
HAL Id: tel-01048662
https://theses.hal.science/tel-01048662v1

Submitted on 25 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Understanding social and community dynamics from
taxi GPS data

Chao Chen

To cite this version:
Chao Chen. Understanding social and community dynamics from taxi GPS data. Numerical Analysis
[cs.NA]. Institut National des Télécommunications, 2014. English. �NNT : 2014TELE0015�. �tel-
01048662�

https://theses.hal.science/tel-01048662v1
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT CONJOINT TELECOM SUDPARIS et L’UNIVERSITE

PIERRE ET MARIE CURIE

Thèse n° 2014TELE0015

Spécialité : Informatique

 Ecole doctorale : Informatique, Télécommunications et Electronique de Paris

Présentée par

Chao CHEN

Pour obtenir le grade de

DOCTEUR DE TELECOM SUDPARIS

Exploration de la dynamique sociale et collective en utilisant les

données GPS de taxi

Soutenue le 4 juillet 2014

Devant le jury composé de :

Fabien Moutarde Rapporteur Professeur Mines ParisTech – Paris - France

Vania Bogorny Rapporteur Professeur Universidade Federal de Santa Catarina – Brasil

Thierry Artières Examinateur Professeur UPMC – Paris – France

Nazim Agoulmine Examinateur Professeur Université d’Evry Val d’Essonne – France

Animesh Pathak Invité Chercheur INRIA Paris-Rocquencourt - France

Tülin Atmaca Directrice de thèse Professeur Institut Mines-Télécom – Evry – France

Daqing Zhang Codirecteur de thèse Professeur Institut Mines-Télécom – Evry – France

Doctor of Philosophy (PhD) Thesis
Université Pierre & Marie Curie -TELECOM SudParis

Specialization

INFORMATIQUE

presented by

Chao CHEN

Submitted for the partial requirement of

Doctor of Philosophy
from

Université Pierre & Marie Curie (UPMC) - TELECOM SudParis

Understanding Social and Community Dynamics
from Taxi GPS Data

July 4, 2014

Commitee:

Fabien Moutarde Reviewer Associate Professor, Mines ParisTech – Paris - France

Vania Bogorny Reviewer Professor, Universidade Federal de Santa Catarina – Brasil

Thierry Artières Examiner Professor, UPMC – Paris - France

Nazim Agoulmine Examiner Professor, University of Evry Val d’Essonne - France

Animesh Pathak Guest Researcher, INRIA Paris-Rocquencourt - France

Tülin Atmaca Thesis Director Professor, Institut Mines-Télécom – Evry - France

Daqing Zhang Advisor Professor, Institut Mines-Télécom – Evry - France

Declaration

I, Chao Chen, confirm that the work presented in this thesis is my own. Where infor-
mation has been derived from other sources, I confirm that this has been indicated in the
thesis.

Signature:

Abstract

Personal mobile devices such as smart phones, portable computers and GPS localizers
have become an essential element in people’s daily life. They leave digital footprints of
their user’s daily activities and their surrounding contexts (e.g. the noise, the air qual-
ity, the earthquake), which are a reflection of the economical, societal and environmental
interactions of a community. We have entered an era where such digital footprints are
becoming increasingly big and easily available. Big digital footprints provide us with rich
data sources to obtain a better and deeper understanding of the underlying social and com-
munity dynamics (dynamics of an individual, community or city). This understanding can
further enable many innovative applications and urban services for improving the living
quality/safety of citizens, sustainable city development for smart cities.

Taxis equipped with GPS sensors are an important sensory device for examining peo-
ple’s movements and activities. As oppose to public transportation and private vehicles,
they serve the transportation needs of a large number of people driven by diverse needs, and
are not constrained to a pre-defined schedule/route. Thus, the big taxi GPS data recording
the spatio-temporal traces left by taxis provides a richer and more detailed glimpse into
the motivations, behaviours, and resulting dynamics of a city’s mobile population through
the road network.

In this dissertation, motivated by applying pervasive sensing, communication and com-
puting technology to bring citizens closer to the vision of a smart city, we aim to uncover
the “hidden facts” regarding social and community dynamics encoded in the taxi GPS
data to better understand how urban population behaves and the resulting dynamics in
the city. As some “hidden facts” are with regard to similar aspect of social and community
dynamics, we further formally define three categories for study (i.e. social dynamics, traffic
dynamics, and operational dynamics), and explore them to fill the wide gaps between the
raw taxi GPS data and innovative applications and smart urban services. Specifically,

� To enable applications of real-time taxi fraud alerts, we propose iBOAT algorithm
which is capable of detecting anomalous trajectories “on-the-fly” and identifying
which parts of the trajectory are responsible for its anomalousness, by comparing
them against historically trajectories having the same origin and destination. We
verify the superior performance of iBOAT over the state-of-art algorithms on a big
taxi GPS data set, containing 7.35 million trips which was generated by 7,600 taxis
in a month in Hangzhou, China. We further demonstrate the ability of iBOAT in
detecting road network changes. This work is mainly related to the understanding of
operational dynamics about the behaviours of taxi drivers when delivering passengers
(i.e. honest or not).

� To introduce cost-effective and environment-friendly transport services to citizens, we
propose B-Planner which is a two-phase approach, to plan bi-directional night bus
routes leveraging big taxi GPS data since it can correctly characterize the passenger
flows at nighttime. We formulate the problem as the route planning problem with

iv

objective of maximizing the number of passengers expected along the route under a
couple of constraints, such as the total travel time, the bus frequency. To validate
the effectiveness of the proposed approach, extensive empirical studies are performed
on a big real-world taxi GPS data set which contains more than 1.57 million night
passenger delivery trips, generated by 7,600 taxis in a month in Hangzhou, China.
This work is mainly related to the understanding of social dynamics about where
are the popular passenger pick-up/drop-off locations and origin-destination (i.e. OD)
pairs at nighttime, and the understanding of traffic dynamics about how much driving
time is needed to travel between popular OD pairs at nighttime.

� To offer a personalized, interactive, and traffic-aware trip route planning system to
users, we propose TripPlanner system which contains both offline and online pro-
cedures, leveraging a combination of Location-based Social Network (i.e. LBSN) and
taxi GPS data sets. In the offline procedure, we construct a dynamic POI network by
extracting relevant information from crowdsourced LBSN and taxi GPS trace data.
In the online procedure, we propose a two-phase approach for personalized trip plan-
ning. We also formulate this problem as the route planning problem with the objective
of maximizing the route score and satisfying both the venue visiting time and total
travel time constraints. To validate the efficiency and effectiveness of the proposed
approach, extensive empirical studies are performed on two big real-world data sets
which contain more than 391,930 passenger delivery trips generated by 536 taxis in
a month, and more than 110,200 check-ins left by over 15,680 Foursquare users in 6
months in San Francisco, US. This work is mainly related to the understanding of
traffic dynamics about how much driving time is needed to transit between any two
points in the city at different departure time of the day and day of the week.

Finally, some promising research directions for future work are pointed out, which
mainly attempt to fuse taxi GPS data with other data sets (e.g. open data released by
governments, various types of sensory data recorded by smart phones) to provide smarter
and personalized urban services for citizens.

Keywords

digital footprints, taxi GPS data, smart city, social dynamics, traffic dynamics, opera-
tional dynamics, anomalous trajectory detection, bus route planning, trip route planning.

Résumé

Les appareils mobiles personnels comme les téléphones intelligents, les ordinateurs por-
tables et les navigateurs GPS sont devenus un élément essentiel dans la vie quotidienne des
gens. Ils laissent des empreintes numériques des activités quotidiennes de leur utilisation et
de leurs contextes environnants (par exemple, le bruit, la qualité de l’air, le tremblement de
terre), qui sont le reflet des interactions économiques, sociales et environnementales d’une
communauté. Ces empreintes numériques nous offrent de riches sources de données afin
d’obtenir une compréhension meilleure et plus profonde des dynamiques sociales et com-
munautaires sous-jacentes (dynamique d’un individu, de la communauté ou de la ville).
Cette compréhension peut en outre permettre de nombreuses applications innovantes et des
services urbains pour améliorer la qualité de vie/sécurité des citoyens, et le développement
durable de la ville pour les villes intelligentes.

Les taxis équipés de capteurs GPS sont un dispositif sensoriel important pour examiner
les mouvements et les activités des gens. Par opposition aux véhicules de transport public
et privé, ils répondent aux besoins de transport d’un grand nombre de personnes avec une
grande diversité des besoins, et ne sont pas limitées à un horaire/itinéraire pré-défini. Ainsi,
les empreintes GPS des taxis un aperçu plus riche et plus détaillée sur les motivations, les
comportements et la dynamique résultant de population mobile d’une ville à travers le
réseau routier.

Dans cette thèse, motivée par l’application de détection omniprésente, de la communi-
cation et de la technologie informatique pour offrir aux urbanistes et aux citoyens de nom-
breux points de vue et des services, nous cherchons à découvrir les “facts cachées” codées
dans les traces GPS des taxis pour combler les grands écarts entre les données de détection
brut et les applications, les rapprocher de la vision d’une ville intelligente. On définit trois
catégories de dynamiques sociales et communautaires (par exemple, la dynamique sociale,
la dynamique de la circulation, et la dynamique de fonctionnement), et d’explorer la diver-
sité intelligence cachée pour permettre à plusieurs applications d’innovation et de services
urbains. Plus spécifiquement :

� Pour permettre aux applications d’alertes de fraude de taxi en temps réel et réseau
routier change de détection, nous proposons iBOAT algorithme qui est capable de
détecter “à la volée” des trajectoires anormales et déterminer quelles parties de la tra-
jectoire sont responsable de son anormalité, en les comparant à des trajectoires histo-
riques ayant la même origine et destination. Nous vérifions la performance supérieure
de iBOAT sur les algorithmes de l’état-de-art sur une grand échelle des traces de taxi
GPS, contenant 7,35 millions de voyages qui a été généré par 7,600 taxis dans un
mois à Hangzhou, en Chine.

� Pour introduire des services de transport respectueux de l’environnement aux ci-
toyens, nous proposons B-Planner qui est une approche en deux phases, pour planifier
des itinéraires de bus de nuit bi-directionnelles en exploitant les empreintes GPS de
taxi, car elles peuvent bien caractériser les flux de passagers pendant la nuit. Nous

vi

formulons le problème comme un problème de planification d’itinéraire avec pour ob-
jectif de maximiser le nombre de passagers attendus le long de la route sous un autre
couple de contraintes, telles que le temps voyage au total, la fréquence du bus. Afin de
valider l’efficacité de la approche proposée, des études empiriques approfondies sont
effectuées sur un ensemble de données GPS réel de taxis qui contient plus de 1,57
million de nuit les trajets de livraison de passagers, générés par 7,600 taxis dans un
mois à Hangzhou, en Chine.

� Pour offrir un système de planification d’itinéraire personnalisé, interactif, et le trafic-
courant pour les utilisateurs, nous proposons système Tripplanner qui contient à
la fois en ligne et hors ligne des procédures, en s’appuyant sur une combinaison
de géolocalisation réseau social et des ensembles de données de taxi GPS. Dans la
procédure hors ligne, nous construisons un réseau de POI dynamique en extrayant
des informations pertinentes de LBSN et des traces GPS de taxis. Dans la procédure
en ligne, nous proposons une approche en deux phases pour la planification de voyage
personnalisé. nous formulons également ce problème comme le problème de planifica-
tion d’itinéraire avec l’objectif de maximiser le score de l’itinéraire et de satisfaire à la
fois le lieu de visite temps et le total des contraintes de temps de Voyage. Pour valider
l’efficacité de l’approche proposée, études empiriques approfondies sont effectuées sur
deux ensembles de données du monde réel qui contiennent plus que 391,930 trajets de
livraison de passagers générés par 536 taxis pour un mois, et plus de 110,200 check-ins
laissés par plus de 15,680 utilisateurs Foursquare pendant 6 mois à San Francisco,
États-Unis.

Enfin, nous abordons également quelques directions de recherche prometteuses pour
les travaux futurs, qui tentent d’explorer les informations complémentaires fournies par les
autres empreintes digitales et les traces de taxi GPS.

Mots-clés

empreintes numériques, traces de taxi GPS, dynamique sociale, dynamique de la circula-
tion, dynamique opérationnelle, détection de trajectoire anormale, planification d’itinéraire
de bus, planification d’itinéraire touristique.

To my dearest family.

Acknowledgements

There are many people I would like to thank for all of their support in making this
thesis possible.

Firstly, I would like to express my deepest gratitude to my supervisors, Prof. Daqing
Zhang and Tülin Atmaca, for their continuous support, guidances and encouragements,
which are necessary to survive and thrive the graduate school and the beyond. I also want
to thank Prof. Zhi-Hua Zhou from Nanjing University, for his precious guidances, and Prof.
Shijian Li from Zhejiang University, for providing the valuable taxi GPS data set, during
research collaboration. In particular, I would thank Prof. Daqing Zhang for his generously
giving me motivation, support, time, assistance, opportunities and friendship ; for leading
me how to identify key and influential problems, present and evaluate the ideas. His selfless
and continuous help makes me to develop to be a better researcher, writer, and speaker
gradually. I also want to thank all jury members, especially two reviewers, Prof. Fabien
Moutarde from Mines ParisTech and Prof. Vania Bogorny from Universidade Federal de
Santa Catarina. Their professional suggestions did improve the quality. Thanks also go to
the China Scholarship Council (CSC), for the financial support of my Ph.D. study.

Secondly, I also sincerely thank my talent colleagues who work/ed with me in the lab,
including Nan Li, Dr. Bin Li, Dr. Pablo Castro, Dr. Zhu Wang, Dr. Zhangbing Zhou, Dr.
Lin Sun, Dr. Kejun Du, Dr. Mossaab Hariz, Yang Yuan, Haoyi Xiong, Dingqi Yang, Leye
Wang, Dr. Bin Guo, and Dr. Zhiyong Yu. It is a great experience to work with these smart
people ! I was provided lots of useful feedback and suggestions during discussions.

Thirdly, I would like to show my gratitude to Madame Françoise Abad and Xayplathi
Lyfoung, for their kindness and help during my stay in Institut Mines-Télécom/Télécom
SudParis. I also warmly thank all my great and nice friends I have made during my stay in
France. Every time when I feel frustrated, they are always ready to listen to my complaints,
and their encouragements indeed help me recover immediately. In addition, we share the
pain and pressure of the Ph.D. studies or work at Télécom SudParis. They are Mingyue
Qi, Guoqin Zhao, Xiao Han and Zhuowei Chen. Special thanks go to Zhuowei Chen for
helping proofread the French abstract.

Last but not least, my parents Qijun Chen, Miaojun Xu and elder brother Yao Chen
always give me the infinite love and support. Although they will not read this thesis, I
cannot complete this journey without their love and support.

Chao @ Paris, France
24th, February, 2014

xi

Publications

The following papers, published, in press or submitted, are the partial outputs of my
Ph.D. studies in UPMC and Télécom SudParis.

Journal Papers

— Chao Chen, Daqing Zhang, Bin Guo, Xiaojuan Ma, Gang Pan and Zhaohui Wu.
TRIPPLANNER : Personalized Trip Planning Leveraging Heterogeneous Crowdsour-
ced Digital Footprints. IEEE Transactions on Intelligent Transportation Systems (T-
ITS), major revision.

— Chao Chen, Daqing Zhang, Nan Li and Zhi-Hua Zhou. B-Planner : Planning Bidi-
rectional Night Bus Routes Using Large-scale Taxi GPS Traces. IEEE Transactions
on Intelligent Transportation Systems (T-ITS), 2014. (in press).

— Chao Chen, Daqing Zhang, Pablo S. Castro, Nan Li, Lin Sun, Shijian Li and Zong-
hui Wang. iBOAT : Isolation-based On-line Anomalous Trajectory Detection. IEEE
Transactions on Intelligent Transportation Systems (T-ITS), 14(2) : 806-818, 2013.

— Daqing Zhang, Chao Chen, Zhangbing Zhou and Bin Li. Identifying Logical Loca-
tion via GPS-Enabled Mobile Phone and Wearable Camera. International Journal of
Pattern Recognition and Artificial Intelligence (IJPRAI), 26(8) : 1-23, 2012.

— Pablo S. Castro, Daqing Zhang, Chao Chen, Shijian Li and Gang Pan. From Taxi
GPS Traces to Social and Community Dynamics : A Survey. ACM Computing Sur-
veys (CSUR), 46(2) : 17 :1-17 :34, 2013.

— Lin Sun, Daqing Zhang, Chao Chen, Pablo S. Castro, Shijian Li and Zonghui Wang.
Real Time Anomalous Trajectory Detection and Analysis. Mobile Networks and Ap-
plications (MONET), 18(3) : 341-356, 2013.

— Daqing Zhang, Lin Sun, Bin Li, Chao Chen, Gang Pan, Shijian Li and Zhaohui Wu.
Understanding Taxi Service Strategies from Taxi GPS Traces. IEEE Transactions on
Intelligent Transportation Systems (T- ITS), 2014. (in press).

— Bin Guo, Chao Chen, Daqing Zhang, Zhiwen Yu, Alvin Chin and Athanasios Vasila-
kos. Mobile Crowd Sensing : When Participatory Sensing Meets Participatory Social
Media. IEEE Computer Magazine, submitted.

xii

— Zhu Wang, Zhiwen Yu, Xingshe Zhou, Chao Chen and Bin Guo. Towards Context-
Aware Mobile Web Browsing. IEEE Systems Journal, submitted.

Conference Papers

— Chao Chen, Daqing Zhang and Bin Guo. D2SC : Data-Driven Smarter Cities. In
Proceedings of IEEE PerCom Workshops, Budapest, Hungary, 2014.

— Chao Chen, Daqing Zhang, Zhi-Hua Zhou, Nan Li, Tülin Atmaca and Shijian Li.
B-Planner : Night Bus Route Planning Using Large-scale Taxi GPS Traces. In Pro-
ceedings of the 11th IEEE International Conference on Pervasive Computing and
Communications (PerCom’13), San Diego, USA, 2013.

— Chao Chen, Daqing Zhang, Lin Sun, Mossaab Hariz and Bruno Jean-Bart. AQUE-
DUC : Improving Quality and Efficiency of Care for Elders in Real Homes. In Procee-
dings of International Conference on Smart Homes and Health Telemetics (ICOST’13),
Singapore, 2013.

— Chao Chen, Daqing Zhang, Lin Sun, Mossaab Hariz and Yang Yuan. Does Location
Help Daily Activity Recognition ? In Proceedings of International Conference on Smart
Homes and Health Telemetics (ICOST’12), Florence, Italy, 2012.

— Chao Chen, Daqing Zhang, Pablo Samuel Castro, Nan Li, Lin Sun and Shijian
Li. Real-time Detection of Anomalous Taxi Trajectories from GPS Traces. In Pro-
ceedings of 8th International ICST Conference on Mobile and Ubiquitous Systems
(MobiQuitous’11), Copenhagen, Denmark, 2011. [Best Paper Runner-up]

— Longbiao Chen, Daqing Zhang, Gang Pan, Leye Wang, Xiaojuan Ma, Chao Chen
and Shijian Li. Container Throughput Estimation Leveraging Ship GPS Traces and
Open Data. In Proceedings of the 2014 ACM International Joint Conference on Per-
vasive and Ubiquitous Computing (UbiComp’14), Seattle, US, 2014.

— Daqing Zhang, Nan Li, Zhi-Hua Zhou, Chao Chen, Lin Sun and Shijian Li. iBAT :
Detecting Anomalous Taxi Trajectories from GPS Traces. In Proceeding of the 13th
ACM International Conference on Ubiquitous Computing (UbiComp’11), Beijing,
China, 2011.

— Bin Li, Daqing Zhang, Lin Sun, Chao Chen, Shijian Li, Guande Qi and Qiang
Yang. Hunting or Waiting ? Discovering Passenger-Finding Strategies from a Large-
scale Real-world Taxi Dataset. In Proceedings of IEEE PerCom Workshops, Seattle,
USA, 2011. [Featured by IEEE Spectrum]

Book Chapter

— Lin Sun, Chao Chen and Daqing Zhang. Understanding City Dynamics from Taxi
GPS Traces. Creating Personal, Social and Urban Awareness through Pervasive Com-
puting, IGI Global, 2013.

Table of contents xiii

Table of contents

1 Introduction 1

1.1 Background . 1

1.2 Research Motivations and Contributions . 5

1.3 Organization . 8

2 Literature Review 11

2.1 Social Dynamics . 11

2.1.1 Hotspot Identification . 12

2.1.2 Measuring the Linkage Strength between Areas 12

2.1.3 Discovering Physical Laws of Human Movement 13

2.2 Traffic Dynamics . 14

2.2.1 Trajectory Mapping . 14

2.2.2 Traffic Monitoring and Forecasting 15

2.2.2.1 Traffic Conditions Monitoring 15

2.2.2.2 Traffic Conditions Forecasting 16

2.2.3 Traffic Outlier Detection . 17

2.3 Operational Dynamics . 17

2.3.1 Passenger/Taxi Finding . 18

2.3.1.1 Passenger-demand Hotspot Recommendation 18

2.3.1.2 Uncovering Passenger-finding Strategies 19

2.3.1.3 Vacant Taxi Finding . 20

2.3.2 Route Planning . 20

2.3.3 Anomalous Driving Behaviours Detection 21

2.4 A Statistical Study . 22

3 Data Preparation and Representation 25

3.1 Data Preparation . 25

3.1.1 Data Format . 25

3.1.2 Data Problems . 26

3.2 Data Representation . 28

xiv Table of contents

4 iBOAT: On-line Anomalous Trajectory Detection 31
4.1 Introduction . 31
4.2 Related Work . 34
4.3 Preliminaries and Problem Statement . 36
4.4 iBOAT: Isolation-based On-line Anomalous Trajectory Detection 39

4.4.1 Offline Pre-processing . 39
4.4.2 iBOAT Algorithm . 41

4.5 Empirical Evaluation . 45
4.5.1 Datasets . 45
4.5.2 Evaluation Criteria . 45
4.5.3 Experimental Results . 46
4.5.4 Varying Parameters . 46

4.5.4.1 Varying θ . 47
4.5.4.2 Varying n . 47

4.5.5 Adaptive versus Fixed-window Approach 49
4.5.6 iBOAT versus iBAT . 51

4.6 Applications . 54
4.6.1 Statistical Study [130] . 55
4.6.2 Deny Possible Excuses . 57
4.6.3 Detecting Road Network Changes 58

4.7 Concluding Remarks . 60

5 B-Planner: Planning Bidirectional Night Bus Routes 63
5.1 Introduction . 63
5.2 Related Work . 67
5.3 Candidate Bus Stop Identification . 68

5.3.1 Hot Grid Cells and City Partitions 69
5.3.2 Cluster Merging and Splitting . 70
5.3.3 Candidate Bus Stop Location Selection 72

5.4 Bus Route Selection . 73
5.4.1 Passenger Flow and Travel Time Estimation 73
5.4.2 Bus Route Graph Building and Pruning 74

5.4.2.1 Route Graph Building Criteria 74
5.4.2.2 Graph Building & Pruning 76

5.4.3 Automatic Candidate Bus Route Generation 78
5.4.4 Bus Route Selection . 80

5.5 Experimental Evaluation . 81
5.5.1 Evaluation on Bus Stops . 81
5.5.2 Evaluation on Bus Route Selection Algorithm 82

5.5.2.1 Convergence Study . 82
5.5.2.2 Parameter Sensitivity Study 83
5.5.2.3 Candidate Routes Statistics 86
5.5.2.4 Skyline Routes . 87
5.5.2.5 Comparison with top-k spreading algorithm 87

Table of contents xv

5.5.3 Bidirectional vs Single Directional Bus Route 88

5.5.4 Comparison with Real Routes and Impacts on Taxi Services 90

5.5.5 Bus Capacity Analysis . 92

5.6 Concluding Remarks . 92

6 TripPlanner: Personalized and Traffic-aware Trip Planning 95

6.1 Introduction . 96

6.2 Related Work . 98

6.2.1 Construction of POI Network . 98

6.2.2 Trip Planning . 99

6.3 TripPlanner System . 100

6.3.1 Key Terminologies . 101

6.3.2 Problem Statement . 102

6.3.3 Framework . 102

6.4 Dynamic POI Network Modelling . 103

6.4.1 Node Modelling . 103

6.4.2 Edge Modelling . 104

6.5 The Two-Phase Approach . 106

6.5.1 Phase I: Route Search . 106

6.5.2 Phase II: Route Augmentation . 106

6.5.2.1 The Venue Inserting Algorithm 107

6.5.2.2 Route Score Maximization Algorithms 108

6.5.2.3 Augmented Route Ranking 113

6.6 System Evaluation . 113

6.6.1 Experiment Setup . 114

6.6.2 Parameter Sensitivity Study . 114

6.6.3 Efficiency Evaluation . 115

6.6.3.1 Varying N . 115

6.6.3.2 Varying k . 116

6.6.3.3 Varying ∆ . 117

6.6.4 Effectiveness Evaluation . 117

6.6.5 Case Study . 118

6.6.6 Discussion . 120

6.7 Concluding Remarks . 120

7 Conclusion and Future Work 123

7.1 Conclusion . 123

7.2 Future Work . 124

A Appendix 143

A.1 Proof of the FIFO Property . 143

A.2 Edge Modelling . 144

A.2.1 Taxi Trajectory Representation and Indexing 144

A.2.2 Transit Time Estimation . 146

xvi TABLE OF CONTENTS

A.3 Venue Category Encoding and Retrieving 146

List of figures 147

List of tables 151

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Contents

1.1 Background . 1

1.2 Research Motivations and Contributions 5

1.3 Organization . 8

1.1 Background

Recent years have been witnessing a rapid development in a variety of technologies, such

as sensing, communication, storage and computing. As a result, personal devices including

smart phones, portable computers and GPS localizers become ubiquitous. They have

revolutionized the way we interact with the cyber-physical worlds. They also leave digital

footprints of their user’s activities not only in daily life, but also their surrounding contexts

(e.g., the noise, the air quality, the earthquake), which are a reflection of the economical,

societal and environmental interactions of a community [157]. We have entered an era

where such digital footprints are becoming increasingly big and easily available. Big digital

footprints provide researchers with rich data sources to obtain a better understanding of

the underlying dynamics of an individual, community or city [75]. This understanding

further enables many innovative applications in building smart cities, including intelligent

transportation, city planning, public safety, environmental sustainability, green computing

and so on. However, different digital footprints reveal different aspects of the underlying

social and community dynamics, depending on the type of digital footprints, and hence can

support diverse applications and urban services. Thus, a very fundamental problem is to

analyze the inherent characteristics of each digital footprint. For example, the trace data

2 1.1. BACKGROUND

left behind by GPS-equipped vehicles offer us an unprecedented window into the dynamics

of a city’s road network; the trace data left by Foursquare 1 users when checking-in venues

can inform the dynamics of Point-of-Interests (POIs) in a city.

GPS-equipped vehicles offer an important kind of footprints since both public and pri-

vate vehicles are the main transportation means for a city’s population. People use vehicles

for many purposes: for commuting between home and office, for regular and “irregular”

chores, and for leisure activities, etc. By carefully analyzing the observed movement pat-

terns of a population, researchers strive to better understand the demographics of a city

(i.e., where do people go frequently at different time periods), the distribution of infrastruc-

tures around a city, the effectiveness of the public transportation networks, the dynamics

of traffic conditions, and the different driving behaviours.

Public transportation vehicles equipped with GPS sensors provide rather predictable

data since the vehicles in question follow fixed routes and stops under a specified schedule,

such as public buses. Similarly, GPS-equipped private vehicles are usually restricted to one

user for regular usages, e.g., the commuting usage, so they also follow fairly predictable

routes. As opposed to public transportation and private vehicles, GPS-equipped taxis serve

the transportation needs of a large number of people driven by diverse needs, and are not

constrained to a pre-specified schedule/route. Moreover, taxi drivers work continuously

in a whole day manner. Therefore, the big taxi GPS data recording the spatio-temporal

traces left by taxis provides a much richer and more detailed glimpse into the motivations,

behaviours, and resulting dynamics of a city’s mobile population through the road net-

work. In more details, many facts regarding social and community dynamics are hidden

in the taxi GPS data when drivers are delivering or searching for passengers. As the mo-

tivations for passenger-delivery and passenger-finding are quite different, it is necessary to

divide the trace data into passenger-delivery trajectories and passenger-finding trajectories

respectively. Figure 1.1 illustrates a passenger-delivery trajectory which starts from pick-

up point to drop-off point, and a passenger-finding trajectory which starts from drop-off

point to the next pick-up point. Diverse facts can be uncovered through analyzing trajec-

tories from different procedures (i.e. passenger-delivery procedure and passenger-finding

procedure). For example,

♦ Many facts such as where are high-demand passenger areas in the city at a given

time, what strategies that good/average/bad taxi divers (measured by their revenues)

had taken after dropping off passengers are hidden in the historical passenger-finding

trajectories accumulated by massive taxi drivers.

♦ Many facts such as which road sequences that taxi drivers had taken to deliver pas-

sengers, how many taxis were there at a given road segment at a previous time period,

1. http://foursquare.com

http://foursquare.com

CHAPTER 1. INTRODUCTION 3

Figure 1.1: The trajectory in blue line is a passenger-delivery one while in the red line is a
passenger-finding one. The red pinpoint marker denotes the passenger pick-up point; the
green pinpoint marker denotes the passenger drop-off point.

and how much driving time did it take to travel between two points in city are hidden

in the historical passenger-delivery trajectories accumulated by massive taxi drivers.

Leveraging on facts regarding social and community dynamics hidden in taxi GPS data

(“hidden facts”), many innovative applications and smart urban services can be supported.

Furthermore, based on the “hidden facts”, with some predictive models, we could also

foretell future dynamics since people often present some regularities. In this dissertation,

the main focus is to uncover “hidden facts” from historical taxi GPS data. Some hidden

facts are with regard to similar aspect of social and community dynamics, we thus further

formally define three categories of social and community dynamics [28].

Social dynamics is defined as the study of the collective behaviours of a city’s popula-

tion, as observed by their movement in the city. It refers to the understanding of people’s

movement patterns in a city leveraging the end-points of the taxi GPS traces (i.e. pick-up

and drop-off points, as shown in Figure 1.1), such as where are people going throughout

the day, what are the “hottest” spots around a city, what are the “functions” of these

hotspots, how strongly connected are different areas of the city, etc. A deep understanding

of social dynamics can inform the passenger-demands for taxi drivers at different time and

areas in a city, which is useful for recommending potential areas to drivers to find new

passengers quickly. Besides, it is also essential for the management, design, maintenance

and advancement of a city’s infrastructures.

Traffic dynamics is about the resulting flow of the population through the city’s road

network since people will move around the city mainly through the road network, governed

by their underlying desires or needs. It refers to the understanding of the congestion level

4 1.1. BACKGROUND

in the road network at different time. These congestion levels have a significant impact on

important factors for drivers such as the travel time between two points, the expected speed,

potential adverse traffic events such as accidents. The understanding of traffic dynamics

is very useful for providing real-time traffic indicators (e.g. travel speed, traffic density)

and route navigation for drivers, including both taxi drivers themselves and private vehicle

drivers. In addition, they can be used to analyze certain side-effects of vehicle use, such as

estimating pollution levels in a city. In the line of traffic dynamics study, we mainly make

use of the taxi GPS trajectories in the passenger-delivery procedure (i.e., the blue line in

Figure 1.1, since taxi drivers may not drive at a normal speed during passenger-finding

procedure; they might intentionally drive slowly along roads when hunting new passengers.

Operational dynamics refers to the general study and analysis of taxi driver’s modus

operandi. The aim is to learn from taxi driver’s excellent knowledge of the city, as well

as to detect their abnormal behaviours. The understanding of operational dynamics is

very useful for predicting future trajectories (e.g. next moving directions, destinations),

suggesting strategies/routes for finding new passengers quickly, and suggesting navigational

routes for reaching a destination efficiently. Additionally, new trajectories of passenger-

delivery procedure can be compared against a large collection of historical trajectories

to automatically detect abnormal behaviour of taxi drivers. In the study of operational

dynamics, we make use of full trajectories in both procedures for many different purposes,

as the routes taken by drivers are of utmost importance.

The research about taxi GPS data mining can benefit for a number of groups, mainly

including taxi drivers, taxi passengers and city administrators.

♦ For taxi drivers, their major concern is to make more money while minimizing the

cost of fuel. The essence is to increase the passenger occupied/free time ratio. Some

taxi drivers can earn more money generally because they are good at finding new

passengers after dropping off the last passengers, and simultaneously, they have good

knowledge for choosing fast routes with low traffic to deliver passengers to the given

destinations efficiently. Therefore, taxi drivers can decrease the passenger-free time

by learning passenger-finding strategies from good taxi drivers; on the other hand,

they can increase the passenger-occupied time by improving the driving performances

through mining the passenger-delivery trajectories of good taxi drivers.

♦ For taxi passengers, they are quite interested in questions, such as “which nearby

conner is the best and how long is needed to wait for a taxi at that corner”, and

“how much/long does it cost me to my destination” as well as “am I victim of a

taxi fraud”. All above-mentioned questions can be solved by leveraging the taxi GPS

traces, and also many solutions have been offered. There are a plenty of apps running

on smart phones available for daily use; some representative and popular apps are

CHAPTER 1. INTRODUCTION 5

list in Table 1.1, with a brief introduction of main functions, and the screen shots are

also shown in Figure 1.2.

♦ For city administrators, such as taxi company managers and city planners, our re-

search can enable many applications and urban services in building smart cities. To

name a few, the location and status of taxis can be monitored in a real time manner,

which in turn can be used to facilitate the taxi company managers to dispatch taxis

directly. Taxi drivers are continuously driving on the roads around the city almost

in the whole day, the collected GPS traces are thus a natural source for detecting

city road network changes (e.g. road closure, new roads), and updating the digital

map timely at a very low cost. With the help of the taxi GPS traces, city planners

can detect the flawed problems in the planning timely, plan better public transporta-

tion routes to meet the demands of residents, and evaluate and redefine the current

allocation of city infrastructures (e.g. bus stops, taxi stands).

Table 1.1: Popular taxi-related apps running on smart phones.

Name Functions

Cab Sense1 Find the best corner to catch a taxi.

Sedan Magic2 Taxi Booking.

Uber3 Taxi Booking.

Hailo4 Get a taxi wherever you are whenever you want; Pay by credit card.

Taxi Magic5 Booking rides via the app and text message; Managing rides in real time.

Report a Taxi6 Share positive and negative reviews about drivers.

Taxi Turvy7 Check whether drivers are taking the honest route.

TaxiFinder8 Taxi company lookup; Taxi fare estimates; Location lookup - where am I ?

1 http://www.sensenetworks.com/products/macrosense-technology-platform/

cabsense/
2 http://sedanmagic.com/
3 http://uber.com/
4 http://hailocab.com/
5 http://taximagic.com/
6 http://reportataxi.com/
7 http://www.newyork.com/articles/travel/new-taxi-turvi-app-44011/
8 http://taxifinder.com/

1.2 Research Motivations and Contributions

The research work in this thesis is application-driven and motivated by applying per-

vasive sensing, communication and computing technology for improving the living qual-

ity/safety of citizens, sustainable city development for smart cities. The research work

http://www.sensenetworks.com/products/macrosense-technology-platform/cabsense/
http://www.sensenetworks.com/products/macrosense-technology-platform/cabsense/
http://sedanmagic.com/
http://uber.com/
http://hailocab.com/
http://taximagic.com/
http://reportataxi.com/
http://www.newyork.com/articles/travel/new-taxi-turvi-app-44011/
http://taxifinder.com/

6 1.2. RESEARCH MOTIVATIONS AND CONTRIBUTIONS

(a) Cab Sense (b) Sedan Magic (c) Uber (d) Hailo

(e) Taxi Magic (f) Report a Taxi (g) Taxi Turvy (h) TaxiFinder

Figure 1.2: Screen shots of the popular apps.

presented attempts to “bridge the wide gaps between the raw taxi GPS data and applica-

tions and urban services” by leveraging the hidden facts revealed by the taxi GPS data,

which include social dynamics, traffic dynamics, and operational dynamics. To better and

deeper understand the social and community dynamics, many data mining techniques are

exploited, including clustering, classification, ranking and optimization.

In the following, we will first present our motivations for concrete studies in the thesis,

and then highlight our contributions one by one.

♦ Have you ever experienced a taxi fraud during your visit to an unfamiliar city? Tra-

jectories obtained from GPS-enabled taxis can tell us the truth. Our first main work

in this thesis is that we present a novel on-line anomaly detector (i.e. iBOAT) which

is able to detect anomalous trajectories “on-the-fly” and to identify which parts of

the trajectory are responsible for its anomalousness, by comparing them against his-

torically trajectories having the same origin and destination. Trajectories occurring

CHAPTER 1. INTRODUCTION 7

between the same origin 2 and destination but different time may be not compara-

ble since the traffic conditions are different, resulting in route chosen and driving

behavours are also different. To exclude this effect, we simply divide the trajecto-

ries into different groups according to their occurring time, and perform iBOAT to

compare the testing trajectory to those who also have the same occurring time. Fur-

thermore, we conduct an in-depth analysis on around 43,800 anomalous trajectories

that are detected out from the trajectories of 7,600 taxis in a month, revealing that

most of the anomalous trips are the result of conscious decisions of greedy taxi drivers

to commit fraud. Because some cunning taxi drivers may use detour reasons such as

traffic accidents on roads as excuses, we also propose a simple mechanism to deny

possible excuses for fraud behaviours. We evaluate our proposed method through ex-

tensive experiments on a large-scale taxi data set, and it shows that iBOAT achieves

state-of-the-art performance, with a remarkable performance of the area under a

curve (AUC)≥0.99. We further demonstrate the iBOAT’s ability in detecting road

network changes through various simulated experiments. This work is mainly related

to the understanding of operational dynamics about the behaviours of taxi drivers

when delivering passengers.

♦ In many cities, the daytime bus transportation systems are usually well designed;

however, during late nights, most bus systems are out of service, leaving taxis as

the only option for intra-city travelling. To provide cost-effective and environment-

friendly transport to citizens for sustainable city development, many cities start to

plan night-through bus routes. Our second main work in this thesis is that we intend

to explore the night bus route planning issue by using taxi GPS traces, instead of

leveraging the costly and inaccurate human surveys about people’s mobility. Specif-

ically, we propose a two-phase approach for bi-directional night-bus route planning

(i.e. B-Planner). In the first phase, we develop a process to cluster “hot” areas

with dense passenger pick-up/drop-off, and then propose effective methods to split

big “hot” areas into clusters and identify a location in each cluster as a candidate

bus stop. In the second phase, given the bus route origin, destination, candidate bus

stops as well as bus operation time constraints, we derive several effective rules to

build the bus route graph, and prune invalid stops and edges iteratively. Based on

this graph, we further develop a Bi-directional Probability based Spreading (BPS)

algorithm to generate candidate bus routes automatically. We finally select the best

bi-directional bus route which expects the maximum number of passengers under

the given conditions and constraints. To validate the effectiveness of the proposed

approach, extensive empirical studies are performed on a real-world taxi GPS data

2. We use origin and source interchangeably throughout the thesis.

8 1.3. ORGANIZATION

set which contains more than 1.57 million night passenger delivery trips, generated

by 7,600 taxis in a month. This work is mainly related to the understanding of so-

cial dynamics about where are the popular passenger pick-up/drop-off locations and

origin-destination pairs at nighttime, and the understanding of traffic dynamics about

how much driving time is needed to travel between popular OD pairs at nighttime.

