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Abstract

Plasma turbulence limits the performance of fusion reactors. Measuring and character-
izing the turbulence properties is therefore a crucial issue in order to understand such
phenomena. The goal of this thesis is to study the properties of plasma turbulence from
ultrafast sweeping reflectometry measurements performed on the Tore Supra Tokamak.
Reflectometry is a radar technique that is used to measure the electron density and
its fluctuations. In the first part, we compare Langmuir probe and reflectometer data
and discuss the possibility to characterize turbulence properties from the reconstructed
fluctuating density profiles. Then, we show that the radial variation of the time and
spatial scales of the turbulence as well as its radial velocity can be estimated from a
cross-correlation analysis applied to the raw reflectometer signals. The modifications of
the turbulence properties observed during a parametric scan are interpreted in the light
of TEM and ITG turbulence. Finally, we show that the additional heating leads to a

significant increase of the radial velocity in the plasma close to the tokamak wall.
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Chapter 1

Introduction

The world energy consumption has been continuously increasing and has almost doubled
in the past 40 years. Nowadays most of human activities heavily rely on fossil fuels,
such as oil, gas or coal, which represents 82% of the world energy consumption, while
the remaining is divided between renewable (12%) and nuclear energy (6%). Estimates
based on the actual energy demand trend, show that the known resources of fossil fuels
will be depleted in a time scale ranging between 40 years for oil to two hundred years
for coal. In addition to availability issues, these resources are not equally distributed
geographically, often leading to strong geopolitical tensions, which will inevitably increase
as the resources diminish. Finally, the burning of fossil fuels is also believed to have a
strong impact on our environment through the resulting C'Os emissions, which, in the
scientific community, are widely considered to play a significant role in the present global
warming. These different economic, geopolitical, and environmental aspects show how
important it is to undertake strong political commitments to reduce the dependence
from fossil fuels by increasing the usage of existing alternative energy sources. Recent
technological improvements improved the efficiency of renewable energies, however, those
are still rather expensive. In parallel, research is being carried out to investigate the
feasibility of a potentially new energy source, namely the nuclear fusion of light elements,
such as that which fuels the Sun. Controlled nuclear fusion might provide a sustainable

and environmentally viable solution to the energy problem.

Research is on-going on several scientific and technological issues that still need to be
elucidated in order to achieve economically viable fusion power plants. Among those, a
large effort is devoted within the plasma community to the understanding and control of
the energy losses occurring due to turbulent phenomena in a fusion reactor, which can
seriously affect its performance. The turbulent phenomena are still poorly understood

due to the complexity of the physics at play and the difficulty of performing localized
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and precise measurements in a fusion reactor environment.

This work aimed at bringing new insight on tokamak turbulence physics, thanks to an
innovative radar-like technique used to measure density turbulent fluctuations in Tore
Supra tokamak.

The basics of nuclear fusion and tokamak plasma physics are briefly reviewed in this
introductory chapter. The main instabilities generating turbulent transport in a tokamak
are also discussed, mainly aiming at establishing their temporal and spatial scales, which

will be relevant for the experimental study.

1.1 Nuclear fusion

Among the different possible fusion reactions, the one which has the highest nuclear
cross section occurs among two hydrogen isotopes, deuterium and tritium and is thus
considered for a fusion reactor. The products of this reaction are an alpha particle (He?)
and a neutron

D+T = n+He'+17.6MeV. (1.1)

Most of the excess energy (80%) is carried as kinetic energy by the neutron and the
remaining (20%) by the alpha particle.

In order to obtain fusion reactions, the positively charged deuterium and tritium nuclei
need to be brought to sufficiently high energies to overcome their electrostatic repulsion,
typically of the order of 100 keV. At these high energies, electrons and nuclei are not
bound anymore and constitute a gas of charged particles which is called a plasma.
While in the Sun the confinement of the plasma results from the gravitational forces, on
Earth, one of the ways explored to confine the plasma in a reactor is via magnetic fields

as we will detail a bit further in the next section.

1.1.1 Lawson criterion

A fusion reactor should trivially produce more energy than it is powered with and be
self-sustained. The condition under which fusion reactions can be maintained without
any external energy input is referred to as ignition. The criterion to reach ignition for
a power producing thermonuclear reactor was derived by Lawson [1]| and specifies a
minimum value of the so-called triple product of the ion density n, plasma temperature

T and energy confinement time 7g:

nT7e > 2.7 x 102V m™3 keV s. (1.2)
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The energy confinement time can be understood as the typical time after which the
plasma cools down when the heat sources are turned off, it thus measures the efficiency
of the magnetic confinement.

This so-called Lawson criterion can be physically interpreted as the ratio of the energetic
content of the plasma to its losses (or sources in a steady state). The fusion energy
gain factor Q, is defined as the ratio of fusion power produced in a reactor to the power
required to maintain the plasma in a steady state. The condition for which @Q = 1 is
named breakeven and means that 20% (for D-T fusion) of the heating power comes from
fusion reactions. Q = 20 is thought to be enough for a viable power plant.

The future fusion device, ITER, was designed such to reach Q = 10 and that a significant
fraction of the heating power can come from fusion reactions, thus proving the feasibility

of a fusion-based production of energy on an industrial level.

1.2 Magnetic confinement

The magnetic confinement concept exploits the fact that the charged particles consti-
tuting the plasma are constrained to follow trajectories along the magnetic field lines.
The charged particles are indeed free to move parallel to the magnetic field, but gyrate
in a so-called Larmor orbit in the direction perpendicular to the field as a result of the
Lorentz force. The characteristic scales of the gyromotion are the fast cyclotron pulsa-
tion we; = ZeB/m; and the Larmor radius p; = \/IW/ZjeBl; j denoting the species
with the charge Z;e and mass m;, T and B the local temperature and magnetic field,

respectively.

1.2.1 The tokamak configuration

Tamm and Sakharov in the 1950’s devised a toroidal magnetic device, that they named
tokamak, where the magnetic field lines close on themselves, so to avoid particle parallel
losses. In the tokamak configuration a strong toroidal magnetic field is produced by
external coils and an auxiliary poloidal magnetic field is generated by the current induced
in the plasma itself. The combination of the toroidal and poloidal components of the
magnetic field produces helical field lines enrolling around the torus, which therefore
confine the plasma charged particles. Fig. 1.1 shows a schematic of the tokamak magnetic
topology. As illustrated in Fig. 1.2, in the tokamak magnetic topology two regions can
be distinguished: the core, where the magnetic field lines are closed, enclosed by the
last closed magnetic field surface (LCFS in dashed line) and the Scrape-Off Layer (SOL)

IThe expression of the Larmor radius given above is only valid if the distribution of the particle
velocity is Maxwellian.
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FIGURE 1.1: a) Toroidal magnetic field produced by the external coils. b) Poloidal
magnetic field generated by the plasma current. ¢) Their sum produces helical magnetic
field lines.

region, where magnetic field lines are connected to the walls.
On Tore Supra, the tokamak device located in CEA Cadarache, where the experimental
studies of this thesis have been performed, the interaction between the plasma and the

vacuum vessel is limited by a toroidal metallic component called a limiter.

SOL plasma

vacuum vesgg) oper;omagn:ettc field lines
n= m

T=10eV

FIGURE 1.2: Schematic of a limited tokamak. Ry and a are the major and minor
radius, respectively.

Particle motions in a tokamak

Charged particles in a tokamak undergo several drifts induced by the magnetic topology.
These drifts are rigorously derived in any plasma physics textbook and will be only briefly
presented here. Usually, the particle dynamics is decoupled in three components: the
gyration motion, the fast parallel dynamics along the magnetic field lines and the slower

drifts perpendicular? to the field lines.

77:179347"0"'77” _'_17J_ (13)

’In this manuscript, the terms parallel and perpendicular are always related to the unperturbed
magnetic field direction.
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The parallel velocity is of the order of the thermal velocity v); = \/Tj/m;, which is thus
about 40 times larger for electrons than for protons.
The perpendicular drift can be decomposed as the sum of the E x B, VB, curvature and

the polarization drift, the latter arises from time varying electric fields:

—

v = VEXB + VVB + VR + Vi (1.4)
—— —~ N

' ) ~—
ExBdrift VBdrift curvaturedrift polarization drift

The three first drifts can be cast in the general form

- _113><§

_1 15
(i e (1.5)

where F is the force acting on the particle. Except for the £ x B drift, those depend on
the charge of the particle.

The particle drifts are essential ingredients for the understanding of plasma turbulence.
The charge-dependent drifts induce a charge separation and therefore an electric field.
Small perturbations may then be amplified due to F x B drift, resulting in instabilities
and turbulent convection. This mechanism is further explained in Sec. 1.4 and illustrated

with two examples.

Trapped and passing particles

Charged particles in a tokamak can be cast in two classes, trapped and passing particles.
Moving along the magnetic field lines in a tokamak, the charged particles experience a
magnetic field which varies between a maximum and a minimum value. The magnetic
field can thus act as a magnetic mirror, so that some particles can reverse direction and
be reflected back, provided their velocity perpendicular to the field is sufficiently large
relative to the parallel velocity (or equivalently their energy sufficiently low). Those
particles are thus referred to as trapped whereas the particles which freely circulate along

the magnetic flied lines are named as passing.

