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Introduction 

Constant development of materials science and engineering in service of 

nanotechnology has marked the beginning of 21st century. Nanotechnology enables producing 

materials with nanometer scale with advantage of being smaller, lighter, and cheaper, with 

superior physicochemical and mechanical properties than their bulk equivalents. Nowadays, 

there are many techniques of nano-fiber fabrication, like drawing, template synthesis, phase 

separation, or electrospinning. Among them, electrospinning was evidenced as the most 

promising method in terms of cost, simplicity and versatility of the process. Electrospun 

nonwoven scaffolds, with a porous structure and a high surface-to-volume ratio, extraordinary 

resemble to the connective cell tissue (extracellular matrix). Nano-fibrous structure of 

electrospun scaffolds mimics the size scale of the fibrous proteins (fibrils) found in the 

extracellular matrix. Moreover, 3D nature of the nonwoven structure could allow cells to 

infiltrate the matrix and proliferate, making these scaffolds ideal for tissue engineering 

applications. Superior mechanical properties compared to the bulk, high surface-to-volume 

ratio, and high inter-connected porosity have made electrospun nano-fibers equally present in 

drug delivery, as filtration membranes, batteries and fuel cells, hi-tech clothes, and in many 

other areas of academic and industrial research. Electrospinning process is also wide-spread in 

industry all over the world under the names of: Electrospunra, Singapore; eSpin, USA; NaBond, 

Hong Kong; NanoSpun Technologies, Israel; Cella Energy, United Kingdom; etc. 

If one considers applying electrospun fibers in medicine, high criteria concerning 

biocompatibility and biodegradation are imposed. Passive biocompatibility and “do-no-harm” 

requirements previously considered as acceptable are no longer in option. Nowadays, advanced 

materials with bioactive and biomimetic properties are required. However often, one material 

cannot meet all the expected specificities, and one should turn toward optimal 
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modification methods. One of such methods is a chemical functionalization through click 

chemistry coupling. Ever since it has been discovered, copper-catalyzed azide-alkyne 

cycloaddition (CuAAC), popularly called click chemistry, holds an important place in the 

chemistry synthesis. Click chemistry could be performed at ambient temperatures, in both 

aqueous and organic solvents, as well as in homogeneous and heterogeneous phase. Click 

chemistry is a high yielding synthesis method and without side products, which makes it 

attractive candidate for chemical functionalization.  

The research project, presented in this manuscript, is directed toward processing of 

functionalized fibrous materials from commercially available biopolymers by the technique of 

electrospinning, and involving click chemistry as a functionalization method. We made use of 

poly(e-caprolactone) (PCL), a synthetic polyester, because of its favorable mechanical 

properties, biocompatible and biodegradable morphology, it is easy to manipulate with in the 

electrospinning process and it is commercially available. We were particularly interested in 

processing and optimization of PCL-based ultra-fine fibers for tissue engineering. The aim was 

to make one-type electrospun PCL nano-fibers available for many areas of interest through click 

chemistry and its ability of introducing any desired functionality.  

The work accomplished in the course of the PhD thesis has been carried out in 

collaboration between Laboratoire Rhéologie et Procédés and Centre de Recherches sur les 

Macromolécules Végétales (CERMAV). Gathered knowledge of fluid rheology and processing 

on one hand, and natural organic chemistry on the other, was molded over three-year research 

study into functionalized PCL fibers for applications targeting tissue engineering. Additional 

experience of small angle neutron scattering technique on electrospun polystyrene (PS) fibers 

was generously afforded by Laboratoire Léon Brillouin, CEA Saclay. This technique provided 

us with better understanding of fiber processing phenomena during the electrospinning by 
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observing and analyzing polymer chain conformation and thermal relaxation in the electrospun 

fibers.  

This manuscript begins with the bibliographic study of up-to-date research dealing with 

the electrospinning technique, its possibilities, and practice in drawing polymeric structures into 

fibrous nonwovens aiming for tissue engineering applications. Bibliography continues with 

SANS technique as a tool for structural investigation of polymeric materials. In the end, the 

latest developments in the area of biomaterials with accentuation on synthetic polymers and 

their use in medicine and tissue engineering are exposed. 

Chapter two gives a closer view on the electrospinning process through the model of 

polystyrene fibers using SANS technique. Polymer chain conformation and relaxation 

dynamics after annealing are discussed. 

Chapter three is dealing with processing and functionalization of PCL-based fibers, and 

their characterization. Two techniques of PCL fiber functionalization were adopted and some 

others suggested for further investigations. Consequently, physicochemical properties of final 

products are studied. 

The results exposed are assembled and a critical overview, with the future possibilities 

continuing the research, is offered in the “General Conclusions and Perspectives” fourth 

chapter.  

The closing fifth chapter, “Materials and Methods”, is detailing the compounds used, 

various syntheses and characterization techniques performed. It highlights the electrospinning 

process – from solution preparation to optimal processing conditions.
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Chapter I – Bibliography 

1 Nano-Fiber Formation Techniques 

Materials made of nano-fibers have attracted a considerable attention because of their 

lightness, great specific surface and highly porous morphology. Today, one could find nano-

fibrous scaffolds being used in drug delivery, tissue engineering, for medical bandages and 

sutures, in batteries and fuel cells, as filters, nano-sensors, protective clothes, etc., as illustrated 

in Scheme I.1. 

 

Scheme I.1. Application possibilities of nano-fibrous scaffolds 

Several fiber-processing techniques emerged from a tremendous need for nano-fibrous 

structures, particularly in the field of nanotechnology and tissue engineering. The most 

important ones are: 
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· Drawing, 

· Template synthesis, 

· Temperature-induced phase separation, 

· Self-assembly, 

· Electrospinning. 

A brief description of each processing technique, with a particular focus on 

electrospinning process, is presented in the following sections. 

1.1. Fiber Drawing Technique 

Early descriptions of a drawing technique were presented by Taylor 1920 where fiber 

wires were produced.1 From a polymer molded into a cylinder preform, having 30 cm length 

and 40 mm diameter, about 1 km long fibers with a 0.5 mm diameter can be drawn in an oven 

while heated above the polymer melting temperature (Scheme I.2). Under the pulling force of 

a circumference drum, one continuous solid fiber is collected at a time. This technique offers a 

possibility of drawing very long micron fibers, and it is intensively employed for drawing 

optical fibers. The possible limitations of this technique would be the possibility of drawing 

only thermoplastic polymers with micron-sized or thicker fiber diameters.  

 

Scheme I.2. Schematic representation of the fiber’s drawing technique: 1) initial heating, 2) necking 

and 3) drawing  
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Ondarçuhu and Joachim2 described a nano-fiber drawing technique from a micro-

droplet or a micro-pipette of a polymer solution in a continuous manner over precisely defined 

period of time. Each fiber is pulled at the threshold of solidification. When they used long 

polymer chains entangled in the solution, fibers with micron diameters could be obtained. When 

shorter unentangled molecules are used, sub-micron fibers are collected. Even though 

generating nano-sized fibers, this process is strongly limited by the size of the droplet as well 

as by the time of solvent evaporation.  

1.2. Template Synthesis 

Template synthesis is a method for preparing nanostructures (nanotubes or nanowires) 

by directly synthesizing a desired material within the pores of a porous template-membrane.3 

Common membranes, used for template synthesis, include anodic aluminium oxide and 

mesoporous silica. Depending of the type of the membrane, pores could be inter-connected or 

isolated. When anodic alumina membranes are used, solid material is formed inside the isolated 

pores.4,5 In the case of mesoporous silica template, nanowires or nanotubes are inter-connected 

by the porous silica wall. Sol-gel chemistry,6,7 electrochemistry8 or in-situ polymerization9 

methods could be used for depositing a material inside the pores of such membranes. Finally, 

nano-fibrils or nano-tubules are formed within each pore of a membrane.  

Porter et al.10 adopted a solvent-free nano-templating method to fabricate poly(e-

caprolactone) nanowires in alumina membranes for bone tissue engineering. The idea of using 

the solvent-free templating is to avoid the toxic organic solvents for medical purposes. In 

Scheme I.3 is illustrated the nano-wire templating process: sintered PCL puck is placed on 

nanoporous alumina membrane (Scheme I.3A). At moderately elevated temperatures PCL 

nanowires are gravimetrically extruded (Scheme I.3B, C). The alumina membrane is then 

dissolved in NaOH (Scheme I.3D) leaving a nanowire surface (Scheme I.3E).  
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Scheme I.3. Schematic representation of PCL nanowire fabrication: sintered PCL placed on 

nanoporous alumina membrane (A), gravimetric extrusion of PCL nanowires (B, C), alumina 

membrane dissolution in NaOH (D) PCL nanowire (E)10 

Template synthesis generates aligned fibers with well-defined fiber’s size and inter-

fibrous distance. However, this technique strongly depends on the size of the template adopted. 

Nevertheless, by carefully choosing the template and polymer for molding, various materials’ 

architectures could be easily attained, serving as a sensitive gravimetric apparatus for detecting 

ammonia gas11 or as biodegradable extracellular matrices12. 

1.3. Phase Separation Technique 

In thermally-induced phase separation process, a polymer solution is heated in a 

controlled way to induce a phase separation into two phases: a polymer-rich phase and a 

polymer-lean phase.13 After the solvent removal (extraction, evaporation or sublimation), a 

polymer-rich phase solidifies and forms a polymer foam. By varying the polymer solution 

properties as well as phase-separation temperature, one could achieve different pore 

morphologies and fiber-like structures.14,15 

To produce porous matrices, Asefnejad et al.16 used poly(e-caprolactone)-based 

polyurethanes (PU) in dioxane/water solution with a sodium chloride (NaCl) salt for pore 

creation in phase separation method. Three different types of polyurethanes were prepared by 

varying the ratio of PCL and 1,4-butanediol/hexamethylenediisocianate/1,4-butanediol 

copolymer. The pore size of the scaffolds was successfully tuned by using different size of salt 

particulates. Figure I.1 represents the porous scaffolds they obtained from different 

polyurethanes (A-C) and after 7 days cell culture of human fibroblasts. It could be noticed that 
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one could vary the pore size of the scaffold by varying the size of the NaCl particulates (from 

50 to 355 µm) present in the polymer bulk. However, for higher porosity, mechanical properties 

had to be sacrificed, and PUA3 (Figure I.1C), showing the highest compressive strength and 

modulus, had the lowest porosity.16 

 

Figure I.1. SEM images of polyurethane scaffolds prepared by phase-separation method: (A) PUA1, 

(B) PUA2, (C) PUA3 and (D) human fibroblasts on polyurethane scaffold after 7 days culture on 

PUA316 

This method is advantageous because it does not require specific equipment and can be 

molded into various shapes with the convenience of possible adjustment of pore size of the 

scaffold. However, phase separation could be prepared with only a limited number of 

polymers.17  

1.4. Molecular Self-Assembly Technique 

Self-assembly is a spontaneous process by which molecules and nano-sized entities 

materialize into well-organized fibrous networks and aggregates.18–20 The self-assembly 

arrangements are obtained through a number of various non-covalent interactions, such as 

hydrogen bonds, van der Waals, electrostatic or hydrophobic interactions.  
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Structure of collagen fibers is a good example of naturally occurring self-assembly 

process. Procollagen fibrils are secreted by cells and converted into collagen by peptide 

cleavage (Scheme I.4). Collagen molecules are then self-assembled to collagen fibrils which 

are further ordered in parallel fashion into collagen fibers with diameter ranging from 50 to 500 

nm.21 

 

Scheme I.4. Schematic representation of fibrillar collagen synthesis21 

Shibata et al.22 prepared fiber-reinforced plastic from a mixture of castor-oil-modified 

poly(e-caprolactone) resin (CO-PCL) and hydroxystearic acid (HSA) able to form self-

assembled supramolecular fibrous networks. CO-PCL was obtained from the ring-opening 

polymerization of e-caprolactone in the presence of castor oil. CO-PCL/HSA samples were 

prepared by blending and molding of CO-PCL and HSA and different samples were prepared 

by varying the annealing time. In order to obtain the formation of supramolecular HSA 
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aggregates and fine fibrous structures, repeated annealing of a HSA/CO-PCL composite took 

place.  

Vauthey et al.23 prepared a dense fibrous network using surfactant-like peptides. Four 

different amphiphilic peptides were obtained by varying the size of hydrophilic head (1 or 2 

aspartic acid molecules) and the type of hydrophobic amino acid (alanine, valine or leucine). 

These peptides were able to self-assemble in water forming nanotubes and nano-vesicles that 

are further organized into a dense network as represented in Figure I.2. 

 

Figure I.2. Quick-squeeze/deep-etch TEM image showing a 3D network structure of four different 

surfactant peptides (A-D) self-assembled in water23 

Using self-assembly method, one could obtain rather thin fibers (tens of nanometers), 

from a large variety of molecules: synthetic polymers as well as natural oligo- and poly-

peptides, etc. While fibrous structure could be easily obtained, fiber orientation cannot be 

controlled and random fibrous network is usually created. 
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1.5. Electrospinning Technique 

Electrospinning is a processing technique for fabrication nano-fibrous nonwoven mats 

under high electric field. Variety of chemical structures that can be used and simplicity of the 

setup has made this technique quite popular and easily adopted in nanotechnology and fiber 

processing. Even though mainly used for research studies, this technique has already found 

many useful applications in industry as well. Some of the examples are Donaldson Company 

and Freudenberg which are using electrospun fibers in filtration products, or Cella Energy 

where electrospun fibers serve as low-cost hydrogen storage. 

Electrospinning process uses a high voltage power supply, applied to a polymer solution 

or a melt, to produce dry polymeric micro- and nano-sized fibers, collected on a metallic 

collector (Scheme I.5). Electrospinning process has a simple setup, it is rather easy to 

manipulate with, and it makes high-porosity scaffolds with interconnected pores. Compared to 

mechanical drawing, electrospinning produces fibers of thinner diameters via contactless 

procedure; it is less complex than self-assembly and can be used for a wide range of materials 

unlike phase separation.  

First electrospinning-related patent was deposited by John Francis Cooley about 

“apparatus for electrically dispersing fluids”.24,25 Later followed several patents from Anton 

Formhals about ”electrically spun artificial fibers”.26–28 It is only after these patents that, in 

1969, a specific behavior of a water drop under electric field was described by sir G. Taylor.29 

The first use of this phenomenon on polymer solutions under the name of electrospinning was 

published 1995 by J. Doshi and D. Reneker,30,31 and ever since the term of electrospinning 

appeared until now, the interest in this topic has been only expanding. 
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Scheme I.5. Illustration of electrospinning process – from a viscous polymer solution or a melt to solid 

nano-fibers 

The word electrospinning is suggesting a processing behavior of spinning motions under 

electric field applied (from electro and spinning), but what exactly electrospinning process is? 

Once a high voltage is applied to a polymer solution or a melt in flow, a pendant drop, formed 

at the needle tip, will undergo two electrostatic forces: electrostatic repulsion between the 

surface charges and Columbic force exerted by the external electric field. Under sufficiently 

high electric field, electrostatic forces in the charged drop will overcome the surface tension, 

and a Taylor cone will be formed at the nozzle, ejecting a liquid jet.29,32 The flying jet will then 

undergo bending instability and whipping (spinning-like) motions followed by strong 

elongation and thinning. At the end, under electric (for polymer solutions) and temperature 

gradient (for polymer melts), flying jet will deposit dry polymeric fibers onto the collector. 

During the electrospinning process, three stages take place one after another (Scheme I.6): 

1. Stability zone is formed near the tip of the spinneret; the jet is stable, linear and follows 

the direction of electric field. 
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2. It soon enters the bending instability zone where jet undergoes whipping motions in the 

direction perpendicular to the electric-field gradient and further stretching.  

3. When tip-to-collector distance is sufficiently great, the jet goes into the last stage, 

secondary bending instability zone, formed in the axis of the jet trajectory. In this zone, 

the jet suffers further stretching and thinning before it ends onto the collector surface.  

 

Scheme I.6. Illustration of a flying jet with divided zones of fiber formation: (1) stability zone, (2) first 

bending instability and (3) second bending instability zone 

During the jet flight, solvent evaporates forming a thin film at the surface of the jet. This 

thin film will further control the evaporation kinetics being a barrier for the solvent, and leaving 

it entrapped inside the fibers. The presence of the solvent residue might lead to the formation 

of pores and voids inside and at the surface of the fibers. It is also considered responsible for 

various shapes of final electrospun fibers – ribbons, tubes, cylinders, etc.33 

In fact, there are many parameters influencing the electrospinning process and 

consequently fiber morphology. Next section gives a detailed description of the processing and 

solution parameters for electrospinning as well as progressive setup development seeking for 

an increase of the production rate, fiber’s morphology upgrade, and promotion of mechanical 

and physicochemical properties. 
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2.5.1 Electrospinning Parameters 

Electrospinning process has become popular because of its simple setup. However, fiber 

formation during the electrospinning process is accompanied with complex physicochemical 

behavior influenced by both processing and solution parameters.  

1.5.1.1 Solution Properties 

Properties of the electrospinning solution have the most significant influence on the 

process itself and on the final fiber morphology. Solution parameters are: 

a) Polymer molecular weight and solution viscosity 

Molecular weight of the polymer is one of the main factors affecting the solution 

viscosity. According to Mark-Houwink-Sakurada equation, , where  and  are 

constants for a polymer in a given solution, an increase of molecular weight  causes the 

viscosity  of the solution to increase.34 Electrospinning process of continuous fiber formation 

entails viscous polymeric solutions for which polymer chains overlap and entangle, requiring 

well defined polymer chain length and concentration in a given solvent.  

Scheme I.7 illustrates three concentration regimes for flexible polymeric chains and 

electrospun fibers obtained therefrom. In the dilute regime ( ) (Scheme I.7A), single 

polymer chains are isolated. Critical concentration ( ), marking the boundary between the 

dilute and semi-dilute regime, has been described by de Gennes35,36 as the overlap concentration 

for which steric interactions between polymer coils start to arise in the solution. A semi-dilute 

polymer solution placed under high electric field, due to absence of cohesion between polymer 

chains, will produce a discontinuous jet of droplets, called electrospray. By increasing the 

concentration, polymer chains will start approaching each other, slightly merging but not 

enough to entangle (semi-dilute, unentangled, ). Critical entanglement 



} Bibliography 

34 
 

concentration ( ) is the cross-over concentration from the semi-dilute unentangled and semi-

dilute entangled regime. Electrospinning in the semi-dilute, unentangled regime results in bead-

on-a-string formation – very fine nano fibers with micron-sized beads. Further increase in the 

polymer concentration (semi-dilute, entangled, ), leads to chain entanglement and a 

single continuous fiber could be formed.37 It is determined that the concentration of 1-2 times 

 (≥ 2.5 entanglements per chain) is needed to maintain the continuity of the jet during 

electrospinning.38–40 However, too high polymer concentration in the solution results in a very 

viscous fluid, too difficult to be pumped through the needle. These highly viscous solutions 

may result in fast solvent evaporation and polymer drying at the needle tip. Consequently, a 

needle clogging will occur, hindering the electrospinning process.  

 

Scheme I.7. Illustration of polymer chains inside the solution from dilute ( ) over semi-dilute 

unentangled ( ) to semi-dilute entangled ( ) regime and corresponding collected 

structures after electrospinning 

The macromolecular chain length will directly influence the concentration where chain 

entanglements occur, and consequently, fiber formation and its diameter. High concentration 
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of the polymer solution could also discourage the bending instability. As a result, the jet path is 

reduced and the bending instability spreads over smaller area; polymer stretching is less 

pronounced and the collected fibers have large final diameters. 

b) Surface tension 

During the electrospinning process, under the influence of high voltage, a droplet of 

polymer solution at the needle tip will take a conical form, known as a Taylor cone. Surface 

tension of the solution will tend to decrease the surface area per unit mass of a fluid and make 

a spherical droplet, while high voltage will try to elongate the droplet in the direction of the 

electric field. When the high voltage surpasses the threshold value, and electrical forces 

overcome the surface tension, a liquid jet will be formed. Scheme I.8 illustrates the influence 

of high voltage increase on droplet morphology and solution’s surface tension. 

 

Scheme I.8. Illustration of liquid jet formation under sufficiently high voltage – when high voltage 

force overcomes the surface tension – from drop deformation to Taylor-cone formation  

Surface tension is believed to be one of factors causing the formation of beads on the 

electrospun fibers due to Rayleigh-Taylor instability.41 This phenomenon is observed in the 

case when adequate solution viscosity is used for electrospinning uniform fibers, but 

insufficient electric field is exerted onto the solution to overcome the surface tension leading to 

bead-on-string fiber formation.  
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In order to decrease the surface tension, low surface-tension solvents can be used, such 

as ethanol, or a surfactant may be added to the electrospinning solution.42 Jia and Qin 

investigated several surfactants on poly(vinyl alcohol) (PVA)/water electrospinning solution 

and observed significant decrease of surface tension even with surfactant contents as small as 

1%.43 The presence of surfactant increased the solution conductivity as well as polymer 

crystallinity inside the electrospun fibers, while remarkably decreasing fiber diameter from 400 

to 100 nm. 

c) Dielectric constant of the solvent 

Dielectric constant of the solvent has an important influence on electrospinning and 

fiber morphology. High dielectric constant of a solvent (such as DMF, acetic acid, etc.), used 

in electrospinning, may reduce the bead formation. Small amounts of the solvent with a high 

dielectric constant, could improve the electrospinnability of the solution and result in uniform 

fibers without beads.44 

Guarino et al.45 intensively studied the influence of solvent permittivity and dielectric 

constant on fiber formation (beaded or uniform fibers) in the case of poly(e-caprolactone) 

(PCL) (Scheme I.9). 
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Scheme I.9. Schematic representation of bead-free and beaded fibers, alluding to the importance of 

the solution properties in electrospinning PCL45 

The objective of their study was to identify the solvent properties affecting the most: 

fiber morphology, physical properties and biological response. Different polymer/solvent 

systems tested indicate the importance of solvent permittivity in the polymer chain folding 

during the fiber formation, thus affecting the fiber crystallinity, and consequently the bead 

formation.45 They observed that polar solvents with high permittivity (highly fluorinated 

alcohols: TFE, HFP) were promoting the formation of sub-micron sized fibers while non-polar 

solvents yielded micron-sized fibers. PCL nano-fibers had higher degree of crystallinity and 

were more readily available for cell adhesion and viability then micron-sized PCL fibers. 

d) Conductivity of a polymer/solvent system 

Solution conductivity is ability of a fluid to pass the electric current, and as such, it is 

an important parameter in the electrospinning process. 

Pattamaprom et al.46,47 tested several solvents (DMF. 1,4-dioxane and chloroform) for 

electrospinning of polystyrene in order to determine the fiber production rate in the terms of 

electrospinnability of the system. They observed that the conductivity of a chosen solvent 

strongly influences the final fiber production. Highly electrospinnable solvents were those with 

reasonably high values of conductivity and dipole moment. In the case of polystyrene, DMF 

was found to be promoting high dipole moment and spinnability of the solution.46 

Higher solution conductivity could be accomplished by small addition of a salt (or 

polyelectrolyte) to the electrospinning solution. Increased charges in the solution would 

increase the bending instability, favoring the thinner fiber formation.48 Zong et al.49 showed 

that the solution conductivity is inversely related to the fiber diameter – higher solution 
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conductivity results in a smaller fiber diameter. By adding a small amount of ionic salt to 

polylactide solutions they observed significant decrease of fiber diameter while drastically 

changing their structure – from bead-on-string to fine and uniform bead-free fibers. 

However, the difficulty in using salts is that their crystals could be found entrapped 

inside or at the surface of the fibers.50  

e) Solvent volatility 

Solvent volatility depends mainly on its vapor pressure and boiling point, and thus 

directly influencing electrospinning process and morphology of electrospun fibers. During the 

electrospinning, the solvent will evaporate as the flying jet accelerates toward the collector. If 

the most of the solvent evaporates before the jet reaches the surface of the collector, well defined 

fibers will be formed. However, if the solvent used has a high boiling temperature, its 

evaporation process might not be complete when the flying jet arrives to the collector, and 

instead of fibers, a thin polymer film would be collected. 

At the beginning of the fiber formation, a thin skin of polymer will be formed on the 

surface of the jet that will thereafter influence the solvent evaporation kinetics. Lower the vapor 

pressure of a solution is (and therefore lower the boiling temperature of the solvent is), faster 

the evaporation process would be, rapidly creating a film at the jet surface. In the case of low 

volatile solvents, once the skin is formed, the residual solvent will continue to slowly evaporate 

even after the fiber formation, leaving the cavities and voids.51 However, the porosity is also 

observed when the solvent is very volatile – the premature skin formation will cause the porous 

structure inside the fibers while the surface might be smooth.  

Koombhongse et al.33 reported various cross-section shapes of electrospun fibers. They 

demonstrated that different polymer/solvent systems (poly(2-hydroxyethyl metacrylate) 
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(HEMA) and ethanol/formic acid; polystyrene and DMF; poly(vinylidene fluoride) (PVDF) 

and DMF/dimethylacetamide; poly(ether imide) (PEI) and hexafluoro-2-propanol) could be 

electrospun into distinctively different fibrous morphologies and illustrated in Scheme I.10.  

 

Scheme I.10. Various shapes of electrospun fibers due to a collapse of the skin on a jet: from cylinder 

(a) over cylinder-like shapes (b and c) to flat ribbon (d) and ribbon with two tubes (e)33 

Depending of the kinetics of the solvent evaporation, various shapes of electrospun 

fibers could be observed: cylinder (Scheme I.10a), oval (Scheme I.10b, and I.10c), and, due to 

a collapse of the skin on a jet, ribbon like (Scheme I.10d) and ribbon with two tubes (Scheme 

I.10e). 

1.5.1.2 Processing Parameters 

Once the solution properties are defined and optimized, processing parameters should 

be adjusted for optimal electrospinning and uniform fiber formation. Hereafter, several 

important processing parameters are introduced, and their influence on the electrospinning 

process.  

a. Voltage  

Voltage is a key point of the electrospinning process. It provides the charges needed to 

overcome the surface tension and Taylor-cone formation, as mentioned previously. It is also 

responsible for the stretching of a liquid jet during the fiber in formation. At low voltages, a 
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still droplet is suspended at the needle tip and only small beads reach the collector (Scheme 

I.11B).  

 

Scheme I.11. Schematic diagram showing balance of forward and backward driving forces at the 

needle tip when increasing high voltage 

By increasing the high voltage, Taylor cone is formed, ejecting a liquid jet and uniform fibers 

are formed on the collector (Scheme I.11C). Further increase of high voltage might lead to 

Taylor cone receding inside the needle. When the voltage is too high, it causes the Taylor cone 

instability and jet break-up. Consequently, resulting fiber’s morphology might be irregular with 

broad fiber diameters or even beads.49 

b. Tip-to-collector distance 

The distance between the needle tip and the collector influence the force of the electric 

field that will be applied to the electrospinning jet in formation. Generally, the Coulomb force 

 applied on a charge , depends on the electric field , itself dependent on the potential 

difference  and the distance  as follows: 

     (I.1) 

In the case of electrospinning process, when increasing the tip-to-collector distance ( ), the 

electric field strength ( ) will decrease. 

c. Solution feed rate 

A B C 
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Flow rate imposed to a solution determines its amount available for electrospinning 

(also called a feed-rate). Unlike extrusion, feed rate in electrospinning process is not a driving 

force for fiber formation. In order to obtain a stable Taylor cone and a continuous jet, for a 

given high voltage a defined feed rate should be applied. In the case of polymer solution in non-

entangled regime, by increasing the feed rate of the solution, beads size will increase, and no 

fibers will be formed. In the entangled regime, by increasing the feed rate, the fiber diameter 

will increase as well, all due to the increased solution volume drawn from the spinneret. 

However, there is a limit of the feed-rate increase. The excess of feed rate (mainly over 0.5 

mL/min) will result in nozzle overflowing by polymer solution, and consequently solution 

dropping onto the collector under gravity.  

d. Humidity and temperature 

Humidity and temperature are often neglected, but important parameters influencing 

morphology and surface texture of the final electrospun fibers. It has been already mentioned 

that solvent nature and its evaporation kinetics directly influence the fiber morphology and 

possible void/pore formation. In addition, air humidity in the electrospinning box affects the 

fiber formation in a certain extent, all depending on the type of both polymer and solvent used 

for electrospinning.  

It has been often reported that relative humidity of the electrospinning box should be 

kept at minimum in order to avoid the formation of pores inside the fibers. However, for the 

poly(ethylene oxide) (PEO) and PVA polymer, electrospun fibers had no pores at all values of 

humidity tested. Contrarily, poly(L-lactic acid) (PLLA) and PS needed low humidity for smooth 

fibers without pores.52 It could be therefore concluded that humidity does not have influence 

on pore formation for the hydrophilic polymers, while it strongly affects the pore formation 

during electrospinning of hydrophobic polymers. Indeed, in the course of fiber formation, when 
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polymer comes in contact with water from the humid air, the process of phase separation and 

finally polymer precipitation occurs.  

While solvent evaporates, the temperature of the surface decreases, allowing water from 

the surrounding humid air to condensate at the surface of the fibers in formation. For a 

hydrophobic polymer, this may result in a sudden phase separation and polymer precipitation. 