♦ Planning an itinerary before travelling to a city is one of the most important travel

preparation activities. Motivated by the needs of considering real-world traffic con-

ditions, user preferences, and the travel time budget, we study the problem of per-

sonalized trip planning. The third main work in this thesis is that we propose a

novel framework called TripPlanner, leveraging a combination of Location-based

Social Network (i.e. LBSN) and taxi GPS digital footprints to achieve personalized,

interactive, and traffic-aware trip planning. First, we construct a dynamic POI net-

work by extracting relevant information from crowdsourced LBSN and taxi GPS trace

data. Then, we propose a two-phase approach for personalized trip planning. In the

route search phase, TripPlanner works interactively with users to generate candi-

date routes with specified venues; In the route augmentation phase, TripPlanner

applies heuristic algorithms to add user’s preferred venues iteratively to the candi-

date routes, with the objective of maximizing the route score and satisfying both the

venue visiting time and total travel time constraints. To validate the efficiency and

effectiveness of the proposed approach, extensive empirical studies are performed on

two real-world data sets which contain more than 391,930 passenger delivery trips

generated by 536 taxis in a month, and more than 110,200 check-ins left by over

15,680 Foursquare users in 6 months in San Francisco. This work is mainly related

to the understanding of traffic dynamics about how much driving time is needed to

transit between any two points in the city at different departure time of the day and

day of the week.

1.3 Organization

The remaining chapters of the thesis are organized as follows, with their relationships

shown in Figure 1.3. In Chapter 2, we survey the related work from the perspectives of

three defined dynamics. Before presenting concrete work, we introduce some necessary

preliminaries in Chapter 3, including the data preparation and representation. Then, we

introduce our main work leveraging the taxi GPS trace data in details one by one in Chap-

ter 4, 5 and 6 respectively; each concerns certain category of defined social and community

dynamics, as shown in Figure 1.3. In more detail, in Chapter 4, we present our research on

informing anomalous behaviours of taxi drivers in real time through mining their passenger-

CHAPTER 1. INTRODUCTION 9

Chapter 3:
Data Preparation and Representation

Chapter 6:
Personalized and Traffic-aware

Trip Planning (Traffic Dynamics)

Chapter 4:
Anomalous Trajectory Detection

(Operational Dynamics)

Chapter 5:
Night Bus Route Planning (Social

Dynamics, Traffic Dynamics)

Chapter 2:
Literature Review

Chapter 7:
Conclusion & Future Work

Figure 1.3: Organization of the rest of the thesis.

delivery trajectories, dealing with operational dynamics of taxi drivers; in Chapter 5, we

introduce a greener and environmental-friendly transport to citizens at night by mining

frequent taxi-passenger flows, dealing with social and traffic dynamics; in Chapter 6, we

offer a personalized and traffic-aware trip planning system to suggest time-sensitive travel

routes according to the user’s preferences with the help of two heterogeneous crowsourced

LBSN and taxi GPS digital footprints, dealing with traffic dynamics. Finally, we conclude

the thesis and chart the future research directions in Chapter 7.

CHAPTER 2. LITERATURE REVIEW 11

Chapter 2

Literature Review

Contents

2.1 Social Dynamics . 11

2.1.1 Hotspot Identification . 12

2.1.2 Measuring the Linkage Strength between Areas 12

2.1.3 Discovering Physical Laws of Human Movement 13

2.2 Traffic Dynamics . 14

2.2.1 Trajectory Mapping . 14

2.2.2 Traffic Monitoring and Forecasting 15

2.2.3 Traffic Outlier Detection . 17

2.3 Operational Dynamics . 17

2.3.1 Passenger/Taxi Finding . 18

2.3.2 Route Planning . 20

2.3.3 Anomalous Driving Behaviours Detection 21

2.4 A Statistical Study . 22

In this chapter, we will review the existing research on mining taxi GPS traces in line

with three categories that we have defined in Chapter 1. In each category, we first discuss

common research directions, then enumerate some representative work for each direction.

Finally, we make a statistical study to show the tendency of emerging research topics during

recent years.

2.1 Social Dynamics

Common research directions in this category include: hotspot identification, measuring

the linkage strength between areas, and discovering physical laws of human movement from

the taxi GPS traces.

12 2.1. SOCIAL DYNAMICS

2.1.1 Hotspot Identification

The ability to identify the most frequented locations in a city can be useful for urban

planning, public transportation route design, tourism agencies, public safety, etc. There are

extensive work focusing on detecting significant places from GPS trajectories from personal

devices (such as cell phones, the GPS localizers) [6, 26, 110]. Locations where a user has

stayed for a minimum amount of time would be identify as his hotspots [166]. For our taxi

GPS traces, the places of interests can be detected directly since we know with reasonable

accuracy where passengers have been dropped off. We can also compare the importance of

different places by simply counting the number of drop offs at different places. Moreover,

more meaningful results can be uncovered if we add further contexts such as time of the

day, season of the year, etc.

Chang et al. [143] proceed by first filtering trajectories using contextual information

(weather, etc.), then clustering GPS points into areas and finally defining a hotness score

for each area according to the number of taxi requests divided by the size of the area. Yue

et al. [155,156] use simple nearest-neighbour clustering to group taxi pick-up and drop-off

points and discover attractive areas (i.e. hotspots) as well as the attractiveness amongst

different areas. With a different definition of hotspots, Liu et al. [96] use vehicular speed

information to quantify the “crowdedness” of an area, and define hotspots based on these

crowdedness values. Yuan et al. [150, 151] define “landmarks” as the road segments most

frequently traversed by taxi drivers, which in some sense, is also a kind of hotspots. In ad-

dition to extracting hotspots around the city, some work takes a step further. For example,

Li et al. [87] propose a method for predicting the amount of pick-ups at each hotspot by

using a variant of the Auto-Regressive Integrated Moving Average (ARIMA), which is a

well-known prediction method in time-series analysis [21]. Similarly, Luis et al. [108] ensem-

ble three well-known time-series forecasting techniques to predict the passenger-demands

in a 30-min horizon in hotspots. Wang et al. [139] use passenger pick-up and drop-off

points to analyze the location and travel patterns to and from hotspots. Based on the

observation that the temporal variations in taxi pick-up and drop-off patterns in hotspots

correlate well with their “land use” [101], Pan and Qi et al. [112,119] uncover the different

social functions of different regions of a city (i.e. commercial, residential, recreational, etc.).

Similarly, Yuan et al. [148] uncover the functionality of different regions combining the taxi

GPS traces and points of interest (POIs) of each region (e.g., restaurants, shopping malls.)

2.1.2 Measuring the Linkage Strength between Areas

There are many ways to characterize the “linkage strength” between two areas in a city

for different purposes. The “linkage” can be measured by the human flow from original

CHAPTER 2. LITERATURE REVIEW 13

area to the destination (i.e. OD flow), which can be used to examine the effectiveness of

current public transportation networks. Strong “linkage” but with few public transporta-

tions between two areas may imply a new bus route is necessary. The “linkage” can be

also measured by the driving distance. Two geographically-close areas may not be easily

linkable due to the flawed road network, or physical barriers.

Zhang et al. [161] first estimate the OD flows among locations in a city relying on the

taxi GPS traces, then mine the semantics of OD flows to understand the activity purposes.

More interestingly, Peng et al. [116] decompose a city’s OD flow into a linear combination of

three types of trips: travel between residential and work areas, travel between work areas,

and leisure trips for different purposes; they propose a method for finding these three

coefficients, thereby producing a rough estimate of OD flow. Zheng et al. [165] discover

inefficient connectivity between two regions by looking at actual versus expected distance

required to travel between these two regions, as well as the expected speed and actual

volume of traffic, to determine whether their level of connectivity satisfies the demand

of travel between them. They evaluate their results using a taxi dataset in Beijing, and

demonstrate that the flawed areas uncovered by their algorithm agree with a new subway

line added in the same area at a later date.

2.1.3 Discovering Physical Laws of Human Movement

There has also been some work in characterizing the physical laws of human movement,

by means of taxi trajectories. This type of work has its roots in biology where the movement

of animals is studied. By appropriately and precisely modelling the human movement,

we can synthesize large-scale human mobility traces for system scalability test, algorithm

performance evaluation, amongst others.

It has been observed that the movement of many animals follow a Lévy flight model,

which is a random walk that generalizes Brownian motion. It can be detected by verifying

whether the jump length follows a power-law behaviour. However, Jiang et al. [70] pre-

viously showed that using taxi data in order to provide evidence of human mobility as a

Lévy flight, is mainly due to the underlying street network. Chen et al. [35] study the dis-

tribution of travel time and distance of taxi trips and show that they can be approximated

by a power law distribution; additionally, they also show that most trips are short in both

time and distance. However, Liu et al. [100] study this problem on a large 7-day database

of taxi GPS traces in Shanghai, and argue that trip distances do follow the power law dis-

tribution, but the direction distribution is not uniform. Liang et al. [88] find that the taxis’

travelling displacements in urban areas tend to follow an exponential distribution instead

of a power-law. Similarly, the travel time can also be well approximated by an exponential

distribution. Veloso et al. [136] also argue that trip distance, duration, and income follow

14 2.2. TRAFFIC DYNAMICS

Gamma and Exponential distributions.

2.2 Traffic Dynamics

Common research directions in this category include: trajectory mapping, traffic mon-

itoring and forecasting, and traffic outlier detection.

2.2.1 Trajectory Mapping

As the traffic dynamics refer to the knowledge about important traffic indicators in

the road network observed by taxis, a fundamental pre-processing step is to map the taxi

trajectories to the road network on a digital map. However, in many cases, an updated

digital map of the city is not readily available. Although OpenStreetMap 1 combines GPS

traces, satellite images and hand-labelled information to produce a very rich digital map, it

is often inaccurate and incomplete. Fortunately, considering the fact that taxis are moving

in the road network and can cover the whole road network in a very short time, it provides

researchers with rich data source to construct and update the digital map [18, 98, 123]. A

good survey, which comprehensively overviews popular methods for inferring maps from

large collections of opportunistically collected GPS traces automatically, can be found

in [19].

Having had the digital map at hand, researchers are ready to proceed trajectory map-

ping, whose objective is to align a sequence of sampled taxi GPS positions with the road

network on a digital map. The task is very challenging mainly due to the following two

reasons: 1) the localization error of GPS sensors can be up to 10 meters, resulting in the

GPS points often do not “sit on” the digital map; 2) to save the cost of data transmission,

taxis often report their locations at a very low frequency (e.g., one point every 2-5 minutes),

increasing the uncertainties (several alternative paths may exist) between two consecutive

GPS points. To overcome the above-mentioned challenges, researchers often take certain

“contextual information” into consideration, such as distance and orientation [29, 52, 84],

spatial context and speed information [102], the influence of neighbouring GPS points [152].

Liu et al. [99] propose first pruning a set of trajectories by using speed and orientation,

then cluster the remaining segments using distance and orientation, and finally use B-

spline fitting [125] to fit the clustered traces onto road segments. Chawathe [32] proposes

assigning a confidence score to different segments of the trajectory, and then proceeds to

sequentially match the different segments, beginning with those with the highest confidence

score. Rahmani et al. [121,122] propose a two-step approach to tackle this problem: map-

matching and path inference. The first step is to identify a set of candidate links in the

1. http://www.openstreetmap.org/

http://www.openstreetmap.org/

CHAPTER 2. LITERATURE REVIEW 15

vicinity of each GPS point and find the (perpendicular) projection of the point on each link.

The second step is to identify the most probable trajectory among all possible trajectories

that pass through candidate links of a sequence of GPS points, such as the shortest path

which connects a pair of two projected points on the digital map [29]. To deal with the

data stream, Hunter et al. [66] introduce a path inference filter to map steaming GPS data

in real-time. The filter is trained based on the new data without ground truth observations.

The evaluation results on taxi data collected from different cities validate high performance

and throughput of the proposed method.

2.2.2 Traffic Monitoring and Forecasting

Real-time and near-future traffic conditions monitoring/forecasting in the road network

are vital in most of route planning problems. Although Google maps 2 have provided traffic

services in many cities, the accuracy is far from promising [12,150,151] and only very limited

indicators are offered (e.g., the driving speed bands from “slow” to “far”). Given that taxi

drivers are continuously driving around the city, the real-time collected GPS traces are a

natural source for monitoring the traffic conditions (e.g., the travel speed, the taxi density)

in the road network. Furthermore, it has been observed that traffic generally follows a

regular pattern throughout the day, and hence many researchers have used a vast array of

different methods to forecast the traffic conditions in the near future, by leveraging the taxi

GPS traces collected in history. We will list some representative work for traffic monitoring

and forecasting, respectively.

2.2.2.1 Traffic Conditions Monitoring

The essence of traffic conditions monitoring is to estimate the traffic indicators in the

current road networks. Gühnemann et al. [53] use GPS data to construct travel time and

speed estimates for each road segment, which are in turn used to estimate emission levels in

different parts of the city. Their estimates are obtained by simply averaging over the most

recent GPS entries. Herring et al. [59] use Coupled Hidden Markov Models for estimating

traffic conditions on arterial roads. They propose a sophisticated model based on traffic

theory which yields good results. Based on the fact that traffic conditions tend to follow

distinct patterns over the course of a week, Hofleitner et al. [61] from the same research

team (i.e. the Mobile Millennium team at UC-Berkeley) learn historic traffic patterns

from previous data which are used as prior information to estimate traffic conditions via a

Bayesian update. Both of the work use sparsely sampled GPS probe vehicle data provided

by a small percentage of vehicles. In modern cities, only few main roads have installed loop

2. http://maps.google.com

http://maps.google.com

16 2.2. TRAFFIC DYNAMICS

detectors. Aslam et al. [11] find that taxi volumes on the roads has a strong correlation

with all traffic volumes, based on the data collected from loop detectors and taxis. Then,

they build a model to infer the traffic volumes in road segments where do not have loop

detectors installed, from the taxi GPS traces only. By monitoring the real-time traffic

conditions, traffic jams can be detected. Schäfer et al. [124] demonstrate a visualization of

traffic conditions around the city, which can be used to detect congested and blocked road

segments by considering congested roads as those where the velocity is below 10 km/hr.

More recently, Wang et al. [141] develop an interactive system for visual analysis of traffic

congestion, and they detect the traffic jams based on the traffic speed on individual road

segment automatically. They further build traffic jam propagation graphs to understand

how traffic jams on each road segment influences the neighbouring road segments. To

decrease possible false alarms for traffic jams, Giannotti et al. [51] detect traffic jams by

searching for groups of cars close together that are all moving slowly. An interesting work

is the analysis of traffic congestion changes around the Olympic games in Beijing based on

location data collected by GPS-equipped taxis [142], although it is an ex post facto analysis

of traffic conditions.

2.2.2.2 Traffic Conditions Forecasting

Balan et al. [12] predict the travel time and fee between two locations in Singapore

by averaging the travel time of similar taxi trajectories in history (e.g. similar stating

time, similar starting and ending locations). Lippi et al. [91] use Markov logic networks

to perform relational learning for traffic forecasting on multiple simultaneous locations,

and at different steps in the future. This work is also designed for dealing with a set

of traffic sensors around the city. Su & Yu [129] use a Genetic Algorithm to select the

parameters of a SVM, trained to predict short-term traffic conditions. Furtlehner et al. [45]

from INRIA propose a traffic inference method based on the Belief Propagation algorithm.

Based on the fact that traffic conditions on different links are highly correlated (both

spatially and temporally), Han & Moutarde [55,56] demonstrate specific traffic patterns or

traffic configurations over the entire network can be very informative and useful for long-

term traffic modelling and forecasting. Yuan et al. [149] use both historical patterns and

real-time sensory information to predict traffic conditions. However, the prediction they

provide are between a set of “landmarks”, and only the travel time between “landmarks”

can be predicted. They define the “landmarks” as road segments which are traversed

by taxi drivers frequently, so they are only a subset of the whole road network. Castro

et al. [29] propose a method to construct a model of traffic density and automatically

determine the capacity of each road segment using a large database of taxi GPS traces;

by pairing these two pieces of information one can obtain accurate predictions of future

CHAPTER 2. LITERATURE REVIEW 17

traffic conditions and potential traffic jams. Besides predicting the expected travel time

between two points, Hunter et al. [67] propose an expectation maximization algorithm that

simultaneously learns the likely paths taken by taxis as well as the travel time distributions

through the network, mainly addressing the secondary road network. Later on, the same

authors present a scalable algorithm for learning path travel time distributions on the entire

road network [68]. Both algorithms are validated using a small sample of taxi GPS traces

data collected over the Bay Area of San Francisco, CA.

2.2.3 Traffic Outlier Detection

Researchers have defined different traffic outliers for many objectives, such as event

detection, traffic diagnose. A common outlier is defined as the abnormal traffic patterns

between regions, by comparing the differences (using distance to measure, such as the

Euclidean and Mahalanobis distance) to their spatial and/or temporal neighbours. For

example, Pang et al. [113] propose to use an adaptation of likelihood ratio tests (a tech-

nique which has previously been mostly used in epidemiological studies) to describe traffic

patterns and uncover unexpected traffic outliers. Liu et al. [97] also consider the traffic

outliers as the unusual traffic patterns between regions. Intending to discover the relation-

ships, especially causal interactions among detected traffic outliers, they further construct

outlier causality trees based on temporal and spatial properties of outliers. They propose

an algorithm to generate the frequent subtree from the outlier trees, which can potentially

reveal underlying flows in the design of the existing road network. Taking a step further,

Chawla et al. [33] infer the root cause of the outliers (i.e., the OD link which contributes

the anomalies most) by solving an L1 inverse problem.

Traffic outlier can be also defined in the temporal dimension only. As an example, Li

et al. [86] utilizes agglomerated temporal information of the entire dataset as the basis for

outlier detection. Some traffic outliers are also studied in the granularity of road segments

for traffic diagnose. For instance, Pan et al. [111] identify road segment outliers according to

drivers’ routing behaviours on an urban road network. Traffic outliers are then described by

mining representative terms from the user generated data in twitter mobile social network.

Similarly, road outliers are detected and possible causes are diagnosed by integrating a

number of data sources [40], such as taxi/bus GPS data, eventful data.

2.3 Operational Dynamics

Common research directions in this category include: Passenger/taxi finding, driving

route planning and anomalous driving behaviours detection.

18 2.3. OPERATIONAL DYNAMICS

2.3.1 Passenger/Taxi Finding

Study of the taxi drivers’ behaviours in finding new passengers is an intensive direction

for a number of research groups. Most papers have focused on finding passenger-demand

hotspots to direct the navigation for unoccupied drivers (or waiting passengers), thus work

about identifying hotspots often serves as the preliminary procedure. Some papers discover

the efficient/inefficient passenger-finding strategies to provide drivers with guidances to

find new passengers after dropping off the last passengers for a given region and time slot.

Additionally, a number of studies pay attention to aiding passengers to find vacant taxis,

and the estimation of the waiting time for the vacant taxis at the waiting roads/corners.

2.3.1.1 Passenger-demand Hotspot Recommendation

Chang et al. [143] find demand hotspots by extracting the time and environmental

contexts of a set of taxi requests, clustering these requests using k-means and agglomerative

hierarchical clustering, and ranking these clusters for drivers to search new passengers.

Palma et al. [110] use the speed of vehicles in a data set of trajectories to find “interesting

places” by means of a density-based clustering algorithm. Considering the potential fuel

cost by driving to a distant area, some studies focus on finding passengers locally. For

example, Powell et al. [118] construct a spatio-temporal profitability map based on historical

data to guide taxis to find new passengers on a local basis. Lee et al. [77] first use k-means

clustering to split a road network into different areas, and then perform a temporal analysis

to create a time-dependent pick-up pattern within each area. Their analysis suggests taxis

should go to the nearest area with demand to pick up new customers. The simple approach

is able to find clusters with highest demand. However, as Liu et al. [95] demonstrated,

in order to maximize profit, a taxi driver may not necessarily want to base his choice

solely on demand [95]. A balance between profit maximization and demand coverage is

necessary. Considering the fact that taxi drivers may fail to pick up new passengers at the

first suggested locations, some papers intend to recommend a sequence of locations (i.e.,

passenger-finding routes) to follow to find new passengers successfully. For instance, Ge et

al. [48] develop a mobile recommendation system, which first clusters the pick-up points

of the top drivers, then recommends a sequence of these pick-up points for other drivers

to find new passengers. Hu et al. [63] extend this idea by creating a pick-up tree with

the pick-up points with highest probability; the authors argue that this method is more

suitable for situations where you have a set of vacant taxis (as opposed to a single one)

in the same area (i.e. the competition from other drivers). Yuan et al. [153, 154] present

T-Finder, which automatically extracts “waiting areas” for taxis based on the distance

between consecutive GPS points. The authors then compute the probability of picking

CHAPTER 2. LITERATURE REVIEW 19

up a passenger based on the current time and the road segment or waiting area. This

information is used to provide a recommendation system for drivers and passengers. More

recently, Ding et al. [43] present a system, called HUNTS to find a connected trajectory of

high profit and high probability to pick up a passenger within a given time period in real-

time, by exploiting heuristic algorithms. Different from all mentioned work using taxi GPS

traces in history or real time, Takayama et al. [132] perform an empirical study which solely

rely on survey results from the drivers to propose promising “waiting/cruising” locations to

taxi drivers. However, their method is based on surveys given to drivers, which is inefficient

to obtain data, is sensitive to human error, and is also difficult to continue indefinitely.

2.3.1.2 Uncovering Passenger-finding Strategies

Through extensive statistical analysis, Liu et al. [95] uncover the good driving be-

haviours in both choosing effective passenger-finding and passenger-delivery strategies.

Experimental results reveal that most top taxi drivers (ranked according to their revenues

generated) choose similar spatio-temporal areas. The authors discovered the somewhat

surprising facts that top drivers strived to drop off passengers as quickly as possible in

order to serve as many passengers as possible; additionally, they choose to operate in areas

other than the Central Business District. Similarly, Li et al. [80] propose an analytical

model, intending to discover the efficient/inefficient passenger-finding strategies, and the

efficient strategies are used to be the guidances for drivers to increase income. Specifically,

they categorize the observed passenger-finding strategies based on time, location, whether

they are “hunting” or “waiting”, and whether the driver remains in a local area or travels

a longer distance to find a new passenger. The authors then use a form of Support Vector

Machine (SVM), L1-Norm SVM [17] to determine, based on the current time and location,

whether the driver should hunt locally, waiting locally, or going distant (i.e. travelling to

a distant location). Yamamoto et al. [144] provide routing strategies for multiple taxis

using fuzzy clustering mechanisms. Hu et al. [64] formulate taxi driver’s task of hunt-

ing for new passengers as a decision problem at each intersection and propose solving it

using probabilistic dynamic programming. Nevertheless, it is unclear whether a concrete

“micro-strategy” for finding passengers can be extracted by mining past taxi trajectories:

the strategies employed by top drivers would have to be fairly consistent or predictable. As

shown by the study in [135], Veloso et al. perform a predictability analysis of the next

pick-up area given drop-off features. Their results show there is only a 54% predictability

rate, suggesting hunting/cruising trips are largely random.

20 2.3. OPERATIONAL DYNAMICS

2.3.1.3 Vacant Taxi Finding

In addition to aiding taxis finding new passengers, some studies develop algorithms to

help passengers find vacant taxis quickly. For example, Phithakkitnukoon et al. [117] use a

grid decomposition and a naive Bayesian classifier to predict vacant taxis in different areas.

Zheng et al. [164] model the probability of taxis leaving their current road segment as a

Non-homogeneous Poisson Process, and use this model to estimate the waiting time for

taxis at different locations and at different times; these estimates are then used to provide

a recommender system for people searching for taxis. More recently, Qi et al. [120] present

a method to predict the waiting time for a passenger at a given time and spot, where the

arrival model of passengers and vacant taxis are built from the events that taxis arrive at

and leave a spot. The passenger waiting queue in a spot can be simulated and the waiting

time can be inferred with the models.

2.3.2 Route Planning

Users are often experiencing route planning problems when visiting cities, especially

when visiting unfamiliar cities. The generalized routing problems in transportation net-

works has been studied extensively for (at least) four decades, dealing with different ob-

jectives and constraints. Popular objectives include shortest route, shortest travel time,

lowest operation cost, maximum passenger flow, maximum area coverage and maximum

service quality while the constraints include time, capacity and resources. Popular tech-

niques that have often been used are dynamic programming [38], variations of Djikstra’s

algorithm [42], and variations of the A∗ algorithm [71]. A recent released technical report

which surveys recent advances in algorithms for route planning in transportation networks

can be found in [14]. Note that the research of route planning is also a common topic

in other networks, such as wireless sensor networks [5], mobile social networks and delay

tolerance networks [39, 65].

Some work have explored the excellent knowledge of taxis about the city’s road network

to suggest driving directions. For example, by observing taxi drivers’ behaviours, Yuan et

al. [149, 151] combine historical traffic patterns to compute shortest-time driving routes.

They first identify “landmarks” which are traversed by taxis frequently, then construct

a time-dependent landmark graph based on a large set of taxi trajectories. The routing

algorithm first finds a rough route on the landmark graph, and then this is refined to a route

on the underlying road network. By estimating travel time distributions, the authors allow

travel times to behave stochastically, which may yield more accurate representations. Their

results are validated by the in-the-field testing of real drivers. Similarly, Li et al. [82, 83]

construct a hierarchy of roads based on frequency of use, and perform planning from a

CHAPTER 2. LITERATURE REVIEW 21

source to a target by trying to travel through the highest hierarchy roads.

With a quite different objective, Bastani et al. [15] propose defining new transportation

routes by mining through and combining multiple taxi trajectories. The authors suggest

these new routes could be used by a mini-shuttle transportation system that lies somewhere

between taxis and buses. More recently, Ma et al. [106] propose a scheduling algorithm

to plan ride-sharing routes for taxi drivers, and their optimal objective is to minimize the

additional incurred travel distance. With a similar objective, Zhang et al. [159] present

coRide which has three components, a dispatching cloud server, passenger client, and an

on-board customized device to plan cost-efficient carpool routes for taxi drivers and thus

lower fares for the individual passengers.

2.3.3 Anomalous Driving Behaviours Detection

The objective is to detect the anomalous driving behaviours through mining passenger-

delivery trajectories. In another word, this “abnormality” is defined in the “individual”

level, which is different from the traffic outlier we have discussed, which is often a result

of the collective behaviours (e.g. traffic jams, big sport events). By collecting the trajec-

tories from many taxis, we may be able to automatically identify not only these “normal”

trajectories, but also “anomalous” trajectories. An anomalous trajectory can be caused by

external factors such as accidents or the closure of a main road, and may also be caused by

fraudulent drivers trying to charge more money from passengers. The ability to automati-

cally detect anomalous trajectories can thus enable to prevent drivers to take advantage of

passengers unfamiliar with the city.

Liao et al. [89] use conditional random fields to label anomalous taxis, coupled with

an active learning scenario, where human interaction can help guide the learning. Balan

et al. [12] reported trajectories with extremely long travelling distances as anomalous:

any trajectory with a distance twice as long as the straight line distance between the

start and end positions, or any trajectory with an average speed lower than 20 km/hr or

higher than 100 km/hr. Zhang et al. [158] propose iBAT, a method based on isolation

trees and a grid decomposition, to solve this problem. The authors maintain a set of

historical trajectories and determine whether new trajectories are isolated from this set by

randomly selecting grid cells from the new trajectory and determining how many of the

historical trajectories also contain this grid cell. Since the method is based on sampling,

the process must be repeated a number of times for each trajectory in order to obtain an

anomaly score that indicates the degree of anomalousness of the new trajectory. Through

the use of a testing set of manually labelled trajectories, the authors verified the accuracy

of their proposed method. More recently, Ge et al. [46, 47] proposed a similar method for

detecting taxi fraud. Their method uses a grid decomposition and complete trajectories

22 2.4. A STATISTICAL STUDY

in a similar way as done in [158]. They compute two pieces of evidence for detecting

anomalous trajectories. The first involves computing the independent components (using

Independent Component Analysis) of a set of trajectories, and compute the coding cost

(which is essentially the entropy) of a trajectory’s independent components. The second is

a method for determining the expected distance for the most common routes, and compute

how much a trajectory’s distance differs from the norm. These two pieces of evidence

are combined using Dempster-Schafer theory. Although their experimental results fail

to convince the reader that their method provides an advantage over standard density-

based methods, they provide mechanisms for differentiating between malicious detours and

detours due to traffic interruptions or poor knowledge of the area. Despite the high accuracy

and solid evaluations, both methods presented in [46, 47, 158] suffer from a number of

shortcomings. The most important one is that they only work with completed trajectories,

disqualifying it from being used for real-time fraud detection.

2.4 A Statistical Study

We make a statistical study to understand the tendency of research topics during recent

years. Specifically, we first group the related papers according to its published year, and

then extract the research topics from keywords. Note that we only keep keywords that the

studied paper focuses on most, since we are often experienced that one paper may deal

with several subjects. As an example, consider Castro’s paper on the traffic conditions

prediction [29]. The extracted topic should be “traffic conditions prediction”, though their

method requires the trajectory matching techniques. Moreover, we also unify different

descriptions of the same topic manually. For instance, some papers may use “path planning”

as the keywords while others may use “route planning”. We intentionally use “anomalous”

to describe anomalous driving behaviours and traffic outliers since both of them are dealing

with certain aspects of abnormality. Finally, the extracted topics are visualized by “word

clouds” shown in Figure 2.1, which is generated by Wordle 3.

As can be seen from Figure 2.1(a), in 2011, the hottest research topic is about “mobil-

ity”, which aims to understand the spatial-temporal mobility patterns of the whole popu-

lation in the city underlying by the taxi GPS traces. Also the research about “anomalous”

has received wide attention during that year, attempting to detect the anomalous driv-

ing behaviours, and abnormal traffic patterns in the road network (a.k.a. traffic outliers).

During 2012, most of attention has been shifted to the research on “traffic estimation”,

as shown in Figure 2.1(b); most papers focus on discussing and developing algorithms to

accurately estimate the congestion level in each road segment as well as the travel time be-

3. http://www.wordle.net

http://www.wordle.net

CHAPTER 2. LITERATURE REVIEW 23

(a) 2011 (b) 2012

(c) 2013 (d) 2014

Figure 2.1: Word clouds generated by keywords from literatures during the recent 4 years.
Keywords with bigger size refer to more popular studied topics.

tween two points in a city. Research on “traffic estimation” continues to be a popular topic

in the following two years (i.e. 2013 and 2014). However, topics about “route planning”

and “rider-sharing” are growing significantly in 2013 and 2014 4, as shown in Figure 2.1(c)

and (d). Route-planning can refer to the work leveraging the excellent knowledge about

the city of taxi drivers to recommend driving directions [82,149], and can also refer to the

work related to public transportation routes planning based on the traffic flow reflected

by the taxi GPS traces [15]. Taxi ride-sharing is a promising new research direction that

can have significant social and environmental impact. Given the rapid growth of cities and

use of motorized vehicles, taxi ride-sharing provides a promising mechanism to mitigate

increasing road congestion.

4. Results in 2014 are obtained by the statistics of papers appeared in the first five months, just before
the accomplishment of this manuscript.

CHAPTER 3. DATA PREPARATION AND REPRESENTATION 25

Chapter 3

Data Preparation and
Representation

Contents

3.1 Data Preparation . 25

3.1.1 Data Format . 25

3.1.2 Data Problems . 26

3.2 Data Representation . 28

In this chapter, we will discuss some issues related to the data preparation and repre-

sentation.

3.1 Data Preparation

Data preparation is the pre-procedure and reliable results can be guaranteed only if data

cleaning is provided for many taxi data mining tasks [162]. Here, we will first introduce

the data format, followed by the overview of possible data problems for the taxi GPS data.

3.1.1 Data Format

We get a large-scale real-world taxi GPS data set of more than 7,000 taxis served in a

large city in China (Hangzhou) for one year (April, 2009∼March, 2010). Hangzhou has a

population of more than 6 million people and it is also a famous tourism city. The large

population and massive passenger flows raised great challenges and opportunities to taxi

drivers. The sampling frequency for this data set is 1∼7 times per minute.

26 3.1. DATA PREPARATION

Another taxi GPS data set used in our research is freely available online 1. This taxi

data was generated by 536 taxis in June 2008 in San Francisco, CA. Note that the taxi

GPS traces in this city can be also gathered in real time, with the provision of the public

API 2. The sampling frequency for this data set is around once per minute.

Table 3.1 lists the fields for each GPS record for the taxi GPS data set in Hangzhou

city, along with a sample of the GPS entry. The “bearing” information (measured by the

angle between the taxi heading direction and the north direction) refers to the heading

orientations of taxis at the sampling time. Note that the “bearing” information is not

provided for the taxi GPS data set in San Francisco city.

Table 3.1: Fields for a GPS entry with a sample
Taxi ID Longitude Latitude Speed Bearing Occupied Year Month Day Hour Minute Second

(km/h) (◦) flag
10429 120.214134 30.212818 70.38 240.00 1 2010 2 7 17 40 46

Data provided do not contain the pick-up/drop-off information directly. But we can

easily extract the pick-up/drop-off points based on the taxi status (i.e. the occupied flag

in Table 3.1) and the driving speed. Specifically, when the taxi status is ‘1’, it means that

the taxi is occupied; otherwise, the taxi is empty. The pick-up point is then identified

when the taxi status changes from ‘0’ to ‘1’, and the speed increases from zero. Similarly,

the drop-off point is inferred when the taxi status changes from ‘1’ to ‘0’, and the speed

decreases to zero. Consequently, trace data can be separated into passenger-delivery and

passenger-finding trajectories: trajectory starting from the pick-up point to drop-off point

is corresponding to the passenger-delivery trajectory; while the one starting from the last

drop-off point to the new pick-up point is corresponding to the passenger-finding trajectory.

3.1.2 Data Problems

Identification of possible data problems is essential for the data cleaning process. Here,

we overview the possible data problems with the hope of providing an insight into the type

of problems that researchers should be aware of in order to reduce “tainted” results, though

it is far from being a complete list.

� Missing data

Due to the occlusions of buildings, poor GPS single in some locations (e.g., the tunnel,

the underground parking) or GPS device errors, the GPS data cannot be received occasion-

ally, resulting in a lapse of several minutes or even hours between two nearby entries. In

other words, a big physical jump with no information about the taxi’s movement through-

out this time duration. Depending on the problem being addressed, this data can either

1. http://cabspotting.org/

2. http://cabspotting.org/api

http://cabspotting.org/
http://cabspotting.org/api

CHAPTER 3. DATA PREPARATION AND REPRESENTATION 27

be left as it is, the trajectory can be split into two (or more) parts, or the trajectory can

be truncated at the point before the jump occurred.

� Erroneous data

Due to the GPS device errors, certain GPS entries may contain erroneous data, such as

erroneous latitude/longitude or time entries. Most of the time, these are isolated (i.e. with

abnormal far distance from nearby entries) and can be easily identified by using contextual

information from the surrounding entries. A simple and common way to overcome these

erroneous entries is to extrapolate from the surrounding entries.

� Occupied flag improperly set/detected

The state of the occupied flag may not be properly set, partly because the taxi driver

does not set his indicator properly, partly because there is a fault in the device. This may

result in certain taxis being continuously occupied or vacant (e.g. last for an extremely

unreasonable long time). When attempting to extract information from occupied/vacant

trips, this type of problem can play negative impact at the obtained statistics. One possible

solution is to compute the proportion of time the taxi is occupied/vacant, and discard any

taxis that have extreme values, such as being occupied over a certain threshold ratio of

time (e.g., 90%).

A relevant but more difficult problem is due to the low sampling rate of the GPS device

(i.e., low time resolution). Specifically, we may not be able to determine when one trip

ended and when the other began because of the rate at which GPS entries are received.

This can be observed in popular transport areas, such as the airport: a taxi dropping off a

passenger at the airport may find a new passenger immediately.

� Multiple drivers

GPS data provided does contain the ID information of drivers for each taxi. However,

we find that a taxi is commonly operated by more than one driver, through our interview

with some taxi drivers in Hangzhou, China. The problem of the determination of which

driver is currently active is very challenging and cannot be inferred from the taxi GPS data

directly. So far, no solutions are reported [28]. A possible approach might be to first detect

the areas where the drivers always visited at the same time, and then identify the true

place where the drivers take shift handover, given the fact that the taxi drivers roughly

take handover at the same time and places (e.g., gas re-fuelling stations are preferable for

most of drivers) based on their agreements. However, it is often difficult to verify since we

do not have the ground truth of which driver is active.

� “Sleeping” taxis

Although having multiple drivers allows taxis to operate at all hours of the day, some

night-duty drivers may stop to sleep at certain points for some time. The case is even

common for single-driver taxis. Thus, it is important to differentiate between a sleeping

28 3.2. DATA REPRESENTATION

taxi and a taxi that is waiting for a passenger. In a similar manner to what was proposed

above, one could begin by detecting areas where the taxi is always parked at the same time

during the night.

3.2 Data Representation

Definition 3.1. A GPS point is formally defined as a location where the taxi is at the

sampling time. It can be represented by a triplet pi = 〈xi, yi, ti〉, where xi, yi ∈ R refer to

the physical location (i.e., longitude and latitude). A pick-up point is a special GPS point

indicating when and where pick-up event occurs; a drop-off point is a special GPS point

indicating when and where drop-off event occurs.

Having defined the GPS point, we are ready to define the passenger-finding and passenger-

delivery trajectories, respectively.

Definition 3.2. A passenger-delivery trajectory is composed of a sequence of GPS points,

in which the first point is the pick-up point and the last point is the drop-off point. On the

contrary, a passenger-finding trajectory is composed of a sequence of GPS points, starting

from the last drop-off point and ending at the next pick-up point.

How to represent a taxi trajectory (i.e., the passenger-finding or the passenger-delivery

trajectory) is the preliminary, and often depends on the concrete problems and applications.

Here, we will list some popular taxi trajectory representation methods, as follows.

� A sequence of GPS points

The most intuitive way is to represent the trajectory as a sequence of GPS points (i.e.

t = 〈p1, p2, · · · , pn〉), according to the definition directly. However, it suffers from several

drawbacks.

♦ A unique taxi trajectory may have different representations, due to the non-uniform

sampling rate. Consider the two illustrative trajectories in Figure 3.1: trajectories

tA and tB are unique, which are generated by taxis at the same time, from the

same origin to the same destination, also following the same roads as well. The

only difference is the GPS sampling rate; there are more sampling points for tA.

