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Abstract

Synaptic efficacy measures the ability of a presynaptic neuron to influence the
membrane potential of a postsynaptic neuron. The process of changing synaptic
efficacy, via plasticity, is thought to underlie learning and memory in the brain.
Focusing on chemical synapses, we examine the abstract rules of synaptic plasticity
which determine how changes in synaptic efficacy occur.

Beginning with an atypical, non-Hebbian synapse, the parallel fibre to Purkinje
cell synapse, we develop a model which explains the burst frequency and length de-
pendence of this particular synaptic plasticity rule. We present a model based on
underlying calcium and NO pathways which accurately unifies much of the experi-
mental literature. This model will be useful in future studies of synaptic plasticity
for this synapse and its simplicity will allow for numerical studies involving large
numbers of synapses in a network architecture.

We also examine a more typical plasticity rule for neocortical synaptic plasticity,
developing analytical tools which accurately predict the behaviour of this synapse
model under pre- and postsynaptic Poisson spiking. Building on this analysis we
extend the theory to leaky integrate-and-fire (LIF) neurons in a network. We develop
theoretical tools which can accurately describe the network response to both constant
and transiently elevated noisy external inputs. Utilising these tools we examine the
duration of synaptic memories under ongoing background (1/sec) spiking activity
both in independent neurons and in a recurrent network. We find that lowering the
extracellular calcium concentration extends memory time scales and that the further
introduction of a bistability to the synaptic plasticity rule extends this memory time
scale by several orders of magnitude. In all cases we provide theoretical predictions
of memory time scales which match subsequent simulation comparisons.

Both sets of investigations reveal insights into the processes of learning and sub-
sequent forgetting in the brain. Both models reveal the joint importance of burst
frequency and relative spike timing in the induction of memory changes at the synap-
tic level. Adjustment of model parameters to more closely mimic in vivo conditions
extends the retention time of memories, under ongoing activity, to biologically rel-
evant time scales. Our work represents a coherent development right through from
the biophysical processes of synaptic plasticity to the analytical mean-field level.





Résumé

L’efficacité synaptique quantifie la capacité d’un neurone présynaptique à influer
sur le potentiel de membrane d’un neurone postsynaptique. La plasticité synap-
tique, regroupant tous les processus d’altération de l’efficacité synaptique, est con-
sidérée comme le mécanisme fondamental de mémorisation et d’apprentissage dans
le cerveau. Dans ce travail nous examinons des règles d’apprentissage formelles aux
synapses chimiques et leurs conséquences sur la mémorisation de patrons appris.

La plasticité de la synapse entre les fibres parallèles du cervelet et la cellule de
Purkinje n’est pas de type Hebbien et dépend de la fréquence et de la durée de
l’activité présynaptique. Nous avons développé un modèle qui prenne en compte
les caractéristiques de cette règle d’apprentissage spécifique. Ce modèle, basé sur
l’interaction entre des variables de signalisation par le calcium et l’oxyde nitrique
(NO) reproduit un large corpus de données expérimentales publiées. La relative
simplicité de ce modèle permettra son utilisation dans des simulations numériques
faisant intervenir un grand nombre de synapses dans une architecture de réseau.

En parallèle nous avons étudié une règle de plasticité plus typique, telle qu’observée
aux synapses corticales, et avons développé des outils analytiques prédisant le com-
portement de cette synapses modèle dans le contexte de régimes d’activité présy-
naptique et postsynaptique poissonniens. Nous étendons cette analyse formelle à
un réseau de neurones « leaky integrate and fire » (LIF) et développons des out-
ils théoriques qui décrivent la réponse du réseau à des entrées externes bruitées
d’amplitude constante ou transitoirement augmentée. Nous utilisons ces outils pour
mesurer la durée de rétention de mémoires synaptiques dans un régime de décharge de
fond à 1/sec soit dans des neurones indépendants soit dans un réseau récurrent. Nous
trouvons que l’abaissement de la concentration de calcium extracellulaire augmente
les constantes de temps de rétention de la mémoire. L’introduction d’une bistabil-
ité dans la règle d’apprentissage synaptique rallonge le temps de mémorisation de
plusieurs ordres de grandeur. Dans tous les cas nous fournissons des prédictions
théoriques sur les échelles de temps de rétention de mémoire qui s’accordent aux
résultats de simulations numériques.

Les deux parties de cette étude traitent des processus régissant l’apprentissage
et sa rétention dans les circuits cérébraux. Les deux modèles montrent l’importance
de la fréquence de décharge et des corrélations temporelles entre potentiels d’action
dans l’induction d’apprentissage au niveau synaptique. L’ajustement des variables
du modèle pour mimer les conditions physiologiques in vivo permet d’allonger la ré-
tention d’apprentissage, dans un réseau soumis à une décharge moyenne continue, sur
des échelles de temps biologiquement significative. Notre travail présente une tenta-
tive d’unification entre les règles biophysiques détaillées régissant l’apprentissage et



une approche analytique en champ moyen.
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3.1 Dynamics of the synaptic plasticity model with the in vitro

and in vivo parameter sets. (A) Pre- and postsynaptic spike
trains generated as realisations of Poisson processes at 1/s. (B,C) The
spike train in A induces large calcium transients (blue trace) with the
in vitro parameter set (Cpre = 0.562 and Cpost = 1.240; see Tab. 3.1).
Whenever the calcium trace crosses the depression (cyan) or poten-
tiation thresholds (orange), changes in the synaptic efficacy (green)
are induced. (D,E) Same as in B,C but with calcium amplitudes
corresponding to the in vivo case (Cpre = 0.337 and Cpost = 0.744).
The small calcium transients do not cross the depression/potentiation
thresholds and no efficacy changes are observed. Note that the flat
potential for ρ is used here and that noise is set to zero for clarity,
σ = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2 Example of 1/sec shot noise prediction of calcium concentra-
tion for in vitro parameter set The probability density, P (c), is
shown for individual Poisson processes for the calcium influx value of
C = 0.56 (red) or C = 1.23 (green). When both processes combine
at a single synapse we obtain the joint probability density function
(blue). Plasticity thresholds are shown as vertical lines. . . . . . . . . 74

3.3 Possible potentiation and depression threshold crossing cases
of the calcium trace (blue lines) between events at time ti and
ti+1. The six possible cases are depicted with respect to the location of
the potentiation, θP (orange dashed line), and the depression thresh-
olds, θD (cyan dashed line). . . . . . . . . . . . . . . . . . . . . . . . 80

3.4 Example of network firing in asynchronous irregular state. A
sample of 1000 excitatory neurons from the network shows irregular
spiking behaviour in the raster (top) and the averaged firing rate of
all 8000 excitatory neurons is steady around 1/sec (bottom). . . . . . 83
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3.5 Memory decay for a single synapse with flat potential in the
presence of uncorrelated pre- and postsynaptic Poisson fir-
ing. (A,B) Temporal evolution of the mean synaptic efficacy in the
presence of pre- and postsynaptic Poisson firing at 1/s for the in vitro
(green in A) and the in vivo (light blue in B) parameter sets (mean
shown for N = 1000 synapses). Blue and red lines show the mean
dynamics as predicted by the Ornstein-Uhlenbeck theory. Grey lines
show example traces of synaptic efficacy evolution in time. (C) De-
cay time constant as a function of the firing rate for in vitro and in
vivo parameter sets. The blue and red lines show the calculated decay
time constant, τeff , from the OU theory. The points show exponential
decay times obtained by fitting single exponential decay functions to
the mean synaptic dynamics as shown in A and B illustrating that
the OU theory correctly describes the full model behaviour. The cyan
and orange dotted lines illustrate the derived power law behaviour,
τeff ∼ 1/νk, between memory time scales and low firing rates (see
text). The power reflects the number of spikes required to cross the
plasticity thresholds, that is, k = 1 for in vitro (cyan dotted line) and
k = 2 (orange dotted line) for in vivo case. (D) Asymptotic synaptic
efficacy as a function of the firing rate for in vitro and in vivo param-
eter sets. The lines show the calculated asymptotic value, ρ̄, from the
truncated OU theory (ρ ∈ [0, 1]) for in vitro (blue line) and in vivo
(red line) cases. The points show steady-state values obtained by fit-
ting single exponential decay functions to the mean synaptic dynamics
as shown in A and B (green: in vitro; light blue: in vivo). . . . . . . 89
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3.6 Memory decay for a bistable synapse in the presence of un-
correlated pre- and postsynaptic Poisson firing. (A) Steady-
states of synaptic efficacy as a function of firing rate for the in vitro
(blue) and the in vivo (red) parameter sets. Stable states are shown
by solid lines and unstable states by dotted lines. Synaptic efficacy
is bistable at low rates (< 0.04/s for in vitro and < 1.3/s for in vivo)
and monostable at high firing rats. The effective potential of synaptic
efficacy is shown for three firing rates (0.1/s - magenta line; 1/s - or-
ange line; 2/s - green line) and the in vivo parameter set in the inset
(firing rates indicated by vertical lines). (B) Decay time constant as
a function of the firing rate for the in vitro and the in vivo parame-
ter sets. For the in vivo parameter set below ∼ 1.3/s, the bistability
greatly extends memory time scale compared to a synapse with flat
potential (red line) and can be predicted using Kramers escape rate
(magenta line). The vertical dashed line illustrates the frequency at
the in vivo bifurcation point. For the in vitro parameter set, the bista-
bility has no influence on decay time constants for firing rates above
0.1/s. The points show exponential decay times obtained by fitting
single exponential decay functions to the mean synaptic dynamics.
(C) Individual synaptic efficacy traces for the in vivo parameter set
at 1/s pre- and postsynaptic firing. The synapses remain in the upper
potential well for a long time and stochastically cross the potential
barrier to the low efficacy state. (D) Averaged synaptic efficacy trace
of many synapses for the in-vivo parameter set at 1/s. The bistability
extends the memory time scale from hours for a flat potential to days. 92
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3.7 Steady-state behaviour of a recurrent network with plastic
synapses between excitatory neurons. (A) Firing rate mean-field
predictions compared with network simulation results. The mean-field
theory predicted firing rate is higher (black line) than the actual firing
rate of the excitatory neurons (green dots) in the recurrent network of
8000 exc. and 2000 inh. LIF neurons. Network simulation with fixed
synapses yield a good match with the theory (blue dots). (B) Average
synaptic weight prediction compared with asymptotic average synap-
tic weights in the network simulation. The observed average synap-
tic efficacy of excitatory to excitatory connections is smaller (mustard
dots) than the theoretical prediction (black line). Even when using the
asymptotic firing rate of the network in the calculations (green dots),
the average synaptic efficacy is overestimated by the theory. (C)
Mean and standard deviation of synaptic weights vs. firing rate for
independent LIF neurons (magenta), networked LIF neurons (green)
and LIF neurons in a network in which actual weights are held con-
stant but we examine how their efficacy would have evolved in the
presence of observed firing (blue dots). Asymptotic synaptic weights
for LIF neurons underestimate the efficacy predicted by the theory
(blue line). (D) Average synaptic weight vs. firing rate for indepen-
dent LIFs with different reset potentials. The analytical prediction of
the asymptotic synaptic weight based on Poisson firing is shown by
the blue line (same as in C). The reset potential in the LIF model,
Vreset, has a marked influence on the observed average synaptic effi-
cacy. Depolarised/hyperpolarised reset potentials (e.g. −55/−70 mV,
cyan/green dots) lead to an over/under-representation of short ISIs
(left/right inset) compared to Poisson neurons (red line in insets). ISI
histograms in inset are shown for LIF neurons firing at 1/s. . . . . . 95
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3.8 Memory decay for a subset of potentiated synapses in a recur-
rent network with the in vitro parameter set. (A) Temporal
evolution of the average excitatory (red) and inhibitory (blue) firing
rate. A network of 10,000 LIF neurons is initialised at the theoreti-
cally predicted steady-state and simulated for 20 min real time. (B)
Temporal dynamics of synaptic efficacies in the network. The ma-
jority of synapses are initialised to the theoretically predicted asymp-
totic synaptic efficacy (mean: magenta; single synapse example: dark
gray). A randomly selected subset of 5% are set to 1 at the beginning
of the simulation (mean: green; single synapse example: light gray).
(C) The exponential decay time constant of the potentiated synapses.
The value obtained from fitting a single exponential to the mean de-
cay (green dots) is well approximated by the analytically calculated
decay time constant from the OU process (Eq. (3.16)). Introduction
of a double-well potential does not modify the memory time constant
for the in vitro parameter set (orange stars). The slight deviation of
the decay time constants with respect to the OU theory, that is, the
network decay time constants are slower, are due to the LIF firing
statistics as can be seen from the comparison with independent LIF
neurons (magenta dots). . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.9 Memory decay for a subset of potentiated synapses in a recur-
rent network with the in vivo parameter set and double-well
potential. (A) Temporal evolution of the average excitatory (red)
and inhibitory (blue) firing rate. A network of 10,000 LIF neurons
is initialised at the theoretically predicted steady-state and simulated
for 120 min real time. (B) Temporal dynamics of synaptic efficacies
in the network. The average dynamics of the 95% initialised in the
DOWN state (blue) and the 5% initialised in the UP state (red) is
shown. The shaded grey region represents the range of values visited
by synapses in the UP and in the DOWN state populations, indicating
that no transition occurs. . . . . . . . . . . . . . . . . . . . . . . . . 99
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3.10 Memory induction for a subset of synapses in a recurrent net-
work with the in vitro parameter set. A network of 10,000 LIF
neurons is initialised at the theoretically predicted steady-state and
simulated for 20 min real time. (A) Temporal evolution of the average
firing rate for a randomly selected population of 100 excitatory neurons
(STIM pop, blue). These neurons receive a 3-sec increase in external
stimulation after 200 secs, leading to a burst of approx. 50/sec activity.
(B) Temporal evolution of the average firing rate of excitatory neu-
rons (excluding the STIM pop., red) and inhibitory neurons (green).
(C) Temporal evolution of mean synaptic efficacies for synapses, in-
corporating the flat potential, which have no connection with the high
frequency stimulation population (cyan) and synapses which receive
both pre- and postsynaptic stimulation from the high frequency stim-
ulation population (magenta). Stimulation at 50/sec increases mean
synaptic efficacy to ρ̄(50) before a return to 1/sec background firing
leads to an exponential decay to the 1/sec stationary efficacy with a
time scale as predicted for the in vitro parameter set. . . . . . . . . 100

3.11 Impulse response to a 3 sec high frequency stimulus. Mean
synaptic response for an initial value ρ ∈ {0, 0.1, . . . , 1} to a burst
of length 3 seconds for frequencies from 1 to 50/sec pre- and post-
synaptic rates (blue lines). The average synaptic response assuming
a uniform prior distibution of synaptic efficacies (yellow line). Trun-
cated Ornstein-Uhlenbeck predicted stationary synaptic efficacy, ρ̄, at
each frequency for the in vitro parameter set (black line). At low fre-
quencies the response curves show little deflection, whereas at high
frequencies stimulation leads to a decrease in the effective time con-
stant and consequent convergence to the long run synaptic efficacy.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

xv



xvi



List of Tables

2.1 Parameter values used in Linear-N model. Fitted using the
optimisation procedures described in Section 2.2.3. For the reasons
outlined in the text the following parameters were forced to be equal
in the fit: τc = τn, Dc = Dn, CCS = Cdepol. . . . . . . . . . . . . . . . 47

2.2 Parameter values used in NMDAR-based model. Fitted using
the optimisation procedures described in Section 2.2.3. For the reasons
outlined in the text the following parameters were forced to be equal
in the fit: τc = τn, Dc = Dn, CCS = Cdepol. . . . . . . . . . . . . . . . 48

3.1 Parameters of the calcium-based synapse model. The in vitro
values are obtained by fitting the model to cortical plasticity data
(Graupner and Brunel 2012; Sjöström et al. 2001). In vivo calcium
amplitudes are scaled from the in vitro values according to the change
in extracellular calcium concentration. . . . . . . . . . . . . . . . . . 73

xvii



xviii



Acknowledgements

Learning has been a lifelong feature of my life so it seems appropriate that I now study
the processes underlying learning. My parents encouraged me from the youngest
age by always providing an answer to my favourite question, "Why?" and its close
cognate, "How?" Unlike many other children I was always encouraged and never
dismissed when asking this question.

My grandparents have served as particular role models in my life. They placed a
strong emphasis on learning and scholarship, while also providing living demonstra-
tions of contented industry and happiness.

I have had the good fortune to have had many excellent teachers in my life. I
had three teachers during my thesis. Nicolas gave me the greatest investment of his
time, for which I am eternally grateful, and taught me his dedication to rigour and
fascination with his subject. Boris taught me how to live and work in science. And
Stéphane taught me his passion and attention to detail. Outside of these official
supervisors I have had the enormous good fortune to work in collaboration with
Michael and Mariano each of whom have given me large amounts of their time and
infused my work with their energies.

The work presented in this thesis has spanned two continents and no less than
four labs. In each lab I have found friends and colleagues who encouraged my interest
in neuroscience while providing a supportive social environment which made both
the work and the frequent moves a great deal easier. Hongi, Laura, Alessandro,
Omri, Claudia, Kasia, Guy, Elisa, Alexis, Sukbin, Loreen, in particular, thank you!

Friends and family are the substance of life. I am extremely grateful to the
friends I have made throughout the world, who have accepted to remain supportive
and in contact despite my frequent voyages. The past few years would not have been
possible without the support of Tim, Anne, Garry and Nadine. Too many others to
name have been there for me at just the right time. In particular I want to thank
Shaynoor who ferried me to the doctor, when I had pneumonia, during the coldest
winter in recorded history in Chicago, while teaching me about life and science in
my healthier moments.

xix



xx



CHAPTER 1
Introduction

The brain is generally accepted as the seat of consciousness in the body, and according
to the neuronal doctrine information is processed in the brain via neuronal activity.
Neurons are a series of specialised types of cells which tend to have an elongated
morphology, determined by their type, and which have very different electro-chemical
properties at different locations along their cell bodies. Neuronal membranes are lipid
structures which contain active and passive structures which maintain a potential
differential between the interior of the cell and the extracellular fluid. In this thesis
we are particularly interested in the synapses through which neurons are joined.
Synapses typically fall into two classes, electrical and chemical, electrical synapses
involve a porous connection between two neurons through which charge can flow,
chemical synapses involve the release of a chemical neurotransmitter from one of the
cells which then interacts with receptors on the other cell resulting typically in a
change in membrane potential.

Due to the ability of neurons to ‘compute’ a location for the storage of memories
has long been sought, one long standing hypothesis is that memories might be stored
in the connections between them. That is, in the ability of one neuron to influence
another through their mutual synaptic connection. The first demonstration of synap-
tic learning, now called synaptic plasticity, was in aplysia, where the slug was able to
learn a conditioned response through changing the strength of one particular synapse
(Castellucci et al. 1970). Subsequent experimental studies led to the discoveries of
long-term potentiation (LTP) and long-term depression (LTD), the ability to modify
the influence of a presynaptic spike on the postsynaptic membrane potential, making
it either stronger or weaker. Finally, a short-term form of plasticity was also discov-
ered, in which the discrete nature of vesicle release and replenishment gives rise to

1
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Figure 1.1. Neuronal diagram, including a chemical based synapse.
Electrical impulses travel from the soma, down the axons, until they reach synaptic
boutons where they induce release of neurotransmitter molecules from synaptic
vesicles. These neurotransmitters traverse the synaptic junction and are taken up
by postsynaptic receptors, inducing a change in postsynaptic membrane voltage.
(From the NIH handbook on Alzheimers; downloaded from Wikipedia.)
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changing influence of the presynaptic spike on the postsynaptic membrane potential
over time periods on the order of the length of a burst. Since the first experimental
discoveries much theoretical work has been performed predicting the ability of the
brain to carry out computations utilising plastic synapses. Such theoretical studies
have led to the exploration of questions of: memory capacity, given a certain number
of neurons and a connectivity pattern how many discrete bits of information can be
stored; memory representation, is a memory stored in a single synapse, in a series
of synapses joining neurons linked in series, or more diffusely throughout a neuronal
network; and memory duration, surely if we have the capacity to learn a memory at
a given synapse then it is also possible to forget such a memory, either deliberately
or due to other random events. The mechanisms of memory encoding or storage will
be the topic of Chapter 2, whereas the issue of memory erasure will be the topic of
Chapter 3.

An electrical impulse, called an action potential, typically initiates close to the
soma and travels down the axon until it reaches the synapses. In the case of chemical
synapses this charge induces a release of chemical neurotransmitter from presynaptic
vesicles into the synaptic cleft (see Fig. 1.1). This neurotransmitter (most often
glutamate or GABA) then diffuses through the cleft and is taken up by receptors,
typically chemically keyed to the particular neurotransmitter, both pre- and more
importantly postsynaptically. The uptake of the neurotransmitter postsynaptically
induces a change in the postsynaptic membrane voltage, which may in turn open
voltage-gated ion channels inducing an even greater change in voltage, and this
postsynaptic potential goes on to influence the activity of the postsynaptic cell.
There are a number of cellular methods by which the ability of the presynaptic cell to
influence the postsynaptic membrane voltage may be altered, these are summarised
in Figs. 1.2 & 1.3. Presynaptically either the probability that a vesicle will release
its neurotransmitter payload (an inherently stochastic process) may be increased or
the density of vesicles may increase. Postsynaptically, the expression of receptors
such as AMPA receptors may be increased by phosphorylation of CaMKII, this
increase in AMPA receptors means that more glutamate can be taken up and more
trans-membrane channels can be opened, leading to a greater change in membrane
potential.

In this thesis, we will concentrate on biochemical synapses as these have been
studied for much longer than electrical synapses and lead to very different properties
in the network. We will look at one relatively atypical synapse, the parallel fibre to
Purkinje cell synapse in the cerebellum, which does not display the form of learning
known as Hebbian learning typically found in other synapses, but rather displays a
completely different form of associative learning between a set of ongoing inputs and
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Figure 1.2. Diagram of the processes typically involved in synaptic
plasticity. Presynaptically synaptic efficacy can be modified by the regulation of
synapsin (1) and RIM protein (2) phosphorylation. Postsynaptically, greater or
lesser degrees of AMPARs may be endocytosed (3), their lateral transfer to the
synapse is also activity dependent (4) and finally, their phosphorylation state
influences synaptic efficacy (5). Synaptic adhesion molecules are also influenced by
neuronal activity (6). (Taken from Ho et al. (2011))

a motor error signal. We will also analyse a more typical, cortical and hippocampal,
learning rule and look at issues of how memories might be maintained in a typical
synapse under background firing, which is seen throughout the cortex.

In the rest of this chapter, we will review the experimental evidence for synaptic
plasticity, we will then examine the development of models of synaptic plasticity,
finally we will review the efforts to date to explain experimentally observed synaptic
plasticity at the parallel fibre to Purkinje cell synapse.
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Figure 1.3. Series of diagrams of a number of forms of LTP and LTD.
(A) Postsynaptic NMDAR activation leads to insertion of AMPARs in the
postsynaptic membrane. (B) Activation of cAMP dependent PKA modifies the
function of Rab and RIM changing presynaptic glutamate release. (C)
Postsynaptic NMDAR activation can also lead to internalisation of postsynaptic
AMPARs. (D) Postsynaptic mGluR activation may also lead to NMDAR
internalisation. (E) Retrograde endocannabinoid transmission can lead to decrease
in neurotransmitter release. (Taken from Kauer and Malenka (2007))

1.1 Synaptic plasticity experiments: hippocampus

and neocortex

Initial experiments demonstrating synaptic plasticity were performed by Bliss and
Lømo (1973), in which they demonstrated, for the first time, the ability to change the
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excitatory postsynaptic potential (EPSP) in a population, by extracellular stimula-
tion of a bundle of presynaptic fibres. The effect was demonstrated in the hippocam-
pus of an anaesthetised rabbit and in a subsequent paper for an unanaesthetised
animal (Bliss and Gardner-Medwin 1973). They also demonstrated an increase in
the excitability of the postsynaptic population, an effect which is related to but
distinct from synaptic potentiation (Daoudal and Debanne 2003). They called the
increase in synaptic transmission potentiation. The first demonstration of the oppo-
site effect to potentiation, called depression, was by Lynch et al. (1977) where they
demonstrated in hippocampal slice that the potentiation of one set of synapses led
to the depression of other synapses terminating on the same set of postsynaptic cells.

Figure 1.4. Bliss and Lømo (1973). Early experimental demonstration of
synaptic potentiation. The test pathway demonstrated a potentiation which lasted
for hours (black circles) whereas the control pathway demonstrated no change
(open circles).

Dudek and Bear (1992) demonstrated that presynaptic activity which does not
provoke a postsynaptic spike can lead to synaptic depression. This work illustrated
a clear frequency dependence of the effect and also a reversability via what had
previously been seen purely as potentiation protocols, suggesting that potentiation
and depression are opposing rather than independent effects. In a follow-up paper,
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Dudek and Bear (1993) confirmed that LTP is the reversal of LTD and vice-versa.

Figure 1.5. Debanne et al. (1994). The first demonstration of a relative timing
dependence between pre- and postsynaptic processes in order to produce
potentiation/depression. (A) In a paired pre- post- protocol we observe LTP. (B)
However, in an unpaired input pathway, which was stimulated 800ms following the
paired input pathway to the same cell, LTD was observed. (C) The LTD was not
dependent on a prior stimulation of a the paired pathway but only on the prior
depolarisation of the postsynaptic cell.

Figure 1.6. Bi and Poo (1998). The spike pair based spike timing dependence
plasticity timing window. A pre- before a post- spike leads to potentiation.
Whereas post- before pre- leads to depression.

In the 1990s there quickly followed a succession of papers, moving from previously
exclusively extracellular techniques to intracellular recording, first, and subsequently
also stimulation, demonstrating a precise timing dependence to synaptic plasticity.
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An early paper (Debanne et al. 1994) demonstrated that pairing a postsynaptic
depolarisation with a subsequent presynaptic stimulus leads to LTD (see Fig. 1.5), a
result which had long been predicted as a theoretical corollary of Hebb’s potentiation
rule (Hebb 1949). In the same paper they also confirmed the dependence of LTD on
postsynaptic NMDAR activation, suggesting a dependence on postsynaptic calcium
influx via voltage-gated calcium channels. The same group followed-up, (Debanne
et al. 1996) with further confirmation that, in fact, for single postsynaptic action
potentials the precise timing of presynaptic relative to postsynaptic action potentials
is extremely important for synaptic plasticity, whereas in the case of bursts the
frequencies of spiking are more important. Using dual whole-cell recordings (previous
work used extracellular presynaptic stimulation) Markram et al. (1997) demonstrated
that presynaptic stimulation alone, which did not produce a postsynaptic action
potential, does not lead to changes in synaptic efficacy. Instead there is a requirement
for both pre- and postsynaptic activity in order to induce synaptic changes. This
work implies a requirement for a backpropagating action potential in the postsynaptic
cell for such a mechanism to work. They also further confirmed the pre- before post-
paradigm, implied by Hebbian theory, leading to LTP and post- before pre- leading to
LTD. Finally, Bi and Poo (1998) in hippocampal cell cultures thoroughly investigated
the relative pre- post- timing dependence of synaptic plasticity demonstrating that
synaptic changes can be induced by repeated single activation, at a low frequency, of
both pre- and postsynaptic action potentials with only the relative timing between
the potentials dictating the sign and magnitude of the changes (see Fig. 1.6). Closely
separated action potentials were shown to lead to larger changes, while sufficiently
largely separated action potentials lead to no synaptic change. Following the Hebb
paradigm, pre- before post- synaptic potentials were shown to lead to LTP whereas
post- before presynaptic potentials led to LTD.

Markram et al. (1997) reported that at protocol repetition frequencies lower than
approx. 10Hz zero synaptic change occurred. Exploring this Sjöström et al. (2001)
found that in fact, while a typically LTP pairing protocol leads to zero change at
these frequencies, an LTD protocol still leads to depression even at low frequen-
cies. Through a series of experiments they further demonstrated that this frequency
dependence, on LTP, can be overcome by generating a larger postsynaptic EPSP,
either through activation of more synaptic inputs or via a stronger stimulation, or
alternatively via experimental postsynaptic depolarisation. In (Lisman and Spruston
2005) it was postulated that this is likely due to the requirement for a ‘build-up’ in
synaptic current charge, due to repetition, in order to fully release the postsynaptic
magnesium block, on the NMDA receptors, allowing for a subsequent opening of
the voltage activated calcium channels. They reasoned that the heretofore accepted



1.1. HIPPOCAMPAL AND NEOCORTICAL PLASTICITY EXPERIMENTS 9

Figure 1.7. Sjöström et al. (2001). If pre- and post- relative timings are
random with an average offset of 0ms, then for low frequencies LTD results,
whereas for high frequencies LTP results.

influence of the backpropagating action potential may not in fact be an enabler of
synaptic plasticity due to its attenuation at higher frequencies. Citing Golding et al.
(2002) as evidence, they argue that it is a build-up of postsynaptic dendritic depo-
larisation which is a necessary signal for synaptic plasticity, rather than an actual
postsynaptic action potential.

A number of groups have looked at the effects of higher numbers of pre- and post-
synaptic spikes, than that originally examined in the basic STDP experiments, on
synaptic plasticity. In (Froemke and Dan 2002) the authors explore a paradigm of a
single presynaptic spike sandwiched closely in time between two postsynaptic spikes
as well as the inverse setup; two presynaptic spikes surrounding a single postsynaptic
spike. They find that the net synaptic plasticity cannot be explained as any kind
of linear sum of the independent LTP and LTD effects, which can be expected by
a single pre- spike followed by a post- spike and vice-versa. They propose a model,
based on their observation that the time difference between the first pre- spike and
the first (or only) post- spike is the greatest predictor of synaptic plasticity out-
come, which requires that a presynaptic spike suppresses the influence of subsequent
presynaptic spikes occurring within a short time window. In (Froemke et al. 2006)
they extended this work, examining the effects of a burst of length 5 in combination
with an isolated pre- or postsynaptic spike, and subsequently with a burst of equal
length. By modifying their original model somewhat they find that suppression of
the influence of non-initial spikes in a burst on the plasticity rule appears to explain
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the data. Taking a similar approach, this time using cultured hippocampal neurons,
Wang et al. (2005) showed a definite asymmetry in the LTP and LTD learning rules.
Using a triplet protocol they demonstrated that a typically potentiating spike pair
followed by a typically depressing paring (in this case the postsynaptic spike is shared
between both pairings) leads to to a cancellation of the two processes, however re-
versing the protocol order leads to potentiation; suggesting that LTD can cancel LTP
but LTP can completely overrule LTD. They then proceed to demonstrate the same
effect for a quadruplet of sufficiently closely occurring spikes. Wittenberg and Wang
(2006) further explore higher dimensional effects on the CA1 plasticity rule, at low
extracellular calcium concentrations. At low frequency stimulation they demonstrate
a complete absence of LTP effects, whereas LTD is produced for any closely paired
pre- and postsynaptic spikes. Repeating this experiment at 5Hz leads to some cells
potentiating whereas others depress for similar relative spike timings, however the
addition of a second postsynaptic spike, along with the 5Hz tetanic frequency finally
restores LTP for anti-causally oriented spike pairs. Finally, they demonstrate that
LTP has a lower repetition dependence than LTD in order to produce effects of a
similar magnitude.

