

Hypoxia contributes to quiescence and chemoresistance of Leukemia Initiating Cells in B Acute Lymphocytic Leukemia

Arnaud Villacreces

Supervisor : Pr V. Praloran

10th July 2014

B-ALL : Generalities

Definition :

Haematopoietic malignancy,

Affecting B lymphoid lineages

Affecting haematopoiesis (thrombopenia, anemia, neutropenia)

Bone marrow

Epidemiology :

1.25 / 100 000

Children: 2 to 10 years (20% of cancers)

Adult: > 50 years (< 1% of cancers)

B-ALL: leukaemogenesis

Systematic research of recurrent genetic abnormalities \rightarrow Classification and stratification

ALL: Molecular abnormalities, frequencies and prognosis

LAL	Anomalie	Incidence	Pronostic	
B+T	Hyperdiploïdie	< 10 % chez l'adulte/30-35 % en pédiatrie	Favorable	
	Formes hypodiploïdes, haploïdes et quasi triploïdes	< 5 % chez l'adulte	Défavorable	
	Réarrangements de MLL	80 % chez les <1 an, exceptionnel au-delà de cet âge chez l'enfant, 10 % chez l'adulte		
	Caryotypes complexes (> 5 anomalies)	< 5 % chez l'adulte		
В	t(9;22)(q34;q11)/ <i>BCR-ABL1</i>	30-40 % chez l'adulte/< 5 % chez l'enfant		
	TCF3-PBX1 et TCF3-HLF	4 % des LAL de l'enfant et jeune adulte	Défavorable	
	(iAMP21)	Enfants et adolescents principalement		
	Mutations/délétions du gène IKZF1	\sim 3/4 LAL Ph+, 1/3 LAL non Ph+/15 % des LAL B de l'enfant		
	LAL BCR-ABL1 like	15 % des LAL B de l'enfant, et vraisemblablement une proportion significative chez les 15-25 ans		
	Réarrangements de <i>CRLF2</i>	50 % des LAL associées au syndrome de Down et jusqu'à 50 % des LAL BCR-ABL1 <i>like</i>		
	Mutation de PAX5	Précoce dans la leucémogenèse B environ 30 % des LAL B	?	
	t(12;21)(p12;q22)/ETV6-RUNX1	1-3 % chez l'adulte/25 % chez l'enfant	Favorable	
	Délétion intragénique de ERG	-/3 %		

Adapted from Lara et Gauthier., Hématologie, 2014

Prognosis stratification criteria

Clinical characteristics

>Age (Tolerance – different genetic abnormalities)

Innate genetic background (Trisomy)

Signs of central nervous system invasion

➤Signs of testis invasion

*****Biological characteristics

Leucocyte enumeration (Hyperleucocytosis > 30 000 / mm³)
 Extended B-cell phenotyping : (CD10⁻)

➤Genetics abnormalities (BCR-ABL)

*****Evolution Characteristics : Response to treatment

➤Initial corticoresistance

Chemoresistance (MRD level)

ALL Treatment : Polychemotherapy

Long (≈3years) in 3 phases preceded by 1 week of corticotherapy

Induction : ≈ 1 month

- Anthracyclines (Daunorubicine)
- <u>Corticoïds (MéthylPrednisolone)</u>
- Vincristine
- L-Asparaginase
- Alkylating agents

Consolidation : ≈ 7 months

- Methotrexate
- Cytarabine (Ara C)
- Cyclophosphamide
- •Other induction therapy

Vincristine

Methotrexate

Corticoïds

Maintenance : \approx 2-3 years

6-mercaptopurine

Results

Kaplan-Meier analysis of survival for 2852 children enrolled in 15 consecutive studies from 1962 to 2007 Adapted from Pui and Evans, Semin Hematol., 2013

Clonal relationship of diagnosis and relapse samples in ALL

61 paediatric patients Mullighan et al., Science, 2008

Relapses : Leukaemia Initiating Cells persistence

Leukemia initiating cells (LIC)

Leukaemic transformation model Adapted of Rosen and Jordan, Science, 2009 Malignant cells that initiate leukaemia

That kept/reacquire HSC properties

- ✓ Self-renewal
- ✓ Differentiation (partial tumoral heterogenity)
- ✓ Homing
- ✓ Protection mechanisms

Aguirre-Ghiso, Nat Rev Cancer., 2007

Relapses : Leukaemia Initiating Cells in dormancy state

53

Dormancy: the three possible mechanisms

Tumor mass dormancy % Proliferation = % Apoptosis

Angiogenic dormancy

Immunosurveillance

Cellular escape mechanisms Immunosuppression?