The condition for trapping can be expressed in terms of the particle energy

2
c—uB (1 + (L) ) < uBo(1 + ), (1.6)

where By and p are the field on the magnetic axis and the magnetic momentum, respec-
tively and € = r/Ry is the inverse aspect ratio of the torus. The fraction of trapped
particles is given by f; ~ v/2¢. In Tore Supra, taking r ~ a ~ 0.7 m leads to € ~ 0.3, so
that about 77% of the particles are trapped.
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B
Bma e=1/R
Bmin -
. A R
B
r
& Passing particle R
£ A I

;‘ w *:.- J:f %

Trapped particle

Yy £

i ]
of UB WS

v,.t

FI1GURE 1.3: Top: charateristic magnetic field profile in a Tokamak. Middle: schematic
of the banana orbit shape. Bottom: trapped and passing particles energy diagram.
Reproduced from [2].

Trapped and passing particle motions are responsible for different perpendicular diffusive
transport, as briefly outlined in the following section and can engender turbulence with

different characteristics, as we attempted to explore experimentally (Sec. 7.1.3 ).

1.3 Particle and heat transport in a tokamak plasma.

Cross-field heat transport in a tokamak plasma is a topic of utmost importance because
it determines the confinement time 75 and therefore the performance of the reactor, as
explained in Sec. 1.1.1. Consequently, substantial efforts have been dedicated to quantify

this transport. The transport is modeled in terms of diffusion coefficients.

In a plasma, binary collisions are the basic mechanisms for the cross-field particle and
heat transport, based on a classic random walk model. This is described by a diffusion
coefficient, x ~ 072 /7, where the characteristic walking time 7, is given by the collision
time (i.e. inverse of the collision frequency)and the step length dr is of the order of the
Larmor radius, in a cylindrical geometry.

In a toroidal plasma this collisional transport is enhanced by particle drift orbit effects
due to the inhomogeneous equilibrium magnetic field. This process is called neoclassical
transport. Neoclassical transport coefficients can be derived for passing and trapped
particles, depending on different regime of collisionality [2, 3|]. However, the observed
perpendicular transport in most tokamak plasmas, is much higher than the predicted
neoclassical values, and is therefore referred to as anomalous. Understanding the phys-

ical mechanisms leading to this enhanced transport is one of the most important issues
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for present magnetic fusion devices and future reactors. Enormous effort, both theoret-
ical and computational, has been put to understand physics underlying the anomalous
transport and then to match the predicted transport flux with that observed experi-
mentally. It is now recognized that anomalous transport is caused by various turbulent
fluctuations. The accurate measure and characterization of the turbulent fluctuations is
therefore essential to the understanding of turbulence-driven anomalous transport.

In a quasi-steady turbulent plasma, the turbulent diffusivity coefficient can be estimated
via the correlation length, L., and time, 7., of the fluctuations, as D; ~ L2/7.. This
expression is particularly convenient as such an estimate can be provided by a statistical
analysis of fluctuations diagnostics measurements. In particular, when turbulent fluctu-
ations are caused by low frequency drift waves, having a time scale of the order of the
inverse of the drift frequency 7. ~ (w**¢)~! and a spatial scale of the order of a Lar-
mor radius, L. ~ p;., the transport coefficient is described by the so-called gyro-Bohm
scaling, D | ~ (pie/L7)T/eB |4, 5|, with Ly the temperature gradient scale length. In
the case of turbulent fluctuations of the order of the macroscopic size of the plasma, the

transport has the conventional Bohm scaling, D, ~ T'/eB.

1.4 Plasma instabilities and turbulence

The plasma density and temperature in a tokamak vary by several orders of magnitude
between the core and the SOL regions, the strong gradients acting as free energy reser-
voirs for instabilities to develop.

Tokamak plasmas exhibit a wide range of instabilities, which may be cast in two main
classes: slow large scale MHD instabilities and micro-instabilities. Turbulent transport
in a tokamak plasma is mainly produced by micro-scale drift-type turbulence, which is
driven by local gradients of temperature or density.

Electrostatic plasma turbulence in tokamak can be understood as followed. First, charge
separations occurs and creates electric fields. The F x B convection due to the turbulent
electric field displaces plasma elements along the electric potential contours across the
magnetic field. Once a phase difference between the potential and density perturbations
is established, this process largely determines the radial particle and heat loss in a high
temperature plasma.

In the following subsections we will not discuss MHD modes, but we will focus on the
micro-instabilities leading to microturbulence, given that this thesis study focuses on the
anomalous transport. Basics of plasma turbulence and transport theory are exposed in
the lectures of Y. Sarazin [2]. A complete review of plasma turbulence theory can be
found in the recent book of W. Horton [6]. A review of the turbulence measurements in

tokamak is given in |7] whereas the turbulence diagnostics are reviewed in [8].
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1.4.1 Drift-wave instability

Drift-waves are the most basic plasma instabilities. Drift-waves can develop in a slab
plasma with an homogeneous magnetic field, at the sufficient condition that a density
gradient exists and that the density perturbations have finite wave numbers in both the
parallel and perpendicular directions. As the particles move very rapidly along the field
line, the following inequality holds k; >> kj # 0. The drift-wave mechanism in slab

geometry is illustrated in Fig. 1.4 and described below. Initial perturbations of the

FIGURE 1.4: Schematics of drift-waves in slab geometry. Reproduced from [9].

density gradient are indicated by dark and light regions in fore- and background of the
figure. Because of their low inertia, electrons are supposed to react rapidly on parallel
density perturbations (dashed arrows parallel to the magnetic field in the figure). As
a result, positively and negatively charged regions build-up in high and low density re-
gions, respectively. Vertical® electric fields and the resulting E x B drifts are represented
as vertical and horizontal arrows, respectively. In the case of adiabatic electrons, those
instantaneously respond to the potential fluctuations, the density perturbation does not
grow but propagates in the vertical direction at v%®, the diamagnetic velocity. If the elec-
tron are non-adiabatic, a time lag between density and potential perturbations appears.

If the phase shift between density and potential fluctuations is negative, i.e. ¢, —pg < 0,

3 At the tokamak midplane, the vertical direction corresponds approximately to the poloidal direction.
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the initial density perturbation grows and becomes unstable. Oppositely, if the phase-
shift is positive, the resulting £ x B will stabilize the perturbation. This simple picture

allows us to estimate the typical frequencies of drift-waves turbulence

Wi =~ Wiee = kv

Wy = ,OscskJ_/Lna (17)

where w,. is the electron diamagnetic frequency, cs and L,, are the sound speed and the
density gradient scale length, respectively. Note that the drift-waves frequency depends

on k|, which is related to the scale of the perturbation across the magnetic field.

1.4.2 Interchange instability

One of the possible underlying mechanisms for plasma turbulence, are micro-instabilities
which belong to the pressure-driven family of interchange modes. In a tokamak, as
depicted in Fig. 1.1 the magnetic field decreases with the major radius, inducing a
magnetic field gradient. The magnetic field gradient leads to the interchange instabilities,
which can develop even if k| = 0. Consequently, those instabilities are often considered as
bidimensional. The interchange instability is the analog of the Rayleigh-Taylor instability
for neutral fluids [10]. A Rayleigh-Taylor instability occurs when a heavy fluid is on top of
a lighter fluid. If the layer between the two fluids is perturbed, the fluids will interchange
their positions. In a tokamak, an interchange mode is unstable when the gradient of the
magnetic field is aligned with the equilibrium pressure gradient. In this case the exchange
of two flux tubes around a field line releases free energy. The interchange mechanism
can either stabilize or destabilize an initial density perturbation depending the respective
directions of the magnetic gradient VB and the pressure gradient V P. The basics of the
interchange mechanism is depicted on Fig. 1.5. On the high field side of the tokamak,
good curvature region, the plasma VB and V P point into opposites directions, a density
perturbation makes the ions and electrons move downward and upward, respectively.
The resulting E x B drift stabilizes the initial density perturbation. When VB and VP
are aligned and point in the same direction, e.g. on the low field side, the £ x B, VB
and curvature drifts combine to destabilise the density convective cells and an outwards
instability appears. Also, since the trapped particles are localised on the low field side
-which corresponds to the zone of minimum field along the field lines- these are expected
to play a prominent role in the interchange process. Note that the frequency of the

interchange instabilities is also of the order of the diamagnetic frequency.
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FIGURE 1.5: Interchange instability in the bad curvature region. The upper left plot
depicts a section of a torus. The pressure and the magnetic field are maximum on the
torus axis and at the symmetry axis, respectively, as depicted in the lower left plot. The
right scheme illustrates the interchange instability. The magnetic field is perpendicular
and points into the plane of the figure. On the low field side of the torus, VB and
Vp point in the same direction. Assuming an initial density perturbation (marked by
dark and light regions), the curvature drift leads to a charge separation which causes
an E x B drift. The resulting F x B drift amplifies the initial density perturbation.
Reproduced from [9].

1.4.3 Core plasma instabilities

The main core plasma instabilities in a tokamak, belonging to the family of drift-waves,
are the electrostatic ITG and the shorter wavelength electron-scale, ETG, respectively
driven by ion or electron temperature gradients. The latter only includes the passing
electrons whereas the former includes both trapped and passing particles. I'TG and ETG
instabilities have critical thresholds in temperature gradient and are also referred to n; ¢
modes, where 7; . = |L,/Lt, | denotes the ratio of the density scale length to that of
the ion (electron) temperature. The ITG is generally the main instability responsible for
ion heat transport in the plasma core. Correspondingly, ETG modes may produce large

electron heat flux, on the electron scale.