Thus, for those polymers, it is important to keep the air humidity low. For hydrophilic polymers, 

this phenomenon does not occur and even at high humidity smooth fibers are obtained.53 

However, if the polymer is hydrophobic, pores will not necessarily form.52 Actually, there is a 

competition between two phenomena: phase separation and solvent-evaporation rate as in 

casting porous membranes. Also, the diameter of the fibers will influence the pore formation, 

where micron fibers are more susceptible in forming pores while for nano-fibers the dynamics 

of solvent evaporation, phase separation and skin formation are too fast to allow pores to be 

formed. 

e. Collector type – static or dynamic 

Electrospun fibers may be collected in random or organized (aligned) fashion, 

depending of the collector type used.54 One of many examples, showing the importance of fiber 

aligning, is in tissue engineering applications for nerve regeneration and growth where aligned 

fibers provide topographic guidance to the cells. Cooper et al.55 reported that aligned chitosan-

PCL fibers provide a preferable surface for nerve cell attachment, proliferation and cell growth 

conducting when compared to the randomly collected ones. 

If the fibers are collected onto aluminum or any static conductive surface, a random 

network will be formed with the fibers deposited in all directions uniformly (Scheme I.12-1). 

However, both static and dynamic collectors could produce aligned fibers, namely, static 
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parallel wires or plates (Scheme I.12-2a and 2b), rotating cylinders (Scheme I.12-3), drums 

(Scheme I.12-3a) or discs (Scheme I.12-3b).  

 

Scheme I.12. Illustration of electrospinning setup with different types of static and dynamic collectors 

with collected electrospun fibers: (1) classical static collector, usually an aluminum foil for obtaining 

randomly deposited fibers; (2) parallel wires/plates for aligning fibers (2a) uniaxially – between two 

parallel plates and (2b) biaxially – when 4 cross-forming plates are used; (3) rotating cylinders in the 

form of (3a) a drum or (3b) a disc where mechanical force is aligning fibers 

In the case of static parallel electrodes, aligned fibers are drawn along with the electric 

field lines towards the edge of the parallel electrodes and are collected in aligned fashion in 

between.56 When parallel electrodes, plates and wires, are used, the setup is simple and cost-

effective, and fibers could be easily detached.56–58 However, the fiber length is limited to the 

distance of the electrodes and thicker fibrous mats cannot be formed because of the residual 

charges in the fibers.  

In the case of rotating collectors, whether discs or cylinders, the alignment process is 

governed by high rotation speed of the collector. When the tangential speed of the collector 
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reaches the whipping speed of the jet, the fibers collected onto the cylinder will start to align. 

Increasing the velocity of the rotating collector, the tangential force during the fiber collection 

will not only align but further elongate the fibers along the axial direction, leading to their 

significant decrease in diameter.59,60 

Rotating cylinder uses its entire surface for collecting electrospun fibers. Consequently, 

a significant amount of fibers could be collected. However, as the collecting surface is large, 

the alignment will be only partial with the fibers only orientated in the direction of the rotation 

of the cylinder.  

Rotating drum is a simple solution of rotating cylinder where fibers could be collected 

in an aligned manner with a large collecting area.61 When compared with the rotating cylinder, 

the rotating drum is shown to be more effective in the fiber uniaxial orientation as well as in 

the amount of fibers that can be collected without disturbing the alignment.  

Disc collector has as an advantage a small collecting area, guiding the fibers into high 

alignment.59,62 However, when the thickness of the scaffold starts to be important, fiber 

alignment is less pronounced. 

There are other ways of collecting electrospun fibers in an organized fashion. Lavielle 

et al.63 used a combination of micro-patterning and electrospinning to obtain micro-structured 

fibrous scaffolds (Figure I.3).  
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Figure I.3. Micro-patterning of electrospun fibers by using 4 different collector geometries  

The above-mentioned examples go in behalf of electrospinning versatility, opening new 

ways for processing advanced fibrous scaffolds. Next section will be particularly dealing with 

the improvements of electrospinning setup and different types of electrospinning technique will 

be exposed.  

2.5.2 Different Types of Electrospinning Technique 

Electrospinning technique has rapidly developed, and to date, one could find various 

types of this technique, named as:  

1. Melt electrospinning 

2. Emulsion electrospinning 

3. Co-axial electrospinning 

4. Magnetic electrospinning 

5. Needleless electrospinning 

The first two terms refer to the properties of the electrospinning solution – polymer 

melt64 or polymer emulsion65 will be electrospun. The last three terms refer to the 

electrospinning setup.  
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Melt electrospinning is process of fiber drawing from a polymer melt, above the melting 

temperature. Herein, the process of fiber-formation is governed by the temperature gradient 

between nozzle and collector. For better temperature control, the distance between the nozzle 

and the collector is of few centimeters. 

Melt electrospinning has an advantage of using a polymer melt and avoiding often toxic 

solvents for nano-fiber production. It is therefore convenient in tissue engineering purposes 

where solvent toxicity should be kept on minimum. Dalton et al.64 applied this method for 

production of electrospun fibers from a PEO-b-PCL copolymer directly onto the fibroblast cells 

(Scheme I.13). They determined the order of magnitude lower feed rates and the magnitude 

higher viscosities needed for melt electrospinning when compared with the electrospinning 

from a solution. However, electrospinning onto insulating polystyrene Petri-dish plates is not a 

convenient solution for continuity of electric field, and it requires further research of better 

grounding system.  

 

Scheme I.13. In vitro electrospinning of PEO-b-PCL copolymer melt64 

Co-electrospinning, later called coaxial electrospinning, uses a special feeding system 

that will supply the nozzle with two different solutions in order to obtain core/shell morphology 

of the fibers. Sun et al.66 obtained polysulfone (PSU)/PEO core/shell fibers from the coaxial 

electrospinning setup shown in Figure I.4. Apart from the specific morphology this method 

produces, it is equally attractive because it can electrospin the molecules that are otherwise not 
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able to form fibers by standard electrospinning technique. Usually, the electrospinnable solution 

is forming a shell, while core material is made of a solution not able to be electrospun.67 

 

Figure I.4. Experimental setup for co-electrospinning (left) and TEM image of PSU/PEO core/shell 

fibers (right).66 

Emulsion electrospinning is another way to load useful molecules inside the electrospun 

fibers and obtain core/shell like structures. The emulsions used in electrospinning are usually 

of water/oil type. They consist of an aqueous phase containing micron and submicron 

hydrophilic molecules, and an oil phase consisting of organic solvent in which a polymer and 

a hydrophobic reagent are dissolved. During the electrospinning process, two phases will form 

distinct core/shell structure of the fibers with, for example, hydrophilic molecules in the core 

and hydrophobic polymer as a shell. Xu et al.68,69 were among the first to report the emulsion 

electrospinning, highlighting the importance of using amphiphilic block copolymer for 

obtaining the core/shell structure of electrospun fibers.  

Li et al.65 used emulsion electrospinning as a tool for protein encapsulation into 

biodegradable nano-fibers. Electrospun core/shell fibers were made of human-nerve growth 

factor (NGF) wrapped around with a poly(L-lactide-co-caprolactone) copolymer and able to 

release proteins in a sustained manner. Schematic representation of the core/shell formation is 



} Bibliography 

48 
 

shown in Scheme I.14. The formation process of core/shell structure is divided on micelle 

elongation under electric field (Scheme I.14a), partial surfactant migration to the surface of the 

fiber in formation (Scheme I.14b) and final formation of the core/shell structure (Scheme I.14c) 

with a cross-section (Scheme I.14d).  

 

Scheme I.14.Schematic representation of a core/shell structure forming process: (a) water spheres, 

stabilized by surfactant, under electric force (b) some of the surfactant molecules migrate from the 

interface of oil (polymer) and water solution to the nano-fibers’ surface (c) surfactant distribution on 

the longitudinal section of nano-fiber and formation of the core/shell structure; (d) surfactant 

illustration and its distribution on the cross-section of the nanofiber.65 

Magnetic electrospinning is a method that generates aligned (parallel) fibers via 

electrospinning of magnetic-particle-doped polymers in a magnetic field.70 This method 

involves only a polymer solution containing small amount of magnetic nano-particles and a 

magnetic field obtained between two magnets (Scheme I.15). When appropriate magnetic field 

is applied, polymer solution, containing magnetic nano-particles, will tend to form lines 

between the two magnets. Resulting electrospun fibers are aligned in parallel fashion along the 

magnetic field lines.  
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Scheme I.15. Illustration of (a) the apparatus for magnetic electrospinning and (b) calculated 

magnetic field strength vectors between two magnets (top view)70 

Needleless electrospinning emerged from the need of high productivity rate and 

industrialization of the electrospinning process. In order to increase the productivity of the 

process, the main idea was to create several jets at the same time from one solution. One 

approach is to use multiple capillaries where each of them produces a jet. Another approach 

consists of producing many jets under high electric field from nearly flat liquid surface, 

commercialized as Nanospider™.71 

Yarin and Zussman72 reported needless electrospinning using a combination of normal 

magnetic and electric field, applied on a two-layer system: a ferromagnetic suspension as a 

lower layer, and a polymer solution as an upper layer. The setup for this system is presented in 

the Scheme I.16. 

It consists of a recipient containing magnetic liquid and polymer solution separated in 

two phases. The counter electrode (Scheme I.16c) is placed at distance H from the liquid surface 

and it is connected by electrode to the liquid (Scheme I.16d) and high voltage source (Scheme 

I.16e). Magnetic field from the permanent magnet (Scheme I.16f) will cause the formation of 

small steady spikes at the free surface of the magnetic liquid. Once sufficient normal electric 
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field is attained, due to instabilities of magnetic fluid, a multiple jetting is observed at the free 

surface of polymer solution. Fibers are formed and collected at the counter electrode. 

 

Scheme I.16. Schematic drawing of the upward needleless electrospinning setup: (a) layer of magnetic 

liquid, (b) layer of polymer solution, (c) counter-electrode located at a distance H from the free 

surface of the polymer, (d) electrode submerged into magnetic fluid, (e) high voltage source and (f) 

strong permanent magnet or electromagnet72 
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2 Structural Studies of Electrospun Fibers 

Once drawn into solid fibers, physicochemical and structural properties of electrospun 

fibers are further investigated. A wealth of characterization techniques is available nowadays 

for characterization of the nano-structured materials at the molecular and/or supramolecular 

levels: 

· Microscopy (optical, scanning and transmission electron microscopy, atomic 

force microscope, etc.), 

· Spectroscopic methods (UV-vis, Raman, infrared, etc.), 

· Calorimetry (differential scanning calorimetry, etc.) 

· Scattering methods (small angle neutron and X-ray scattering, dynamic light 

scattering, etc.) and many others. 

The methods for morphological evaluation of electrospun fibers employ microscopy, 

while scattering methods give information about the polymer’s size, molecular organization 

and system dynamics. Owing to the micron and submicron size of electrospun fibers, surface 

morphology of electrospun scaffolds could be visualized using electronic microscopy 

techniques. Fibrous surface architecture and relief can be investigated using scanning electron 

microscope (SEM) and atomic force microscope (AFM), respectively, while SEM provides 

precise information on fiber’s shape and diameter. A typical core/shell structure of coaxially 

electrospun fibers could be visualized by transmission electron microscope (TEM). Further 

insight into the fibrous structure and polymer crystallinity can be studied by X-ray diffraction 

(XRD). Macromolecular organization, inter- and intra-chain interactions and their dynamics in 

polymer solutions and solid materials are available by using: dynamic light scattering (DLS), 

small angle X-ray scattering (SAXS) and small angle neutron scattering (SANS) techniques. 
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Herein, the focus of structural studies will be put on the small angle neutron scattering 

technique. SANS takes an important place in polymer science investigating the structure and 

dynamics of polymer chains in a system of interest (solid, liquid, gel, etc.). Next section will 

give a brief introduction of this technique, its possibilities and applications in soft matter 

physics with an insight into SANS practice on electrospun fibers. 

2.1. Small Angle Neutron Scattering (SANS) 

Neutrons are sub-atomic particles with no net electric charge, discovered 1932 by 

James Chadwick. Other than particle, neutrons have wave characteristics including 

reflection, refraction and diffraction (scattering). When in contact with a material and its 

atoms, neutrons will scatter following Bragg’s law: 

      (I.2) 

where  is the distance between crystallographic planes, λ is the wavelength and  is the 

scattering angle. Scheme I.17 represents neutron elastic scattering from a sphere. 

 

Scheme I.17. Neutron elastic scattering from a sphere 

Scattering vector  is actually a subtraction of incident  and scattered vector  and 

therefrom could be deduced:  

     (I.3) 
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Combining the equations (I.2) and (I.3) gives  indicating that, for studying the 

small objects of 10-1000 Å, one should work at low  values: ~ Å, at 

small angles ( ), and using long wavelengths (  Å).  

SANS measuring experiment is represented below in Scheme I.18. 

 

Scheme I.18. Schematic representation of SANS experiment from neutron source to detector73 

SANS instrument uses:  

1. Monochromation – for defining the wavelength  and producing a 

monochromatic neutron beam using a velocity selector (chopper), 

2. Collimation – for defining the size and the scattering angle  of incident neutron 

beam, 

3. Scattering from samples in various forms (solids, liquids, gels, etc.) and in 

various environments (heating, pressure, shear, etc.) and 

4. Detection of scattered neutrons with an area detector forming a 2D grid.  

A neutron incident beam, which goes through the sample, will scatter as a vector 

having an angle theta , or in space coordinates . If a neutron detector (neutron 
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diffractometer) is set to count the number of neutrons scattered into the solid angle , the 

differential cross-section could be defined as: 

  (I.4) 

where  stands for incident flux. Neutron diffractometer is an instrument for recording the 

scattered intensity as a function of the scattering wave-vector . What one measures 

using SANS technique is a double differential cross-section: intensity of neutrons scattered by 

a matter as a function of  and  (energy transfer: ): 

     (I.5) 

called neutron scattering law. Scattering law is proportional to the space and time Fourier 

Transform of the time dependent correlation function. Thus, the information about analyzed 

material will be obtained from a Fourier transformation and represented in reciprocal space as 

intensity versus scattered vector ( vs. ) plot. 

This  correlation gives us different information of the material – its 

structure and dynamics for different  values observed. Moving across the  values, we actually 

magnify the sample observed, from its morphology until its molecular structure. In order to get 

this information, SANS technique relies on modeling and data analysis and some of them will 

be introduced in the next subtitle. 

2.2. Deuterium labeling in SANS 

Deuterium labeling or contrast matching technique is at the center of neutron scattering. 

Contrast matching reduces the number of visible phases of a system, while relying on the fact 

that neutron scattering lengths  (interaction strength of a neutron wave with a given nucleus) 

for hydrogen and deuterium are very different (  and 
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). Since the overall scatter of a molecule depends on the scatter of all its 

components, this will depend on the ratio of hydrogen to deuterium in the molecule.  

To use contrast matching technique, different components of a system must scatter 

differently. By replacing the hydrogen with deuterium in one of the components of the system 

(a molecule or a solvent), the information of each part of the system can be obtained at a time. 

Deuterium labeling will be illustrated through the example of core/shell particle in a solvent, 

represented in Scheme I.19, all having different neutron scattering lengths (natural contrast). If 

hydrogen atoms of the solvent are replaced by deuterium ones in such a way that the new overall 

scattering length of the solvent matches the one of particles’ core ( ), a shell 

structure of the particles can be observed. If now the ratio of hydrogen atoms, replaced by 

deuterium atoms in solvent, gives the scattering length that matches the one of the shell 

( ), the core structure can be observed. 

 

Scheme I.19. Contrast matching method for the core/shell particles in a solution 

In a similar way, different systems of polymer blends and supramolecular structures 

(proteins, DNA, etc.) may be revealed by contrast matching technique.  

Deuterium labeling relies on hypothesis that normal and deuterated molecules are 

identical. However, deuterium labeling and blending of hydrogenated and deuterated polymers 

of the same kind is not a thermodynamically inert process. Actually, notable shifts of miscibility 
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of hydrogenated and deuterated polymers forming a blend are observed. Bates et al.74 alluded 

to the fact that in extreme conditions D/H pairs of polystyrene and polybutadiene may become 

immiscible. Specific attention to the phase separation phenomena when using deuterium 

labeling is therefore warmly advised.  

2.3. SANS Data Analysis and Modeling 

As mentioned previously, the information of the material observed with neutron 

scattering could be reached in reciprocal space and SANS strongly depends on models used for 

data analysis.  

Various molecular and supramolecular structures could be visualized through the 

scattering intensity curves. By looking at the  value of interest, one could have indications on 

a particle volume, over single chain size to chain segments, as represented in Scheme I.20. Low 

 values ( ) correspond to low magnifying glass and only thermodynamic aspects of the 

system can be obtained. By increasing the  values, in the area where  and  ≈ 

chain dimensions, one could measure size of the objects observed. In this domain, called 

Guinier domain, a radius of gyration ( ) could be measured. Further increase of  gives 

information about statistics and persistence length ( ) of polymer chain. It corresponds to 

medium magnifying glass, and the intermediate part of the curve presented in Scheme I.20. If 

one continues increasing  values, in the domain of high , where  corresponds to the length 

of chemical bonds, local structure of the chain can be investigated.  
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Scheme I.20. Graphical illustration of  curve and its physical interpretation for polymeric 

systems 

In order to extract the information of the material in question, for a given sector of  

values, corresponding law should be applied for data analysis and fitting. 

Guinier law, as mentioned previously, is applicable in the area of low  values ( ) 

and it gives information of radius of gyration ( ). It is limited to the sector where  

and is defined as:  

     (I.6) 

It involves plotting  vs  in order to obtain the slope of  wherefrom  

could be extracted.  

Porod law is defined for high values of (  where  is the size of the scattering 

object) and it is stated as: 

      (I.7) 

or more exactly: 
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    (I.8) 

where  is the scattering length density equals to , and  is deuterated polymer 

ratio. Therefrom it could be extracted: 

     (I.9) 

suggesting that one can obtain the information about the specific surface of a material observed. 

Beside the surface morphology, in the area of high  values, the interface of the objects with 

their surrounding fluid can be analyzed as well. 

Porod plot of  vs.  yields information about the so-called “fractal 

dimension” of the scattering objects: 

      (I.10) 

where  varies between 1 and 4: 

· 1 is for rigid rods (objects 1D) 

· 2 is representing a polymer’s Gaussian chain, discs and cylinders (2D objects) 

· 4 is for 3D objects such as spheres and it also suggests the smooth surface of the 

objects 

· A slope of  is for fully swollen coils while a slope of  is for 

collapsed polymer coils 

· A slope between 2 and 3 is for “mass fractals” such as branched systems and 

gels or networks. 

Zimm plot (  vs. ) is used for polymer blends and its slope is proportional to the 

correlation length (ζ): 
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      (I.11) 

Kratky plot for the polymer chains emphasizes the Gaussian nature or departure from it. 

As Gaussian chain is defined in  range, for high q values, this plot tends to a horizontal 

asymptote. For the low  values, the scattered intensity correlates as . At the crossover 

point when  starts being independent of the thermodynamics of the system (plateau in 

the Kratky plot) one could obtain the information of the persistence length ( ) of a polymer. 

Deviation from the horizontal asymptotic behavior indicates to the non-Gaussian character of 

the scattered chains.  

It is possible to describe the distribution of a material in terms of a form factor  and 

a structure factor .  represents the interference of neutrons scattered from different 

objects. Thus, for the dilute solutions, where correlation between particles does not exist, 

.  represents the interference of the scattered neutrons from different parts of the 

same object. It can be used to determine the overall size ( ) and shape (spheres, cylinders, 

etc.) of the scattering objects. For Gaussian chains, one could obtain from the Debye equation 

of form factor :  

    (I.12) 

2.4. SANS from Polymers 

Small angle neutron scattering (SANS) resolves structures on 1-1000 nm length 

scales, and it is sensitive to light elements such as H, C or N, but also to isotopes (H and D). 

Because of their electrical neutrality, neutrons have a high penetration depth, making SANS 

a convenient technique for bulk probes (1-2 mm of sample thickness). SANS is therefore 

attractive for observing polymers, proteins, micelles, porous media or precipitates. As a 
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result, many research studies have been published around the polymers – solutions,75,76 co-

polymers,77 blends,78 thin films,79 gels,80 networks,81 micelles,82 liquid crystals,83 etc. 

SANS studies of polymer solutions are mainly based on chain conformation in 

various polymers (stiff, flexible, amorphous, and crystalline, etc.) and in solvent mixtures, 

polymer-solvent interactions, and phase transitions at ambient or high temperatures. B. 

Hammouda investigated poly(ethylene oxide) (PEO) chain conformation in water and other 

solvents as well as in solvent mixtures and determined that PEO shows better solvation in 

solvent mixtures rather than in the individual solvents.84 Also, he determined that PEO coil 

size and correlation length decrease in the diluted regime while they both increase in the 

semi-diluted regime.75 These results are indicating that one could accurately determine the 

overlap concentration that delimits dilute from semi-dilute solutions. Additionally, when 

PEO is used in a mixture of water and isobutyric acid, it shows the transformation from rod-

like (helical) (Porod exponent ) to swollen coil structure (Porod exponent ).76 

Supramolecular structures of micelles, consisting of amphiphilic copolymers having 

di-, tri- or multi-block units, can be readily identified by SANS. Hadjiantoniou et al.85 

synthesized different multi-block amphiphilic copolymers and analyzed their structure by 

SANS technique. By using SANS technique, they were able to identify the copolymer 

arrangement inside the micelle – one type of folded chain conformations for tetra- and penta-

block copolymers, and three different micellar structures for hexa-block copolymer (Scheme 

I.21). 
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Scheme I.21. Proposed structures of the micelles formed by the multi-block copolymers in aqueous 

solution85 

SANS could be used alone, as an analyzing tool, or simultaneously with other analyzing 

techniques for in situ physicochemical studies. Wu et al.77 investigated chain conformation of 

perpendicularly-aligned multi-block copolymer lamellae under shear flow. They observed 

micro-domain alignment under shear flow and its relaxation upon cessation of shear as 

represented in Scheme I.22. 

 

Scheme I.22. Chain conformation of perpendicularly-aligned undecablock copolymer lamellae (a) 

during and (b) after shear77 

SANS technique is able to detect structural anisotropy in a tested sample (liquid, gel 

or solid material) and signal organization of polymeric chains inside that sample. Scattered 

iso-intensities of anisotropic materials are typically taking the form of ellipses, lozenges or 

butterflies.86 
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Millon et al.80 studied the anisotropy inside the poly(vinyl alcohol) (PVA) hydrogels. 

These anisotropic hydrogels are produced from a physical crosslinking of PVA and repeated 

freeze/thaw and controlled stretching cycles. Such stained PVA hydrogels, as biomedical 

devices, mimic the anisotropic and nonlinear mechanical properties of porcine aorta. Small 

angle- and ultra-small angle neutron scattering (SANS and USANS respectively) accompanied 

by atomic force microscope (AFM) enabled further investigation of the source of bulk 

anisotropy inside these hydrogels.87 It was determined that crosslinked PVA is formed inside 

the densely packed and assembled micron-sized blobs, which are under strain further arranged 

in an anisotropic fashion. 

Further advances in SANS analysis have enabled investigation of chain conformation 

within confined polymeric structures. In the case of ultrathin polymer films, sample volume 

represents a significant problem in SANS measurements. R. L. Jones et al.79 reported a 

successful SANS analysis of chain conformation in ultrathin polymer films from a sample stack 

containing many thin films obtained under identical conditions. 

Development of electrospinning process and increased complexity of electrospun 

fibrous structures emerged the need of studying essential structure and chain dynamics of these 

meshes. SANS technique offers a possibility to observe these fibers and to predict their chain 

preferential orientation. In order to determine the level of anisotropy inside the fiber by SANS 

technique, it is important to form a stack of aligned fibers in order to obtain a satisfying signal-

to-noise ratio. However, very few studies are reported on SANS investigations of electrospun 

fibers. SANS analyses on micron-sized electrospun fibers showed rather poor anisotropy even 

with the highest rotation speed of the collector. Additionally, voids and pores within the fiber 

bulk as well as ribbon-like morphology of the fibers made SANS data analysis and 

interpretation difficult.88 Nevertheless, these studies raised many questions considering SANS 
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from electrospun fibers – is this small anisotropy due to the fiber thickness, and how the 

thickness problem could be overcome; what is the relaxation dynamics of polymer chains 

within these nonwovens, etc. These studies introduced questions about SANS technique data 

collecting and analysis – the sample preparation problem, guided chain relaxation and its 

observation considering not only the pores within the fiber bulk but the porous structure of the 

scaffold itself, etc. – suggesting a new chapter of SANS study on anisotropic ultra-fine 

structures. 
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3 Biomaterials Processed by Electrospinning Technique 

A significant part of biomaterials, devoted to the tissue engineering applications, can be 

processed by electrospinning technique. The focus of this chapter will be put on biomaterials 

processed by electrospinning, their origin, their advantages and shortcomings, and individual 

characteristics that influence processing of a final product.  

3.1 Definition of Biomaterial 

“The single most important factor that distinguishes a biomaterial from any other 

material is its ability to exist in contact with tissues of the human body without causing an 

unacceptable degree of harm to that body”, D. F. Williams.89 

A meaning of a biomaterial is very vast, and has been causing many discussions whether 

one material could be declared as a biomaterial or not.90 It should be outlined that biomaterials 

are usually defined by their targeting application and not by their chemical structure. However, 

an entity called biomaterial should be engineered in some way. Over years, the definition of the 

biomaterial evolved and now one finds three generations of biomaterials: 

1. 1st generation biomaterial is called bio-passive (“do-no-harm”) material with the 

minimal toxic response of the host tissue. At 1987, a biomaterial is characterized 

by D. F. Williams through the concept of BIOCOMPATIBILITY: 

“biocompatibility refers to the ability of a material to perform with an 

appropriate host response in a specific situation”. Later, in 2008, this definition 

has been extended to: “ability of a biomaterial to perform its desired function 

with respect to a medical therapy, without eliciting any undesirable local or 

systemic effects in the recipient or beneficiary of that therapy, but generating the 

most appropriate beneficial cellular or tissue response to that specific situation, 

and optimizing the clinically relevant performance of that therapy.”89 
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2. 2nd generation biomaterials – bio-inert materials are replaced with bioactive 

biomaterials that could elicit a controlled action and reaction of physiological 

environment – BIOACTIVITY.91 Another category of 2nd generation 

biomaterials is a resorbable (or degradable) biomaterial, summarized by L. L. 

Hench as: “A second method of manipulating the biomaterials-tissue interface 

is controlled chemical breakdown, that is, resorption of the material. Resorption 

of biomaterials appears a perfect solution to the interfacial problem because the 

foreign material is ultimately replaced by regenerating tissues. Ideally, there is 

eventually no discernible difference between the implant site and the host 

tissue.”92 

3. 3rd generation biomaterials emerged the concept of BIOMIMICRY: not only 

that material is doing no harm to the host tissue but it is also able to obtain a 

beneficial response – so-called smart or biomimetic material. Materials are 

interacting with the tissue and stimulating a specific cellular response on 

molecular level (proliferation, regeneration, etc.)93 

The complexity of tissue architecture demands equally complex structure of a guest 

material. Many attempts have been put into finding an optimal solution between feasibility, 

availability, and physicochemical properties of the final material. However, each biomaterial 

represents a specific case, and physicochemical properties and structure of that material should 

be adjusted to the targeting purpose. The latest opinion on this matter was given by D. F. 

Williams, where biomaterial is defined: 

“A biomaterial is a substance that has been engineered to take a form which, alone or 

as part of a complex system, is used to direct, by control of interactions with components of 
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living systems, the course of any therapeutic or diagnostic procedure, in human or veterinary 

medicine.”94 

3.2 Structure of Biomaterials 

Biological systems consist of nanometer-length proteins and other biological 

macromolecules, exposing their activity within the cell or at the interface cell-

wall/environment. The fibers of extracellular matrix (ECM), their interconnecting pores, or 

hydroxyapatite crystals present in bone tissue, have typically sub-micron dimensions. It is 

therefore found logical that man-made biomaterials should have a nanometer scale for 

mimicking the structure of a host tissue.  

Stevens and George95 indicated to the importance of material’s nano-scale engineering 

for optimal cell adhesion, proliferation and growth as represented in the Scheme I.23. It was 

observed that different topography of the same material elicits different responses from the 

same cell.  
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Scheme I.23. Scaffold architecture affects cell binding and spreading: (A and B) cells binding to 

scaffolds with micro-scale architectures flatten and spread as if cultured on flat surfaces (C) scaffolds 

with nano-scale architectures have larger surface areas to adsorb proteins, presenting many more 

binding sites to cell membrane receptors. The adsorbed proteins may also change conformation, 

exposing additional cryptic binding sites.95 

However, not all nano-sized objects are biocompatible and elicit positive cell-tissue 

response. It is more likely that a positive response from tissue cells could be elicited from 

physicochemical, mechanical and structural properties of a material acting together on the cells 

in question. For a given purpose, biomaterials should balance between cell-response, material’s 

chemical structure and material’s architecture. Chemical structure of a material is very 

important because, once implemented in the living tissue, material is in direct contact with the 

surrounding tissue. However, the cell response will not only depend on the material’s structure 

but its architecture as well. Biomaterials will therefore simultaneously depend on material’s 

chemical structure and architecture in order to elicit a positive cell response.  