Obviously, the similarity of these two trajectories is small if comparing them based

on the representation, which is not true.

♦ The trajectory is very difficult to understand, since its representation has very little

semantic meaning.

To overcome the drawbacks, researches have developed many methods to map the raw

trajectory (i.e. a sequence of GPS points) to road networks, regions in order to get a better

representation, detailed as follows.

CHAPTER 3. DATA PREPARATION AND REPRESENTATION 29

s1

s2
s3

s4

s5

s6

s7
s8

s9
s10

s11
s12

pi

(a) tA. The trajectory in purple is the mapped trajectory on the
digital map.

R1

R6

R5

R2

R3

R4

(b) tB . Different regions are denoted with different colors.

Figure 3.1: Illustration of two trajectories. The marks denote the sampling points.

� A sequence of road segment IDs

The trajectory can be represented by a sequence of road segment IDs. Additionally, an

entering and a departure time stamp indicating the time when the taxi enters and depar-

tures for each road segment can also be integrated if necessary. By simply differentiating

the departure time and the entering time, the stay time in each road segment can also

be inferred. For instance, the trajectory shown in Figure 3.1(a) can be represented as

tA = 〈s1, s2, s3, · · · , s12〉, where si refers to the road segment IDs. The main challenge for

this representation is to develop robust trajectory mapping algorithms to map the GPS

point to the road segment correctly, which has been discussed extensively in Section 2.2.1

of Chapter 2.

� A sequence of region IDs

30 3.2. DATA REPRESENTATION

A taxi is moving inside a region or across different regions in the city, thus it is also a

natural way to represent the taxi trajectory as a sequence of city regions. Similarly, region

ID can also be associated with time information, showing when the taxi enters, departures

for that region. For instance, the trajectory shown in Figure 3.1(b) can be represented as

tB = 〈R1, R2, R3, R4, R5, R6〉, where Ri refers to the region IDs. The city is usually divided

into different regions in advance, usually independent of the taxi GPS trajectories. Regions

can either be obtained by dividing the city based on ZIP codes, the main city roads, and

dis-jointed grid cells, or obtained by clustering other spatial data sources (e.g., Foursquare

data, POI data). In a general sense, the union of divided regions can be a subset of the

whole city (as illustrated in Figure 3.1(b)). Mathematically, C − ∪ni=1Ri 6= ∅, where C

denotes the whole city.

For the last two representations, road segment ID and region ID can be enriched with

semantic meanings to understand the trajectory deeper from the third party (a.k.a seman-

tic annotation/labelling), such as Google maps, POI data [145]. A good survey, which

overviews the state-of-art of semantic trajectory modelling and analysis, can be found

in [114]. In our research, the taxi trajectory is represented by a sequence of region IDs: the

whole city is divided into small-equal sized grid cells (regions) in Chapter 4; the regions

are clustered by the spatial data provided by the Foursquare check-in data in Chapter 6.

We will introduce the technical details about the taxi trajectory representation separately

in the corresponding chapters.

CHAPTER 4. IBOAT: ON-LINE ANOMALOUS TRAJECTORY

DETECTION 31

Chapter 4

iBOAT: On-line Anomalous
Trajectory Detection

Contents

4.1 Introduction . 31

4.2 Related Work . 34

4.3 Preliminaries and Problem Statement 36

4.4 iBOAT: Isolation-based On-line Anomalous Trajectory Detection 39

4.4.1 Offline Pre-processing . 39

4.4.2 iBOAT Algorithm . 41

4.5 Empirical Evaluation . 45

4.5.1 Datasets . 45

4.5.2 Evaluation Criteria . 45

4.5.3 Experimental Results . 46

4.5.4 Varying Parameters . 46

4.5.5 Adaptive versus Fixed-window Approach 49

4.5.6 iBOAT versus iBAT . 51

4.6 Applications . 54

4.6.1 Statistical Study [130] . 55

4.6.2 Deny Possible Excuses . 57

4.6.3 Detecting Road Network Changes 58

4.7 Concluding Remarks . 60

4.1 Introduction

Recent years have witnessed an increasing interest in automatically detecting anoma-

lous trajectories [24, 50, 78]. Although several aspects of abnormality have been used for

32 4.1. INTRODUCTION

automatic detection by previous works, few of them have analyzed them with respect to

the practical applications which they may serve. In this chapter, we mainly concern the

operational dynamics when taxi drivers are delivering passengers, and we would like to use

two potential applications to motivate.

Application I. Many passengers are victims of fraud caused by greedy taxi drivers who

overcharge passengers by deliberately taking unnecessary detours [1]. The detection of these

fraudulent behaviours is essential to ensure a high quality taxi service. Currently, these

frauds are detected by manual inspection from experienced staff, based on complaints from

passengers. This is rather costly and not effective enough. More seriously, most frauds are

not even noticed by passengers if they are unfamiliar with the city. Given that anomalous

traces usually deviate significantly from “normal” ones, it is possible to automatically detect

them by comparing against a large collection of historical trajectories.

Another anomalous situation could occur when there are abnormal traffic conditions

such as traffic accidents, resulting in certain road segments being blocked, forcing taxi

drivers to find alternative routes.

Application II. Urban road networks undergo changes regularly, and these changes

must be reflected in digital maps. These changes not only refer to newly installed roads,

but roads permanently or temporarily closed. Performing these updates manually can be

expensive, time-consuming, and would be “lagging” behind the occurrence of the actual

changes. Taxis equipped with GPS devices can be viewed as moving sensors probing the

real-time information about urban road networks, and can thus provide us with accurate

and up-to-date information about changes in the road network.

In order to support the applications effectively, a successful anomaly detection method

should posses the following characteristics.

1. Accurate classifications: This implies that the method should have a high detec-

tion accuracy while with low false-alarm rate.

2. Sub-trajectory specificity: In addition to labelling trajectories as anomalous, it

can inform which parts, or sub-trajectories are responsible for the trajectory’s anoma-

lousness.

3. Real-time response: Detect anomalous trajectories in real-time. Alerts can be

provided once anomaly is detected while the trip is still on-going.

4. Characterizing the anomaly degree: Provide a score quantifying the degree of

anomalousness for each trajectory. This score can be used to rank a collection of

trajectories.

A set of trajectories are considered “normal” with respect to a particular travel itinerary

(i.e. from a specified point to another). We must then specify source (S) and destination

CHAPTER 4. IBOAT: ON-LINE ANOMALOUS TRAJECTORY

DETECTION 33

(D) areas, and consider only those trajectories travelling from S to D.

t1

t2

t3

t4

t5

D

S

Figure 4.1: Example taxi trajectories between S and D.

Consider the three groups of “normal” trajectories between S and D, along with five

anomalous trajectories (t1 through t5), displayed in Figure 4.1. The anomalous trajectories

are labelled so because they are infrequent and different from the majority of other trajec-

tories. Not only should trajectories that follow a completely different route (t1, t4, t5) be

considered anomalous, but also those that detour for part of the trajectory (t2, t3). The

anomalous trajectories can be long detours made by greedy taxi drivers (t1 and t2 in Fig-

ure 4.1), or they can be short-cuts or new routes taken by experienced drivers (t4 and t5 in

Figure 4.1). Detecting these anomalous trajectories is no trivial task due to the following

challenging issues.

♦ First, as can be seen in Figure 4.1, there may be many different normal routes between

S and D, and these clusters are usually with different densities and separated from

each other. Traditional anomaly detection techniques [24,50,78], which are based on

differences in distance or density, may be difficult to identify all the anomalies.

♦ Second, multiple normal routes also mean different driving distances. If we model

driving distance, it is not able to discover those anomalies whose driving distance is

close to that of the normal trajectories (like t3 and t5).

♦ Third, anomalous trajectories can be diverse. Like t1, t2, t3, t4 and t5 in Figure 4.1,

they are regarded to be anomalous due to quite different reasons. Then, it is not

straightforward to characterize them with a single method.

♦ Finally, the concept of anomalous trajectory might drift over time, because the road

network may change (i.e., newly-built or blocked roads). Hence, it is important to be

34 4.2. RELATED WORK

able to capture these changes and incorporate them into the model. Moreover, GPS

traces often suffer from the low-sampling-rate problem since GPS devices usually send

data at a low and changing frequency.

In this chapter, we aim to propose a novel anomalous trajectory detection method which

addresses the four challenges above. Firstly, we extract valid taxi rides from all the taxi

GPS traces, divide the city map into grid-cells of equal size, group all the taxi rides crossing

the same source destination cell-pair, and augment and represent each taxi trajectory in

each source-destination pair as an ordered sequence of traversed cell symbols (i.e., the taxi

trajectory is represented as the sequence of grid cell IDs as discussed in Chapter 3.2. The

technical details can be found in Section 4.3.). In such a way, the problem of anomalous

trajectory detection is converted to that of finding anomalous trajectories from all the

trajectories with the same source-destination cell pair. Secondly, for all the taxi trajectories

between a certain source-destination cell-pair, we define those trajectories that are “few”

and “different” from the normal trajectory clusters as anomalies. We then propose an

Isolation-Based On-line Anomalous Trajectory (iBOAT) detection method which exploits

the property that anomalies are susceptible to a mechanism called isolation [94]. Thirdly,

we perform an empirical evaluation comparing iBOAT and other state-of-the-art methods

with real-world taxi GPS data. Finally, we show how iBOAT can be used to effectively

support real-world applications. In summary, the main contributions of this work include:

1. We present an Isolation-Based On-line Anomalous Trajectory (iBOAT) detection

method that successfully addresses all the challenges mentioned above while still

possessing the four characteristics mentioned above. (See Section 4.4 for details.)

2. We evaluate iBOAT with real-world GPS traces collected from 7,600 taxis for one

month. We demonstrate the remarkable accuracy of our method, its ability to iden-

tify which sub-trajectories are anomalous, and its low computational cost. We also

show that iBOAT outperforms the state-of-the-art anomalous trajectory detection

methods. (Refer to Section 4.5 for details.)

3. After detecting the anomalous trajectories, we perform an analysis revealing that most

of the anomalous trips are the result of conscious decisions of greedy taxi drivers to

commit fraud. Also, we further provide evidence to deny possible excuses that some

cunning drivers may use. We further discuss the ability of iBOAT in detecting road

network changes. (See details in Section 4.6)

4.2 Related Work

In Chapter 2, we have extensively surveyed the work about mining taxi GPS traces

mainly from the perspective of research topics. The research topics about “traffic outliers”

CHAPTER 4. IBOAT: ON-LINE ANOMALOUS TRAJECTORY

DETECTION 35

and “anomalous driving behaviours” are most relevant, each addressing certain aspects of

abnormality. Here, we would like to review the related work from the perspective of the

proposed algorithms.

In the literature, some solutions of anomalous trajectory detection have already been

reported, For instance, Lee et al. [78] split a trajectory into various partitions (at equal

intervals) and a hybrid of distance and density based approaches was used to classify each

partition as anomalous or not; however, as we previously mentioned, solely using distance

and density can fail to correctly classify some trajectories as anomalous. Bu et al. [24] pre-

sented an outlier detection framework for monitoring outliers over continuous trajectory

streams, whose key idea was to build local clusters upon trajectory streams and detect

outliers by a cluster join mechanism; Ge et al. [50] studied a similar problem of detecting

evolving trajectory outliers, and they computed the anomaly score based on evolving di-

rection and density of trajectories. Somewhat related, but addressing a different problem,

Li et al. [86] identified outlier road segments by detecting drastic changes between current

data and historical trends. Their approach detected what can be labeled as global anoma-

lous events: they were events that affect many taxis; thus, their method would not be able

to detect anomalous behaviours on an individual level. Balan et al. [12] reported trajec-

tories with extremely long travelling distances as anomalous; as we previously mentioned,

this rather simplistic approach may fail to detect other types of anomalous behaviours.

Ge et al. [47] identified fraudulent taxi trajectories by using a model combining two forms

of evidence: distance and density characteristics. Specifically, they first computed the in-

dependent components (using Independent Component Analysis) of a set of trajectories,

and computed the coding cost (which is essentially the entropy) of a trajectory’s indepen-

dent components; once this was done, they determined the expected distance for the most

common routes, and computed how much a trajectory’s distance differs from the norm.

These two pieces of evidence were combined using Dempster-Schafer theory. Finally, some

recent work has used learning methods to identify anomalous trajectories [4, 85, 89, 127].

However, these last methods usually required training data which is expensive to label.

After reviewing existing works on anomalous trajectory detection, it is not difficult to find

that we are investigating a different problem from previous ones. That is, given all the

taxi trajectories between a certain source and destination pair, our objective is to discover

those few which take very different routes from the majority.

Most of these methods identify anomalous trajectories based on their physical distance

to “normal” clusters or their orientations [22, 57]. Based on the idea of isolating anoma-

lies [94], our previous work [34, 158] proposed a method which identifies trajectories as

anomalous when they follow paths that are rare with respect to historical trajectories. The

work in this chapter builds on them, but differs from them in the following respects: 1)

36 4.3. PRELIMINARIES AND PROBLEM STATEMENT

Figure 4.2: Traces of a taxi in Hangzhou city during a month, where red or blue indicates
the taxi is occupied or vacant.

We introduce a novel anomaly scoring method which considers both the anomalous sub-

trajectory and the number of trajectories “supporting” it. Anomalous trajectories with

longer anomalous sub-trajectory and less support would be ranked higher; 2) The effect of

the anomaly threshold and the size of the set of historical trajectories on the detection per-

formance are investigated. This study allows developers to trade-off between the detection

accuracy and the cost (i.e. computation time, memory); 3) Motivations behind the anoma-

lous behaviours are analysed. Different applications corresponding to this motivation could

be developed leveraging the proposed iBOAT method.

4.3 Preliminaries and Problem Statement

A taxi’s GPS trace consists of a sequence of time-stamped GPS points (i.e., lati-

tude/longitude, the estimated speed, vacant/occupied state) generated by a GPS device.

Our dataset for this study consists of the GPS trajectories for 7,600 taxis in Hangzhou,

China, where each GPS record is received at a rate of around once per minute. Figure 4.2

shows the trajectories for one taxi during a month; the red lines indicate when the taxi is

occupied, while the blue lines indicate when it is vacant. In this work, we will only use

occupied trajectories, since fraud detection is one of the motivations for this study, and

fraud can only be committed with a passenger.

Definition 4.1. A trajectory t consists of a sequence of points 〈p1, p2 . . . , pn〉, which

has been defined in Chapter 3.2. We will use ti to reference position i in t, and for any

1 ≤ i < j ≤ n, ti→j denotes the sub-trajectory 〈pi, . . . , pj〉.

The points pi exist in a continuous domain, so dealing with them directly is difficult.

In order to mitigate this problem, we assume we have access to a finite decomposition of

CHAPTER 4. IBOAT: ON-LINE ANOMALOUS TRAJECTORY

DETECTION 37

the area of interest. Specifically, we decompose the city area into a matrix G of grid cells,

and we define ρ : R2 → G as a function that maps locations to grid cells. The criteria for

choosing the grid cell size is to ensure the accuracy of the anomalous trajectory detection

while maximizing the grid cell size. We experimented with different grid cell sizes and

found that 250m× 250m is the biggest grid size with the set detection accuracy.

Definition 4.2. A mapped trajectory t̄, obtained from a trajectory t, consists of a

sequence of cells 〈g1, g2 . . . , gn〉, where for all 1 ≤ i ≤ n, gi ∈ G and t̄i = ρ(ti). We will

write g ∈ t̄ when t̄i = g for some 1 ≤ i ≤ n.

(a) (b)

Figure 4.3: An example of a trajectory with augmented cells (a); Comparing existing
trajectory with a new trajectory (b).

Henceforth we will only deal with mapped trajectories, so we will drop the mapped

qualifier. Because of the rate at which GPS entries are received and the small size of our

grid cells, the mapped points (black squares in Figure 4.3) may not be adjacent, thereby

leaving gaps. We augment all the trajectories to ensure that there are no gaps in the

trajectories by (roughly) following the line segment (green line in left panel) between the

two cells in question and “coloring” the cells underneath (gray cells in figure). Whereas the

original trajectory consisted only of the black grids in Figure 4.3, the augmented trajectory

consists of both the black and gray grids.

Let T denote the set of all mapped and augmented trajectories. Define the function

pos : T × G → N
+, given a trajectory t and element g returns the first index in t that is

equal to g:

pos(t, g) =

{

argmini∈N+{ti = g} if g ∈ t
∞ otherwise

(4.1)

For example, if t = 〈g1, g2, g3, g5, g3, g8〉, then pos(t, g3) = 3 and pos(t, g7) =∞.

We will be comparing an ongoing trajectory against a set of trajectories T . Because

of the low sampling rates, two taxis following the same path may have points mapping to

38 4.3. PRELIMINARIES AND PROBLEM STATEMENT

disjoint cells. In the right panel of Figure 4.3 we display the augmented trajectory from

the left panel, along with a new trajectory (colored squares and green line). Some of the

grid cells of the new trajectory fall on the augmented path (blue squares), while others fall

in “empty” grid cells (orange and red cells). Because of the simplicity of the augmentation

method, there is the possibility that the augmented path was not completely accurate, so

we must account for this type of error: If a grid cell of the new trajectory is adjacent to

one of the augmented cells, we consider it as if it were along the same path (orange cells),

while if it is not adjacent to any augmented cells, we consider it as following a different

path (red cell). For this purpose, we define N : G → P(G) as a function that returns the

adjacent neighbours of a grid cell (each non-border grid cell will thus have nine neighbours,

including itself). For a grid cell g and trajectory t, we let N(g) ∈ t denote the fact that

at least one of the neighbours of g is in t, and pos(t,N(g)) return the first index in t that

is equal to one of the neighbours of g. For instance, given the grid cells in Figure 4.4 and

a sample trajectory t = 〈g1, g2, g3, g4, g11, g12〉, we would obtain pos(t,N(g9)) = 2 (since

g9 ∈ N(g2)).

Figure 4.4: Sample trajectory used to illustrate a cell’s neighbours.

Problem Statement: We say a sub-trajectory t is anomalous with respect to T (and

the fixed source-destination pair) if the path it follows rarely occurs in T . Given a fixed

source-destination pair (S,D) with a set of trajectories T between them and an ongoing

trajectory t = 〈g1, g2, . . . , gn〉 going from S to D, we would like to verify whether t is

anomalous with respect to T . Furthermore, we would like to identify which parts of the

trajectory are anomalous.

Definition 4.3.1. We define a function hasPath : P(T)× T → P(T) (where P(X) is the

power set of X) that returns the set of trajectories that contain all of the points in t in the

correct order. Note, however, that the points need not be sequential, it suffices that they

appear in the same order.

CHAPTER 4. IBOAT: ON-LINE ANOMALOUS TRAJECTORY

DETECTION 39

hasPath(T, t) =

t′ ∈ T

∣

∣

∣

∣

∣

∣

(i) ∀1 ≤ i ≤ n. N(gi) ∈ t′

(ii) ∀1 ≤ i < j ≤ n.
pos(t′, N(gi)) < pos(t′, N(gj))

(4.2)

For instance, if T = {t1, t2, t3}, in which t1 = 〈g1, g2, g3, g4, g5, g8, g9, g10〉, t2 = 〈g1, g2, g4,

g5, g6, g8, g10〉, and t3 = 〈g1, g3, g4, g3, g6, g8, g10〉, and an ongoing trajectory t = 〈g1, g2, g5, g8〉,

then hasPath(T, t) = {t1, t2}. Given these definitions, we can specify when two trajectories

are identical, given our augmentation method.

Definition 4.3.2. Given a threshold 0 ≤ θ ≤ 1, a trajectory t is θ-anomalous with respect

to a set of trajectories T if

support(T, t) =
|hasPath(T, t)|

|T |
< θ (4.3)

4.4 iBOAT: Isolation-based On-line Anomalous Trajectory
Detection

Having defined the necessary preliminaries, we are ready to present our method for

anomalous trajectory detection. The process is split into an offline pre-processing phase

and an online detection phase (see Figure 4.5). In the offline phase, we receive a set of

historical trajectories which we classify and index using a sophisticated, but highly efficient,

method. This allows us to respond to the on-line algorithm’s queries in real-time. In the

on-line phase, we process a series of incoming GPS points from each occupied taxi and

provide an indication as to whether each point is anomalous or not. Once this on-going

trajectory is completed, we add it to our historical database.

4.4.1 Offline Pre-processing

The offline phase is in charge of collecting and classifying a set of historical trajectories

which will be used to determine “normal” routes between a source and destination pair.

These historical trajectories must be accessible in an efficient manner in order to provide

a real-time response.

We begin by grouping the trajectories according to source-destination pairs and the time

of occurrence. It is important to separate trajectories according to the time of occurrence,

since the “normalcy” of routes may depend on traffic patterns. We index the set of historical

trajectories using a triplet 〈sg, eg, time〉, where sg is the starting grid cell, eg is the end

grid cell and time is the time when the trajectory occurred. Note that in order to avoid the

unnecessarily fine granularity of time, we divide time into coarser bins. Each set indexed

40
4.4. IBOAT: ISOLATION-BASED ON-LINE ANOMALOUS

TRAJECTORY DETECTION

Off-line Processing

MappedTraj

InvInd

On-line Detection

Figure 4.5: Overview of our approach.

by a triplet may contain both normal and anomalous trajectories. Once the trajectories

have been classified, we map and augment them. For each trajectory, we store the resulting

mapped grid cells (in correct order) in a record in the MappedTraj database, and we index

the records by their (unique) trajectory number as well as the time of occurrence.

To determine the anomalousness of a new mapped GPS point, we must be able to

access all trajectories that contain this mapped point (or some point in its neighbourhood)

in the same time bin. Using MappedTraj for this purpose would be terribly inefficient,

as it would imply searching through all trajectories for each new point. Instead, we make

use of the Inverted Index Mechanism [169] for fast retrieval of relevant trajectories. For

this mechanism, we maintain a second database where we maintain a record for each

possible grid cell; the elements of each record are trajectory-position pairs, indicating the

trajectories where the indexing grid cell appears, along with its position in that trajectory.

For instance, consider the following trajectories:

t1 :g1 → g5 → g8 → g10

t2 :g1 → g2 → g5 → g8 → g5 → g9

t3 :g2 → g8 → g9

In the inverted index database InvInd, the record indexed by grid cell g1 will be InvInd(g1) =

{(t1, 1), (t2, 1)}, the record indexed by g5 will be InvInd(g5) = {(t1, 2), (t2, 3), (t2, 5)}, and

the record indexed by g9 will be InvInd(g9){(t2, 6), (t3, 3)}. Thus, if a new GPS point

maps to g9, by accessing InvInd(g9) we will immediately know that this grid cells occurs

in trajectories t2 and t3.

We now have an efficient mechanism for accessing the trajectories that contain a par-

ticular grid cell. In the next section, we will use this incrementally (as new GPS points

CHAPTER 4. IBOAT: ON-LINE ANOMALOUS TRAJECTORY

DETECTION 41

arrive) to determine the anomalousness of an on-going trajectory.

4.4.2 iBOAT Algorithm

Our Isolation-Based On-line Anomaly Trajectory (iBOAT) detection method is based

on the idea of isolating trajectories: anomalous (sub-)trajectories will be isolated from

the majority of routes, while normal trajectories will be supported by a large number of

trajectories. The less support a trajectory has, the higher its degree of anomalousness.

In Zhang et al. [158] the authors determine the anomalousness of a trajectory once the

trajectory is completed. This is unfortunate, since it prevents one from providing alerts

to the passenger while a trajectory is on-going. On the other hand, using purely density-

based methods as described above will most likely result in inaccurate classifications. We

aim to overcome this problem by using an adaptive working window that provides us with

historical contexts to better determine the anomalousness of the incoming trajectory. We

will use the definition of θ-anomalousness presented in Section 4.3 to describe our proposed

algorithm.

Basic idea: The basic idea of iBOAT is to maintain an adaptive working window of the

latest incoming GPS points to compare against the set of historical trajectories. As a new

incoming point is added to the adaptive working window, the set of historical trajectories

is pruned by removing any trajectories that are inconsistent with the sub-trajectory in the

adaptive working window. New points continue to be added to the working window as long

as the support of the sub-trajectory in the adaptive working window is above θ. If the

support drops below θ, then the adaptive working window is reduced to contain only the

latest GPS point. We outline this approach in Algorithm 4.1.

We maintain a working set of trajectories (initially equal to T), and an adaptive working

window w. After i− 1 entries received, our partial trajectory t (adaptive working window)

consists of 〈p1, p2, . . . , pi−1〉 and we have a working set Ti−1. Upon arrival of point pi,

we map it to grid cell gi (Line 8), and concatenate gi to the adaptive working window

w (Line 9). We then compute support(Ti−1, w) (Line 10); If its value is less than θ, the

trajectory points contained in the adaptive working window are said to have anomaly, then

point pi is considered anomalous so it is added to the set of anomalous points χ (Line

13), and we reset the working set (Line 14) as well as the adaptive working window (Line

15); otherwise, we set Ti = hasPath(Ti−1, w) (Line 11). This procedure is repeated as

long as the trip doesn’t reach the destination. Note that T0 = T , and that every time

an anomalous point is encountered, the working set is reset to the original trajectory set

T . This resetting is what enables our adaptive algorithm to accurately detect anomalous

sub-trajectories in real-time with a finer granularity than the fixed-window approach (with

k > 1). Additionally, by reducing the working set with each incoming point, the adaptive

42
4.4. IBOAT: ISOLATION-BASED ON-LINE ANOMALOUS

TRAJECTORY DETECTION

Algorithm 4.1 iBOAT with adaptive window

Input: incoming trajectory - t = 〈p1, p2, · · · 〉; T - set of mapped and augmented historical
trajectories; θ - anomaly threshold;

Output: score; χ- set of anomalous points
1: χ← ∅//initialization
2: T0 ← T
3: i← 0 //Position in incoming trajectory
4: w ← ∅ //Adaptive window from t
5: score(0)← 0
6: while the testing trajectory is not completed do
7: i← i+ 1
8: gi = ρ(pi)
9: w ← w · gi

10: support(i) = |hasPath(Ti−1, w)|/|Ti−1|
11: Ti ← hasPath(Ti−1, w) //working set reduced
12: if support(i) < θ then
13: χ← χ ∪ pi
14: Ti ← T //reset the working set
15: w ← gi
16: end if
17: score(i) = score(i− 1) + σ(support(i)) ∗ dist(pi−1, pi)
18: end while

approach has a computational advantage over the fixed-window approach.

To illustrate the process, we will use a running example, as shown in Figure 4.6. We

assume there are three common routes that drivers take when delivering passengers from S

to D: There are 100 taxi drivers who have taken Route 1 (in black), 200 taxi drivers have

taken Route 2 (in red), and 150 drivers have taken Route 3 (in blue). The test trajectory

is depicted using the numbered yellow circles and the purple line (indicating the order of

arrival of the points). We can immediately see that although the test trajectory visits only

“common” cells in the initial part, it does so in reverse order between points 4 and 7. In

the beginning, the adaptive working window will grow to contain points 〈g1, g2, g3, g4〉, since

this sub-trajectory has enough support. However, when g5 is added to the adaptive working

window, the support of this sub-trajectory drops below the threshold, thus g5 is considered

as an anomalous point and the new adaptive working window contains only g5. The size

of adaptive working window would not increase (only containing the single latest GPS

point) until receiving g7, and now the adaptive working window will be 〈g6, g7〉. Again, the

working window will shrink to contain only a single point throughout the anomalous section

(〈g8, g9, g10〉). When the trajectory is completed, iBOAT will return χ = {g5, g6, g8, g9, g10}

as the set of anomalous points.

CHAPTER 4. IBOAT: ON-LINE ANOMALOUS TRAJECTORY

DETECTION 43

S

D

3

2
1

4

5

6

7

8
9

10

11

Figure 4.6: Running example for iBOAT.

We can also consider a simple variant of iBOAT: maintaining a fixed-sized window. In

this approach, the sliding window consists only of the most recent k points. Specifically,

given a set of trajectories T and an ongoing trajectory t = 〈p1, p2, . . . , pn〉, we verify whether

the last k-sized sub-trajectory from t occurs with enough frequency in T to determine if it

is anomalous. Note that when k = 1, we have the density method used for comparison in

[25]. Following the example in Figure 4.6, we have the following results for different values

of k:

χ =

⎧

⎨

⎩

{g8, g9} If k = 1
{g5, g6, g8, g9, g10} If k = 2
{g5, g6, g7, g8, g9, g10, g11} If k = 3

Note that the size of χ depends on the value of k: for the same anomalous trajectory,

the larger k is, the larger χ would be. While the size of χ for k = 2 and iBOAT is closer to

that of the real anomaly segments, it produces larger size of χ when k increases, leading

to excessive counting of the anomaly segments. But in the case of k = 1, the size of χ

is much smaller than that of the real anomaly segments. This explains why the anomaly

detection algorithm with k = 2 and adaptive window outperforms that with k = 1 or

k ≥ 3. However, in some specific cases, as can be seen in Section 4.5, the proposed iBOAT

method with adaptive window can detect certain anomalous trajectories that the fixed

sliding window methods are not able to detect, making iBOAT the most effective anomaly

detection approach.

Anomaly score: As the trajectory is on-going, we maintain an anomalous score, which

44
4.4. IBOAT: ISOLATION-BASED ON-LINE ANOMALOUS

TRAJECTORY DETECTION

θ

Figure 4.7: Weighting function σ.

will be used to provide alerts and rank the trajectories once they are completed. Intuitively,

a trajectory with smaller support and longer anomalous distance should be ranked higher,

so we compute this score based on the length of the anomalous sub-section, as well as

the density in each anomalous sub-section, rather than only summing the length of each

anomalous part [34]. We weigh the support according to the function σ, which is a logistic

function (shown in Figure 4.7).

σ(x) =
1

1 + eλ(x−θ)

Here, λ is a temperature parameter and θ is the aforementioned threshold. For our exper-

iments, we choose λ = 150. This function will assign a larger weight to very low supports,

and the weight will drop to zero for values above θ. The advantage of using this weighting

function is that it smoothes the cutoff point imposed by the chosen threshold θ; in a sense,

it plays a similar role as sigmoid functions in neural networks. For each incoming point pi,

we compute its score as shown in line 17 of the Algorithm 4.1: we add the score for the

previous point to the distance just travelled multiplied by the weighted support (note that

we also do for the fixed-window approach).

Given the way the on-going score is computed, once the trajectory is completed after n

steps, we have the final score as given by the following equation, which is a weighted sum

of the distance between points.

score = score(n) =

n
∑

i=2

1

1 + eλ(support(i)−θ)
dist(pi, pi−1) (4.4)

where dist : R2 × R
2 → R is the standard sphere distance between two points.

CHAPTER 4. IBOAT: ON-LINE ANOMALOUS TRAJECTORY

DETECTION 45

4.5 Empirical Evaluation

In this section, we provide an empirical evaluation and analysis of our proposed ap-

proaches. All the experiments are run in MATLAB on an Intel Xeon W3500 PC with

12GB RAM running Windows 7.

4.5.1 Datasets

Out of the 7.35 million of trajectories extracted from the one month GPS records of

7,600 taxis, we picked nine source-destination pairs 1. (T-1 through T-9) with sufficient

trajectories between them (at least 450, but on average over 1000), and asked volunteers to

manually label whether the trajectories are anomalous or not. On average, about 5.1% of

the trajectories are labelled as anomalous. We summarize the information for each dataset

in Table 4.1.

Table 4.1: Datasets used in our experiments.

#Trajectories #Anomalousness(%)

T-1 453 15(3.3%)
T-2 1494 57(3.8%)
T-3 528 43(8.1%)
T-4 946 58(6.1%)
T-5 1018 68(6.7%)
T-6 1369 72(5.3%)
T-7 1310 67(5.1%)
T-8 1216 71(5.8%)
T-9 1254 24(1.9%)

4.5.2 Evaluation Criteria

A classified trajectory will fall into one of four scenarios: True Positive (TP), when

an anomalous trajectory is correctly classified as anomalous; False Positive (FP), when

a normal trajectory is incorrectly classified as anomalous; False Negative (FN), when an

anomalous trajectory is incorrectly classified as normal; True Negative (TN), when a normal

trajectory is correctly classified as normal. The True Positive Rate (TPR) measures the

proportion of correctly labelled anomalous trajectories, and is defined as:

TPR =
TP

TP + FN
(4.5)

1. The source and destination areas are twice as big as the regular grid cells

46 4.5. EMPIRICAL EVALUATION

The False Positive Rate (FPR) measures the proportion of false alarms (i.e. normal tra-

jectories that are labelled as anomalous), and is defined as:

FPR =
FP

FP + TN
(4.6)

A perfect classifier will have TPR = 1 and FPR = 0. In a Receiver Operating Char-

acteristic (ROC) [44] curve we plot FPR on the x-axis and TPR on the y-axis, which

indicates the tradeoff between false alarms and accurate classifications. By measuring the

Area Under Curve (AUC), we can quantify this tradeoff.

4.5.3 Experimental Results

To test iBOAT, we selected a trajectory t as an ongoing trajectory from a dataset T

and used both iBOAT and fix-window approaches with θ = 0.05. In Section 4.5.4.1 we

will discuss the effect different choices of θ has on the performance. In Figure 4.8(a), we

display the output of our method for a test trajectory from T-6, where we plot the set

of trajectories T − {t} in light blue; for the test trajectory (t), the anomalous points are

drawn in red and the rest (normal points) in dark blue. As can be seen, our method can

accurately detect which parts of a trajectory are anomalous and which are normal. In

Figure 4.8(b) and (c), we plot support(T − {t}, t) (see equation (4.3)) and the score (see

equation (4.4)) for the ongoing trajectory t. We can see that the value of support is a

clear indication of when trajectories become anomalous, and that there is little difference

between the different variants of iBOAT. However, it should be noted that there is a trailing

lag for the fixed-window approach, equal to k. This is because the last anomalous point in

an anomalous sub-trajectory will be included in the following k sub-trajectories. Although

setting k = 1 will solve the lag problem, this minimal window size contains no contextual

information of the trajectory, and will therefore have poor prediction quality. This was

observed in [158] (therein referred to as the density method), and will be evident in the

figures on the next page.

4.5.4 Varying Parameters

To better understand iBOAT, we conduct experiments to study its performance (in

terms of running time and accuracy) under different parameter settings. We choose the

three largest datasets (T-2,T-6 and T-7). We begin by varying the choice of θ in sec-

tion 4.5.4.1. In Section 4.5.4.2 we vary the size of the datasets; specifically, for each of the

three datasets, we choose n = {2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .} trajectories ran-

domly to serve as the historical trajectories. We measure the average time, which is the

average amount of processing time per completed trajectory.

CHAPTER 4. IBOAT: ON-LINE ANOMALOUS TRAJECTORY

DETECTION 47

120.1 120.12 120.14 120.16 120.18 120.2 120.22
30.22

30.23

30.24

30.25

30.26

30.27

30.28

30.29

30.3

(a)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

11

GPS Entries

Su
pp

or
t

k=1
k=3
Adaptive
Threshold

(b)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

GPS Entries

A
no

m
al

y
sc

or
e

k=1
k=3
Adaptive

(c)

Figure 4.8: Detected anomalous sub-trajectories from T-6 using iBOAT (a); Plot of ongoing
support (b); Plot of ongoing score (c).

4.5.4.1 Varying θ

Since θ is the threshold value for determining anomalousness, it is important to inves-

tigate its effect on the performance of the algorithm. We study the effect on performance

when θ ranges between 0.01 and 0.2.

In Figure 4.9, we plot the AUC and average time for different values of θ. We can see

that θ should not be set any higher than 0.1, since beyond this the performance would

decrease significantly. The average time increases with θ. This is because as θ becomes

larger, the working set is reset more frequently, resulting in larger working sets on average.

We can also see that our choice of θ = 0.05 is reasonable, as it has good accuracy with low

average time.

4.5.4.2 Varying n

It is evident that the average time will be longer with larger values of n, since there are

more comparisons necessary for each incoming GPS point; on the other hand, if n is too

48 4.5. EMPIRICAL EVALUATION

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.20.85

0.9

0.95

1

A
U

C

θ0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.20.4

0.45

0.5

0.55

T
im

e
C

os
t(

se
c)

Time Cost
AUCAUC

Time Cost

(a) T-2

AUC

Time Cost

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.20.95

0.96

0.97

0.98

0.99

1

A
U

C

θ0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0.33

0.34

0.35

0.36

0.37

0.38

T
im

e
C

os
t(

se
c)

(b) T-6

AUC

Time Cost

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.20.95

0.96

0.97

0.98

0.99

1

A
U

C

θ0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.20.25

0.26

0.27

0.28

0.29

0.3

T
im

e
C

os
t(

se
c)

(c) T-7

Figure 4.9: The AUC value (blue) and average time(green) under varying θ.

small, then more trajectories will be isolated, since there are fewer trajectories to support

it. It is thus important to investigate how many trajectories are necessary between two

endpoints for iBOAT to return accurate results. In Figure 4.10, we plot the AUC value

and average time for different values of n. We can see that iBOAT achieves remarkable

performance even with a small sub-sample size; the results suggest that datasets have

around 500 trajectories to guarantee a reasonable performance.

The above analysis suggests that if we maintain a fixed number of trajectories, we can

ensure good performance at a low computing and storage cost. Trajectories can be main-

tained in a First-in-First-out (FIFO) queue, as new trajectories are coming and processed,

they can replace the oldest ones in the queue. This technique can also capture the change of

distribution of trajectories. By applying this technique in road network change detection, it

will result in a fast and effective detection of even newly opened or closed roads, which will

be discussed further in Section 4.6. This also suggests that if one has limited resources, it

is possible to maintain datasets of fixed size. Trajectories are maintained in a FIFO queue,

so as new trajectories are completed, they replace the oldest trajectories in the database.

This idea may also result in road network changes being reflected in the database faster

CHAPTER 4. IBOAT: ON-LINE ANOMALOUS TRAJECTORY

DETECTION 49

AUC

Time Cost

0 500 1000 15000.8

0.85

0.9

0.95

1

A
U

C

Sub−sample Size ψ0 500 1000 15000

0.5

T
im

e
C

os
t (

se
c)

(a) T-2

AUC

Time Cost

0 200 400 600 800 1000 1200 14000.8

0.85

0.9

0.95

1

A
U

C

Sub−sample Size ψ0 200 400 600 800 1000 1200 14000

0.2

0.4

T
im

e
C

os
t (

se
c)

(b) T-6

AUC

Time Cost

0 200 400 600 800 1000 1200 14000.8

0.85

0.9

0.95

1

A
U

C

Sub−sample Size ψ0 200 400 600 800 1000 1200 14000

0.1

0.2

0.3

0.4

T
im

e
C

os
t (

se
c)

(c) T-7

Figure 4.10: The AUC value (blue) and average time(green) under varying n.

than if we maintain all past trajectories; this will be discussed further in Section 4.6.