Trapped electrons can contribute to the drive of ITG modes, enhancing the ITG growth
rate [11, 12| , but they may also be the source of trapped electron modes (TEMs) [13].
TEMs are driven by density gradients in the presence of magnetic curvature and can
cause electron particle transport as well as turbulent electron heat flux -depending on
the local plasma parameters and collisionality- on the ion scale.

In the collisional plasma edge, a range of fluid instabilities (ballooning modes ) which
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we will not further investigate here, are driven by gradients in pressure, resistivity and
current.

ITG, TEM and ETG are characterised by different spatial scales, as summarized in Fig.
1.6.

Indicative 0.1 koPs 1. 10
temee T kglemd 10 100
Turbulence/ ITG

transport TEM

mechanisms ETG

FIGURE 1.6: Spatial scales of ITG, TEM and ETG turbulence. Reproduced from [14].

Linear analytical predictions as well as numerical simulations show that the poloidal
spectra of ITG peaks at kgps = 0.3 — 0.4 [15] and that of TEMs kgps =~ 0.2 [16], whereas
the ETG spectrum peaks at higher values kgps = 5 [17].

For typical parameters of Tore Supra core plasmas (e.g. T, ~ lkeV, B = 3 T and
L, = a =72 cm), we can estimate that ITG and TEM characteristic frequencies are in
the range 30-60 kHz and their spatial scales are about 1-2 centimeters, whereas ETG
have higher frequency 300 kHz and a scale of about 0.1 millimeters.

1.4.4 SOL turbulence

Large scales and long lived propagating density structures are observed in the SOL of
nearly all plasma devices. Often referred to as blobs, these structures are though to
originate from interchange instabilities in toroidal devices [18] and can contribute up
to 50 % of the particle transport in the SOL region [19]. A theoretical review of blob
turbulence is given in [20] whereas a complete review of the comparison of blob theory

and experiment can be found in [21].

In order to get some insight in the phenomenology of blobs, a simple blob model, origi-
nally developed in [22], is presented here and illustrated in Fig. 1.7. Assuming an initial
density perturbation elongated along the parallel direction and connected to the walls,
the VB drift causes a polarization of the density perturbation. The polarization is a key
element for the blob dynamics because it gives rise to an E x B velocity which advects the
blob through the SOL. This polarization is mitigated by the current flowing in the par-
allel direction. Consequently, the blob dynamics is also greatly dependent on the choice

of the current closure scheme. In this model, the sheath-connected boundary condition
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plasma blob

FIGURE 1.7: Schematics of a plasma blob. Due to the polarization, the E x B drift
causes the blob to propagate radially outward. Reproduced from [22].

is used, JH|wall = ne?cs®/T,. If we consider a plasma at constant temperature and a
Gaussian shaped blob ny(x,y) = ny(x)exp(—y?/(262)) which does not interact with the

background plasma, then the blob is convected without deformation at the velocity
Vg = cS(L”/R)(pS/(S)z. (1.8)

Here, z and y denote the radial and poloidal coordinates, respectively. L), R and ¢ are

the parallel connection length, the major radius and the characteristic blob size.

The blob lifetime ¢ is mainly limited by the parallel loss of particles along the field lines,
consequently the blob lifetime is of the order of ¢ = Lj/cs. On this time scale, the blob
travels a distance Az ~ v,t). Substituting v, in Eq. 1.8 we find that 5% = Lﬁpg/RAx.

Using typical parameters of Tore Supra SOL (L ~ 30 m, T, = 10 eV B = 2.5T), we can
now estimate the blob time scale t;, ~ 1 ms and, using Az = 0.1 m (the typical width of

Tore Supra SOL), the blob characteristic size § ~ 1 cm.

Analytical models often consider blobs as isolated structures which propagate without
interacting in a homogeneous background plasma. Experimentally, the existence of tem-
perature and density gradients in the SOL region breaks the assumption of homogeneity.
Consequently, these ideal models may help to qualitatively explain the blobs properties
but might be to simplistic to be compared to the experimental measurements, as dis-
cussed in Sec. 7.2.3. As an alternative, numerical simulations with SOL turbulence codes
can be used for the interpretation of the SOL turbulence data. An attempt is presented
in Sec. 7.2.4.
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1.5 Scope of the thesis and outline

As outlined through the previous sections, anomalous transport of heat and particles in
a tokamak plasma is at present believed to be induced by turbulence, driven by micro-
instabilities. As a consequence, the understanding and control of turbulence is critical for
the performance of a fusion reactor. A description of turbulence phenomena in a toka-
mak, based on first-principle physics is unfortunately still lacking, given the complexity
of both the topology and physics into play in such a system. Therefore measurements of
turbulence in a tokamak are an essential, though challenging, task.

Turbulence diagnostics should on the one hand, be able to operate in a hot and magne-
tised medium, and on the other, provide sufficient resolution to probe turbulence scales,
possibly on a large extent of the poloidal section of the tokamak. Very few diagnos-
tics meet these specifications. Perturbing techniques such as electrostatic probes are
restricted to low temperature plasma regions such as the outer edge or the SOL. Core

turbulence can be studied with imaging systems such as the beam electron spectroscopy

(BES).

Microwave diagnostics such as reflectometer systems can also be used to investigate
plasma turbulence. Traditionally, fixed-frequency correlation reflectometers were used
to determine the turbulence properties. In this work, we used an alternative sweeping
frequency reflectometer system. One of the great advantages of the sweeping systems is
their ability to provide continuous measurements of the plasma density and its fluctua-
tions from the very far SOL to the tokamak core.

It will be shown in Sec. 2.3.2 that the sweeping system has a spatial resolution which is
sufficient to both resolve the spatial scales corresponding to the blobby turbulence (~ 1
cm, Sec. 1.4.4) but also the ITG and TEM turbulence (~ 1-2 cm, Sec 1.4.3).

From its beginnings [23-25|, the frequency sweeping reflectometry had to deal with
plasma turbulence which was scrambling the reflected signal, thus preventing from a
correct electron density profile reconstruction. This issue was actually overcome on the
sweeping reflectometer operating on Tore Supra [26], by decreasing the sweeping time
from the millisecond to the microsecond range and by using the heterodyne detection
technique. Thanks to these technical enhancements, the improved quality of the signal
allowed to study the close relationship between the density fluctuations and the signal
fluctuations. MHD activity, micro-turbulence profiles, and wavenumber spectra were
thus determined (PhD thesis L. Vermare [27] and T. Gerbaud [28]). The sweeping re-
flectometer was upgraded in 2008 and is now able to follow the evolution of the density
fluctuations at a rate of 333 kHz, being consequently ascribed as an ultrafast sweeping
technique. The time resolution of the reflectometer system is now below the estimated

time scale of the turbulent fluctuations both in the SOL (~ 1 ms, Sec. 1.4.4) and in the
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core plasma (~ 15— 30 us, Sec. 1.4.3). This upgrade should thus open the possibility of

investigating the dynamical properties of the turbulent fluctuations.

The main goal of this work is indeed to provide original measurements of the turbulent
fluctuations by taking advantages of the possibilities offered by the ultrafast sweeping
reflectometer. To achieve this, our work plan was divided in three steps.

First, as ultrafast sweeping reflectometry is a new method, its capability to measure
turbulence was investigated. Then, statistical analysis methods were developed and
applied to the reflected signals in order to quantify the turbulence properties in Tore
Supra discharges. In particular, the radial and temporal characteristics of the turbulent
fluctuations have been analysed. Finally, parametric dependencies of the turbulence
properties have been investigated.

To support the reporting of these activities, the present manuscript is divided as follows.

e In Chapter 2 , Tore Supra tokamak is introduced as well as the diagnostics used in
this work. A special emphasis is given to the description of the ultrafast sweeping

reflectometer.

e Chapter 3 presents the basic physics of plasma-wave interactions, relevant to re-
flectometry, which is indeed a radar technique based on the propagation of an

electromagnetic wave in a magnetized plasma.

e Chapter 4 details how density fluctuations can be recovered from the density profile
reconstruction with the Bottollier-Curtet recursive algorithm in WKB approxima-

tion. Capabilities and issues are there highlighted.

e In Chapter 5, measurements of electron density fluctuations from the ultrafast

sweeping reflectometer are compared to those from a Langmuir probe in the SOL.

e In Chapter 6, statistical analysis of the raw reflectometer signals is used to char-

acterize the turbulence properties in ohmic plasmas.

e In Chapter 7, the parametric dependences of the turbulence properties with respect

to the average electron density and the plasma current are investigated.

e Last but not least, the effects of the ion cyclotron frequency heating on the turbu-

lence properties are discussed in detail in Chapter 8.

e Conclusion and perspectives are finally given in Chapter 9.



Chapter 2

Experimental setup

In this chapter, the experimental setup is presented. The Tore Supra tokamak and its
heating systems are briefly described in the first section. Then, the technical aspects
of the ultrafast sweeping reflectometer are presented. During this work, other diagnos-
tics such as fixed-frequency and Doppler reflectometry as well as Langmuir probes were
used to support the sweeping reflectometer measurements. These diagnostics are also

introduced here.

