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Introduction

This thesis had two main concerns: metabolism and symbiosis, the latter being explored
through the prism of the first and seen as any persistent association between different species.
Our work on metabolism spanned from an investigation of classically defined pathways to
genome-scale metabolic models, and even reached comparative analyses of a large number
of metabolic networks as well as one application of metabolomics. One model deeply inves-
tigated was the one of trypanosomatids that harbour one single bacterial symbiont whose
interaction is characterised by intensive metabolic exchanges. The comparative analyses per-
formed concerned however also a vaster set of bacterial organisms covering a wider spectrum
of associations with their hosts and/or environment.

Symbiont-harbouring trypanosomatids (herein termed SHTs) represent an interesting model
to study co-evolution and the evolution of the eukaryotic cell. This is due to the presence
of one single betaproteobacterial endosymbiont (herein called TPEs for trypanosomatid pro-
teobacterial endosymbionts) which divides synchronically with the host cell and is vertically
transmitted. As bacterial mutualistic symbionts of insects, TPEs show similarities with or-
ganelles in terms of genome size and integration. Since the 1950s, nutritional data started to
elucidate the diverse nutritional needs of trypanosomatids. It was later evidenced that the
ones bearing symbionts had simpler nutritional requirements when compared to their coun-
terparts without symbionts (called RTs for regular trypanosomatids). These studies, together
with biochemical data already indicated the enhanced capability of SHTs to synthesise amino
acids and hemin, demonstrating in a few cases that the enzyme catalysing the corresponding
reactions is encoded by the bacterium. However, it is only the recent genome sequencing
of these organisms that is allowing to investigate the presence and genome location of those
genes, with all due caution in interpreting the results observed since their expression and func-
tionality remain unknown. These analyses are part of this thesis as concerns the biosynthetic
pathways of amino acids and vitamins and the reconstruction and exploration of their whole
metabolic networks based on genomic data (for the annotation of the genomes, see: Motta
et al. (2013), for the analyses on the synthesis of amino acids, see: Alves et al. (2013a), and
for the synthesis of vitamins, see: Klein et al. (2013)). Investigation of the whole metabolic
networks is ongoing and is mainly focused on the metabolic exchange between the host mi-
tochondrial, glycosomal and cytoplasmic metabolism and the symbiont. In addition to the
above, phylogenetic analyses of the host genes involved in those biosynthetic routes were also
performed aiming to characterise potential horizontal gene transfers (HGT) from the sym-
biont to the host nucleus.

Comparative analyses of metabolic networks became possible only recently thanks to the
availability of a large number of genome-scale metabolic models for many organisms, mostly
bacteria. These metabolic reconstructions are based on genomic data. Their completeness is a
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current limitation as some reactions remain to be discovered and will be missing in the model
while some false positive reactions may be wrongly included in the network. The level of
annotation of the available genomes is widely heterogeneous across species, making it crucial
for any comparative analysis to carefully choose a set of species for which we can guarantee a
good enough annotation, and to follow a same procedure for inferring the metabolic network
from the annotated genomes. Here, we work at the level of whole metabolic networks for each
organism and we analyse the common elements of the small molecule metabolism of diverse
bacteria. Working with entire metabolic networks allows for a more systemic view contrasting
with the more reductionistic approach based on the analysis of a priori selected pathways.
Our first work concerning this part of the thesis, entitled Exploration of the core metabolism
of symbiotic bacteria (Klein et al., 2012b), focuses on symbiotic bacteria, exploring common
and variable portions as well as the contribution of different lifestyle groups to the reduc-
tion of a common set of metabolic capabilities. The second one treats of The extended core
of metabolic networks, and is an ongoing analysis of common metabolic capabilities shared
by a set of species (not requiring omnipresence) using a new approach where common and
group-specific reactions are split automatically. The corresponding method was developed
in collaboration with statisticians and is based on the presence/absence of a reaction in an
organism. In addition to that, we propose a second approach that relies on a neighbour rela-
tionship between reactions.

Finally, our work on metabolomics concerns what has been called metabolic stories. These
represent possible scenarios explaining the flow of matter among the metabolites in a set of
interest based on data from a metabolomics experiment. This approach was proposed, for-
mally defined and modelled by members of the BAMBOO team and we have applied it to
data on the response of yeast to cadmium exposure (Milreu et al., 2014). This work can be
used in future to better understand the response of an organism to the presence of another
species with which it lives in close relation.

This thesis is organised in four main chapters as follows. Chapter 1 introduces some
biological and methodological concepts important for the following chapters. Chapter 2 ex-
plores this intricate relationship of trypanosomatids and their symbionts focusing mainly on
metabolic and evolutionary issues. Chapter 3 comprises the two comparative analyses of
metabolic networks of bacteria while Chapter 4 presents the exploration of metabolomics
data of yeast exposed to the toxic cadmium. We conclude by presenting the perspectives
of this work. The chapters/sections of results are mostly composed of papers either already
published, submitted or in preparation.



Chapter 1

Biological and methodological context

Contents

1.1 Symbiosis and cellular evolution . . . . . . . . . . . . . . . . . . . 4

1.1.1 Types of symbiosis: a continuum . . . . . . . . . . . . . . . . . . . . 4

1.1.2 Nutritional mutualists: intricate metabolic exchanges . . . . . . . . 4

1.1.3 Transition from symbionts to organelles . . . . . . . . . . . . . . . . 6

1.2 Trypanosomatids: symbiosis and metabolism . . . . . . . . . . . . 9

1.2.1 Ecological aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.2 Morphological characteristics and special features . . . . . . . . . . . 11

1.2.3 Symbiont-harbouring trypanosomatids (SHTs) . . . . . . . . . . . . 13

1.3 Metabolic networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3.1 Overview of metabolism . . . . . . . . . . . . . . . . . . . . . . . . . 21
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The goal of this chapter is to introduce the biological and methodological concepts that
form the basis of this thesis. These mainly include symbiosis, i.e. a long-term relationship
between two or more different species (Section 1.1) and metabolism (Section 1.3). Symbiosis
is more deeply detailed and analysed herein in the case of the trypanosomatids that harbour
a symbiotic bacterium in a nutritional mutualistic association (Section 1.2). As this is a long
and intricate relationship, it constitutes an important model to study cellular evolution and
the possible loss of identity of the symbiotic partners (Sections 1.1.3 and 1.2.3).
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1.1 Symbiosis and cellular evolution

1.1.1 Types of symbiosis: a continuum

The term symbiosis (from the Greek living together) was introduced by Anton de Bary (1879)
to refer to any association between different species, in persistent contact regardless of whether
the association is beneficial or not to all participants. This is not however a widely adopted
definition which, in many cases, is restricted to the interactions that are beneficial to all
participating organisms. Assuming the first definition, we can further classify the wide diver-
sity of symbioses according to the benefits or deficits for each partner which is assessed by
comparing its performance (survival, growth, reproductive output, etc) in association or not
(Douglas, 2010). When the interaction is advantageous to all, it is called mutualism; when it
is beneficial to one while not harming the other species, it is called commensalism; and finally,
when one is harmed in the benefit of the other, it is termed parasitism. It is not always an
easy task to associate an interaction to one of these categories due to practical difficulties in
accessing the changes in the organism’s performance with and without the partner. Moreover,
there are no precise limits among them as concerns the variability of real associations where
environmental changes or other factors imply that benefit is not a fixed trait (Douglas, 2010).
Transitions among these categories may happen in the early stages of host adaptation, or may
even break down and reverse to autonomy; however increased host dependency and extreme
genome reduction may prevent those events from happening (Toft et Andersson, 2010).

Microorganisms intensively interact with eukaryotic cells through symbiotic associations
ranging from mutualism to parasitism. The adaptation to a host-associated lifestyle leads the
organisms to use common strategies such as the acquisition of essential nutrients from the host
cell in parasitic associations or intense metabolic exchanges in some mutualistic associations.

Many protozoan and metazoan cells harbour vertically inherited endosymbionts in their
cytoplasm. Prominent examples of such are the associations between gammaproteobacteria
and cells lining the digestive tube of insects. Various comprehensive reviews have covered
most aspects of these ancient mutualistic relationships, including metabolism, genetics, and
evolutionary history of the endosymbiont/host cell associations (Baumann et al., 1997; Werne-
green, 2002, 2004; Moran, 2006; Moran et al., 2008; Wernegreen, 2012; McCutcheon et von
Dohlen, 2011). Much less is known about the relationship between protists and their bacterial
endosymbionts (Horn et Wagner, 2004; Heinz et al., 2007; Nowack et Melkonian, 2010), in-
cluding the symbiosis between trypanosomatids and betaproteobacteria (Chang et al., 1975;
Roitman et Camargo, 1985; Du et al., 1994a; Motta et al., 2010), herein examined and intro-
duced in Section 1.2.

1.1.2 Nutritional mutualists: intricate metabolic exchanges

The acquisition of metabolic capabilities through a mutualistic symbiosis with bacteria is
widespread among eukaryotes. The sap-feeding insects are well studied examples of this
(Zientz et al., 2004; Moya et al., 2008; Moran et al., 2008). The great majority of these
associations enables the synthesis of essential amino acids not available in the poor diet of
the insect hosts such as with Buchnera and Candidatus Blochmannia (Baumann et al., 1995,
1997; Tamas et al., 2002; Shigenobu et al., 2000; Gil et al., 2003; Zientz et al., 2004; Degnan
et al., 2005; Zientz et al., 2006; Pérez-Brocal et al., 2006; Feldhaar et al., 2007; Williams et
Wernegreen, 2010). In some cases, the bacterial symbionts are able to produce vitamins of the
B complex and cofactors. Such is the case of the endosymbiont, Wigglesworthia glossinidia,
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of the tsetse fly, and also of Candidatus Baumannia cicadellinicola, an endosymbiont of the
sharpshooter (Akman et al., 2002; Wu et al., 2006; McCutcheon et Moran, 2007). The latter
is in a dual bacterial symbiosis, where one partner (the bacteroidetes Ca. Sulcia muelleri)
supplies most of the essential amino acids to the host whereas the other (the gammaproteobac-
terium Ca. B. cicadellinicola) provides vitamins and cofactors; this renders the sharpshooter
less nutritionally exigent (Wu et al., 2006). Ca. Sulcia muelleri has been shown to have other
co-resident intracellular symbionts in association with different insect hosts, the alphaproteo-
baterium Ca. Hodgkinia cicadicola in the cicada, and the betaproteobacterium Ca. Zinderia
insecticola in the spittlebug (McCutcheon et al., 2009; McCutcheon et Moran, 2010). In all
three dual symbioses involving Ca. Sulcia, this bacterium provides eight (seven in the latter
case) essential amino acids to the host leaving to the co-symbiont the role of providing the
remaining two (histidine and methionine, plus tryptophan in the case of the co-symbiosis
with Ca. Zinderia) (Wu et al., 2006; McCutcheon et al., 2009; McCutcheon et Moran, 2010).
This can get even more intricate in the nested tripartite symbiosis of mealybugs where the
endosymbiont Candidatus Tremblaya princeps harbours Candidatus Moranella endobia, thus
providing the example of a bacterial-bacterial endosymbiosis (von Dohlen et al., 2001; Mc-
Cutcheon et von Dohlen, 2011; Husnik et al., 2013). Both bacterial partners contribute in a
patchwork manner to a same pathway, that is mainly involved in the synthesis of essential
amino acids (McCutcheon et von Dohlen, 2011; Husnik et al., 2013).

One remarkable feature of these bacterial symbionts is their extreme genome reduction
(Andersson et Kurland, 1998; Tamas et al., 2001; Wernegreen, 2002; Gil et al., 2002; Klasson
et Andersson, 2004; McCutcheon, 2010; Moya et al., 2008; McCutcheon et Moran, 2012).
Ranging from approximately 0.11 to 14 Mb pairs in length (Husnik et al., 2013; Bennett et
Moran, 2013), the smallest bacterial genomes to date are the ones of obligate intracellular (i.e.
host-restricted) symbionts. Genomic stasis is another striking characteristic, where symbiont
genome pairs that diverged by 30 (Ca. Blochmannia) to 200 million years (Ca. Sulcia) show
very stable gene content and order and no rearrangements or duplications, indicating that
these endosymbionts are no longer sources of genetic diversification to their hosts (Tamas
et al., 2002; Silva et al., 2003; Degnan et al., 2005; McCutcheon et al., 2009). In contrast, a
genomic inversion was found in the genome of Ca. Tremblaya for which it remains unknown
whether it is advantageous and/or a recent event (McCutcheon et von Dohlen, 2011). Other
than that, these genomes are generally gene dense (from 73% coding density in Ca. Tremblaya
to 97% in Ca. Carsonella) and AT rich with a few exceptions among the smallest genomes
such as Ca. Hodgkinia and Ca. Tremblaya (McCutcheon et von Dohlen, 2011; McCutcheon
et Moran, 2012). The availability of the genome sequences of an important number of host-
dependent bacteria allows for a better picture of this process of co-evolution.

The major stages of a genome reduction during host adaptation were described by Toft
et Andersson (2010) and McCutcheon et Moran (2012):

1. Stage 1: free-living and extracellular bacterium, e.g. Escherichia coli (few pseudogenes,
ongoing gene acquisition by horizontal gene transfer (through plasmids, genomic islands
and/or bacteriophages) and loss, interstrain recombination, rearrangement, functional
divergence, etc);

2. Stage 2: recent host-restricted symbionts or pathogens (facultative intracellular), e.g.
Sodalis glossinidius (many pseudogenes and mobile elements, large and small deletions
and chromosome rearrangements);
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3. Stage 3: long-term obligate symbionts or pathogens (obligate intracellular) such as
Buchnera aphidocola, with genome size ranging from 400-700kb (few pseudogenes, no
mobile elements and stable chromosomes);

4. Stage 4: tiny-genome symbionts (obligate intracellular mutualists) such as Ca. Trem-
blaya princeps, with genome size ranging from 140-250kb (ongoing gene loss);

5. Stage 5: organelles (gene loss, gene transfer to the host nuclear genome (genetic assim-
ilation) or replacement by functions encoded by host nuclear genes).

The reasoning for this reductive genome evolution is the accumulation of slightly deleteri-
ous mutations (a process termed Muller’s Hatchet) (Moran, 1996) due to asexual reproduction,
small effective population size and bottlenecks during transmission of those intracellular bac-
teria (see reviews in Andersson et Kurland (1998); Moya et al. (2008); McCutcheon et Moran
(2012)). The outcome is, therefore, gene loss and rapid evolution of the protein sequences.
This loss is not random and the genes kept are involved in the core information processing (i.e.
replication, transcription, translation) and in the metabolic routes important for interaction
with the host (Klasson et Andersson, 2004; Gil et al., 2004; Moran, 2007; Moran et al., 2008;
Moya et al., 2008; McCutcheon et Moran, 2012).

Other interacting partners play an important role as a redundancy of gene functions
from another source may relax the selection on some genes, which favours further genome
reduction. Such is the case of the nested symbiosis of mealybugs where the betaproteobacterial
endosymbiont Ca. Tremblaya princeps harbours the gammaproteobacterium Ca. Moranella
endobia (McCutcheon et von Dohlen, 2011). The latter was possibly more recently acquired,
and triggered once again a reductive genome process (even if it was already an extreme
case of tiny genome) (Husnik et al., 2013). When a second symbiotic partner joins and the
association becomes stable, either both bacteria may be kept as in the above mentioned
metabolic complementation of Ca. Sulcia muelleri and Ca. Baumannia cicadellinicola, or
one bacterium may follow an extreme degenerative process ending in its extinction (Moya
et al., 2009). The process of a symbiont becoming an organelle is much less clear and will be
explored in the next section.

1.1.3 Transition from symbionts to organelles

There are more open questions than answers in this section, however there are promising
advances on this subject as more and more case studies of host-restricted symbionts and
symbiont-derived organelles have been investigated lately. Even more important than that is
the increasing attention given to the under-explored research linking these two topics (Keeling,
2011). Limitations to relate them may remain, since the only two well studied and widely
accepted examples of symbiont-derived organelles are mitochondria and plastids which have
evolved over a billion years ago and have diversified since then (Douglas, 2010). Overcoming
this limitation strongly depends on finding intermediate examples in this long evolutionary
path that could give some clues on the important traits of this process. Maybe the recent
effort in gathering information in these two research fields will show that this bridge is not
that long.

Similarities in terms of genome size and organismal integration of host-restricted symbionts
and organelles (Douglas et Raven, 2003; Toft et Andersson, 2010; McCutcheon et Moran, 2012;
Husnik et al., 2013) instigate the search for common patterns. One feature of mitochondria and
plastids that first draws attention is the gene transfer from the symbiont (alphaproteobacterial
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and cyanobacterial ancestors, respectively) to the host nucleus (i.e. genetic assimilation) in
the course of the evolutionary transition into an organelle (Douglas, 2010; Karlberg et al.,
2000; Kurland et Andersson, 2000). It is estimated that more that 90% of the protein-coding
genes that act exclusively on these organelles are located in the nucleus, meaning that their
proteome is ten times larger than their genome, and that their functioning largely depends
on the products of those transferred genes (review in Timmis et al. (2004); Douglas (2010)).
Gabaldón et Huynen (2007) suggested that the proto-mitochondrion has been hijacked by
the eukaryotic host, taking control of its protein synthesis and metabolism. This transfer
of symbiont genes to the host nucleus can be a route to compensate for the problem of
genome decay of vertically transmitted symbionts, conferring an advantage to a small genome
size in a competition among the symbionts in a cell (symbionts with fewer genes can have
smaller genomes and replicate faster than those with larger genomes) (Douglas, 2010). In
addition to the population dynamics of intracellular bacteria, this minimisation in the size
of the genomes, as well as the specific targeting back to the organelle system, may be driven
by selection at the host level, preventing the endosymbiont from reverting to autonomy or
changing partners; it thus provides a way to stabilise this cooperative relationship (Douglas,
2010; Toft et Andersson, 2010).

Most of the genome sequencing has been done in the symbionts and almost never in their
hosts, restricting the analyses of the host interplay and of the symbiont-host gene trans-
fer. One such host genome available and analysed for this purpose is the one of the pea
aphid that harbours the gammaproteobacterium Buchnera aphidicola (International Aphid
Genomics Consortium, 2010; Nikoh et al., 2010). This study revealed no functional symbiont-
host gene transfer; conversely, a few genes originating from alphaproteobacteria (possibly from
the genus Wolbachia) were identified and shown to be highly expressed in the bacteriocyte (a
specialised host cell where reside most of the vertically transmitted mutualistic symbionts of
animals) (Nikoh et al., 2010). Moreover, the importation of host proteins into Buchnera cells
was investigated by proteomics, yielding no evidence for a selective transfer (Poliakov et al.,
2011). In addition to the pea aphid, the genomes of the body louse and of its primary bac-
terial endosymbiont Candidatus Riesia pediculicola were sequenced, and genes of prokaryotic
origin are apparently not present in the host genome, suggesting the absence of symbiont-host
gene transfers (Kirkness et al., 2010). In the tripartite nested mealybug symbiosis, multiple
lineages seem to contribute to their metabolism, involving the three interacting partners and
genes acquired through HGT from other bacterial sources (mainly alphaproteobacteria, but
also gammaproteobacteria and bacteroidetes) to the insect host, however no symbiont-host
gene transfer was found (Husnik et al., 2013). Thus, differing from the symbiont-derived or-
ganelles, these findings indicate that symbiont-host gene transfer is not the process enabling
survival of these small genome bacteria (McCutcheon et Moran, 2012). McCutcheon et Moran
(2012) suggested that symbiont-host gene transfer and/or the importation of host proteins
into the symbiont cell might occur in symbionts showing greater genome erosion than Buchn-
era. However, the work of Husnik et al. (2013) pointed to the absence of symbiont-host gene
transfer in the symbiosis of mealybugs, where Ca. Tremblaya princeps has one of the smallest
bacterial genomes so far reported. This leaves open the possibility of symbiont-host gene
transfer in other tiny-genome symbionts without a nested symbiosis as well as of the import
of host proteins into the symbiont, and whether these processes could still happen further on
in the evolutionary path from a host-restricted symbiont towards an organelle.

Douglas (2010) explained that genetic assimilation is such a rare event due to its evo-
lutionary difficulty. The first step is the persistent DNA transfer to the nucleus which is a
hard condition in multicellular organisms as this may happen in somatic cells preventing its
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continuation in the next generation. The case is different in Wolbachia which inhabits the
reproductive cells (oocytes) and its DNA transfer to the host nucleus has been evidenced
in both insects and nematodes (Nikoh et al., 2008; Hotopp et al., 2007). Moreover, nearly
the entire Wolbachia genome was transferred to the nuclear genome of Drosophila ananassae
(Hotopp et al., 2007). As single cell eukaryotes, this task is facilitated in the case of protozoa
(Douglas, 2010). The second step consists in targeting back to the organelle the protein coded
by the transferred gene (Douglas, 2010). This implies a dedicated targeting system, meaning
thus that the endosymbiont-turned-organelle depends strictly on its host to maintain its ge-
netic information (Keeling et Archibald, 2008). A previous definition of a bacterial-derived
organelle was given by Douglas et Raven (2003) as an intracellular derivative of a symbi-
otic bacterium with transfer from the symbiont to the nucleus of one or more genes whose
product(s) is (are) targeted back to the organelle, accompanied by a loss of the bacterial
identity. Such absolute dependency on its host prevents the organelle to switch to a host
lineage with which it has not co-evolved (Douglas, 2010). Assuming an organelle is defined by
an inescapable reliance on its host for genetic information maintenance, as mentioned before,
host-restricted symbionts still keep the core genetic information processing genes (Klasson et
Andersson, 2004; Gil et al., 2004; Moran, 2007; Moran et al., 2008; Moya et al., 2008; Mc-
Cutcheon et Moran, 2012). McCutcheon (2010) compared the gene content of insect symbiont
and organelle genomes and found a clear difference in the retained activities even if they have
a similar number of predicted genes in some cases, suggesting that the forces governing gene
loss in these two groups are different. Most of these obligate symbionts retain more robust
gene sets when compared to organelles, and these are considered complete enough to support
autonomous life (McCutcheon et Moran, 2012). Striking once again is the nested symbiosis in
mealybugs where Ca. Tremblaya has lost essential genes that were unprecedentedly reported
and are involved in translation, such as both translational release factors and the complete set
of functional aminoacyl-tRNA synthetases (McCutcheon, 2010; McCutcheon et von Dohlen,
2011). Since translation potentially still occurs in Ca. Tremblaya cells considering the pres-
ence of the ribosomal protein genes, the missing proteins could be supplied either by the host
(through genetic assimilation of those genes and specific targeting back to Ca. Tremblaya)
or by Ca. Moranella (passively through lysis or specific targeting back) (McCutcheon et von
Dohlen, 2011; Keeling, 2011). Taking into account the findings of Husnik et al. (2013) showing
no Ca. Tremblaya-host gene transfer, the second option depending on Ca. Moranella seems
more plausible, also when one considers their patchwork metabolism. As a general trend until
now, nutritional symbionts have a stronger bacterial identity than organelles (McCutcheon,
2010).

Keeling (2011) raised one more feature that is worth paying attention to when comparing
endosymbionts and organelles: the degree of functional integration, which was exemplified by
the tripartite symbiosis of mealybugs. In this system, both bacterial symbionts are needed to
have the complete biosynthetic pathways of essential amino acids which requires the trans-
port of intermediate metabolites between symbionts before the final product is ready and can
be used by the three partners (McCutcheon et von Dohlen, 2011). Maybe unusual among
symbionts, this feature is described among the different compartments in the eukaryotic cell
such as the heme biosynthesis in many eukaryotes that spans the cytosol and the mitochon-
drion (Keeling, 2011). Apicomplexan parasites appear to have included one more layer, its
non-photosynthetic plastid (review in Lim et McFadden (2010)). This partition of metabolic
functions among semi-independent compartments might be expected to increase with the
complexity of the system (Keeling, 2010; Keeling et Corradi, 2011).

Further investigation of host-restricted symbionts may give insights on the evolutionary
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path of symbiont-derived organelles, on the loss of bacterial identity and on the limits between
host-restricted symbionts and organelles.
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1.2 Trypanosomatids: symbiosis and metabolism

1.2.1 Ecological aspects

Kinetoplastid flagellates: evolution of parasitism

Kinetoplastids are unicellular eukaryotes which contain a range of ubiquitous free-living
species. Among them, there are the well studied pathogens of humans and domestic ani-
mals of the genera Trypanosoma and Leishmania causing Chagas disease, sleeping sickness
and leishmaniasis (Hoare, 1972). They are part of the family Trypanosomatidae (Eugleno-
zoa, Kinetoplastea) which includes obligate parasites of invertebrates, vertebrates and plants.
Most species are non-pathogenic commensals in the digestive tube of insects (Wenyon, 1926;
Wallace, 1966; Vickerman, 1994). The ancestral trypanosomatids were probably parasites of
insects (insect-first model) and their closest relative is likely to be the free-living Bodo saltans
(Simpson et al., 2006; Deschamps et al., 2011) (Figure 1.1). In addition to this group of para-
sites among the free-living kinetoplastids, there are other clades which indicate that parasitism
evolved more than once in kinetoplastids (Simpson et al., 2006). Assuming that there were
no reversions to a free-living state, Simpson et al. (2006) suggest that there were at least four
independent adoptions of obligate parasitism or commensalism (see Figure 1.1). The above
mentioned insect-first model for the ancestry of trypanosomatids is currently the most ac-
cepted where these flagellates descended from parasites of blood-sucking insects that survived
accidental transmission into a vertebrate host during feeding (Simpson et al., 2006). Even if
such transmission must have occurred often, the rare successful cases would presumably open
a large niche to the parasite (Simpson et al., 2006).

Life cycle and the interaction between the flagellate and its insect host

Trypanosomatids include both monoxenic insect parasites (termed insect trypanosomatids
herein) and heteroxenic taxa that alternate between insects and vertebrates (or plants). The
latter trypanosomatids reach a secondary host via an insect vector, such as vertebrates via
blood-sucking insects and plants via phytophagous bugs (Wallace, 1966).

The focus of the present work will be on the monoxenic insect parasites which will be
more detailed hereafter. On the other hand, the heteroxenics, such as Trypanosoma and
Leishmania spp., will be used as comparative models when pertinent since they have been
more investigated due to their medical interest.

There are few studies of the complex interaction between insect trypanosomatids and their
hosts (Wallace, 1966; Schaub et Sehnitker, 1988; Schaub, 1988; Podlipaev, 2000; Nascimento
et al., 2010). In addition to those, some studies focused on the composition of the cell surface
that are important for specific recognition and adherence between parasites and host cells
such as glycoconjugates (D’Avila-Levy et al., 2005; Nogueira de Melo et al., 2006; D’Avila-
Levy et al., 2008; Pereira et al., 2009). The trypanosomatids develop within different insect
organs, including the midgut, hindgut, Malphigian tubes, salivary glands and haemocoel (Wal-
lace, 1966). The monoxenic protozoan Blastocrithidia triatomae colonises the digestive tract
of the insect Triatoma infestans which is also the host of pathogenic heteroxenic trypanoso-
matids such as Trypanosoma cruzi (Schaub et Sehnitker, 1988; Schaub, 1988). The monoxenic
Strigomonas culicis interacts mainly with midgut cells of Aedes aegypt through its flagellum,
which penetrates the microvilli preferentially near the tight junctions; the protozoan may
reach the hemocel in cases of prolonged infections (Corrêa-da-silva et al., 2006). Nascimento
et al. (2010) showed that this same trypanosomatid is able to adhere and invade the salivary
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Figure 1 page 169 from Simpson et al. (2006).

Figure 1.1: Evolutionary relationships among kinetoplastids. Extracted from Simpson et al.
(2006).

glands of A. aegypt, reaching the acinar space where the saliva is stored. This suggests that
vector transmission of monoxenic trypanosomatids to vertebrate host may occur in nature
(Corrêa-da-silva et al., 2006). Although these trypanosomatids are considered nonpathogenic
to mammals, they have been reported to infect different vertebrate hosts (McGhee, 1957;
Jansen et al., 1988; Pacheco et al., 1998; Morio et al., 2008; Barreto-de-Souza et al., 2008).

Diversity of insect hosts

The insect trypanosomatids are mostly found in Diptera and Hemiptera. However, this may
be underestimated, since their presence has been investigated only in a minority of insect
taxa from limited locations (Podlipaev, 2000). Several trypanosomatid species were found
within one insect specimen and, conversely, the same parasite was identified in a wide range
of insect hosts in a large geographical area (Podlipaev et al., 2004). One such example is the
promiscuous Strigomonas culicis isolated from mosquitoes such as Aedes vexans, Culex pipens,
Mansonia richardii and Anopheles maculipennis (Wallace, 1966). This lack of specificity is
not equivalent to stating that insect trypanosomatids do not have host preferences and it is
conceivable that some species may be restricted to a particular host and/or place (Borghesan
et al., 2013). The Herpetomonas species showed a marked preference for dipterans (Borghesan
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et al., 2013). This low level of host specificity, more characterised in the case of Hemipteran
hosts, indicates that co-evolution of the partners is unlikely (Podlipaev, 2000). Moreover,
these interactions may be more or less "occasional", in the sense that not only insects but
also plants and other organisms could be involved, increasing the chances of the establishment
of new host-parasite systems (Podlipaev, 2000).

1.2.2 Morphological characteristics and special features

Figure 1.2 shows a general view of a trypanosomatid (reviewed by de Souza (2002); de Souza
et da Cunha-e Silva (2003)). The protozoan is surrounded by a typical plasma membrane, and
its flagellum emerges from the basal body located in the anterior region of the cell and projects
forward. The flagellum is responsible for motility and participates in the interaction with the
host by adhering to the insect digestive tract. In addition to the typical flagellar structure,
the protozoan exhibits a unique paraflagellar rod which is a highly elaborated network of
filamentous structures connected to the axoneme. The nucleus is centrally located and the
cytoplasm contains randomly distributed ribosomes and profiles of the endoplasmic reticulum.
The Golgi complex is located in the anterior region, close to the flagellar pocket.

A. Figure 1 page 155 from de Souza et da Cunha-e Silva (2003).
B. Figure 1 page 252 from Docampo et al. (2005).

Figure 1.2: A general view of a trypanosomatid. A. A thin section of the trypanosomatid
Herpetomonas anglusteri showing structures such as the flagellum (F), the nucleus (N), the kinetoplast
(K), mitochondria (M), glycosomes (G) and the flagellar pocket (FP), examined by transmission
electron microscopy. Bar = 0.5 µm. Extracted from de Souza et da Cunha-e Silva (2003). B.
A schematic representation of longitudinal section of an epimastigote form of T. cruzi. Extracted
from Docampo et al. (2005). C. The main cellular forms of trypanosomatids as defined by cell shape,
flagellum presence and attachment (1), and position of the basal body (2), kinetoplast (3) and nucleus
(4). A- Amastigote B- Epimastigote C- Trypomastigote D- Choanomastigote E- Promastigote F-
Paramastigote G- Opistomastigote.

Other than these typical eukaryotic organelles, there are some specific to the trypanoso-
matids (reviewed by de Souza (2002) and by de Souza et da Cunha-e Silva (2003)). One is the
kinetoplast, which corresponds to the extranuclear DNA that lies within the unique ramified
mitochondrion, and is localised in front of the basal body that gives rise to the flagellum.



1.2 Trypanosomatids: symbiosis and metabolism 13

Another one is the glycosome, a specialised peroxisome that contains most of the enzymes
involved in the glycolytic pathway (Opperdoes et Borst, 1977). In addition to those, there are
acidocalcisomes, which were first described in trypanosomatids and have been characterised
in most detail in this group of organisms, however they are actually conserved from bacteria
to mammals (Vercesi et al., 1994; de Souza et da Cunha-e Silva, 2003; Docampo et al., 2005;
Moreno et Docampo, 2009; Docampo et al., 2010; Docampo et Moreno, 2011).

The kinetoplast

One of the most striking features of trypanosomatids is their mitochondrial DNA, termed
kinetoplast DNA (kDNA). It is one of the largest organellar genomes and is a network of
thousands of interlocked DNA rings of two types: thousands of minicircles (small DNA ring -
0.5 to 2.5 kbp) and dozens of maxicircles (large DNA ring - 20 to 40 kbp) (review in Jensen et
Englund (2012)). While maxicircles encode rRNAs and some subunits of the mitochondrial
bioenergetics machinery (including subunits of cytochrome oxidase, NADH dehydrogenase,
and the ATP synthase), minicircles encode most of the guide RNAs that control the speci-
ficity for editing maxicircle transcripts. This editing consists in adding or removing uridylate
residues from specific internal sites within the transcript to form functional messenger RNAs.
This extensive editing requires a large number of different minicircles; moreover, the lack of
even one class of those accounts for incomplete editing of the maxicircle transcripts and leads
to the death of the parasite. It is a complex and energy consuming mitochondrial RNA editing
(Simpson et al., 2006). The synthesis of maxicircle mRNAs depends on a nuclear-encoded
single subunit mtRNAP (mitochondrial RNA polymerase), and this process remains unknown
in the case of the minicircles. Moreover, the kDNA contains no tRNA genes, which are tran-
scribed in the nucleus and imported into the mitochondrion using a variety of targeting signals
(review in Campbell et al. (2003)).

The glycosome

The correspondence between the trypanosomatid glycosome and the peroxisome was based
on the presence of catalase and enzymes involved in the β-oxidation of lipids in some monox-
enic species (e.g. Crithidia fasciculata and Herpetomonas samueli), and on the conservation
of protein import processes and of the same kind of topogenic signals (Parsons et al., 2001;
Gualdrón-López et al., 2012). Conversely, heteroxenic trypanosomatids such as T. brucei, T.
cruzi and Leishmania had no significant catalase activity detected (de Souza, 2002). Other
than the above mentioned metabolic routes, additional pathways are observed in the glyco-
somes while they occur in the cytosol of other cells; this is the case for most of the glycolytic
pathway, carbon dioxide fixation, purine salvage and pyrimidine de novo biosynthesis (re-
viewed by Michels et al. (2000); Parsons et al. (2001); Hannaert et al. (2003); Michels et al.
(2006); Gualdrón-López et al. (2012)). Glycosomes were suggested to have originate in a free-
living common ancestor of kinetoplastids and Diplonemida (see Figure 1.1) (Gualdrón-López
et al., 2012). Since the glycosome has no genome, all its proteins are encoded by nuclear genes
and post-translationally imported into the organelle (de Souza, 2002). The import machinery
of the family of peroxisomes is unique (Lanyon-Hogg et al., 2010). Differing from the mito-
chondrial and chloroplast protein import, the evidence that proteins lacking a peroxisomal
targeting sequence (PTS) can be imported into this organelle when associated with a protein
bearing a PTS suggests that proteins may be imported in a folded or oligomeric state (review
in Parsons et al. (2001); Lanyon-Hogg et al. (2010); Rucktäschel et al. (2011); Theodoulou
et al. (2013)).
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As stated above, the presence of the glycolytic enzymes for the conversion of glucose
into 3-phosphoglycerate (3PGA) distinguishes the glycosome from the peroxisome (Opper-
does et Borst, 1977). There is no net ATP synthesis within the glycosome and the 3PGA
produced within the organelle is further metabolised into pyruvate generating ATP in the cy-
tosol (Opperdoes et Borst, 1977). Glycosomal glycolytic enzymes show stage-specific changes
in abundance (for cellular forms of trypanosomatids see Figure 1.2C and the topic below The
main cellular forms of trypanosomatids); for example in the heteroxenic T. brucei the levels
of those enzymes are much higher in bloodstream forms than procyclic forms. This is due to
the energy generation in the first through glycolysis and in the latter through cytochrome-
mediated respiration (review in Michels et al. (2000); Parsons et al. (2001); Hannaert et al.
(2003); Michels et al. (2006); Gualdrón-López et al. (2012)). The metabolic compartmenta-
tion of the glycolytic pathway may be related to an increased metabolic flexibility, accounting
for a more readily and efficient adaptation of the organism to different environmental con-
ditions (Gualdrón-López et al., 2012). Furthermore, Gualdrón-López et al. (2012) propose
that glycosomes played a facilitating role in the multiple development of parasitism and its
elaborated life cycles involving different hosts in the kinetoplastids.

The acidocalcisome

The acidocalcisomes are acidic organelles involved in the storage of cations and phosphorous,
in the metabolism of pyrophosphate (PPi) and polyphosphate (polyP), in the regulation of the
cytoplasmic concentration of calcium, in the maintenance of intracellular pH and in osmoreg-
ulation (recently reviewed by Docampo et al. (2010); Docampo et Moreno (2011)). Several
enzymes and transporters were identified in acidocalcisomes of protists (Docampo et Moreno,
2011). Furthermore, polyP functions as an energy source to replace ATP; in cell membrane
alterations that might be related to a channel for DNA import; in responses to nutritional
limitations and environmental stresses; in cellular growth and virulence of pathogens (Korn-
berg et al., 1999; Rao et al., 2009). Moreover, in the acidocalcisomes of parasitic protozoa,
reduced levels of polyP were found to be related to decreased virulence and ability to respond
to osmotic or nutritional stresses (Lemercier et al., 2004; Luo et al., 2005; Docampo et al.,
2011).

The unusual features of trypanosomatids genomes

In addition to the mitochondrial genome, the nuclear genome of trypanosomatids presents
some uncommon characteristics. Most of the protein-coding genes are arranged in giant poly-
cistronic clusters such that tens-to-hundreds of functionally unrelated genes are co-transcribed
(Campbell et al., 2003; Martínez-calvillo et al., 2004; Martínez-Calvillo et al., 2010). These
genomes are almost devoid of introns (El-Sayed et al., 2005). The mRNA is cleaved into
single gene transcripts that are trans-spliced to small spliced leader RNAs (Campbell et al.,
2003). These features are common in kinetoplastids and pre-date the adoption of parasitism
(Simpson et al., 2006).

The main cellular forms of trypanosomatids

Figure 1.2C shows the main cellular forms of trypanosomatids as defined by cell shape, flag-
ellum presence and attachment, and position of the basal body, kinetoplast and nucleus (Do-
campo et al., 2005). The monoxenics generally present one form as they inhabit only one host
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whereas heteroxenics differentiate during their life cycle as they alternate hosts. One such
example of monoxenic is the choanomastigote Angomonas deanei (Teixeira et al., 2011).

1.2.3 Symbiont-harbouring trypanosomatids (SHTs)

The non-pathogenic, insect-exclusive parasites comprise the largest number of trypanoso-
matid species, and the digestive tube of dipterans and hemipterans represents their most
common habitat. Cultures of insect trypanosomatids, also referred to as monoxenics, were
first obtained in the 1920s. However, most designated species of these protozoa have not been
cultivated and are only known from morphological descriptions recorded in drawings published
from the end of the nineteenth century on (Noguchi et Tilden, 1926). The modest number
of available cultures of insect trypanosomatids is in part due to the difficulties inherent to
growing these organisms in artificial media. This is related to the fastidiousness of insect
trypanosomatids, which require nutritionally very rich and complex media in order to grow
(Lwoff, 1940; Cowperthwaite et al., 1953; Guttman, 1966). The first defined medium for an
insect trypanosomatid was published in 1958 (Kidder et Dutta, 1958), as an attempt to cul-
tivate Crithidia fasciculata, a species isolated from mosquitoes. The identity of the flagellate,
however, cannot be taken at face value because some confusion prevailed at the time (and
even today) with respect to the authenticity of strains and species of insect trypanosomatids.

In most cases, cultivation of insect trypanosomatids required all essential amino acids,
vitamins of the B-complex, para-aminobenzoate (pABA), inositol, and choline, in addition to
purines, glucose, and salts (Guttman, 1966; Kidder et Dutta, 1958). Earlier, Newton (Newton,
1956, 1957) had described the much simpler nutritional requirements of Strigomonas oncopelti,
which in addition to the B vitamins needed only methionine, adenine, glucose, and salts for its
growth. Later, it was shown that S. oncopelti carries a symbiotic bacterium in its cytoplasm
(Gill et Vogel, 1963), an observation soon extended to some other insect trypanosomatids
(Table 1.1) (Mundim et al., 1974; Faria e Silva et al., 1991; Chang, 1975; Chang et Trager,
1974; Teixeira et al., 2011). This reduced group of insect trypanosomatids carries cytoplasmic
endosymbionts (referred to as TPEs for trypanosomatid proteobacterial endosymbionts) and
is known as symbiont harbouring trypanosomatids (SHTs), to distinguish them from regular
insect trypanosomatids naturally lacking symbionts (RTs). SHTs comprise six species that
belong to the genera Strigomonas and Angomonas, and they form a monophyletic cluster split
in two subclades, one for each genus (Figure 1.3) (Hollar et al., 1998; Teixeira et al., 2011).

SHTs Previous names Bacterial endosymbiont Insect host
Angomonas deanei1 C. deanei; H. roitmani Ca. Kinetoplastibacterium crithidii H/D
Angomonas desouzai2 C. desouzai Ca. K. desouzaii D
Angomonas ambiguus3 - Ca. K. crithidii D
Strigomonas culicis4 Blastocrithidia culicis Ca. K. blastocrithidii H/D
Strigomonas oncopelti5 Crithidia oncopelti Ca. K. oncopeltii H
Strigomonas galati6 - Ca. K. galatii D

Table 1.1: The six species of symbiont-harbouring trypanosomatids, respective symbionts
and insect host origin. H: Hemiptera; D: Diptera. 1Mundim et al. (1974); Fiorini (1989); Faria e
Silva et al. (1991); 2Fiorini (1989); 3Teixeira et al. (2011) 4Novy et al. (1907); 5Newton et Horne
(1957); 6Teixeira et al. (2011); .

A considerable amount of information has been gathered about the morphology and cell
biology of the host/symbiont association (Motta et al., 2010; Freymuller et Camargo, 1981;
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Roitman et Camargo, 1985; Motta, 2010). From early on, it was suspected that the symbiont
was responsible for the enhanced nutritional capabilities of the SHTs, a fact supported by
the loss of these capabilities in strains cured of the symbiont (aposymbiotic strains) by chlo-
ramphenicol treatment (Guttman et Eisenman, 1965; Mundim et Roitman, 1977; Chang et
Trager, 1974). Further nutritional studies have shown that, indeed, the requirements of the
SHTs are minimal compared to those of RTs (Mundim et al., 1974; de Menezes et Roitmanz,
1991).

Figure 1 page 507 from Teixeira et al. (2011).

Figure 1.3: Phylogenetic tree of symbiont-harbouring trypanosomatids and representa-
tives of distinct trypanosomatid genera inferred by maximum likelihood. Extracted from
Teixeira et al. (2011).

Mutualistic association and its origin

SHTs and TPEs establish an obligate mutualistic association, in which the symbiont is unable
to survive and replicate without its host, whereas the aposymbiotic trypanosomatid loses its
ability to colonise the insects (Fampa et al., 2003; Motta, 2010). The original association of
TPEs with an ancestral trypanosomatid is thought to have occurred 40-120 million years ago,
based on the genetic distances of the bacterial SSU rRNA genes and on an evolutionary rate
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of 0.01-0.02 per site per 50 million years (Du et al., 1994a; Moran et al., 1993). Phyloge-
netic and phylogenomic analyses indicate a common origin for all TPEs clustering within the
betaproteobacteria from the Alcaligenaceae family (Taylorella genus as sister group) (Figure
1.4), thus suggesting that a single event gave rise to this symbiotic relationship (Du et al.,
1994a,b; Teixeira et al., 2011; Alves et al., 2013b). The clade of the TPEs is divided in two
subclades, similar to the protozoan host tree, one for the symbionts of Angomonas hosts and
the other for those of the Strigomonas hosts (Teixeira et al., 2011; Alves et al., 2013b). Teix-
eira et al. (2011) performed a congruence analysis between the ITS rDNA-based phylogenetic
trees of TPEs and SHTs, which indicated perfect congruence at the genus level and partial at
the species level. Assuming the common origin of all TPEs, the authors suggested an overall
host-symbiont co-divergence and different rates of evolution for symbionts and hosts.

As concerns the acquisition of endosymbionts by protozoan hosts, Du et al. (1994a) sug-
gested that this event might have occurred when the ancestral trypanosomatid still fed upon
bacteria to recruit endosymbionts, which points to the free-living and still bacteriovore an-
cestors of trypanosomatids, Bodo saltans (for the ancestry of trypanosomatids see Section
1.2.1). SHTs are neither phagocytic nor susceptible to experimental infection by symbionts
or other bacteria. Furthermore, these same authors proposed that a single event of acquisi-
tion of a bacterium by phagotrophy by a Bodo-like ancestor gave rise to the contemporary
endosymbioses in SHTs. Limitations to this proposal were highlighted by the authors: either
there were multiple losses of the symbionts from the RTs that interrupt the evolutionary de-
scendence of the SHTs from Bodo; or SHTs descend from another still unidentified ancestral
lineage. Supporting the Bodo-like ancestor, a cytoplasmic endosymbiont was described for the
bacteriovore B. saltans (Brooker, 1971). Using light and electron microscopy, Brooker (1971)
identified as many as 4 bacteria and suggested a total population much larger. Furthermore,
mid-point constrictions were observed indicating independent division of the endosymbiont
and the host cell (Brooker, 1971). In addition to B. saltans, for the first time in an heteroxenic
trypanosomatid, an endosymbiont was described in all the stages of the life cycle of the fish
Trypanosoma cobitis (Lewis et Ball, 1981). These microorganisms are of the gram-negative
type and their division does not seem to be synchronised with that of the host (Lewis et Ball,
1981).

Bacterial endosymbiont

The bacterium is in close association with the host cell nucleus, surrounded by glycosomes,
and it presents different shapes during the cell cycle of the protozoan host (for more details see
Section 1.2.3) (Motta et al., 1997a; Faria-e Silva et al., 2000; Motta et al., 2010). Moreover, it
is enclosed by 2 unit membranes and a reduced peptidoglycan layer, possibly facilitating the
intense metabolic exchanges with the host and playing important physiological roles in shape
maintenance and bacterial division (Motta et al., 1997b). As concerns prokaryote division,
similar to the mitochondria of animal, fungi and higher plants but different from overall bacte-
ria, TPEs do not form the FtsZ ring and lack the septum (Motta et al., 2004; Margolin, 2005).
Some symbionts with an extreme genome reduction have lost the ftsZ gene which might have
been transferred to the host nucleus (as for the plastids of plants and algae) or replaced by
host-derived functions, such as the dynamin-like protein ring found in most mitochondria,
plastids as well as in the chloroplast-like organelle of Aplicomplexa parasites, the apicoplast
(see reviews in Margolin (2005); Vaishnava et Striepen (2006); Adams et Errington (2009);
Bernander et Ettema (2010); McFadden (2011)). A fragment containing the ftsZ gene trans-
ferred from Wolbachia, a bacterial endosymbiont, to the X chromosome of an insect host was
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A. Figure 2 page 3083 from Du et al. (1994b).
B. Figure 2 page 342 from Teixeira et al. (2011).

Figure 1.4: Phylogenetic and phylogenomic analyses of trypanosomatid proteobacterial
endosymbionts (TPEs). A. Phylogenetic analysis of 16S rRNA gene sequences of TPEs and other
bacteria. Extracted from Du et al. (1994b). B. Maximum likelihood supermatrix phylogeny (233
concatenated orthologs) of TPEs and other bacteria. Extracted from Alves et al. (2013b).

reported, however it was proven to be non functional (Kondo et al., 2002). On the other hand,
some bacteria which are known to lack this gene, such as Chlamydiae, Planctomycetes, Ure-
aplasma urealyticum and Mycoplasma mobile, seem to be capable of independent cell division
(McFadden, 2011). Moreover, the typical eukaryotic membrane phospholipid, phosphatydil-
choline (PC), is present in the membranes of TPEs and part of PC or of a PC precursor
is supplied by the host, indicating that this phospholipid is important for the establishment
of the symbiosis in trypanosomatids (Palmié-Peixoto et al., 2006; de Azevedo-Martins et al.,
2007). PC is not a frequent constituent of bacterial membranes, however it is found in symbi-
otic and pathogenic bacteria interacting with plants and animals, such as the nitrogen fixing
symbionts of plants and the human pathogens, Brucella abortus and Legionella pneumophila,
that require PC for full virulence (see review in Aktas et al. (2010)).

This long partnership has led to considerable changes in the genomes of TPEs including
gene loss, with clear preferential retention of genes involved in metabolic collaboration with
the host, and consequent genomic size reduction (Alves et al., 2013b; Motta et al., 2013),
as seen in other obligatory symbiotic associations (Baumann et al., 1997; Wernegreen, 2002;
McCutcheon et von Dohlen, 2011; Andersson et Kurland, 1998; Itoh et al., 2002; Gómez-
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Valero et al., 2007). Genomic stasis is also a common feature of host-restricted symbionts and
is found in TPEs where the five sequenced genomes are highly syntenic despite million years
of divergence (Alves et al., 2013b). The loss of some but not all of the DNA recombination
genes may be related to this process (Alves et al., 2013b). Moreover, these genomes are AT
rich with only about 30-32% CG content, similar to the obligate symbiont of the sharpshooter
Ca. Baumannia cicadellinicola (Wu et al., 2006; Alves et al., 2013b).

Changes in the presence of symbionts

The presence of the symbiont results in morphological and physico-chemical alterations in the
trypanosomatid host (see review in Motta (2010)). As concerns the first, such changes include
the rearrangement of kinetoplast DNA fibers and reduced paraflagellar structure (Freymuller
et Camargo, 1981; Gadelha et al., 2005; Cavalcanti et al., 2008). Contrary to the tightly
packed kDNA fibers in RTs, these fibers display a looser arrangement in SHTs (Cavalcanti
et al., 2008). The paraflagellar rod is important for full motility and adhesion to the host
epithelia; moreover the reduced nature of this structure does not result in problems for the
SHTs which keep these capabilities (Gadelha et al., 2005). In addition to that, the glycosomes,
which are generally distributed throughout the cells, are concentrated around the symbiont
in SHTs (Motta et al., 1997a).

The composition of the cell surface, which is of key importance for the interaction with the
insect host cell and for the cellular response to environmental stimuli, is different in SHTs and
in their aposymbiotic counterparts (Motta, 2010; D’Avila-Levy et al., 2005). For this reason,
endosymbiont-bearing strains interact better with insect cells and guts when compared to
the aposymbiotic counterparts; this is related to changes in polysaccharides, glycoprotein and
carbohydrate composition (Dwyer et Chang, 1976; Fampa et al., 2003; D’Avila-Levy et al.,
2005). The highly negative surface charge of the symbiont-free A. deanei is slightly reduced
by the presence of the endosymbiont (Oda et al., 1984). The altered profile of glycoconju-
gates, that are important for specific recognition between parasites and host cells, impairs
the interaction of the aposymbiotic strains with the insect cells and guts (D’Avila-Levy et al.,
2005). Similarly, the protozoan A. deanei is considerably more prone to adhere to the ex-
planted guts of Aedes aegypti than the aposymbiotic parasite due to the higher expression of
surface gp63 molecules (glycosylphosphatidylinositol) which is influenced by the presence of
the endosymbiont (D’Avila-Levy et al., 2008).

Coordinated cell division

The single vertically transmitted betaproteobacterial symbiont divides synchronously with
other host cell structures (Figure 1.5) (Motta et al., 2010). The cell cycle of trypanosomatids
involves a coordinated replication and segregation of the flagellum, the kinetoplast and the
nucleus. This process is more complex in SHTs in which the endosymbiont lies down over
the host nucleus and is the first structure to divide. It is followed by the segregation of the
kinetoplast and the nucleus. The association of the bacterium and the nucleus is suggested to
be related to the maintenance of precisely one symbiont per daughter cell. This restriction of a
single symbiont per cell indicates that the host protozoan imposes tight control over the fission
of the endosymbiont which may also be related to the genes responsible for the prokaryote cell
division such as the above mentioned ftsZ. Douglas (2010) indicated that the restriction of the
habitat space, the growth and the proliferation of its partners are possible ways to exercise a
control over the abundance and distribution of the partners, and this control is essential for
the persistence of symbiosis. As in the TPEs, in Ca. Blochmannia most genes are single copy,
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and it was suggested that its overall level of gene expression could be influenced by controlling
the replication of the bacterium in certain life stages of the insect host (Stoll et al., 2009).
In SHTs, the control over the abundance is extremely strict allowing only a single bacterium
during all the protozoan host life cycle (Motta et al., 2010); therefore abundance is not the
strategy to regulate the gene expression of this bacterium.

Figure 5 page 7 from Motta et al. (2010).

Figure 1.5: Schematic representation that summarizes the morphological alterations dur-
ing the A. deanei cell cycle. Recently replicated protozoa present a single symbiotic bacterium in
rod-shape format (A), the endosymbiont elongates and lies down over the host cell nucleus (B). The
bacterium is the first structure to divide (C). After the symbiont duplication, the kinetoplast migrates
to the posterior end of the host protozoan (arrow) and the new flagellum grows inside the flagellar
pocket (D–E). Then, the kinetoplast segregates (F) and the nucleus divides (G). When the cytokinesis
begins, the duplicated bacteria are seen in the posterior end of the protozoan, as well as the duplicated
kinetoplasts, considering the nuclear position (G). As the cytokinesis advances, kinetoplasts return to
the anterior cell end (arrows), while the symbiont remains in the posterior part of the cell body (H–I).
The new flagellum only emerges from the flagellar pocket at the end of cytokinesis, when the flagellar
pocket probably segregates (Fig. 5 H–J). The flagellar beat in opposite directions (arrows) generates
a propelling force in a late dividing protozoan (Fig. 5 I). At the end of the division process each
daughter cell contains a single copy structure, including the symbiotic bacterium (J). The symbiont
remains as a single rod-shape bacterium for 1.0 h (A), whereas the constricted symbiont persists in
this format for 3 h (B and C’). After the symbiont division, both bacteria are maintained in the host
trypanosomatid for 2 h, before the generation of two new daughter cells (C–K). Extracted from
Motta et al. (2010).

Metabolic exchanges

The mutualistic association of the host trypanosomatid and its endosymbiont confers the
host protozoan less stringent nutritional requirements because of the endosymbiont supply of
essential growth factors (Chang, 1975; Chang et al., 1975; Newton, 1956, 1957; Mundim et al.,
1974). Extensive comparative studies between SHTs (wild and cured strains, obtained after
antibiotic treatment) and RTs have permitted inferences about the symbiont dependence and
contribution to the overall metabolism, in particular the phospholipid (Palmié-Peixoto et al.,
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2006; de Azevedo-Martins et al., 2007; de Freitas-Junior et al., 2012) and amino acid (Alfieri
et Camargo, 1982; Chang et Trager, 1974; Fair et Krassner, 1971; Camargo et Freymuller,
1977; Figueiredo et al., 1978b; Yoshida et al., 1978; Camargo et al., 1987; Galinari et Camargo,
1978, 1979) production of the host cell. In a few cases, it has been shown that the symbiotic
bacterium contains enzymes involved in the biosynthetic pathways of the host, but in most
cases the metabolic contribution of the endosymbiont has been inferred from nutritional data
rather than been genetically demonstrated (Newton, 1956, 1957; Mundim et al., 1974; Chang,
1975; Chang et al., 1975; Roitman et Camargo, 1985; de Menezes et Roitmanz, 1991; Motta,
2010). From these nutritional studies, it was suggested that SHTs require neither hemin nor
the amino acids that are essential for the growth of RTs. Some biochemical studies indicated
the complementarity of both partners for the synthesis of heme (Chang et al., 1975; Salzman
et al., 1985). This was recently confirmed by the presence of the complete set of genes that code
for enzymes of the heme pathway, which showed that those genes are unequally distributed
between the host and the endosymbiont genomes, with most of them located in the bacterium
(Alves et al., 2011, 2013b).

In addition to hemin, the presence of the symbiont dispenses the with need for either
citrulline or arginine to produce ornithine, which is due to the presence of the enzyme or-
nithine carbamoyl-transferase (OCT) in the bacterium completing the urea cycle (Figure 1.6)
(Camargo et Freymuller, 1977; Figueiredo et al., 1978a; Galinari et Camargo, 1978). In this
cycle, the production of ornithine leads to the production of an intermediate used for the
synthesis of pyrimidines, proline and the polyamine putrescine (Kidder et al., 1966; Yoshida
et al., 1978). This intricate dialog includes not only the metabolic point of view, but also
regulation and cell cycle, among others. One such example is the uptake of L-proline, which
is not required for growth. In A. deanei, it seems to be upregulated by the presence of the
symbiotic bacterium (Galvez Rojas et al., 2008). The just mentioned polyamine, putrescine,
can be produced from ornithine through the activity of the enzyme ornithine decarboxylase
(ODC). The ODC activity is higher in A. deanei when compared to the aposymbiotic strain,
increasing thus the polyamine metabolism (Frossard et al., 2006). This augmentation could
be related to the faster growth of SHTs than of symbiont-free strains, due to the involvement
of polyamines in cell growth and proliferation (see review in Willert et Phillips (2012)).

Less is known about the contribution of the protozoan host to the metabolism of the
bacterium. Besides the previously mentioned host supply of PC to the symbiont (de Azevedo-
Martins et al., 2007), the symbiont may obtain ATP through the activity of host glycosomes
(Motta et al., 1997a). The latter indicates important metabolic exchanges, especially as
concerns energy metabolism, between the bacterium and the host glycosomes, which are
known to be physically close, and probably also including the mitochondrion (Motta et al.,
1997a; Faria-e Silva et al., 2000; Motta, 2010).

Symbiont identity and gene transfer

There are a few characteristics that make the symbiosis in trypanosomatids a singular model
to study cellular evolution. One such feature is the presence of only one symbiotic bacterium
that divides synchronically with the host cell, indicating that the protozoan imposes tight
control over the endosymbiont division (Motta et al., 2010). As previously mentioned, host
control of cellular division is found in organelles and is important for the persistence of the
interaction (Douglas, 2010). Finally, genetic assimilation, as described in symbiont-derived
organelles, is facilitated in the case of single cell eukaryotes such as the trypanosomatids (for
more details see Section 1.1.3) (Douglas, 2010); thus, investigation of the symbiont-host gene
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Figure 6 page 145 from Motta (2010).

Figure 1.6: Urea cycle in endosymbiont-containing (a) and endosymbiont-free (b) An-

gomonas species. Notice that the enzyme ornithine carbamoyl-transferase (OCT) is only present
in endosymbiont-bearing strains, closing the urea cycle in these protozoa. Conversely, the citrulline
hydrolase is only found in endosymbiont-free species that need exogenous arginine or citrulline in cul-
ture medium, but not ornithine, which does not substitute for either aminoacids. Extracted from
Motta (2010).

transfer and of the identity of the bacterium is of great interest.
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1.3 Metabolic networks

1.3.1 Overview of metabolism

Metabolism is the whole network of chemical reactions occurring in a living organism. A
reaction is the transformation of a set of compounds, called substrates into another set of
compounds, called products. Classically, the analysis of the metabolism of an organism is
performed by splitting the metabolic network into several metabolic pathways and by analysing
each one independently. Conversely, the analysis of the whole metabolic network in a systemic
way is enabled by high-throughput technologies, and allows investigating the functions of a
complex system that cannot be understood by its components and which are termed emergent
or systemic properties (Breitling et al., 2008; Palsson, 2006).

Getting more deeply into the parts that compose the system, some basic concepts will be
hereafter described relying on Cornish-Bowden (2004). Most of the chemical reactions taking
place in living organisms do not happen spontaneously due to mild conditions inside a cell,
they need catalysts which in this case are termed enzymes. The majority of them are made of
protein, and are neither consumed nor produced but are necessary for the reaction to happen.
A remarkable feature of an enzyme is the specificity to catalyse one or a set of reactions
but not the remaining ones. This precision comes with a high cost and a complex structure,
where the enzyme is generally about 50-100 times the combined volume of the molecules it
acts on. In order to act on its substrates (generally two but there are enzymes that act on
one, three or more), it needs a cavity to fit them (and not unwanted molecules) and regions
that attract them such as charged groups and hydrophobic regions (Figure 1.7). Then, the
catalytic groups can interact with the substrates leading to the proper transformation.

Depending on thermodynamic constraints, the transformation from substrate(s) (A) into
product(s) (B) can be reversible, i.e. A ↔ B, or irreversible, i.e. A → B. Moreover, there are
coefficients to describe the balance of molecules from both sides of the chemical reaction, e.g.
2H2 +O2 → 2H2O, which are called stoichiometric coefficients.

Figure 1.2 page 7 from Cornish-Bowden (2004).

Figure 1.7: Required features for the activity of an enzyme. Extracted from Cornish-
Bowden (2004).

The unity of biochemistry is highlighted by Cornish-Bowden (2004) and it is interesting to
mention it here. While the characteristics of one type of organism are most often considerably
different from another, their biochemical components - carbohydrates, proteins and fats - use
the same sort of chemistry to transform compounds into one another and to produce the
basic building blocks from the substrates which they acquire from the environment. Even the
sequence of reactions, i.e. pathways, such as for the conversion of glucose into energy, are
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similar in quite different organisms. This is a key notion to keep in mind when considering
the uneven distribution of biochemical data currently available where few model species are
well-studied and constitute the main part of the metabolic databases, while inferring the
metabolism of the vast majority of the organisms relies on a propagation of such knowledge.
This fact will be further discussed below. This is however limiting in the sense that only a same
core metabolism is known in a wide diversity of species whereas organism-specific information
is missing (Breitling et al., 2008). Furthermore, Breitling et al. (2008) raised the fact that
condition-specific data are also missing and suggest promising experimental methodologies to
focus on this unexplored metabolism. Thus, those gaps in biochemical knowledge, as well as
the ones that remain in the core metabolism (i.e., reactions for which no enzyme catalysing
them has been identified), impact the quality of the reconstructed networks (Palsson, 2006).