Indications that synaptic plasticity saturates were first evident in (Bliss and Lømo
1973) where, furthermore, we see clear evidence that LTP may be an all-or-nothing
process. Many subsequent experiments (cf. Debanne et al. (1994); Sjöström et
al. (2001)) demonstrated that the two reversible processes, LTP and LTD, appear
to have two distinct stable states, at least for the one hour duration following a
plasticity induction experiment. In (Petersen et al. 1998) they demonstrated that
potentiation of CA3 to CA1 synapses appears to be an all-or-none process, leading
to saturation once the binary step-up in synaptic efficacy has occurred. As part of
this demonstration it is important to note that different individual synapses have
different individual efficacies and different thresholds to potentiation. This means
that in a cooperative, distributed, synaptic system we will see synaptic behaviour
which often resembles an analogue distribution of synaptic efficacies. The all-or-none
nature of bidirectional plasticity was further explored in a pair of papers (O’Connor
et al. 2005a; O’Connor et al. 2005b). In the Journal of Neurophysiology paper
they examine the kinase and phosphatase pathways required for LTP and LTD. In
the PNAS paper they clearly demonstrate that plasticity events are discrete, with
only two states for a given synapse. Furthermore, the individual synaptic states are
heterogenous again demonstrating a potential method of graded memory storage via
different synapses.

The detailed biomechanical machinery responsible for synaptic plasticity involves
a dizzying array of chemicals and pathways. An early substance which was found
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to be vital for synaptic plasticity was calcium. Malenka et al. (1988) demonstrated,
via a photo-induced increase in postsynaptic calcium concentration, that elevated
calcium is a necessary and sufficient condition for postsynaptic LTP. This result had
already been indicated in (Lynch et al. 1983) where intracellular EGTA was shown to
block LTP. In practice, LTP activation is believed to be via the postsynaptic NMDA
receptors, as blocking their activity via APV prevents LTP (Collingridge et al. 1983).
In fact, NMDA receptors are believed to be critically implicated in LTP, requiring
the coincidence of a presynaptic spike, inducing glutatmate release, and postsynaptic
depolarisation, releasing the magnesium block in the postsynaptic NMDA receptor,
for induction (Bliss and Collingridge 1993). Calcium dependence of LTD was sub-
sequently demonstrated by Neveu and Zucker (1996), again via photolysis of caged
calcium compounds. In a follow-up paper, Yang et al. (1999) demonstrated that
while LTP was sensitive to brief but high increases in calcium, LTD is induced via
longer lasting intermediate levels of calcium increase. From the timing of synap-
tic plasticity experiments, the fact that elevated calcium concentrations decay much
faster than the ultimate induction processes, it is clear that the ultimate actors of
synaptic plasticity are downstream of any calcium activation and probably involve
either, calcium dependent proteases, protein kinase C (PKC) or calcium-calmodulin
dependent protein kinase II (CaMKII).

1.2 Synaptic plasticity models: hippocampus and

neocortex

The original model of synaptic plasticity appears, somewhat informally, in Hebb’s
seminal work (Hebb 1949). It expresses a form of coincidence detection, whereby
synapses joining neurons which ‘fire together’ either come into existence or become
stronger; the details are left for the reader to imagine. There is no explicit definition
of what happens to existing synapses joining neurons which are not firing together.
However, over time it has come to be assumed that synapses which connect neurons
which are not ‘firing together’ probably need to decay in strength and ultimately to
disappear. This is in order to avoid a system where synaptic efficacies only grow,
leading to increased firing rates and further synaptic strength increases.

In (Sejnowski 1977) the problem of interpreting Hebb’s rule was approached us-
ing a covariance model. In this it was proposed that the influence of presynaptic
activity on postsynaptic membrane potential is governed by the way in which the
two membrane potentials or spiking processes covary. Kohonen (1982) proposed a
firing rate based approach which saturates in order to avoid unrealistic growth of the
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Figure 1.8. Bienenstock et al. (1982). A simulation of a rate based model of
synaptic plasticity, with a sliding threshold, is able to explain the development of
orientation selectivity in the visual cortex of a cat. (A) Simulation of a normally
reared cat develops binocular orientation selectivity. (B) Simulation of a dark
reared cat develops a binocular randomly fluctuating response curve. (C) Binocular
deprivation (suturing of the eyelids), leads to a disappearance of the response
selectivity but the cell remains responsive. (D) Ocular dominance is obtained when
one eye is sutured and the other allowed to remain open. (E) Uncorrelated rearing
(where the eyes do not receive the same inputs) leads to both monocular and
binocular selective states.



1.2. HIPPOCAMPAL AND NEOCORTICAL PLASTICITY MODELS 13

synaptic efficacy. A power series expansion of this model was taken by Oja (1982),
giving a learning rule which learns due to Hebbian type coincident activity but which
has a normalising leak term. This model was then shown to implement a principal
component analyser when embedded in a network. An alternative rate based plas-
ticity rule was presented in (Bienenstock et al. 1982) where they showed that the
introduction of a sliding threshold to such a rule allows them to account for such
developmental traits as orientation tuning curves and ocular dominance in the visual
cortex (see Fig. 1.8).

The Hopfield (1982) model of neuronal networks combines binary threshold neu-
ronal units with a network structure which resembles spin-glass models studied in
statistical physics, where synapses are updated in response to input patterns, rep-
resenting memories to be recalled. This model proved tractable to mathematical
analysis leading to a calculation for memory capacity in (Amit et al. 1985). They
showed that, for a low synaptic noise, memories can be stored with perfect recall un-
til the memories represent more than a critical proportion of the size of the network,
after which a catastrophic failure of the memory process may occur. Nadal et al.
(1986) showed that by modifying the Hopfield (1982) learning rule new memories can
continue to be stored, indefinitely, at the cost of erasure of older memories. Finally,
Tsodyks and Feigel’man (1988) proposed a modified learning rule for the Hopfield
(1982) network, which featured greatly enhanced storage capacity for correlated pat-
terns, when activity levels are low.

Rate based model development was driven by the experimental state-of-the-art
at the time. Experimental results typically involved external stimulation of bundles
of axonal fibres and recordings of population dynamics (cf. Bliss and Lømo (1973)).
With the development of reliable intracellular recording techniques, the 1990s saw
a switch to precise spike timing driven experiments and a commensurate switch in
the modelling community. A forerunner however was Gerstner et al. (1993) where
they showed that a Hebbian rate-based model, especially in a system with a rea-
sonable variance in transmission delays, was not able to capture temporally coded
information, whereas a spike-timing based rule can do so to a very high precision.
This was followed up in (Gerstner et al. 1996) where the model was applied to ex-
plain the ability of barn owls to localise sound with a very high temporal precision
despite apparently longer time constants in their auditory system than the latency
between the two input channels. In (Song et al. 2000) they demonstrated that a
simple spike-timing dependent plasticity (STDP) rule in a recurrent network nat-
urally leads to selective weight potentiation. Synapses which are most involved in
postsynaptic spiking tend to get potentiated whereas other synapses slowly get de-
pressed. This demonstrates not only a clear motivation for the existence of STDP
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in synapses but a potential method of homeostasis of incoming weight to a single
neuron, without the requirement for a global signal. In order to achieve a weight dis-
tribution more closely matching that seen in experiments Van Rossum et al. (2000)
introduced a weight dependence on the potentiation term, meaning that stronger
weights get potentiated less than weaker weights. This leads to a unimodal distribu-
tion but requires an extra ‘leak’ term in order to maintain a target postsynaptic firing
rate. The same authors analysed this model further in (Van Rossum and Turrigiano
2001) with the slight alteration, based on experimental observations, where there
is no longer a weight dependence on depression, they demonstrate that such a rule
leads to a stable distribution of synaptic weights under random background firing
and that it will selectively learn for correlated inputs. Examples of the distributions
obtained from additive and multiplicative STDP rules can be seen in Fig. 1.9, taken
from Billings and Van Rossum (2009), a paper which will have relevance to our work
in Chapter 3 as it pertains to memory maintenance and decay in these two models
of STDP.

As experiments developed allowing the investigation of precise spike-timing ef-
fects on synaptic plasticity, it also became possible to more accurately explore the
previously described phenomenon of short-term synaptic plasticity (Zucker 1989).
This is a, typically, presynaptic effect, whereby there is a delay in replenishing presy-
naptic vesicles thus leading to a decrease in the observed effectiveness of the synapse
in inducing an excitatory EPSP. The typical model of this process is the depletion-
renewal model of Tsodyks and Markram (1997). Short-term facilitation was added
to this model in (Tsodyks et al. 1998). Short-term plasticity was developed into a
theory of a synaptic mechanism/trace of working memory storage in (Mongillo et al.
2008). In this thesis, we will focus only on models and mechanisms of long-term plas-
ticity, their short-term counterparts are mentioned here for completeness and also
to illustrate a point at which the literature separated into short-term and long-term
components.

Synaptic memory processes involve discrete processes, such as an increase in vesi-
cle density presynaptically or in AMPA receptors postsynaptically (Lisman 1985).
This has led to a number of theories of synaptic plasticity which involve discrete
synaptic weights, or at least the use of discrete stable states connected by a con-
tinuous potential well. In (Amit and Fusi 1994) learning is modelled by a Markov
process, representing the probability of transition between stable states, giving rise
to a palimpsest memory process capable of continually learning new memories while
decay of old memories is dependent on subsequent patterns presented. Fusi et al.
(2005) advanced the concept of bistability in synapses to involve multiple internal
(meta-)states in a synapse, which may refer to amenability towards plasticity in ei-
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Figure 1.9. Billings and Van Rossum (2009). Development of synaptic
weight distributions from two STDP models. (Left column) A non-weight
dependent STDP rule (nSTDP) leads to a bimodal distribution in weights under
Poisson neuron inputs and a postsynaptic LIF neuron. (Right column) A weight
dependent STDP rule (wSTDP) leads to a unimodal distribution of weights, under
the same conditions.

ther direction, with two or more discrete states visible to the network. Versions of
this model have been found to have properties which contribute to both high memory
capacity in a network and long memory time scales (Roxin and Fusi 2013). While
not strictly discrete, the strong bistability in the Tag-Trigger-Consolidate model of
Clopath et al. (2008) can be interpreted as a binary synapse and the underlying
mechanism demonstrates an attractive link between the abstract model of Fusi et al.
(2005) and the underlying biology involving early- and late-phase plasticity driven
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by protein processes.

When typical synaptic plasticity models are implemented naively they may give
rise to pathological behaviour. That is, an increase in synaptic strength will lead
to increased postsynaptic spiking/excitability which tends in turn to lead to fur-
ther increases in synaptic strength. A number of solutions to this problem have
been proposed and fall generally under the term homeostatic plasticity or regulation
(Turrigiano and Nelson 2000; Turrigiano and Nelson 2004). In brief, this means that
there is some kind of normalisation process, which operates across all, or a subset,
of the synapses inputting to an individual postsynaptic neuron, generally at a much
slower time scale than that of spike-timing dependent plasticity, which leads to a
moderation in postsynaptic spiking activity. Such an idea is implicitly present in
the sliding threshold, at the individual synapse level, for the BCM rule (Bienenstock
et al. 1982). Toyoizumi et al. (2005) developed a synaptic plasticity rule based on the
principle of maximisation of information between spiking neurons, a process which
requires that homeostasis maintains the postsynaptic firing rate as close to its mean
as possible, finding that such a rule has the same properties as the BCM rule in
the absence of refractoriness. The weight dependent potentiation in the Van Rossum
et al. (2000) model can be seen as an early attempt to incorporate such a process into
a spike-timing plasticity model. This model does not necessarily prevent run-away
excitation but it does at least greatly reduce the speed of its activation allowing for
network processes to intervene. The Tag-Trigger-Consolidate model of Clopath et al.
(2008) contains a more explicit implementation of homeostatic synaptic plasticity via
a process called cross-tagging, a process global to the postsynaptic neuron although
it could also be implemented locally to a dendritic branch.

Figure 1.10. Shouval et al. (2002). A calcium-based plasticity rule is capable
of reproducing both the postsynaptic depolarisation dependence (A) and frequency
dependence (B) of STDP. This particular rule predicts LTD for both positive and
negative relative spike timings and LTP only for positive offsets (C).
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The initial spike-timing dependent plasticity models were purely phenomeno-
logical models, eventually there was a move to base these models more closely on
underlying physiological processes. As calcium had been shown to be necessary and
sufficient for LTP (Malenka et al. 1988) and LTD (Neveu and Zucker 1996) it was
natural for one of the first such models to use calcium as a central element (Shou-
val et al. 2002). In their model (see Fig. 1.10), Shouval et al. implement calcium
influx postsynaptically via NMDA receptors, they do this by assuming that back-
propagating action potentials induce long lasting after-depolarisations which release
the magnesium blocks which had been preventing calcium entry via the NMDA re-
ceptors. This model can, at least qualitatively, fit the postsynaptic depolarisation
dependence (Cummings et al. 1996), the frequency dependence (Bliss and Lømo
1973; Dudek and Bear 1992) and precise spike-timing based experiments (Bi and
Poo 1998; Markram et al. 1997) in the early literature. It does however predict a
late period of LTD plasticity, where a postsynaptic spike follows a presynaptic spike
by approx. 100ms, over which there is much debate as to the real existence. The
advantage of such a model is that it allows us to make precise predictions about
experimentally verifiable variables in order to understand if our suspicions about the
processes underlying synaptic plasticity are valid. A more detailed calcium depen-
dent model was presented in (Rubin et al. 2005), in which they explicitly attempt
to model the pathways regulating CaMKII in a single spine using a series of dif-
ferential equations. Two of the equations filter the calcium concentration leading
to LTP and LTD of the synapse at different calcium concentrations, with a strong
duration dependence. They propose that a system of calcium detectors, which in-
clude a duration dependence for LTD, must be combined with a veto process on
depression in order to be sufficiently robust to fit all experimental data. Such a veto
might be compared with the competition of kinases and phosphatases in the CaMKII
phosphorylation-dephosphorylation cascades.

In recent times a number of models have been devised which attempt to go be-
yond basic pair-wise spike-timing dependent plasticity, to capture higher dimensional
features in spike patterns. An early such model was presented in (Sjöström et al.
2001) where they incorporated firing rate, depolarisation and relative spike timing
into the synaptic plasticity rule. Fitting the data presented in the same paper they
found their best model was one in which a spike which participates in an LTP pro-
cess should not contribute to a separately calculated LTD process. An alternative
approach was presented in (Froemke and Dan 2002) and more thoroughly developed
in (Froemke et al. 2006) and was based upon experimental results which appeared
in the same papers. In this model the underlying idea is that subsequent spikes in
a burst have a lesser effect on the overall plasticity change. A model very much in
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keeping with the original idea of pair-wise plasticity was the model of Pfister and
Gerstner (2006) which moves to incorporating the three most recent spikes and their
relative timings in order to predict plasticity changes. The emergence of this model
was clearly influenced by the emergence of triplet based experiments such as Wang
et al. (2005). An attractive feature of this model is that it can be directly mapped to
a BCM type rule if spiking is assumed to be a Poisson process pre- and postsynapti-
cally (Pfister and Gerstner 2006). A more biologically inspired model was presented
by Clopath et al. (2010), in which thresholded low-pass filtered and instantaneous
traces of postsynaptic membrane voltage are multiplied by learning constants upon
presynaptic spiking. This brings the postsynaptic voltage dependence of synaptic
plasticity (Sjöström et al. 2001) to the fore in the model and combines it with traces
which can variously be explained as NMDAR activation, endocannabinoid release and
postsynaptic calcium concentration. The model we will concentrate mostly upon, in
this work, is the calcium-based plasticity rule of Graupner and Brunel (2012), which
attempts to combine the direct biological relevance of a calcium-based rule with cer-
tain features, such as thresholding of the calcium trace, which capture higher order
features of spike trains. This rule is based entirely upon duration above the relevant
calcium thresholds in order to dictate plasticity outcomes.

Most of the work cited above developed theories of synaptic plasticity distribu-
tions which were then tested only in synapses surrounded by Poisson processes, or in
feedforward networks of leaky integrate-and-fire neurons. Extension to simulations
involving recurrent networks of spiking neurons has proved difficult for a number
reasons, firstly, simulation of plasticity involves an increase in the number of equa-
tions from order N to order N2, secondly, the dynamics of synaptic plasticity are
considerably slower than those of neuronal dynamics. This means that in order to
simulate plasticity in neuronal networks it is necessary to run simulations which are
not only considerably larger but must also run for much longer, than simulations
involving fixed synaptic weights. Song et al. (2000) incorporated a Hebbian style
plasticity rule into a recurrent network of leaky integrate-and-fire neurons by biasing
the net effect of the rule towards depression, while setting the network activity into a
balanced regime thus producing a surplus of presynaptic spikes which do not provoke
a postsynaptic spike hence giving a surplus of potentiation. The network inputs and
the learning rule parameters were calibrated such that the surplus of potentiation
from the balanced network regime was perfectly complemented by the surplus of
depression for closely correlated spikes from the learning rule. Mongillo et al. (2005)
implemented a spiking network simulation with a two state synaptic plasticity model
in order to explore effects of working memory experiments on synaptic plasticity, and
vice-versa. Utilising the Poisson theory of neuronal spiking Gilson et al. (2010, one of
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Figure 1.11. Graupner and Brunel (2012). This calcium-based plasticity rule
can capture a plethora of different theoretical STDP curves depending on the
relationship of the calcium influx parameters to the synaptic plasticity thresholds.
(A) For different dt the amount of time above the thresholds varies. (B) The mean
synaptic efficacy is a result of the proportion of time above the two plasticity
thresholds. (C and D) The shape of the STDP curve varies as a function of the pre-
and postsynaptic calcium influx parameters and the potentiation/depression
plasticity thresholds. The plane is divided up into areas with similarly shaped
STDP curves.

a series of papers) use a mean-field theory approach to setup a network of recurrently
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connected Poisson neurons (Kempter et al. 1999), for which they then make theoret-
ical predictions, with accompanying simulated demonstrations. In particular, they
observe the emergence of functional connectivity subpopulations, which correspond
to correlated inputs, via symmetry breaking. Synaptic plasticity is not just reserved
for excitatory connections, Vogels et al. (2011) study the impact of inhibitory-to-
excitatory synaptic plasticity on network dynamics and learning. They demonstrate
that inhibitory-to-excitatory synaptic plasticity is capable of reducing the firing rate
of cell assemblies thus making them indistinguishable from background network ac-
tivity, despite their still carrying an encoded excitatory memory trace, and restoring
balanced network activity. Finally, Zenke et al. (2013) take a particular Hebbian
based learning rule and demonstrate that in a recurrent network this particular rule
requires a homeostatic process which operates on the order of seconds to minutes in
order to avoid a run-away feedback leading to an explosion in firing rates. As will be
shown later however, this behaviour is not a characteristic of all synaptic plasticity
rules.

1.3 Synaptic plasticity experiments: cerebellum

Synaptic plasticity at the parallel fibre to Purkinje cell synapse in the cerebellum
appears to be fundamentally different from that found in most other brain areas, in
particular in the much studied areas of the hippocampus and the neocortex. The
Purkinje cell is a particularly large cell with a large planar dendritic tree (Eccles
et al. 1967). Parallel fibres typically run orthogonally to this dendritic tree, where
they make multiple synaptic contacts. A single climbing fibre comes from the inferior
olive and wraps itself around the Purkinje cell proximally to the soma, making strong
synaptic contacts which greatly influence the activity of the Purkinje cell. In addi-
tion, some inhibitory interneurons contact the Purkinje cell, typically proximally,
one class of which has as input the same Golgi cells whose parallel fibres project to
the molecular layer leading to a form of feedforward inhibition. When the climbing
fibre spikes this leads to a large calcium spike in the Purkinje cell. In contrast, the
numerous parallel fibre contacts (of the order of 100,000 per Purkinje cell) have very
little effect, on an individual basis, on the Purkinje cell depolarisation. Their effects
are greatly attenuated in the large dendritic structure before they reach the soma.
Finally, the Purkinje cell fires a complex spike somewhat regularly at a frequency of
approximately 1/s and normal spikes at 30-40/s in vivo.

Plasticity at the parallel fibre to Purkinje cell synapse was originally postulated
via theoretical motivations (Albus 1971; Marr 1969) before it was identified ex-
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perimentally (Ito et al. 1982). Based on the extremely regular architecture of the
cerebellum, described as far back as Cajal (1911), and thoroughly described in (Ec-
cles et al. 1967), Marr predicted the importance of the cerebellar cortex in motor
learning. In addition, he specified that plasticity at the parallel fibre to Purkinje
cell synapse was essential for his model of cerebellar function to be valid. Working
apparently in parallel and making use of the same basic approach of the inherent
stereotyped structure of the cerebellar cortex, Albus (1971) developed a theory based
on the Purkinje cell as a perceptron to explain cerebellar function. This theory also
led to the implication of the primacy of parallel fibre to Purkinje cell plasticity in
cerebellar function. In addition, Albus suggested that plasticity may exist at some
of the inhibitory cell synapses but that this was not strictly necessary for the theory
to be valid. In Albus’ theory the climbing fibre is seen as a stimulus in the clas-
sical learning sense (Pavlov), meanwhile the parallel fibres should elicit a pause in
Purkinje cell activity (a response), thus the climbing fibre signal should teach the
parallel fibre synapses when to depress their synaptic weights. This weight change is
opposite in sign to that predicted by Marr but both theories emphasise the location
of plasticity to this particular synapse. The first experiments showing long-term
depression (LTD) at the parallel fibre to Purkinje cell synapse, and confirming the
theoretical prediction of Albus, were presented in (Ito et al. 1982).

Ito et al. (1982) demonstrated that conjunctive stimulation of a vestibular nerve
and the inferior olive leads to long lasting (at least one hour) depression of the exci-
tatory effect alone, of the vestibular stimulation, on the Purkinje cell. They further
localised the site of plasticity to the Purkinje cell by comparing the application of
glutamate locally to the Purkinje cell in conjunction with inferior olive stimulation
alone to obtain the same results. This effect was further characterised by Ekerot and
Kano (1989), where they found that there was an optimal relative timing between
parallel fibre and climbing fibre stimulation in order to induce LTD. They also found
an increase in the degree of depression induced by coincident stimulation at 4Hz,
postulating that this was due to a saturation of calcium processes in the dendrites.
All of this work was produced by extracellular stimulation in decerebrate rabbits.

The first demonstration of in vitro parallel fibre to Purkinje cell plasticity was
by Sakurai (1987) where, using parasagittal slices of guinea pig brain and extracel-
lular stimulation of the parallel fibres and climbing fibre, they demonstrated a clear
long-lasting depression of the postsynaptic potential induced in the Purkinje cell by
parallel fibre stimulation. This move to in vitro experimentation greatly enhanced
the ability of experimentalists to localise the sites of stimulation and consequent plas-
ticity. Furthermore, it allowed for the application of picrotoxin removing the effects
of feedforward inhibition. In the same paper, Sakurai also demonstrated a form of
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potentiation which decayed after approximately 20 minutes. This potentiation was a
forerunner to subsequent discoveries which would uncover multiple forms of LTP in
this synapse. Crepel and Jaillard (1991) utilised depolarisation of the Purkinje cell
in place of climbing fibre activation to obtain LTD, demonstrating a requirement for
calcium spikes in the Purkinje cell, rather than the smaller sodium spikes obtained
at a lesser depolarisation. They also found a certain degree of potentiation in their
synapses which they could not disentangle, by protocol, from the depressed synapses.
Karachot et al. (1994) using a sagitally cut rat cerebellar cortex, demonstrated that
the optimal protocol for LTD induction is 300 repetitions of a 1Hz stimulation of the
climbing fibre and the parallel fibres, with the climbing fibre ideally following the
parallel fibre stimulation.

Figure 1.12. Sakurai (1990). Demonstration of calcium dependence of LTD.
When the postsynaptic cell is filled with EGTA, LTD is blocked (closed circles).

The influx of calcium into Purkinje cells was long postulated to be a signal for
synaptic plasticity at the parallel fibre synapse (Ito et al. 1982). This was confirmed
experimentally in (Sakurai 1990) where, by filling their pipette with a solution con-
taining EGTA, a calcium chelator, they blocked the normal induction of LTD and
indeed observed LTP. Shortly thereafter Konnerth et al. (1992), combining imaging
techniques with electrophysiology, demonstrated that parallel fibre to Purkinje cell
depression is coincident with a brief rise in calcium concentration typically induced
by climbing fibre activation. They further repeated this result replacing climbing fi-
bre stimulation with sub spiking-threshold Purkinje cell depolarisation. An analysis
of the localisation and time course of the intracellular calcium concentration increase
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Figure 1.13. Crepel and Jaillard (1991). Demonstration of LTD via pairing of
parallel fibre stimuli with depolarisation induced Purkinje cell calcium spikes.

(Eilers et al. 1995) showed that the maximal dendritic calcium concentration occurs
much later (35ms) than in the soma.

The relative timing of the climbing fibre and parallel fibre stimuli was explored
in (Chen and Thompson 1995). There they showed that in a typical setup, optimal
LTD is obtained by stimulating the parallel fibres 250ms before the climbing fibre
stimulus. When the blockage of inhibitory interneurons, via picrotoxin, is removed
the sharpness of the timing dependency is particularly accentuated, whereas in the
presence of picrotoxin it is possible to obtain some degree of LTD for a wide range of
offsets. They also looked at the number of stimulus repetitions at a given strength
required to obtain LTD, finding that for weak parallel fibre stimuli there is a very
strong repetition dependence of LTD. For high numbers of repetitions (600), it is
again possible to induce LTD for all the examined inter stimulus intervals. This shows
a very strong associative element of parallel fibre to Purkinje cell plasticity. Later,
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Figure 1.14. Chen and Thompson (1995). (A) For 100 parallel fibre and
climbing fibre parings optimal LTD is obtained for a 250ms delay between parallel
fibre stimulus and climbing fibre stimulus. (B) The control pathway. (C) The
difference between the test and control pathways.

using calcium imaging techniques Wang et al. (2000) explored the issue of relative
parallel fibre activity to climbing fibre induced Purkinje cell spiking in order to induce
LTD. They observed that maximal peak dendritic spine calcium concentration was
attained when the climbing fibre activation followed the beginning of the parallel fibre
burst by 64ms and, when looking at the integral of the calcium response, maximal
concentration was obtained with a 94ms delay.

Lev-Ram et al. (1995) combined the calcium and timing based results and in ad-
dition demonstrated a further dependence on presynaptically released NO on postsy-
naptic plasticity. In this paper, using photolytic induction of NO release internally to
the Purkinje cell combined with membrane depolarisation, they demonstrated LTD
which could not be blocked by a bath applied NOS inhibitor indicating the target
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Figure 1.15. Lev-Ram et al. (1995). Bath applied NOS inhibitor blocks LTD
from PF stimulation (A) but not from uncaged NO in the Purkinje cell (B).

was within the Purkinje cell (see Fig. 1.15). Furthermore, this effect could be blocked
by intracellular BAPTA thus demonstrating the dual dependence on both NO and
calcium. They also demonstrated the relative timing dependence, showing that the
Purkinje cell depolarisation must precede or be coincident with the NO release in
order for LTD to occur. Finally, using a typical LTD protocol with a bath applied
NO scavenger and in the absence of photolytic NO release they saw no change in
synaptic efficacy, demonstrating that the source of NO is not in the Purkinje cell,
but likely presynaptic.

A postsynaptic form of LTP, with the ability to reverse the above postsynaptically
expressed LTD, was discovered in (Lev-Ram et al. 2002). They revealed that not
only was this form of LTP dependent on a presynaptic NO signal, but furthermore,
it is enhanced by a reduction in postsynaptic intracellular calcium concentrations.
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Figure 1.16. Lev-Ram et al. (2002). (Left) LTP requires 300 parallel fibre
pulses. (Centre) Bath applied NOS inhibitor blocks the 1Hz LTP protocol (black
circles, subsequently shown to be a postsynaptic protocol) but not the 4Hz protocol
(clear circles, a presynaptic plasticity protocol). (Right) Uncaging of NO within the
Purkinje cell results in LTP.

An extracellular NOS inhibitor blocks this postsynaptic LTP but not a presynaptic
form of LTP (see Fig. 1.16). Conversely, uncaging of NO within the Purkinje cell
induces LTP. The discovery of parallel fibre to Purkinje cell LTP took a long time
to discover, relative to the early discovery of LTD, perhaps because of the protocol
required for its induction. Lev-Ram found that it takes a full 300 repetitions at
1Hz, but is confounded with presynaptic effects when the frequency is increased, by
comparison the LTD protocol requires only 120 repetitions. The mutual reversibility
of the LTP and LTD processes was more completely characterised in (Lev-Ram et al.
2003). There they demonstrated that while both postsynaptic LTP and LTD require
NO, LTP requires a moderate to low calcium concentration in comparison with a
high concentration for LTD.

The NO dependence of LTD was found to be associated with presynaptic NMDA
receptors in (Casado et al. 2000). Driven by the observation that the application of
NMDA to a slice leads to a depression in the EPSC, they showed that the application
of NMDA must be coincident with ongoing parallel fibre spiking, presumably in
order to remove the magnesium block, in order to observe this effect. Furthermore
the transmission of the presynaptic uptake of NMDA to the postsynaptic domain
is blocked by NOS inhibitor (note there are no postsynaptic NMDARs in adult rat
Purkinje cells). In (Casado et al. 2002) they showed that it is possible to block
postsynaptic LTD by the application of specific NMDA receptor antagonists. This
further gives rise to the theory that it must take at least two parallel fibre spikes in
close temporal proximity in order to induce LTD, as the first spike would be required
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to release the magnesium block in the absence of experimental manipulation. In
a later paper from the same group Bidoret et al. (2009) described the presynaptic
NMDARs as a high-pass filter of parallel fibre spiking activity. Alternative viewpoints
were provided in (Piochon et al. 2010) where they believe that NMDARs exist at the
climbing fibre to Purkinje cell synapse and not on the parallel fibre terminals, and
(Shin and Linden 2005) where they argue that the NMDARs exist on the stellate cell
(interneuron) to Purkinje cell synapses instead and that glutamate spillover from the
parallel fibres causes their activation.