4.5.5 Adaptive versus Fixed-window Approach

In Figure 4.11 we plot the ROC-curve for T-1 and T-8 respectively. From figures, we

can see our proposed iBOAT, iBAT and baseline algorithms all achieve quite high True

Positive Rate (TPR) with quite low False Positive Rate (FPR), and iBOAT performs the

best among them. In more detail, for iBOAT algorithm, the TPR reaches around 95% at

a very low FPR (5%).

We also display the AUC values of the different approaches on the nine datasets in

Table 4.2. While the density approach (k = 1) has the worst performance, our proposed

iBOAT method slightly outperforms the fixed sliding widow approach with k = 2, and the

fixed sliding window method with k = 2 is better than that with k = 1 and k ≥ 3. As

explained in Section 4.2, the fixed sliding window method with k = 1 is worse than that of

k = 2 because the anomalies detected are fewer than the actual ones; while the fixed sliding

50 4.5. EMPIRICAL EVALUATION

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
Po

si
tiv

e
R

at
e

iBAT
k = 1
k = 2
k =3
Adaptive

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
Po

si
tiv

e
R

at
e

iBAT
k = 1
k = 2
k = 3
Adaptive

Figure 4.11: The ROC curves for T-1 (left) and T-8 (right).

window method with k = 3 is worse than that of k = 2 because the anomalies detected are

muchmore than the actual ones. The performance of the fixed-window approach with k = 2

and the adaptive approach are nearly identical. This is because for the anomalous sections,

the adaptive approach ends up using a window of size 2, just as k = 2. The advantage

of the fixed-window approach is that it requires a very small amount of memory for real-

time anomalous detection, while the adaptive method requires memory proportional to the

size of the longest “normal” sub-trajectory. In practice, this difference is negligible. In the

following paragraph, we will use an example to demonstrate that the adaptive approach has

an advantage over the fixed-window approach due to its use of longer historical “contexts”.

Table 4.2: AUC values of the different algorithms.

k = 1 k = 2 k = 3 Adaptive

T-1 0.9635 0.9904 0.9811 0.9985
T-2 0.9367 0.9902 0.9887 0.9952
T-3 0.8140 0.9733 0.9152 0.9962
T-4 0.9005 0.9586 0.9575 0.9890
T-5 0.9323 0.9885 0.9821 0.9967
T-6 0.9227 0.9912 0.9840 0.9952
T-7 0.8806 0.9853 0.9849 0.9937
T-8 0.9438 0.9739 0.9724 0.9937
T-9 0.9788 0.9991 0.9987 0.9995

In Figure 4.12, we display an anomalous trajectory that “switches” from one normal

route to another. The fixed-window method with k = 2 is not able to detect this anomalous

switch. Going from point 19 to point 20 seems normal since this sequence occurs in route

A, and going from point 20 to point 21 also seems normal since it occurs in route B. On

the other hand, iBOAT would maintain the entire route up to the point when the driver

CHAPTER 4. IBOAT: ON-LINE ANOMALOUS TRAJECTORY

DETECTION 51

switches routes and would immediately detect it as an anomalous point. Although this

example is specific to window sizes equal to 2, similar situations (with longer overlaps

between routes) will produce a similar effect.

A

B

D

S

(a) Illustration of situation.

D

S

(b) Real trajectories.

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GPS Sampling Points

Su
pp

or
t

Adaptive
k = 2
Threshold

GPS Entries

(c) Ongoing support from iBOAT.

Figure 4.12: A situation the fixed-window method (k = 2) fails to classify as anomalous:
two normal routes (route A and B) are in dark blue; an anomalous trajectory (in red)
switches from route A to route B at their intersection.

4.5.6 iBOAT versus iBAT

iBAT is our preliminary version of anomaly detection method [158], which only works

when the trajectory is completed. In order to determine whether a trajectory is anomalous,

iBAT picks cells from the testing trajectory at random to split the collection of trajectories

into those that contain the cell and those that do not. This process is repeated until the

trajectory is isolated, or until there are no more cells in the trajectory. Usually the number

52 4.5. EMPIRICAL EVALUATION

of cells required to isolate anomalous trajectories will be much less than the number of cells

in the trajectory. This isolation procedure is repeated a number of times and E(n(t)), the

average number of cells required to isolate a trajectory, is used to compute the score, which

is proportional to 2−E(n(t)).

Our proposed method is a clear improvement over iBAT on two levels. First of all, we

are able to determine which parts of a trajectory are anomalous, in contrast to iBAT which

only classifies full trajectories as anomalous. Second of all, our method works in real-time:

we can detect anomalous sections as soon as they occur, and do not require a full trajectory

as an input.

R-1

R-2

Test Trajectory

Road Blocked

(a) Illustration of situation

D

S

(b) Real trajectory

1 2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GPS Sampling Points

Su
pp

or
t

Test Trajectory

Threshold

GPS Entries

(c) Ongoing support from iBOAT.

Figure 4.13: A trajectory where the taxi had to retrace its path due to a blocked route.

In Figure 4.13, we show an example where a road block has forced a taxi to retrace

its path and search for another route to its destination. We focus on the first part of the

CHAPTER 4. IBOAT: ON-LINE ANOMALOUS TRAJECTORY

DETECTION 53

trajectory where the taxi retraces its steps. In Figure 4.13(c), we can see the support

is accurately identifying the anomalous section of the trajectory. We determined what

anomalous ranking (based on the scores) both methods assign this partial trajectory in

comparison with all other trajectories 2. Out of 1418 trajectories, iBOAT ranked this

trajectory in 48th place, while iBAT ranked it in 831th place. Furthermore, iBAT assigned

this trajectory a score of 0.4342, which is below their usual 0.5 threshold [158]. Thus, while

iBAT is unable to detect that this trajectory is anomalous, iBOAT has ranked it amongst

the top 3% of anomalous trajectories, as well as identifying which part is anomalous. The

reason iBAT fails in this example is that their method does not take the order the points

appear in into consideration; despite the fact that the taxi is retracing its steps and actually

going away from the destination, it is only visiting “normal” grid cells.

S D S D

Figure 4.14: Two anomalous trajectories of different types. The normal trajectory between
S and D is in blue, cells adjacent to normal cells are in orange, and anomalous cells in red.

Now consider the hypothetical example in Figure 4.14 which highlights the differences

in the two scoring functions. In this simple situation, the value E(n(t)) for iBAT is just the

expected number of times their algorithm must pick cells before an anomalous cell (in red)

is picked. This is essentially a Bernoulli trial 3 with “success” probability p equal to the

proportion of anomalous cells to total number of cells in the trajectory. It is well known

that the expected number of trials before reaching success in a Bernoulli trial is given by

1/p. Let n be the number of cells in the straight line between S and D, then trajectories of

the form on the left will have 2n−2 anomalous cells and 5n−4 total cells, while trajectories

of the form on the right will have 2n− 2 anomalous cells and 2n+ 2 total cells. It follows

that for trajectories of the form on the left E(n(t)) = 5n−4
2n−2 →

5
2 ⇒ score ≈ 0.1768; for

trajectories of the form on the right E(n(t)) = 2n+2
2n−2 → 1 ⇒ score = 0.5. Thus, iBAT

will qualify trajectories of the form on the right as more anomalous than those on the left.

This runs contrary to intuition, which would perceive trajectories like the one on the left

2. A higher ranking means higher degree of anomalousness.
3. http://en.wikipedia.org/wiki/Bernoulli_trial

http://en.wikipedia.org/wiki/Bernoulli_trial

54 4.6. APPLICATIONS

at least as anomalous as the one on the right, given that the path taken is much longer

and they are clearly taking longer routes than necessary. The scoring method of iBOAT,

on the other hand, would assign the left trajectory an anomalous score around 33% higher

than the one on the right.

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 1 2 3 4 5 6 7 8 9

Ti
m

e
C

os
t(s

ec
)

iBOAT
iBAT

Figure 4.15: Running times of iBOAT and iBAT on all the datasets.

Finally, we compared the running time of both algorithms on all the datasets, and

we display the results in Figure 4.15. We computed the running time for checking each

trajectory in each dataset, and averaged over the size of the dataset. Although iBAT will

usually check fewer grid cells than iBOAT (since one anomalous cell is enough to classify

the trajectory as anomalous), iBAT is based on random cell selections, so they must average

over m runs; as in [158], we set m = 50. We can see that iBOAT is consistently faster than

iBAT on all datasets.

4.6 Applications

Aside from its use for real-time detection of anomalous behaviours, iBOAT can also

be used for a number of other applications. The first application is that it can be used

to deny possible excuses for fraud behaviours, because some cunning taxi drivers may

use detour reasons such as traffic accidents on roads as excuses. Before elaborating the

application, we first perform an in-depth analysis of detected anomalous trajectories. The

second application is for detecting changes in the road networks.

CHAPTER 4. IBOAT: ON-LINE ANOMALOUS TRAJECTORY

DETECTION 55

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

1

2

3

4

5

6

7

8 x 104

Number of trajectories (n)

N
um

be
r

of
 O

D
 p

ai
rs

200 400 600 800 1000 1200 1400 1600 1800 2000
0

200

400

600

800

1000

1200

1400

1600

1800

Number of trajectories (n)

Nu
m

be
r o

f O
D

pa
irs

Figure 4.16: Relationship between the number of OD pairs (y − axis) and the number of
trajectories between an OD pair (x− axis).

4.6.1 Statistical Study [130]

One main motivation for this work is fraud detection and the ability to alert passengers

of fraudulent behaviours. Travel distance and time are two crucial parameters to judge

if a certain taxi trajectory is a long detouring trip committed by fraudulent behaviours.

Thus, in this sub-section we perform an analysis of the anomalous trajectories to attempt

to discover whether anomalous behaviours are the result of conscious decisions to commit

fraud, by visualizing where most of the anomalous trips begin and comparing the average

distance and travel time of anomalous routes with that of normal ones.

For this analysis, we collected around 441 million GPS records in March 2010. In

Figure 4.16, we show a histogram for the number of trajectories between an OD pair.

Inside the figure, an enlarged view with the number of trajectories in the range of [200

2000] is also shown. We can see that most of OD pairs have trajectories less than 50, which

may be not enough for detecting anomalous trajectories correctly, so we just exclude those

OD pairs for study; the number of trajectories between an OD pair can be over 3,000. In

this study, the statistical results are obtained over OD pairs which have more than 200

trajectories. For those OD pairs, we detected about 438,000 anomalous trajectories out of

7.35 million trips. This provides us with an opportunity to perform a statistical analysis

of the anomalous trajectories, in the hope of uncovering common characteristics of the

trajectories and driving “trends” of those responsible for anomalous behaviours.

In Figure 4.17, we display the areas where most of the anomalous trips began. We can

see that many of the places are long-distance coach stations, where tourists would generally

arrive. It is not surprising that they are responsible for a large fraction of the anomalous

trajectories. This provides strong evidence that anomalous behaviours are conscious deci-

56 4.6. APPLICATIONS

120.05 120.1 120.15 120.2 120.25 120.3
30.15

30.2

30.25

30.3

30.35

Workingday12:00~15:59

0.30077

0.25803

0.21529

0.17255

0.1298

0.087065
Bus stationsLong-distance Coach Stations

Figure 4.17: Areas where most of the anomalous trips began.

sions. Note that it is possible that some passengers who are not familiar with the city can

not provide the detailed address of destination. This might have certain impact on choos-

ing the best route for drivers. However, as we group the historical trajectories with vague

source and destination (in an area with around 500m × 500m), and judge the ongoing

trajectory by comparing it with historical ones with same source and destination, thus it

will not cause problem when the system shows the reasonably longer trajectory travelled

to the unfamiliar passengers.

Table 4.3: Distribution of anomalous trajectories with respect to travelling distance and
time.

Travel time
Trip length [0,minT) [minT,maxT] (maxT,∞)

[0,minD) 0.0013 0.0137 0.0117
[minD,maxD] 0.0062 0.1063 0.0881
(maxD,∞) 0.0045 0.1522 0.6162

In most research revolving around detecting anomalous taxi driving behaviours, one is

mainly interested in detecting fraudulent activities. We believe that many of these fraud-

ulent trips will take passengers along routes that are much longer than what is considered

normal. Given our database of historical trajectories, we can determine the length of the

longest normal trip between a source and a destination; we can safely say that an anomalous

trip is detouring if the trip distance is longer than this maximal distance. For a source-

destination pair, we denote maxD and minD as the maximal and minimal lengths amongst

the normal trips. It may be the case that a longer trip is actually a faster route, placing in

doubt whether the driver’s actions were fraudulent. We could try to determine maxT and

CHAPTER 4. IBOAT: ON-LINE ANOMALOUS TRAJECTORY

DETECTION 57

minT for the travelling time taken between two points, but due to varying traffic condi-

tions, these values have a high variability. Because of this, for each source-destination pair,

we compute the mean time amongst the normal trajectories, µT , as well as the standard

deviation σT . We then define our boundaries as maxT = µT + σT and minT = µT − σT .

In Table 4.3, we display the distribution of the anomalous trips with respect to these clas-

sifications. We can see that over 60% of the anomalous trajectories are taking longer time

and distance than the maximal normal trajectories, clearly suggesting that fraud is one of

the main motivating factors behind anomalous taxi driving behaviours.

4.6.2 Deny Possible Excuses

From the evidence provided in Table 4.3, we can see that a large proportion of detected

anomalous trajectories are actually due to detours. Some cunning drivers who took a

detour may ague that 1) they are unfamiliar with this area; or 2) unexpected car accidents

or heavy traffic occurred. There exist some reasons due to the motivations of passengers,

such as some passengers may ask taxi drivers to take detour for either picking up his/her

friend or avoiding traffic jam. In these cases, they will not complain even the system shows

the longer detour trajectory to them.

S

D

(a) The anomalous trajectory (red solid) is
compared with previous trips of the same
driver (green dashed).

S

D

(b) The anomalous trajectory is compared
with trajectories in the same time slot
(green dashed).

Figure 4.18: Avoiding excuses for taxi driving fraud detection.

In order to justify these excuses, more evidence needs to be provided. To deal with

the first excuse, if an anomalous trajectory is detected, we can get all previous trajectories

of the corresponding driver to verify whether he truly has had little previous experience

driving through this area. Note that one taxi may be operated by more than one driver,

so a mechanism for detecting driver shift change may be necessary. This is an interesting

problem in itself but outside of the scope of this work. For the second excuse, we can find

all the trajectories that took place around the same time and area to check whether there is

some traffic disturbance. In Figure 4.18, we give an illustrative example. Suppose we detect

58 4.6. APPLICATIONS

an anomalous trajectory (solid red line in the left panel of Figure 4.18). We compare it with

the driver’s previous trips (dashed green lines) between the same source and destination

and can verify that this driver has experience driving between these two points. In parallel,

we recall all the trips (dashed green lines in the right panel of Figure 4.18) that happened

around that same time slot since time-of-day has impact on the occurrence of anomalous

routes. Since in this example we can see that many other drivers did not detour, it is

unlikely that there is a traffic disturbance. Having discredited both types of excuses, we

can be more confident in our assessment of fraud.

4.6.3 Detecting Road Network Changes

(a) Delivering road network before newly built
road.

(b) Delivering road network after newly built
road.

t1t3

t2

(c) Considered trajectories.

Figure 4.19: Application of new road detection case (Best viewed in the digital version).

CHAPTER 4. IBOAT: ON-LINE ANOMALOUS TRAJECTORY

DETECTION 59

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Updating times

A
no

m
al

y
sc

or
e

t1
t2
t3
threshold

Number of added trajectories

Figure 4.20: Anomaly score change with the accumulating of trajectories

Unfortunately, we do not have information about the closure or re-opening of roads in

the road network, so our experiments will rely on testing various simulated cases. We begin

by specifying what we mean by road change: we classify any of the following events as a

road change:

♦ A new road has been added to the network.

♦ A previously closed road has been re-opened.

♦ A previously opened road has been closed.

We will address how to detect each of these changes separately. We simulate a road

opening by first picking a road segment that will be “added” later. We then proceed by

removing all historical trajectories that pass through this road segment. Throughout the

simulation, we incrementally add these trajectories, thereby simulating the increased usage

of the “newly” added road. Figure 4.19(a) displays the historical trajectories before the

new road was “added”, and Figure 4.19(b) shows the incrementally added trajectories that

pass through the newly added road (red solid lines).

Our proposed method for detecting a new road using iBOAT is as follows.

1. We maintain a historical database, implemented as a FIFO queue, containing a fixed

number of the most recent trajectories.

2. We group together identical anomalous trajectories and maintain counts for each dis-

tinct group of anomalous trajectories. We say two trajectories A and B are identical

trajectory if and only if hasPath({A}, B) = {A} and hasPath({B}, A) = {B}

3. If the count for any one of these anomalous groups begins increasing quickly and

regularly, it is a good indication of a new road. As more trajectories begin using this

new road, the anomaly score will gradually decrease until reaching a normal level.

60 4.7. CONCLUDING REMARKS

4. We capitalize on iBOAT ’s ability to detect anomalous sub-trajectories, and use this

to properly identify the newly added segments from the anomalous group in question.

Consider the three sample trajectories displayed in Figure 4.19(c). Trajectory t1 repre-

sents a path frequently taken by taxi drivers which does not cross the newly added road.

Trajectory t2 represents the trajectories usually followed by drivers when using the newly

added route; trajectory t3 is similar to t2 but with a lower frequency. In Figure 4.20 we plot

the anomaly scores for these three types of trajectories over the number of added trajec-

tories using the new road. We can see that for t1, the anomaly score increases slightly due

to some drivers being diverted to the newly added road, thereby decreasing its support.

Trajectory t2 is quick to fall below the anomalous threshold, as it becomes a popular route

amongst drivers. Trajectory t3 has a similar shape, but it fails to fall below the threshold

due to its lower popularity amongst drivers.

By virtue of implementing the historical database as a FIFO queue, an identical ap-

proach can be used to detect whether previously closed roads have re-opened or whether a

road has been recently closed.

4.7 Concluding Remarks

In this chapter, we have proposed a new algorithm for fast real-time detection of anoma-

lous trajectories obtained from GPS devices equipped in taxis. Rather than using time and

distance to judge whether a test trajectory is anomalous or not directly, we compare it

against a set of sampled historical trajectories with same source-destination pair. In ad-

dition to classifying completed trip trajectories as anomalous or normal, iBOAT can work

with ongoing trajectories and can determine which parts of a trajectory are responsible

for its anomalousness. We validated iBOAT on a large dataset of taxi GPS trajectories

recorded over a month and found our method achieved excellent performance (AUC≥ 0.99

for all datasets) which is comparable to iBAT’s performance; however, we demonstrated a

number of examples that highlight iBOAT’s advantage over iBAT and the sliding window

method. We further showcased iBOAT’s use for fraudulent behaviour analysis and detect-

ing road network changes. The result suggests that most anomalous trajectories are in fact

due to fraud. We also provide evidence to deny possible excuses for fraud behaviours.

In the future, we plan to broaden this work in several directions: 1) We plan to ex-

plore using statistical approaches to enhance detection performance and data processing

efficiency; 2) We also plan to develop a real-life anomalous trajectory detection system

with the proposed method; 3) To address the issue that some source-destination pairs may

not have enough samples, we would like to either cluster source and/or destination areas

in a principled way to “combine” trajectories from different source-destination pairs, or

CHAPTER 4. IBOAT: ON-LINE ANOMALOUS TRAJECTORY

DETECTION 61

simply collect more historical data, or partition the map into different grid sizes; 4) We

would like to conduct further analysis on the GPS traces obtained to better understand

the motivations and characteristics of fraudulent activities.

CHAPTER 5. B-PLANNER: PLANNING BIDIRECTIONAL NIGHT

BUS ROUTES 63

Chapter 5

B-Planner: Planning
Bidirectional Night Bus Routes

Contents

5.1 Introduction . 63

5.2 Related Work . 67

5.3 Candidate Bus Stop Identification 68

5.3.1 Hot Grid Cells and City Partitions 69

5.3.2 Cluster Merging and Splitting . 70

5.3.3 Candidate Bus Stop Location Selection 72

5.4 Bus Route Selection . 73

5.4.1 Passenger Flow and Travel Time Estimation 73

5.4.2 Bus Route Graph Building and Pruning 74

5.4.3 Automatic Candidate Bus Route Generation 78

5.4.4 Bus Route Selection . 80

5.5 Experimental Evaluation . 81

5.5.1 Evaluation on Bus Stops . 81

5.5.2 Evaluation on Bus Route Selection Algorithm 82

5.5.3 Bidirectional vs Single Directional Bus Route 88

5.5.4 Comparison with Real Routes and Impacts on Taxi Services 90

5.5.5 Bus Capacity Analysis . 92

5.6 Concluding Remarks . 92

5.1 Introduction

Buses are a popular and economical way for people to travel around the city, and they

are generally “greener” than cars and taxis as they help decrease traffic congestion, fuel

64 5.1. INTRODUCTION

consumption, carbon dioxide emission and travel cost [2]. Thus, for sustainable city devel-

opment, people are encouraged to take public transportations, such as buses, for commuting

between home and work, for visit, etc. In many cities, the daytime bus transportation sys-

tems are usually well designed; however, during late nights, most bus systems are out of

service, leaving taxis as the only option for travelling around the city. In order to pro-

vide cost-effective and environment-friendly transport to citizens, many cities start to plan

night-through bus routes.

Previously, bus route planning mainly relied on costly human surveys to understand

people’s mobility patterns in a city scale [11,54]. Although this approach was proved to be

workable, the time and cost spent in the survey process were quite substantial. Moreover,

such an approach is not able to accommodate the frequent change in the road network

and traffic, especially for cities which experience rapid development. Fortunately, with the

wide deployment of GPS devices and wireless communication in taxis, rich information

about taxis including where and when passengers are picked-up or dropped-off, how much

driving time is needed to travel between two points, are hidden in the taxi GPS data.

Better understandings of the social dynamics about where are the popular passenger pick-

up/drop-off locations and origin-destination pairs and the traffic dynamics about how much

driving time is needed to travel between popular OD pairs at nighttime make it possible

to accurately plan new night-bus routes which expect the maximum number of passengers

along the routes.

In this work, we intend to explore the bi-directional night-bus route design problem

leveraging the taxi GPS traces. This problem can be divided into two sub-problems: 1)

the candidate bus stop identification; 2) the best bi-directional bus route selection. For

the first sub-problem, we need to identify the candidate bus stops which are associated

with locations having big number of taxi passenger pick-up and drop-off records (PDRs).

Additionally, the bus stops should be evenly distributed in the “hot” districts to facilitate

people’s access. After the candidate bus stops are identified, the next step is to select

a bi-directional bus route which connects the bus origin and a sequence of bus stops to

the destination, expecting the maximum number of passengers in both directions given a

specific bus operation time, frequency, and total travel time. Fortunately, the taxi GPS

traces contain quantitative spatial-temporal information about all taxi trips. By mining

the taxi GPS data, we can deduce where are the “hot” areas for taxi passengers and how

many passengers would potentially travel along a certain route in a specific time duration.

Therefore, the bi-directional night-bus route design becomes a problem of comparing the

number of passengers of all valid bus routes giving certain time constraints.

However, identifying the candidate bus stops from taxi GPS data and enumerating the

top-ranked bi-directional bus routes efficiently are not trivial and straight-forward. To the

CHAPTER 5. B-PLANNER: PLANNING BIDIRECTIONAL NIGHT

BUS ROUTES 65

C1

C2

C3

C4

C5

C6

C7

C1 C2 C3 C4 C5 C6 C7

0 15 7 0 9 0 5

18 0 12 8 0 0 12

14 3 0 20 0 0 9

0 5 10 0 0 22 0

12 0 0 0 0 9 0

0 0 0 13 0 0 10

3 17 13 0 0 4 0

C1

C2

C3

C4

C5

C6

C7

C1 C2 C3 C4 C5 C6 C7

0 8 10 15 9 15 25

9 0 4 10 16 19 22

11 3 0 6 7 8 14

16 12 7 0 29 27 10

8 14 6 25 0 5 12

14 18 7 26 4 0 10

27 21 15 12 14 9 0

C1

C2

C3

C4

C5

C6

C7

Passenger Flow Travel Time(in minute)

Figure 5.1: An illustrative example of the taxi GPS traces (left); the passenger flow (mid-
dle), and the travel time among bus stops (right).

best of our knowledge, there is still no work reported on this topic. For example, given the

taxi GPS trajectories of night time for a certain time period, let us say that seven dense

taxi pick-up/drop-off locations (i.e. C1 ∼ C7) have been identified as candidate bus stops,

with the process shown in Figure 5.1, where C1 and C7 are the bus origin and destination,

respectively, and the corresponding passenger flow and travel time among stops are shown

in the middle and right panels of Figure 5.1. The objective of bi-directional bus route

design is to find a bi-directional bus route (C1 → C7 and C7 → C1) with maximum number

of passengers expected given the bus operation time constraints. Apparently, to design an

effective bus route, the following research challenges need to be addressed:

♦ Candidate bus stop identification: The taxi passenger pick-up and drop-off points

are distributed in the whole city, with some areas having more pick-up/drop-off

records (PDRs) than other areas, but there is no clear guideline about where the

bus stops should be put.

♦ Trade off between the number of passengers and travel time: To deliver more

passengers, the best bus route should go through more bus stops (e.g. go through all

stops between C1 to C7), but this will take more travel time. Hence, a non-trivial

trade-off is needed.

♦ Passenger flow accumulation effect: Assuming there is no taxi passenger travel-

ling from C4 to C7 , if we plan the route as C1 → C2 → C3 → C7, then the significant

passenger flow in C2 → C4 and C3 → C4 cannot be accommodated. Alternatively,

by including C4 in the route as C1 → C2 → C3 → C4 → C7, this passenger flows can

be accommodated with the cost of adding one stop. Therefore, we need to consider

this accumulation effect, which tends to lead to a globally better solution.

♦ Dynamic passenger flow: The passenger flows are usually different from time to

66 5.1. INTRODUCTION

time, for example, the passenger flow during 23:00-24:00 can be very different from

that during 3:00-4:00, thus we need to consider this dynamics when planning bus

routes.

♦ Asymmetry of passenger flow and travel time: It is easy to see that the best

route in terms of passenger flow and travel time for one direction (from C1 to C7)

is probably not the best one for the opposite direction (from C7 to C1), we thus

need to select the bus route with maximum accumulated number of passengers in

two directions.

Phase 1

Candidate Bus Stop Identification

Phase 2

Bus Route Selection

Hot Grid Cell

Selection

Merge & Split

Stop Location

Selection

Graph Building

& Pruning

Automatic Bus

Route Generation

Bus Route

Selection

Figure 5.2: The two-phase bus route planning framework.

In this work, we address the above-mentioned challenges using a two-phase approach,

with the process illustrated in Figure 5.2. Roughly speaking, in the first phase, we identify

candidate bus stops by clustering and splitting hot areas; and then in the second phase,

we propose several strategies to find best bus routes. Specifically, the main contributions

of this work can be summarized as follows:

♦ First, we propose a two-phase approach to tackle the bi-directional night bus route

design problem leveraging the taxi GPS traces. To the best of our knowledge, this is

the first work on bi-directional night bus route design exploiting the taxi travel speed,

time, pick-up and drop-off information in large-scale, real-world taxi GPS traces.

♦ Second, we develop a novel process with effective methods to cluster “hot” areas with

dense passenger pick-up/drop-off, split big “hot” areas into walkable size ones and

identify candidate bus stops. Moreover, we study how different thresholds in the

merge and split algorithms affect bus stop identification results and final selected bus

CHAPTER 5. B-PLANNER: PLANNING BIDIRECTIONAL NIGHT

BUS ROUTES 67

routes.

♦ Third, we propose rules to build and prune the directed bus route graph. Based on

the graph, we propose a new heuristic algorithm, named Bi-directional Probability

based Spreading (BPS) algorithm, to select the best bi-directional bus route which

can achieve the maximum number of passengers expected in two directions. It is

verified that the BPS algorithm outperforms the top-k approach in the selection of

best bus route. We also investigate the impact of different bus stop distances on the

final bus routes selection.

♦ Finally, we determine the night bus capacity by computing the maximum number

of passenger on buses for the selected bus route at different stops and different bus

frequencies. To understand the impact of the new opened bus route on taxi services,

we further report the passenger flow change along the bus route before and after the

new bus route opened date.

The rest of this chapter is organized as follows. In Section 5.2, we first review the

related work and show the difference from other work. In Section 5.3 we present the

process for candidate bus stop identification and in Section 5.4 we elaborate the process

for bus route graph building and pruning, automatic bus route generation and best route

selection. Extensive evaluation results are reported in Section 5.5 to verify the effectiveness

of the proposed approach. Finally, we conclude the work and chart the future directions in

Section 5.6.

5.2 Related Work

The work about “route planning” in the operational dynamics which we have reviewed

in Chapter 2 is relevant. In particular, the work [15] with the focus of designing public

routes using taxi GPS data is of great relevance. The main goal of [15] is to mine historic

taxi GPS trips to suggest a flexible bus route. The work first clusters trips with similar

starting time, duration, origin and destination; it then attempts to identify the route that

connects multiple dense taxi trip clusters. The work is different from ours as it only chooses

the route which maximizes the sum of each connected trip cluster. In another word, it does

not consider the time constraints and the accumulated effects among connection stops, thus

it would never include the path like C4 → C7 of Figure 5.1 in the planned bus route, while

our approach might include the path as long as the route expects the maximum number of

accumulated passengers and the total travel time constraint can be met.

The work focusing on the bus network design, other than exploiting taxi GPS traces is

also relevant. Bus network design is an intensively studied area in the urban planning and

transportation field [8, 137, 138, 160]. The bus network design is known to be a complex,

68 5.3. CANDIDATE BUS STOP IDENTIFICATION

non-linear, non-convex, multi-objective NP-hard problem [93,107,109,115,131]. The aim is

to determine bus routes and operation frequencies that achieve certain objectives, subject to

the constraints and passenger flows. The popular objectives include shortest route, shortest

travel time, lowest operation cost, maximum passenger flow, maximum area coverage and

maximum service quality while the constraints include time, capacity and resources [30,36,

69,163].

However, the selection of the objectives should take care of the operator as well as user

requirements which are often conflicting, leading to design trade-off rather than an optimal

solution. As noted in [109, 115], early bus network design was mainly based on human

survey to get passenger flows and user requirements, it relied heavily on heuristics and

intuitive principles developed by a designer’s own experience and practice. Recent work

on bus network design also assumes that the passenger flows are given by user survey or

population estimation, many complex optimization approaches have been proposed, and

among them the best solving algorithms are based on heuristic procedures [73] to find

near-optimal solutions. A detailed review about route network design can be found in [54].

Despite the renewed attention for bus network design, there is still no work addressing

the bi-directional night-bus route design problem leveraging the taxi passenger OD flow

data. Different from existing research, our work aims to find a bi-directional bus route

with a fixed frequency, maximizing the number of passengers expected along the route

subject to the total travel time constraint. This problem is different from the traditional

Travelling Salesman Problem (TSP) [9,90] in nature, which aims to find the shortest path

that visits each given location (node) exactly once. TSP evaluates different routes with

exact N locations, which means all candidate stops should be included in the route. Our

problem is also different from the shortest path finding problem [140], which intends to get

the shortest path for a given OD pair. In our case, we have to consider the accumulated

effect (passenger flows) from all previous stops to the current stop for choosing the bi-

directional bus route.

5.3 Candidate Bus Stop Identification

In the proposed two-phase bus route planning framework, the objective of the phase

one is to identify candidate bus stops by exploiting the taxi PDRs. Here, we describe our

proposed process for identifying candidate bus stops. As illustrated in Figure 5.2, the whole

process consists of three steps:

1. Divide the whole city into small equal-sized grid cells, mark those “hot” grid cells

with high taxi passenger PDRs for further processing;

2. Merge the adjacent “hot” grid cells to form “hot” areas, divide each big area into

CHAPTER 5. B-PLANNER: PLANNING BIDIRECTIONAL NIGHT

BUS ROUTES 69

“walkable size” cluster;

3. Choose one grid cell as the candidate bus stop location in each walkable size “hot”

cluster, by assuming that passengers from the same cluster would easily walk to the

stop to take bus.

5.3.1 Hot Grid Cells and City Partitions

In this work, we first divide the city into equal-sized grid cells, with each cell about

10m × 10m in size. In such a way, the whole city is partitioned into 5000 × 2500 cells in

total. Out of all the grid cells, over 95% of them contain no taxi passenger PDRs as they

are either lakes, mountains, buildings, and highways that cannot be stoppable by taxis, or

suburb areas that people seldom travel to. We plot the Cumulative Distribution Function

(CDF) curve for all grid cells having PDRs, as show in Figure 5.3. Out of them, over 90%

grid cells have the value of PDRs per hour greater than 0.2. And we name these grid cells

as “hot” ones. Most of hot grid cells have the value of PDRs per hour in the range of [0.2

1]. The percentage of hot grid cells is only about 0.11% of all grid cells (including grid cells

do not have PDRs). It should be noted that the statistical results here are obtained only

counting the taxi GPS data during the night time.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PDRs per hour

Pe
rc

en
ta

ge
s

Figure 5.3: CDF result of grid cells having PDRs.

As each grid cell has maximum eight neighbors, if we define the connectivity degree

(CD) of a “hot” grid cell as the number of “hot” neighboring cells, the CD of any grid cell

will range from 0 to 8, where the “hot” grid cell with CD equals to 0 is called isolated cell.

As the city is composed of mixed hot grid cells and common grid cells, both hot cells and

common cells form irregular “hot areas” and “common areas” as a consequence of same

type of cells being adjacent to each other. These “hot areas” are also called city partitions,

70 5.3. CANDIDATE BUS STOP IDENTIFICATION

Figure 5.4: City partitions near Hangzhou Railway Station.

as shown in Figure 5.4. Apparently, some small partitions (e.g., the green one in Figure 5.4)

can be very close to some big ones (e.g., the red one in Figure 5.4). It would be necessary

to consider all the city partitions globally in order to plan the bus stop locations, thus city

partitions close to each other had better merge to form big clusters for better overall bus

stop distribution. In the next section, we propose a simple strategy to merge the close

partitions into bigger clusters.

5.3.2 Cluster Merging and Splitting

We present the cluster merging and splitting approach in Algorithm 5.1. After obtaining

all city partitions, we sort them in a descending order according to the number of PDRs

(Line 1). To merge the partitions close to each other iteratively, we propose to use the

hottest partition to absorb its nearby partitions according to the descending order of PDRs,

until no more nearby partitions meet the merging criterion (Line 8). Then we choose the

next hottest partition to repeat the same process until all the partitions are checked (Lines

8∼12). The location of each partition is first initialized by computing the weighted average

location of all grid cells using Eq. 5.1.

loc(P) =

∑N
i=1(PDRs(gi) ∗ loc(gi))

∑N
i=1 PDRs(gi)

(5.1)

where loc(gi) refers to the longitude/latitude of the member grid cell gi.

CHAPTER 5. B-PLANNER: PLANNING BIDIRECTIONAL NIGHT

BUS ROUTES 71

Algorithm 5.1 Merge Algorithm

Input: List of partitions {Pi}
Output: List of clusters {Ci}
1: P ← sort (P), (i = 1, 2, · · · , n) // Sort P according to amount of its PDRs by descend-

ing order
2: i = 1;// Initialization
3: while P 6= ∅ do
4: Ci = {P1};
5: P = P\{P1} // Remove P1 from P
6: k = |P | ;
7: for j = 1 : 1 : k do
8: if dist(Ci, Pj) < Th1 then
9: Ci = Ci ∪ Pj //absorb the closer partition

10: P = P\{Pj} //Remove Pj from P
11: end if
12: end for
13: i = i+ 1;
14: end while

After merging one partition, the location of the combined cluster is updated (Line 9)

and the absorbed partition is removed from the partition list (Line 10). The dist function

refers to the distance between two given partitions. The algorithm will be terminated until

no partitions can be merged to a new cluster (Line 3). A main parameter in the merge

algorithm is Th1 (Line 8), which controls how far a big cluster can absorb its nearby clusters.

Intuitively, a bigger Th1 would allow big clusters to absorb more nearby clusters, leading

to fewer number of clusters in total but more big clusters. We will further investigate how

Th1 would affect the resulted best route parameters quantitatively in Section 5.5.2.2.

In general, the merged clusters can be classified into three groups according to their

size (the size of cluster is defined as the minimal rectangle which covers all the grid cells):

1) with both height and width greater than Th2; 2) with either height or width greater

than Th2; and 3) with both height and width less than Th2 (where Th2 is the maximum

distance that passengers are willing to walk to reach a bus stop).

As for large clusters (Group 1 and 2), we adopt a simple strategy to split them. Specif-

ically, for clusters in Group 1, we first split the big cluster into two sub-clusters, aiming

to minimize the difference of PDRs of the resulted clusters both in horizonal and vertical

directions; while for clusters in Group 2, we only need to split the cluster in one direction.

We split the cluster in the horizonal direction if its height is greater than width, otherwise,

we split it in the vertical direction, again with the goal of minimizing the number difference

of PDRs of the split sub-clusters. With one split, one big cluster would produce two smaller

72 5.3. CANDIDATE BUS STOP IDENTIFICATION

sub-clusters. Thus, a smaller Th2 would need more splitting times, and also leads to more

smaller clusters finally.

Figure 5.5: Illustrative example of splitting. Big cluster formed via merging (left). Big
cluster split into 4 walkable size clusters (right, in four different colors).

Figure 5.5 shows an illustrative example of splitting a cluster into four sub-clusters

with the proposed splitting strategy. The initial cluster belongs to Group 1 (Figure 5.5

(left)), the splitting is first done in the horizontal direction to produce two sub-clusters

with similar PDRs. After the first splitting, two sub-clusters with width greater than Th2

are generated (Th2 is set to 500 meters for this example), thus both sub-clusters require

a further splitting in the vertical direction. The final result with four split sub-clusters is

shown in Figure 5.5 (right). We will also study how Th2 would affect the resulted best

route parameters in Section 5.5.2.2.

5.3.3 Candidate Bus Stop Location Selection

After merging and splitting operations, we obtain a big number of “hot” clusters with

the size smaller than Th2 × Th2, scattered in the dynamic districts of the city during late

night. The next step is to select a representative grid cell in each cluster to serve as the

location of candidate bus stop.

To select this representative grid cell, both the connectivity degree (CD) and the number

of PDRs of each cell (i.e. hotness) in the cluster are taken into consideration. While the CD

of a grid cell characterizes the accessibility of the cell, the number of PDRs is an indicator

of its “hotness”. The grid cell having the maximum value defined in Eq. 5.2 in each cluster

is selected as the “center” of the cluster, marked as the location of the candidate bus stop.

CHAPTER 5. B-PLANNER: PLANNING BIDIRECTIONAL NIGHT

BUS ROUTES 73

argmax
i

[

w1 ×
CD(i) + 1

9
+ w2 ×

PDRs(i)
∑n

i=1(PDRs(i))

]

(5.2)

We set w1 = w2 = 0.5 in the evaluation, and totally we get 579 candidate bus stops

in the city by using the taxi GPS data from Hangzhou, China. Note that different weight

settings (i.e. w1 and w2) in Eq. 5.2 would only affect locations of the bus stop, and have

no impact on the total number of bus stops.