1.3.2 Metabolic network reconstruction

Diverse omics data, such as genomics, transcriptomics, proteomics and metabolomics, can be
integrated into a biological network or used to analyse it. A metabolic network reconstruction
relies mainly on genomic data for defining the set of reactions potentially occurring in a given
organism. This issue has been extensively reviewed (Francke et al., 2005; Pinney et al.,
2007; Lacroix et al., 2008; Rocha et al., 2008; Durot et al., 2009; Feist et al., 2009; Pitkänen
et al., 2010; Haggart et al., 2011; Santos et al., 2011; Chen et al., 2012; Kim et al., 2012;
de Oliveira Dal’Molin et Nielsen, 2013) and a step-by-step procedure was recently described
by Thiele et Palsson (2010). This process starts with a draft reconstruction based on the
genome sequence of the target organism and is followed by the time-consuming refinement of
this reconstruction depending on the intended use of the metabolic model. These topics are
further detailed hereafter.

Metabolic databases

Depending on the chosen method for the reconstruction process, it may rely on the metabolic
pathway information gathered in databases such as MetaCyc/BioCyc (Caspi et al., 2012)
and KEGG (Kanehisa et al., 2012). These provide data on experimentally characterised
metabolic pathways of primary and secondary metabolism for different organisms as well as
associated experimental literature, compounds, enzymes and genes, thus gathering a catalog of
the universe of metabolism, a global metabolic pathway map. In addition to that, information
can be obtained from organism-specific databases such as EcoCyc (Keseler et al., 2009), and
from biochemical databases for enzymes or transporters, e.g. BRENDA (Schomburg et al.,
2013), ExplorEnz (McDonald et al., 2009), Transport DB (Ren et al., 2007), Transport
Classification DB (Saier et al., 2009).

From the genome to the chemical reactions

This process may be split in two parts: (i) functional annotation of metabolic genes to deter-
mine the potential enzymatic capabilities of the target organism, mainly based on sequence
homology; and (ii) inference of the list of reactions enabled by the assigned enzymatic activ-
ities coded by its EC number (e.g. 1.1.1.1), which can be obtained from enzyme databases
such as BRENDA (Lacroix et al., 2008; Schomburg et al., 2013). At this stage, the gene-
protein-reaction (GPR) associations are initially established, and will be further refined to
include cases where the relation between genes and reactions is not one-to-one, e.g. isozymes
perform a same reaction or the enzyme complex requires more than one subunit coded by
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different genes. The GPR associations will be modelled in the network as a boolean system,
for which an example can be found in Figure 1.8.

Figure 5 page 99 from Thiele et Palsson (2010).

Figure 1.8: Gene-protein-reaction (GPR) associations. Examples of GPR associations in
Escherichia coli and the boolean representation. Extracted from Thiele et Palsson (2010).

This draft network step can currently be accomplished by a variety of automatic recon-
struction tools, listed and detailed in various reviews about this topic (Francke et al., 2005;
Pinney et al., 2007; Lacroix et al., 2008; Rocha et al., 2008; Durot et al., 2009; Feist et al.,
2009; Pitkänen et al., 2010; Haggart et al., 2011; Santos et al., 2011; Chen et al., 2012; Kim
et al., 2012; de Oliveira Dal’Molin et Nielsen, 2013). I will describe three of them focusing
on the input and output of each one, observing that none of them spares the need for a
subsequent time-consuming manual refinement of the network, although it may facilitate the
task.

I start with the well established approach of PathoLogic from the Pathway tools
software (Karp et al., 2010), which is associated to the BioCyc database (Karp et al., 2005)
and uses an annotated genome sequence as input to build a model-organism database called
a Pathway/Genome Database (PGDB) such as EcoCyc (Keseler et al., 2009). It enables to
infer operons, transport reactions and metabolic pathways, gives access to its own gap-filling
approach called pathway hole-filler, performs consistency checks, and gives access to a cellular
overview with an omics viewer, to an iterative editing platform to curate the data, as well
as to various other analysis and visualisation tools (Green et Karp, 2004; Romero et Karp,
2004; Paley et Karp, 2006; Lee et al., 2008; Dale et al., 2010; Latendresse et Karp, 2011).
From an annotated genome sequence, it uses the assigned EC number as well as the enzyme
name which is compared to a dictionary where the enzymatic activity names are linked to
potential reactions. This method was first designed to build a database of pathways and
to add regulation and other information into the platform rather than to modelling for a
constraint-based analysis (Santos et al., 2011). On the other hand, it is a software that is
constantly evolving since 1996 (Karp et Paley, 1996; Karp et al., 2002), one example being the
recent inclusion of flux balance analysis (FBA) and multiple gap-filling to Pathway tools
(Latendresse et al., 2012). The aim of this multiple gap-filling method is to accelerate the
development of FBA models directly from Pathway/Genome Databases, using the new tool
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called MetaFlux based on mixed integer linear programming. Its singularity is the capability
to simultaneously suggest modifications to the four essential sets describing an FBA model:
the set of reactions, of metabolites of the biomass reaction, of nutrients and of secretions.

The second automatic reconstruction approach that will be introduced here focuses on
constraint-based modelling. Notebaart et al. (2006) presented the detailed Autograph
method and applied it to reconstruct a genome-scale metabolic model of Lactococcus lac-
tis; however no tool or algorithm was made available. The aim is to reuse as much as
possible the available and well-curated genome-scale metabolic models. There are currently
almost 100 of those models, mostly from bacteria, and the complete list can be found at
http://gcrg.ucsd.edu/InSilicoOrganisms/OtherOrganisms. When using this approach,
one takes advantage of the verification steps and the collected knowledge of a curated model
that may not be found in databases, due to wrong or incomplete information or to new data
which are not yet included in the databases. Examples of such include: reaction stoichiome-
tries, gap-filling and extensive bioinformatic, experimental and bibliomic analyses which were
performed to curate the model (Santos et al., 2011). The pipeline is the following: (i) or-
thology search between the genes of the query and the reference genome (the latter is one
that has a well-curated genome-scale metabolic model available); (ii) establishment of the
link between orthologs and reactions; (iii) transfer of the reactions to the genes of the query
genome (Notebaart et al., 2006).

Finally, a more recent method called the Model Seed (Henry et al., 2010) is a web-
based pipeline for metabolic reconstruction that is based on a constraint-based modelling
and allows to go further in the list of recommended refinements of a reconstruction (Thiele
et Palsson, 2010) when compared to other methodologies. It requires only an assembled
genome sequence as input and generates an SBML (Systems Biology Markup Language Hucka
et al. (2003)) model. A singularity of this approach is the generation of a metabolic model
containing already an organism-specific biomass reaction. The quite reduced list of manual
curation steps that remains after applying this method includes experimental data collection,
assignment of gene and reaction localisation, inference of intracellular transport reactions
(mostly for eukaryotic models since only cytosol and extracellular compartments are included
in the model), determination of biomass reaction coefficients and loading of the models into
the Cobra toolbox (Henry et al., 2010; Schellenberger et al., 2011). This pipeline goes further
in some decision-making steps during model optimisation, such as filling or not one gap, that
are error-prone and should be verified.

Thus, the three approaches presented above for the draft level reconstruction of a metabolic
network have important differences that should be taken into account when selecting one
to be used. Pathway tools for instance allows for a step-by-step draft reconstruction
process where the user interacts with the method solving ambiguities. On the other hand,
Autograph and Model Seed might output a draft reconstruction that goes further in the
manual refinements (presented in the next topic) while it passes additional decision-making
steps that are subject to error and require verification during the manual refinement. None
of the methods to date completely eliminates the need for a manual curation, if the aim is
to have a high-quality model for simulations and predictions (Thiele et Palsson, 2010; Santos
et al., 2011). Moreover, the decision of which approach to adopt may depend on:

1. The size of the reconstruction model; for instance if one is working with a small bac-
terial metabolic network, it may be more efficient to perform a reaction-by-reaction
reconstruction without a first draft reconstruction since the latter would require a man-
ual inspection of the included reactions, as suggested by Thiele et Palsson (2010).
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2. The level of annotation of the target genome, i.e. if it was carefully manually annotated,
the chosen method should probably make use of it.

3. The availability of well-curated genome-scale metabolic models and organism-specific
databases one could rely on, i.e. models or databases of organisms with similar taxo-
nomic position and/or lifestyle of your target organism.

4. A choice to iteratively interact and control for each step of the draft reconstruction
process or a verification/inclusion/exclusion step after an enhanced draft reconstruction.

Iterative refinement process

The draft level reconstruction of a metabolic network, which was presented in the previous
topic, is encouraged to be followed by a manual refinement which can be performed as an
iterative process as follows: refine the reconstruction, model it (see the next Section Modelling
of metabolic networks) and evaluate it based on its topological and functional properties in
a cyclic way, i.e. getting back to manual refinements, re-evaluating it and so on (Thiele et
Palsson, 2010). During this process, one can check for correctness of the inclusion of each
reaction and of its links with the rest of the network, as well as for gaps and inconsisten-
cies (Thiele et Palsson, 2010; Santos et al., 2011). In addition to that, the growth medium
requirements and the biomass composition should be defined. In the reconstruction proto-
col, Thiele et Palsson (2010) recommended a curation process done in a pathway-by-pathway
manner using the canonical pathways and leaving the peripheral pathways and reactions with
no assigned pathway for later, e.g. starting with the central metabolism, followed by the
biosynthesis of individual macromolecular building blocks such as amino acids, nucleotides,
and lipids. Organism-specific data are important in different steps of the curation process
and one such example is physiological data on growth conditions. The already mentioned
reconstruction protocol includes 96 steps that can be found in Figure 1.9. This iterative pro-
cess should be repeated until the phenotypic characteristics of the target organism are similar
to model predictions and/or all experimental data for comparison is exhausted (Thiele et
Palsson, 2010).
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Figure 1 page 95 from Thiele et Palsson (2010).

Figure 1.9: Overview of the procedure to iteratively reconstruct metabolic networks.
Extracted from Thiele et Palsson (2010).
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1.3.3 Modelling of metabolic networks

The analysis of metabolic networks can be structural or dynamic and the modelling commonly
ranges from graphs, constraint-based models to differential equations (Lacroix et al., 2008).
Further comparison of those analyses and models can be found in Santos et al. (2011); Haggart
et al. (2011); Klein et al. (2012a). The latter presents our review on these topics and is included
in the Appendix A. The first two models will be briefly described below.

Graph models

A metabolic network may be interpreted and built in various ways (Figure 1.10): nodes can be
metabolites or reactions (respectively giving rise to the compound and the reaction graphs),
and arcs (i.e. directed edges) can be reactions or shared metabolites. In both cases, the
reconstruction may lead to a loss of fundamental information, e.g. in Figure 1.10 reaction
R1 has two substrates (A and B) and two products (C and D), however, by looking at the
corresponding compound graph one could imagine that the production of C only requires A,
and by looking at the corresponding reaction graph we notice that the arc between R1 and R2
exists only because of the compound D regardless of the presence of E. These limitations ask
for a full treatment of the complex reactions in a metabolic network (discussed in detail e.g.
in Lacroix et al. (2008); Cottret et Jourdan (2010)): bipartite graphs and hypergraphs help
to overcome these problems at the price of a higher algorithmic complexity. Hypergraphs
are indeed generalisations of graphs and thus problems may become harder to solve (see
Klamt et al. (2009) for some examples of hypergraphs applied to biological questions and the
associated computational problems).

Figure 1.10: Graph models to represent a metabolic network. Given three biochemical
reactions (R1, R2, R3), metabolic graphs are built with metabolites as round nodes and reactions as
square nodes. The same system can be represented using different kinds of networks. A. Compound
graph, where nodes are metabolites and there is an arc between a substrate and a product of a reaction;
B. reaction graph, where nodes correspond to reactions and are connected when a product of one
reaction is a substrate of the next one; C. bipartite graph: nodes are either compounds or reactions in
which there is an arc between the substrate/reaction and reaction/product; D. hypergraph: nodes are
compounds and a hyperarc links the substrate(s) to the product(s) of a reaction. Extracted from
Klein et al. (2012a).

Structural analyses of metabolic networks modelled as a graph include the classical mea-
sures from graph theory such as centrality, degree distribution, diameter and average inter-
node distance (Lacroix et al., 2008; Klein et al., 2012a). Besides, it allows also for the evalua-
tion of the metabolic reconstruction. Such measures can be applied to other types of biological
networks and may provide further insight into the structure and general characteristics of the
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network. Biases in the network reconstructions or manipulation can strongly affect the results
of the analysis, confounding the observed correlations (if any exist) between biological and
topological properties (Coulomb et al., 2005). Thus, depending on the structural analyses
performed, some filtering of cofactors and ubiquitous compounds may be necessary to avoid
meaningless biochemical paths and conclusions (Ma et Zeng, 2003). Such filters can be ap-
plied to the metabolic graph using MetExplore (Cottret et al., 2010), which is a web-server
that allows to build, curate and analyse genome-scale metabolic networks. Consequently, one
needs to carefully interpret the topological measures obtained (for further discussion of this
topic see Klein et al. (2012a)).

Constraint-based models

In this framework, the network is modelled as a stoichiometric matrix (Figure 1.11), where
metabolites compose the lines whereas reactions represent the columns and the stoichiometric
coefficients fill the cells of the matrix. The signs of those coefficients indicate whether the com-
pound is consumed or produced (Covert et Palsson, 2003; Palsson, 2000, 2006). This approach
was introduced by Covert et Palsson (2003) and made available in the Cobra toolbox (Schel-
lenberger et al., 2011) which allows for the reconstruction and analysis of constraint-based
models.

Figure in Box 1 page 157 from Breitling et al. (2008).

Figure 1.11: Example of a stoichiometric matrix (S) representing a pathway-map. S is the
mathematical representation of the pathway shown at the top of the figure. Reaction (r) 1 consumes
one molecule each of red and green combined to form one molecule of red–green product. A metabolic
network can be reconstructed from S, but the opposite is not necessarily the case. For example, in r4,
two molecules of the purple compound are produced for every blue molecule that is consumed. Such
information is not always included in the biochemical-pathway map. Extracted from Breitling et al.
(2008).

The motivation here is to investigate the metabolic capabilities of an organism under
specified growth conditions based on the distribution of mass fluxes through the reactions,
imposing some constraints in order to reduce the space of feasible solutions. Such constraints
include the mass-balance, also called steady-state, constraint where the concentration of an
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internal compound is constant in time since it is balanced by its production and consump-
tion rates, as well as the capacity, also termed thermodynamic, constraint which concerns
any limitation imposed on the individual rates of the reactions. This framework allows for a
quantitative structural analysis called Flux Balance Analysis (FBA). Since the solution space
for such models is very large even under the constraints used, FBA seeks an optimal flux dis-
tribution with respect to a carefully chosen objective function using optimisation techniques.
The assumption behind FBA is that metabolism maximises some objective, but there may
exist many suboptimal flux distributions that help the organism during adaptation to specific
environmental conditions.

One of the most appealing properties of constraint-based models is that they provide a way
to explore the consequences of genetic manipulations on the whole metabolic network: one or
more reactions can be eliminated (simulating knock-out mutants) (Pharkya et al., 2003, 2004;
Wunderlich et Mirny, 2006; Suthers et al., 2009) or otherwise manipulated, and simulations
can be run to see if and how the objective function can be improved with respect to the
wild-type model (Trinh et al., 2008). By coupling two levels of optimisation, it is possible
to predict the best engineering strategy to have mutants that maximise some by-product of
interest, such as ethanol (Trinh et al., 2008) or lactate (Fong et al., 2005), while growing. A
recent survey on FBA and its applications can be found in Raman et Chandra (2009).
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This chapter presents a sequence of studies aiming to characterise the intricate metabolic
exchanges between trypanosomatids and their symbiotic bacterium based on genomic data. It
starts with the genome sequencing of two symbiont-harbouring trypanosomatids: Angomonas
deanei and Strigomonas culicis and their respective symbionts (Section 2.1). It is followed by
the analyses of the biosynthetic pathways of essential amino acids and vitamins for which the
bacterial symbionts are known to play an important role based on nutritional data (Section
2.2). The chapter ends with the ongoing genome-scale metabolic model of these two pairs of
host and symbiont (Section 2.3).
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2.1 Predicting the proteins of Angomonas deanei and Strigomonas

culicis and of their respective endosymbionts reveals new

aspects of the Trypanosomatidae family

My main contribution to the following manuscript – Motta et al. (2013) Predicting the pro-
teins of Angomonas deanei, Strigomonas culicis and their respective endosymbionts reveals
new aspects of the trypanosomatidae family. PLoS One. 8(4):e60209 – concerns the analyses
of the biosynthetic pathways of amino acids and vitamins. The published version of this
manuscript can be found in the Appendix B.

In this study, we used DNA pyrosequencing and a reference-guided assembly to generate
reads that predicted 16,960 and 12,162 open reading frames (ORFs) in two symbiont-bearing
trypanosomatids, Angomonas deanei and Strigomonas culicis, respectively, in an effort to bet-
ter understand such symbiotic association. Identification of each ORF was based primarily
on TriTrypDB using tblastn, and each ORF was confirmed by employing getorf from
EMBOSS and Newbler 2.6 when necessary. The monoxenic organisms revealed conserved
housekeeping functions when compared to other trypanosomatids, especially Leishmania ma-
jor. However, major differences were found in the ORFs corresponding to the cytoskeleton,
the kinetoplast, and the paraflagellar structure. The monoxenic organisms also contain a large
number of genes for cytosolic calpain-like and surface gp63 metalloproteases and a reduced
number of compartmentalised cysteine proteases in comparison to other TriTryp organisms,
reflecting adaptations to the presence of the symbiont. The assembled bacterial endosymbiont
sequences exhibit a high A+T content with a total of 787 and 769 ORFs for the endosym-
bionts of Angomonas deanei and Strigomonas culicis, respectively, and indicate that these
organisms have a common ancestor related to the Alcaligenaceae family. Importantly, both
symbionts contain enzymes that complement essential host cell biosynthetic pathways, such
as those for amino acid, lipid and purine/pyrimidine metabolism.

Detailed analyses of the synthesis of amino acids and vitamins in symbiont-bearing try-
panosomatids are presented in the next section.
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2.2 Biosynthetic pathways of amino acids and vitamins

In this section, two manuscripts are presented with some slight modifications to avoid redun-
dancy. In both cases, I share the first authorship with J.M.P. Alves:

(i) J.M.P. Alves, C.C. Klein, F.M. da Silva, A.G. Costa-Martins, M.G. Serrano, G.A. Buck,
A.T.R. Vasconcelos, M.-F. Sagot, M.M.G. Teixeira, M.C.M. Motta and E.P. Camargo.
Endosymbiosis in trypanosomatids: The genomic cooperation between bacterium and
host in the synthesis of essential amino acids is heavily influenced by multiple horizontal
gene transfers, BMC Evolutionary Biology, 13(1):190+, 2013;

(ii) C.C. Klein, J.M.P. Alves, M.G. Serrano, G.A. Buck, A.T.R. Vasconcelos, M.-F. Sagot,
M.M.G. Teixeira, E.P. Camargo, M.C.M. Motta. Biosynthesis of vitamins and cofac-
tors in bacterium-harbouring trypanosomatids depends on the symbiotic association as
revealed by genomic analyses, PLoS One, 8 (11), 2013.

These studies were performed in collaboration with M.C.M. Motta from the Instituto
de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil; and with
members of the Dept. of Parasitology, Institute of Biomedical Sciences, University of São
Paulo, Brazil and of the Virginia Commonwealth University, Richmond, VA, USA.

Overview of both studies In addition to the heme biosynthetic pathway, the synthesis
of essential amino acids and vitamins represents the known contribution of the bacterial
symbionts of trypanosomatids to their respective hosts, based on nutritional data. These
metabolic pathway analyses are the starting point of a wider and still ongoing investigation of
this intricate relationship done in the context of the whole metabolic networks (Section 2.3).

In both studies (of amino acids and of vitamins), we investigate the entire genomes of five
symbiont-harbouring trypanosomatids of the genera Angomonas and Strigomonas (SHTs)
and their respective bacteria (TPEs), as well as two regular trypanosomatids without sym-
bionts (RTs), for the presence of genes of the classical pathways for amino acid and vitamin
biosynthesis. Most of the genes responsible for those routes were found in the genome of the
symbionts, comprising the synthesis of lysine, branched-chain and aromatic amino acids, as
well as four vitamins of the B complex: riboflavin, pantothenate, vitamin B6 and folate. The
fewer genes found in the host genomes were inspected for the possibility of horizontal gene
transfer (HGT) from bacteria using phylogenetic analyses. This investigation is motivated by
the fact that these genes could have been transferred from the symbiont to the trypanosomatid
nuclei in the course of the bacterium genome reduction and co-evolution of these partners as
happened in the case of the mitochondrion and chloroplast (a more extensive discussion on
this topic can be found in Section 1.2.3). While these candidate HGTs were few in the case
of vitamin synthesis, they were quite numerous as concerns amino acids. The vast majority
of those HGTs were potentially transferred from diverse bacterial taxa not comprising be-
taproteobacteria. These findings suggest that HGT events played a fundamental role in the
genomic evolution of the Trypanosomatidae analysed, which was also previously found in the
heme biosynthetic pathway (Alves et al., 2011). However, as previously seen in the case of
Buchnera and the pea aphid, no massive transfer of the symbiont genes to the host seems to
have happened, at least not concerning these pathways. Further phylogenetic studies of the
whole host genomes should show the complete extent of this process.
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2.2.1 Endosymbiosis in trypanosomatids: the genomic cooperation be-
tween bacterium and host in the synthesis of essential amino acids
is heavily influenced by multiple horizontal gene transfers

BACKGROUND

Previous comparative studies on SHTs (wild and cured strains, obtained after antibiotic treat-
ment) and RTs, often involving trace experiments using radioactive compounds, reported the
requirement, substitution, and sparing of amino acids in culture media (Mundim et al., 1974;
Alfieri et Camargo, 1982; Cowperthwaite et al., 1953; Kidder et Dutta, 1958; Guttman, 1966,
1967; Gutteridge et al., 1969; Krassner et Flory, 1971; Kidder et Dewey, 1972; Cross et al.,
1975b; Anderson et Krassner, 1975; Cross et al., 1975a; Mundim et Roitman, 1977; Roit-
man et al., 1977; Yoshida et Camargo, 1978; Hutner et al., 1979). Nutritional data revealed
that, as for most animals, including humans, the amino acids lysine, histidine, threonine,
isoleucine, leucine, methionine, cysteine, tryptophan, valine, phenylalanine, tyrosine, and
arginine/citrulline are essential for RTs. However, similar analyses showed that SHTs require
only methionine or tyrosine in culture media, suggesting that they possess the necessary en-
zymatic equipment to synthesize most amino acids (Newton, 1957; Mundim et al., 1974; de
Menezes et Roitmanz, 1991; Chang et Trager, 1974). Unfortunately, besides the SHTs, most of
these studies were performed only on Crithidia fasciculata, largely ignoring other trypanoso-
matids. Of the hundreds of enzymes known to be involved in the synthesis of essential amino
acids in other organisms, only a few, i.e., diaminopimelic decarboxylase, threonine deami-
nase, ornithine carbamoyl transferase, argininosuccinate lyase, citrulline hydrolase, ornithine
acetyl transferase, acetyl ornithinase, and arginase have been identified and characterized in
trypanosomatids (Kidder et al., 1966; Alfieri et Camargo, 1982; Fair et Krassner, 1971; Ca-
margo et Freymuller, 1977; Figueiredo et al., 1978b; Yoshida et al., 1978; Camargo et al.,
1978; Galinari et Camargo, 1978, 1979; Gutteridge et al., 1969; Camargo et al., 1987). Thus,
in contrast to the advanced state of knowledge of genes involved in amino acid biosynthesis in
many microorganisms (Bono et al., 1998), the potential for amino acid synthesis in trypanoso-
matids remains largely unknown. In SHTs, nutritional inferences provided little information
about the effective participation of the symbiotic bacterium in the various metabolic path-
ways of the host protozoan. This contrasts with the advancement of knowledge about the
presence/absence of genes for complete pathways for amino acid synthesis in many microor-
ganisms.

Herein, we have identified the genes involved in the biosynthetic pathways of the essential
amino acids in the genomes of SHTs and RTs of different genera (see Methods), through
the characterization of each gene as identified by similarity searches and protein domain
analyses. We applied extensive phylogenetic inferences to determine the most likely origin
of these genes, as it has been previously shown that other important metabolic enzymes in
trypanosomatids have been transferred from bacteria, other than the present symbiont (Alves
et al., 2011). Although detection of a gene with a presumed function does not definitely prove
its activity, the association of its presence with complementary nutritional and biochemical
data supports the conclusion that it functions as predicted. In the present work, we establish
the contribution of TPEs to the amino acid metabolism of their trypanosomatid hosts, which
is related to high amounts of lateral transfer of genes from diverse bacterial groups to the
trypanosomatid genomes.
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RESULTS AND DISCUSSION

In this work, the presence or absence of a given gene for a particular enzyme was verified in
the genomes of TPEs, SHTs, and RTs and then compared to the available nutritional and
enzymatic data of essential amino acid biosynthesis in insect trypanosomatids. Extensive
phylogenetic analyses were also performed on most of the identified trypanosomatid genes, in
addition to some symbiont genes of interest. Data are mostly limited to the RT, SHT, and
TPE genomes that have been sequenced here. Although the genomes of all available SHTs and
TPEs have been examined, only a very limited sample of RT genomes (H. muscarum and C.
acanthocephali) were included in these analyses, precluding generalizations about trypanoso-
matids as a whole. Data on the genomes of leishmaniae and trypanosomes available in KEGG
were also used for comparison, but a wider sampling of genomes from more diverse groups of
Trypanosomatidae and other, more distant Kinetoplastida will be necessary to enable more
generalizing conclusions on the evolution of essential amino acid synthesis pathways in these
organisms.

Given the incomplete nature of the trypanosomatid genomes sequenced here and the pos-
sibility of contaminant sequences, we have taken extensive precautions before including each
gene in our analyses (see Methods). Our genomic context analyses of the genes identified
as horizontally transferred (Additional file C.1 in Appendix C) show that genes used in this
work occurred, with one exception, in long contigs presenting the typical trypanosomatid
architecture of long stretches of genes in the same orientation. Moreover, all these genes over-
whelmingly matched those from previously sequenced trypanosomatids. The one exception
is a gene (2.7.1.100, see below) that occurs only in the two RTs sequenced here, and whose
sequences are isolated in short contigs. As described below, they form a monophyletic group
in the phylogeny. GC percent (Additional file C.1 in Appendix C) and sequencing coverage
(Additional file C.2 in Appendix C) analyses also show that all genes identified in this work
present statistics typical of other genes from these organisms. In short, these data show that
the trypanosomatid genes employed here are highly unlikely to be contaminants.

Pathways of amino acid synthesis

Lysine Lysine, as well as methionine and threonine, are essential amino acids generated
from aspartate, a non-essential amino acid, which is synthesized from oxaloacetate that is
produced in the Krebs cycle. There are two main routes for the biosynthesis of lysine: the
diaminopimelate (DAP) and the aminoadipate (AA) pathways. The former is largely confined
to bacteria, algae, some fungi, and plants, whereas the latter is described in fungi and euglenids
(Bhattacharjee, 1985; Nishida, 2001; Velasco et al., 2002; Hudson et al., 2005; Torruella et al.,
2009).

Early nutritional studies (Gutteridge et al., 1969) showed that lysine is essential for the
growth of RTs, but could be efficiently replaced by DAP. In agreement with this, radioactive
tracer and enzymatic experiments revealed that DAP is readily incorporated as lysine into
proteins. Moreover, DAP-decarboxylase (EC:4.1.1.20), the enzyme that converts DAP into
lysine, was detected in cell homogenates of C. fasciculata (Gutteridge et al., 1969). Never-
theless, either lysine or DAP were always necessary for growth of these flagellates in defined
medium, indicating that the lysine pathway was somehow incomplete. In contrast, SHTs re-
quired neither lysine nor DAP to grow in defined medium (Newton, 1956, 1957; Kidder et al.,
1966; Mundim et al., 1974; de Menezes et Roitmanz, 1991). Interestingly, the genes encoding
the nine enzymes of the bacterial-type DAP pathway, leading from aspartate to lysine, were
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identified in the genomes of all TPEs (Figure 2.1). In contrast, only the final gene of the DAP
pathway was found in the genomes of the SHTs, and the final two found in one RT exam-
ined (H. muscarum), which explains why DAP could substitute for lysine in growth media
of some RTs. There are no genes for lysine biosynthesis annotated in the leishmaniae and
trypanosomes present in KEGG. It is worth mentioning that, with respect to the alternative
AA pathway, we were unable to find any genes for the synthesis of lysine in any of the TPE,
SHT, or RT genomes analyzed.

In summary, our findings using comparative genomics are in agreement with the data
from previous nutritional and enzymatic studies, showing that only SHTs, and not RTs, are
autotrophic for lysine and that this autonomy is provided by the DAP pathway present in
their symbionts. The presence of DAP-decarboxylase in SHTs may suggest that, although the
symbiont contains the great majority of genes for the lysine production, the host protozoan
somehow controls the production of this essential amino acid.

Figure 2.1: DAP pathway for lysine biosynthesis. Enzymes surrounded by a
thick gray box were shown to be horizontally transferred from Bacteria (see main text).
Metabolites – I: L-aspartate; II: 4-aspartyl-phosphate; III: aspartate 4-semialdehyde;
IV: 2,3-dihydrodipicolinate; V: 2,3,4,5-tetrahydrodipicolinate; VI: N-succinyl-L-2-amino-6-
oxopimelate; VII: N-succinyl-LL-2,6-diaminopimelate; VIII: LL-2,6-diaminopimelate; IX:
meso-2,6-diaminopimelate; X: lysine. Enzymes – 2.7.2.4: aspartate kinase; 1.2.1.11:
aspartate-semialdehyde dehydrogenase; 4.2.1.52: dihydrodipicolinate synthase; 1.3.1.26: dihy-
drodipicolinate reductase; 2.3.1.117: tetrahydrodipicolinate succinyltransferase; 2.6.1.17: suc-
cinyldiaminopimelate transaminase; 3.5.1.18: succinyldiaminopimelate desuccinylase; 5.1.1.7:
diaminopimelate epimerase; 4.1.1.20: diaminopimelate decarboxylase.

Methionine and cysteine Methionine is included in all defined media designed for
the growth of trypanosomatids with or without symbionts (Newton, 1957; Mundim et al.,
1974; Kidder et Dutta, 1958), suggesting that these protozoans are incapable of methionine
synthesis. However, experimental evidence has shown that homocysteine and/or cystathionine
could substitute for methionine in culture media for trypanosomatids (Kidder et Dutta, 1958;
Guttman, 1967; Hutner et Provasoli, 1965).

Our analyses suggest that RTs and SHTs have the necessary genes to produce cystathion-
ine, homocysteine, and methionine from homoserine (Figure 2.2), whereas the TPE genomes
have no gene for the enzymes involved in the synthesis of methionine from homoserine. How-
ever, homoserine is produced from aspartate semialdehyde through the mediation of homo-
cysteine methyltransferase (EC:1.1.1.3), which is universally present in the genomes of all the
TPEs, SHTs, and RTs examined.

With respect to cysteine synthesis, it has been shown that the incubation of cell ho-
mogenates of C. fasciculata with 35S-methionine produced radioactive adenosyl-methionine
(SAM), adenosyl-homocysteine (SAH), homocysteine, cystathionine, and cysteine (Guttman,
1967). Thus, this trypanosomatid is fully equipped to methylate methionine to produce ho-
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Figure 2.2: Cysteine and methionine synthesis and interconversion pathway.
Enzymes surrounded by a thick gray box were shown to be horizontally transferred
from Bacteria (see main text). Metabolites – I: L-serine; II: O-acetyl-serine; III: cys-
teine; IV: cystathionine; V: homocysteine; VI: methionine; VII: S-adenosyl-methionine;
VIII: S-adenosyl-homocysteine; IX: succinyl-homoserine; X: homoserine; XI: aspartate 4-
semialdehyde. Enzymes – 2.3.1.30: serine O-acetyltransferase; 2.5.1.47: cysteine syn-
thase; 4.4.1.1: cystathionine gamma-lyase; 4.4.1.8: cystathionine beta-lyase; 2.1.1.x:
2.1.1.10, homocysteine S-methyltransferase, 2.1.1.13, 5-methyltetrahydrofolate–homocysteine
methyltransferase, 2.1.1.14, 5-methyltetrahydropteroyltriglutamate–homocysteine methyl-
transferase; 2.5.1.6: S-adenosyl-methionine synthetase; 2.1.1.37: DNA (cytosine-5-)-
methyltransferase; 3.3.1.1: adenosylhomocysteinase; 4.2.1.22: cystathionine beta-synthase;
2.5.1.48: cystathionine gamma-synthase; 2.3.1.46: homoserine O-succinyltransferase; 1.1.1.3:
homoserine dehydrogenase.

mocysteine and, thereon, to convert homocysteine into cysteine through the trans-sulfuration
pathway. However, with respect to the cystathionine/cysteine interconversion, there is some
ambiguity concerning the presence or absence of cystathionine gamma-lyase (EC:4.4.1.1) in
RTs. Many sulfhydrolases have a domain composition very similar to that of EC:4.4.1.1,
which makes a definitive in silico function assignment to any of them difficult. Specifically,
the enzymes cystathionine gamma-synthase (EC:2.5.1.48) and O-acetylhomoserine aminocar-
boxypropyltransferase (EC:2.5.1.49), and the two versions of cystathionine beta-lyase (EC:4.4.1.8)
are possible candidates to mediate the trans-sulfuration step attributed to EC:4.4.1.1, but fur-
ther research is required to establish which of these enzymes, if any, performs that reaction.
We also found that, in addition to the standard pathway for methionine/cysteine synthesis
(Figure 2.2, compounds III-X), all SHTs and RTs examined had the genes to produce cysteine
from serine in a simple two-step reaction, with acetylserine as an intermediate (Fig 2, I-III).

In summary, if RTs and SHTs are capable of interconverting methionine and cysteine,
as shown for C. fasciculata (Kidder et Dutta, 1958), none of these two amino acids can be
considered essential for trypanosomatids as the presence of one renders the other unneces-
sary. In that case, both can be synthesized by trypanosomatids, without any participation of
their symbionts, except in the optional production of aspartate semialdehyde and homoserine.
However, the expression of these genes remains to be confirmed.

Threonine In trypanosomatids, initial investigations about the nutritional requirements
for threonine were controversial. Most results suggested that this amino acid is essential
(Kidder et Dutta, 1958; Guttman, 1967; Kidder et Dewey, 1972; Hutner et Provasoli, 1965;
Nathan et Cowperthwaite, 1954; Janakidevi et al., 1966), but other studies considered the
addition of threonine to the growth media of RTs unnecessary (Alfieri et Camargo, 1982).
Our genomic analysis favors the latter observations.
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Threonine, one of the precursors of isoleucine, can be produced by different biosynthetic
pathways. We have examined two of these possible routes, one starting from glycine and the
other from aspartate, as presented in Figure 2.3. The conversion of glycine plus acetoaldehyde
into threonine is mediated by threonine aldolase (EC:4.1.2.5). The gene for this enzyme
is absent from TPEs but present in the genomes of SHTs and C. acanthocephali, but not
Herpetomonas. It is also absent from the genomes of trypanosomes but present in the genome
of Leishmania major (KEGG data).

Figure 2.3: Threonine synthesis pathway. Enzymes surrounded by a thick gray box
were shown to be horizontally transferred from Bacteria (see main text). Metabolites – I:
glycine; II: threonine; III: phosphohomoserine; IV: homoserine; V: aspartate 4-semialdehyde;
VI: 4-aspartyl-phosphate; VII: L-aspartate. Enzymes – 4.1.2.5: threonine aldolase; 2.7.2.4:
aspartate kinase; 1.2.1.11: aspartate-semialdehyde dehydrogenase; 1.1.1.3: homoserine dehy-
drogenase; 2.7.1.39: homoserine kinase; 4.2.3.1: threonine synthase.

The pathway from aspartate utilizes the first two enzymes (EC:2.7.2.4 and EC:1.2.1.11) of
the DAP pathway from lysine synthesis for the production of aspartate semialdehyde. These
genes are present exclusively in the symbiont genomes. Aspartate semialdehyde is then se-
quentially converted into homoserine, phosphohomoserine, and threonine. The gene encoding
homoserine dehydrogenase (EC:1.1.1.3) is universally present in the genomes of the TPEs,
SHTs, and RTs. It is also present in the genomes of T. cruzi and Leishmania spp. In con-
trast, the genes for the enzymes leading from homoserine to threonine via phosphohomoserine
(EC:2.7.1.39 and EC:4.2.3.1) are present in the genomes of all insect trypanosomatids (in-
cluding SHTs), of Trypanosoma spp., and Leishmania spp., but totally absent from the TPE
genomes.

Thus, the genetic constitution of RTs is consistent with earlier nutritional data show-
ing the insect trypanosomatids, with or without symbionts, to be autotrophic for threonine.
This observation suggests that TPEs are able to enhance the host cell threonine synthesis
by producing the metabolic precursor aspartate semialdehyde that is also involved in other
metabolic pathways. The overall genomic and enzymatic picture is in apparent contradiction
with early nutritional findings showing that threonine promoted the growth of trypanoso-
matids in culture (Hutner et al., 1980). This contradiction might find its basis in the fact
that endogenously produced threonine is required by many metabolic processes, such that
supplementation of the culture media could enhance the growth of the trypanosomatids.

Isoleucine, valine, and leucine Isoleucine, valine, and leucine are considered essential
nutrients for the growth of all trypanosomatids, except SHTs. The canonic pathway for the
synthesis of isoleucine is depicted in Figure 2.4. Oxobutanoate (alpha-ketoglutaric acid) is the
starting point of the pathway, and can be produced in two ways: from threonine (Figure 2.4,
compounds II-III) or from pyruvate (Figure 2.4, compounds I, IX). The conversion of threonine
into oxobutanoate is mediated by threonine deaminase (EC:4.3.1.19). The specific activity
of this enzyme was higher in symbiont-enriched subcellular fractions of SHT homogenates
than in any other cell fraction or in the cytosol, suggesting that this enzyme was located in
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the symbiont (Alfieri et Camargo, 1982). However, genes for EC:4.3.1.19 are present in the
genomes of TPEs, as well as those of SHTs and RTs (except Leishmania and Trypanosoma),
contrasting with enzymatic determinations showing the absence of enzyme activity in RTs
(Alfieri et Camargo, 1982). Since the presence of the gene does not guarantee the functionality
of the enzyme for that specific reaction, the issue remains to be experimentally verified. The
next enzymatic step, the transference of the acetaldehyde from pyruvate to oxobutanoate, is
mediated by the enzyme acetolactate synthase (EC:2.2.1.6), which is present exclusively in
the genomes of TPEs. Also present only in symbionts are the genes for the next four enzymes
of the pathway, which are common for valine and isoleucine synthesis. However, the gene
for a branched-chain amino acid transaminase (EC:2.6.1.42), mediating the last step in the
synthesis of isoleucine, valine, and leucine, is present in the genomes of SHTs and RTs, but
not TPEs.

Figure 2.4: Isoleucine, valine, and leucine synthesis pathway. Metabolites – I:
pyruvate; II: threonine; III: 2-oxobutanoate; IV: (S)-2-aceto-2-hydroxybutanoate; V: (R)-
3-hydroxy-3-methyl-2-oxopentanoate; VI: (R)-2,3-dihydroxy-3-methylpentanoate; VII: (S)-
3-methyl-2-oxopentanoate; VIII: isoleucine; IX: 2-(alpha-hydroxyethyl) thiamine diphos-
phate; X: (S)-2-acetolactate; XI: 3-hydroxy-3-methyl-2-oxobutanoate; XII: (R)-2,3-dihydroxy-
3-methylbutanoate; XIII: 2-oxoisovalerate; XIV: valine; XV: (2S)-2-isopropylmalate; XVI: 2-
isopropylmaleate; XVII: (2R,3S)-3-isopropylmalate; XVIII: (2S)-2-isopropyl-3-oxosuccinate;
XIX: 4-methyl-2-oxopentanoate; XX: leucine. Enzymes – 1.2.4.1: pyruvate dehydrogenase E1
component subunit alpha; 4.3.1.19: threonine ammonia-lyase; 2.2.1.6: acetolactate synthase
small and large subunits; 1.1.1.86: ketol-acid reductoisomerase; 4.2.1.9: dihydroxy-acid de-
hydratase; 2.6.1.42: branched-chain amino acid transaminase; 2.3.3.13: 2-isopropylmalate
synthase; 4.2.1.33: 3-isopropylmalate dehydratase small and large subunits; 1.1.1.85: 3-
isopropylmalate dehydrogenase.

The first step of the valine pathway is the conversion of pyruvate into hydroxymethyl
ThPP, mediated by an enzyme of the pyruvate dehydrogenase complex (EC:1.2.4.1) whose
gene is present in the genomes of SHTs, TPEs, and RTs. The next reaction, leading to aceto-
lactate, is mediated by acetolactate synthase (EC:2.2.1.6), whose gene is present exclusively
in the genomes of the TPEs. The reactions that follow from acetoacetate into valine involve
the same TPE genes from isoleucine synthesis.

Synthesis of leucine uses oxoisovalerate, an intermediate metabolite of the valine pathway
that is converted into isopropylmalate by 2-isopropylmalate synthase (EC:2.3.3.13), encoded
by a gene present only in the TPEs – as are the genes for the enzymes catalyzing the next
three steps for leucine biosynthesis. The presence of the gene for this branched-chain amino
acid transaminase (EC:2.6.1.42) in the genomes of RTs explains the earlier finding that ox-
opentanoate and oxoisovalerate, the immediate precursors of isoleucine, valine, and leucine
could substitute for these amino acids when added to RT synthetic culture media (Kidder et
Dutta, 1958). Interestingly, this gene is present in all the SHT and RT genomes examined,
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but absent from the TPE genomes (Figure 2.4). It is also present in the genomes of T. bru-
cei and the leishmaniae available from KEGG. In addition to isoleucine, valine, and leucine
biosynthesis, this enzyme also participates in the degradation of these amino acids for their
use in other metabolic processes in the cell, which might explain the presence of this enzyme
as the only representative of the pathway in all RTs examined.

A coupled biosynthetic pathway of the branched-chain amino acids was also described for
the symbiotic bacterium Buchnera and its aphid host, where the symbiont has the capability
to synthesize the carbon skeleton of these amino acids but lacks the genes for the terminal
transaminase reactions (Shigenobu et al., 2000; Macdonald et al., 2012). The aphid possesses
genes hypothesized to accomplish these missing steps, even if orthologs of those are found in
other insects and carry out different functions (Wilson et al., 2010). The branched-chain amino
acid transaminase (EC:2.6.1.42) encoded by an aphid gene was shown to be up-regulated in the
bacteriocytes, supporting the cooperation of Buchnera and its host in the synthesis of essential
amino acids (Hansen et Moran, 2011). Since this transamination involves the incorporation of
amino-N and the aphid diet is low in nitrogen, the host mediation of this step would be a way of
maintaining a balanced profile of amino acids through transamination between those that are
over abundant and those that are rare (Hansen et Moran, 2011; Sandström et Moran, 1999).
In summary, the presence in TPEs of most genes involved in isoleucine, valine and leucine
synthesis explains why SHTs, but not RTs, are autotroph for these essential amino acids.
However, it is worth noting that the presence of the branched-chain amino acid transaminase
in trypanosomatids indicates that the host might control amino acid production according to
their necessity and the nutrient availability in the medium.

Phenylalanine, tyrosine, and tryptophan There are no enzymatic data concerning
the synthesis of phenylalanine, tryptophan, and tyrosine in trypanosomatids. However, it is
well known that these amino acids are essential in defined culture media designed for RTs,
but not for SHTs (Newton, 1957; Mundim et al., 1974; Kidder et Dutta, 1958; Guttman,
1966). The biosynthetic routes for these three amino acids use chorismate, which is produced
from phosphoenolpyruvate (PEP) via the shikimate pathway, as a common substrate. The
genomes of all TPEs contain the genes for this route, while the genomes of SHTs and RTs do
not (Figure 2.5).

The genes for the enzymes converting chorismate into prephenate and for transforming this
compound into phenylalanine and tyrosine are present in all TPE genomes. The SHT and RT
genomes also have the genes for the last step in the synthesis of phenylalanine and tyrosine,
but it is not known whether all of these enzymes are functional. The gene for phenylalanine-
4-hydroxylase (EC:1.14.16.1), which converts phenylalanine into tyrosine, is present in SHTs
and RTs, including the leishmaniae, but not in TPEs. Similarly, this enzyme is present only in
the aphid. Furthermore, the gene encoding this enzyme is up-regulated in bacteriocytes, thus
enhancing the production and interconversion of such amino acids (Hansen et Moran, 2011).
On the other hand, TPEs have an additional route for the synthesis of phenylalanine from
prephenate, involving the enzymes aromatic-amino-acid aminotransferase (EC:2.6.1.57) and
prephenate dehydratase (EC:4.2.1.51), whose genes are absent in the SHT and RT genomes.

The case of the last enzyme of the tryptophan pathway is rather interesting. Tryptophan
synthase (EC:4.2.1.20) possesses two subunits. This bi-enzyme complex (a tetramer of two
alpha and two beta subunits) channels the product of the alpha subunit (indole) to the beta
subunit, which condenses indole and serine into tryptophan (Dunn et al., 2008). Both subunits
are present in the TPEs, whereas the genomes of SHTs and H. muscarum have only the beta
subunit. None of the other trypanosomatid genomes examined presented either subunit of
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Figure 2.5: Phenylalanine, tyrosine, and tryptophan synthesis pathway. Enzymes
surrounded by a thick gray box were shown to be horizontally transferred from Bacte-
ria (see main text). Metabolites – I: D-erythrose 4-phosphate ; II: phosphoenolpyru-
vate; III: 7-phosphate-2-dehydro-3-deoxy-D-arabinoheptonate; IV: 3-dehydroquinate; V: 3-
dehydroshikimate; VI: shikimate; VII: shikimate 3-phosphate; VIII: 5-O-(1-carboxyvinyl)-3-
phosphoshikimate; IX: chorismate; X: anthranilate; XI: N-(5-Phospho-D-ribosyl)anthranilate;
XII: 1-(2-carboxyphenylamino)-1-deoxy-D-ribulose 5-phosphate; XIII: indoleglycerol phos-
phate; XIV: indole; XV: tryptophan; XVI: prephenate; XVII: arogenate; XVIII: phenylpyru-
vate; XIX: 4-hydroxyphenylpyruvate; XX: tyrosine; XXI: phenylalanine. Enzymes – 2.5.1.54:
3-deoxy-7-phosphoheptulonate synthase; 4.2.3.4: 3-dehydroquinate synthase; 4.2.1.10: 3-
dehydroquinate dehydratase I; 1.1.1.25: shikimate dehydrogenase; 2.7.1.71: shikimate ki-
nase; 2.5.1.19: 3-phosphoshikimate 1-carboxyvinyltransferase; 4.2.3.5: chorismate syn-
thase; 4.1.3.27: anthranilate synthase; 2.4.2.18: anthranilate phosphoribosyltransferase;
5.3.1.24: phosphoribosylanthranilate isomerase; 4.1.1.48: indoleglycerol phosphate syn-
thetase; 4.2.1.20a/b: tryptophan synthase alpha (a) and beta (b) subunits; 4.2.1.51/5.4.99.5:
bifunctional prephenate dehydratase/chorismate mutase; 2.6.1.57: aromatic amino acid
aminotransferase; 1.3.1.13: prephenate dehydrogenase (NADP+); 2.6.1.1: aspartate amino-
transferase; 2.6.1.5: tyrosine aminotransferase; 2.6.1.9: histidinol-phosphate aminotrans-
ferase; 1.14.16.1: phenylalanine-4-hydroxylase.

tryptophan synthase.
In summary, the TPEs have all the genes for the different routes leading from choris-

mate to tryptophan, tyrosine, and phenylalanine, which are absent from the SHT and RT
genomes. This obviously prevents RTs from synthesizing any of these three amino acids and
growing without supplementation. It is worth observing that the presence of phenylalanine
hydroxylase, which converts phenylalanine into tyrosine, in trypanosomatids but not in TPEs
indicates that the host might control the production of tyrosine.

Histidine Histidine is derived from three precursors: the ATP purine ring furnishes a
nitrogen and a carbon, the glutamine contributes with the second ring nitrogen, while PRPP
donates five carbons. Histidine is a truly essential amino acid for most trypanosomatids, as
corroborated by its obligatory presence in every synthetic media so far devised for RT growth
(Mundim et al., 1974; Kidder et Dutta, 1958; Guttman, 1966). Accordingly, the SHT and RT
genomes do not seem to carry a single gene for histidine synthesis (Figure 2.6). All genes for
the enzymes that participate in its biosynthesis, except the gene for histidinol-phosphate phos-
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phatase (HPP, EC:3.1.3.15), which converts histidinol phosphate into histidinol, are present
in the TPE genomes. Since SHTs do not require histidine, it is presumed that the absent
EC:3.1.3.15 is replaced by an equivalent enzyme yet to be characterized (see section 2.2.8).

Figure 2.6: Histidine synthesis pathway. Enzymes surrounded by a thick gray box were
shown to be horizontally transferred from Bacteria (see main text). Metabolites – I: 5-
phosphoribosyl diphosphate (PRPP); II: phosphoribosyl-ATP; III: phosphoribosyl-AMP; IV:
phosphoribosyl-formimino-AICAR phosphate; V: phosphoribulosyl-formimino-AICAR phos-
phate; VI: imidazole-glycerol 3-phosphate; VII: imidazole-acetol phosphate; VIII: histidi-
nol phosphate; IX: histidinol; X: histidinal; XI: histidine. Enzymes – 2.4.2.17: ATP
phosphoribosyltransferase; 3.6.1.31: phosphoribosyl-ATP pyrophosphohydrolase; 3.5.4.19:
phosphoribosyl-AMP cyclohydrolase; 5.3.1.16: phosphoribosylformimino-5-aminoimidazole
carboxamide ribotide isomerase; 4.1.3.-: cyclase HisF; 2.4.2.-: glutamine amidotransferase;
4.2.1.19: imidazole-glycerol phosphate dehydratase; 2.6.1.9: histidinol phosphate aminotrans-
ferase; 3.1.3.15: histidinol phosphatase; 1.1.1.23: histidinol dehydrogenase.

Arginine and ornithine Organisms autotrophic for ornithine use the glutamate path-
way (Meister, 1965) for its synthesis via acetylated compounds as represented in Figure 2.7
(I-VI). All genes for this pathway are present in the genomes of TPEs. The last step in the
synthesis of ornithine can also be performed by the enzymes aminoacylase (EC:3.5.1.14) or
acetylornithine deacetylase (EC:3.5.1.16), which convert acetylornithine into ornithine and
are present in the genomes of SHTs and RTs, but not TPEs.

As represented in Figure 2.7, organisms lacking the glutamate pathway for the synthesis of
ornithine can nevertheless produce it by different routes utilizing either citrulline or arginine
(Figueiredo et al., 1978b; Camargo et al., 1978; Yoshida et Camargo, 1978). Ornithine can
be produced from the hydrolysis of citrulline mediated by citrulline hydrolase (EC:3.5.1.20).
This activity is present in cell homogenates of all trypanosomatids, except the leishmaniae
and trypanosomes, but the corresponding gene has not yet been identified to date in any
organism, making it impossible to perform similarity searches. Ornithine can also be produced
from arginine by means of arginase (EC:3.5.3.1), which splits arginine into ornithine and urea.
The gene for arginase is present in the genomes of SHTs and some RTs (Leishmania and C.
acanthocephali), but not in the genomes of TPEs or H. muscarum – although a fragment was
found in the latter.

Arginine can be synthesized from ornithine through a recognized universal enzymatic
pathway (Meister, 1965), the first step of which is the conversion of ornithine and carbamoyl
phosphate into citrulline mediated by OCT (ornithine carbamoyl transferase, EC:2.1.3.3).
The gene for OCT was found in the genomes of all TPEs and also in Herpetomonas, but
was absent from the SHT and the other RT genomes examined. These findings confirm
earlier immunocytochemical ultrastructural experiments showing the presence of OCT in the



2.2 Biosynthetic pathways of amino acids and vitamins 45

Figure 2.7: Arginine, ornithine, and polyamine synthesis pathway. Enzymes sur-
rounded by a thick gray box were shown to be horizontally transferred from Bacteria
(see main text). Metabolites – I: glutamate; II: N-acetylglutamate; III: N-acetylglutamyl-
phosphate; IV: N-acetyl-glutamate semialdehyde; V: N-acetylornithine; VI: ornithine; VII:
carbamoyl-phosphate; VIII: citruline; IX: aspartate; X: arginino succinate; XI: arginine; XII:
fumarate; XIII: urea; XIV: agmatine; XV: putrescine; XVI: S-adenosylmethionine; XVII: S-
adenosylmethioninamine; XVIII: spermidine; XIX: spermine. Enzymes – 2.1.3.3: ornithine
carbamoyltransferase; 6.3.4.5: argininosuccinate synthase; 4.3.2.1: argininosuccinate lyase;
3.5.3.1: arginase; 4.1.1.17: ornithine decarboxylase; 3.5.1.14: aminoacylase; 3.5.1.16: acetylor-
nithine deacetylase; 2.3.1.35: glutamate N-acetyltransferase; 2.6.1.11: acetylornithine amino-
transferase; 1.2.1.38: N-acetyl-gamma-glutamyl-phosphate reductase; 2.7.2.8: acetylgluta-
mate kinase; 2.3.1.1: amino-acid N-acetyltransferase; 3.5.3.11: agmatinase; 4.1.1.19: arginine
decarboxylase; 4.1.1.50: adenosylmethionine decarboxylase; 2.5.1.16: spermidine synthase.

symbiont of Angomonas deanei (Camargo et Freymuller, 1977). The absence of the OCT gene
renders most trypanosomatids unable to make citrulline from ornithine (Beutin et Eisen,
1983). However, the genes for the remaining enzymes leading from citrulline into arginine
are all present in the genomes of all RTs and SHTs, but absent from the TPE genomes.
These data are in full agreement with earlier enzymatic determinations for argininosuccinate
synthase (EC:6.3.4.5), argininosuccinate lyase (EC:4.3.2.1), and arginase (EC:3.5.3.1) in cell
homogenates of trypanosomatids (Yoshida et al., 1978; Camargo et al., 1978, 1987).

Taking all these data together, we can conclude that RTs require exogenous sources of
arginine or citrulline in their culture medium to produce ornithine. This is related to the
fact that RTs lack the glutamate pathway for ornithine synthesis. Furthermore, ornithine
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cannot substitute for arginine or citrulline because most RTs lack OCT. Conversely, SHTs
are autotrophic for ornithine. This is due to the fact that, although the symbiont lacks most
genes for ornithine production, it contains sequences for key enzymes such as those for the
glutamate route and OCT, which converts ornithine into citrulline thus completing the urea
cycle.

Polyamines As shown in Figure 2.7, putrescine, a polyamine associated with cell pro-
liferation, can be produced from ornithine in a one-step reaction mediated by ODC (ornithine
decarboxylase, EC:4.1.1.17), whose gene is present in the genomes from the genus Angomonas
and in RTs, but not in TPEs or Strigomonas. Interestingly, it was proposed that the symbiont
can enhance the ODC activity of A. deanei by producing protein factors that, in turn, increase
the production of polyamines in the host trypanosomatid (Frossard et al., 2006). Such high
ODC activity may be directly connected to the lowest generation time described for trypanoso-
matids that is equivalent to 6 hours (Motta et al., 2010). Putrescine could also be produced
from agmatine since the genomes of RTs and SHTs have the gene for agmatinase (EC:3.5.3.11),
converting agmatine into putrescine. However, the gene for the enzyme arginine decarboxy-
lase (EC:4.1.1.19), which synthesizes agmatine, is present solely in the genomes of TPEs, thus
completing the biosynthetic route for this polyamine, via agmatinase, in SHTs. Putrescine is
then converted to spermidine and spermine by the enzymes S-adenosylmethionine decarboxy-
lase (EC:4.1.1.50) and spermidine synthase (EC:2.5.1.16). The genes for these enzymes are
present in the RTs and SHTs, but not in TPEs (Figure 2.7). The enzyme EC:2.5.1.16, convert-
ing S-adenosylmethioninamine and putrescine into S-methyl-5’-thioadenosine and spermidine,
also participates in a reaction from the methionine salvage pathway. This pathway is present,
complete in all SHTs and RTs examined (Additional file C.3 in Appendix C) , although there
are questions regarding the step catalyzed by acireductone synthase (EC:3.1.3.77).

Phylogenetic analyses Our data on the phylogeny of the genes for essential amino acids
biosynthesis have clearly shown that the genes present in the symbionts are of betaproteobac-
terial origin (for an illustrative example, see Figure 2.8), as shown before for the genes of heme
synthesis (Alves et al., 2011) and many others across the TPE genomes (Alves et al., 2013b).
The SHT and RT genomes, on the other hand, present a rather different situation. Thus,
18 of the 39 genes required for the biosynthesis of essential amino acids exhibited at least
some phylogenetic evidence of having been horizontally transferred from a bacterial group
to a trypanosomatid group, with three other genes presenting undetermined affiliation (see
Additional file 2 for a summary of the results of the phylogenetic analyses). As detailed below,
horizontal gene transfer (HGT) events seem to have originated from a few different bacterial
taxa, although in some cases the exact relationship was not completely clear. Also, while
some transfers are common to all trypanosomatid groups examined, others were found to be
specific to certain subgroups. This could be due to multiple HGT events from associated bac-
teria at different points of the family’s evolutionary history or, alternatively, to HGT events
that occurred in the common ancestor of all trypanosomatids, which were later differentially
lost in certain taxa. Given the low number of genomes currently known in the family, it is
difficult to assign greater probability to either scenario.

As concerns the taxonomic affiliation of the putative origin of these HGT events, it is
possible to notice a preponderance of bacteria from a few phyla with three or more genes
transferred, i.e. Firmicutes, Bacteroidetes, and Gammaproteobacteria, in decreasing order,
plus a few other phyla with two or less genes represented, like Actinobacteria, Betaproteobac-
teria, Acidobacteria, and Alphaproteobacteria. In a few other cases, the trypanosomatid genes
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grouped inside diverse bacterial phyla, in which case the assignment of a definite originating
phylum was not possible. However, given the sometimes high rate of HGT in prokaryotic
groups, it is difficult to assess with confidence the correct number of putative HGT events
from Bacteria to Trypanosomatidae. It is possible that some of the genes that seem to have
originated from different phyla could actually have come from one bacterial line that was itself
the recipient of one or more previous HGT events from other bacteria.

The analysis of all generated phylogenetic inferences has uncovered a clear pattern for the
HGT events, which were shown to be concentrated preferentially in pathways or enzymatic
steps that are usually reported to be absent in eukaryotes, particularly animals and fungi.
Thus, the HGT events identified in this study involve pathways for the synthesis of lysine,
cysteine, methionine, threonine, tryptophan, ornithine, and arginine (Figures 2.1, 2.2, 2.3, 2.5
and 2.7) and also the synthesis of a few non-essential amino acids such as glycine, serine, and
proline. A detailed analysis of these events in different genes and pathways follows.

HGT of homoserine dehydrogenase Some enzymes are common to a number of path-
ways involving key precursors to many compounds. Homoserine dehydrogenase (EC:1.1.1.3),
for example, participates in the aspartate semialdehyde pathway for the synthesis of lysine,
cysteine, methionine, and threonine (Figures 2.1, 2.2, and 2.3). The gene for EC:1.1.1.3
present in trypanosomatid genomes (both SHT and RT) seems to have been transferred from
a member of the Firmicutes, clustering most closely with Solibacillus silvestris, Lysinibacillus
fusiformis, and L. sphaericus with bootstrap support value (BSV) of 100 (Figure 2.8). On the
other hand, the TPE ortholog groups deep within the Betaproteobacteria, more specifically
in the Alcaligenaceae family, as expected in the case of no HGT of this gene into the TPE
genomes.
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Figure 2.8: Maximum likelihood phylogenetic tree of homoserine dehydrogenase
(EC:1.1.1.3). A – overall tree, colored according to the taxonomic affiliation of each taxon,
as per the legend on the right; the distance bar only applies to panel A. B – details of the
region of the tree where the Ca. Kinetoplastibacterium spp. are placed. C – details of the
region of the tree where the Trypanosomatidae are placed. The values on the nodes represent
bootstrap support (only 50 or greater shown). Panels B and C are meant to only represent
the branching patterns and do not portray the estimated distances between the sequences.
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HGT and lysine biosynthesis The two genes of the lysine pathway (Figure 2.1) that
were found in the trypanosomatid genomes presented evidence of HGT. H. muscarum was the
only trypanosomatid analyzed containing the next to last gene, for diaminopimelate epimerase
(EC:5.1.1.7), which phylogenetically clusters strongly with the phylum Bacteroidetes, with
BSV of 99 (Additional file C.4 in Appendix C) . The last gene, diaminopimelate decarboxylase
(EC:4.1.1.20), was present in the SHTs and RTs. In the phylogeny, this particular gene
has Actinobacteria as sister group (BSV of 79), although also grouping with a few other
eukaryotic genera, most closely Dictyostelium, Polysphondylium, and Capsaspora, with BSV
of 65 (Additional file C.5 in Appendix C) . There are, overall, very few Eukaryota in the
tree for 4.1.1.20, making it hard to reach a definite conclusion on the direction of transfer for
this gene, since other eukaryotes are also present basally to this substantially large group of
Actinobacteria plus Trypanosomatidae, with the high BV of 98.