Alongside the direct electrophysiological manipulative examination of synaptic
plasticity at the parallel fibre to Purkinje cell synapse, there has been a parallel
interest in pharmacologically identifying the pre- and postsynaptic receptors and
mechanisms of plasticity at this synapse. LTD appears to be caused by internalisa-
tion of the GluR2-type of postsynaptic AMPA receptors, thus reducing their ability
to pick-up glutamate from the synapse (Matsuda et al. 2000). This is driven by
a protein kinase C cascade (PKC) phosphorylating the GluR2 receptor apparently
preparing it for clarithrin-mediated endocytosis (Wang and Linden 2000; Xia et al.
2000). In the case of LTP, Kakegawa and Yuzaki (2005) showed that this is also a
GluR2 process, this time governed by NO-mediated N-ethylmaleimide and not via the
more typical calcium-calmodulin protein kinase II (CaMKII) pathway. Belmeguenai
and Hansel (2005) further showed that LTP is governed by a phosphatase pathway,
dubbing plasticity in this synapse an, "inverse phosphatase/kinase switch," with re-
spect to hippocampal plasticity. See Hansel (2005) and Jörntell and Hansel (2006)
for reviews. Sarkisov and Wang (2008) identified the IP3 receptor, previously iden-
tified in (Khodakhah and Armstrong 1997) as an essential element in the induction
of LTD, with the selection for the order of arrival of parallel fibre vs climbing fibre
stimuli. They showed that the activation of the climbing fibre before the arrival of
a parallel fibre burst leads to a much larger release of calcium than if the order is
reversed.

The in vitro examination of parallel fibre to Purkinje cell plasticity is particu-
larly difficult due to the anatomical arrangement of the Purkinje cell dendritic tree
orthogonally to the parallel fibres. This makes it particularly difficult to decide how
to cut the slice and where precisely to apply a stimulus. Marcaggi and Attwell
(2007) showed that the localisation of the stimulus can greatly change the plasticity
outcome. Stimulation in the molecular layer leads to a dense bundle of synaptic
contacts being stimulated simultaneously, whereas stimulation in the granule layer
should lead to a sparse density of contacts on an individual postsynaptic Purkinje
cell. When normalising the stimulus strength to produce the same magnitude fast
EPSC, Marcaggi and Attwell did not see any long-term plasticity when delivering
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the sparser stimulation. This suggests that many of the protocols used heretofore
rely on spillover between synapses or a higher stimulus strength leading to much
the same end result. It should also be noted that the synapses formed by ascending
granule cell axons directly onto the Purkinje cell were shown not to display synaptic
plasticity (Sims and Hartell 2006), so it is only the synapses between the parallel
fibres and the Purkinje cell which are involved in synaptic plasticity. In terms of
stimulation strength Hartell (1996) showed a clear LTD via strong stimulation of the
parallel fibres. This effect has been largely ignored in the literature until the results
we will present in this thesis.

The first models of parallel fibre to Purkinje cell plasticity were the theoretical
works of Marr (1969) and Albus (1971). The perceptron theory of Albus, in par-
ticular, became the accepted model for the next thirty years. In a first attempt to
improve the explanation as to how activity at the synapse can lead to bidirectional
plasticity Coesmans et al. (2004) sketched a calcium concentration rule, whereby
high postsynaptic calcium concentration leads to LTD and lower concentration to
LTP. This of course, was not necessarily a new idea but rather an assembly of ideas
in the literature at the time, and was presented in a review paper without a theoret-
ical implementation. Taking as inspiration the work of Bhalla and Iyengar (1999),
modelling molecular signalling pathways explicitly, Kuroda et al. (2001) built and
implemented a model of the phosphorylation of AMPA receptors to model LTD.
They found that there appears to be a key feedback loop involving PKC and driven
by an initial calcium concentration, which must be above a certain threshold con-
centration, which leads to the phosphorylation of AMPA receptors and a reduction
in the number of non-phosphorylated AMPA receptors. In a related paper, Doi et
al. (2005) modelled the dynamics of postsynaptic calcium production as induced by
parallel fibre and climbing fibre activity. They found that another feedback loop,
involving IP3, leads to an accurate representation of the relative spike timing via the
calcium concentration, an effect subsequently demonstrated experimentally in (Sark-
isov and Wang 2008). Expanding on the detail presented in these models, Kawaguchi
and Hirano (2013) present another model of LTD looking at the effects of CaMKII
downstream in the plasticity cascade. They demonstrate that, while LTD is typically
dependent on both CaMKII and NO acting synergistically, in the absence of CaMKII
NO is sufficent to drive LTD. To our knowledge nobody has yet attempted to model
LTP at this synapse beyond the sketched calcium theory of Coesmans et al. (2004).
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1.4 Summary

In this thesis we will examine synaptic plasticity from the single synapse right up
to the generic large-scale network level. In Chapter 2 we will develop a model for
the relatively atypical parallel fibre to Purkinje cell synapse. This model accurately
describes synaptic plasticity outcomes for a series of experiments, from the literature,
performed under comparable experimental conditions. We further test the model by
making predictions which were subsequently tested experimentally. The ultimate
goal of this model is to explain in the most reduced form possible the necessary
factors for predicting the results of an experimental protocol. In addition, we believe
that the model we develop is compact enough to allow it to be implemented on a
large-scale thus allowing for predictions of the global learning behaviour of a module
of the cerebellar cortex.

In Chapter 3 we switch to a more traditional synaptic plasticity paradigm, using
the Graupner and Brunel (2012) model of synaptic plasticity and a parameter set
fitted to a set of cortical slice experiments (Sjöström et al. 2001). This model has been
shown to be able to reproduce the experimental results obtained cortical synapses.
We will examine how the synapses might be expected to behave under ongoing
background activity. This is especially relevant when we consider that in vivo cortical
neurons are rarely silent. But if they are continuously active, and yet typical STDP
rules are influenced by every spike, how is it that memories are not destroyed? In
a thorough analysis of the synaptic plasticity model, we show first theoretically and
then using numerical simulations that, under the conditions of reduced extracellular
calcium concentration typically found in vivo combined with a bistability in the
model rule, memories can in fact be expected to be sustained for exceedingly long
durations even under ongoing random background activity.



30 CHAPTER 1. INTRODUCTION



CHAPTER 2
Parallel-fibre to purkinje cell plasticity

The cerebellum is a particularly interesting structure to study. As one of the older
parts of the brain it can be expected to have mechanisms which date back many
millions of years and which may be found in species from other genetic phyla. The
primary function of the cerebellum appears to be in the correction of motor com-
mands to compensate for a changing reference frame (e.g. the Vestibulo-Ocular re-
sponse (VOR)). A non-mammal with a similar structure is the mormyrid, with its
‘cerebellar-like’ structure, which appears to use this structure to correct for the im-
pact of its own electric field on its electric field detection organ (Bell and Emde
1995).

The anatomical structure of the cerebellum follows a rigidly repetitive pattern of
purkinje cells and their granule cell afferents. This repeated structure, exhibiting very
little variation, suggests that some form of canonical computation is being performed
massively in parallel. What exactly this computation is remains to be discovered,
but it is clear that incoming connectivity to the cerebellum is highly locally targeted
and that the computation appears to use plasticity at the parallel fibre to purkinje
cell synapse to perform some form of highly precise synchronisation of inputs.

We have chosen to construct a model of synaptic plasticity at the parallel fibre
to purkinje cell synapse as we believe that the time is ripe to resolve much of the
confusion in the literature and thus lead to a greater understanding of cerebellar
function. Experiments to date have shown much disagreement on the exact proto-
cols required in order to induce long-term depression (LTD) or potentiation (LTP)
at this synapse. Progression of experimental techniques is the most likely source of
this problem, Marcaggi and Attwell (2007) showed that the exact locus of stimu-
lation leads to large differences in the outcome of cerebellar plasticity experiments.

31
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Furthermore, there has been great disagreement regarding the existence of and ne-
cessity for active presynaptic NMDA receptors in the literature, with suggestions
that they may instead exist on neighbouring intraneuron to purkinje cell synapses
(Shin and Linden 2005). An imaging study has recently shown the active existence of
these receptors on the parallel fibre termini (under submission). Here we are able to
study the potential impact of these receptors on NO production and the consequent
downstream postsynaptic plasticity processes.

2.1 Model Description

Our development of a model for parallel fibre to purkinje cell synaptic plasticity was
influenced, in part, by the observation that parallel fibre stimulation leading to LTP
is blocked by extracellular NO buffers (Lev-Ram et al. 2002), whereas climbing fibre
stimulation, coincident with parallel fibre stimulation, leads to larger postsynaptic
calcium transients (Wang et al. 2000) and subsequent LTD. This understanding is
sumarised in Fig. 2.1, where we see five parallel fibre stimuli leading to a larger release
of NO, whereas only two parallel fibre stimuli leads to less NO but when combined
with a climbing fibre stimulus a larger increase in postsynaptic calcium results.

Purkinje cell

Parallel fiber

AMPA-R
NMDA-R
nNOS
sGC

Climbing fiber
VDCC

Purkinje cell

Parallel fiber

AMPA-R
NMDA-R
nNOS
VDCC

NO
Ca2+ Ca2+

NO

LTP LTD

Figure 2.1. Schematic diagram of our understanding of protocols leading
cerebellar plasticity. Increasing numbers of parallel fibre stimuli leads to greater
release of NO. The coincidence of parallel fibres and climbing fibre leads to a
greater increase in postsynaptic calcium. High NO and low calcium leads to LTP
(left), whereas high calcium and even a small amount of NO lead to LTD (right).

Two controlling variables C and N are used to define a two-dimensional plane and
the temporal variations of synaptic state can be represented as trajectories within this
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plane (see Fig. 2.2). The first variable is a calcium-dependent cascade (C-pathway)
which, in part enables plasticity, but more importantly, dictates the sign of plasticity.
The second variable is a NO-dependent cascade (N-pathway) which, when combined
with calcium, enables plasticity. The plane was divided into regions in which LTP,
LTD or no plasticity occurs, reflecting the following properties of plasticity at the
parallel fibre to purkinje cell synapse: (i) Except in the presence of extreme calcium
elevations, NO is required for both LTP and LTD (Ito and Karachot 1990; Lev-Ram
et al. 1995, 2002) (ii) The calcium elevation in protocols leading to LTP is believed
to be lower than that in protocols leading to LTD (Coesmans et al. 2004); (iii) LTD
can be induced by an increase in calcium alone (Finch and Augustine 1998; Miyata
et al. 2000; Tanaka et al. 2007).
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Figure 2.2. C-N plane schema for dynamics of synaptic plasticity. Three
zones are defined, a lower-left no change area (white background), an upper-left
LTP zone (pink) and an upper-right LTD zone (blue). Time spent in each zone
contributes to a weighted change in synaptic efficacy.

When compared to LTD, long-term potentiation appears to depend on stronger
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NO signalling (longer parallel fibre bursts) and weaker purkinje cell calcium signals
(no climbing fibre activity) (Coesmans et al. 2004; Lev-Ram et al. 2002). Our model
does not rule out that LTP can be induced by strong NO signalling without any
calcium rise, but experimental evidence of this point is unclear. The experiments
that have come closest to testing this hypothesis involved application of an NO
donor during normal test stimulation (which could still induce a small calcium signal)
(Kakegawa and Yuzaki 2005). In these conditions, LTP was produced. For simplicity,
we have therefore allowed a high N to induce LTP in the absence of a calcium rise.

We chose an implementation in which the degree of LTP and/or LTD is propor-
tional to the time spent in the respective regions of the C-N plane. Thus, if the
synapse crosses into the LTP region from the "no change" region, but does not reach
the LTD region, only LTP occurs. Synapses visiting both LTP and LTD regions ex-
press a resultant change reflecting the difference of the time spent in the two regions,
weighted by potentiation and depression rates. In simplified mathematical form then,
the dynamics of synaptic efficacy can be written as a first-order differential equation

dρ

dt
= (1 − ρ)γP Θ(LTP) − ργDΘ(LTD) (2.1)

where Θ(LTP) represents presence in the LTP zone and Θ(LTD) presence in the
LTD zone, and γP/D are the potentiation and depression learning rates respectively.
The weight change is also dependent on the current synaptic efficacy, via (1 − ρ)
and ρ, which introduce bounds on the synaptic efficacy model variable at 1 and 0
respectively.

The boundaries of the LTP and LTD regions represent model nonlinearities that
can be considered as corresponding to the activation of different mediators (i.e. ki-
nases and phosphatases) involved in the signalling pathways leading to plasticity. The
final result of a given parallel fibre and climbing fibre activity pattern will depend on
the relative amount of time spent in the different plasticity regions (LTP or LTD).
This integration in time may represent the dynamics of synthesis or accumulation of
mediators in signalling pathways.

It is now generally agreed that optimal LTD induction occurs when parallel fibre
activity precedes climbing fibre activity, by approximately 100ms (Ekerot and Kano
1989; Safo and Regehr 2008; Wang et al. 2000). To account for this, we introduced
a delay between the parallel fibre action potential and the rise of the C signal. This
delay could reflect lags introduced by downstream signalling pathways. Very little
is known about the time course of the NO signal. For simplicity, we kept the same
delay between the parallel fibre action potential and the rise of the N signal as for
the C signal, but the model behaves similarly if the N signal is triggered by parallel
fibre activation without delay.
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The threshold on plasticity enforces the high-pass filter on parallel fibre activity
seen in both LTP and LTD experiments, because high-frequency activity is necessary
for effective summation to reach the threshold. The sign of plasticity is determined
by the calcium level, which was previously depicted as an inverted BCM rule (Bi-
enenstock et al. 1982; Coesmans et al. 2004). Both signals are typically required for
both forms of plasticity (Lev-Ram et al. 1995, 1997, 2002).

2.2 Methods

We will now present the Methods used in the development and analysis of our model
of parallel fibre to purkinje cell plasticity. We will begin by describing the model,
which is dependent on underlying calcium and NO dependent cascade dynamics. We
will then proceed to explain how the model can be applied to existing experimental
data. Finally, we will describe a series of numerical optimisation techniques which
we used to fit the parameters of the model to a set of experiments.

2.2.1 Synaptic plasticity model

We have developed a model of parallel fibre to purkinje cell plasticity which consists
of a single dynamical equation describing synaptic efficacy

dρ

dt
= (1 − ρ)γP Θ(C + N − 1)Θ(θD − C) − ργDΘ(C + N − 1)Θ(C − θD) (2.2)

which is dependent on two underlying dynamical equations, one describing calcium
dependent C-pathway activation, C, and the other NO dependent N-pathway acti-
vation, N , acting in combination via Heaviside functions, Θ(x)

Θ(x) =







1, if x > 0

0, otherwise
(2.3)

Two of the Heaviside functions institute a threshold dependence on plasticity, in
which C + N must be greater than 1 (i.e. Θ(C + N − 1)) in order for plasticity to
occur. The further two Heaviside functions indicate the sign of plasticity. In the case
of LTP, Θ(θD − C) means that potentation only occurs when C is less than θD. For
LTD, Θ(C − θD) means that C must be greater than θD. Now, when C and N are
in the LTP region of the C-N plane we see a weight dependent potentiation, which
implements a soft bound at 1. Similarly, when C and N are in the LTD region we
see a weight dependent depression, leading to a minimal synaptic efficacy at 0. γP

and γD are the rates of learning for potentiation and depression respectively.
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CF High post-
synaptic Ca2+

C
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Delay

Figure 2.3. Diagrammatic description of model implementation of
cerebellar plasticity. Climbing fibre stimulation leads to high postsynaptic
calcium concentration. Parallel fibre stimulation, following a delay, leads to lower
calcium and NO increases. Calcium influences a downstream C-pathway and NO
an N-pathway. Combined, these pathways lead to synaptic plasticity.

2.2.1.1 Calcium dependent pathway dynamics

The calcium dependent pathway is activated by both pre- and postsynaptic spiking
activity. When a parallel fibre spike (action potential) occurs, there is typically an
influx of calcium into the purkinje cell via voltage gated ion channels. We model
this as an increase in the C-pathway, of size CPF, following a delay, Dc. The delay
accounts for multiple delays in the system, the first of which is the opening of the
voltage-gated ion channels, but most likely is dominated by the time required for the
positive feed-back loop found in (Kuroda et al. 2001) to stabilise, leading to maximal
LTD, and was fitted to the experimentally observed optimal delay as reported in (Safo
and Regehr 2008). In the absence of other activity the C-pathway variable decays
exponentially to 0 with a time constant τc.

Due to variations in the experimental techniques we have two methods of mod-
elling postsynaptic activity effects on the C-pathway. In the case of a climbing fibre
induced complex spike, we model C using an immediate increase of size CCS. In this
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case, the full calcium pathway dynamics are described by the equation

τc
dC

dt
= −C + τcCPF

∑

j

δ(t − tj − Dc) + τcCCS

∑

i

δ(t − ti) (2.4)

where δ(x) = 1 when x = 0, tj are the times of parallel fibre spikes and ti the times
of postsynaptic complex spikes.

Experimentally it is often easier to replace climbing fibre stimulation by purkinje
cell depolarisation when inducing LTD. In reality this is likely to produce extremely
nonlinear effects in postsynaptic calcium activity and their downstream effects on
the C-pathway. In the absence of alternative data we have modelled this process as
an immediate increase in C to a plateau level, Cdepol, above which it is maintained
for the duration of the depolarisation, with normal parallel fibre induced changes
still fully operational above this level but with a floor C value at Cdepol. This results
in two equations, the first describing C dynamics in the absence of depolarisation,
and at the moment of depolarisation

τc
dC

dt
= −C + τcCPF

∑

j

δ(t − tj − Dc) + τcCdepol

∑

i

δ(t − ti) (2.5)

and the second, describing C dynamics during depolarisation

τc
dC

dt
= −(C − Cdepol) + τcCPF

∑

j

δ(t − tj − Dc) (2.6)

2.2.1.2 NO dependent pathway dynamics

The production of NO in the cerebellum has been shown to be external to the
purkinje cell. Two main theories are that the NO is either: produced in the parallel
fibre termini via an initial deactivation of the magnesium block on the presynaptic
NMDA receptors and a subsequent calcium induced activation of presynaptic NOS
(Casado et al. 2002); or that, the NO is produced via glutamate spillover activation of
nearby interneuron AMPA receptors (Shin and Linden 2005) (the potential mechanics
of which are less well understood). We have developed two models of NO production,
the first a simple linear model (Linear-N Model) whereby the N-pathway increases
linearly in response to parallel fibre activation and decays exponentially with a time
constant τn via the first-order differential equation

τn
dN

dt
= −N + τnNPF

∑

j

δ(t − tj − Dn) (2.7)
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Following a delay, Dn, after a parallel fibre spike at time tj, we see an increase of size
NPF in the N variable. This production process should not be considered a rejection
of the NMDAR dependent model of NO production, but rather a linearisation of any
potential NO production process which may have beneficial properties for analysis
and simulation.

In order to model parallel fibre NMDAR dependent NO production more explic-
itly we have a second model (NMDAR-based Model) in which the activation level
of the presynaptic NMDA receptors is described via

dV

dt
= −V

τν

+
∑

j

(Vmax − V )VPFδ(t − tj − Dν) (2.8)

Here, a parallel fibre spike occurring at time tj leads to an increase in NMDAR
activation level, proportional to the current value V and by a maximal jump value
VPF, up to a maximal activation value Vmax. In practice we have implemented Vmax =
1 and VPF = 1 meaning that a single spike, following a delay Dν , saturates the NMDA
receptors. This is a simplification but seems reasonable as in many experiments it is
likely that a beam of parallel fibres are being stimulated leading to glutamate spillover
and consequent receptor saturation. The delay, Dν , accounts for the activation time
constant of the receptor and results in a production of NO starting from the following
spike.

NO production is multiplicatively dependent on the activation state of the NMDA
receptors, via

τn
dN

dt
= −N + τn

∑

j

NPFV (tj − Dn)δ(t − tj − Dn) (2.9)

A parallel fibre spike at time tj leads to an increase in the N-pathway variable,
N , after a delay Dn, of magnitude NPFV (tj − Dn). Note that the delay Dν ≪
Dn, meaning presynaptic changed in NMDAR activation occur orders of magnitude
faster than their influence on postsynaptic processes via NO production. N decays
exponentially with a time constant τn in the absence of other activity.

2.2.2 Simulating experimental protocols

From the broad literature on synaptic plasticity experiments at the parallel fibre
to purkinje cell synapse we selected a coherent subset, which were performed under
similar experimental conditions with respect to animal type (rat), age (3 weeks), and
experimental operating temperature (32◦ celcius). In general, we expect our model



2.2. METHODS 39

to be expandable to account for experiments conducted under different conditions
but, particularly in the case of temperature, we would expect to need to re-fit the
parameters in order to fit such experiments correctly. The experiments which we
fitted are some ‘in-house’ experiments which will be published alongside this model,
the LTD experiments presented in (Bidoret et al. 2009), and a protocol presented in
(Safo and Regehr 2008) which helped enormously to constrain the parameters. In
total, we have 17 experimental data points produced under differing protocols, each
of which has an associated experimental standard error bar to fit.

2.2.2.1 Fitted experiments

In order to constrain the effects of parallel fibre activity, in terms of both repetition
number and frequency, on plasticity we were able to use the following ‘in-house’
experimental results. At 200/sec intra-burst stimulation it requires a burst of 5 spikes
in order to reliably induce LTP, whereas a burst of 2 or 3 spikes leads to no discernible
change from baseline synaptic efficacy. As the 2 spike protocol, as seen through our
model, is a reduction of the 3 spike protocol, both of which leading to a "no change"
result, we could only include one of these protocols in our parameter optimisation
procedure (Section 2.2.3); since the 2 spike protocol showed much smaller standard
error (5% vs 19%) we chose to be conservative and use it in our fitting procedure.
As will be seen in Section 2.3.1 the resulting fits still showed no synaptic change for
the 3 spike protocol. Dropping the intra-burst frequency, of a burst of 5 spikes, to
33.3/sec reduces the amount of potentiation but still results in a measurable increase.
At 16.6/sec the synaptic change is close to zero. The precise data points from this
protocol, along with their error bars, are plotted in blue in Fig. 2.7. This experimental
protocol was performed with a burst repetition frequency of 1Hz, repeated 300 times.

We were further able to constrain the frequency dependence, this time of LTD,
from the experiments of Bidoret et al. (2009). There they showed that combining a
purkinje cell depolarisation of length 120ms, with a single parallel fibre spike, at the
mid-point of the depolarisation, leads to zero synaptic change. Whereas, a parallel
fibre doublet, the second spike of which occurs at the depolarisation mid-point, at
200/sec leads to significant LTD. They further examined the effects of performing
the parallel fibre doublet at an internal frequency of 1000, 66.6, 33.3 and 16.6 /
sec, giving us a total of 6 data points to fit. As with the LTP data points these
experimental data points are reproduced, this time in red, in Fig. 2.7. This protocol,
of purkinje cell depolarisation combined with parallel fibre stimulation, was repeated
120 times, at a frequency of once per second.

Finally, Safo and Regehr (2008) performed a set of experiments in which they
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combined a climbing fibre stimulus, calibrated to induce a purkinje cell complex
spike, with seven parallel fibre stimuli with an intra-burst frequency of 100/sec.
They systematically varied the timing offset between the climbing fibre stimulus and
the fourth parallel fibre stimulus between -300ms and +500ms (-ve implies climbing
fibre before parallel fibre), demonstrating for extremal values robust LTP whereas for
more central values a large LTD, with a peak at parallel fibre spiking 80ms following
the climbing fibre stimulus. The full set of data points from Safo and Regehr (2008)
are reproduced in Fig. 2.10. This protocol was repeated just 30 times at a repeat
frequency of 0.1/sec.

2.2.2.2 Mapping the model to experimental outcomes

In synaptic efficacy experiments it is common to measure synaptic efficacy, via an
experimentally accessible parameter such as the amplitude of the postsynaptic EPSC
induced by a single, low-strength presynaptic stimulus, both prior to and following
the induction protocol. The post induction protocol synaptic efficacy is then divided
by the pre induction value in order to produce a measure of change in synaptic
efficacy, normalised at 1 for zero change.

In order to compare our synaptic efficacy variable, which has been bounded be-
tween 0 and 1, we apply a similar technique. We assume a uniform prior distribution
of synaptic weights, thus leading to an average pre induction synaptic efficacy of
0.5. This allows us to begin all of our simulations from an initial value of 0.5 and
to observe their outcomes without recourse to multiple initial start values. We then
simulate the effects of a plasticity induction protocol on the synapse and record
the final synaptic efficacy value divided by 0.5 (the average of the pre induction
protocol synaptic efficacies) as the outcome of our simulated plasticity experiment.
This value is then directly comparable with the experimental results without further
transformation.

2.2.3 Optimisation of the model fit

The two models presented are entirely mechanistic and inspired by underlying bio-
chemical processes, however it is difficult to directly relate their parameters to mea-
surable biophysical properties. For this reason, we chose to fit our parameter values,
using automated optimisation techniques, to the results from a coherent set of 17
experiments (explained in Section 2.2.2.1). These experiments were performed under
almost identical experimental conditions and provide good coverage of the potential
outcomes of synaptic plasticity experiments for this particular synapse. At a mini-
mum, parameter optimisation techniques require the calculation of a cost function,
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the difference between the simulation results and those observed in experiments.
In some cases, access to the Jacobian or the Hessian of the cost function are also
necessary.

We implemented three optimisation techniques in total. The Polak-Ribière Con-
jugate Gradient method (Polak and Ribiere 1969), the Levenberg-Marquardt method
(Marquardt 1963) and the Nelder-Mead Simplex method (Nelder and Mead 1965).
We did not have access to an analytical form for the shape of the cost landscape so
we needed to resort to finite-difference methods in order to numerically calculate the
gradient for the methods which required it.

The Polak-Ribière method works by computation of the gradient of the cost
function with respect to the current position in parameter space, then performing a
line search until it finds a local minimum, it then changes to a conjugate direction
and repeats the line search until convergence. The Levenberg-Marquardt method is
a specialist parameter optimisation technique for nonlinear data, it similarly requires
knowledge of the local gradient of the cost function and performs an update based
on this gradient. Finally, the Nelder-Mead Simplex method works by calculating
the cost function of each node of a simplex in parameter space and performing
transformations on the simplex which can generally be expected to improve the cost
of the worst node of the simplex.

Our parameter optimisation search required a combination of all three methods.
The Polak-Ribière method proved incapable of overcoming the non-linearities in our
solution space, but sometimes performed much better local optimisation than the
other two methods. The Levenberg-Marquardt method, despite its specialism in
solving non-linear problems, still contains assumptions about the continuity of the
gradient of the function being optimised, meaning it frequently got stuck in local
minima. The Nelder-Mead Simplex method was the most successful method for our
optimisation problem. It makes no assumptions about the cost landscape but tends
to proceed in a region surrounding the current best point. However, it can be slow
to converge to the base of a local minimum. Hence we frequently took the output
of one procedure and used it as the input to one or both of the other procedures in
order to further improve the fit.

2.2.3.1 χ2 cost function

We defined two cost functions, both of which are based on the χ2 function of the
simulation fit to the data. The first cost function, φ(x), for a given parameter set x,
was defined directly as the χ2 value for the model fit to the 17 target experiments



42 CHAPTER 2. PARALLEL-FIBRE TO PURKINJE CELL PLASTICITY

using that parameter set. That is

φ(x) =
∑

i

(Obsi − Simi(x))2

σ2
i

(2.10)

where Obsi is the experimentally observed synaptic efficacy from experiment i and σi

the associated standard error. Simi(x) is the result of the simulation for experimental
protocol i using parameter set x. This gives us a cost function whose value is 0 if it
perfectly matches the experimental data and > 0 otherwise. This cost function was
used with both the Polak-Ribière Conjugate Gradient method (Section 2.2.3.4) and
the Nelder-Mead Simplex method (Section 2.2.3.6).

The Levenberg-Marquardt (LM) method (Section 2.2.3.5) calculates the gradient
of a multidimensional cost function and then reduces the sum of the squares of this
value. For consistency with the other methods we defined the cost function in this
case to be

Φi(x) =
(Obsi − Simi(x))

σi

(2.11)

where the subscript i denotes the experimental protocol. This cost function can take
on both positive and negative values, which becomes important in the calculation of
the search direction for the LM method. The value then reduced by the LM method
is

φ(x) =
∑

i

Φ2
i (x) (2.12)

giving rise to a χ2 error function which is directly comparable with the cost functions
used by the Polak-Ribière and Nelder-Mead Simplex methods.

2.2.3.2 Gradient calculation by finite-difference

Two of the optimisation methods used in this work required the calculation of the
gradient of the cost function with respect to each of the model parameters. We
calculated this simply by calculating, first the cost function, f(x), at the point x,
then modifying in turn each of the elements of x by δxi and calculating the new cost
function with respect to all of the experimental data points. Due to the differences in
scale between the values of elements of the parameter vector, and indeed their com-
pletely nonlinear relative contributions to simulation results, we found it necessary
to use a different δxi value for different elements of the x vector. An optimal selec-
tion of δxi was performed manually in advance of performance of the optimisation
procedures. The gradient was then calculated as

∂f(x)
∂xi

=
f(x + eiδxi) − f(x)

δxi

(2.13)
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where ei = (0, . . . , 0, 1, 0, . . . , 0) is the basis vector whose length is equal to the length
of the vector x and whose element i is equal to 1, all other elements equal 0.

2.2.3.3 Simplification of the parameter space

In order to simplify the fitting of our models to the experimental data, and in the
absence of experiments indicating direct biophysical constraints on our parameters,
we reduced the number of parameters in our model by letting the delays in C and N
increase following parallel fibre activity be equal, Dc = Dn. Subsequent examination
showed that such a constraint was not necessary in the context of experiments under
examination, letting Dn = 0 led to comparable results without modification of other
parameters, but it greatly simplified the visual analysis of simulation results.

We further made the analysis of the model considerably easier by letting the
exponential decays of C and N be equal, τc = τn. This means that for any given
protocol, in the absence of increases, both C and N decay in a straight line towards
the origin in C-N space. This allows for a more intuitive understanding of the effects
of a given protocol when examined in C-N space.

A final simplification of the parameter search was found by setting Cdepol = CCS.
Tests were run both incorporating and relaxing this restriction and showed very little
improvement in the model fit through the separation of these parameters.

2.2.3.4 Polak-Ribière method

The Polak-Ribière method is a nonlinear conjugate gradient method. This means
that it requires access to the local gradient of the cost function, which we calculate
by numerically computing the gradient for a δx change in each of the elements of
the parameter vector in turn (see Section 2.2.3.2). In order to seek a minimum, the
gradient is first calculated, then a line search is performed downhill in the gradient,
by incrementally increasing the step size, calculating the cost function (Eqn. (2.10))
at each step, until a minimum cost in that direction is reached. At this point a
conjugate vector is calculated with respect to the original search direction and a
new line search is performed. This method is greatly superior to a steepest descent
approach due to its ability to navigate long narrow ‘valleys’ in the cost function,
without bouncing from one side of the function to the other without ever descending
in the numerically shallower descent but ultimately fruitful direction (see Fig. 2.4
for an example). Polak and Ribière contributed the iterative conjugate generation
formula

βP R
n =

∆x⊤
n (∆xn − ∆xn−1)
∆x⊤

n−1∆xn−1

(2.14)



44 CHAPTER 2. PARALLEL-FIBRE TO PURKINJE CELL PLASTICITY

giving a conjugate direction sn = ∆xn+βnsn−1 where s0 = ∆x0 is the downhill slope.
If progress in the cost function stops then the gradient needs to be recalculated and
the procedure can continue. If the equation was linear, as is the case for typical
conjugate gradient methods, then we would expect convergence in less than N steps
(the dimension of the vector space). There is an assumption in this method that, at
least close to the solution, the cost function is quadratic in the parameters.