Growing micrometastasis

Evasion of the immune system causes tumour mass expansion

Cellular dormancy

Cellular dormancy

Quiescent solitary tumour cell Microenvironmentdependent

Evasion of the immune system by quiescent tumour cells

Adapted from Aguirre-Ghiso, Nat Rev Cancer., 2007

Cellular dormancy = quiescence

Reversibility of the G0 state of the cell cycle Adapted from Rodgers et al., Nature, 2014

✓ Cell cycle arrest with low metabolic rate

- ✓Quiescence = Reversibility ≠ senescence
- ✓ Poorly characterized (rare)

Crucial to maintaining the HSC pool (preservation of key functions)

✓ Protection mechanism of the HSC

Identification of quiescent cells

Markers	Effects	Properties
EdU	No S phase incorporation	Nucleic acid analogue
DiD	Retention	Membrane Lipophilic marker
Ki67	Absence	Proliferation marker
Pyronine Y	Low	RNA marker
Rhodamine 123	Low	Mitochondrial activity marker

Control of stem cell quiescence

Regulation of murine HSC quiescence exit. Adapted from Yamada et al., Cell Cycle, 2013

BM micro-environment modulates quiescence : HSC

HSC localisation in the bone marrow adapted from Trumpp et al., Nat Rev Immunol., 2010

The role of hypoxia in the maintenance of hematopoietic stem cells. Cipolleschi MG et al, Blood. 1993

LIC localisation in the bone marrow niche ? adapted from Trumpp et al., Nat Rev Immunol., 2010

Role of the BM micro-environment in quiescence : What is known about ALL

Model for osteopontin-induced dormancy of ALL at the endosteum Adapted from Boyerinas et al., Blood, 2013

A BM environmental factor : O₂ Why hypoxia ?

N th layer R Extravascular tissue (BMHC) R Sinus R_N+1 Sinus R_N-1

Oxygenation of murine calvaria. Spencer et al., Nature, 2014 Human bone marrow [O₂] ≈ 0% after 10 cellular layers Chow et al, Biophysical Journal, 2001

A BM environmental factor : O_2 HIF-1 α and quiescence

Regulation of quiescence through HIF1α in normoxia and hypoxia Forristal et al., Blood, 2013 A BM environmental factor : O₂ Metabolism and quiescence

Role in energy metabolism

Effect of hypoxia on the energetic metabolism adapted from Takubo et al., Cell Stem Cell, 2013

Development of an *in vitro/in vivo* model for exploring the relationships between hypoxia and ALL LIC

Role of low [O₂] on self-renewal and quiescence of ALL cells

Role of quiescence in chemoresistance

Potential Clinical benefit

To explore mechanisms of persistence of residual LIC in ALL

Potential role in relapse

A BM environmental factor : O₂ What do we know ? Previous results

Human cell line : NALM6 (Pre-B)

✓ Origin : 19 year-old man in relapse; peripheral blood (1976)

```
✓ Immunophenotype : CD3<sup>-</sup>, HLA-DR<sup>+</sup>, CD10<sup>+</sup>, CD19<sup>+</sup>, HLA-DR<sup>+</sup>, CD34<sup>-</sup>, cyCD79a<sup>+</sup>, CD37<sup>-</sup>, CD80<sup>-</sup>, CD138<sup>+</sup>, sm/cy IgG<sup>-</sup>, cy IgM<sup>+</sup>, sm IgM<sup>-</sup>
```

```
✓ Genetic : closed to diploid caryotype
46 (43-47)<2n>XY
t(5 ; 12) (q33.2 ; p13.2) (ETV6 – PDGFRB)
```

Primary cells from patients :

✓ Samples heterogeneity (Dif genetic Abnormalities...)