It could be therefore concluded that man-made biomaterials represent always a 

compromise, and it is the final application that decides optimal physicochemical properties of 

a material in question. Next sections will put the accent on the role of nanotechnology and 

electrospinning technique in biomaterials’ engineering practice, their medical applications, 
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available biomaterial’s sources as well as physicochemical modifications desired for creating 

new-generation advanced biomaterials. 

3.3 Applications of Biomaterials 

Generally speaking, biomaterials’ applications target living tissue and should therefore 

closely mimic its physicochemical properties and architecture. Electrospinning technique 

allows the production of nano-fibrous scaffolds that mimic certain aspects of ECM structure. 

Nano-fibers electrospun from biocompatible polymeric structures might be comfortably used 

for various applications in tissue engineering, drug delivery, as bandages and sutures and many 

other biological and medical purposes.  

3.3.1 Drug Delivery 

Drug delivery method and, generally, pharmaceutical applications make use of drug-

containing electrospun fibers. A drug is introduced into the polymer solution for electrospinning 

and transformed into fibers that transport and simultaneously release active substances. 

Fabrication of core/shell fibrous structures has added to the versatility of these nonwovens 

affording a wider range of molecules to be released in a controlled manner.96 

Hu et al.97 made use of emulsion electrospinning to successfully electrospin both 

hydrophilic and hydrophobic drugs into the poly(L-lactic-co-glycolic acid) (PLGA)/gelatin 

fibrous mats. The core/shell fiber’s structure where core carries a drug and shell, consisting of 

PLGA/gelatin polymer blend, enabled constant and sustainable release of Cefradine® drug. 

Mickova et al.98 used coaxial electrospinning setup to obtain liposome loaded PVA/PCL 

core/shell fibers (Figure I.5). Coaxial electrospinning was reported to preserve enzymatic 

activity of horseradish peroxidase encapsulated in the liposome, while monoaxial 

electrospinning setup caused the liposomes to break and release their encapsulated material.  
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Figure I.5. Schematic representation of the PVA/PCL core/shell fibers loaded with liposome and their 

SEM and confocal microscopy images98 

The efficacy of the core/shell fibers containing protein-loaded liposomes was tested in a cell 

culture study of mesenchymal stem cells and showed to stimulate the cells’ proliferation. 

Polyesters, having a slow degradation rate have been used as contraceptive devices. 

Dasaratha Dhanaraju et al.99 incorporated contraceptive steroids into PCL microspheres. Two 

water-insoluble steroids were encapsulated into PCL microspheres by double emulsion-solvent 

evaporation process. In vitro drug-release tests showed prolonged diffusion of these molecules, 

promoting PCL microspheres as promising devices for controlled delivery of contraceptive 

steroids.100 

3.3.2 Wound Dressings 

Electrospun biopolymers have been employed for wound dressing applications as well, 

due to their high porosity and high surface-to-volume ratio enabling high absorption and gas 

permeation while being enough flexible to efficiently cover the wound.  

Lalani and Liu101 used a three-step process consisting of polymerization, electrospinning 

and crosslinking for obtaining zwitterionic poly(sulfobetaine methacrylate) (PSBMA) 

superabsorbent and protein-resistant scaffolds. Electrospun mats were super-hydrophilic, yet 

water-stable, enabling up to 350% of water uptake, while keeping gas exchange due to the high 

porosity of the scaffold. Additionally, these mats were tested to proteins (human plasma 
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fibrinogen, bovine serum albumin, and horseradish peroxidase-conjugated polyclonal goat 

antihuman fibrinogen), bacteria (Pseudomonas aeruginosa and Staphylococcus epidermidis) 

and cells (bovine aortic endothelial cells) and showed good resistance on both, making 

electrospun PSBMA scaffolds good candidates for wound dressing applications. 

Merrell et al.102 reported a curcumin loaded poly(e-caprolactone) fibers able to 

sustainably release the drug while remaining bioactive. Curcumin is naturally-occurring 

molecule with anti-cancer, anti-inflammatory and anti-oxidant characteristics and its activity 

was tested once incorporated in electrospun PCL fibers. Curcumin-loaded electrospun fibers 

were shown to be bioactive with a potential to enhance the wound closure in vivo in a diabetic 

mouse model. 

3.3.3 Tissue Engineering 

Tissue engineering is one of the biomedical engineering areas where electrospun fibers 

have been mostly used. Electrospun scaffolds in tissue engineering could mimic the 

extracellular matrix fibrous structure and serve as a temporary support for cells during the tissue 

regeneration process. In literature, both natural and synthetic polymers and their combinations 

are employed for tissue engineering in the form of electrospun fibrous mats where muscle, 

neuronal, skin, bone and other tissue cell cultures were investigated.  

Francis et al.103 fabricated electrospun scaffold from a blend of adipose and 

poly(dyoxanone) (PDO) serving as a template for adipose stem cell culture. Adipose is a natural 

protein mixture consisting of collagen, laminin, and fibronectin, having herein human adipose 

(connecting) tissue origin. Adipose/PDO fibrous scaffolds, with 10/90 ratio, were sufficient to 

provoke the cell growth and survival but significantly lower number of cells was attached when 

compared to the adipose alone.  
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Ghasemi-Mobarakeh et al.104 studied proliferation of nerve growth precursor (NGP) 

cells seeded onto electrospun poly(e-caprolactone) (PCL) fibers. PCL electrospun scaffolds, 

having covalently attached Matrigel™ (a soluble sterile extract rich in laminin, collagen IV, 

fibronectin and heparin sulphate proteoglycans), showed higher cell proliferation when 

compared to native PCL fibers. These results highlight the influence of matrigel and improved 

hydrophilicity of the scaffolds to the NGP cell proliferation and morphology. Their studies 

encouraged further investigations in chemical modifications of synthetic biomaterial scaffold 

for tissue engineering applications. 

3.4 Sources of Biomaterials 

Biomaterials have as a goal to closely mimic a targeting tissue. That is why the structure 

of a biomaterial, expressed through physicochemical and mechanical properties, should be 

closely related to those found in the living tissues. Accordingly, several most important 

macromolecular structures, cell-friendly and often used in electrospinning technique, will be 

briefly introduced in the next section.  

3.4.1 Natural Carbohydrate- and Protein-Based Biomaterials 

In order to promote the cell adhesion and viability, electrospun scaffolds should be made 

out of materials that are recognized and accepted by the cell. These molecules are typically 

carbohydrates (oligo- and polysaccharides), and proteins (or peptides) and the same have been 

intensively processed into fibers for biomedical applications.105 

Carbohydrates are an integral part of any living organism where they perform numerous 

roles and functions. They serve for storage of energy, as structural components, but they are 

also involved in diverse cellular processes, enabling communication, proliferation, and 

differentiation. The strategic placement of carbohydrates at the surface of the cell makes these 

molecules a key element in communication process (Scheme I.24). Structural diversity of 
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carbohydrates enables cells to communicate with different molecular structures and living 

organisms: proteins, antibodies, viruses, bacteria, and other cells, as illustrated in Scheme I.24. 

Today, both natural and synthetic carbohydrates could be considered as third-generation tissue-

engineering biomaterials: they are recognized as ligands for cell-receptors; they can modulate 

the cell behavior or tune the cell surface recognition.106 

 

Scheme I.24. Interaction of the carbohydrates at cell wall with various molecules and living organisms 

surrounding the cell107 

HNK-1 is a human natural killer carbohydrate-based epitope, involved in cell-cell and 

cell-substrate interactions, nerve outgrowth and is present in the kidney cancer and melanoma. 

Bastide et al.108 synthesized a trisaccharide HNK-1 analogue and demonstrated that it cross-

reacts with anti-NHK-1 antibodies, suggesting applications in nerve regeneration and cancer 

diagnosis. 

Gentsch et al.109 investigated the surface functionalization of the 

PCL/poly(pentafluorophenyl methacrylate) (PPpfMA) fibers with monosaccharides and 

showed that these functionalized fibers triggered specific interactions with antigen-presenting 

cells, e.g. macrophages. 
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Chitosan, a cationic polysaccharide issued from crustacean or fungi, is a very popular 

polymer for biomedical applications.110–112 Chitosan is known for its anti-microbial activity, 

and chitosan-based electrospun scaffolds could find their applications in filtration and tissue 

engineering. Initial studies on chitosan-based fibers report the use of wet-spinning method on 

chitosan blend with a thermoplastic polymer for better processing feasibility.113 Ohkawa et 

al.114,115 observed that highly polar trifluoroacetic acid (TFA) solvent facilitates electrospinning 

of chitosan by destroying its crystalline structure, while neutralizing the charges on chitosan in 

the solution, which was found crucial for uniform fiber formation. Addition of another synthetic 

polymer has proved to facilitate the electrospinning of chitosan while improving the mechanical 

properties of the final scaffold. In order to facilitate the fabrication of chitosan into fibers, 

Nguyen et al.116 proposed a coaxial electrospinning of chitosan with poly(lactic acid) (PLA) 

making shell and core of the final fiber, respectively. That way, the functionality of the chitosan 

is performed at the surface of the fibers while PLA in a core contributes to the mechanical 

properties of the final scaffold. 

Extracellular matrix typically consists of natural protein-based polymers, such as 

collagen, fibrinogen and gelatin. These polymers are biocompatible and biodegradable, and as 

such, they have been often studied as biomaterials for tissue engineering purposes. However, 

electrospinning from pure proteins often results in poor mechanical properties of the fibrous 

scaffolds. 

Collagen, gelatin and elastin represent important natural macromolecules constituting 

the majority of human’s structural extracellular matrix (ECM). However, due to their weak 

mechanical properties and/or structural stability upon hydration, these proteins are often 

crosslinked with glutaraldehyde and/or blended with mechanically superior synthetic polymers. 

In such a way, McClure et al.117 proposed a crosslinking of electrospun scaffolds obtained from 
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a blend of elastin and poly(dioxanone) (PDO). Mechanical properties of crosslinked 

PDO/elastin electrospun scaffolds can match those of pig and native human artery.118 Similarly, 

to prevent fast degradation, gelatin is often electrospun in combination with compatible 

synthetic polymers such as poly(glycolic acid), poly(e-caprolacone), poly(lactic acid) and 

polyurethane.97,119–121 

Synthetic polypeptides with a well-defined amino-acid sequence could be synthesized 

by already established chemical methods and procedures involving microorganisms. The 

advantage of synthetic peptides over natural proteins is the possibility to tune the amino-acid 

sequences for a desired purpose, in order to avoid the organic solvents or simply to produce 

polymers without animals or plants.122 Khadka and Haynie123 electrospun synthetic 

polypeptide, poly(L-ornithine) (PLO), from an aqueous solution in the concentration range of 

35-40 w/v %. The solubility of these nonwovens was controlled by simple crosslinking method. 

L-orhithine is a physiological amino acid and is a key component in urea cycle for biosynthesis 

of arginine, another amino acid. Soon, they efficiently electrospun another co-polypeptide made 

of L-glutamic acid and L-tyrosine (PLEY) from aqueous solution.124 Similarly as PLO, PLEY 

fibers became insoluble after crosslinking, and additionally, compatible with fibroblast cell 

attachment. By using aqueous solutions to produce and electrospin PLO and PLEY 

polypeptides, Khadka with coworkers demonstrated a new method for obtaining biomaterials 

from aqueous solutions – attractive supports for tissue engineering purposes. 

Naturally occurring polymers, consisting either of carbohydrates or proteins, offer good 

biocompatibility and biodegradability with instructive cues for cell binding and proliferation. 

However, some natural polymers, such as collagen and gelatin, are extracted from animal 

resources, and therefore considered as inconvenient for medical applications. Additionally, 

natural polymers showed important processing difficulties. Once electrospun into fibers, natural 
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polymers display poor mechanical properties. As a consequence, research studies highlight the 

importance of their modification, either by crosslinking for keeping the fibrous structure, or by 

blending with some synthetic biopolymer when superior mechanical properties are requested.  

The necessity of synthetic polymers for improvement of naturally occurring 

macromolecules has led to a profound investigation of synthetic polymers and their possibilities 

as biopolymers. As a consequence, literature offers many reports on use of synthetic polymers 

as biomaterials covering the areas of tissue engineering, drug delivery, and wound dressing, in 

scientific research as well as in medical practice. 

3.4.2 Synthetic Biomaterials 

There are different classes of synthetic materials employed as biomaterials in the human 

body: metals and their alloys, as first dental and bone implants, were soon replaced or upgraded 

by ceramics – hard, brittle and non-adherent – used in orthopedics and in dentistry,125 and 

synthetic polymers, covering the area of both hard and soft tissue engineering applications. Next 

paragraphs will give an insight into synthetic polymers and their possibilities to form 

biocompatible and bioactive materials and electrospun scaffolds for tissue engineering 

applications. 

Poly(ethylene oxide) (PEO) has been quite often used for facilitating electrospinning of 

some biopolymer solutions that are otherwise not able to be electrospun into fibers. It is water-

soluble which makes it environmentally friendly and convenient for biomedical applications 

and it is easily processed into fibers by electrospinning. Vega-Lugo and Lim126 reported such 

use of PEO for electrospinning of whey protein isolate. Adjusting the pH of the solution to 

highly acidic (pH=1) enabled strong interaction between two polymers, their entanglements and 

jet stabilization which resulted in uniform fiber formation. Pakravan et al.127 reported coaxial 

electrospinning of PEO and chitosan in aqueous phase. PEO as a shell solution permitted 
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electrospinning of chitosan inside the fiber’s core while avoiding toxic organic solvents. 

Branched PEO has proved to have protein repellent characteristics because of the higher 

packing density of the PEO chains at the surface. Rieger et al.128 synthesized PEO-graft-PCL 

branched polymer, confirming the amphiphilic nature of the copolymer and suggesting its use 

as a biomaterial where specific protein repellence is requested.  

Similarly as PEO, its low-molecular-weight derivative, poly(ethylene glycol) (PEG), is 

also an important hydrophilic polymer for making biomaterials because its protein-repellent 

properties.129 Sharma et al.130 coated the surface of silicon-based micro-devices with PEG ultra-

thin film in order to reduce the non-specific protein adhesion and improve the biocompatibility 

of the material. Covalently attached PEG maintained the protein-repellence characteristics even 

after 28 days of incubation. However, long exposure of hydrophilic PEG surface to the aqueous 

environment caused significant decrease of film thickness. Grafahrend et al.131 synthesized 

poly(ethylene glycol)-b-poly(e-caprolactone) (PEG-b-PCL) copolymer. A cell-adhesive 

peptide sequence, GRGDS, was further covalently attached to the polymer chains prior 

electrospinning. Electrospun PEG-b-PCL peptide-functionalized hydrophilic fibers were able 

to immobilize human-derived fibroblasts, their adhesion, spreading and high viability. Also, 

Grafahrend and coworkers indicated to the importance of selective protein adhesion on 

electrospun fibers for better cell adhesion and proliferation. 132 

Polyurethanes are widely used as biomaterials because of their high hydrolytic stability 

and biocompatibility. Wang et al.133 made use of Selectophore™ polyurethanes to create 

electrospun nano-fibers with controlled porosity, thickness, glucose permeability and 

hydrophilicity. They further tested these nonwovens for coating a glucose-biosensor surface 

and created small implantable biosensors as novel biocompatible nano-devices.134 
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Poly(lactic acid) (PLA) is an aliphatic polyester and, processed into fibrous scaffold, it 

is often used as biopolymer in tissue engineering and other biomedical applications. Several 

reports mentioned the use of electrospun aligned poly(L-lactic acid) PLLA fibers for nerve 

regeneration applications.135–137 Yang et al.137 electrospun aligned PLLA scaffolds having 

micro- and nano-sized diameters and tested their potential for cell growth of nerve stem cells 

(NSC). They observed that fiber alignment improved neurite outgrowth, while the cells showed 

preferential differentiation on nano- than micro-fibers. However, the use of this polymer may 

be limited by the strong water-repellent behavior (hydrophobicity) of the polymer. As a 

consequence, research studies pursued a suitable method improving the hydrophilicity and cell 

viability of the scaffold. Cui et al.138 proposed a surface hydrolysis and chitosan coating of 

PLLA fibers with a goal to improve their hydrophilicity and cell attachment and growth 

conditions onto the scaffold. A remarkable influence of the blending molecule on the 

physicochemical properties of the final fibers is presented by Yang et al.121 The addition of 

gelatin into the PLLA bulk led to phase separation and surface migration of polar side groups 

of protein, resulting in complete wettability of the PLA/gelatin fibrous mats. 

Polyesters have attracted wide attention as biomaterials for tissue engineering 

purposes.139 Compared to other aliphatic polyesters, poly(e-caprolactone) (PCL) is a most 

commonly used source for biomaterials – it is semi-crystalline, biocompatible and 

bioresorbable polymer with a very slow degradation rate.140 The importance of this polymer is 

highlighted by increasing number of studies published in last ten years (Figure I.6). PCL is also 

approved by U.S. Food and Drug Administration (FDA). 
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Figure I.6. Publications of electrospun PCL fibers during the period of ten years, from 2002 to 2012, 

sourced from ISI Web of Knowledge 

An extensive literature study of Labet and Thielemans on poly(e-caprolactone) 

synthesis, contributes to the general significance of PCL polymer.141 Compared to other 

aliphatic polyesters, PCL does not produce copolymers during its synthesis. Almost all the 

elements of periodic system have been tested for synthesis of PCL. A simplified representation 

of the possible paths for synthesizing poly(e-caprolactone) is shown in Scheme I.25. The 

catalysts for PCL were classified in three sections: metal-based (alkali, alkaline earth, 

aluminium, tin, transition metals – Ti, Fe, Zn, and rare earth metal-based catalysts), enzymes 

(lipase-based catalysts), organic compounds and inorganic acids.  

 

Scheme I.25. Ring-opening polymerization of e-caprolactone and possible catalysts for obtaining 

poly(e-caprolactone)  
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To be used as a biomaterial, polymer has to be biodegradable – to decompose its 

structure into smaller non-toxic units, and bioresorbable – degradation products are completely 

removed from the body in vivo with no residual side effects142 PCL could be biodegraded by 

bacteria or fungi and their enzymes, or chemically by hydrolysis. PCL homopolymer will 

completely degrade in a period of 2 to 4 years depending of the polymer molecular weight. 

Several mechanisms are proposed for its degradation, generally divided into two stages: 

§ Firstly – a non-enzymatic hydrolytic cleavage of ester groups and  

§ Secondly – when the polymer is more crystalline and with lower molecular 

weight (3000 g mol-1) – polymer undergoes intracellular degradation 

mechanism.143 

In the end, PCL-degradation products are completely eliminated from the body in the 

citric acid cycle.144 Accordingly, PCL can be applied in controlled drug delivery where slow 

degradation kinetics is required.99 On the other hand, it can be easily copolymerized or 

functionalized in other way in order to adjust its degradation rate and be employed either as a 

short-term or a long-term degradable device for tissue engineering purposes.  

However, hydrophobic nature of PCL polymer causes poor surface-wetting properties 

of PCL biomaterials and consequently low cell adhesion and uncontrolled biological 

interactions with a material. As a result, different molecular and macromolecular structures 

have been combined with PCL in order to enhance the hydrophilicity and cell response.  

Owing to a wide concentration range and different solvents available for electrospinning 

PCL, a large variety of molecules could be incorporated inside the fibers’ bulk. PCL-based 

electrospun fibers could be loaded with a crude extract of Biophytum sensitivum (a potential 

antibacterial herbal drug) targeting wound dressing applications;145 with heparin for drug 
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delivery;146 PCL could be blended with collagen for stimulating the axonal growth,147 or with 

chitosan for tissue engineering purposes.148 It is indeed the generous ability of PCL to blend 

easily or bond covalently with other polymers that caused the constant increase of PCL use as 

a biomaterial. The always-increasing interest for PCL also induced the growth of 

functionalization techniques having an aim to design advanced biomaterials with always 

expanding medical applications. In the next section, discussion will be oriented to 

physicochemical modifications combined with the electrospinning technique to create materials 

targeting tissue engineering applications. 

3.5 Physicochemical Modifications of Material for Tissue Engineering 

Applications 

From the previous section, it could be deduced that one material, whether natural or 

synthetically produced, cannot meet all the high standards required for biomaterials’ 

applications at present. That is why one finds many research studies dealing with the mixtures 

of substances, simply blended or covalently bonded into complex structures (at all molecular 

levels) in order to form hybrid structures that mimic the bio-environment they will be used in. 

In order to prepare biomaterials with enhanced properties, their practice has been 

frequently followed by additional functionalization and/or surface modifications.149,150 

Functionalization techniques applied on electrospun fibers could be sorted in several groups: 

1. Blending of bioactive substances and polymers – molecules are homogeneously 

dispersed or oriented at the surface of the electrospun fibers (Scheme I.26A) 

2. Coaxial electrospinning – localizes the molecules in the center or at the surface 

of the fibers (Scheme I.26B) (for more details see Chapter 1.3) 

3. Physicochemical treatment: plasma and hydrolysis (Scheme I.26C) 
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4. Surface immobilization – covalent attachment of active molecules at the surface 

of the fibers (Scheme I.26D) 

 

Scheme I.26. Several mechanisms of fiber functionalization: (A) blending of polymers prior 

electrospinning, (B) coaxial electrospinning, (C) physicochemical treatment and (D) surface 

immobilization 

First method induces functional groups in the polymer solution for electrospinning; the 

second one obtains a core/shell structure where active molecules are either at the surface or 

inside the fiber’s core. The third and the fourth method introduce functional moieties at the 

surface of the fibers, after the electrospinning process. Each of those methods will be introduced 

in the next section.  

3.5.1 Substance Blending Prior Electrospinning Process 

Simple blending of various forms of bioactive materials or polymers before the 

electrospinning process could improve physicochemical properties of the fibrous scaffolds 

without their deterioration. In a blend, active substances are homogeneously dispersed in the 

bulk and could be only partially found at the surface of the fiber. Blending method of uniformly 

dispersing active substances in the fiber’s bulk is very convenient for a continuous and uniform 

degradation of the fibrous network. 

Chitosan, as typically difficult to electrospun, has been often blended with various 

biocompatible synthetic polymers where combined properties of bioactivity from chitosan and 

strength from a synthetic polymer resulted in advanced biomaterials for many biomedical 

applications. Van der Schueren and coworkers151–153 propose using a PCL/chitosan blend in 
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acetic/formic acid solvent mixture for obtaining uniform nano-fibers without beads. They 

improved these nonwovens by addition of Nitrazine Yellow which resulted in bioactive and 

stimuli-responsive fibers with an increased hydrophilic nature.154 

3.5.2 Physicochemical Post-Electrospinning Treatment 

Plasma treatment is a “dry” functionalization method, where different gases (O2, NH3, 

SO2, CO2, etc.), in contact with the fibrous scaffold, are changing its surface-morphology and 

surface-chemistry by creating different polarized groups (hydroxyl, carboxyl, amino or sulfate 

groups). In the case of polyesters, it serves for improving the hydrophilicity and cell-material 

interactions. Wulf et al.155 treated the surface of PCL scaffolds with ammonia (NH3) and oxygen 

(O2) plasma in order to immobilize anti-inflammatory and anti-thrombogenic model drugs for 

vessel prostheses. Ammonia and oxygen plasma radiation formed amino and hydroxyl groups, 

respectively, at the surface of the PCL fibers that served as active places for further drug 

immobilization.  

Hydrolysis, also called wet-chemical method, consists of immersing a solid material (a 

scaffold or a film) in an aqueous solution of sodium- or ammonium- hydroxide. After a certain 

period of time, hydroxyl and/or carboxyl groups are formed at the surface of a material. This 

method might serve to improve hydrophilicity or simply as an intermediate step for further 

functionalization. Croll et al.156 introduced carboxyl- and amine- groups at the surface of PLGA 

thin films through hydrolysis method. Surface-functional groups of the PLGA film enabled 

covalent attachment of chitosan at the surface, while promoting the protein binding and 

consequently cell attachment and growth. 

Plasma radiation and chemical hydrolysis methods are rather simple and available in 

chemistry laboratory. These methods make hydroxyl, amino or other groups easily available at 

the surface of the fibers. The fact that these modifications might damage fine fibrous structure 
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and further weaken mechanical properties of the nonwovens could also be advantageous, in the 

case of polyesters for example, when accelerated degradation kinetics is required.  

3.5.3 Surface Functionalization 

Surface functionalization can be performed by taking advantage of the polymer groups 

at the surface of the fibers for chemical bonding with desired molecules. It is used to improve 

the biocompatibility of the polymer while preserving the bulk properties of the material. 

Depending of chemical group available at the surface, various coupling methods could be 

performed. 

Click chemistry, as one of such methods, is a versatile and high yielding approach for 

covalently coupling different molecules in homogeneous as well as heterogeneous phase, 

typically at the surface of a material. There are several types of reactions lying under the concept 

of click chemistry, with azide-alkyne cycloaddition as the most used one. The reaction between 

two molecules having end-available azide and alkyne groups is called azide-alkyne 

cycloaddition (Scheme I.27), popularly known as click chemistry.  

 

Scheme I.27. Schematic representation of click chemistry reaction between azide and alkyne ending 

molecules and a typical triazole ring formation 

This technique is a valuable method for introducing broad functional moieties owing to 

its versatility and high yields. It was for the first time reported by Huisgen157,158 under high 

temperatures and in organic solvents. Independently, Sharpless et al.159 and Meldal with 

coworkers160 discovered that copper(I)-catalyzed azide-alkyne cycloadditions (CuAAc), 

popularized as click chemistry, can be performed at ambient temperature and in aqueous phase. 

Soon, click chemistry concept becomes a simple solution for long known challenges – synthesis 
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of complex polymeric structures as co-polymers and dendrimers,161 bioconjugation162 and 

surface functionalization.163 The combination of electrospinning and click chemistry resulted 

in several interesting studies.164–166 

Fu et al.164 reported a three-step process for obtaining solvent-resistant and thermo-

sensitive crosslinked nano-fibers (Figure I.7). Firstly, they obtained poly(4-vinyl-benzyl 

chloride)-b-poly(glycidyl methacrylate) (PVBC-b-PGMA) copolymer by reversible addition-

fragmentation chain-transfer (RAFT) polymerization which was then electrospun. Fibers 

collected were exposed to a sodium azide solution to obtain azide groups at the surface.  

 

Figure I.7. Thermo-sensitive nanofibers obtained from combined RAFT polymerization, 

electrospinning and click chemistry164 

Some of surface azides partially crosslinked with epoxy groups of PVBC, while the rest of the 

azides were covalently bonded using click chemistry to N-isopropylacrylamide (NIPAM). 

NIPAM was further polymerized into thermo-sensitive PNIPAM brushes at the surface of 

crosslinked nanofibers. Final fibrous structure showed good resistance to solvents and was able 

to respond on temperature stimuli by changing their hydrophilicity. However, the multi-step 

process before obtaining desired structure makes this approach quite complex and time 

consuming. 
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Xu et al.167 investigated a convenient synthesis-approach for obtaining saccharide end-

functionalized polyesters. Synthesis of saccharide end-capped polyesters could be achieved by 

ring-opening polymerization (ROP) of lactones or lactides initiated by saccharides, which 

requires many protection-deprotection steps. That is why Xu et al. chose a post-polymerization 

modification of polyesters with saccharides. They compared synthesis protocols for obtaining 

saccharide terminated PCL via Michael addition and click chemistry. Xu et al. observed that 

both Michael addition and click chemistry were successful in PCL end-functionalization with 

saccharides without degradation and side products.  

As noted from previous examples of surface functionalization – click chemistry is a 

convenient method for making a material surface active with various physicochemical 

properties accessible for action and interaction with other substances.  
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4 Conclusions 

Nano-fibrous materials with a high specific surface area and porosity are of the outmost 

value in the field of biomaterials science and tissue engineering. Electrospinning offers a 

possibility to process a wealth of biopolymers, their blends, composites and even monomers in 

a rather simple and a cost-effective way into ultra-fine fibrous scaffolds. The interest in this 

technique is reflected through many studies dealing with the improvements of processing and 

solution parameters and setup evolution.  

From a fundamental point of view, it is important to investigate the physicochemical 

phenomena of both polymer solution for electrospinning and fibers obtained therefrom. There 

are many techniques available for studying the morphology (SEM, TEM, AFM) and polymer 

structure of a material, such as crystallinity (XRD, SANS). Small angle neutron scattering 

stands out as a powerful technique for characterization of polymeric structures on both 

molecular and supra-molecular level, in both amorphous and crystalline state. It has been 

confirmed as a sensitive tool for anisotropy evaluation in confined structures. To date, very few 

publications discuss SANS on electrospun fibers and more is to be revealed about polymeric 

structure within these nonwovens. 