Figure 2.4. Example of the difficulty of numerical optimisation in the
case of a long narrow valley. The steepest gradient in the displayed landscape
is that between the facing walls of the ‘valley’. Due to issues of numerical accuracy
it is highly unlikely that a steepest descent method will ever find the floor of the
valley and subsequently find the much shallower descent direction along the valley
floor. This leads to an oscillatory behaviour which will be very slow to descend
towards the true solution. A conjugate gradient method will first follow the
direction of steepest descent, to find a minimum in that direction. It then rotates
in a conjugate direction and perform a new descent in that direction. In the
illustrated example it can be expected to quickly follow the direction of the valley
floor. If reduction in cost can no longer be obtained a new local gradient is
calculated and the algorithm begins anew from the most recently found minimum
point. Adapted from Martens (2010).
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2.2.3.5 Levenberg-Marquardt method

The Levenberg-Marquardt method is a nonlinear least-squares minimisation tech-
nique which interpolates between the Gauss-Newton algorithm and the gradient de-
scent method. The objective of this method is to minimise the sum of the squares
function

S(x) =
m
∑

i=1

[yi − fi(x)]2 (2.15)

where x is the parameter vector, yi an element of the m experimental data points,
and fi(x) is the evaluation of the simulation cost function defined in Eqn. (2.11).
The update of the cost function is estimated by linearisation

fi(x + δ) ≈ fi(x) + Jiδ (2.16)

where

J =
∂fi(x)

∂x
(2.17)

is the Jacobian of the simulation cost function with respect to the current parameters.
The key to solving the optimisation problem is to find a solution where S(x) = 0.
Levenberg developed a solution, with a damping factor, via

(JT J + λI)δ = JT [y − f(x)] (2.18)

solving for the required δ. An iterative update on the parameter function, x, is
then performed following xn+1 = xn + δ. The cost and gradient functions are then
updated and a new step δ calculated until convergence. Marquardt modified the
damping factor to account for vastly different gradient values in different directions,
a case we observe in our particular problem

(JT J + λ diag(JT J))δ = JT [y − f(x)] (2.19)

This avoids slow convergence when the gradient is small in certain directions.

2.2.3.6 Nelder-Mead Simplex method

Ultimately our model fit to the experimental data turned out to be a highly non-linear
problem, with a non-convex solution space, therefore the method which served us
the best for fitting the parameters to the data was the Nelder-Mead Simplex method
(Nelder and Mead 1965). We defined the cost function, φ(x), for a given parameter
set x, as the χ2 value for the model fit to the 17 target experiments according to
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Eqn. (2.10). We used an implementation of the algorithm as found in the GNU
scientific library (GSL) (Galassi 2009) but will detail here the implementation of the
algorithm.

The Nelder-Mead Simplex algorithm (not to be confused with the Simplex algo-
rithm) requires N + 1 points in the N dimensional parameter space. In the case of
the GSL library, we define an initial set of parameters, x, and then via the calculation
of a set of orthonormal basis functions in the parameter space and an initial step
size, which we define, for each direction in parameter space a further N points are
automatically generated by performing a step of size step size in each direction of
the orthonormal basis.

From this initialisation, the cost, φ(x), of each of the N + 1 vertices is calculated
and the vertices are ordered according to their cost, with the cost of parameter
set/vertex xN+1 being the highest. The barycentre of the N lowest cost vertices
is then calculated and a number of operations are possible in order to improve the
cost of the highest cost parameter set. These include: (i) reflection of the worst
point through the barycentre; (ii) expansion of the reflected point; (iii) contraction
of the reflected point; (iv) and ‘reduction’ of all but the best point, towards the
best point. The processes of reflection and expansion allow for an exploration which
may overcome local maxima, especially in a highly nonlinear space. Contraction
and reduction, lead to the ultimate convergence of the algorithm to a simplex with
internal area smaller than a user defined tolerance which can be seen as the ultimate
convergence of the algorithm.

For our given problem set the Nelder-Mead Simplex algorithm is not guaranteed
to find a global minimum. We approached the problem by exhaustive iteration of
the method, using multiple restarts from different initial conditions. We also used an
advanced form of the algorithm where the basis functions of the simplex are randomly
oriented rather than being based on the fixed co-ordinate axes. We further generated
new basis functions every 50 iterations of the algorithm, which turned out to be a
very useful technique for escaping local minima close to the solution. Finally we fed
the outputs of one solution as the initial starting point for a subsequent re-run. We
were able to find two consistent sets of parameters from which it is unlikely that it
is possible to find much improvement. It should be pointed out that the behaviour
of the model variables C and N, as viewed in C-N space, combined with the full set
of experimental protocols fitted (Section 2.2.2.1), and self-imposed restrictions on
some of the parameters (Section 2.2.3.3), led to quite a restrictive solution space.
This also allowed for the development of a high degree of ‘expert-knowledge’ of the
influence of each of our parameters on the simulation outcomes, allowing us to hand-
fit surprisingly successful initial conditions for our optimisation procedure for each
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Parameter Value Unit
C variable time constant τc 182.936 ms
N variable time constant τn 182.936 ms
C variable delay Dc 78.9 ms
N variable delay Dn 78.9 ms
Parallel fibre spike C influx CPF 0.081297 -
Complex spike C influx CCS 0.543789 -
Purkinje cell depolarisation C influx Cdepol 0.543789 -
Parallel fibre spike N influx NPF 0.2357006 -
LTP-LTD threshold in C θD 0.5671626 -
Depression learning rate γD 1.360871e-4 /ms
Potentiation learning rate γP 3.466588e-5 /ms

Table 2.1. Parameter values used in Linear-N model. Fitted using the
optimisation procedures described in Section 2.2.3. For the reasons outlined in the
text the following parameters were forced to be equal in the fit: τc = τn, Dc = Dn,
CCS = Cdepol.

of the models. That said, we did also try out many alternative solutions as starting
points for our optimisation procedure.

2.2.3.7 Model selection

In order to measure the fit of a given model to the data we calculated χ2 values for
the ensemble of 17 fitted experiments, for the best fitting set of parameters for that
model. The χ2 value is defined as

χ2(x) =
∑

i

(Obsi − Simi(x))2

σ2
i

(2.20)

for a given parameter set x, where Obsi is the experimentally observed synaptic
efficacy from experiment i and σi the associated standard error. Simi(x) is the result
of the simulation for experimental protocol i using parameter set x.

A specific model, Model A, is said to be nested within a less restricted model,
Model B, with more parameters and less degrees of freedom than Model A, if Model
A can be derived from Model B by fixing at least one free parameter in Model B or
by introducing other restrictions, e.g., by constraining a free parameter to equal one
or more other parameters (Schermelleh-Engel et al. 2003). As the Linear-N model
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Parameter Value Unit
C variable time constant τc 166.68557 ms
N variable time constant τn 166.68557 ms
ν variable time constant τν 81.22673 ms
C variable delay Dc 76.4 ms
N variable delay Dn 76.4 ms
ν variable delay Dν 0.9 ms
Parallel fibre spike C influx CPF 0.0691449 -
Complex spike C influx CCS 0.783954 -
Purkinje cell depolarisation C influx Cdepol 0.783954 -
Parallel fibre spike N influx NPF 0.431781 -
LTP-LTD threshold in C θD 0.52415 -
Depression learning rate γD 9.1704836e-5 /ms
Potentiation learning rate γP 2.8812565e-5 /ms

Table 2.2. Parameter values used in NMDAR-based model. Fitted using
the optimisation procedures described in Section 2.2.3. For the reasons outlined in
the text the following parameters were forced to be equal in the fit: τc = τn,
Dc = Dn, CCS = Cdepol.
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can be considered as nested within the NMDAR-based model it is appropriate to use
a difference of χ2 values to further compare the two models. The difference of χ2

is defined as χ2
diff = χ2

s − χ2
l , where the subscript s denotes the smaller model, the

Linear-N model in our case, and l the larger model, the NMDAR-based model. We
further define the degrees of freedom of this distribution as dfdiff = dfs − dfl. It is
then possible, using χ2 tables to decide whether the two models belong to the same
distribution or not (Schermelleh-Engel et al. 2003; Steiger et al. 1985).

A potentially more robust comparison of the models can be performed using the
Akaike Information Criterion (AIC) (Akaike 1974) and the related Bayes Information
Criterion (BIC) (Schwarz 1978). These measures of model fit may be used exclusively
for the comparison of models, and not for an absolute calculation of the ability of an
individual model to fit data. More importantly, they do not require the assumption
of nestedness used in the difference of χ2 comparison. Both criteria measures use a
maximum likelihood function for the estimate model combined with a penalty for
the number of parameters in the model. They do not allow for significance testing.
The Akaike Information Criterion is defined as

AIC = 2k − 2 ln(L) (2.21)

where L is the maximum likelihood function for the estimate model, and k the
number of parameters in the model. In our case, we can assume a χ2 distribution on
the error in the fit, due to the normality assumption on the underlying experimental
data points, giving us ln(L) = G − χ2/2, where G is a constant term whose value
is particular to the underlying data being modelled and not to the particular model
being used. So to a constant term we get

AIC = 2k + χ2 (2.22)

The BIC is derived under the assumption that the distribution underlying the
data follows an exponential distribution. It is then the marginal probability of seeing
the observed data given the model proposed. Under similar arguments as those for
the AIC regarding the distribution of the error, we define the BIC measure using our
χ2 values as

BIC = χ2 + k ln(n) (2.23)

where k is again the number of parameters, here n is the number of experimental
values we are fitting (17 in our case).

Both the AIC and BIC allow us to directly compare our two models. A lower
measure value implies a better model for the data, however there is no absolute scale
allowing for definite categorisation of one model over the other and indeed both
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methods suffer from the low number of experimental points fitted, although the BIC
at least includes a penalty for this in the measure.

2.3 Results

Following selection of model parameter values (see Tab. 2.1 and 2.2) we were able
to reproduce both the burst length and the frequency dependence of LTP and LTD
protocols. In addition both models can correctly reproduce the timing offset curve,
between climbing fibre activation and parallel fibre stimuli, demonstrated in (Safo
and Regehr 2008). We compared the two versions of the model in order to examine
how much we gain by the additional model parameters in the NMDAR-based model
over the Linear-N model. Finally, we used the model to make an unintuitive ex-
perimental prediction, which was then checked in vitro and compared to the model
results.

2.3.1 Burst length dependence

The first reported burst length dependence for LTD in the parallel fibre to Purkinje
cell synapse was presented by Casado et al. (2002). They found that, when pairing
a Purkinje cell depolarisation with parallel fibre stimulation, they needed a doublet
of parallel fibre action potentials, at 200/sec, in order to induced LTD. Pairing of a
single parallel fibre impulse with Purkinje cell depolarisation resulted in zero synaptic
change. In Fig. 2.5 we demonstrate both versions of the model reproducing this
5ms inter-parallel fibre spike protocol and compare it with the experimental results
reproducing this protocol in (Bidoret et al. 2009). We see clearly that for a two spike
5ms protocol interval we expect a significant synaptic depression in the postsynaptic
EPSC, 34.7±6.2% of it’s pre induction protocol amplitude (n=9), the degree of which
is accurately reproduced by the model. An example of this protocol in the C-N plane,
following the Linear-N model implementation, is shown in Fig. 2.6, where we observe
the high calcium induced via Purkinje cell depolarisation followed by increases in NO
from the parallel fibres leads to entry into the LTD zone. By comparison, for a single
spike protocol both model versions predict zero synaptic change, which matches the
Bidoret et al. (2009) results (see Fig. 2.7, compare red square with overlapping orange
cross).

Experimental demonstration that LTP is also burst length dependent has been
more recent. In experimental results which will be published in a paper alongside
this model (under submission) it has been shown that, under conditions of sparse



2.3. RESULTS 51

P
F

P
C

0

1

2

C
 +

 N 3

0

0.5

1

C

3

0 50 100 150 200 250
0.99

1

1.01

W

time (ms)

-10 0 10 20 30 40
0.5

1

W

time (min)

A

3

3

0 50 100 150 200 250
time (ms)

-10 0 10 20 30 40
time (min)

B

Figure 2.5. Example of the Bidoret 5ms protocol, combining a Purkinje
cell depolarisation with a 200Hz parallel fibre doublet of stimulation.
(A) Linear-N model, parallel fibre stimulation (top row) combined with PC
depolarisation (row 2) leads to a crossing of the C + N = 1 threshold (red line, row
3), leading to a period of synaptic plasticity (shaded background). C remains
greater than θD (blue line, row 4) for this period so LTD results. (B)
NMDAR-based model, the first parallel fibre spike does not lead to an increase in
the N variable. Weight change for a single stimulation pairing is depicted in row 5.
In row 6 (bottom row) we compare the experimental results from Bidoret et al.
(2009) with the results of our simulation at the end of the protocol. The colours in
row 6 correspond to the colours in Fig. 2.7. The numbered points in rows 3 and 4
match similarly labelled points in Fig. 2.6.

stimulation of parallel fibres, 5 parallel fibre stimuli at 200Hz are necessary in order
to induce reliable LTP (169 ± 11%, n=18). If only two parallel fibre stimuli are
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Figure 2.6. Examples of the behaviour of the Linear-N model under
three different protocols. In green, we see the 5xPF protocol with a 16.6/sec
intra-burst frequency. In orange, the 5xPF protocol with a 200/sec intra-burst
frequency. In cyan, the Purkinje cell depolarisation combined with a 2xPF doublet
at 200/sec. The numbered labels illustrate similar points on the plane as those
same labels in Figs. 2.5 and 2.8.

provided then effectively no change occurs, 94 ± 5%, n=5. And indeed for three
parallel fibre stimuli at 200Hz the resulting synaptic efficacy is 104 ± 19%, n = 7.
As described in the Methods description of the experiments (Section 2.2.2.1), fitted
using our parameter optimisation procedure, we prioritised fitting the two parallel
fibre stimuli result. In fact, using the fitted parameter values (Tab. 2.1 & 2.2) we
observe zero synaptic change using the two models for both the two and three spike
protocols. In Fig. 2.7 we plot both protocols on top of one another using the cyan
cross. In fact, when calculating our model χ2 fits it appears that we have been over
severely penalising ourselves. The tight error bars on the doublet protocol (Fig. 2.7,
blue square) mean that our model can never get within one standard error of the
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Figure 2.7. Degree of LTP/LTD is dependent on both burst length and
intra-burst frequency. Solid lines depict NMDAR-based model results, dashed
lines depict Linear-N model. Circles and Squares show experimental results with
standard error bars. The two model results which showed zero change (crosses at 0
and 5ms) produce identical results for both model versions.

mean while still fitting the other protocols, but we can easily fit the triplet protocol,
which has relatively large standard error (±19%), for a wide range of parameter
values. In reality, we expect that the triplet protocol shows much wider variance
as it is on the verge of plasticity, probably dependent on noise and initial synaptic
efficacy, whereas the 94 ± 5% result for the doublet protocol likely represents zero
real synaptic change, which is exactly what we obtain with the model.

2.3.2 Frequency dependence

Similarly to the parallel fibre burst length dependence it has been shown that the
frequency of parallel fibre stimulation matters in producing both LTD and LTP.
The frequency dependence of LTD was examined in detail in (Bidoret et al. 2009)
where they combined a Purkinje cell depolarisation with a parallel fibre doublet
with an intra-burst frequency of 1000, 200, 66.6, 33.3 and 16.6 Hz. Their results
are summarised in the red circle data points in Fig. 2.7. Both our Linear-N and
NMDAR-based models are able to reproduce these results (compare with the red
dashed line and solid orange line, respectively, in Fig. 2.7).
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Figure 2.8. Example of the Linear-N model where the parallel fibres are
stimulated 5 times. (A) Stimulation at 200Hz leads to a crossing of the
C + N = 1 threshold (row 3, red line), leading to a period of synaptic plasticity
(shaded background). C remains less than θD (row 4, blue line) so LTP results.
(B) Stimulation at 16.6Hz leads to no change, in both the synaptic plasticity model
and in experiments. The numbered points on the C and C + N curves match
similar label points in Fig. 2.6. The synaptic efficacy response to a single repetition
of the induction protocol are shown in Row 5. Experimental results are plotted in
bottom row and compared with theoretical predictions of the Linear-N model (blue
line) and the NMDAR-based model (cyan line).

Until now experimental results showing the frequency dependence of LTP have
been sorely lacking. Indeed many published protocols have assumed that a single
parallel fibre impulse repeated at 1Hz is enough to induce LTP, or LTD when co-
incident with Purkinje cell depolarisation. The reason for this is most likely due to
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the methods of experimentation. It has been shown (Marcaggi and Attwell 2007)
that the positioning of the stimulating electrode will lead to a large difference in
the density of parallel fibre spikes reaching a localised region on a Purkinje cell den-
dritic tree. Another likely factor is the temperature of experimentation, Isope et al.
(2004) showed that at room temperature parallel fibre stimulation leads to a sus-
tained parallel fibre influence on the postsynaptic cell. We have had access to recent
experiments (under submission), which are sumarised in Fig. 2.7 showing large scale
LTP for a burst of five parallel fibre stimuli with an intra-burst frequency of 200Hz.
The degree of LTP is reduced for an intra-burst frequency of 33.3Hz and is entirely
absent at 16.6Hz. These experiments were included in the optimisation procedure
fitting of our parameters and both of our models are able to fit these points, see
the solid cyan (NMDAR-based model) and dashed blue (Linear-N model) lines in
Fig. 2.7.

2.3.3 Safo and Regehr

The final set of experiments which we attempted to fit via our optimisation proce-
dure was a set of experiments performed by Safo and Regehr (2008). This set of
experiments was particularly restrictive on the parameter values used in our model
due to the combination of a single climbing fibre induced complex spike with seven
parallel fibre stimuli, with an intra-burst frequency of 100/sec. As seen in Fig. 2.9 for
large time differences between the complex spike and the parallel fibre stimuli, the
complex spike does not lead to any time spent above the plasticity threshold, hence
the resulting synaptic change is driven entirely by the time spent in the LTP zone via
the parallel fibre stimuli. As the climbing fibre and parallel fibre stimuli approach
one another in time, considerably greater time is spent in the LTD zone leading to a
dominance of LTD. Finally, a separation of timing in the opposite direction restores
LTP. In Fig. 2.10 (left) we see the behaviour of these three protocols in the C-N
plane, giving us an excellent example of how tightly constrained the model may in
fact be. Finally, in Fig. 2.10 (right) we compare the results of both versions of the
model, seeing a very close match with the experimental results from Safo and Regehr
(2008).

2.3.4 Model comparison

We used a number of methods to compare the two model fits to the data. In an initial
analysis we looked at χ2 values for each of the model fits. In the case of the Linear-N
model we see that χ2 = 13.3212, for a model with 8 parameters and 17 experimental



56 CHAPTER 2. PARALLEL-FIBRE TO PURKINJE CELL PLASTICITY

P
F

C
S

0

1

2

C
 +

 N

1
2
3

4

0

0.5

1

C

1

23

4

0 100 200 300 400
0.98

1

1.02

W

time (ms)

-10 0 10 20 30 40

0.5

1

1.5

W

time (mins)

A

5

6 7

5

6

7

0 100 200 300 400
time (ms)

-10 0 10 20 30 40
time (mins)

B

8

9

8

9

0 100 200 300 400
time (ms)

-10 0 10 20 30 40
time (mins)

C

Figure 2.9. Three examples of the Safo and Regehr (2008) protocol
using Linear-N model. Climbing fibre to parallel fibre offset of (A) -200, (B)
+80 and (C) +400ms. (Top row) Timing of 7 parallel fibre stimuli at 100/s. (Row
2) Timing of climbing fibre induced complex spike. (Row 3) C + N in response to a
single repetition of induction protocol. Red line depicts threshold of plasticity. Blue
background shading represents periods of LTD, pink shading periods of LTP. (Row
4) Evolution in time of C variable in response to a single repetition of induction
protocol. Blue line depicts threshold between LTP and LTD. The numbered points
on the C and C + N traces correspond to the similarly numbered points in
Fig. 2.10. (Row 5) Evolution of synaptic efficacy variable in response to a single
repetition of induction protocol. (Bottom row) Evolution of synaptic efficacy
variable for full induction protocol.

data points. By comparison the NMDAR-based model gives us χ2 = 7.8359 for a
single additional parameter. We were able to compare the two model fits using a
difference of χ2 analysis, based on the assumption that the Linear-N model is nested
within the NMDAR-based model (see Section 2.2.3.7). This led to a χ2

diff = 5.4853,
with 1 degree of freedom. This gives us a p-value=0.025 that the models belong to
different underlying distributions.

Two additional methods of model comparison are the AIC and BIC (for details
see Section 2.2.3.7). In the case of the Linear-N model we get AIC = 29.3212
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Figure 2.10. Model fit to Safo and Regehr (2008). (A) C-N plane examples
of the three protocols used in Fig. 2.9, using Linear-N model, the numbered points
correspond to similarly numbered points in that figure. (B) Comparison of the two
model predictions with the Safo and Regehr (2008) experimental results for
different climbing fibre to parallel fibre offset times.

and BIC = 35.987. This compares with AIC = 25.8359 and BIC = 33.3348 for the
NMDAR-based model. In both cases the NMDAR-based model achieves a lower score
than the Linear-N model, despite punitive terms in both methods for the increased
number of parameters in the NMDAR-based model. This is somewhat suggestive
that the NMDAR-based model is a better fit to the data, but does not mean that
an entirely different model might not be significantly better.

2.3.5 Prediction: PF → LTD

In order to test our model we looked to make an experimental prediction which
could be tested by our collaborators. A number of ideas presented themselves in
relation to the precise relative timing of the climbing fibre stimulus to the parallel
fibre stimuli. Such an approach could be considered a refinement of the results of
Safo and Regehr (2008), where they saw both LTP and LTD depending on the offset,
we could have extended this to other numbers of parallel fibre spikes or frequencies
of stimuli. An alternative idea was to explore the relative balance of LTP to LTD.
Through the model it is possible to conceive a parallel fibre stimuli protocol which
would have a high enough frequency to typically produce LTP but which would in
fact lead to a balance of LTP and LTD, giving no change in synaptic efficacy. These
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ideas were rejected as a simpler protocol presented itself which is a simplification
of this second idea and which leads to a result which is completely unintuitive but
which the model held to be true. We decided to examine the effects of a prolonged
burst of parallel fibre activity and whether we could produce LTD via this method
alone. It is appropriate to mention that Hartell (1996) previously reported that
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Figure 2.11. Model C-N prediction for 40 parallel fibre stimuli at 200/s.
(A) Linear-N model evolution of C and N for 40 parallel fibre stimuli. Due to the
linear summation in the model increases and decreases follow a straight line to and
from the origin. (B) NMDAR-based model evolution for same protocol. The first
parallel fibre spike leads to no change in N so the up and down trajectories no
longer overlap and the slope is different. In both cases the trajectory spends a
considerable amount of time in the LTD region.

strong stimulation of the parallel fibres alone led to LTD but this result relied on
particularly strong stimulation, our model perhaps provides an explanation for why
they obtained such a result but using weaker stimuli.

In Fig. 2.11 we see that the model predicts that, in the C-N plane, for high
frequency stimulation if the burst is long enough, we will eventually reach the LTD
zone. However, it is especially important to note that, at a lower frequency no
matter how sustained the burst length, we will never reach LTD. In order to avoid
wasting experimentalists time due to any minor fitting errors due to very few data
points in the optimisation procedure, we suggested a sustained burst of 40 parallel
fibre stimuli at 200Hz. Furthermore, we suggested that keeping the extracellular
calcium concentration high (2.5mMol) might bias the experiment towards success,
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Figure 2.12. Example of the Linear-N model where the parallel fibres
are stimulated 40 times. (A) High frequency parallel fibre stimulation (200/sec)
leads to an increase in both C and N which leads considerably more LTD than
LTP. The model correctly predicted that LTD would result from such a protocol,
and indeed the NMDAR-based method correctly predicted the degree of LTD
induced (cyan line, see blue line for Linear-N model prediction). (B) Example
traces before (black) and after (red) induction protocol. (C) EPSC charge was
reduced in all cells following the protocol.

as we did not want depletion of calcium to lead to reduced production of NO or
influx of postsynaptic calcium. Happily, the experiment produced the predicted
degree of synaptic depression. In Fig. 2.12 we compare the theoretical predictions
with the results of the experiment. As with the fitted experiments both models
correctly predict the sign of plasticity and both provide a reasonable estimate of the
degree of synaptic change, the fit of the NMDAR-based model (cyan line) is however
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considerably better.

2.4 Discussion

We were able to reproduce all the principal aspects of the experimentally determined
plasticity rules using a simple model based on two variables, one driven by postsy-
naptic calcium and the other by NO. A plasticity threshold that depends on both
calcium and NO, plus an LTP-LTD calcium threshold can explain the majority of the
spike-pattern-based plasticity literature for the parallel fibre to purkinje cell synapse,
at least when obtained under comparable experimental conditions. The threshold
on plasticity enforces the high-pass filter on parallel fibre activity seen in both LTP
and LTD experiments, because high-frequency activity is necessary for effective sum-
mation to reach the threshold. The sign of plasticity is determined by the calcium
level, already depicted as an inverted BCM rule (Bienenstock et al. 1982; Coesmans
et al. 2004). Both signals are required for both forms of plasticity (Lev-Ram et al.
1995, 1997, 2002). Our model can generate predictions for plasticity outcomes for
arbitrary sequences of parallel fibre and climbing fibre activity.

We used the model to make and verify the prediction that bursts of parallel fibre
activity could induce LTD if maintained for long enough. In addition to providing
strong support for the model, this result reinforces our suggested mechanism accord-
ing to which the calcium-driven signals from both parallel fibre and climbing fibre
inputs are of a similar nature but different magnitude, implying a degree of equiva-
lence. However, our model does not address the biochemical mechanisms underlying
the plasticity thresholds. One can speculate the existence of qualitative differences in
calcium activation between effectors for LTP and for LTD. These differences may rely
on the distance between calcium sources and targets. Recent data showing different
sensitivity of LTP and LTD to T-type calcium-channel blockade are supportive of
this kind of a scheme (Ly et al. 2013).

For simplicity, our Linear-N model implements identical NO generation at all
action potentials, including the first, yet is able to reproduce the requirement for
multiple action potentials. The NMDAR-based version of the model which imple-
ments an absence of NO production for the first action potential of a burst behaves
similarly, furthermore it is judged a better fit to the experimental data by the mea-
sures of χ2, AIC and BIC. A common general mechanism holds in all cases, which
is that effective summation of decaying responses only occurs when several parallel
fibre action potentials arrive within an interval that is short compared to their decay
time. This holds whether the integration mechanism concerns presynaptic influx of
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calcium through NMDARs, accumulation of mediators downstream of NO produc-
tion, or both. Irrespective of the behaviour following the first spike of a burst, it is
clear that a high-frequency burst is required for the induction of any plasticity and
our results, when combined with associated imaging experiments (under submission),
indicate that this reflects the necessity for NO production.

Previous attempts at modelling synaptic plasticity at this important synapse have
confined themselves to modelling LTD (Doi et al. 2005; Kawaguchi and Hirano 2013;
Kuroda et al. 2001). All three of these approaches have used detailed biochemical
models to examine the cascade leading to the dephosphorylation of postsynaptic
AMPA receptors and consequent depression of the ability of the postsynaptic Purk-
inje cell to be excited by presynaptic parallel fibre activity. Kuroda et al. (2001)
identified a calcium dependent positive feedback mechanism (red arrows in Fig. 2.13),
dependent on MAPK and PKC which leads to LTD. This feedback loop may appears
to serve a similar role to our calcium threshold, θD, between LTP and LTD; above a
certain calcium concentration, in their model, the feedback mechanism kicks in and
LTD becomes a guaranteed result. Doi et al. (2005) examined the influence of the
IP3 molecule, which appears earlier in the cascade, as a source of increased calcium
postsynaptically. Similarly to our model, they induce small postsynaptic increases
in calcium via parallel fibre stimulation, from the IP3 pathway, and larger increases
via climbing fibre activation, from voltage-gated calcium channels. This pathway, in
both their model and ours, appears to be vital in the determination of the optimal
delay between climbing fibre and parallel fibre activity in order to induce LTD. Fi-
nally, Kawaguchi and Hirano (2013) extended the biochemical cascades to analyse the
feedback loops involving CaMKII, which in high calcium disinhibits the NO pathway
leading to a further enabling of the Kuroda feedback loop (red arrows in Fig. 2.13)
and greater LTD. Clearly, their work suggests that while depression is possible in
the absence of NO it is greatly aided by its presence. Figure 2.14 illustrates their
results involving different amounts of CaMKII in the Purkinje cell. These results are
immediately reminiscent of our C-N plot for LTP and LTD (Fig. 2.2) suggesting at
least agreement in the determination of LTD between the two models.

It is tempting to speculate as to the source of LTP in the Purkinje cell. If the LTD
cascades in Fig.2.13 are correct, this implies that there must be a phosphorylation
pathway acting on the AMPA receptors perhaps in a continuous manner, whose set-
point is adjusted by the CaMKII and NO loops from the LTD process. Perhaps the
experiments demonstrating LTP in the presence of an NO-donor are in fact moving
the set-point, via inhibition of the activitity of PP-2A without activation of the
calcium feedback loops, thus exposing the LTP process.

Our model leads to a number of interesting questions. Is calcium, in fact, the
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Figure 2.13. Biochemical cascade leading to LTD postsynaptically at the
parallel fibre to Purkinje cell synapse. Adapted from Kawaguchi and Hirano
(2013).

underlying decider of the sign of synaptic plasticity in this synapse? It certainly
appears to be, certainly the other modelling attempts in this domain concur that high
calcium is not just correlated with but actually necessary for LTD. A more interesting
question is whether it really is the combination of NO and calcium which enables
plasticity. Our model is based on this assumption, the experimental data is highly
suggestive, but until the LTP pathway is correctly identified it remains impossible to
give a definitive answer to this question. From the perspective of our model, it would
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Figure 2.14. Influence of different concentrations of CaMKII availability
on the amount of un-phosphorylated AMPA receptors. Simulated result
presented in (Kawaguchi and Hirano 2013) which shows the percentage of
un-phosphorylated AMPA receptors remaining 30 mins after a conditioning
stimulation in the presence of different amounts of available CaMKII.

be interesting to discover whether the calcium threshold between LTP and LTD is
in fact a straight line. Postsynaptically there are a number of feedback loops which
lead to nonlinear release of calcium which might give a curved appearance to this
line in the context of our linear calcium summation model. Ideally, we would like to
use the model to make further experimentally testable predictions. The low hanging
fruit of the parallel fibre based induction of LTD has been picked. Now, it is a
question of whether it is more valuable to demonstrate mastery of the understanding
of the balance of LTP to LTD via the system delays or whether it would be more
interesting to go straight to the multi-synaptic or network level, making predictions
which might be more easily experimentally verifiable, of population level behaviour.