Manual search using the C. acanthocephali gene for EC:4.1.1.20 against the L. major
genome has shown a small fragment with significant similarity (57% identity and 67% simi-
larity, from amino acid 177 to 227), but containing stop codons. A search against predicted
L. major proteins yielded no results. What remains of this sequence suggests that Leishmania
could have lost DAP-decarboxylase in a relatively recent past.

HGT and methionine and cysteine biosynthesis The pathways for cysteine and
methionine synthesis (Figure 2.2) present the highest number of HGT events identified among
the pathways studied here. The gene for the enzyme EC:2.3.1.30, necessary for the conversion
of serine to cysteine, seems to have been transferred from Bacteria to the genomes of host try-
panosomatids. EC:2.3.1.30 of SHTs and RTs grouped inside a large cluster of diverse Bacteria
(predominantly Bacteroidetes and Betaproteobacteria), with high BSV of 80 (Additional file
C.6 in Appendix C) . An even deeper branch, which separates the subtree containing the try-
panosomatids from the rest of the tree, has BSV of 97. The evolutionary history of the other
enzyme with the same functionality, EC:2.5.1.47, is unclear and cannot be considered a case
of HGT given the current results. Its gene is present in symbiont-harboring trypanosomatids
and regular trypanosomatids (including one sequence from T. cruzi CL Brener) and clusters
as a sister group of Actinobacteria, although with low BSV (Additional file C.7 in Appendix
C). Although there are many other eukaryotes in the tree, they are not particularly close to
the subtree containing the Trypanosomatidae. Interestingly, one Entamoeba dispar sequence
is a sister group to the Trypanosomatidae, although with low BSV, raising the possibility of
eukaryote-to-eukaryote HGT, as previously observed (reviewed in Andersson (2009)).

The gene for EC:2.5.1.47 (Additional file C.7 in Appendix C) is present in SHTs and
RTs (including one sequence from T. cruzi CL Brener) and clusters as a sister group of
Actinobacteria, although with low BSV.

The gene for EC:2.3.1.46, the first in the pathway converting homoserine to cystathionine,
is present in all SHTs and Herpetomonas, but in no other RT examined. This trypanosomatid
gene groups within Bacteroidetes, with BSV of 53 and, in a deeper branch, BSV of 89, still
clustering with Bacteroidetes only (Additional file C.8 in Appendix C) .

The gene for EC:2.1.1.37, responsible for the first step in the conversion of S-adenosylmethionine
into homocysteine, is present in all SHTs and RTs, although the sequence is still partial in
the genome sequences of the Angomonas species. Almost all organisms in the tree are Bac-
teria of several different phyla (Additional file C.9 in Appendix C) , with the few Eukaryota
present forming a weakly supported clade. KEGG shows that many Eukaryota do possess
the gene for enzyme EC:2.1.1.37, but their sequences are very different from that present in
the trypanosomatids (and other eukaryotes) studied here. This therefore suggests a bacte-
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rial origin for the EC:2.1.1.37 from the Eukaryota in our tree, although the specific donor
group cannot be currently determined with confidence. It is interesting to note that, besides
the Trypanosomatidae, the clade of eukaryotes is composed of Stramenopiles and green algae
(both groups that have, or once had, plastids), with a Cyanobacteria close to the base of
the group. Although the BSV of 54 does not allow strong conclusions regarding this group,
it is interesting to speculate about the possibility of eukaryote-to-eukaryote gene transfer, as
previously seen (reviewed in Andersson (2009)), after the acquisition of this gene from a so-far
unidentified bacterium.

The genes for EC:2.5.1.48, EC:2.5.1.49, and EC:4.4.1.8 (two versions) are quite similar in
sequence and domain composition. Therefore, similarity searches with any one of these genes
also retrieves the other three. In spite of the similarities, these genes are found in rather
different phyletic and phylogenetic patterns in the trypanosomatids (Additional file C.10 in
Appendix C). EC:2.5.1.48 is present in all SHTs and RTs examined, plus Trypanosoma sp.
and a few other Eukaryota (mostly Apicomplexa and Stramenopiles), all within a group of
Acidobacteria (BSV of 94). The gene for EC:2.5.1.49 is present in the SHTs and Herpetomonas,
but in none of the other RTs examined. This trypanosomatid gene also clusters with diverse
groups of Bacteria, although low BSV makes it hard to confidently identify its most likely
nearest neighbor, and it is not possible to conclude with reasonable certainty that this gene
is derived from HGT. The gene for EC:4.4.1.8 occurs, in SHTs and RTs, as two orthologs
presenting very different evolutionary histories. One of the orthologs clusters with eukaryotes,
with BSV of 95, while the other seems to be of bacterial descent, grouping mostly with
Alphaproteobacteria of the Rhizobiales order, with BSV of 99.

The presence of two genes identified as EC:4.4.1.8 raises the possibility of them performing
different enzymatic reactions. Given the overall domain composition similarities of several of
the genes of the methionine and cysteine synthesis pathways, it is possible that one of the
enzymes identified as EC:4.4.1.8 is actually the enzyme EC:4.4.1.1, for which no gene has been
found in our searches of the Trypanosomatidae genomes, as detailed above (2.1.2 Methionine
and cysteine).

Genes for two of the enzymes for the last step in the methionine synthesis, EC:2.1.1.10 and
EC:2.1.1.14 (Additional files C.11 and C.12 in Appendix C), are present in all RTs and SHTs
(except for Herpetomonas, which lacks the latter). EC:2.1.1.14 appears to be of bacterial
origin, grouping within the Gammaproteobacteria with moderate (74) bootstrap support.
While EC:2.1.1.10 also groups near Gammaproteobacteria, the BSV is low and this gene
cannot be considered a case of HGT given the current data.

As seen above, most genes in the de novo methionine synthesis pathway seem to have origi-
nated in one or more HGT events. Enzymes from the methionine salvage pathway (Additional
file C.3 in Appendix C) , on the other hand, are notably different. Of these, only S-methyl-
5-thioribose kinase (EC:2.7.1.100), found in C. acanthocephali and Herpetomonas but not in
the SHTs and TPEs, seems to have originated in a bacterial group (Additional file C.13 in
Appendix C) . These two organisms’ enzymes group deep within the Gammaproteobacteria,
with BSV of 97.

The enzyme acireductone synthase (EC:3.1.3.77) presents an intriguing case, being the
only methionine salvage pathway enzyme absent from the SHT genomes. This enzyme is
of eukaryotic origin (not shown), and present in both H. muscarum and C. acanthocephali,
but was not found in any other of the RTs available from KEGG. Interestingly, KEGG data
for Trypanosoma brucei also shows the two enzymes preceding EC:3.1.3.77 as missing, which
raises the question of whether this important pathway is in the process of being lost in
trypanosomatids. If that is not the case, and given that all other enzymes from the pathway
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are present, the Trypanosomatidae must have a different enzyme (or enzymes) to perform the
required reactions.

HGT and threonine biosynthesis The gene for the enzyme that interconverts glycine
and threonine (Figure 2.3), EC:4.1.2.5, was identified in all SHTs and RTs (except Her-
petomonas), but the evolutionary histories of SHT and RT genes are very different (Additional
file C.14 in Appendix C). The gene found in the RTs Leishmania sp. and C. acanthocephali
groups deep within the Firmicutes, most closely to Clostridium, with BSV of 63. The SHT
genes, on the other hand, cluster as the most basal clade of one of the two large assemblages
of eukaryotes present in this phylogeny; although all BSVs are low, there is a large group
of bacteria from diverse phyla and a few other eukaryotic groups between the SHTs and the
other eukaryotes in this part of the tree. It is therefore difficult to conclude whether the SHT
gene is of bacterial or eukaryotic origin.

HGT and tryptophan biosynthesis The tryptophan synthase beta subunit (EC:4.2.1.20),
present in the SHTs and Herpetomonas, is the last enzyme of the tryptophan biosynthesis path-
way, and the only one present in trypanosomatids for this pathway. Its gene groups robustly
(BSV of 97) with the Bacteroidetes phylum (Additional file C.15 in Appendix C) . It is also
highly similar (around 80% identity and 90% similarity) to the corresponding genes of this
phylum, suggesting either a very recent transfer or high sequence conservation. Given that
the protein alignment of the orthologs (not shown) presents a maximum patristic distance
value of 84.04% and a median of 47.22%, it is therefore likely that the transfer of EC:4.2.1.20
to the Trypanosomatidae is relatively recent.

HGT and arginine and ornithine biosynthesis The arginine and ornithine synthesis
pathway has been influenced by HGT events in a few key steps. As discussed above, one of
the entry points for the urea cycle is through ornithine synthesized from glutamate. The
last step, converting N-acetylornithine to ornithine, can be performed by either EC:3.5.1.14
or EC:3.5.1.16 (Figure 2.7). We have found that the genes for both enzymes, present in all
SHT and RT genomes, originated from HGT events. All gene copies for EC:3.5.1.14 group as
one clade with a gammaproteobacterium (BSV of 98), and with Bacteria of different phyla
(predominantly Firmicutes) as nearest sister group, although with low BSV (Additional file
C.16 in Appendix C) . The few other eukaryotic groups present in the tree are very distant
from the trypanosomatid group. The multiple copies of the gene for EC:3.5.1.16 in SHTs and
RTs group together in a monophyletic clade (Additional file C.17 in Appendix C) , which
clusters within a large group of mostly Betaproteobacteria with BSV of 80, including the
Alcaligenaceae, the family to which the TPEs belong. However, it seems highly unlikely that
this sequence has been transferred from the TPE genomes to their host genomes because
the nuclear sequences are clearly removed from the Alcaligenaceae, and many RTs (including
Trypanosoma spp.) also present this gene in the same part of the tree.

The only trypanosomatid analyzed which presented ornithine carbamoyl transferase (OCT,
EC:2.1.3.3) was Herpetomonas muscarum. Our phylogenetic analysis of this gene indicates
that it is of eukaryotic origin (not shown). The SHTs utilize the OCT provided by their
endosymbionts, and their OCT genes group clearly inside the Alcaligenaceae family, next to
Taylorella and Advenella, as expected.

The genes for EC:6.3.4.5 and EC:4.3.2.1 present similar evolutionary patterns: both are
absent from the TPE genomes and present in all the SHT and RT genomes – the only exception
being the lack of the latter in Leishmania spp. The trypanosomatid genes form monophyletic
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groups in their respective trees, within the Firmicutes in both cases (Additional files C.18 and
C.19 in Appendix C). BSV is higher (82) in the tree of EC:4.3.2.1 than in that of EC:6.3.4.5
(69). In both cases, the support is weak for deeper branches in the trees. Although the
genomic sequences of the hosts are still incomplete and in varying degrees of contiguity, it is
interesting to note that the genes for EC:6.3.4.5 and EC:4.3.2.1 are present in tandem in one
contig in all SHTs (Additional file C.1 in Appendix C) . The flanking genes are eukaryotic:
terbinafine resistance locus protein and a multidrug resistance ABC transporter. As seen
in the genome browser TriTrypDB (http://tritrypdb.org), Leishmania spp. have most of
these same genes, although in a slightly different order (EC:6.3.4.5 occurring after the two
eukaryotic genes instead of between them) and lacking EC:4.3.2.1. L. braziliensis seems to be
in the process of additionally losing EC:6.3.4.5, which is annotated as a pseudogene. These
phylogenetic and genomic data strongly suggest that EC:4.3.2.1 and EC:6.3.4.5 have been
transferred together from a Firmicutes bacterium to the common ancestor of the SHTs and
RTs studied, and that these transferred genes have been or are being lost from Leishmania at
least.

The final enzyme in the urea cycle, arginase (EC:3.5.3.1), is present in all SHTs and
RTs examined here. However, the sequence from Herpetomonas presents a partial arginase
domain; while the protein sequence length is as expected, the domain match starts only after
70 amino acids. We speculate that this divergence could be responsible for the lack of arginase
activity previously seen in Herpetomonas. Differently from most other enzymes in this work,
there are different evolutionary histories for the arginase genes: all trypanosomatid genes
except for the one from Herpetomonas cluster together with very high bootstrap support of
98, within Eukaryota (Additional file C.20 in Appendix C). The sequence from Herpetomonas
on the other hand is the sister group (BSV of 79) of a large assemblage of Bacteria from
several different phyla, but predominantly Deltaproteobacteria, Firmicutes, Actinobacteria,
and Cyanobacteria. It is therefore clear that Herpetomonas must have acquired a different
arginase than that present in the other trypanosomatids studied, which possess eukaryotic
genes. Furthermore, this gene seems to be undergoing a process of decay, given its lack of
significant similarity to the known arginase domain in a significant portion of the protein.

HGT in other pathways: possible symbiont to host transfer Ornithine cy-
clodeaminase (EC:4.3.1.12) converts ornithine directly into proline, a non-essential amino
acid. In our analyses, we have found that the gene for EC:4.3.1.12 of the SHT genomes is
very similar to those from Betaproteobacteria of the Alcaligenaceae family, to which the TPEs
belong. The RT and TPE genomes do not contain the gene for this enzyme. Accordingly,
the phylogeny shows the SHT gene grouping close to several Alcaligenaceae, although the
clade is not monophyletic and presents low BSV (Additional file C.21 in Appendix C). This
grouping, together with the gene presence in the SHT genomes only, raises the possibility that
EC:4.3.1.12 has been transferred from the ancestral TPE to the corresponding host, before
the radiation of SHTs into the two genera and five species analyzed here.

Other observations on peculiarities of some of the amino acid pathways Some
interesting peculiarities of specific genes from a few pathways deserve to be discussed. Inter-
estingly, the gene for branched-chain-amino-acid transaminase (EC:2.6.1.42), the last step in
the synthesis of isoleucine, valine, and leucine (Figure 2.4), was identified in all bacteria of
the Alcaligenaceae family present in KEGG, except for the closest relatives of TPEs, Tay-
lorella spp. (parasitic) and Advenella kashmirensis (free-living), which also lack the gene.
The question is raised then of whether the common ancestor of Taylorella and the TPEs,



2.2 Biosynthetic pathways of amino acids and vitamins 53

which are sister groups (Alves et al., 2013b), had already lost the gene. Another possibility
is that independent losses occurred in TPEs, Taylorella, and Advenella. Considering that the
rest of the pathway is present in these organisms and that the free-living Advenella would
need the last gene to complete the synthesis of these amino acids, it is reasonable to speculate
that their EC:2.6.1.42 is novel or at least very different and thus could not be identified by
similarity searches.

As mentioned above, the histidine pathway biosynthesis is performed by the TPEs and all
enzymes, with the exception of histidinol-phosphate phosphatase (HPP, EC:3.1.3.15), have
been identified. This is also the only enzyme of this pathway missing in other Betapro-
teobacteria available in KEGG. Recently, it was reported that such a gap in the histidine
biosynthesis pathway in other organisms was completed by novel HPP families (Mormann
et al., 2006; Petersen et al., 2010). Our searches for the novel C. glutamicum HPP (cg0910,
an inositol monophosphatase-like gene) have identified two possible candidate genes in the
TPEs (BCUE_0333 and BCUE_0385, in C. K. blastocrithidii). As in Corynebacterium,
neither of these genes is in the same operon as the known histidine synthesis genes. Given
the absence of any other inositol phosphate metabolism genes in the endosymbiont genomes,
except for these two IMPases, it is reasonable to hypothesize that at least one of the two
aforementioned candidates could be the HPP.
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CONCLUSION

In the present paper, we have put together nutritional, biochemical, and genomic data in order
to describe how the metabolic co-evolution between the symbiont and the host trypanosomatid
is reflected in amino acid production. In fact, amino acid biosynthetic pathways in SHTs are
frequently chimeras of host and endosymbiont encoded enzymes, with predominance of the
latter in the synthesis of essential amino acids. After a careful analysis of different routes, it
becomes clear that the symbiotic bacterium completes and/or potentiates most pathways of
the host protozoa that are involved in amino acid production (Figure 2.9), as previously seen
in other systems (McCutcheon et von Dohlen, 2011).

Figure 2.9: Overview of the biosynthetic pathways of essential amino acids in try-
panosomatids. Dashed arrows: metabolite import; dotted arrows: reaction present in only
some of the organisms analyzed; solid arrows: other reactions (a single arrow can summarize
multiple steps); arrows surrounded by a gray box: enzymes possibly acquired through hori-
zontal transfer from Bacteria to trypanosomatids (see main text). A. Contribution of SHTs
and TPEs based on the analysis of gene content in the genomes of A. deanei, A. desouzai,
S. culicis, S. oncopelti, S. galati, and respective endosymbionts. B. Biochemical capability
of trypanosomatids without symbionts, based on the analysis of genomic data from H. mus-
carum, C. acanthocephali, and L. major.

Sometimes, as in the lysine and histidine synthesis, the symbionts contain all the genes
for enzymes that compose the metabolic route. By contrast, in the cysteine and methionine
pathway, the bacteria lack most genes involved in amino acid interconversion, which are
present in the host trypanosomatids. Interestingly, the last step of some metabolic routes
such as those for lysine and tryptophan, contains two genes, one in the host genome, the
other in the TPE genome. This phenomenon has also been observed in the synthesis of heme
(Alves et al., 2011; Korený et al., 2010), but the reasons for this peculiarity remain obscure.
However, we have to consider the possibility that HGT events preceded the colonization of
SHTs by TPEs, and that the genes present in the host genomes are just relics of previous
HGT event(s). Alternatively, these genes could have been recruited to perform some function,
such as the control of amino acid production by the host trypanosomatid. This same strategy
can be considered in the production of isoleucine, valine, and leucine, but in this case TPEs
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lack the enzyme for the last step, the branched-chain amino acid transaminase (EC:2.6.1.42).
A clear example of the integration of earlier nutritional and enzymatic data with the

present gene screening is the synthesis of arginine and ornithine in trypanosomatids. Differ-
ently from other members of the family, the urea cycle is complete in SHTs by the presence
of the OCT gene (EC:2.1.3.3) in symbionts, making these protozoa entirely autotrophic for
ornithine, citrulline, and arginine, as previously known from nutritional data (Newton, 1956;
Mundim et al., 1974; Guttman, 1966; Mundim et Roitman, 1977). Symbiont-bearing try-
panosomatids contain genes for all enzymes leading from glutamate to arginine. The corre-
sponding genes are located partly in the genomes of their TPEs and partly in the protozoan
nucleus. In this last case, the genes are of bacterial origin, resulting from HGT and includ-
ing at least one transfer of two genes at once (EC:4.3.2.1 and EC:6.3.4.5), as demonstrated
in our phylogenies. Furthermore, TPEs also contain most genes for the glutamate path-
way, thus enhancing synthesis of ornithine, that once decarboxylated generates polyamine,
which is related to cell proliferation and to the low generation time displayed by SHTs. The
results in this study confirm previous findings (Alves et al., 2013b, 2011) showing the be-
taproteobacterial origin of the genes of TPEs. The nuclear genes, on the other hand, present
a much more convoluted evolutionary picture, with probably numerous ancient HGT events
shaping the amino acid metabolism in trypanosomatids. A few pathways in particular have
been heavily affected, e.g. methionine/cysteine and arginine/ornithine synthesis. Transferred
genes originated preferentially from three bacterial phyla, namely Firmicutes, Bacteroidetes,
and Gammaproteobacteria (in decreasing order of occurrence), although possible transfers
from other phyla of Bacteria have also been uncovered. Especially interesting was the finding
of a gene, coding for ornithine cyclodeaminase (EC:4.3.1.12), which closely groups with the
Alcaligenaceae family of the Betaprotebacteria and that is likely to have been transferred
from the endosymbiont to the host genome. Accordingly, it is present only in the nuclear
genomes of SHTs and not in any of the currently sequenced RT genomes. During the revision
process of this work, a very recent report was published ((Husnik et al., 2013)) of a similar
situation of multiple lineages contributing to the metabolism in the symbiosis of mealybugs,
involving the three interacting partners and genes acquired by the insect host through HGT
from other bacterial sources (mainly Alphaproteobacteria, but also Gammaproteobacteria
and Bacteroidetes). This suggests that this phenomenon could be widespread and of great
importance in the evolution of genomes and metabolisms.

Having been detected in more than half of the genes analyzed in this work, HGT events
seem to have been fundamental in the genomic evolution of the Trypanosomatidae analyzed,
and further phylogenetic studies of the whole host genomes should show the complete extent of
this process and which additional pathways could be affected. Synthesis of vitamins (Klein et
al., in submitted), heme, and amino acids have already been shown to benefit from bacterial-
trypanosomatid HGT; many other processes in the metabolism of Trypanosomatidae might
also be subjected to this evolutionary process.
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METHODS

Organisms and growth conditions The genomes of the symbiont-harboring trypanoso-
matid species sequenced here were: Strigomonas oncopelti TCC290E, S. culicis TCC012E,
S. galati TCC219, Angomonas deanei TCC036E, and A. desouzai TCC079E. These SHTs
harbor, respectively, the symbionts: Candidatus Kinetoplastibacterium oncopeltii, Ca. K.
blastocrithidii, Ca. K. galatii, Ca. K. crithidii and Ca. K. desouzaii (Teixeira et al., 2011),
which were previously sequenced (Alves et al., 2013b). In addition, we have also sequenced
the genomes of two RT organisms, i.e. Herpetomonas muscarum TCC001E and Crithidia
acanthocephali TCC037E. These organisms are cryopreserved at the Trypanosomatid Culture
Collection of the University of São Paulo, TCC-USP. SHTs were grown in Graces’ medium
(Gibco). RTs were grown in LIT media (Camargo, 1964).

DNA extraction and sequencing Total genomic DNA was extracted by the phenol-
chloroform method (Ozaki et Cseko, 1984). We applied kDNA depletion methods to minimize
the presence of this type of molecule, as previously described (Alves et al., 2011), which
result in less than about 5% of remaining kDNA in the sample. After kDNA depletion,
about 5µg of DNA were submitted to each Roche 454 shotgun sequencing run, according
to the manufacturer’s protocols. Different genomes have so far been sequenced to different
levels of draft quality, with estimated coverages of 15X to 23X (considering a genome of
30 Mbp). Sequences were assembled using the Newbler assembler version 2.3, provided by
Roche. Resulting assemblies are available from Genbank under BioProject IDs PRJNA203418
and PRJNA203515-203520. The endosymbiont genomes were finished to a closed circle as
previously described (Alves et al., 2013b).

Gene discovery and annotation Endosymbiont genes were used as previously published
(Alves et al., 2013b). In an initial scan of the genome, trypanosomatid genes were discovered
and mapped to the metabolic pathways using ASGARD (Alves et Buck, 2007), employing
as reference the UniRef100 (Suzek et al., 2007) and the Kyoto Encyclopedia of Genes and
Genomes, KEGG (Ogata et al., 1999) databases. The identified segments of DNA were then
extracted from the genome and manually curated for completion and proper location of start
and stop codons by using the GBrowse genome browser (Stein et al., 2002). Putative
sequence functions were confirmed by domain searches against NCBI’s Conserved Domain
Database (Marchler-Bauer et al., 2011). Genes and annotations from other trypanosomatids
were used when needed and as available at KEGG. All trypanosomatid genes characterized
in this study have been submitted to NCBI’s GenBank and accession numbers are available
from Additional file C.22 in Appendix C. All endosymbiont genes analyzed here have been
previously sequenced (Alves et al., 2013b); gene identifiers are available from Additional file
C.23 in Appendix C.

Due to the incomplete nature of our trypanosomatid assemblies, a set of criteria were
used to avoid including contaminant sequences in our analyses. A gene was accepted as
legitimate only when satisfying at least two of the following: genomic context compatible
with a trypanosomatid gene (i.e. long stretches of genes in the same orientation in the contig,
most neighboring genes similar to genes from other, previously sequenced trypanosomatids);
sequencing coverage in the gene similar to, or higher than, that of the gene and genome
averages (since contaminants that are difficult to detect will almost always be in small contigs
of low coverage); GC percent content consistent with that of the neighboring genes, and
of the overall genome; and phylogenetic congruence (i.e. whether genes from more than one
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trypanosomatid formed monophyletic assemblages). Genomic context and GC content graphs
were drawn by GBrowse (Stein et al., 2002) and graphically edited for better use of space.

Phylogenetic analyses For phylogenetic analysis of each enzyme characterized in this
work, corresponding putative orthologous genes from all domains of life were collected from
the public databases by BLAST search (E-value cutoff of 1e-10, maximum of 10,000 matches
accepted) against the full NCBI NR protein database, collecting sequences from taxonomic
groups as widespread as possible and keeping one from each species (except for alignments with
more than 1,500 sequences, in which case one organism per genus was kept). Only sequences
that were complete and aligned along at least 75% of the length of the query were selected.
All analyses were performed at the protein sequence level. Sequences were aligned by Muscle
v. 3.8.31 (Edgar, 2004). Phylogenetic inferences were performed by the maximum likelihood
method, using RAxML v. 7.2.8 (Stamatakis, 2006) and employing the WAG amino acid sub-
stitution model (Whelan et Goldman, 2001), with four gamma-distributed substitution rate
heterogeneity categories and empirically determined residue frequencies (model PROTGAM-
MAWAGF). Each alignment was submitted to bootstrap analysis with 100 pseudo-replicates.
Trees were initially drawn and formatted using TreeGraph2 (Stover et Muller, 2010) and
Dendroscope (Huson et al., 2007), with subsequent cosmetic adjustments performed with
the Inkscape vector image editor (http://inkscape.org). Phylogenetic conclusions have been
displayed as strong in the summary table for phylogenetic results (Additional file C.2 in Ap-
pendix C) if the BSV was 80 or greater, and moderate if the BSV was between 50 and 80 –
with one exception, EC:2.1.1.37, described in the results.
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2.2.2 Biosynthesis of vitamins and cofactors in bacterium-harbouring try-
panosomatids depends on the symbiotic association as revealed by
genomic analyses

Introduction

As concerns the need for vitamins by RTs, very little is known mainly because their growth
media are very complex, making it difficult to define their specific nutritional requirements.
Despite this, various papers addressed indirect aspects of vitamin metabolism (Cowperthwaite
et al., 1953; Hutner et al., 1956; Nathan et al., 1960; Nathan et Cowperthwaite, 1955; Guttman,
1962; Hutner et al., 1979, 1980; Fiorini, 1989). The development of a defined medium for RTs
from insects had initially established that seven vitamins are essential to sustain protozoan
growth in culture medium: riboflavin, pantothenic acid, pyridoxamine, folic acid, thiamine,
nicotinic acid, and biotin (Roitman et al., 1972). Studies on the nutritional requirements of
insect trypanosomatids did not progress in a satisfactory way, but interestingly demonstrated
that SHTs of the genus Angomonas are nutritionally much less exigent than RTs (Mundim
et al., 1974). Thus, while the autotrophy of SHTs for most of the B vitamins was evidenced,
nothing was known about pathways for the synthesis of other vitamins. Furthermore, any
direct evidence of the symbiont contribution to the vitamin synthetic capabilities of the host
trypanosomatid was missing.

In recent studies, we reported on the sequencing of the entire genomes of five species
of TPEs (Alves et al., 2013b) and we also annotated the proteins of two SHT species and
their respective symbionts (Motta et al., 2013). Moreover, we sequenced to a draft-level the
genomes of the five host species as well as of two RTs (Alves et al., 2013a). In this paper,
we analyze these genomes for the presence of genes involved in the synthesis of vitamins.
The participation of both host and symbiont in the production of vitamins is presented and
discussed in association with previous data on the nutritional requirements of RTs and SHTs.
In order to get a broader view, we compared our findings with other trypanosomatids and
bacteria from the Alcaligenaceae family based on KEGG (Ogata et al., 1999).

Materials and methods

Analyzed organisms and their genome sequences The genomes of the following SHTs
and of the respective symbionts were examined: Strigomonas oncopelti TCC290E (acces-
sion number AUXK00000000), S. culicis TCC012E (AUXH00000000), S. galati TCC219
(AUXN00000000), Angomonas deanei TCC036E (AUXM00000000), and A. desouzai TCC079E
(AUXL00000000) (Alves et al., 2013a). Their corresponding symbionts are referred to as:
“Candidatus Kinetoplastibacterium oncopeltii”, “Ca. K. blastocrithidii”, “Ca. K. galatii”,
“Ca. K. crithidii”, and “Ca. K. desouzaii” (Teixeira et al., 2011). The endosymbiont genomes
were finished to a closed circle as previously described (Alves et al., 2013b).

The genomes of two RTs were also analyzed: Herpetomonas muscarum TCC001E (AUXJ00000000)
and Crithidia acanthocephali TCC037E (AUXI00000000) (Alves et al., 2013a).

Gene discovery and annotation Initially, the trypanosomatid genes were discovered and
mapped to metabolic pathways using ASGARD (Alves et Buck, 2007), using as reference
the UniRef100 (Suzek et al., 2007) and KEGG (Ogata et al., 1999) databases. The identified
segments of DNA were then extracted from the genomes and manually curated for completion
and proper location of start and stop codons by using the GBrowse genome browser (Donlin,
2009). Putative sequence functions were confirmed by domain searches against the NCBI’s
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CDD (conserved domain database) (Marchler-Bauer et al., 2011). For each enzyme charac-
terized in this work, corresponding putative orthologous genes from all domains of life were
collected from the public databases by BLAST search (E-value cutoff of 1e-10, maximum of
10,000 matches accepted) against the full NCBI NR protein database, collecting sequences
from taxonomic groups as widespread as possible and keeping one from each species (or genus,
if the tree was too large) for subsequent phylogenetic analysis. Only sequences that were com-
plete and aligned along at least 75% of the length of the query were selected.

All trypanosomatid genes characterized in this study have been submitted to NCBI’s
GenBank; accession numbers are available in Table 2.10. All endosymbiont genes analyzed
here have been previously sequenced (Alves et al., 2013b); gene identifiers are available in
Table 2.11.

For comparison, we used in our analyses the genome annotations of trypanosomatids
(Trypanosoma brucei, T. cruzi, Leishmania major, L. infantum, L. donovani, L. mexicana,
L. braziliensis) and bacteria from the Alcaligenaceae family (Bordetella pertussis Tohama II,
B. pertussis CS, B. pertussis 18323, B. parapertussis 12822, B. parapertussis Bpp5, B. bron-
chiseptica RB50, B. bronchiseptica MO149, B. bronchiseptica 253, B. petrii, B. avium, Achro-
mobacter xylosoxidans, Taylorella equigenitalis MCE9, T. equigenitalis ATCC 35865, T. asini-
genitalis, Pusillimonas sp. T7-7, Advenella kashmirensis) available in KEGG (Ogata et al.,
1999). However, care should be taken since these data may lack manual curation. As concerns
information on metabolic pathways, we used KEGG (Ogata et al., 1999) and MetaCyc (Caspi
et al., 2012).

Phylogenetic analyses All analyses were performed at the protein sequence level. Se-
quences were aligned by using MUSCLE (Edgar, 2004) and phylogenetic inferences were per-
formed by the maximum likelihood (ML) method using RAxML v. 7.2.8 (Stamatakis, 2006)
and the WAG amino acid substitution model (Whelan et Goldman, 2001), with four gamma-
distributed substitution rate heterogeneity categories and empirically determined residue fre-
quencies (model PROTGAMMAWAGF). Each alignment was submitted to bootstrap analysis
with 100 pseudo-replicates. We also performed phylogenetic inferences by the neighbor joining
(NJ) method using the seqboot and neighbor programs from PHYLIP v. 3.69 (Felsenstein,
1989) and RAxML v. 7.2.8 for the distance matrix calculation (in order to use the same amino
acid substitution model) and for drawing the bootstrap support values (100 replicates) in the
NJ tree. Trees were initially drawn and formatted using TreeGraph2 (Stover et Muller, 2010)
and Dendroscope (Huson et al., 2007), with subsequent cosmetic adjustments performed with
the Inkscape vector image editor (http://inkscape.org). CodonW (Peden, 2006) was used
to perform correspondence analyses of codon usage and to calculate codon adaptation index
scores for the candidate HGT genes using an endosymbiont gene as a negative control.
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Accession numbers

EC number

1.1.1.100  KF160081 KF160098 KF160036 KF160137 KF160252 KF160178 KF160225

1.1.1.169  KF160064 KF160045 KF160154 KF160291 KF160217

1.5.1.3    KF160067 KF160109 KF160029 KF160142 KF160283 KF160198 KF160213

1.5.1.34   KF160060 KF160118 KF160033 KF160143 KF160243 KF160176 KF160215

2.1.1.201  KF160070 KF160094 KF160053 KF160147 KF160248 KF160180 KF160207

2.3.1.41   KF160084 KF160107 KF160031 KF160161 KF160286 KF160182 KF160235

2.4.2.11   KF160090 KF160110 KF160044 KF160140 KF160277 KF160181 KF160232

2.6.1.5 KF160101 KF160239

2.7.1.23   KF160066 KF160125 KF160025 KF160163 KF160292 KF160205 KF160240

2.7.1.24   KF160086 KF160093 KF160028 KF160157 KF160246 KF160202 KF160222

2.7.1.26   KF160059 KF160096 KF160032 KF160155 KF160275 KF160179 KF160242

2.7.1.33   KF160085 KF160122 KF160039 KF160129 KF160276 KF160191 KF160219

2.7.1.35   KF160091 KF160113 KF160030 KF160165 KF160287 KF160192 KF160228

2.7.7.1    KF160080 KF160092 KF160037 KF160139 KF160267 KF160186 KF160229

2.7.7.2    KF160073 KF160097 KF160048 KF160146 KF160249 KF160168 KF160216

2.7.7.3    KF160063 KF160095 KF160027 KF160148 KF160279 KF160189 KF160220

2.8.1.7    KF160079 KF160102 KF160021 KF160144 KF160253 KF160175 KF160227

3.1.3.1    KF160074 KF160108 KF160052 KF160138 KF160278 KF160177 KF160234

3.2.2.1    KF160083 KF160099 KF160055 KF160141 KF160269 KF160170 KF160214

3.5.1.19 KF160171 KF160241

3.6.1.22   KF160076 KF160106 KF160043 KF160158 KF160288 KF160169

3.7.1.3    KF160068 KF160126 KF160051 KF160164 KF160293 KF160167 KF160237

4.1.1.36   KF160082 KF160117 KF160035 KF160159 KF160244 KF160187 KF160218

4.1.3.40   KF160050 KF160156 KF160289

6.2.1.12 KF160112 KF160190

6.3.2.17   KF160071 KF160111 KF160026 KF160128 KF160245 KF160184 KF160238

6.3.2.5    KF160075 KF160100 KF160022 KF160153 KF160284 KF160166 KF160226

6.3.4.15   KF160069 KF160034 KF160160 KF160268 KF160233

6.3.5.1    KF160065 KF160103 KF160049 KF160152 KF160285 KF160188 KF160206

Coq7       KF160089 KF160104 KF160054 KF160162 KF160270 KF160185 KF160212

UbiACoq2   KF160087 KF160123 KF160038 KF160127 KF160250 KF160204 KF160211

UbiB      

UbiG       KF160088 KF160105 KF160024 KF160133 KF160247 KF160197 KF160236

UbiH       KF160072 KF160124 KF160023 KF160145 KF160251 KF160183 KF160221

Angomonas 
deanei

Angomonas 
desouzai

Strigomonas 
culicis

Strigomonas 
oncopelti

Strigomonas 
galati

Crithidia 
acanthocephali

Herpetomonas 
muscarum

KF160119, 
KF160120, 
KF160121

KF160061, 
KF160062

KF160018, 
KF160019, 
KF160020

KF160149, 
KF160150, 
KF160151

KF160271, 

KF160272, 
KF160273, 
KF160274, 
KF160290

KF160193, 
KF160194, 
KF160195, 
KF160196

KF160230, 
KF160231

KF160077, 
KF160078

KF160046, 
KF160047

KF160134, 
KF160135, 
KF160136

KF160254, 
KF160255, 
KF160256, 
KF160257, 
KF160258, 
KF160259, 
KF160260, 
KF160261, 

KF160262, 
KF160263, 
KF160264, 
KF160265, 
KF160266

KF160223, 
KF160224

KF160172, 
KF160173, 
KF160174

KF160056, 
KF160057, 

KF160058

KF160114, 
KF160115, 

KF160116

KF160040, 
KF160041, 

KF160042

KF160130, 
KF160131, 

KF160132

KF160280, 
KF160281, 

KF160282

KF160199, 
KF160200, 

KF160201

KF160208, 
KF160209, 

KF160210

Figure 2.10: Trypanosomatidae genes characterized in this study.
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Pathway EC number Ca. K. crithidii Ca. K. desouzaii Ca. K. blastocrithidii Ca. K. oncopeltii Ca. K. galatii

Riboflavin and FAD 3.5.4.25 CDEe_0522 CDSe_0515 BCUe_0506 CONe_0495 ST1e_0570

Riboflavin and FAD 4.1.99.12 CDEe_0522 CDSe_0515 BCUe_0506 CONe_0495 ST1e_0570

Riboflavin and FAD 3.5.4.26 CDEe_0029 CDSe_0026 BCUe_0022 CONe_0027 ST1e_0028

Riboflavin and FAD 1.1.1.193 CDEe_0029 CDSe_0026 BCUe_0022 CONe_0027 ST1e_0028

Riboflavin and FAD 2.5.1.78 CDEe_0523 CDSe_0516 BCUe_0507 CONe_0496 ST1e_0571

Riboflavin and FAD 2.5.1.9 CDEe_0028 CDSe_0024 BCUe_0021 CONe_0026 ST1e_0027

Riboflavin and FAD CDEe_0479 CDSe_0471 BCUe_0467 CONe_0450 ST1e_0518

Pantothenic acid and CoA 2.1.2.11 CDEe_0142 CDSe_0138 BCUe_0139 CONe_0133 ST1e_0148

Pantothenic acid and CoA 6.3.2.1 CDEe_0061 CDSe_0057 BCUe_0050 CONe_0056 ST1e_0057

Pantothenic acid and CoA 2.7.1.33 CDEe_0137 CDSe_0133 BCUe_0131 CONe_0127 ST1e_0141

Pantothenic acid and CoA CDEe_0474 CDSe_0468 BCUe_0463 CONe_0447 ST1e_0513

Pantothenic acid and CoA 2.7.7.3 CDEe_0327 CDSe_0321 BCUe_0324 CONe_0317 ST1e_0358

Pantothenic acid and CoA 2.7.1.24 CDEe_0284 CDSe_0277 BCUe_0286 CONe_0277 ST1e_0309

Vitamin B6 2.6.1.52 CDEe_0716 CDSe_0702 BCUe_0692 CONe_0673 ST1e_0774

Vitamin B6 2.2.1.7 CDEe_0650 CDSe_0637 BCUe_0626 CONe_0609 ST1e_0707

Vitamin B6 1.1.1.262 CDEe_0643 CDSe_0630 BCUe_0618 CONe_0602 ST1e_0699

Vitamin B6 2.6.99.2 CDEe_0412 CDSe_0411 BCUe_0408 CONe_0394 ST1e_0449

Vitamin B6 1.4.3.5 CDEe_0868 CDSe_0853 BCUe_0842 CONe_0814 ST1e_0951

Folic acid 3.5.4.16 CDEe_0649 CDSe_0636 BCUe_0625 CONe_0608 ST1e_0706

Folic acid 4.1.2.25 CDEe_0263 CDSe_0257 BCUe_0260 CONe_0256 ST1e_0281

Folic acid 2.7.6.3 CDEe_0882 CDSe_0865 BCUe_0856 CONe_0827 ST1e_0967

Folic acid 2.5.1.15 CDEe_0375 CDSe_0373 BCUe_0377 CONe_0369 ST1e_0419

Folic acid CDEe_0571 CDSe_0563 BCUe_0549 CONe_0542 ST1e_0621

Folic acid 1.5.1.3 CDEe_0315 CDSe_0305 BCUe_0311 CONe_0304 ST1e_0341

Thiamine CDEe_0282 CDSe_0275

Thiamine 2.5.1.3 CDEe_0059 CDSe_0055

Thiamine 2.8.1.7 CDEe_0496 CDSe_0490 BCUe_0483 CONe_0470 ST1e_0541

Thiamine 2.8.1.10 CDEe_0283 CDSe_0276

Thiamine 2.7.4.16 CDEe_0525 CDSe_0518

Thiamine 2.7.7.73 CDEe_0066 CDSe_0064

Nicotinic acid and NAD 2.7.7.18 CDEe_0441 CDSe_0436 BCUe_0433 CONe_0419 ST1e_0482

Nicotinic acid and NAD 6.3.5.1 CDEe_0559 CDSe_0552 BCUe_0540 CONe_0530 ST1e_0611

Nicotinic acid and NAD 2.7.1.23 CDEe_0836 CDSe_0825 BCUe_0807 CONe_0791 ST1e_0912

Nicotinic acid and NAD 2.4.2.11 CDEe_0771 CDSe_0758 BCUe_0746 CONe_0724 ST1e_0843

Biotin 2.1.1.197 CDEe_0074 CDSe_0071 BCUe_0067 CONe_0070 ST1e_0072

Biotin 2.3.1.179 CDEe_0758 CDSe_0743 BCUe_0731 CONe_0710 ST1e_0829

Biotin 1.1.1.100 CDEe_0756 CDSe_0741 BCUe_0729 CONe_0708 ST1e_0826 

Biotin 4.2.1.59 CDEe_0590 CDSe_0580 BCUe_0567 CONe_0561 ST1e_0643

Biotin 1.3.1.10 CDEe_0024 CDSe_0021 BCUe_0019 CONe_0022 ST1e_0023

Ubiquinone UbiA / Coq2 BCUe_0137 CONe_0132 ST1e_0147

Ubiquinone UbiD / UbiX

Ubiquinone UbiB BCUe_0285 CONe_0276 ST1e_0308

Ubiquinone UbiG BCUe_0695 CONe_0676 ST1e_0779

Ubiquinone UbiH

Ubiquinone UbiE BCUe_0280 CONe_0271 ST1e_0304

Ubiquinone UbiF / Coq7 BCUe_0313 CONe_0306 ST1e_0343

2.7.1.26 / 
2.7.7.2

6.3.2.5 / 
4.1.1.36

6.3.2.12 / 
6.3.2.17

2.7.1.49 / 
2.7.4.7

BCUe_0348; 
BCUe_0294

CONe_0341; 
CONe_0287

ST1e_0388; 
ST1e_0320

BCUe_0821; 
BCUe_0258

CONe_0799; 
CONe_0255

ST1e_0931; 
ST1e_0280

Figure 2.11: Ca. Kinetoplastibacterium genes analyzed in this study.
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Results and Discussion

We analyzed the genomes of five species of SHTs and of their TPEs for the presence/absence
of genes from the metabolic pathways for essential vitamin synthesis. The genomes of two
RTs, C. acanthocephali and H. muscarum, were examined in detail, however these data do
not fully represent the genomic diversity of insect trypanosomatids in general. Indeed, the
enormous diversity present in the Trypanosomatidae family is sometimes not fully appreciated,
leading to apparent conflicts in the interpretation of metabolic data, as happened with the
early studies on the nutrition of Crithidia species. Data on the nutritional requirements of
C. fasciculata strongly disagreed with those obtained for C. oncopelti (recently renamed as
Strigomonas oncopelti) as concerns the necessity for amino acids and vitamins which is quite
different for both organisms (Kidder et Dutta, 1958; Newton, 1956). Many years elapsed
until it was realized that these organisms were quite distinct phylogenetically, and in fact
belonged to different genera (Teixeira et al., 2011). It became clear that S. oncopelti, as well as
other trypanosomatids which were later isolated, carried a bacterial symbiont that probably
endowed the host with enhanced biosynthetic capabilities. According to our present data,
these extra nutritional capabilities largely result from the contribution of the endosymbiont
to the metabolism of their trypanosomatid hosts as will be discussed here when analyzing
vitamin biosynthesis in SHTs.

Autotrophy of SHTs for the synthesis of riboflavin, pantothenic acid, vitamin B6

and folic acid

Riboflavin (Vitamin B2) Riboflavin is essential for the growth of RTs, as well as for
the aposymbiotic strains of SHTs (Cowperthwaite et al., 1953; Kidder et Dutta, 1958; Mundim
et al., 1974), but not for the symbiont-carrying strains of SHTs, which are autotrophic for this
vitamin (Newton, 1956; Mundim et al., 1974; Roitman et al., 1972). Riboflavin is synthesized
from guanosine 5’-triphosphate (GTP) and ribulose 5’-phosphate (Figure 2.12), and is the pre-
cursor for the essential flavin cofactors of redox reactions: FMN (flavin mononucleotide) and
FAD (flavin adenine dinucleotide) (Bacher et al., 2001). The genomes of SHTs and RTs have
none of the genes for the enzymes involved in riboflavin synthesis. On the other hand, TPEs
have all the genes responsible for such synthesis, except for a poorly characterized step in the
pathway, probably involving a phosphoric monoester hydrolase (Figure 2.12, IV-V). However,
it is uncertain which enzyme is responsible for this dephosphorylation process although it was
suggested that a phosphatase of low substrate specificity might be involved (Bacher et al.,
2001; Wu et al., 2006). Bacteria from the Alcaligenaceae family have all the enzymes for the
synthesis of riboflavin as is the case for TPEs, missing only the uncharacterized one (Figure
2.13). Since SHTs do not require riboflavin, it can be assumed that the dephosphorylation
reaction is catalyzed by any of a cohort of phosphatases of broad substrate range.

Further along the riboflavin biosynthetic pathway, it can be seen that all trypanosomatids,
with or without symbionts, have the genes for the conversion of riboflavin into FMN and of
the latter into FAD. Those genes are also present in other trypanosomatids (Figure 2.13). It
is worth considering that in SHTs the presence of such genes in the trypanosomatid host may
be related to the control of the production of FMN and FAD. FMN acts as a coenzyme in
oxidative enzymes, including NADH dehydrogenase while FAD forms the prosthetic group of
certain oxidases, both serving as electron carriers. Recently, we proposed that the presence
of the symbiont influences the energetic metabolism of A. deanei (unpublished data). This
analysis reinforces this idea and reveals that, thanks to the genes of the symbiont, SHTs
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are fully capable of riboflavin synthesis, corroborating the nutritional data that point to this
vitamin as unnecessary for the growth of SHTs, although indispensable for the growth of RTs
(Kidder et Dutta, 1958; Mundim et al., 1974; Roitman et al., 1972).

Figure 2.12: Biosynthesis of riboflavin and FAD Metabolites - I: Guanosine 5’-
triphosphate; II: 2,5-Diamino-6-(5-phospho-D-ribosylamino)pyrimidin-4(3H)-one; III: 5-
Amino-6-(5’-phosphoribosylamino)uracil; IV: 5-Amino-6-(5’-phospho-D-ribitylamino)uracil;
V: 5-Amino-6-(1-D-ribitylamino)uracil; VI: D-Ribulose 5-phosphate; VII: 2-Hydroxy-3-
oxobutyl phosphate; VIII: 6,7-Dimethyl-8-(D-ribityl)lumazine; IX: Riboflavin; X: Flavin
mononucleotide; XI: Flavin adenine dinucleotide Enzymes - 3.5.4.25: GTP cyclohydrolase II;
3.5.4.26: diaminohydroxyphosphoribosylaminopyrimidine deaminase; 1.1.1.193: 5-amino-6-
(5-phosphoribosylamino)uracil reductase; 3.1.3.-: Phosphoric monoester hydrolases; 4.1.99.12:
3,4-dihydroxy 2-butanone 4-phosphate synthase; 2.5.1.78: 6,7-dimethyl-8-ribityllumazine syn-
thase; 2.5.1.9: riboflavin synthase; 2.7.1.26: riboflavin kinase; 2.7.7.2: FAD synthetase.

Pantothenic acid (Vitamin B5) Early nutritional studies considered pantothenic acid
as an absolute requirement for the growth of trypanosomatids (Cowperthwaite et al., 1953;
Kidder et Dutta, 1958). Later reports confirmed these observations, but showed also that pan-
tothenate is not at all necessary for the cultivation of SHTs such as S. oncopelti and A. deanei
(Newton, 1956; Mundim et al., 1974; Roitman et al., 1972). Bacteria synthesize coenzyme A
(CoA) via pantothenic acid from aspartate and α-ketoisovalerate (Figure 2.14), while CoA is
an acyl carrier required for a multitude of reactions for both biosynthetic and degradation
pathways (Begley et al., 2001b). The CoA biosynthetic route requires nine enzymes: four to
synthesize pantothenic acid (Figure 2.14, I-VI) and five to produce CoA (Figure 2.14, VI-XI).

As concerns the first half, the enzyme aspartate 1-decarboxylase (EC:4.1.1.11), required
for the conversion of aspartate into β-alanine (Figure 2.14, I-II), was not identified in TPEs,
SHTs nor RTs. Moreover, the two latter groups possess the enzymes to catalyze the syn-
thesis of β-alanine from malonyl-CoA. TPEs have two enzymes responsible for the synthe-
sis of pantothenic acid (3-methyl-2-oxobutanoate hydroxymethyltransferase EC:2.1.2.11; and
pantoate–beta-alanine ligase EC:6.3.2.1; Figure 2.14, III-IV and V-VI) which were not found
in SHTs nor in RTs. Moreover, the genes necessary to convert pyruvate into α-ketoisovalerate
(one precursor of this biosynthetic pathway) were only identified in TPEs, but neither in
SHTs nor in RTs (Alves et al., 2013a). These steps take part in the biosynthetic route of
valine. The remaining step is the production of pantoate mediated by ketopantoate reduc-
tase (EC:1.1.1.169, Figure 2.14, VI-V), that participates exclusively in this pathway and was
identified in all the SHTs analyzed and also in H. muscarum. In SHTs, its presence would
be meaningful for the synthesis of pantothenic acid complemented by the TPEs, however
the presence of this gene in H. muscarum is puzzling since RTs lack the remaining genes
of the pantothenic acid biosynthetic pathway. As discussed in detail below in the Section
phylogenetic analyses, this gene is likely a relic from a past lateral gene transfer event from a
bacterium to a common ancestor of the Trypanosomatidae family.

Other trypanosomatids available in KEGG lack all the enzymes for the production of
pantothenic acid. Most bacteria from the Alcaligenaceae family have all the machinery for
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Figure 2.13: Comparative analysis of trypanosomatids and bacteria from the Al-
caligenaceae family and the species analyzed in the present study Green squares
indicate presence while gray ones indicate absence of the enzyme (column) in the respective
organism (line). Information of trypanosomatids and bacteria other than the ones analyzed
in the present study are from KEGG. *Only Angomonas spp. #Only Strigomonas spp.

this biosynthesis (Bordetella spp. and A. xylosoxidans) while Pusillimonas sp. and A. kash-
mirensis lack only enzyme EC:4.1.1.11. On the other hand, Taylorella spp, which have the
most reduced genomes, lack the first 3 steps (Figure 2.13).

The second half of the pathway, which is the production of CoA from pantothenic acid,
is accomplished by TPEs, SHTs, and RTs. In SHTs, we can assume that CoA formation is
optimized by TPEs. This coenzyme is related to the synthesis and oxidation of fatty acids
and oxidation of pyruvate in the Krebs cycle, which is directly associated with amino acid
production. Recently, our genomic searches showed that the symbionts of the trypanosomatids
contain the genes coding for enzymes that complete the host pathways for the synthesis of
essential amino acids (Alves et al., 2013a).

Based on those findings, the association of host/symbiont makes SHTs autotrophic for
pantothenic acid production (Newton, 1956; Mundim et al., 1974; Roitman et al., 1972),
whereas RTs depend on an exogenous source of this vitamin since they lack some genes for
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the synthesis of pantothenic acid (Cowperthwaite et al., 1953; Kidder et Dutta, 1958).

Figure 2.14: Biosynthesis of pantothenic acid and coenzyme A Enzymes surrounded
by a gray box were possibly acquired through horizontal transfer from Bacteria to trypanoso-
matids (see main text). Metabolites - I: Aspartate; II: β-Alanine; III: α-ketoisovalerate;
IV: 2-Dehydropantoate; V: Pantoate; VI: Pantothenic acid; VII: D-4’-Phosphopantothenate;
VIII: (R)-4’-Phosphopantothenoyl-L-cysteine; IX: Pantetheine 4’-phosphate; X: Dephospho-
coenzyme A; XI: Coenzyme A. Enzymes - 4.1.1.11: aspartate 1-decarboxylase; 2.1.2.11: 3-
methyl-2-oxobutanoate hydroxymethyltransferase; 1.1.1.169: ketopantoate reductase; 6.3.2.1:
pantoate–beta-alanine ligase; 2.7.1.33: pantothenate kinase; 6.3.2.5: phosphopantothenate-
cysteine ligase; 4.1.1.36: phosphopantothenoylcysteine decarboxylase; 2.7.7.3: pantetheine-
phosphate adenylyltransferase; 2.7.1.24: dephospho-CoA kinase.

Pyridoxal, pyridoxine and pyridoxamine (Vitamin B6) Vitamin B6 refers collec-
tively to pyridoxal, pyridoxine, pyridoxamine and their corresponding phosphate esters. Its
catalytically active forms are pyridoxal-5’-phosphate (PLP) and pyridoxamine 5’-phosphate
(PMP) (Drewke et Leistner, 2001). This vitamin is essential for all organisms while PLP is
an extremely versatile coenzyme necessary for over 100 enzymatic reactions, predominantly
in the metabolism of amino acids (Drewke et Leistner, 2001; Eliot et Kirsch, 2004). Pyri-
doxal or pyridoxamine was described as an essential growth factor for RTs, as well as for the
aposymbiotic strain of A. deanei (Kidder et Dutta, 1958; Mundim et Roitman, 1977). On
the other hand, it was identified as not required by SHTs despite the fact that its presence
doubled the growth rate of S. oncopelti (Newton, 1956; Mundim et al., 1974).

As shown in Figure 2.15, the precursors for the de novo biosynthesis of PLP are D-
erythrose-4-phosphate, glyceraldehyde-3-phosphate (GAP), and pyruvate (Drewke et Leist-
ner, 2001). The genomes of RTs and SHTs have none of the enzymes for the synthesis of PLP,
whereas TPEs have most of them, except for the first two steps mediated by the enzymes
D-erythrose 4-phosphate dehydrogenase and erythronate-4-phosphate dehydrogenase (Epd
EC:1.2.1.72 and PdxB EC:1.1.1.290, respectively), which convert D-erythrose-4-phosphate
into 2-Oxo-3-hydroxy-4-phosphobutanoate (Figure 2.15, I-III). Since SHTs are autotrophic
for PLP, these steps might be mediated by other distinct and unknown enzymes, or TPEs
might use a precursor different from D-erythrose-4-phosphate. These same two steps are also
missing in bacteria from the Alcaligenaceae family (Figure 2.13). The gene coding for Epd
shares a high sequence similarity with gapA (gene coding for glyceraldehyde 3’-phosphate
dehydrogenase, involved in glycolysis). Based on mutant essays, GapA was shown to be able
to replace the Epd activity under certain conditions (Yang et al., 1998). Since Epd was the
only enzyme not identified in this pathway in Ca. B. cicadellinicola (endosymbiont of the
sharpshooter), GapA was suggested as a candidate (Wu et al., 2006). GapA is present in
TPEs and also in all bacteria from the Alcaligenaceae family.

On the other hand, the RT and SHT genomes have the gene for pyridoxal kinase (EC:2.7.1.35),
which converts pyridoxal, pyridoxine, and pyridoxamine into their respective phosphate es-
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ters (salvage pathway), including PLP, the active principle of the B6 complex. However, they
lack the oxidase responsible for the interconversion of the different forms of vitamin B6 (see
PdxH in Figure 2.15). Considering other trypanosomatids, there is no enzyme involved in
this biosynthetic pathway, only the kinase above mentioned which is involved in the salvage
pathway of vitamin B6 (Figure 2.13).

Together, these findings underline the auxotrophy of RTs and the autotrophy of SHTs
for the B6 complex (Kidder et Dutta, 1958; Newton, 1956; Mundim et al., 1974; de Menezes
et Roitmanz, 1991; Roitman et al., 1972). Furthermore, PLP is an active coenzyme that
acts especially on the metabolism of amino acids. This can be directly related to the low
nutritional requirement of SHTs since essential amino acids are synthesized by the symbiotic
bacterium (Alves et al., 2013a).

Figure 2.15: Biosynthesis of vitamin B6 Metabolites - I : D-Erythrose 4-phosphate; II: 4-
Phospho-D-erythronate; III: 2-Oxo-3-hydroxy-4-phosphobutanoate; IV: 4-phospho-hydroxy-
L-threonine; V: 2-amino-3-oxo-4-phosphonooxybutyrate; VI: 3-Amino-2-oxopropyl phosphate;
VII: D-glyceraldehyde 3-phosphate; VIII: pyruvate; IX: 1-deoxy-D-xylulose 5-phosphate; X:
Pyridoxine phosphate; XI: Pyridoxal 5’-phosphate (PLP); XII: Pyridoxamine phosphate; XIII:
Pyridoxine; XIV: Pyridoxal; XV: Pyridoxamine. Enzymes - 1.2.1.72: D-erythrose 4-phosphate
dehydrogenase; 1.1.1.290: erythronate-4-phosphate dehydrogenase; 2.6.1.52: phosphoser-
ine aminotransferase; 1.1.1.262: 4-hydroxythreonine-4-phosphate dehydrogenase; 2.2.1.7: 1-
deoxyxylulose-5-phosphate synthase;2.6.99.2: pyridoxine 5-phosphate synthase; 1.4.3.5: pyri-
doxamine 5’-phosphate oxidase; 2.7.1.35: pyridoxal kinase.

Folic acid (Vitamin B9) Folic acid is considered an essential growth factor for RTs
(Cowperthwaite et al., 1953; Kidder et Dutta, 1958) despite the prevailing difficulties in defin-
ing essential requirements in complex culture media. However, after using a defined growth
medium, it was confirmed that folic acid is indeed an absolute requirement for the growth
of regular trypanosomatids (Roitman et al., 1972). Conversely, it was shown that in SHTs,
such as S. oncopelti (Newton, 1956) and A. desouzai (Fiorini, 1989), growth occurs in total
absence of folic acid. The standard pathway for the synthesis of folic acid is shown in Figure
2.16. Folates are composed of pterin, para-aminobenzoate (pABA), and L-glutamate moieties.
Pterin is synthesized from GTP (guanosine 5’-triphosphate), whereas pABA is obtained from
chorismate (Begley et al., 1998).

The genomes of all the TPEs examined carry the genes for the conversion of GTP, pABA,
and L-glutamate into folate and tetrahydrofolate (THF), except for the step that removes the
triphosphate motif of 7,8-dihydroneopterin triphosphate to produce dihydroneopterin (Figure
2.16, II-III). This step was for long unknown. It was recently shown in bacteria and in
plants that this reaction is performed by an enzyme from the Nudix family called FolQ (or
NudB, dATP pyrophosphohydrolase EC:3.6.1.-) (Klaus et al., 2005; Gabelli et al., 2007). The
corresponding gene is not assigned in any bacteria of the Alcaligenaceae family, and it is
not possible, based only on a sequence similarity search, to find a candidate for the step.
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Ca. B. cicadellinicola, an endosymbiont of the sharpshooter, lacks only this gene for folate
synthesis (Wu et al., 2006). On the other hand, Nudix proteins are found in TPEs as well as
in the members of the Alcaligenaceae family. Alcaligenaceae bacteria have the other genes for
the conversion of GTP, pABA, and L-glutamate into folate and tetrahydrofolate, but most
Bordetella spp. lack the first step of this pathway (GTP cyclohydrolase EC:3.5.4.16, Figure
2.13). In KEGG, we also found an alkaline phosphatase (EC:3.1.3.1) of broad spectrum as an
option for the missing step (Figure 2.16, II-III), which is present in SHTs and RTs but not in
TPEs.

Further down in the THF biosynthetic pathway, the genes coding for the last two enzymes
of the folic acid and THF synthesis, folylpolyglutamate synthase (EC:6.3.1.17) and dihydro-
folate reductase (EC:1.5.1.3), are present in the TPE, SHT, and RT genomes. They are also
present in Trypanosoma and Leishmania spp. (Figure 2.13), and the latter genus is able to
salvage folate and unconjugated pteridines from their hosts (Vickers et Beverley, 2011).

As mentioned above, pABA has been described as a nutritional requirement for S. oncopelti
(Newton, 1956, 1957). Conversely, this metabolite is absent in the minimal medium for C.
fasciculata (Kidder et Dutta, 1958), however it is interesting to observe that folate is required
in this case. Since pABA is an intermediate for folic acid biosynthesis, it makes perfect
sense that the uptake of folate from the diet dispenses the need for pABA. Its synthesis
from chorismate requires pabAB (aminodeoxychorismate synthase EC:2.6.1.85) and pabC
(aminodeoxychorismate lyase EC:4.1.3.38) (Begley et al., 1998). These enzymes were not
identified in TPEs, SHTs or RTs. Those steps are found in the Alcaligenaceae bacteria except
for Taylorella spp., and they are absent in Leishmania and Trypanosoma spp. The inability
of SHTs and TPEs to produce pABA agrees with the described need for this metabolite
in the minimal medium of S. oncopelti ; in other words, TPEs would be able to synthesize
folate provided pABA is available. This corroborates the fact that folic acid was considered
a nutritional requirement for A. deanei when pABA was not supplied (Mundim et al., 1974).