5.4 Bus Route Selection

After fixing the candidate bus stops in Phase I, the aim of Phase II is to find the best

bus route for a given OD, expecting to maximize the number of passengers expected under

the time constraints in two directions (i.e. O→D and D→O).

In this section, we first approximate the passenger flow and the travel time between any

two candidate stops using taxi GPS traces, then we present the bus route selection method

which contains the following three-steps (shown in Figure 5.2):

1. Build the bus route graph and remove invalid nodes and edges iteratively based on

certain criteria;

2. Automatically generate candidate bus routes with two proposed heuristic algorithms;

3. Select the bus route by comparing the expected number of passengers under the same

total travel time constraint.

5.4.1 Passenger Flow and Travel Time Estimation

We record the travel demand and time information in two matrix, named passenger

flow matrix (FM) and bus travel time matrix (TM). Each element in a matrix refers to the

number of passengers or the bus travel time from one stop (ith) to another stop (jth, i 6= j).

We count the total taxi trips from ith cluster to jth cluster as each stop is responsible for

its cluster. We set the maximum waiting time for passengers at the stop as 30 minutes

(equal to the bus operation frequency), so any pick-up or drop-off events taking place in

this time window are counted. We simply assume the passenger flows among candidate bus

stops remain unchanged during each 30-minutes duration. The final FM is got by averaging

all flow matrix at different bus frequencies. We also assume TM keeps unchanged across

the night time. tm(si, sj) is the average travel time multiplied by α, which is a constant.

We set α = 1.5 to consider the speed difference between taxis and buses. For the paths

having no taxi trip occurring in history (for instance, nobody travels by taxi due to too

short distance), we use Ddist(si,sj)/v to approximate tm(si, sj), where Ddist(si, sj) is the

driving distance between si and sj , and v is a constant and is set to 50 km/h. Figure 5.6

74 5.4. BUS ROUTE SELECTION

shows the final average passenger flow and bus travel time matrix. A pixel stands for the

passenger flow or the travel time from one stop to another stop. Specifically, a brighter

pixel represents a higher value.

0

500

1000

1500

2000

2500

3000

Figure 5.6: Average passenger flow (left) and bus travel time matrix (right).

5.4.2 Bus Route Graph Building and Pruning

Selecting the best bus route is a very challenging problem as two conflicting requirements

must be met: one is to ensure that the bus route would traverse intermediate stops and

finally reach the destination within a limited time; the other is to maximize the number

of passengers accumulated along the route from all previous stops to the destination. For

example, if we choose the stop with the heaviest passenger flow from the origin as the first

node, and then keep choosing the next stop following the heaviest passenger flow principle,

then we might neither be able to reach the destination, nor achieve the objective of having

the maximum number of passengers accumulated along the route. To meet the above two

requirements and follow the intuitive principles in bus route design, some basic criteria

should be set for the building of the bus route graph and selection of the candidate bus

route.

5.4.2.1 Route Graph Building Criteria

Obviously, there would be numerous stop combinations for a given OD pair, and only

a small proportion of them meet the first or second requirement. In order to reduce the

search space of possible stops and routes, we can build a bus route graph starting from

origin to destination using heuristic rules. These rules are either derived from one of the

above two requirements, or from the intuitive bus route design principle. For instance, from

the shortest travel time perspective, the bus route should extend from origin towards the

CHAPTER 5. B-PLANNER: PLANNING BIDIRECTIONAL NIGHT

BUS ROUTES 75

direction of destination, which can be further converted into three rules: each new selected

stop should be farther from the origin, closer to the destination, and farther from previous

stops. From the intuitive bus route design principle, the bus stops should not be too far

from each other, also the bus route should not comprise sharp zig-zag paths. These can also

be translated into two criteria in building the bus route graph. Specifically, given the OD

pair (s1, sn) and the candidate route R = 〈s1, s2, · · · , sn〉, we should follow the following

criteria when building the bus route graph with stops (nodes) and directed edges among

nodes.

O

D

2
1

3

X

Y

Xnew

Ynew

θ

O

D

3

1

2

4

Figure 5.7: Demonstration of Criterion 2 (left) and Criterion 5 (right).

� Criterion 1: Adequate stop distance

dist(si+1, si) < δ (i = 1, 2, · · · , n− 1)

where δ is a user-specified parameter. It means the maximum distance between two

consecutive stops. We will study the effect of varying δ values on the best route

parameters in Section 5.5.

� Criterion 2: Move forward

xnew(i+ 1) > xnew(i) (i = 1, 2, · · · , n− 1)

xnew(i) = x(i) cos θ + y(i) sin θ

θ = tan−1 y(n)

x(n)

(x(i), y(i)) of si is got by simply subtracting the longitude and latitude value to that

of s1. xnew is the X-axis value of stop in the new coordination which is with s1 as

the new origin, and from s1 to sn as the new direction of X-axis (see the left panel

in Figure 5.7). This criterion guarantees the bus will always move forward along the

OD direction.

76 5.4. BUS ROUTE SELECTION

� Criterion 3: Origin-farther

dist(si+1, s1) > dist(si, s1) (i = 1, 2, · · · , n− 1)

This ensures that the bus will move away from the origin s1 farther in each step.

� Criterion 4: Destination-closer

dist(si+1, sn) < dist(si, sn) (i = 1, 2, · · · , n− 1)

This ensures the bus will move closer to the destination sn in each step.

� Criterion 5: No zigzag route

argmin
sj

(dist(si+1, sj)) = si (j = 1, 2, · · · , i)

Criterion 5 ensures the smoothness of the route. Sharp zigzag path along the OD

direction is not allowed. The route demonstrated in the right panel of Figure 5.7

should not happen, as it violates the criterion. We can see argmin(dist(s3, sj)) =

s1 6= s2 (j = 1, 2), also argmin(dist(s4, sj)) = s2 6= s3 (j = 1, 2, 3).

5.4.2.2 Graph Building & Pruning

The aim of graph building is to construct a directed graph with nodes and links given

an OD pair, in which the nodes are the stops, and edges link the stop to its next possible

stops, regardless of passenger flows among them. While the goal of graph pruning is to

remove invalid edges and nodes according to the proposed criteria.

Graph Building: Given the bus route origin and destination, their locations are firstly

used to narrow down the choice of valid candidate stops, only the candidate stops lying

between them are under consideration. For each stop within the range, we determine

links to its next possible stops according to the proposed Criterion 1∼4. The process will

terminate when all stops have been checked. At last, stops having no edges would be

excluded. We show the graph building procedure in Algorithm 5.2.(Line 2∼4). For each

node, we summarize the method of how to determine its links in Algorithm 5.2. Links will

be determined (Line 4) if pair (si, sj) meets the proposed Criterion 1∼4 (Line 3).

As Criterion 5 is related to all stops in one bus route, so we use it to prune the route

graph after it is built. Figure 5.8 (left) shows an illustrated example about a generated bus

route directed graph. Note that the graph is built based on the geographical constraints,

so the edge may have no taxi passenger flow on itself.

Graph Pruning: Some nodes and edges can be further pruned because they are not

valid for candidate bus route selection. To be specific, nodes without in-coming edges (if

CHAPTER 5. B-PLANNER: PLANNING BIDIRECTIONAL NIGHT

BUS ROUTES 77

Algorithm 5.2 Graph Building Algorithm

Input: S – List of stops in the range (nodes);
Output: G = (S,E) – Graph;
1: for Each node (si) in the list do
2: for Each node (sj) in the list (exclude si) do
3: if xnew(i), xnew(j) ∈ [xnew(1), xnew(n)] and //We suppose xnew(1) < xnew(n)

dist(sj , si) < δ and //Criteria 1
xnew(j) > xnew(i) and //Criteria 2
dist(sj , s1) > dist(si, s1) and //Criteria 3
dist(sj , sn) < dist(si, sn) //Criteria 4
then

4: E(si, sj) = 1 //Link si to sj :
5: end if//Identify its links to other nodes
6: end for
7: end for

O

D

O

D

Figure 5.8: A bus route directed graph for a given OD. The route graph is got by graph
building algorithm (left) and its corresponding graph after applying graph pruning (right).

not origin) or out-going edges (if not destination) should be deleted as they will not form

any valid routes with the bus route OD pair.

We first calculate all the nodes’ in-coming and out-going degrees. Afterwards nodes

(excluding the given OD) together with related edges would be iteratively deleted from

the graph if their in-coming or out-going degree is zero. At last a graph with only one

zero in-coming degree node (i.e. the given origin) and one zero out-going degree node

(i.e. the given destination) would be generated. After graph pruning, all the bus routes

starting from the source and following the edges in the graph would eventually reach the

destination. Figure 5.8 (right) displays the resulted graph after applying pruning to the

graph in Figure 5.8 (left).

Graph for D→O: An intuitive way of building route graph for D→O is to run the

previous two steps again, with the D as the new origin and O as the new destination.

78 5.4. BUS ROUTE SELECTION

However, Theorem 5.4.1 below ensures that the route graph from D to O is just the same

as that from O to D, with all the edges having opposite directions.

Theorem 5.4.1. If R = 〈s1, s2, · · · , sn〉 is a candidate bus route for pair (s1, sn), then its

reversed route R̄ = 〈sn, sn−1, · · · , s1〉 will be the candidate bus route for (sn, s1) pair.

Proof. To prove R̄ is the candidate bus route for (sn, s1) pair, we just need to check whether

it meets all the five criteria. It is obviously that R̄ meets the first four criteria. For Criterion

5, given a particular node si (1 < i < n− 1) in R, we can derive its two closest nodes are

si−1 and si+1. Thus argminsj (dist(si, sj)) = si+1 (j = n, n− 1, · · · , i+ 1) will hold.

5.4.3 Automatic Candidate Bus Route Generation

Based on the graph constructed in the previous section, we first propose our probability

based spreading algorithm for O→D, then followed by the Bi-directional probability based

spreading (BPS) approach, which can select the best bus routes in both directions.

Probability based Spreading Algorithm: Though we have removed invalid nodes

and edges through graph pruning, the problem of enumerating all possible routes from

given source to destination is proved to be NP hard. Indeed, it is also unnecessary to

enumerate all possible routes and compare them all, because most of routes are dominated

by few others.

Definition 1. We say Ri dominates Rj iif: 1) T (Ri) ≤ T (Rj); 2) Num(Ri) >

Num(Rj). The route which is not dominated by others in the route set is defined as a

skyline route.

where T and Num are the total travel time and number of expected delivered passengers.

We compute them based on Eqns. 5.3 and 5.4. The skyline route definition is similar to

that in [49], and the rational behind is that only routes with less travel time but larger

number of passengers should be selected. Skyline detector [20] will prune the routes which

are dominated by skyline routes in the candidate set. Thus, the comparison can be done

among detected skyline routes.

T =
∑n−1

i=1
tm(si+1, si) + (n− 2)× t0 (5.3)

Num =
∑n

i;j(j>i)
fm(si, sj) (5.4)

where t0 is the average time needed to board at each stop. The time needed to board-on/-

off the bus at a stop might increase when the number of passengers of that stop gets high,

however, for simplicity, we just set it to a constant (i.e. 1.5 minutes).

CHAPTER 5. B-PLANNER: PLANNING BIDIRECTIONAL NIGHT

BUS ROUTES 79

Algorithm 5.3 Probability based Spreading

Input: G(S,E): Single directional graph for the given OD pair; FM: Flow matrix; TM:
Travel time matrix

Output: R∗: the set of skyline routes
1: R = ∅
2: Repeat
3: currentR = s1 //starts from the given origin s1
4: Choose the next stop s∗i with respect to currentR according to Eq. 5.5
5: R = currentR·s∗i //· operation appends si to currentR
6: Repeat Lines 4∼5 Until s∗i = sn //ends at the the given destination sn
7: R = R∪R
8: Get corresponding skyline routes R∗

9: Until R∗ keeps unchanged

The key idea of our proposed probability based spreading algorithm is to randomly select

the next stop among the possible candidate stops in each step, where the candidate stops

having high accumulated passenger flow with previous stops are given high probability for

random selection. The idea of the proposed probability based spreading heuristic is close

to the well-known family of heuristics called “Probabilistic Greedy Heuristics” [7,74]. The

difference is that we choose a very specific possible function P (·) which takes the passenger

flow accumulation into consideration during the spreading (can be seen in Eq. 5.5). We

describe the approach in Algorithm 5.3. The spreading starts from the given source (Line

3). The next stop in the candidate route is chosen based on Eq. 5.5.

P (s∗i |〈s1, s2, · · · , sj〉) =

∑j
m=1 fm(sm, s∗i)

∑|S∗|
i=1

∑j
m=1 fm(sm, s∗i)

(5.5)

where fm(sm, s∗i) is the passenger flow from sm to s∗i , and S∗ contains the next possible

stops of sj (child nodes of sj in the route graph).

We can see the selection of next stop in the candidate route is not only determined

by the current stop, but also all the previous stops. The output of this algorithm is one

candidate bus route with the number of stops associated with the number of spreading

steps. The spreading would be terminated when the given destination is reached (Line 6).

For each run, we get either a repeated route or a new route, thus the candidate route set R

would increase as the spreading algorithm is activated. Then a question arises: how many

running times are sufficient to get the best results ? Based on Definition 1 about the skyline

routes, we should consider if the skyline route set R∗ remains changed or unchanged.

Theorem 5.4.2 below ensures that when the skyline route set stays unchanged with the

increase of spreading algorithm runs, then the best route has been discovered.

80 5.4. BUS ROUTE SELECTION

Theorem 5.4.2. R∗
1 and R∗

2 are the detected skyline routes from R1 and R2 respectively.

If R1 ⊆ R2, then we have: ∀Ri ∈ R
∗
1, ∃Rj ∈ R

∗
2; Ri = Rj or Ri is dominated by Rj.

In Algorithm 5.3, we have Rt1 ⊆ Rt2 if the running time t1 < t2, and the algorithm

would be stopped when no better skyline routes are returned with the increase of running

times, that is R∗
t1
= R∗

t2
(Line 9). The computation complexity of the algorithm is O(N).

Instead of choosing only one stop randomly at each spreading step like in the probability

based spreading algorithm, an intuitive way is to select top-k stops each time, where those k

nodes should have highest accumulated passenger flow with previous stops. In such a way,

the first step selects top-k nodes, thus leading to k routes from the origin to those nodes.

In the second step, each k nodes would select another top-k nodes, thus the total candidate

routes would be k2. Assume that n steps are needed to the destination, then the total

candidate routes generated would be kn in the end. Thus, the computation complexity of

this algorithm is O(kn), which grows exponentially with the spreading step (n). We use

this top-k spreading method as the baseline.

Bi-directional Probability based Spreading (BPS) Algorithm: In practice, for

a particular bus line, buses can run on the same route in both directions. Algorithm 5.3

can get the best bus route in one direction (e.g. from ZJU to Railway Station), however,

it cannot guarantee the same route in the opposite direction (i.e. from Railway Station

to ZJU) would still expect the maximum number of passengers, as the passenger flows

in two directions of the route are generally asymmetrical. To get a bus route which has

overall maximum expected number of passengers in both directions, we propose the BPS

algorithm, whose basic idea is to run the probability based spreading algorithm in both

directions so that we generate one candidate “optimal” route in each direction, and the

best route is selected by evaluating all the candidate routes in two directions.

We illustrate the procedure in Algorithm 5.4. The key idea behind is to run Algo-

rithm 5.3 in both directions (Line 3∼4), and generate one candidate route for each direction

at each run (Line 5). The skyline routes are selected based on the total travel time and

expected number of passengers in both directions of each candidate route (Line 6), and

the selection process terminates also when no more better skyline routes can be generated

(Line 7).

5.4.4 Bus Route Selection

Given the bus operation frequency (once every 30 minutes), the total travel time con-

straint, and the taxi passenger flow from 21:30 to 5:30, we obtain the candidate bus routes

for a given OD pair using the two different heuristic spreading algorithms, and the skyline

route which achieves the maximum expected number of passengers will be selected as the

operating route.

CHAPTER 5. B-PLANNER: PLANNING BIDIRECTIONAL NIGHT

BUS ROUTES 81

Algorithm 5.4 BPS Algorithm

Input: GO→D(S,E): Graph for O → D; GD→O(S,E): Graph for D → O; FM: Flow
matrix; TM: Travel time matrix

Output: R∗: the set of skyline routes
1: R = ∅
2: Repeat
3: Run Line 2∼6 in Algorithm 5.3 for GO→D(S,E), and the output is RO→D

4: Run Line 2∼6 in Algorithm 5.3 for GD→O(S,E), and the output is RD→O

5: R = R∪RO→D ∪RD→O

6: Get corresponding skyline routes R∗

7: Until R∗ keeps unchanged

With the planned bus route consisting of the selected bus stops, the next step is to find

a physical bus route in the real setting, which consists of road segments corresponding to

the planned route. The selection of each road segment is done by following the dense and

fine trajectories of taxis if they allow buses to operate; Otherwise similar bus routes near

the planned ones can be adopted as a refined solution.

5.5 Experimental Evaluation

In this section, we validate the proposed approach with a large-scale real-world taxi

GPS dataset which is generated from 7,600 taxis in a large city in China (Hangzhou)

in one month, with more than 1.57 million of night passenger-delivering trips. All the

experiments are run in Matlab on an Intel Xeon W3500 PC with 12-GB RAM running

Windows 7.

5.5.1 Evaluation on Bus Stops

We compare the bus stop results generated with our proposed method with that gen-

erated by the popular k-means clustering method. We set k = 579, which is the same as

our method. We adopt the Eulerian distance as the similarity metric. The centroid of each

cluster is selected as the stop. Figure 5.9 shows the comparison results. Comparing with

the popular k-means approach, our proposed candidate bus stop identification method has

at least the following two advantages:

1. The centroid of each cluster got by k-means is the average location of all its members,

and it may fall into non-reachable places like river, as highlighted by the black circles

in Figure 5.9 (left). In our proposed method, both hotness and connectivity of each

grid cell is considered for the bus stop location selection, and the selected bus stops

are meaningful and stoppable places;

82 5.5. EXPERIMENTAL EVALUATION

2. Several identified stops by k-means fall into a small area (highlighted by the blue

circle) as the size of clusters got by k-means is very different, while our proposed

method generates candidate bus stops that are evenly distributed in the hot areas,

which better meets the commonsense design criteria of bus stops.

Figure 5.9: Comparison results with k-means (best viewed in the digital version). Results
got by k-means (left) and results got by our method (right).

5.5.2 Evaluation on Bus Route Selection Algorithm

We first show the convergence of the proposed algorithm, and followed by a parameter

sensitivity study. Then we perform a quantitative statistical analysis of all the candidate

routes generated for three given OD pairs. We also give the computed skyline route results.

Finally, we validate that our proposed bus route generation approach outperforms the

baseline approach. Table 5.1 shows the details of three OD pairs for night-bus route design

experiment, where more than 70 candidate bus stops are in the candidate bus route selection

list.

Table 5.1: Detailed information about studied OD pairs.

OD Pairs Distance (km) Number of Stops

1 ZJU - Railway 5.70 104
2 Railway - East Railway 5.86 75
3 East Railway - ZJU 8.80 144

5.5.2.1 Convergence Study

As illustrated in Algorithm 5.3 and 5.4, our proposed bus route generation process would

be terminated if the resulted skyline routes keep unchanged. We study the similarity of

consecutively generated skyline routes from 5,000 to 150,000 runs, with a constant interval

CHAPTER 5. B-PLANNER: PLANNING BIDIRECTIONAL NIGHT

BUS ROUTES 83

of 5,000 runs. We measure the similarity (sim) of two sets A and B as follows:

sim(A,B) =
|A ∩B|

|A ∪B|
(5.6)

0.5 1 1.5 2 2.5
x 105

0

0.2

0.4

0.6

0.8

1

Si
m

ila
ri

ty

Number of Runs

0.5 1 1.5 2 2.5
x 105

0

300

600

900

1200

1500

1800

2100

2400

2700

3000

T
im

e
C

os
t (

s)

0.5 1 1.5 2 2.5
x 105

0

300

600

900

1200

1500

1800

2100

2400

2700

3000

T
im

e
C

os
t (

s)

0.5 1 1.5 2 2.5
x 105

0

300

600

900

1200

1500

1800

2100

2400

2700

3000

T
im

e
C

os
t (

s)

Figure 5.10: Convergence study of the proposed BPS algorithm.

The similarity results of the consecutively generated skyline routes with a 5,000 run

interval are shown in Figure 5.10, and the time cost is put in the diagram as well. In this

study, we can see that sim values gradually reach 1 with the increase of runs for all three

OD pairs, meaning that in all three cases the best bus route converges to one. Also the time

cost is almost linearly increased with the number of runs, suggesting that the spreading

time cost at each run is almost constant. It is also noted that the three curves for three OD

pairs have different slopes, the reason is probably because the bus routes corresponding to

different ODs have different lengths and varied number of candidate bus stops, thus the

spreading time and candidate bus stop selection time should be also different.

5.5.2.2 Parameter Sensitivity Study

To better understand the bus stop identification and the bus route selection algorithms,

we conduct experiments under different parameter settings to study how they affect the

number of expected passengers of selected routes and running time. We examine three

parameters in the process, while two of them are in the bus stop identification phase, the

remaining one is in the route graph building algorithm.

Varying parameters (Th1 and Th2) for the cluster merge and split algorithms:

As discussed in Section 5.3, a bigger Th1 would produce more large clusters, and likewise,

a bigger Th2 would also generate more large clusters. Figure 5.11 shows the Cumulative

Distribution Function (CDF) of finally produced clusters in terms of size after cluster

merging and splitting under various Th1(∈[100:50:300] meters) and Th2 (∈[400:50:650]

84 5.5. EXPERIMENTAL EVALUATION

meters) respectively. We also show the skyline route results under different Th1 and Th2

in Figure 5.12. From these results, we can see that choosing the relatively smaller Th1 and

larger Th2 will lead to better skyline routes.

500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cluster Size (measured by weight× height)

C
D

F

100 meters
150 meters
200 meters
250 meters
300 meters

x100m^2 x100m^2

500 1000 1500 2000 2500 3000 3500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cluster Size (measured by weight× height)

C
D

F

400 meters
450 meters
500 meters
550 meters
600 meters
650 meters

Figure 5.11: CDF results of cluster size under different Th1 (Th2 = 500 m (left) and under
different Th2 (Th1 = 150 m) (right).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

2

4

6

8

10

12

14

16

18

Total Travel Time (s)

N
um

be
r

of
 P

as
se

ng
er

s

100 meters
150 meters
200 meters
250 meters
300 meters

0 1000 2000 3000 4000 5000 6000 7000 8000
0

5

10

15

20

25

30

Total Travel Time (s)

N
um

be
r

of
 P

as
se

ng
er

s

400 meters
450 meters
500 meters
550 meters
600 meters
650 meters

Figure 5.12: Skyline route results under different Th1 (Th2 = 450 m) (left) and under
different Th2 (Th1 = 150 m) (right).

Figure 5.13 shows the maximum number of expected passengers for the selected bus

route and the time cost, respectively, under different Th1 and Th2 combinations. Note that

the time cost is the total cost of the candidate bus stop identification phase and the bus

route selection phase. We also find that combinations of bigger Th1 and smaller Th2 are not

good as they often result in lower number of passengers but higher time cost. Specifically,

the minimum number of passengers and the maximum time cost occurs at Th1 = 300 m

and Th2 = 400 m. This is probably because: for the candidate bus stop identification

phase (i.e. Phase 1), a bigger Th1 would first generate more large clusters in the cluster

merging procedure, then a smaller Th2 would require more spitting operation times during

the cluster splitting, at last more number of small-size clusters would be identified; for

CHAPTER 5. B-PLANNER: PLANNING BIDIRECTIONAL NIGHT

BUS ROUTES 85

the bus route selection phase (i.e. Phase 2), the route graph would become more complex

with the increase of the number of candidate bus stops, and meanwhile, the number of

passengers decreases as the walkable distance is set short. Finally, we choose Th1 = 150 m

and Th2 = 500 m throughout the paper as it expects larger number of passengers while

consuming relatively less time. Additionally, 500-meter distance is an acceptable walk

distance for passengers.

100

150

200

250

300

400
450

500
550

600
650

0

5

10

15

20

25

Different T1s(meters)Different T2s (meters)

N
um

be
r

of
 P

as
se

ng
er

s

Different Th2
Different Th1 100

150
200

250
300

400
450

500
550

600
650
800

1000

1200

1400

Different T1s(meters)Different T2s (meters)

T
im

e
C

os
t (

s)

Different Th2 Different Th1

Figure 5.13: The maximum number of passengers under different Th1 and Th2 combina-
tions (left); Time cost under different Th1 and Th2 combinations (right).

Varying the parameter δ for the graph building algorithm: Here, we study the

impact of δ selection on the expected number of passengers of the selected bus route and

time cost. For a particular stop si, larger δ would lead to more child nodes. Mathematically,

we have: ∀si ∈ S, S′
δ1
(si) ⊆ S′

δ2
(si) if δ1 ≤ δ2, where S′(si) is the child node of si in the

route graph. And we also have Rδ1 ⊆ Rδ2 . Therefore, with the increase of δ value, better

route can be obtained. Meanwhile, the route graph would become more complex, resulting

in the increase of computation time.

3820 3840 3860 3880 3900 3920 3940 3960 3980 4000
10

10.2

10.4

10.6

10.8

11

11.2

11.4

11.6

11.8

12

Total Travel Time (s)

N
um

be
r

of
 D

el
iv

er
ed

 P
as

se
ng

er
s

1.0 km

1.1 km

1.2 km

1.3 km

1.4 km

1.5 km

1.6 km

1.7 km

1 1.1 1.2 1.3 1.4 1.5 1.6 1.70

1

2

3

4

5

6

7

8

9

10

A
ve

ra
ge

 In
/O

ut
 D

eg
re

es

Different δ Values (km)

1 1.1 1.2 1.3 1.4 1.5 1.6 1.70

300

600

900

1200

1500

1800

2100

2400

2700

3000

T
im

e
C

os
t (

s)

Average In/Out Degrees
Time Cost

Figure 5.14: Selected bus routes at different δ (left); The route graph complexity and time
cost under different δ (right).

We investigate different δ in the range of [1.0 km, 1.7 km] for OD pair 2, with a constant

86 5.5. EXPERIMENTAL EVALUATION

interval of 0.1 km. The left figure in Figure 5.14 shows two metrics of the selected bus

route under different δ values. One point on the plane stands for the selected route under

a given δ. We can see that the selected route becomes steadily better with the increase of

δ (deliver more passengers with less travel time). However, the difference is negligible after

δ ≥ 1.5. We also show the complexity of the route graph and the time cost under different

δ values in the right figure in Figure 5.14. The complexity of graph is simply quantified by

the average In-coming/Out-going degrees. They are equal to the ratio of the total number

of edges to the total number of nodes in the route graph. From the figure, we can see that

the average In-coming/Out-going degrees under 1.7 km is twice more than that under 1.0

km. Furthermore, more computation time is needed when δ increases, because the route

graph becomes more complex. We set δ = 1.5 km throughout the paper as it leads to good

performance with low time cost.

5.5.2.3 Candidate Routes Statistics

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

5

10

15

20

25

30

35

40

Number of Stops

Pe
rc

en
ta

ge
s(

%
)

OD Pair 1

OD Pair 2

OD Pair 3

Figure 5.15: The number of stops of candidate route stops statistics for 3 OD pairs.

Figure 5.15 shows the statistical information about the number of stops of candidate

routes. Several interesting observations can be obtained:

1. For OD pair 1, routes with 8∼10 stops take up over 80% of the cases (both origin and

destination are included). Few routes can reach the destination by traversing only 4

stops, or passing more than 11 stops.

2. For OD pair 2, over 60% of the routes contain 9 or 10 stops. Similar to the case of

OD pair 1, some routes can reach the destination by passing 4 stops.

3. For OD pair 3, most of the routes contain 10 to 18 stops due to the longer OD

distance, and almost half of the routes include 13 or 14 stops.

CHAPTER 5. B-PLANNER: PLANNING BIDIRECTIONAL NIGHT

BUS ROUTES 87

4. The statistical results comply with the intuition that the longer distance of a given

OD pair, the more stops the route would contain.

We also provide the statistics of the total travel time of candidate routes having the

same number of stops (mean and standard deviation), which is shown in Figure 5.16. We

can see that, for all three OD pairs, the average total travel time almost increases linearly

with the number of stops, suggesting the total travel time constraint is related to the

constraint of the total number of stops.

OD Pair 1

OD Pair 2

OD Pair 3

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

2000

4000

6000

8000

10000

12000

14000

Number of Stops

T
ot

al
 T

ra
ve

l T
im

e
(s

)

Figure 5.16: The relationship between the number of stops and total travel time statistics
for 3 OD pairs.

5.5.2.4 Skyline Routes

We show the skyline routes for the OD pair 3 in Figure 5.17. Each point in the plane

represents a candidate route. The x-axis stands for the total travel time of candidate route,

while the y-axis represents the expected number of passengers. From Figure 5.17, we can

see that the skyline routes are connected to form a curve above all the points representing

common routes, and over 99% of the routes are dominated by the few skyline routes.

Specifically, we get 36 skyline routes across all the travel time frames, out of hundreds of

thousands of routes for the case of OD pair 3. Similar phenomena have been observed for

other two cases as well.

5.5.2.5 Comparison with top-k spreading algorithm

In the top-k spreading algorithm, the selection of k is vital to the skyline routes gener-

ated as well as the time needed to generate all the candidate routes. In particular, when

k1 < k2, we have Rk1 ⊆ Rk2(k1 ≤ k2). Theorem 5.4.2 guarantees that a bigger k would

lead to a better set of skyline routes. However, the greater k also results in significant

88 5.5. EXPERIMENTAL EVALUATION

2000 4000 6000 8000 10000 12000
0

5

10

15

20

25

30

35

Total Travel Time (s)

N
um

be
r

of
 P

as
se

ng
er

s

Figure 5.17: Detected skyline routes and other candidate routes.

increase of time cost. We compare the skyline routes generated from the BPS method with

that from the top-k spreading method with different k values for the case of OD pair 1,

which is shown in Figure 5.18. We can see that the BPS approach outperforms the top-k

algorithms even when k is set to 5. Again, similar conclusion can be also drawn for the

other two OD pairs.

k = 2

k = 3

k = 4

k = 5

BPS

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

5

10

15

20

25

Total Travel Time (s)

N
um

be
r

of
 P

as
se

ng
er

s

Figure 5.18: Comparison results with baseline under different k values.

5.5.3 Bidirectional vs Single Directional Bus Route

In real life, bus route got by Algorithm 5.3 may 1) be the skyline route in both directions;

2) be the skyline route in only one direction; 3) not be the skyline route in any direction. It

is noteworthy to compare the overall best bidirectional bus route obtained by Algorithm 5.4

to the best routes in single direction. We have drawn all the seleted bus routes on the city

digital map in Figure 5.19 for the OD pair 3. They are different routes, which means

CHAPTER 5. B-PLANNER: PLANNING BIDIRECTIONAL NIGHT

BUS ROUTES 89

the bidirectional bus route is neither the skyline route in the ZJU→East Railway Station

direction, nor in the East Railway Station→ZJU direction. A reasonable explanation is

that the passenger flow and the travel time among stops is often asymmetrical, and thus

the bus route which carries the maximum number of passengers under the given time

constraints in one direction would probably fail to deliver the same performance in the

opposite direction. However, they all have 13 stops in total and share several common

stops near the ZJU stop, especially for the route RO→D (left figure in Figure 5.19) and

RO↔D (bottom figure in Figure 5.19). By further checking, we find that these common

stops are popular night life centers.

→ →

↔

Figure 5.19: Comparison results of the selected bus routes in two directions to that in one
direction. RO→D (top left); RD→O (top right); RO↔D (bottom).

We show the average travel time and the number of expected delivered passengers of

these three bus routes in Table 5.2, and note that heavier passenger flow can be found from

East Railway Station to ZJU direction (RD→O). While RD→O takes slightly less time and

delivers a larger number of passengers than RO→D, it carries about 48 more passengers

on average per night. RO↔D, however, takes the least time, and the average number of

delivered passengers lies between RO→D and RD→O.

90 5.5. EXPERIMENTAL EVALUATION

Table 5.2: Two metrics of the selected bus routes.

Direction Average Travel Time (in second) Number of Passengers

RO→D ZJU→East Railway 5406.7 17.25
RD→O East Railway→ZJU 5352.2 20.31
RO↔D ZJU↔East Railway 5320.2 18.73

5.5.4 Comparison with Real Routes and Impacts on Taxi Services

As the taxi GPS dataset we have was collected from April 2009 to March 2010, we are

very interested in knowing if there was any new night-bus route created during this year

and how the planned bus route generated with our approach compares with the manually

created route. Fortunately we were told that a night-bus route was created in February

2010. We could access all the taxi passenger flows before and after the route started date.

It is noted that the route is designed by local experts and the user demands are obtained

from expensive human survey. We first draw the newly started night-bus route R3 on

Google map as shown in Figure 5.20 (left bottom), then we draw our proposed night-bus

route R1 in Figure 5.20 (left top). Through comparison we see that they are quite different.

With the newly started route, we decide to take a similar route in our selected candidate

bus routes (not the best one), and we find R2 as shown in Figure 5.20 (left top). It is noted

that the main difference between R2 and the newly started route R3 is that R2 includes

an additional Stop J in the route. By comparing the passenger flow in segment I↔K with

that in segment J↔K at different time slots, it is found that the passenger flow in path

J↔K is even greater than I↔K in the first two time slots, as shown in Figure 5.20 (right

top). Considering further the accumulation effects, including Stop J in the bus route would

significantly increase the expected number of passengers along the route. This is evidenced

by Figure 5.20 (bottom right). The accumulated effect is more remarkable at the first three

frequencies. Thus, our candidate bus route R2 would outperform the newly added bus

route R3, at the cost of adding one more bus stop and more travel time.

We also compare our proposed best route R1 with the candidate route R2. The differ-

ence between R1 and R2 lies in two different paths taken from C to H. While R2 passes

the famous shopping street (Yan’an Road) in Hangzhou (C ↔ E ↔ F ↔ H), R1 traverses

the famous night-club areas along the West Lake. If we compare the number of passengers

in R1 and R2, it can be seen from Figure 5.20 (right bottom) that the passenger flow of

R2 is heavier than that of R1 only around 22:00, and it is much lighter soon after 23:00.

With the rest of the stops being the same for both R1 and R2, there is no doubt about why

R1 has been selected as the best night-bus route. If we take a closer look at R1, R2, and

CHAPTER 5. B-PLANNER: PLANNING BIDIRECTIONAL NIGHT

BUS ROUTES 91

↔

↔

R3

Figure 5.20: Results comparison. Planned routes (top left); Passenger flow comparison
of two segments at different frequency (top right); Opened night-bus route (bottom left);
Number of delivered passengers at different frequency (R1, R2 and R3, bottom right).

the newly started route R3, as R1 takes a much shorter route than R2 and needs similar

travel time as the newly started route R3 does (shown in Table 5.3), but R1 expects much

more passengers than R2 and the newly started route R3, thus it is reasonable to conclude

that the selected night-bus route with our proposed approach is better than the current

route-in-service in terms of travel time as well as expected number of passengers.

Table 5.3: Total travel time of the bus routes.

Bus Routes Total Travel Time (in second)

R1 3583.8
R2 4664.9
R3 3624.0

It is understood that introducing of new public services (i.e. new Metro/bus lines)

would affect taxi services in the city [3]. It is interesting to compare the taxi passenger flow

92 5.6. CONCLUDING REMARKS

change along the new bus route before/after it was opened. We choose the new night bus

route (R3) opened in February, 2010 for this study. We prepare taxi GPS data collected in

January and March, 2010, and calculate the corresponding taxi passenger flow along the

new bus route across all bus frequencies, which is shown in the right bottom subfigure of

Figure 5.20. We can see that the number of passengers who travel by taxi along the bus

route in March is much smaller but quite stable across all the bus frequencies. This may

be interpreted by the fact that while some passengers might switch to public services, a

certain number of passengers still prefer to take taxis at night.

5.5.5 Bus Capacity Analysis

After selecting the best bus route for operation, the next important thing is to determine

the proper bus capacity to save operation cost. The essence for bus capacity estimation

is to determine the maximum number of passengers on the bus across all the frequencies.

For the bus route R1 of OD pair 1, Figure 5.21 shows the number of passengers on the bus

across all the frequencies for both directions. As can be seen from the results, choosing

buses with 20 seats could well meet the requirements. Besides, we also have the following

three observations:

1. More passengers are often expected in both directions for the first operation frequency,

except for the 11th and 12th frequencies when the bus runs from C to D.

2. Buses running close to the capacity only last for 3 stops (from A to K) or 4 stops

(from K to A).

3. Night buses heading towards different directions have quite different passenger flow

patterns.

5.6 Concluding Remarks

In this work, we have investigated the problem of bi-directional night-bus route design

by leveraging the taxi GPS traces. The work is motivated by the needs of applying pervasive

sensing, communication and computing technology for sustainable city development. To

solve the problem, we propose a two-phase approach for night-bus route planning. In the

first phase, we develop a process to cluster “hot” areas with dense passenger pick-up/drop-

off, and then propose effective methods to split big “hot” areas into clusters and identify

a location in cluster as the candidate bus stop. In the second phase, given the bus route

origin, destination, candidate bus stops as well as bus operation frequency and maximum

total travel time, we derive several criteria to build bus route graph and prune the invalid

stops and edges iteratively. Based on the graph, we further develop two heuristic algorithms

CHAPTER 5. B-PLANNER: PLANNING BIDIRECTIONAL NIGHT

BUS ROUTES 93

A B C D G H I J K
0

5

10

15

20

Bus Route (Stop Sequence)

N
um

be
r

of
 P

as
se

ng
er

s

K J I H G D C B A
0

5

10

15

20

Bus Route (Stop Sequence)

N
um

be
r

of
 P

as
se

ng
er

s

Figure 5.21: The number of passengers on the bus before reaching the stop for OD pair 1.

to automatically generate candidate bus routes in both directions, and finally we select the

best route which expects the maximum number of passengers under the given conditions.

On a real-world dataset which contains more than 1.57 million passenger delivery trips, we

compare our proposed candidate bus stop identification method with the popular k-means

clustering method and show that our method can generate more reasonable and meaningful

results. We further extensively evaluate our proposed BPS algorithm for automatic bus

route generation and validate its effectiveness as well as its superior performance over the

heuristic top-k spreading algorithm. Further more, we show the selected night-bus route

with our proposed approach is better than a newly started night-bus route-in-service in

Hangzhou, China.