✓ *In vitro* culture difficulties

✓ Transplant difficulties

Methods

1- Study of modification of the cell cycle according to oxygen concentration

NALM6 : In vitro part 1

Culture at 0.1% O₂ slows down NALM6 proliferation

Conclusion : NALM6 cells survive at 0.1% (low mortality) low proliferation

Which is their cell cycle status ?

Culture at 0.1% O₂ induces cell cycle arrest in G₀

Ki67 :

- Nuclear protein associated to hétérochromatin
- Role ??
 - DNA organisation ? rRNA synthesis ?
- Required for cell proliferation

Conclusion : NALM6 cells become quiescent in severe hypoxia

Molecular actors ?

Culture at 0.1% O₂ modifies the phosphorylation of pRB

Conclusion : quiescent NALM6 cells express dephosphorylated pRb

Do these cells remain undivided from day 3 to day 7 ? EdU assays

EdU Protocol

EdU (analog of thymidine) : -Incorporated in DNA during S phase

Incorporated EdU is detected using AlexaFluor488 azide

Culture at 0.1% O₂ induces G₀/G₁ cell cycle arrest of a subset of NALM6 cells

Cell cycle kinetics (EdU incorporation) during culture (n = 3)

Is this arrest related to chemotherapeutic agents resistance ?

Protocol of NALM6 Primary culture

Chemoresistance during culture (n = 3)

At 1 and 3%, the results are similar to those at 20%

Do these residual viable cells behave as LIC ?

2- Study of LIC survival after <u>in</u> <u>vitro</u> exposure to 5-FU

NALM6 : In vitro part 2

Protocol of primary and secondary culture

5-FU (5-Fluoro-Uracil) : target S phase

In vitro assay to detect : -clonogenic cells -LIC, by repopulating liquid culture

5-FU resistant cells in Hypoxia contain CFU and CRC populations

Conclusion :

NALM6 is heterogeneous After 7 days in hypoxia, CFU-L and CRC are maintained Hypoxia protects CFU-L and CRC from 4 days of 5-FU exposure

What would happen in vivo?

5-FU resistant cells in Hypoxia contain LIC

Conclusions : Control conditions : no significant difference 5-FU conditions : At 20%, all LIC are killed by 5-FU Primary culture at 0.1% maintains LIC NALM6 culture at $0.1\% O_2$ leads to:

Proliferation slowing down without mortality increase

♦ G0 arrest of a limited proportion of cells (75% are still cycling after 3 days)

Resistance to several drugs used in ALL

Resistance to 5-FU of rare quiescent LIC able to

Repopulate secondary liquid cultures in vitro

Engraft leukemia into mice

3- Survival studyof LIC after *in vivo*5-FU exposure(Flow cytometry)

NALM6 : *In vivo* assay 1 Patient : *In vivo* assay (Experimental bias)

Residual human cells FACS analysis (NALM6 and primary cells from patients)

•phenotype :

OHuman : HLA-DR ; hCD45 ;

OLeukaemic B : hCD10 ; hCD19 ;

oStemness : hCD34 ;

•Cell cycle : Ki67

•Secondary transplant.

Kinetics of primary cell engraftment in femoral BM

Serial transplant is lethal

Proportion of Ki67 negative human cells in femur

In vivo chemoresistant cells: major results of flow cytometry

> NALM6 : 5-FU treatment of xenografted mice increases the percentage of quiescent cells among residual BM cells.