As a result, TPEs potentially have the enzymatic machinery for folate synthesis but prob-
ably require an exogenous source of pABA, corroborating the fact that SHTs are autotrophic
for folic acid (Newton, 1956, 1957; de Menezes et Roitmanz, 1991; Fiorini, 1989).

Figure 2.16: Biosynthesis of folic acid. Metabolites - I: Guanosine 5’-
triphosphate; II: 7,8-Dihydroneopterin 3’-triphosphate; III: Dihydroneopterin; IV: 2-
Amino-4-hydroxy-6-hydroxymethyl-7,8-dihydropteridine; V: 2-Amino-7,8-dihydro-4-hydroxy-
6-(diphosphooxymethyl)pteridine; VI: para-aminobenzoate; VII: Dihydropteroate; VIII: L-
glutamate; IX: Dihydrofolate; X: Tetrahydrofolate; XI: Folic acid. Enzymes - 3.5.4.16: GTP
cyclohydrolase I; 3.1.3.1: alkaline phosphatase; 3.6.1.-: Hydrolase acting on acid anhydrides
in phosphorus-containing anhydrides; 4.2.1.25: dihydroneopterin aldolase; 2.7.6.3: 2-amino-
4-hydroxy-6-hydroxymethyldihydropteridine diphosphokinase; 2.5.1.15: dihydropteroate syn-
thase; 6.3.2.12: dihydrofolate synthase; 6.3.2.17: folylpolyglutamate synthase; 1.5.1.3: dihy-
drofolate reductase.
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Auxotrophy of trypanosomatids for thiamine, nicotinic acid and biotin

Thiamine (Vitamin B1) Thiamine is an essential growth factor for RTs, as well as
for SHTs (Kidder et Dutta, 1958; Newton, 1956; Mundim et al., 1974). Studies on the SHT
requirement for thiamine were first performed with S. oncopelti (Newton, 1956) and only
later were extended to Angomonas spp. (Mundim et al., 1974). In both cases, thiamine was
found to be an essential growth factor. This indicated that all or some of the genes for the
biosynthesis of thiamine were missing from the genomes of both hosts and symbionts, which
is in agreement with the genomic analysis performed in this work. Thiamine is particularly
important for carbohydrate metabolism and its pathway involves the separate synthesis of
thiazole and pyrimidine which are then coupled to form thiamine diphosphate (thiamine-
PPi), which is the biologically active form of vitamin B1 (Begley et al., 1998).

Most genes related to the biosynthesis of thiamine are present only in the TPEs of An-
gomonas and totally absent from the genomes of RTs, SHTs, as well as from the TPEs
from Strigomonas (Figure 2.17). However, even the symbionts of Angomonas lack the genes
for key enzymes such as cysteine desulfurase (EC 4.1.99.17), thiamine biosynthesis protein
ThiI (EC:2.8.1.4), and glycine oxidase (EC:1.4.3.19) that mediate the initial steps of any of
the pathways leading to the synthesis of thiamine. Only the gene for cysteine desulfurase
(EC:2.8.1.7) was found in all genomes including those of SHTs and RTs, but its presence
may be related to its participation in the sulfur relay system. A few steps of the thiamine
biosynthesis are missing in bacteria from the Alcaligenaceae family while the pathway is to-
tally absent in Leishmania and Trypanosoma spp. (Figure 2.13). The genomic profile of
RTs, SHTs, and TPEs is thus in perfect agreement with the absolute need of thiamine for the
growth of trypanosomatids in general.

Figure 2.17: Biosynthesis of thiamine Metabolites - I: L-Cysteine; II: a [ThiI sulfur-carrier
protein]-L-cysteine; III: a [ThiI sulfur-carrier protein]-S-sulfanylcysteine; IV: a ThiS sulfur
carrier protein; V: a carboxy-adenylated-[ThiS sulfur-carrier protein]; VI: Thiamine biosyn-
thesis intermediate 5; VII: a thiocarboxy-adenylated-[ThiS-protein]; VIII: L-Tyrosine; IX:
Glycine; X: Iminoglycine; XI: 4-Methyl-5-(2-phosphoethyl)-thiazole; XII: 5’-Phosphoribosyl-
5-aminoimidazole; XIII: 4-Amino-5-hydroxymethyl-2-methylpyrimidine; XIV: 4-Amino-
2-methyl-5-phosphomethylpyrimidine; XV: 2-Methyl-4-amino-5-hydroxymethylpyrimidine
diphosphate; XVI: Thiamine monophosphate; XVII: Thiamine diphosphate. Enzymes -
2.8.1.7: cysteine desulfurase; 2.7.7.73: sulfur carrier protein ThiS adenylyltransferase; 2.8.1.4:
thiamine biosynthesis protein ThiI; 1.4.3.19: glycine oxidase; 2.8.1.10: thiamine biosynthesis
ThiG; 4.1.99.19: thiamine biosynthesis ThiH; 4.1.99.17: thiamine biosynthesis protein ThiC;
2.7.1.49: hydroxymethylpyrimidine kinase; 2.7.4.7: phosphomethylpyrimidine kinase; 2.5.1.3:
thiamine-phosphate pyrophosphorylase; 2.7.4.16: thiamine-monophosphate kinase.
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Nicotinic acid (Vitamin B3) Nicotinic acid is also essential for the growth of any
kind of trypanosomatid, with or without endosymbionts (Cowperthwaite et al., 1953; Kidder
et Dutta, 1958; Newton, 1956; Mundim et al., 1974; Mundim et Roitman, 1977; de Menezes
et Roitmanz, 1991; Roitman et al., 1972). The precursors for the de novo biosynthesis of
nicotinamide adenine dinucleotide (NAD) are aspartate in prokaryotes and tryptophan in
prokaryotes and eukaryotes (Begley et al., 2001a; Kurnasov et al., 2003). However, TPEs,
SHTs, and RTs do not possess the enzymatic machinery for any of these processes. On
the other hand, the genes responsible for the conversion of nicotinic acid into NAD+ and
NADP+ are present in the genomes of all the TPEs, SHTs, and RTs examined (Figure 2.18).
Interestingly, nicotinamidase (EC:3.5.1.19, Figure 2.18, XVI-XV), a key enzyme of this salvage
pathway that catalyzes the conversion of nicotinamide to nicotinic acid, has been recently
biochemically and functionally characterized in L. infantum (Gazanion et al., 2011). Based
on this sequence, we were able to identify candidates for this gene in the two RTs analyzed in
the present study and in Trypanosoma and Leishmania spp., however not in SHTs or TPEs
(Figure 2.13). This is in agreement with the fact that nicotinamide is frequently described in
the minimal media of RTs (Kidder et Dutta, 1958), since it can be converted into nicotinic
acid. There is also agreement that, once nicotinic acid is provided, all trypanosomatids are
able to synthesize NAD, the essential coenzyme for the redox reactions of any living cell. As
concerns the RT species, since they have the gene coding for nicotinamidase, they are also
able to grow in culture medium containing only nicotinamide.

Figure 2.18: Biosynthesis of nicotinic acid and NAD Enzymes surrounded by a gray
box were possibly acquired through horizontal transfer from Bacteria to trypanosomatids
(see main text). Metabolites - I: Aspartate; II: Glycerone-phosphate; III: Iminoaspar-
tate; IV: Quinolinate; V: Nicotinate D-ribonucleotide; VI: Deamino-NAD+; VII: Nicoti-
namide adenine dinucleotide; VIII: Nicotinamide adenine dinucleotide phosphate; IX: Tryp-
tophan; X: L-Formylkynurenine; XI: L-Kynurenine; XII: 3-Hydroxy-L-kynurenine; XIII: 3-
Hydroxyanthranilate; XIV: 2-Amino-3-carboxymuconate semialdehyde; XV: Nicotinic acid;
XVI: Nicotinamide. Enzymes - 1.4.3.16: L-aspartate oxidase; 1.4.1.21: aspartate dehydroge-
nase; 2.5.1.72: quinolinate synthase; 2.4.2.19: nicotinate-nucleotide diphosphorylase; 2.7.7.18:
; 6.3.5.1: NAD+ synthase; 2.7.1.23: NAD+ kinase; 1.13.11.11: tryptophan 2,3-dioxygenase;
3.5.1.9: arylformamidase; 1.14.13.9: kynurenine 3-monooxygenase; 3.7.1.3 kynureninase;
1.13.11.6: 3-hydroxyanthranilate 3,4-dioxygenase; 2.4.2.11: nicotinate phosphoribosyltrans-
ferase (recently transferred to EC6.3.4.21); 3.5.1.19: nicotinamidase.

Biotin (Vitamin B7) The need for biotin was demonstrated for RTs as well as for
A. deanei (Cowperthwaite et al., 1953; Kidder et Dutta, 1958). In the case of S. oncopelti, it
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was described as a non-essential vitamin, although its growth rate doubled with the addition
of biotin to the media (Newton, 1956).

Malonyl-CoA has been recently described as the precursor of the pimeloyl moiety of biotin
in Escherichia coli by a modified fatty acid synthetic pathway (Lin et al., 2010). The late steps
of the biotin biosynthetic pathway (Figure 2.19, XI-XV) are responsible for forming the two
rings in the structure of this coenzyme. The trypanosomatid genomes have a few genes of the
upper part of the pathway, also identified in Trypanosoma and Leishmania spp. (Figure 2.19,
Figure 2.13). On the other hand, the symbionts possess the genes for the first nine steps of
the pathway starting from malonyl-CoA, but lack the remaining ones (Figure 2.19). Bacteria
from the Alcaligenaceae family have most of the genes for the entire pathway (Figure 2.13).

This indicates that neither RTs nor SHTs are capable of biotin synthesis. The growth
of S. oncopelti in the absence of exogenous biotin is thus puzzling, unless this protozoan
synthesizes biotin via a distinct, unusual route. This would be the most probable alternative
if the nutritional autotrophy of S. oncopelti is confirmed, which has not been the case so far.

Figure 2.19: Biosynthesis of biotin Metabolites - I: malonyl-CoA; II: malonyl-CoA methyl
ester; III: a 3-oxo-glutaryl-[acp] methyl ester; IV: a 3-hydroxyglutaryl-[acp] methyl ester; V: an
enoylglutaryl-[acp] methyl ester; VI: a glutaryl-[acp] methyl ester; VII: a 3-oxo-pimelyl-[acp]
methyl ester; VIII: a 3-hydroxypimelyl-[acp] methyl ester; IX: an enoylpimelyl-[acp] methyl
ester; X: a pimelyl-[acp] methyl ester; XI: a pimelyl-[acp]; XII: 7-keto-8-aminopelargonate;
XIII: 7,8-diaminopelargonate; XIV: dethiobiotin; XV: biotin. Enzymes - 2.1.1.197: malonyl-
CoA methyltransferase; 2.3.1.180: β-ketoacyl-acyl carrier protein synthase III; 1.1.1.100: 3-
oxo-acyl-[acyl-carrier-protein] reductase; 2.4.1.59: 3-hydroxy-acyl-[acyl-carrier-protein] dehy-
dratase; 1.3.1.10: enoyl-[acyl-carrier-protein] reductase; 2.3.1.41: β-ketoacyl-ACP synthase
I; 3.1.1.85: pimeloyl-[acp] methyl ester esterase; 2.3.1.47: 8-amino-7-oxononanoate synthase;
2.6.1.62: 7,8-diaminopelargonic acid synthase; 6.3.3.3: dethiobiotin synthetase; 2.8.1.6: biotin
synthase.

Other cofactors Cofactors such as lipoic acid are produced by SHTs and RTs but not
by TPEs. Conversely, the cobalamin (vitamin B12) and menaquinone synthetic pathways are
absent in all trypanosomatids and symbionts. Interestingly, the ubiquinone biosynthetic route
is present in all RTs and SHTs as well as in the TPEs from the Strigomonas genus but absent
in the TPEs from the Angomonas genus.

Ubiquinone functions as an electron carrier in membranes and is composed of a benzo-
quinone ring and an isoprene side chain which varies in the number of subunits in different
organisms (Ranganathan et Mukkada, 1995). In L. major, the ubiquinone ring synthesis has
been described as having either acetate (via chorismate as in prokaryotes) or aromatic amino
acids (as in mammalian cells) as precursor (Ranganathan et Mukkada, 1995).

Most of the genes responsible for this biosynthetic pathway from tyrosine are present in
SHTs and RTs, however the first steps of this route are still not well characterized in related
species (Figure 2.20). As concerns the route from chorismate, the enzyme UbiC (EC:4.1.3.40),
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which catalyzes the conversion of chorismate into 4-hydroxybenzoate, was identified only in
the SHTs from the Strigomonas genus. In symbionts from this genus, we found this route
with chorismate as precursor, however UbiC was not identified. Most bacteria from the
Alcaligenaceae family have all the genes for ubiquinone production from chorismate while
Taylorella spp. have some missing steps (Figure 2.13). The genes identified in all SHTs and
RTs are also present in Trypanosoma and Leishmania spp. (Figure 2.13).

The presence of UbiC only in SHTs from the Strigomonas genus and of ubiquinone biosyn-
thetic pathway only in their symbionts and not in other TPEs may indicate a higher produc-
tion of ubiquinone in the Strigomonas host/symbiont system. As discussed in detail below
in the Section phylogenetic analyses, the gene ubiC is closely related to those described in
proteobacteria.

Figure 2.20: Ubiquinone biosynthesis Enzymes surrounded by a gray box were possi-
bly acquired through horizontal transfer from Bacteria to trypanosomatids (see main text).
Metabolites - I : L-Tyrosine; II: 4-Hydroxyphenylpyruvate; III: 4-Hydroxyphenyllactate; IV: 4-
Coumarate; V: 4-Coumaroyl-CoA; VI: 4-Hydroxybenzoyl-CoA; VII: 4-Hydroxybenzoate; VIII:
Chorismate; IX: 4-Hydroxy-3-polyprenylbenzoate; X: 2-Polyprenylphenol; XI: 2-Polyprenyl-
6-hydroxyphenol; XII: 2-Polyprenyl-6-methoxyphenol; XIII: 2-Polyprenyl-6-methoxy-1,4-
benzoquinone; XIV: 2-Polyprenyl-3-methyl-6-methoxy-1,4-benzoquinone; XV: 2-Polyprenyl-
3-methyl-5-hydroxy-6-methoxy-1,4-benzoquinone; XVI: Ubiquinone. Enzymes - 2.6.1.5:
tyrosine aminotransferase; 1.1.1.237: hydroxyphenylpyruvate reductase; 6.2.1.12: 4-
coumarate–CoA ligase; 3.1.2.23: 4-hydroxybenzoyl-CoA thioesterase; UbiC: chorismate
lyase; UbiA/Coq2: 4-hydroxybenzoate polyprenyltransferase; UbiD/UbiX: 3-octaprenyl-4-
hydroxybenzoate carboxy-lyase; UbiB: ubiquinone biosynthesis protein; UbiG (EC:2.1.1.222):
2-polyprenyl-6-hydroxyphenyl methylase; UbiH/Coq6: 2-octaprenyl-6-methoxyphenol hy-
droxylase ; UbiE/Coq5: ubiquinone biosynthesis methyltransferase; UbiF/Coq7: 2-
octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol hydroxylase; UbiG/Coq3 (EC:2.1.1.64 /
EC:2.1.1.114): 3-demethylubiquinol 3-O-methyltransferase / hexaprenyldihydroxybenzoate
methyltransferase.

Phylogenetic analyses In trypanosomatids, most genes involved in the synthesis of vita-
mins are either of eukaryotic or of betaproteobacterial origin. In most cases, vitamin produc-
tion benefits from the participation of the symbiotic bacterium whose genes are sister groups
of the corresponding sequences described in Bordetella spp. and Achromobacter spp., both
Betaproteobacteria that belong to the Alcaligenaceae family, as previously indicated for the
heme biosynthesis genes (Alves et al., 2011). As shown before in the whole genome analyses
of these symbionts (Alves et al., 2013b), the TPE genes involved in the synthesis of vitamins
and the corresponding betaproteobacterial genes represent a monophyletic branch supported
by bootstrap values close to 100 while they are distant from the equivalent genes in Alpha-
and Gammaproteobacteria. The phylogenetic analyses of the trypanosomatid host genes were
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carried out using the ML and NJ methods, which gave similar trees thus reinforcing the ob-
tained results. Most genes were found to be of eukaryotic origin while three genes may have
been transferred from bacterial groups to the trypanosomatid hosts (Table 2.21).

EC number Enzyme name Pathway Nb Sites Organisms

1.1.1.169 Pantothenate 607 1123 962

2.4.2.11 Nicotinate 630 1050 1010

4.1.3.40 chorismate lyase Ubiquinone 217 389 372

EC number Figure Genome*

1.1.1.169 - 9 23x 18x 18x A. deanei

2.4.2.11 10 24x 22x 27x A. desouzai

4.1.3.40 - 11 28x 14x 14x S. galati

Nb 
Sequences

# Distinct 
Alignment 
Patterns

ML – Cluster / Sister group 
trypanosomatids

2-dehydropantoate 2-
reductase

All SHTs and 
Herpetomonas, 
but not the other 
RTs.

They group within Firmicutes 
(BS=98).

nicotinate 
phosphoribosyltransfera

se
All SHTs, RTs 
and TPEs

Trypanosomatid clade (BS=100) 
clusters within the 
Gammaproteobacteria (BS=93).

SHTs from 
Strigomonas 

genus

Strigomonas clade (BS=98) very 
similar to Pseudomonas, clusters 
within Gammaproteobacteria 
(BS=89), although this gene 
seems to diverge quite fast, 
making the identification of 
putative orthologs difficult.

NJ – Cluster / Sister 
group 
trypanosomatids

Cluster / Sister group 
TPEs

Average 
genomic 
coverage

Average 
contig 
coverage

Average 
gene 
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Figure 2.21: Summary of the phylogenetic and sequencing coverage analyses of
the candidate HGT genes. *Genome, contig, and gene average sequencing coverages were
calculated for the organism indicated in the “Genome” column.

Possible horizontal gene transfer (HGT) from Firmicutes to trypanosomatids
The gene codifying for ketopantoate reductase (EC:1.1.1.169), involved in the synthesis of
pantothenic acid (Figure 2.14), is present in the SHTs and in the genome of H. muscarum
whereas it is absent in the TPE genomes. This gene is especially interesting due to the
fact that all other steps for the synthesis of pantothenic acid are performed by enzymes
coded by endosymbiont genes, including the enzymes necessary to synthesize the precursor
α-ketoisovalerate. It is neither of proteobacterial nor of eukaryotic descent. With a high
bootstrap support of 98 in the ML tree (85 in the NJ), its phylogeny indicates that it has
been transferred to the SHTs and to Herpetomonas – or more probably to a common ancestor
of these – from bacteria of the Firmicutes phylum (Figures 2.22 and 2.23).
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It is interesting to note that the part of the phylogenetic tree containing the trypanoso-
matid gene, although mostly composed of Firmicutes, also includes genes of a few bacteria
from other phyla interspersed amongst the Firmicutes genes. The phylum Firmicutes is di-
vided in three major clades, with the clade containing the trypanosomatid genes separated
from the other groups by a long branch (Figure 2.22). This could be due to different reasons:
either the gene for EC:1.1.1.169 presents high evolutionary rates, leading to the long branch
and low bootstrap values at deeper nodes of the tree and consequently to a difficulty in plac-
ing organisms in the tree; or there are multiple paralogs present in the tree due to ancient
duplications. Our data do not permit to definitely distinguish between these two alternatives,
although the much higher bootstrap support values at higher levels of the tree suggest the
former.

Possible HGT from Gammaproteobacteria to trypanosomatids The gene for nicoti-
nate phosphoribosyltransferase (EC:2.4.2.11), involved in the salvage pathway of nicotinic acid
(Figure 2.18), is present in the SHT, RT, and TPE genomes. The trypanosomatids form a
monophyletic group (bootstrap support of 100), and group within the Gammaproteobacteria
with a high bootstrap support value of 93 in the ML tree (91 in the NJ, Figures 2.24 and
2.25). They are far from the other eukaryotes in the tree and overall form a monophyletic
clade with moderate (66) and high (91) support values in the ML and NJ trees, respectively.
The few other eukaryotes are placed within other bacterial groups; one such example concerns
Entamoeba spp. placed within the Bacteroidetes (high support value of 95 and 81 in the ML
and NJ trees, respectively). The TPEs group within the Alcaligenaceae family with high
bootstrap support values of 90 and 99 (ML and NJ trees, respectively).

The gene for UbiC (EC:4.1.3.40), involved in the synthesis of ubiquinone (Figure 2.20),
is present only in the SHTs of the Strigomonas genus, but is absent from the genome of
any Angomonas, TPE, or RT genomes. The three Strigomonas form a monophyletic group,
and are placed as the sister group of the genus Pseudomonas (Gammaproteobacteria) with
a high bootstrap support value of 89 (Figures 2.26 and 2.27). The overall tree for UbiC
contains almost only Beta- and Gammaproteobacteria, with a few Alphaproteobacteria of the
Bartonella genus present within the Gammaproteobacteria.
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Figure 2.22: Maximum likelihood phylogenetic tree of ketopantoate reductase
(EC:1.1.1.169). A - overall tree, colored according to taxonomic affiliation of each taxon, as
per the legend on the left; distance bar only applies to panel A. B – details of the region of the
tree where the Trypanosomatidae are placed. Values on nodes represent bootstrap support
(only 50 or greater shown). Panel B is meant to only represent the branching patterns and
do not portray estimated distances between sequences.
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Figure 2.23: Neighbor joining phylogenetic tree of ketopantoate reductase
(EC:1.1.1.169) A - overall tree, colored according to taxonomic affiliation of each taxon,
as per the legend on the left; distance bar only applies to panel A. B – details of the region of
the tree where the Trypanosomatidae are placed. Values on nodes represent bootstrap sup-
port (only 50 or greater shown). Panel B is meant to only represent the branching patterns
and do not portray estimated distances between sequences.
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Figure 2.24: Maximum likelihood phylogenetic tree of nicotinate phosphoribosyl-
transferase (EC:2.4.2.11). A – overall tree, colored according to taxonomic affiliation of
each taxon, as per the legend on the left; distance bar only applies to panel A. B – details
of the region of the tree where the Ca. Kinetoplastibacterium spp. are placed. C – details
of the region of the tree where the Trypanosomatidae are placed. Values on nodes represent
bootstrap support (only 50 or greater shown). Panels B and C are meant to only represent
the branching patterns and do not portray estimated distances between sequences.
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Figure 2.25: Neighbor joining phylogenetic tree of nicotinate phosphoribosyltrans-
ferase (EC:2.4.2.11) A – overall tree, colored according to taxonomic affiliation of each
taxon, as per the legend on the left; distance bar only applies to panel A. B – details of
the region of the tree where the Ca. Kinetoplastibacterium spp. are placed. C – details of
the region of the tree where the Trypanosomatidae are placed. Values on nodes represent
bootstrap support (only 50 or greater shown). Panels B and C are meant to only represent
the branching patterns and do not portray estimated distances between sequences.



78 Chapter 2. Metabolic dialogue between a trypanosomatid and its symbiont

Figure 2.26: Maximum likelihood phylogenetic tree of UbiC (EC:4.1.3.40). A –
overall tree, colored according to taxonomic affiliation of each taxon, as per the legend on
the left; distance bar only applies to panel A. B – details of the region of the tree where
the Trypanosomatidae are placed. Values on nodes represent bootstrap support (only 50 or
greater shown). Panel B is meant to only represent the branching patterns and do not portray
estimated distances between sequences.
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Figure 2.27: Neighbor joining phylogenetic tree of UbiC (EC:4.1.3.40) A – overall tree,
colored according to taxonomic affiliation of each taxon, as per the legend on the left; distance
bar only applies to panel A. B – details of the region of the tree where the Trypanosomatidae
are placed. Values on nodes represent bootstrap support (only 50 or greater shown). Panel
B is meant to only represent the branching patterns and do not portray estimated distances
between sequences.
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Genomic context and possible acquisition of HGTs These potentially transferred
genes are mainly located in contigs presenting the typical trypanosomatid architecture of long
stretches of genes in the same orientation (Figure 2.28). One such example is the upstream
gene of ketopantoate reductase (EC:1.1.1.169) which is the one codifying for pyruvate kinase
(EC:2.7.1.40), which is involved in the glycolytic pathway. This same genomic context was
found in the previously sequenced strain of A. deanei (Motta et al., 2013). In addition to
that, the presence / absence of these three genes (codifying for EC:1.1.1.169, EC:2.4.2.11,
EC:4.1.3.40) in the previously sequenced genomes of A. deanei and S. culicis are in agree-
ment with the findings herein presented (Motta et al., 2013). The GC percent (Figure 2.28)
and sequencing coverage (Table 2.21) analyses also show that these genes present statistics
typical of other genes from these organisms. The HGT genes analyzed show a codon usage
consistent with that of about 125 other nuclear genes of the trypanosomatid based on the
codon adaptation index and the correspondence analysis performed using a TPE gene as
negative control (Figure 2.29).

The association of the betaproteobacterial symbionts and of the trypanosomatid hosts is
very ancient, estimated to have occurred in the late Cretaceous (Du et al., 1994a; Teixeira
et al., 2011) and to have perpetuated since by vertical transmission. No dating or any other
kind of information is available about the acquisition of genes for vitamin synthesis of bacterial
origin by trypanosomatids. It may be presumed, as is the case for similar instances of genes
involved in the synthesis of heme or amino acids, that lateral gene transfer occurred in a
common ancestor of several extant Trypanosomatidae clades, being subsequently lost in those
where it was no longer necessary for the metabolism of the organism (Alves et al., 2011,
2013a). Since the gene for the enzyme EC:1.1.1.169 is identified as being in a monophyletic
group with the SHTs and Herpetomonas with a high bootstrap value of 91, this indicates that
it was acquired by a common ancestor of these flagellates, and that other related genera and
species might have been involved. However, the precise point in the tree of the family, or
higher taxonomic category, where this gene was acquired remains obscure. Therefore, more
studies are needed on the composition of the genes involved in the synthesis of vitamins, in
more distantly related, non-parasitic Kinetoplastida, in order to try to elucidate this point of
their genomic evolution.
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Figure 2.28: Genomic context for candidate HGT genes in the Trypanosomati-
dae analyzed in this work. Arrows show TBLASTN alignments of the genome against
UniRef100 and KEGG proteins, as displayed by GBrowse and edited for clarity of presenta-
tion. The gene currently in focus is colored black. Coordinates are in kilobases.
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Figure 2.29: Codon adaptation index and correspondence analysis of codon usage
for candidate HGT genes. Red: candidate HGT genes of the Trypanosomatidae analyzed
in this work and the negative control which is the endosymbiont gene BCUe_0001. Codon
adaptation index for A. deanei genes (A), for A. desouzai genes (B) and for S. galati (C).
Correspondence analysis of codon usage for A. deanei genes (D), for A. desouzai genes (E)
and for S. galati (F).
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Conclusions

The results obtained in this work are in agreement with earlier nutritional studies (Cowperth-
waite et al., 1953; Kidder et Dutta, 1958; Mundim et al., 1974; Mundim et Roitman, 1977),
which indicated that trypanosomatids require seven vitamins in the culture media: folic and
pantothenic acid, biotin, vitamin B6, riboflavin, thiamine, and nicotinic acid (Figure 2.30).
As shown in the present study, this is related to the fact that such protozoa lack the complete
set of genes that codify for the enzymes involved in these essential biosynthetic pathways.
However, this nutritional requirement does not apply to trypanosomatids carrying a cytoplas-
mic endosymbiont. SHTs have the necessary enzymes to produce most vitamins, with the
exception of thiamine, biotin, and nicotinic acid, which represent absolute nutritional require-
ments for trypanosomatids in general. Most of the genes related to the synthesis of riboflavin,
vitamin B6, and folic acid were identified only in the symbiont genomes. This indicates the
presence of complete biosynthetic routes in the TPEs with an the exchange of metabolites
between host and bacterium in the extremities of the pathway, i.e. precursors and end prod-
ucts. On the other hand, the same is not observed in the synthesis of pantothenic acid, as
suggested by our analyses. This pathway might have a more intricate participation of both
partners in intermediate steps. SHTs and TPEs are able to perform the conversion of the
vitamins riboflavin and pantothenic acid into the essential metabolites FAD and CoA, which
indicates that possibly the symbiont enhances the production of these metabolites which may
be controlled by the host in a way that is not yet fully elucidated.

According to the phylogenetic analyses, some genes coding for the enzymes involved in the
biosynthetic and salvage pathways of vitamins and cofactors are in the host genome and are
of eukaryotic origin, while most genes are localized in the genomes of the symbionts and are of
betaproteobacterial ancestry. On the other hand, three genes were possibly transferred from
bacteria to the trypanosomatid nuclei. Such is the case of the ketopantoate reductase gene
(EC:1.1.1.169) involved in the de novo biosynthesis of pantothenic acid, which was probably
transferred from a Firmicutes bacterium to an ancestor of the SHT host and of H. muscarum.
The two other sequences may have been acquired from Gammaproteobacteria: nicotinate
phosphoribosyltransferase (EC:2.4.2.11), which is involved in the salvage pathway of nicotic
acid, and UbiC (EC:4.1.3.40), which is involved in the synthesis of ubiquinone.

Taken together, the nutritional data and our genomic analysis show that SHTs are au-
totrophic for riboflavin, pantothenic acid, vitamin B6, and folic acid (Newton, 1956, 1957;
Mundim et al., 1974; de Menezes et Roitmanz, 1991). As a result, we can assume that the
shared participation of the trypanosomatid host and of its symbiont in the synthesis of vita-
mins evidences an extensive metabolic exchange between both partners, at the extremities of
the pathways or maybe even at intermediate steps, and that this exchange has an essential
role in the maintenance of this mutualistic association.
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Figure 2.30: Overview of the biosynthetic pathways of essential vitamins and co-
factors in trypanosomatids. Dashed arrows: metabolite import/exchange; dotted arrows:
reaction present in only some of the organisms analyzed; solid arrows: other reactions (cir-
cles on the top of the arrows indicate number of steps and fulfilled circles indicate presence
of enzyme); arrows surrounded by a gray box: enzymes possibly acquired through horizon-
tal transfer from Bacteria to trypanosomatids (see main text). A - Contribution of SHTs
and TPEs based on the analysis of gene content in the genomes of A. deanei, A. desouzai,
S. culicis, S. oncopelti, S. galati and respective endosymbionts. B - Biochemical capability of
trypanosomatids without symbionts based on the analysis of genomic data of H. muscarum,
C. acanthocephali and L. major.
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2.3 Metabolic networks of host and symbiont

2.3.1 Overview

This section introduces our ongoing analyses of the whole metabolic networks of A. deanei and
its endosymbiont Ca. K. crithidii. Such analyses will be further extended to S. culicis and its
endosymbiont. The aim is to have a global view of the exchanges between host and symbiont
that goes beyond the scope offered by a study of pathways only. At first, the main focus
is on the metabolic exchanges between the host mitochondrial, glycosomal and cytoplasmic
metabolism and the symbiont. This choice is based on the previous findings of a physical
proximity of the bacterium and the glycosomes as well as on the energetic metabolism since
the symbiont possibly depends on the host supply of ATP (Motta et al., 1997a; Faria-e Silva
et al., 2000; Motta et al., 2010). The results presented hereafter are preliminary since they
are mainly based on the early steps of a manual refinement of the reconstructed metabolic
networks.

2.3.2 Reconstruction of the metabolic networks

The chosen method for the draft-level reconstruction was Autograph (Notebaart et al.,
2006) (see detailed description in Section 1.3.2). The reasoning for that was the availability
of a well-curated metabolic network of a phylogenetically close species, Leishmania major
Friedlin (SBML model version iAC560; Chavali et al., 2008), as well as the complexity of
an eukaryotic network due to its compartments and size. For the symbiont, two reference
networks were selected, one from the model species Escherichia coli k-12 MG1655 (SBML
model version iJO1366; Orth et al., 2011) and the other from the α-proteobacterium nitrogen
fixing symbiont of leguminous plants, Rhizobium etli CFN42 (SBML model version iOR363;
Resendis-Antonio et al., 2007). Besides being also a mutualistic symbiont, the latter was
chosen due to known similarities in its phospholipid metabolism with the endosymbiont of
trypanosomatids, which are related to the interaction with eukaryotic cells (for further de-
scription see Section 1.2.3; Palmié-Peixoto et al., 2006; de Azevedo-Martins et al., 2007; Aktas
et al., 2010).

The reconstruction workflow based on the Autograph method is recalled below in sum-
marised form:

1. Choose one or more well-curated metabolic models for propagation.

2. Search for orthologs between the model organism and the organism of interest.

3. Manually check of ortholog pairs if the protein name or EC number does not match in
the annotation of both organisms.

4. Propagate the model network based on the ortholog pairs.

5. Merge the networks propagated from different references.

6. Model the network as a compound graph and filter it removing cofactors and ubiquitous
compounds to analyse the topological inputs of the network.

7. Validate the propagated reactions:

- Reactions with no gene assigned: define them as mainly transport reactions.
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- Enzymes composed of more than one subunit (i.e. needing more than one gene):
Check whether all subunits were identified.

8. Annotate the genes of the organism of interest not used in the propagation.

9. Refine, in an iterative pathway-by-pathway manner, the reconstruction and functional
analyses.

Steps 7-9 are still ongoing and the results presented here are preliminary and will be further
refined.

The search for orthologs was performed using a LIPM version of InParanoid (Ostlund
et al., 2010) developed by L. Cottret (unpublished). The multi-fasta of proteins of L. major
was obtained from Tritryp (in november/2012) whereas the remaining ones were obtained
from GenBank NCBI. The propagation step was based on an algorithm developed by L.
Cottret (unpublished). Network modelling and filtering were performed using MetExplore
(Cottret et al., 2010). The topological analysis was based on an implemented version of the
Borenstein method (Borenstein et al., 2008) using the Igraph package (Csardi et Nepusz,
2006), in order to identify which metabolites are potentially acquired from the environment
(i.e., are potential inputs). Cytoscape (Shannon et al., 2003) was used for visualising the
metabolic networks.

2.3.3 Metabolic network of A. deanei

Search for orthologs and propagation

From 7912 and 8412 protein sequences of A. deanei and of L. major respectively, 2690 groups
of orthologs (which correspond to 4643 pairs of orthologs) were found. After filtering these
pairs to only keep the proteins that are observed in the metabolic model of L. major, we
ended up with a total of 690 pairs of orthologs after manual curation.

During the propagation step, the number of reactions evolved as follows. From the 1112
reactions present in the original SBML model of L. major, 1073 reactions were propagated,
based on the orthologous pairs of proteins, to the new draft reconstruction of the metabolic
network of A. deanei. Based on the boolean system of the Gene-Protein-Reaction (GPR)
associations (for further information on this topic see Section 1.3.2 and Figure 1.8), these
reactions can be divided into three categories depending on the confidence level accorded to
their propagation:

1. The reaction was propagated with complete GPR, i.e. all the genes required to synthe-
size the enzyme that catalyses this reaction were found.

2. The reaction was propagated with incomplete GPR, i.e. at least one gene required to
synthesize the protein complex that catalyses this reaction was missing.

3. The reaction was propagated due to an absence of GPR in the original SBML model,
i.e. it was included during the refinement process of the reference network for which no
gene was identified. Common examples are transport reactions and gaps in biochem-
ical knowledge (e.g., nutritional data indicate that the organism is able to synthesise
riboflavin, however the hydrolase that catalyses one step of this pathway has never been
characterised in any species).

In the case of the propagation of our protozoan host, about 58% of the reactions were propa-
gated due to a complete or incomplete GPR (481 and 143, respectively). The remaining 449
reactions were propagated because of no GPR.
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General information

The overall characteristics of the propagated network can be found in Table 2.1. It has 8
compartments: acidocalcisome, cytosol, extracellular space, mitochondria, flagellum, glyco-
some, endoplasmic reticulum and nucleus. The overall distribution of the reactions in the
different metabolic pathways are described in Table 2.2. The routes with more reactions as-
signed are those involved in the purine and pyrimidine metabolism, fatty acid biosynthesis
and degradation, glycerophospholipid metabolism and steroid biosynthesis.

There is a high number of propagated reactions due to a lack of GPR and about 84%
of them are associated to transport or unassigned pathways. Most of the remaining 16%
are involved in fatty acid and steroid biosynthesis. Among the 39 reactions that were not
propagated from L. major, most are involved in the metabolism of amino acids.

Number of compounds 1152
Number of reactions 1073
Number of reversible reactions 622
Number of irreversible reactions 451
Number of reactions with no gene assigned 449
Number of genes 425
Number of reactions with no pathway 65
Number of pathways 68

Table 2.1: General information on the reconstructed network of A. deanei
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Pathway Number of reactions
Arginine and Proline Metabolism 17
Citrate Cycle (TCA) 15
Fatty Acid Biosynthesis 51
Fatty Acid Degradation 35
Fatty Acid Synthesis 21
Galactose metabolism 11
Glutamate Metabolism 18
Glycerophospholipid metabolism 47
Glycolysis/Gluconeogenesis 23
Inositol Phosphate metabolism 11
Methionine Metabolism 19
Oxidative phosphorylation 13
Pentose Phosphate Pathway 14
Purine Metabolism 71
Pyrimidine Metabolism 41
Sphingolipid Metabolism 17
Steroid Biosynthesis 37
Transport, Endoplasmic Reticular 39
Transport, Extracellular 62
Transport, Mitochondrial 133
Transport, Nuclear 33
Transport, Peroxisomal 70
Tryptophan Metabolism 10
Valine, leucine, and isoleucine degradation 13
Total number of reactions 821

Table 2.2: Metabolic pathways with at least 10 reactions assigned in the network of
A. deanei.
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2.3.4 Metabolic reconstruction of the endosymbiont

Search for orthologs and propagation

Ca. K. crithidii and E. coli From 734 and 4146 protein sequences of Ca. K. crithidii
and E. coli respectively, 572 groups of orthologs (which correspond to 575 pairs of orthologs)
were found. After filtering these pairs to only the proteins that appear in the metabolic model
of E. coli, we ended up with a total of 245 pairs of orthologs after manual curation.

Ca. K. crithidii and R. etli From 734 and 5963 protein sequences of Ca. K. crithidii and
R. etli respectively, 518 groups of orthologs (which correspond to 521 pairs of orthologs) were
found. After filtering these pairs to only the proteins that appear in the metabolic model of
R. etli, we ended up with a total of 121 pairs of orthologs after manual curation.

E. coli R. etli
Reactions in the original SBML file 2583 388
Reactions propagated 971 214
Reactions propagated with complete GPR 347 110
Reactions propagated with incomplete GPR 164 34
Reactions propagated because of no GPR 460 70

Table 2.3: General information on the propagation process from the reference networks
of E. coli and R. etli.

Merged metabolic network Ca. K. crithidii

The overall characteristics of the merged network can be found in Table 2.4. It has 3 compart-
ments: cytosol, periplasm and extracellular space. The overall distribution of the reactions in
the different metabolic pathways are described in Table 2.5. The routes with more reactions
assigned are those involved in the biosynthesis of cell envelope, cofactor and prosthetic group,
and in the metabolism and transport of glycerophospholipid, purine and pyrimidine.

There is a high number of propagated reactions due to a lack of GPR and about 68% of
them are associated to unassigned pathways.

Number of compounds 1153
Number of reactions 1070
Number of reversible reactions 530
Number of irreversible reactions 540
Number of reactions with no gene assigned 516
Number of genes 276
Number of reactions no pathway assigned 349
Number of pathways 69

Table 2.4: General information on the reconstructed network of the symbiont of
A. deanei.
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Pathway Number of reactions
Alternate Carbon Metabolism 12
Arginine and Proline Metabolism 10
Cell Envelope Biosynthesis 84
Cofactor and Prosthetic Group Biosynthesis 83
Glycerophospholipid Metabolism 63
Histidine Metabolism 10
Inorganic Ion Transport and Metabolism 32
Lipopolysaccharide Biosynthesis / Recycling 20
Murein Biosynthesis 15
Murein Recycling 10
Nucleotide Salvage Pathway 60
Oxidative Phosphorylation 13
Purine and Pyrimidine Metabolism 38
Valine, Leucine, and Isoleucine Metabolism 18
Threonine and Lysine Metabolism 10
Transport, Inner Membrane 101
tRNA Charging 18
Tyrosine, Tryptophan, and Phenylalanine Metabolism 17
Total number of reactions 614

Table 2.5: Metabolic pathways with at least 10 reactions assigned in the network of
Ca. K. crithidii.
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2.3.5 Potential metabolic exchanges between the host and its symbiont

The aim of this section is to start discussing about the carbon sources in the protozoan host
and its endosymbiont since we began the manual refinement of these networks by their central
carbon metabolism. It is however important to note that new insights may change this picture
as the whole network continues to be manually refined and analysed.

An overview of the central carbohydrate metabolism of the endosymbiont and its links
with the synthesis of amino acids and vitamins can be found in Figure 2.31. As concerns gly-
colysis/gluconeogenesis, it is remarkable that it apparently works only in the gluconeogenetic
direction, from pyruvate (PYR) to D-fructose-6-phosphate (F6P). This is due to irreversible
steps that differentiate glycolysis and gluconeogenesis, such as the conversion of phospho-
enolpyruvate (PEP) into pyruvate (PYR) and the conversion of fructose-6-phosphate (F6P)
into D-fuctose-1,6-phosphate, for which only the genes coding for the enzymes catalysing
reactions in the glucogenetic direction were found, i.e., phosphoenolpyruvate synthetase and
fructose-1,6-bisphosphatase, respectively. Moreover, the TCA cycle is incomplete. Comparing
these results with those found for the endosymbionts of insects, Buchnera, Ca. Blochmannia
and Wigglesworthia, the first two symbionts oxidize glucose to acetyl-CoA, while in the latter
the pathway works in the opposite, glucogenetic direction (Zientz et al., 2004). As concerns
the TCA cycle, in Buchnera it is reduced to the step of 2-ketoglutarate (2KG) to succinyl-
CoA (SCA) whereas most energy-yielding steps are conserved in the remaining two bacteria
(Zientz et al., 2004). The branching of the amino acids and vitamins are mainly from phospho-
enolpyruvate (PEP), pyruvate (PYR), D-ribose-5-phosphate (R5P), D-erythrose-4-phosphate
(E4P) and 2-ketoglutarate (2KG). Concerning the three branched-chain amino acids, leucine,
isoleucine and valine, the amino acid transaminase responsible for the last step of their syn-
thesis was found only in the host (for further information see Section 2.2.1). Two options
are possible to explain this: either another enzyme in the symbiont performs this task or the
immediate precursors of such amino acids are transported to the host and possibly further
re-imported into the endosymbiont, for instance for protein synthesis.

As concerns the possible carbon sources supplied to the bacterial endosymbiont, we can
start by analysing the environment of the host protozoan. A. deanei resides during all its life
cycle in its insect host, possibly in the midgut. Similarly, the procyclic form of T. brucei lives
in the midgut of the tsetse fly that is an environment where D-glucose and other sugars are
usually scarce and the trypanosomatid thus relies mainly on L-proline that is the principal
carbon and energy source available in the hemolymph of this fly (Coustou et al., 2008).
An overview of the metabolism of proline in the insect form of T. brucei is presented in
Figure 2.32 (for reviews on this topic, refer to Bringaud et al. (2006, 2012)). The overall
metabolic steps shown for this protozoan are also found in A. deanei. The most probable
carbon sources for the endosymbiont are the metabolites found in the protozoan cytosol,
and not the ones enclosed in the glycosomes, since less transport of compounds through the
membrane of different cellular compartments is required. In that sense and considering the
depleted glucose scenario (Figure 2.32A), the most prominent candidates would be malate,
phosphoenolpyruvate (PEP) and pyruvate (PYR). Based on the overview in Figure 2.31,
any of the three would be enough for the glucogenetic and pentose phosphate pathways and
the downstream end products that branch out of those pathways. Disconnected from the
previously mentioned metabolic routes and lacking a precursor in this preliminary view of the
central carbon metabolism, there remains succinate, succinyl-CoA (SCA) and 2-ketoglutarate
(2KG) for which enzymes catalysing reactions interconverting them were found (Figure 2.31).
Directedly connected by a reversible reaction to the latter metabolite, there is glutamate
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Figure 2.31: The central carbohydrate metabolism and its links with the synthesis of
amino acids and vitamins of the Ca. K. crithidii metabolic network. Solid squares show
12 precursor metabolites, D-glucose-6-phosphate (G6P), D-fructose-6-phosphate (F6P), D-ribose-5-
phosphate (R5P), D-erythrose-4-phosphate (E4P), D-glyceraldehyde-3-phosphate (GAP), glycerate-
3P (3PG), phosphoenolpyruvate (PEP), pyruvate (PYR), acetyl-CoA (ACA), 2-ketoglutarate (2KG),
succinyl-CoA (SCA) and oxaloacetate (OXA), and glycerate-1,3P (BPG), essential for a net gain of
ATP in glycolysis in E. coli. Steps in grey were not found in the metabolic network of the endosymbiont
of A. deanei. The red squares contain the downstream end products of the biosynthetic pathways
of amino acids and vitamins that branch out from the central carbon metabolism. Abbreviations:
phenylalanine (Phe), tryptophan (Trp), tyrosine (Tyr), lysine (Lys), isoleucine (Ille), leucine (Leu),
valine (Val), vitamin B6 (B6), histidine (His), glutamate (Glu), ornithine (Orn) and citrulline (Citr).
The structure of this figure is based on Figure 2 from Noor et al. (2010).
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which, for instance, might be a potential candidate precursor for the other ones since it is
more probably found in the cytosol of the trypanosomatid as compared to the remaining ones
that are possibly only found in the mitochondrion.

Thus, the endosymbiont might also have adapted to the depletion of glucose, maintaining
only the gluconeogenetic pathway until the production of fructose-6-phosphate (F6P) which
seems to be essential for the biosynthesis of key metabolites in the metabolic network of this
bacterium.

2.3.6 Perspectives

As previously mentioned, the results presented above are preliminary and such analyses will
continue in order to explore in more detail the metabolic exchanges of the host protozoan and
its endosymbiont in the context of the entirely refined metabolic networks of these organisms.
Additional experimental and transcriptomic data will be included as much as possible in this
refinement step in order to have a well-curated metabolic model for predictions and simula-
tions. The valuable interaction between computational and experimental analyses is possible
through our collaboration with M.C.M. Motta and her team from Laboratório de Ultraestru-
tura Celular Hertha Meyer, Universidade Federal do Rio de Janeiro, Brazil. They have for
long been studying symbiont-harbouring trypanosomatids, specially A. deanei and S. culi-
cis, and this partnership plays a key role for the reconstruction of a well-curated metabolic
model.
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Figures 3 and 4 pages 357-8 from Bringaud et al. (2012).

Figure 2.32: Schematic representation of the L-proline metabolism in procyclic T. brucei

growing in glucose-depleted medium (A) and in glucose-rich medium (B). Blue arrows
represent enzymatic steps of the L-proline metabolism. While red arrows represent enzymatic steps
of the glucose metabolism. Extracted from Bringaud et al. (2012). (Caption continues on the next
page.)



2.3 Metabolic networks of host and symbiont 95

Figure 2.32: (Caption continued from the previous page.) Excreted end products are in white charac-
ters on a blue background (major end products: L-alanine, L-glutamate and CO2) or in black charac-
ters on a light blue background (minor end products: acetate and succinate). At reversible steps, only
the presumed or demonstrated direction of the reaction is represented. Dashed arrows indicate steps
considered to occur at background level or not at all under glucose-depleted growth conditions. The
glycosomal and mitochondrial compartments, the tricarboxylic acid cycle (TCA cycle) and gluconeo-
genesis are indicated. Abbreviations: C, cytochrome c; Cit, citrate; CoASH, coenzyme A; DHAP,
dihydroxyacetone phosphate; G-6-P, glucose-6-phosphate; GLUT, glutamate; Gly-3-P, glycerol-3-
phosphate; IsoCit, isocitrate; 2Ket, 2-ketoglutarate; Oxac, oxaloacetate; P5C, pyrroline-5-carboxylate;
PEP, phosphoenolpyruvate; Pi, inorganic phosphate; PPi, inorganic pyrophosphate; g SAG, glutamate
g -semialdehyde; SucCoA, succinyl-CoA; UQ, ubiquinone pool, 1,3BPGA, 1,3-bisphosphoglycerate; F-
6-P, fructose-6-phosphate; FBP, fructose-1,6-bisphosphate; G-3-P, glyceraldehyde-3-phosphate; Gly-3-
P, glycerol-3-phosphate; 3-PGA, 3-phosphoglycerate. Enzymes: 1, proline dehydrogenase (PRODH);
2, spontaneous reaction; 3, pyrroline-5 carboxylate dehydrogenase (P5CDH); 4, L-alanine amino-
transferase (AAT); 5, glutamate dehydrogenase (GDH); 6, a -ketoglutarate dehydrogenase complex;
7, succinyl-CoA synthetase (SCoAS); 8, succinate dehydrogenase (SDH; complex II of the respira-
tory chain); 9, mitochondrial fumarase; 10, mitochondrial malate dehydrogenase; 11, citrate synthase;
12, aconitase; 13, NADP-dependent isocitrate dehydrogenase; 14, mitochondrial NADH-dependent
fumarate reductase (FRDm); 15, mitochondrial malic enzyme (MEm); 16, cytosolic malic enzyme
MEc); 17, glycosomal malate dehydrogenase; 18, phosphoenolpyruvate carboxykinase (PEPCK); 19,
pyruvate phosphate dikinase (PPDK); 20, pyruvate kinase (PYK); 21, pyruvate dehydrogenase com-
plex; 22, unknown enzyme; 23, acetate:succinate CoA-transferase (ASCT); 25, complex I of the res-
piratory chain; 26, rotenone-insensitive NADH dehydrogenase; 27, alternative oxidase (AOX); 28,
complex III of the respiratory chain; 29, complex IV of the respiratory chain; 30, F0F1-ATP synthase
(ATPe); 31, hexokinase: 32, glucose-6-phosphate isomerase; 33, phosphofructokinase; 34, aldolase;
35, triose-phosphate isomerase; 36, glyceraldehyde-3-phosphate dehydrogenase; 37, glycosomal phos-
phoglycerate kinase; 38, cytosolic phosphoglycerate kinase; 39, phosphoglycerate mutase; 40, enolase;
41, NADH-dependent glycerol-3-phosphate dehydrogenase; 42, FAD-dependent glycerol-3-phosphate
dehydrogenase; 43, glycerol kinase; 44, cytosolic fumarase; 45, glycosomal NADH-dependent fumarate
reductase (FRDg); 46, nonenzymatic reaction; 47, NADPH-dependent methylglyoxal reductase; 48,
NAD+-dependent L-lactaldehyde dehydrogenase.
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This chapter is dedicated to the comparative analyses of metabolic networks. Section 3.1
presents the exploration of common capabilities of symbiotic bacteria, of the contribution of
each lifestyle group to the reduction of this core metabolism as well as the composition of
this core in the different groups (Klein et al. 2012b, BMC Genomics 13:438). It is followed by
Section 3.2 which introduces the ongoing investigation of an extended metabolic core in two
datasets of bacteria from the Escherichia and Pseudomonas genera. The aim is to propose
a methodology to compute an extended common set of metabolic capabilities more stable in
size and content when compared to the traditional core, where only omnipresence determines
this set which is quite unstable to the addition or removal of one organism.
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3.1 Exploration of the core metabolism of symbiotic bacteria

3.1.1 Background

We now have at our disposal the full metabolic network based on genomic data for hundreds
of species, mostly bacteria. The level of annotation is however widely heterogeneous across
species, making it crucial for any comparative analysis to carefully choose a set of species for
which we can guarantee a good enough annotation, and a same procedure for inferring the
metabolic network from the annotated genomes.

One question commonly raised by the availability of many complete genome sequences
is the number and content of a minimal set of protein-coding genes necessary to sustain a
living cell (Mushegian et Koonin, 1996; Mushegian, 1999; Koonin, 2000), which has been
investigated using experimental and computational approaches (Forsyth et al., 2002; Koonin,
2003; Gerdes et al., 2003; Klasson et Andersson, 2004; Gil et al., 2004; Charlebois et Doolittle,
2004; Glass et al., 2006; Gerdes et al., 2006; Zhang et Zhang, 2008; Azuma et Ota, 2009; Juhas
et al., 2011; Gao et Zhang, 2011). One such method identifies essential genes based on those
shared among genomes in a comparative analysis of diverse taxa (Mushegian et Koonin, 1996;
Koonin, 2000; Klasson et Andersson, 2004; Gil et al., 2004; Juhas et al., 2011). Some studies
included obligate host-dependent bacteria as a possibility for defining minimal gene sets in
more specific and naturally occurring conditions (Klasson et Andersson, 2004; Gil et al.,
2004). The minimal gene sets proposed were not enriched in metabolic genes (Koonin, 2000;
Klasson et Andersson, 2004; Gil et al., 2004; Zhang et Zhang, 2008; Juhas et al., 2011) and
the corresponding pathways often presented missing steps (Koonin et al., 1996; Gil et al.,
2004). These gaps may be due to non-orthologous gene displacement (NOGD) (i.e., the
presence of non-orthologous, paralogous or unrelated, genes for the same function in different
organisms) (Koonin et al., 1996) whose encoded enzymes have been defined as analogous
(as opposed to homologous) and may be structurally unrelated (Galperin et al., 1998). In
comparative analyses of reaction sets instead of genes, NOGD has a reduced impact because
different orthologous families encoding a single enzymatic capability are often represented
by a same reaction. Another possible explanation for incomplete pathways is the use of
different alternative routes, which recently have been defined as alternologs (i.e., branches
that proceed via different metabolites and converge to the same end product) (Hernández-
Montes et al., 2008). Their origin is closely related to different environmental metabolite
sources and lifestyles among species (Hernández-Montes et al., 2008). Since metabolism is a
core function expected to be required for sustaining life (Danchin, 1989), and the core size may
continue decreasing as more genome sequences appear (Charlebois et Doolittle, 2004; Danchin
et al., 2007), alternative approaches relaxing the requirement for ubiquity were proposed for
analysing either prokaryotes (Charlebois et Doolittle, 2004; Gabaldón et al., 2007; Azuma et
Ota, 2009; Barve et al., 2012) or species from the three domains of life (Danchin et al., 2007;
Peregrín-Alvarez et al., 2009; Kim et Caetano-Anollés, 2010). One such example is the search
for proteins commonly present (persistent) instead of strictly conserved everywhere (Danchin
et al., 2007). On the other hand, conserved portions of metabolism are found in lifestyle
groups of bacteria (Koonin, 2000).

Small-scale comparative analyses of a selection of metabolic pathways were performed
investigating each one individually (Zientz et al., 2004; Tamas et al., 2001) or grouped in one
functional module (Nerima et al., 2010). On the other hand, larger-scale comparative analysis
were carried out in other papers but the question put in each case was different, related either
to the proportion of metabolic genes in an organism, in absolute (van Nimwegen, 2003) or
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classified according to lifestyle (Cases et al., 2003; Merhej et al., 2009), or related to the
association between ecological strategies and growth rate (Freilich et al., 2005). The notion
of a core metabolism, meaning common elements, has been previously studied. However, this
was done by comparing all known strains of a same species, namely, Escherichia coli (Vieira
et al., 2011). This approach of analysing metabolism as a single network allows a global view
of functional processes, which was enabled by metabolic reconstruction methods based on
genomic data (Reed et al., 2006; Lacroix et al., 2008; Durot et al., 2009; Feist et al., 2009;
Cottret et Jourdan, 2010).

Here, we work at the level of whole metabolic networks for each organism and we analyse
the core small molecule metabolism (i.e., its conserved portion) of different lifestyle bacteria,
aiming to characterise the contribution of each lifestyle group in the reduction of the com-
mon set of metabolic capabilities shared by the whole dataset. As concerns the impact of
the obligate intracellular group, the question could be reformulated as the reactions which
could not be dispensed and/or outsourced to the host in the course of genome compaction.
Our major goals were to have a representative diversity in the symbiotic associations, a bal-
anced amount of organisms in each lifestyle group, and as few biases as possible that might
be related to the use of different annotation pipelines which is important when performing
comparative analyses. We address this by comparing the presence of metabolic reactions as
well as biochemical capabilities based on a partial Enzyme Commission (EC) number analysis
at level 3 (e.g., 2.5.1.-) (Webb, 1992). The purpose of the first is to be stringent although
partially dealing with NOGD (see Methods for an example), while the purpose of the latter is
to be more relaxed and to compare common functional capabilities in a broader sense. There
are two possible advantages to this. One is to deal with enzymatic activities for which it was
not possible to assign a full EC number during the functional annotation of a genome which
resulted in partial EC numbers that do not denote a specific reaction. The second reason is to
try to address the issue of alternologs, e.g., alternative amino acid biosynthetic pathways that
are often composed of enzymes which have the same partial EC numbers at level 3 (in the
two alternative phenylalanine biosynthetic pathways, the partial EC numbers are ec:5.4.99,
ec:4.2.1 and ec:2.6.1). We also analysed the metabolites that each bacterium potentially ac-
quires from its environment in order to relate them to the set of common metabolic functions
found for each lifestyle group.

3.1.2 Methods

Dataset

We selected 58 bacteria from the MicroScope platform (Vallenet et al., 2009) and we carefully
classified them according to their lifestyle based on the HAMAP information on interactions
(Lima et al., 2009) and the information provided in the literature. The broader lifestyle groups
take into account the location of the bacterium in its host, constituting four groups: obligate
intracellular INTRA, cell associated CA, extracellular EXTRA (16, 17 and 19 organisms,
respectively) and the control group free-living FL. We further grouped them in subcategories
on the basis of the association type and transmission mode. The lifestyle groups and the
abbreviations are given in Figure 1. The full list of bacteria selected and their detailed
classification is given in Additional file 2. The data on genes, metabolites and reactions
were obtained from MicroCyc/MicroScope (Vallenet et al., 2009). MicroCyc is a collection of
microbial Pathway/Genome Databases which were generated using the PathoLogic module
from the Pathway tools software (Karp et al., 2010) which computes an initial set of pathways
by comparing a genome annotation to the metabolic reference database MetaCyc (Caspi



100 Chapter 3. Comparative analyses of metabolic networks

et al., 2008). Using these databases as input, the metabolic networks of the 58 bacteria
were obtained from MetExplore (Cottret et al., 2010). It is important to notice that the
completeness of metabolic network reconstructions is a current limitation as some reactions
remain to be discovered and will be missing in the model while some false positive reactions
may be wrongly included in the network. On the other hand, reactions shared by most bacteria
are less likely to be missing in current datasets than organism-specific reactions, favouring
the kind of analyses performed in the present work. The data on metabolic pathways were
obtained from MetaCyc (Caspi et al., 2008).

Core metabolism and core enzymatic function

Our analysis is restricted to the small molecule metabolism as defined in the MetaCyc/BioCyc
databases (Caspi et al., 2008; Karp et al., 2005), i.e. small molecule reactions are those
in which all participants are small molecules, hence reactions involving one or more macro-
molecules such as proteins or nucleic acids are not represented. The comparisons of compound
and reaction sets are based on the BioCyc labels (Karp et al., 2005), e.g., the last reaction
of glycolysis consists in the transformation of phosphoenolpyruvate, ADP and H+ into pyru-
vate and water, and its label is PEPDEPHOS-RXN. The compounds found in the metabolic
networks are those which are involved as substrates or products in the inferred reactions.
All metabolites directly provided by the environment and not involved in any reaction as
substrate are not included.

The presence of a metabolic core, i.e., of a conserved set of elements in bacteria with
different lifestyles, was analysed in terms of common compounds, common reactions and
common partial EC number sets. The core metabolism was obtained by computing the
intersection of the sets of reactions (resp. compounds and partial EC numbers) for each
species. The panmetabolism was obtained by computing the union of these sets. The variable
metabolism is the difference between pan- and core metabolism, i.e., the set of elements that
are missing from at least one bacterium. These definitions were introduced by Vieira et al.
(Vieira et al., 2011), however they worked with strains of a same species whereas here we
compare different species.

The metabolic networks of the 58 bacteria were obtained from MetExplore (Cottret et al.,
2010). The macromolecules, as defined by BioCyc, were filtered out for all the analyses. The
analyses were performed using R (R Development Core Team, 2009), as were the graphics.
The igraph package (Csardi et Nepusz, 2006) was adopted for analysing graphs.

For the analysis of the core enzymatic functions we used the EC number classification
(Webb, 1992) which consists in a specific numerical identifier (e.g. 2.5.1.3) based on the
chemical reactions a given enzyme catalyses. We worked with partial EC number sets at level
3 (e.g. 2.5.1.-), leaving the fourth digit open. The first digit represents which of the six main
classes the enzyme belongs to (e.g. 1 for oxidoreductases; 2 for transferases). The following 3
digits provide a more detailed description of the enzymatic activity.