2.1 Tore Supra Tokamak

Tore Supra is a circular section limiter tokamak located in CEA, Cadarache, France.
Tore Supra was designed to explore fusion technologies and physics under the conditions
of long pulse discharges. Discharges lasting several minutes are possible thanks to super-
conductive toroidal field coils. Moreover, all the plasma facing components are actively

cooled.

Tore Supra characteristics and the associated typical ohmic discharge values are listed
in Tab. 2.1.

2.1.1 Heating systems

In Tore Supra, the plasma is heated by electromagnetic waves. As the plasma turbulence
properties might be affected by the electromagnetic heating, the latter is of importance
for this work. In order to transfer the energy from the wave to the plasma, the wave

frequency is chosen such as to match a particle frequency. Three wave heatings systems,

15
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Magnetic field on the axis, By max. 3.8 T
Major radius, R 2.38 m
Minor radius, a 0.72 m
Mean electron density, (n.) 3 x 10* m~3
Density at the LCFS, neLCFS 8 x 10®¥ m—3
Density 5 cm outside the LCFS, nS9F | 1.9 x 10'® m~3
SOL density gradient length, Asor 3 cm
Plasma current, Ip 1 MA
Central electron temperature, T 5 KeV
Central ion temperature, T 2 KeV

TABLE 2.1: Tore Supra parameters.

operating at different frequencies, are available on Tore Supra. Although only one of

those is of importance for this work, all are presented for the sake of completeness.

e Electron cyclotron resonance heating

A 118 GHz electron cyclotron heating (ECRH) has been installed in 2004 [29].
It delivers 400 kW power in long pulse operations. The system is composed of 2
gyrotrons. When working at the nominal magnetic field (By = 3.8 T'), the power
is deposed in the central plasma. The system can also be used for current drive.

Due to technical failure, the ECRH system was not available during the last ex-
perimental campaign. As a consequence, ECRH heated plasmas were not studied

during this work.

e Lower hybrid current drive

The Tore Supra 3.7 GHz lower hybrid current drive (LHCD) system was designed
to inject 8 MW in long pulse operation [30]. Tore Supra LHCD is mainly used for

current drive.

During LH heating, suprathermal electrons are massively created and generate a
relativistic downshift of the electron cyclotron frequency in the plasma center as
well as its second harmonic. Thus non negligible emission of radiation coming
from the core is detected by the reflectometer particularly close to the first cutoff!
frequencies which can also increase substantially the noise over all the cutoff fre-
quency range, particularly at low magnetic field. Because of its parasitic effects on

the reflectometer signals, LH heated plasmas were not studied in this work.

e Ion cyclotron resonance heating

The ion cyclotron resonant heating (ICRH) is the main auxiliary heating system

on Tore Supra. The ICRH operates between 40 to 80 MHz. ICR waves can be

1The definition of the cutoff is given in Sec. 3.1.3.
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launched from three different antennas. Each launcher can inject up to 4 MW
power |[31].
More details on the ICRH system are given in Sec. 8 where the turbulent properties

in ICRH heated plasma are studied.

Fig. 2.1 shows a top view of Tore Supra. The locations of the different heating systems

- 0
| ! Q4
<

are shown.

F1GURE 2.1: Top view of Tore Supra vacuum vessel. The locations of the heating
systems are indicated.

2.2  Turbulence diagnostics in Tore Supra

Several diagnostics, as Langmuir probes, reflectometers and fast camera , provide tur-
bulence activity measurements on Tore Supra. Diagnostics of the first two kinds are
detailed below because they were used complementary to the ultrafast sweeping reflec-
tometry.

When analyzing turbulent data obtained with several diagnostics, their localizations (Fig.
2.2) have to be taken into account because turbulence properties may vary due to spatial
asymmetries. Due to the fast parallel transport, we expect small toroidal asymmetries

whereas poloidal asymmetries might be more pronounced as discussed in Sec. 5.3.1.

2.2.1 Langmuir probes

Plasma quantities as density, floating potential and electron temperature can be obtained

by the use of electrostatic probes called Langmuir probes. This diagnostic technique was
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> DREFRAP

Top view Poloidal section

FIGURE 2.2: Left: top view of Tore Supra vacuum vessel. The reflectometers are lo-

cated in the equatorial plane whereas the rake probes are located at the top of the de-

vice. The pecker probes are inserted in the antenna protection (LPA). Dturb and Pecker

designate the rake and the reciprocating probes, respectively. Derefrap, Drefluc and

Difdop designate the ultrafast sweeping, the fast hopping and the Doppler reflectome-

ters, respectively. Right: poloidal view in front of the ultrafast sweeping reflectometer.
LPT stands for the toroidal limiter.

developed ninety years ago by the Nobel prize winner I. Langmuir [32]. These probes
are still intensively used today. They offer an excellent spatial and temporal resolution.
Langmuir probes consist in a wire isolated from the plasma except for a small tip. They
are mainly used in low-temperature and edge fusion plasmas because hot plasma would
destroy the probe. Langmuir probes are an invasive technique and perturb the plasma
locally. Langmuir probes measurements are performed by biasing the pin and measuring
the collected current. The probe bias can be swept in order to measure the electron
temperature. Fig. 2.3 illustrates a typical current-voltage (I-V) curve. Three distinct

regions appear in the I-V curve. If the pin is sufficiently negatively biased , all electrons

o -lV)

FIGURE 2.3: Langmuir probe I-V curve. The I-V curve is divided in three regions :
ion-saturation current (a), transition region (b) and electron saturation range.

are repelled. There is a saturation of the captured ions, therefore the measured current

is called ion-saturation current (I;sq¢). In opposite, if the pin is sufficiently positively
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biased, only electrons are captured, this gives the electron-saturation current. In between,

both electrons and ions are captured and contribute to the resulting current.

In a collisionless unmagnetized plasma with Maxwellian electrons and cold ions, I; sqt is

expressed as:

Ii st = AEZZJ;ene ZT;;—E’ (2.1)
with e the elementary charge, n. the electron density, Tt ; the electron and ion temper-
atures and m; the ion mass. Ai% is the effective collector area and depends mainly on
the probe geometry. I; 44+ fluctuations are usually used as proxy to monitor the density
fluctuations under the assumption of small temperature fluctuations. This assumption is

questionable given that significant electron temperature fluctuations have been reported

in several devices [33-35]. We will address this issue in Sec. 5.3.5.

Now that the basic Langmuir probe principles have been reviewed, we can focus on the

design of the Tore Supra probes.

The pecker probe

The pecker probe is a tunnel probe system newly installed in the Tore Supra antenna
protection (LPA) [36]. It consists of two probes located in the same equatorial port than
the sweeping reflectometer Drefrap, 20° upward and downward the equatorial plane,
respectively (Fig. 2.2) . The probe plunges into the plasma back and forth and explores
a region extanding approximately from the LPA to the LCFS. The plunges, also referred
to as probe reciprocations, last 10 ms.

Plasma measurements are performed through circular collectors placed on both sides
of the probes. The probes are operated in I-V mode and can measure the electron
temperature, the plasma density and the Mach number. Nonetheless, only I; s¢ data
are explicitly used here. Data obtained with the Pecker probes have been extensively
compared to Drefrap data because of their spatial proximity which reduces the effects of
eventual poloidal asymmetries. The probes were operating for the first time during Tore
Supra 2011 experimental campaign. Unfortunately, the lower probes broke down after
few discharges which restricted the analysis of the pecker probes data to those collected

by the upper probe.

An example of the swept bias applied to the pecker probe is shown on Fig. 2.4 a). To

extract the ion saturation current component, only the parts of the signal for which



Chapter 2. Ezperimental setup 20

the bias is below -50V2. Consequently, measurements of I; sqt are not available for each

position during the probe reciprocation but are restricted to specific intervals. This can

be seen on Fig. 2.4 b). The part of the signal for which the probe collectors were partially
shadowed by the LPA has also been removed.
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FIGURE 2.4: a) Bias applied to the pecker probe. The ion saturation regime is reached
for potential below -50 V (the black dashed line). b) I; 5o+ measured by the pecker
probe. Only the measurements inside the region limited by the black dashed line are

meaningful.

2.2.2 Reflectometers

Reflectometry is radar technique aiming at scanning the plasma with electromagnetic

waves. Several plasma parameters, such as the electron density, can be inferred from the

characteristics of the probing waves.

The propagation of electromagnetic waves in a plasma is described in the next chapter.

Here,

we focus on the technical aspects of Tore Supra reflectometers.

Fast hopping reflectometer

The O-mode fast hopping reflectometer Drefluc operates in the D-band (105-150
GHz) installed on the equatorial port Q4A. Drefluc performs frequency sweeping
as well; consequently it can also provide electron density profile measurements [38].
When working at fixed frequency, the data acquisition is set to 1 MHz leading to
1 ps time resolution. The system can perform 31 frequency plateaus, each lasting
up to 8 ms, in a single plasma discharge. The excellent time resolution of the
fast hopping reflectometer allows us to follow the time evolution of the turbulence.