For this work, we consider the effective design of only one bus route. In the future,

we plan to broaden and deepen this work in several directions. First, we attempt to

investigate the optimal bus route design with more real-life assumptions. For example, for

the bus stop identification, the grid cells in geographical proximity might not be walkable

due to physical barriers; for bi-directional bus route selection, one-way routes should be

excluded or changed in actual design; Second, we also plan to explore the issue of designing

more than one night-bus route in an optimal way; Third, we would like to develop practical

systems leveraging on taxi GPS traces, enabling a series of pervasive smart transportation

services.

CHAPTER 6. TRIPPLANNER: PERSONALIZED AND

TRAFFIC-AWARE TRIP PLANNING 95

Chapter 6

TRIPPLANNER: Personalized
and Traffic-aware Trip Planning

Contents

6.1 Introduction . 96

6.2 Related Work . 98

6.2.1 Construction of POI Network . 98

6.2.2 Trip Planning . 99

6.3 TripPlanner System . 100

6.3.1 Key Terminologies . 101

6.3.2 Problem Statement . 102

6.3.3 Framework . 102

6.4 Dynamic POI Network Modelling 103

6.4.1 Node Modelling . 103

6.4.2 Edge Modelling . 104

6.5 The Two-Phase Approach . 106

6.5.1 Phase I: Route Search . 106

6.5.2 Phase II: Route Augmentation . 106

6.6 System Evaluation . 113

6.6.1 Experiment Setup . 114

6.6.2 Parameter Sensitivity Study . 114

6.6.3 Efficiency Evaluation . 115

6.6.4 Effectiveness Evaluation . 117

6.6.5 Case Study . 118

6.6.6 Discussion . 120

6.7 Concluding Remarks . 120

96 6.1. INTRODUCTION

6.1 Introduction

Planning an itinerary is one of the most important and time-consuming travel prepa-

ration activities [41, 134]. In order to plan a trip for visiting a popular tourist city, one

needs to select a number of preferred Point of Interests (POIs) among hundreds of possible

venues 1, figure out the order in which they are to be visited, ensure the time it takes to

visit each POI and to transit from one POI to the next, and meet one’s time budget. Let

us take the following use case as an example:

John is transiting through San Francisco. He rents a car at the SFO airport at 9:00 am

and would like to spend several hours for sightseeing, and then leaves for San Jose by train

at 15:00 pm from the Caltrain Station. He wants to visit the Golden Gate Bridge, Lombard

Street and Fisherman’s Wharf. If time permits, he also wants to squeeze in visits to an art

museum and/or one of the Boudin Bakery locations for lunch. In addition, he also prefers

to having lunch before visiting the Fisherman’s Wharf.

As shown in the above use case, three main factors have to be considered in the design

of a trip planning system: 1) the venue constraints, which include the trip starting location

(the Airport), the trip ending location (the Caltrain Station), the POIs expected to be

covered in the itinerary (e.g. the Golden Gate Bridge), the POI categories which might

be added if time permits (e.g. art museum), and the POI visiting order; 2) the time

constraints, which include a trip starting and ending time (time budget), the duration of

visit time for each POI which can be estimated and controlled by users, the transit (driving)

time between POIs which varies depending on the traffic condition of the time of the day,

and the proper time of visiting a certain POI which is determined by the operation time of

the POI; and 3) user’s preference scores about a specific POI and an itinerary at certain

time of the day which are assumed to be computable. The objective of the trip planning

system is to interact with users to inform if the user-specified POIs can all be covered in

one recommended route within the time budget. If the answer is “no”, the system would

iteratively prompt the user to remove one POI at a time until the POIs specified can be

fit into one route without compromising the time constraint. If the answer is “yes”, the

system would automatically generate an “optimal route” which contains the specified POIs

and preferred POI categories, and meets the time constraint according to the predicted

driving time of the day.

Apparently, the above problem cannot be solved using the approaches proposed for

route search in the previous research [25,27,81,146], as they often assume that the transit

time between POIs is constant. In our scenario, the purpose of route search is to find a route

that can cover a series of requested POIs specified by users while meeting a time budget.

1. We use venue and POI interchangeably throughout this chapter.

CHAPTER 6. TRIPPLANNER: PERSONALIZED AND

TRAFFIC-AWARE TRIP PLANNING 97

The above issue is also different from route recommendation. Many route recommendation

systems suggest routes directly based on the similarity between user’s visiting history in

other contexts and other people’s trip records in the targeted city [166]. Others identify

venues according to a user’s preference and recommend routes based on certain criteria [62,

103]. Another group of route planning work aims to find the fastest or shortest paths in

road networks based on the time-varying assumption of each road segment [150]. These

studies care only about the edge information in the network, ignoring totally the attributes

associated with the nodes (POIs). Unlike this body of work, we need to consider the

characteristics of each POI in the route selection process, e.g. its attractiveness, operation

hours, and order of visit. In summary, this study intends to build a personalized, interactive

and traffic-aware trip planning service.

In order to achieve personalization in trip planning, we first need to acquire the in-

formation about the POIs and links among them to build a POI network model. So far,

different data sources have been exploited, including: 1) websites, Wikipedia, web blogs

which contain tourists’ profiles as well as comments that reveal preferences and experi-

ences with POIs [16, 23]; 2) social media sites such as Facebook, Flickr, and LBSN (e.g.

Foursquare and Gowalla), which can inform the popularity, functions, operating hours of

the POIs as well as individual user’s travel history [27,76,103]; and 3) GPS trajectories of

people and taxis, which can indicate the stay time in each place and transit time between

two places [12, 150, 166]. Apparently, each data source has its strength and weakness in

characterizing certain facets of the POI nodes and edges required by the model. Integrating

heterogeneous data sources can provide a more complete picture of the POI network.

In this chapter, we develop a novel trip planning framework called TripPlanner. In

the front end, TripPlanner allows users to interactively specify their venues of interests

with varied constraints. In the back end, it leverages heterogeneous crowdsourced digital

footprints for POI network model construction. Through a two-phase query resolution

process, TripPlanner could recommend to the user a personalized route with the highest

trip score under the total travel time constraint. In summary, the main contributions of

this study are:

— First, we define an under-explored trip planning problem, which allows users to specify

not only the must-visit venues but also optional venue categories if the time permits,

given a total travel time budget. We further make more realistic assumption about

the transit time between venues that varies with time of the day and day of the week.

In other words, the total travel time of the same route may be different.

— Second, we attempt to construct a dynamic POI network model of a city, leverag-

ing heterogeneous crowdsourced digital footprints (i.e. Foursquare check-ins and taxi

GPS traces) to better utilize the strengths of each data source in characterizing the

98 6.2. RELATED WORK

attributes of the nodes and links of the POI network.

— Third, we propose a two-phase approach for personalized, interactive and traffic-aware

trip planning. We also propose a new way to score an itinerary, considering both the

popularity and individual preference of venues. Specifically, in the route search phase,

the system works interactively with users to generate candidate routes with specified

venues; In the route augmentation phase, the system employs heuristic algorithms

to add user-preferred venues (i.e. optional venues if time permits) to the candidate

routes iteratively, with the objective of maximizing the route score and satisfying

both the venue visiting time and total travel time constraints.

— Finally, we validate the efficiency and effectiveness of TripPlanner by extensive

evaluations using large-scale real-world data sets. Through a case study of planning

three trips with different starting time and user-preferences, it is shown that Trip-

Planner can recommend appropriate routes which fully meet user’s requirements yet

take into consideration the traffic condition along the chosen routes at the specified

time.

The remaining of this chapter is structured as follows. In Section 6.2, we first review

the related work and show show our work is different from prior work. In Section 6.3,

we introduce the framework of our proposed TripPlanner system. After presenting the

process of constructing the POI network by leveraging the Foursquare check-in and taxi

GPS data sets in Section 6.4, we elaborate on our two-phase approach in Section 6.5.

Extensive evaluation results are reported in Section 6.6 to verify the effectiveness of the

proposed approach. Finally, we conclude the paper and chart the future directions in

Section 6.7.

6.2 Related Work

The related work is organized in two subsections. We first review previous work on

extracting information from different data sources to build the POI network model, and

then discuss about how to recommend a trip to users based on certain assumptions.

6.2.1 Construction of POI Network

In trip planning research and applications, people have exploited different data sources

to extract node and edge information needed to build a POI network model. For ex-

ample, in [10, 23, 27, 41, 76, 104, 167], many researchers have used geo-tagged photos from

photo-sharing sites (e.g. Flickr) to derive the information about POIs, such as locations,

popularity, characteristics, and proper visiting time and order. In addition, demographics

CHAPTER 6. TRIPPLANNER: PERSONALIZED AND

TRAFFIC-AWARE TRIP PLANNING 99

and social relationships of visitors to these POIs can be extracted. However, it is hard to

estimate the dynamic transit time between POIs from social media data. More recently,

people began to explore user-generated LBSN digital traces since such data contains rich

information that can be used to directly characterize each POI in a tourist city and users’

preferences to each POI [13, 62, 92, 103, 147]. Unfortunately, similar to geo-tagged photo

data, LBSN traces also do not contain dynamic transit time between POIs, especially when

driving is considered for travelling in a city. Another popular type of data is GPS trajec-

tory, which can be used to predict the fastest route at certain time of the day in a city [150].

Previous studies have shown that GPS trajectory traces can precisely characterize the tran-

sit time between POIs, which is more accurate than Google Maps 2 results [12, 31, 67]; the

point-to-point transit time estimated by Google Maps was about 35% off from the actual

values on average [12].

Building on existing work, we leverage taxi GPS trajectory and LBSN trace data to

construct a POI network model. Such approach allows us to better characterize both the

POI nodes and the edges in the network, making it possible to address a more realistic trip

planning problem and design a better trip planning system.

6.2.2 Trip Planning

There has been quite some work on trip planning [128], which can be roughly classified

into three categories. The first category is route search, which aims to answer a user’s route

queries over a given POI network. Traveling Salesman Problem (TSP) is a classical problem

on route search [90]. Given a specified set of POIs in a graph and their pairwise distances,

the goal of TSP is to find the shortest route that visits each POI exactly once and returns

to the original location. However, situations may be much more complicated in the real

world. Destination of a trip may be different from the starting point. Furthermore, users

may simply have in mind a type of POIs of interests rather than a specific POI location.

Trip Planning Query (TPQ) is proposed to address the problem [81]. The goal of TPQ is

to find the shortest path between two given locations that covers all of the user-specified

node categories. Some research has looked into variations of TSP and TPQ problems

with additional constraints [27, 72, 126, 146], but most of studies assume that the transit

time/distance between POIs is constant, except for few papers [58, 60, 79]. Different from

prior work, we allow both POIs and POI categories (i.e. types) to be specified in the route

query. We also assume that the transit time between POIs is time-dependent according to

the traffic conditions.

The second category is route recommendation which usually suggests POIs or routes

to users based on the user preferences. It usually assumes that users will not provide

2. http://maps.google.com

http://maps.google.com

100 6.3. TRIPPLANNER SYSTEM

Table 6.1: A brief comparison between different work and ours.

Paper User- Node Edge Budget
preferences constraint constraint constraint

[90] × S, E, Specified POIs Static ×
[81] × S, E, POI categories Static ×
[27] × S, E, POI categories Static Total time

Route Search [72] × S, E, POI categories Static ×
[126] × S, POI categories Static ×
[146] × POI categories Static ×
[58, 79] × S, E, POI categories Traffic-aware ×

Route [62,76] X S, E Static Total time
Recommendation [103] X S, E Static Total money
Route Planning [150,168] × S, E Traffic-aware ×

Ours X S, E, Specified POIs Traffic-aware Total time
and categories

1 × denotes the respected factor is NOT considered; X denotes the respected factor is considered;
2 S is short for the starting place; E is short for the ending place;
3 Some papers list have some additional node constraints, such as POI visiting order, POI visiting
time. For instance, [62] has a visiting time constraint for the POIs. [72, 126] impose a visiting order
constraint for the POIs.

the POIs or POI categories explicitly. For instance, Kurashima et al. develop a proba-

bilistic model which incorporates user preferences, location and available time to suggest

personalized routes [76]. Lu et al. present a Personalized Trip Recommendation (PTR)

framework to recommend personalized venue sequences within a predefined budget (e.g.

time, money) [103]. Hsieh et al. propose to utilize users’ check-in patterns to recommend

time-sensitive popular trips to users [62]. Different from these studies, we already have the

POIs and/or POI categories specified in the route query, on top of which we employ users’

preferences to estimate the venue score.

The third category is route planning with the goal of selecting optimal time-dependent

routes. For instance, Yuan et. al. [150] and Ziebart et al. [168] propose to mine the historical

taxi GPS traces to provide optimal driving directions between two chosen POIs, assuming

that the transit time is affected by different traffic conditions. Unlike this category of

research, we also consider the priority of each POI, preferred order of visit, as well as the

visiting time constraint of each POI in the route optimization process.

A comparison between our work and existing research is further provided in Table 6.1.

In summary, our work differs from the previous work in the data sources used, the problem

defined, the assumptions given, as well as in the methods developed.

6.3 TripPlanner System

Here, we first introduce several key terminologies. Then, we formally define the re-

search problem of personalized trip planning. Finally, we give a detailed description of the

framework of TripPlanner system, which is comprised of three major parts: a dynamic

CHAPTER 6. TRIPPLANNER: PERSONALIZED AND

TRAFFIC-AWARE TRIP PLANNING 101

POI network model, a route search component, and a route augmentation component (Fig-

ure 6.1).

{Vu, vo, vd, to,∆}

Itinerary Query{Vu, vo, vd, to,∆, CATu, ACs}

{CATu, ACs}
LBSN Data Taxi GPS Data

Optimal Route
Route Search

Candidate

Routes

Dynamic POI Network Model

Route Score

Calculation

Augmented

Route Ranking

Route Augmentation

Augmented

Routes Generation

Node

Modelling

Edge

Modelling

Route Search

Figure 6.1: The framework of our proposed TripPlanner.

6.3.1 Key Terminologies

Dynamic POI Network Model: The model can be represented by a directed complete

graph G = (V,E). Each node in V denotes a venue (i.e. POI), which has five attributes:

category, operation time, popularity, geographical location, and stay time (i.e. the duration

of visit). Each directed edge (vi, vj) in E represents a link from node vi to vj , which carries

the transit time between two venues, denoted as tt(vi, vj). The transit time is asymmetric

and dynamically changing.

Lemma 6.3.1 (Dynamic POI network has First-Input-First-Output Property). Given a

dynamic network G = (V,E), where the transit time of each edge in G is time-dependent.

The network is FIFO since for any arc (i, j) in E, given user A leaves node vi at time t0,

and user B leaves node vi at time t1 (t1 > t0), then user B cannot arrive at node vj before

user A.

Proof. Proof can be found in Appendix A.1.

Itinerary Query: An itinerary query IQ consists of four parts: 1) a user-specified

venue list Vu, that the user intends to cover; 2) starting place vo and starting time to,

ending place vd, and a travel time budget ∆; 3) a set of user-preferred venue categories

CATu (optional venues to visit if time permits); and 4) additional constraints ACs, such as

constraints on the time and the order of venues are to be visited. For instance, a user may

want to have lunch at noon and visit museums after that. In summary, the query IQ can

102 6.3. TRIPPLANNER SYSTEM

thus be represented as {Vu, vo, vd, to,∆,CATu,ACs}. It should be noted that users may

not impose ACs when planning visit, and thus the corresponding field is empty.

Valid Route: A route R = 〈v1, v2 · · · , vn〉 is valid iif

aT (vi) ≥ oT (vi), lT (vi) ≤ cT (vi) ∀i ∈ {1, 2, · · · , n}

This implies that the user should visit all venues while they are open. Here aT (·), lT (·)

are the users’ arriving and leaving time for the given venue, while oT (·), cT (·) refer to the

opening time and closing time of the given venue respectively.

Route Score: Route score is defined as the sum of scores of all venues along the route

if it is valid; otherwise, the route score is defined as 0 (i.e. there exists case in which a user

arrives at at least one venue along the route before it opens or after it closes).

Time Margin: It is defined as the difference between the total travel time of the route

and the user’s time budget.

6.3.2 Problem Statement

Personalized Trip Planning Problem. Given a dynamic POI network G in a tar-

geted city and a user’s itinerary query IQ, our objective is to find the optimal valid route

with the maximum route score value.

6.3.3 Framework

As shown in Figure 6.1, the proposed framework contains three components: the dy-

namic POI network model, the route search, and the route augmentation components.

While the dynamic POI network model is pre-built and maintained offline, the route search

and route augmentation components collaboratively answer users’ trip queries in real-time.

(1) The Dynamic POI Network Model. The key problem of POI network model

construction is to separately extract attributes of POI nodes from the Foursquare data set

and information of the edges from the taxi GPS data set.

(2) Route Search. Given user-specified venues to visit, the starting time, and the

time budget, the route search component returns routes that traverses all the intended

venues from the starting location to the destination. In particular, the returned routes

with a time margin greater than a user-determined threshold become candidate input to

the route augmentation component. However, users might list too many venues to cover

within the time constraint, or the planned visiting time does not agree with the operating

hours of certain venues. If the TripPlanner system detects any of those cases, it will

interact with the user to manually modify the venue list.

CHAPTER 6. TRIPPLANNER: PERSONALIZED AND

TRAFFIC-AWARE TRIP PLANNING 103

(3) Route Augmentation. This component aims to augment the candidate routes

generated from the route search module with user-preferred venues inferred from the in-

tended venue categories in the query, maximizing the route score under the given travel

time budget. It first pulls together all of the venues that belong to user-preferred venue

categories as candidate venues. Then for each candidate route, it tries to insert venues in

the pool into it to generate an augmented route, without breaking any constraint. In the

end, TripPlanner presents the augmented routes to the user, in an order sorted according

to their scores in the Augmented Route Ranking module.

In the following two sections, we elaborate on the offline construction of the dynamic

POI network, and the online route planning process respectively.

6.4 Dynamic POI Network Modelling

6.4.1 Node Modelling

Each node in the model corresponds to a POI with five attributes: operation time,

category that the venue belongs to, popularity, geographical location, and stay time. For

each venue, users provide their expected stay time, while Foursquare provides the relevant

information for the former four attributes (Figure 6.2).

Operation Time Info

Popularity Info

 Food, Breakfast Spot, Multiplex Category Info

Location Info

1500 Broadway (at Polk St), SanFrancisco, CA, 94109
(37.796083,-122.42188095)

Figure 6.2: Relevant information of the node provided by Foursquare.

104 6.4. DYNAMIC POI NETWORK MODELLING

Operation time of a venue may vary according to the day of the week and even time of

the year.

A venue can be associated with two or more category labels with different granularities 3.

Take the Nick’s Crispy Tacos venue shown in Figure 6.2 as an example. It has three category

labels, among which “Food” is a Level 1 label, “Breakfast Spot” is a Level 2 label, and

“Multiplex” is a Level 3 label.

To compute the popularity of a given venue, we use two indicators: the total number of

visitors (tvs) and total number of check-ins (tcs) (Eq. 6.1). The visitor number is usually

smaller than the total check-in number for the same venue, since some users check-in the

same venue multiple times during a visit.

Pop(vi) =
2× tvs(vi)

c1
× tcs(vi)

c2
tvs(vi)

c1
+ tcs(vi)

c2

(6.1)

where c1 is the maximal visitor number of all venues in the targeted city, and likewise, c2 is

the maximal check-in number of all venues. Note that most visited venue may be different

from the one with the most check-in record. The venue score is fused by the harmonic

mean as we want both values to be relatively higher [105].

Regarding the geographical location of a given venue, Foursquare provides the longi-

tude/latitude information together with its address.

Though the exact value of the stay time at a given venue cannot be precisely derived

from check-in data, it could be roughly estimated by averaging the stay time of tourists.

Note that users might specify an expected stay time when planning the trip and adjust it

during the actual visit.

6.4.2 Edge Modelling

As the study mainly focuses on suggesting the optimal trip routes, for the sake of

not disrupting the whole flow of presentation, we only briefly introduce how to estimate

the dynamic edge values using taxi GPS traces here, and leave the technical details in

Appendix A.2.

To more accurately estimate the dynamic transit time by driving from one node to

another (i.e. the values of an edge), we need to consider the time-variant nature of traffic

between venues. In this work, we leverage a real world dataset - taxi GPS traces. The taxi

GPS data has two unique features: 1) Spatial coverage: a certain number of city taxis can

fully cover the whole road network; 2) Time coverage: taxis usually operate in the whole

3. Foursquare categorizes all venues in a 3-level hierarchy. More details can be found at http:

//aboutfoursquare.com/foursquare-categories/

http://aboutfoursquare.com/foursquare-categories/
http://aboutfoursquare.com/foursquare-categories/

CHAPTER 6. TRIPPLANNER: PERSONALIZED AND

TRAFFIC-AWARE TRIP PLANNING 105

day, which is in line with tourists’ visiting time. The two unique features of the taxi GPS

data enable us to estimate the transit time between any two nodes within any time period.

To simplify the transit time calculation between nodes in the POI network, we first

cluster co-located nodes among which walking is the best way to get around. The within-

cluster transit time is computed using the average walking speed, while the between-cluster

transit time is estimated based on the driving speed at the specific timeslot. Figure 6.3

illustrates a simple dynamic POI network. The small circles in different colors refer to

the nodes (POIs). Near-by nodes are grouped into clusters (ellipses in the dashed line).

Directed edges inside each cluster carry the walking time information between nodes which

is independent of the time of the day; while directed edges across clusters carry the transit

time information in between which is time-variant. For instance, during rush hours in the

morning, the transit time from the upper right cluster to the bottom cluster is more than

twice of the least travel time of the day (refer to the green curve in the bottom right of

Figure 6.3 for a whole-day view of dynamic transit time).

0 5 10 15 20
200

250

300

350

400

450

500

550

600

Hour of Day

T
ra

ve
l T

im
e

(s
)

Figure 6.3: Illustration of the dynamic network built with Foursquare and Taxi GPS data
sets.

106 6.5. THE TWO-PHASE APPROACH

6.5 The Two-Phase Approach

We take a two-phase approach, i.e. route search and route augmentation, to perform

trip planning. Route search retrieves candidate routes traversing all user-specified venues

within the time budget. Route augmentation further enriches the candidate routes with

user-preferred venues as long as time permits, and recommends to users the optimal routes

with the highest scores. The set of user-preferred venues is a subset of venues in the

targeted city, which are obtained based on the user-preferred venue categories (CATu) in

the itinerary query (IQ) (refer to Appendix A.3 for details).

6.5.1 Phase I: Route Search

The route search component works interactively with the user. Given a user’s starting

and ending places, specified venue list, and a travel time budget, it first checks and removes

any venue that cannot be visited on the intended date. The module then returns all possible

routes between the given origin and destination that cover the valid venues in the list. Note

that users may be asked to shorten the venue list iteratively to ensure a proper time margin.

In this process, the system would suggest the user to remove venue(s) with long distance to

the starting and ending places. Consequently, candidate routes with time margins bigger

than the user-specified threshold would be generated.

Moreover, according to the Theorem below, some candidate routes can be further pruned

in this phase because they cannot lead to any valid route after the route augmentation

phase.

Theorem 6.5.1. Route which contains later-arrival venue can be pruned in advance. Here,

“later-arrival” means arriving at the venue after its closing time; “earlier-arrival”, on the

contrary, refers to arriving at a venue before it opens.

Proof. Based on Lemma 6.3.1, inserting a venue before the “later-arrival” venue will further

push back the arrival time at this venue; while the “later-arrival” venue would be still later

when inserting a venue after it.

In a word, the output of the route search phase are all candidate routes that have

enough time margins and do not contain any “later-arrival” venues.

6.5.2 Phase II: Route Augmentation

The route augmentation component tries to insert optional user-preferred venues into

the candidate routes returned from the previous phase. The aim for optimization is to

maximize the route score without exceeding the time budget. Route augmentation is

CHAPTER 6. TRIPPLANNER: PERSONALIZED AND

TRAFFIC-AWARE TRIP PLANNING 107

NP-hard and very challenging as it tries to satisfy two competing requirements: (1) the

route should contain as many user-preferred venues as possible; (2) the route should meet

the travel time budget and the venue visiting time constraints. We have to consider the

following two factors when selecting new valid venues to optimize the route score.

1
2

3 6

7
4

c

5

Figure 6.4: An illustrative example of inserting a venue into a candidate route.

1) Arrival Time Delay by Adding New Venues. Apparently, inserting new venues

into a given route would increase its total visiting time, adding additional transit time and

stay time. The arrival time to some of the existing venues may be delayed. Furthermore,

the transit time needed between existing venues might also be different due to the time

shift. Taking the diagram in Figure 6.4 as an example, after inserting venue vc in the route,

the arrival time to v4, v5, v6, v7 would be delayed, and the transit time between v4 to v7

might also change as the traffic conditions might be different later in the day.

2) Total Route Score Increased by Adding New Venues. Generally, adding

more user-preferred venues would increase the score of a route, but may violate the given

constraints if not done properly. We designed a method for route augmentation, which

consists of two steps: venue inserting and score maximization. The former aims to find

a suitable position in the candidate route to insert a selected venue, while the latter is

responsible for maximizing the score of the updated route.

6.5.2.1 The Venue Inserting Algorithm

There are two principles that we should follow when inserting a new venue: the aug-

mented route should be valid and we should minimize the extra cost in time. For a candidate

route with n venues and a new venue vc to insert, if the candidate route does not contain

any “earlier-arrival” venue, we need to check n − 1 positions to determine the final aug-

mented route; however, if the candidate route does contain “earlier-arrival” venues, we only

need to check k− 1 (< n− 1) positions, where k is the position of the first “earlier-arrival”

venue in the candidate route according to Theorem 6.5.2.

Theorem 6.5.2. For a candidate route which contains “earlier-arrival” venues, inserting

a candidate user-preferred venue behind the first “earlier-arrival” venue could not lead to a

108 6.5. THE TWO-PHASE APPROACH

valid route.

The pseudo-code of the venue inserting algorithm is shown in Algorithm 6.1. We first

check whether the candidate route contains any “earlier-arrival” venue (Line 1). If it does,

the possible positions where the new venue can be inserted are in [2, k]; otherwise, the

range is [2, n] (Lines 2-5). Note that the “wait” for a venue to open is not considered in

this paper, as the total travel time is a hard constraint in our case. The core function

of Algorithm 6.1 is the augRoute function shown in Algorithm 6.2. In this function, the

candidate venue is inserted into the given route at each possible position (Lines 3-8). Note

that not every position where the candidate venue is inserted can lead to a valid route (Lines

5-7). If no augmented routes are valid or the total travel time cost of all the generated

augmented routes exceeds the time budget, the function returns the original input route

(Lines 9-11); otherwise, it returns the augmented route with the minimum total travel time

(Lines 12-13).

Algorithm 6.1 Venue Inserting Algorithm

Input: A candidate route R = 〈v1, v2, · · · , vn〉; A candidate venue vc A user-specified total
travel time budget ∆;

Output: An augmented route augR
1: if R has “earlier-arrival” venues then
2: k = pos(R) //pos(R) gets the index of the first “earlier-arrival” venue in R
3: augR =augRoute(R, vc, [2, k],∆)
4: else
5: augR =augRoute(R, vc, [2, n],∆)
6: end if

The algorithms above illustrate how to insert one venue to a candidate route. If there

are multiple venues to add, this process will iterate through the list, again following the

proposed principles. In the rest of the paper, we use the expression R+ {vc1, vc2, · · · , vcn}

to denote the operation of inserting the venue list {vc1, vc2, · · · , vcn} to the candidate route

R sequentially. Note that for the same set of candidate venues, different inserting orders

may result in different augmented routes (e.g. R+ {vc1, vc2} 6= R+ {vc2, vc1}).

6.5.2.2 Route Score Maximization Algorithms

We first present mathematical formulation of our route score maximization algorithms,

then introduce how to compute the route score according to the user’s preferences. In the

end, we propose three heuristic algorithms to maximize the route score.

CHAPTER 6. TRIPPLANNER: PERSONALIZED AND

TRAFFIC-AWARE TRIP PLANNING 109

Algorithm 6.2 Venue Inserting Function

1: Function augR = augRoute (R, vc, [a, b],∆)
2: newR = ∅
3: for k = a : 1 : b do
4: tmpR = 〈v1, v2, · · · , vc, · · · , vn〉 //the index of vc in tmpR is k, and venue orders in

R keep unchanged in tmpR
5: if tmpR is valid then
6: newR = newR ∪ tmpR
7: end if
8: end for
9: if newR is empty or min[T C(newR)] > ∆ then

10: augR = R
11: else
12: augR = argmin T C(newR) //select the newly augmented route with the minimal

total travel time cost
13: end if

Mathematical Formulation. For a given user ui, a set of candidate venues {vci}
N
i=1,

and a candidate route R, the route score maximization problem is:

max RS(ui, R+ {xivci}
N
i=1) (6.2)

Subject to:

xi ∈ {0, 1} (6.3)

x1vc1.cat ∪ x2vc2.cat ∪ · · · ∪ xnvcN .cat ⊆ CATu (6.4)

T C(R+ {xivci}
N
i=1) ≤ ∆ (6.5)

where Eq. 6.2 refers to the objective function (i.e. the route score) for maximization. It is

subjected to three constraints, as shown in Eqns. 6.3-6.5. Eq. 6.4 defines the constraint for

the augmented venue selection, i.e. only the user-preferred venues can be selected for route

augmentation, but not necessarily covering all venue categories, due to the total travel

time constraint. Eq. 6.5 emphasizes that the total time cost of the newly augmented route

should be within the predefined travel time budget ∆.

Route Score Calculation. The route score calculation algorithm is the core of the

route augmentation component, which estimates the attractiveness of a candidate route to

a given user. The route score is defined as the sum of all its venue scores, thus the venue

scoring method is vital.

Venue Scoring. On one hand, the score of a venue is determined by its popularity

(Pop, as shown in Eq. 6.1), which is objective (denoted as VSobj); On the other hand,

the venue score is also related to individual user’s personal interests revealed in his/her

110 6.5. THE TWO-PHASE APPROACH

check-in history, which is subjective. For instance, the scores of “Art & Museum” venues

should be higher for a user, if he/she visits venues in this category more often than the

others as shown in the Foursquare check-in records. The normalized check-in preference

value (VSsub) of the venue vi for user uj is calculated by Eq. 6.6. For simplicity, only the

level-1 category labels (i.e. the nine category labels defined by Foursquare) are used in the

scope of this study.

VSsub(uj , vi) =
tcs(uj , {vi.cat})

tcs(uj)
(6.6)

where tcs(uj) represents the total number of check-ins that the user uj conducted in

Foursquare, while tcs(uj , {vi.cat}) stands for the total number of check-ins at venues be-

longing to the same category vi.

Finally, the venue score can be computed according to Eq. 6.7, considering both the

venue popularity and the user preferences.

VS(uj , vi) = VSobj(vi) + VSsub(uj , vi) (6.7)

Three Heuristic Algorithms. As discussed previously, there are two important steps

in route augmentation: selecting new venues, and inserting them into the candidate routes

sequentially. It is not trivial since we have to make a trade-off between the individual

venue scores and the total number of venues that can be added. For example, inserting a

far away venue with a very high venue score might forbid adding more new venues, since

it has already used up the time budget. In contrast, inserting a close-by venue with an

average venue score first would allows including more new venues. It is difficult to say

which strategy would achieve a higher route score in the end. Hence, we propose three

heuristic algorithms for maximizing the route score in the route augmentation phase. Note

that added venues are all user-preferred venues.

1) Travel Time Minimizer. The basic idea of this algorithm is to insert as many new

venues as possible, given the fact that the route score would be higher as the number of

venues increases in general. Thus at each venue inserting iteration, our proposed heuristic

is that the venue closest to the candidate route (measured by the additional travel time)

would be selected first for insertion, regardless of its venue score. We illustrate the core

part of the travel time minimizer algorithm in Algorithm 6.3.

For each candidate route returned by the route search phase, in each iteration, we need

to examine all new venues in order to select one for the newly augmented route (Lines

2∼10). This is quite time-consuming especially when the size of the venue list is big. We

use the venue inserting algorithm as shown in Algorithm 6.1 for each new venue (Lines

3∼4). If the newly augmented route is not valid, its total travel time would be set to +∞;

CHAPTER 6. TRIPPLANNER: PERSONALIZED AND

TRAFFIC-AWARE TRIP PLANNING 111

Algorithm 6.3 Travel Time Minimizer Algorithm

Input: A candidate route R = 〈v1, v2, · · · , vn〉; A set of new venues Vc (i.e. user-preferred
venues); A user-specified total travel time budget ∆;

Output: An augmented route
1: augR = ∅
2: for i := 1 : 1|Vc| do
3: vci = Vc(i)
4: augR = {R+ vci} ∪ augR //Call the venue inserting algorithm
5: if R+ vci = R then
6: TC(i) = +∞ //the total travel time cost of the route is set +∞ if the selected

venue can not be inserted
7: else
8: TC(i) = T C(R+ vci)
9: end if

10: end for
11: if any(TC) 6= +∞ then
12: k = argmini(TC)
13: R = augR(k)
14: Vc = Vc − vck
15: end if
16: Repeat Lines 1∼14
17: Until R keeps unchanged

otherwise, it would be updated to that of the newly augmented route (Lines 5∼9). At the

end of each iteration, the route in the augR set with the minimum total travel time cost

will be selected as the input (Lines 11∼15) for the next round of venue inserting, again via

the same heuristic (Line 16). The algorithm would terminate when no new route can be

generated (Line 17). Note that the inserted venue needs to be removed from the new venue

list before the next iteration (Line 14). Therefore, the computation complexity in each

iteration for this algorithm has an upper bound of O(n − 1)N , where n is the number of

existing venues in the original candidate route, and N is the total number of user-preferred

venues.

2) Venue Score Maximizer. The basic idea of this algorithm is to prioritize high-scored

venues. Thus in each iteration, the venue with the highest venue score that can lead to a

valid route would be inserted first, no matter how far away it is from the candidate route.

Algorithm 6.4 illustrates the core part of the proposed venue score maximizer.

In each iteration, we first sort the new venues in the descending order of venue scores

defined in Eq. 6.7 (Line 1). This sorting operation can save computation time as we only

need to check whether the higher-ranked venues can yield a valid augmented route. If yes,

there is no need to examine the rest of the venue list as in Algorithm 6.3. In the best case,

112 6.5. THE TWO-PHASE APPROACH

Algorithm 6.4 Venue Score Maximizer Algorithm

Input: A candidate route R = 〈v1, v2, · · · , vn〉; A set of new venues Vc (i.e. user-preferred
venues); A user-specified total travel time budget ∆;

Output: An augmented route
1: Vc ← sort(Vc) //Sort new venues according to their scores in descending order defined

in Eq. 6.7
2: i = 1; vci = Vc(i)
3: augR = R+ vci
4: while augR = R do
5: if i < |Vc| then
6: i = i+ 1; vci = Vc(i)
7: augR = R+ vci
8: else
9: Break

10: end if
11: end while
12: R = augR
13: Vc = Vc − vci
14: Repeat Lines 2∼ 14
15: Until R keeps unchanged

the first venue (with the highest venue score) meets the requirement (Lines 2∼3); in the

worst case, all new venues will be checked (Lines 5∼10). At the end of each iteration, the

route with the highest route score will become the candidate route for the next iteration

(Lines 12∼14). The termination condition is the same as that of the travel time minimizer

(Line 15). Again, the inserted venue would be excluded from further operations (Line

13). Therefore, the computation complexity in each iteration for this algorithm varies from

O(Nlog|N |) (i.e. the best case) to O(Nlog|N |+ (n− 1)N) (i.e. the worst case). Note that

O(Nlog|N |) is the complexity of sorting operation.

The above two algorithms are used as baseline methods. The first heuristic algorithm

only considers the number of the venues added, while the second one emphasizes merely

on the scores of the inserted venues. As a result, the routes of the first algorithm would

be generally longer (i.e. containing more venues), compared to the second algorithm. It

is because the second heuristic algorithm, given the same time budget constraint, favors

having one venue with a high venue score over two nearby average venues, even though the

latter case might lead to a higher route score. To overcome the limitations of these two

baseline methods, we propose our gravity maximizer.

3) Gravity Maximizer. Inspired by Newton’s law of universal gravitation which is capa-

ble of modelling human mobility patterns (the travel behaviors to places, travel patterns,

etc.) [25, 133], we introduce a gravity model that uses the venue scores and the venue dis-

CHAPTER 6. TRIPPLANNER: PERSONALIZED AND

TRAFFIC-AWARE TRIP PLANNING 113

tances to the candidate route collectively for route augmentation. In our gravity model,

the spherical distance between the candidate route and the new venue is analogy with the

distance defined in Newton’s gravity model, where the location of the candidate route is

obtained by averaging the locations of all venues that it contains. Likewise, the average

venue score of the candidate route and the score of new venue corresponds to the mass.

Finally, the gravity can be computed using Eq. 6.8.

G(vci, R) =
VS(uj , vci)×

1
n

∑n
i=1 VS(uj , vi)

dist(vci, R)λ
(6.8)

In the proposed gravity maximizer, the new venues are sorted in the descending order of

their gravity values computed via Eq. 6.8, instead of the venue scores. The rest of procedure

is exactly the same as that of venue score maximizer. Thus the two methods are similar in

the computation complexity, with an extra cost of the venue’s gravity computation in the

gravity maximizer.

In fact, the ranking based on gravity values would be degraded to that of venue scores

if we set λ = 0, as gravity values would be determined by venue scores only. In other

words, the gravity maximizer and venue score maximizer algorithms would reach the same

result when λ = 0. On the contrary, as can be inferred from Eq 6.8, if we set λ to be

extremely high (e.g. λ > 5), the gravity values would be dominantly influenced by the

distance to the candidate route, introducing a bias towards the “closest” venue (i.e. with

the smallest distance to the candidate route). This agrees with the basic idea of the travel

time minimizer algorithm. Furthermore, with a large negative λ (e.g. λ < −5), “distant”

venues would be ranked higher, which should be avoided. We will investigate how different

λ values affect the algorithm’s performance in Section 6.6.2.

6.5.2.3 Augmented Route Ranking

The algorithms discussed in Section 6.5 aim to optimally augment the set of candidate

routes returned from the Phase I (i.e. route search). Augmented Route Ranking operation

then picks out the augmented route with the highest route score to answer the user’s

itinerary query (IQ). Note that if multiple “optimally” augmented routes possess the same

route score as they may contain the same venues but in different order, the route with a

smaller “total travel time” would be ranked higher.

6.6 System Evaluation

Here, we present the evaluation results that aim to: (1) validate the efficiency and

effectiveness of the trip planning algorithms and (2) demonstrate the usefulness and per-

sonalization capability of the trip planning system. We first describe the experiment setup,

114 6.6. SYSTEM EVALUATION

results of the parameter sensitivity study, as well as evaluation on algorithm efficiency and

effectiveness, and then discuss several issues which need to be addressed further.