Exemplifying the issue of NOGD

We partially deal with NOGD because different orthologous families encoding one enzymatic
capability often turn out to be a same reaction. One such example is an intermediate enzyme
in the glycolytic pathway phosphoglycerate mutase (pgm), which has no sequence similarity
between Mycoplasma genitalium and Haemophilus influenzae (Koonin et al., 1996), and is
represented by only one enzymatic reaction in our dataset. In fact, we have both analogous
enzymes in our dataset: the cofactor-independent pgm (e.g., M. genitalium, Agrobacterium,
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Figure 3.1: The lifestyle dataset consists of 58 bacteria. They were classified in 4 broader lifestyle groups
based on the location of the bacterium in its host: obligate intracellular INTRA, cell associated CA, extra-

cellular EXTRA (16, 17 and 19 organisms, respectively) and the control group FL. We further grouped them
in subcategories on the basis of the association type (mutualism M, commensalism C, parasitism P) and the
transmission mode (vertical V, horizontal H). INTRA includes only obligate intracellular bacteria, whereas
CA includes bacteria which are facultatively intracellular, live on the surface of the host cell or are extracel-
lular with a described intracellular step. These two groups have bacteria with obligate associations with their
host (the totality of the individuals of the first group and 76% of the second one). EXTRA presents only
bacteria that are facultatively associated with their host and are also free-living. The group FL has been used
as a control group for all the analyses performed and includes organisms that have none of the three types
of associations used for the grouping in the HAMAP information on interactions (Lima et al., 2009). For
that reason we included in FL one representative of each taxonomic class present in the dataset depending on
the availability in the Microscope platform (Vallenet et al., 2009). Two Mycoplasma species were classified in
the CA group as they live on the surface of the host cell, although in another study they have been grouped
together with the INTRA because of their reduced genome and the invariant environment within the hosts
(Mendonça et al., 2011). The codes for the organisms are the ones from HAMAP (Lima et al., 2009).

Pseudomonas) and the cofactor-dependent pgm (e.g., Streptococcus, Bartonella, Buchnera)
based on the analysis of Foster et al. (Foster et al., 2010). The reasoning for only one
reaction representing both analogous enzymes is a many-to-many correspondence of enzyme-
reaction, i.e., one protein may catalyse more than one reaction, while the same reaction
may be catalysed by more than one protein, and these multiple proteins catalysing a same
reaction may or may not show sequence homology (Karp et Riley, 1993). Moreover, one should
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be aware that some cases of NOGD do not result in only one reaction, such as thymidylate
synthase which is folate-dependent (ec:2.1.1.45) in M. genitalium and in most bacteria, while it
is flavin-dependent (ec:2.1.1.148) in Actinobacteria, Rickettsia and Chlamydia (Koonin, 2003).
These enzymatic capabilities are classified with different EC numbers at level 4, however in
our analysis of partial EC numbers at level 3, they are classified in the same way (2.1.1).

Connectivity in the reaction graph

We analysed the connectivity of the core metabolic network to check if the common reactions
would be connected among themselves, i.e., the produced metabolites would be consumed by
other reactions in a chain of biochemical transformations. For that, the metabolic networks
of the dataset were modelled as reaction graphs. In such a graph, nodes represent reactions,
and arcs (i.e., directed edges) between two reactions represent a compound which is produced
by one reaction and consumed by the other. We set filters to exclude pairs of co-factors (i.e.,
ADP+Pi → ATP, NAD++H+ → NADH; for the full list see the MetExplore documentation)
and current compounds (e.g., water, proton, CO2, phosphate, diphosphate, NH3, H2O2 and
O2), which otherwise would connect unrelated reactions (Ma et Zeng, 2003).

Since we were working with the common reactions of a group of organisms, we computed
the union graph of all the metabolic networks modelled as reaction graphs. We then calculated
the graph induced by the common set of reactions, i.e., the subgraph containing the nodes
corresponding to these reactions as well as the arcs that link them. After that, we checked
for the presence of connected components, i.e., whether for every pair of nodes there is an
undirected path.

In the case of the common partial EC number sets, we checked whether the reactions
corresponding to each one of the partial EC numbers, i.e., one reaction for each partial EC
number, are connected in the metabolic networks. We analysed this in the union of all
metabolic networks of the dataset (or of lifestyle groups) modelled as a reaction graph, as
well as in the graph of each organism. This analysis was performed using MOTUS (Lacroix
et al., 2006).

Controlling for the impact of small networks

We controlled for the impact of bacteria with very reduced genomes on the size of the com-
mon set of reactions (resp. partial EC number sets). The six organisms which possess the
smallest reaction sets (resp. partial EC number sets) were successively removed (i.e., by
forming subgroups from 57 to 53 bacteria) and the intersections of the remaining subgroups
were recomputed. These six organisms are: “Candidatus Hodgkinia cicadicola” (HODCD),
“Candidatus Carsonella ruddii” (CARRP), “Candidatus Sulcia mueller” GWSS (SULMW),
M. genitalium (MYCGE), Buchnera aphidicola Cc (BUCCC) and Mycoplasma hyopneumo-
niae (MYCHJ). All possible orders for removing them were tested, and then the mean of the
intersection sizes for each subset size of organisms was calculated. We also performed the
same analysis by removing the eight bacteria with the smallest sets of reactions (resp. partial
EC numbers).

Controlling for the structuring of MIV

In order to further explore the structure of MIV (Mutualistic Intracellular Vertically trans-
mitted, see Figure 1 for abbreviations of group names) as they have the smallest genome sizes
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of the dataset and they have specific symbiotic functions, we performed a multiple correspon-
dence analysis (MCA) using the R (R Development Core Team, 2009) package ade4 (Dray
et Dufour, 2007). The input data was the contingency table of the presence and absence of
reactions for each organism. We analysed the reactions with correlation ratio greater than
85% and 50% on the first and second axis (respectively) of the MCA.

Decay of the common reactions in the different lifestyle groups

Next, we checked whether there were reactions common to subsets of organisms within the
same lifestyle group. To do so, for each lifestyle group l (l=INTRA, CA, EXTRA) having nl

organisms, we randomly drew x (2 ≤ x ≤ nl − 1) organisms and computed the intersection
(y) of their reaction sets. This was repeated 1000 times. In order to test if, when adding
more species, the size of the intersection of reaction sets was expected to decrease to zero, we
fitted exponential (El) and logistic (Ll) models to the data obtained for each lifestyle group
l. Assuming normally distributed residuals, ε ∼ N (0, σ), these models are given by:

El : ȳl = Nl ∗ exp(−rl ∗ xl) + αl + εl (3.1)

Ll : ȳl =
rl

(
rl
Nl

−
rl
αl

)∗exp(−rl∗xl)+
rl
αl

+ εl (3.2)

where ȳ represents the mean of the intersection of the reaction set over the 1000 simulations,
x is the subset size (i.e., the number of organisms drawn), αl is the asymptote, rl is the decay
rate and εl is the residual of the lth lifestyle group. Nl is theoretically defined as the mean of
the reaction sets for an empty subset size (ȳl for xl = 0). A null intersection of the reaction
sets corresponds to an asymptote α = 0.

Preliminary analyses showed the strong impact of the two Mycoplasma species on the
intersection size due to their reduced genomes (data not shown). Thus, both species were
removed from the CA group for this simulation. We used the R package nlstools (Baty et
Delignette-Muller, 2011) for model parameter estimation.

Differential random loss of enzymes

In order to rule out the possibility that the small intersection of partial EC number sets
could be simply explained by a differential random loss of enzymes during genome reduction
of the intracellular symbionts, we simulated the MIV (Mutualistic Intracellular Vertically
transmitted, see Figure 1 for group names) partial EC number sets starting from bacteria
of the EXTRA group. This was restricted to the Gammaproteobacteria of both groups. To
do so, for each Gammaproteobacteria of the MIV group (7 organisms), we randomly picked
a corresponding EXTRA Gammaproteobacterium and we randomly removed reactions from
its set of reactions, until we reached the size of the corresponding MIV metabolic network.
Then, we replaced each remaining reaction by its partial EC number at level 3, and removed
redundant partial EC numbers from this set. We therefore obtained a group of simulated
MIV networks for which we computed the union, intersection and average size of their partial
EC number sets. This whole procedure was repeated 1000 times. Additionally, we aimed to
test the differential random loss of biochemical capabilities, meaning the loss of partial EC
numbers (at level 3). For that, we performed a similar procedure to the one explained above,
however we stopped removing reactions when we reached the size of the MIV partial EC
number set. We used a Monte-Carlo test from the R ade4 package (Dray et Dufour, 2007)
to compare simulated and observed values.
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Metabolites potentially acquired from the environment

In order to identify which metabolites each bacterium potentially acquires from its environ-
ment (i.e., potential inputs), we used the Borenstein method (Borenstein et al., 2008). For
this, the metabolic network of each bacterium was modelled as a directed compound graph,
whose nodes are metabolites and arcs link a substrate to a product of a reaction. The co-
factors and current compounds were filtered. We implemented a version of the Borenstein
method using the igraph package (Csardi et Nepusz, 2006). In order to cope with possible
common inputs missed by the metabolic network reconstruction, we allowed distance one from
the topological precursors if they were already assigned as input in another bacterium, and
we grouped and compared them among organisms. In this analysis, the following compounds
were removed since they are only produced by reactions which also involve macromolecules:
dADP, dCDP, dUDP, dGDP. Hence, a systematic search for the inputs in the small molecule
metabolism would indicate these compounds as potential inputs, whereas they in fact can be
produced by the cell.

3.1.3 Results

Data overview

The total number of genes varies greatly among the 58 bacteria, ranging from 203 genes for
“Ca. Hodgkinia cicadicola” (HODCD) to 7279 genes for Ralstonia eutropha (RALEH) (Figure
2 and Additional file 3). We noticed that the number of genes is greater in the EXTRA than
in the INTRA, in agreement with the reduced genomes related to the intracellular lifestyle
(Andersson et Kurland, 1998; Wernegreen, 2005).

Figure 3.2: Range of the total number of genes in the different lifestyle groups. Abbreviations of group
names are those from 3.1.

The three most frequent taxonomic classes among all the organisms analysed are Gammapro-
teobacteria, Alphaproteobacteria and Bacilli. These classes are well distributed in relation to
the number of genes (Additional file 3), with no correlation observed between the two factors
(Kruskal-Wallis test, p = 0.65).

The number of metabolic genes ranges from 49 for “Ca. Hodgkinia cicadicola” (HODCD)
to 1970 for Mycobacterium smegmatis (MYCS2). As for the total number of genes, the number
of metabolic genes is greater in the EXTRA as compared to the INTRA bacteria. However,
the ratio of the number of metabolic genes over the total number of genes shows important
differences depending on the organism (Figure 3). For the organisms in the groups other
than MIV, the mean ratio of metabolic genes is 0.21 ± 0.08. By contrast, the mean ratio of
metabolic genes for the MIV bacteria is 0.38 ± 0.18 and even reaches 0.48 for “Candidatus
Baumannia cicadellinicola” (BAUCH), being significantly different from the bacteria of the
other groups (Wilcoxon test, p < 0.001).
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Figure 3.3: Ratio of the number of metabolic genes over the total number of genes. The colours correspond
to the lifestyle groups (see Figure 3.1 for the abbreviations of group names) and bacteria are ordered by total
number of genes.

Among the 58 bacteria analysed, the number of compounds and reactions follows almost
the same trend as the number of metabolic genes, from 98 compounds and 42 reactions for “Ca.
Hodgkinia cicadicola” (HODCD) to 1381 compounds and 1166 reactions for M. smegmatis
(MYCS2) (Figure 4).

Core metabolism in the whole set of bacteria

Shared compounds and reactions

For the whole set of organisms, there are only 16 common compounds (Additional file 4)
which correspond to amino acids, cofactors, ions and metabolites involved in the synthesis
of nucleic acids. No small-molecule metabolic reaction is common to every organism of the
dataset (Figure 5 and Additional file 5). The 16 compounds shared by the 58 organisms
are therefore not involved in the same reactions in each organism. The full list of reactions
analysed with the number of bacteria that possess them and the list of the organisms that
lack them is presented in the Additional file 6.
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Figure 3.4: Total number of elements in the metabolic network of each bacterium in the dataset. A Total
number of compounds. B Total number of reactions. The colours correspond to the lifestyle groups (see
Figure 3.1 for the abbreviations of group names). Bacteria are ordered by total number of genes.

Core enzymatic function based on an EC number analysis

We found only four partial EC numbers common to all 58 bacteria: two transferases (2.3.1 and
2.5.1), one hydrolase (3.5.1) and one lyase (4.2.1) (Table 1, Figure 6a and Additional file 7).
They correspond to 235 reactions in the union of all the reactions of our dataset. We searched
for any four reactions, each corresponding to one of the four partial EC numbers, that are
connected in the metabolic networks. In the union of all metabolic networks of the dataset,
the graph induced by these 235 reactions has 418 arcs and forms 20 connected components
apart from 84 isolated reactions. There are 30 occurrences of the four reactions (one for
each of the four partial EC numbers) connected in the union of the metabolic networks. In
the reaction graph of each organism, we found this connected pattern of four reactions in
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Figure 3.5: Size of the intersection of compound (A) and reaction (B) sets among groups of lifestyle.
Red: number of compounds/reactions common to the whole dataset. Blue: number of compounds/reactions
common the intracellular, extracellular and FL groups.

the graphs of 28 organisms. The common set of partial EC numbers in the whole dataset
thus corresponds to a connected portion of the metabolic network of 28 bacteria out of the
58 analysed. This subset of bacteria represents most lifestyle groups described in this work,
ranging from obligate intracellular to free-living as well as from mutualists to parasites.

Table 3.1: Partial EC numbers common to the whole dataset

EC number Classification

2 Transferases

2.3 Acyltransferases

2.3.1 Transferring groups other than aminoacyl groups

2.5 Transferring alkyl or aryl groups, other than methyl groups

2.5.1 Transferring alkyl or aryl groups, other than methyl groups
(only subclass identified to date)

3 Hydrolases

3.5 Acting on carbon-nitrogen bonds, other than peptide bonds

3.5.1 In linear amides

4 Lyases

4.2 Carbon-oxygen lyases

4.2.1 Hydro-lyases

The detailed description of the 4 partial EC numbers shared by the whole dataset includes 3 classes of
enzymes: transferase, hydrolase and lyase.

Controlling for the impact of small networks

Clearly, we can expect that the inclusion of bacteria with very reduced genomes will have a
large impact on the size of the intersection. However, it remains unclear if the small size of the
intersection could be explained only by this. We found that the shared reaction sets, obtained
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Figure 3.6: Size of the intersection of partial EC number sets. A Intersection of the partial EC number
sets among groups of lifestyle. Red: number of compounds/reactions common to the whole dataset. Blue:
number of compounds/reactions common to the intracellular, extracellular and FL groups. (B) Detailed
intersection of the partial EC number sets of the MIV, intracellular and CA groups. Red: the 4 partial EC
numbers common to the whole dataset. Blue: 3 partial EC numbers present in the intracellular, extracellular
and FL groups and absent in the CA group.

when decreasing the number of organisms, range from zero to five and the mean varies from
0.2 to 2.5. There are 12 common reactions without the six bacteria with the smallest reaction
sets, 7 take part in the biosynthesis of peptidoglycan, which is a cell wall precursor. These
reactions do not complete this biosynthetic pathway (there are 4 missing steps, two present in
51 organisms and the other two in less than half of the dataset). Among the other reactions,
there is an inorganic pyrophosphatase, a reaction involved in folate transformations and a
couple of reactions which take part in purine nucleotides de novo biosynthesis. Removing
the eight bacteria with the smallest reaction sets resulted in similar intersection sizes ranging
from zero to 13 reactions and mean varying from zero to 5.4. Hence, the intersection sizes did
not increase much without the bacteria with reduced metabolism.

On the other hand, these bacteria had a greater impact on the common partial EC number
sets. The size of the intersections when decreasing the number of organisms ranges from 4 to
19 and the mean varies from 5 to 16. This size increases to 23 partial EC numbers without the
same six bacteria. When removing the eight bacteria with the smallest sets, the sizes of the
intersections increase, ranging from 4 to 27, reaching 30 partial EC numbers. Therefore, a core
of biochemical capabilities composed of 30 partial EC numbers is present in 50 bacteria out of
the 58 analysed. This set is made of all classes of enzymes: 3 oxidoreductases, 13 transferases,
4 hydrolases, 3 lyases, 5 isomerases and 2 ligases, which correspond to 958 reactions in our
dataset (Table 2).
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Table 3.2: Partial EC number set common to 50 bacteria of the dataset

Classes partial EC No reactions

Oxidoreductases
1.1.1 134
1.2.1 50
1.5.1 15

Transferases

2.1.1 46
2.1.2 6
2.2.1 8
2.3.1 47
2.4.1 69
2.5.1 51
2.6.1 51
2.7.1 71
2.7.2 8
2.7.4 19
2.7.6 4
2.7.7 23
2.7.8 15

Hydrolase

3.1.3 39
3.5.1 32
3.5.4 15
3.6.1 26

Lyases
4.1.1 49
4.1.2 22
4.2.1 62

Isomerase

5.1.1 10
5.1.3 16
5.3.1 21
5.4.2 9
5.4.99 10

Ligase
6.3.2 19
6.3.4 11

Total 30 958

Partial EC number set common to 50 bacteria out of the 58 present in our dataset and the number of
reactions in the dataset corresponding to each partial EC number. The 8 bacteria which possess the smallest
partial EC number sets were removed to calculate the common set.

Core metabolism according to lifestyle groups

Shared compounds and reactions

The same analyses performed for the whole dataset were also applied to the different lifestyle
groups (Figure 5 and 6). The aim was to describe the influence of these groups on the size and
composition of the common sets of compounds, reactions and partial EC numbers as well as
on the union of each of these sets of elements. As a first overview of the two opposing groups
in terms of the size of the metabolic networks, i.e., the INTRA and the EXTRA groups, we
notice that the size of the union of the compound sets (i.e., the pan-metabolome) is quite
large when compared to the mean number of compounds, indicating a relative diversity of
the metabolome in these organisms (Table 3). By contrast, the sizes of the intersections
of compound and reaction sets for the same groups are considerably different. Therefore,
the universe of compounds and reactions of the intracellular bacteria is quite diverse, while
common elements are far less abundant.
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Table 3.3: Compound and reaction sets among lifestyle groups

Compounds Reactions

Mean / Union Intersection / Mean Mean / Union Intersection / Mean

Intracellular 39% 8% 30% 0.5%

Cell Associated (CA) 39% 11% 34% 3%

Extracellular 41% 25% 36% 12%

Free-living (FL) 52% 43% 46% 28%

Ratio of the mean size over the union size, as well as the ratio of the intersection size over the mean size, of
the compound and the reaction sets among the different lifestyle groups of bacteria.

Core metabolism in the extracellular bacteria

We found 186 compounds and 94 reactions shared by the 19 extracellular bacteria. The
compounds include nucleosides, amino acids, carbohydrates, cofactors, while the reactions are
involved in metabolic pathways, such as glycolysis, nucleotide and amino acid biosynthesis
and degradation pathways, and peptidoglycan biosynthesis (Additional file 8). Most of them
(88%) are classified as biosynthetic processes according to the metabolic processes defined
in the BioCyc databases (Additional file 9). These reactions shared by the EXTRA are
not connected in the reaction graph induced by these 94 reactions, which is composed of
10 connected components apart from 17 isolated reactions. The largest component has 26
reactions which are involved in pyrimidine ribonucleotides de novo biosynthesis, peptidoglycan
and amino acid biosynthesis.

Core metabolism in the cell associated bacteria

The CA bacteria showed a considerable reduction in the common elements which are 67 com-
pounds and 17 reactions. Even with this reduction, similar categories of compounds as for the
EXTRA were found, whereas the reactions observed take part in fewer metabolic pathways:
glycolysis and nucleotide biosynthesis and degradation pathways. Most of them (82%) are
classified as biosynthetic processes (Additional file 9). This group is supposed to be interme-
diate between the INTRA and the EXTRA ones, thus presenting a broad diversity of genome
sizes. In this group, the two bacteria with smallest genomes are M. genitalium (MYCGE) and
M. hyopneumoniae J (MYCHJ) which are obligate parasites that have undergone extreme re-
ductive genome evolution (Glass et al., 2006; Yus et al., 2009; McCutcheon, 2010). This pair
of organisms is the one that most influences the small intersection of the CA group. Hence, the
intersection of the elements of the CA bacteria without the two Mycoplasma species increases
to 167 compounds and 88 reactions. These values are similar to the ones found for the EX-
TRA, the reactions take part in the same metabolic pathways observed for this group and the
classification into biosynthetic and degradation processes present similar ratios (Additional
file 9).

Core metabolism in the obligate intracellular bacteria

The INTRA share 19 compounds and one reaction (3.5.1.88-RXN, MetaCyc (Caspi et al.,
2008)). Indeed, the MIV is the group mainly responsible for this reduction. The common
compounds still include the same ones mentioned for the EXTRA group. The only shared
reaction is not assigned to participate in any metabolic pathway in MetaCyc.
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As there is only one reaction common to INTRA, it is not possible to analyse whether
there is a majority of biosynthesis reactions in their core as we found in the EXTRA and
CA. Instead, we analyse the content of biosynthesis and degradation reactions in the vari-
able metabolism (see Methods for definition). The total number of reactions in the variable
metabolism is 704 (62% in biosynthetic and 24% in degradation processes) for the intracel-
lular group while it is 2049 (38% in biosynthesis and 35% in degradation) in the EXTRA
(Additional file 9). The variable metabolism of intracellular bacteria is therefore enriched in
biosynthetic reactions (Fisher exact test, p < 10−15) and depleted in degradation reactions
(Fisher exact test, p < 10−8).

Controlling for the structuring of MIV

As mentioned, the absence of a metabolic core common to all symbionts is mainly caused
by the absence of such a core within the MIV group. We further analysed this group and
we found two subgroups with opposite patterns of reaction presence/absence (Figure ??),
which can be directly related to the role of the symbiont in the mutualistic relationship
(Akman et al., 2002; Zientz et al., 2004; Foster et al., 2005; McCutcheon et Moran, 2007;
Baumann et al., 1995; Shigenobu et al., 2000; Gil et al., 2003; Degnan et al., 2005; López-
Sánchez et al., 2009). Subgroup A presented mainly reactions involved in the biosynthesis
of amino acids, whereas subgroup B showed reactions involved in heme synthesis. Indeed,
Wigglesworthia glossinidia (WIGBR) and Wolbachia pipientis wBm (WOLTR) are known to
supply heme to their hosts (Akman et al., 2002; Zientz et al., 2004; Foster et al., 2005), while
“Candidatus Sulcia muelleri” (SULMW) and Buchnera aphidicola APS (BUCAI) are known
to provide amino acids (McCutcheon et Moran, 2007; Baumann et al., 1995; Shigenobu et al.,
2000). In the case of Candidatus Blochmannia floridanus (BLOFL), Candidatus Blochmannia
pennsylvanicus (BLOPB) and Blattabacterium sp. Bge (BLASB), the main symbiotic function
is the metabolism of nitrogen, but the conservation of most of the pathways for the synthesis
of essential amino acids indicates that they may also have an important role in the symbiosis
(Gil et al., 2003; Degnan et al., 2005; Zientz et al., 2004; López-Sánchez et al., 2009).

Other than the impact of the small networks, this structuring of the MIV symbionts in
two subgroups could also have an impact on the size of the intersection of the reaction sets.
To test that, we calculated the intersection of the reaction sets between each subgroup (A or
B) and the other bacteria which are not in the MIV group (47 organisms). This resulted in
null for group A and 5 reactions for group B. Removing the two species of Mycoplasma, the
intersection sizes are 2 reactions for the group A plus the non MIV bacteria and 27 for the
group B. As the size of the intersection remains small in either subgroup of MIV symbionts
with the non MIV organisms, the structuring of the MIV symbionts does not explain the
reduced number of reactions shared by the bacteria analysed.

Decay of the common reactions in the different lifestyle groups

As there is a clear trend in the INTRA group indicating that common reactions decrease
to none rapidly, it is important to address the question whether the other groups follow the
same rule. This analysis is based on a simulation of the number of common reactions for
different subset sizes of the organisms (Figure 7). The exponential model fitted best the data
of the INTRA group, however it did not fit well the data of the CA (without the Mycoplasma
species, see Methods) and EXTRA groups (results not shown). We therefore tested a logistic
model, which has a smoother decay than the exponential model, and found that it fitted
much better this data. As expected, the asymptote for the INTRA group (αINTRA) was not
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Figure 3.7: Two subgroups of MIV symbionts which present opposite patterns of reaction
presence/absence. Table of the presence/absence of reactions with correlation ratio greater
than 50% on the second axis of the MCA. The square indicates the presence of the reaction
in the organism of the respective column. The red rectangle indicates subgroup A: Buchnera
aphidicola APS (BUCAI), “Candidatus Blochmannia pennsylvanicus” (BLOPB), “Candidatus
Blochmannia floridanus” (BLOFL), “Candidatus Sulcia muelleri” (SULMW) and Blattabac-
terium sp. Bge (BLASB) which presented mainly reactions involved in the biosynthesis of
amino acids. The blue rectangle indicates subgroup B: Wigglesworthia glossinidia (WIGBR)
and Wolbachia pipientis wBm (WOLTR) which showed reactions involved in heme synthesis.

significantly different from zero (Table 4). In contrast, the asymptote was estimated at 54 for
the CA and 66 for the EXTRA. Thus, based on the analysed dataset, neither the CA nor the
EXTRA group is expected to have an empty common set of reactions.

Table 3.4: Parameters estimated for the fitting models

Lifestyle group (l) Model αl rl Nl

INTRA Exponential 1.70±5.17 0.56±0.19 269.48±122.30

CA Logistic 53.84±4.37 0.06±0.01 1643.00±193.08

EXTRA Logistic 65.85±3.06 0.06±0.00 1748.00±137.10

Estimates were obtained by fitting the exponential and logistic models to the corresponding data sets. αl is
the asymptote, rl is the decay rate and Nl is theoretically defined as the mean of the reaction sets for an
empty subset size of the lth lifestyle group. Point estimates are given with ±2×standard error.
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Figure 3.8: Decay of the common reactions in the different lifestyle groups. Data is the mean value of the
1000 simulations of the intersection of reaction sets for the different subsets of organisms for each lifestyle group.
The red curve corresponds to the fitted exponential model to the data obtained for the obligate intracellular
group, while the blue and violet curves correspond to the fitted logistic model to the data obtained for the
extracellular and CA groups, respectively. The two Mycoplasma were removed from the CA groups for this
analysis (see Methods)

Core enzymatic function based on an EC number analysis for lifestyle groups

The number of shared partial EC numbers depends on the lifestyle groups: 7 were found for
the INTRA, 28 for the CA and 52 for the EXTRA (Figure 6a and Additional file 7). These
values represent 6%, 20% and 34% of the respective union in each group. The common set for
the INTRA and CA groups is exactly the same as for the whole set of bacteria. The set for
the INTRA group adds 3 more partial EC numbers when compared to the common partial
EC numbers of the whole dataset: one oxidoreductase (1.5.1) and 2 transferases (2.1.1 and
2.6.1) (Figure 6b). The MIV bacteria are the ones which mainly account for the small size
of the intersections in the INTRA group, and they share 8 partial EC numbers which means
adding the ligase 6.3.5 to the common set. Hence, the common set of EC numbers for the
MIV group comprises all classes of EC numbers, except for isomerase. Both the CA and the
EXTRA shared sets have all the 6 classes of enzymes; the number of different EC numbers of
each class ranges from two subclasses of lyases to 17 subclasses of transferases.
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Connectivity of the partial EC number set for obligate intracellular and extracel-
lular bacteria

We searched for connected reactions corresponding to the common partial EC numbers for the
INTRA and EXTRA groups (7 and 52, respectively). The 7 partial EC numbers common to
the intracellular bacteria correspond to 154 reactions in the union of all reactions of this group,
whereas the 52 of the EXTRA bacteria correspond to 1253 reactions. The same procedure
of searching for connected reactions corresponding to the common partial EC numbers in the
INTRA and EXTRA groups was performed in the union reaction graph of each group. The
induced reaction graph from the 154 reactions in the intracellular group is composed of 174
arcs and 19 connected components apart from 47 isolated reactions. There is no connected set
of 7 reactions labelled with the 7 partial EC numbers common to the intracellular symbionts.
In the case of the EXTRA group, the induced reaction graph from the 1253 reactions has 5288
arcs and 38 connected components apart from 181 isolated reactions. There is no occurrence of
52 reactions whose EC numbers are the 52 common to the EXTRA bacteria that is connected
in this graph. Hence, the common set of partial EC numbers in the intracellular and EXTRA
groups does not correspond to a connected portion of the metabolic network of these bacteria.

Differential random loss of enzymes

The differential random loss of enzymes or of biochemical capabilities (meaning partial EC
numbers at level 3) was compared with the small intersection size of the partial EC number
sets. Comparing the simulated values with the ones of the real MIV Gammaproteobacteria
(Table 5 and Additional file 10), we found that the MIV have lost a greater diversity of
biochemical capabilities than expected by simulation (Monte Carlo test, p < 0.001).

Table 3.5: Partial EC number sets for the MIV Gammaproteobacteria and for the
simulated MIV

Mean Union Intersection

MIV Gammaproteobacteria 59 81 20

Differential random loss of reactions 69 ± 2.9 122 ± 6.2 21 ± 4.9
Estimated p− value ≤ 0.001 ≤ 0.001 ≤ 0.692

Differential random loss of biochemical capabilities 59 ± 0 114 ± 6.1 13 ± 4.4
Estimated p− value 1 ≤ 0.001 ≤ 0.006

Size of the mean, union and intersections of the sets of partial EC number for the MIV Gammaproteobacteria

and for the simulated MIV.

Metabolites potentially acquired from the environment

The absence of a metabolic core in the INTRA might be linked to the differences in their
environment. The number of metabolites that each bacterium potentially acquires from its
environment (i.e., potential inputs) ranged from 29 in “Candidatus Sulcia muelleri” (SULMW)
to 341 in M. smegmatis (MYCS2) with a mean of 133 (Additional file 11). There are no
potential inputs common to the 58 bacteria and the union of inputs is 1191 (Additional file
12). The intersection is null in the INTRA and the CA groups, while it is 2 in the EXTRA
group. These two inputs are isolated from the rest of the network, and are linked together
by one reaction which is catalysed by an enzyme that accelerates the folding of proteins (by
catalysing the cis-trans isomerisation) (Caspi et al., 2008). Overall, we found no common
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inputs to the whole metabolic network of EXTRA bacteria. The mean values of the inputs
in each group are 39, 133 and 190, respectively. Taking into account classes of compounds,
the intracellular bacteria have in common ions, cofactors and nucleosides as potential inputs,
while the EXTRA add vitamins and carbohydrates.

When we allowed distance one from the topological precursors (see Methods for details),
the number of common inputs increased inside the lifestyle groups that have less organisms,
such as PIV. In the broader lifestyle groups, the number of shared inputs remained equal.
The number of bacteria that has glucose as input increased from 3 to 40. Furthermore, the
size of the intersection augmented between the groups, such as MEH and PEH.

Overall, we find that neither EXTRA nor INTRA symbionts exhibit a common core of
input metabolites. The absence of such a core is an intuitive explanation for the absence of
a metabolic core of degradation pathways: different metabolic environments imply different
metabolic pathways. However, this observation alone does not explain the total lack of a
metabolic core for the INTRA symbionts. In this case, the specificity of the symbiosis with
the host has to be considered.

3.1.4 Discussion

In this paper, we investigated to what extent there is any reaction common to a set of bacteria,
including obligate intracellular symbionts, as well as the influence and the trend of each
lifestyle group concerning shared reactions or biochemical capabilities. In order to do this, we
considered 58 bacteria carefully selected to represent a wide range of lifestyles.

Existence of a metabolic core

Previous studies have found small sets of common metabolic genes even when including bac-
teria with reduced genomes (Mushegian et Koonin, 1996; Klasson et Andersson, 2004). Based
on that and on the fact that we analysed reactions instead of genes (partially addressing the
issue of NOGD), we therefore expected to find a small core of functional capabilities. Our
analyses of the small molecule metabolism of 58 bacteria revealed however that they share no
reaction, 16 compounds and 4 partial EC numbers.

Even though there was no reaction common to all bacteria, we actually found one reaction
(3.5.1.88-RXN, MetaCyc (Caspi et al., 2008)) present in all the dataset except in M. hyop-
neumoniae (MYCHJ). It is catalysed by the hydrolase peptide deformylase (Def), which
releases the formyl group from the N-terminal methionine residue of most nascent polypep-
tides (Adams, 1968), an obligatory step during protein maturation in eubacteria (Rajagopalan
et al., 1997). The absence of Def in this bacterium apparently leaves it unable to formylate
Met-tRNAi (Vasconcelos et al., 2005), and it has been described as absent or nonessential in
Phytoplasma sp. and Mycoplasma arthritidis (Vasconcelos et al., 2005; Dybvig et al., 2008).
For long, peptide deformylase was believed to be exclusively present in bacteria, however
Giglione et al. (Giglione et al., 2000) identified eukaryotic deformylases which were localized
in the organelles only. In our dataset, even the symbiont with most reduced genome (“Ca.
Hodgkinia cicadicola” (HODCD)) is potentially capable to code for this enzyme. Nevertheless,
recently an even smaller cellular genome (approx. 139 base pairs and 121 protein-coding genes)
of “Candidatus Tremblaya princeps” has been described (McCutcheon et von Dohlen, 2011)
which is missing homologs for Def. The presence of this enzyme in almost the whole dataset
is justified by the fact that it is mostly related to information processing which is expected
to be among the minimal functions required for sustaining life (Danchin, 1989; Mushegian et
Koonin, 1996; Koonin, 2000; Klasson et Andersson, 2004; Gil et al., 2004).



116 Chapter 3. Comparative analyses of metabolic networks

Such small sets found raised the question whether they could be explained only by the (6
or 8) bacteria with the smallest genomes. These bacteria had a weak impact on the number
of shared reactions, while they had a strong effect on the common partial EC number set.
Removing them, the shared set increased to 12 reactions mainly involved in the synthesis of
a cell wall precursor, which is not considered as an essential pathway (Juhas et al., 2011) and
is known to be absent or reduced in host-dependent bacteria (Moya et al., 2008; Pérez-Brocal
et al., 2006). Conversely, the common partial EC number set increased to 30 without those
bacteria which is a quite broad set of biochemical capabilities. All six classes of enzymes
are included in this set, and are similar to the ones described for a minimal metabolism
(Gabaldón et al., 2007). Only two partial EC numbers at level 3 (2.4.2 and 1.17.4) from
this minimal metabolism are not included in our partial EC number set, however the latter
partial EC number should not be in our analyses because it involves macromolecules and we
work strictly with the small molecule metabolism. Furthermore, 8 of the 30 shared partial
EC numbers are not included in this minimal metabolism, and four of them are transferases
which are enriched in our common partial EC number set (43%).

The reduced set of common partial EC numbers raised the question whether it could be
simply explained by a differential random loss of enzymes. This was not the case. We further
identified the MIV Gammaproteobacteria as having lost a greater diversity of biochemical
capabilities. This indicates that there is a set of partial EC numbers (capabilities) which are
kept in subsets of organisms (not in every bacteria, i.e. it is not included in the shared set)
and accounts for a reduced union.

Hence, we did not find a core of metabolic reactions shared by the symbiotic bacteria which
agrees with the idea that searching for ubiquity as more genomes are included may ultimately
reduce to nothing (Danchin et al., 2007). Conversely, using a more relaxed approach we
found a core of biochemical capabilities which is similar to a minimal metabolism previously
described (Gabaldón et al., 2007).

Impact of the lifestyle groups on the existence of a metabolic core

Among the different types of classification that we considered – (i) obligate intracellular,
extracellular, cell associated, (ii) mutualistic, commensalist, parasitic, (iii) vertically or hor-
izontally transmitted – the first is by far the one that explains best the differences in terms
of metabolism. The CA group also accounted for the small common sets exclusively because
of the Mycoplasma species. Even if this group presents other host-dependent bacteria, their
genome sizes at least double when compared to the Mycoplasma species, and a core of reac-
tions similar in size to the EXTRA is found. The other lifestyle groups (EXTRA and FL),
which include just free-living bacteria, did not contribute to the size of the common set.

Furthermore, the impact of the INTRA and of the Mycoplasma species in the small sets
can be directly related to their extremely reduced genomes (Wernegreen, 2002; Gil et al., 2002;
McCutcheon et Moran, 2012). They also have much fewer metabolic genes, even though this
category is much less affected by the reduction in the INTRA group specially in the MIV.
These bacteria (except for W. pipientis wBm (WOLTR)) are the most integrated (Nardon et
Grenier, 1993) and are those for which the association with the host is essentially nutritional
(Akman et al., 2002; Zientz et al., 2004; Foster et al., 2005; McCutcheon et Moran, 2007; Bau-
mann et al., 1995; Shigenobu et al., 2000; Gil et al., 2003; Degnan et al., 2005; López-Sánchez
et al., 2009). Indeed, the ratio of metabolic genes is significantly higher for MIV, indicating
that the loss of genes primarily concerns the non metabolic ones (Moran, 2007; Moran et al.,
2008; Moya et al., 2008). The loss of metabolic genes is affected by the requirements for host



3.1 Exploration of the core metabolism of symbiotic bacteria 117

survival, and to some extent by the presence of other symbionts in the same environment
(Moya et al., 2008).

Content and connectivity of the core metabolism of CA and EXTRA

In the analyses of each lifestyle group, we did not find a core of reactions for the INTRA,
however we found it for the EXTRA and CA (the latter group without the two Mycoplasma
species - the CA mentioned henceforward is without these bacteria). The shared reactions are
involved in metabolic pathways that are also included in the minimal metabolism described
by (Gil et al., 2004; Gabaldón et al., 2007), such as glycolysis and nucleotide biosynthesis.
The cores found also include amino acid biosynthesis pathways which are not present in
the minimal metabolism because they assumed a nutrient-rich medium with amino acids
unlimitedly available for the minimal cell (Gil et al., 2004; Gabaldón et al., 2007).

The common sets of reactions of the CA and EXTRA groups are enriched in biosynthesis
(approx. 88%) according to the metabolic processes defined in the BioCyc databases. In
the core metabolism of E. coli, biosynthetic reactions are also overrepresented (57%) (Vieira
et al., 2011), thus our study enables to confirm and extend this result to multiple species.
Overall, the core-metabolism of the CA and EXTRA bacteria is therefore much smaller than
the one of the strains of E. coli, but at the same time, it is even more enriched in biosynthetic
reactions. The reason for such an enrichment could be that, while the needs of the CA and the
EXTRA symbionts are very similar in terms of building blocks for protein and DNA synthesis,
the nutrients they uptake in their respective environment may be extremely variable. When
variable environments are considered, degradation pathways, which are closer to the inputs
of the network, are the first to be modified. This explanation is also corroborated by our
observations on the lack of common inputs to all bacteria.

Considering now the proportion of biosynthesis and degradation reactions in the variable
metabolism, we find that it is quite similar in E. coli (36% biosynthesis and 35% degradation)
and the CA and EXTRA bacteria (approx. 39% biosynthesis and approx. 35% degradation),
but the numbers are quite different for obligate intracellular bacteria (62% biosynthesis and
24% degradation). A possible explanation for this is that degradation pathways have largely
disappeared in obligate intracellular bacteria, as the host provides an interface between the
environment and the bacterium, while synthetic routes have not all disappeared but have
been selected for, depending on the nature of the symbiosis (Moran, 2007; Moran et al., 2008;
Moya et al., 2008; McCutcheon et Moran, 2012).

Here, we worked with whole metabolic networks enabling to check whether the metabolic
core would represent chains of biochemical reactions regardless of specific metabolic pathways.
The core of reactions found was not entirely connected, most likely because of the existence of
alternative pathways as highlighted by Gil et al. (Gil et al., 2004). This means that searching
for ubiquity even inside lifestyle groups does not result in one functional metabolic network.

Persistent metabolic core of CA and EXTRA

We found a core of metabolic reactions for the CA and EXTRA, however we did not find
one for the INTRA. This raised the question whether, as we add organisms, the decay of
shared reactions and its limit was the same in these groups. First, we fitted the exponential
model with asymptote to the data of all groups. This model described well the decay of
shared reactions in the INTRA group. However, it was not appropriate to fit the EXTRA
and CA data, since their behaviour of decay was not the same as that for the INTRA.
Conversely, the logistic model was well adapted for these two groups. We also tested for
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common parameters for the two groups, but model fitting was better with each group having
its separate parameter values. The decay rates (rCA and rEXTRA) were similar, while the two
other parameters were different. In principle we cannot give a direct biological interpretation
to Nl (it corresponds to the mean of the reaction sets for an empty subset size of organisms), we
found its estimates are close to the size of the union of reactions of the corresponding lifestyle
group, e.g., NEXTRA was estimated at 1643, while the size of the union of EXTRA was
1725 reactions. As expected, the asymptote estimated for the INTRA was not significantly
different from zero, which agrees with the absence of a core of metabolic reactions found
for this group. Conversely, the asymptotes estimated for the CA and the EXTRA groups
were significantly different from zero; thus, based on the analysed dataset, neither group is
expected to have an empty common set of reactions when more genomes of these groups are
added. One should be aware that adding one organism that has a very particular niche could
certainly change this trend. This result is nevertheless interesting given the fact that there are
organisms from distinct taxonomic classes inside these groups, that moreover present different
types of association with their hosts. To have an idea of the subset of reactions that would
be “asymptotically” kept in organisms with lifestyles similar to those two groups, we analysed
the reactions shared by the EXTRA and CA groups in our dataset. These 62 reactions are
involved in the synthesis of purine and pyrimidine, of peptidoglycan and glycolysis. These
findings are similar in number of enzymatic steps and in the content of pathways to the
minimal metabolism described by Gabaldón et al. (Gabaldón et al., 2007).

3.1.5 Conclusions

In this paper, we explored to which extent each lifestyle group contributes to the reduction of
a core metabolism as well as the composition of this core in the different groups, with a special
focus on bacterial species only, in particular those that entertain a symbiotic relationship with
a host. Moreover, we considered reactions instead of genes. Although we might then have
expected to find a core, none common to all bacteria was observed. Symbionts with the most
reduced genomes in our dataset had a weak impact on the number of shared reactions, but
had a strong effect on the common partial EC number set which increased to 30 without those
bacteria, covering a quite broad set of biochemical capabilities similar to those described for
a minimal metabolism, with however an enrichment in transferases.

Obligate intracellular symbionts appeared as the main reason for such absence of a core
of metabolic reactions due to their high specialisation. However, host-dependence alone is
not an explanation for this absence. Indeed, although the cell associated group contained
host-dependent bacteria, their core of reactions was observed to be similar in size to the one
of extracellular bacteria once the two Mycoplasma species were eliminated from the group.
Extremely reduced genomes such as those of the two Mycoplasma and of the intracellular
group remain thus the main factor behind the absence of a core, even though the loss of genes
primarily concerns the non metabolic ones.

A core of reactions was found for the cell-associated and the extracellular bacteria. This
core roughly corresponds to the minimal metabolism previously described in the literature. It
is not entirely connected and therefore does not result in one functional metabolic network.
Although smaller than the core previously identified for strains of E. coli, we observed that it
is even more enriched in biosynthetic reactions, which might be due to the extreme variability
of the nutrients that cell-associated and extracellular bacteria uptake in their respective envi-
ronment. On the other hand, the proportion of biosynthesis and degradation reactions in the
variable metabolism appears quite similar to the one found in E. coli. The same is not the
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case for obligate intracellular bacteria where degradation pathways have largely disappeared
but synthetic routes appear instead to have been selected for depending on the nature of the
symbiosis.

Finally, by using simulation, we tested whether the decay of shared reactions and its limit
would be the same for cell-associated and extracellular bacteria as for the intracellular ones.
Although one should be aware that adding one organism that has a very particular niche could
certainly change the result observed, it appears that a subset of around 60 reactions would
be “asymptotically” kept in cell-associated and extracellular bacteria. These are involved in
the synthesis of purine and pyrimidine, of peptidoglycan and glycolysis, and are similar in
number of enzymatic steps and content of pathways to the minimal metabolism described in
the literature.
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3.2 The extended core of metabolic networks

3.2.1 Overview

This section introduces an ongoing investigation of the common metabolic capabilities shared
by a group of species (not requiring omnipresence) which we called extended metabolic core
and that represent a larger set of capabilities when compared to the traditional core (where
omnipresence is required). The traditional one tends to be highly dependent on the addition
or removal of a single organism since the absence of a reaction in one organism is enough
to remove such capability from the core. In order to introduce some flexibility into this set,
possibly making it more stable in size and content as one organism is included or removed,
one could, for instance, allow in the core reactions that are absent in one or two species. It is
however not easy to determine a limit for such an extended core of metabolic capabilities. To
address this problem, we propose a new approach where common and group-specific reactions
are split automatically. The method was developed in collaboration with statisticians from
the Laboratoire Statistique et Génome, INRA, Évry, France, namely Christophe Ambroise,
Yolande Diaz and Catherine Matias.

We propose two different definitions of an extended core of reactions as opposed to the
group of reactions that are organism-specific (which we call periphery): (i) one that is based on
the presence/absence of a reaction in an organism, and (ii) a second that relies on a neighbour
relationship between reactions where two reactions are considered neighbours if they share a
metabolite. It is important to note that we are not using the term periphery in the topological
sense, but rather in the sense of parts that are "marginal" in relation to the functional core.
The second may be seen as a smoothing or refinement of the first. The first is robust with
respect to the set of organisms under consideration, in the sense that reactions do not need
to be present in all organisms but only in a large enough proportion in order to belong to
the core. The first advantage of the approach that we propose is that the threshold to decide
what is considered large enough is not set by the user (thus relying on a subjective choice),
but is rather automatically selected by the method based on the information contained in the
data and the two definitions given above.

Actually, we developed two methods, one that is based only on the first definition above,
and the second that is based on both. The latter will tend to classify in a same group (core
or periphery) a reaction for which a majority of its neighbours belong to this group. As
mentioned, this results into clusters which are smoothed or regularised with respect to the
first method. In particular, a typical example of this smoothing effect is obtained when one
reaction which is present in a majority of the organisms is the neighbour of only one other
reaction (or of very few), which appears only in one organism (or in very few). In this case,
our second method will classify the first reaction in the periphery, even if it is present in a
majority of the organisms. Indeed, it is reasonable to think that since it interacts only with a
small number of other reactions which are not present in all organisms, it is in fact a potential
rather than an effective reaction. In this sense, we argue that our first method will detect
potential core reactions while the second one focuses on effective core reactions.

3.2.2 Dataset description

The dataset is composed of: (I) 13 organisms from the Escherichia/Shigella genera and (II) 13
from the Pseudomonas genus (Table 3.6). The aim is to have two groups with similar phyloge-
netic distance, however distinct in terms of ecological niches: group (I) narrow and (II) wide.
The habitat of the first group is mainly in the human intestinal microflora, whereas the habi-
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tat of the second includes different hosts as well as soil, fresh and waste water. We selected
all available species from the above mentioned genera from the MicroCyc/Genoscope
platform (Vallenet et al., 2009) (accession in February 2013). MicroCyc is a collection of
microbial Pathway/Genome Databases which were generated using the PathoLogic mod-
ule from the Pathway tools software (Karp et al., 2010) which computes an initial set of
pathways by comparing a genome annotation to the metabolic reference database MetaCyc
(Caspi et al., 2012). Since there were 13 Pseudomonas available, the same number of Es-
cherichia/Shigella were selected with the aim to cover as best as possible a wide diversity of
the various E. coli phylogroups (Chaudhuri et Henderson, 2012) and types of host interactions
(Hamap (Lima et al., 2009) information on interactions). Using these databases as input, the
metabolic networks of the bacteria were obtained from MetExplore (Cottret et al., 2010).
The data on metabolic pathways were obtained from MetaCyc (Caspi et al., 2012).

Our analysis is restricted to the small molecule metabolism as defined in the Meta-
Cyc/BioCyc databases (Caspi et al., 2012; Karp et al., 2005), i.e. small molecule reactions
are those in which all participants are small molecules, hence reactions involving one or more
macromolecules such as proteins or nucleic acids are not represented. The macromolecules
were filtered out from all the analyses using MetExplore (Cottret et al., 2010). The com-
pounds found in the metabolic networks are those which are involved as substrates or products
in the inferred reactions. All metabolites directly provided by the environment and not in-
volved in any reaction as substrate are not included.

The metabolic networks of the dataset were modelled as reaction graphs. In such a graph,
nodes represent reactions, and arcs (i.e., directed edges) between two reactions represent
a compound which is produced by one reaction and consumed by the other. Each set of
organisms was modelled twice, applying or not the following filters: one that excludes pairs
of cofactors (i.e., ADP + Pi → ATP , NAD+ + H+ → NADH; for the full list see the
MetExplore documentation) and a second that eliminates ubiquitous compounds (e.g.,
water, proton, CO2, phosphate, diphosphate, NH3, H2O2 and O2).

The sets of metabolic reactions and organisms are first listed and then ordered in an
arbitrary way. For each of the R possible reactions, we have a binary vector of length N (the
number of organisms) whose ith coordinate indicates whether the reaction is present or not
in organism number i. These data are gathered in a matrix D of size R×N .

Following the work of (Mithani et al., 2009), a neighbour relationship is defined among
reactions in the following way: two reactions that share at least one metabolite are considered
neighbours. This neighbour relationship induces a graph structure, called union graph, on the
set of reactions. This graph is described by its corresponding adjacency matrix A, namely
a symmetric binary matrix of size R × R, with null diagonal entries and off-diagonal entries
(i, j) indicating whether reactions i and j are neighbours (i.e. share at least one metabolite).
It is important to note that the adjacency matrix A containing the neighbour relationships
is independent from the data matrix D. The reactions are thus described by both their
frequency profile (data matrix D) and their neighbour profile (adjacency matrix A).

In our first clustering method, we rely only on the data matrix D while the second approach
also takes into account the neighbour relationship (encoded in the adjacency matrix A) in
order to obtain a finer classification of the core and periphery reactions.

3.2.3 Computation of the core/periphery reactions

We compared the two different methods for classifying the reactions into two different groups
of core and periphery reactions that we proposed (see Section 3.2.1). We recall that the
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Table 3.6: Dataset used in this study.

Organism Interaction
Escherichia albertii TW07627 Human pathogen
E. coli 042 Human pathogen (EAEC)
E. coli CFT073 Human pathogen (UPEC)
E. coli E24377A Human pathogen (ETEC)
E. coli IAI1 Human commensal
E. coli IAI39 Human pathogen (UPEC)
E. coli K12 Human commensal
E. coli O157:H7 Sakai Human pathogen (EHEC)
E. fergusonii ATCC 35469T Human commensal
Shigella boydii Sb227 Human pathogen
S. dysenteriae Sd197 Human pathogen
S. flexneri 2a 301 Human pathogen
S. sonnei Ss046 Human pathogen
Pseudomonas aeruginosa LESB58 Human opportunistic pathogen
P. aeruginosa PAO1 Human opportunistic pathogen
P. aeruginosa UCBPP-PA14 Human opportunistic pathogen
P. entomophila L48 Insect pathogen
P. fluorescens Pf-5 Plant commensal
P. fluorescens Pf0-1 Plant commensal
P. fluorescens SBW25 Plant saprophyte
P. putida F1 Plant pathogen
P. putida GB-1 Plant pathogen
P. putida KT2440 Plant pathogen
P. syringae pv. phaseolicola 1448A Plant saprophyte
P. syringae pv. syringae B728a - (soil, water)
P. syringae pv. tomato DC3000 - (soil, water)
EAEC - Enteroaggregative E. coli ; UPEC - Uropathogenic E. coli ; ETEC - Enterotoxigenic
E. coli ; EHEC - Enterohemorrhagic E. coli.

first detects potential core reactions, while the second detects what we called effective core
reactions.

The first method relies only on the data matrix D containing the information on the
presence/absence of a reaction within an organism. It clusters the reactions into two groups,
using for this a multivariate Bernoulli mixture model with two components (see (Allman
et al., 2009; Carreira-Perpiñán et Renals, 2000) for the issue of parameter identifiability in
these models). We call this method BinEm as it is based on the Expectation-Maximisation
(EM) algorithm (Dempster et al., 1977) applied to binary data. More precisely, the data
vectors Di = (Dij)1≤j≤N describing the presence/absence of the reactions (1 ≤ i ≤ R) in
each organism are assumed to be i.i.d. vectors with mixture distribution:

Di ∼ λc

N
∏

j=1

α
Dij

c,j (1− αc,j)
1−Dij + (1− λc)

N
∏

j=1

α
Dij

p,j (1− αp,j)
1−Dij ,

where λc ∈ (0, 1) is the unknown proportion of reactions belonging to the core group (1 −
λc being the unknown proportion of reactions belonging to the periphery group), αc =
(αc,j)1≤j≤N ∈ (0, 1)N and αp = (αp,j)1≤j≤N ∈ (0, 1)N are the unknown vectors of proba-
bilities that a reaction belonging, respectively to the core or periphery group is present in
species j. The parameters of this model, as well as corresponding clusters are estimated with
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an EM algorithm. Note that in our context, the number of groups is fixed (and equal to 2)
as we want to impose a description of the dataset into core and periphery groups.

The second approach combines the data matrix D containing the observations of pres-
ence/absence of reactions within organisms with the adjacency matrix A of neighbour re-
lationships between reactions. It is based on a hidden Markov random field model, with
dependency structure among the reactions given by the adjacency matrix A. In this model,
each reaction belongs to some unobserved (hidden) group and these groups are distributed
among reactions according to a Markov random field. This means that two reactions which
are neighbours are more likely to belong to the same group. Conditional on this hidden struc-
ture, the binary vectors of presence/absence of each reaction within the set of organisms are
independent and follow a multivariate Bernoulli distribution, with proportion vector depend-
ing on the group to which the reaction belongs. We call this method Nem, as it relies on
the neighbour expectation-maximization Nem algorithm (Ambroise et al., 1997; Ambroise et
Govaert, 1998; Dang et Govaert, 1998) developed for clustering in hidden Markov random
fields.

More precisely, the model is as follows. We introduce latent variables {Zi}1≤i≤R with
state space {c, p} that indicate the group (core or periphery) to which each reaction belongs.
These random variables follow a Markov random field distribution, given by the following
Gibbs distribution:

P({Zi·}1≤i≤R) =
1

W
(β) exp

(

β
∑

i∼j

1Zi=Zj

)

,

where 1A is the indicator function of event A, the previous sum concerns every pair (i, j) of
neighbour reactions (a relation denoted by i ∼ j), the parameter β > 0 represents the inverse
of the temperature and:

W (β) =
∑

{zi}1≤i≤R

exp
(

β
∑

i∼j

1zi=zj

)

,

is a normalising constant. Note that W (β) may not be computed, due to the large number
of possible configurations. The degree of dependence between the reactions is controlled by
the parameter β: the higher its value, the smoother the clustering will be (with neighbour
reactions tending to belong to the same group). Now, the data vectors (Di)1≤i≤R are no more
independent. However, conditional on the latent groups {Zi}1≤i≤R, they are independent and
follow the multivariate Bernoulli distribution:

P({Di}1≤i≤R|{Zi}1≤i≤R) =
R
∏

i=1

N
∏

j=1

α
Dij

Zi,j
(1− αZi,j)

1−Dij .

Many different techniques may be used to approximate the maximum likelihood estimator
in hidden Markov random fields. The Nem algorithm is based on a mean-field approximation
for the distribution of the latent random variables {Zi}1≤i≤R conditional on the observations.
The algorithm is fully described in (Dang et Govaert, 1998). Note that the parameter β

may be either fixed to a default value or optimised within the algorithm. We tested the two
different approaches, setting the default value to β = 1 or optimising it, and they gave similar
results.
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3.2.4 Results and discussion

The results presented and discussed here are based on the terminology given in Table 3.7.
As mentioned in the Dataset description, our goal is to compare two groups with similar
phylogenetic distance and distinct in terms of ecological niche. For a similar phylogenetic
distance, we worked at the level of the genus of the two selected groups, being however aware of
the limitations of such a selection since there is no perfect standard definition at this taxonomic
level. The group presenting a wider ecological niche is the one of the Pseudomonas genus
which is found in association with different hosts as well as in the soil, in fresh and in waste
water. We selected all available Pseudomonas species present in MicroCyc (Vallenet et al.,
2009), that is a total of 13 organisms (for a detailed information, refer to Section 3.2.2). The
group with a narrow ecological niche that was chosen is one composed of Escherichia/Shigella
species that mainly colonise the human intestinal microflora for which there was a higher
number of strains of E. coli available. In order to have exactly the same number of organisms
as the dataset of the Pseudomonas genus, we kept all other species of Escherichia (i.e. E.
albertii and E. fergusonii), and we restricted the number of E. coli strains to have a wide
diversity based on the phylogroups and types of host interaction.

In these preliminary analyses, we focused on comparing these two datasets aiming to find
important differences in terms of ecological niche. In this sense, we compared the sizes of
their core and periphery with the idea that a larger core might indicate less diverse metabolic
capabilities and a narrow ecological niche. We also investigated the content of those sets of re-
actions by analysing the metabolic processes in which these reactions are involved. In all these
analyses, we focused on the differences between the proposed extended core and the tradi-
tional one. Moreover, we compared our findings, especially the group of Escherichia/Shigella
organisms, to the work of Vieira et al. (2011) where the authors analysed the core metabolism
of 29 strains E. coli and Shigella. They used for this the traditional definition of core as op-
posed to the variable metabolism that is the group containing strain-specific or group-specific
reactions which would roughly correspond to our periphery.

Table 3.7: Terminology for the groups presented hereafter.

Group Meaning
traditionalCore Rections present in all organisms
extendedCore BinEm and Nem* place these reactions in the core
neighbourCore Reactions added in the core based on neighbour relationship,

i.e. BinEm classifies them in the periphery while Nem places them
in the core

neighbourPeriphery opposite of neighbourCore, i.e. BinEm places them in the core
while Nem classify them in the periphery

periphery both BinEm and Nem place them in the periphery
Nem in all analyses below we used the Nem parameter β set as half
*see Section 3.2.3 for description.

The Escherichia/Shigella dataset

The results of Escherichia/Shigella are presented in a comparative way to the investigation
of Vieira et al. (2011). We first did a comparison of the organisms included in each study
since this is key to determine which reactions are in the traditional core (i.e. are found in all
organisms). The metabolic networks in our analyses were obtained from Microcyc where
Vieira et al. (2011) made available their genomic and metabolic data. Thus, our dataset of
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Escherichia/Shigella organisms includes a subset of the 29 strains of E. coli/Shigella from
Vieira et al. (2011), in addition to the two other species of Escherichia, namely E. albertii
and E. fergusonii. Since we are studying a smaller set of organisms, our traditional core tends
to be larger than the one presented by Vieira et al. (2011). On the other hand, the inclusion
of the two extra species of Escherichia, which might have more distinct metabolic capabilities,
may eventually reduce the set of common reactions.

Vieira et al. (2011) found 885 reactions belonging to the traditional core metabolism (57%
of the total number of 1545 reactions) and 660 reactions belonging to the variable metabolism
(43% of the total number of reactions). Our results for the Escherichia dataset are shown
in Table 3.8 for which we found a slightly larger total number of reactions included in the
traditional core (62%). This variation in the size of the traditional core is somehow expected
since this set is quite unstable depending on the addition or removal of one organism. We
included about 15% of the total number of reactions to the core based on our first proposed
approach (BinEm) to which were added 6% more of the total number of reactions with the
second one (Nem), based on the results for the filtered metabolic networks. Our second
method is currently not dealing well with the non-filtered network reducing considerably
the periphery, which can be more clearly evidenced in the dataset of Pseudomonas that we
will present in the next Section 3.10. Our results are therefore detailed only for the filtered
networks.

Table 3.8: Distribution of the reactions and the number of organisms where they appear
for the Escherichia dataset.

Escherichia Filter Escherichia No Filter
NbOrganisms NbReactions NbOrganisms NbReactions

traditionalCore 13..13 1061 13..13 1086
extendedCore 9..12 250 9..12 261
sumTcoreEcore 9..13 1311 9..13 1347
neighbourCore 1..10 101 1..11 336
sumTotalcore 1..13 1412 1..13 1683
neighbourPeriphery 0 0
periphery 1..6 288 1..6 59
sumTotalPeriphery 1..6 288 1..6 59
TotalNbReactions 1..13 1700 1..13 1742

The core of E. coli strains is mainly composed of biosynthesis (57%) (Vieira et al.,
2011) rather than degradation based on the MetaCyc metabolic processes. The variable
metabolism, on the other hand, is composed of similar proportions of biosynthesis and degra-
dation processes (36% biosynthesis and 35% degradation) (Vieira et al., 2011). The results on
metabolic processes for the Escherichia dataset are presented in Table 3.9. The traditional
core is well enriched in biosynthesis (46% of the total number of reactions in this group)
while the periphery has more reactions involved in degradation processes (41%). Our two
approaches included to the core more reactions involved in degradation than in biosynthesis
as well as some transport reactions. Even including the reactions with our first and second
approaches, the core remains with enhanced biosynthesis capabilities, with around 40% of
biosynthesis and 20% of degradation processes.
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Table 3.9: Metabolic processes in which the reactions from each group are classified.