Moreover, Drefluc has a good signal to noise ratio and will be used to validate the

2This specific threshold value was not randomly chosen but results from a trade-off between the
guarantee of operating in the ion saturation regime [37] and the maximization of the number of available
data points.
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temporal measurements performed with the ultrafast sweeping reflectometer (see
Sec. 6.2.3).

Doppler reflectometry

Doppler reflectometry is based on backscattering rather than reflection at a well de-
fined plasma layer. The Doppler reflectometer Difdop is installed in the equatorial
port QLA. Difdop can be either used in O-mode polarization in the V-band (50-75
GHz) or in X-mode polarization in the W-band (75-110 GHz). In term of plasma
accessibility, the plasma is probed from r/a = 0.5 to r/a = 0.9 for the O-mode and
from r/a = 0.85 to r/a > 1 for the X-mode. The probing beam is launched with
a poloidal angle which can vary from -1 to 10°. The data are acquired at 10 MHz.

More details are given in [39].

Among other quantities, the perpendicular fluctuations velocities V| can be es-
timated from Doppler reflectometry measurements. V) is determined from the
Doppler shift wg = k V| of the Doppler spectrum. The perpendicular wavenum-
ber k| is obtained using ray tracing calculations. Both the toroidal and poloidal
velocities contribute to the perpendicular velocity. However, due to the small tilt
angle of the magnetic field line @ ~ r/qR << 1, the perpendicular velocity is
dominated by the poloidal velocity ( Fig . 2.5).

FIGURE 2.5: Schematic of a field line lying on a flux surface. The velocities in the
laboratory frame (Vy and V) and in the plasma frame (V) and V) ) are represented .

Now that the auxiliary turbulence diagnostics have been briefly described, a detailed

description of Drefrap, the ultrafast sweeping reflectometer, is presented in the next

section.

2.3 Tore Supra ultrafast sweeping reflectometer

Drefrap is an X-mode heterodyne ultrafast sweeping reflectometer installed in Tore Supra

Q3A equatorial port right next to the antenna protection (see Fig. 2.2 and Fig. 2.6).

Drefrap operates in V- (50-75 GHz) and W-band (75-110 GHz) frequency range.
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FIGURE 2.6: Left: outside view of the tokamak. The reflectometer is marked with a
blue ellipse. Right: equatorial port shared by the reflectometer and the LPA.

An extensive description of the diagnostic can be found in [40]. Thanks to a recent

upgrade [41], the sweeping time is as low as 2 us which makes Drefrap the world’s fastest

sweeping reflectometer.

2.3.1 Design of the ultrafast sweeping reflectometer

Fig. 2.7 shows the schematic of the set-up.
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FIGURE 2.7: Schematic of Drefrap with k=4 and 6 for the V and W bands, respectively.
Reproduced from [41].

The frequency ramp (12-20 GHz) is generated by a voltage controlled oscillator (VCO).
Then the signal is separated in two branches, namely the plasma signal and the reference

signal. The single side band modulator (SSBM) adds a modulation frequency f,, to the
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main frequency F. The SSBM is a key component for the heterodyne system because it
shifts the signal frequency to a frequency band where the mixer signal to noise ratio is
higher [42]|. Before being launched to the plasma, the frequency is multiplied to reach
the required probing frequency. After the round trip in the plasma, the wave comes
back and is measured by the receiving antenna. The propagation of the wave into the
plasma has introduced a frequency shift corresponding to the beat frequency. The beat
frequency is of interest because it is proportional to the time of flight of the probing
wave. The reference signal, which has been delayed to compensate the propagation of
the probing wave into the wave guides, is mixed to the probing signal. Finally, the
modulation frequency is removed and an 1/Q detector is used to separate the in-phase
and 90° phase components of the signal. This separation is required to measure the
amplitude and phase of the reflected signal independently. The reflectometer signal is
acquired by a 4 channels module (10 bit digitization, 32 Mb/channel) having a sampling
frequency of 2 GHz/sample.

2.3.2 Recorded signal

A significant advantage of sweeping reflectometry is the ability to perform successive
frequency ramps. Each frequency ramp lasts 2 us and 1 us dead time is required to

initialize the frequency between two ramps. The recorded signal is expressed as

75 GHz 2pslips
i hh b
time (us)

FIGURE 2.8: Example of a signal recorded by the V band reflectometer during succes-
sive frequency ramps. Both V and W bands are swept simultaneously.

S(F,t) = A(F, t)e'), (2.2)

with A and ¢ the signal amplitude and phase, respectively. In practice data are stored
in m-by-n matrices with 1 < ¢ < m stands for the frequency index and 1 < j < n stands
for the time index. Generally m = 2000 which leads to a relative submillimetric spatial
resolution (reminding that the probing frequency is linked to the radial position). The
acquisition system can record up to 10000 sweeps per shot. Fig. 2.8 shows an example

of the recorded signals during a burst of frequency ramp.






Chapter 3

Propagation of electromagnetic

waves 1n a plasma

In this chapter, the basic properties of electromagnetic waves in plasma are reviewed.
First, the dispersion relation is derived in the case of an homogeneous magnetized plasma.
The dispersion relation reveals two particularly important polarization modes for fusion
studies, the O and X mode. The experimental results reported in this manuscript were
obtained using X-mode, thus more attention is paid to this polarization.

In the second part, the expression of the wave electric field is given for a spatially varying
plasma. Finally, the effects of electronic density fluctuations on the electromagnetic wave

propagation is addressed, which is a key issue for this PhD work.

3.1 Propagation in a homogeneous plasma

The expressions presented in this section are based on the early work of Ginzburg [43].
Here, we restrict our analysis to the case of monochromatic plane waves Eoei(w“'z’?),
where w and k denote the frequency and the wave vector, respectively. The fundamental
equations which rule the behavior of electromagnetic fields in plasmas are the Maxwell
equations in continuous medium. We consider Maxwell equations coupled to the electron

motion equation in absence of external magnetization
VxVxE+

and Ohm’s law

25
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j=GE, (3.2)

where & is the conductivity tensor which describes the plasma properties. An expression

of the conductivity tensor can be obtained under the following assumptions,

e Stationarity

The plasma time scales are significantly longer than the period of the probing wave.

Thus, the plasma is considered to be stationary during a wave period.

e Cold plasma

The probing wave phase velocity is of the order of the speed of light, the particle
thermal velocity is therefore assumed to be small with respect to the phase velocity.
It results that the electron motion is due to the probing wave fields at the leading
order [44] .

e High frequencies

The ion and neutral particles are considered at rest because of their large inertia.
This assumption is fully justified as far as the probing wave frequency is well above
the ion characteristic frequencies, which is the case for reflectometry in a tokamak.

Only the electrons will contribute to the conductivity tensor.

e Linearity

Eq. 3.1 is linear at first order, meaning that any linear combination of monochro-
matic propagating waves is a solution. This assumption can be applied since the

launched power is very low.

3.1.1 Dispersion relation

The propagation of waves in a plasma is completely described by the dispersion relation
w(k) which links the frequency to the wave vector. The dispersion relation contains
information on the reflection points, which play a major role in reflectometry. Under the

previous assumptions, Eq. 3.1 can be rewritten as
- N = fw2 _ 7 -
kxkxE+—|(I+—ac)E=0. (3.3)

The conductivity tensor is expressed along directions which are parallel (||) and perpen-
dicular (L) to the magnetic field By [45]
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2 2
o w;}f;gﬁ —t wucje w;%;ge 0 (J—)
0 = €W i%w;ﬂp;ge _w:ip;ge 0 (L) - (3.4)
UJ2
0 0 —Le (1)

The conductivity depends on the plasma density and magnetic field through the plasma
electron wpe = /n2e? /egm, and cyclotron frequency we. = eB/me, respectively.

The perpendicular propagation is mainly relevant for reflectometry studies (E il B’),
taking BO = Bpé,, Eq. 3.3 reads

2 2
w w
— pe Wee pe
1 w2 —w?2, v w —w?, 0 B,
w w 2 =
e i - . N E, | =0 (3.5)
© 2
w
0 0 1— & — N? E,

N = ck/w is the wave index of refraction. Eq. 3.5 is a linear system which has non

trivial solutions only if the determinant is zero. This leads to the dispersion relation

D(w,N) = (e3 — N?)(e2 — N%¢; — €2) =0, (3.6)
with ¢; defined as
2
w
= 1-— Pe 3.7
€1 w2 — wge ( )
2
Wee wpe
€ = —_— (3.8)
w w? — w2,
2
w
€3 = 1— wp; (3.9)

This equation has several solutions which correspond to different polarization modes.

3.1.2 Polarization modes
Ordinary mode

The ordinary mode (O-mode) refractive index is obtained from e3 — N? = 0, which gives

2

w,
NG =1- wfg (3.10)
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The last expression shows that O-mode waves propagate independently of the magnetic
field. This results from the collinearity of the wave electric field and the magnetic field
(Fig. 3.1). Due to simple expression of the refractive index, most of analytical results
were obtained for O-mode reflectometry. Unfortunately, O-mode waves have limited

plasma accessibility in the edge of tokamak plasmas [46].

O-mode X-mode

Y

FIGURE 3.1: O- and X-mode polarization.

