k) = i MRI (k)+ i RGB−D (k) (D.18)

= H T
MRI (k) R−1

MRI (k) z MRI (k)+H T
RGB−D (k) R−1

RGB−D (k) zRGB−D (k)
N�

j=1
I j (k) = I MRI (k)+ I RGB−D (k) (D.19)

= H T
MRI (k) R−1

MRI (k) H MRI (k)+H T
RGB−D (k) R−1

RGB−D (k) H RGB−D (k)

Dans le cas d’une mesure non disponible d’un des 2 capteurs (dû à une erreur de détection,
p.ex.), le terme correspondant est retiré de la somme. L’impact de l’information des 2 capteurs
peut être pondéré par les matrices de covariance du bruit de mesure (R MRI et RRGB−D ).
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Résultats

L’évaluation du recalage est effectué effectué sur 14 séquences de suivi (durée moyenne de
1.5 min) où un utilisateur réalise un mouvement libre. La qualité du recalage est évaluée
avec la racine carré de l’erreur quadratique moyenne (rmse) entre les points acquis dans le
système de coordonnées de l’IRM et les points acquis dans le système de coordonnées du
capteur RGB-D reprojetés dans le système de coordonnées de l’IRM par la transformation à
évaluer. Pour l’approche de recalage en ligne implémentée, l’erreur rmse s’améliore au cours
du temps. Les meilleures erreurs obtenues à la fin de chaque processus ont été comparées.
L’erreur moyenne de recalage est de 7.04 mm.
En moyenne, la première transformation entre les deux systèmes de coordonnées a pu être
obtenue après 70 s, dépendant du mouvement réalisé par l’utilisateur.
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Figure D.12: Evaluation de l’erreur rmse du recalage. (a): L’erreur rmse de la meilleur transfor-
mation trouvée pour chaque processus est représentée (rouge). L’erreur moyenne de recalage
est de 7.04 mm. (b): L’évolution type de l’erreur de recalage pendant un suivi en fonction du
numéro de transformation identifiée successivement entre IRM et capteur RGB-D.

Pour l’évaluation expérimentale de la vitesse maximale du suivi, le mouvement oscillatoire
est réalisé sur le banc d’essai par un utilisateur comme précédemment. Pour le processus
hybride, une vitesse maximale de 45.3 mm/s a été obtenue.

Pour l’évaluation expérimentale de la précision du suivi, un mouvement d’une vitesse moyenne
de 15.1 mm/s est réalisé sur le banc d’essai. L’orientation du marqueur est constante au cours
du temps. L’erreur rmse obtenue pour le suivi est de 5.7 mm.
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Conclusion

L’utilisation hybride du capteur RGB-D et des images IRM permet de découpler la fréquence
du suivi de la fréquence d’imagerie de la séquence clinique IRM. Or, la vitesse maximale du
suivi est plus que 2 fois plus élevée que pour les processus de suivi précédents.

D.5 Conclusion

Conclusions

Dans cette thèse est présentée une approche pour l’alignement automatique des plans image
IRM en temps-réel, basée sur la détection d’un marqueur dans les images IRM. Les avantages
de cette méthode sont que:

• le temps d’imagerie dédiée à la détection est minimisé, s
• peu d’instrumentation additionnelle est nécessaire et ainsi le cout de matériel est

minimisé.

L’approche développée est fondée sur un dispositif consistant en un marqueur passif et des
micro-bobines. Un algorithme de suivi établi sur les images IRM a été proposé et implémenté
dans une interface logicielle. La méthode consiste en l’acquisition successive de deux plans
image orthogonaux. Chacun des plans est aligné à l’axe du marqueur grâce à la détection de
celui-ci dans l’image précédente.
Un logiciel de simulation a été développé permettant d’évaluer les performances du suivi dans
des conditions contrôlées et reproductibles. De plus un banc d’essai compatible IRM a été
utilisé pour la validation expérimentale des performances du suivi.
Actuellement, cette approche permet d’utiliser le marqueur en tant que sonde intervention-
nelle pour la recherche du point d’insertion de l’aiguille, par exemple.