Biomedical research and tissue engineering in particular have shown a notable interest 

in electrospun fibers. With the fibrous structures and a porous architecture very similar to those 

of extracellular matrix, electrospun nano-fibrous mats represent an ideal candidate for cell 

culture and outgrowth. However, materials’ structure is not enough for stimulating a positive 

response of targeting cells. Physicochemical properties at the surface of material are essential 

for cell recognition, adhesion and proliferation. Placed at the surface of the cells, carbohydrates 

enable communication and interaction of the cell with various molecules and other living 

organisms due to their structural versatility. However, their weak mechanical properties and 
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instability, once formed into fibers, caused the simultaneous use of carbohydrates with synthetic 

polymer structures. Physicochemical functionalization methods have shown helpful in bridging 

the gap between the structure and optimal chemical property of a biomaterial for a desired 

application. Click chemistry has been evidenced as appropriate technique for enriching the 

surface of a material in both aqueous and organic environments. The employment of click 

chemistry on electrospun fibers has demonstrated its great potential in drastically changing the 

surface properties of the fibers. Yet, complicated multi-step procedures might be an issue, and 

novel paths should be investigated for a simpler and versatile approach in click coupling 

practice. 
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Chapter II – Chain Conformation and 

Thermal Annealing within Electrospun 

Polystyrene Fibers – a Small Angle 

Neutron Scattering Study 

Small angle neutron scattering (SANS) is ideal for probing various macromolecular and 

micro structures: polymers, colloids and surfactants, voids and precipitates, porous media, 

biological structures (proteins, membranes, vesicles in solution), nanoparticles.168 Samples for 

SANS analysis could be in various forms (solid, liquid, gels, etc.) and in various environments 

(heating/cooling, shear, pressure, magnetic field, etc.). Diversity of polymeric materials and 

valuable physicochemical characteristics on both molecular and macromolecular level that can 

be studied have allowed a constant progress of SANS technique and made it a precious tool in 

structure and dynamics analysis. 

Popularity of electrospinning process caused a simultaneous development and 

adjustment of characterization techniques for better qualitative and quantitative analysis of both 

process and structure of electrospun fibers. However, fast whipping-like motions of the jet 

prevent investigation of the fiber formation process in situ and consequently, quantification of 

the strain exerted on polymer chains within the fibers under high electric field. Thus, one cannot 

say with certainty what happens to the polymer chain inside the fiber in formation, just before 

it reaches the grounded collector, as the jet cannot be recorded and visualized due to the process 

stability. On the other hand, polymer chain conformation and relaxation dynamics, affecting 



} Chain Conformation and Thermal Annealing of Electrospun Polystyrene Fibers – a SANS Study 

92 
 

the stability within the electrospun fibers, will also have a determining role in tissue engineering 

as one of possible application domains. As a consequence, many researcher papers have 

investigated jet elongation rate and chain conformation through mechanical and spectroscopic 

studies. As illustrated in Scheme II.1, two distinctive points of view are noticed in the literature. 

Some studies highlight chain elongation that remains once the fibers are electrospun.169,170 

Others are suggesting polymer chain relaxation inside the fiber bulk until complete solvent 

evaporation.88,171–173 By means of mechanical and thermodynamic properties of electrospun 

fibers, Arinstein and Zussman169 determined the nonequilibrium state of the polymer matrix 

within the fibers and its only partial relaxation before the total solvent evaporation. On the other 

hand, small-angle-neutron-scattering (SANS) studies on polystyrene fibers of Mohan et al.172 

observed only 5% greater value of radius of gyration in electrospun fibers than in the bulk state, 

claiming almost complete polymer chain relaxation.  

 

Scheme II.1. Illustration: An open question – what is the final state of polymer chains inside the 

electrospun fibers? 

To address the problem of existing discrepancy in the literature, the anisotropy of fibers 

electrospun from highly monodisperse polystyrene was investigated employing SANS 

technique. Polystyrene was chosen as a typically amorphous polymer and there is no partial 

crystallization to eventually perturb the analysis of molecular organization of the polymer 

chains. Additionally, chain conformation in as-spun state and its evolution after thermal 

annealing were analyzed. Electrospun fibers made of polystyrene, having narrow molecular-
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weight-distribution (MWD), were used as a model for these studies. Following chapters will be 

dealing with the process of preparation and electrospinning of polystyrene solutions, and 

finally, SANS analysis of electrospun fibers in as-spun and annealed state. Electrospinning 

technique will be briefly demonstrated on the polystyrene solutions, describing the fiber’s 

structure and morphology. Next, by analyzing the electrospun fibers with SANS, the practical 

aspect of this technique will be introduced through the data analysis and interpretation. Both 

conformation and relaxation dynamics of macromolecular chains will be analyzed by SANS 

technique.  

1. Electrospun Polystyrene Fibers – Processing and 

Characterization 

Polystyrene was employed as a model-polymer for studying the chain conformation in 

electrospun fibers. Polystyrene is amorphous polymer and thus convenient to investigate the 

chain orientation and alignment in electrospun fibers without possible confusion of crystalline 

zones with the chain alignment as in the case of semi-crystalline polymer.  

Two types of polystyrenes were electrospun for SANS measurements: one from Sigma 

Aldrich, Belgium, with large molecular weight distribution (MWD), and the other one from 

PolymerSource, USA, atactic, with narrow MWD. Both polymers used had close values of 

weight-average molecular weight, as presented in Table II.1. For all the polymers tested, MWD 

was determined using gel-permeation chromatography (GPC) with THF as a solvent and the 

results are presented together with the supplier’s information of the polymer in Table II.1. 

From the comparison of GPC results of both producers, one could notice that 

PolymerSource gives similar information on polymer number- (Mn) and weight-average (Mw) 
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molecular weights, while the information from Sigma is deviated from the one obtained by 

GPC measurements. 

Polymer Mn 
(supplier), 

g mol-1 

Mn 
(GPC), 
g mol-1 

Mw 
(supplier), g 

mol-1 

Mw 
(GPC), g 

mol-1 

MWD 
(supplier), 
(Mw/Mn) 

MWD 
(GPC), 

(Mw/Mn) 

PS (Sigma) 

hPS (PolymerSource) 

dPS (PolymerSource) 

dPS (PolymerSource)normalized 

170000 

360000 

350000 

325000 

98000 

367000 

322000 

299000 

350000 

392000 

385000 

358000 

351000 

429000 

375000 

349000 

2.06 

1.09 

1.10 

1.10 

3.57 

1.17 

1.17 

1.17 

Table II.1. Number (Mn) and weight average (Mw) molecular weights and molecular-weight 

distributions (MWD) of the polystyrenes used, given by the supplier and measured by GPC technique  

Consequently, the GPC values of MWD of PolymerSource PS and Sigma PS differ 

significantly from those given by the supplier, from 1.10 to 1.17 and from 2.06 to 3.57, 

respectively. Thus, the values of MWD found experimentally by GPC will be used in further 

analysis. 

1.1. Preparation and Electrospinning of Polystyrene Solutions 

There are many solvents available for dissolution of polystyrene. All of them were 

already tested in the electrospinning process.46,47,174 In this study, preliminary electrospinning 

tests were done on PS from Sigma dissolved separately in THF and DMF and influence of 

solvent on fiber morphology was investigated (see Figure II.1). FESEM (field-emission gun 

SEM) images of electrospun fibers from THF (Figure II.1A) and DMF (Figure II.1B) show two 

distinctive structures. Fibers obtained from PS/THF solution gave flattened, ribbon-like 

structures with significant number of pores at the surface. On the other hand, PS/DMF solution 

was electrospun into cylindrical fibers with slightly rough surface but without visible pores. 

Additionally, fibers electrospun from THF had notably greater fiber diameters than the fibers 

where DMF was used as solvent. 
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Indeed, previous studies on PS/THF solutions reported similar observations – ribbon-

like fibers with a strong affinity to pore formation.47 Koombhongse et al.33 have observed that, 

after the skin formation, some trapped solvent in the fiber bulk evaporate, causing the fiber 

collapse to the flattened structure, which results in this kind of fiber cross-section.  

  

Figure II.1. FESEM images of electrospun polystyrene fibers from (A) THF and (B) DMF solvents and 

their magnifications as insets 

Unlike THF, DMF is less effective in PS dissolution (fair solvent for PS), but it facilitates the 

electrospinning process and gives uniform tubular fibers.175,176 Examples reported herein, as 

well as those from the literature, highlight the fact that the best solvent for dissolution is not 

always the optimal one for electrospinning. Therefore, it was decided that DMF will be used as 

a solvent for preparing PS electrospun fibers. 

Electrospun PS fibers were aligned using a rotating disc. Figure II.2 represents an image 

capture of the electrospinning setup with the syringe containing a polymer solution, syringe 

pump, high voltage electrodes and the rotating disc, manufactured in our laboratory. 

Electrospinning setup is placed horizontally, to avoid possible solution dropping onto the 

collected fibrous mesh.  
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Figure II.2. Image capture of electrospinning setup with a rotating disc for collecting aligned fibers 

Different types of polystyrene, dissolved previously in DMF, were drawn into fibers 

using electrospinning setup previously described. Solution and processing parameters were kept 

the same for all the polymer solutions tested and in accordance with the previous literature.38,177–

179 Fashandi et al.180 implied to the pore formation at the surface of PS fibers electrospun in 

humid atmosphere of about 60%. On that account, in this study, humidity was kept below 20% 

by constant purging of dry air in the electrospinning chamber.  

The concentration of 27 v/w% was determined for formation of uniform fibers without 

beads from the PS/DMF solution system which is in close agreement with previous reports.177 

Eda and Shivkumar studied the solvent effect on electrospinning monodisperse polystyrene and 

the fiber diameters obtained therefrom.181 For a polystyrene of Mw = 393400 g mol-1 (MWD~1) 

in DMF, they reported uniform fibers without beads for a concentration of 24 w/v%, which is 

very close to our 27 w/v% concentration used. The fibers obtained from PS (Sigma), hPS and 
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blend hPS/dPS (PolymerSource), were named f-PS, f-hPS and f-hPS/dPS, respectively, and are 

presented in the Figure II.3. Similar morphology was observed, with a rough surface without 

pores and a cylindrical shape of all three types of electrospun fibers. It is important to notice 

that the addition of perdeuterated PS did not influence the formation or morphology of f-

hPS/dPS fibers, indicating good blending of hPS and dPS and no phase separation between 

these two polymers.  

 

Figure II.3. FESEM images of electrospun: (A) f-PS, (B) f-hPS, and (C) f-hPS/dPS polystyrene fibers 

Rough surface observed on the FESEM image (Figure II.4A) is suggesting fast skin 

formation at the surface of the jet and possible solvent residues, followed by formation of pores 

after the solvent evaporation. In the doubt of porous structure inside of f-hPS/dPS electrospun 

fibers, the transection of the fibers was done and their morphology was observed. Polystyrene 

fibers were entrapped inside the resin and a thin sample was cut using microtome instrument. 

Figure II.4B represents the TEM image of the f-hPS/dPS fibers’ transection. Some of the fibers, 

colored in light gray on TEM image, form irregular ellipses, suggesting the fusion process via 

fiber surface contact. Considering the size of these ellipses of about 2.5 µm, it is most likely 

that the fibers were fused during the resin solidification process. Under low humidity 

conditions, there are no pores observables at the surface or inside the fiber bulk at this 

B A C 
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magnification. Rough surface morphology observed, is therefore only a result of fast solvent 

evaporation during the electrospinning process. 

 

Figure II.4. f-hPS/dPS electrospun fibers observed by (A) FESEM and (B) TEM (microtome 

transection of resin-entrapped fibers) 

Further investigations of electrospun PS fibers through FESEM technique were 

conducted toward analysis the fiber diameter statistics and alignment. 

1.2. FESEM Imaging Analysis of Fiber Diameter of PS Nonwovens 

Statistical analysis of fiber diameter distribution of electrospun f-PS, f-hPS and f-

hPS/dPS fibers was studied. On Figure II.5 are shown fiber diameter distribution curves of 

hydrogenated PS collected in aligned (monodisperse) and randomly (mono- and polydispersed) 

fashion. Fibers electrospun from a polydisperse polystyrene (PS) (MWD=3.6) had average fiber 

diameters of 1363±267 nm, while monodisperse polystyrene (hPS) (MWD=1.2) of the same 

Mw was electrospun into fibers having average diameters of 360±91 nm (Figure II.5). Also, it 

was observed that randomly collected fibers were of diameters inferior to the ones of aligned 

fibers. Additionally, diameter distribution trend of polydisperse PS were significantly wider 

than for monodisperse PS. These results are showing that, for the same solution and processing 

conditions of the same polymeric structures, molecular-weight distribution of that polymer will 

have a significant influence on fiber diameter and diameter-distribution trend. While 

B A 
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monodisperse PS will be electrospun into fibers having submicron diameters and narrow 

diameter distribution, polydisperse PS will give micron-sized fibers with large diameter 

distribution trend.  

 

Figure II.5. Average fiber diameter distributions of aligned polydisperse PS (dark gray columns) and 

monodisperse PS (light gray columns) as well as randomly collected monodisperse PS (black 

columns) 

Investigating the role of chain entanglements on fiber formation, Shenoy et al.38 gave 

the correlation between the polymer molecular weight and the concentration for fiber formation 

without beads. However, they do not mention nor study the MWD within their correlation 

model. Our results are clearly showing that not only molecular weight and viscosity index but 

also the molecular-weight-distribution factor is influencing chain entanglements and fiber 

formation.  

It was hypothesized that the polymer chains, having narrow MWD, equally participate 

in entanglement formation, while for polymer with broad MWD only longer chains entangle 

while the smaller coils are left un-entangled and isolated. As a consequence, for a given 
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concentration, electrospun fibers from narrow-MWD polymer will have smaller fiber diameters 

when compared with the fibers issued from broad-MWD polymer (Figure II.5). Gupta et al.37 

implied to the similar observation when studying electrospun poly(methylmethacrylate) 

(PMMA) fibers. In their case, the difference in MWD (from 1 to 2) influenced drastically the 

fiber formation at the same concentration: while uniform fibers were formed from PMMA 

having narrow MWD, only droplets were observed of PMMA having broader MWD. They 

explain that in a narrow-MWD polymer all chains have nearly the same hydrodynamic volume 

leading to the same relaxation dynamics. Contrarily, polymers with broad MWD have wide 

distribution of the hydrodynamic radii and consequently, their relaxation times. When 

electrospinning a polymer with broad MWD, smaller polymer chains with a smaller 

hydrodynamic volume and lower chain entanglement density will cause a premature jet break, 

resulting in a formation of polymer droplets.37 

In the light of the previous observations, it could be concluded that the molecular weight 

distribution plays a key role in the fiber’s formation. Therefore, the influence of MWD on fiber 

formation should be included in the calculations of the chain entanglement number (ne) and 

concentration (ce). Additionally, electrospinning of hPS/dPS polymer blend for SANS 

measurements produced fibers having average fiber diameters close to those obtained with the 

pure hPS polymer (360±91 nm and 442±80 nm, respectively). This result is indicating that the 

perdeuterated polymer had no significant influence on polymer-solvent and polymer-polymer 

interactions in the blend, or on the morphology of electrospun fibers.  

1.3. FESEM Imaging Analysis of Polystyrene Fiber Alignment 

A single fiber processed by electrospinning of nano- and micro-sized diameters is not 

practicable for SANS as it gives a weak signal of scattered neutrons. In order to obtain a 

satisfactory signal-to-noise ratio, a bundle of uniaxially aligned fibers is required.  
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A rotating collector was used to collect a membrane of aligned fibers. Several rotating 

velocities were tested on monodisperse atactic hPS, in the limit of our setup capacities. Once 

the fibers were electrospun, average fiber diameters were calculated as an average value of 150 

measurements and the results are presented in Table II.2. By simply changing the collector 

conditions, fiber direction could be regulated. 

By regulating the collector speed, fiber orientation and diameter size could be 

controlled. At the rotational speed of zero, fibers are randomly deposited onto the collector. 

While the speed increases, a preferential orientation of collected fibers will start to get noticed. 

When linear speed of rotating disc equals downward speed of flying jet, collected fibers will 

start to align.60 Further speed increase will cause additional fiber extension due to mechanical 

drawing of the polymer chains. At that point, the speed of the collector is greater than the speed 

of fiber formation during electrospinning. As a result, fiber diameter will decrease. However, 

at certain point, the force of mechanical stretching of the jet will overcome the physicochemical 

bonds in the solution and its surface tension, causing the jet break-up, and consequently, fiber 

diameter increase.172 

sample velocity (m s-1) AFD (nm) 

hPS-0 

hPS-1 

hPS-2 

hPS-3 

hPS-4 

hPS-5 

hPS-6 

0 

1.33 

2.30 

3.25 

4.17 

5.26 

6.21 

0,673±0,136 

0,520±0,124 

0,430±0,101 

0,396±0,086 

0,377±0,083 

0,390±0,083 

0,360±0,091 

Table II.2. Statistical results of average fiber diameters (AFD) at different collector velocities for f-

hPS electrospun fibers 
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Rotational speeds employed in this study were in the range of fiber alignment and 

polymer stretching, before the jet break-up. This is important to know as there is no scientific 

interest in observing the chain elongation rate after the jet break-up point.  

From the Table II.2 it could be noticed that, for the rotational speed-range investigated, 

the average fiber diameter decreased with increase of the rotational speed. It could be thus 

concluded that, in this range, mechanical stretching of the jet by the rotating disc did not cause 

the jet break-up. Finally, the rotational speed for aligning the PS fibers for SANS measurements 

was fixed at the upper speed limit of 6.21 m s-1. Alignment rate was studied from FESEM 

images represented in the Figure II.6 and presented in a form of statistic graphic in Figure II.7. 

 

Figure II.6. FESEM images of aligned (A) PS, and (B) hPS/dPS-based fibers 

Preferential direction of collected fibers is clearly evident from FESEM images (Figure 

II.6). However, it could be also observed that some fibers took arbitrary directions. It is 

hypothesized that during time, charge repulsions between isolating fibers increase by increasing 

the fiber’s thickness, and consequently cause the fluctuation in the fiber alignment. As a 

consequence, fiber alignment will gradually decrease with the increase of sample thickness. In 

our case the aberration from imposed direction, observed at the surface of the fibrous scaffolds, 

does not overpass 30° (Figure II.7). 
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Figure II.7. Statistical graphic of the average alignment direction (°) of the f-hPS/dPS fibers 

After the characterization of fiber morphology, SANS measurements were performed, 

and further data analysis and interpretation are the subject of the following sections. 

2. SANS from Electrospun Polystyrene Nanofibers 

SANS experiments on electrospun fibers were done in Laboratoire Léon Brillouin, 

Saclay, on PAXY spectrometer at room temperature and atmospheric pressure. Scattered 

neutrons, forming a 2D contour plot of iso-intensities, were further transformed by Fourier 

transformations into a scattered intensity as a function of  vector (Scheme II.2A). For 

studying the influence of electrospinning process on polymer chain conformation and relaxation 

dynamics, two directions, lying in the detector plane, will be studied: parallel (//) and 

perpendicular (^) to the fiber alignment axis (Scheme II.2B). Simultaneously, a completely 

isotropic strain-free sample of electrospun fibers will be investigated. 
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Scheme II.2. Simplified representation of SANS experiment: scattered neutrons from a fibrous sample 

were collected into a 2D contour plot and further transformed into a I(q) vs. q curve (A), and sectors 

chosen for further analysis in the direction parallel (//) and perpendicular (^) to the fiber alignment 

axis (B) 

As mentioned previously, only few papers were dealing with the SANS analysis of 

electrospun fibers. SANS studies of Mohan et al.88,172,173 on polystyrene fibers were done on 

micron-sized electrospun fibers (~10 µm). Their choice of producing and observing micron 

fibers could be justified considering the strong scattering from the interface air-fiber (strong 

Porod effect in the Guinier regime) of these nonwovens. So as to reduce the specific surface of 

the fibers and consequently the Porod effect, they fabricated fibers with larger diameters. 

However, it is well known that polymer chain organization and further mechanical properties 

are different in micron- and nano-sized objects182–184 and this size-dependent behavior should 

be taken into account when studying the electrospun fibers. We therefore aimed toward 

submicron diameters of PS electrospun fibrous scaffolds. Deuterium labeling was achieved by 

blending of perdeuterated and hydrogenated PS in 50-50 % ratio and the blend was further 

electrospun into f-hPS/dPS fibers. Deuterium-labeled scaffolds were analyzed by SANS 

B 
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technique in order to investigate the polymer chain conformation and its potential relaxation 

dynamics after thermal annealing. 

2.1. SANS from Completely Relaxed Polymeric Chains 

With the purpose of preparing an isotropic sample from f-hPS/dPS fibers having 

polymeric chains completely relaxed, the fibrous scaffold was annealed above its glass-

transition temperature ( =100 °C) for a long period of time (128 °C for 140h). The same 

was further analyzed with SANS technique and the curve of scattered intensity I(q) versus q, 

with the corresponding 2D contour plot, is presented in Figure II.8. 
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Figure II.8. Scattered intensity from completely relaxed f-hPS/dPS fibers, annealed at 128°C 140h 

(filled squares), and corresponding Debye fit for Gaussian chain (red line); the inset shows 2D 

contour plot of this sample  

2D contour plot of iso-intensities shows uniform scattering pattern in all directions. It 

could be concluded therefrom that f-hPS/dPS scaffold, annealed at 128 °C for 140h, is 
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completely relaxed. However, for quantitative analysis of the chain conformation and polymer 

relaxation dynamics, the radius of gyration ( ) should be determined.  

For completely relaxed polymeric chains, radius of gyration can be calculated 

theoretically from the following equation: 

    (II.1) 

For the polystyrene used in this study ( = 389 kg mol-1), it is 

calculated to be (equation II.1): 

 

A standard procedure for defining the chain dimensions and radius of gyration values 

of polymeric chains from SANS experimental data can be estimated from the Guinier plot in 

low range ( ): 

      (II.2) 

From the curve  vs.  in the low  range, radius of gyration can be obtained as 

a slope, and it was estimated to be: 120±74 Å. It could be seen that this result is 

notably different from the theoretically predicted value, with a significant error in data fitting. 

It is hypothesized that the discrepancy between the theory and experiment may be due to a 

narrow range data were analyzed in.  

Another possibility is to make use of the intermediate part of the scattered intensity 

curve, and, by employing the Debye equation, deduce the value of radius of gyration,185 while 

avoiding the influence of the interface scattering: 
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   (II.3) 

Experimentally collected data of isotropic f-hPS/dPS sample were also analyzed by 

using the Debye law for Gaussian chains (equation II.3) in the larger, intermediate, range. 

The data fitting gave , which is close to the theoretical predictions 

of . Former studies of thin films ( ) observed that the chains in the thermal 

equilibrium take unperturbed Gaussian chain conformation and  values are close to those in 

the bulk in the direction parallel to the film surface.79,186,187 Herein, the polymeric chains, 

confined within the cylindrical ultra-fine fibers ( ), showed similar trend of value in 

the direction of the alignment axis. 

For the  range obtained from the SANS experiment, better evaluation of the radius of 

gyration of polymeric chains within the electrospun fibers can be obtained from the Debye than 

the Guinier fit. This is thought to be due to the larger data range analyzed in the intermediate 

domain than the domain of  below the  value. For that reason, in this study, the experimental 

value of , obtained from the Debye fit of f-hPS/dPS scaffolds annealed at 128 

°C for 140h, will be used in further analyses. 

2.2. SANS Analysis of As-Spun PS Fibers 

Herein, the qualitative observation of the typical SANS curves will be discussed. The 

subsequent comparison of the as-spun with the isotropic f-hPS/dPS electrospun fibers will 

follow the discussion remarks. 

In Figure II.9, the scattered intensity  as a function of  for as-spun f-hPS/dPS fibers is 

represented, with a 2D contour plot as inset. The contour plot of iso-intensities has an elliptical 
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shape, suggesting an anisotropic character of electrospun fibers. Indeed, Figure II.9 shows that, 

at low  values,  and  in the direction parallel and perpendicular to the alignment 

axis, respectively, are not superposing, and thus indicating the anisotropy of the samples. 

 

Figure II.9. Scattered intensities (I(q) vs. q) of as-spun f-hPS/dPS fibers in parallel (filled squares) 

and perpendicular (half-filled circles) direction; 2D contour plot as inset 

The scattered intensity functions  in directions // and ̂  to the fiber’s axial direction, 

exhibits power-law dependence at low with an exponent of 4, characterizing strong surface 

scattering and Porod effect. It has been already observed that the contribution of surface 

roughness of thin films to the scattering data manifests itself at low  values.79 Indeed, FESEM 

images showed previously (see Figure II.4A), clearly visualize rather rough surface 

morphology that could partially explain strong Porod effect observed on SANS curves of 

electrospun f-hPS/dPS fibers. Strong scattering at low values, observed by Mohan et al.172, 

was assigned to the scattering from the voids inside the electrospun fibers, but it is thought 

herein to be more likely a sum of neutron scattering from voids inside, and pores between the 

fibers. 
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In Figure II.10,  is plotted versus  for the as-spun fibers in parallel (open circles) 

and perpendicular (open triangles) direction to the alignment axis. Looking at this Kratky-Porod 

representation, f-hPS/dPS fibers in ^ direction show a maximum and constant increase in // 

direction, while isotropic sample displays a plateau characteristic for Gaussian chains. This 

behavior had been thoroughly investigated and reported by F. Boué.188 Curves  and 

 are suggesting once again the anisotropic behavior of electrospun fibers, converging 

to the isotropic plateau at high values of . At small  values, the descending trend in both // 

and ^ directions of as-spun fibers stands for the Porod effect, observed previously in Figure 

II.9 in the same -range. 

 

Figure II.10. Kratky-Porod representation of as-spun f-hPS/dPS fibers in direction parallel (open 

circles) and perpendicular (open triangles) to the alignment axis, and of completely isotropic f-

hPS/dPS fibers, annealed at 128°C 140h (filled squares) 

The anisotropy observed might be simply due to the fiber alignment, but could be also 

reflecting the anisotropic conformation of polymeric chains. In order to investigate the source 
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of this trend, the analysis of polymer chain dimensions and their elongation ratio were next 

discussed. 

2.3. Chain Conformation within Electrospun Fibers 

It is known that the electrospinning process induces high elongational strain of the 

polymer jet during the whipping motions and bending instability.189 However, later stages of 

polymer jet evolution during its flight are not yet investigated, which endures the question 

whether polymer chains are stretched within the polymer jet, and if so, are they relaxed 

(partially or entirely) or not once the solid fiber is formed. 

Next sections will be investigating the chain conformation within as-spun polystyrene 

fibers and different analyzing techniques will be employed.  

2.3.1 Radius of Gyration 

Radius of gyration ( ) gives direct information about the existing anisotropy of 

polymeric chains. As mentioned previously,  of electrospun fibers can be quantified by fitting 

the scattered intensity with either Guinier or Debye law in the corresponding  domain.  

Figure II.11 shows the comparison of experimental and theoretical curves vs.  in 

both parallel and perpendicular direction to the alignment axis of as-spun fibers and a 

corresponding isotropic sample, respectively. A notable difference was observed between as-

spun and isotropic scaffold at the low range, where  value could be commonly calculated, 

showing the strong scattering from the fiber’s surface and Porod effect. For that reason, the 

chain dimensions within the electrospun fibers cannot be obtained by standard Guinier method, 

and a different approach should be considered.  
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Figure II.11. I(q) vs. q plots of as-spun f-hPS/dPS fibers in perpendicular (half-filled circles) and 

parallel (filled squares) direction, and isotropic f-hPS/dPS fibers (open triangles); gray dotted line 

marks the validity limit for Guinier regime 

As previously noted, a better -estimation was found by using the Debye fit. Similarly, 

for the valorization of the  of as-spun f-hPS/dPS fibers, only the Debye fit will be used. Still, 

there are some inconveniences that should be taken into account when using this equation for 

fitting the scattered intensity from as-spun fibers. Debye fit is devoted to evaluate the radius of 

gyration of spherical objects. In order to minimize the possible errors in fitting analysis, Debye 

fit should be used for scattered intensity in the parallel direction where the Porod effect is less 

pronounced (see Figure II.11).185 Also, in this intermediate region of  one cannot talk about 

the absolute radius of gyration because it overpasses the regime of Guinier where this value 

could be accurately determined. Therefore, the value of calculated from the experimental 

data will be named hereafter as apparent . In order to obtain this value, Debye fit was 

performed without taking into account the scattered intensities in the low  domain. For the as-

spun f-hPS/dPS fibers, value of apparent  was found to be: 
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Significant error obtained from this fit is hypothesized to be a result of: (i) very sensitive 

nature of this fit due to the strong interface scattering and Porod effect, and (ii) as Debye fit is 

dedicated to typically Gaussian polymer chains (spheres) it will not completely follow and fit 

the tendency of elongated chains in electrospun fibers. 

It could be concluded from these studies that it is possible to use Debye fit to obtain the 

information of the chain conformation within as-spun fibers. However, the fitting process is 

highly sensitive to the data range selected due to the strong Porod effect, which further 

contributes to the quality and accuracy of the fit. 

2.3.2 Elongation Ratio 

There is, however, another possibility to quantify the anisotropy inside the electrospun 

fibers without going into sensitive data modeling. It is known that iso-intensity curves join all 

the detector cells which have counted the same number of neutrons in all directions (  vector). 