Extraordinary mode

The reflectometer used during this PhD work operates in the upper branch of extraordi-
nary mode (X-mode), therefore more attention will be paid to X-mode wave properties.
In this case, the wave electric field is perpendicular to the magnetic field (Fig. 3.1). Nx
is obtained by looking for the second solution of Eq. 3.6,

2 2 2
w w” —w
_ pe pe
Nx=1- -2 — P (3.11)
we w wpe Wee

Contrary to the O-mode, the X-mode refractive index depends on both electron density

and magnetic field.

3.1.3 Resonance and cutoff

Specific plasma regions exist and are of primary importance for wave propagation in a

plasma. These regions are defined with respect to the local refractive index values.

e Propagation in vacuum : Ny — 1

If the wave frequency is much larger than the local plasma and electron cyclotron
frequency, then the wave does not feel the plasma and propagates freely as in

vacuum.
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e cutoff : Nx =0

The waves propagate in the plasma for £ > 0 and are evanescent for k% < 0.
The plasma layer which separates these two regimes is called the cutoff layer. The
cutoff layer is the turning point of the probing wave. In X-mode, two frequencies

satisfy Nxy =0

1

wxp = g (w Jw2, + 4“’%@ — wce) (3.12)
1

wxp = g ( w2, + 4w, + wce) . (3.13)

These frequencies are called lower and upper cutoff frequencies, respectively.

e Resonance : Ny — oo

For w = , /w2, + w?, the wave energy is transferred to the plasma. For reflecto-
metry studies, the resonant frequencies should be avoided. This is done by working

with frequencies in the range of the upper cutoff frequency.

The values of the electron plasma, electron cyclotron, lower and upper cutoff frequencies
with respect to the radial position are shown in Fig. 3.2 for a central magnetic field

Bp=2.8 T and a central density neo = 3 x 109 m=3.

BfZ.BT ne(O)f3e¢19m—3 |

Frequency (GHz)

9 05 0 05 1
r/a

FIGURE 3.2: Values of the electron plasma (Fj.), electron cyclotron (Fg.), lower (Fx,)
and upper (Fxpg) cutoff frequencies with respect to the radial position computed at
B=2.8 T and n.o = 3 x 10! m~3. Adapted from [27].
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3.2 Propagation in a spatially varying plasma

Strong density gradients are present in tokamak plasmas. The plasma core density differs
by at least 3 orders of magnitude from the density close to the wall. This radial depen-
dence should be taken into account in order to derive a reflectometry theory relevant to
tokamak plasmas. To this end, we consider a stationary plasma with density varying
only along the radial direction. In this case, the evolution of the wave electric field is

described by the 1-D Helmholtz equation

d? 9
k(r) is the local wave number and is linked to the vacuum wave number by the relation
k(r) = koN(r). Eq. 3.14 can be solved analytically if the medium varies slowly with
respect to the wave length. This assumption is referred to as the WKB approximation.
Under this assumption, the solutions should have locally the same form as the solutions

in homogeneous medium

E(r) = Ey(r)e*) (3.15)
Eq. 3.14 is rewritten as
TBo gy ©O 4o 0 do g (s (40 2 =0 (3.16)
dr? O dr2 dr dr 0 dr - '

The electric field amplitude is assumed to vary slowly with respect to the phase. The
second order derivative of the electric field can thus be neglected. In this case, Eq. 3.16

2
vanishes when the real and imaginary part vanish. The solution of k? — (%) =0 gives

the phase
o(r) = :t/ k(r")dr'. (3.17)
Solving
d’>¢ _dEgdo
Fo— +2——— = 1
0 dr2 + dr dr 0 (3.18)
gives the electric field amplitude Ey(r) = —A—, where A is an integration constant.

— Jdg/dr

Finally, the solution of Eq. 3.14 takes the form
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B(r) = — ik [T N’ (3.19)
k(r)

This solution is valid far from the cutoff where the medium varies slowly.

1r evasnescent
wave propagating
08 wave
b3
g cut-off
<06 region
£
04 WKB WKB WKB
valid not valid valid
0.2
0 A "
e r

F1cure 3.3: Typical behavior of X-mode refractive index. Far from the cutoff, WKB

approximation is valid and propagating waves are solutions of the Helmholtz equation.

In the vicinity of the cutoff, the refractive index varies rapidly and WKB approximation

breaks down. Behind the cutoff, WKB approximation is again valid and waves are
evanescent.

Eq. 3.19 shows that the electric field is enhanced when the wave approaches the cutoff
region. Therefore, most of plasma wave interactions take place in the surroundings of the
cutoff layer which ensures that reflectometry measurements are well localized spatially

[47].

The phase term plays a role of primary importance for the density profile reconstruction.
Phase effects which arise at the cutoff layer have to be taken into account. To this end,
it is sufficient to impose continuity between the propagating and evanescent waves. This

procedure is described in details in [48|. The resulting phase is expressed as

Te

o(re) = 2 / K(r)dr' — 2. (3.20)
— 0o

r. denotes the cutoff layer position. This expression is nothing but the WKB expression

with an additive term. This new term accounts for the non "mirror-like" reflection of

the wave on the cutoff layer. This expression is valid as long as the wavelength is shorter

or equal to the density gradient scale length [49].
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3.3 Propagation in a turbulent plasma

Besides of anisotropy, a tokamak plasma is a highly turbulent medium. Up to now,
the effects of density fluctuations on the probing waves have been ignored. Nonetheless,
the wave is scattered by density fluctuations during its propagation. Formally, this
scattering takes place in all directions. However, only the signal scattered back to the
receiving antenna is of interest for reflectometry studies. The Bragg condition states
that the scattering is the most efficient when the momentum and energy of the waves

are conserved,
ks = kitks (3.21)

The subscripts s, ¢ and f refer to the scattered wave, the incident (probing) wave and
the density fluctuations, respectively. Providing that wy < w;, the dispersion relation

requires that |k;| = |ks| [27]. The scattering angle (Fig. 3.4) follows the Bragg’s law

Iky| = 2\@;%(2). (3.22)

ks=ki+kf kf

0

Ki
FIGURE 3.4: Illustration of the Bragg resonant condition

At normal incidence, which is mainly relevant to sweeping reflectometry, the Bragg con-

dition reduces to |k¢| = 2k;.
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Density profile reconstruction in

presence of fluctuations

Sweeping reflectometry was initially developed to measure the electron density profile in
fusion experiments [23|. Turbulence induced density fluctuations were considered to have
a deleterious effect on the density profile reconstruction [50]. A proper density profile
reconstruction requires that the plasma does not evolve while being probed. On the first
reflectometers, the sweeping time was too long to freeze the turbulence and consequently,

fulfill the latter condition.

The sweeping time of the Tore Supra reflectometer has been recently reduced to 2 us
which should be sufficient to freeze the turbulence [41] given that the turbulence power
spectrum is dominated by frequencies below 500 kHz [51, 52]. Such an improvement
might offer the possibility to reconstruct the density profile in presence of turbulent
fluctuations. This latter point is addressed here. First, the influence of the sweeping
time on the determination of the time of flight of the probing wave is presented. Then
the profile reconstruction algorithm is briefly described and its ability to reconstruct

fluctuating profile is analyzed in detail.

4.1 Influence of the sweeping time on the time of flight of

the probing wave.

The time of flight 7 is the time the probing wave takes to travel back and forth from the

antenna to the cut-off layer
_ 1 0¢(F)

T(F) = 5 —55 (4.1)

33
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F and ¢ are the probing wave frequency and the phase of the complex signal, respectively.

7 can be either calculated using the phase derivative or the beat frequency Fj,

Fy(F) = 522 = vir(p), (4.2)

where Vi = AF/At is the sweeping rate.

The beat frequency can be computed using a sliding FFT analysis. The procedure is
described in [26] and will not be further detailed here. Fig. 4.1 illustrates the influence

of the sweeping time on the determination of the time of flight. In case of a large

At=200us At=2pus
40f] ' 40f : '
—  iF _ #44953
2 300 2 30
§3 20 _'r_Sv 20§,
S 100 S 10
g g
= = O
=10 : ‘ i =10 : .
60 80 100 60 80 100
Frequency (GHz) Frequency (GHz)

FIGURE 4.1: Time of flight measured with 200 us (left) and 2 us (right) sweeping time.
Tore Supra discharges used in this example are Ohmic discharges with similar plasma
parameters.

sweeping time At = 200 ps (low sweeping rate) the turbulence is not frozen. The
Doppler shift created by the turbulent structures motions during the sweep makes the
precise evaluation of the time of flight difficult (Fig. 4.1, left). This is mostly due to
the fact that the widths of the beat and turbulent frequency spectra are similar (of the
order of 1 MHz). Inversely, when the sweeping time is sufficiently short, the width of the
beat frequency spectrum is much larger than those of the turbulent spectra. The time

of flight is therefore more precisely determined (Fig. 4.1, left).