Our parameter fit for the model was based on experiments performed in 2mMol
extracellular calcium, with 1mMol Mg, at approximately 32◦ celsius. In-vivo, the
extracellular calcium concentration is more likely to be 1.5mMol and 1.8mMol Mg
(Silver and Erecińska 1990). How is this likely to change the behaviour of the synap-
tic plasticity? A simple assumption is that this will reduce available calcium for
influx via voltage-gated calcium channels. Unfortunately it is also likely to reduce
NO production and, particularly due to the increased magnesium ion concentration,
this may occur in a highly nonlinear manner. In any case, we would expect much
reduced synaptic plasticity, requiring much more sustained protocols, most likely
with a much higher precision required on the timing coincidence, in order to produce
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similar degrees of synaptic change. To date, we have performed some minor exper-
iments in changing the model parameters by reducing the presynaptically induced
calcium influx in a manner linearly proportional to the reduction in extracellular
calcium concentration and we observe results with the same sign of plasticity as that
seen in comparable experiments; a result which would not have held if we had not
modified the simulation calcium parameter. But without knowing the related change
in NO production, or in the absence of further experiments to induce constraints,
we can make no clear estimate as to the magnitude of synaptic change. It would be
extremely interesting to perform a number of electrophysiological experiments under
these conditions in order to re-fit the model parameters. This would allow us to
build simulations which might allow us to disentangle the behaviour of the parallel
fibre to Purkinje cell learning rule under in vivo behavioural conditions.

Mechanistic plasticity models of the type we have proposed here are necessary
to understand the potentially complex relationship between activity patterns and
plasticity outcomes. The model of the Purkinje cell as a perceptron (Albus 1971;
Marr 1969) has previously been used in order to predict the storage capacity of the
parallel fibre to Purkinje cell synapses in the presence of learning of uncorrelated
(Brunel et al. 2004) and correlated (Clopath et al. 2012) patterns of input. The
perceptron model was further extended to an analogue form (Clopath and Brunel
2013) in order explain the distribution of synaptic weights seen at the parallel fibre to
Purkinje cell synapse (Brunel et al. 2004). Our model is concise, easily implementable
and accounts for a diverse array of experimental results. It would be interesting to
use it to bridge the gap between these previous theoretical results and the underlying
spike patterns necessary to induce particular distributions of synaptic efficacies and
their influence on output spiking behaviour.

Ultimately, each Purkinje cell in the cerebellum receives contacts from on the
order of 100,000 parallel fibre termini. If we are to one day understand the role
of synaptic plasticity on the dynamics of Purkinje cell activity it will be through
the use of simplified models such as ours. Our model is complex enough to capture
the known experimental dynamics of plasticity while remaining simple enough to
simulate on a large scale. We hope that this will help in deciphering the mechanisms
of learning and memory in the cerebellum.



CHAPTER 3
Maintenance of memory in a cortical
network model

In the previous chapter we focused on a synapse with particular properties not nor-
mally seen in other synaptic connections throughout the brain. In addition to being
dominated by its detection of an error signal, it was completely non-Hebbian. In this
chapter we turn our analysis to a previously developed model of synaptic plastic-
ity (Graupner and Brunel 2012) which has been shown to successfully fit data from
synaptic plasticity experiments in hippocampal cultures (Bi and Poo 1998; Wang
et al. 2005), hippocampal slices (Wittenberg and Wang 2006) and slices from the
visual cortex (Sjöström et al. 2001). This model allowed us to perform an analy-
sis which is generally applicable to many sites of synaptic plasticity throughout the
brain, and particularly to those sites which are most associated with memory or
learning (hippocampus, neocortex).

Much of our work here has been in the development of tools, which can then be
used to analyse the particular model of synaptic plasticity. We have then applied
these tools with the aim of predicting how long memories survive in such a system
under ongoing background activity, but these tools are equally applicable in the
prediction of the behaviour of a synapse and indeed the encompassing network under
situations involving memory induction and recall, for which we provide an example
implementation.

Following an Introduction (Section 3.1), which motivate the work, we present
the Methods (Section 3.2) used in our analysis. Beginning with a description of the
model dynamics and its dependence on an underlying calcium parameter, we develop
a theory for the prediction of the activity of this calcium parameter under Poisson

65
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firing. This theory in turn allows us to derive equations for the average behaviour
of the synaptic plasticity rule, again under Poisson pre- and postsynaptic firing. We
incorporate these equations into an Ornstein-Uhlenbeck process in order to develop
tools for predicting the mean synaptic weights, the tendency of the mean to change
over time, and the time scale of this change. Finally, we supplement the theoretical
tools with an extension which accounts for a bistability induced by a double-well
potential in the synaptic plasticity rule. Following the development of these analyt-
ically based tools we move on to advancing numerical methods, without which we
could not have performed such detailed and long-run simulations as can be seen in
the Results (Section 3.3). In particular, we have developed a numerically precise
event-based implementation of the synaptic plasticity rule which allows us to avoid
the overhead of updating every synapse equation on each time step. Similarly, we
have greatly enhanced our ability to update neuronal dynamics equations by imple-
menting their update using parallel computation technology. Finally, we introduce
the reader to the analytical methods (Brunel 2000) used to predict the mean firing
rate of a network, with random connectivity under a given set of inputs. We coupled
these techniques to our model for the population dynamics of synaptic plasticity in
order to choose parameters which set our network to a desired firing state.

In the Results section (3.3) we demonstrate the power and applicability of our
developed tools, first in the case of the basic synaptic plasticity rule without a bista-
bility term. This allows us to demonstrate a power law in the memory decay time
scale for low firing rates, and the correctness of our predictions of average memory
behaviour across a wide range of frequencies for Poisson processes. We then move on
to examining the influence of the addition of a double-well potential to the synaptic
plasticity rule and how it changes the memory time scales, again for uncorrelated
Poisson processes. Finally, we use our theoretical tools in order to successfully incor-
porate the synaptic plasticity rule into a large-scale randomly connected network of
leaky integrate-and-fire (LIF) neurons. With our theoretical predictions we demon-
strate that it is possible to initialise such a network such that it will fire in a stable
asynchronous regime and indeed we can then implant ‘memories’ in the network
and observe them survive or decay under background network activity. Finally, we
present a mechanism for memory induction via high frequency bursting in a recurrent
network.

Most of the work which follows in this chapter will appear as a paper in PLoS
Computational Biology. For coherence we have chosen to keep some aspects of the
Introduction which follows, despite some overlap with the literature review in Chap-
ter 1. We have changed somewhat the order of presentation of the contents with
regards to the paper; adding explanatory text and enlarging on certain details. The
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section on memory induction in a network is new and will be presented in a follow-up
paper, here it is presented in a simplified format as a proof of concept.

3.1 Introduction

Many experiments have shown that long-lasting changes in synaptic efficacy can be
induced by spiking activity of pre- and postsynaptic neurons (Bliss and Lømo 1973;
Dudek and Bear 1993). In hippocampal and neocortical in vitro preparations, both
long-term potentiation and depression can be induced by protocols in which pre- and
postsynaptic neurons emit tens to hundreds of spikes in specific temporal patterns
(Bi and Poo 1998; Campanac and Debanne 2008; Debanne et al. 1994; Froemke and
Dan 2002; Markram et al. 1997; Sjöström et al. 2001; Wang et al. 2005; Wittenberg
and Wang 2006). In those preparations, plasticity has been shown to depend both on
relative timing of pre- and postsynaptic spikes (‘spike timing dependent plasticity’, or
STDP), and the firing rates of pre- and postsynaptic neurons. These induced changes
in the connectivity of a neural circuit have then been assumed to maintain or initiate
a long-term memory trace of external inputs that triggered these synaptic changes
(Hebb 1949). However, in order for this theory to be valid, the induced synaptic
changes need to survive both activity triggered by other inputs, and the ongoing
background activity that is pervasive in cortex (Burns and Webb 1976; Churchland et
al. 2010). How changes in synaptic connectivity survive the continuous presentation
of other inputs has been the subject of several studies (Amit et al. 1994; Fusi et al.
2005). Here, we focus most of our study on the decay of the synaptic memory trace
due to background activity, using a theoretical approach.

Synaptic plasticity has been described using a multitude of different models and
approaches (Albers et al. 2013; Amit and Fusi 1994; Bhalla and Iyengar 1999; Bi-
enenstock et al. 1982; Clopath et al. 2010; El Boustani et al. 2012; Froemke and Dan
2002; Gerstner et al. 1996; Graupner and Brunel 2012; Kumar and Mehta 2011; Lis-
man 1985; Oja 1982; Pfister and Gerstner 2006; Sejnowski 1977; Shouval et al. 2002;
Sjöström et al. 2001; Song et al. 2000; Yger and Harris 2013). In early plasticity
models, synaptic changes were purely induced by the firing-rates of pre- and postsy-
naptic neurons (Bienenstock et al. 1982; Oja 1982; Sejnowski 1977). At the end of
the nineties, theorists introduced purely spike-timing based models (Gerstner et al.
1996; Song et al. 2000). Finally, more recent models have been striving to capture a
wide range of experimental data, and as a result capture both the spike-timing and
firing rate dependence of synaptic plasticity (Albers et al. 2013; Clopath et al. 2010;
El Boustani et al. 2012; Graupner and Brunel 2012; Kumar and Mehta 2011; Pfister
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and Gerstner 2006; Shouval et al. 2002; Sjöström et al. 2001; Yger and Harris 2013).
These models are natural candidates for studies of the stability of synaptic changes
during ongoing activity. In our work, we choose the model of Graupner and Brunel
(2012) for the following reasons: (i) the model includes the calcium concentration in
the post-synaptic spine, which is known to be a crucial link between pre- and post-
synaptic activity and long-term synaptic changes; (ii) the model exhibits bistability
of synaptic changes accounting for experimental evidence suggesting that CA3-CA1
synapses in the hippocampus are bistable (O’Connor et al. 2005b; Petersen et al.
1998); (iii) the model is simple enough that the dynamics of the synaptic efficacy
variable can be computed analytically.

Postsynaptic calcium entry has been identified to be a necessary (Ismailov et al.
2004; Mizuno et al. 2001; Nevian and Sakmann 2006) and sufficient (Malenka et al.
1988; Neveu and Zucker 1996; Yang et al. 1999) signal for the induction of synaptic
plasticity (but see ref. Nabavi et al. 2013). However, most of the in vitro experiments
evoking synaptic changes use elevated extracellular calcium concentrations, while
in vivo calcium levels are estimated to be around 1.5 mM (Silver and Erecińska
1990). The impact of reduced calcium entry due to the lower extracellular calcium
concentration in vivo on the time scale of synaptic decay has not been considered
heretofore.

In the Results (Section 3.3), we study the persistence of synaptic changes, first in
a synapse connecting a pair of independent Poisson neurons, and second in a large
network of excitatory and inhibitory leaky integrate-and-fire (LIF) neurons. We
show that in the absence of bistability, synaptic changes decay exponentially during
ongoing activity and that the time constant exhibits a power-law like behaviour with
respect to the present firing rate. We demonstrate that the reduced extracellular
calcium concentration in vivo leads to several orders of magnitude longer memory
time scales. The introduction of bistability in the synaptic plasticity rule further
stabilises synaptic changes at low firing rates and extensively prolongs memory time
scales when combined with the in vivo extracellular calcium conditions. Finally, we
extend our results to a large recurrent network of LIF neurons, where we demonstrate
network firing rate stability under synaptic plasticity, high-frequency stimulation
induced implantation and decay of an implanted memory for in vitro parameters
and long term memory maintenance for in vivo parameters.
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3.2 Materials and Methods

We have examined the time scales of memory change under background cortical
firing, in a calcium-based model of synaptic plasticity (Graupner and Brunel 2012).
We start here by shortly introducing the model and we explain how we account for
in vitro and in vivo conditions in the model.

In the model, the temporal evolution of the synaptic efficacy variable, ρ(t) ∈ [0, 1],
is described by

τ
dρ

dt
= −∂U(ρ)

∂ρ
− γDρΘ(c(t) − θD) + γP (1 − ρ)Θ(c(t) − θP ) (3.1)

+σ
√

τ
√

Θ[c(t) − θD] + Θ[c(t) − θP ]η(t),

where τ is the time constant of synaptic efficacy changes, and c(t) is the calcium
concentration. The dynamics of ρ depends on four terms:

1. The dynamics are governed by a potential U(ρ) for low calcium concentrations
(c(t) < θd) since all other terms on the right-hand side of Eq. (3.1) are then
zero. In the following we consider two possible scenarios for U(ρ): (i) a flat
potential, U(ρ) = 0 - in this case the synaptic efficacy variable stays constant
in time in the absence of calcium transients. This means all possible values of
ρ ∈ [0, 1] are stable; (ii) a double well potential,

U(ρ) =
1
4

ρ2(1 − ρ)2. (3.2)

In this case, ρ evolves towards one of two possible stable fixed points (the
minima of U), one at ρ = 0 - the DOWN state -, the other at ρ = 1 - the
UP state -, depending on the initial condition. This corresponds to a bistable
synapse.

2. For intermediate calcium concentrations (θp > c(t) > θd), the synapse is de-
pressed, with a depression rate γd. This depression remains active for c(t) > θp

but its magnitude is outweighed by potentiation.

3. For large calcium concentrations (c(t) > θp > θd), the synapse is potentiated,
with a potentiation rate γp.

4. A noise is only active when calcium concentration is above the lowest plasticity
threshold θD, and increases in magnitude when the upper plasticity threshold,
θP , is also crossed. σ defines the amplitude of the noise, and η(t) is a Gaussian
white noise process with unit variance.
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Changes in ρ are induced by increases in the postsynaptic calcium concentration,
c(t) (see Eq. (3.3)), evoked by pre- and postsynaptic spikes. The calcium concen-
tration increases by an amount, Cpre/Cpost, in response to pre-/postsynaptic spikes
respectively, while it decays exponentially with a time constant τCa in between spikes.
Calcium transients induced by presynaptic activity are assumed to represent calcium
influx through NMDA receptors, while calcium transients induced by postsynaptic
spikes are assumed to represent activation of voltage-gated calcium channels (Saba-
tini et al. 2002) (see Graupner and Brunel 2012 for more details of the model).

This calcium-based model of synaptic plasticity has been used to successfully fit
data from various experimental preparations (Graupner and Brunel 2012). Here, we
use the data-set that best fits plasticity data obtained in visual cortex slices (Sjöström
et al. 2001) - hereafter called the ‘in vitro’ parameter set. In this experiment, the
extracellular calcium concentration was set to be 2.5 mM (Sjöström et al. 2001),
which is significantly higher than the estimated in vivo concentration of about 1.5 mM
(Silver and Erecińska 1990). Here we assume that a decrease in extracellular calcium
concentration leads to a proportional decrease in the calcium influx into the post-
synaptic spine. This assumption is quite different from the case in Chapter 2, where
we could not predict the influence of reduced extracellular calcium concentration
on the presynaptic production of NO as the actual production process would be
nonlinearly dependent on calcium. In the current model both sources of calcium
are believed to come from extracellular sources (at least to a first approximation) so
decreasing available calcium will reduce the influx variables. Using this assumption,
we can readily predict the effects of decreasing the extracellular calcium concentration
on the plasticity rule in the calcium-based model by scaling the amplitudes of the
pre- and postsynaptically evoked calcium transients according to the ratio of calcium
concentrations, i.e. 1.5/2.5=0.6. This leads to what we call the ‘in vivo’ parameter
set. Values of all parameters for both conditions are indicated in Tab. 3.1.

The dynamics of the synaptic efficacy in response to calcium transients under the
in vitro and the in vivo conditions are illustrated in Fig. 3.1. The synaptic efficacy is
only modified when the calcium concentration increases above the depression thresh-
old θD (Fig. 3.1,B-E). For the in vitro case, this happens whenever a postsynaptic
spike occurs since Cpost > θD, but for the in vivo parameter set this happens much
more rarely because of the smaller calcium amplitudes (Cpre, Cpost < θD in the in
vivo case; see Tab. 3.1). In the latter case, synaptic changes are only induced when-
ever subsequent spikes occur in short succession such that calcium accumulates and
crosses the depression and/or potentiation threshold. Such events are rare at low
firing rates (Fig. 3.1,D-E).
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Figure 3.1. Dynamics of the synaptic plasticity model with the in vitro

and in vivo parameter sets. (A) Pre- and postsynaptic spike trains generated
as realisations of Poisson processes at 1/s. (B,C) The spike train in A induces
large calcium transients (blue trace) with the in vitro parameter set (Cpre = 0.562
and Cpost = 1.240; see Tab. 3.1). Whenever the calcium trace crosses the depression
(cyan) or potentiation thresholds (orange), changes in the synaptic efficacy (green)
are induced. (D,E) Same as in B,C but with calcium amplitudes corresponding to
the in vivo case (Cpre = 0.337 and Cpost = 0.744). The small calcium transients do
not cross the depression/potentiation thresholds and no efficacy changes are
observed. Note that the flat potential for ρ is used here and that noise is set to zero
for clarity, σ = 0.

3.2.1 Calcium-based plasticity model

The temporal dynamics of the synaptic efficacy in the calcium-based model are given
in Eq. (3.1). Changes in ρ are driven by the postsynaptic calcium concentration, c.
The underlying basis for most of the analytical tools which we develop are based on
the development of a probabilistic prediction for the mean activity of this calcium
concentration, thus we present it separately here.

The calcium dynamics are modelled using instantaneous increases of size Cpre

and Cpost in response to pre- and postsynaptic spikes, respectively, followed by an
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exponential decay

dc

dt
= − c

τCa

+ Cpre

∑

i

δ(t − ti − D) + Cpost

∑

j

δ(t − tj), (3.3)

where τCa is the calcium decay time constant, and Cpre, Cpost the pre- and postsynap-
tically evoked calcium amplitudes. The sums go over all pre- and postsynaptic spikes
occurring at times ti and tj, respectively. The time delay, D, between the presynap-
tic spike and the occurrence of the corresponding calcium transient accounts for the
slow rise time of the NMDAR-mediated calcium influx.

In the supplementary material of their paper Graupner and Brunel (2012) also
developed a more complicated calcium influx model. This model used a difference of
exponentials to model the slow rising NMDA-mediated calcium increase as a result
of a presynaptic spike, and a further difference of exponentials to account for the
much faster voltage-dependent calcium channel (VDCC) calcium influx as a result
of a postsynaptic spike. This VDCC term is further influenced nonlinearly by the
NMDAR term leading to a much greater calcium influx when a postsynaptic spike
follows a presynaptic spike. Graupner and Brunel (2012) show that this model for
calcium dynamics coupled to their model of synaptic efficacy (Eq. (3.1)) can repro-
duce the standard STDP curve of Bi and Poo (1998, experimental data points shown
in Fig. 1.6). They further motivate the utility of such an extension to their basic
model (Eq. 3.3) in the modelling of the activity of certain pharmacologically inter-
ventions (e.g. NMDAR blocking). The two models of calcium dynamics presented in
their paper are somewhat reminiscent of the two models of NO production which we
presented in our parallel fibre to purkinje cell plasticity model in Chapter 2. For our
analysis, we have chosen to implement the simplified calcium dynamics for a number
of reasons (i) this is the version of the model which was successfully fitted to the
greatest number of experiments, and for which we have access to the fit parameters
(Graupner and Brunel 2012); (ii) our theoretical prediction of calcium concentra-
tion, which we will present in the next section, is more readily derived for the linear
model; (iii) our event-based implementation for the evolution of synaptic efficacy is
again easier in the linear case. This is an excellent example of a case where a a more
detailed model may be more biologically accessible but a linearisation of the model
provides much greater scope for analysis without losing much in overall dynamics.
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Parameter In-vitro In-vivo
Cpre 0.56175 0.33705
Cpost 1.23964 0.74378

τCa (ms) 22.6936
θD 1
θP 1.3
γD 331.909
γP 725.085
σ 3.3501

τ (sec) 346.3615
ρ∗ 0.5

D (ms) 4.6098

Table 3.1. Parameters of the calcium-based synapse model. The in vitro
values are obtained by fitting the model to cortical plasticity data (Graupner and
Brunel 2012; Sjöström et al. 2001). In vivo calcium amplitudes are scaled from the
in vitro values according to the change in extracellular calcium concentration.

3.2.2 Probability density function of the calcium concentra-
tion

The probability density function (PDF) of the calcium concentration can be calcu-
lated if pre- and postsynaptic neurons fire as independent Poisson processes with
rates νpre and νpost respectively. In these conditions, the calcium concentration fol-
lows a shot noise process, where the effect of a single event (a ‘shot’) is the shape of
a single calcium transient, F (t) = a exp(−t/τCa), where a is either Cpre or Cpost and
τCa the time constant of calcium decay. The general solution for a single shot noise
process, with a = 1, was derived in (Gilbert and Pollak 1960). We were able to adapt
their work to two independent processes, with a ∈ {Cpre, Cpost} and ν = νpre = νpost,
deriving a probability density function given by the master equation

cP ′(c) = (2ντCa − 1)P (c) − ντCaP (c − Cpre) − ντCaP (c − Cpost) (3.4)

where P (c) is the probability density of calcium c. For a complete description of shot
noise processes, including generalisation to the case νpre 6= νpost, and how we applied
them in the current work see Appendix C.

The probability density function, P (c), allows us to calculate the fraction of time
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Figure 3.2. Example of 1/sec shot noise prediction of calcium
concentration for in vitro parameter set The probability density, P (c), is
shown for individual Poisson processes for the calcium influx value of C = 0.56
(red) or C = 1.23 (green). When both processes combine at a single synapse we
obtain the joint probability density function (blue). Plasticity thresholds are shown
as vertical lines.

spent above the depression and potentiation thresholds according to

αD(ν) = 1 − ∫ θD

0 P (c, ν)dc (3.5)

αP (ν) = 1 − ∫ θP

0 P (c, ν)dc
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That is, for a given pre- and postsynaptic Poisson firing rate, ν, the proportion of
time that the calcium will spend above the potentiation/depression threshold is equal
to 1 minus the area of the density function lower than the threshold. Recall that the
area of a particular zone of a probability density function can be expected to equal
the proportion of time spent in that zone, if the firing rate is held constant. These
formulae will be useful to us in calculating the average long-run potentiation and
depression rates.

In order to solve Eq. (3.4) we first present a simplified case where Cpre = Cpost = 1.
This case is useful as an example as it allows us to develop a completely analytical
solution demonstrating the piecewise approach necessary for solving the equation.
Furthermore, we will use this form later (Section 3.3.1) to derive a simple power law
result which appears to carry over, even to the case Cpre 6= Cpost. Solving then for
P (c) we get

P (c) = Ac2ντCa−1 c ∈ [0, 1]; (3.6)

= Ac2ντCa−1

(

1 − 2ντCa

∫ c−1

0

z2ντCa−1

(z + 1)2ντCa
dz

)

c ∈ [1, 2]; (3.7)

= Ac2ντCa−1
(

1 − (c − 1)2ντCa
2F1(2ντCa, 2ντCa; 2ντCa + 1; 1 − c)

)

(3.8)

c ∈ [1, 2];

= c2ντCa−1

(

A − 2ντCa

∫ c−1

0

P (z)
(z + 1)2ντCa

dz

)

c > 2, (3.9)

where 2F1(a, b, c, z) =
∑∞

n=0
(a)n(b)n

(c)n

zn

n!
is the ordinary hypergeometric function (Abramowitz

and Stegun 1970),

A =
exp(−2ντCaγ)

Γ(2ντCa)
, (3.10)

γ is Euler-Mascheroni constant, γ ∼ 0.577215665, and Γ is the gamma function.
Fitting the calcium-based model to cortical plasticity data yields Cpre < Cpost

(see Tab. 3.1). In this case, the initial parts of the solution to Eq. (3.4) read

P (c) = Bc2ντCa−1, c ∈ [0, Cpre] (3.11)

= Bc2ντCa−1

(

1 − ντCa

∫ c−Cpre

0

P (x − Cpre)
(x + Cpre)2ντCa

dx

)

, (3.12)

c ∈ [Cpre, min(2Cpre, Cpost)]

= Bc2ντCa−1
(

1 − 1
2

D2ντCa
2F1(2ντCa, 2ντCa; 2ντCa + 1; −D)

)

, (3.13)

c ∈ [Cpre, min(2Cpre, Cpost)]
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where D =
(

c−Cpre

Cpre

)

, and B = A/(CpreCpost)ντCa is a normalisation parameter which
assures that

∫

P (I)dI = 1. This provides us with an analytical solution up to
c = min(2Cpre, Cpost). While it is technically possible to continue this piecewise
analytical approach for a few more intervals it becomes quickly unruly. Therefore we
calculate the PDF for c > min(2Cpre, Cpost) by a numerical integration of Eq. (3.4)
(see Eq. (C.30)).

3.2.3 Diffusion approximation for the synaptic efficacy with
a flat potential

Performing a diffusion approximation of the synaptic efficacy ρ turns Eq. (3.1) into
an Ornstein-Uhlenbeck process (Graupner and Brunel 2012). The requirements for
this are that single calcium transients cause very little change in the synaptic efficacy.
This is certainly the case for the chosen parameter set (Tab. 3.1), where τCa ≪ τ
means that many calcium transients must be integrated before a large change in
synaptic efficacy will occur. The temporal evolution of ρ is then described by the
Fokker-Planck equation

τ
dρ

dt
= ΓP (1 − ρ) − ΓDρ + σ

√
τ
√

αP + αDη(t), (3.14)

for the case of a flat potential (i.e. ∂U/∂ρ = 0). Here τ is the time constant of
the synaptic efficacy equation (Eq. (3.1)), σ the magnitude of synaptic noise, η(t) a
gaussian noise process with zero mean and unitary standard deviation. We define
ΓP (ν) = γP αP and ΓD(ν) = γDαD as the mean potentiation and depression rates,
respectively, and the αi are defined in Eq. (3.5).

The bounds at ρ = 0 and ρ = 1 lead to a truncated Ornstein-Uhlenbeck process,
whose distribution is a truncated Gaussian, whose mean converges exponentially to

ρ̄(ν) =
ΓP (ν)

ΓD(ν) + ΓP (ν)
+ σρ

G(−ρ̄
σρ

) − G(1−ρ̄
σρ

)

H
(

−ρ̄
σρ

)

− H
(

1−ρ̄
σρ

) (3.15)

where σ2
ρ = σ2(αP (ν)+αD(ν))

2(ΓP (ν)+ΓD(ν))
, G(z) = 1√

2π
exp

(

−z2

2

)

is the Gaussian with zero mean and

unit variance, and H(z) = 1
2

(

1 − erf( z√
2
)
)

is the complementary cumulative density
function of G. The time constant, τeff, of the exponential decay to ρ̄ is defined by

τeff(ν) =
τ

ΓD(ν) + ΓP (ν)
. (3.16)
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3.2.4 Kramers expected escape time from a double-well po-
tential

In the case of a double-well potential, the diffusion approximation turns Eq. (3.1)
into a Fokker-Planck equation

τ
∂P

∂t
=

(αD + αP )
2

σ2 ∂2P

∂ρ2
+

∂

∂ρ

((

(ΓP + ΓD)ρ + ΓP +
∂U

∂ρ

)

P

)

. (3.17)

This equation can be rewritten as

τ
∂P

∂t
=

1
2

σ2
eff

∂2P

∂ρ2
+

∂

∂ρ

((

∂Ueff

∂ρ

)

P

)

. (3.18)

where the effective potential, Ueff, is the sum of the ‘bare’ potential U and two
quadratic terms proportional to the potentiation and depression rates, respectively
(Eq. (3.20)), and σ2

eff is the amplitude of the effective noise

σ2
eff(ν) = σ2(αD(ν) + αP (ν)). (3.19)

The effect of background activity on the dynamics of ρ can be explained by the
fact that it modifies the potential, U(ρ), leading to an effective potential

Ueff(ν, ρ) =
1
4

ρ2(1 − ρ)2 +
γDαD(ν)

2
ρ2 +

γP αP (ν)
2

(1 − ρ)2. (3.20)

In Eq. (3.20), the first term on the r.h.s. corresponds to the ‘bare’ double well
potential U(ρ) (Eq. (3.2)); the second term describes the effect of depression on the
potential, that tends to strengthen the stability of the lower well (DOWN state) at
ρ ∼ 0, at the expense of the other well that tends to disappear when αD(ν) increases;
finally, the last term describes the effect of potentiation, that shifts the minimum of
the only remaining well towards higher values of ρ when αP (ν) increases.

When the effective potential is dominated by the double-well term (first term
on the r.h.s. of Eq. (3.20)), the ‘escape’ rate from the UP state is driven by noise
and can be estimated using Kramers theory (Gardiner 1986; Kramers 1940). The
height of the potential barrier, ∆Ueff = Ueff(ρun) − Ueff(ρup), determines the mean
dwell time in the UP state, where ρup and ρun are the local minima and maxima of
the effective potential and are obtained solving ∂Ueff

∂ρ
= 0. The mean first passage

time for a synapse beginning in the UP state to the peak of the effective potential
well, ρup, dominates the dwell time, as once a synapse crosses this threshold it is
much more likely to fall quickly down into the DOWN state rather than to cross



78 CHAPTER 3. HIPPOCAMPAL AND NEOCORTICAL MEMORY MODEL

back into the UP state. This allows us to calculate the expected escape time from
the potential well

E(τeff) =
2πτ

√

U ′′
eff(ρup)|U ′′

eff(ρun)|
exp

{

2∆Ueff

σ2
eff

}

(3.21)

where

U ′′
eff(ρ) =

1
2

− 3ρ + 3ρ2 + ΓD − ΓP . (3.22)

3.2.5 Numerical methods: Event-based implementation

The temporal evolution of individual synaptic weights in the calcium-based model
can be calculated in an event-based manner (as opposed to a finite difference method
with a fixed time step ∆t) in an analytically exact way. This greatly accelerates
network simulations since the network variables are updated at the occurrence of
spikes only. In the following we describe the practical implementation of the event-
based update.

For the event-based update, three variables have to be stored per synapse: the
calcium concentration, c, the synaptic efficacy variable, ρ, and the time of the last
spike seen by the synapse, t. The synapse variables c and ρ must be updated on the
occurrence of three events: (1) at the presynaptic spike when the postsynaptic voltage
is increased, (2) with delay D after a presynaptic spike when the presynaptically
evoked calcium increase occurs (see Eq. (3.3)), (3) and at the postsynaptic spike
when the postsynaptic calcium increase occurs.