Therefrom, for equal scattered intensity, the  values in the direction parallel and perpendicular 

to the fiber alignment axis could be obtained. It is known that affinely deformed samples should 

give ellipses with an elongation ratio:185 

     (II.4) 

If now the curve  vs.  is considered, both deformation ratio due to the fiber alignment and 

deformation ratio due to the chain elongation can be visualized (Figure II.12). From this figure, 

at  values higher than 0.4, corresponding to the polymer chain segments smaller than 15.7 Å, 

the  ratio equals 1. It could be concluded that, at this scale, the sample is completely isotropic. 

The anisotropic character of the system starts to be notable for  and it increases with the 
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decrease of . For , experimental data exhibit a significant departure from the fit. The 

anisotropic signature in the low  region ( ) is probably due to the interface scattering, 

as observed previously, while the anisotropy in the intermediate  values is likely reflecting the 

polymer chain conformation within the fibers. 
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Figure II.12. The  ratio as a function of ; solid line corresponds to the exponential fit in 

the domain of chain elongation; dashed line highlights the line of isotropic sample 

By using the polynomial fit for the intermediate region, where  corresponds to , and 

equation (II.4), the elongation ratio of the polymer chains was determined: 

 

Indirectly, by using the elongation ratio, apparent radius of gyration of the f-hPS/dPS 

scaffold in both // and ̂  direction to the fiber alignment axis, can be obtained from the following 

equations: 
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     (II.5) 

and 

      (II.6) 

For the as-spun fibers, the calculated values of  and 

 are found. Radius of gyration obtained from the elongation-ratio analysis is similar 

(slightly inferior) to the value obtained experimentally from the Debye fit. Nevertheless, the 

results from Debye fit and elongation ratio analysis are both suggesting the anisotropic structure 

of polymer chains within the electrospun fibers.  

2.4. Chain Relaxation Kinetics of PS Electrospun Fibers 

It has been demonstrated that, indeed, strong chain elongation and stretching during the 

fiber formation lead to the strained polymer chains along the fiber’s axis. A further analysis of 

polymer matrix within the electrospun fibers will include relaxation kinetics study after thermal 

annealing – very few-investigated domain of strain-induced electrospun fibers by SANS 

technique. 

Herein, the chain relaxation was investigated through thermal annealing of electrospun 

fibers at different temperatures above the glass-transition temperature ( ), during different 

periods of time. In order to wisely choose the temperature and corresponding time needed for 

partial or complete chain relaxation, it is important to know the terminal relaxation time ( ) 

of a material at a given temperature. The terminal relaxation time for different temperatures 

was calculated from the following P. Cassagnau190 relationships: 

     (II.5) 
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and 

    (II.6) 

Where =160 °C is a reference temperature and  is the terminal 

time for that temperature and  is scaling parameter in time-temperature superposition. The 

calculated values of  and  for Mw = 390000 g mol-1 and different temperatures are given 

in Table II.3. 

Temperature, °C  , h 

105 

115 

122 

128 

1,68 E6 

2,10 E4 

1992 

369 

21951 

274 

26 

4,8 

Table II.3. Calculated values of termination time  for different annealing temperatures 

Electrospun f-hPS/dPS fibers were then annealed at different temperatures above  

during the short time periods. As discussed earlier, strong Porod effect at low  range disables 

fitting of Guinier law and attaining accurate . The curves of scattered intensity versus  in 

the fiber’s axial direction were therefore fitted with Debye law, having in mind all the 

shortcomings of this method evoked previously. The values of radius of gyration as well as 

elongation ratio (λ) of annealed fibers, for different annealing temperatures and periods, are 

presented in Table II.4. 
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T, °C t, min   

105 

115 

122 

128 

30 

30 

30 

20 

226±34 

198±25 

198±8 

194±13 

1.45 

1.27 

1.27 

1.24 

Table II.4. Chain dimensions ( ) and affine ratio (  of electrospun f-hPS/dPS fibers 

annealed at different temperatures and for different time periods, in direction parallel to the alignment 

axis, obtained from Debye fit 

As it could be observed from Table II.4, while increasing the annealing temperature, a 

constant decrease of  and consequently λ, were observed. By increasing the temperature from 

105 °C to 128 °C, the elongation ratio slowly decreased from λ=1.45 to λ=1.24, respectively. 

Accordingly,  decreased from 226 Å for the fibers annealed at 105 °C for 30min, to 194 Å 

for those annealed at 128 °C for 20min. On the contrary, the ratio  noted by Mohan et al.172 

was around 1.05 (equals to λ=1.03) and did not overpass the value of 1.2 (equals to λ=1.13) at 

the highest collector speed. Even though they expected the elongation ratios of the same 

grandeur as observed macroscopically by measuring the extension ratio,  ratio and 

birefringence analyses were both indicating to the small level of molecular anisotropy.172  

Indeed, there are several distinguishable differences between the study of Mohan and 

coworkers, and the one reported herein: 

1) While they used as thick as 10 µm fibers, electrospun fibers in this study did 

not overpass the submicron diameters and were of the order of 360 nm.  

2) Mohan et al. confronted the problem of skin formation during the 

electrospinning process that further caused the solvent entrapment inside the 

fiber bulk and consequently the ribbon-like fiber formation. The fast skin-
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formation problem was overpassed herein by electrospinning the fibers under 

low humidity atmosphere (< 20%). As a result, the fibers formed were having 

cylindrical structures.  

3) Electrospun fibers, obtained by Mohan et al., were containing many voids and 

pores within the fiber bulk, probably as a result of residual solvent which might 

have been causing the polymer chains to relax and therefore resulting in small 

anisotropy measured by SANS. Due to the low humidity atmosphere used 

herein, electrospun polystyrene fibers did not contain voids or pores inside the 

fibers. 

4) In the former studies Mohan et al. reported wide polymer molecular weight 

distribution of the polystyrene used. It has been already observed that chain 

dynamics within the fibers made of the same polymer is not the same for large 

and narrow MWD.37 For that reason, the polystyrene having narrow MWD was 

used in this study for more accurate and more rigorous investigation of chain 

dimensions in as-spun state as well as chain dynamics during thermal annealing. 

The solvent evaporation kinetics, compared between nano- and micron-sized fibers, is 

not the same, simply because of the longer diffusion trajectory until the fiber’s surface. To that 

matter, polymer chains inside those fibers have much more time to relax and therefore could 

have less stress-induced conformation what could explain their small anisotropic behavior 

observed. Additionally, it is known that, broader the molecular weight distribution is, higher 

the concentration is needed to attain chain entanglements,191 which at the same time results in 

thicker fibers. The arguments described previously go in behalf of the small anisotropy (

) they observed as well as the  values similar to the bulk.172,173 However, Mohan et al.173 

did observe that  value increased with the decrease of fiber diameter, confirming the 
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importance of the fiber diameter and size-dependent physicochemical characteristics of 

electrospun fibrous mats.  

2.5. A Comparative Study of Polymer-Chain and Surface-Relaxation 

Kinetics of Electrospun Fibers  

Beside the short annealing periods of electrospun polystyrene fibers discussed so far, 

longer annealing periods have been studied as well, in order to simultaneously analyze surface 

and chain relaxation of the fibrous scaffolds. These studies are important to further determine 

a characteristic relaxation time of the polymer of interest. The characteristic relaxation time 

could provide the information about the polymer stability inside the electrospun fibers – an 

important parameter for degradation processes in tissue engineering applications. 

Two types of relaxation kinetics have been investigated. Polymer chain relaxation has 

been evaluated through the time dependency of the apparent radius of gyration within the 

electrospun fibers. The value was obtained by fitting the Debye equation for Gaussian chains 

(see equation II.3) in the intermediate  range, giving the apparent radius of gyration ( ) for 

different annealing periods. The surface relaxation kinetics was extracted through the evolution 

of the Porod law ( ) at low range, providing a surface-to-volume ratio of the fibers: 

 (Table II.5). Both surface and chain relaxation kinetics were investigated in the direction 

parallel to the alignment axis.  

Surface annealing was materialized through Porod constant in the parallel direction 

obtained from the following equations: 

     (II.7) 

    (II.8) 
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where  is a scattering length density difference between air and sample, and  is 

perdeuterated polymer ratio in the blend ( ). Therefrom, the surface-to-volume ratio  

of electrospun scaffolds and their evolution during the thermal annealing can be evaluated from 

the following equation: 

      (II.9) 

Annealing 
temperature (°C) 

Annealing 
period (h) 

, (Å)  (for a 
constant Porod) 

, (Å-1) 

0 

115 

115 

115 

115 

128 

0 

2 

4 

6 

11 

1.5 

248.6±67 

178.1±4.4 

149.1±2.7 

136.5±2.5 

112.2±2.1 

114±2 

1.12E-6 

1.62E-7 

1.38E-7 

1.03E-7 

9.13E-8 

5.60E-8 

8351 

1208 

1029 

768 

681 

418 

Table II.5. Radius of gyration (Rg) and Porod constant (A) for different thermal annealing temperature 

and time intervals 

From the Table II.5, a descending trend of the Porod’s constant  and the corresponding 

surface-to-volume  ratio of the fibrous mats was observed. About 85% of the total surface-

to-volume ratio relaxed in the first two hours of thermal annealing at 115 °C to further slowly 

relax over 91% for the next 4h, until the relaxation of 95% of the specific surface after 1.5h at 

128 °C.  

As observed previously on the short-time annealing periods, by increasing the time of 

polymer annealing above  and by enabling the chain movements, radius of gyration ( ) will 

decrease.  obtained after longer annealing periods is found to follow a similar trend (Table 

II.5). Significantly different values of evolution of the chain dimensions are observed and 
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considered as a result of both data and modeling uncertainties. Aware of this difficulty, the  

values will be used herein only as a guide for predicting a tendency of the characteristic 

relaxation time.  

The classical way to determine the terminal relaxation time of a material is through 

analysis of the deformation ratio (λ) of polymeric chains as a function of time – from strained 

to completely annealed polymeric materials. Due to encountered difficulties in the data 

processing and extracting the value of radius of gyration of the as-spun fibers, another approach 

was employed in this study. In the time-window of interest, polymer chain and surface kinetics 

of the scaffold are reported as a function of the equivalent time . In Figure II.13, polymer 

chain relaxation kinetics was displayed as  ratio ( ), while the kinetics 

of surface relaxation was displayed as a ratio of Porod constant  ( ), of 

as-spun and annealed fibers in the direction parallel to the fiber alignment axis. Solid line in 

Figure II.13 is an exponential fit following the annealing trend of polymeric chains. Dashed 

line in the same figure serves only as an eye guide for the surface relaxation tendency.  
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Figure II.13. A plot of relaxation ratio vs. time of radius of gyration  and Porod’s constant 

 in the direction parallel to the fiber’s alignment axis; reference temperature for time-

temperature superposition parameter aT is 128 °C 

It could be seen from the Figure II.13 that majority of the surface relaxed in the short 

time periods, while the relaxation of polymer chains took significantly more time. By using the 

exponential fit for the chain relaxation curve, we tried to extract the information about the 

characteristic relaxation time of those chains. Normalizing the  curve to 

the temperature of 128 °C, the characteristic time of  was determined. This 

experimental relaxation time is significantly shorter than the theoretically predicted terminal 

relaxation time for the polymeric chains of Mw = 390000 g mol-1 ( ), but both 

values are of the same order of magnitude. 

The surface relaxation kinetics of electrospun fibers is presented as filled squares in 

Figure II. 13. The  vs.  curve shows two types of time kinetics – the first one is 
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rather fast and after only 2h of annealing at 115 °C, the majority of the surface relaxed. The 

second part of the curve shows rather slow and constant surface-relaxation trend. The fast 

surface relaxation trend is likely to reflect the rapid relaxation of the surface tension of the 

material while the second part is thought to be the result of relaxation and fusion of polymer 

chains at the surface. 

A qualitative validation of the fast relaxation kinetics of the fiber’s surface was 

accomplished with scanning electron microscopy imaging (FESEM). The representative 

images of as-spun and annealed fibers and their corresponding SANS 2D contour plots are 

shown in Figure II.14. 

 

Figure II.14. SEM images of (A) as-spun and thermally annealed f-hPS/dPS fibers at (B) 115 °C for 

6h and (C) 128 °C 1.5h and their corresponding SANS 2D contour plots as insets 

By looking at the FESEM images of the surface of fibrous scaffolds, a drastic difference 

can be observed from as-spun (Figure II.14A) and annealed samples (Figure II.14B, C). It could 

be seen that the majority of the specific surface relaxed, and only fiber contours are visible. The 

temperature increase, from 115 °C (for 6h) to 128 °C (for 1.5h), caused the fibers to almost 

completely merge into each other, leaving the continuous surface of the sample (Figure II.14C). 

B A C 
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3. Conclusions 

The study exposed in this chapter was focused on investigation of the morphological 

properties of electrospun fibers, the anisotropy of polymeric chains within the fiber’s bulk as 

well as their stability. Electrospinning process was studied through polystyrene as an 

amorphous polymer-model. Structural characteristics of the fibers were analyzed 

microscopically (SEM) while chain conformation and thermal relaxation dynamics were 

analyzed by SANS technique.  

The first important information obtained from this study is the crucial influence of the 

molecular weight distribution (MWD) on fiber diameter. It was determined that, for the same 

polymer/solvent system and the same concentration, polydisperse polymer will produce 

micron-sized fibers, while monodisperse polymer will give nano-fibers under the same 

processing conditions.  

Another important point discussed in this chapter is the thermal annealing of electrospun 

fibers, and furthermore, their stability over time. Small angle neutron scattering studies of 

monodisperse PS within the fiber bulk showed distinctive anisotropy and elongation in the 

direction of the alignment axis of the fibers. The short-time annealing periods showed constant 

and progressive decrease of anisotropy materialized through elongation ratio and radius of 

gyration. The long-time annealing periods enabled us to determine the characteristic relaxation 

time and consequently the stability of the polymeric chains in confined fibrous structures. 

Furthermore, while the chain relaxation was slow but continuous, the surface of the fibers 

relaxed almost completely in the first two hours of annealing at 115 °C. 
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Chapter III – Functionalization and Bio-

Activation of PCL Nano-Fibers Using 

Click Chemistry 

Poly(e-caprolactone)-based nonwovens have been confirmed as a promising material 

for biomedical applications because of their biodegradability and biocompatibility.143,192 

However, their hydrophobicity and absence of functional groups have triggered many studies 

dealing with PCL modifications.104,193,194 These modifications were mainly focusing on 

improvements of hydrophilic properties for establishing a friendly interface for living cells. 

Recently, the attention has been paid to overcome the problem of non-specific protein 

adsorption on the electrospun fibers. A significant step toward specific protein adsorption using 

bio-functionalized polymeric fibers was made by D. Grafahrend and coworkers.195–199 They 

highlighted the importance of the polymer choice for electrospinning as well as the choice of 

active species at the fibrous surface. Therefore, for producing bioactive PCL-based materials, 

not only hydrophilic but also protein- and cell-recognized molecules should be used. Typical 

examples of such structures are carbohydrates.  

Carbohydrates perform numerous roles in living organisms. They serve as energy 

storage, or as structural components, but they are also involved in diverse cellular processes, 

enabling communication, proliferation, differentiation. Functionalization of polymers, such as 

polyolefins, with sugars has been explored periodically as a possible way to improve their 

biodegradability.200 Over time, carbohydrate-conjugated polymers have attracted attention for
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their biomedical applications. Chua et al.201 demonstrated that galactose-conjugated nanofiber 

meshes promote cell-substrate interaction, suggesting potential scaffold application in the liver 

tissue engineering. Equally, sugar-conjugated polymers were employed for immobilization of 

proteins,202 as cell’s surface mimics,203 cell adhesion as well as for many other pharmacological 

and biomedical applications.204 

There are various methods of chemical functionalization, notably wet chemical 

methods156 and plasma treatment155 as mainly studied. Although these methods are simple and 

easy to use, they induce changes in surface morphology and a partial degradation of a material. 

Azide-alkyne cycloaddition, popularly called click chemistry; is a valuable technique for 

introducing broad functional moieties owing to its versatility and high yields.157,159 The reaction 

of cycloaddition is produced from any two end-functionalized azide and alkyne molecules into 

a triazole ring leaving no side products. It is high yielding in both aqueous and organic solvents, 

as well as in homogeneous and heterogeneous phase. The combination of electrospinning and 

click chemistry resulted in a number of interesting studies.164,165,205 However, these reports 

reveal complex preparation of a desired polymer from a previously modified monomer. Thus, 

it is of significant importance to investigate a simple yet non-aggressive path for obtaining 

highly decorated surface of biocompatible nanofibers, able to immobilize various bioactive 

molecules by means of click chemistry.  

Searching for linear PCL from commercial sources (herein we referred to Sigma Aldrich 

source), typically two types of PCL could be found (Scheme III.1):  

1. PCL diol having hydroxyl groups at both ends of the chain, available with 

several lower molecular weights: Mn = 530, 1250, 2000 and 10000 g mol-1, and 

2. PCL, synthesized typically from a monohydric alcohols, available in high 

molecular weights: Mn = 45000 and 70000 – 90000 g mol-1 
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Scheme III.1. Chemical structures of commercial poly(e-caprolactone)s: low molecular weight a,w-

poly(e-caprolactone)-diol (PCL diol) and high molecular weight PCL 

For electrospinning purposes, polymer molecular weight is a critical parameter for 

uniform fiber formation without beads. In the case of PCL, mainly used molecular weight is of 

80000 g mol-1 (henceforth named as PCL80) giving smooth bead-free fibers from the solutions 

having as low as 7.5 w/v% of polymer.192 However, PCL80 has only one hydroxyl end group 

that could be converted into azide/alkyl group for click coupling. Additionally, slow segmental 

motions, considering high molecular weight, might directly influence the yield of the final 

product. Nevertheless, once functionalized, high molecular weight allows direct 

electrospinning. On the other hand, low-molecular weight PCL could be easily put into solution 

and submitted to chemical modifications. Yet, it cannot be directly electrospun and it needs to 

be blended with some other polymer having longer macromolecular chains.  

Thus, in this study, we chose to chemically modify low-molecular-weight PCL, having 

Mn of 2000 g mol-1 (henceforth named as PCL2), and to further implement it in the electrospun 

fibers made of high-molecular-weight PCL80. This choice has several advantages: 

· low viscosities of reaction mixture, better Brownian chain motions leading to 

higher yields, 
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· final product, introduced in the fiber, could offer various physicochemical 

properties depending of the functional group it contains (henceforth referred to 

as a bulk functionalization), 

· if a functional group introduced is available to react by click coupling (alkyl or 

azide), fibers could be subsequently surface-decorated (henceforth referred to as 

a surface functionalization), 

· and finally, the quantity of functional polymer in the fiber could be adjusted by 

changing its ratio in the blend with PCL80 polymer. 

This chapter will be therefore dealing with the chemical transformations of PCL2 

polymer, processing of PCL-based fibers, their surface- and bulk- functionalization, and finally, 

characterization of the nonwovens obtained. The functionalization of the fibrous surface using 

click chemistry coupling will be performed in both homogeneous (in the polymer solution) and 

heterogeneous phase (at the surface of the fibers). The availability of the surface azides and 

their activity was visualized by fluorescence from a fluorescent dye introduced onto the fibers 

by surface click coupling. Most importantly, model bioactive molecules: mannose and 

galactose were surface-coupled using click chemistry approach and their specific recognition 

by proteins was analyzed. Carbohydrate coupling with PCL, in solution or at the fibrous surface, 

has as an objective to make of PCL fibrous scaffolds not only biodegradable but bioactive and 

biomimetic structures for tissue engineering purposes.  

1. Electrospinning of High-Molecular-Weight PCL into 

Nanofibers 

Two commercially available PCLs of high molecular weight (Mn = 45000 and 70000 – 

90000 g mol-1) were tested in the electrospinning process and fiber morphology was observed 
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through optical microscopy, FESEM electronic microscopy, and X-ray tomography. The choice 

of a convenient solvent for electrospinning PCL into fibers was discussed. Once the optimal 

polymer/solvent system was identified, their physicochemical and rheological properties were 

examined.  

1.1. The Choice of Solvent for PCL 

Solvent choice is an important parameter for optimal electrospinning as it influences 

both electrospinning process and quality of resulting fibers. For the Taylor cone to be formed 

and therefrom a liquid jet, high voltage has to overcome the surface tension of the solution used. 

By choosing a solvent with the low surface tension, Taylor cone formation could be facilitated. 

Concerning the quality of the fibers, for a given polymer, one could obtain porous, smooth, or 

ribbon-like fibrous structures where the solvent used for electrospinning plays an important 

role.33,47 Additionally, humidity should be carefully controlled as it has a strong influence on 

solvent evaporation kinetics and consequently, the morphology of resulting fibers.52 Thus, all 

these factors should be taken into consideration when choosing a solvent for electrospinning. 

Moreover, if the final purpose of the fibrous scaffolds is for tissue engineering, toxicity of the 

solvent and possible residues should be kept to a minimum.  

There are many solvents suitable to dissolve PCL: chloroform, dichloromethane 

(DCM), dichloroethane (DCE), toluene, acetic and formic acid, tetrahydrofuran (THF), 

trifluoroethanol (TFE), etc. Table III.1 displays the solubility of PCL in each solvent and the 

morphology of electrospun fibers obtained. For a given solvent, dielectric constant (ε) and 

boiling temperature (Tb) reflect conductivity and volatility of that solvent. Mainly used solvents 

for electrospinning of PCL are chloroform, DCM and THF.192 It is interesting to mention the 

successful use of acetone for electrospinning of PCL. Using acetone, which is a non-solvent for 
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PCL, Reneker et al.206 electrospun uniform fibers without beads. However, the electrospun 

fibers obtained had micron diameters and large fiber diameter distributions. 

solvent solubility e* Tb** (°C) Fiber morphology 

chloroform 

dichloromethane 

dichloroethane 

acetic acid 

formic acid 

tetrahydrofuran 

toluene 

trifluoroethanol 

acetone 

methanol 

N,N-dimethylformamide 

high 

high 

high 

good 

good 

good 

good 

good 

poor 

poor 

poor 

4.81 

8.93 

10.45 

6.2 

58 

7.58 

2.38 

26.14 

21.4 

33 

36.71 

61 

40 

84 

118 

101 

66 

111 

74 

56 

65 

153 

smooth44 

smooth44 

smooth207 

droplets152 

smooth44 

smooth44 

droplets44 

smooth119 

smooth206,208 

beads 

beads 

*e – dielectric constant at 20 °C; **Tb – boiling temperature 

Table III.1. Physicochemical properties of solvents used for electrospinning of PCL; PCL solubility 

and fiber morphology 

A frequent use of a solvent mixture in electrospinning of a polymer could be noticed in 

the literature.192,209 Usually, that mixture consists of both solvent and non-solvent for polymer. 

This practice is introduced when fiber’s morphology and/or processing conditions are not 

satisfactory when using only one solvent. Typically, small values of dielectric constant, low 

volatility, or a high surface tension of the polymer’s solvent are adjusted with addition of a 

polymer’s non-solvent. Ameliorated solution properties could then lead to increased efficiency 

of electrospinning process, influencing the fiber diameter and morphology. 

Acetic acid alone does not allow electrospinning of PCL, and it is therefore used in 

combination with formic acid.44,153 However, it is known that these acids trigger polymer 
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degradation over time.210 When the solvent residue is present in the electrospun fibers, even 

after drying under vacuum, these acids might progressively deteriorate the mechanical 

properties of the electrospun scaffolds.44 

Lee et al.211 showed that between DCM alone and mixtures DCM/toluene and 

DCM/DMF, the latter one facilitates the electrospinning process while decreasing the fiber 

diameter drastically. DMF is also combined with the chloroform or THF212–215 and successfully 

electrospun into fibers.  

Another non-solvent often used for amelioration of solution conductivity is methanol. 

Pham et al.216 used chloroform/methanol for electrospinning of PCL into multilayer 

nanofiber/microfiber scaffolds. Using dichloromethane/methanol solvent mixture, Luong-Van 

et al.217 prepared uniform submicron PCL fibers with narrow fiber diameter distribution for 

controlled heparin release.  

The choice of the solvent to be used in electrospinning of PCL in this study was 

established on the criteria of volatility, conductivity and targeting applications. In this study, it 

was aimed for less toxic, more volatile and conductive solvents to be used. Between the organic 

solvents at disposal for PCL, we chose the one that is volatile (chlorinated solvents over THF 

and organic acids), and less toxic (DCM over chloroform). DCM is a good solvent for PCL, 

volatile, thus easy to remove from the electrospun fibers. However, this solvent has rather low 

conductivity (dielectric constant =8.93 at 20 °C; see Table III.1) and additional solvent 

with higher conductivity should be introduced. Most commonly used conductive solvent is 

N,N-dimethylformamide (DMF), with its remarkable conductivity, but very low volatility 

(Table III.1). On the other hand, methanol (MeOH) has acceptable both conductivity and 

volatility (Table III.1). Thus, we chose DCM (solvent) and MeOH (non-solvent) to be used as 

electrospinning solvent mixture for PCL.  
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1.2. Morphology of Electrospun PCL Scaffolds 

As mentioned previously, there are two options of commercially available PCL having 

high molecular weight: Mn = 45000 (PCL45) and 70000 – 90000 g mol-1 (PCL80). Before making 

a final choice of PCL to be adopted in future experiments, both PCL45 and PCL80 were tested 

in the electrospinning process. Different concentrations of these polymers were dissolved in 

dichloromethane/methanol 4/1 solvent mixtures and their morphology was observed with 

FESEM electron microscopy. It should be noted that DCM and MeOH are not miscible, and 

make a “micro-emulsion”. However, as major solvent in the mixture is DCM, that is, a solvent 

for PCL, the emulsion character should not affect the solubility of PCL80 polymer. Addition of 

methanol was used to facilitate the charge conduction through the solvent during 

electrospinning. 

Figure III.1 represents fibers electrospun from two different concentrations of PCL45 in 

DCM/MeOH 4/1 binary solvent system. f-PCL45-20 (Figure III.1A) and f-PCL45-30 (Figure 

III.1B) fibers were electrospun from 20 and 30 wt. % solutions of PCL45 in DCM/MeOH 4/1 

binary solvent system, respectively. As it could be noticed from Figure III.1, f-PCL45-20 fibers 

exhibit two distinctive diameter distributions: one of few hundreds of nanometers and the other 

one of several micrometers. f-PCL45-30 fibers, on the other hand, show uniform fiber diameter 

size in the area of few microns. However, both concentrations demonstrated discontinuous trend 

of fiber formation with clearly visible breaking points, suggesting insufficient chain 

entanglements in the solution. Yet, higher concentrations led to very viscous solutions and 

consequently needle clogging before the liquid jet could be formed.  
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Figure III.1. FESEM images of (A) f-PCL45-20 and (B) f-PCL45-30 fibers electrospun from 20 and 30 

wt. % of PCL45 in DCM/MeOH 4/1 solvent mixture 

PCL80 was electrospun from several concentrations (5, 6, 7, and 8 wt. %) in 

DCM/MeOH 4/1 solvent mixture. Fibrous structures were collected onto the glass plates in the 

course of electrospinning and preliminary observation was done with the optical microscope in 

transmission mode (Figure III.2).  

 

Figure III.2. Optical microscope images in transmittance of: (A) 5 wt. %, (B) 6 wt. %, (C) 7 wt. % and 

(D) 8 wt. % of PCL80 in DCM/MeOH 4/1 solvent mixture 

In Figure III.2, the influence of polymer concentration on the fiber morphology could 

be observed. At low concentrations of 6 wt. % only beads were collected (Figure III.2A). By 

increasing the concentration to 7 wt. %, the “bead-on-string” phenomenon is observed (Figure 

III.2B). Further concentration increase lead over irregular (Figure III.2C) to uniform fiber 

A C D B 

A B 
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formation (Figure III.2D) without beads. It was therefore concluded that the optimal 

concentration of PCL80 in DCM/MeOH 4/1 mixture should not be lower than 8 wt. %. Indeed, 

the lowest PCL80 concentration reported so far in the literature is 7.5 wt. %.218 

The concentration of 8 wt. % PCL80 was additionally tested in DCM/MeOH having two 

different volume ratios: 4/1 and 3/1 and electrospun fibers were observed with FESEM 

microscopy (Figure III.3). In similar electrospinning conditions, electrospun fibers from 

DCM/MeOH 4/1 (Figure III.3A) had thinner fiber diameters than those obtained from 

DCM/MeOH having 3/1 ratio (Figure III.3B).  

 

Figure III.3. Electrospun PCL fibers from 8 wt. % solutions of PCL80 in (A) DCM/MeOH 4/1 and (B) 

DCM/MeOH 3/1 solution mixtures; scale bar is 5 µm 

According to previous observation, it was chosen DCM/MeOH solvent mixture with 4/1 

ratio to be used for electrospinning of PCL. 

1.3. Porosity of Randomly Collected PCL Fibers 

An absolute method for determining the porosity of one material is by a mercury 

porosimeter. This method uses high pressures so the mercury could penetrate the smallest pores 

 

A B 
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of a material. In the case of electrospun fibers, porous structure is obtained by the slight merging 

of fibers at the juncture point. Using mercury porosity at high pressures, connection between 

the fibers and the inter-connected pores might be perturbed, misleading the results.219 

Nevertheless, this method could be successfully used for characterization of the pores present 

at the surface of electrospun fibers.180 

Another possibility in determining the porosity of the fibrous scaffolds might be 

obtained from SEM images. The shortcoming of this method is that the porosity obtained is the 

one at the surface of the fibers.  