4.2 Profile reconstruction algorithm

The routine reconstruction of electron density profiles on TS discharges is performed
by means of the Bottollier-Curtet (B-C) algorithm [25]. The fundamental assumption
underlying the algorithm is the monotonicity of the refractive index. The implications of
the latter assumption on the reconstruction of fluctuating density profiles are discussed

in Sec. 4.2.1. Without detailing completely the algorithm, we present here the basic
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ideas. A complete description of the algorithm is presented in [24]. B-C algorithm is
based on the WKB approximation which states that the phase is the integral of the local
wavenumber between a reference position (which is usually the antenna position r,) and

the cutoff layer position r.(F)

re(F) T
o(F) = 2k0(F)/ Nx(F,ne(r), B(r))dr — 5 (4.3)
Ta
Here, the dependences of the refractive index have been explicited. ¢ and F' are directly
measured and B(r) can be obtained from the magnetic equilibrium reconstruction. The
unknown quantities are the cutoff layer position r.(F') and the electron density ne(r).
Using Eq. 4.3, it is easy to see that the difference of the phases measured for two adjacent

probing frequencies Fjyi and F; is the shaded area depicted on Fig. 4.2

N

A

N(Fi+1=rci)

N(Fis1,r) N(F,r)
N Ve

>
>

ry r

p it
C

FIGURE 4.2: Schematic of the Bottollier-Curtet algorithm for electron density profile
reconstruction.

The shaded area is proportional to the area of the triangle of base r&™ — rl and height

Nx(Fyq1,7%)
SFir1) o) é(ri"_l B

ko(Fir1)  ko(Fi) 3 rON (Fig, ). (4.4)

If the density profile is known up to 7% and by assuming that it can be linearized ! between
the cutoff positions 72 and 71, the term N (Fji1,7%) can be explicitly calculated. It is

i+1

¢T* radial cutoff position. The associated density is obtained

then trivial to compute the r

via the cutoff condition

Fer(TZ—H) = F2+1 - E+1Fce(rz+1-) (45)

)

The B-C algorithm is initialized by thresholding the reflected signal amplitude. Close to

the tokamak walls, the electron density is very low and the probing wave is not sufficiently

! An optimized version of the algorithm has been proposed in [53] where the dielectric permittivity is
assumed to be linear between two successive radial positions
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reflected. The first probing frequency for which the amplitude of the reflected signal is
above the threshold is called the first cutoff frequency Fy. The electron density associated
to the first cutoff frequency is assumed to be equal to zero. Therefore, the first cutoff

position r; is deduced from F) = F.(r1).

4.2.1 Effect of a gaussian density fluctuation on the profile reconstruc-

tion

A sufficiently large density fluctuation may shadow a part of the density profile. In
this case, the probing wave does not see the part of the profile behind the fluctuation.
Such a situation seems intuitively problematic for the profile reconstruction. Indeed, the
Bottolier-Curtet algorithm was originally designed to reconstruct unperturbed density
profiles, i.e. density profiles which monotonically increases from the SOL to the plasma
center. The monotonicity might be violated in presence of density fluctuations. The
first question to concentrate on is thus the following : what is the largest fluctuation
amplitude for which the density profile can be properly reconstructed? This question
is addressed by considering density profiles perturbed by a Gaussian fluctuation. An
analytic condition which links the problem parameters (amplitude, width and position
of the perturbation; scale length of the density profile) is derived for the case of linear
and exponential density profiles. This condition sets a limit for the perturbed profile

reconstruction.

Condition for a proper density profile reconstruction in X-mode reflectometry
As the probing wave propagates through the plasma, the wave does not feel directly the

density fluctuations but rather the fluctuations of the refractive index Nx. Close to the

cutoff,

2~ F? — FF, (4.6)

and Nx reduces to:

EF2(r
Nx(F,r) = \/2(1 — ﬁ%) (4.7)

At this point, the reconstruction is assumed to be correct if the refractive index decreases
monotonically as the wave goes deeper into the plasma: ONx/Or > 0 where r is the

distance to the plasma center. This hypothesis is justified in the next paragraph. Since
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N, > 0 on the wave path, 9Nx /Or > 0 <» ON%/0r > 0. Using simple algebra, Eq. 4.7

leads to

ON% 2(F2 — FF.)0,F — FLO(F? — FF,.,) L8
o (F2 — FF,.)? ‘ (4.8)

Using again Eq. 4.6 and the fact that the probing frequency is fixed and does not depend

on the radial position; 0,F = 0, the previous condition corresponds to
O Nx >0 0, F2, + FO,Fe < 0. (4.9)

Exponential density profile

Here, we examine the case of an exponential density profile perturbed by a Gaussian

fluctuation.

(r—rg)?

ne(r) = nege n "V (1 4 Ae” 3ot ). (4.10)

This profile is defined for r > a, a being the position where the density is maximal
and equals to ney. A, rg and o are the amplitude, position and width of the Gaussian
perturbation, respectively. L, is the unperturbed density profile scale length. The
magnetic field profile is chosen to decrease as 1/r (typical for any tokamak), B(r) =
ByRo/(Ro+r). By is the magnetic field on the magnetic axis. The condition set by Eq.
4.9 reads

0pF2, < —F 0, Fre. (4.11)

This implies that the derivative of the density profile must always be lower than the
opposite of the magnetic field profile derivative. It can be easily shown that the derivative
of a Gaussian is maximal at 7 = rg £+ 0. In case of a positive perturbation (4 > 0), it
is sufficient to find the parameters for which Eq. 4.11 holds at the position r = rg — o
to ensure that the relation will be true everywhere. Rigorously, 8TFP2€ is not exactly
maximum at r = ry — o because of the contribution of the unperturbed profile. However,
this introduces only a small correction term. It will be shown numerically that the last

assumption is fully justified.

At r=rg— o, Eq. 4.11 writes
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e? 2 11 1
O — ~ 1z, (—0—a) Ae V2(Z - )y = —FO,.F,,. 4.12
el ( G- Ln> < O e (4.12)
Noticing that 0, Fee = —F,e/(r + Ro),
_ 1 1 1 FFe(rog—o0) 1
Ae 2 (2 - =) - — <« 22X . 4.13
€ o Ly, L,  F(ro—o0)2ro—o+ Ry (4.13)
with
eq e? )/L
Fpe (7“) = 471'2me Neo€ (r—a)/ ", (414)

the plasma frequency associated to the unperturbed density profile. A condition on the

perturbation amplitude is explicitly found

Ffto—o)Pn—o+Re L) -

_ 1/2
A< <(FF“(T° ) S 1> — (4.15)

Linear density profile

The same exercise can be done in the case of a linear density profile.

) = nea(1 = - (r — )1+ A~ ), (1.16)

n

After similar algebra, a condition on the perturbation amplitude is also obtained,

A< ((FFce(ro —0) 1 N 1) el/? (4.17)

Fpé(ro—o))?ro—o0+Ry  Ln) 2(1—-(ro—0—a)— 1

Numerical validation

The model is validated for SOL plasma conditions, i.e. exponential density profile and
large scale turbulence, which are of primary importance when comparing data from the
reflectometer and the Pecker probes (Chapter 5). Starting with a known exponential
density profile, the corresponding refractive index is computed for the relevant cutoff
frequencies. The geometric optics phase is obtained by integrating the refractive index
on the ray path (Eq. 4.3). Once the phase has been computed, the density profile is
reconstructed with the B-C algorithm.
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The density gradient length, perturbation width and position are fixed and set to typical
values for SOL plasmas (neo = 10'® m™3, L,~2 cm, 0—0.5 cm and ro— 5 cm). Only the

perturbation amplitude is tuned around the limiting value giving by Eq. 4.15.

For the parameters used in this example, the limiting amplitude value is A = 226%.
Fig.4.3 shows the density profile reconstruction, for a density perturbation with A =
220 %. The perturbed density profile is clearly non-monotonic but the curve N, = 0
is still monotonic. It can be observed that the profile is correctly reconstructed. In
X-mode, the magnetic field damps the effect of density perturbations. This 'magnetic

smoothing’ allows to correctly reconstruct density profiles with relatively high density

perturbations.
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8\ ]
& \ 0.6
E s \ ]
e \ ' 0.4
4N\ , | '
\\
N
% 0.2
L N i
2 ST ’ .
S S - i e — - ~J
0 0.02 0.04 0.06 0.08 0.1 0.02 0.04 0.06 0.08 0.1 0
r-a (m) r-a (m)

FIGURE 4.3: a) equilibrium profile (blue dashed curve), perturbed profile (red dashed-

dotted curve) and reconstructed profile (green curve). The parameters are ney =

108 m=3, L,=2 ecm, A = 220 %, 0=0.5 cm and 79= 5 cm. b) Refractive index
computed on the perturbed profile.

When the perturbation amplitude exceeds the limiting value, the Nx = 0 curve is no
longer monotonic (Fig. 4.4, simulation is performed for A = 270 %). The reconstructed
profile oscillates behind the density perturbation. These oscillations lead to multiple
density values for a given radial position which is physically unacceptable. However, if
the perturbation amplitude does not exceed strongly the limiting value, the unperturbed

part of the profile is still correctly reconstructed.

Using Eq. 4.15, parameters which ensure the convergence of the reconstruction algorithm

can be estimated numerically with around 10% confidence.
Fig. 4.5 shows the behavior of the amplitude threshold when the others parameters are
tuned. Three dependencies are clearly observable:

1. The outer is the perturbation, the larger is the amplitude threshold.

2. The steeper is the density profile gradient, the larger is the amplitude threshold.
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FIGURE 4.4: a) equilibrium profile (blue dashed curve), perturbed profile (red dashed-

dotted curve) and reconstructed profile (green curve). The parameters are n.y =

108 m=3, L,=2 cm, A = 270 %, 0=0.5 cm and 7o= 5 cm. The inset is a zoom
of the oscillation. b) Refractive index computed on the perturbed profile.
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FIGURE 4.5: Dependence of the limiting amplitude (A) with respect to the perturbation

position (rg). The x-axis represents the perturbation position. Two values of the density

gradient scale length are studied (a and b). For each case, the perturbation width (o)
is tuned.