3.2.5.0.1 Calcium update The calcium concentration decays exponentially be-
tween events and is instantaneously increased by the amplitude Cpost when a post-
synaptic spike occurs. In the case of a presynaptic spike, the calcium increase Cpre

occurs after the delay D (Eq. (3.3)). In consequence, we update the calcium concen-
tration as a decay followed by a calcium concentration increase where the amplitude
depends on the identity of the spike and the delay D (at time tm for pre-synaptic
spikes and tn for post-synaptic spikes). The calcium update for time ti+1 (after the
last update at ti) at the three update events described above reads

ci+1 = ci exp(−(ti+1 − ti)/τCa) +











0 (1)
Cpreδ(ti+1 − D − tm) (2)
Cpostδ(ti+1 − tn) (3)

(3.23)
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where (1), (2), (3) denote the events: (1) upon the occurrence of a presynaptic
spike, (2) after a delay following a presynaptic spike, (3) upon the occurrence of a
postsynaptic spike.

3.2.5.0.2 Synaptic efficacy update For the propagation of the synaptic effi-
cacy variable, we distinguish between two different regimes, that is, stochastic and
deterministic. When the calcium concentration at time ti is lower than both thresh-
olds, ci < θD, θP , the dynamics of ρ are described deterministically. When the
calcium concentration crosses either or both thresholds, the update is stochastic,
for the duration of the suprathreshold period, and the dynamics of the mean and
the standard deviation of the synaptic efficacy are described by the corresponding
Ornstein-Uhlenbeck process. The different regimes may be updated sequentially in
a piecewise manner, accounting for first suprathreshold and then subthreshold be-
haviour.

Here, we determine the possible potentiation/depression threshold crossings of
the calcium trace between events i and i + 1 with the inter-event interval ∆t =
ti+1 − ti. tP is the time the calcium trace spends above the potentiation threshold
within that interval, tD is the time the calcium trace spends between the potentiation
and the depression threshold (note this is different from αD which represents time
above the depression threshold, including time above the potentiation threshold),
and t0 the time the calcium trace spends below the depression threshold given by
t0 = ∆t− tP − tD. Here, we consider θP > θD only. The updates for the case θP < θD

are equivalent. cend refers to the calcium concentration right before the update at
event i + 1, that is cend = ci exp(−∆t/τCa).

Between events at ti and ti+1, the following six possible threshold crossings can
occur (see Fig. 3.3):

I ci > θP and cend > θP tP = ∆t and tD = 0

II ci > θP and θD < cend ≤ θP tP = τCa ln
(

ci

θP

)

and tD = ∆t − τCa ln
(

ci

θP

)

III ci > θP and cend ≤ θD tP = τCa ln
(

ci

θP

)

and tD = τCa ln

(

θP

θD

)

IV θD < ci ≤ θP and θD < cend ≤ θP tP = 0 and tD = ∆t

V θD < ci ≤ θP and cend ≤ θD tP = 0 and tD = τCa ln
(

ci

θD

)

VI ci ≤ θD tP = 0 and tD = 0

The efficacy, ρ, is updated in a piece-wise fashion. Stochastic updates are per-
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I II III

IV V VI

Figure 3.3. Possible potentiation and depression threshold crossing cases
of the calcium trace (blue lines) between events at time ti and ti+1. The
six possible cases are depicted with respect to the location of the potentiation, θP

(orange dashed line), and the depression thresholds, θD (cyan dashed line).

formed when the calcium trace spent time above the potentiation threshold (tP > 0,
cases : I, II, III), or between the potentiation threshold and the depression threshold
(tD > 0, cases : II, III, IV, V; and for θP > θD). A deterministic update is performed
if the calcium trace spent time below the depression threshold (t0 > 0, cases : III,
V, VI).

In case either the depression, or potentiation, or both thresholds are crossed in
the interval (ti,ti+1], the propagation of ρ is described by the temporal dynamics
of the mean and the standard deviation of an Ornstein-Uhlenbeck (OU) process.
This approximation is valid if: (i) single calcium transients induce small changes in
the synaptic efficacy, and (ii) the depression and potentiation rates (γD and γP ) are
sufficiently large so that one can neglect U(ρ) in Eq. (3.1) during synaptic stimulation,
in the case of the double-well potential. This reduces Eq. (3.1) to an Ornstein-
Uhlenbeck process, for which the potential of ρ during stimulation is quadratic with
the minimum at ρ̄. Both approximation conditions hold in our case as the effects
of single calcium transients are indeed small, and γD, γP ≫ max|∂U(ρ)/∂ρ| (see
Tab. 3.1, the difference of magnitude between max|∂U(ρ)/∂ρ| and the influence of
ΓP ,ΓD is of order 104), which means we can ignore the potential well during the
suprathreshold period.
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If the calcium concentration is larger than either threshold, the update of ρ
consists of the temporal evolution of the OU mean and a stochastic part drawn
from a distribution given by the temporal evolution of the OU standard deviation.
The updates for the stochastic cases are given by:

tP > 0 : ρ(ti + tP ) =
γP

γP + γD

((1 − exp(−tP (γP + γD)/τ))+

ρ(ti) exp(−tP (γP + γD)/τ))

+ σzP

√
2

√

√

√

√

1 − exp(−2(γP + γD)tp/τ)
2(γP + γD)

,

tD > 0 : ρ(ti + tP + tD) =ρ(ti + tP ) exp(−tDγD/τ) + σzd

√

1 − exp(−2γDtD/τ)
2γD

,

where zP and zD are Gaussian random variables of unit variance and zero mean. Note
that tD = 0 in case I, and therefore only the first update is performed. Equivalently,
tP = 0 in cases IV as well as V and only the second update rule is performed.

When the calcium concentration, ci, is smaller than the potentiation and the
depression threshold (t0 = ∆t− tP − tD > 0, cases III, V and VI), the first two terms
on the rhs and the noise term of Eq. (3.1) are zero. That reduces the rhs of Eq. (3.1)
to −δU/δρ which can be integrated analytically for the flat- and the double well
potential considered here. The update of ρ is therefore deterministic and depends
on the choice of the potential:

1. flat potential
ρ(ti+1) = ρ(ti + tP + tD) (3.24)

2. double-well potential

ρ(ti+1) =







1
2

− 1
2

√

1 + (χ0et0/(2τ) − 1)−1 if ρ < 0.5
1
2

+ 1
2

√

1 + (χ0et0/(2τ) − 1)−1 if ρ ≥ 0.5,
(3.25)

with χ0 = (ρ(ti + tP + tD) − 1/2)2/(ρ(ti + tP + tD)(ρ(ti + tP + tD) − 1)).

By chaining the calculation of first ρ(ti + tP ), then ρ(ti + tP + tD), and finally
ρ(ti +1), each of which is dependent on the outcome of the previous update equation
we are able to calculate the updated synaptic efficacy in an event-driven manner.
This means that the order of 5 million synapses in our simulations are not slowing
the progress of the simulation down.
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3.2.6 The network

We implemented and simulated a recurrent network of 10,000 leaky integrate-and-
fire (LIF) neurons, 8,000 of which are excitatory (E) neurons and 2,000 of which are
inhibitory (I). Any two neurons have a spatially uniform probability of connection
of 0.05. Autapses are specifically disallowed. Synapses between E neurons are plas-
tic and their weight dynamics are described by the calcium-based plasticity model
(Eq. 3.1, Graupner and Brunel (2012)). All other synapses have fixed strength wαβ

(α, β ∈ {E,I}). A presynaptic spike induces a voltage jump of size wαβ in the post-
synaptic neuron.

The membrane potential of neuron i of population α evolve according to

τm
dVαi

dt
= −(Vleak − Vαi) + Iαi X + τm

∑

β

∑

j

∑

k

wαiβjδ(t − tβjk − τL) (3.26)

where
IαiX = µαX +

√
τmασηαi(t) (3.27)

is a common external drive to all neurons, comprising a constant input, µαX, and
a white noise of amplitude σ = 5mV. ηαi(t) is a Gaussian white noise process with
unit variance and zero mean, which is uncorrelated from neuron to neuron. In the
absence of synaptic inputs each membrane potential decays exponentially to the
leak potential, Vleak = −70mV, with a time constant τm = 20ms. Spiking occurs
when the voltage crosses a threshold, Vthr = −50mV, after which it is reset to the
reset potential, Vreset = −60mV. During all of our simulations, we set the refractory
period, during which the membrane potential is fixed at Vreset after spiking, to zero.
The three sums in the r.h.s. of Eq. (3.26) go over the two populations β ∈{E, I},
all presynaptic neurons j, and presynaptic spikes of neuron j in population β, that
occur at times tβjk. Each presynaptic spike of neuron j in population β causes a
jump of amplitude wαiβj in the voltage of neuron i after a delay τL. Here, the delay
is chosen to be equal to the integration time step dt = 0.01 ms (see Section 3.2.7).

For all connections involving inhibition (i.e. all (α, β) 6= (E,E)), the connectivity
matrix is set as wαiβj = cijwαβ where cij are independent, identically distributed
(i.i.d.) Bernoulli variables, cij = 1 with probability 0.05, 0 with probability 0.95,
and the fixed synaptic weights are wIE = 0.1mV, wII = −0.4mV and wEI = −0.4mV.
E-E synapses are given by wαiβj = cijρijwEE where cij are again i.i.d. Bernoulli
variables, cij = 1 with probability 0.05, 0 with probability 0.95, ρij obeys Eq. (3.1),
and wEE = 0.2mV. The average value of ρ is initially, and remains throughout our
simulations, much smaller than 0.5, which means that with a 4 : 1 ratio in the E to
I populations, for < ρ >≤ 0.5 recurrent inhibition dominates excitation, leading to
a stable asynchronous irregular state (see Fig. 3.4) (Brunel 2000).
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Figure 3.4. Example of network firing in asynchronous irregular state. A
sample of 1000 excitatory neurons from the network shows irregular spiking
behaviour in the raster (top) and the averaged firing rate of all 8000 excitatory
neurons is steady around 1/sec (bottom).

3.2.7 Numerical methods: Network simulations

We numerically simulated the recurrent network of LIF neurons using the forward
Euler method with a time step of dt =0.01ms. Synapses were updated using the
event-based implementation described above (Section 3.2.5). The simulations were
implemented in C and OpenCL and run on general-purpose GPUs. Parallel gener-
ation of random numbers, for the Gaussian noise in the LIF equations, was imple-
mented using the Random123 library (Salmon et al. 2011). Without these innova-
tions it would not have been possible to simulate large networks for such long time
periods as will be shown in the Results (Section 3.3). For comparison, simulations
which took two hours on our system took approximately one week using the Brian
simulator (Goodman and Brette 2009) on a similarly high-performance calculation
environment. For a more detailed introduction to our parallel simulations using
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OpenCL see Appendix A. We provide a more detailed comparison of the alterna-
tive methods of random number generation in large-scale numerical simulations in
Appendix B.

In most of our simulations it was sufficient to initialise all of the plastic synapses
in the network to the mean value predicted by theory (we will explain this process in
the next section, Section 3.2.8). However, in the case of our in vivo parameter set,
with the double-well potential, the time scales of synaptic change were extremely
long which meant that the simulation took longer to reach its long-run steady state,
leaving us less time to test the effects of manipulations. To this end, we chose to
initialise these simulations closer to their steady-state using the probability density
function (PDF) of the effective potential well, Ueff (Eq. (3.20)), at the chosen network
firing rate (1/s pre- and postsynaptic Poisson firing in our case). The PDF is the
limiting distribution of the Kramers process defined by

P (ρ) = K exp

(

−2Ueff(ν, ρ)
σ2

ρ

)

(3.28)

where K is a normalisation constant such that
∫ 1

0 = 1, as we define our synaptic
efficacies only on the interval [0, 1]. We first generate this PDF numerically and
from it the cumulative distribution function (CDF). When initialising the network
we generate a uniform random deviate between 0 and 1 for each synapse and by
reverse look-up from the CDF we obtain a synaptic weight with value between 0 and
1, whose distribution follows that of the effective potential well Kramers process.

3.2.8 Computing analytically mean firing rates and E-E synap-
tic efficacy

In a network of excitatory and inhibitory LIF neurons receiving white noise inputs,
the mean firing rates of excitatory and inhibitory neurons are given by Amit and
Brunel (1997b); Brunel (2000)

νE = Φ(µE, σE) (3.29)

νI = Φ(µI, σI) (3.30)

where Φ is the standard LIF static transfer function (Amit and Brunel 1997b; Amit
and Tsodyks 1991; Brunel 2000; Siegert 1951)

1
Φ(µ, σ)

= τrp + τm

√
π
∫

Vthr−µ

σ

Vreset−µ

σ

eu2

(1 + erf(u))du, (3.31)
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where erf(x) = 2√
π

∫ x
0 e−t2

dt is the error function, µα are the mean inputs to popula-
tion α ∈ {E, I},

µE = µEX + CEEτm,EνEρ̄(νE)wEE − CEIτm,EνIwEI (3.32)

µI = µIX − CIIτm,IνIwII + CIEτm,IνEwIE (3.33)

and σα is the amplitude of the fluctuations in the inputs to population α ∈ {E, I},

σE = σext + (CEEρ̄(νE)2w2
EEτm,EνE) + (CEIw

2
EIτm,EνI) (3.34)

σI = σext + (CIEw2
IEτm,IνE) + (CIIw

2
IIτm,IνI) (3.35)

The function Φ(µ, σ) can be understood as 1 divided by the mean inter-spike
interval. The first term on the RHS of Eq. (3.31), τrp, is the refractory period during
which no spiking can occur. The second term represents the mean first-passage
time from Vreset, the reset potential, to Vthr the spike generation threshold, under
synaptic drive µ and a noise σ. The synaptic drive term µE,I, Eqs. (3.32,3.33), breaks
down into the constant external drive per population, µEX,IX and the membrane time
constant of the target population τm,{E,I}, which when multiplied by the synaptic
weight, wXY, gives the effect of a single spike. This is then further multiplied by the
presynaptic population firing rate νE,I and the average number of synapses coming
from presynaptic population, CXY, giving the mean excitatory and inhibitory drive
to the postsynaptic neuron. The recurrent noise equations break down into similar
parameters.

In Eqs. (3.32,3.34) ρ̄ is given by the mean synaptic value derived from our trun-
cated Ornstein-Uhlenbeck process described by Eq. (3.15). This means that, for a
given excitatory firing rate, νE, we can incorporate this value into the excitatory
mean-field equation (Eqs. (3.29)) leading to a prediction of the network excitatory
population firing rate under those conditions. We further couple the two network
mean-field equations (Eqs. (3.29,3.30)), since the excitatory firing rate influences the
inhibitory firing rate and vice-versa. Finally, we can optionally feed the excitatory
firing rate back into the synaptic efficacy equation (Eq. (3.15)). This is numerically
possible as the time scale of change of the synapse is orders of magnitude slower
than the time scale of change of the network mean-field equations. In practice, we
rarely needed to couple the synaptic efficacy equation to the dynamical firing rate
but where we did we saw that the firing rate changed almost immediately in response
to a change in input or mean synaptic efficacy, whereas the synaptic efficacy tracked
the changes in firing rate more slowly. Note also that for the parameters studied in
this paper the effect of heterogeneities in numbers of inputs (Amit and Brunel 1997a;
Roxin 2011) have a negligible effect on the mean firing rates of the network.



86 CHAPTER 3. HIPPOCAMPAL AND NEOCORTICAL MEMORY MODEL

3.3 Results

We now turn to using the analytical tools developed in Section 3.2 in order to analyse
the behaviour of the Graupner and Brunel (2012) synaptic plasticity rule under
sustained pre- and postsynaptic activity. In general the activity of neurons in the
cortex is believed to be accurately modelled by a Poisson process. This allows us to
use our Ornstein-Uhlenbeck derived theory for the activity of the synaptic plasticity
model in order to predict the behaviour of the synapse under stationary Poisson
activity.

We initially examine (Section 3.3.1) the application of the basic Ornstein-Uhlenbeck
process to the model via comparison with the model incorporating a flat potential
(∂U(ρ)/∂ρ = 0). Using simulations of the synaptic model with pre- and postsynaptic
Poisson neurons as our reference, we demonstrate that ρ̄ (Eq. (3.15)) is in fact an
excellent predictor of the mean synaptic efficacy. We then move on to demonstrate
that the decay of a ‘memory’ back to the stationary distribution is in fact an expo-
nential decay with time scale τeff as described by Eq. (3.16). Finally, we demonstrate
an analytically derived power law prediction for the memory time scale in the limit
of low firing rates, which is matched by the behaviour we observe in the simulations.

In Section 3.3.2 we advance to examining the effects of the addition of a double-
well potential (Eq. (3.2)) to the synaptic plasticity rule (Eq. (3.1)). As with the
flat potential rule, for certain parameter sets and firing rates the basic Ornstein-
Uhlenbeck predictions still hold. But important divergences from the flat potential
theory appear for firing rates on the order of that observed in neocortical back-
ground activity when we use the in vivo parameter set. This leads us to extend the
Fokker-Planck equation used in the flat potential theory (Eq. (3.14)) with an effec-
tive potential well (Eq. (3.20)) which combines the effects of the double-well with the
ongoing potentiation/depression processes giving us a bistable synapse for a range
of Poisson firing rates. Utilising Kramers theory for escape from a potential well,
with this new Fokker-Planck formulation, we can predict the escape times from this
effective potential well which dominate the time scales of convergence of synapses
towards their lower potential steady-state.

Having demonstrated the power of our theoretically derived tools in the analysis
of the behaviour of the synaptic plasticity rule when driven by pre- and postsynaptic
Poisson processes, we move on to examining the behaviour of the rule when driven by
pre- and postsynaptic leaky integrate-and-fire (LIF) neurons. The purpose of this it
to move from independent processes to behaviour in a recurrent network. We begin
(Section 3.3.3) by setting up a sparsely connected recurrent network of excitatory and
inhibitory LIF neurons to run at a frequency of our choosing, whilst incorporating
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synaptic plasticity on the excitatory-to-excitatory connections. We do this by mak-
ing use of the mean-field equations presented in Section 3.2.8. In order to disentangle
the recurrent effects of the network from the effects of the change from pure Poisson
neuronal processes to LIF neurons we make comparisons with the behaviour of the
synaptic plasticity rule when driven by independent pre- and postsynaptic LIF neu-
rons, which have independent noisy external drives, which lead to mean firing rates
of each neuron at our desired frequency. The results of this section indicate that
while we have the ability to use our tools to setup a network into certain desirable
states there is a non-Poisson aspect to the activity of LIF neurons which violates
some of our theoretical precepts and leads to differences between predicted and ob-
served behaviours. Having demonstrated both the capacities and limitations of our
theoretical approach in setting up recurrent networks of LIF neurons we return, in
Section 3.3.4, to the question of memory time scales. We examine two canonical
cases, the decay of a synapse with a flat potential, using the in vitro parameter set,
and the long term memory maintenance of a synapse with a double-well potential,
using the in vivo parameter set. Finally in Section 3.3.5, closing the loop on memory
plasticity in recurrent networks, we give a practical example of memory induction
via high frequency neuronal bursting, which again is tightly tied to our theoretical
predictions.

3.3.1 Memory behaviour for a synapse connecting two inde-
pendent Poisson neurons

We begin by proceeding to study the time scales of synaptic decay to a stationary
value. We start with the case of a synapse connecting two neurons firing according to
uncorrelated Poisson processes, and compare the memory time constants in the flat
and double-well potential cases. Simulations were performed using an event-based
implementation of the synaptic plasticity model, which updates the synaptic efficacy
only upon the occurrence of pre- and postsynaptic spikes (see Section 3.2 for details).

We initialise the synaptic efficacy to ρ = 1 and investigate the time constant
of decay in the presence of an ongoing constant firing rate, initially for the flat
potential synapse (Eq. 3.1, with U(ρ) = 0). Pre- and postsynaptic neurons emit
uncorrelated spikes following Poisson statistics, both with a mean rate of 1/s. Under
these conditions, a fully potentiated synapse progressively decays and eventually
fluctuates around a value of 0.2. On average, this decay is well described by a single
exponential function (Fig. 3.5,A,B). The time constant of this decay is much longer
in the case of the in vivo parameter set (Fig. 3.5,B) than in the in vitro parameter
set (Fig. 3.5,A). The decay time constant is 2.5 minutes for the in vitro case and
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approximately 2 hours for in vivo in the presence of 1/s pre- and postsynaptic firing
(Fig. 3.5,C).

The dynamics of the synaptic efficacy (Eq. 3.1) can be described by a truncated
Ornstein-Uhlenbeck (OU) process if single calcium transients induce small changes
in the synaptic efficacy and if the potential is flat (see Graupner and Brunel (2012)
for the non-truncated case). Truncation of the process is induced by the bounds at
ρ = 0 and ρ = 1. In such a process, the mean synaptic efficacy decays exponentially
with a time constant, τeff (Eq. (3.16)), to an asymptotic average efficacy, ρ̄(ν) (see
Eq. (3.15) in Section 3.2). Both τeff and ρ̄(ν) are dependent on ΓP (ν) = γP αP (ν)
and ΓD(ν) = γDαD(ν), the net potentiation and depression rates, which depend in
turn on the learning rates γp and γd as well as on the average fractions of time spent
above the potentiation and depression thresholds, αP (ν) and αD(ν), respectively.
The average fractions of time the calcium traces spend above the potentiation and
depression thresholds αP , αD were derived in Eq. (3.5) based on P (c), the probability
density function of the calcium variable, which can be computed analytically in the
case of independent pre- and postsynaptic Poisson firing (Gilbert and Pollak 1960)
(see Section 3.2.2). The theory provides an excellent match for the dynamics of the
mean synaptic efficacy – compare in Fig. 3.5,A,B the truncated OU theory (blue
and red curves), with the simulation mean (green and light blue curves).

Synaptic efficacy decay becomes faster with increasing pre- and postsynaptic
firing rates since the calcium trace spends more time above depression and poten-
tiation thresholds (Fig. 3.5,C). At the same time, the asymptotic value of synaptic
efficacy (ρ̄) increases due to an increase in time spent above the potentiation thresh-
old (Fig. 3.5,D). As a result of the smaller in vivo calcium amplitudes, the efficacy
decay for the in vivo case is, at all firing rates, much slower than the decay in vitro
(Fig. 3.5,C). The asymptotic efficacy value is lower, at small firing rates (ν < 1/s),
for the in vitro case since isolated postsynaptic spikes always cross the depression
threshold (Cpost > θD) which results in a large net depression rate ΓD, compared to
in vivo (Fig. 3.5,D).

To get a deeper understanding of the dependence of the memory time scale on
the firing rates of pre- and postsynaptic neurons, we set Cpre = Cpost = 1. This
simplification allows us to derive a power law relationship between the memory time
scale and the firing rate τeff ∼ 1/(ντCa)k, where k is the number of (pre- and/or
postsynaptic) spikes required to clear the depression/potentiation thresholds. To
compute the memory time scale, we need to compute the fraction of times spent above
the depression and potentiation thresholds, αD and αP . In the case θD < 1 < θP ,
one can show that at low rates αP ≪ αD. Consequently it is only necessary to focus
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Figure 3.5. Memory decay for a single synapse with flat potential in the
presence of uncorrelated pre- and postsynaptic Poisson firing. (A,B)
Temporal evolution of the mean synaptic efficacy in the presence of pre- and
postsynaptic Poisson firing at 1/s for the in vitro (green in A) and the in vivo (light
blue in B) parameter sets (mean shown for N = 1000 synapses). Blue and red lines
show the mean dynamics as predicted by the Ornstein-Uhlenbeck theory. Grey
lines show example traces of synaptic efficacy evolution in time. (C) Decay time
constant as a function of the firing rate for in vitro and in vivo parameter sets. The
blue and red lines show the calculated decay time constant, τeff , from the OU
theory. The points show exponential decay times obtained by fitting single
exponential decay functions to the mean synaptic dynamics as shown in A and B
illustrating that the OU theory correctly describes the full model behaviour. The
cyan and orange dotted lines illustrate the derived power law behaviour,
τeff ∼ 1/νk, between memory time scales and low firing rates (see text). The power
reflects the number of spikes required to cross the plasticity thresholds, that is,
k = 1 for in vitro (cyan dotted line) and k = 2 (orange dotted line) for in vivo case.
(D) Asymptotic synaptic efficacy as a function of the firing rate for in vitro and in
vivo parameter sets. The lines show the calculated asymptotic value, ρ̄, from the
truncated OU theory (ρ ∈ [0, 1]) for in vitro (blue line) and in vivo (red line) cases.
The points show steady-state values obtained by fitting single exponential decay
functions to the mean synaptic dynamics as shown in A and B (green: in vitro;
light blue: in vivo).
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our analysis on αD. When θD < 1, the time spent above the depression threshold is

αD(ν) = 1 − Aθ2ντCa

D

2ντCa

, (3.36)

where ν is the firing rate of pre- and postsynaptic neurons (νpre = νpost = ν), τCa is
the decay constant for the calcium concentration and A = exp(−2ντCaγ)/Γ(2ντCa)
(see Eqs. (3.6)-(3.10)). This closed form solution allows us to perform an expansion
for low firing rates ν

αD(ν) ∼ 2ντCa log
( 1

θD

)

− (ντCa)2

(

2 log(θD)2 − π2

3

)

+ O
(

(ντCa)3
)

. (3.37)

Similarly for 1 < θD < 2 < θP we have in the low rate limit,

αD(ν) ∼ (2ντCa)2

(

π2

12
+ Li2(1 − θD) + log(θD) log(θD − 1)

)

+ O
(

(ντCa)3
)

(3.38)

where Li2 is the dilogarithm, Li2(z) =
∑∞

k=1 zk/k2. Thus, in both cases we see that
the leading term is (ντCa)k where k = Ceil(θD) and as αP ∼ 0 in this case we find
that the memory time scale depends on the firing rate as

τeff ∼ τ

γD(ντCa)k
.

We expect this relationship to hold in general. Intuitively, this is due to the fact that
we need k spikes arriving simultaneously on a time scale of order τCa in order for the
calcium concentration to cross the depression threshold θD, and that the probability
of observing k spikes in a time interval τD is at low rates proportional to (ντCa)k.
We also expect the result to hold in general for Cpre 6= Cpost. In this case, we expect
that k = Ceil

(

θD

max{Cpre, Cpost}

)

.
The derived power law behaviour for τeff is plotted in Fig. 3.5,C together with the

full analytical solution for τeff. We see that as expected, τeff scales as 1/ν for the in
vitro parameter set, where a single spike is enough to cross θD, while it scales as 1/ν2

for the in vivo parameter set, where two spikes are needed to cross the depression
threshold.

The implication of this theoretical result is that, at low firing rates, there is a
direct relationship between the number of spikes required to clear the lower plasticity
threshold and the memory time scale. Note that the full synaptic efficacy model with
Cpre 6= Cpost (see Tab. 3.1) is considered in the following sections.
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We have now shown that the truncated Ornstein-Uhlenbeck process (Eq. (3.14))
provides an excellent description of the synaptic efficacy model. For pre- and post-
synaptic Poisson processes we can accurately predict the mean exponential decay
of synapses from their initial values towards a stationary mean with a characteris-
tic time scale. In addition, a power law relationship between the number of spikes
required to cross the depression threshold and the firing rate has been shown to ac-
count for memory time scales at low rates. We will now move on to the introduction
of a double-well potential to the synaptic plasticity rule.

3.3.2 Memory decay for a bistable synapse

We turn now to examine the effect of a bistability on memory time scales. The
dynamics of the synapse is now described by Eq. (3.1), where the potential U(ρ) is
given by Eq. (3.2). This double well potential leads to a bistable synapse, that can
take two possible efficacy states (ρ = 0 and ρ = 1) in the absence of activity. In the
presence of background activity, transitions between these two states become possi-
ble. We investigate stability and transition times for in vitro and in vivo parameter
sets as a function of pre- and postsynaptic firing rates.

The effect of background activity on the dynamics of ρ can be explained by
the fact that it modifies the potential, U(ρ), leading to an effective potential, Ueff,
defined in Eq. (3.20). This modified potential combines the effects of the double-
well potential with a depression term, driven by activity above the calcium-based
depression threshold, which tends to stabilise the lower well (DOWN state) while
causing the upper well (UP state) to become shallower, as αD(ν) increases. Finally,
a potentiation term increases the minimum of the remaining lower well, towards
larger values of ρ, as αP (ν) increases.

Thus, there are two distinct regions of firing rates in the bistable case with respect
to the effective potential. For sufficiently low rates, the effective potential still has two
minima (see Fig. 3.6,A, and the effective potentials for 0.1/s and 1/s, indicated by
orange and magenta curves in the inset). There is a critical value of the rates at which
the high efficacy minimum disappears through a saddle-node bifurcation. Beyond
this rate, the synapse is no longer bistable, and synaptic efficacy has one stable state
only (Fig. 3.6,A), equivalent to the asymptotic efficacy value for the flat potential
(Fig. 3.5,D). Finally, at high firing rates, the ‘bare’ potential becomes negligible,
and the effective potential approaches a quadratic potential with a single stable
state whose location depends on the rate (green curve in the inset in Fig. 3.6,A).
The transition from double-well to single well regimes occurs at different firing rates
for the in vitro (∼ 0.04/s) and the in vivo (∼ 1.3/s) parameter sets due to the larger
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Figure 3.6. Memory decay for a bistable synapse in the presence of
uncorrelated pre- and postsynaptic Poisson firing. (A) Steady-states of
synaptic efficacy as a function of firing rate for the in vitro (blue) and the in vivo
(red) parameter sets. Stable states are shown by solid lines and unstable states by
dotted lines. Synaptic efficacy is bistable at low rates (< 0.04/s for in vitro and
< 1.3/s for in vivo) and monostable at high firing rats. The effective potential of
synaptic efficacy is shown for three firing rates (0.1/s - magenta line; 1/s - orange
line; 2/s - green line) and the in vivo parameter set in the inset (firing rates
indicated by vertical lines). (B) Decay time constant as a function of the firing
rate for the in vitro and the in vivo parameter sets. For the in vivo parameter set
below ∼ 1.3/s, the bistability greatly extends memory time scale compared to a
synapse with flat potential (red line) and can be predicted using Kramers escape
rate (magenta line). The vertical dashed line illustrates the frequency at the in vivo
bifurcation point. For the in vitro parameter set, the bistability has no influence on
decay time constants for firing rates above 0.1/s. The points show exponential
decay times obtained by fitting single exponential decay functions to the mean
synaptic dynamics. (C) Individual synaptic efficacy traces for the in vivo
parameter set at 1/s pre- and postsynaptic firing. The synapses remain in the
upper potential well for a long time and stochastically cross the potential barrier to
the low efficacy state. (D) Averaged synaptic efficacy trace of many synapses for
the in-vivo parameter set at 1/s. The bistability extends the memory time scale
from hours for a flat potential to days.
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calcium amplitudes in the former.
For the in vitro parameter set, adding bistability to the synaptic efficacy has

no influence on the decay time constant for firing rates larger than approximately
0.1/s (Fig. 3.6,B). In contrast, for the in vivo parameter set, bistability considerably
prolongs memory decay times with respect to synapses with flat potential at firing
rates below < 1.4/s. In the presence of two stable states, the decay of memory
occurs only due to synaptic noise fluctuations that push the synaptic efficacy out of
the upper well. The influence of the double well potential on the dynamics of the
synaptic efficacy traps synapses in the UP state leading to long dwell times before
crossing the potential barrier and converging to the low efficacy state (Fig. 3.6,C).
The double-well has a prolongation effect on memory duration up to firing rates of
about 3 − 4/s due to the transition between double-well and single-well regimes. At
high firing rates, the potentiation and depression processes dominate and the effects
of the double-well becomes negligible for both parameter sets, that is, the decay
time constant is indistinguishable between flat and double-well potential synapses
(see Fig. 3.6,B).