The possibility of observing electrospun fibers using X rays from synchrotron source at 

ESRF facility in Grenoble was a unique opportunity for better understanding of 3D structure of 

these meshes. Herein, a nonwoven mesh of randomly deposited PCL fibers was observed with 

X-ray tomography technique (Figure III.4). A 3D cliché was reconstructed by stacking the 

individual image slices one on top of the other. From 3D image of PCL fibers, as high as 82% 

of porosity was determined, testifying the highly porous structure of electrospun nonwovens. 

These results should be however taken with precaution as the results strongly depend of the 

quality of image thresholding.  

  

Figure III.4. Tomography-X images of randomly deposited f-PCL80 fibers 
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Even though the images obtained by X-ray tomography cannot give the exact value of 

the porosity of PCL fibrous scaffold, they undoubtedly admit the highly porous structure that 

electrospinning process affords. 

1.4. Viscosity Measurements of PCL80 in DCM/MeOH Solvent Mixture 

Only when polymer chains are entangled in a solution, continuous liquid jet could be 

produced during electrospinning, leading to uniform and uninterrupted fiber formation.38,177,220 

It was determined that the polymer not only has to overcome the chain overlap concentration 

(c*), but the entangled concentration (ce) as well. McKee et al.221 were the first to study 

rheological behavior of linear and branched polyesters, and later on polyelectrolytes,222 

predicting empirical correlations of solution rheology with electrospun fiber formation. Gupta 

et al.37 studied linear PMMA-based homopolymers in a good solvent and gave a semi-empirical 

relationship between the fiber morphology (beads, beaded fibers, or uniform fibers) and 

polymer concentration and molecular weight.  

Herein, using controlled-stress rheometer, the rheological study of PCL80 in 

DCM/MeOH 4/1 solvent mixture was carried out. The particularity of our case is a high 

volatility of the solvent mixture used. Thus, rheological measurements were performed at 

temperature lower than the ambient (15 °C) with anti-evaporation equipment. Figure III.5 

represents the concentration dependence of zero-shear viscosity for PCL80 in DCM/MeOH 4/1 

solvent mixture. Dashed lines are indicating the change in slope and three different 

concentration regimes. The first regime depicts semi-dilute concentration with unentangled 

polymer chains and lower viscosities; the second one is intermediate or semi-dilute entangled 

regime, and the last one, concentrated regime, with high viscosity. The boundary between semi-

dilute unentangled and semi-dilute entangled regime represents the entangled concentration 

(ce), while the second one marks the onset of the concentrated regime. 
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Figure III.5. Zero-shear viscosity dependence from polymer concentration of PCL80 in the 

DCM/MeOH 4/1 solvent mixture at 15 °C with marked ce and c** concentrations; dashed lines serve 

as an eye guide 

The concentration chosen in this study is 8 wt. % or about 110 g L-1. Lying in the 

entanglement regime, this concentration ensures sufficient chain entanglements needed for 

continuous electrospinning process and uniform fiber formation.  

Once the optimal solution and processing parameters of non-derived PCL80 were 

established, fiber bio-activation with carbohydrates using click chemistry concept followed. 

Hereafter, the study continues in the direction of PCL functionalization as: 

· Low-molecular-weight PCL2 end-modifications, 

· Fiber’s bulk-functionalization, and 

· Surface-functionalization of electrospun fibers. 
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2. Chemical End-Modifications of PCL2 Polymer 

As mentioned previously, a,w-poly(e-caprolactone)-diol (PCL2) was chosen to be 

chemically modified with clickable azide groups. The choice of azide over alkyl groups is 

particularly interesting as it offers the possibility to apply either copper-catalyzed158 (using 

aliphatic alkyl moieties) or copper-free click chemistry223 (using strained alkynes). We focused 

on copper-catalyzed click chemistry reactions, as a starting research point, while copper-free 

chemistry is envisioned for further development of the studies exposed herein.  

In order to make bioactive materials out of PCL fibers, the carbohydrates were 

covalently coupled to the PCL chains using bulk and surface functionalization methods. The 

schematic representation of the strategies adopted is presented in the Scheme III.2. 

 

Scheme III.2. Illustrated representation of the bulk- and surface- functionalization process towards 

carbohydrate-decorated fibers 

Bulk functionalization refers to PCL glycosylation in the fibrous bulk by simple 

blending of carbohydrate-modified low-molecular-weight PCL2 with native high-molecular 
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weight PCL80. This strategy offers the simplicity of carbohydrate coupling in the solution by 

using click chemistry and the variety of carbohydrate quantity to be loaded inside the fiber bulk.  

Surface functionalization strategy relies on surface decoration of azide-functionalized 

fibers obtained from blending of azide-modified low-molecular-weight PCL2 with native high-

molecular weight PCL80. Surface functionalization was obtained from click coupling of azido-

fibers and alkyl-carbohydrates. This strategy has as advantage localization of bioactive 

carbohydrates only at the fibrous surface where they could reveal their activity. 

Next chapters will be dealing with both bulk- and surface-modifications, defining their 

virtues and weaknesses within the qualitative and quantitative analyses.  

2.1. Synthesis and Characterization of α,ω-Azide-poly(ε-caprolactone) 

Modifications of the PCL2, as depicted in Scheme III.3, took place at the chain ends, 

having as an objective to replace hydroxyl with azide groups. Reaction steps consisted of 

tosylation, giving an a,w-p-toluenesulfonyl-poly(e-caprolactone) (PCL-OTs) intermediate 

(52% yield), followed by nucleophilic substitution with sodium azide to finally afford a,w-

azide-poly(e-caprolactone) PCL-N3 (98% yield) as already described by Krouit et al.224 
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Scheme III.3. Preparation of PCL-N3 

Chemical transformations of the hydroxyl groups into tosyl and azido moieties were 

evidenced by 1H NMR as represented in the Figure III.6A. Efficiency of the tosylation reaction 

was confirmed by the presence of characteristic signals of both aromatic and methyl group at 

7.77-7.31 ppm and 2.42 ppm, respectively. Final substitution of the tosyl group into the azide 

functions was represented with the characteristic triplet at 3.26-3.23 ppm.  
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Figure III.6. (A) 1H NMR (400 Hz) in CDCl3 and (B) FTIR (CaF2 optics) superposed spectra of the 

PCL2, PCL-OTs and PCL-N3 polymers 

Figure III.6B represents FTIR spectra of: native PCL2 (black line) and end modified 

PCL2-OTs (red line), and PCL2-N3 (green line) polymers. PCL2-OTs spectrum showed 

characteristic absorptions at 790 cm-1 attributed to aromatic ring and 720 cm-1 for (C-O-S) 

groups. PCL2-N3 spectrum, clearly showing absorption at 2100 cm-1 of (N=N) azide groups, 

confirms the chemical transformations of the PCL2 polymer.  

A 

B 
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MALDI-TOF MS analyses were done as additional test for confirmation of successful 

PCL end-modification. PCL-OTs polymer was found to be functionalized at both ends. 

However, from MALDI-TOF MS spectrum of PCL-N3 polymer, NH2-derivatized PCL was 

observed. Li et al.225 noticed that polymers containing azide groups are sensitive to form 

metastable ions in MALDI-TOF mass spectroscopy. The phenomenon of azide reduction into 

amines was observed by Peltier et al.,226 denoting that end-functionalization of PCL2 with 

azides did take place.  

2.2. Synthesis and Characterization of α,ω-galactosyl-poly(ε-caprolactone) 

Carbohydrate-conjugated polymers have emerged as important biomaterial systems.227 

Numerous reports testify their use for immobilization of proteins,202 as cell’s surface mimics,203 

cell adhesion as well as for many pharmacological and biomedical applications.204 

Ring-opening polymerization has been reported by Persson et al.228 and Xu et al.,167 to 

provide access to carbohydrate-functionalized PCL. In this study, we used click chemistry 

approach onto previously synthesized PCL-N3 polymer to provide covalently attached 

galactosyl ligands to the PCL2 chains. The synthesis was followed by characterization with 

NMR, FTIR and MADLDI-TOF mass spectroscopy. 

1H NMR signals (Figure III.7A) of PCL2-Gal spectrum at d=8.03 ppm, indicate the 

formation of triazole ring, and those at d=4.81 ppm of anomeric proton of b-D-galactoside show 

successful PCL end-functionalization.  
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Figure III.7. (A) 1H NMR spectrum of the PCL2-Gal in DMSO-d6 and (B) FTIR spectra attesting of 

chemical transformation from PCL2-N3 to PCL2-Gal  

FTIR spectra on Figure III.7B show the transformation of PCL2-N3 to PCL2-Gal 

polymer. Azide groups identified by the peak at 2100 cm-1 were successfully transformed into 

triazole ring, covalently associating the galactose units with the PCL macromolecular chain. 

The presence of galactose and triazole ring were confirmed by stretching vibrations at 3500 cm-

1 (O-H), 3060 cm-1 (C=C), 1792 cm-1 (C=Ctriazole) and 1650 cm-1 (C-O).  
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The MALDI-TOF MS spectrum of PCL2-Gal is given in Figure III.8. The distribution 

of mass population in centered around m/z = 3355.3 corresponding to the a,w-galactoside 

propargyl poly(e-caprolactone) having degree of polymerization of DP=24. The distance 

between other isotopic peaks is constant and corresponds to the molecular weight of e-

caprolactone monomer unit. This spectrum undoubtedly confirms the successful PCL2 

functionalization with b-D-galactoside at both chain ends. 

 

Figure III.8. MALDI-TOF MS spectrum of PCL2-Gal polymer in linear mode 

Further use of PCL2-Gal polymer for fiber functionalization purposes was exposed 

in the next subtitle on the subject of fiber’s bulk functionalization. The bulk functionalization 

consists in simply blending PCL2-Gal and PCL80 in DCM/MeOH solvent mixture. Surface 

morphology and physicochemical properties of electrospun fibers were studied and 

discussed extensively.  
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3. Bulk-Functionalization of PCL Fibers Through Blending of 

End-Functionalized and Native Poly(e-caprolactone)s 

Blending of non-derived polymer with another functional molecule prior to 

electrospinning could significantly enrich the physicochemical properties of the final 

fibers.229,230 One of such examples is the study of Yu et al.231 who fabricated biodegradable 

PCL fibers from PCL/collagen blend and those scaffolds were successfully applied as nerve 

guide conduits. Yang et al.121 turned hydrophobic poly(L-lactic acid) (PLLA) fibers to 

completely hydrophilic mats by blending and further crosslinking of gelatin with PLLA. 

In this study, in order to introduce the functionalities into PCL fibrous meshes, end-

modified PCL2 polymers were blended with native PCL80 and electrospun in different mass 

ratios. Depending of the functional group introduced at the chain ends (azide of sugar), different 

fibrous structures were obtained. Their morphology and physicochemical characteristics will 

be discussed in detail in the chapters that follow. 

3.1 PCL80/PCL-N3 Fibers – Their Processing and Morphology 

Blends of high-molecular-weight PCL80 (Mn ~ 80000 g mol-1) and low-molecular-

weight PCL2-N3 (Mn ~ 2400 g mol-1) were used in different ratios in the electrospinning process. 

PCL80 provides optimal electrospinning conditions and good mechanical properties212,232 of the 

fibers while PCL2-N3 is used to functionalize the fibers. Different concentrations of 

PCL80/PCL2-N3 blend were prepared prior electrospinning and their detailed solution 

composition and electrospinning parameters are presented in Table III.2. Polymer solutions 

were prepared in such a way that individual PCL80 concentration was always kept above its 

entanglement concentration (ce) determined previously.37,221 
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Electrospun 
fibers 

Total Polymer 

wt. % 

PCL80 

wt. % 

PCL2-N3 

wt. % 

Flow rate 

mL/min 

Voltage 

kV 

RHa 

% 

AFDb 

nm 

PCL80 

f-PCL-N3 -20 

f-PCL-N3-40 

f-PCL-N3-60 

8 

10 

16 

23 

8 

8 

9,6 

9,2 

0 

2 

6,4 

13,8 

0,01 

0,015 

0,015 

0,02 

13 

14 

14 

13 

5 

9 

0 

6 

591 ± 283 

567 ± 301 

547 ± 68 

694 ± 149 

aRelative humidity 

bAverage fiber diameter ± standard deviation 

Table III.2. Electrospinning parameters for non-derivative PCL80 and azide-functionalized fibers: f-

PCL2-N3 -20, -40 and -60 and their mean diameter 

PCL2-N3 polymer was blended with PCL80 at different ratios, and electrospun fibers 

were marked as f-PCL-N3-20, f-PCL-N3-40, f-PCL-N3-60, corresponding to 20 wt. %, 40 wt. 

% and 60 wt. % of PCL2-N3 respectively. 60 wt. % of functionalized PCL2-N3 in the blend was 

the upper limit for obtaining the uniform bead-free fibers with submicron diameters.  

Fibers were closely observed with FESEM microscopy. FESEM images in Figure 

III.9A-D show uniform and smooth fibers with comparable size diameters of both native f-

PCL80 and azide-functionalized f-PCL2-N3 fibers. This trend indicates that the presence of 

azide-functionalized PCL2 does not influence significantly the diameter and morphology of the 

fibers.  
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Figure III.9. FESEM images (A-D) of f-PCL80  fibers containing: 0 wt. % (A), 20 wt. % (B), 40 wt. % 

(C) and 60 wt. % (D) of PCL-N3. Scale bar 10 µm 

Using FESEM images, the average fiber diameter was obtained as a mean value of 150 

diameter measurements. The statistical analysis of all fiber diameters measured show rather 

constant value of about 600 nm (see Table III.2) and a slender fiber-diameter distribution under 

dry air atmosphere. It is interesting to notice that keeping the PCL80 concentration nearly 

constant while increasing the concentration of PCL2-N3 did not influence the fiber diameter. 

This could be explained by the fact that only high-molecular-weight polymer influences the 

chain entanglements and therefrom the fiber formation. Thus, if the concentration of PCL80 is 

kept constant, as it is the case here, additional content of low-molecular-weight polymer, herein 

functionalized PCL2, would not give contribution to chain entanglement nor fiber formation.  

However, before going into any deeper consideration of fiber-diameter trend, additional 

analyses have to be made. Consequently, the influence of solution composition on their 

rheological behavior was investigated. Relationship between the solution rheological properties 

and final diameter of electrospun fibers is discussed in the next subtitle.  

3.1.1 Rheological Analysis of PCL2-N3/PCL80 Blends 

The effect of azide groups and low-molecular-weight PCL2 chains on rheological 

behavior of the solution was investigated. Figure III.10 represents the zero-shear viscosity as a 

function of shear rate for PCL80 homopolymer solution and PCL80/PCL2 and PCL80/PCL2-N3 

    

D C B A 
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80/20 blends in DCM/MeOH 4/1 solvent mixture. In the range of shear rate investigated, all 

polymeric solutions showed a Newtonian behavior.  

 

Figure III.10. Zero-shear viscosities of 8 wt. % PCL80 polymer solutions in DCM/MeOH 4/1 solvent 

mixture containing: 0 wt. % additives (■), 2 wt. % PCL2 (●) and 2 wt. % PCL2-N3 (▲) measured at 10 

°C 

In the presence of low-molecular-weight PCL2, the viscosity curve of blends is slightly 

shifted towards higher values, due to increase in concentration, but not sufficiently to increase 

the fiber diameter. Consequently, the fiber diameter appears to be directed by high-molecular-

weight polymer chains, as previously suspected. Moreover, viscosity curves of functionalized 

PCL80/PCL2-N3 and non-functionalized PCL80/PCL2 blends are nearly superimposed, showing 

that no significant associative interactions between the azide groups and PCL chains occur in 

this blend. Indeed, the density of azide groups is low and the solvent mixture is mostly nonpolar, 

restricting intra and intermolecular associations through hydrogen bonding. These results could 

explain the constant diameter of the electrospun fibers observed by FESEM. 

3.1.2 Quantification of Azide Groups Present on the Surface of the Fibers 

To the best of our knowledge there is no direct test for quantification of azides. In order 

to quantify azide groups available at the surface of electrospun f-PCL-N3 fibrous scaffolds, 
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some indirect method should be employed. Punna et al.233 reported a convenient colorimetric 

test for identification of aliphatic azides. Their method consists of azide reduction to amine by 

phosphine followed by standard ninhydrin (Keiser) test. Specific for amine quantification, 

ninhydrin method was successfully applied on solid electrospun fibers. While Mattanavee et 

al.193 used this method for quantification of amines, Zander et al.194 quantified grafted proteins 

at the surface of electrospun PCL fibers.  

In this study, we adjusted the azide-detection method described previously for 

quantification of azides present only at the surface of the fibers. Surface azides of f-PCL2-N3 

fibers were reduced with triphenylphosphine (PPh3) in heterogeneous conditions (fibers-

ethanol). Resulting amino-fibers were dissolved in 1,4-dioxane and finally quantified using 

ninhydrin assay.234,235 Concentrations of the PCL2-N3 on the surface were calculated from the 

calibration curve (Figure IV.1, Materials and Methods). 

The results of the ninhydrin assay are summarized in Figure III.11. Weight percentage 

of PCL2-N3 on the surface represents experimentally-found mass of PCL2-N3 per total mass of 

the sample, and it is expressed as experimental value (in grey) while initial concentration of 

PCL2-N3 in the electrospinning solution is represented in white. Total amount of azides (Figure 

III.11, white columns) is the amount of PCL2-N3 initially present in the solution (Table III.2). 

The difference between gray and white column stands for a non-accessible PCL2-N3 mass per 

cent inside the fibers or the film. Figure III.11 clearly points out that, for the electrospun fibers, 

about 80% of functionalized azide groups are located on the fiber's surface. Additionally, one 

could see that by increasing the PCL2-N3 concentration in the solution (from 20 to 60 wt. % of 

total polymer weight) the concentration of azides at the surface of the fibers increased 

accordingly. It should be noted that, without the PPh3 reducing agent, these fibers showed no 
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specific coloration under ninhydrin assay, proving that the azide groups were intact during the 

electrospinning process. 
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Figure III.11. Quantification of azides groups on the surface of the f-PCL80, f-PCL-N3-20, f-PCL-N3-

40, f-PCL-N3-60 fibers that contain 0, 20, 40, 60 and 60 mass % of the functionalized PCL2-N3, 

respectively and PCL80/PCL2-N3 40/60 cast film 

Colorimetric results, done on all the f-PCL2-N3 fibers, suggest a surface aggregation of 

the azides groups. The question is if this phenomenon is caused by a spontaneous aggregation 

of azide groups to the solution/air interface or induced by the electric field? Hardman and 

coworkers236 observed that addition of even small quantities of fluorocarbon (CF) 

functionalized polymer additives to polystyrene solution results in their surface segregation 

during electrospinning. However, they remind that the segregation of CF groups occurs even 

without the action of the electric field.237 Stachewitz and Barber238,239 indicated to the chemical 

group orientation at the surface of electrospun fibers due to polar contribution of polyamide 6 

chains. They observed similar behavior in a cast film after mechanical drawing above the glass-
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transition temperature. As clearly demonstrated by Fu et al.,240 for PS bearing polar alkyl-

bromide group (C-Br), such segregation can be significantly enhanced by the polarization of 

chemical groups induced by the electric field. Indeed, positive charges of polymer jet drive 

alkyl bromide groups to the surface by electrostatic interactions, while for the nanofibers 

electrospun with an anode positioned at spinneret, unpolarized C-Br groups remain in the bulk. 

Sun et al.241 showed that the electric field used in electrospinning could promote surface 

segregation of not only small chemical groups but also large peptide segments. On the other 

hand, Gentsch et al.242 highlight that polymer aggregation at the fibers’ surface is not always 

due to the electric field applied. In the study of Sun et al.,241 surface functionalization of peptide-

polymer conjugate is field-driven. Analyzing the electrospun fibers of a synthetic peptide, 

Gentsch et al.,242 showed that electric field played minor role, while the polarity of the solvent 

mixture was primarily responsible for the peptide surface aggregation. It is therefore important 

to reveal the real nature of azide aggregation phenomenon observed in this study. 

It is known that azide groups can be polarized and bear partially negative charges (δ-

).243 In our case, PCL80/PCL2-N3 fibers have been obtained by using a cathode on the spinneret 

(Scheme III.3). Consequently, it is reasonable to consider that azide group migration at fiber’s 

surface could be induced principally by electric field even if the spontaneous migration of azide 

groups towards the air/liquid interface cannot be excluded.  
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Scheme III.3. Schematic representation of the electrospinning setup with illustrated electrostatic 

attractions between negatively polarized azides (d-) and positively charged surface during the 

electrospinning 

In order to investigate possible spontaneous azide migration to the surface, a cast 

polymer film from the PCL80/PCL2-N3 (40/60) blend in DCM/MeOH (volume ratio 4/1) solvent 

mixture was prepared. Azide groups at the surface were quantified following the same 

procedure as for the fibrous scaffold. The colorimetric measurements performed on the cast 

film showed only 20% of the azides on the surface (see Figure III.11). Considering the slow 

evaporation kinetics of few minutes for the cast film, polymer chains as well as chemical groups 

have the ability to find spontaneously preferable conformation. This result has to be compared 

with the extremely fast evaporation kinetics of about few milliseconds for the electrospun fibers 

where about 80% of azide groups were located at the fiber surface. The evaporation process of 

volatile solvents is extremely fast during electrospinning and this spontaneous migration, 

hindered by the sharp increase of the solution viscosity, is only partial. Consequently, surface 

segregation of azide groups is likely due to electrically induced polarization rather than 

spontaneous interface attraction.  
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3.2 Electrospinning of PCL2-Gal/PCL80 Blend and Fiber Morphology 

Analysis 

Blending of PCL2-Gal with native PCL80 was employed to improve the bioactivity of 

electrospun nonwovens. Carbohydrate-conjugated polyesters have already shown beneficial 

results in cell-material interactions. Thus, they are often used as scaffolds for tissue 

engineering.227,244 

Glycosylated polymer, PCL2-Gal, was blended with a high molecular weight PCL80 in 

dichloromethane/methanol (DCM/MeOH 4/1) solvent mixture. PCL80/PCL2-Gal 80/20 and 

60/40 blends were electrospun and f-PCL20-GalB and f-PCL40-GalB fibrous mats were obtained, 

respectively.  

Fiber morphology was analyzed with the FESEM electronic microscope. The images 

obtained, show rather interesting fiber-diameter trend (Figure III.12). While the average fiber 

diameter of native PCL80 was 591 nm, it increased to 1.1 µm for f-PCL20-GalB and reached 2.4 

µm for f-PCL40-GalB fibers. Concurrently, the increasing content of PCL2-Gal reduced the 

ability to electrospin the blend and led to heterogeneous fibers in diameter (Figure III.12D). 

While introducing PCL-N3 within the bulk fibers did not alter the fiber morphology (see 

previous subtitle 3.1. of this chapter), galactose moieties in f-PCL-GalB nonwovens changed 

dramatically both morphology and diameter of final fibers. 
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Figure III.12. (A-C) FESEM images of Pt-coated: (A) f-PCL80 non-derived fibers, sugar-decorated: 

(B) f-PCL20-GalB and (C) f-PCL40-GalB fibers and (D) their graphical representations of fiber 

diameter distributions. The insets A and B represent the water sessile drops onto the PCL80 and f-

PCL20-GalB fibers, respectively 

Hydrophilicity of the electrospun fibers was investigated using water-contact-angle 

(WCA) measurements. WCA of native f-PCL80 and bulk-functionalized f-PCL20-GalB fibers 

are presented as inset in Figure III.12A and III.12B, respectively. In the case for f-PCL40-GalB 

fibers, the contact angle was not measured as the polymer solution showed low 

electrospinnability and a sufficient fibrous layer for the WCA observations could not be formed. 

Water contact angles (WCA) of f-PCL80 and f-PCL20-GalB fibers show gentle decrease from 

130° to 90°, respectively. These findings indicate to the presence of Gal units on the surface of 

the fibers. Yet, WCA gives only an estimation of the fiber functionalization success, and further 

quantification of the galactoside moieties will succeed.  
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3.2.1 Quantification of Galactose Present at the Fiber’s Surface 

Quantification analysis of the carbohydrates, present at the surface of bulk-

functionalized fibers, was carried out by a combination of enzymatic hydrolysis and Dubois 

assay. Enzymatic hydrolysis of carbohydrates is based on their catalytic decomposition in the 

presence of enzymes, in aqueous media and at specific pH and temperature conditions. Phenol-

sulfuric acid colorimetric method, known also as Dubois assay, is used for detection of micro-

quantities of reducing sugars, oligo- and polysaccharides and their derivatives.245 In the 

presence of concentrated sulfuric acid and phenol, strong orange-yellow coloration of the 

solution appears, indicating to the presence of carbohydrates in the solution. The intensity of 

the solution coloration is a linear function of the sugar concentration in that solution.  

f-PCL20-GalB and f-PCL40-GalB fibers were exposed to enzymatic treatment with b-

galactosidase (Aspergillus oryzae), followed with Dubois assay on the supernatant reaction to 

determine the concentration of the sugars released. Colorimetric results showed rather small 

content (2-3 wt. %) of galactose in both f-PCL20-GalB and f-PCL40-GalB fibers, indicating a low 

surface functionality of the drawn fibers. Nevertheless, phenol-sulfuric acid test, done directly 

on the glycosylated fibers, confirmed the initial concentration of carbohydrates present in the 

blend of PCL2-Gal with PCL80 prior electrospinning, showing that the electrospinning process 

does not harm the chemical structure of carbohydrates. 

Detailed study of physicochemical properties of bulk-functionalized fibers, showed the 

tendency of moderate improvements of both wetting and surface functionalization of f-PCL-

GalB fibers as well as their micron diameters with the large diameter distributions. These results 

open several questions: 
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· What caused such drastic difference in fiber morphology between azide- and 

galactoside- bulk-functionalized fibers if only polymer chain ends were 

modified? 

· While azide groups of PCL2-N3 showed high tendency of surface aggregation, 

why such a small surface decoration is observed when PCL2-Gal is used? 

· Might this trend be related to inter-, intra-molecular interactions or rather 

polymer-solvent interactions?  

To answer these questions, interactions between the polymer chains as well as polymer-

solvent interactions were studied through dynamic light scattering (DLS) and viscosity 

measurements, detailed in the next subtitles.  

3.2.2 Dynamic Light Scattering Analysis of PCL2-Gal in DCM/MeOH 4/1 Solvent 

Mixture 

Dynamic light scattering (DLS) might offer the information of the particles’ size in the 

solution and their possible organization (aggregates, micelles, etc.). Figure III.13 represents the 

DLS size distribution curves of the DCM/MeOH 4/1 solution alone and containing PCL2-Gal 

polymer in small amounts.  

In the case of the DCM/MeOH 4/1 solvent mixture alone the objects with a radius of 

few tens of micrometers are observed. It alludes to the emulsion character of the two partially 

miscible solvents, with MeOH droplets dispersed in the DCM medium. In the presence of 

polymer PCL2-Gal, an additional peak at Rh ~ 350 nm is observed. These results are indicating 

the formation of aggregates of PCL2-Gal polymer in DCM/MeOH solvent mixture (~350 nm), 

together with MeOH droplets (~40 µm). 
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Figure III.13. Size distribution of DCM/MeOH 4/1 solvent mixture alone (dashed line) and with PCL2-

Gal dissolved in it (solid line), at 90° 

At that point, it should be kept in mind that the DLS size distribution shown on the 

Figure III.13 is mass-weighted: larger objects contribute much stronger to the amplitude. To 

convert in a simple way this mass-weighted into number-weighted distribution, the equation 

given somewhere else is used:246 since ~350 nm and ~50 µm objects are present, and since the 

percentage of the total surface area corresponding to the surface area under the peak related to 

the small objects is ~29%, one obtains NSmall ~ 106 × NBig (NSmall and NBig designate the number 

of small and big objects, respectively). Thus, small particles represent the majority in number. 

3.2.3 Rheological Analysis of PCL2-Gal/PCL80 Blend in Solution 

Viscosity measurements were performed on polymer solutions of PCL80 (8 wt. %) and 

on blends PCL80/PCL2, PCL80/PCL2-N3 and PCL80/PCL2-Gal at ratio of 80/20 and total polymer 

concentration of 10 wt. % and at 10 °C. Figure III.14 shows the viscosity of polymer solutions 

as a function of the shear rate of all the solutions tested. PCL80 and blends of PCL80/PCL2 and 

PCL80/PCL2-N3 are Newtonian in the shear-rate range explored. As expected, the viscosity of 

blends is higher than the pure PCL80. The slight decrease of PCL80/PCL2-N3 viscosity compared 
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to that of PCL80/PCL2 could be assigned to a decrease of the density of intermolecular hydrogen 

bonding induced by the presence of N3 groups. However, the flow behavior of the sugar-

conjugated PCL80/PCL2-Gal solution is extremely different, exhibiting a significant shear-

thinning behavior at low shear rates.  