Escherichia Filter
traditionalCore extendedCore sumTcoreEcore neighbourCore sumTotalCore periphery

A-I-I*;Biosynthesis 2 2 2 3
Biosynthesis 340 19 359 8 367 45
Biosynthesis;Energy-Metabolism 143 35 178 12 190 17
Total Biosynthesis 485 (46%) 54 (22%) 540 (41%) 20 (20%) 560 (40%) 65 (22%)
A-I-I*;Degradation 2 2 4 1 5
Degradation 118 92 210 41 251 111
Degradation;Detoxification 2 1 3 3 1
Degradation;Energy-Metabolism 20 8 28 2 30 6
Total Degradation 142 (13%) 103 (41%) 245 (19%) 44 (44%) 289 (20%) 118 (41%)
A-I-I*;Biosynthesis;Degradation 9 9 9 1
Biosynthesis;Degradation 47 9 56 2 58 12
Biosynthesis;Degradation;Detoxification 1 1 1
Biosynthesis;Degradation;Energy-Metabolism 24 1 25 1 26 3
Total Biosynthesis;Degradation 81 (8%) 10 (4%) 91 (7%) 3 (3%) 94 (7%) 16 (5%)
Cofactor 33 3 36 4 40 8
Detoxification 3 3 3 1
Energy-Metabolism 17 1 18 1 19 4
Transport 151 49 200 17 217 18
No pathway assigned 149 30 179 12 191 58

Total number of reactions 1061 250 1311 101 1412 288

A-I-I stands for Activation-Inactivation-Interconversion.
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The Pseudomonas dataset and the comparison of the two datasets

The results for the Pseudomonas group are presented in Table 3.10. The wider ecological
niche, and consequently wider also metabolic diversity appears clearly in the results when
compared to the Escherichia dataset. This can be evidenced by the smaller number of reac-
tions included in the traditional core (28% of the total number of reactions), the extended
core (48%) and the neighbour core (60%) of the Pseudomonas dataset, when compared to the
corresponding groups of the Escherichia dataset. The smaller number of reactions in the core
metabolism, and consequently higher number of reactions included in the periphery, indicate
more organism or group-specific reactions and less common metabolic capabilities. The re-
actions are more evenly distributed between the core and the periphery (40%), almost half
of the reactions in each group. Since these Pseudomonas species live in distinct and possibly
more diverse environments, their metabolic capabilities are as well more variable from one
organism to another. The metabolic processes in which the reactions are involved are shown
in Table 3.11. The traditional and the extended cores are enriched in biosynthesis while the
periphery presents similar amounts of both (30% biosynthesis and 34% degradation). The
reactions added to the traditional core by our method are slightly more frequently involved
in biosynthesis than in degradation processes.

Table 3.10: Distribution of reactions and the number of organisms which they appear for
Pseudomonas dataset.

Pseudomonas Filter Pseudomonas No Filter
NbOrganisms NbReactions NbOrganisms NbReactions

traditionalCore 13..13 569 13..13 585
extendedCore 8..12 388 9..12 391
sumTcoreEcore 8..13 957 9..13 976
neighbourCore 1..9 251 1..9 1016
sumTotalcore 1..13 1208 1..13 1992
neighbourPeriphery 0 9..13 17*
periphery 1..7 801 1..7 54
sumTotalPeriphery 1..7 801 1..13 71
TotalNbReactions 1..13 2009 1..13 2063
*10 reactions are present in 13 organisms.
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Table 3.11: Metabolic processes in which the reactions from each group are classified.

Pseudomonas Filter
extendedCore traditionalCore sumTcoreEcore neighbourCore periphery

A-I-I* 1 1 1 1
A-I-I*;Biosynthesis 1 1 2 2 4
Biosynthesis 263 105 268 59 327 181
Biosynthesis;Energy-Metabolism 29 28 57 25 79 58
Total Biosynthesis 293 (51%) 134 (34%) 427 (%) 86 (34%) 513 (42%) 239 (30%)
A-I-I*;Degradation 2 2 4 4 2
Degradation 83 94 177 67 144 259
Degradation;Detoxification 1 2 3 1 4
Degradation;Energy-Metabolism 13 8 21 3 24 12
Total Degradation 98 (17%) 106 (27%) 204 (%) 71 (28%) 275 (23%) 273 (34%)
A-I-I*;Biosynthesis;Degradation 5 3 8 1 9 3
Biosynthesis;Degradation 38 21 59 11 70 36
Biosynthesis;Degradation;Detoxification 1 1 1
Biosynthesis;Degradation;Energy-Metabolism 21 2 23 5 28 1
Total Biosynthesis;Degradation 65 (11%) 26 (7%) 91 (%) 17 (7%) 108 (9%) 40 (5%)
Cofactor 22 13 35 4 39 13
Detoxification 3 3 1 4 5
Energy-Metabolism 11 9 20 1 21 10
Transport 2 10 12 7 19 7
No pathway assigned 73 90 163 64 227 213

Total number of reactions 569 388 957 251 1208 801

A-I-I stands for Activation-Inactivation-Interconversion.
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3.2.5 Conclusion and perspectives

The proposed approaches already give some insights on the structure and content of the com-
mon metabolic capabilities, highlighting differences between the two datasets chosen. The
wider ecological niche of the Pseudomonas species can be evidenced in our preliminary re-
sults. It is important to note that we are still working on the method in order to tune the
algorithm that takes into account the neighbour relationship to allow the use of non filtered
networks. The reactions included in the proposed extended core will be further analysed as
concerns completeness of the metabolic routes and alternative pathways. We will investigate
the connectivity of the extended and neighbour core to check if the common reactions are con-
nected among themselves, i.e. the produced metabolites are consumed by other reactions in
a chain of biochemical transformations, perhaps forming an entirely connected core network.
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Exploring metabolomics data
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4.1 Overview

The increasing availability of metabolomics data enables to better understand the metabolic
processes involved in the immediate response of an organism to environmental changes and
stress. The data usually comes in the form of a list of metabolites whose concentrations
significantly changed under some conditions, and are thus not easy to interpret without being
able to precisely visualise how such metabolites are interconnected. We present a method that
enables to organise the data from any metabolomics experiment into what we called metabolic
stories. We detail an application of the method to the response of yeast to cadmium exposure.
This closing chapter of the thesis is entirely dedicated to this investigation, for which my main
contribution comprises the analyses and interpretation of the application of the method to
the response of yeast to cadmium exposure. This study resulted in the following manuscript:
Milreu et al., Telling metabolic stories to explore metabolomics data – A case study on the
Yeast response to cadmium exposure, Bioinformatics (Oxford, England), 30(1):61–70, 2014.
A brief description of this investigation will be presented hereafter and a complete version of
the paper can be found in the Appendix D.

4.2 Metabolic stories

Each story corresponds to a possible scenario explaining the flow of matter between the
metabolites of interest. These scenarios may then be ranked in different ways depending on
which interpretation one wishes to emphasise for the causal link between two affected metabo-
lites: enzyme activation, enzyme inhibition, or domino effect on the concentration changes
of substrates and products. Equally probable stories under any selected ranking scheme can
be further grouped into a single anthology that summarises, in a unique subnetwork, all
equivalently plausible alternative stories.
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4.3 Yeast response to cadmium exposure

In order to illustrate how to use our method, we concentrated on the study of the exposition of
Saccharomyces cerevisiae to the toxic cadmium (Cd2+) reported in (Madalinski et al., 2008).
A widely studied metabolic pathway in yeast is the one responsible for glutathione biosynthesis
(Figure 4.1), since it is related to the detoxification process of the cell when exposed to high
concentrations of cadmium (Fauchon et al., 2002; Lafaye et al., 2005; Madalinski et al., 2008).
Previous studies demonstrated that the presence of such a metal in the environment has a
huge impact in terms of gene expression and metabolism, showing that there is a strong
response both at the metabolomic and proteomic levels. Basically, glutathione needs to be
produced because it is a thiol metabolite linked to the detoxification of cadmium through a
process called chelation (Li et al., 1997).

Figure 4.1: Glutathione biosynthetic pathway. Compounds in bold are discriminating
in (Madalinski et al., 2008) and are involved in the synthesis of glutathione. Adapted from
Figure 1 in Lafaye et al. (2005).

Using only the metabolomics experiment data reported in (Madalinski et al., 2008) to
choose the discriminating compounds (i.e., the set of metabolites identified in the metabolomic
experiment that have significantly changed their concentration) and to rank the stories, we
are able to obtain stories that correspond very well to the current biological understanding
of the system under study, as well as to propose new alternatives that could serve as a
basis for further experimental validations. Such results can be illustrated by the anthology
corresponding to the 20 stories with the maximal score computed (Figure 4.2), where the
reactions corresponding to the glutathione biosynthesis are highlighted in grey. This is a
strong point of our method since it allows exploring alternative but close scenarios through
the analysis of these (and possibly other) stories altogether, which might provide new insights
on the underlying processes that took place under the given conditions.

We discuss several interpretations for the changes we see and we suggest hypotheses which
could in principle be experimentally tested. Such interpretations include the link between
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Figure 4.2: Anthology corresponding to the 20 stories with the maximal score computed for
the experiment on yeast s288c exposed to cadmium. Red nodes correspond to metabolites
whose concentration decreased and green nodes to those whose concentration increased in the
metabolomics experiment. White nodes have their concentration unchanged or it could not
be measured. The diameter of the nodes is proportional to the concentration change. Solid
arcs represent single reactions connecting the two compounds while dashed ones correspond
to a chain of at least two reactions. The arcs thickness represents the frequency of the arc
in the stories making up the anthology while grey arcs correspond to reactions known to be
part of the response to cadmium.

arginine to sulfur metabolism. By using the metabolic stories based approach, the increased
levels of arginine may be related to decreased concentrations of citrulline, which has not been
formally identified in our experimental conditions, and which is itself linked to glutamate.
Besides, citrulline was identified as a discriminating compound in (Madalinski et al., 2008),
but was only indicated as putative, requiring more analysis for final identification. Our
results seem to confirm that citrulline was correctly identified. This emphasizes the relevance
of using this kind of approach to generate biological hypotheses that have to be further
investigated by biologists. Of note, such a link between arginine and sulfur metabolism has
been noticed in other organisms (Sekowska et al., 2001) and links between nitric oxide and



134 Chapter 4. Exploring metabolomics data

polyamines have been established with cadmium toxicity in wheat roots (Groppa et al., 2008).
Furthermore, this global view of the discriminating compounds links the sulfur metabolism to
non-sulfur amino acids and other metabolites through intermediates of the central metabolism.
The amino acids that are precursors to the glutathione synthesis have their levels reduced
as expected, whereas most of the others increased. This agrees with the fact that global
protein synthesis rapidly drops after cadmium exposure (Lafaye et al., 2005), reducing the
consumption of amino acids not directly connected to glutathione synthesis.

4.4 Perspectives

We presented a generic method which enables to analyse metabolomics data. This method
requires very simple input and can be applied to a wide variety of situations. Together with
other omics data, analysis of metabolomics experiments is essential to further learn about
the large unexplored portion of the metabolic map, which includes organism-specific and
condition-specific activities (Breitling et al., 2008). Moreover, the interaction of symbiotic
partners is currently under-explored as concerns metabolomics analyses, which may give im-
portant insights on the establishment and maintenance of those associations. One question,
that could possibly be explored and analysed using the method presented, is whether the host
regulates the gene expression of the symbiont through larger or smaller amounts of compounds
provided to the symbiont. Thus, the development of methods that allow for the extraction
of such knowledge from whole metabolic networks plays an important role in the future in-
vestigations concerning metabolism as well as the metabolic complementarity in symbiotic
associations.
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In this thesis, we presented three main types of analyses of metabolism, most of which involved
symbiosis: metabolic dialogue between a trypanosomatid and its symbiont, comparative anal-
yses of metabolic networks and exploration of metabolomics data. All of them were essentially
based on genomics data where metabolic capabilities were predicted from the annotated genes
of the target organism, and were further refined with other types of data depending on the aim
and scope of each investigation. In addition to genomics, the last study presented in this thesis
focused on metabolomics data which were mapped into the genome-scale metabolic network
of the target organism and metabolic stories were then extracted through our method which
thus provides an approach to treat metabolomics data and give insights into the metabolism
of the organism of interest in some condition-specific situations such as a stress response.

The metabolic dialogue between a trypanosomatid and its symbiont was originally the
main topic of this thesis giving it its title and was first investigated by means of the classically
defined metabolic pathways. The selected routes corresponded to the biosynthesis of essential
amino acids and vitamins for which there were nutritional data indicating that the symbiotic
bacterium had an important contribution. Five pairs of trypanosomatids and endosymbionts
were investigated. Most of the genes coding for the enzymes involved in such processes
were found in the endosymbionts suggesting some intricate metabolic exchanges between
the bacterium and its host protozoan. Based on genomic data, we were able to indicate
the potential metabolic contributions of the endosymbiont rendering the host protozoan less
nutritional exigent when compared to the trypanosomatids that do not harbour a bacterium
in their cytoplasm. Assuming the massive gene transfer from symbiont-derived organelles to
the host nucleus, we investigated such an event in our symbiotic partners using phylogenetic
analyses. The fewer genes involved in the synthesis of amino acids and vitamins found in the
host genomes possibly show an important influence of bacterial genes horizontally transferred
to the trypanosomatid, however those genes are closer to other bacterial lineages than the
one of the betaproteobacterial endosymbiont. Thus, the pattern of massive gene transfer
found in symbiont-derived organelles does not seem to take place in the analysed symbiosis of
trypanosomatids, at least as concerns those metabolic routes. We are now reconstructing and
refining the genome-scale metabolic models of a pair of host trypanosomatid and bacterial
endosymbiont with an aim to investigate the minimal sets of metabolites exchanged by both
partners. We plan to have transcriptomic and experimental data that will be important for
the manual refinement of the model which may allow to perform model-driven simulations
and predictions. Still concerning metabolic exchanges, the integration of metabolomics data
in our model might give initial insights about the levels of metabolites exchanged in the
different stages of the life cycle of the trypanosomatid, and if such levels are related to the
regulation of gene expression in the bacterium. We will therefore continue studying such
symbiotic associations in the light of the evolutionary perspective of cellular evolution and
the transition from symbionts to organelles.
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The comparative analyses performed, and still ongoing, focused on the common metabolic
capabilities of different lifestyle groups of bacteria. The first investigation presented in this
thesis aimed at exploring the metabolism of symbiotic bacteria at different levels of integration
with the host, including the cellular location and the genome reduction associated to such
level of integration. We confirmed the strong impact of the inclusion of a single organism in
the size and content of the common metabolic capabilities, and how such a set tends to be very
reduced or empty as more genomes are sequenced and included in the analyses. In that sense,
our second comparative study focused on a method to automatically establish the common
and the group-specific activities. Such approach is based on the pattern of presence/absence of
reactions in each organism and may also include information on the neighbour relationships
in a metabolic network. In this second work, we selected the dataset to represent diverse
ecological niches that are host association, either pathogenic or commensal, or free-living.
These results are still preliminary and the goal is to have an approach that deals with non
filtered metabolic networks and that propose a pertinent common set of metabolic capabilities
not requiring: (i) omnipresence of a reaction and (ii) manual setting of a threshold for the
number of organisms in which the reaction is present to classify it either in the common or
in the group-specific set of metabolic activities. We will therefore continue developing this
method and conducting the associated analyses in collaboration with the statisticians who
are our partners.

The application of our method on metabolic stories enumeration to the yeast response to
cadmium exposure was a validation of this approach on a well-studied biological response to
stress. The purpose was to show that the method captured well the underlying knowledge as
it extracts stories allowing for further interpretations of the metabolomics data mapped into
the genome-scale metabolic model of yeast. This method requires a simple input and can
be applied to a wide variety of situations such as the comparison of aposymbiotic and wild
strains of trypanosomatids to investigate the metabolic complementarity of these symbiotic
associations.

The analyses herein presented were enabled by the recent high-throughput technologies for
which it is essential to develop methods and approaches on how to extract useful information,
perform simulations and predictions and draw conclusions in order to treat such enormous
amount of information. Comparative analyses and propagation of model species knowledge
have been currently largely used and explored, stressing the importance of improving such
approaches in order to reduce as much as possible their limitations. Being able to deal with
genome-scale metabolic models and having the possibility to integrate other omics data such
as metabolomics is quite promising to advance on new findings concerning the under-explored
parts of metabolism such as condition and organism-specific metabolic capabilities. In that
sense, both experimental and computational advances, possibly in an iterative manner, will
play key roles in the future research concerning metabolism, regulation and the evolution
of symbiotic associations. We therefore believe to have contributed to the research field on
symbiosis with our findings on the metabolic complementarity and horizontal gene transfers
in such a unique model where a single symbiotic bacterium divides synchronously with the
host protozoan nucleus implying a strict control over the endosymbiont division. Such control
of cellular division is found in organelles and is important for the persistence of the interaction
between the symbiotic partners. In addition to that, we proposed, applied to biological data
and analysed methods to explore common metabolic capabilities and to treat metabolomics
data. Such approaches may give valuable insights on metabolic properties and capabilities as
we presented throughout this thesis.
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Abstract
Biological networks are currently being studied with approaches derived from the mathematical and physical sci-

ences. Their structural analysis enables to highlight nodes with special properties that have sometimes been corre-

lated with the biological importance of a gene or a protein. However, biological networks are dynamic both on

the evolutionary time-scale, and on the much shorter time-scale of physiological processes. There is therefore no

unique network for a given cellular process, but potentially many realizations, each with different properties as a

consequence of regulatory mechanisms. Such realizations provide snapshots of a same network in different condi-

tions, enabling the study of condition-dependent structural properties. True dynamical analysis can be obtained

through detailed mathematical modeling techniques that are not easily scalable to full network models.

Keywords: networks; structural analysis; centrality; mathematical modeling; flux balance analysis

INTRODUCTION
High-throughput technologies have recently led to a

new perspective in biology, where the cell is inter-

preted as a large and complex system composed of

highly integrated subsystems. Interpretation of these

systems as networks of interactions has spurred the

application of analytical tools developed since long

by mathematicians and physicists to analyze biolo-

gical networks.

Different biological networks can be defined; de-

tailed descriptions in addition to the approaches to

their reconstruction are treated exhaustively in sev-

eral publications (Supplementary Material File 1). In

this review, we focus on gene regulatory, metabolic

and protein–protein interaction networks (PPINs),

which are at the basis of all cellular processes, sparsely

citing other kinds of networks when interesting for

the discussion. A few technical definitions are pro-

vided in the Supplementary Material File 2 for the

terms underlined in the text.

A PPIN (Figure 1A) has nodes corresponding to

proteins and edges indicating their physical inter-

action. When a protein has more than one partner,

the network is not able to tell if the different inter-

actions take place together (as in a protein complex),

or if they correspond to interactions taking place at

different times.

An MN may be interpreted and built in various

ways (Figure 1B): nodes can be metabolites or reac-

tions (respectively giving rise to the compound and
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the reaction graphs), and arcs (i.e. directed edges) can

be reactions or shared metabolites. In both cases, the

reconstruction may lead to a loss of fundamental in-

formation (Figure 1B). These limitations ask for a full

treatment of complex reactions in an MN (discussed

in detail e.g. in [1,2]): bipartite graphs and hyper-

graphs help to overcome these problems at the

price of a higher algorithmic complexity.

Hypergraphs are indeed generalizations of graphs

and thus problems may become harder to solve

(see [3] for some examples of hypergraphs applied

to biological questions and the associated computa-

tional problems).

In a gene regulatory network (GRN; Figure 1C),

nodes representing transcriptional regulators are con-

nected to the nodes corresponding to their targets by

signed arcs. The sign or weight of such arcs indicates

the effect of the control. Because of combinatorial

regulation whose output depends on the architecture

of promoters which is not encoded in a basic GRN,

an hypergraph representation could also represent a

better choice for these networks [4–6].

With a biological network in hand, we can in-

spect many properties of the nodes or the edges/arcs

searching for interesting features. Network metrics

were mainly developed for nonbiological purposes,

but in some cases they provided meaningful bio-

logical information (see sections below and

Supplementary Material File 1). A more thorough

description of the use of network metrics in biology

is given in the following sections. Different measures

focus on distinct properties of nodes or edges/arcs;

hence, the choice of a meaningful metric depends on

the type of network and on the question(s) asked.

This task requires some knowledge on the biological

processes modeled by the network because they

strongly affect the interpretation or even the useful-

ness of a measure.

MNs can also be studied using quantitative

constraint-based models that are able to identify

the optimal distribution of fluxes in the network

in a defined growth condition, at the expense of

neglecting the dynamics to reach steady state [7].

The accessible structure of the network can there-

fore be proficiently used to obtain quantitative and

testable information on the physiological state of a

bacterium.

Although informative, the analysis of a static

structure has its drawbacks. The first one is that we

completely neglect any additional property the nodes

(genes and proteins) may have, asking for an

integration of those features into meaningful net-

work metrics inspired by biology. The second draw-

back concerns the highly dynamic nature of

biological networks: regulatory mechanisms active

in different physiological states change the connect-

ivity of the network, so that structural properties may

be condition dependent. Another problem arises be-

cause a structural analysis is not always able to take

into account regulatory mechanisms: the activity of

enzymes is often regulated by one or more effector

metabolites but since the latter are not consumed,

the MN neglects such regulations (Figure 1B).

This can have profound consequences because

these regulations have important roles in stabilizing

the metabolic states and in generating complex and

biologically important dynamic behaviors [8–10].

These effectors are moreover able to cross the

boundaries between different biological levels, such

as metabolism and gene regulation. Building inte-

grated models taking these cross-talks into account

therefore represents a major challenge in systems

biology. Previous modeling efforts have demon-

strated that none of the different biological layers

is truly isolated [11–13] and that enzymes also

have regulatory functions, exerted through their

control over the concentration of particular

metabolites.

These considerations lead to a view of the cell as a

network of networks, whose understanding requires

considering regulatory interactions not only within,

but also between biological networks.

STRUCTURALANALYSIS
In this section, we explore some topological metrics

often used to analyze biological networks. In particu-

lar, we focus on centrality measures to predict essen-

tial genes, average distance (AD) and diameter to

inspect the compactness of the network, assortativity

and dyadicity to study the modularity of a network

and any correlations between the properties of the

nodes.

Before discussing these measures, let us stress that

biases in the network reconstructions or manipula-

tion can strongly affect the results of the analysis,

confounding (if any exist) the observed correlations

of biological and topological properties [14].

Consequently, we need to carefully interpret the

topological measures obtained given that we only

have a partial reconstruction in hand, and that

Biological networks 421
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Figure 1: (A) An example of different kinds of interactions that build up a PPIN. A signal (asterisk) activates a re-

ceptor, which auto-phosphorylates and then passes the phosphate group to another protein (in Bacteria usually a

Response Regulator), which is then able to regulate the activity of other proteins, or activate and repress gene ex-

pression. Interactions during this process are transient (T), therefore they are more difficult to detect using

high-throughput technologies. Consequently, the PPIN is enriched in stable (S) interactions. (B) Graph models to

represent an MN. Given three biochemical reactions (R1, R2, R3), metabolic graphs are built with metabolites as

round nodes and reactions as square nodes.The enzyme catalyzing reaction R1has a metabolic regulatory feedback

from compound C. The same system can be represented using different kinds of networks. Compound graph,

where nodes are metabolites and there is an arc between a substrate and a product of a reaction; reaction graph,

where nodes correspond to reactions and are connected when a product of one reaction is a substrate of the

next one; bipartite graph: nodes are either compounds or reactions in which there is an arc between the sub-

strate/reaction and reaction/product; hypergraph: nodes are compounds and a hyperarc links the substrate(s) to

the product(s) of a reaction.The feedback from C to the enzyme catalyzing reaction R1 is lost in all of these repre-

sentations. Also, the compound and reaction graphs account for loss of information, e.g. reaction R1 has two sub-

strates (A and B) and two products (C and D), however, by looking at the corresponding compound graph one

could imagine that the production of C only requires A, and by looking at the corresponding reaction graph we

notice that the arc between R1 and R2 exists only because of the compound D regardless of the presence of E.

(C) A genetic circuit is a visual representation of a biological system and we provide three of its possible mathemat-

ical translations. The bipartite graph has nodes for proteins (circles) and different logical gates for combinatorial

regulation: AND (triangle) requires the presence of both regulators to have transcription, while OR (diamond) can

be activated by one of the regulators alone.The information on the promoter logics is lost in the Simple representa-

tion, while it is encoded in the hypergraph. The difference between these representations is evident if we suppose

to remove regulator Z. By analyzing the Simple network, one may infer that the autoregulation of W continues to

take place, which is not true, as correctly predicted by the bipartite graph and the hypergraph.

422 Klein et al.
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some of the measures described below are strongly

affected by the sampling [15,16].

Centrality analysis
Given a network, it is natural to wonder how im-

portant each node is to its functionality. A number of

graph measures have been developed for evaluating

node centrality [17–21] and several tools allow to

compute diverse network metrics, like CentiBiN

[17], VisANT [22], Visone [23], Pajek [23],

CentiScaPe [21] and CentiLib [24].

Centrality measures can be local (or neighbor-

hood based) or global (distance or feedback based).

Local measures

With neighborhood-based measures, such as degree,

the importance of the nodes is inferred from their

local connectivity: the more connections a node has,

the more central it is. Highly connected nodes (hubs)

were found to possess special properties in the yeast

PPIN: they are more often essential than non-hub

proteins [25,26]), they tend to play a central role in

the modular organization of a PPIN [27,28] and they

seem to be evolutionarily more conserved [29].

Nevertheless, since then, several works have raised

doubts on some of these associations [30,31].

There is no consensus in the literature on how to

define a hub, and different criteria have been used: a

given fraction of the highest degree nodes [32];

nodes with a given fraction of the total connectivity

[33]; and a degree greater than an arbitrary threshold

[28,34,35]. Recently, Vallabhajosyula et al. [36] pro-

posed three objective functions allowing to define

hubs in a PPIN in a rigorous way; unfortunately

these are based on previous results on the properties

of hubs in PPINs, limiting their applicability to other

types of networks.

In order to have an indication about the homo-

geneity of the nodes of a network, it could be inter-

esting to study the degree distribution that for most

biological networks is well fitted by a power-law

(P(k)� k-�) with ��2, where k is the degree. In

these networks, a few hubs play a fundamental role

for the integrity and navigability of the network [27],

whereas a vast majority of the nodes has only a few

connections. This degree distribution has been asso-

ciated with robustness against random node removal.

Robustness to the loss of a node in an MN indicates

the presence of alternative pathways bypassing the

missing reaction; in GRNs it may correspond to

the presence of alternative ways of transmitting and

controlling information. On the contrary, these net-

works are highly sensitive to attacks directed on

hubs, because their removal deeply affects network

functionality [37]. Even though much research has

been done on the power-law distribution and its

universality in biological networks, criticisms have

been raised [38]. Power-law degree distributions

indeed can be obtained through random sampling

of networks with different topologies, indicating

that it might not be possible to infer the true

degree distribution from biological networks, for

which complete reconstructions are usually not

available [39].

The local connectivity of nodes can be studied in

further detail by using either assortativity or dyadi-

city. The first measure represents the correlation be-

tween the degree of adjacent nodes [40]. Maslov and

Sneppen [41] found that hubs in the yeast PPIN are

mostly connected to non-hubs, and are therefore

well separated from each other. Dyadicity [42] meas-

ures the degree to which the nodes of a network are

connected to other nodes that share some character-

istic (functional classification, essentiality, involve-

ment in a disease and so on) and is therefore able

to characterize the modular structure of a network

by considering the distribution of the functions over

the nodes and their connectivity [43]. A network is

called heterophilic (heterophobic) when different

categories are connected more (less) often than ex-

pected under a random model. It was recently used

to study the potential coupling between structure

and functionality in transcriptional and noncoding

(nc) RNA–protein interaction networks [44]. The

results showed that most transcriptional regulators

and ncRNAs tend to connect to genes/proteins of

other functional classes, suggesting that regulators do

not really belong to a functional class but tend in-

stead to coordinate several of them [44]. On the

converse, in PPINs and MNs, the connections

more often involve proteins of a same functional

category.

Global measures

Closeness [45] and shortest path-based betweenness

[46] reflect global properties of a network and use a

distance measure between nodes, often the shortest

path. The closeness of a node depends on its AD

from the others and is of particular interest for infor-

mation networks (such as signaling network and

GRNs) as it measures how fast information flows

from a node of interest to all the reachable nodes

Biological networks 423
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[47]. It has been recently integrated with biological

information in a parameter-free gene prioritization

approach that computes the interconnectedness

(ICN) between genes in a network [48]. ICN meas-

ures closeness of each candidate gene to genes pos-

sessing an interesting property by considering

alternative paths in addition to the direct link and

shortest one.

Shortest path-based betweenness depends on the

number of shortest paths crossing a node. In PPINs,

betweenness can be interpreted as the relevance of a

protein to be intermediary in the interaction be-

tween other proteins, assuming that this interaction

passes through shortest paths [21]. Bottlenecks are

nodes with high betweenness centrality and were

found to be key connectors with surprising func-

tional and dynamical properties, often essential

[49]. Bottleneck and hub genes were identified in

coexpression networks inferred from experimental

data, and found to be often essential for virulence

in Salmonella typhimurium with the role of mediators

of transitions between different cellular states or of

sentinels that reflect the dynamics of these transitions

[50]. Cell cycle checkpoints were found to be bottle-

necks in a gene coexpression network of cell cycle

regulated genes in the fission yeast [51].

Network metrics in general [52–54], and

betweenness centrality in particular are also used

for the rational prediction of drug targets [55].

Essential genes are preferred targets for drug design

and central genes are more likely to be essential.

Another constraint was imposed in this particular

case: the gene must be essential for the pathogen

but not for the host to reduce any side effects of

the drug.

One problem with shortest path-based measures is

that communication between biological entities is

assumed to pass along those paths, which is often

not plausible: from the point of view of MNs, the

shortest path might be defined on the basis of the

energy/cofactor requirements instead of the number

of steps, whereas in GRNs and PPINs all active con-

nections will take place, not only the shortest ones.

In the case of GRNs, the targets with different short-

est paths to a common regulator may exhibit hier-

archical gene expression patterns as is the case for

flagellar genes [56].

To overcome the limitation of shortest paths, a

node can be considered central when it is crossed by

many random walks: this is the case of the random

walk-based betweenness centrality [57]. Some

feedback-based measures implicitly rely on random

walks, like eigenvector [58] and spectral centrality

[59]. Eigenvector centrality has been applied to sev-

eral MNs [60] and was shown to outperform other

metrics for the identification of essential proteins in

the PPIN of yeast [61], together with subgraph cen-

trality [62].

Distance analysis
The diameter of a network is an overall indication of

its compactness. Despite the fact that real networks

sometimes exhibit the small-world property and that

shorter diameters may be beneficial to some net-

works (e.g. for rapid information flow), it was

shown that several biological networks have larger

diameters than their randomizations. One possible

reason for this is their modular nature [63] leading

to the suggestion that modularity may be a universal

characteristic of real networks, due to the advantages

it brings to multi-functionality, robustness and evol-

vability. On one hand, high modularity reduces

pleiotropic effects improving the evolvability of

the system. On the other, numerical experiments

also demonstrated that modularization provides ro-

bustness against random perturbations in network

structure, i.e. evolutionary change [64].

The distribution of distances and the AD may be

more informative than the diameter about the global

properties of a network [63]. The small AD com-

monly observed in biological networks pertains to

the so-called small-world effect [65]. The AD

ranged between 3 and 5 in 43 MNs of 200–800

nodes [66], showing that all nodes are quite close

to each other. Although several groups confirmed

the small-world property of the MN of different

organisms [67–71], Arita [72] heavily criticized the

way the pathways are computed in those works since

they do not conserve their structural moieties. When

this problem is accounted for correctly, the analysis

revealed that the average path length of the

Escherichia coli metabolism is much longer than previ-

ously thought [72,73].

Quantitative structural analysis
Flux Balance Analysis (FBA; Figure 2) is a quantita-

tive modeling technique that relies on a validated

reconstruction of an MN, the steady-state assump-

tion and additional constraints [74–76].

The target of the method is obtaining the flux

distribution within the MN under specified growth

conditions (Figure 2).

424 Klein et al.

 b
y
 g

u
est o

n
 N

o
v
em

b
er 2

6
, 2

0
1
2

h
ttp

://b
fg

.o
x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 



The stoichiometry of the reactions encode the

mass conservation rules, and a modeling of the

environment through transport reactions impose

constraints on the possible flux distributions satisfying

the steady-state condition; additional constraints may

also be added such as reaction reversibility and max-

imum velocity of enzymes. Since the solution space

for such models is very large even under the con-

straints used, FBA seeks an optimal flux distribution

with respect to a carefully chosen objective function

using optimization techniques. The assumption

behind FBA is that metabolism maximizes some ob-

jective, but there may exist many suboptimal flux

distributions that help the organism during adapta-

tion to specific environmental conditions. This led to

elementary mode analysis [77], which seeks for the

solutions satisfying the above constraints regardless of

the objective function. Elementary modes can be

loosely defined as the smallest subnetworks allowing

an MN to function in steady state [78,79]. According

to Stelling et al. [79], they can be used to understand

cellular objectives for an overall MN.

The objective function plays a fundamental role

in FBA as it provides a way to choose one optimal

solution: assuming that the objective of E. coli in rich

medium is to grow at maximum speed, we may for-

mulate an objective function that combines fluxes

exiting the MN to produce biomass. Optimization

through integer linear programming [7,80] then

allows to identify one optimal solution which is a

physiological steady state of the MN of an organism

in that condition. When the target is maximization

of the production of some compound, the com-

pound is usually included in the objective function

to enforce solutions where its production is active.

Other formulations for the objective function may

be designed to mimic disparate growth conditions,

not necessarily focusing on fast growth [81–91].

Biologically speaking, solutions obtained through

FBA describe a partition of the input fluxes into the

different branches of the network to produce the

compounds required by growth (through the object-

ive function).

One of the most appealing properties of con-

straint-based models is that they provide a way to

explore the consequences of genetic manipulations

on the whole MN: one or more reactions can be

eliminated (simulating knock-out mutants) [92–95]

Figure 2: FBA is a constraint-based model based on the stoichiometric modeling of an MN, a (quasi) steady-state

condition and an objective function.The constraints are the reaction set of the network encoded in the stoichiomet-

ric matrix N and additional thermodynamic and environmental constraints.The steady-state condition for MNs cor-

responds to a regime where the intracellular fluxes and metabolite concentrations are constant in time (Nv¼ 0),

where v is a vector representing a flux distribution for the reactions. There are many flux distributions satisfying

the steady-state condition and the other constraints. In FBA experiments, the interest is the identification of the

flux distribution that maximizes/minimizes a given objective function.

Biological networks 425

 b
y
 g

u
est o

n
 N

o
v
em

b
er 2

6
, 2

0
1
2

h
ttp

://b
fg

.o
x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 



or otherwise manipulated, and simulations can be

run to see if and how the objective function can

be improved with respect to the wild-type model

[96]. By coupling two levels of optimization, it is

possible to predict the best engineering strategy to

have mutants that maximize some by-product of

interest, such as ethanol [96] or lactate [97], while

growing. A recent survey on FBA and its applications

can be found in [98].

Dynamic analysis
Dynamic analysis of structural properties

In general, we look at biological networks as static

entities, but it should be stressed that they are instead

very dynamic at widely different time-scales. They

are dynamic in evolutionary time like any other bio-

logical structure, and even more on short time-scales,

since regulatory connections and feedbacks change

the connectivity of the network depending on the

physiological state (Figure 3). Consequently, we

should interpret most of the currently available

biological network reconstructions as potential net-

works, where all the possible connections are indi-

cated. By the term potential, we highlight the fact

that edges/arcs and nodes in this network will be

hardly present all together in vivo. If we consider

for instance a PPIN, not all interaction partners

of a protein will be expressed in a given condition,

reducing the number of actual partners. Conversely,

we may speak of network realizations when focusing

on the active subgraph of a potential network,

defined on the basis of experimental data [28,99–

101]. The dynamic nature of biological networks is

also at the basis of differential network analysis [102],

which aims at capturing the subgraphs specific of a

given network realization.

These considerations are important since they

affect the analysis of biological networks. As there

are many condition-specific realizations of a biolo-

gical network, they plausibly have different structural

properties. It was indeed shown that random sub-

graphs of a network do not necessarily maintain

the same-degree distribution as the entire network

[103], suggesting that other structural properties may

also change (Figure 4).

Therefore, it is not clear if we can look for ‘uni-

versal’ properties of biological networks by analyzing

potential networks, or whether we should instead

define as ‘universal’ those properties that characterize

most realizations.

Han etal. [28] estimated the temporal connectivity

of hubs in the yeast PPIN by using gene expression

data: the correlation in gene expression between two

connected nodes in the potential network allowed to

define two types of hubs: party hubs, interacting

with their partners simultaneously; and date hubs,

which bind their different partners at different

times or locations. It is then plausible to do the

same for other measures: genes may be central in

the potential network and frequently or not in the

realizations (party and date centers); party and date

bottlenecks may be defined in the same way, and so

on. This additional level of complexity may allow a

deeper understanding of how physiological transi-

tions are driven by topological changes.

Gene expression was integrated in a centrality

measure called Pec [104], which was used to identify

essential genes in yeast. This measure exploits the

strength of the connectivity between two adjacent

nodes based on an Edge Clustering Coefficient

[105], weighted by the co-expression between

genes in experimental data.

Figure 3: Illustrative example on the potential and

realization concept concerning the anabolic and cata-

bolic pathways of a same compound (4). (A) The poten-

tial network. (B) The realizations are shown for

different physiological states: R1, biosynthetic state for

compound o. R2 compound o is available and its biosyn-

thetic route is off. R3 catabolic state: a degradation

pathway is activated to reduce the intracellular concen-

tration of the compound.
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This reasoning also affects the evolutionary inter-

pretation of network properties, for instance when

concluding that evolution promoted the fixation of a

given structural feature of the potential network.

Luscombe etal. [99] analyzed the structural properties

of the yeast GRN in different conditions. Starting

from a validated GRN, they used gene expression

data to extract the subnetworks supposed to be ac-

tive during environmental stress or the cell cycle,

highlighting important differences: the cell cycle

subnetwork has long shortest paths and combinator-

ial regulation is common, whereas short paths and

mainly single-input regulations characterize the stress

condition. The length of a path may be relevant in

the context of a GRN because it can be interpreted

as a measure of the delay to have a response once the

top regulator is activated (Figure 1B). The short

paths for the stress conditions suggest evolution of

a fast response to stressors, whereas cell cycle evolved

under the necessity for fine regulations giving

the correct temporal ordering of events, which

explains the combinatorial regulation (information

integration) and the longer paths (check points).

Performing the analysis on the potential network,

these differences would not have been noticed.

The previous work has however been heavily criti-

cized [99], but both studies conclude that realization

networks can be largely different in their structural

properties (see also [28,101]).

The use of realization networks is currently

limited by the need for high-quality and high-

throughput experimental data, today available only

for a few organisms. Nevertheless, large-scale experi-

mental data will be more easily obtained in the

future, giving the occasion to develop the algorithms

required for a similar approach.

Kinetic modeling of full-scale networks

In the previous section, we discussed how to explore

the structural properties of a biological network

using experimental data to define the active sub-

graphs in a potential network. However, the analysis

is not really dynamic, but gives instead only a snap-

shot of the steady states of a network in different

conditions. To move forward with the dynamic ana-

lysis of networks, we discuss the mathematical mod-

eling of biochemical reaction networks from the

perspective of building large, network-scale models

able to predict the dynamics between different states.

Many different modeling strategies were devised and

Figure 4: Centrality measures change in GRN realizations. Nodes have a size proportional to the betweenness

centrality measure and the color of a node changes according to the outdegree. The pairs of regulators A and B as

well as E and F are both required for the activation of the target gene(s). (A) The potential network, where regula-

tors A and D are central following betweenness centrality, and E with respect to outdegree centrality. Now let us

suppose to use experimental data to obtain two realizations of this potential network. In (B) regulator F is not ex-

pressed, and regulator E has consequently a low outdegree. In (C) regulator B is inactive, imposing a remarkable

change in the betweenness centrality value of regulator C.
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described elsewhere [4,8,106–119]; here we briefly

discuss the modeling of biochemical networks (MN

and GRN) and its application to cellular scale sys-

tems. Some of the discussions also apply to signaling

systems, which combine different types of regulation

(protein–protein interaction, phosphorylation and

transcriptional regulation).

Kinetic metabolic models are traditionally based

on systems of ordinary differential equations where

the rates modeling the activity of an enzyme are

mechanistic, nonlinear and more or less precisely

describe the catalytic mechanism of an enzyme.

The activity of promoters in gene regulation is usu-

ally modeled using sigmoid functions as suggested

by experimental data [120,121], and combination

thereof in the presence of combinatorial regulation

[4]. The parameters of these models are usually

derived from in vitro (rarely in vivo) experiments

but the large differences between in vivo and

in vitro conditions have called into question this ap-

proach [122–125], and in vivo experiments should

be preferred [126]. The main drawback of building

such detailed models is therefore that it is very

time-consuming for the amount of good quality

and informative experimental data required to per-

form parameter identification. Mechanistic models

have been consequently applied mainly to well-stu-

died systems, and only recently models for less

studied ones have started being implemented

[127–131].

All these limitations make it impossible at the

moment to build mechanistic models at a full net-

work scale. The only exception for MNs is a work

by Jamshidi and Palsson [132], who use mass action

kinetics to build a model of the MN of red blood

cells with 100 chemical reactions (catalytic or regu-

latory), and 95 variables. To overcome the limits

imposed by mechanistic models, approximative

nonmechanistic rate equations have been developed

for both metabolic (e.g. [113–115]) and gene regu-

lation systems [4]. The main advantage of approxi-

mated formalisms is that they require less

parameters, reducing as well the experimental

effort for parameter identification. One of these ap-

proximations is called linlog, and was recently used

to model a network-scale MN of yeast [133]. The

parameters were obtained from a model repository

(see Figure 5 for more details on this

Figure 5: (A) A metabolic system. (B).The corresponding stoichiometry matrix N.The evolution in time of the six

metabolite concentrations is given by: dx/dt¼Nv(e,f(x,p)), where x is the vector of metabolite concentrations and

v(e,f(x,p)) is a vector of rates, functions depending on enzyme levels e and on metabolites in x, including the ef-

fectors. The latter dependencies are not encoded in the stoichiometry matrix. f(x,p) can take many different

forms, e.g. mass action, Michaelis^Menten or linlog. (C) The parameter matrix of the linlog approximation of the

entire system; all the rate functions have the same standard format, a linear combination of logarithmic metabolite

concentrations i.e. v¼diag(e) (AþB log X), with A and B a vector and a matrix of parameters, respectively. (D)

Comparison of the irreversible Michaelis^Menten (Vmax [S]/(Kmþ[S])) and corresponding linlog: linlog is not satur-

able for large substrate concentrations, and gives minus infinite fluxes when one of the metabolites in a given reac-

tion goes to zero.

428 Klein et al.

 b
y
 g

u
est o

n
 N

o
v
em

b
er 2

6
, 2

0
1
2

h
ttp

://b
fg

.o
x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 



approximation). The resulting model contains 956

metabolic reactions and 820 metabolites; the key

steps were identified using metabolic control

analysis. This modeling framework may be con-

sidered a stepping-stone towards the long-term

goal of a fully parameterized model of

genome-scale metabolism even if its performance

needs to be improved.

GRNs also cannot be modeled at a full scale, since

much of the information required is not available,

and approximated formalisms were proposed [4].

We stress that obtaining a GRN is much more dif-

ficult than obtaining an MN; the methods give

moreover very partial reconstructions that strongly

affect the structural analysis [16].

Modeling network scale integrated systems

An important and ambitious challenge in systems

biology is building integrated models where the

interactions between different biological layers are

explicitly taken into account. We here consider the

case of integrated models where metabolism is

modeled together with the gene regulation

system, but it should be noticed that increasing ex-

perimental evidence suggests further integration of

signaling pathways and GRNs with regulation

mediated by ncRNAs [134–138]. On one hand,

integration of metabolism and gene regulation

might allow to study a much wider range of situ-

ations using a same model, and on the other, it

allows to study more in detail the importance of

the cross-talk between the two systems. A first

effort to measure the effect of regulation in FBA

predictions through the addition of Boolean logic

time-dependent constraints modeling transcriptional

regulatory events is regulatory FBA (rFBA; [139]).

rFBA changes the shape of the solution space con-

siderably with respect to FBA, finding physiologic-

ally relevant solutions [139]. These initial methods

were improved by several recent works such as

steady-state regulatory FBA (SR-FBA), which is

an integrated regulatory-metabolic model for pre-

dicting gene expression and metabolic fluxes [140],

integrated FBA (iFBA) that combines rFBA and

inferred ordinary differential equations [141],

OptFlux which is a software for strain prediction

through metabolic/regulatory integrated data [142],

and hybrid modeling [143]. For a more detailed

review on different coupled regulatory/metabolic

models, we refer to [144].

CONCLUSIONS
Structural analysis allows the identification of

important nodes within a network and for this

reason, has become very popular in many disciplines.

However, in the biological domain, the importance

of a node can be defined in many different ways

so that identifying the most appropriate network

measures is an important preliminary step that can

radically change the output of an analysis. It is then

essential to understand the meaning of a given meas-

ure with respect to the specific network at hand.

Besides discussing some of the most informative

metrics for biological networks analysis, we stress the

importance of a biologically meaningful interpret-

ation of any measure, which is not always intuitive

and can change for different networks.

The dynamical nature of biological networks

indicates that it may be better to perform structural

analysis on what we have defined as the realiza-

tions of a network. The risk when studying a po-

tential network is confounding the signals encoded

in the network by putting everything together.

Are we sure that a metabolic hub is a hub in

every realization of the network? What if it is

lowly connected with different nodes in every

realization? This approach is today limited by the

availability of experimental data, but databases are

growing fast and a similar analysis would be feas-

ible for several prokaryotes, as well as for a few

eukaryotes.

Concerning the more biologically oriented inter-

pretation of the metrics, it requires to move the col-

laboration between computational and experimental

biologists to a higher level. It would also contribute

to the integration of biological information in net-

work analysis, which is a topical challenge in the

field. Let us take the example of hubs in a GRN.

From the biological point of view, it is clearly dif-

ferent if the hub controls a single cellular function

or affects widely different processes. Since a GRN

transmits information, a similar approach would re-

quire being able to define the scope of a regulator by

also taking into account indirect targets (similarly to

[6]). This example illustrates the need for biologically

oriented network metrics that are able to take into

account the heterogeneous information associated

with biological entities. As pointed out by Keller

[145], Watts and Strogatz (65) have proficiently

used simple mathematical models to study social net-

works, but some of their most interesting results

emerged only after they took into account the
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property that sociologists consider as fundamental to

social dynamics: social identity. The challenge is to

do the same with biological networks, which re-

quires an effort to develop meaningful metrics

able to account for and integrate biological

properties.

SUPPLEMENTARYDATA
Supplementary data are available online at http://

bfg.oxfordjournals.org/.

Key Points

� Structural analysis of biologicalnetworks allows to identifygenes

and proteins playing important roles in cellular physiology.

� Biological networks are dynamic; the structural properties

of genes and proteins are consequently also dynamic, i.e. the

importance of a protein might change depending on the growth

condition.

� The dynamics of biological systems can be studiedusing detailed

mathematical modeling, but they are not easily scalable at the

network level and approximations have been provided that

might simplify the task.
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Abstract

Endosymbiont-bearing trypanosomatids have been considered excellent models for the study of cell evolution because the
host protozoan co-evolves with an intracellular bacterium in a mutualistic relationship. Such protozoa inhabit a single
invertebrate host during their entire life cycle and exhibit special characteristics that group them in a particular
phylogenetic cluster of the Trypanosomatidae family, thus classified as monoxenics. In an effort to better understand such
symbiotic association, we used DNA pyrosequencing and a reference-guided assembly to generate reads that predicted
16,960 and 12,162 open reading frames (ORFs) in two symbiont-bearing trypanosomatids, Angomonas deanei (previously
named as Crithidia deanei) and Strigomonas culicis (first known as Blastocrithidia culicis), respectively. Identification of each
ORF was based primarily on TriTrypDB using tblastn, and each ORF was confirmed by employing getorf from EMBOSS and
Newbler 2.6 when necessary. The monoxenic organisms revealed conserved housekeeping functions when compared to
other trypanosomatids, especially compared with Leishmania major. However, major differences were found in ORFs
corresponding to the cytoskeleton, the kinetoplast, and the paraflagellar structure. The monoxenic organisms also contain a
large number of genes for cytosolic calpain-like and surface gp63 metalloproteases and a reduced number of
compartmentalized cysteine proteases in comparison to other TriTryp organisms, reflecting adaptations to the presence of
the symbiont. The assembled bacterial endosymbiont sequences exhibit a high A+T content with a total of 787 and 769
ORFs for the Angomonas deanei and Strigomonas culicis endosymbionts, respectively, and indicate that these organisms
hold a common ancestor related to the Alcaligenaceae family. Importantly, both symbionts contain enzymes that
complement essential host cell biosynthetic pathways, such as those for amino acid, lipid and purine/pyrimidine
metabolism. These findings increase our understanding of the intricate symbiotic relationship between the bacterium and
the trypanosomatid host and provide clues to better understand eukaryotic cell evolution.
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Introduction

Protists of the Trypanosomatidae family have been intensively

studied because some of them are agents of human illnesses such as

Chagas’ disease, African sleeping sickness, and leishmaniasis,

which have a high incidence in Latin America, Sub-Saharan

Africa, and parts of Asia and Europe, together affecting

approximately 33 million people. Some species are also important

in veterinary medicine, seriously affecting animals of economic

interest such as horses and cattle. In addition, some members of

the Phytomonas genus infect and kill plants of considerable

economical interest such as coconut, oil palm, and cassava. These

organisms circulate between invertebrate and vertebrate or plant

hosts. In contrast, monoxenic species, which predominate in this

family, inhabit a single invertebrate host during their entire life

cycle [1].

Among the trypanosomatids, six species found in insects bear a

single obligate intracellular bacterium in their cytoplasm [2], with

Angomonas deanei and Strigomonas culicis (previously named as Crithidia

deanei and Blastocrithidia culicis, respectively) representing the species

better characterized by ultrastructural and biochemical approach-

es [3]. In this obligatory association, the endosymbiont is unable to

survive and replicate once isolated from the host, whereas

aposymbiotic protozoa are unable to colonize insects [4,5]. The

symbiont is surrounded by two membrane units and presents a

reduced peptidoglycan layer, which is essential for cell division and

morphological maintenance [6]. The lack of a typical gram-

negative cell wall could facilitate the intense metabolic exchange

between the host cell and the symbiotic bacterium.

Biochemical studies revealed that the endosymbiont contains

enzymes that complete essential metabolic pathways of the host

protozoan for amino acid production and heme biosynthesis, such

as the enzymes of the urea cycle that are absent in the protozoan

[7,8,9,10,11]. Furthermore, the bacterium enhances the formation

of polyamines, which results in high rates of cell proliferation in

endosymbiont-bearing trypanosomatids compared to other species

of the family [12]. Conversely, the host cell supplies phosphati-

dylcholine, which composes the endosymbiont envelope [5], and

ATP produced through the activity of protozoan glycosomes [13].

The synchrony in cellular division is another striking feature of

this symbiotic relationship. The bacterium divides in coordination

with the host cell structures, especially the nucleus, with each

daughter cell carrying only one symbiont [14]. The presence of the

prokaryote causes ultrastructural alterations in the host trypano-

somatid, which exhibits a reduced paraflagellar structure and a

typical kinetoplast DNA network [15,16,17]. The endosymbiont-

harboring strains exhibit a differential surface charge and

carbohydrate composition than the aposymbiotic cells obtained

after antibiotic treatment [18,19]. Furthermore, the presence of

the symbiotic bacterium influences the protozoan interaction with

the insect host, which seems to be mediated by gp63 proteases,

sialomolecules, and mannose-rich glycoconjugates [20,21].

Molecular data support the grouping of all endosymbiont-

containing trypanosomatids together in a single phylogenetic

branch. Moreover, studies based on rRNA sequencing suggest that

symbionts from different protozoan species share high identities

and are most likely derived from an ancestor of a b-proteobacter-
ium of the genus Bordetella, which belongs to the Alcaligenaceae

family [2,22,23]. Taken together, these results suggest that a single

evolutionary event gave rise to all endosymbiont-bearing trypa-

nosomatids, recapitulating the process that led to the formation of

the mitochondrion in eukaryotic cells [24].

In this work, we analyzed the predicted protein sequences of A.

deanei and S. culicis and their respective symbionts. This is the first

time that genome databases have been generated from endosym-

biont-containing trypanosomatids, which represent an excellent

biological model to study eukaryotic cell evolution and the

bacterial origin of organelles. The analysis presented here also

clarifies aspects of the evolutionary history of the Trypanosomat-

idae family and helps us to understand how these protozoa

maintain a close symbiotic relationship.

Materials and Methods

Materials and methods are described in the Text S1.

Nucleotide Sequence Accession Numbers
The sequences of Angomonas deanei, Strigomonas culicis, Candidatus

Kinetoplastibacterium crithidii and Candidatus Kinetoplastibacter-

ium blastocrithidii were assigned as PRJNA169008,

PRJNA170971, CP003978 and CP003733, respectively, in the

DDBJ/EMBL/GenBank.

Results and Discussion

General Characteristics
A 454-based pyrosequencing generated a total of 3,624,411

reads with an average length of 365 bp for A. deanei and a total of

2,666,239 reads with an average length of 379 bp for S. culicis

(Table 1). A total of 16,957 and 12,157 ORFs were obtained for A.
deanei and S. culicis genomes using this strategy, while their

respective endosymbionts held a total of 787 and 769 ORFs,

respectively. The total number of ORFs includes non-coding

protein tRNA and rRNA genes. Tables 1 and 2 present the

number of known proteins, hypothetical and partial ORFs for the

two trypanosomatids and their endosymbionts, respectively.

The tRNA genes representing all 20 amino acids were identified

in both trypanosomatids and their respective symbionts. At least

one copy of the rRNA genes (18S, 5.8S and 28S) was identified in

the genomes of A. deanei and S. culicis. We found that bacterial

Predicting Proteins of A. deanei and S. culicis
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endosymbiont genomes also contain at least three copies of the

rRNA operon.

General Protein Cluster Analysis
A total of 16,648 clusters were identified. Of those, 2,616

(16.4%) contained proteins from all species analyzed. To provide a

more comprehensive coverage of the phylogenetic distribution, we

have separated the species into three groups: endosymbiont-

bearing trypanosomatids (A, s = 2 species), Leishmania sp. (B, s = 5)

and Trypanosoma sp. (C, s = 4), and we considered a protein cluster

to be present in the group even if zero, two or one species were

missing, respectively. The protein cluster distribution is shown in

Figure 1.

In this way, 2,979 protein clusters (17.9%) were identified in all

groups, with 130 (0.8%) identified only in groups A and B (AB

group), 31 (0.2%) only in groups A and C (AC group), and 501

(3.2%) only in groups B and C (BC group). The AB group

represents the proteins that are absent in the Trypanosoma sp.

branch. These proteins are mainly related to general metabolic

function (p = 46 proteins), hypothetical conserved (p= 37) or

transmembrane/surface proteins (p = 33). The AC group is four-

fold smaller than the AB group, in accordance with the closer

relationship between endosymbiont-bearing trypanosomatids and

Leishmania sp [25]. The proteins in the AC group are mainly

related to general metabolic function (p = 11), transmembrane/

surface proteins (p = 8) and hypothetical conserved proteins (p = 7),

and the relative distribution between these categories is very

similar to the distribution in the AB group. The BC group is

almost four-fold larger than the AB group, and mainly consists of

conserved hypothetical proteins. One hypothesis to explain these

different levels of conservation could be that organisms from the

genera Trypanosoma and Leishmania inhabit insect and mammalian

hosts, while the symbiont-bearing protozoa are mainly insect

parasites. Thus, different surface proteins would be involved in

host/protozoa interactions and distinct metabolic proteins are

required for survival in these diverse environments.

Only a small fraction of protein clusters (n = 54, 0.3%) was

identified in group A. This finding is in striking contrast to protein

clusters identified only in group B (n= 889, 5.3%) or only in group

C (n= 679, 4.5%), which represent specializations of the Leishmania

or Trypanosoma branches. This small set is mainly composed of

hypothetical proteins without similar proteins in the GenBank

database. Only three of the group A clusters are similar to

bacterial proteins, with two of these similar to Bordetella (clusters

04518 and 05756). The third one is similar to the bacterial-type

glycerol dehydrogenase of Crithidia sp. (cluster 07344).

Of all the clusters that are present in all species except for one

(n= 1,274, 7.6%), 694 (54.5%) are missing in S. culicis, followed by

T. congolense (n = 211, 16.6%), A. deanei (n = 201, 15.8%) and T.

vivax (n = 104, 8.0%). The fact that endosymbiont-bearing species

are better represented in these sets could be due to unidentified

proteins in the assembly and/or cluster analysis. This is reinforced

by the fact that among clusters containing proteins from just one

species (n = 9,477; 56.9%), most (73.9%) are from species with

genomes that are not completely assembled (T. vivax, n=1,881,

19.8%; T. congolense, n = 1,845, 19.5%; A. deanei, n= 1,745, 18.4%;

Table 2. General characteristics of the A. deanei and S. culicis
symbionts.

Parameter A. deanei symbiont S. culicis symbiont

Length (BP) 821,813 820,037

G+C (%) 30.96% 32.55%

Number of known protein CDSs 640 637

Number of hypothetical CDSs 94 78

Coding region (% of genome
size)

88 87

Average CDSs length (bp) 987 bp 1,004 bp

rRNA 9 9

rRNA 16 s 3 3

rRNA 23 s 3 3

rRNA 5 s 3 3

tRNA 44 45

Total number of genes 787 769

doi:10.1371/journal.pone.0060209.t002

Figure 1. Venn diagram illustrating the distribution of MCL
protein clusters. The diagram shows the cluster distribution
comparing endosymbiont-bearing trypanosomatids (group A), Leish-
mania sp. (group B) and Trypanosoma sp. (group C). Protein clusters
with less clear phylogenetic distributions are identified as others.
doi:10.1371/journal.pone.0060209.g001

Table 1. Protein Reference Sequence-Guided Assembly data
of A. deanei and S. culicis genomes.

Parameter A. deanei S. culicis

Reads 3,624,411 2,666,239

Average reads length (bp) 365 379

Steps 3 5

Genes in contigs (protein reference
sequence)

12,469 9,902

Genes in exclusive contigs 4,435 2,202

Number of known protein ORFs 7,912 6,192

Number of hypothetical ORFs 8,791 5,700

Number of partial ORFs 206 217

Total number of genes
(including tRNAs and rRNAs)

16,957 12,157

doi:10.1371/journal.pone.0060209.t001

Predicting Proteins of A. deanei and S. culicis
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S. culicis, n= 1,530, 16.1%). T. brucei and T. cruzi also account for

significant numbers of clusters with only a single species (n = 1,094,

11.5% and n=1,071, 11.3%, respectively), and these clusters

mainly consist of multigenic surface proteins.

Our data support the idea that endosymbiont-bearing trypano-

somatids share a larger proportion of their genes with the

Leishmania sp. in accordance with previous phylogenetic studies

[2,25]. Only one fifth of all trypanosomatid protein clusters are

shared among most of the species analyzed here. This proportion

increases to one fourth if we only analyze the Leishmania and

Trypanosoma genera; however, the number of clusters specific for

endosymbiont-bearing kinetoplastids is a relatively small propor-

tion (0.6%) of all clusters, indicating that the specialization of genes

in the species following this evolutionary process was relatively

small.

Genomic Characteristics of the A. deanei and S. culicis

Endosymbionts
The endosymbiont genomes. Table 2 summarizes the

genome analyses of both symbionts. The genome of the A. deanei

endosymbiont contains 821,813 bp, with almost 31% G+C

content and 787 CDSs. Of these, 640 (81.3%) were characterized

as known CDSs, 94 (11.9%) as hypothetical, and 53 (6.7%) as

rRNA or tRNA. The average CDS length is 987 bp, and coding

regions account for 88% of the genome, indicating that the

genome is highly compact. There are three copies of each rRNA

and 44 tRNAs, suggesting a functional translation metabolism.

The endosymbiont of S. culicis has a genome composed of

820,037 bps and 769 CDSs, 637 (83.5%) coding for known

proteins, 78 (9.5%) annotated as hypothetical proteins, and 54

(6.0%) as rRNA or tRNA. The G+C content (32.6%) is similar to

but slightly higher than that of the A. deanei endosymbiont

(30.96%). A. deanei and S. culicis endosymbiont genomes are

composed of 88 and 87% of CDSs with few regions formed by

non-coding sequences.

A direct comparison between the two endosymbionts indicated

that they share 507 genes that meet the criteria for inclusion in a

cluster as described in the Materials and Methods. This represents

approximately 70% of the annotated genes in both genomes,

indicating a certain degree of genetic similarity. Figure 2A shows

the full alignment of the A. deanei and S. culicis symbionts. This

alignment indicates the occurrence of an inversion involving

approximately one half of the genomes. However, this inversion

would be validated by experimental work. The observed

differences agree with phylogenetic analyses suggesting the

classification of these symbionts as different species, Candidatus

Kinetoplastibacterium crithidii and Candidatus Kinetoplastibacter-

ium blastocrithidii [2,23].

The origins of symbionts in trypanosomatids. Previous

phylogenetic studies based on sequencing of the small-subunit

ribosomal DNA suggested that symbionts of trypanosomatids

descended from a common ancestor, a b-proteobacteria of the

Bordetella genus [2,22,23]. Comparisons of the endosymbiont

genomes with the KEGG database revealed eight organisms that

share high numbers of similar CDSs: Bordetella petrii, A. xylosoxidans,

Bordetella avium, Bordetella parapertussis, Pusillimonas, Bordetella bronch-

iseptica and Taylorella equigenitalis. All these species are phylogenet-

Figure 2. Genome alignments. The figure shows the alignment of
the A. deanei endosymbiont (Endo-A. deanei) and the S. culicis
endosymbiont (Endo-S. culicis) (A); between Endo-A. deanei and T.
asinigenitalis (B), T. equigenitalis (C), or Wolbachia (D); and between

Wolbachia and T. asinigenitalis (E). Alignments were performed with the
ACT program based on tblastx analyses. Red (direct similarity) and blue
lines (indirect similarity) connect similar regions with at least 700 bp
and a score cutoff of 700. The numbers on the right indicate the size of
the entire sequence for each organism.
doi:10.1371/journal.pone.0060209.g002
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ically related to b-proteobacteria belonging to the Alcaligenaceae

family. The genus Taylorella consists of two species, T. equigenitalis

and T. asinigenitalis, which are microaerophilic, slow-growing

gram-negative bacteria belonging to the family Alcaligenaceae

[26,27]. T. equigenitalis is an intracellular facultative pathogen in

horses that causes contagious equine metritis (CEM), a sexually

transmitted infection [28].