6.6.1 Experiment Setup

Data Preparation. We used Foursquare check-in data of San Francisco from April

2010 to October 2010, and the taxi GPS traces of the same city from the CabSpotting

project (http://cabspotting.org/) to construct the POI network of San Fransisco. The

Foursquare data contains 110,214 check-ins generated by 15,680 users. The taxi GPS data

contains 391,938 passenger-delivery trips generated by 536 taxis in June 2008. We did not

include data from the vacant taxis since they might not drive at a normal speed when

searching for passengers. Although we could not find two data sets from the same period

for evaluation, the process of our proposed framework is data-independent, and the results

can be easily updated once we are able to provide these heterogeneous data from the same

period. The procedure of the POI network construction has been discussed in Section 6.4,

and more details can be found in Appendix A.2.

Evaluation Environment. All the evaluations in the paper are run in Matlab on an

Intel Xeon W3500 PC with 12-GB RAM running Windows 7.

6.6.2 Parameter Sensitivity Study

As discussed in Section 6.5, we have only one internal parameter λ in the proposed

gravity maximizer algorithm (Eq. 6.8), and no internal parameter in the other two baselines.

We are thus interested in how it affects the optimal route score. We do not set λ to

extreme values as discussed; instead, we vary λ in the range of [-3,3] with an interval of

0.1. The optimal scores under different λ values, in comparison with the two baseline

algorithms are shown in Figure 6.5(a). As the figure suggests, the optimal route score

generated by the travel time minimizer algorithm is always the lowest since it does not

take the individual score of candidate venues into consideration. As expected, the optimal

route score computed by the gravity maximizer algorithm and the venue score maximizer

algorithm are the same when λ is around 0. We also find that the gravity maximizer

algorithm yields higher optimal route score than the venue score maximizer algorithm

when λ is within the range of [0.5 2.3].

We also show the change in computation time of the gravity maximizer algorithm under

different λ values in Figure 6.5(b). More specifically, the computation time fluctuates with

the increase of λ. However, the maximum time cost is no longer than 1.45 seconds, which

is acceptable. Considering the trade-off between route score and computation time, we

choose λ = 1.5 for the rest of the evaluations.

http://cabspotting.org/

CHAPTER 6. TRIPPLANNER: PERSONALIZED AND

TRAFFIC-AWARE TRIP PLANNING 115

−3 −2 −1 0 1 2 3
12

12.2

12.4

12.6

12.8

13

13.2

13.4

13.6

Different λ

R
ou

te
 S

co
re

Gravity Maximizer
Venue Score Maximizer
Travel Time Minimizer

(a) Optimal route scores under different λ.

−3 −2 −1 0 1 2 3
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Different λ

E
xe

cu
tiv

e
T

im
e

(s
ec

.)

C
o

m
p

u
ta

ti
o

n
 T

im
e

C
o

st
 (

se
c.

)

(b) Computation time cost under different λ.

Figure 6.5: Results of parameter sensitivity study.

6.6.3 Efficiency Evaluation

The efficiency of the three algorithms depends on several parameters, such as the total

number of venues (N) in the targeted city, the number of user-preferred venue categories

(k), the number of user-specified venues (m), and user-defined travel time budget (∆).

The first two variables determine the number of user-preferred venues (i.e. candidate new

venues). The number of user-specified venues and travel time budget have an impact on

the number of candidate routes produced in Phase I (i.e. the route search phase), as well

as on the number of user-preferred venues that can be inserted in Phase II. Particularly,

at most m! candidate routes can be produced. The number of user-specified venues (m) is

common for all three algorithms, affecting the computation time in both the route search

phase and the route augmentation phase. For simplicity, we fix m = 5 in all the evaluations.

In the following experiments, we mainly study how the choice of N , k and ∆ affects the

computation time of the three algorithms, varying only one parameter at a time.

It should be noted that all the candidate routes are augmented in parallel. In other

words, the total computation time in the route augmentation phase is equal to the maximum

computation time among all candidate routes. The efficiency is measured by the total time

cost in both phases.

6.6.3.1 Varying N

The relationship between the computation time of the three algorithms and the total

number of venues in the city (N) is shown in Figure 6.6(a). Results suggest that the

proposed venue score maximizer and gravity maximizer algorithms are less time consuming

compared to the travel time minimizer algorithm, which is consistent with the complexity

analysis. Furthermore, the computation time of the travel time minimizer algorithm is

116 6.6. SYSTEM EVALUATION

100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Different N

C
om

pu
ta

tio
n

T
im

e
C

os
t (

se
c.

)

Gravity Maximizer
Venue Score Maximizer
Travel Time Minimizer

(a) Computation time cost by varying N .

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

4

Different k

C
om

pu
ta

tio
n

T
im

e
C

os
t (

se
c.

)

Gravity Maximizer
Venue Score Maximizer
Travel Time Minimizer

(b) Computation time cost by varying k.

7 8 9 10 11 12
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Different ∆ (hours)

C
om

pu
ta

tio
n

T
im

e
C

os
t (

se
c.

)

Gravity Maximizer
Venue Score Maximizer
Travel Time Minimizer

(c) Computation time cost by varying ∆.

Figure 6.6: Results of efficiency evaluation.

almost proportional to N . This is logical as travel time minimizer needs to examine the

additional travel time introduced by each venue in the candidate list. On the contrary, the

computation time of the venue score maximizer and gravity maximizer algorithms only goes

up slightly as the number of venues increases. Moreover, these two algorithms took less

than one second to generate the result. The gravity maximizer algorithm generally took a

slightly longer time than the venue score maximizer because of the additional gravity value

calculation for each user-preferred venue. In this experiment, we fix k = 3 and ∆ = 10

hours.

6.6.3.2 Varying k

We show the computation time of the three algorithms under different k in Figure 6.6(b).

In general, the computation time increases with k. This is because a larger k often leads

to a bigger number of user-preferred venues for augmentation. Again, the computation

CHAPTER 6. TRIPPLANNER: PERSONALIZED AND

TRAFFIC-AWARE TRIP PLANNING 117

time of the travel time minimizer algorithm is much longer than that of the other two

algorithms under the same setting, for the same reason as when N varies. For the venue

score maximizer and gravity maximizer algorithms, their computation time increases more

significantly as k becomes bigger, compared to that under different N . This is indeed

caused by the increase of the number of user-preferred venues. As N increases, both the

number of user-preferred and non-user-preferred venues would increase. However, all non-

user-preferred venues can be excluded from the route augmentation process and thus have

no impact on the computation time. In contrast, any change in k would be completely and

directly reflected on the change in the number of user-preferred venues. In this experiment,

we fix N = 300 and ∆ = 8.5 hours.

6.6.3.3 Varying ∆

Figure 6.6(c) shows the change in computation time of the three algorithms under given

total travel time budget ∆. Similar to the previous two cases, the travel time minimizer

algorithm needs more time as ∆ increases, much more than the other two algorithms of

which the computation time was similar and no more than one second. In general, more

user-preferred venues are allowed to be added which results in more venue inserting itera-

tions in the route augmentation process, especially for the travel time minimizer algorithm

since its objective is to minimize the introduced travel time at each iteration. In this

experiment, we fix N = 300 and k = 3.

6.6.4 Effectiveness Evaluation

Similar to the study of efficiency, we assessed the effectiveness of route augmentation

algorithms under the same settings. The optimal route scores returned by the three algo-

rithms with varying N , k and ∆ are shown in Figure 6.7(a), Figure 6.7(b), and Figure 6.7(c)

respectively. In Figure 6.7(a), the experiment setting is m = 5, k = 3, ∆ = 10 hours; in

Figure 6.7(b), the setting is N = 300, m = 5, ∆ = 8.5 hours; and in Figure 6.7(c), the

setting is N = 300, m = 5, k = 3. In all three cases, the proposed gravity maximizer algo-

rithm consistently outperformed the other two baseline methods in terms of optimizing the

route score. Figure 6.7(a) shows that the optimal route score of the travel time minimizer

algorithm decreases gradually as N increases, as opposed to the gravity maximizer and

venue score maximizer algorithms. This is because the inherent characteristic of the travel

time minimizer algorithm biases towards venues that are closer but probably with a smaller

score as N increases. Results also suggest that, compared to the venue score maximizer

algorithm, the gravity maximizer algorithm is more likely to find the global optimal route

score. In Figure 6.7(b) and Figure 6.7(c), all three algorithms achieved higher optimal

118 6.6. SYSTEM EVALUATION

route score with bigger k and ∆. However, such increase dramatically slowed down when

k > 5, probably due to the time budget constraint we impose.

100 150 200 250 300
12.5

13

13.5

14

Different N

R
ou

te
 S

co
re

Gravity Maximizer
Venue Score Maximizer
Travel Time Minimizer

(a) Optimal route score by varying N .

1 2 3 4 5 6 7
10

10.5

11

11.5

12

12.5

13

Different k

R
ou

te
 S

co
re

Gravity Maximizer
Venue Score Maximizer
Travel Time Minimizer

(b) Optimal route score by varying k.

7 8 9 10 11 12
10

10.5

11

11.5

12

12.5

13

13.5

14

Different ∆ (hours)

R
ou

te
 S

co
re

Gravity Maximizer
Venue Score Maximizer
Travel Time Minimizer

(c) Optimal route score by varying ∆.

Figure 6.7: Results of effectiveness evaluation.

6.6.5 Case Study

We further tested the personalization capability of the TripPlanner system in the

case that two users with different personal interests submit the same query (IQ1) to the

system. To be more specific, according to their check-in history, one of the users (u1)

preferred Great Outdoors and Restaurants venues, while the other user favored more of

the Arts & Entertainments and Restaurants venues. To demonstrate the traffic-aware

capability of our TripPlanner, we designed a second case in which u1 modified the

query and set a different trip starting time (IQ2). To verify that the route recommended

by TripPlanner is optimized, we introduced a third case in which the recommended

route in response to IQ2 by u1 was compared to an average route. Queries in all three

CHAPTER 6. TRIPPLANNER: PERSONALIZED AND

TRAFFIC-AWARE TRIP PLANNING 119

Table 6.2: The information about three designed cases.

Users Starting Time Recommended Route Route Score

Case I
u1 10:00 am R1 14.4176
u2 10:00 am R2 14.6883

Case II
u1 10:00 am R1 14.4176
u1 08:30 am R3 13.6602

Case III
u1 08:30 am R3 13.6602
u1 08:30 am R4 12.9087

cases share the following information: i) The users start and end the trip both at the the

Caltrain Station; ii) User-specified venues include Museum, Golden Gate Bridge, Beach,

Lombard Street and Fisherman’s Wharf; iii) the total travel time budget ∆ is set to 11

hours; iv) the optional user-preferred categories are {Restaurants, Arts & Entertainments,

Great Outdoors}; and v) the dining time is set to [11:00 am, 12:59 pm] for lunch and [17:30

pm, 20:00 pm] for dinner. Table 6.2 lists the information of the three cases we designed,

including the corresponding user, starting time, and results of the recommended route.

Case I: Personalization Capability. This case intends to demonstrate the person-

alization capability of TripPlanner with two different users. As shown in Figure 6.8(a)

and 6.8(b), given the same time budget, both users can accommodate four more preferred

venues in their trips additional to the must-visit venues (i.e. R1 and R2). Further inves-

tigation showed that, even though not explicitly requested, TripPlanner recommended

restaurants to both users around lunch and dinner time since they are food lovers (as shown

in Figure 6.8(e)). For the user u1, the other two venues added belong to the Great Outdoors

category; while two more museums from the Arts & Entertainments category appeared in

the augmented itinerary for u2. As illustrated in Figure 6.8(e), u1 arrives at the Caltrain

Station a bit earlier than u2, suggesting that route R1 and R2 have different travel time.

These results clearly indicate the ability of TripPlanner to customize both specified and

top-ranked preferred venues in the recommended trip, according to users’ preferences.

Case II: Traffic-aware Capability. This case looked into the traffic-aware capability

of TripPlanner. We compared two queries (IQ1 and IQ2) of the same user u1 that only

differ in the starting time (Table 6.2). The recommended routes (R1 and R3) are shown in

Figure 6.8(a) and 6.8(c) respectively. Only three preferred venues can be added in R3, as

it starts around the morning rush hours and thus needs more transit time compared to the

other two routes (R1 and R2), resulting in a smaller route score of 13.6602. Similar to R1

and R2, proper lunch and dinner are planned for the user. In addition, the user is suggested

to visit the far-away Golden Gate Bridge first since most of venues such as museums are

not yet opened early in the morning.

120 6.7. CONCLUDING REMARKS

Case III: Route Score Optimization Capability. In this case, we are interested

in the difference between the optimal route versus an average route. Figure 6.8(d) shows

a randomly selected augmented route (R4) which is generated by our proposed gravity

maximizer algorithm under the same query as Figure6.8(c). The user is also suggested

to visit the far-away Golden Gate Bridge first in R4. Even though the average route

includes all the user-specified venues and meets the total travel time budget constraint, it

only accommodates two preferred venues due to the long transit time caused by taking an

inefficient venue visiting order. As a result, the user only has time to take a quick snack

for lunch if taking R4. Therefore, its route score (12.9087) is much lower than that of the

recommended optimal route R3.

6.6.6 Discussion

In the following, we discuss some issues of TripPlanner, which need to be addressed

in future work.

Venue Stay Time. In the current study, we assume that the stay time at a venue can

be obtained in advance. However, actually estimating the stay time for each individual user

at a particular POI is not trivial. It depends on the user’s interest as well as his/her time

budget. For instance, the museum lovers might spend the whole day in the Louvre, while

some people only spend 2 hours to visit the most famous artworks, especially when the trip

schedule is tight. In the future, we plan to explore other data sources and techniques to

estimate each user’s preferred stay time at different venues [41].

Route Score. There is no objective way to quantitatively characterize the relative

importance of different POIs for each individual. In this study, we intentionally add a

subjective score based on a user’s check-in history to characterize the attractiveness of a

POI to him/her, in addition to its popularity. Although the proposed scoring method that

leverages the existing literature seems to work well, further research is needed to identify

more effective ways to automatically assign attractiveness scores to different POIs and

arrange the visiting order accordingly.

6.7 Concluding Remarks

In this study, we have developed a novel framework called TripPlanner for person-

alized, interactive and traffic-aware trip planning. It leverages two heterogeneous data

sources and considers factors including the varying transit time between POIs, user pref-

erences, and the total travel time budget. First, we constructed the dynamic POI network

model by extracting relevant information from crowdsourced Foursquare and taxi GPS

traces. Then we proposed a two-phase approach for personalized trip planning with a

CHAPTER 6. TRIPPLANNER: PERSONALIZED AND

TRAFFIC-AWARE TRIP PLANNING 121

comprehensive route scoring method and a novel route search-augmentation-ranking pro-

cess. Using two real-world data sets which contain more than 391,900 passenger-delivery

trips and 110,200 check-ins in the city of San Francisco, we compared our proposed route

augmentation method with two baseline algorithms, and showed that our method is more

efficient and effective than the baseline approaches. We further conducted a case study to

validate the capability of our framework in recommending adaptive and optimal itineraries.

In the future, we plan to broaden and deepen this work in several directions. First,

we intend to extend the scenarios to multi-day itinerary planning. Second, we would like

to deploy our system on mobile devices, enabling a series of pervasive smart travel and

transportation planning services. Third, we plan to test our system with real users in

actual practices, collecting feedback on how to improve the service further.

122 6.7. CONCLUDING REMARKS

Train Station

Museum

Beach

Lombard Street

Restaurant

Restaurant

Fisherman's Wharf

Union Square

Golden Gate Bridge

Park

(a) R1. Starting time: 10:00 am

Train Station

Art Museum

Golden Gate Bridge

Restaurant

Lombard Street

Restaurant

Museum

Museum

Fisherman's Wharf

Beach

(b) R2. Starting time: 10:00 am

Fisherman's Wharf

Golden Gate Bridge

Beach

Museum

Train Station

Restaurant

Restaurant

Lombard Street

Union Square

(c) R3. Starting time: 08:30 am

Train Station

Museum

Beach

Lombard Street

Restaurant

Fisherman's Wharf

Golden Gate Bridge

Union Square

(d) R4. Starting time: 08:30 am

Golden Gate Bridge Museum RestaurantPark Beach Square Lombard StreetFisherman’s Wharf

8 9 10 11 12 13 14 15 16 17 18 19 20 21

Time of the day

R1

R2

R4

Train Station

R3

(e) Comparison of four routes in the temporal dimension.

Figure 6.8: Results of the case study. (a)∼(d) show the trip routes on Google map (in the
spatial dimension).

CHAPTER 7. CONCLUSION AND FUTURE WORK 123

Chapter 7

Conclusion and Future Work

Contents

7.1 Conclusion . 123

7.2 Future Work . 124

7.1 Conclusion

Taxi GPS traces, in spite of being a very specialized type of digital footprints, have

already provided us with a rich data source to uncover many “hidden facts” and insights

about the community and city, including social dynamics, traffic dynamics and operational

dynamics. With the extracted social and community dynamics, many useful applications

can be further enabled to meet the real-world needs. In this thesis, we explored certain

aspects of social and community dynamics to offer diverse urban services to certain end

users, such as taxi passengers, taxi drivers, city planners, and regular city citizens.

First, we proposed a novel and effective algorithm for fast real-time detection of anoma-

lous trajectories obtained from GPS-equipped taxis that can use fixed and variable window

sizes. In addition to classifying full trajectories as anomalous, iBOAT can work with on-

going trajectories and can determine which parts of a trajectory are responsible for its

anomalousness. We further showcased its use for fraudulent behaviour analysis and detect-

ing road network changes. The result suggests that most anomalous trajectories are in fact

due to fraud. We also provided evidence to deny possible excuses for fraud behaviours.

Second, we investigated the problem of night-bus route planning by leveraging the taxi

GPS traces, which is motivated by the needs of applying pervasive sensing, communication

and computing technology for sustainable city development. We proposed a two-phase

124 7.2. FUTURE WORK

approach to solve this problem. In the first phase, we developed a process to cluster “hot”

areas with dense passenger pick-up/drop-off, and then propose effective methods to split

big “hot” areas into clusters and identify a location in cluster as the candidate bus stop.

In the second phase, given the bus route origin, destination, candidate bus stops as well as

bus operation frequency and maximum total travel time, we derive several criteria to build

bus route graph and prune the invalid stops and edges iteratively. Based on the graph, we

further develop two heuristic algorithms to automatically generate candidate bus routes in

both directions, and finally we select the best route which expects the maximum number

of passengers under the given conditions.

Finally, we investigated the problem of personalized trip planning, which is motivated by

the needs of considering real-world traffic conditions, user preferences, and the travel time

budget. This work is among our initial attempts to apply pervasive computing techniques

in achieving better trip planning of smart cities. To solve the problem, we propose the

TripPlanner framework, leveraging a combination of LBSN and taxi GPS data sources.

The foundation of the framework is the dynamic POI network model, where the LBSN

data is used for venue node feature extraction, and the taxi GPS data is used for obtaining

the time-dependent edge weights (i.e., the transit time) among nodes. We proposed a two-

phase approach for trip planning. The route search phase works interactively with users to

ensure users to specify proper POIs, and returns candidate routes covering user-specified

POIs. The route augmentation phase adds the POIs belonging to the preferred categories

iteratively, aiming to maximize the route score.

To sum up, the first work discussed provided application informing taxi passengers

whether the taxi drivers take the honest routes during their rides “on the fly”, while the

second and third work enabled applications about route planning and itinerary planning

in transportation networks, subject to different constraints and optimization objectives.

7.2 Future Work

Although we have shown the superior capabilities of the taxi GPS traces in uncover-

ing many “hidden facts” about city dynamics, they may be biased and not representative.

Specifically, travelling around the city by taxi takes up only a small fraction of the total

public transportation due to its relatively higher price. In other words, the usage of taxi

may be restricted to some certain groups of people, compared to the usage of public buses.

Similar situation may also occur when dealing with the traffic dynamics using the taxi GPS

traces, since the taxi volume takes only a small percentages of the total traffic volume (e.g.,

around 15∼20% in Beijing). Questions, such as, to what degree the uncovered dynamics

by taxi users can represent the whole population, remain unknown. Fortunately, many

CHAPTER 7. CONCLUSION AND FUTURE WORK 125

data sources from multiple domains become increasingly available. For example, many city

agencies and authorities are making their data accessible for public usage (i.e., open data) 1,

which provides us with unprecedented opportunities to understand social and community

dynamics in an integrated and holistic view. We believe that many more interesting ap-

plications and urban services can be enabled if we couple the taxi GPS data with other

complementary data sources. Our work in Chapter 6 has demonstrated the advantages of

fusing the taxi GPS data and Foursquare check-in data. The future work will focus on

exploring the complementary information provided by the cross-domain data sources to

offer city planners and dwellers many insights and services that bring them closer to the

vision of a smart city. Along this line, we list three promising directions for future research.

♦ Fusing personal mobile phone and smart card data to re/design better transportation

network. The very basic problem of transportation network design is the estimation

of city-wide OD flow. More accurate estimation of OD flow can be achieved if we

integrate multiple data sources, such as mobile phone data, public transportation

usage records data (i.e. smart card data), and taxi GPS data. Specifically, given the

fact that mobile phone have become an essential element in the lives of most people

in many countries, it is clear that it can reveal the population movement flows among

different city regions to a large degree. The public transportation usage records data

reflect the actual OD flow in the current transportation networks in a fine spatial and

temporal granularity (i.e. the actual OD flow among different stations at different

time slots). The taxi GPS data can inform us a very high resolution of taxi passenger

flow (i.e., from which point to which point in the city at what time). These different

data sources reflect different aspects of the OD flow, and therefore, with appropriately

integrating them, we can plan new effective public routes, examine and redefine the

current transportation networks. Further more, coupling with the POI data, we can

design even better transportation network.

♦ Fusing real-time sensory data and user-generated content data to provide better real-

time traffic services. Real-time traffic information is of great importance for route

planning. With the real-time traffic information provided by the road sensors (e.g.,

video surveillance, loop sensors) and the GPS streaming data from taxis, better traffic

forecasting in the short-time window can be achieved. People may also wonder why

the traffic in the road network is abnormally heavy, thus traffic diagnosing is also very

important. As the social networking services such as Twitter have also become an

essential part of people’s lives, many user contents (e.g., pictures, texts) are generated

1. http://www.data.gouv.fr

http://data.london.gov.uk

https://nycopendata.socrata.com

http://www.data.gouv.fr
http://data.london.gov.uk
https://nycopendata.socrata.com

126 7.2. FUTURE WORK

in near real-time, which can be used to diagnose the traffic.

♦ Fusing personal smart phone sensory data to support crowd-sensing/sourcing tasks.

Rich sensors are embedded in smart phones, such as accelerometer, acoustic, and even

air quality measurement sensors. Given the facts that smart phones are widely used

among most of people, and taxi drivers are driving continuously in the road network,

many novel crowd-sensing/sourcing tasks can be enabled if fusing smart phone sensory

data and the taxi GPS data. For instance, the collected accelerometer data have been

recognized as a powerful source to identify the state of their users, such as walking,

running, staring. With the accelerometer data from smart phones, we can detect

accurately when the taxi stops. With further integration of the taxi GPS data, we

can identify the traffic lights in the road network in the city. Moreover, the vibration

patterns recorded in the smart phones during driving, can be also used to detect

road potholes and road roughness levels, which impacts transport safety and driving

comfort. Through a crowd-sourced way, a full picture about the traffic light locations

and road roughness of road network can be obtained. This research is very promising,

and the main difficulties are “how to design proper crowd-sensing/sourcing tasks

which can emphasize the inherent characteristics of the taxi GPS traces”, “how to

design incentive mechanisms to stimulate taxi drivers to participate the tasks”, “how

to keep data fidelity for applications while protecting privacy”,“how to select/trust

users effectively”, subject to certain constraints such as the spatial coverage, the time

cost, and so on.

BIBLIOGRAPHY 127

Bibliography

[1] New york city taxi fraud. http://www.consumertraveler.com/today/

nyc-taxi-drivers-overcharge-passengers-8-3-millioin/.

[2] Public transportation factbook. Technical report, American Public Transportation

Association, 2011.

[3] Zhejiang online news. http://biz.zjol.com.cn/05biz/system/2013/01/25/

019113078.shtml, 2013.

[4] N. Abe, B. Zadrozny, and J. Langford. Outlier detection by active learning. In

Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining, pages 504–509, 2006.

[5] J. Al-Karaki and A. Kamal. Routing techniques in wireless sensor networks: A survey.

IEEE Wireless Communications, 11(6):6 – 28, dec. 2004.

[6] L. O. Alvares, V. Bogorny, B. Kuijpers, J. A. F. de Macedo, B. Moelans, and A. Vais-

man. A model for enriching trajectories with semantic geographical information. In

Proceedings of the ACM International Symposium on Advances in Geographical In-

formation Systems, pages 22:1–22:8, 2007.

[7] A. Amiri. A probabilistic greedy algorithm for channel assignment in cellular radio

networks. IEEE Transactions on Communications, 58(11):3286–3295, 2010.

[8] C.-N. Anagnostopoulos, I. Anagnostopoulos, V. Loumos, and E. Kayafas. A license

plate-recognition algorithm for intelligent transportation system applications. IEEE

Transactions on Intelligent Transportation Systems, 7(3):377–392, 2006.

[9] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook. The Traveling Salesman

Problem: A Computational Study. Princeton University Press, 2007.

[10] Y. Arase, X. Xie, T. Hara, and S. Nishio. Mining people’s trips from large scale

geo-tagged photos. In Proceedings of the International Conference on Multimedia,

pages 133–142, 2010.

http://www.consumertraveler.com/today/nyc-taxi-drivers-overcharge-passengers-8-3-millioin/
http://www.consumertraveler.com/today/nyc-taxi-drivers-overcharge-passengers-8-3-millioin/
http://biz.zjol.com.cn/05biz/system/2013/01/25/019113078.shtml
http://biz.zjol.com.cn/05biz/system/2013/01/25/019113078.shtml

128 BIBLIOGRAPHY

[11] J. Aslam, S. Lim, X. Pan, and D. Rus. City-scale traffic estimation from a roving

sensor network. In Proceedings of the 10th ACM Conference on Embedded Network

Sensor Systems, SenSys ’12, pages 141–154, 2012.

[12] R. K. Balan, K. X. Nguyen, and L. Jiang. Real-time trip information service for a

large taxi fleet. In Proceedings of the 9th International Conference on Mobile Systems,

Applications, and Services, pages 99–112, 2011.

[13] J. Bao, Y. Zheng, and M. F. Mokbel. Location-based and preference-aware recommen-

dation using sparse geo-social networking data. In Proceedings of the International

Conference on Advances in Geographic Information Systems, pages 199–208, 2012.

[14] H. Bast, D. Delling, A. Goldberg, M. Müller-Hannemann, T. Pajor, P. Sanders,

D. Wagner, and R. Werneck. Route planning in transportation networks. Technical

Report MSR-TR-2014-4, Microsoft Research, 2014.

[15] F. Bastani, Y. Huan, X. Xie, and J. Powell. A greener transportation mode: flexible

routes discovery from GPS trajectory data. In Proceedings of the ACM SIGSPA-

TIAL International Conference on Advances in Geographic Information Systems,

pages 405–408, 2011.

[16] S. Basu Roy, G. Das, S. Amer-Yahia, and C. Yu. Interactive itinerary planning. In

Proceedings of IEEE International Conference on Data Engineering, pages 15–26,

2011.

[17] J. Bi, K. Bennett, M. Embrechts, C. Breneman, and M. Song. Dimensionality reduc-

tion via sparse support vector machines. The Journal of Machine Learning Research,

3:1229–1243, 2003.

[18] J. Biagioni and J. Eriksson. Map inference in the face of noise and disparity. In Pro-

ceedings of the 20th International Conference on Advances in Geographic Information

Systems, SIGSPATIAL ’12, pages 79–88, New York, NY, USA, 2012. ACM.

[19] J. Biagioni and J. Eriksson. Inferring road maps from GPS traces: Survey and com-

parative evaluation. Transportation Research Record: Journal of the Transportation

Research Board, page to appear, 2014.

[20] S. Borzsony, D. Kossmann, and K. Stocker. The skyline operator. In Proceedings of

IEEE International Conference on Data Engineering, pages 421–430, 2001.

[21] G. E. Box, G. M. Jenkins, and G. C. Reinsel. Time Series Analysis. Wiley, 2008.

[22] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. LOF: identifying density-

based local outliers. In Proceedings of the 6th ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining, pages 93–104, 2000.

BIBLIOGRAPHY 129

[23] I. Brilhante, J. A. Macedo, F. M. Nardini, R. Perego, and C. Renso. Where shall

we go today? planning touristic tours with tripbuilder. In Proceedings of the ACM

International Conference on Information & Knowledge Management, pages 757–762,

2013.

[24] Y. Bu, L. Chen, A. W.-C. Fu, and D. Liu. Efficient anomaly monitoring over moving

object trajectory streams. In Proceedings of the 15th ACM SIGKDD international

Conference on Knowledge Discovery and Data Mining, pages 159–168, 2009.

[25] F. Calabrese, G. Di Lorenzo, L. Liu, and C. Ratti. Estimating origin-destination

flows using mobile phone location data. IEEE Pervasive Computing, 10(4):36 –44,

2011.

[26] F. Calabrese, J. Reades, and C. Ratti. Eigenplaces: Segmenting space through digital

signatures. IEEE Pervasive Computing, 9(1):78–84, 2010.

[27] X. Cao, L. Chen, G. Cong, and X. Xiao. Keyword-aware optimal route search.

PVLDB, pages 1136–1147, 2012.

[28] P. S. Castro, D. Zhang, C. Chen, S. Li, and G. Pan. From taxi GPS traces to social

and community dynamics: A survey. ACM Computing Surveys, pages 17:1–17:34,

2013.

[29] P. S. Castro, D. Zhang, and S. Li. Urban traffic modelling and prediction using

large scale taxi GPS traces. In Proceedings of International Conference on Pervasive

Computing, pages 57–72, 2012.

[30] A. Ceder and N. Wilson. Bus network design. Transportation Research Part B:

Methodological, 20(4):331–344, 1986.

[31] V. Ceikute and C. Jensen. Routing service quality - local driver behavior versus

routing services. In Proceedings of IEEE International Conference on Mobile Data

Management, pages 97–106, 2013.

[32] S. Chawathe. Segment-based map matching. In IEEE Symposium on Intelligent

Vehicles, pages 1190–1197, 2007.

[33] S. Chawla, Y. Zheng, and J. Hu. Inferring the root cause in road traffic anomalies. In

Proceedings of IEEE International Conference on Data Mining, pages 141–150, 2012.

[34] C. Chen, D. Zhang, P. S. Castro, N. Li, L. Sun, and S. Li. Real-time detection of

anomalous taxi trajectories from GPS traces. In Proceeding of the 8th International

ICST Conference on Mobile and Ubiquitous Systems, pages 63–74, 2011.

[35] G. Chen, X. Jin, and J. Yang. Study on spatial and temporal mobility pattern of

urban taxi services. In Proceddings of the International Conference on Intelligent

Systems and Knowledge Engineering, pages 422–425, 2010.

130 BIBLIOGRAPHY

[36] T. A. Chua. The planning of urban bus routes and frequencies: A survey. Trans-

portation, 12(2):147–172, 1984.

[37] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space anal-

ysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5):603–

619, 2002.

[38] K. L. Cooke and E. Halsey. The shortest route through a network with time-

dependent internodal transit times. Journal of Mathematical Analysis and Appli-

cations, 14:493–498, 1966.

[39] E. M. Daly and M. Haahr. Social network analysis for routing in disconnected delay-

tolerant MANETs. In Proceedings of the 8th ACM International Symposium on

Mobile Ad Hoc Networking and Computing, MobiHoc ’07, pages 32–40, New York,

NY, USA, 2007. ACM.

[40] E. M. Daly, F. Lecue, and V. Bicer. Westland row why so slow? Fusing social media

and linked data sources for understanding real-time traffic conditions. In Proceedings

of the 2013 International Conference on Intelligent User Interfaces, IUI ’13, pages

203–212, New York, NY, USA, 2013. ACM.

[41] M. De Choudhury, M. Feldman, S. Amer-Yahia, N. Golbandi, R. Lempel, and C. Yu.

Automatic construction of travel itineraries using social breadcrumbs. In Proceedings

of ACM Conference on Hypertext and Hypermedia, pages 35–44, 2010.

[42] B. Ding, J. X. Yu, and L. Qin. Finding time-dependent shortest paths over large

graphs. In Proceedings of the International Conference on Extending Database Tech-

nology: Advances in Database Technology, pages 205–216, 2008.

[43] Y. Ding, S. Liu, J. Pu, and L. Ni. HUNTS: A trajectory recommendation system for

effective and efficient hunting of taxi passengers. In Proceedings of IEEE International

Conference on Mobile Data Management, volume 1, pages 107–116, June 2013.

[44] T. Fawcett. An introduction to roc analysis. Pattern Recognition Letters, 27(8):861

– 874, 2006.

[45] C. Furtlehner, J.-M. Lasgouttes, and A. de La Fortelle. A belief propagation approach

to traffic prediction using probe vehicles. In Proceedings of IEEE International Con-

ference on Intelligent Transportation Systems, pages 1022–1027, Sept 2007.

[46] Y. Ge, C. Liu, H. Xiong, and J. Chen. A taxi business intelligence system. In Proceed-

ings of the 17th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pages 735–738, 2011.

[47] Y. Ge, H. Xiong, C. Liu, and Z.-H. Zhou. A taxi driving fraud detection system. In

Proceedings of the IEEE International Conference on Data Mining, pages 181–190,

2011.

BIBLIOGRAPHY 131

[48] Y. Ge, H. Xiong, A. Tuzhilin, K. Xiao, M. Gruteser, and M. Pazzani. An energy-

efficient mobile recommender system. In Proceedings of the 16th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pages 899–908,

2010.

[49] Y. Ge, H. Xiong, A. Tuzhilin, K. Xiao, M. Gruteser, and M. Pazzani. An energy-

efficient mobile recommender system. In Proceedings of the 16th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pages 899–908,

2010.

[50] Y. Ge, H. Xiong, Z.-H. Zhou, H. Ozdemir, J. Yu, and K. C. Lee. Top-EYE: top-k

evolving trajectory outlier detection. In Proceedings of the 19th ACM International

Conference on Information and Knowledge Management, pages 1733–1736, 2010.

[51] F. Giannotti, M. Nanni, D. Pedreschi, F. Pinelli, C. Renso, S. Rinzivillo, and

R. Trasarti. Unveiling the complexity of human mobility by querying and mining

massive trajaectory data. The VLDB Journal, 20:695–719, 2011.

[52] J. Greenfeld. Matching GPS observations to locations on a digital map. In Proceedings

of the 81st Annual Meeting of the Transportation Research Board, 2002.

[53] A. Gühnemann, R. Schäfer, and K. Thiessenhusen. Monitoring traffic and emissions

by floating car data. In Institute of transport studies Australia, 2004.

[54] V. Guihaire and J.-K. Hao. Transit network design and scheduling: A global review.

Transportation Research Part A: Policy and Practice, 42(10):1251 – 1273, 2008.

[55] Y. Han and F. Moutarde. Analysis of large-scale traffic dynamics using non-negative

tensor factorization. In Proceedings of 19th World Congress on Intelligent Transport

Systems (ITSwc’2012), pages 22–26, 2012.

[56] Y. Han and F. Moutarde. Statistical traffic state analysis in large-scale transportation

networks using locality-preserving non-negative matrix factorization. IET Intelligent

Transport Systems,, 7(3):283–295, 2013.

[57] Z. He, X. Xu, and S. Deng. Discovering cluster-based local outliers. Pattern Recog-

nitionLetters, 24(9-10):1641–1650, 2003.

[58] I. Hefez, Y. Kanza, and R. Levin. TARSIUS: A system for traffic-aware route search

under conditions of uncertainty. In Proceedings of the 19th ACM SIGSPATIAL Inter-

national Conference on Advances in Geographic Information Systems, pages 517–520,

2011.

[59] R. Herring, A. Hofleitner, P. Abbeel, and A. Bayen. Estimating arterial traffic condi-

tions using sparse probe data. In Proceedings of the International IEEE Conference

on Intelligent Transportation Systems, pages 929–936, 2010.

132 BIBLIOGRAPHY

[60] A. V. Hill and W. C. Benton. Modelling intra-city time-dependent travel speeds

for vehicle scheduling problems. The Journal of the Operational Research Society,

43(4):343–351, 1992.

[61] A. Hofleitner, R. Herring, A. Bayen, Y. Han, F. Moutarde, and A. de La Fortelle.

Large scale estimation of arterial traffic and structural analysis of traffic patterns

using probe vehicles. In 91st Transportation Research Board Annual Meeting, number

12-0598, 2012.

[62] H.-P. Hsieh, C.-T. Li, and S.-D. Lin. Exploiting large-scale check-in data to rec-

ommend time-sensitive routes. In Proceedings of the ACM SIGKDD International

Workshop on Urban Computing, pages 55–62, 2012.

[63] H. Hu, Z. Wu, B. Mao, Y. Zhuang, J. Cao, and J. Pan. Pick-up tree based route

recommendation from taxi trajectoriesp Tree Based Route Recommendation. In

Proceedings of the International Conference on Web-Age Information Management,

pages 471–483, 2012.

[64] X. Hu, S. Gao, Y. Chiu, and D. Lin. Modeling routing behavior for vacant taxi cabs

in urban traffic netwroks. Transportation Research Record, pages 81–88, 2012.

[65] P. Hui, J. Crowcroft, and E. Yoneki. BUBBLE rap: Social-based forwarding in delay-

tolerant networks. IEEE Transactions on Mobile Computing, 10(11):1576–1589, Nov

2011.

[66] T. Hunter, P. Abbeel, and A. M. Bayen. The path inference filter: Model-based

low-latency map matching of probe vehicle data. IEEE Transactions on Intelligent

Transportation Systems, to appear, 2014.

[67] T. Hunter, P. Abbeel, R. Herring, and A. Bayen. Path and travel time inference from

GPS probe vehicle data. In Neural Information Processing Systems (NIPS), 2009.

[68] T. Hunter, A. Hofleitner, J. Reilly, W. Krichene, J. Thai, A. Kouvelas, P. Abbeel, and

A. M. Bayen. Arriving on time: estimating travel time distributions on large-scale

road networks. CoRR, abs/1302.6617, 2013.

[69] S. Jerby and A. Ceder. Optimal routing design for shuttle bus service. Transportation

Research Record: Journal of the Transportation Research Board, 1971:14–22, 2006.

[70] B. Jiang, J. Yin, and S. Zhao. Characterizing human mobility patterns in a large

street network. Physical Review E, 80:021136, 2009.

[71] E. Kanoulas, Y. Du, T. Xia, and D. Zhang. Finding fastest paths on a road net-

work with speed patterns. In Proceedings of the International Conference on Data

Engineering, page 10, 2006.

BIBLIOGRAPHY 133

[72] Y. Kanza, R. Levin, E. Safra, and Y. Sagiv. Interactive route search in the presence

of order constraints. Proc. VLDB Endow., 3(1-2):117–128, 2010.