 

Figure III.14. Zero-shear viscosity/shear rate profiles for polymer mixtures of 8 wt. % PCL80 and: (■) 

without PCL2, and with: (�) 2 wt. % of PCL2, (p) 2 wt. % PCL2-N3 and (¯) 2 wt. % of PCL2-Gal 

It was hypothesized that the amphiphilic structure of PCL2-Gal might lead to the 

formation of a transient network of PCL chains and intermolecular interactions between the 

galactose groups and PCL chains. The schematic representation of this hypothesis is shown in 

the Scheme III.4. PCL chains are represented as irregular gray lines, and galactose units, 

attached to the shorter PCL chains, are represented as orange dots, all dispersed in DCM 

medium. It is hypothesized that the galactose units, non-soluble in DCM, will be stabilized in 

the methanol domains or as aggregates within hydrophobic PCL chains orientated towards 

DCM medium. These complex lyophobic/lyophilic polymer-solvent and polymer-polymer 

interactions might lead to the transient network formation in the solution. 
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Scheme III.4. Schematic representation of the PCL2-Gal/PCL80 polymer organization in the 

DCM/MeOH 4/1 solvent mixture 

The presence of inter-chain complexes could further induce the steric interactions 

responsible for the significant increase in the solution viscosity and the polymer fibers’ 

diameter. This behavior was observed by Yu et al.247 in a mixture of phosphatidylcholine 

surfactant and polyvinylpyrrolidone (PVP) polymer in chloroform. Indeed, in the solvent 

mixture of DCM (polar, aprotic, good solvent for PCL) and MeOH (polar, protic, non-solvent 

for PCL but good solvent for galactose) (4/1), galactosyl units of PCL2-Gal might tend to 

aggregate inside the methanol “microemulsions”, forming aggregated galactose domains in 

MeOH and PCL chain domains in DCM, as illustrated in Scheme III.4. Gentsch et al.242 already 

observed the aggregation phenomenon of the low-molecular-weight peptide-PLLA amphiphile 

in chlorinated solvents.  

DLS and rheological results in this study suggest that, during the electrospinning 

process, galactose units would tend to stay enclosed in the MeOH domains, ending inside the 

electrospun fibers and leading to their irregular and micrometric diameters as observed by 

FESEM images. Enzyme hydrolysis and water-contact-angle tests go in behalf of such 

hypothesis, confirming that the galactose remained inside the fiber bulk and limited the surface 

functionality of these fibers. 
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4. Surface-Functionalization of f-PCL-N3 Fibers 

While previous chapter was studying the fiber functionalization from the bulk, this one 

will be dealing with the functionalization at the surface of the fibers. Because of the strong 

affinity for azide surface aggregation under high electric field, clickable f-PCL-N3 fibers were 

chosen as a basis for further surface functionalization.  

The aim of surface functionalization was to efficiently decorate the surface of the 

electrospun fibers with carbohydrates as bioactive molecules. The availability of azide groups 

at the fibrous surface was visualized by attaching the fluorescent dyes. The resulting fluorescent 

fibers were then characterized with confocal microscope. Carbohydrate-decorated fibers were 

characterized using colorimetric Dubois assay, enzyme-linked lectin assay, contact angle and 

FTIR spectroscopy measurements. 

4.1 Fluorescent Labeling of f-PCL-N3 Fibers 

Fluorescent labeling of f-PCL-N3 fibers with FITC-alkyne fluorophore using click 

chemistry enabled us to investigate the accessibility and reactivity of the surface azides. f-

PCL80, f-PCL-N3 -20, -40 and -60 fibrous scaffolds were incubated with the FITC-alkyne 

fluorophore dissolved in acetonitrile/water 1/1 solvent mixture, with and without 

copper(I)/sodium ascorbate catalysts.  

In Figure III.15, the fluorescent (E-H) and bright-field (A-D) images of f-PCL80 (A, E), 

f-PCL-N3-20 (B, F), f-PCL-N3-40 (C, G), and f-PCL-N3-60 (D, H) fibers are showed after 48h 

incubation with FITC-propargyl fluorophore without the copper(I)/ascorbate catalysts. As it 

could be seen, without the catalysts, all tested samples exhibited no fiber coloration, 

demonstrating that non-specific adsorption of the FITC fluorophore on the PCL does not occur.  
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Figure III.15. Bright field images (A-D) and fluorescent images (E-H) of f-PCL80, f-PCL-N3-20, f-

PCL-N3-40 and f-PCL-N3-60 fibers, respectively, after 48h with FITC-alkyne in acetonitrile/water 

solution without the catalysts; scale bar 20 µm. 

Figure III.16 represents the same f-PCL80, f-PCL-N3-20, f-PCL-N3-40 and f-PCL-N3-60 

fibers after 48h incubation in the acetonitrile/water solution containing both FITC-propargyl 

fluorophore and click catalysts. In the presence of catalysts, f-PCL80 remained non-colored 

while azide-containing fibers f-PCL-N3-20, -40 and -60 showed strong fluorescence at 520 nm 

and uniform coloration on the surface (Figure III.16E-H). These results are attesting not only 

the accessibility and reactivity of the surface azides but also a high selectivity of the click 

coupling reaction. 
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Figure III.16. Bright field images (A-D) and fluorescent images (E-H) of f-PCL80, f-PCL-N3-20, f-

PCL-N3-40 and f-PCL-N3-60 fibers, respectively, after 48h with FITC-alkyne in acetonitrile/water 

solution and with the copper catalysts; scale bar 20 µm. 

In Figure III.17, a gradual increase of color intensity, clearly visible to the naked eye, 

from f-PCL-N3-20 to f-PCL-N3-60 corresponds to a degree of FITC fluorophore implemented 

onto the fibers.  

 

Figure III.17. The image (from left to right) of f-PCL80, f-PCL-N3-20, f-PCL-N3-40 and f-PCL-N3-60 

fibers after 48h incubation with FITC-alkyne fluorophore, with (top line) and without catalysts 

(bottom line) 
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Figure III.17 clearly demonstrates the successful attachment of the FITC-propargyl 

fluorophore by click chemistry and macroscopically visible differences in the grafting ratio. 

This macroscopic observation (Figure III.17) correlates accurately with the results obtained 

using confocal microscopy (Figure III.15 and III.16). The fluorescent labeling confirmed that 

surface-azides could be easily accessed and coupled by heterogeneous click chemistry. 

4.2 Surface-Functionalization of f-PCL-N3 Fibers with Carbohydrates 

Surface functionalization by click coupling took place at the interface between the 

aqueous medium containing carbohydrates and catalysts and a solid fibrous surface. Fu et al.164 

used click chemistry to covalently bond thermo-sensitive polymer with solvent-resistant 

nanofibers. Mandal et al.248 and Shi et al.205 adopted click coupling to obtain protein-decorated 

micro-patterned fibrous scaffolds. Herein, f-PCL-N3 -20, -40, and -60 fibers were 

functionalized through heterogeneous click chemistry with propargyl-a-D-mannoside and 

propargyl-b-D-galactoside and f-PCL20-ManS, f-PCL40-ManS and f-PCL60-ManS, and f-PCL20-

GalS, f-PCL40-GalS and f-PCL60-GalS were obtained, respectively. 

Figure III.18 shows an example of ATR-FTIR spectra of click-conjugated propargyl-b-

D-galactoside on the surface of f-PCL-N3-20 fibers. Therefrom, we evidence grafting of the 

sugars onto the fibers from a large peak at 3300 cm-1 assigned to stretching vibrations of 

hydroxyl groups as well as vibrations of N-H at 3744 cm-1. A peak at ~1642 cm-1, corresponding 

to C-O stretching groups of monosaccharide, absent in native PCL80, was also noted. The 

characteristic peak of azide –N=N=N groups, noticed at 2100 cm-1, indicates some remaining 

azido groups on the surface as well as inside the fibers. 



} Functionalization and Bio-Activation of PCL Nano-Fibers Using Click Chemistry 

166 
 

 

Figure III.18. ATR-FTIR spectra of f-PCL-N3-20 (black line) and f-PCL20-GalS (grey line) fibers 

Quantification of total sugar content of the f-PCL-GalS and f-PCL-ManS fibers, was 

carried out using standard phenol-sulfuric acid method (Dubois).245 Dubois method has showed 

equally successful in carbohydrate quantification conjugated on polystyrene copolymer249 and 

on poly(ethylene terephthalate) (PET) electrospun fibers.200 

By using Dubois method we were able to quantify total amount of mannose and 

galactose coupled onto the fibers. For each fibrous mat, 3 samples were taken, and the average 

coupling rate onto the f-PCL-N3 fibers was determined. Table III.3 summarizes experimental 

and theoretical weights of f-PCLX-GalS and f-PCLX-ManS (X = 20, 40 and 60) obtained. The 

coupling ratio is expressed as weight percentage of experimentally obtained and theoretically 

calculated mass of sugar at the surface of the fibers: . 
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Electrospun 

fibers 

mexp [mg] mtheo [mg]  

f-PCL20-Gals 

f-PCL40-Gals 

f-PCL60-Gals 

f-PCL20-Mans 

f-PCL40-Mans 

f-PCL60-Mans 

0,00312 

0,00812 

0,0112 

0,00175 

0,00697 

0,0146 

0,0153 

0,0305 

0,0458 

0,0153 

0,0305 

0,58 

20% 

27% 

25% 

11% 

23% 

32% 

Table III.3. Dubois colorimetric method results: defining experimentally found (mexp) and theoretically 

calculated (mtheo) mass of the galactose/mannose as well as their ratio ( ) at the surface 

of the fibers 

In the case of surface functionalization, the overall sugar content of each functionalized 

fibrous mat is the one at the fiber’s surface. Herein, it was represented as a ratio of 

experimentally found and theoretically calculated mass of the monosaccharide at the surface. 

Colorimetric results revealed that the carbohydrate concentration at the surface increased with 

the concentration of azide groups in the f-PCL-N3 fibers. Interestingly, it was however observed 

that the overall coupling rate remained constant, about 20 wt. %, for both galactose- and 

mannose- surface-functionalized fibers. When compared with f-PCL-GalB nonwovens, the 

sugar content available at the surface of the fibers significantly increased. 

4.2.1 Water Contact Angle Measurements on Electrospun f-PCL-GalS and f-PCL-ManS 

Fibers 

Wettability and hydrophilicity of the surface-functionalized f-PCL-GalS and f-PCL-

ManS fibers was investigated using dynamic water-contact-angle measurement. Figure III.19 
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assembles the dynamic contact angle measurements of f-PCL-GalS (Figure III.19A) and f-PCL-

ManS fibers (Figure III.19B).  

 

Figure III.19. Dynamic water contact angles of (A): (□) f-PCL20-GalS, (◊) f-PCL40-GalS, and (○) f-

PCL60-GalS and (B): (□) f-PCL20-ManS, (◊) f-PCL40-ManS, and (○) f-PCL60-ManS surface-

functionalized fibers together with (■) f-PCL80 as a reference 

As it could be observed from the Figure III.19A, the contact angle of f-PCL-GalS fibers 

is decreasing over time. In addition, the soaking rate of f-PCL-GalS fibrous membranes 

accelerated with the increase of galactose content at their surface. While for the f-PCL20-GalS 
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WCA reached zero in about 60s, f-PCL60-GalS fibers’ WCA attained 0° value in less than 3s. 

Furthermore, a gradual difference in the soaking rate was more accentuated for f-PCL-ManS 

samples (Figure III.19B) where complete wettability was reached in 40, 12 and 7s for f-PCL20-

ManS, f-PCL40-ManS and f-PCL60-ManS fibers, respectively. 

Grafahrend et al.196 observed similar trend of complete hydrophilicity after surface-

grafting of star-shaped PEO amphiphile onto polyester scaffolds. Across several studies, 

Grafahrend et al.195,197,199,250 highlighted the potential of surface molecules to completely 

change fibrous surface from hydrophobic to completely hydrophilic. This study gives a 

confirmation of that point.  

4.2.2 Enzyme-Linked Lectin Assays on f-PCL-GalS and f-PCL-ManS Fibers 

Ability of carbohydrates to interact specifically with carbohydrate-binding proteins, i.e. 

lectins, was investigated through the enzyme linked lectin assay (ELLA). ELLA is a sensitive 

assay that uses a peroxidase enzyme linked to a lectin as a marker for the detection of a specific 

carbohydrate. For this study, we exposed f-PCLX-GalS, and f-PCLX-ManS fibers as well as their 

appropriate f-PCL-N3-X fibers as a control (where X = 20, 40 and 60) to a Concanavalin A-

peroxidase conjugate (HRP-ConA) and Arachis hypogaea-peroxidase conjugate (HRP-PNA) 

for detection of mannose and galactose residues, respectively. Otman et al.251 described a 

specific recognition of a-D-mannose at the surface of polymeric nanoparticles by ConA, 

demonstrating that mannose groups, conjugated with the poly(e-caprolactone), could covalently 

bind the lectin. In this study, upon staining with the AEC substrate, both f-PCL-GalS and f-

PCL-ManS fibrous mats exhibited a positive coloration in presence of HPR-PNA and HRP-

ConA lectins respectively. Figure III.20 is an image of f-PCLX-ManS (Figure III.20A), and f-

PCLX-GalS (Figure III.20B) fibers showing positive probes (top line) and their corresponding 

f-PCL-N3-X fibers (bottom line) as control samples (X = 20, 40 and 60).  
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Figure III.20. Image (from left to right) of ELLA assays on: (A) f-PCL20-ManS, f-PCL40-ManS, and f-

PCL60-ManS (B) f-PCL20-GalS, f-PCL40-GalS and f-PCL60-GalS fibers. For each sample, top line 

corresponds to the positive test samples while bottom line matches the control samples 

f-PCL-ManS fibers showed a very intense red color while f-PCL-GalS and f-PCL-GalB 

staining was less pronounced (Figure III.20). Such difference between ConA and PNA binding 

efficiency is not unexpected and Wu et al.252 previously observed that a PNA lectin binds rather 

weakly to the galactose units, while in the case of lactose a strong conjugation PNA-lactose 

was observed, suggesting that PNA lectin needs a longer arm-spacer for a better carbohydrate 

recognition. Nonetheless, the control samples of non-functionalized f-PCL-N3 fibers showed 

no significant coloration under the same treatment, demonstrating that ELLA labeling is highly 

specific to the carbohydrate-functionalized moieties.  

Specific recognition of carbohydrates on the fibrous surface as well as their enhanced 

protein affinity underlines a considerable potential of these scaffolds as advanced bio-active 

materials. 

5. Conclusions 

Results presented in this chapter show that it is possible to obtain surface-decorated 

clickable nanofibers by electrospinning commercially available native PCL80 and end-
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functionalized PCL2-N3 polymers. Additionally, these fibers offer a possibility of using both 

classical CuAAc copper-catalyzed and alkyl-strained copper-free click chemistry. As copper 

affects strongly the life quality of living cells, employing copper-free click chemistry could 

make use of these scaffolds in tissue engineering more comfortable. 

We also demonstrated that azides suffer no change during the electrospinning and could 

be easily accessed for click conjugation. It is interesting to notice that a chemical reduction of 

azides to amines using PPh3 could serve as a simple route for obtaining highly amine-

functionalized PCL fibers. Amino-fibers of biocompatible PCL could further react by means of 

peptide coupling with versatile proteins, thus serve as an important precursor to advanced 

biomaterials for biological and cell culture applications. 

In the end, carbohydrate activation of electrospun nonwovens proved to be highly 

specific for protein adhesion. Carbohydrate functionalization from the bulk showed regular 

surface and bulk enrichment of the fibers with sugar moieties and could find use as a scaffold 

where accelerated polymer degradation is needed. On the other hand, surface functionalization 

of f-PCL-N3 fibers with the carbohydrates was proved advantageous as the quantity of the 

introduced functional moiety could be tuned. Furthermore, as diverse chemical groups could be 

introduced at the fibrous surface by click coupling, final physicochemical properties could be 

precisely modulated for a targeting purpose.  
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General Conclusions and Perspectives 

The structure of a material is of outmost importance in the designing process of artificial 

scaffolds for medical applications. It has been demonstrated that nano-structured scaffolds 

represent an advantageous material for tissue engineering in terms of size, cost, high porosity, 

lightness, and organization similar to the one in extracellular matrix (ECM). Among various 

techniques for nano-fiber fabrication, electrospinning is known for the variety of both materials 

that can be processed and the final fibrous structures and 3D architectures that can be obtained. 

The combination of nano-fibrous structure and biologically activated surface has been shown 

as the most rewarding for positive cell-material interactions. Chemical versatility of 

carbohydrates, present at the surface of the cells, enables cell communication with different 

molecular structures (proteins and antibodies) and living organisms (other cells, viruses and 

bacteria). The use of carbohydrates as bioactive receptors at the surface of the scaffolds has 

been demonstrated as efficient for improved cell adhesion, proliferation, growth, and further, 

scaffold degradation. However, their weak mechanical properties and high water-sensitivity 

have turned the use of carbohydrates simultaneously with mechanically superior synthetic 

polymers. Poly(e-caprolactone) is a synthetic polyester, often employed for biomedical 

applications due to its notable biocompatible and biodegradable properties. Particularly in the 

electrospinning process, the use of PCL records a constant progress. Nevertheless, 

hydrophobicity and absence of functional groups necessitate PCL modification for beneficial 

cell-material interactions. 

The objective of this thesis project was to obtain biocompatible nano-fibrous structures, 

and design their surface with biologically recognized moieties for tissue engineering 

applications. By using the electrospinning process for fabrication of PCL-based scaffolds and 

their consequent functionalization with carbohydrates, we aimed toward tissue 
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engineering application of these nonwovens. Herein, chemical modifications of low-molecular-

weight PCL were investigated in both bulk- and surface-functionalization aspects through 

azide-alkyne cycloaddition reactions (click chemistry). The bulk functionalization consisted of 

chemical transformations at the PCL chain-ends. Through several modifications, b-D-galactose 

was finally bonded to PCL and an amphiphilic-like structure was obtained. Due to the chain 

length of the PCL-Gal polymer and consequently absence of chain entanglements, fiber 

fabrication was initiated from a blend of bulk-modified PCL-Gal and native high-molecular-

weight PCL. Resulting electrospun fibers had galactoside-PCL equally dispersed within the 

fibers of micron-size diameters with only small amount at the fiber’s surface. However, these 

carbohydrate-functionalized fibrous scaffolds might be used for implants, or in wound healing 

and for bandages, where accelerated degradation is demanded. 

The surface functionalization approach was based on chemical modification of the 

surface of already electrospun PCL scaffolds. For employing the click chemistry approach, low-

molecular weight PCL was end-functionalized with azide groups and then blended with a native 

PCL to obtain azide-decorated fibrous surface. This multi-step fiber functionalization was 

rewarded with a predominant concentration of azides at the fibers’ surface. By using a 

fluorescent dye to mark the active azides, confocal microscopy revealed an even and a 

continuously-spread active places at the surface of the fibers. Click coupling of propargyl-

galactose and propargyl-mannose with surface azides gave highly hydrophilic matrices with 

protein-specific adhesion characteristics. Azide-decorated PCL nonwovens offer fiber’s surface 

coupling with various cell-recognized molecules – carbohydrates or proteins – either through 

click chemistry or peptide coupling.  

Working with biodegradable polymers for medical applications necessitates a 

significant knowledge about the stability of a polymer composing a biomaterial. Polymer 
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stability can be analyzed through characteristic relaxation time of the polymeric chains. Herein, 

we investigated the conformation of polymer chains in electrospun aligned fibers of polystyrene 

(PS) and their chain relaxation kinetics after thermal annealing by small angle neutron 

scattering technique (SANS). SANS is a very valuable technique for qualitative and quantitative 

evaluation of polymer chain conformation and dynamics within a sample of interest (solid, 

liquid, gel, etc.). The size-dependent behavior and modified chain conformations within the 

confined structures of materials are well known. However, a very few is published about the 

chain conformation within the electrospun fibers. In this study, the SANS experiment on 

polystyrene fibers in as-spun state showed a notable anisotropy of polymeric chains in the 

direction of the fiber’s alignment axis. The elongation ratio in the axial direction of as-spun 

fibers was found to be 1.22 while the corresponding ratio of the radius of gyration parallel and 

perpendicular to the fiber alignment axis was 1.34. 

Furthermore, it is reported for the first time polymer chain and surface relaxation 

dynamics after consequent thermal annealing at different temperatures and different time 

intervals. Fast relaxation of the surface of electrospun fibers and rather slow chain relaxation 

within the fiber bulk were observed. The thermal annealing experiments enabled us to estimate 

the characteristic relaxation time of the polymeric chains within the electrospun fibers.  

We also investigated the influence of molecular weight distribution on final fiber 

diameter. The research of solution properties and their impact on the fiber morphology was 

studied from polymers of the same molecular weight but with different molecular weight 

distributions. While fibers obtained from polydisperse PS were of micron-size diameters and 

significantly porous and voided, fibers obtained from monodisperse PS had nano-diameters 

with narrow diameter size distribution and without the presence of pores at the surface or inside 

the fiber’s bulk. We have demonstrated that molecular weight distribution, an often neglected 
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parameter in electrospinning process, remarkably influences the fiber’s size and morphology 

and it should be taken into account in further research studies in this field.  

This work has opened the gate for many perspectives.  

During the SANS experiment, we encountered many difficulties in sample preparation 

and later in data analysis. Regarding the sample preparation, it would be interesting to 

investigate the possibility in forming a stack of thin films made of electrospun fibers for 

obtaining stronger signal from scattered neutrons while analyzing highly aligned electrospun 

fibers. When it comes to the data analysis, attention should be paid to overcoming the strong 

scattering signal from the fiber’s surface by replacing the air with a non-solvent having similar 

scattering length density as polystyrene. 

Regarding the theoretical aspects of the electrospinning process, pioneering SANS 

experiments done previously and during this PhD research could serve as a basis for more 

complex studies on electrospun fibers made from: 

§ crystalline polymers – investigating the orientation of the crystalline zones of 

the polymer fibers as well as the chain conformation of the amorphous parts of 

the fibers; 

§ polymeric blends – studying the phase separation process between two 

polymers, their respective polymeric chain conformations and influence of the 

presence of another macromolecule on characteristic relaxation time – 

acceleration and retardation factors 

§ polymers containing additives – there are many debates about the surface-

segregation of additives during the electrospinning process, and it would be 

interesting to investigate what causes this phenomenon – electrically induced or 
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spontaneous – through simultaneous studies of neutron scattering and neutron 

reflectometry analysis; 

§ core/shell structures – structural investigation of the core/shell organization and 

the polymer chain size within, as well as the polymer conformation at the 

interface core-shell and shell-air; also, it would be interesting to compare the 

core/shell formation from two different processing techniques – coaxial- and 

emulsion-electrospinning. 

The practical aspects of this thesis were to use the electrospinning setup to fabricate 

novel biomaterials for tissue engineering applications that are based on commercially-available 

sources, versatile and with bioactive and cell-friendly surface. We wanted to create one material 

that would preferentially suit several applications by simply changing its physicochemical 

surface structure.  

By using click chemistry, galactose and mannose monosaccharides were successfully 

coupled to the fibers’ surface. Nevertheless, surface-functionalized azido-PCL fibers offer the 

possibility to attach various chemical structures at the surface via click chemistry. Next step in 

surface functionalization would therefore be the use of complex carbohydrates or proteins and 

verification of the coupling efficacy. Also, our first approach was to use copper catalysts with 

end-alkyl molecules. However, it would be interesting to test these fibers by using copper-free 

click chemistry and strained alkynes, and compare the product yields.  

Additionally, azide groups could be easily converted into amine groups and enable 

peptide coupling of proteins. Plasma treatment is the simplest way to create the amine groups 

at the surface of PCL fibers. However, amine formation obtained from macromolecular chain 

breakage may further trigger the fiber degradation and contribute to the weakening of the 

mechanical properties of these fibers. By simple conversion of azides to amines with 
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triphenylphosphine, desired amino-groups could be formed at the time needed, without 

deterioration of the fiber’s structure and mechanical properties. Subsequently, it would be 

intriguing to test the method of peptide coupling with various cell-stimulating proteins on PCL 

fibers to obtain bioactive scaffolds that meet the high demands for tissue engineering 

applications. 
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Chapter IV – Materials and Methods 

1. Materials 

Protonated polystyrene (hPS), Mw 392000 g mol-1 and perdeuterated polystyrene (dPS), 

Mw 385000 g mol-1 with narrow molecular-weight distributions (MWD ≤ 1.1) were atactic and 

purchased from Polymer Source, USA. Poly(e-caprolactone) (PCL80) Mn 70000-90000 g mol-

1, polystyrene (PS) Mw 350000 g mol-1 (MWD=2.06), b-D-galactopyranose pentaacetate, a-D-

mannopyranose pentaacetate, and all other organic compounds mentioned in this study were 

purchased from Sigma Aldrich and used without further purification. b-galactosidase 

(Aspergillus oryzae) was dissolved in phosphate-buffer saline (PBS) solution (1:10) in order to 

make 200 units mL-1 concentration. Horseradish peroxidase-labeled lectin (HRP) from 

Canavalia ensiformis (HRP-ConA, mannose-binding lectin) was dissolved in PBS (1:10 

dilution) in order to obtain 250 mg mL-1 solution. Horseradish peroxidase-labeled lectin (HRP) 

from Arachis hypogaea (HRP-PNA, galactoside-binding lectin) was dissolved in PBS (1:10) to 

obtain 200 mg mL-1 solution. a,w-Poly(e-caprolactone)-diol (PCL2), Mn 2000 g mol-1 (Sigma), 

was recrystallized from diethyl ether prior to use. Aluminium foil (99% purity) was purchased 

from Goodfellow, England. Certain trade names and company products are identified in order 

to specify experimental procedures adequately. In no case does such identification imply 

recommendation or endorsement, nor does it imply that the products are necessarily the best 

available for the purpose. 
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2. Syntheses and Preparation Protocols 

Synthesis of a,w-p-Toluenesulfonyl-poly(e-caprolactone) (PCL-OTs) 

Synthesis of a,w-p-toluenesulfonyl-poly(e-caprolactone), illustrated in the Scheme 

IV.1, was carried out following the protocol reported elsewhere.224 

 

 

Scheme IV.1. Synthesis of a,w-p-toluenesulfonyl-poly(e-caprolactone) (PCL-OTs) polymer 

PCL2 (2 g, 1 mmol) was dissolved in 30 mL of dichloromethane in a 100 mL round-

bottom-flask and stirred until dissolution. Then, triethylamine (TEA) (6 equiv., 0.607 g) and 

TsCl (6 equiv., 1.14 g) dissolved in 20 mL of DCM were added drop-wise into the polymer 

solution. After 28 h at room temperature, the reaction mixture was then washed with saturated 

NaCl, 1 M HCl and H2O. The organic phase was dried over Na2SO4 and concentrated. The 

crude product was dissolved in the minimum of CH2Cl2 and then precipitated in cold (4 °C) 

diethyl ether (10 mL) to give a,w-p-toluenesulfonyl-poly(e-caprolactone) (PCL-OTs) (1.21 g, 

54 % yield). 

1H NMR (400 MHz, CDCl3,δ): 7.77 (d, 4H, J=8.22 Hz, CH3-C6H2H2-SO2-), 7.34 (d, 4H, 

J=8.05 Hz, CH3-C6H2H2-SO2-), 4.22 (t, 4H, J=4.72 Hz, COO-CH2-CH2-O-), 4.05 (t, 84H, 
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J=6.66 Hz, COO-CH2-(CH2)4-), 3.68 (t, 4H, J=4.76 Hz, COO-CH2-CH2-O-), 2.44 (s, 6H, CH3-

C6H4-SO2-), 2.30 (t, 84H, J=7.50 Hz, -(CH2)4-CH2-COO-), 1.64 (m, 172H, COO-CH2- CH2- 

CH2- CH2- CH2-COO-), 1.37 (dt, 84H, J=1.65, 14.77 Hz,  COO-(CH2)2- CH2-(CH2)2-COO-).  

13C NMR (400 MHz, CDCl3, δ): 173.5, 130.5, 129.8, 129.1, 127.9, 70.2, 69.1, 64.1, 63.3, 34.1, 

30, 27.5, 25.5, 24.5.  

MALDI-TOF MS: calcd for C138H222O47S2 m/z=2695.42; found m/z= 2718.50 [M+Na]+
. 

 

Figure IV.1.1H NMR spectrum of a,w-p-toluenesulfonyl-poly(e-caprolactone) (PCL-OTs) in CDCl3 
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Figure IV.2.13C NMR spectrum of a,w-p-toluenesulfonylpoly(e-caprolactone) (PCL-OTs) in CDCl3 

Synthesis of a,w-Azide-poly(e-caprolactone) (PCL-N3) 

a,w-Azide-poly(e-caprolactone) synthesis was carried out from the PCL-OTs polymer 

obtained previously as illustrated in the Scheme IV.2. 

 

Scheme IV.2. Synthesis of a,w-azide-poly(e-caprolactone) (PCL-N3) polymer 

PCL-OTs (1 g, 0.4332 mmol) was dissolved in the minimum of DMF (5 mL) under the 

flux of Argon. When the polymer was dissolved, NaN3 (6 equiv., 0.169 g) was added with 1-2 
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crystals of 18-crown-6 and the reaction was stirred for 24 h at 50 °C. After precipitation in cold 

water (20 mL), 0.875 g of the final product a,w-azido-poly(e-caprolactone) (PCL-N3) was 

isolated (98% yield). 