Based on these facts, clustering analysis was performed to

compare these genomes and establish the genetic similarity among

them. The clustering analysis compared the genomes of A. deanei

and S. culicis endosymbionts, T. equigenitalis MCE9, T. asinigenitalis

MCE3, B. petrii DSM 12804, A. xylosoxidans A8 and Wolbachia

pipiens (WMel). For the A. deanei endosymbiont, the highest

numbers of shared clusters are observed for A. xylosoxidans (490

clusters) and B. petrii (483 clusters), followed by T. asinigenitalis (376

clusters) and T. equigenitalis (375 clusters). However, considering the

genome length, T. equigenitalis and T. asinigenitalis had the greater

proportion of genes in clusters (24.1 and 24.67% of the annotated

genes, respectively). The values for A. xylosoxidans and B. petrii are

7.59 and 9.61%, respectively. Note that the A. xylosoxidans plasmids

pA81 and pA82 are not included in these comparisons. The S.

culicis endosymbiont shares a high number of clusters (74%) with

other genomes; considering 714 annotated genes (rRNA and

tRNA genes were not taken into account), 544 (76.19%) were

similar to genes of the other microorganisms. The highest number

of clusters is shared between A. xylosoxidans (501 clusters) and B.

petrii (495 clusters), followed by T. asinigenitalis (390) and T.

equigenitalis (388 clusters). Using W. pipiens (wMel), an endosymbi-

ont of Drosophila melanogaster, as an out-group, we found 70 clusters

for A. deanei and 73 clusters for S. culicis. Wolbachia also shares a

lower number of clusters with T. asinigenitalis (79) and T. equigenitalis

(81).

T. equigenitalis MCE9 and T. asinigenitalis MCE3 contain

1,695,860 and 1,638,559 bps, respectively. Therefore, the A.

deanei and S. culicis symbiont genomes are reduced when compared

to Taylorella, which also have reduced genomes when compared to

Bordetella or Achromobacter [26,27]. Alignments indicate the

existence of similar sequences between the Taylorella and the

kinetoplastid symbionts (Figure 2B and C), corroborating the

results obtained in the clustering analyses. Much less similarity is

observed between A. deanei and W. pipientis wMel, as well as

between W. pipientis and T. asinigenitalis using the same alignment

parameters (Figure 2D and E). Both Taylorella genomes are AT-

rich (37.4 and 38.3% for T. equigenitalis and T. asinigenitalis,

respectively), a characteristic also shared with both symbionts.

Therefore, it is possible that the process of adaptation to

intracellular life involved substantial base-composition modifica-

tion, as most symbiotic bacteria are AT-rich [29,30].

The degree of similarity and even identity of the endosymbionts

with Taylorella genomes and even with genomes of other species

such as Bordetella and Achromobacter reinforce the origin of both

endosymbionts from an ancestor of the Alcaligenaceae group.

Both endosymbionts are similar to T. equigenitalis, T. asinigenitalis, B.

petrii, and A. xylosoxidans and to other species of this family to

different degrees. In absolute numbers, B. petrii and A. xylosoxidans

have the highest numbers of clusters in common with the

symbionts. However, considering the genome length, Taylorella

species have the highest proportions of clusters in common with

the A. deanei and S. culicis endosymbionts. A phylogenomic analysis

using 235 orthologs was performed in order to establish the

evolutionary history among A. xylosoxidans A8, B. petrii DSM

12804, T. asinigenitalis MCE3, T. equigenitalis MCE9, Ca. K.

blastocrithidii and Ca. K. crithidii. The results indicated that

symbionts present in both trypanosomatid species are closely

related to the Alcaligenaceae family (Figure S1). Pseudomonas

aeruginosa PA7 was the Gammaproteobacteria used as outgroup.

These data corroborate the results from Alves et al. 2011 [11].

Although the genome lengths of both trypanosomatid bacteria

are slightly larger than those of Buchnera sp. [31], they are several

fold larger than those of symbiotic bacteria, which have extremely

reduced genomes [32]. Analysis of the B. pertussis and B.

parapertussis genomes revealed a process of gene loss during host

adaptation [33,34]. This process was proposed to be associated

with mobile DNA elements such as Insertion Sequences (IS) and

the presence of pseudo genes [33,34]. However, the mechanism(s)

involved in the length reduction observed for the genomes of the

two symbionts studied here needs further investigation. Our data

enable future studies examining the relationship between endo-

symbiosis in trypanosomatids and the origin of organelles in

eukaryotic cells.

Host Trypanosomatid Characteristics
The microtubule cytoskeleton and flagellum of the host

trypanosomatids. The cytoskeleton is composed of structures

such as the microtubular subpelicular corset, the axoneme, the

basal body, and the paraflagellar rod [35]. Thus, the cytoskeleton

controls several characteristics of trypanosomatids such as their

shape, the positions of structures, the flagellar beating and the host

colonization. The presence of the symbiont has been related to

unique characteristics of the host trypanosomatid.

Six members of the tubulin superfamily (a, b, d, c, e and f) are
present in A. deanei and S. culicis. Accordingly, d and e-tubulins are
present in organisms that possess basal bodies and flagella [36]. c-
tubulin is localized in the basal body of A. deanei [14] as in other

trypanosomatids [35]. Additionally, in common with other

trypanosomatids, five centrins were identified in A. deanei and S.

culicis. Furthermore, symbiont-containing trypanosomatids contain

e-tubulin, as in algae genomes, which can be related to the

replication and inheritance of the centriole and basal bodies

[37,38]. Interestingly, the absence of microtubules that form the

subpelicular corset in areas where the mitochondrion touches the

plasma membrane is unique to symbiont-containing trypanoso-

matids [15]. However, we cannot explain this atypical microtubule

distribution based on database searches. Moreover, no classical

eukaryotic microtubule associated proteins (MAPs) or intermediate

filament homologues were identified in symbiont-bearing or other

trypanosomatids, except for TOG/MOR1 and Asp.

Actin and other protein homologues that play roles in the

binding and nucleation of actin filaments are present in A. deanei

and S. culicis. However, the ARP 2/3 complex, which is involved in

the nucleation of actin, is absent in symbiont-bearing species. As

actin seems to be necessary for endocytosis in trypanosomatids

[39], the absence of some proteins involved in actin nucleation

may be related to the low rates of endocytosis of these protozoa

(unpublished data). Indeed, both symbiont-bearing trypanosoma-

tids have low nutritional requirements, as the symbiotic bacterium

completes essential metabolic routes of the host cell [3].

Trypanosomatids are the only organisms from the orders

Euglenida and Kinetoplastida that have a paraflagellar rod. This

structure is continuously associated with axoneme and it contains

two major proteins designated PFR1 and PFR2 [35]. Importantly,

only PFR1 was identified in A. deanei and S. culicis. Perhaps we

missed PFR2 since these PFR proteins are highly repetitive and

their assemblies are difficult. Nevertheless, these species have a

reduced paraflagellar rod located at the proximal area of the

flagellum [15,16], although the same pattern of flagellar beating

described for other trypanosomatids is observed for A. deanei [40].

The paraflagellar rod components (PFC) 4, PFC 10, PFC 16, and
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PFC 18 were detected in the A. deanei database, whereas in S. culicis

PFC 11 was also identified. Other minor components of the

paraflagellar rod could not be detected. Accordingly, RNA

interference (RNAi) knockdown of PFCs such as PFC3 does not

impair the flagellar movement of T. brucei [41], differently from

PFC4 and PFC6 depletion [42].

Several other minor flagellar proteins detected in these and

other trypanosomatids are absent in A. deanei and S. culicis,

especially the flagellar membrane proteins and those involved in

intraflagellar transport (kinesins). Symbiont-containing species had

adenylate kinase B (ADKB) but not ADKA, in contrast to other

trypanosomatids, which express both. These proteins are involved

in the maintenance of ATP supply to the distal portion of the

flagellum [43,44].

Taken together, the differences in the composition and function

of the cytoskeleton in symbiont-containing trypanosomatids seem

to represent adaptations to incorporate the endosymbiont. Further

exploration of these differences could enable a better understand-

ing of how endosymbiosis was established.

The kinetoplast. The kinetoplast is an enlarged portion of

the single mitochondrion that contains the mitochondrial DNA,

which exhibits an unusual arrangement of catenated circles that

form a network. The kinetoplast shape and the kDNA topology

vary according to species and developmental stage. Endosymbi-

ont-containing trypanosomatids show differences in the morphol-

ogy and topology of the kDNA network when compared to other

species of the same family. Both species present a loose kDNA

arrangement, but in A. deanei, the kinetoplast has a trapezoid-like

shape with a characteristic transversal electron-dense band,

whereas in S. culicis the disk shape structure is wider at the center

in relation to the extremities [2,17].

Differences in kDNA arrangement are related to low molecular

weight basic proteins such as kinetoplast-associated protein (KAP),

taking part in the organization and segregation of the kDNA

network [45,46]. Our data indicate that KAP4 and KAP3

homologues are present in A. deanei, while KAP4, KAP2

homologues, and ScKAP-like protein are found in S. culicis (Table

S1). In addition, a conserved nine amino acid domain in the N-

terminal region, most likely a mitochondrial import signal [47,48],

is found in AdKAP4 and ScKAP4 (amino acid positions 10 to 16)

(Figure S2). Furthermore, ScKAP2 has a conserved domain called

the High Mobility Group (HMG), indicating that this protein may

be involved in protein-protein interactions. These KAPs might be

related to the typical kDNA condensation of symbiont-bearing

trypanosomatids.

Housekeeping genes. Histones, which are responsible for

structuring the chromatin, are highly conserved proteins that

appeared in the eukaryotic branch of evolution. Although well

conserved, Trypanosomatidae histones display differences in the N

and C-terminal sequences, sites of post-translational modifications,

when compared to other eukaryotes. Phylogenetic analysis

revealed that histones and their variants in both A. deanei and S.

culicis are clustered in a separate branch, between the Trypanosoma

and Leishmania species (Figure 3A). Similar phylogenetic distribu-

tion is seen for the dihydrofolate reductase-thymidylate synthase

when we performed the analysis using nucleotide sequences

(Figure 3B). Nevertheless, the symbiont-bearing species show

conservation in the sites of post-translation when compared to

other trypanosomes as shown in supplementary Figure S3. In A.

deanei and S. culicis the proteins related to the chromatin assembly

are also maintained, including histones and histone-modifying

enzymes as shown in Tables S2–S7 and Figure S4 of the

supporting information. For a more detailed analysis about

housekeeping genes of A. deanei and S. culicis see Text S1.

DNA replication, repair, transcription, translation and signal

transduction in A. deanei and S. culicis functions can be respectively

attributed at least to 914 ORFs and 643 ORFs (Table 3). Most of

the genes are exclusive to the protozoan and are absent in the

endosymbiont (Table 4), thus indicating that these processes are

exclusive to the host organism as shown in the supplementary

Tables S8–S13, typically containing a conserved spliced-leader

RNA as found in other trypanosomes (see Figure S5 for more

information). A total of 133 and 130 proteins with similar

functions are detectable in the endosymbionts of both species, with

up to 95% amino acid identity to proteins of Bordetella sp. and A.

xylosoxidans.

Similar DNA repair proteins are present in both eukaryote and

prokaryote predicted sequences. These findings demonstrate that

the endosymbionts conserved essential housekeeping proteins

despite their genome reduction. Some differences were found in

mismatch repair (MMR) between symbiont-bearing trypanoso-

matid genomes. As microsatellite instability is considered the

molecular fingerprint of the MMR system, we compared the

abundance of tandem repeats in the genomes of A. deanei and S.

culicis and their respective endosymbionts. We noticed that the

genomes of S. culicis and its endosymbiont are more repetitive than

the genomes of A. deanei and its endosymbiont (Figure 4A).

However, the higher repetitive content of the genomes of S. culicis

and its endosymbiont is not only due to the higher number of

microsatellite loci (Figure 4B) but also to the expansion of the size

of the microsatellite sequences. These data suggest that microsat-

ellites of S. culicis and its endosymbiont evolved faster than those of

A. deanei and its endosymbiont. Interestingly, we identified some

missing components of the MMR machinery in S. culicis that are

present in A. deanei, such as exonuclease I (Exo I), a 59-39

exonuclease that is implicated in the excision step of the DNA

mismatch repair pathway (Table S9). Several studies have

correlated the silencing of the ExoI protein and/or mutations of

the ExoI gene and microsatellite instability with development of

lymphomas and colorectal cancer [49,50,51]. Therefore, we

speculate that deficiencies in the MMR machinery in S. culicis

may be related to the high proportion of microsatellites in its

genome. The association between microsatellite instability and

MMR deficiency has already been described for T. cruzi strains

[52,53]. The same variability pattern is observed for each

symbiont, despite the fact that the MMR machinery seems to be

complete in both symbiotic bacteria (Table S10). It is tempting to

speculate that this finding may indicate that the parasite and its

endosymbiont are exposed to the same environment and therefore

may be subjected to similar selective pressures imposed by an

external oxidative condition.

A. deanei and S. culicis have 607 and 421 putative kinase-

encoding genes, respectively (Table 5). Thirty one of the A. deanei

kinases were classified in the AGC family, 31 as atypical, 49 as

CAMK, 15 as CK1, 108 as CMGC, 64 as STE, 1 as TKL, 81 as

others, and 227 that could not be classified in any of these families.

No typical tyrosine kinases (TK) are present in A. deanei or S. culicis,

as in other trypanosomes, although tyrosine residues are subjected

to phosphorylation [54,55]. Several phosphatases have also been

described in trypanosomes, pointing toward their regulatory role

in the development of these organisms. The T. brucei PTP

(TbPTP1) is associated with the cytoskeleton and has been

reported to be intrinsically involved in this parasite’s cycle [56].

Similar sequences are found in the A. deanei genome, including

PTP1, which is not found in the S. culicis database. Additionally, a

large number of other PTPs appear in both genomes, including

ectophosphatases (Table S14).
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Two major signal transduction pathways are described in

trypanosomatids: one is the cyclic AMP-dependent route and the

other is the mitogen-activated protein kinase pathway [57]. The

major components of these pathways, including phosphatidylino-

sitol signaling, mTOR and MAPK signaling pathways are

identified in A. deanei and S. culicis. These pathways may regulate

cellular activities such as gene expression, mitosis, differentiation,

and cell survival/apoptosis (Table 6).

Most genes encoding heat shock proteins are present in

symbiont-bearing species, as was previously described in other

trypanosomatids (Table S15). Genes for redox molecules and

antioxidant enzymes, which are part of the oxidative stress

response, are also present in the A. deanei and S. culicis genomes.

Both contain slightly more copies of ascorbate peroxidase,

methionine sulfoxide reductase, glucose-6-phosphate dehydroge-

nase, and trypanothione reductase genes than L. major. In

particular, several genes related to the oxidative stress response

are present in higher copy numbers in symbiont-bearing

trypanosomatids than in L. major (Figure 5).

A. deanei sequences codify enzymes involved in RNAi, a

mechanism described in various organisms that promotes the

specific degradation of mRNA. RNAi is initiated by the

recognition of double-stranded RNA through the action of

endoribonucleases known as Dicer and Slicer, members of the

Argonaut (Ago) protein family (RNase H-type) [58]. The cleavage

of double-stranded RNA results in a complex that specifically

cleaves mRNA molecules that are homologous to the double-

stranded sequence. A. deanei contains the gene coding Dicer-like

protein II (AGDE14022) and Ago1 (AGDE11548), homologous to

enzymes in T. brucei and Leishmania braziliensis (Ngo et al., 1998; Lye

et al., 2010). In addition, A. deanei contains the RNA interference

factor (RIF) 4 (AGDE09645) with an exonuclease domain of the

DnaQ superfamily, as described in T. brucei. A fragmented RIF5

sequence was also found in the sequence AGDE15656. These

proteins were shown to interact with Ago1 as was recently

demonstrated in T. brucei [59], suggesting that RNAi might be

active in A. deanei. None of these sequences were found in the S.

culicis database.

Figure 3. Phylogenetic of histones of A. deanei, S. culicis, and other trypanosomatids. Histone protein (panel A) and nucleotide (panel B)
sequences were generated by MUSCLE tool using 10 iterations in the Geneious package [120]. Trees were constructed using the Geneious Tree
Builder, by employing Jukes-Cantor genetic distance model with a neighbor-joining method and no out-groups. The consensus trees were generated
from 100 bootstrap replicates of all detected histone genes, as shown below. Scale bars are indicated for each consensus tree. The trees in panel A
are based in a collection of sequences of all trypanosomatids. The nucleotide sequences used for dihydrofolate reductase-thymidylate synthase are: T.
cruzi, XM_810234; T. brucei, XM_841078; T. vivax, HE573023; L. mexicana, FR799559; L. major, XM_001680805; L. infantum, XM_001680805; and C.
fasciculata, M22852.
doi:10.1371/journal.pone.0060209.g003

Table 3. Numbers of ORFs identified in A. deanei and S. culicis and their symbionts, according to the mechanisms of DNA
replication and repair, signal transduction, transcription and translation.

Number of ORFs

Mechanism A. deanei S. culicis A. deanei symbiont S. culicis symbiont

Replication and Repair 178 148 56 54

Base excision repair 34 34 9 9

DNA replication 54 32 11 11

Homologous recombination 11 11 16 15

Mismatch repair 28 29 12 12

Non-homologous end-joining 8 7 – –

Nucleotide excision repair 43 35 8 7

Signal Transduction 136 46 1 1

Phosphatidylinositol signaling system 23 17 – –

mTOR signaling pathway 113 29 – –

Two component system – – 1 1

Transcription 96 61 3 3

Basal transcription factors 15 4 – –

RNA polymerase 28 16 3 3

Spliceosome 53 41 – –

Translation 504 388 73 72

Aminoacyl-tRNA biosynthesis 63 56 25 25

mRNA surveillance pathway 43 45 – –

Ribosome proteins 231 152 48 47

Ribosome biogenesis in eukaryotes 84 66 – –

RNA transport 83 69 – –

TOTAL 914 643 133 130

doi:10.1371/journal.pone.0060209.t003
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Table 4. Summary of the origin of ORFs found in A. deanei and S. culicis.

A. deanei Symbiont

Functional Classification Prokaryotes* Eukaryotes** P/E***

Replication and Repair

Base excision repair 5 11 4/0

Nucleotide excision repair 2 16 9/0

Non-homologous end-joining 1 5 N

Mismatch repair 2 13 8/0

Homologous recombination 2 9 10/0

DNA replication 3 22 10/0

Signal Transduction

Two-component system N N 1

Phosphatidylinositol signaling system 0 16 N

mTOR signaling pathway 0 8 N

MAPK signaling pahway - yeast 0 1 N

Transcription

Spliceosome 0 20 N

RNA polymerase 0 16 3/0

Basal transcription factors 0 5 N

Translation

RNA transport 0 31 N

Ribosome biogenesis in eukaryotes 0 27 N

Ribosome 0 75 48/0

mRNA surveillance pathway 0 17 N

Aminoacyl-tRNA biosynthesis 0 22 23

S. culicis Symbiont

Functional Classification Prokaryotes Eukaryotes P/E

Replication and Repair

Base excision repair 2 6 5/0

Nucleotide excision repair 2 10 7/0

Non-homologous end-joining 1 1 N

Mismatch repair 1 5 8/0

Homologous recombination 1 4 11/0

DNA replication 2 15 9/0

Signal Transduction

Two-component system N N 1

Phosphatidylinositol signaling system 0 11 N

mTOR signaling pathway 0 8 N

MAPK signaling pathway - yeast 0 0 N

Transcription

Spliceosome 0 13

RNA polymerase 0 11 3/0

Basal transcription factors 0 2

Translation

RNA transport 0 19 N

Ribosome biogenesis in eukaryotes 0 20 N

Ribosome 0 53 46/0

mRNA surveillance pathway 0 16 N

Aminoacyl-tRNA biosynthesis 0 18 23

*Number of genes with identity to Prokaryotes.
**Number of genes with identity to Eukaryotes.
***Ratio of the number of genes with identity to Prokaryotes/Eukaryotes.
doi:10.1371/journal.pone.0060209.t004
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The Coordinated Division of the Bacterium during the
Host Protozoan Cell Cycle

Cell cycle control in host trypanosomes. In eukaryotes,

DNA replication is coordinated with cell division by a cyclin-CDK

complex that triggers DNA duplication during the S phase of the

cell cycle. Multiple copies of the CRK gene (cdc2-related protein

kinase) are found in A. deanei and four genes coding for two

different CRKs are present in S. culicis. Both proteins exhibit

structural features of the kinase subunits that make up the CDK

complex, as they contain the cyclin-binding PSTAIRE motif, an

ATP-binding domain and a catalytic domain. These motifs and

domains are not the same in different CRKs (Figure S6), strongly

suggesting that these CRKs might control different stages of the

cell cycle. A. deanei contains four genes coding for cyclins. Three of
these genes are homologues to mitotic cyclin from S. cerevisiae and

T. brucei. However, none of them contain the typical destruction

domain present in T. brucei mitotic cyclin [60]. The fourth codes

for a S. cerevisiae Clb5 homolog, an S-phase cyclin. These data

indicate that more than one CRK and more than one cyclin would

be involved in the cell cycle control of symbiont-containing

trypanosomatids, suggesting that tight regulation must occur to

guarantee the precise maintenance of only one symbiont per cell

[14].

Cell cycle control in the endosymbionts. Bacterial cell

division is a highly regulated event that mainly depends on two

structures, the peptidoglycan layer and the Z ring. The first step in

the segregation of the bacterium is the formation of a polymerized

Z ring at the middle of the cell. This structure acts as a platform

for the recruitment of other essential proteins named Filament

Temperature Sensitive (Fts), which are mainly involved in the

formation and stabilization of the Z ring [61,62] and in

establishing the peptidoglycan septum formation site in most

bacteria [63] (Figure 6A).

Two fts sequences were identified in A. deanei and S. culicis
symbionts based on Bordetella genes (Table 7). One of them is FtsZ,

which requires integral membrane proteins such as Zip A and

FtsA for anchoring. However, these sequences are absent in the

symbionts. FtsZ should also interact with FtsE, which is absent in

both symbionts. This protein is homologous to the ATP-binding

cassette of ABC transporters and co-localizes with the division

septum [64]. The lack of these proteins could be related to the

absence of a classical Z ring in these symbionts. The other

sequence is FtsK that docks FtsQ, FtsB and FtsL, which are related

to the formation of the peptidoglycan layer in E. coli and B. subtilis

[65,66,67], but these proteins are absent in symbionts, as in most

bacteria that exhibit reduced peptidoglycan production [64].

RodA, a homologous integral membrane protein involved in

bacterial cell growth, is detected in the endosymbionts. RodA

could replace FtsW, which is absent in both symbionts. FtsW is

Figure 4. Microsatellite content in the genomes of A. deanei, S.
culicis, and their endosymbionts. Panel (A) shows the percentage of
repetitive nucleotides for each repeat length. The total numbers of
nucleotides are derived from microsatellite sequences divided by the
total number of assembled nucleotides. Panel (B) shows the microsat-
ellite density. The values indicate the number of microsatellite loci
divided by the genome length6100.
doi:10.1371/journal.pone.0060209.g004

Table 5. Kinase families identified in trypanosomatids.

Kinase family A. deanei S. culicis

AGC 31 23

Atypical 31 21

CAMK 49 39

CK1 15 8

CMGC 108 77

STE 64 31

TKL 1 0

Other 81 58

No hits found 227 164

TOTAL 607 421

doi:10.1371/journal.pone.0060209.t005

Table 6. Representative ORFs involved in the signal
transduction pathways in A. deanei and S. culicis.

Product A. deanei S. culicis

Calmodulin AGDE02036 STCU01612

Diacylglycerol kinase AGDE02361 STCU00226

CDP-diacylglycerol-inositol-3-
phosphatidyltransferase

AGDE04835 STCU01286

Myo-inositol-1(or 4) monophosphatase AGDE08470 STCU02993

Phospholipase C AGDE12052 STCU02439

Phosphatidylinositol 4-phosphate
5-kinase alpha

AGDE09669 STCU03909

Inositol-1,4,5-trisphosphate (IP3) 5-phosphatase AGDE06690 nd

phosphatidate cytidylyltransferase AGDE09922 nd

Mitogen-activated protein kinase 5 AGDE00259 STCU00603

Protein kinase A AGDE06073 STCU01525

TP53 regulating kinase AGDE08400 nd

Serine/threonine-protein kinase CTR1 AGDE00613 nd

Casein kinase AGDE11868 STCU01611

Phosphoinositide-specific phospholipase C nd STCU09903

nd: not determined.
doi:10.1371/journal.pone.0060209.t006
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Figure 5. Oxidative stress-related genes in the genomes of A. deanei, S. culicis and L. major. The figure shows the number of ORFs for the
indicated enzymes for each species.
doi:10.1371/journal.pone.0060209.g005

Figure 6. Schematic representation of the cell division machinery found in the endosymbionts. Panel (A) indicates the basic model
derived from a gram-negative bacterium with the localization of each component (shown on the right). Panel (B) represents the components found
in the endosymbiont of A. deanei, and Panel (C) shows the steps in the assembly of the Z-ring. The missing components of the A. deanei
endosymbiont are drawn in red.
doi:10.1371/journal.pone.0060209.g006
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essential for the localization of FtsI (PBP3) in the Z ring [68],

which is absent in the symbiotic bacteria.

Endosymbionts have only one bifunctional synthase (PBP1A),

while E. coli has PBP1A, PBP1B, and PBP1C. Cells require at least

one of these synthases for viability. The peptidoglycan layer is

functional in trypanosomatid symbionts, as shown by treatment

with b-lactam antibiotics affecting the division of the bacterium,

generating filamentous structures and culminating in cell lysis.

PBP1 and PBP2 have also been detected at the symbiont envelope

[6]. PBP1B interacts with the two essential division proteins, FtsN

and PBP3/FtsI, which are absent in the symbiont. PBP1B can also

interact with PBP2 that is identified in both symbiont databases

(see Table 7).

A sequence encoding a minor PBP described in E. coli was also

identified in the symbionts. This protein is known as a putative

PBP precursor (PBP5/dacC). This PBP is involved in the

regulation of the peptidoglycan structure, along with 3 other

minor PBPs described in E. coli, but these are absent from the

symbiont (Table 7). On the other hand, all the enzymes involved

in the synthesis of activated nucleotide precursors for the assembly

of the peptidoglycan layer are present in the symbiont genome,

except for Braun’s lipoprotein (Lpp), which forms the lipid-

anchored disaccharide-pentapeptide monomer subunit [69]. In E.

coli strains, mutations in Lpp genes result in a significant reduction

of the permeability barrier, although small effects on the

maintenance of the cell growth and metabolism were observed

in these cells [70,71].

Taken together, we consider that gene loss in the dcw cluster

[72] (represented in Figure 6) explains the lack of the FtsZ ring in

the endosymbiont during its division process [73]. Moreover, the

symbiont envelope contains a reduced peptidoglycan layer and

lacks a septum during its division process, which can be related to

the facilitation of metabolic exchanges, as well as to the control of

division by the host protozoan [6]. These losses could be

understood since the host trypanosomatid is controlling the

number of symbiotic bacteria per cell. This phenomenon has

been described for obligatory intracellular bacteria that co-evolve

in eukaryotic cells, as well as for the organelles of prokaryotic

origin, the chloroplast and the mitochondrion [74,75].

Metabolic Co-evolution of the Bacterium and the Host
Trypanosomatid
Symbiosis in trypanosomatids is characterized as a mutual

association where both partners benefit. These symbiont-bearing

protozoa have low nutritional requirements, as intense metabolic

exchanges occur. Our data corroborate previous biochemical and

ultrastructural analyses showing that the bacterium has enzymes

and metabolic precursors that complete important biosynthetic

pathways of the host [76].

Oxidative phosphorylation. FoF1-ATP synthase and the

entire mitochondrial electron transport chain are present in A.

deanei and S. culicis, although some subunits are missing (Table 8).

These species have a rotenone-insensitive NADH:ubiquinone

oxidoredutase in complex I, as do other trypanosomatids [77].

Ten complex II (succinate:ubiquinone reductase) subunits of the

twelve identified in T. cruzi [78] are also present in both

trypanosomatids. Many subunits from complex III, composed of

cytochrome c reductase, are found in A. deanei and S. culicis. In

addition, these protozoa contain genes for cytochrome c, as

previously suggested by biochemical studies in other symbiont-

containing trypanosomatids [3,79].

Both symbionts contain sequences with hits for all subunits of

complex I, NADH:ubiquinone oxidoredutase, similar to E. coli

(Table 8). Complexes II and III, including cytochrome c, and

complex IV (cytochrome c oxidase, succinate:ubiquinone reduc-

tase and cytochrome c reductase, respectively) are not found in

Table 7. Members of the Fts family and PBPs that are present in endosymbionts of A. deanei and S. culicis.

Function Protein A. deanei S. culicis

Stabilization and attachment of FtsZ polymers to the inner membrane FtsA nd nd

FtsE nd nd

ZipA nd nd

FtsK CKCE00084 CKBE00632

Interaction with peptidogycan synthases PBPs FtsQ nd nd

FtsB Nd nd

FtsL nd nd

FtsN nd nd

Lipid II flippase FtsW(RodA) CKCE 00486 CKBE00079

Forms a dynamic cytoplasmic ring structure at midcell FtsZ CKCE00034 CKBE00683

Penicillin binding proteins (PBPs) PBP1A CKCE00524 CKBE00119

PBP2 CKCE00487 CKBE00080

FtsI/PBP3 CKCE00487 CKBE00080

PBP4 nd nd

PBP5/dacC CKCE00510 CKBE00105

PBP6 nd nd

PBP6B nd nd

PBP7 nd nd

nd: not determined.
doi:10.1371/journal.pone.0060209.t007
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either symbiont. However, we detected the presence of cyto-

chrome d as found in Allochromatium vinosum, and also a cytochrome

d oxidase with a sequence close to that of B. parapertussis. All

portions of the FoF1-ATP synthase were identified in symbionts,

although not every subunit of each portion was found.

Lipid metabolism. The sphingophospholipid (SPL) content

in A. deanei and its symbiont has been previously described, with

phosphatidylcholine (PC) representing the major SPL in the host,

whereas cardiolipin predominates in the symbiotic bacterium

[5,80]. The synthetic pathway of phosphatidylglycerol from

glycerol phosphate is present in both host trypanosomatids (Table

S16). The biosynthetic pathways of PC and PE from CDP-choline

and CDP-ethanolamine (Kennedy pathways), that synthesize PC

and PE respectively, are incomplete in A. deanei and S. culicis.

Nevertheless, the methylation pathway (Greenberg pathway),

which converts PE in PC, seems to be absent in both

trypanosomatids, even though one enzyme sequence was identi-

fied in A. deanei.

The symbiont of A. deanei exhibits two routes for phosphatidyl-

ethanolamine (PE) synthesis, starting from CDP-diacylglycerol and

producing phosphatidylserine as an intermediate (Table S17).

Interestingly, this last step of the pathway is not found in the S.

culicis endosymbiont. Importantly, both symbionts lack genes that

encode proteins of PC biosynthetic pathways, reinforcing the idea

that this phospholipid is mainly obtained from the host protozoa

[5]. Remarkably, phoshpatidylglycerophosphatase A, which pro-

duces the intermediate phosphatidylglycerol necessary for cardio-

lipin biosynthesis, was not found in either protozoa but is present

in both symbionts. As cardiolipin is present in the inner

membranes of host mitochondria, the symbionts may complete

cardiolipin biosynthesis.

Pathways for sphingolipid production, including the synthesis of

ceramide from sphingosine-1P, are present in A. deanei, while S.

culicis lacks enzymes of this pathway (Table S16). Both host

trypanosomatids have glycerol kinase and 3-glycerophosphate

acyltransferase, enzymes for the synthesis of 1,2-diacyl-sn-glycerol

and triacylglycerol from D-glycerate. In endosymbionts, glycer-

olipid metabolism seems to be reduced to two enzymes: 3-

glycerophosphate acyltransferase and 1-acylglycerol-3-phosphate

O-acyltransferase (Table S17), suggesting metabolic complemen-

tation between partners.

Furthermore, both hosts contain enzymes of the biosynthesis

pathway for ergosterol production from zymosterol, as well as the

pathway of sterol biosynthesis that produces lanosterol from

farnesyl-PP. These pathways are only complete in A. deanei. The

symbionts do not have enzymes for sterol biosynthesis, in

accordance with our previous biochemical analysis [80].

Metabolism of amino acids, vitamins, cofactors and

hemin. Symbiosis in trypanosomatids is characterized by

intensive metabolic exchanges, reducing the nutritional require-

ments of these trypanosomatids when compared to species without

the symbiotic bacterium, or to aposymbiotic strains. Several

biochemical studies have been carried out analyzing the biosyn-

thetic pathways involved in this intricate relationship as recently

reviewed [76], and our genomic data corroborate these findings. A

schematic description of the potential metabolic interactions

concerning the metabolism of amino acids, vitamins, cofactors,

and hemin is provided in Figure 7.

Both symbiotic bacteria have genes potentially encoding for all

necessary enzymes for lysine, phenylalanine, tryptophan and

tyrosine synthesis, in agreement with previous experimental data

[40]. Tyrosine is required in the growth medium of A. deanei [81],

but it is not essential for S. oncolpelti or S. culicis [41,82,83]. Here, in

the symbiotic bacteria, we found enzymes involved in tyrosine

synthesis, as well as indications that phenylalanine and tyrosine

can be interconverted. In fact, protozoan growth is very slow in

absence of phenylalanine and tryptophan [81], which may

Table 8. Respiratory chain complexes identified in the predicted proteome of A. deanei, S. culicis and their respective
endosymbionts.

A. deanei A. deanei endosymbiont S. culicis S. culicis endosymbiont

Complex I 33 0 33 0

Complex II 10 0 10 0

Complex III 5 0 4 0

Complex IV 10 2* 2 2*

Complex V 10 8 3 8

*The complex IV of the endosymbionts might be a cytochrome d ubiquinol oxidase identified in both organisms, instead a classical cytochrome c oxidase.
doi:10.1371/journal.pone.0060209.t008

Figure 7. Main metabolic exchanges between host and
endosymbionts. Schematic representation of the amino acids,
vitamins, and cofactors exchanged between A. deanei and S. culicis
and their respective symbionts. Dotted lines indicate pathways that
have or might have contributions from both partners, whereas
metabolites inside one of the circles, representing the symbiont or
host, indicate that one partner holds candidate genes coding for
enzymes of the whole biosynthetic pathway. *Candidate genes were
only found for the symbiont of S. culicis and not for the symbiont of A.
deanei. BCAA (branched-chain amino acids) are leucine, isoleucine and
valine.
doi:10.1371/journal.pone.0060209.g007
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indicate that larger amounts of these amino acids are required for

rapid cell proliferation.

Our data indicate that branched-chain amino acid (BCAA)

synthesis mainly occurs in the symbionts except for the last step,

with the branched-chain amino acid aminotransferase found in the

host protozoan.

Among the pathways that (might) involve contributions from

both partners, two have previously been characterized in detail,

the urea cycle and heme synthesis. The urea cycle is complete in

both symbiont-harboring trypanosomatids. Symbiotic bacteria

contribute with ornithine carbamoyltransferase, which converts

ornithine to citrulline, and with ornithine acetyltransferase, which

transforms acetylornithine in ornithine. Conversely, aposymbiotic

strains and symbiont-free Crithidia species need exogenous arginine

or citrulline for cell proliferation [8] [68]. Our genomic data

corroborate these studies.

Contrary to symbiont-free trypanosomatids, A. deanei and S.

culicis do not require any source of heme for growth because the

bacterium contains the required enzymes to produce heme

precursors that complete the heme synthesis pathway in the host

cell [7,9,10,11,84]. Our results support the idea that heme

biosynthesis is mainly accomplished by the endosymbiont, with

the last three steps of this pathway performed by the host

trypanosomatid, and in most cases also by the bacterium as

described in [11]. Furthermore, this metabolic route may

represent the result of extensive gene loss and multiple lateral

gene transfer events in trypanosomatids [11].

According to our genomic analyses, the symbiotic bacteria also

perform the synthesis of histidine, folate, riboflavin, and coenzyme

A, but one step is missing in the middle of each pathway, making

them candidates for metabolic interchange with the host. In the

case of folate and coenzyme A biosynthesis, one candidate gene

was found in the host trypanosomatid. Moreover, none of these

four metabolites are required in the growth medium of A. deanei

and S. culicis [85], suggesting that these pathways are fully

functional.

Candidate genes for the ubiquinone biosynthetic pathway were

found in S. culicis but none for A. deanei endosymbionts. For the

route with chorismate as precursor, only the first out of nine steps

is missing in the S. culicis endosymbiont; moreover a candidate

gene for that step is found in S. culicis genome. Only a few steps of

these pathways are absent in A. deanei and S. culicis host organisms.

In L. major, the ubiquinone ring synthesis has been described as

having either acetate (via chorismate as in prokaryotes) or

aromatic amino acids (as in mammalian cells) as precursors [45].

Methionine is considered essential for the growth of A. deanei, S.

culicis and S. oncopelti [41,81,82]. We were not able to identify one

enzyme among the four involved in the synthesis of methionine

from either pyruvate or serine via cysteine in the genomes of A.

deanei and S. culicis. No candidate to complement this pathway was

found in the symbiotic bacteria.

Purine and pyrimidine metabolism for nucleotide

production. Trypanosomatids are not able to synthesize the

purine ring de novo [86,87,88]. We observed that endosymbiont-

bearing trypanosomatids contain sequences encoding ectonucleo-

tidases from the E-NTPDase family and the adenosine deaminase

family (Table S18), which are required for the hydrolysis and

deamination of extracellular nucleotides [89,90]. Interestingly,

sequences encoding 59-nucleotidases are not found in either

symbiont-bearing trypanosomatid. The absence of this enzyme

can be related to the presence of the endosymbiont, which can

supply adenosine to the host cell, as we found all genes involved in

the de novo pathway in the symbionts, indicating that they are able

to complement the purine requirements of the host (Figure 8).

However, we cannot discard the possibility that adenosine is

transported to the intracellular medium by carriers of monophos-

phate nucleoside or by the presence of other enzymes that have the

same function as 59-nucleotidase. On the other hand, the lack of

59-nucleotidase in A. deanei and S. culicis can be related to the fact

that such protozoa are only insect parasites. According to this idea,

several studies have shown the importance of ectonucleotidases in

the establishment of infection by some trypanosomatid species

[91]. The high activity of ectonucleotidases with concomitant

production of adenosine, a known immune system inhibitor, lead

to high susceptibility to Leishmania infection because adenosine can

induce anti-inflammatory effects on the host [92,93].

Nucleoside transporters can take up nucleosides and nucleo-

bases generated by ectonucleotidase activity. Genes encoding

nucleoside transporters are present in both trypanosomatid

genomes (Table S19), enabling cells to obtain exogenous purines

from the medium. Furthermore, A. deanei and S. culicis contain

intracellular enzymes that can convert purines to nucleotides, such

as adenine phosphoribosyltransferase, hypoxanthine-guanine

phosphoribosyltransferase, adenylate kinase, AMP deaminase,

inosine monophosphate dehydrogenase and GMP synthetase.

These data indicate that these organisms can interconvert

intracellular purines into nucleotides. In contrast, both endosym-

bionts lack all the genes encoding enzymes related to purine

salvage. Nevertheless, the symbiotic bacteria have genes encoding

all the enzymes expected to participate in the de novo synthesis of

purine nucleotides as previously proposed [94,95]. One interesting

possibility is that the symbiotic bacterium is able to supply the host

trypanosomatid with purines. According to this idea, the

endosymbiont participates in the de novo purine nucleotide pathway

of A. deanei, as the aposymbiotic strain is unable to utilize glycine

for the synthesis of purine nucleotides, only for pyrimidine

nucleotide production [87].

Protozoa are generally, but not universally considered to be

capable of synthesizing pyrimidines from glutamine and aspartic

acid, which are used as precursors. Our results indicate that both

symbiont-bearing trypanosomatids carry out de novo pyrimidine

synthesis (Table S19). Interestingly, in silico analyses also revealed

the presence of all the genes for de novo pyrimidine synthesis in both

symbiont genomes, but not for the pyrimidine salvage pathway. A

previous report indicated that A. deanei was able to synthesize

purine and pyrimidine nucleotides from glycine (‘‘de novo’’

pathway) and purine nucleotides from adenine and guanine

(‘‘salvage’’ pathway). Adenine would be incorporated into both

adenine and guanine nucleotides, whereas guanine was only

incorporated into guanine nucleotides, suggesting a metabolic

block at the level of GMP reductase [87].

Deoxyribonucleotides are derived from the corresponding

ribonucleotides by reactions in which the 29-carbon atom of the

D-ribose portion of the ribonucleotide is directly reduced to form

the 29-deoxy derivative. This reaction requires a pair of hydrogen

atoms that are donated by NADPH via the intermediate-carrying

protein thioredoxin. The disulfide thioredoxin is reduced by

NADPH in a reaction catalyzed by thioredoxin reductase,

providing the reducing equivalents for the ribonucleotide reduc-

tase, as observed for the endosymbionts that could provide 29-

deoxy derivatives. In folate metabolism, the formation of thymine

nucleotides requires methylation of dUMP to produce dTMP, a

reaction catalyzed by thymidilate kinase, which is present in A.

deanei, S. culicis, and their respective endosymbionts. Figure 8

summarizes the purine and pyrimidine metabolisms in A. deanei

and S. culicis considering the metabolic complementarity between

the protozoan and the endosymbiont.
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In this way, both symbiont-containing protozoa express a

unique complement of nutritionally indispensable salvage and

interconversion enzymes that enable the acquisition of purines

from the medium. The intracellular purines can be acquired

through the medium by the action of ectonucleotidases and

nucleoside transporters.

Factors Involved in Protozoa-host Interactions
Monoxenic trypanosomatids only parasitize invertebrates,

especially insects belonging to the orders Diptera and Hemiptera

[1]. These organisms have been found in Malphigian tubules, in

the hemolymph and hemocoel, and in the midgut, which is

considered the preferential site for protozoal multiplication and

colonization [1,96,97]. S. culicis, for example, is able to colonize the

insect midgut, to invade the hemocoel and to reach the salivary

glands [97,98]. The presence of the symbiotic bacterium has been

shown to influence the interactions between trypanosomatid cells

and insect cell lines, explanted guts and host insects [4,20]. This

seems to occur because the endosymbiont influences the glyco-

protein and polysaccharide composition of the host, the exposure

of carbohydrates on the protozoan plasma membrane, and the

surface charge [18,19,20,21].

Several glycosyltransferases from the two major families (GT-A

and GT-B [99]) and members of the family 25 (glycosyltransfer-

ases involved in lipo-oligosaccharide protein biosynthesis) are

present in both A. deanei and S. culicis genomes (Table S20). Other

glycosyltransferases with no characteristic domains that are thus

not classified as belonging to the GT-A or GT-B families are also

found in the A. deanei and S. culicis genomes. Importantly, 1,2-

fucosyltransferase transferase is present in A. deanei but not in the S.

culicis dataset, and fucose residues were found in high amounts on

glycoinositolphospholipid (GIPL) molecules of A. deanei, different

from the observations for other trypanosomatids (data not

published). Although the role of fucose is unknown, fucose and

arabinose transfer to lipophosphoglycan (LPG) of Leishmania is

noticed when the culture medium is supplemented with this

carbohydrate [100], suggesting that fucose might have a specific

role in A. deanei-insect interactions.

Another glycosyltransferase found in both A. deanei and S. culicis

genomes and involved in the N-glycosylation of asparagine

residues is the dolichyl-diphosphooligosaccharide-protein glycosyl-

transferase (DDOST), an oligosaccharyltransferase (OST) that is

not classified in any of the above-mentioned families. The A. deanei

and S. culicis DDOSTs contain the STT3 domain, a subunit

required to establish the activity of the oligosaccharyl transferase

(OTase) complex of proteins, and they are orthologous to the

human DDOST. These OTase complexes are responsible for

transferring lipid-linked oligosaccharides to the asparagine side

chain of the acceptor polypeptides in the endoplasmic reticulum

[101], suggesting a conserved N-glycosylation among the trypa-

nosomatids.

Five different GalfT sequences are also present in the

endosymbiont-bearing trypanosomatids, and all of them contain

the proposed catalytic site, indicating genetic redundancy.

Redundancy of GalfTs is commonly observed in many different

trypanosomatid species, as different transferases are used for each

linkage type [102]. As b-galactofuranose (b-Galf) has been shown

to participate in trypanosome-host interactions [103], their

presence in A. deanei and S. culicis might also indicate a role in

the interaction with the insect host. However, no enzymes

involved in synthesis of b-Galf-containing glycoconjugates are

detected in our A. deanei dataset, despite reports of enzymes

involved in b-Galf synthesis in Crithidia spp. [104,105,106].

Surface proteins and protease gene families. One

remarkable characteristic of trypanosomatid genomes is the large

expansion of gene families encoding surface proteins [107].

Experimental data indicated that these genes encode surface

proteins involved in interactions with the hosts. We selected eight

gene families encoding surface proteins present in T. cruzi, T. brucei

and Leishmania spp. to search for homologous sequences in the

genomes of the two symbiont-bearing trypanosomatids. Because

the draft assemblies of these genomes are still fragmented, we also

used a read-based analysis to search for sequences with homology

to these multigene families. It is well known that misassemblies

frequently occur for tandemly repeated genes, as most repetitive

copies collapse into only one or two copies. A total of 3,624,411

reads (corresponding to 1,595 Mb of sequences) from the A. deanei

genome and 2,666,239 reads (corresponding to 924 Mb) from the

S. culicis genome were used in this comparison. In A. deanei and S.

culicis, we identified gene families encoding amastins, gp63, and

Figure 8. Purine production, acquisition, and utilization in A. deanei and S. culicis. The figure illustrates the production, acquisition and
utilization of purines in the host trypanosomes considering the presence of endosymbiont enzymes. This model suggests that the trypanosomatid
acquires purines from the symbiont, which synthesizes them de novo. Some ecto-localized proteins, such as apyrase (APY) and adenosine deaminase
(ADA), could be responsible for the generation of extracellular nucleosides, nucleobases, and purines. Nucleobases and purines could be acquired by
the parasite through membrane transporters (T) or diffusion and could be incorporated into DNA, RNA, and kDNA molecules after ‘‘purine salvage
pathway’’ processing. Abbreviations: NTP (nucleoside tri-phosphate), NDP (nucleoside di-phosphate), NMP (nucleoside mono- phosphate), N
(nucleobase), ADO (adenosine), INO (inosine).
doi:10.1371/journal.pone.0060209.g008
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cysteine peptidases (Table S21). As expected, we could not identify

sequences homologous to mucin-like glycoproteins typical of T.

cruzi [108], variant surface glycoprotein (VSG) characteristic of

African trypanosomes, or trans-sialidases present in the genomes

of all Trypanosoma species.

Calpain-like cysteine peptidases constitute the largest gene

family identified in the A. deanei (85 members) and S. culicis (62

members) genomes, and they are also abundant in trypanosoma-

tids [46]. The presence of the N-terminal fatty acid acylation motif

was found in some members of calpain-like cysteine peptidases,

indicating that some of these peptidases are associated with

membranes, as has also been shown for other members of the

family [109,110]. The relatively large amount of calpain-like

peptidases may be related to the presence of the endosymbiont,

which would require a more complex regulation of the cell cycle

and intracellular organelle distribution [14], as cytosolic calpains

were found to regulate cytoskeletal remodeling, signal transduc-

tion, and cell differentiation [46].

A second large gene family in the A. deanei and S. culicis genomes

encoding surface proteins with proteolytic activity is gp63. In our

genomic analyses, we identified 37 and 9 genes containing

sequences homologous to the gp63 of Leishmania and Trypanosoma

spp. in the genomes of A. deanei and S. culicis, respectively. Proteins

belonging to this group of zinc metalloproteases, also known as

major surface protease (MSP) or leishmanolysin, have been

characterized in various species of Leishmania and Trypanosoma

[111]. Extensive studies on the role of this family in Leishmania

indicate that they are involved in several aspects of host-parasite

interaction including resistance to complement-mediated lysis, cell

attachment, entry, and survival in macrophages [112]. Gene

deletion studies in T. brucei indicated that the TbMSP of

bloodstream trypanosomes acts in concert with phospholipase C

to remove the variant surface protein from the membrane,

required for parasite differentiation into the procyclic insect form

[113]. Gp63-like molecules have been observed on the cell surface

of symbiont-harboring trypanosomatids [114]. Importantly, the

symbiont containing A. deanei displays a higher amount (2-fold) of

leishmanolysin-like molecules at the surface compared to the

aposymbiotic strain, which are unable to colonize insects [4]. As

anti-gp63 antibodies decrease protozoan-insect interactions [21],

our results reinforce the idea that the presence of such interactions

caused the expansion of this gene family in endosymbiont-bearing

organisms.

In contrast, only two copies of lysosomal cathepsin-like cysteine

peptidases were identified in the A. deanei (AGDE05983 and

AGDE10254) and S. culicis genomes (STCU01417 and

STCU06430). The two A. deanei sequences encode identical

cathepsin-B-like proteins, whereas the two S. culicis genes encode

proteases of the cathepsin-L-like group. This class of cysteine

peptidase is represented by cruzain or cruzipain, major lysosomal

proteinases of T. cruzi expressed by parasites found in insect and

vertebrate hosts, and encoded by a large gene family [115,116]. In

T. cruzi, these enzymes have important roles in various aspects of

the host/parasite relationship and in intracellular digestion as a

nutrient source [115]. Conversely, the low copy number of this

class of lysosomal peptidase in symbiont-containing trypanosoma-

tids seems to be related to their low nutritional requirements.

Amastins constitute a third large gene family in the A. deanei and

S. culicis genomes that encodes surface proteins. Initially described

in T. cruzi [117], amastin genes have also been identified in various

Leishmania species [118], in A. deanei and in another related insect

parasite, Leptomonas seymouri [119]. In Leishmania, amastins consti-

tute the largest gene family with gene expression that is regulated

during the parasite life cycle. As amastin has no sequence

similarity to any other known protein, its function remains

unknown. In this work, we identified 31 genes with sequences

belonging to all four sub-families of amastins in the genome of A.

deanei and 14 copies of amastin genes in S. culicis. Similar to

Leishmania, members of all four amastin subfamilies were identified

in symbiont-containing species (see Figure S7).

Conclusion
The putative proteome of symbiont-bearing trypanosomatids

revealed that these microorganisms exhibit unique features when

compared to other protozoa of the same family and that they are

most closely related to Leishmania species. Most relevant are the

differences in the genes related to cytoskeleton, paraflagellar and

kinetoplast structures, along with a unique pattern of peptidase

gene organization that may be related to the presence of the

symbiont and of the monoxenic life style. The symbiotic bacteria

of A. deanei and S. culicis are phylogenetically related with a

common ancestor, most likely a b-proteobacteria of the Alcali-

genaceae family. The genomic content of these symbionts is highly

reduced, indicating gene loss and/or transfer to the host cell

nucleus. In addition, we confirmed that both bacteria contain

genes that encode enzymes that complement several metabolic

routes of the host trypanosomatids, supporting the fitness of the

symbiotic relationship.

Supporting Information

Figure S1 Evolutionary history of endosymbionts ob-

tained through a phylogenomic approach. The figure

indicates analysis using the Neighbor joining (NJ) (A) and

Maximum parsimony (MP) (B) methods. For NJ and MP, the

percentage of replicate trees in which the associated taxa clustered

together in the bootstrap test (1,500 replicates) is shown next to the

branches. The scale bar represents amino acids substitutions per

site.

(TIF)

Figure S2 Amino acid alignment of Kinetoplast Associ-

ated Proteins. Panel (A) shows the KAP4 ClustalW alignment of

A. deanei (AdKAP-4), S. culicis (ScKAP-4) and C. fasciculata (CfKAP-

4). Panel (B) shows the ClustalW alignment of KAP2 of S. culicis

and C. fasciculata (CfKAP2-2, GenBank Q9TY84 and CfKAP2-1

GeneBank Q9TY83). Black color highlight is 100% similar gray is

80 to 99% similar light gray is 60 to 79% similar white is less than

59% similar.

(TIF)

Figure S3 Comparison of the histone sequences of A.

deanei and S. culicis with other trypanosomes. Residues

indicated in red correspond to lysines that are acetylated and

green, methylated in T. cruzi and T. brucei [121]. Residues

indicated in blue are predicted site for phosphorylation upon DNA

damage as shown in T. brucei [122].

(TIF)

Figure S4 Phylogenetic tree of sirtuins from Trypano-

somatids. The numbers represent bootstrap values. The proteins

from each species are grouped in nuclear and mitochondrial Sir2

based on the sequences of S. cerevisiae (nuclear), and the similarity

with S. coelicolor and S. enterica.

(TIF)

Figure S5 Phylogenetic tree of spliced leader (SL)

sequences of A. deanei and S. culicis. A neighbor-joining

tree (1000 bootstraps) obtained by MEGA 5.0 using the SL gene

from the A. deanei and S. culicis genome sequences and sequences
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retrieved from GenBank (S. culicis DQ860203.1, L. pyrrhocoris

JF950600.1, H. samuelpessoai X62331.1, H. mariadeanei

AY547468.1, A. deanei EU099545.1, T. rangeli AF083351 and T.

cruzi AY367127).

(TIF)

Figure S6 Comparison between the amino acid se-

quences of S. culicis CRK sequences. The figure shows a

ClustalW alignment with the ATP binding domains boxed in

yellow, PSTAIRE motifs boxed in blue, and the catalytic domain

boxed in pink. Red residues indicate the observed variations in the

amino acids involved in the activity.

(TIF)

Figure S7 Tree showing the distribution of amastin sub-

families in A. deanei. The amastins are grouped as delta-

amastin (red), gamma-amastins (yellow), alpha-amastins (dark

blue) and beta-amastins (light blue).

(TIF)
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protein (KAPs) in A. deanei and S. culicis.

(DOC)

Table S2 Histone acetyltransferases of the MYST

family present in A. deanei and S. culicis compared to
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Appendix C

Additional material: Endosymbiosis in

trypanosomatids: the genomic

cooperation between bacterium and

host in the synthesis of essential

amino acids is heavily influenced by

multiple horizontal gene transfers







Figure C.1: Genomic context and GC content for candidate HGT genes in the
Trypanosomatidae analyzed in this work. Three-page figure. Arrows show TBLASTN
alignments of the genome against UniRef100 and KEGG proteins. Alignment orientation is
displayed in blue or red, except for the alignment for the gene currently in focus, which is
colored black. Coordinates are in kilobases.
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Figure C.3: Methionine salvage pathway. Enzymes surrounded by a thick
gray box were shown to be horizontally transferred from Bacteria (see main text).
Metabolites – I: methionine; II: S-adenosylmethionine; III: S-adenosylmethioninamine;
IV: S-methyl-5-thioadenosine; V: S-methyl-5-thioribose; VI: S-methyl-5-thioribose 1-
phosphate; VII: S-methyl-5-thioribulose 1-phosphate; VIII: 2,3-diketomethylthiopentyl-1-
phosphate; IX: 2-hydroxy-3-keto-5-methylthiopentenyl-1-phosphate; X: 1,2-dihydroxy3-keto-
5-methylthiopentene; XI: 4-methylthio-2-oxobutanoate. Enzymes – 2.5.1.6: methionine
adenosyltransferase; 4.1.1.50: adenosylmethionine decarboxylase; 2.5.1.16: spermidine syn-
thase; 3.2.2.9: adenosylhomocysteine nucleosidase; 3.2.2.16: methylthioadenosine nucleosi-
dase; 2.7.1.100: S-methyl-5-thioribose kinase; 2.4.2.28: S-methyl-5’-thioadenosine phospho-
rylase; 5.3.1.23: S-methyl-5-thioribose-1-phosphate isomerase; 4.2.1.109: methylthioribulose
1-phosphate dehydratase; 3.1.3.77: acireductone synthase; 1.13.11.54: acireductone dioxyge-
nase; 2.6.1.5: tyrosine transaminase; 2.6.1.57: aromatic-amino-acid transaminase.



Figure C.4: Maximum likelihood phylogeny of diaminopimelate epimerase
(EC:5.1.1.7). Overall tree colored according to taxonomic affiliation of sequences. Val-
ues on nodes represent bootstrap support (only 50 or greater shown) and distance bar only
applies to the overall tree and not to the detailed regions.



Figure C.5: Maximum likelihood phylogeny of diaminopimelate decarboxylase
(EC:4.1.1.20). Overall tree colored according to taxonomic affiliation of sequences. Val-
ues on nodes represent bootstrap support (only 50 or greater shown) and distance bar only
applies to the overall tree and not to the detailed regions.



Figure C.6: Maximum likelihood phylogeny of serine O-acetyltransferase
(EC:2.3.1.30). Overall tree colored according to taxonomic affiliation of sequences. Val-
ues on nodes represent bootstrap support (only 50 or greater shown) and distance bar only
applies to the overall tree and not to the detailed regions.



Figure C.7: Maximum likelihood phylogeny of cysteine synthase (EC:2.5.1.47).
Overall tree colored according to taxonomic affiliation of sequences. Values on nodes represent
bootstrap support (only 50 or greater shown) and distance bar only applies to the overall tree
and not to the detailed regions.



Figure C.8: Maximum likelihood phylogeny of homoserine O-succinyltransferase
(EC:2.3.1.46). Overall tree colored according to taxonomic affiliation of sequences. Values
on nodes represent bootstrap support (only 50 or greater shown) and distance bar only applies
to the overall tree and not to the detailed regions.



Figure C.9: Maximum likelihood phylogeny of DNA (cytosine-5-)-
methyltransferase (EC:2.1.1.37). Overall tree colored according to taxonomic affiliation
of sequences. Values on nodes represent bootstrap support (only 50 or greater shown) and
distance bar only applies to the overall tree and not to the detailed regions.



Figure C.10: Maximum likelihood phylogeny of cystathionine gamma-synthase,
O-acetylhomoserine aminocarboxypropyltransferase, and cystathionine beta-lyase
(EC:2.5.1.48, EC:2.5.1.49, and EC:4.4.1.8). Overall tree colored according to taxonomic
affiliation of sequences. Values on nodes represent bootstrap support (only 50 or greater
shown) and distance bar only applies to the overall tree and not to the detailed regions.



Figure C.11: Maximum likelihood phylogeny of homocysteine S-methyltransferase
(EC:2.1.1.10). Overall tree colored according to taxonomic affiliation of sequences. Values
on nodes represent bootstrap support (only 50 or greater shown) and distance bar only applies
to the overall tree and not to the detailed regions.



Figure C.12: Maximum likelihood phylogeny of 5-
methyltetrahydropteroyltriglutamate-homocysteine S-methyltransferase
(EC:2.1.1.14). Overall tree colored according to taxonomic affiliation of sequences.
Values on nodes represent bootstrap support (only 50 or greater shown) and distance bar
only applies to the overall tree and not to the detailed regions.



Figure C.13: Maximum likelihood phylogeny of S-methyl-5-thioribose kinase
(EC:2.7.1.100). Overall tree colored according to taxonomic affiliation of sequences. Values
on nodes represent bootstrap support (only 50 or greater shown) and distance bar only applies
to the overall tree and not to the detailed regions.



Figure C.14: Maximum likelihood phylogeny of L-threonine aldolase (EC:4.1.2.5).
Overall tree colored according to taxonomic affiliation of sequences. Values on nodes represent
bootstrap support (only 50 or greater shown) and distance bar only applies to the overall tree
and not to the detailed regions.



Figure C.15: Maximum likelihood phylogeny of (EC:4.2.1.20). Overall tree colored
according to taxonomic affiliation of sequences. Values on nodes represent bootstrap support
(only 50 or greater shown) and distance bar only applies to the overall tree and not to the
detailed regions.



Figure C.16: Maximum likelihood phylogeny of aminoacylase (EC:3.5.1.14). Over-
all tree colored according to taxonomic affiliation of sequences. Values on nodes represent
bootstrap support (only 50 or greater shown) and distance bar only applies to the overall tree
and not to the detailed regions.



Figure C.17: Maximum likelihood phylogeny of acetylornithine deacetylase
(EC:3.5.1.16). Overall tree colored according to taxonomic affiliation of sequences. Val-
ues on nodes represent bootstrap support (only 50 or greater shown) and distance bar only
applies to the overall tree and not to the detailed regions.



Figure C.18: Maximum likelihood phylogeny of argininosuccinate synthase
(EC:6.3.4.5). Overall tree colored according to taxonomic affiliation of sequences. Val-
ues on nodes represent bootstrap support (only 50 or greater shown) and distance bar only
applies to the overall tree and not to the detailed regions.



Figure C.19: Maximum likelihood phylogeny of argininosuccinate lyase
(EC:4.3.2.1). Overall tree colored according to taxonomic affiliation of sequences. Val-
ues on nodes represent bootstrap support (only 50 or greater shown) and distance bar only
applies to the overall tree and not to the detailed regions.