[73] S. Kim, S. Shekhar, and M. Min. Contraflow transportation network reconfiguration

for evacuation route planning. IEEE Transactions on Knowledge and Data Engineer-

ing, 20(8):1115–1129, 2008.

[74] R. Kohli and R. Krishnamurti. Probabilistic greedy heuristics for satisfiability prob-

lems.

[75] D. Krammer. Smart cities will need big data. Physics Today, 66(9):19–20, 2013.

[76] T. Kurashima and et al. Travel route recommendation using geotags in photo sharing

sites. In Proceedings of the 19th ACM International Conference on Information and

Knowledge Management, pages 579–588, 2010.

[77] J. Lee, I. Shin, and G.-L. Park. Analysis of the passenger pick-up pattern for taxi lo-

cation recommendation. In Proceedings of the International Conference on Networked

Computing and Advanced Information Management, pages 199–204, 2008.

[78] J.-G. Lee, J. Han, and X. Li. Trajectory outlier detection: A partition-and-detect

framework. In Proceedings of 24th IEEE International Conference on Data Engineer-

ing, pages 140 –149, 2008.

[79] R. Levin and Y. Kanza. TARS: traffic-aware route search. GeoInformatica, pages

1–40, 2013.

[80] B. Li, D. Zhang, L. Sun, C. Chen, S. Li, G. Qi, and Q. Yang. Hunting or waiting?

discovering passenger-finding strategies from a large-scale real-world taxi dataset.

In Proceedings of 9th IEEE International Conference on Pervasive Computing and

Communications Workshops (PERCOM Workshops), pages 63 –68, 2011.

[81] F. Li, D. Cheng, M. Had., G. Kollios, and S.-H. Teng. On trip planning queries in

spatial databases. In Proc. of SSTD, pages 273–290, 2005.

[82] Q. Li, Z. Zeng, T. Zhang, J. Li, and Z. Wu. Path-finding through flexible hierarchical

road networks: An experiential approach using taxi trajectory data. International

Journal of Applied Earth Observation and Geoinformation, 13(1):110 – 119, 2011.

[83] Q. Li, Z. Zheng, B. Yang, and T. Zhang. Hierarchical route planning based on taxi

GPS-trajectories. In Proceedings of the International Conference on Geoinformatics,

pages 1–5, 2009.

[84] X. Li, M. Li, W. Shu, and M. Wu. A practical map-matching algorithm for GPS-

based vehicular networks in Shanghai urban area. In IET Conference on Wireless,

Mobile and Sensor Networks, pages 454–457, 2007.

134 BIBLIOGRAPHY

[85] X. Li, X. Li, J. Han, S. Kim, and H. Gonzalez. ROAM: Rule- and motif-based

anomaly detection in massive moving object data sets. In Proceedings of 7th SIAM

International Conference on Data Mining, 2007.

[86] X. Li, Z. Li, J. Han, and J.-G. Lee. Temporal outlier detection in vehicle traffic data.

In Proceedings of 25th IEEE International Conference on Data Engineering, pages

1319–1322, 2009.

[87] X. Li, G. Pan, Z. Wu, G. Qi, S. Li, D. Zhang, W. Zhang, and Z. Wang. Prediction

of urban human mobility using large-scale taxi traces and its applications. Frontiers

of Computer Science in China, 6(1):111–121, 2012.

[88] X. Liang, X. Zheng, W. Lv, T. Zhu, and K. Xu. The scaling of human mobility by taxis

is exponential. Physica A: Statistical Mechanics and its Applications, 391(5):2135 –

2144, 2012.

[89] Z. Liao, Y. Yu, and B. Chen. Anomaly detection in GPS data based on visual

analytics. In Proceedings of the IEEE Symposium on Visual Analytics Science and

Technology, pages 51 –58, 2010.

[90] S. Lin. Computer solutions of the traveling salesman problem. Bell System Technical

Journal, 44(10):2245–2269, 1965.

[91] M. Lippi, M. Bertini, and P. Frasconi. Collective traffic forecasting. In Proceed-

ings of the European conference on Machine Learning and Knowledge Discovery in

Databases: Part II, pages 259–273, 2010.

[92] B. Liu, Y. Fu, Z. Yao, and H. Xiong. Learning geographical preferences for point-

of-interest recommendation. In Proceedings of the 19th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 1043–1051, 2013.

[93] C.-L. Liu, T.-W. Pai, C.-T. Chang, and C.-M. Hsieh. Path-planning algorithms for

public transportation systems. In Proceedings of IEEE Conference on Intelligent

Transportation Systems, pages 1061–1066, 2001.

[94] F. T. Liu, K. M. Ting, and Z.-H. Zhou. Isolation-based anomaly detection. ACM

Transactions on Knowledge Discovery from Data, 6(1):3:1–3:39, 2012.

[95] L. Liu, C. Andris, and C. Ratti. Uncovering cabdrivers’ behavior patterns from their

digital traces. Computers, Environment and Urban Systems, 34(6):541 – 548, 2010.

[96] S. Liu, Y. Liu, L. M. Ni, J. Fan, and M. Li. Towards Mobility-based Clustering. In

Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pages 919–928, 2010.

[97] W. Liu, Y. Zheng, S. Chawla, J. Yuan, and X. Xing. Discovering spatio-temporal

causal interactions in traffic data streams. In Proceedings of the ACM SIGKDD

Conference on Knowledge Discovery and Data Mining, pages 1010–1018, 2011.

BIBLIOGRAPHY 135

[98] X. Liu, J. Biagioni, J. Eriksson, Y. Wang, G. Forman, and Y. Zhu. Mining large-scale,

sparse GPS traces for map inference: Comparison of approaches. In Proceedings of

the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pages 669–677, 2012.

[99] X. Liu, Y. Zhu, Y. Wang, G. Forman, L. M. Ni, Y. Fang, and M. Li. Road recognition

using coarse-grained vehicular traces. Technical report, HP Lab, 2012.

[100] Y. Liu, C. Kang, S. Gao, and Y. Xiao. Understanding intra-urban trip patterns from

taxi trajectory data. Journal of Geographical Systems, 14(4):463–483, 2012.

[101] Y. Liu, F. Wang, Y. Xiao, and S. Gao. Urban land uses and traffic ‘source-sink areas’:

Evidence from GPS-enabled taxi data in Shanghai. Landscape and Urban Planning,

106(1):73 – 87, 2012.

[102] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang. Map-matching for

low-sampling-rate GPS trajectories. In Proceedings of the 17th ACM SIGSPATIAL

International Conference on Advances in Geographic Information Systems, GIS ’09,

pages 352–361, New York, NY, USA, 2009. ACM.

[103] E. H.-C. Lu, C.-Y. Chen, and V. S. Tseng. Personalized trip recommendation with

multiple constraints by mining user check-in behaviors. In Proceedings of the 20th In-

ternational Conference on Advances in Geographic Information Systems, pages 209–

218, 2012.

[104] X. Lu, C. Wang, J.-M. Yang, Y. Pang, and L. Zhang. Photo2trip: generating travel

routes from geo-tagged photos for trip planning. In Proceedings of the International

Conference on Multimedia, pages 143–152, 2010.

[105] Y. lun Chou. Statistical analysis with business and economic applications. Holt,

Rinehart and Winston, 1969.

[106] S. Ma, Y. Zheng, and O. Wolfson. T-share: A large-scale dynamic taxi ridesharing

service. In Proceedings of 29th IEEE International Conference on Data Engineering,

pages 410–421, 2013.

[107] B. M.H. and M. H.S. TRUST: A lisp program for the analysis of transit route

configurations. Transportation Research Record, 1283:125–135, 1990.

[108] L. Moreira-Matias, J. Gama, M. Ferreira, J. Mendes-Moreira, and L. Damas. Predict-

ing taxi-passenger demand using streaming data. IEEE Transactions on Intelligent

Transportation Systems, 14(3):1393–1402, Sept 2013.

[109] G. F. Newell. Some issues relating to the optimal design of bus routes. Transportation

Science, 13(1):20–35, 1979.

136 BIBLIOGRAPHY

[110] A. T. Palma, V. Bogorny, B. Kuijpers, and L. O. Alvares. A clustering-based ap-

proach for discovering interesting places in trajectories. In Proceedings of the ACM

Symposium on Applied Computing, pages 863–868, 2008.

[111] B. Pan, Y. Zheng, D. Wilkie, and C. Shahabi. Crowd sensing of traffic anomalies based

on human mobility and social media. In Proceedings of the 21st ACM SIGSPATIAL

International Conference on Advances in Geographic Information Systems, SIGSPA-

TIAL’13, pages 334–343, New York, NY, USA, 2013. ACM.

[112] G. Pan, G. Qi, Z. Wu, D. Zhang, and S. Li. Land-use classification using taxi GPS

traces. IEEE Transactions on Intelligent Transportation Systems, 14(1):113–123,

2013.

[113] L. X. Pang, S. Chawla, W. Liu, and Y. Zheng. On mining anomalous patterns in

road traffic streams. In Proceedings of the International Conference on Advanced

Data Mining and Applications - Volume Part II, pages 237–251, 2011.

[114] C. Parent, S. Spaccapietra, C. Renso, G. Andrienko, N. Andrienko, V. Bogorny, M. L.

Damiani, A. Gkoulalas-Divanis, J. Macedo, N. Pelekis, Y. Theodoridis, and Z. Yan.

Semantic trajectories modeling and analysis. ACM Computing Surveys, 45(4):42:1–

42:32, Aug. 2013.

[115] S. Pattnaik, S. Mohan, and V. Tom. Urban bus transit route network design using

genetic algorithm. Journal of Transportation Engineering, 124(4):368–375, 1998.

[116] C. Peng, X. Jin, K.-C. Wong, M. Shi, and P. Liò. Collective human mobility patter

from taxi trips in urban Area. PLoS ONE, 7(4):e34487, 2012.

[117] S. Phithakkitnukoon, M. Veloso, C. Bento, A. Biderman, and C. Ratti. Taxi-aware

map: Identifying and predicting vacant taxis in the city. In Proceedings of Ambient

Intelligence, pages 86–95, 2010.

[118] J. Powell, Y. Huang, F. Bastani, and M. Ji. Towards reducing taxicab cruising

time using spatio-temporal profitability maps. In Proceedings of the International

Conference on Advances in Spatial and Temporal Databases, volume 6849, pages

242–260. 2011.

[119] G. Qi, X. Li, S. Li, G. Pan, Z. Wang, and D. Zhang. Measuring social functions of

city regions from large-scale taxi behaviors. In Proceedings of 9th IEEE International

Conference on Pervasive Computing and Communications Workshops (PERCOM

Workshops), pages 384 –388, 2011.

[120] G. Qi, G. Pan, S. Li, Z. Wu, D. Zhang, L. Sun, and L. Yang. How long a passenger

waits for a vacant taxi – large-scale taxi trace mining for smart cities. In 2013 IEEE

and Internet of Things (iThings/CPSCom), IEEE International Conference on and

BIBLIOGRAPHY 137

IEEE Cyber, Physical and Social Computing Green Computing and Communications

(GreenCom), pages 1029–1036, Aug 2013.

[121] M. Rahmani and H. Koutsopoulos. Path inference of low-frequency gps probes for

urban networks. In Proceedings of International IEEE Conference on Intelligent

Transportation Systems, pages 1698–1701, Sept 2012.

[122] M. Rahmani and H. Koutsopoulos. Path Inference of Sparse GPS Probes for Urban

Networks: Methods and Applications. PhD thesis, Stockholm, 2012. QS 2012.

[123] S. Rogers, P. Langley, and C. Wilson. Mining gps data to augment road models.

In Proceedings of the 5th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 104–113, 1999.

[124] R.-P. Schäfer, K.-U. Thiessenhusen, and P. Wagner. A traffic information system

by means of real-time floating-car data. In World Congress on Intelligent Transport

Systems, 2002.

[125] S. Schroedl, K. Wagstaff, S. Rogers, P. Langley, and C. Wilson. Mining GPS traces

for map refinement. Data Mining and Knowledge Discovery, 9:59–87, 2004.

[126] M. Sharifzadeh, M. Kolahdouzan, and C. Shahabi. The optimal sequenced route

query. The VLDB Journal, 17(4):765–787, 2008.

[127] R. R. Sillito and R. B. Fisher. Semi-supervised learning for anomalous trajectory

detection. In Proceedings of British Machine Vision Conference, 2008.

[128] W. Souffriau and P. Vansteenwegen. Tourist trip planning functionalities: State–

of–the–art and future. In Proceedings of Current Trends in Web Engineering, pages

474–485, 2010.

[129] H. Su and S. Yu. Hybrid GA based online support vector machine model for short-

term traffic flow forecasting. In Proceedings of the International Conference on Ad-

vanced Parallel Processing Technologies, pages 743–752, 2007.

[130] L. Sun, D. Zhang, C. Chen, P. S. Castro, S. Li, and Z. Wang. Real time anomalous

trajectory detection and analysis. Mobile Networks and Applications, 18(3):341–356,

2013.

[131] W. Szeto and Y. Wu. A simultaneous bus route design and frequency setting problem

for Tin Shui Wai, Hong Kong. European Journal of Operational Research, 209(2):141

– 155, 2011.

[132] T. Takayama, K. Matsumoto, and A. Kumagai. Waiting/cruising location recom-

mendation for efficient taxi business. International Journal of Systems Applications,

Engineering & Development, 5:224–236, 2011.

138 BIBLIOGRAPHY

[133] J. Truscott and N. M. Ferguson. Evaluating the adequacy of gravity models as a

description of human mobility for epidemic modelling. PLoS Computational Biology,

8(10):e1002699, 2012.

[134] P. Vansteenwegen, W. Souffriau, G. V. Berghe, and D. V. Oudheusden. The city trip

planner: An expert system for tourists. Expert Systems with Applications, 38(6):6540

– 6546, 2011.

[135] M. Veloso, S. Phithakkitnukoon, and C. Bento. Urban mobility study using taxi

traces. In Proceedings of the International Workshop on Trajectory Data Mining and

Analysis, pages 23–30, 2011.

[136] M. Veloso, S. Phithakkitnukoon, C. Bento, N. Fonseca, , and P. Olivier. Exploratory

study of urban flow using taxi traces. In The First Workshop on Pervasive Urban

Applications, 2011.

[137] F.-Y. Wang. Driving into the future with ITS. IEEE Intelligent Systems, 21(3):94–95,

2006.

[138] F.-Y. Wang. Parallel control and management for intelligent transportation systems:

Concepts, architectures, and applications. IEEE Transactions on Intelligent Trans-

portation Systems, 11(3):630–638, 2010.

[139] H. Wang, H. Zou, Y. Yue, and Q. Li. Visualizing Hot Spot Analysis Result based

on Mashup. In Proceedings of the International Workshop on Location Based Social

Networks, pages 45–48, 2009.

[140] Z. Wang and J. Crowcroft. Analysis of shortest-path routing algorithms in a dynamic

network environment. SIGCOMM Comput. Commun. Rev., 22(2):63–71, 1992.

[141] Z. Wang, M. Lu, X. Yuan, J. Zhang, and H. Van De Wetering. Visual traffic jam

analysis based on trajectory data. IEEE Transactions on Visualization and Computer

Graphics, 19(12):2159–2168, Dec 2013.

[142] H. Wen, Z. Hu, J. Guo, L. Zhu, and J. Sun. Operational analysis on beijing road

network during the olympic games. Journal of Transportation Systems Engineering

and Information Technology, 8(6):32–37, 2008.

[143] H. wen Chang, Y. chin Tai, and J. Y. jen Hsu. Context-aware taxi demand hotspots

prediction. International Journal of Business Intelligence and Data Mining, 5(1):3–

18, 2010.

[144] K. Yamamoto, K. Uesugi, and T. Watanabe. Adaptive routing of cruising taxis by

mutual exchange of pathways. In Proceedings of the International Conference on

Knowledge-Based Intelligent Information and Engineering Systems, Part II, pages

559–566, 2010.

BIBLIOGRAPHY 139

[145] Z. Yan, D. Chakraborty, C. Parent, S. Spaccapietra, and K. Aberer. SeMiTri: A

framework for semantic annotation of heterogeneous trajectories. In Proceedings of

the 14th International Conference on Extending Database Technology, EDBT/ICDT

’11, pages 259–270, New York, NY, USA, 2011. ACM.

[146] B. Yao, M. Tang, and F. Li. Multi-approximate-keyword routing in GIS data. In

Proc. of GIS, pages 201–210, 2011.

[147] M. Ye, P. Yin, W.-C. Lee, and D.-L. Lee. Exploiting geographical influence for col-

laborative point-of-interest recommendation. In Proceedings of the 34th international

ACM SIGIR conference on Research and development in Information Retrieval, pages

325–334, 2011.

[148] J. Yuan, Y. Zheng, and X. Xie. Discovering regions of different functions in a city

using human mobility and POIs. In Proceedings of the ACM SIGKDD international

Conference on Knowledge Discovery and Data Mining, pages 186–194, 2012.

[149] J. Yuan, Y. Zheng, X. Xie, and G. Sun. Driving with knowledge from the physi-

cal world. In Proceedings of the 17th ACM SIGKDD International Conference on

Knowledge Discovery and Data mining, pages 316–324, 2011.

[150] J. Yuan, Y. Zheng, X. Xie, and G. Sun. T-drive: Enhancing driving directions with

taxi drivers’ intelligence. IEEE Transactions on Knowledge and Data Engineering,

25(1):220–232, 2013.

[151] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and Y. Huang. T-Drive:

driving directions based on taxi trajectories. In Proceedings of the 18th SIGSPATIAL

International Conference on Advances in Geographic Information Systems, pages 99–

108, 2010.

[152] J. Yuan, Y. Zheng, C. Zhang, X. Xie, and G. Sun. An interactive voting-based map

matching algorithm. In Proceedings of the International Conference on Mobile Data

Management, pages 43–52, 2010.

[153] J. Yuan, Y. Zheng, L. Zhang, X. Xie, and G. Sun. Where to find my next passenger?

In Proceedings of the International Conference on Ubiquitous Computing, pages 109–

118, 2011.

[154] N. J. Yuan, Y. Zheng, L. Zhang, and X. Xie. T-finder: A recommender system for

finding passengers and vacant taxis. IEEE Transactions on Knowledge and Data

Engineering, 25(10):2390–2403, 2013.

[155] Y. Yue, H. dong Wang, B. Hu, Q. quan Li, Y. guang Li, and A. G. Yeh. Exploratory

calibration of a spatial interaction model using taxi GPS trajectories. Computers,

Environment and Urban Systems, 36(2):140 – 153, 2012.

140 BIBLIOGRAPHY

[156] Y. Yue, Y. Zhuang, Q. Li, and Q. Mao. Mining time-dependent attractive areas and

movement patterns from taxi trajectory data. In Proceedings of the International

Conference on Geoinformatics, pages 1–6, 2009.

[157] D. Zhang, B. Guo, and Z. Yu. The emergence of social and community intelligence.

Computer, 44(7):21–28, 2011.

[158] D. Zhang, N. Li, Z.-H. Zhou, C. Chen, L. Sun, and S. Li. iBAT: detecting anomalous

taxi trajectories from GPS traces. In Proceedings of the 13th International Conference

on Ubiquitous Computing, pages 99–108, 2011.

[159] D. Zhang, Y. Li, F. Zhang, M. Lu, Y. Liu, and T. He. coRide: Carpool service with a

win-win fare model for large-scale taxicab networks. In Proceedings of the 11th ACM

Conference on Embedded Networked Sensor Systems, SenSys ’13, pages 9:1–9:14, New

York, NY, USA, 2013. ACM.

[160] J. Zhang, F.-Y. Wang, K. Wang, W.-H. Lin, X. Xu, and C. Chen. Data-driven in-

telligent transportation systems: A survey. IEEE Transactions on Intelligent Trans-

portation Systems, 12(4):1624–1639, 2011.

[161] W. Zhang, S. Li, and G. Pan. Mining the semantics of origin-destination flows using

taxi traces. In Proceedings of the Workshop of Ubiquitous Computing, pages 943–949,

2012.

[162] Z. Zhang, D. Yang, T. Zhang, Q. He, and X. Lian. A study on the method for

cleaning and repairing the probe vehicle data. IEEE Transactions on Intelligent

Transportation Systems, 14(1):419–427, 2013.

[163] F. Zhao and X. Zeng. Optimization of transit route network, vehicle headways and

timetables for large-scale transit networks. European Journal of Operational Research,

186(2):841 – 855, 2008.

[164] X. Zheng, X. Liang, and K. Xu. Where to wait for a taxi? In Proceedings of the

ACM SIGKDD International Workshop on Urban Computing, pages 149–156, 2012.

[165] Y. Zheng, Y. Liu, J. Yuan, and X. Xie. Urban computing with taxicabs. In Proceedings

of the 13th International Conference on Ubiquitous Computing, pages 89–98, 2011.

[166] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma. Mining interesting locations and travel

sequences from GPS trajectories. In Proceedings of the 18th International Conference

on World Wide Web, pages 791–800, 2009.

[167] Y.-T. Zheng, Z.-J. Zha, and T.-S. Chua. Mining travel patterns from geotagged

photos. ACM Transactions on Intelligent Systems and Technology, 3(3):56:1–56:18,

2012.

BIBLIOGRAPHY 141

[168] B. D. Ziebart, A. L. Maas, A. K. Dey, and J. A. Bagnell. Navigate like a cabbie:

probabilistic reasoning from observed context-aware behavior. In Proceedings of the

10th International Conference on Ubiquitous Computing, pages 322–331, 2008.

[169] J. Zobel and A. Moffat. Inverted files for text search engines. ACM Computing

Surveys, 38(2), 2006.

APPENDIX A. APPENDIX 143

Appendix A

Appendix

Contents

A.1 Proof of the FIFO Property . 143

A.2 Edge Modelling . 144

A.2.1 Taxi Trajectory Representation and Indexing 144

A.2.2 Transit Time Estimation . 146

A.3 Venue Category Encoding and Retrieving 146

A.1 Proof of the FIFO Property

Proof. For two users (A and B), if user A starts from vi earlier than user B (sTA < sTB),

then user A would arrive at vi+1 at least the same time as user B (aTA ≤ aTB).

Since the taxi GPS traces can provide more information about potential routes, such as

the length, estimated travel time, and popularity [31], we assume that we could recommend

the user with the fastest driving routes at the given time of the day for any given pair of

origin and destination (i.e. OD).

Consider the case in Figure A.1: both users (user A and B) drive from vi to vi+1 through

the same path (i.e. Path 1). User A would be ahead of user B since user A departures from

vi earlier than user B. Assuming that the traffic conditions in the former segment of Path 1

might be better at the time when user B departures (i.e. sTB), user B would take less time

to complete this segment. Therefore, it is likely that user A and user B meet at a certain

point (e.g. the point with star marker) in the route before reaching the destination. If so,

user A and user B would arrive at vi+1 at the same time; otherwise, user A would arrive

at vi+1 earlier than user B.

144 A.2. EDGE MODELLING

user B

meeting point

vi+1

user A
Path 1

vi

vi+1

user A

user B

user C

Path 1

vi

Path 2

Figure A.1: User A and user B travel from vi to vi+1 through the same path (a) and
different paths (b).

Consider the case in Figure A.1: user A drives from vi to vi+1 through Path 1 at time

sTA, while user B drivers from vi to vi+1 through Path 2 at time sTB. For comparison, we

assume that a user C drives from vi to vi+1 through Path 2 at time sTA. Since the fastest

driving route between vi and vi+1 when departing at the time sTA is Path 1, we conclude

that user A would arrive at vi+1 earlier than user C. Similar to the case in Figure A.1, as

user C departures from vi earlier than user B through the same path (i.e. Path 2), user C

would arrive at vi+1 no later than user B. Therefore, user A would arrive at vi+1 earlier

than user B.

A.2 Edge Modelling

In this appendix, we first introduce the representation and indexing of the taxi GPS

trajectory, then estimate the transit time between any two given venues (edge values),

depending on the user’s departure time.

A.2.1 Taxi Trajectory Representation and Indexing

Figure A.2 illustrates a taxi delivery trajectory. Each small circle point refers to a GPS

sampling point; each triangle point refers to a venue in the targeted city. Note that the

bigger circles (e.g., Ci) are the clusters of adjacent venues, constructed using the popular

mean-shift algorithm [37,76].

During a taxi ride, the driver may go through several venue clusters, and how long it

needs to transit between any two passing-by clusters can be inferred. Thus, we represent

the taxi trajectory as a sequence of venue clusters. For example, the taxi trajectory in

Figure A.2 can be represented as:

〈(T̄i, Ci), (T̄j , Cj), (T̄k, Ck)〉

where T̄i is the average value of the sampling time between the taxi’s first entry of and first

exist from the venue cluster Ci. Consequently, from this trajectory, we can deduce that the

APPENDIX A. APPENDIX 145

pi = (ti, xi, yi)
Ci

Cj

Ck

GPS Point

Venue

Figure A.2: Illustration of a taxi delivery trajectory.

transit time needed from Ci to Cj when leaving Ci at time T̄i is T̄j − T̄i, from Ci to Ck at

time T̄i is T̄k − T̄i, and from Cj to Ck departing from Cj at time T̄j is T̄k − T̄j . Thus, this

trajectory can be further represented as three quadruples pairs:

1.〈⌊T̄i�, Ci, Cj , T̄j − T̄i〉

2.〈⌊T̄i�, Ci, Ck, T̄k − T̄i〉

3.〈⌊T̄j�, Cj , Ck, T̄k − T̄j〉

Operation ⌊·� is to get the corresponding time slot of the day for a given point of time.

In particular, we divide a day into five time slots in the scope of this paper, as shown in

Table A.1. Note that second and fifth time slots are the rush hours, and more transit time

is needed usually. In total, there are n(n−1)
2 number of quadruples pairs for a given taxi

trajectory, where n is the number of venue clusters that the taxi bypasses.

Table A.1: Divided time slots of a day.

Time slot Specific time duration

1 00:00∼05:59
2 06:00∼07:59
3 08:00∼10:59
4 11:00∼16:59
5 17:00∼19:59
6 20:00∼23:59

We can derive hundreds of thousands of quadruples pairs from the taxi GPS trace

dataset using this representation. The quadruples pairs with the same first three elements

(i.e. time slot, the departure cluster, and the arrival cluster) will have the same Id.

146 A.3. VENUE CATEGORY ENCODING AND RETRIEVING

Venue

Categories

Food
Art &

Entertainment

Outdoors &

Recreations

Professional

& Other

Places
Nightlife Spot

Shop &

Service

Travel &

Transport

Bridge Beach Garden ...

Level=1

Level=2

Residences
College &

University

Athletic &

Sports

Baseball

Field

Basketball

Court
...

Level=3

Figure A.3: Ontology structure of venue categories.

A.2.2 Transit Time Estimation

Since the best way to move from one venue to anther inside the same cluster is by

walking, the transit time between within-cluster venues is simply estimated by the ratio

between their spherical distance and the walking speed (i.e. 4.5 km/h). For venues in

different clusters (e.g. Ci and Cj), the transit time depends on the user’s departure time

(e.g. 9:00 AM), and it can be estimated by averaging the fourth element in all quadruples

pairs who has the index of 〈3, Ci, Cj〉. Considering the difference in driving speed between

a traveller and local taxi drivers, and the time spent on parking, we multiply the transit

time estimated from taxi trajectories with a constant c1 (=1.3) in the scope of this paper,

and add a constant parking time c2 (=3 minutes).

A.3 Venue Category Encoding and Retrieving

In this appendix, we propose a simple venue category encoding mechanism to retrieve

user-preferred venues from all city venues efficiently, according to the user-preferred venue

categories (CATu) in the itinerary query (IQ). We first briefly introduce how Foursquare

organizes venue category, and then describe our proposed solution.

In Foursquare, venues are organized in a three-level ontology structure (Figure A.3). It

has 9 categories on the first level and 412 sub-/sub-subcategories (i.e. level 2 and level 3).

Further analysis showed that, in Foursquare, each venue is often marked with more than

one category labels distributed across different levels. For example, the average number of

labels per venue in San Francisco is 1.421. In addition, when planning for an actual visit,

users may describe a venue at different level of details as their knowledge, background, and

experiences vary. For instance, when a user specifies the “Food” category, not only venues

marked with “Food”, but also those associated with the child category labels, e.g. “New

APPENDIX A. APPENDIX 147

American Restaurant” and “Bakery” should be returned.

Based on these two facts, we propose a simple venue encoding mechanism that assigns

a unique number to each venue category label with information about its superordinate

integrated. Specifically, we use a 6-digit number to encode a venue category label. For

Level 1 categories, only the first two digits are used and the rest digits are set to zero.

For example, 05—00—00 refers to the “Outdoors & Recreations” category label. For a

Level 2 category label (sub-category), the first two digits refers to its parent category, the

middle two digits encodes its position among all siblings, and the last two digits remain

zero. Taking 05—01—00 as an example, it refers to the “Bridge” label which is a child of

“Outdoors & Recreations”. Similarly, for Level 3 category labels (sub-sub-category), all

six digits are non-zeros. The former four digits denote to which the refer to its category

and sub-category it belongs, respectively.

With this coding system, the user-preferred venues can be retrieved through the follow-

ing four steps.

Step 1: For each user-specified venue category, we encode it into a 6-digit number. The

number is denoted as Numi.

Step 2: For each venue in the targeted city, we encode its venue category labels into

corresponding 6-digit numbers. Note that one venue may be assigned to more than one

label numbers.

Step 3: Given the encoded number for the user-specified venue category (i.e. Numi,

the output of Step 1), we retrieve the user-preferred venues from all venues in the targeted

city. Specifically,

— if the user-specified venue category has no child labels (i.e. the last two digits of Numi

are non-zeros), venues in the targeted city with the exactly same encoded number as

Numi would be marked as user-preferred venues;

— otherwise, venues that contain the encoded numbers Numi or any of child labels

of Numi should be retrieved. For example, if Numi=01—01—00, venues contain

encoded numbers from 01—01—00 to 01—01—99 are all returned.

Step 4: Repeat Step 1∼3 until all user-specified venue category labels are checked.

Venues retrieved in each round will be unified to form the final output.

LIST OF FIGURES 149

List of figures

1.1 The trajectory in blue line is a passenger-delivery one while in the red line

is a passenger-finding one. The red pinpoint marker denotes the passenger

pick-up point; the green pinpoint marker denotes the passenger drop-off point. 3

1.2 Screen shots of the popular apps. 6

1.3 Organization of the rest of the thesis. 9

2.1 Word clouds generated by keywords from literatures during the recent 4

years. Keywords with bigger size refer to more popular studied topics. . . . 23

3.1 Illustration of two trajectories. The marks denote the sampling points. . . . 29

4.1 Example taxi trajectories between S and D. 33

4.2 Traces of a taxi in Hangzhou city during a month, where red or blue indicates

the taxi is occupied or vacant. 36

4.3 An example of a trajectory with augmented cells (a); Comparing existing

trajectory with a new trajectory (b). 37

4.4 Sample trajectory used to illustrate a cell’s neighbours. 38

4.5 Overview of our approach. 40

4.6 Running example for iBOAT. 43

4.7 Weighting function σ. 44

4.8 Detected anomalous sub-trajectories from T-6 using iBOAT (a); Plot of

ongoing support (b); Plot of ongoing score (c). 47

4.9 The AUC value (blue) and average time(green) under varying θ. 48

4.10 The AUC value (blue) and average time(green) under varying n. 49

4.11 The ROC curves for T-1 (left) and T-8 (right). 50

150 LIST OF FIGURES

4.12 A situation the fixed-window method (k = 2) fails to classify as anomalous:

two normal routes (route A and B) are in dark blue; an anomalous trajectory

(in red) switches from route A to route B at their intersection. 51

4.13 A trajectory where the taxi had to retrace its path due to a blocked route. . 52

4.14 Two anomalous trajectories of different types. The normal trajectory be-

tween S and D is in blue, cells adjacent to normal cells are in orange, and

anomalous cells in red. 53

4.15 Running times of iBOAT and iBAT on all the datasets. 54

4.16 Relationship between the number of OD pairs (y− axis) and the number of

trajectories between an OD pair (x− axis). 55

4.17 Areas where most of the anomalous trips began. 56

4.18 Avoiding excuses for taxi driving fraud detection. 57

4.19 Application of new road detection case (Best viewed in the digital version). 58

4.20 Anomaly score change with the accumulating of trajectories 59

5.1 An illustrative example of the taxi GPS traces (left); the passenger flow

(middle), and the travel time among bus stops (right). 65

5.2 The two-phase bus route planning framework. 66

5.3 CDF result of grid cells having PDRs. 69

5.4 City partitions near Hangzhou Railway Station. 70

5.5 Illustrative example of splitting. Big cluster formed via merging (left). Big

cluster split into 4 walkable size clusters (right, in four different colors). . . 72

5.6 Average passenger flow (left) and bus travel time matrix (right). 74

5.7 Demonstration of Criterion 2 (left) and Criterion 5 (right). 75

5.8 A bus route directed graph for a given OD. The route graph is got by graph

building algorithm (left) and its corresponding graph after applying graph

pruning (right). 77

5.9 Comparison results with k-means (best viewed in the digital version). Results

got by k-means (left) and results got by our method (right). 82

5.10 Convergence study of the proposed BPS algorithm. 83

5.11 CDF results of cluster size under different Th1 (Th2 = 500 m (left) and

under different Th2 (Th1 = 150 m) (right). 84

5.12 Skyline route results under different Th1 (Th2 = 450 m) (left) and under

different Th2 (Th1 = 150 m) (right). 84

5.13 The maximum number of passengers under different Th1 and Th2 combina-

tions (left); Time cost under different Th1 and Th2 combinations (right). . 85

List of figures 151

5.14 Selected bus routes at different δ (left); The route graph complexity and

time cost under different δ (right). 85

5.15 The number of stops of candidate route stops statistics for 3 OD pairs. . . . 86

5.16 The relationship between the number of stops and total travel time statistics

for 3 OD pairs. 87

5.17 Detected skyline routes and other candidate routes. 88

5.18 Comparison results with baseline under different k values. 88

5.19 Comparison results of the selected bus routes in two directions to that in

one direction. RO→D (top left); RD→O (top right); RO↔D (bottom). 89

5.20 Results comparison. Planned routes (top left); Passenger flow comparison

of two segments at different frequency (top right); Opened night-bus route

(bottom left); Number of delivered passengers at different frequency (R1, R2

and R3, bottom right). 91

5.21 The number of passengers on the bus before reaching the stop for OD pair 1. 93

6.1 The framework of our proposed TripPlanner. 101

6.2 Relevant information of the node provided by Foursquare. 103

6.3 Illustration of the dynamic network built with Foursquare and Taxi GPS

data sets. 105

6.4 An illustrative example of inserting a venue into a candidate route. 107

6.5 Results of parameter sensitivity study. 115

6.6 Results of efficiency evaluation. 116

6.7 Results of effectiveness evaluation. 118

6.8 Results of the case study. (a)∼(d) show the trip routes on Google map (in

the spatial dimension). 122

A.1 User A and user B travel from vi to vi+1 through the same path (a) and

different paths (b). 144

A.2 Illustration of a taxi delivery trajectory. 145

A.3 Ontology structure of venue categories. 146

List of tables

1.1 Popular taxi-related apps running on smart phones. 5

3.1 Fields for a GPS entry with a sample . 26

4.1 Datasets used in our experiments. 45

4.2 AUC values of the different algorithms. 50

4.3 Distribution of anomalous trajectories with respect to travelling distance

and time. 56

5.1 Detailed information about studied OD pairs. 82

5.2 Two metrics of the selected bus routes. 90

5.3 Total travel time of the bus routes. 91

6.1 A brief comparison between different work and ours. 100

6.2 The information about three designed cases. 119

A.1 Divided time slots of a day. 145

	Title_Chao
	Title_Chao2
	thesis
	Introduction
	Background
	Research Motivations and Contributions
	Organization

	Literature Review
	Social Dynamics
	Hotspot Identification
	Measuring the Linkage Strength between Areas
	Discovering Physical Laws of Human Movement

	Traffic Dynamics
	Trajectory Mapping
	Traffic Monitoring and Forecasting
	Traffic Conditions Monitoring
	Traffic Conditions Forecasting

	Traffic Outlier Detection

	Operational Dynamics
	Passenger/Taxi Finding
	Passenger-demand Hotspot Recommendation
	Uncovering Passenger-finding Strategies
	Vacant Taxi Finding

	Route Planning
	Anomalous Driving Behaviours Detection

	A Statistical Study

	Data Preparation and Representation
	Data Preparation
	Data Format
	Data Problems

	Data Representation

	iBOAT: On-line Anomalous Trajectory Detection
	Introduction
	Related Work
	Preliminaries and Problem Statement
	iBOAT: Isolation-based On-line Anomalous Trajectory Detection
	Offline Pre-processing
	iBOAT Algorithm

	Empirical Evaluation
	Datasets
	Evaluation Criteria
	Experimental Results
	Varying Parameters
	Varying
	Varying n

	Adaptive versus Fixed-window Approach
	iBOAT versus iBAT

	Applications
	Statistical StudyLin13Monet
	Deny Possible Excuses
	Detecting Road Network Changes

	Concluding Remarks

	B-Planner: Planning Bidirectional Night Bus Routes
	Introduction
	Related Work
	Candidate Bus Stop Identification
	Hot Grid Cells and City Partitions
	Cluster Merging and Splitting
	Candidate Bus Stop Location Selection

	Bus Route Selection
	Passenger Flow and Travel Time Estimation
	Bus Route Graph Building and Pruning
	Route Graph Building Criteria
	Graph Building & Pruning

	Automatic Candidate Bus Route Generation
	Bus Route Selection

	Experimental Evaluation
	Evaluation on Bus Stops
	Evaluation on Bus Route Selection Algorithm
	Convergence Study
	Parameter Sensitivity Study
	Candidate Routes Statistics
	Skyline Routes
	Comparison with top-k spreading algorithm

	Bidirectional vs Single Directional Bus Route
	Comparison with Real Routes and Impacts on Taxi Services
	Bus Capacity Analysis

	Concluding Remarks

	TripPlanner: Personalized and Traffic-aware Trip Planning
	Introduction
	Related Work
	Construction of POI Network
	Trip Planning

	TripPlanner System
	Key Terminologies
	Problem Statement
	Framework

	Dynamic POI Network Modelling
	Node Modelling
	Edge Modelling

	The Two-Phase Approach
	Phase I: Route Search
	Phase II: Route Augmentation
	The Venue Inserting Algorithm
	Route Score Maximization Algorithms
	Augmented Route Ranking

	System Evaluation
	Experiment Setup
	Parameter Sensitivity Study
	Efficiency Evaluation
	Varying N
	Varying k
	Varying

	Effectiveness Evaluation
	Case Study
	Discussion

	Concluding Remarks

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendix
	Proof of the FIFO Property
	Edge Modelling
	Taxi Trajectory Representation and Indexing
	Transit Time Estimation

	Venue Category Encoding and Retrieving

	List of figures
	List of tables