For low firing rates, we can accurately predict the increase in the decay time
constant in the presence of bistability using Kramers escape rate for the mean first
passage time across a potential barrier (Fig. 3.6,B; see Methods Eq. (3.21)). In this
regime, we calculated an effective decay time constant using Kramer’s escape theory
given by τeff ∼ exp{2∆U/σ2

eff}, where ∆U is the height of the effective potential
barrier and the noise term, σ2

eff, drives the escape of the efficacy from the upper
stable state (see magenta line in Fig. 3.6,B for the in vivo case). Both terms ∆U
and σ2

eff are dependent on ν and are detailed, along with τeff, in Eqs. (3.17) and (3.21)
(see Section 3.2 for more details). In the low rate limit, σ2

eff ∝ 1/νk and therefore the
memory time scale increases exponentially with the inverse of the rate to a power
k, τeff ∝ exp(a/νk), where k is again the number of simultaneous spikes needed to
cross the depression threshold. This exponential dependence extends the time scale
for synaptic decay at 1/s to the order of one month for a bistable synapse with the
in vivo parameter set, up from hours for a synapse with flat potential.

3.3.3 Steady-state behaviour of networks of LIF neurons
with plastic synapses

We next study the behaviour of the calcium-based synaptic plasticity model in a
recurrent network of spiking neurons. We first examine the steady-state of synaptic
efficacy and network activity. We again make use of the event-based implementation
of the synaptic plasticity rule (described in Section 3.2.5) allowing us to simulate
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much longer time scales than are normally attainable by a time stepping simulator.
The recurrent network consists of 8000 excitatory and 2000 inhibitory leaky

integrate-and-fire (LIF) neurons. Each neuron receives an external input which con-
sists of a constant (DC) term and a white noise term. External noise is independent
from neuron to neuron. Each neuron also receives synaptic inputs from other neu-
rons in the network. The connection probability between any two neurons is 0.05 and
uniform in space and across neuron types. Synapses between excitatory neurons are
plastic according to the calcium-based plasticity model (Eq. 3.1), while all synapses
involving inhibitory neurons are fixed. Parameters of the network are chosen so that
the network settles in a stable asynchronous irregular state (Brunel 2000). Hence,
correlations between neurons are weak. See Section 3.2.6 for more details of the
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Figure 3.7. See caption overleaf.



3.3. RESULTS 95

Figure 3.7. Steady-state behaviour of a recurrent network with plastic
synapses between excitatory neurons. (A) Firing rate mean-field predictions
compared with network simulation results. The mean-field theory predicted firing
rate is higher (black line) than the actual firing rate of the excitatory neurons (green
dots) in the recurrent network of 8000 exc. and 2000 inh. LIF neurons. Network
simulation with fixed synapses yield a good match with the theory (blue dots). (B)
Average synaptic weight prediction compared with asymptotic average synaptic
weights in the network simulation. The observed average synaptic efficacy of
excitatory to excitatory connections is smaller (mustard dots) than the theoretical
prediction (black line). Even when using the asymptotic firing rate of the network
in the calculations (green dots), the average synaptic efficacy is overestimated by
the theory. (C) Mean and standard deviation of synaptic weights vs. firing rate for
independent LIF neurons (magenta), networked LIF neurons (green) and LIF
neurons in a network in which actual weights are held constant but we examine
how their efficacy would have evolved in the presence of observed firing (blue dots).
Asymptotic synaptic weights for LIF neurons underestimate the efficacy predicted
by the theory (blue line). (D) Average synaptic weight vs. firing rate for
independent LIFs with different reset potentials. The analytical prediction of the
asymptotic synaptic weight based on Poisson firing is shown by the blue line (same
as in C). The reset potential in the LIF model, Vreset, has a marked influence on the
observed average synaptic efficacy. Depolarised/hyperpolarised reset potentials
(e.g. −55/−70 mV, cyan/green dots) lead to an over/under-representation of short
ISIs (left/right inset) compared to Poisson neurons (red line in insets). ISI
histograms in inset are shown for LIF neurons firing at 1/s.

network model.
The fixed point of the network can be determined analytically by solving a set of

three self-consistent equations for the excitatory and inhibitory mean rates as well
as for the mean excitatory-to-excitatory (E→E) synaptic efficacy (see Section 3.2.8).
Two of these equations give the stationary firing rates of excitatory and inhibitory
populations (Eqs. (3.29)-(3.30)), as a function of the mean E→E synaptic efficacy
(Amit and Brunel 1997b; Brunel 2000). The third equation gives the mean E→E
synaptic efficacy as a function of the firing rate of the excitatory population, assum-
ing Poisson firing statistics of neurons (Eq. (3.15)). Starting from the analytically
determined initial conditions, the recurrent network converges to a steady-state of
constant average firing rates of all neurons in the network, and constant average
synaptic efficacy of the plastic connections. Figure 3.7,A shows how the firing rates
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observed in the simulations compare with the analytically predicted firing rates. It
shows that at sufficiently low rates, the analytical prediction gives a very good es-
timate of the observed rates; however, for rates above 3Hz the observed rates are
significantly lower than the analytical prediction. Likewise, the analytical prediction
for the mean E→E synaptic efficacy significantly overestimates the observed efficacies
(green dots in 3.7,B).

What is the source of the difference between theory and simulations in predicting
the steady network state? When synapses are fixed in the network at the efficacies
predicted by the corresponding firing rate, the analytically predicted network firing
rates provide a good approximation of the observed activity (blue dots in 3.7,A).
This suggests that the underestimation of firing rates and synaptic efficacy emerges
from the mapping of firing rates onto synaptic efficacy. Indeed, the average synap-
tic efficacies are smaller when spikes are generated from independent LIF neurons,
compared to Poisson processes (3.7,C, compare magenta dots and blue line). Fur-
thermore, independent LIF neurons firing with the same input statistics as neurons
in the LIF network generated the same average final synaptic weight as observed
in the LIF network (compare red and green dots in Fig. 3.7,C). Thus, differences
between simulations and theory are due to the different spiking statistics of the LIF
model compared to a Poisson process, and not due to correlations that are present
in the network.

To investigate further how the spiking statistics of the LIF model and in particu-
lar the interspike-interval (ISI) distribution causes the differences seen in Fig. 3.7, we
varied the ISI distribution of the LIF neuron by changing the reset potential (Vreset,
see Section 3.2.6). This change had a strong effect on the average synaptic efficacy
(3.7,D). A reset potential close to threshold (Vreset = −55 mV, Vthreshold = −50 mV)
yields an overrepresentation of short ISI compared to Poisson firing (3.7,D, inset)
and in turn overestimates the average synaptic efficacy (3.7,D; cyan dots). Con-
versely, more depolarised reset potentials lead to an under-representation of short
ISIs with regard to Poisson firing and consequently to an underestimation of the av-
erage synaptic efficacy (3.7,D; magenta, red and green dots). We use an intermediate
value of Vreset = −60 mV in the following network investigations.

To conclude this section, the calcium-based synaptic plasticity rule does not affect
the stability of the asynchronous irregular state in a large recurrent network of LIF
neurons (see Fig. 3.4). Since LIF neurons in the network exhibit ISI distributions
which deviate from those of Poisson neurons, the accuracy of our calculation of the
average synaptic efficacy which is based on Poisson firing decreases with increasing
firing rates up to a certain point. At high firing rate, calcium remains above the plas-
ticity thresholds most of the time and the fraction of time spent above the thresholds
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converges to one, irrespective of the underlying neuron model.

3.3.4 Memory decay in a recurrent network of LIF neurons

We now examine the decay of a memory trace in a network for the in vitro and the in
vivo parameter set. We initialise all excitatory-to-excitatory synaptic weights at their
theoretically predicted asymptotic weights, except for a randomly selected subset of
5% which are set to a weight of 1. With the in vitro parameter set, the potentiated
synapses decay relatively quickly to their asymptotic value (Fig. 3.8,B). The time
course of the average decay can be described by a single exponential function and
the decay time constant is well approximated by the time constant, τeff, of synaptic
decay from the truncated OU process (see Eq. (3.16); Fig. 3.8,C). This means that
the average dynamics of synaptic decay in the network is equivalent to synapses
driven by independent pre- and postsynaptic Poisson neurons firing at the same rate
as the excitatory neurons in the network (compare to Fig. 3.5,B). The addition of
the double-well potential does not change the decay time constant for the in vitro
parameter set, as for a single synapse driven by independent pre- and postsynaptic
Poisson firing (Fig. 3.8,C orange stars; compare with Fig. 3.6,B). The lack of short
ISIs in LIFs compared to independent Poisson neurons leads to a small increase in
observed decay times in the network as compared with the OU theory. This can
be seen in Fig. 3.8,C where the simulation points all lie slightly to the right of the
theory line, this is a stable reproducible effect for different random seeds and hence
network conditions.

In contrast, when using the in vivo parameter set with the double-well potential,
we observe that the potentiated synapses get locked in the UP state for the duration
of the network simulation with an excitatory neuron firing rate of 1/s (Fig. 3.9,B).
None of the synapses in the potentiated subset crosses the unstable fixed point and
converges to the DOWN state during a network simulation of 120 min, neither does
the reverse transition occur. We expect that the escape from the UP state will be
predicted by Kramers escape rate (Eq. (3.21)) which correctly accounted for escape
dynamics of an isolated synapes driven by independent pre- and postsynaptic Poisson
processes (Fig. 3.6,B). There, the decay time constant for a firing rate of 1/s is on
the order of a month, a time scale that cannot be reached by our network simulation.

Hence, as in case of independent Poisson neurons, the combination of a double-
well potential with the in vivo parameter set leads to several orders of magnitude
longer memory time constants, compared to the in vitro parameter set and a flat
potential.
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Figure 3.8. Memory decay for a subset of potentiated synapses in a
recurrent network with the in vitro parameter set. (A) Temporal evolution
of the average excitatory (red) and inhibitory (blue) firing rate. A network of
10,000 LIF neurons is initialised at the theoretically predicted steady-state and
simulated for 20 min real time. (B) Temporal dynamics of synaptic efficacies in the
network. The majority of synapses are initialised to the theoretically predicted
asymptotic synaptic efficacy (mean: magenta; single synapse example: dark gray).
A randomly selected subset of 5% are set to 1 at the beginning of the simulation
(mean: green; single synapse example: light gray). (C) The exponential decay time
constant of the potentiated synapses. The value obtained from fitting a single
exponential to the mean decay (green dots) is well approximated by the
analytically calculated decay time constant from the OU process (Eq. (3.16)).
Introduction of a double-well potential does not modify the memory time constant
for the in vitro parameter set (orange stars). The slight deviation of the decay time
constants with respect to the OU theory, that is, the network decay time constants
are slower, are due to the LIF firing statistics as can be seen from the comparison
with independent LIF neurons (magenta dots).

3.3.5 Memory induction in a recurrent network of LIF neu-
rons

Finally, we present an example of memory induction in a recurrent network. We
initialise the network using the in vitro synaptic parameter set (Tab. 3.1) with a
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Figure 3.9. Memory decay for a subset of potentiated synapses in a
recurrent network with the in vivo parameter set and double-well
potential. (A) Temporal evolution of the average excitatory (red) and inhibitory
(blue) firing rate. A network of 10,000 LIF neurons is initialised at the theoretically
predicted steady-state and simulated for 120 min real time. (B) Temporal
dynamics of synaptic efficacies in the network. The average dynamics of the 95%
initialised in the DOWN state (blue) and the 5% initialised in the UP state (red) is
shown. The shaded grey region represents the range of values visited by synapses in
the UP and in the DOWN state populations, indicating that no transition occurs.

mean excitatory firing rate of 1/sec (Fig. 3.10,B). The simulation is allowed to pro-
ceed for 200 secs, during which time the excitatory synapses are allowed to evolve
dynamically following the synaptic efficacy rule (Eq. (3.1)) with a flat potential. A
subset of 100 excitatory neurons are then selectively stimulated such that they fire at
approx. 50/sec for 3 seconds (Fig. 3.10,A). This leads to a strong potentiation in the
synapses joining the stimulated neurons (Fig. 3.10,C, magenta) but no change in the
synapses not directly connected to stimulated neurons (Fig. 3.10,C, cyan). Following
potentiation the directly stimulated synapses decay exponentially back to their 1/sec
stationary values, following the time scale predicted for the in vitro parameter set
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Figure 3.10. Memory induction for a subset of synapses in a recurrent
network with the in vitro parameter set. A network of 10,000 LIF neurons is
initialised at the theoretically predicted steady-state and simulated for 20 min real
time. (A) Temporal evolution of the average firing rate for a randomly selected
population of 100 excitatory neurons (STIM pop, blue). These neurons receive a
3-sec increase in external stimulation after 200 secs, leading to a burst of
approx. 50/sec activity. (B) Temporal evolution of the average firing rate of
excitatory neurons (excluding the STIM pop., red) and inhibitory neurons (green).
(C) Temporal evolution of mean synaptic efficacies for synapses, incorporating the
flat potential, which have no connection with the high frequency stimulation
population (cyan) and synapses which receive both pre- and postsynaptic
stimulation from the high frequency stimulation population (magenta). Stimulation
at 50/sec increases mean synaptic efficacy to ρ̄(50) before a return to 1/sec
background firing leads to an exponential decay to the 1/sec stationary efficacy
with a time scale as predicted for the in vitro parameter set.

and previously demonstrated in Section 3.3.4.

In fact, the burst stimulation response can be predicted by the tendency of an
Ornstein-Uhlenbeck process to respond with an exponential trend towards a new
stationary value. In Fig. 3.11 (blue lines) we show the impulse response to a 3
second burst of the in vitro rule with initial values ρ ∈ {0, 0.1, . . . , 1} for a range of
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frequencies. At the 50/sec pre- and postsynaptic stimulation used in Fig. 3.10 we
clearly expect the tendency to converge towards approx. ρ̄ = 0.7. The time scale of
this response is predicted by the time scales in Figs. 3.5,C & 3.6,B. In future work
it will be possible to use this impulse response analysis to predict the changes in
synaptic weights to a series of repeated, shorter duration bursts at lower frequencies
operating on multiple sub-populations of neurons.
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Figure 3.11. Impulse response to a 3 sec high frequency stimulus. Mean
synaptic response for an initial value ρ ∈ {0, 0.1, . . . , 1} to a burst of length 3
seconds for frequencies from 1 to 50/sec pre- and postsynaptic rates (blue lines).
The average synaptic response assuming a uniform prior distibution of synaptic
efficacies (yellow line). Truncated Ornstein-Uhlenbeck predicted stationary
synaptic efficacy, ρ̄, at each frequency for the in vitro parameter set (black line). At
low frequencies the response curves show little deflection, whereas at high
frequencies stimulation leads to a decrease in the effective time constant and
consequent convergence to the long run synaptic efficacy.

3.4 Discussion

In this chapter, following development of our theoretical and numerical tools, we have
focused our study on the stability of synaptic efficacy, in a plastic synapse subjected
to background activity of pre- and postsynaptic neurons. We used a calcium-based
plasticity model that has been shown to fit experimental data in hippocampal and
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neocortical preparations (Graupner and Brunel 2012). The model was investigated
numerically, using an event-based implementation of the plasticity rule, as well as
analytically, using a diffusion approximation. Thanks to this formalism, we derived
scaling laws that describe how memory time scale is related to the firing rates of
pre- and postsynaptic neurons. At low firing rates, we find that, when synapses are
monostable, synaptic efficacies decay to an equilibrium value with a time scale that
depends on the firing rates as a power law, τeff ∼ 1/νk, where k is the number of
simultaneous spikes needed to cross the depression threshold. When synapses are
bistable, memory decay is akin to diffusion of a particle out of a potential well,
which leads to much stabler memories, with time scales that increase exponentially
with the inverse of the firing rates, τeff ∼ exp(a/ν), at low rates. We showed that
these estimates accurately reproduce the results of simulations, both of a synapse
connecting two isolated independent Poisson neurons, and of a large network of LIF
neurons.

Previous studies have investigated memory maintenance in networks of neurons
connected by synapses endowed with standard spike-timing dependent plasticity rules
(Billings and Van Rossum 2009). Billings and Van Rossum (2009) demonstrated
that the memory time scale depends dramatically on whether the rule is additive
or multiplicative. In a multiplicative STDP rule, in which synaptic change depends
on the current value of the weight such that synaptic changes decrease when the
weights approach the bounds, distributions of weights are unimodal (Billings and
Van Rossum 2009; Rubin et al. 2001; Van Rossum et al. 2000) and the memory of
synaptic changes decay as 1/ν2, since synaptic changes occur upon coincidence of
pre- and postsynaptic spikes in the characteristic time window of the STDP rule.
These behaviours are very similar to the behaviour of the calcium-based rule in the
flat potential case, in the parameter region in which two spikes are needed to cross
the depression threshold. This is due to the fact that the calcium-based rule defined
by Eq. (3.1) is multiplicative. In the calcium-based rule however, the exponent de-
scribing the memory decay at low rates can be set to an arbitrary integer number,
through an appropriate rescaling of the ratio between the amplitude of the calcium
transients and the depression threshold. In additive STDP rules, the picture changes
dramatically and the synaptic weight distributions become bimodal, with weights at-
tracted either to the lower or upper bounds through a symmetry breaking mechanism
(Billings and Van Rossum 2009; Song et al. 2000). In this situation, the memory
time scales are much longer, and decay of synapses is similar to diffusion in a double
well potential.

Several studies have shown that synaptic bi- or multi-stability can emerge from a
number of mechanisms such as positive feedback loops in extensive protein signaling
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cascades (Bhalla and Iyengar 1999), autophosphorylation of CaMKII (Castellani et
al. 2009; Delord et al. 2007; Hayer and Bhalla 2005; Pi and Lisman 2008; Zhabotinsky
2000), self-sustained regulation of translation (Aslam et al. 2009), or modulation of
receptor trafficking rates (Shouval 2005). Such mechanims of bistablity are effectively
implemented here in the form of the double well potential. Miller et al. (2005) studied
the stability of the up state in a model of the bistable calcium/calmodulin-dependent
protein kinase II system with respect to stochastic fluctuations induced by protein
turnover (Miller et al. 2005). They show that the CaMKII switch composed of
a realistic number of CaMKII proteins is stable for years even in the presence of
protein turnover, phosphatase as well as free calcium fluctuations. The transitions
induced by background activity investigated here impose an upper limit on memory
life-time which is typically lower, indicating that in vivo neuronal activity, not protein
turnover, will be the limiting factor of memory life-times.

Distributions of synaptic weights have been examined in a number of studies
(Barbour et al. 2007; Holmgren et al. 2003; Loewenstein et al. 2011; Markram et al.
1997; Sjöström et al. 2001; Song et al. 2005). In all of these studies, distributions of
synaptic weights appear unimodal and skewed, and peak at a low weight. In some
cases, the distribution has been shown to be well fitted by a lognormal distribution
(Loewenstein et al. 2011; Song et al. 2005). This seems at first sight at odds with
the distributions of weights shown in the present paper, which are either a truncated
Gaussian in the flat potential case, lacking the fatter tail of the lognormal distribu-
tion, or bimodal in the double-well case. However, the model in the flat potential
case can be made consistent with the data, by choosing synaptic efficacy variables
which are an exponential of the ρ variable, rather than being linearly related to ρ. In
this case, synaptic efficacies themselves become exponentiated Ornstein-Uhlenbeck
processes, consistent with Loewenstein et al. (2011). The model with a double-well
potential could also be made consistent with a unimodal distribution, provided the
synaptic up and down states are highly heterogeneous from synapse to synapse.
Finally, we should point out that the distributions we observe are asymptotic dis-
tributions under a statistically constant distribution of inputs. Synapses in vivo are
typically subjected to highly non-stationary firing rates of pre and post synaptic
neurons. These non-stationarities can also potentially strongly affect distributions
of synaptic weights in our model.

A large number of distinct learning rules that capture quantitatively both spike-
timing and firing rate effects have been proposed recently (Albers et al. 2013; Clopath
et al. 2010; El Boustani et al. 2012; Graupner and Brunel 2012; Kumar and Mehta
2011; Pfister and Gerstner 2006; Yger and Harris 2013). Our rule can be distinguished
from most of those rules by the fact that it includes calcium concentration as its
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primary dynamic variable, which allows us to extrapolate parameters of the rule
from in vitro to in vivo conditions, as we have explained here. Scaling laws derived
here can be expected to hold also in those models: at low rates, the time scales
of memory decay are expected to be inversely proportional to the rates to a power
equal to the number of spikes needed to provoke plasticity. This power should be
equal to 2 for standard STDP rules, triplet rules (Pfister and Gerstner 2006), and
calcium-based rules in which 2 spikes are needed to cross the depression threshold
(Kumar and Mehta 2011; Shouval et al. 2002); 1 for spike and voltage based rules
(Clopath et al. 2010).

In this work, we have made the hypothesis that synaptic weights are altered
during background activity, and that one can treat background activity as being es-
sentially uncorrelated with the synaptic connectivity structure. Memory time scales
could in principle be further extended by two factors. A first mechanism would be
to gate plasticity by specific neuromodulator(s) that are present only during stimu-
lus presentation. This idea is consistent with a growing body of experimental data
showing how plasticity is modulated by dopamine (Zhang et al. 2009), acetylcholine
(Couey et al. 2007; Seol et al. 2007), noradrenaline (Lin et al. 2003) (see also Pawlak
et al. (2010) and references therein). However, we note that the model we have used
here is built from in vitro plasticity data where these neuromodulators were present
at very low concentrations, if at all. Hence, we believe that these neuromodulators
are likely to enhance plasticity during behaviourally relevant epochs, but that the
memory time scales discussed here are likely not to be affected if neuromodulators
are not present at high levels during background activity.

A second mechanism that would extend memory time scales would be a scenario
in which background activity is in fact strongly correlated with the connectivity struc-
ture, and wanders stochastically between network states that are strongly correlated
with the states of the network during stimuli presentation. This idea is consistent
with a growing experimental literature (Kenet et al. 2003; Luczak et al. 2009; Tsodyks
et al. 1999) showing how spontaneous activity is transiently strongly correlated with
sensory responses in visual and auditory cortices, and it is also consistent with the
ubiquitous supra-Poissonian variability, potentially due to the doubly-stochastic pro-
cess of combined rate stochasticity and individual neuronal Poisson spike processes,
seen in background activity in cortex (Churchland et al. 2010; Litwin-Kumar and
Doiron 2012). Recurrence of activity states resembling the network activity during
stimulus presentation could refresh existing memory traces and therefore prolong
their lifetimes.

We showed here that the low extracellular calcium concentrations in vivo could
have a strong impact on plasticity. A first prediction of calcium-based rules is that
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plasticity seen in standard protocols should be greatly reduced (and even possibly
vanish altogether) at physiological calcium concentrations. A second prediction is
that induced synaptic changes should be much more stable in the face of ongoing
pre- and postsynaptic activity. These results emphasise the need for experimental
studies at physiological calcium concentrations ∼ 1.5mM (Silver and Erecińska 1990),
unlike most published studies that used concentrations in the range 2 − 3mM. Our
predictions could be easily tested in slice experiments, by providing background
activity at a specified rate after the plasticity-inducing protocol. Our model would
predict that in cortical slices, at 2.5mM calcium, induced synaptic changes should
disappear on a time scale of minutes, while at 1.5mM calcium, they should be stable
on a time scale of ∼ 1 hour.

We provided here an event-based update scheme of plastic synapses which greatly
accelerates simulations and should strongly facilitate future studies of the dynamics
of recurrent networks with plastic calcium-based synapses. On the theoretical front,
it would be interesting to extend the theory to non-Poissonian renewal processes
(Takacs 1956) such as for leaky integrate-and-fire neurons used here, which would
give a better approximation of average synaptic efficacies, especially at higher firing
rates. It would also be of great interest to extend our initial work on the induction of
memory states to examine how synaptic connectivity is modulated by non-stationary
external inputs, particularly its response to patterned bursts of high-frequency ac-
tivity, and how such changes in connectivity affect in turn the intrinsic dynamics of
the network.

Our investigations show that realistic external calcium concentration and multi-
stability of synapses might stabilise memory traces against the potentially deleteri-
ous effect of ongoing background activity. These results call for studies of synaptic
plasticity induction and maintenance in more realistic conditions and ideally in the
intact animal. They provide a glimpse of how plasticity results obtained in vitro
might translate to the living organism.
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CHAPTER 4
Conclusion

In this thesis we have developed and analysed two models of synaptic plasticity
which outwardly exhibit similarities in their formulation, but which will eventually
be useful in very different contexts and to very different ends. The model of cerebellar
plasticity is a huge step forward in potentially explaining the synaptic plasticity
rule for this particular synapse. Previous explanations of cerebellar plasticity have
focused on the perceptron learning rule (Albus 1971; Marr 1969) deriving predictions
for the distribution of synaptic weights and memory capacity (Brunel et al. 2004;
Clopath and Brunel 2013). This approach has worked well so far and has provided
a potential explanation for the presence of a large number of silent synapses at
this synaptic connection. Using our model, it is now possible to move beyond this
formulation to a precise spike based approach. Indeed, recent work has shown that
the complex spike in the Purkinje cell, rather than being all-or-none, as assumed
in the perceptron model, has a graded duration and influence on synaptic plasticity
(Yang and Lisberger 2014). Our model already implements a mechanism for variable
duration calcium spikes via the depolarisation protocol part of the model allowing for
easy extension to this situation once data becomes available. As our model relies on
individual spikes to implement the plasticity rule it will allow us to explore the precise
patterns of activity likely to be present in the cerebellar cortex and their implications
for learning both at the single cell level and their influence on the output from the
cerebellar cortex.

The neocortical model of synaptic plasticity (Graupner and Brunel 2012) for
which we provide tools and analysis will serve a very different role. Many models
already provide predictions of the associative learning rule typically found in neocor-
tical synapses. However here we provide tools which allow us to link model features,
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such as bistability and calcium influx level, back to practical questions of memory
time scale and experimental conditions. This allows us, on the one hand, to explain
how the experimentally demonstrated phenomenon of synaptic plasticity can lead to
stable memories in the neocortex and, on the other, to extend the study of synaptic
plasticity into large-scale networks with predictable responses to correlated external
stimuli.

4.1 Cerebellar plasticity model

The cerebellar plasticity model developed in Chapter 2 was biologically inspired and
phenomenological. It takes as inputs the pre- and postsynaptic spiking or depolar-
isation activity. This activity is translated into changes in internal variables based
on calcium and NO pathway cascades. By combining the activation level of these
cascades with a plasticity threshold we were able to reproduce both burst length
and frequency dependent experimental results. By further introduction of a LTP-
LTD threshold on the calcium pathway variable we reproduced the clear calcium
dependence of the sign of plasticity. For low calcium concentration we saw LTP,
whereas for high postsynaptic calcium concentration LTD occured. Finally, a delay
on the presynaptic inputs allows the model to easily fit an optimal delay for LTD
and postsynaptic calcium influx seen in experiments.

We furthermore produced two alternative versions of the model, one involving
the basic mechanics of purported parallel fibre production of NO via presynaptic
NMDAR activation level, the other a more simplified linear model of NO produc-
tion. Each model was initially fitted by hand, and later using numerical optimisation
procedures, to a coherent set of experiments produced under comparable conditions
by diverse groups (Bidoret et al. 2009; Safo and Regehr 2008, ‘in house’ collabora-
tors). Both models fitted the data excellently. It should be stressed that the model
parameters were actually highly constrained by the interactions of the parameters
within the models with the experimental plasticity induction protocols. For example,
an increase in one time constant would necessitate a decrease in the related influx
parameter value (and vice-versa) but this would have significant effects on the tails
of the frequency dependent protocols.

The question of which model is better is an interesting one. On all of our mea-
sures, χ2, AIC and BIC, we find that the NMDAR-based model better explains
the data. Combined with experimental results from our colleagues (under submis-
sion) which demonstrate not only the presence of presynaptic NMDA receptors on
the parallel fibre to Purkinje cell synapse but also the influx of calcium at these
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receptors (suggesting that they are functional) the model of presynaptic NMDAR-
based production of NO appears compelling. However, our models both look at the
downstream effects of calcium and NO production jumping over the intermediate
mechanisms. There may in fact be other sources of NO, which are equally influ-
enced by presynaptic activity. A glutamate spillover model of NO production (Shin
and Linden 2005) could potentially be modelled by our NMDAR-based model, as the
method of production will be broadly similar. In such a case, however, the NO would
be expected to have to diffuse further and would thus no longer be synapse specific.
It would be particularly interesting to fit our model of NMDAR activation and NO
production to imaging experiments which could determine the precise degree of NO
production upon repeated spiking at a given frequency.

The utility of our cerebellar plasticity model is multi-fold. First and foremost
we wanted to bring some order to an experimental field in which different groups
disagreed fundamentally on even the most basic protocols for synaptic plasticity. We
incorporated three aspects which are not under dispute, (i) high postsynaptic calcium
leads to LTD, more moderate calcium probably leads to LTP (Coesmans et al. 2004),
(ii) NO is involved in both LTP and LTD (Lev-Ram et al. 1995, 2002), (iii) there
is an optimal delay following parallel fibre activity before postsynaptic activity can
drive LTD (Chen and Thompson 1995). These ideas are not in dispute but the actual
stimulation protocols which lead to them are. We found that, at least on our rela-
tively simple model dynamics, we could not reconcile protocols which claimed only a
single parallel fibre stimulus was required for LTP versus protocols which required a
high-frequency burst of 5 stimuli. The solution to this problem is most likely a com-
bination of experimental factors such as, stimulation distance (Marcaggi and Attwell
2007) and strength (Hartell 1996) and indeed experimental operating temperature
(32◦C was typical for the burst results vs 22◦C for the single pulse experiments).
Our models can clearly also fit these protocols, which require only a single stimulus
to achieve synaptic change, but would require refitting of the parameters. Also, our
NMDAR-based model would be more difficult to reconcile with this context. Initially
it might seem that no NO would be produced, as the NMDAR would be activated by
the first spike but there would be no follow-up spike to induce presynaptic calcium
influx. However, in the case of low experimental temperature this would completely
change the dynamics of NMDAR deactivation, vastly prolonging the activation state.
In the cases of strong or proximal stimulation we can imagine a greater release of
glutamate from neighbouring synapses and a general activation of NMDA receptors
leading to greater possibilites for NO production. This would explain the process of
NO production but would add little to our understanding of synaptic plasticity for
this synapse.
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Being able to explain how different experimental contexts might change the model
parameters is an important first step to reconciling the experimental results. In
addition, for the experimental paradigm for which we have fitted the models we can
now make predictions of the outcomes of specific experimental stimulation protocols.
This is an extremely attractive result for experimentalists, although we would advise
some caution until we know better how well each of the parameters are constrained
by the existing fit. Due to the simple dynamics of both models we see a great utility
in simulation and analytical studies of cerebellar learning on the scale of both the
influence of multiple synaptic inputs onto a single Purkinje cell and also from a group
of parallel fibres which contact multiple Purkinje cells. Both of these paradigms are
experimentally tractable so predictions could be made either for the distribution of
synaptic efficacies or the change in parallel fibre activity for a set of inputs, which
could then be compared with experiments. This might allow for a huge leap forward
in the theory of cerebellar learning, which would advance us beyond the perceptron
model to a new theory of cerebellar function and dynamics. This approach would
also be less susceptible to minor limitations in the current parameter fit than the
predictions for the outcomes of precise stimulation protocols.