Dû aux imprécisions observées pendant le suivi, l’approche initiale a été étendue par un
filtre de Kalman. Comme attendu, l’utilisation du filtre de Kalman a permis d’améliorer les
performances du suivi au niveau de la vitesse et de la précision. Le filtre de Kalman permet
d’améliorer le suivi pour les mouvements subissant des accélérations faibles. Pour de fortes
accélérations, l’amélioration des performances due au filtre de Kalman disparaît, à cause
de l’utilisation d’un modèle à vitesse constante et à la basse fréquence d’acquisition de la
séquence IRM utilisée.

La basse fréquence d’acquisition et la dépendance de la vitesse du suivi à la séquence
d’imagerie IRM utilisée sont des inconvénients communs des méthodes passives. Afin de
découpler la vitesse du suivi de la fréquence d’imagerie IRM, un capteur RGB-D a été intégré
au processus de suivi passif. Le capteur RGB-D permet de mesurer la pose 3D d’un objet
directement et s’est révélé compatible avec l’environnement IRM. Une méthode de recalage
en ligne a été implémentée permettant d’intégrer ce processus hybride facilement dans la
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routine clinique. L’intégration du capteur RGB-D dans le processus de suivi passif est réalisé
avec un filtre d’information fusionnant les mesures du capteur RGB-D et celles issues des
images IRM. Ainsi, les deux modalités contribuent à l’estimation de la pose du marqueur
et à l’alignement des plans image. De plus, la robustesse du suivi est améliorée de manière
significative grâce à la haute fréquence d’acquisition du capteur RGB-D.

En général, on peut conclure que l’approche purement passive manque de réactivité face à
des mouvements rapides et de grande amplitude. Néanmoins, cette approche est praticable
pour le suivi de mouvements modérés.
La combinaison de l’approche passive avec une approche active s’affranchit de cette réactivité
restreinte et a montré des résultats prometteurs. Ainsi la robustesse du suivi est nettement
améliorée grâce à la combinaison des points forts de chaque modalité.

Perspectives

Afin d’améliorer la robustesse des algorithmes de segmentation et de classification, le mar-
queur ainsi que le corps du patient pourraient être segmentés en utilisant des méthodes de
contours actifs (p.ex. un algorithme snake). Une plus grande robustesse de la segmentation
des images devrait également résulter d’une paramétrisation des objets segmentés avec des
superellipses. Des tests pour la compatibilité temps-réel de telles approches doivent être
réalisés. De plus, l’utilisation de contours actifs est censée améliorer la segmentation du
marqueur sans micro-bobines dans les images d’initialisation.

Les analyses temporelles des différentes versions du processus ont montré que les temps
de communication entre les divers ordinateurs sont difficile à évaluer et sont variables dû
à l’utilisation du protocole Ethernet. L’alignement des plans image pourrait être amélioré
si la pose du marqueur est prédite pour l’instant d’acquisition de la prochaine image. Or,
l’implémentation du processus directement sur la console à architecture PC de l’IRM per-
mettrait donc une accélération du temps de rafraichissement des images et une facilitation
de l’implémentation. Des simulations ont permis de montrer l’intérêt de travailler avec
la fréquence d’imagerie la plus haute possible. Dans ce contexte, une optimisation de la
séquence IRM est envisageable en trouvant un compromis cliniquement praticable entre
qualité et temps d’acquisition des images IRM.

L’utilisation d’un câble USB passé à travers le guide d’onde de la salle d’IRM affecte la qualité
des images IRM. Pour cette raison l’utilisation d’une pair de transducteurs permettant de
transmettre les données RGB-D par fibre optique est à investiguer.

Dans ce travail, une seringue stérile remplie d’un produit de contraste et prêt-à-utiliser dans
un environnement chirurgical a été choisie. Un but est de concevoir un marqueur compacte
et compatible avec l’utilisation d’une aiguille. Finalement, le processus de suivi développé
pourrait être combiné avec un algorithme de détection d’aiguille afin de suivre précisément
l’avancement de l’aiguille compatible IRM.
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