Patients : Intrafemoral engraftment of human primary ALL cells in NSG mice

- Engraftment kinetics vary from patient to patient
- Serial transplantation (IV) evidences the presence of LIC whose phenotypic profile did not vary

 Secondary transplantation improves the mouse to mouse reproducibility kinetics of engraftment, arguing for the selection of LIC adapted to xenotransplantation

Post 5-FU residual cells contain the quiescent LIC

BM Histological sections (femurs, dorsal and caudal vertebrae)

- Localisation of LIC before and after 5-FU treatment,
- oxygenation and perfusion rates

4- Localisation study of LIC after *in vivo* 5-FU exposure

Histological examination of engrafted cells

Protocol for NSG:

D-2 et D-1

D0

D18 D19 D20

Busulfan conditioning (20mg/kg)

Transplantation of 10 000 NALM6 cells (IV)

Intra-peritoneal 5-FU treatment (150mg/kg) Sacrifice D21 Histological analysis of BM

At day 21 after transplantation, NALM6 cells aggregates are dispersed in mouse TBA and LBA

ALU sequences labelling; one representative femoral section (n = 3 mice)

At day 21 after transplantation, NALM6 cells aggregates are dispersed in mouse TBA and LBA

x200 ; ALU labeling; one representative section (n = 2 souris)

At day 21 after transplantation, apoptotic NALM6 cells are very rare in the BM

x200 ; cleaved Caspase 3 labelling; one representative section (n = 2 mice)

Human cells

Apoptotic cells

At day 21 after transplantation, quiescent NALM6 cells are very rare in the BM

Ki67 labelling; one representative section (n = 2 mice)

At day 21 after transplantation, quiescent NALM6 cells are very rare in the BM

Ki67 labelling; one representative section (n = 2 mice)

Human cells

Proliferating cells

Leukemic aggregates dispersed in intact residual murine hematopoietic areas suggest a clonal NALM6 BM seeding and development (to be confirmed)

➢Apoptotic/ dead cells are very rare

➤Most cells are proliferating

>Are these cell aggregates hypoxic ? Benito et al, PLoS One. 2011

□ Identifying specific BM homing/seeding sites (niches?) will require analysis of earlier engraftment time points and use of other methods.

5-FU treatment induces mice BM cytopenia

Trichrome de Masson ; representative section (n = 3 mice)

Residual hematopoiesis

Hemorragic

Suffusion

5-FU treatment induces human and murine cells lysis

ALU labelling ; one representative section (n = 3 mice)

21 days after transplantation, NALM6 cells aggregates are detected in murine femoral BM

ALU labelling ; one representative section (n = 3 mice)

Murine cells area

Murine/human mixed area

Human cells area

Most 5-FU residual cells are alive

Cleaved Caspase 3 labelling ; one representative section (n = 3 mice)

Post 5-FU residual NALM6 cells are mostly quiescent

Ki67 labelling ; one representative section (n = 3 mice)

Post 5-FU residual NALM6 cells are mostly quiescent

Ki67 labelling ; one representative section (n = 3 mice)

80% of cells are human

70% of human cells are quiescent

Conclusion

Heterogeneous BM cytopenia: are some areas (metaphyse) better protected ?

Rapid elimination of apoptotic cells

➢A large percentage of 5-FU resistant NALM6 cells are quiescent

No preferential endosteal localisation of quiescent leukemic cells

Perspectives (1) Pathophysiological studies

- Our model will allow to continue *in vitro* and *in vivo* investigations on aspect of ALL biology:
- Existence of preferential Metabolic pathways
- Existence of preferential « niches » harboring quiescent and resistant LIC
- Mechanisms of quiescence and their relationships with LIC resistant to therapy
- Relationships between LIC quiescence and vascularisation, perfusion and innervation of their « niches ».

Perspectives (2) Clinical translation

New parameters involved in individual prognosis evaluation

innovative therapeutic approaches taking into account the results of pathophysiological studies

Thank you for your attention Acknowledgments :

UMR CNRS 5164 Jean-François Moreau

Equipe Cellules Souches Hélène Boeuf

Groupe Hémato : Vincent Praloran

Grégory Harvet Philippe Brunet de la Grange Yann Peytour Savitha Varatharajan Zoran Ivanovic EFS U957 : Dominique Heyman

LPRO

Laboratoire Physiopathologie de la Résorption Osseuse INSERM - UN UMR 957

Céline Charrier Rachel Lanel Jérôme Amiaud Fréderic Blanchard A2 : Benoit Rousseau

CRB : Melyssa Reault Eric Lippert

HL : Marie Jeanneteau Kelly Airiau

> Cytometry : Vincent Pitard