1H NMR (400 MHz, CDCl3, d): 4.22 (t, 4H, J=4.79 Hz, COO-CH2-CH2-O-), 4.05 (t, 84H, 

J=6.69 Hz, COO-CH2-(CH2)4-), 3.68 (t, 4H, J=4.86 Hz, COO-CH2-CH2-O-), 3.27 (t, 4H, J=6.87 

Hz, N3-CH2-), 2.30 (t, 84H, J=7.51 Hz, -(CH2)4-CH2-COO-), 1.63 (m, 172H,  COO-CH2- CH2- 

CH2- CH2- CH2-COO-), 1.38 (m, 84H, COO-(CH2)2- CH2-(CH2)2-COO-).  

13C NMR (400 MHz, CDCl3, d): 173.5, 69, 64.1, 63, 55.2, 38.7, 34.1, 28.3, 25.5, 24.6  

MALDI-TOF MS: calcd for C112H188O37N6 m/z=2385.49 (for azide-terminated PCL); found 

m/z=2409.43 [M+Na+] (N3→NH2).226 

 

Figure IV.3.1H NMR spectrum of a,w-azido-poly(e-caprolactone) (PCL-N3) in CDCl3 
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Figure IV.4.13C NMR spectrum of a,w-azido-poly(e-caprolactone) (PCL-N3) in CDCl3 

Synthesis of a,w-Propargyl galactoside-poly(e-caprolactone) (PCL2-Gal) Polymer 

Synthesis of a,w-propargyl galactoside-poly(e-caprolactone) was carried out from 

PCL-N3 polymer as illustrated in Scheme IV.3.  

 

Scheme IV.3. Synthesis of a,w-propargyl galactoside-poly(e-caprolactone) (PCL-Gal) polymer 
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PCL2-N3 polymer (1.5 g, 0.72 mmol) was involved into click reaction with propargyl-

b-D-galactose (see chapters 2.5 and 2.6 detailed syntheses) (1.57 g, 10 equiv.) in THF/water 1/1 

solvent mixture (100 mL), at 40 °C for 48h and in the presence of CuSO4·5H2O (0.36 g, 2 

equiv.) and sodium ascorbate (0.28 g, 2 equiv.) catalysts. Reaction mixture was concentrated in 

rotavapor, dissolved in 2 mL of N,N-dimethylformamide (DMF) and precipitated in 40 mL of 

toluene. The solid was filtrated and dried under vacuum to provide PCL2-Gal (1.6 g) in 94% 

yield.  

1H NMR (DMSO-d6, 400 MHz) δ: 8.03 (s, 2H,-C=CH-N-), 4.81 (d, 2H, J=12.21 Hz, -C1H-O-

), 4.63 (d, 4H, J=12.22 Hz, -C6H2-OH), 4.48 (t, 2H, J=5.59 Hz, -C5H-OH), 4.32 (t, 4H, J=7.07 

Hz, -O-CH2-C=), 4.22 (d, 2H,J=7.20 Hz, -C2H-OH), 4.18 (d, 2H, J=5.86 Hz, -C4H-OH), 4.11 

(t, 4H, J=4.7 Hz, COO-CH2-CH2-O-), 3.99 (t, 84H,J=6.49 Hz, COO-CH2-(CH2)4-), 3.66 (t, 2H, 

C3H-OH),3.61 (t, 4H, J=4.73 Hz, COO-CH2-CH2-O-), 3.55 (d, 4H, J=4.34 Hz), 3.37 (t, 4H, 

J=5.73 Hz), 2.27 (t, 84H, J=7.29 Hz, -(CH2)4-CH2-COO-), 1.82 (t, 4H, J=7.35 Hz, -N-CH2-

(CH2)4-), 1.55 (m, 168H, COO-CH2- CH2- CH2- CH2- CH2-COO-), 1.32 (m, 84H, COO-

(CH2)2- CH2-(CH2)2-COO-). 

13C NMR (DMSO-d6, 400 MHz) δ: 172.50, 143.76, 124.14, 123.69, 102.61, 75.21, 73.36, 

70.41, 68.10, 63.29, 62.75, 61.36, 60.42, 48.96, 33.23, 33.15, 30.29, 29.17, 27.64, 25.21, 24.73, 

23.91, 23.68 

MALDI-TOF MS: calcd for C130H216O49N6 m/z=2875.25 g/mol, found m/z= 2898.43 g/mol 

[M+Na]+. 
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Figure IV.5.1H NMR spectrum of a,w-propargyl galactoside-poly(e-caprolactone) in DMSO-d6 at 333 

K 

 

Figure IV.6.13C NMR spectrum of a,w-propargyl galactoside-poly(e-caprolactone) in DMSO-d6 at 

333 K 

Synthesis of Propargyl-Fluorescein Isothiocyanate 
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Propargyl-fluorescein isothiocyanate was prepared from the fluorescein-isothiocyanate 

isomer following the procedure reported elsewhere (Scheme IV.4).253 

 

Scheme IV.4. Synthesis of propargyl-fluorescein isothiocyanate 

Fluorescein isothiocyanate (FITC) (10 mg, 0.0128 mmol) and propargyl amine (90 µL, 

0.703 mmol) were dissolved in 110 µL of DMF in a microcentrifuge tube and stirred in dark 

for 24 h at room temperature. DMF and excess of propargyl amine were then evaporated and 

crude product was dissolved in stock solution mixture of acetonitrile/water (1/1).  

Synthesis of Propargyl-b-D-galactopyranoside 

Propargyl-b-D-galactopyranoside was obtained from a two-step synthesis protocol 

illustrated in Scheme IV.5. 

Scheme IV.5.two-step synthesis of propargyl-a-D-galactopyranoside 

Boron trifluoridediethylether (9.6 mL, 1.5 equiv.) was added dropwise to a stirred 

solution of b-D-galactopyranose pentaacetate (20 g, 51.2 mmol) and propargyl alcohol (3.6 mL, 

1.2 equiv.) in anhydrous DCM (200 mL) at 0 °C. After 2.5 hours, the reaction mixture was 

washed with ice-cold water (water and ice), saturated NaHCO3 and saturated NaCl. Organic 

phase was then dried under Na2SO4 and concentrated in the rotavapor. Propargyl-2,3,4,6-tetra-
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O-acetyl-b-D-galactopyranoside was isolated with 89% yield after purification by flash 

chromatography on silica gel using ethylacetate and petroleum ether (1:1 v/v) as eluent (3 L). 

To a stirred solution of acetylated propargyl galactoside (17.6 g, 45.6 mmol) in MeOH 

(100 mL) was added sodium methylate (1 M, 1 mL). After completion of the reaction by TLC, 

the solution was neutralized with the acid resin Amberlite IR 120 H+, filtered and the filtrate 

was concentrated. 91% (9.1 g) of pure propargyl-b-D-galactopyranoside was isolated after 

recrystallization in 200 mL of 1-propanol. Purified propargyl-b-D-galactopyranoside was either 

used in the azide-alkyne copper catalyzed cycloaddition reactions with f-PCL-N3 fibrous mats 

in a heterogeneus phase or with PCL2-N3 polymer in a solution. 

1H NMR (D2O, 400 MHz) δ: 4.58 (d, 1H, J=7.87 Hz), 4.49 (m, 2H), 3.94 (d, 1H, J=3.40 Hz), 

3.72 (m, 4H), 3.54 (dd, 1H, J=7.93, 9.85 Hz), 2.07 (s, 1H). 

13C NMR (D2O, 400 MHz) δ: 98.60, 95.86, 72.84, 70.27, 68.19, 66.14, 58.50, 54.04. 

MALDI-TOF MS: calcd for C9H14O6 m/z=218.08, found m/z= 241.0 [M+Na]+
. 
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Figure IV.7. 1H NMR spectrum of propargyl-b-D-galactopyranoside in D2O 

 

Figure IV.8. 13C NMR spectrum of propargyl-b-D-galactopyranoside in D2O 

Synthesis of Propargyl-a-D-mannopyranoside 

Propargyl-a-D-mannopyranoside was obtained from a two-step synthesis as 

illustrated in Scheme IV.6. 

Scheme IV.6. Two-step synthesis of propargyl-a-D-mannopyranoside 

To a stirred solution of a-D-mannopyranose pentaacetate (3 g, 7.69 mmol) and 

propargyl alcohol (0.54 mL, 1.2 equiv.) in anhydrous DCM (30 mL) at 0 °C was added dropwise 

boron trifluoridediethylether (1.44 mL, 1.5 equiv.). After 2.5 hours, the reaction mixture was 

washed with ice-cold water (water and ice), saturated NaHCO3 and saturated NaCl. Organic 
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phase was then dried under Na2SO4 and concentrated in the rotavapor. The by-product 

(propargyl-2,3,4,6-tetra-O-acetyl-a-D-mannopyranoside, 0.821 g) was then deacetylated in 20 

mL of methanol containing sodium methylate (1M, 200 µL). After 3 h, when the deacetylation 

was finished, the solution was neutralized with the acid resin Amberlite IR 120 H+, filtered 

through cotton and concentrated. Propargyl-a-D-mannopyranoside was isolated (61% yield) 

after purification by flash chromatography on silica gel using acetonitrile and distilled water 

(0.95:0.5 v/v) as eluent (2 L). Purified propargyl-a-D-mannopyranoside was then used in the 

azide-alkyne copper catalyzed cycloaddition reaction with f-PCL-N3 fibrous mats in a 

heterogeneous phase, at the interface between water and fiber’s surface. 

1H NMR (D2O, 400 MHz) δ: 5.06 (d, 1H, J= 1.57 Hz), 4.36 (qd, 2H, J= 2.38, 2.36 Hz), 3.90-

3.99 (m, 2H), 3.69-3.84 (m, 4H), 2.94-2.95 (m, 2H). 

13C NMR (D2O, 400 MHz) δ: 98.74, 78.81, 76.15, 73.11, 70.43, 69.92, 66.60, 60.80, 54.54.  

MALDI-TOF MS: calcd for C9H14O6 m/z=218.08; found m/z= 241 [M+Na] +
. 

 

Figure IV.9. 1H NMR spectrum of propargyl-a-D-mannopyranoside in D2O 
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Figure IV.10. 13C NMR spectrum of propargyl-a-D-galactopyranoside in D2O 

3. Electrospinning 

Electrospinning setup was designed and manufactured in our laboratory and it is 

composed of three main units: 

· The feeding unit is a syringe pump (KD Scientific series 200, USA) containing 

a syringe pump filled with electrospinning solution with the blunt 21-gauge 

needle. Solution flow rate was ranging from 0.01 to 0.03 mL/min.  

· The high tension unit is a dual high voltage supply (iseq GMBH Germany, with 

a ±30 kV range) and was used in experiments in the range between 11 and 15 

kV. As the distance between the needle tip and collector was 15 cm, the electric 

field exerted on the solution in flow was from 0.7 to 1 kV/cm. 

· The collecting unit used in the experiments was either static (10 cm2 aluminium 

foil) for collecting randomly deposited electrospun fibers, or dynamic and it 
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consisted of a rotating disc (having 6.5 cm radius and 1.5 cm large) for 

collecting aligned fibrous mats. Rotating disc was connected to a DC motor (~ 

70 W) having the upper speed limit of 1800 rpm. 

· All experiments were done at room temperature. The relative humidity noted 

was between 20 and 55%. For decreasing the relative humidity of the 

electrospinning box, a dry air was purged at 8 bars (Dew point 4°C) until the 

humidity was decreased to a desired level. 

Preparation of Electrospinning Solutions 

Fibrous membranes based on different polymers and polymer blends, were electrospun 

from a polymer solution. Each solution preparation is detailed below. 

f-PCL-N3 fibers: polymer solutions were prepared in dichoromethane/methanol 

(DCM/MeOH 4/1) solvent mixture at room temperature. A high molecular weight PCL80 and 

PCL-N3 were blended in different ratios (20, 40 and 60 wt. % of PCL-N3) to give a final 

concentration of 10, 16 and 23 wt. % of polymer in DCM/MeOH solvent mixture, respectively. 

Polymer content in electrospinning solution is calculated as a mass of the polymer divided by 

the total mass of both polymer and solvent mixture using the following equation: 

  (IV.1) 

f-PCL-GalB fibers: PCL2-Gal was blended with PCL80 in ratio 20:80 and 40:60 w/w in 

DCM/MeOH 4/1 solvent mixture and electrospun. Resulting fibers: f-PCL20-GalB and f-PCL40-

GalB stand for a blend of bulk-functionalized PCL2-Gal and PCL80 polymers in ratios 20/80 and 

40/60, respectively.  

Polystyrene fibers: Electrospinning solutions of a blend containing hydrogenated (hPS) 

and perdeuterated (dPS) polystyrene in 1:1 ratio and PS homopolymer solution were prepared 
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in DMF with a final concentration of 27 w/v %. In order to minimize the possibility of pore 

formation at the surface of the fibers, humidity was kept below 20%. 

Preparation of Polymer Film 

PCL80 and PCL-N3 (60 wt. % of PCL-N3 in the blend) were dissolved in DCM/MeOH 

(volume ratio 4/1) solvent mixture to a final concentration of 23 wt. %. Polymer cast film was 

obtained from the solution deposited onto a glass slide that was kept in a vacuum oven at 60 °C 

for 20 minutes.  

4. Heterogeneous Click Chemistry on Solid Nanofibers 

Surface Modification of f-PCL-N3Fibrous Scaffolds with FITC Fluorophore 

Reaction click between propargyl-FITC and azido-fibers in heterogeneous phase is 

described on the f-PCL-N3-60 fibers as example. Prior use, 0.1 M solutions of CuSO4∙5H2O 

and of sodium ascorbate, as well as FITC solution in acetonitrile/water, were filtered through 

PTFE (0.2 µm) filter in order to eliminate possible undissolved crystals that could aggregate on 

the fibers. f-PCL-N3-60 fibers (2 mg) were put in the microcentrifuge tube containing 500 µL 

of acetonitrile, and then 56 µL (10 equiv. per azide group on the surface, as estimated by the 

ninhydrin assay) solution (6.42 mmol L-1 ) of FITC-alkyne in acetonitrile/water (1:1) along with 

500 µL of distilled water, 7 µL CuSO4∙5H2O in distilled water (0.1 M, 6 equiv.) and 7 µL of 

sodium ascorbate in distilled water (0.1 M, 6 equiv.) were added. Reaction mixture was stirred 

in dark for 24 h at room temperature and then fibers were thoroughly washed with 

acetonitrile/water (1/1). f-PCL-N3-20 and f-PCL-N3-40 were prepared using same procedure by 

keeping the same molar ratio. Resulting f-PCL-N3-20-FITC, f-PCL-N3-40-FITC and f-PCL-

N3-60-FITC fibers were kept in acetonitrile/water (1/1) stock solution until observation. 
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Grafting of Monosaccharides onto the f-PCL-N3 Fibers 

Monosaccharides, propargyl-a-D-mannose and propargyl-b-D-galactose were 

conjugated onto the surface of f-PCL-N3 -20, -40, and -60 nanofibers using click chemistry 

coupling. Resulting fibers were marked as f-PCL20-GalS, f-PCL40-GalS, and f-PCL60-GalS for 

galactose surface-functionalized, while f-PCL20-ManS, f-PCL40-ManS, and f-PCL60-ManS 

correspond to the mannose surface-functionalized fibers from f-PCL-N3 -20, -40, and -60 

fibrous mats, respectively. Click reaction between propargyl-monosaccharides and azido-fibers 

in a heterogeneous phase will be described on example of the f-PCL20-GalS fibers. f-PCL-N3-

20 fibers (20 mg) were put in a microcentrifuge tube containing 4 mL of distilled water. Then, 

54.7 µL (10 equiv. per azide group on the surface, as estimated by the ninhydrin assay) of 0.1 

M aqueous solution of propargyl-b-D-galactose, 21.9 µL CuSO4∙5H2O in distilled water (0.1 

M, 4 equiv.) and 21.9 µL of sodium ascorbate in distilled water (0.1 M, 4 equiv.) were added 

into the microcentrifuge tube. Reaction mixture was stirred for 24 h at room temperature and 

then fibers were thoroughly washed with distilled water. f-PCL40-GalS and f-PCL60-GalS were 

prepared from f-PCL-N3-40 and f-PCL-N3-60, respectively, following the same procedure 

while keeping the same molar ratio. f-PCL20-ManS, f-PCL40-ManS and f-PCL60-ManS 

functionalized fibers were prepared similarly as f-PCL-GalS fibers by replacing propargyl-b-D-

galactose with propargyl-a-D-mannose.  

5. Characterization Techniques 

Fourier-Transformation Infra-Red (FTIR) Spectroscopy 

FTIR spectra were recorded in the transmission mode using a Perkin-Elmer 1720X 

FTIR instrument. Depending of the sample tested, it was used CaF2 optic plates for powder 
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compounds and attenuated transmission reflection, using single reflection diamond ATR, for 

electrospun scaffolds. 

Nuclear-Magnetic Resonance (NMR) Spectroscopy 

1H and 13C NMR spectra were obtained with a Bruker AVANCE 400 MHz with 5 mm 

QNP probe at 298 and 333 K.  

Mass Spectrometry 

Matrix-Assisted Laser Desorption Ionization – Time of Flight Mass Spectroscopy 

(MALDI-TOF MS) analyses were done in the ionization mode with Autoflex Bruker 

instrument.  

Scanning-Electron Microscopy (SEM) 

Field Emission gun Scanning Electron Microscope (FESEM ZEISS ULTRA55) was 

used for observing the morphology of the fibers at 1 kV accelerating voltage, 5 mm of working 

distance and at magnifications of 500, 1000 and 2000 times using In-Lens detection system. All 

samples were sputter coated with Pt of 1 nm thickness. Average fiber diameters of the 

electrospun fibers, were obtained as a mean value of 150 different diameters measured by 

ImageJ software.  

Transmission Electron Microscopy (TEM) 

Fibrous scaffolds were previously entrapped inside the epoxy resin and left some 

time for resin to solidify. An ultra-thin slice of fiber-containing resin was cut by microtome 

and observed under TEM microscope under 3000 and 6000 X magnifications.  

Fluorescence Confocal Microscopy 
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Fluorescence intensity of the fibers was monitored using Leica TCS SP2 AOBS 

(Acoustico Optical Beam Splitter) confocal laser scanning system and an inverted fluorescence 

microscope equipped with an oil-immersion objective lens 40×. Fibrous samples were put in 

between two lamellae and covered with 4 µL of stock solution (acetonitrile/water). FITC-

labeled fibers were visualized by excitation of the fluorophore with a 488 nm Ar/Kr laser and 

the emitted fluorescence was collected between 508 and 533 nm, precisely defined by the 

AOBS. 

Viscosity Measurements 

Viscosity measurements were done using MCR301 and MARS III controlled-stress 

rheometers equipped with cone-plate geometry: 60 mm titan cone, having 1° angle and 29 µm 

and 53 µm gap, respectively.  

Dynamic Light Scattering 

DLS measurements were performed using an ALV/CGS-8F goniometer, equipped with 

a linearly polarized He/Ne laser (l = 632.8 nm, P = 35 mW) and an ALV multiple τ correlator 

with a 125 ns initial sampling time. The unfiltered mixtures were measured at 25 °C for a typical 

counting time of 200 s at a scattering angle of 90°. The size distributions were obtained with 

the CONTIN analysis of the autocorrelation functions and particularly with the Stokes-Einstein 

equation as detailed elsewhere.254,255 The viscosity and refractive index of the DCM/MeOH 4/1 

solvent mixture alone are calculated to be 0.466 cP and 1.398, respectively.4 

Number-weighted distribution can be deduced from mass-weighted distribution as 

reported in Travelet et al.246 Since ~350 nm and ~50 µm objects are present, and since the 

surface area under the peak of the polymer aggregates represent ~29% of the total surface area 

then: 
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   (IV.2) 

NPolymer and NSolvent designate the number of PCL2-Gal and solvent aggregates respectively. 

Small-Angle Neutron Scattering 

SANS measurements were performed at Laboratoire Léon Brillouin (LLB), CEA, 

Saclay, using PAXY beam line. The wavelength (λ) range used lies between 3.5 Å and 12 

Å. Detector used is bi-dimentional, able to detect the anisotropy of analyzed sample.  

Prior SANS analysis, fibers were removed from aluminium foil, placed between two 

flat quartz-optic cells, sealed, and put inside the sample holder rack.  

Data sets were taken from 2D data, regrouped by sectors of 30 degrees in the direction 

of the fiber aligning axis, and 10 degrees for the direction perpendicular to the fiber alignment. 

The signal was substracted from the incoherent part due to hydrogen nuclei and detector noise 

and normalized by transmission of the sample using PAsiNET.MAT program. The collected 

results were fitted using standard Debye Gaussian Coil and Porod plots. 

Water Contact Angle Measurements 

Water Contact Angle (WCA) measurements were done in the sessile-drop mode at 20 

°C using Dataphysics Intruments Gmb goniometer. Nonwoven fibrous meshes were fixed onto 

an object slide using adhesive tapes at the sides of the sample. The volume of the applied droplet 

is 1 µL. The resulting value of each measurement represents the average value of the left and 

the right contact angle. The images of the water droplet on electrospun fiber meshes and the 

corresponding contact angle were recorded from droplet deposition onto the fibers until its 

stabilization. 
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Ninhydrin Test on Solid Electrospun Nonwovens 

Ninhydrin test was adapted for the detection and quantification of the azide groups (-

N=N+=N-) on PCL fibers. f-PCL-N3 fibers (10 mg) were dropped in 10 g L-1 PPh3 solution in 

ethanol (2 mL) for 15 minutes in order to reduce the azide to amine groups. Reduced f-PCL-N3 

fibers were washed in ethanol and then dissolved in 1,4-dioxane (500 µL). Solution mixture of 

ninhydrin (2 g) and hydrindantin (0.3 g) in 75 mL DMSO and sodium acetate buffer (25 mL) 

was prepared under argon. It is important that this solution is always fresh and prepared the day 

when the measurement is taken. The solution mixture was then added (500 µL) to the solution 

of fibers in 1,4-dioxane (1/1 v/v) in the screw-capped test tubes, heated at 100 °C for 15 minutes 

and finally cooled in an ice bath. At the end, 3 mL of 1,4-dioxane was added into each tube, 

thoroughly mixed with a Vortex mixer and absorbance at 570 nm was measured with UVIKON 

810 UV-vis spectrophotometer.  

 

Figure IV.11. Calibration curve as a correlation between the mass of reduced PCL-N3 to PCL-NH2, 

dissolved in 500 µL 1,4-dioxane and absorbance at 570 nm 
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Figure IV.11 represents the calibration curve of PCL-N3 polymer powder, used for 

quantification of azides on the surface of f-PCL-N3 fibers. PCL-N3 polymer was reduced to 

PCL-NH2 in solution of PPh3 in ethanol at room temperature. Ninhydrin test was performed 

following the same procedure as described for f-PCL-N3 fibers. 

Phenol-Sulphuric Acid Assay (Dubois Method) 

Sugar-decorated fibers (2 mg) were dispersed in 100 µL of distilled water and 100 µL 

of phenol solution (5 w/v %) was added followed by addition of 1 mL of 96% of sulfuric acid. 

The solution was vigorously agitated for 15 min at room temperature and absorbance at 490 nm 

was measured with UVIKON 810 UV-Vis spectrophotometer. The concentration of sugar was 

determined by reference to a calibration curve with galactose as a standard for f-PCL-GalS 

fibers and mannose as a standard for f-PCL-ManS fibers. 

Enzymatic Hydrolysis 

f-PCL-GalB fibers (4 mg) were put in microcentrifuge tube containing 500 µL acetate 

buffer (0.2 M, pH=4.50) and 25 µL of b-galactosidase from Aspergillus oryzae (Sigma) (200 

units/mL in PBS 1:10 dilution), at 30 °C with gentle stirring. The sample (50 µL) was taken 

after 4, 24, 48 and 72 h reaction time for the standard phenol-sulfuric acid colorimetric titration 

in aqueous medium. 

Enzyme-Linked Lectin Assay (ELLA) 

ELLA test was done to determine the presence and bioavailability of the carbohydrates 

on the fiber surface. Prepared solutions of horseradish peroxidase-labeled lectin (HRP) from 

Canavalia ensiformis (HRP-ConA, mannose-binding lectin) and horseradish peroxidase-

labeled lectin (HRP) from Arachis hypogaea (HRP-PNA, galactoside-binding lectin) were 

used. Carbohydrate bulk- and surface-functionalized fibers, f-PCL-GalB and f-PCL-GalS as well 
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as native fibers, PCL80, were placed separately in screw-capped test tubes and left for 5 min at 

room temperature in PBS (1:10 dilution, pH=7.2-7.6) containing 2 vol. % of TWEEN 20 for 

blocking extra binding sites. The fibers were washed in PBS (1:10 dilution) and then put in a 1 

mL of fresh PBS (1:10 dilution) containing 25 µL of HRP-PNA solution (200 µg mL-1), with 1 

mM MnCl2, 1 mM MgCl2 and 1 mM CaCl2 for 16 h at 20 °C. Fibers were then thoroughly 

washed with PBS (1:10 dilution) and then put in 4 mL of deionized water where 2 drops of (2.5 

M, pH=5.0) acetate buffer, 1 drop of AEC Chromogen (Sigma) and 1 drop of 3% hydrogen 

peroxide were added. After 10-15 minutes, the reddish coloration of the f-PCL-GalB and f-PCL-

GalS fibers was observed. Similar procedure was followed for f-PCL-ManS fibers with the 

difference of the lectin used. For a-mannose recognition, 25 µL of HRP-ConA solution (200 

µg/mL) was used. 
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Abstract 

Electrospinning process has become a leading technique for producing nano-fibrous 

scaffolds that are highly porous, lighter, and with superior mechanical properties than their bulk 

equivalents. Structural properties of electrospun fibers closely resemble to the connective cell 

tissue, making these nonwovens readily employed in medicine and pharmacy. The research 

study of this thesis focused on bridging the commercially available biopolymers with the tissue 

engineering applications through multifunctional aspects of carbohydrates and click chemistry 

coupling. Biocompatible fibers were electrospun from poly(e-caprolactone) and further 

optimized into clickable azido-PCL scaffolds. Their surface-activity was visualized after click 

coupling of a fluorescent dye onto PCL-based electrospun fibers, while hydrophilicity and 

bioactivity were achieved by covalent bonding of carbohydrates, enabling specific cell adhesion 

possibilities of these nonwovens. Selective lectin surface-immobilization revealed the potential 

of these scaffolds for specific protein adhesion and therefore controlled cell-material 

interactions. Polymer stability is an important factor for controlled degradation in tissue 

engineering applications. Small angle neutron scattering studies were carried out to estimate 

the stability of polystyrene as a model-polymer, its chain conformation in as-spun and thermally 

annealed electrospun fibers. Notable anisotropy of polymeric chains within the fibers was 

observed. The terminal relaxation time of the polystyrene was estimated and compared to the 

theoretical value. 

Résumé 

Le procédé d’électro-filage est devenu une technique privilégiée pour la préparation des 

matériaux nano-fibreux, grâce à sa simplicité de mise en œuvre, la polyvalence des matières 

premières utilisées, ainsi que la diversité des structures obtenues. Sa capacité à produire des 

réseaux fibrillaires, proches de ceux du vivant ont ouvert la voie à d’importantes applications 

en ingénierie tissulaire. Cette étude a porté sur i) l'élaboration de nano-fibres à base de 

biopolymères commerciaux par un procédé d’électro-filage, pour des applications en ingénierie 

tissulaire, ii) leur fonctionnalisation et, iii) l’étude par SANS de la stabilité des chaînes de 

polymères constituant ces fibres. La stabilité d’un polymère est un facteur important pour la 

dégradation contrôlée dans les systèmes biologiques. Des études de la stabilité de polystyrène, 

utilisé ici comme un modèle simple, dans le milieu confiné des nanofibres, ont été élaborés avec 

la technique de diffusion de neutrons aux petits angles. L’investigation de la conformation des 

chaînes de polymère dans les nanofibres montre une anisotropie remarquable, en suggérant une 

forte déformation des chaînes dans la direction axiale des fibres d’au cours de procédé d’électro-

filage. La dynamique de relaxation des chaînes a permis d’évaluer leur stabilité et vieillissement 

dans le milieu confiné des nanofibres. Des fibres biocompatibles à base de poly(e-caprolactone) 

(PCL) ont été électro-filées et optimisées pour obtenir des matériaux nano-structurés et 

fonctionnalisés en vue d’applications biomédicales. L’introduction par chimie click azide-

alcyne de groupes saccharidiques dans le cœur ou en surface des fibres de PCL a été réalisée 

très efficacement selon deux approches distinctes avant ou après électro-filage. Les 

caractérisations physico-chimiques et biologiques réalisées sur les différents systèmes ont 

notamment permis de mettre en évidence la biodisponibilité des sucres à la surface des fibres 

ainsi que leur capacité à rendre la PCL hydrophile. Ces résultats attestent du potentiel de la 

chimie click à permettre la fonctionnalisation de fibres de polyesters sans altération de leur 

structure ouvrant ainsi d’importantes perspectives dans le domaine de l’ingénierie tissulaire. 