Figure C.20: Maximum likelihood phylogeny of arginase (EC:3.5.3.1). Overall tree
colored according to taxonomic affiliation of sequences. Values on nodes represent bootstrap
support (only 50 or greater shown) and distance bar only applies to the overall tree and not
to the detailed regions.



Figure C.21: Maximum likelihood phylogeny of ornithine cyclodeaminase
(EC:4.3.1.12). Overall tree colored according to taxonomic affiliation of sequences. Val-
ues on nodes represent bootstrap support (only 50 or greater shown) and distance bar only
applies to the overall tree and not to the detailed regions.



EC number Accession Numbers

1.1.1.3 KC476503 KC545207 KC545098 KC584075 KC503395 KC545151

1.13.11.54 KC140182 KC545206 KC545090 KC503336 KC584069 KC503392 KC545145

1.14.16.1 KC476510 KC545215 KC545100 KC503346 KC584077 KC503406 KC545155

1.2.1.41 KC140162 KC545185 KC545068 KC503312 KC584044 KC503371 KC545121

1.2.4.1

1.4.1.2 KC005719 KC545170 KC545056 KC503303 KC584034 KC503356 KC545114

1.4.1.4 KC005720 KC545171 KC545057 KC503296 KC584035 KC545110

1.5.1.12 KC140160 KC545183 KC545058 KC503297 KC584036 KC503369 KC545125

1.5.1.2 KC140159 KC545182 KC545070 KC503311 KC584049 KC503368 KC545124

1.5.99.8 KC140163 KC545186 KC545071 KC503315 KC584050 KC503372 KC545127

2.1.1.10 KC140174 KC545198 KC545082 KC503324 KC584061 KC503384 KC545139

2.1.1.13 KC140175 KC545199 KC545084 KC503325 KC584052 KC503385 KC545140

2.1.1.14 KC140173 KC545197 KC545083 KC503326 KC584062 KC545132

2.1.1.37 KC140164 KC545188 KC545073 KC503375 KC545129

2.1.2.1 KC503343 KC584071

2.1.3.3 KC503373

2.3.1.30 KC140166 KC545189 KC545074 KC503319 KC584053 KC503376 KC545130

2.3.1.46 KC140171 KC545194 KC545079 KC503323 KC584057 KC503381

2.4.2.28 KC140179 KC545203 KC545087 KC503332 KC584066 KC503389 KC545142

2.5.1.16 KC140178 KC545202 KC503331 KC584065 KC503388 KC545134

2.5.1.47 KC140168 KC545191 KC545077 KC503320 KC584055 KC503378 KC545136

2.5.1.48 KC140170 KC545193 KC545078 KC503321 KC584056 KC503380 KC545131

2.5.1.49 KC140169 KC545192 KC545076 KC503322 KC584054 KC503379

2.5.1.6 KC140176 KC545200 KC545085 KC503335 KC584063 KC503386 KC545133

2.6.1.1

2.6.1.11 KC140151 KC545174 KC545060 KC584038

2.6.1.42 KC503347 KC584080 KC503409

2.6.1.2 KC005716 KC545167 KC545047 KC503353

2.6.1.5 KC476513 KC545218 KC584078 KC503405 KC545158

2.7.1.100 KC503394 KC545146

2.7.1.39 KC476509 KC545213 KC545097 KC503342 KC584074 KC503398 KC545153

2.7.2.11 KC140161 KC545184 KC503305 KC503370 KC545126

3.1.3.77 KC503393 KC545147

3.3.1.1 KC140165 KC545187 KC545072 KC503316 KC584051 KC503374 KC545128

3.5.1.1 KC005718 KC545169 KC503298 KC584031 KC503355 KC545113

3.5.1.14 KC140152 KC545175 KC545064 KC584039

3.5.1.16

3.5.3.1 KC140157 KC545180 KC545063 KC503313 KC584043 KC503367 KC545123

4.1.1.20 KC476502 KC545214 KC545099 KC503345 KC584076 KC503401 KC545154

4.1.1.50 KC140177 KC545201 KC545086 KC503337 KC584064 KC503387 KC545141

4.1.2.5 KC476507 KC545211 KC545091 KC503339 KC584072 KC545150

4.2.1.109 KC140181 KC545205 KC545089 KC503334 KC584068 KC503391 KC545144

4.2.1.20 KC476504 KC545208 KC545093 KC503340 KC584070 KC503399

4.2.1.22 KC140167 KC545190 KC545075 KC503338 KC584060 KC503377 KC545135

4.2.3.1 KC476508 KC545212 KC545096 KC503341 KC584073 KC503400 KC545152

4.3.1.1 KC005715 KC545166 KC545048 KC503352

4.3.1.12 KC140158 KC545181 KC545069 KC503314 KC584048

4.3.1.19 KC476518 KC545223 KC545092 KC503344 KC584079 KC503410 KC545163

4.3.2.1 KC140155 KC545178 KC545050 KC503302 KC584029 KC503365 KC545122

4.3.2.2 KC005713 KC545164 KC545049 KC503293 KC503350 KC545108

4.4.1.8 KC140172

5.1.1.7 KC503402

5.3.1.23 KC140180 KC545204 KC545088 KC503333 KC584067 KC503390 KC545143

6.3.1.1 KC005717 KC545168 KC545055 KC503295 KC584030 KC503354 KC545112

6.3.1.2 KC005721 KC545172 KC503304 KC584037 KC503359 KC545111

6.3.4.4 KC005714 KC545165 KC545052 KC503292 KC584026 KC503351 KC545109

6.3.4.5 KC140156 KC545179 KC545051 KC503301 KC584027 KC503366 KC545120

6.3.5.5 KC005722 KC545173 KC545059 KC503294 KC584028 KC503360 KC545115

Strigomonas 
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Strigomonas 
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Figure C.22: Genbank accession numbers for Trypanosomatidae genes character-
ized in this study.



EC number* Gene names / notes

1.1.1.23 BCUe_0232 ST1e_0252 CONe_0227 CDEe_0237 CDSe_0230 hisD

1.1.1.25 BCUe_0042 ST1e_0050 CONe_0048 CDEe_0053 CDSe_0049 aroE

1.1.1.3 BCUe_0615 ST1e_0695 CONe_0599 CDEe_0640 CDSe_0625 thrA metL

1.1.1.85 BCUe_0453 ST1e_0503 CONe_0438 CDEe_0465 CDSe_0457 leuB

1.1.1.86 BCUe_0788 ST1e_0892 CONe_0770 CDEe_0817 CDSe_0803 ilvC

1.2.1.11 BCUe_0454 ST1e_0504 CONe_0439 CDEe_0466 CDSe_0458 asd

1.2.1.38 BCUe_0027 ST1e_0034 CONe_0032 CDEe_0037 CDSe_0033 argC

1.2.4.1 BCUe_0535 ST1e_0604 CONe_0525 CDEe_0553 CDSe_0547 aceE

1.3.1.13 BCUe_0689 ST1e_0730 CONe_0670 CDEe_0713 CDSe_0699 tyrA

1.3.1.26 BCUe_0811 ST1e_0920 CONe_0794 CDEe_0840 CDSe_0829 dapB

2.1.2.1 BCUe_0023 ST1e_0029 CONe_0028 CDEe_0031 CDSe_0028 glyA

2.1.3.3 BCUe_0601 ST1e_0676 CONe_0586 CDEe_0623 CDSe_0612 argF

2.2.1.6 BCUe_0789 ST1e_0893 CONe_0771 CDEe_0818 CDSe_0804 ilvH small (regulatory) subunit

2.2.1.6 BCUe_0790 ST1e_0895 CONe_0772 CDEe_0819 CDSe_0805 ilvB large (catalytic) subunit

2.3.1.1 2.3.1.35 BCUe_0289 ST1e_0312 CONe_0281 CDEe_0289 CDSe_0282 argJ

2.3.1.1 BCUe_0426 ST1e_0469 NF** CDEe_0432 CDSe_0430 argB/A

2.3.1.117 BCUe_0472 ST1e_0523 CONe_0456 CDEe_0485 CDSe_0478 dapD

2.3.3.13 BCUe_0218 ST1e_0237 CONe_0211 CDEe_0220 CDSe_0215 leuA

2.4.2.- BCUe_0229 ST1e_0249 CONe_0224 CDEe_0233 CDSe_0227 hisH

2.4.2.17 BCUe_0233 ST1e_0253 CONe_0228 CDEe_0238 CDSe_0231 hisG

2.4.2.18 BCUe_0250 ST1e_0273 CONe_0250 CDEe_0256 CDSe_0251 trpD

2.5.1.19 BCUe_0688 ST1e_0769 CONe_0669 CDEe_0712 CDSe_0698 aroA

2.5.1.54 BCUe_0609 ST1e_0688 CONe_0593 CDEe_0631 CDSe_0620 aroG

2.5.1.6 BCUe_0116 ST1e_0127 CONe_0113 CDEe_0125 CDSe_0118 metK

2.5.1.57 BCUe_0479 ST1e_0535 CONe_0466 CDEe_0492 CDSe_0486 tyrB

2.6.1.11 BCUe_0215 ST1e_0233 CONe_0208 CDEe_0217 CDSe_0211 argD

2.6.1.17 BCUe_0473 ST1e_0526 CONe_0458 CDEe_0486 CDSe_0480 dapC

2.6.1.57 BCUe_0479 ST1e_0535 CONe_0466 CDEe_0492 CDSe_0486 tyrB

2.6.1.9 BCUe_0231 ST1e_0251 CONe_0226 CDEe_0235 CDSe_0229 hisC

2.6.1.9 BCUe_0690 ST1e_0771 CONe_0671 CDEe_0714 CDSe_0700 hisC

2.7.1.71 BCUe_0145 ST1e_0153 CONe_0137 CDEe_0147 CDSe_0145 aroK

2.7.2.4 BCUe_0398 ST1e_0441 CONe_0384 CDEe_0401 CDSe_0397 lysC

2.7.2.8 BCUe_0090 ST1e_0099 CONe_0088 CDEe_0096 CDSe_0095 argB

3.5.1.18 BCUe_0471 ST1e_0522 CONe_0455 CDEe_0484 CDSe_0476 dapE

3.5.4.19 BCUe_0226 ST1e_0245 CONe_0221 CDEe_0229 CDSe_0224 hisI

3.6.1.31 BCUe_0225 ST1e_0244 CONe_0220 CDEe_0228 CDSe_0223 hisE

4.1.1.20 BCUe_0149 ST1e_0158 CONe_0143 CDEe_0152 CDSe_0149 lysA

4.1.1.48 BCUe_0249 ST1e_0272 CONe_0249 CDEe_0255 CDSe_0250 trpC

4.1.3.- BCUe_0227 ST1e_0246 CONe_0222 CDEe_0230 CDSe_0225 hisF

4.1.3.27 BCUe_0251 ST1e_0274 CONe_0251 CDEe_0257 CDSe_0252 trpG component II

4.1.3.27 BCUe_0253 ST1e_0275 CONe_0252 CDEe_0258 CDSe_0253 trpE component I

4.2.1.10 BCUe_0040 ST1e_0048 CONe_0045 CDEe_0051 CDSe_0046 aroQ

4.2.1.19 BCUe_0230 ST1e_0250 CONe_0225 CDEe_0234 CDSe_0228 hisB

4.2.1.20 BCUe_0742 ST1e_0840 CONe_0720 CDEe_0768 CDSe_0755 alpha subunit

4.2.1.20 BCUe_0743 ST1e_0841 CONe_0722 CDEe_0770 CDSe_0756 beta subunit

4.2.1.33 4.2.1.35 BCUe_0451 ST1e_0501 CONe_0436 CDEe_0462 CDSe_0455 leuC large subunit

4.2.1.33 4.2.1.35 BCUe_0452 ST1e_0502 CONe_0437 CDEe_0463 CDSe_0456 leuD small subunit

4.3.3.7 BCUe_0380 ST1e_0422 CONe_0371 CDEe_0382 CDSe_0379 dapA

4.2.1.9 BCUe_0298 ST1e_0326 CONe_0291 CDEe_0297 CDSe_0291 ilvD

4.2.3.4 BCUe_0144 ST1e_0152 CONe_0136 CDEe_0146 CDSe_0143 aroB

4.2.3.5 BCUe_0450 ST1e_0499 CONe_0434 CDEe_0461 CDSe_0454 aroC

4.3.1.19 BCUe_0074 ST1e_0080 CONe_0076 CDEe_0080 CDSe_0079

4.3.1.19 BCUe_0303 ST1e_0333 CONe_0296 CDEe_0304 CDSe_0297 ilvA

4.3.2.2 BCUe_0606 ST1e_0681 CONe_0590 CDEe_0628 CDSe_0618 purB

5.1.1.7 BCUe_0118 ST1e_0130 CONe_0116 CDEe_0126 CDSe_0120 dapF

5.3.1.16 BCUe_0228 ST1e_0248 CONe_0223 CDEe_0231 CDSe_0226 hisA

5.3.1.24 BCUe_0456 ST1e_0507 CONe_0441 CDEe_0468 CDSe_0461 trpF

5.4.99.5 4.2.1.51 BCUe_0691 ST1e_0772 CONe_0672 CDEe_0715 CDSe_0701 pheA

6.3.4.4 BCUe_0635 ST1e_0718 CONe_0615 CDEe_0658 CDSe_0644 purA

6.3.5.5 BCUe_0369 ST1e_0409 CONe_0363 CDEe_0369 CDSe_0366 carA small subunit

6.3.5.5 BCUe_0370 ST1e_0411 CONe_0364 CDEe_0370 CDSe_0367 carB large subunit

Ca. K. 
blastocrithidii Ca. K. galatii

Ca. K. 
oncopeltii Ca. K. crithidii

Ca. K. 
desouzaii

ilvA two C-terminal threonine 
dehydratase domains

Figure C.23: Locus tags for the Ca. Kinetoplastibacterium genes analyzed in this
study. * two EC numbers in one row indicate putative bifunctional enzymes. NF**: enzyme
present in the genome as a putative pseudogene.
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ABSTRACT

Motivation: The increasing availability of metabolomics data

enables to better understand the metabolic processes involved in

the immediate response of an organism to environmental changes

and stress. The data usually come in the form of a list of metabolites

whose concentrations significantly changed under some conditions,

and are thus not easy to interpret without being able to precisely

visualize how such metabolites are interconnected.

Results: We present a method that enables to organize the data

from any metabolomics experiment into metabolic stories. Each

story corresponds to a possible scenario explaining the flow of

matter between the metabolites of interest. These scenarios may

then be ranked in different ways depending on which interpretation

one wishes to emphasize for the causal link between two affected

metabolites: enzyme activation, enzyme inhibition or domino effect

on the concentration changes of substrates and products. Equally

probable stories under any selected ranking scheme can be further

grouped into a single anthology that summarizes, in a unique subnet-

work, all equivalently plausible alternative stories. An anthology is

simply a union of such stories. We detail an application of the

method to the response of yeast to cadmium exposure. We use this

system as a proof of concept for our method, and we show that we

are able to find a story that reproduces very well the current know-

ledge about the yeast response to cadmium. We further show that this

response is mostly based on enzyme activation. We also provide a

framework for exploring the alternative pathways or side effects this

local response is expected to have in the rest of the network. We

discuss several interpretations for the changes we see, and we sug-

gest hypotheses that could in principle be experimentally tested.

Noticeably, our method requires simple input data and could be

used in a wide variety of applications.

Availability and implementation: The code for the method

presented in this article is available at http://gobbolino.gforge.inria.fr.

Contact: pvmilreu@gmail.com; vincent.lacroix@univ-lyon1.fr; marie-

france.sagot@inria.fr

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

One of the main goals of metabolic studies is to understand the

metabolic processes involved in the adaptation to an environ-

mental change. Recently, metabolomic techniques gained the

spotlight by providing a way to monitor metabolism by measur-

ing the concentration of metabolites in different conditions or at

different time points. A typical result from such an experiment is

a list of metabolites whose concentrations significantly changed

when the cell or organism was exposed to some stress. How to

interpret this list became then a new research topic, consisting in

identifying the metabolic processes that link the metabolites

of interest, possibly explaining the observed variations in their

concentrations. This topic goes in the literature by the name

of ‘metabolite set enrichment analysis’, and is an extension to

metabolism of work that was initiated in the context of transcrip-

tomics and then proteomics under the name of ‘gene set enrich-

ment analysis’ [see (Subramanian et al., 2005) for what is

possibly the first work on this and (Khatri et al., 2012) for a

recent survey]. The simplest idea one may think of is to highlight

the set of metabolites identified in the experiment that have

significantly changed their concentration, let us call them discri-

minating compounds, and then to visually analyze their intercon-

nections. This is what is done notably in Xia et al. (2012).

However, like a number of other approaches on metabolite set

enrichment analysis, the projection of enriched metabolites is

done on pathways instead of the whole network, thereby missing*To whom correspondence should be addressed.

� The Author 2013. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial

re-use, please contact journals.permissions@oup.com

 b
y
 g

u
est o

n
 D

ecem
b
er 2

3
, 2

0
1
3

h
ttp

://b
io

in
fo

rm
atics.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 



(alternative) pathways not annotated in current databases, or

more generally paths traversing several pathways.

For genome-scale networks, the metabolism of a whole organ-

ism is considered, which may be large (Thiele and Palsson, 2010),

whereas a metabolic perturbation caused by some stress condi-

tion may impact only a small portion of this complex network.

Even if it is sometimes possible to visually identify the pathways

that explain some of the variations in the monitored metabolites,

getting an overall explanation for all the observed variations

usually cannot be performed by visual inspection.

Recently, automatic methods have been proposed to deal with

this kind of data (Antonov et al., 2009; Dittrich et al., 2008;

Faust et al., 2010; Leader et al., 2011). A natural idea is to try

to link all discriminating compounds through chains of reac-

tions. One possible model for this is by means of a Steiner

tree, which is a minimum cost tree that connects all nodes

belonging to a predefined subset called terminals, which in the

case of metabolism would be the discriminating compounds

(Dittrich et al., 2008; Scott et al., 2005). However, any pair of

metabolites may be connected through several alternative paths

within a network, and each of these paths may validly explain the

observed changes of concentration. In this context, the extraction

of subgraphs appears to be more relevant than the extraction of

subtrees. The number of alternative paths between two metabol-

ites may, however, be large and restricting the search to all

the shortest or lightest (the weight is given by the sum of the

out-degrees of the vertices in the path) paths between pairs of

metabolites seems to be a realistic compromise.

This is the approach followed by (Croes et al., 2006; Faust

et al., 2010; van Helden et al., 2002) where the authors concen-

trate on a pair of discriminating compounds and search for sub-

graphs corresponding to source-to-sink paths between them. In

Antonov et al. (2009), this approach is pushed one step further as

the authors consider all pairs of metabolites and unify all the

shortest paths, this time with a maximum length k. In practice,

this may lead to large networks (if k is too big) or to disconnected

ones (if k is too small).

The aforementionedmethods are based only on the topology of

the network, but one could consider different approaches based

on flux distributions over the set of reactions, such as elementary

modes (Schuster andHilgetag, 1994; Schuster et al., 1999) that are

minimal subnetworks working at steady state. One difficulty in

this case is that flux-based models need stoichiometric values as

well as a definition of the boundaries of the system under analysis,

which are not always simple to identify, particularly in the case of

a metabolomics experiment in which the list of discriminating

compounds does not directly define such boundaries. Moreover,

flux approaches are focused on reactions and are not designed to

take into account endogenous metabolite concentrations. The

very same metabolites may play different roles in different meta-

bolic processes, being source in one, intermediate in a second and

target in a third one. The inability and the unwillingness to tell, a

priori, the role of the discriminating compounds in each scenario

to be proposed is a key factor of our approach: we are interested

not only in connecting the discriminating compounds but also in

establishing their individual role for each scenario.

Our approach is a subgraph extraction technique in which we

want to find maximal directed acyclic subgraphs (DAGs) whose

set of sources and targets are discriminating compounds. We call

such subgraphs metabolic stories, or for short, simply stories. In

practice, for a given set of discriminating compounds, the

number of stories may be large. Because we do not have a

clear criterion for choosing which of these stories is the most

relevant, we first aim at enumerating them all. In a second

step, we discuss ways to rank them based on how the concentra-

tion of the discriminating compounds is observed to vary in the

experiment. This procedure allows a good filter of the solutions,

selecting stories that best fit the experimental data.

2 MODELS

2.1 Modeling metabolic stories

In this section, we introduce the notion of story and give a

rationale for its definition. Briefly, stories are subgraphs that

summarize the flow of matter from a set of source metabolites

to a set of target metabolites. The candidates to be the endpoints

(sources or targets) of a story should belong to the set of

discriminating compounds. To guarantee that stories will have

at least one source and one target, we introduce the acyclicity

constraint. These two combined constraints lead us to search for

DAGs with sources and targets contained in the given set of

discriminating compounds. Then, because there can be several

paths connecting two discriminating compounds and we want

the story to contain all these alternative paths, we impose a con-

straint of maximality, that is, we search for maximal DAGs, in

the sense that alternative pathways between all the nodes should

be included, if their addition does not create cycles. In other

words, a DAG is maximal if by adding any arc makes it not a

DAG anymore, meaning that it contains at least one cycle.

Our goal is to have an algorithm that enumerates all stories,

i.e. to provide all possible scenarios that explain the observed

transformations. Because our focus is on the relation between

discriminating compounds, we use a representation of metabolic

networks focused on metabolites, the so-called compound net-

work (Lacroix et al., 2008), that is a directed graph in which

vertices are compounds and there is an arc from a compound

to another compound if there is a reaction that consumes the first

to produce the second.

More formally, we introduce a constrained version of the prob-

lem of enumerating all maximal DAGs of a graph G

(Schwikowski and Speckenmeyer, 2002). Let G ¼ ðB [W,EÞ be

a directed graph such that B \W ¼ ;. We write V ¼ B [W.

Nodes in B are said to be black nodes and correspond to the

discriminating compounds, whereas those in W are said to be

white nodes. Let dþðuÞ and d�ðuÞ denote, respectively, the in-

degree and the out-degree of a node u. Node u is called a source

if dþðuÞ ¼ 0 and d�ðuÞ40 and a target if d�ðuÞ ¼ 0 and dþðuÞ40.

A metabolic story of G is a maximal acyclic subgraph

G0 ¼ ðB [W
0,E0Þ of G with W

0 � W and E0 � E and such

that, for each node w 2 W
0, w is neither a source nor a target

red in G0. Maximality means that it is not possible to add other

arcs or nodes without creating cycles, or white sources or targets.

We denote by �ðGÞ the set of stories of G.

2.2 Enumerating metabolic stories

A first step of our algorithm to enumerate �ðGÞ is to apply

compression operations on the input graph obtaining a more
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compact representation, which is equivalent in terms of story

sets. The operations are (i) white source and target removal

that consists in removing iteratively white nodes that are either

sources or targets, as such nodes cannot appear in any story;

(ii) self-loop removal that consists in removing all arcs of the

form ðu, uÞ: because stories are acyclic, such arcs do not appear

in any story; (iii) forward and backward bottleneck removal, that

consists in removing a white node v whose out-degree (respect-

ively, in-degree) is equal to 1, and directly connecting any pre-

decessor (respectively, successor) of v to the unique successor

(respectively predecessor) of v (without creating multiarcs). Our

preprocessing algorithm consists in applying operations (i), (ii)

and (iii) successively until no more white sources and targets,

self-loops and bottlenecks are present in the graph. We call the

resulting graph a compressed network.

In (Acuna et al., 2012), we proposed a first method to enu-

merate stories based on a polynomial-time algorithm to compute

one story. This is briefly recalled in Supplementary Material S1.

More recently we developed a much faster enumerator for stories

based on a linear-time enumeration algorithm for non-maximal

stories (Borassi et al., 2013) that allows us to explore the whole

set of solutions even for genome-scale metabolic networks. This

is the enumerator algorithm we use here.

2.3 Scoring function

From a formal point of view, there is no qualitative difference

between any two stories. In this sense, whether a given discrimi-

nating compound is a source, an intermediate node or a target in

a story is indifferent for the enumeration process, as all possible

scenarios satisfying the three properties given by the definition,

namely, maximality of paths, acyclicity and source/target con-

straint, have to be computed.

However, in practice, the number of stories can be large and

being able to rank them greatly facilitates their analysis. To do

this, we propose the following score function:

sðSÞ ¼
X

x;y2S

!ðxÞ � !ðyÞ � !ðx; yÞ;

where the score s(S) of a story S is the sum, for each black

transformation x;y, of the product of the node weights ! ðxÞ

and ! ðyÞ of the nodes x and y, times the path weight ! ðx;yÞ.

A black transformation is defined as an arc or a simple white

path between two black nodes. A simple white path is a simple

path (i.e. containing no cycles) composed of only white nodes

between two black ones. The values assigned to the node and

path weights will depend on the data available and are thus

perfectly suited for the integration of various omics data. For

our analysis, we used the topology of the stories and additional

data from the metabolomics experiments as described in more

detail in the Section 3 (see Table 2).

2.4 Yeast metabolic network

For the analysis of the metabolics experiment (Madalinski et al.,

2008), we used the metabolic reconstruction of Saccharomyces

cerevisiae s288c available in MetExplore (Cottret et al., 2010)

(the metabolic model was built based on the YeastCyc database).

The procedure followed is briefly described in Supplementary

Material S2.

3 RESULTS

3.1 Metabolic stories to analyze metabolomics data

To illustrate how to use our method, we concentrate on the study

of the exposition of S.cerevisiae to the toxic cadmium (Cd2þ)

reported in Madalinski et al. (2008). A widely studied metabolic

pathway in S.cerevisiae is the one responsible for glutathione

biosynthesis, as it is related to the detoxification process of the

cell when exposed to high concentrations of cadmium (Fauchon

et al., 2002; Lafaye et al., 2005; Madalinski et al., 2008). Previous

studies demonstrated that the presence of such a metal in the

environment has a huge impact in terms of gene expression and

metabolism, showing that there is a strong response both at the

metabolomic and proteomic levels. Basically, glutathione needs

to be produced because it is a thiol metabolite linked to the

detoxification of cadmium through a process called chelation

(Li et al., 1997). Plants are the natural biotope of S.cerevisiae

and it is known that they are able to tolerate cadmium and other

metals up to 1% of their dry weight, which is believed to provide

defense against herbivores and pathogenic microorganisms

(Fauchon et al., 2002). This exposition to cadmium in natural

conditions provides a reason for yeast to keep a detoxification

pathway. However, the biosynthesis of glutathione requires high

quantities of sulfur. To save sulfur, there is a replacement of

abundant sulfur-rich proteins related to other metabolic pro-

cesses by sulfur-depleted isozymes (i.e. other enzymes that have

the same function). Such is the case for the enzymes pyruvate

decarboxylase (Pdc1p), enolase (Eno2p) and aldehyde dehydro-

genase (Ald6p) that are replaced by isozymes containing less

sulfur amino acids (i.e. methionine and cysteine) that are mobi-

lized in the glutathione pathway and are less available for protein

synthesis (Fauchon et al., 2002). This response affects a large

portion of the metabolic network and represents the mechanism

used by the cell to survive under this specific stress condition.

Sulfur limitation conditions slow down the growth rate but do

not induce this same sulfur-sparing response (Fauchon et al.,

2002). A schema of the known glutathione biosynthesis meta-

bolic pathway is presented in Figure 1.

The metabolic network used for this analysis (see the Section 2

for a description) contains 600 metabolites and 949 arcs.

Madalinski et al. (2008) identified a list of 24 metabolites

Fig. 1. Glutathione biosynthetic pathway. Compounds in bold are dis-

criminating in Madalinski et al. (2008) and are involved in the synthesis of

glutathione. Source: adapted from Figure 1 in Lafaye et al. (2005)
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whose concentration significantly changed after cadmium expos-

ure, shown in the table given in Supplementary Material S3.

It is important to notice here that identification of the metab-

olites that have changed their concentration is based on a min-

imum of two orthogonal criteria relative to an authentic

compound analyzed under identical experimental conditions:

retention time and mass spectrum or retention time and 1H

nuclear magnetic resonance (NMR) spectra, accurate mass and

tandem mass spectra or accurate mass and related isotopic clus-

ters or 1H and/or 13C NMR with 2D NMR spectrum (Sumner

et al., 2007). However, many metabolites are not commercially

available and many of them may require tedious and expensive

chemical synthesis, which often hampers their definitive metab-

olite identification. Thus, such compounds remain putatively

annotated or characterized.

We decided to perform two analyses to explore the effect of

cadmium exposure on S.cerevisiae cells. We first enumerated

metabolic stories using a set of black nodes restricted to the

measured metabolites that are known to participate to the bio-

synthesis of glutathione. The idea is to check whether our

method is able to recover one or more stories that correspond

to the known metabolic pathway. In a second step, we enumer-

ated metabolic stories using the entire list of 24 discriminating

compounds identified in the metabolomics experiments. In this

case, the goal is to analyze both the response of glutathione

biosynthesis, but also the potential response of other pathways

and the side effects of these responses in the rest of the network.

3.2 First analysis: local response to cadmium exposure,

biosynthetic pathway of glutathione

We first consider the aforementioned metabolic pathway directly

involved in cadmium detoxification, namely, the glutathione

biosynthetic pathway, to enumerate stories and check whether

we are able to recover one that fits our current knowledge of the

biological process. We thus selected as black nodes for this first

analysis only the metabolites that were measured in the experi-

ment (Madalinski et al., 2008) and that are also known to par-

ticipate in the glutathione biosynthetic pathway (Fauchon et al.,

2002). These eight compounds are presented in the table given in

Supplementary Material S3 with the third column marked as

‘yes’: glutathione, O-acetylhomoserine, methionine, glutamate,

glutamylcysteine, serine, glycine and cystathionine.

3.2.1. Compressed network A first practical result that follows

directly from the properties of our definition of stories is the com-

pressed representation of the subnetwork in which all interactions

between the discriminating compounds are captured. The com-

pression is obtained in two steps. In the first step, we extract all

biologically relevant routes between the black nodes. In our case,

we computed lightest paths between black nodes using the out-

degree of a node as its weight, which has been defended as being

more biologically sound than a simple shortest-path approach

(Blum and Kohlbacher, 2008). The second step is to apply the

four compression rules that were previously described briefly (see

Section 2) and that are fully detailed in Acuna et al. (2012).

The compressed network obtained for the reduced set of black

nodes contains 10 nodes and 25 arcs, i.e. represents 498% of

compression in terms of nodes and497% in terms of arcs with

respect to the original input size of the S.cerevisiae metabolic

network. The resulting compressed network is shown in

Figure 2. This compression ratio is spectacular, as it is now

much easier to visually inspect the network in which we can

highlight the metabolites of interest. This type of visualization

is, therefore, already a result in itself, which can readily be used

to start proposing causal explanations for the changes of metab-

olite concentrations. To facilitate this, we further enrich this

representation with the information on the direction of the

change of concentration (whether the metabolite concentration

increased or decreased) and the intensity of this change. Of the 8

metabolites considered, 3 had a significant increase of their con-

centration (reduced glutathione, cystathionine and glutamylcys-

teine), whereas the other 5 had a significant decrease of their

concentration (methionine, O-acetylhomoserine, glutamate,

serine and glycine). From now on, we will denote the first set

as green nodes and the second set as red nodes. The other nodes,

whose concentration did not change significantly, will remain

identified as white nodes. We notice that this distinction between

red and green nodes is only possible for applications where two

conditions are compared. This is the case we consider in this

article. When more than two conditions are compared, our meth-

odology still applies, keeping the terminology of black and white

nodes. We can produce the compressed network and enumerate

the stories. The ranking scheme described later would, however,

need to be adapted. Finally, during the preprocessing of the

network, some paths are compressed into a single arc. To distin-

guish between reactions linking two compounds and these com-

pressed paths, we used solid lines for the former and dashed lines

for the latter. Importantly, the compression of the network is

lossless as it is easily reversible, for instance if we need to have

access to the full path of white nodes that indirectly link two

black nodes. Interestingly, in practice, although most white

nodes can be compressed, some remain. Their compression

would prevent us from being able to enumerate the full set of

stories. These compounds, although not detected as discriminat-

ing, seem to also play an important role in the studied process as

Fig. 2. The compressed network computed considering as black nodes

the eight compounds of the table in Supplementary Material S3 marked

as present in the glutathione biosynthetic pathway. Green nodes are the

ones whose concentration significantly increased in the presence of cad-

mium, whereas the red are the ones whose concentration significantly

decreased. The diameter of the nodes is proportional to the concentration

change. Solid arcs represent single reactions connecting the two com-

pounds, whereas dashed ones correspond to a chain of at least two

reactions
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they are at the crossroads between at least two possible routes

between discriminating compounds.

3.2.2. Enumerating and scoring the stories The compressed

network is already a result per se, but its visual inspection

remains difficult; the many cycles it contains allow for a reading

of the flow of matter in many possible directions, thereby sug-

gesting several possible causal scenarios. Therefore, we go one

step further in the analysis and enumerate the metabolic stories.

In this analysis, there are a total of 222 stories.

With the aim of classifying the set of computed stories, we

have to define how to assign values to the node and arc weights

needed by our score function scheme (see Section 2).

There are basically four kinds of interactions that may be

observed in a metabolic story (see Table 1). In the following

proposal for causal interpretation of each type of arc, we will

make the simplifying assumption that each arc is independent

from the other ones. In this context, an arc linking a red node to

a green node will correspond to the consumption of the red node

to the benefit of the green node. If we focus solely on this arc, this

can only be explained by an activation of the enzyme catalyzing

the reaction linking the two nodes. On the other hand, an arc

linking a green node to a red node can be interpreted as the

inhibition of the enzyme catalyzing the reaction linking the two

nodes. Finally, an arc linking two red nodes can be explained

by a domino effect. The simple fact that the substrate concentra-

tion decreases causes the product concentration to decrease.

This domino effect does not require any enzyme change. It just

corresponds to a change in concentration that propagates. The

case of green to green arcs can be explained by a similar effect.

We additionally need to assume that the enzyme is not present in

a limiting amount.

We remind that in this section, our approach is local and

focuses on single transformations. We always favor the most

parsimonious explanation (the one with fewest enzyme changes),

but, in practice, other plausible explanations could be proposed

for each arc. Importantly, the notion of enzyme activation

or inhibition as used in this article should be understood in a

general sense as it captures allosteric regulation of the enzyme

or transcriptional regulation of the gene(s) encoding the enzyme.

In the application considered here, the time separating the

measurements (before and after exposure to cadmium) is large

enough to allow to interpret enzyme activations as a change

in their concentration through a transcriptional response. Our

methodology also applies when the time separating the measure-

ments is shorter. In the following, we propose three ranking

schemes for stories. In each of them we favor one type of arc,

which means that we look for the stories with a large number of

arcs of this type. Even if the individual explanation of each arc is

not necessarily correct, the overall optimization of the total

number of each arc type makes intuitive sense, and we show

that in practice it enables to explore efficiently the space of all

stories.

3.2.3 Three scoring schemes Let us start by defining the arc

weights that are restricted to being �1, 0 or þ1. The first scoring

scheme privileges stories where green nodes are preferentially

targets in the story (i.e. are produced) and, on the other hand,

red nodes are preferentially sources in the story (i.e. are con-

sumed). Let us call this score function enzyme-activation-first,

as it should privilege arcs from red to green nodes and penalize

the inverse as shown in Table 2a. Another possibility is to classify

first stories in which the concentration change responses are

privileged as shown in Table 2b. Let us call this score function

concentration-change-first, as it should privilege arcs from red to

red nodes or green to green nodes. Finally, we may define a score

function in which we privilege arcs going from green nodes to red

nodes; in such a case these arcs represent enzyme inhibition,

as shown in Table 2c. Let us call this score function enzyme-

inhibition-first.

Once an arc weighting scheme has been chosen, we define the

node weights. For our experiments, we define the value !ðxÞ

for a given node x as its normalized intensity ratio, which is its

intensity ratio divided by the maximum intensity ratio observed

in the experiment (if v is a green node) or the minimum intensity

ratio observed in the experiment divided by the intensity ratio of

the node (if v is a red node). An example is given in the figure in

Supplementary Material S4.

3.2.4 Application to cadmium stress response in yeast Using the

three presented score functions, we were able to rank the 222

Table 2. Weights for different score functions of a story

(a) Enzyme activation first (b) Concentration Change first (c) Enzyme inhibition first

Outgoing arcs Outgoing arcs Outgoing arcs

Arc To red To green Arc To red To green Arc To red To green

From red 0 1 From red 1 �1 From red 0 �1

From green �1 0 From green �1 1 From green 1 0

Note: Table exhibiting the arc weights for interactions between green and red nodes used for computing the score of a story in the context of a metabolomics experiment: (a)

weights used to privilege enzyme activation, (b) weights used to privilege concentration change and (c) weights used to privilege enzyme inhibition.

Table 1. Biological interpretation for arcs in a story

Arc To red To green

From red Concentration change Enzyme activation

From green Enzyme inhibition Concentration change
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stories previously computed and identify the top scoring stories

for each one of the three functions. Figure 3a shows one of the

six optimal stories according to the enzyme-activation-first

scheme, Figure 3b shows the single optimal story according to

the concentration-change-first scheme and Figure 3c shows one

of the two optimal stories found according to the enzyme inhib-

ition first scheme. The goal of this first analysis is to try to iden-

tify stories that could correspond to the current knowledge on

the response of yeast to cadmium exposure, i.e. a story that

corresponds to the glutathione biosynthetic pathway previously

presented in Figure 1. Among the top scored stories, the one

given by the enzyme-activation-first score function (see

Figure 3a) agrees well with the current knowledge of yeast re-

sponse to cadmium. The discussion in Madalinski et al. (2008)

presents as a result a flux corresponding to the detoxification of

cadmium by glutathione, explaining that the levels of metabolites

involved in the glutathione biosynthesis pathway (homocysteine,

cystathionine, glutamyl-cysteine and glutathione itself) were

increased following cadmium exposure, which is the same flow

of matter preserved in the story shown in Figure 3a. The story

selected by the concentration-change-first score function, shown

in Figure 3b, preferentially preserves arcs between two nodes of a

same color. The idea is that an increase (or a decrease) of con-

centration of a given metabolite could be a side effect of the

increase (or decrease) of another one. The goal is to minimize

the number of arcs that suggest some enzyme activity change, i.e.

arcs that involve red and green nodes. Interestingly, the story

that scores best with this ranking scheme does not fit with the

current knowledge of the response to cadmium exposure. This

means that, in principle, there exists a scenario that uses fewer

red to green or green to red arcs than the true response (and

therefore fewer enzyme changes), but this scenario is not the

one taken in practice. There can be a number of reasons why

this optimal scenario is not taken. Although any enzyme can, in

principle, be activated or inhibited, in practice, some have more

degrees of freedom. In addition, some reactions annotated

as reversible in general, happen to have one clearly favored

direction in specific conditions. Finally, the story presented in

Figure 3c preferentially preserves green to red arcs that could

represent an enzyme inhibition. Again, this scenario does not

fit with the current knowledge on yeast response to cadmium,

which indicates that the response is probably not based mostly

on enzyme inhibition.

3.2.5 Anthologies In Figure 3a, a story with score 1.252 for the

enzyme-activation-first score function is presented. However,

there are other five stories that achieved the same score.

These tied optimal stories may be combined into a single graph

representation to ease the analysis of their differences as

presented in Figure 4. A unique graph representing the union

of several different stories is called an anthology. Notice that

differently from stories, which are maximal DAGs, an anthology

contains at least one cycle. The sources and targets (sinks) of an

anthology (if any remains) are, however, black nodes only, as

with stories. In this case, the equivalent stories are due to the fact

that serine, glycine and oxalacetic acid are all interconnected by

reversible paths.

3.3 Second analysis: global response to cadmium exposure

For the second analysis, we decided to explore the global

response to cadmium exposure and we considered all 24

discriminating compounds. One of them, pyroline-hydroxy-

carboxylate, was eliminated when computing the lightest paths

Fig. 4. The anthology combining the six maximal stories obtained with

the enzyme-activation-first score function. Notice that the anthology pre-

serves the flow of matter observed in the pathway known to be involved

in cadmium detoxification by the yeast. Once more, green nodes are the

ones whose concentration significantly increased in the presence of cad-

mium, whereas the red are the ones whose concentration significantly

decreased. The diameter of the nodes is proportional to the magnitude

of the concentration change as measured by the intensity ratio of

the compound. Solid arcs represent single reactions connecting the two

compounds, whereas dashed ones correspond to a chain of at least two

reactions

(a) (b) (c)

Fig. 3. The best stories generated for our analysis taking into account

only the metabolites known to be present in the glutathione biosynthesis

and whose concentration significantly changed after cadmium exposure.

Green nodes are the ones whose concentration significantly increased in

the presence of cadmium, whereas the red nodes are the ones whose

concentration significantly decreased. The diameter of the nodes is pro-

portional to the concentration change. Solid arcs represent single reac-

tions connecting the two compounds, whereas dashed ones correspond to

a chain of at least two reactions
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between all pairs of black nodes, as it was part of a small dis-

connected component of the original input graph, most probably

due to missing information in the metabolic network reconstruc-

tion as the metabolite was present in the metabolome of the

strain. The computed compressed network contains 34 nodes

and 76 arcs, i.e. a compression of 94% in terms of nodes and

92% in terms of arcs. The resulting compressed network is

shown in Figure 5. Again, this compressed network is already

a result per se as it enables to visualize jointly all the possible

ways of explaining the flow of matter through the network.

However, in this case again, and probably even more than

before, the readability is complicated, and we, therefore, go

one step further and compute all stories.

This time, the number of stories is much larger: there

are 3 934 160 in total. In fact, this exact number could only be

obtained with the recent improvement we proposed in Borassi

et al. (2013). Before that, the computation would not end in

reasonable time and we only had an approximate number. In

our initial analysis, the score function that selected a story that

best fitted the targeted known metabolic pathway of the gluta-

thione biosynthesis was the enzyme-activation-first scoring

scheme. For this reason, we used it also to analyze the larger

dataset produced in this second analysis, obtaining 20 maximal

stories presented as an anthology in Figure 6. Considering all the

metabolites that were measured in the experiment as black nodes

in our method allows us to have a more global view of the

organism’s response to cadmium exposure. This enables to

explore whether the other identified paths, apart from the ones

involved in the glutathione pathway, are part of this response or

simply side effects of the sulfur redirection, as further discussed

in the next section.

3.4 Analytic tools

All the compressed networks, stories and anthologies presented

in this section were computed using our algorithm called Touché

(Borassi et al., 2013). For visualization and analytical purposes,

we used Cytoscape (Shannon et al., 2003), which is a software for

network visualization, enriched with a plug-in we developed to

enable loading, visualizing and inspecting the three aforemen-

tioned objects (compressed networks, stories, anthologies)

inside Cytoscape. The plug-in applies the given visual properties

corresponding to a metabolomics experiment (e.g. colour and

diameter of the nodes, the thickness of an arc corresponding to

the frequency of the arc in the stories composing the anthology)

and allows a zoom-in in the dashed arcs, exhibiting the paths

connecting the two nodes. Both Touché and the Cytoscape plug-

in are available on demand.

4 DISCUSSION

Focusing specifically on the biological application presented in

the previous section, we may see that exploring the topological

properties of the stories through the preprocessing of the input

Fig. 6. Anthology corresponding to the 20 stories with the maximal score

computed for the experiment on yeast s288c exposed to cadmium. Red

nodes correspond to metabolites whose concentration decreased and

green nodes to those whose concentration increased in the metabolomics

experiment. White nodes have their concentration unchanged or it could

not be measured. The diameter of the nodes is proportional to the con-

centration change. Solid arcs represent single reactions connecting the

two compounds, whereas dashed ones correspond to a chain of at least

two reactions. The arc’s thickness represents the frequency of the arc in

the stories making up the anthology, whereas gray arcs correspond to

reactions known to be part of the response to cadmium

Fig. 5. The compressed network computed for the whole list of

discriminating compounds of the table in Supplementary Material 3

and the metabolic network of the yeast strain s288c. Green nodes are

the ones whose concentration significantly increased in the presence of

cadmium, whereas the red are the ones whose concentration significantly

decreased. The diameter of the nodes is proportional to the concentration

change. Solid arcs represent single reactions connecting the two

compounds, whereas dashed ones correspond to a chain of at least two

reactions
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network creates a compressed network that captures all the

relationships between the discriminating compounds in a much

smaller graph than the whole network. This already allows a

visual inspection of the observed variations, which is rather dif-

ficult, if not impossible, in the entire network. On the other hand,

one may easily highlight in a whole metabolic pathway map

those metabolites whose concentration were detected as having

changed using the YeastCyc database. However, because the

pathways are presented as disconnected, it is not possible to

follow a path that traverses several pathways (see Figure in

Supplementary Material S5). To demonstrate the utility of our

approach, we used data from Madalinski et al. (2008) in which

the authors monitor changes in metabolite concentration as a

response of the yeast S.cerevisiae to cadmium, a toxic chemical.

The aim of this study is to analyze the global response of an

organism to a stress. Using only the metabolomics experiment

data to choose the discriminating compounds and to rank the

stories, we are able to obtain stories that correspond well to the

current biological understanding of the system under study, as

well as to propose new alternatives that could serve as a basis for

further experimental validations. Because regulatory information

and quantitative information are not needed by the method, this

allows it to be used for metabolic network reconstructions even

when they are not well refined and where these additional infor-

mations may be unavailable or incomplete.

The method herein presented allows visual inspection of a set

of discriminating compounds (either local or broader) from

metabolomics data in the compressed network, stories and/or

anthology with no a priori selected pathways. The metabolic

stories may be ranked in different ways depending on which

interpretation one wishes to emphasize for the causal link

between two affected metabolites: enzyme activation, enzyme

inhibition or domino effect on the concentration changes of sub-

strates and products. Equally probable stories under any selected

ranking scheme can be further grouped into a single anthology

that summarizes in a single subnetwork all equivalently plausible

alternative stories.

4.1 First analysis: local response to cadmium exposure

The first analysis performed aimed at locally inspecting the yeast

response to cadmium exposure limited to the biosynthetic path-

way of glutathione, given in Figure 1. Of the 222 stories found,

the ones favoring enzyme activation were clearly closer to our

current understanding of this response, where an increased

sulfur flux passes through homocysteine, cystathionine, cysteine

and glutamyl-cysteine to yield high levels of glutathione

(Madalinski et al., 2008). This same flow of matter is captured

in the anthology combining the six best stories under this scoring

scheme, shown in Figure 4.

Interestingly, we show that there exists one scenario that, in

principle, uses fewer enzymes to explain the observed changes in

concentration. This is the scenario that favors concentration

changes, shown in Figure 5b. However, this scenario does not

match the current knowledge of the main pathway of yeast

response to cadmium. In fact, it even uses some reactions in the

opposite direction. Because these reactions are annotated as

reversible, they can be taken in both directions, at least in theory,

and this explains that we found these alternative stories. Those are

scenarios that are a priori possible. They are not necessarily

‘chosen’ in practice, possibly because the reactions are only

reversible under some conditions that are not met in this experi-

ment. Unfortunately, the precise conditions under which a reac-

tion is reversible are in general not well known. The addition

of such knowledge would for sure enable to reduce substantially

the number of stories we output, as a large part of the combina-

torial explosion we observe comes from these ‘cycles’. Conversely,

understanding why some possible scenarios are not taken in prac-

tice could help to better annotate the reversibility of reactions.

From the list of discriminating compounds identified in

Madalinski et al. (2008), the ones that are involved in the gluta-

thione biosynthetic pathway (as shown in bold in Fig. 1) are as

follows: O-acetylhomoserine, methionine, serine, cystathionine,

glutamate, �-glutamyl-cysteine, glycine and glutathione. All of

them are present in the compressed networks, stories and

anthologies herein presented (Figs 2–6). As concerns cysteine

and homocysteine, they were either not measured or not discri-

minating in Madalinski et al. (2008), thus in our analysis they

appear as white nodes and may be compressed inside an arc

(dashed arcs in Figs 2–6). Cysteine is included in the dashed

arc linking cystathionine and L-gamma-glutamyl-cysteine that

is its expected place based on the biosynthetic pathway of gluta-

thione. Homocysteine is represented as a white node in all fig-

ures. Because it is at a crossroads between three black nodes

(cystathione, methionine and O-acetylhomoserine), it could not

be compressed.

Interestingly, the compounds involved in the methyl cycle,

which is a sulfur salvage pathway (see Fig. 1), were not recovered

in the highest score stories found in our first analysis. The reason

is that the lightest path found between methionine and

cystathione in that analysis passed through the reaction catalyzed

by the enzyme homocysteine S-methyltransferase (Mht1), which

is assigned as reversible in the YeastCyc database (Caspi et al.,

2010) and in our data. This enzyme was described as recycling

S-adenosylmethionine (AdoMet) to methionine (Thomas et al.,

2000).

4.2 Second analysis: global response to cadmium exposure

This more local view of the behavior of the metabolic network of

yeast in this stress condition may be contrasted with the second

analysis, where the whole list of discriminating compounds was

considered. The anthology combining the 20 best stories under

the scoring scheme favoring enzyme activation is presented in

Figure 6, where the reactions corresponding to the glutathione

biosynthesis are highlighted in gray. This is a strong point of our

method, as it allows exploring alternative but close scenarios

through the analysis of these (and possibly other) stories

altogether, which might provide new insights on the underlying

processes that took place under the given conditions.

Among the 35 nodes presented in this anthology, eight have

sulfur in their chemical structure: AdoMet, �-glutamylcysteine,

5-methylthioadenosine (MTA), O-acetyl-L-homoserine, cystei-

nylglycine, glutathione, cystathionine and L-methionine.

Among these sulfured metabolites, the only one that is not

involved in the glutathione biosynthesis is MTA, which is instead

involved in the MTA cycle, a sulfur salvage pathway (Thomas

and Surdin-Kerjan, 1997). This recycles AdoMet to methionine
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through a chain of reactions, whereas Mht1 (mentioned earlier in

the text) can also perform it in one step, which is important for

controlling the intracellular ratio between these two metabolites

(Thomas et al., 2000) Although there is a redirection of sulfur

flux to glutathione biosynthesis after cadmium exposure, the

levels of MTA increased as well as those of arginine, which is

a precursor for MTA. The metabolites in the methyl cycle are

recovered, with the white nodes AdoMet and homocysteine pre-

sent in the anthology and the metabolite S-adenosyl-homocyst-

eine compressed into the arc between them. We have previously

tried to link arginine to sulfur metabolism by emphasizing that it

is a precursor of spermidine, a polyamine metabolite that is itself

involved in the biosynthesis of MTA, a metabolite associated

with the methyl cycle and whose levels are increased after cad-

mium exposure (Madalinski et al., 2008). However, experimental

data lacked to support this assumption. By using the metabolic

stories based approach, the increased levels of arginine are linked

to decreased concentrations of citrulline, which has not been

formally identified in our experimental conditions, and which

is itself linked to glutamate. Besides, citrulline was identified as

a discriminating compound in Madalinski et al. (2008), but was

only indicated as putative, requiring more analysis for final iden-

tification. Our results seem to confirm that citrulline was cor-

rectly identified. This emphasizes the relevance of using this kind

of approach to generate biological hypotheses that have to be

further investigated by biologists. Of note, such a link between

arginine and sulfur metabolism has been noticed in other organ-

isms (Sekowska et al., 2001) and links between nitric oxide and

polyamines have been established with cadmium toxicity in

wheat roots (Groppa et al., 2008). Furthermore, this global

view of the discriminating compounds links the sulfur metabol-

ism to non-sulfur amino acids and other metabolites through

intermediates of the central metabolism. The amino acids that

are precursors to the glutathione synthesis have their levels

reduced as expected, whereas most of the others increased.

This agrees with the fact that global protein synthesis rapidly

drops after cadmium exposure (Lafaye et al., 2005), reducing

the consumption of amino acids not directly connected to gluta-

thione synthesis.

4.3 Perspectives

We presented a generic method that enables to analyze metabo-

lomics data. This method requires simple input and can be

applied to a wide variety of situations. Clearly, the results of

the method can be improved with the addition of other types

of data. For instance, the use of carbon tracing experiments

could help in focusing directly on the stories that are involved

in the response to the stress condition, instead of considering the

set of all possible stories. Besides, we assumed that the set of

discriminating compounds did not need to be questioned.

However, these are predicted based on the analysis of peaks in

a spectrum. We remark that extracting such information is in

itself a bioinformatics challenge. Therefore, a possible extension

of the method could be to take into account noisy data, i.e. to

deal with a level of confidence for the roles of discriminating

compounds and non-discriminating compounds. From the mod-

eling point of view, we enforce that each story corresponds to a

flow of matter by the acyclicity constraint. We could relax this

constraint by allowing internal cycles, and therefore computing,

for each combination of sources and targets, a single story. This

will lead to a completely different model and is beyond the scope

of this article.
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SUPPLEMENTARY MATERIAL

1) Enumeration Algorithm

The algorithm to compute one story has as input a compressed

network G and a total order π of the nodes and is illustrated in

Figure 1. From π, we may easily compute what we call a pitch,

which is defined as a story except for the maximality condition.

Moving from a total order π to a pitch is done by keeping only

arcs that are consistent with π and, after that, removing recursively

any remaining white source or target. Completing a pitch into a

story is done by adding paths between black nodes while avoiding

cycles. The algorithm searches for extensions of the pitch following

the order π of the nodes, moving to the next node when no new

path may be added from the previous one. The resulting graph is

a story. The enumeration was performed by examining all possible

orderings of the nodes. More details on the mathematical modelling,

the preprocessing step, the algorithms and their computational

complexity are in [1].
Fig. 1. a) The input graph with set of black nodes B = {a, b, c, d, e} and white

nodes W = {x}. b) The starting pitch, which is simply a graph V = B and no arcs.

c) The path a � b is added to the pitch. d) Three paths starting from b are added to

the pitch: b � c, b � x � c and b � x � d. Notice that as x did not belong

to the pitch at this point, the algorithm goes further and stops only when nodes in the

pitch are found. e) The path c � d is added to the pitch. f) The path d � e is added

to the pitch. g) The path e � x is evaluated but cannot be added since e comes after

x in the current partial order inferred from the pitch, and therefore such an addition

creates at least one cycle, for instance e → x → d → e. h) The path x � a is

evaluated but cannot be added since x comes after a in the current partial order inferred

from the pitch, and therefore such an addition creates at least one cycle, for instance

x → a → b → x. i) There are no more nodes to traverse, the final object is a maximal

pitch, i.e., a story.

c© Oxford University Press 2005. 1
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2) Yeast metabolic network

We retrieved the reconstruction of the metabolic network of

Saccharomyces cerevisiae s288c from MetExplore. This platform

allows applying different filters to the network. Herein it is restricted

to the small molecule metabolism, i.e. reactions involving one or

more macromolecules such as proteins or nucleic acids are not

represented. In addition, reactions involving pairs of cofactors

were split into two reactions, such as the following transformation

(or reverse): compound A + ATP → compound B + ADP + Pi

will be represented as reaction 1: compound A ↔ compound B,

and reaction 2: ATP → ADP + Pi. Ubiquitous compounds (i.e.,

water, proton, carbon dioxide, phosphate, diphosphate, ammonia,

hydrogen peroxide and oxygen) and cell compartments were as well

removed from the network.

3) List of discriminating compounds

Table 1. List of discriminating compounds for the S. cerevisiae cell

exposed to cadmium

Metabolite ID intensity ratio Present in the pathway

arginine 1.9 no

reduced glutathione 33.9 yes

O-acetylhomoserine (*) 0.5 yes

2-aminoadipate (*) 0.5 no

niacinamide (*) 4.8 no

pyridine-3-aldoxime (*) 4.8 no

pyrroline-hydroxy-carboxylate 0.7 no

methionine 0.3 yes

citrulline (*) 0.7 no

threonine 0.6 no

homoserine 0.6 no

glutamine 0.7 no

glutamate 0.8 yes

glutamylcysteine 192.2 yes

5-methylthioadenosine 11.0 no

serine 0.2 yes

glycine (*) 0.3 yes

cystathionine 50.5 yes

lysine 0.7 no

cysteinylglycine (*) 35.9 no

leucine/isoleucine 1.2 no

tyrosine 2.9 no

histidine 1.2 no

alanine 0.8 no

List of 24 metabolites from the yeast metabolic network whose concentration

significantly varied under cadmium exposed. The intensity ratio column presents the

ratio between the stress condition and the control. The 3rd column indicates whether

the compound is present in the glutathione biosynthetic pathway (Fig. 1 of the main

manuscript) or not. Metabolites identified with an (*) after their names were putative

metabolites requiring more analysis for final identification.

4) Example of small metabolic story

Fig. 2. Considering the story with 5 nodes presented in the figure, we may compute its

score for the three different scoring schemes given in Table 2 of the main manuscript.

The minimum concentration observed in the story for the red nodes is 0.2 and the

maximum concentration observed for a green node is 50.5. Therefore, ni(serine) =

0.2/0.2 = 1, ni(cystathione) = 50.5/50.5 = 1, ni(glycine) =

0.2/0.3 = 0.66 and ni(O − acetyl − L − homoserine) = 0.2/0.5 = 0.4.

Summing up the contribution of each arc as the product of the normalized intensity

ratios of its extremities times the corresponding entrance in the score matrix, we obtain

an enzyme activation score of 1.4, a concentration change score of 0.32 and an enzyme

inhibition score of −1.4. Notice that these scores cannot be compared between them,

their role is to enable us to compare different stories.

2



5) Mapping of metabolites on the YeastCyc overview

diagram

Fig. 3. Mapping of metabolites on the YeastCyc overview diagram. Notice that there

are more highlighted metabolites than appear in the list. This is due to the fact that this

view is pathway-oriented and metabolites are therefore duplicated. Moreover, there is

no link between the pathways so the network connectivity is lost.

6) Glossary

Table 2. Main definitions used in the paper

Word Definition

Arc An arc of a graph G(V,A) is an ordered pair (u, v) ∈ A,

with u, v ∈ V . Such an arc is outgoing from u and

incoming into v

Black nodes Nodes corresponding to the discriminating compounds;

Directed graph (digraph) A digraph is a pair (V,A), where V is a set of nodes

and A, the arc set, is a binary relation on V

Discriminating compounds Compounds measured and whose concentration change

is statistically significant

Green nodes Nodes corresponding to the discriminating compounds

whose concentration significantly increased

Metabolic story Maximal directed acyclic subgraph that contains

only black nodes as sources and targets

Red nodes Nodes corresponding to the discriminating compounds

whose concentration significantly decreased

Source A node that has no incoming arc

Target A node that has no outgoing arc

White nodes Nodes corresponding to non-discriminating compounds, i.e.,

compounds that were not measured or whose concentration

did not significantly change
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TITRE en français
Une étude bioinformatique du dialogue métabolique entre trypanosome non pathogène et son
endosymbiote à des buts évolutifs et fonctionnels

RÉSUMÉ en français
Lors de cette thèse, nous avons présenté trois principaux types d’analyses du métabolisme,
dont la plupart impliquaient la symbiose : dialogue métabolique entre un trypanosomatide
et son symbiote, analyses comparatives de réseaux métaboliques et exploration de données
métabolomiques. Tous ont été essentiellement basés sur des données de génomique où les
capacités métaboliques ont été prédites à partir des gènes annotés de l’organisme cible, et ont
été affinées avec d’autres types de données en fonction de l’objectif et de la portée de chaque
analyse. Le dialogue métabolique entre un trypanosomatide et son symbiote a été explorée
avec des objectifs fonctionnels et évolutifs qui comprennaient une analyse des voies de synthèse
des acides aminés essentiels et des vitamines telles que ces voies sont classiquement définies,
une exploration de réseaux complets métaboliques et une recherche de potentiels transferts
horizontaux de gènes des bactéries vers les trypanosomatides. Les analyses comparatives ef-
fectuées ont mis l’accent sur les capacités métaboliques communes de bactéries appartenant à
différents groupes de vie, et nous avons proposé une méthode pour établir automatiquement
les activités métaboliques communes ou spécifiques à chaque groupe. Nous avons appliqué
notre méthode d’énumération d’histoires métaboliques à la réponse de la levure à une expo-
sition au cadmium comme une validation de cette approche sur une réaction au stress bien
étudiée. Nous avons montré que la méthode a bien capté la connaissance que nous avons de
cette réponse en plus de permettre de nouvelles interprétations des données métabolomiques
mappées sur le réseau métabolique complet de la levure.
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symbiosis: metabolic dialogue between a trypanosomatid and its symbiont, comparative anal-
yses of metabolic networks and exploration of metabolomics data. All of them were essentially
based on genomics data where metabolic capabilities were predicted from the annotated genes
of the target organism, and were further refined with other types of data depending on the aim
and scope of each investigation. The metabolic dialogue between a trypanosomatid and its
symbiont was explored with functional and evolutionary goals which included analysing the
classically defined pathways for the synthesis of essential amino acids and vitamins, exploring
the genome-scale metabolic networks and searching for potential horizontal gene transfers
from bacteria to the trypanosomatids. The comparative analyses performed focused on the
common metabolic capabilities of different lifestyle groups of bacteria and we proposed a
method to automatically establish the common and the group-specific activities. The appli-
cation of our method on metabolic stories enumeration to the yeast response to cadmium
exposure was a validation of this approach on a well-studied biological response to stress.
We showed that the method captured well the underlying knowledge as it extracted stories
allowing for further interpretations of the metabolomics data mapped into the genome-scale
metabolic model of yeast.
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