4.2 Hippocampal and neocortical plasticity model

The synaptic plasticity model of Graupner and Brunel (2012), analysed in Chapter
3, comprises two large advantages over alternative models, which make it particu-
larly attractive for our use in developing a theory of recurrent cortical activity and
synaptic plasticity. The first is that it is an analytically tractable model. Through
our modelling of the average calcium activity of the model using shot noise processes
we have been able to develop a theory of mean synaptic behaviour under any Poisson
activity. The second advantage is that it is based on biological processes, thus we can
directly relate our theoretical results to experimental conditions and we can make
predictions of the impact of altering conditions such as extracellular calcium con-
centration (predictions of other manipulations such as blocking of NMDA receptors
appear in Graupner and Brunel (2012)).

Much of our work in analysing the Graupner and Brunel (2012) model was in the
development of analytical tools and the comparison of their predictions with large-
scale simulations. We adapted a shot noise theory to predict the amount of time the
calcium concentration would spend above the threshold of plasticity in the model for a
given pair of pre- and postsynaptic Poisson processes. We then adapted the Ornstein-
Uhlenbeck approximation of the model, first posited in (Graupner and Brunel 2012),
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by incorporating a necessary truncation of the process at the bounds of synaptic
efficacy. This proved to be a necessary adaptation without which our prediction of
mean synaptic efficacy contained large errors. We then examined the tendency of
the model to trend exponentially towards its mean value with a given time scale,
under Poisson pre- and postsynaptic firing. This was a theoretical implication of the
Ornstein-Uhlenbeck approximation which proved to be correct.

When we incorporated a double-well potential into the model we found that,
at high frequency, it had little detectable effect on either the stationary synaptic
efficacy or the time constant of decay towards the stationary efficacy. However, at
low frequencies, the double-well creates a separation of synaptic efficacies between an
UP state and a DOWN state. These two states create a massive separation in time
scales of decay to the lower stationary value, from an approximately 1/ν process in
the absence of a double-well, where ν is the firing rate, to an approximately exp(1/ν)
process in the presence of the double-well. We developed a theory based on Kramers
formula (Kramers 1940), which involved the incorporation of the double-well into
the Fokker-Planck equation, to accurately predict this longer time scale.

After developing our analytical tools we applied them to the problem of mem-
ory stability under ongoing background cortical activity. Initially, using independent
Poisson processes, we showed that memory time scales in a flat potential can be
greatly enhanced by the lowering of extracellular calcium concentration from that
seen in vitro to typical in vivo levels. The addition of a double-well potential to the
in vivo conditions increased the memory time scale by several orders of magnitude.
We then moved on to the, more typically used in simulation studies, LIF neuron
and tested it in three separate situations. The simplest situation was independent
LIF neurons, in which both pre- and postsynaptic processes are driven by imple-
mentations of LIF neurons which have independently noisy external drives which
cause them to fire at a give frequency. In this case we did not allow the presynaptic
spiking process to drive the postsynaptic neuron, hence the name independent LIF.
This allowed us to examine the use of LIF neurons without the influence of correla-
tions. LIF neurons differ from Poisson processes, if reset to a reset potential lower
than the mean synaptic inputs they have an effective refractory period during which
they are highly unlikely to spike as their membrane voltages are charging back up
to their mean voltage value. If reset to a higher reset potential we rather increase
the likelihood of a spike in the interval immediately following reset. This divergence
from Poisson behaviour has an effect on the plasticity rule in our simulations, greatly
reducing the likelihood of a short time scale double spike by any neuron, but happily
this is more of an issue at higher frequencies, at frequencies around 1/sec the effects
are relatively negligible.
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Our next step was to establish stability of the synaptic plasticity rule in a re-
current network of LIF neurons. This proved relatively easy to achieve due to our
analytical tools. Many groups have struggled to maintain stable network behaviour
upon incorporation of a synaptic plasticity rule, the problem being that an increased
firing rate typically leads to LTP which in turn leads to a further elevated firing rate
in a run away process (LTD and decreased firing rate lead to a similar problem in the
opposite direction). Strategies have been used which involve placing the network in
a condition such that LTP induced by Hebbian ordered spikes is less than the LTD
induced by anti-Hebbian ordered spikes (Song et al. 2000; Zenke et al. 2013). As
seen in our examples, even increasing the synaptic efficacies of 5% of the synapses
in our network to their maximal values does not lead to a run-away process. This is
in part because of the nonlinearity imposed by the calcium thresholds on plasticity,
which ensures stability at low firing rates, and also partly because of the inhibition
dominating regime of our network, all of which we were able to analytically predict
before running our simulations.

As a control, we implemented a fixed synaptic strengths network and simulated
the effects of the activity seen in this network on a ‘shadow’ set of synapses. This
allowed us to disentangle the feedback effects of the changes in synaptic efficacy on the
network, which subsequently effect further changes in synaptic efficacy, from typical
network spiking behaviour’s impact on synaptic plasticity. Perhaps surprisingly, we
found that correlations in the network have no visible impact on mean synaptic
efficacies. Instead the independent LIF simulations, the networked LIF simulations
and the results from the shadow neurons based on a fixed network architecture were
indistinguishable in their effects on the synaptic plasticity rule. This particular
approach will be very useful in future studies when we will look at clustering in
a network, allowing us to disentangle network spiking effects from actual plasticity
effects.

Having established the stability of our recurrent network simulations we extended
our analysis of memory decay time scales to this context. Similarly to the case of
independent Poisson processes we found that we could use our theory to predict the
exponential decay of mean synaptic efficacy for a population of synapses towards a
stationary value. As with the independent case, we found that the decay time scale
is directly dependent on the parameter set used, being much longer for the in vivo
calcium concentrations than for the in vitro case. This was easily demonstrable for
the in vitro case, where we were able to simulate the full cycle of memory decay
to baseline with both a flat and double-well potential. In the in vivo case time
scale predictions were much longer. At high frequencies the flat potential predictions
were matched by the theory. We attempted in vivo flat potential simulations at low
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frequencies, but while we did observe decay over time we were not able to simulate
for long enough to accurately calculate a decay time constant. In any case, it was
extremely long and clearly of the order predicted by the theory. Instead we chose
to demonstrate memory maintenance in the in vivo double-well potential. There we
saw that, to the limits of our ability to simulate, synapses which begin life in the
UP state appear to behave as potential-locked noisy escape processes. That is they
remain in the UP state for exceedingly long periods but will eventually get driven
out of this state by noise. The time scale of this escape process while long is probably
still the limiting factor of such memories, rather than the process of protein turnover
modelled in (Miller et al. 2005).

Finally, we demonstrated a potential method of memory induction via high-
frequency stimulation. At elevated firing rates the time scale of convergence of the
Ornstein-Uhlenbeck process becomes much smaller, meaning that even a brief period
of bursting may lead to potentiation of a synapse. If we combine this with a double-
well potential and the in vivo parameter set we can quickly see how a memory can
switch from a DOWN to an UP upon the occurrence of just one or two bursts of
perhaps 500ms in length. In the case of the in vitro parameter set such a memory
subsequently decays at the theoretically predicted rate of decay. It has not thus far
been possible to perform sufficiently long simulations to thoroughly examine the in
vivo case but our theoretical studies already give us strong predictions. First and
foremost, we can expect long term maintenance of the memory. But there are also
clustering effects which will lead to, at least temporarily, elevated firing rates in the
cluster population (on the order of 2/sec in our tests), leading to subsequent decay of
some of the potentiated synapses before the firing rate returns to a frequency in the
bistable region of synaptic stability. This is a process which deserves much further
study, in particular to determine whether it is an epiphenomenon or whether it in
fact describes actual memory processes in the brain.

4.3 Outlook

The two models studied in this work occur in very different systems in the brain.
Cerebellar plasticity is most closely associated with behavioural studies, including
changes in VOR and skin based receptive fields. Neocortical plasticity is more typi-
cally associated with abstract processing, the most experimentally accessible of which
being in the visual cortex and the decision making frontal cortex. Both models con-
tain a lot of similarities. Indeed they both have a calcium dependence and both use
thresholds on their internal variables in order to enforce a nonlinearity on synaptic
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change. This can clearly be mapped to concentrations required in order to trigger
postsynaptic cascades. In the case of the Graupner and Brunel (2012) model this
leads to direct predictions of the results of manipulations of experimental conditions.
For the cerebellar plasticity model the coupling of NO production to extracellular
magnesium and calcium concentrations is less well understood so similar predictions
are likely to contain a larger degree of error. A further commonality between the two
models is their applicability to network predictions. In the case of the Graupner and
Brunel (2012) model this means the neocortex while for our cerebellar model we can
use it to predict input-output relationships in the cerebellar cortex. An important
question in studying synaptic efficacy is how does learning occur? In the cerebellar
model LTP occurs as a result of presynaptic bursts whereas LTD occurs when a co-
incident climbing fibre induced calcium spike ocurs. Meanwhile in the Graupner and
Brunel model, at low frequencies the coincidence of pre- post- spikes is important,
whereas at higher frequencies plasticity outcomes are dominated by the frequency.

Our cerebellar plasticity model accurately resolves the rule for synaptic plasticity
in the parallel fibre to Purkinje cell synapse for a homogenous set of experiments. It
would be interesting now to extend the model fit to experiments performed under
in vivo concentrations of extracellular calcium and magnesium. In the Purkinje
cell there are multiple sources of postsynaptic calcium. These include both voltage-
dependent calcium channels (VDCCs) and internal calcium stores, activated by IP3.
These calcium sources also likely operate on different microdomains. It is presently
unclear whether the joint contribution of these microdomains to the downstream
C variable in our model is a linear combination from each domain or rather the
result of saturation effects from particular plasticity protocols. Therefore, while it
is clear that the reduction of extracellular calcium concentrations to in vivo levels
will lead to reduced calcium influx via VDCCs, it is not clear whether this reduction
will be linear nor what the effects on intracellular stores will be. Finally, the effects
of this reduction in calcium concentration, and indeed of an altered magnesium
environment, on the induction of presynaptic NO production via NMDAR based
calcium influx is completely unknown. Limited experiments to date have shown that
simply reducing the calcium influx value in the model allows us to determine the
correct sign of plasticity in this case, but not the magnitude.

Even without discovering the model parameters for the in vivo experimental
condition, it would be interesting to use the model to explore the effects of different
patterned inputs on synaptic plasticity and hence on the postsynaptic cell. Indeed
even more interesting would be to move straight to simulating the network level,
where we could attempt to implement an adaptive controller using a spiking network
model of the cerebellum, including spike-timing based synaptic plasticity. Previous
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work on this front has used a simple perceptron based learning rule (Luque et al.
2011). It would be of particular interest now to attempt to implement a more
biologically accurate scheme. This would likely give rise to a whole new set of
questions about how other aspects of the cerebellum work.

Now that we have a set of analytical tools for the Graupner and Brunel (2012)
plasticity rule, what can we do with them? We have developed a suite of analytical
tools and clearly demonstrated their applicability to this synaptic plasticity rule, in-
deed we have used them to make predictions for how long memories might last in the
presence of ongoing pre- and postsynaptic activity. These predictions are within the
realm of experimental testability. But are there other tasks to which we can now turn
our attention? In fact, this is just a beginning. We have already developed mean-field
firing rate equations for more than one excitatory population allowing us to predict
the impact on firing rate of target stimulation of a sub-population of neurons. We
have further coupled these equations to the synaptic plasticity equations. This will
allow us to predict the network response to a transiently increased selective input.
Any such input will increase the firing rate for a subset of neurons, which should
increase the internal network connection strengths within that population. Changed
dynamics of clustered networks have previously been reported (Litwin-Kumar and
Doiron 2012). To be discovered is whether this will lead to (i) enhancement of work-
ing memory states, (ii) learning, leading to faster recall when presented with a similar
test stimulus, (iii) synfire chains, triggering overlapping populations into a spatial
wave of enhanced firing rates. As the model is not only biologically inspired but
actually fitted to electrophysiological experiments this makes it the ideal candidate
for relating these macro phenomena back to underlying mechanisms.

In summary, we have contributed a new model of synaptic plasticity of the par-
allel fibre to Purkinje cell synapse to the literature. We have also provided a suite
of analytical and numerical tools for an already existing model of neocortical and
hippocampal synaptic plasticity. Both approaches have the benefits of being fun-
damentally derived from biophysical bases while scaling extremely well to allow for
larger scale studies to be performed. We are now well placed to use both of these
approaches to explore the dynamics of both the cerebellum and the neocortex under
biologically realistic conditions of learning and behaviour.
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APPENDIX A
Simulation parallelisation

The work presented in this thesis often involved the use of extremely long numerical
simulations in order to validate the theoretical results. These simulations required
the implementation of networks of typically 10,000 leaky integrate-and-fire neurons
and 5 million connecting synapses. Such simulations would not have been possi-
ble without the ability to update the LIF neuron equations in a massively parallel
fashion. In order to do this, two main technologies were available to us. The first,
OpenMP (or similar) allows for the easy parallelisation of loops on a multi-core CPU
architecture. This method would have allowed for relatively easy implementation,
being broadly a serial implementation, in which only certain embarrassingly paral-
lelisable sections are performed in parallel. These sections, surrounded by specific
code tags for the compiler, perform normally subsequent loop iterations in parallel
on different CPUs or CPU cores. However, even on a high-end workstation this could
not have given more than a 7-8 fold speed increase of those sections over a purely
serial implementation. The alternative technology was the use of a General Purpose
GPU (GPGPU), capable of performing up to 256 operations completely in parallel,
for the processing. This is the option we decided to pursue as this technique was
likely not only to be faster than the OpenMP approach but also to scale well to
larger networks.

Writing code for GPGPU gives two main choices of technology. Either one can
write in a coding language specific to the manufacturer of the GPU (CUDA in the
case of NVIDIA) or one can write in a device agnostic language (OpenCL). There are
two further emerging technologies, OpenACC and OpenAMP, but their arrival was
too recent to be considered for our work. Device specific language is typically faster
than the device agnostic language, in fact the device agnostic language is usually
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compiled into the device specific language upon program compilation or at run time.
However, we chose to use OpenCL as it allowed us to use our code on devices from
any manufacturer (NVIDIA, ATI, etc.). In addition, OpenCL is retargetable to CPU
architecture allowing for full parallelisation of operation using CPU cores instead of
GPU cores as the basic compute units. Finally, we are well placed for the emerging
Intel technology, MIC, which co-locates a GPU chip on a CPU chip. We fully expect
this to give enormous speed gains over our current simulations as access to memory
will be much improved when compared with access from a dedicated GPU controller.

Speed was clearly our main aim in parallelising our simulations. Indeed, the pro-
gramming effort involved in parallelisation, particularly when using the technology
OpenCL, is not negligible. However, we could not have contemplated running the
long network simulations in Chapter 3 without these speed advances. The primary
speed barrier when running our simulations on GPU was the number of memory
streams which we needed to write to and from the device on each time step. As
we used a particularly small time-step (10−2ms) in our simulations we required an
enormous number of read/writes in order to simulate a few thousand seconds of
real-time. We thus condensed memory writes wherever possible and used a random
number generator which did not require any state variables (see Appendix B), in
order to limit our streams. One technique which proved particularly useful was the
use of ‘pinned’ memory on the GPU device, this is memory which cannot be swapped
out to slower memory architectures. As the state space of a set of 10,000 LIF neurons
is not particularly large we were able to store it all in pinned memory. Of course,
with new technology nothing ever runs entirely smoothly, we were unfortunate to
be the discoverers of a major bug in the NVIDIA implementation of OpenCL which
leads to memory leaks; a work around was eventually found, but this architecture
bug has not yet been repaired. In our work we concentrated on simulating LIF neu-
rons. Ironically, due to our efforts in parallelisation, we could have simulated much
more complex neuronal models with little or no slow-down. Due to the technology
used the greatest delays in our simulation were the transmission of data to and from
the GPU device, by comparison the LIF update equations were performed almost
instantaneously.

For future work we have a number of strategies which we expect will greatly
enhance the already extant speed gains in our simulations. One technique already
used in many of the major commodity simulators is the iteration of multiple updates
of the neuronal equations before a return to a spike detection and transfer loop. This
technique relies on the interpolation of spike times and the ability to infer their result
in a reasonable manner on the post-synaptic neurons. Depending on the question
under examination this may be an appropriate technique. A more immediately useful
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technique would be the parallelisation of the spike transfer process. For a randomly
connected network, it appears that the optimum approach for such a method may be
to examine each neuron in turn, using n parallel instances of our GPU code where n
is the maximal out-degree of any of our neurons in the network. Then the ith parallel
instance, if that neuron has just spiked, will transfer a current to the neuron indexed
by the ith outgoing synapse from that neuron.
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APPENDIX B
Generation of random numbers in
parallel

Generation of random deviates (pseudo-random numbers) is a highly technical dis-
cipline which is often under-considered during the implementation of numerical sim-
ulations involving stochastic differential equations. In this work we have made con-
siderable use of random numbers, the extremal case being our simulations of 10,000
LIF neurons in a recurrently connected random network for 2 hours using a time step
of 10−2ms. In this example, each LIF neuron required a gaussian distributed deviate
on every single time step, in addition uniform deviates were required for the initial
setup of network connectivity and further gaussian deviates were required upon each
update of each synapse, a frequency dependent event. Counting only the deviates
required for the LIF neuron update formula, this means that we needed greater than
7.2(1012) deviates for a single run of this simulation.

When considering a (pseudo-)random number generator two factors are consid-
ered particularly important. The first, the randomness of the deviates produced can
be tested using a number of statistical libraries the most famous of which are the
DIEHARD test suite by George Marsaglia (Marsaglia 1996) and a more recent test
suite called TestU01 (L’Ecuyer and Simard 2007). Both of these test suites take a
random number generator, or a list of numbers generated by one, and run a batch
of statistical tests in order to attempt to detect patterns. In simple, non-recurrent,
biological simulations it may not be so important for a generator to pass all of the
tests, but as we expand our simulations to examine recurrent effects which may in-
volve correlations as an actual feature of the phenomenon the randomness of the
generator becomes much more important. The second major factor in a random
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number generator is its average period length. This is the number of calls you can
make to the generator before you see the same deviate value as one which you have
previously seen and, at the same time, the generator has the same internal state
variables; meaning that from this point onwards you will produce a deterministic
looped series of random deviates. The gold-standard of random number generation
is that a function be ‘cryptographically secure’, meaning that it is impossible to
guess the internal state variables of a generator (and hence the next deviate) even
from an excessively long series of random deviates produced by the generator. This
standard is not applicable to computational biology however, it is not important to
us whether one can predict the next deviate or not, only that there be no correlations
or patterns in the output.

For non-scientific applications the POSIX programming standard (for C, etc.)
provides for implementation of the function rand() which generates weakly random
pseudo-random numbers. However, the definition of this function in the standard
was never considered from the point-of-view of producing strongly random numbers
and consequently should be avoided at all costs. It appears quite common amongst
the scientific community to privilege the random number generators found in the
book Numerical Recipes in C (Press et al. 1992), no doubt because of direct access
to the source code. There are four random number generators published in this
book, each of which has its own respective strengths and shortcomings. Within the
cryptographic community criticism of these generators rests mainly on the view that
the authors of the book knew little about random number generation and that they
overestimate the period lengths of their generators. In any case, they claim a period
length of 108 for their ran1() generator (the one most typically used) and this is
clearly too short for our purposes. Their longest period length generator ran2() is
claimed to have an average period length of 2.3(1018) (L’Ecuyer and Simard 2007) but
it runs particularly slowly and may be susceptible to initial conditions. At present,
the best option for serially coded simulations is the Mersenne Twister algorithm
(Matsumoto and Nishimura 1998), which can be implemented in as little as 5 lines
of C code and has a period length of order 1040. Furthermore, it is implemented in
libraries such as the GNU scientific library (GSL) (Galassi 2009) which means it can
be used without risk of programming error.

Due to the highly parallelised nature of many of the problems solved in this work
we decided to also try to generate our random deviates in parallel. None of the
random generators discussed thus far were found suitable for parallelisation. Unfor-
tunately they each either rely strongly on certain constants, which would be the same
for each of the parallel generators and hence the streams of random deviates would
likewise be identical, or in the case of Mersenne Twister, they have too many internal
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state variables making the maintenance of upwards of 10,000 instances unwieldy and
involving massive overheads when transferring these state variables to and from the
GPU between time steps. We thus, initially, adopted the KISS generator by George
Marsaglia (Marsaglia and Zaman 1993) and implemented a parallel version of it (our
own invention). This generator has four state variables, which need to be maintained
between calls to the generator. These are transferred to and from the GPU on each
time step in our implementation. We used a different seed with each instance of the
generator (a single seed and then an increment) and observed excellent results. We
performed basic statistical tests on the output of the generator and could not detect
correlations, despite exceedingly long sequences of random deviates (of order 1012).
We have not however, as yet, submitted the output to the full battery of tests in
TestU01. No statistical holes have ever been found in the serial version of this gen-
erator, however it is sensitive to its internal constants (which are the same across all
instances in our implementation) (Rose 2011); in the initial posting of the generator
to an online discussion board George Marsaglia inadvertently swapped two of the
constants, leading to significantly substandard results. In our final implementation
we moved to the Random123 generator (Salmon et al. 2011) a recently discovered
generator which belongs to a class of generators called "counter-based random num-
ber generators." The concept is similar to that of a cryptographic one-way hash
function. In this case, the output of the function cannot be predicted by the result
of the function on an input value with an arbitrary numerical relationship to the new
input (i.e. even if you know the output of the function on a whole lot of other inputs,
you cannot predict what it will do with the current, previously unseen, input.) The
method is stateless and instead uses an index to generate a new random number, in
our case we use the time step as one of our indices and the LIF ID as the second
index (up to four independent indices are possible). This generator has passed all
of the TestU01 tests and due to its statelessness is much faster where state must be
transferred to and from GPU memory.

Once a random deviate from a uniform (0,1) distribution can be generated it
is possible to use a number of techniques to transform this deviate into any de-
sired distribution. Within our LIF update code we have tended to use a Box-Muller
transform to generate gaussian deviates. This transform requires two uniform (0,1]
deviates in order to generate two standard normal (0,1) deviates. The standard nor-
mal distribution can then be transformed to any arbitrary gaussian distribution by
multiplication by the standard deviation. At other points, for more arbitrary distri-
butions, we have used the acceptance-rejection and the inverse transform sampling
methods.
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APPENDIX C
Shot noise

A shot noise is a superposition of impulses occurring at times t0, t1, . . . , where the
inter-impulse intervals, ti −ti−1, form an exponential distribution, and hence the shot
noise events follow a Poisson event process. The impulses have a shape, F (t), such
that

I(t) = ΣiF (t − ti). (C.1)

For the case where the shapes are taken from a family of shapes, F (a, t), parame-
terised by a, then

I(t) = ΣiF (a, t − ti). (C.2)

In keeping with the notation of Gilbert and Pollak (1960), and earlier Rice (1944),
we define the amplitude (cumulative) distribution function

Q(I) = Prob[I(t) ≤ I] (C.3)

and the probability density function

P (I) = Q′(I). (C.4)

Gilbert and Pollak (1960) obtain the following formula, from which all of their
work is derived

IQ(I) =
∫ I

−∞
Q(x) dx + n

∫ ∞

−∞
Q[I − F (t)]F (t) dt (C.5)

Note: one alternative description of a shot noise process is of a poisson process
passed through a linear filter (thus giving it its additive shape).
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C.1 Mapping calcium dynamics to shot noise

In their work Gilbert and Pollak (1960) present a solution to the probability density
function for the case of a shot noise event whose shape follows

F (t) =







0, t < 0

exp(−t), t ≥ 0
(C.6)

where t is time. In this case, for a Poisson process with parameter n Gilbert and
Pollak (1960) obtain

IP ′(I) − (n − 1)P (I) = −nP (I − 1). (C.7)

Eq. (C.6) can be mapped trivially to our calcium model, if the influx parameter
Cpre = Cpost = 1 and the time constant of decay is 1 then F (t) follows the shape
of a single spike event leading to a calcium influx followed by an exponential decay.
Furthermore, for independent pre and postsynaptic Poisson processes, if the presy-
naptic process has parameter νpre and the postsynaptic process parameter νpost, we
can sum the pre- and postsynaptic processes to obtain a further Poisson process
whose parameter is n = νpre + νpost. This then allows us to solve Eq. (C.7) for P (I)
where I is the calcium concentration in our model, for a combined Poisson firing rate
n.

In order to modify Eq. (C.7) in order to account for calcium amplitudes not equal
to 1, that is, in order to obtain a solution for shot noise of the form

F (t) =







0, t < 0

a exp(−t), t ≥ 0
(C.8)

we resort to a master equation approach. If I(t) is the concentration of calcium at
time t then

I(t + dt) =







I(t) + a, with probability ndt

I(t)(1 − dt), with probability (1 − ndt)
(C.9)

Assuming dt is small such that maximum one spike occurs within a single time
interval, then the probability that we have calcium concentration I at time t + dt is

P (I, t + dt) = ndtP (I − a, t) +

(

1 − ndt

1 − dt

)

P
(

I

1 − dt
, t
)

. (C.10)
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As dt → ∞ we can perform the expansion

P (I, t) + dt
∂P

∂t
= ndtP (I − a, t) + (1 − ndt)(1 + dt)

(

P (I, t) + Idt
∂P

∂I

)

. (C.11)

And by multiplication of the final term we get

P (I, t) + dt
∂P

∂t
= ndtP (I − a, t) + P (I, t) − ndtP (I, t) + dtP (I, t) + Idt

∂P

∂I
. (C.12)

The terms P (I, t) cancel left and right, allowing us to divide across by dt obtaining

∂P

∂t
= nP (I − a, t) − nP (I, t) + P (I, t) + I

∂P

∂I
. (C.13)

At stationary behaviour ∂P
∂t

= 0 giving us

I
∂P

∂I
= −nP (I − a, t) + nP (I, t) − P (I, t). (C.14)

We now trivially rewrite this in our previous notation as

IP ′(I) − (n − 1)P (I) = −nP (I − a). (C.15)

We can reintroduce separate pre- and postsynaptic firing rates, letting n = νpre +
νpost gives us

IP ′(I) − (νpre + νpost − 1)P (I) = −(νpre + νpost)P (I − a) (C.16)

where a = Cpre = Cpost, the pre- and postsynaptic calcium influx parameters.
Using our understanding of the master equation it is similarly possible to provide

a description of the case Cpre 6= Cpost by separating the pre- and postsynaptic ‘jump’
values in the final term P (I − a) into two separate ‘jumps’. Clearly in this case, it
is also necessary to associate the separate firing rates, νi, with the separate influx
processes, Ci, giving us

IP ′(I) − (νpre + νpost − 1)P (I) = −νpreP (I − Cpre) − νpostP (I − Cpost). (C.17)

Now, the final development which will aid our analysis of the calcium concentra-
tion under pre- and postsynaptic Poisson firing in our model is the incorporation of
the time constant of calcium decay into our solution. In Eq. (C.8) the decay con-
stant is 1, however in our analysis the calcium decay constant is typically of order
τCa = 20ms. We obtain this value by rescaling time via the Poisson frequency pa-
rameter. In fact, n defines n events per unit time, if we rescale time via t′ = t/τCa

then we must rescale the number of events via n′ = n/t′ = nτCa. So for a shot noise
process which decays with time constant τCa we have

IP ′(I) − (νpreτCa + νpostτCa − 1)P (I) = −νpreτCaP (I − Cpre) − νpostτCaP (I − Cpost).
(C.18)
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C.2 Solving the shot noise equation

In the main text we present the solutions to Eq. (C.18) for certain special (Eqs. (3.6)-
(3.9)) and more general (Eqs. (3.11)-(3.13)) cases. Solution follows the iterative
scheme

if P ′(I) =φ(I) (C.19)

then P (I) =P (a) +
∫ I

a
φ(x)dx, for a < I. (C.20)

For simplicity let us assume that Cpre < Cpost and, as this is the case in the main
text, that νpre = νpost = ν. We must now integrate the function

φ(I) =
(2ντCa − 1)P (I) − ντCaP (I − Cpre) − ντCaP (I − Cpost)

I
(C.21)

Then in the first interval, I ∈ [0, Cpre], we see that the terms P (I − Cpre) and
P (I − Cpost) both evaluate to 0. This leaves

P ′(I) =
(2ντCa − 1)P (I)

I
(C.22)

which gives us
P (I) = AI2ντCa−1 (C.23)

where A is a constant of integration, which has a closed form solution only in special
cases such as that presented in Eqs. (3.6)-(3.9). In all other cases we normalise the
are under P (I) to 1 numerically at the end of the calculation of the other intervals.

While it is possible to extend this analytical approach to further intervals, it is
practical only for certain parameter values. It is much more fruitful to pursue a
numerical integration scheme for Eq. (C.18). We do this using an exponential Euler
method of integration. That is for

P ′(I) = a(I)P (I) + b(I) (C.24)

we obtain a solution

P (I) = exp{
∫ I

I0

a(y)dy}(P (I0) +
∫ I

I0

exp{−
∫ y

I0

a(z)dz}b(y)dy) (C.25)

when I − I0 is small. In the case of Eq. C.18 we define

a(I) =
νpre + νpost − 1

I
(C.26)

b(I) = − νpreP (I − Cpre)
I

− νpostP (I − Cpost)
I

(C.27)
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This means that

exp{
∫ I

I0

a(y)dy} =
(

I

I0

)(νpre+νpost−1)

(C.28)

exp{−
∫ y

I0

a(z)dz} =

(

I0

y

)(νpre+νpost−1)

(C.29)

giving us

P (I) =
(

I

I0

)(νpre+νpost−1) (

P (I0) +
∫ I

I0

I
(νpre+νpost−1)
0

y(νpre+νpost)

(

−νpreP (y − Cpre) (C.30)

−νpostP (y − Cpost)
)

dy
)

We find that it is typically possible to numerically obtain the PDF, P (I), by (i)
setting P (I < 0) = 0, (ii) filling in the first interval, up to Cpre, using Eq. (C.23), (iii)
by subsequent iteration of Eq. (C.30) up to a sufficiently high calcium concentration
that the probability density is numerically indistinguishable from zero. We then
numerically normalise the area under the curve to 1.
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