3. The larger is the width of the perturbation, the larger is the amplitude threshold.

In spite of its simplicity, qualitative conclusions can be drawn from the model. The
fluctuation level was estimated around tens of percent in the Tore Supra SOL [54]. In
the far SOL, the turbulence is believed to be dominated by large-scale high-amplitude
fluctuations. Therefore, all the conditions required for a correct density profile recon-
struction might be fulfilled in this region (i.e. the refractive index is monotonic, there is
no secondary cutoff). Closer to the LCFS, small scales fluctuations are present and can

potentially degrade the density profile reconstruction.
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4.3 Statistical analysis of fluctuating density profiles

The experimental values used as inputs for the density reconstruction algorithm are the
phase ¢(F,t) and the magnetic field profiles B(R). The outputs are the reconstructed
radial positions R(F,t) and the associated electron densities n.(F,t). An example of
fluctuating density profile reconstructed with the B-C algorithm is shown in Fig. 4.6
a). Around the initialization position (r/a & 1.225), the reconstructed profile slightly
oscillates (Fig. 4.6 c)). These oscillations are quickly damped and do not impact the
rest of the profile.
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FIGURE 4.6: a) Reconstructed fluctuating density profile with respect to the normalized
radial position for the ohmic discharge #47178. Zooms of the LCFS and extreme SOL
regions are also shown (b and c).

Close to the LCFS, reconstruction accidents are common and lead to multiple density
values for a fixed radial position (Fig. 4.6 b)). These accidents are possibly linked to a

high fluctuation level, as mentioned in the previous section.

In the following, statistical tools are used to quantify the fluctuations properties. It has
to be stressed that R(F,t) and n.(F,t) are non independent quantities. A common error
is to assume that, for a given frequency, only the density evolves. This error basically
consists in treating n.(F,t) as ne(R,t). Fig. 4.7 shows that, at fixed frequency, both

the density and radial position time series significantly fluctuate.
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FIGURE 4.7: Time trace of the reconstruced density n.(Fp,t) (blue line) and radial
position R(Fp,t) (red-dashed line) for a fixed frequency (ohmic discharge #47178).

4.3.1 Joint probability distribution

The joint probability distribution? is an appropriate tool to take into account the joint
variation of the radial positions and densities. The joint probability distribution PDF(n., R)
gives the probability that a data point (n., R) lies in the interval [n. +An./2, R+ AR/2].
An. and AR are the bin sizes for the density and radial position, respectively. The size
of the bin must be sufficiently large in order to obtain a significant number of points in
each bin. In the example presented on Fig. 4.8, the bin sizes are An, = 6.14 x 1016 m~3
and AR = 1.6 mm. 3000 sweeps were performed during the burst shown on Fig. 4.8.
Given that 2000 data points (n., R) are reconstructed for each sweeps, 6 x 106 data points
were used to compute the PDF(n., R). Consequently, a probability of 10~* means that
600 data points lie in the corresponding bin.

The joint PDF is an elegant way to show the dispersion of the reconstructed density pro-
files. It can be observed that the distribution of the reconstructed profiles significantly

broadens when going inside the closed field lines region (Rpcps = 3.1 m).

4.3.2 Conditional probability distribution

When dealing with density fluctuations, it is more convenient to look at the statistical
properties of the density fluctuations at a fixed position. This is done by using the
conditional probability distribution PDFg(n.). PDFr(ne) is computed in two steps.
First the densities n.(F,t) for which the associated radial positions R(F,t) lie in the
interval [R + AR/2| are extracted, then the PDF is computed on these densities. The

ZRigorously, only the statistical (and not the probability) distribution can be estimated from the
data. However, the statistical distribution is assumed to converge to the probability distribution if the
number of experimental data points is large enough. For the sake of clarity and simplicity, the statistical
distribution are referred to as PDFs here)



Chapter 4. Fluctuating density profiles reconstruction 43

PDF(ne,R)
1e-6 1e;5 1e-4 1e—3

#AT170

N
)
T

O
)
T

2.7 2.8 2.9 3 3.1 3.2
R (m)

FIGURE 4.8: Joint statistical distribution of the reconstructed density and radial posi-
tion.

conditional PDFg(ne) can be seen as a radial cut of the joint PDF(n., R) as depicted
on Fig. 4.9 b).

In the following, the radial coordinate r/a is used in order to highlight the differences
between the SOL (r/a > 1) and the close field lines region (r/a < 1). Fig. 4.9 a) shows
the PDF, ,(ne) with respect to the radial position. The PDF, /,(n.) was obtained by
dividing the profile into radial intervals of approximately 5 mm. In each interval, the
density has been normalized by subtracting the mean value and dividing by the standard
deviation. The skewness profile, which measures the asymmetry of the distribution, is
superposed. The skewness is a third order moments and is defined for an arbitrary data
set x; as N
1 zi — (z)\*
S~ Z; <%) , (4.18)

where are (z) and o, are the mean value and standard deviation, respectively.

In the core region (r/a < 0.8), the turbulence is broadband and exhibits Gaussian
statistics leading to nearly symmetric distribution (the skewness is roughly equal to
zero). Just inside the LCFS, the distribution is skewed towards negative values (Fig.
4.9 b)) whereas outside the LCFS, the distribution is skewed towards positive values
(Fig. 4.9 ¢)). The skewness inversion is characteristic of the edge SOL transition and

was observed in many tokamaks [21]. Skewed distributions are considered as to be
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FIGURE 4.9: a) Conditional statistical distributions of the reconstructed density given
the radial position. b) and c) distribution of the normalized density at r/a = 0.9 and
r/a = 1.05.

consequence of coherent structures which originate in the surroundings of the LCFS.
The coherent structures can be either negative or positive density fluctuations. Negative
density fluctuations are dominant in the edge region (0.8 < r/a < 1), which leads to
the negative skewness. Inversely, positive density fluctuations are dominant in the SOL
plasma and leads to positive skewness.

Nevertheless, an extended analysis of the statistical properties of the fluctuating density
profile is prevented by two "side effects" of the reconstruction algorithm. These effects

are presented in the following section.

4.3.3 Statistical properties of the density profiles in the far SOL

Fig. 4.10 shows the joint and conditional statistical distributions computed for TS dis-

charge #47178 in the far SOL region. Two branches on the joint statistical distribution
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FIGURE 4.10: a) Joint probability distribution of the reconstructed density and radial

position in the far SOL. b) conditional probability distribution of the density given the

radial position in the far SOL. The radial position is labeled by djcpgs, the distance to
the LCFS.

are clearly seen in Fig. 4.10 a). The lower branch corresponds to the most frequent
profile. The number of profiles in the upper branch is about 100, which is significantly
lower than the number of profiles in the lower branch. However, it is sufficient to distort
the high order statistical moments, which are very sensitive to large but rare events. Fig.
4.10. b) shows the conditional statistical distribution of the density and the associated
skewness. The skewness reaches extremely large values (= 8) where the distribution is
multimodal. Deeper in the SOL (drcrs < 10 cm), the skewness decreases to moderate
values (S ~ 1) which traduces asymmetric but monomodal distributions.

In the following, some possible causes of the multimodal distributions are discussed.

Fig. 4.11 shows the time evolution of the first cutoff position for the ohmic discharge

#47178. For t < 600 us, the first cutoff position varies smoothly and the plasma is
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FIGURE 4.11: Time evolution of the first cutoff position for the Ohmic discharge
H#4T178.

detected about 16.5 cm outside the LCFS. Then, an abrupt "jump" of roughly 4 cm
amplitude is clearly visible around t = 600 us, taking place in 3 us. Such a time series
will obviously give a double peaked histogram, i.e multimodal statistics, with one peak
around dpopg ~ 16.5 cm and the other at about dpcrps ~ 20.5 cm.

Given that large radially propagating structures are abundantly observed in the SOL, it
is quite natural to wonder if these jumps result from these turbulent structures. Such a
possibility implies that the structures would propagate radially at about 4 x 1072/3 x
107% ~ 13 km s~! which is up to two orders of magnitude above the characteristic

~1 see [21] and references therein). Consequently,

convective velocity (= 0.1-1 km s
propagating structures can hardly account for the jumps. An alternative mechanism is

presented in the next paragraph.

Density profile initialization

The density profile initialization is critical for a proper reconstruction of the density
profile in the far SOL. Recently, a new signal processing method based on tomographic
analysis [55] has been developed and applied on the Tore Supra reflectometer signals.
Among the merits of the new technique, it is now possible to initialize the density profile
at densities as low as 1016 m~3. Once parasitic echoes (as the backwall echo) have been
removed, the profile is initialized by thresholding the reflected amplitude. As the density
increases, the plasma becomes more reflecting and the signal amplitude increases. This
threshold based method is suitable when the reflected amplitude monotonically increases
with the probing frequency, which is unfortunately not the general case. Fig. 4.12 shows
the reflected amplitude for two successive sweeps. The amplitudes have been low pass
filtered in order to keep only the trend. The reflected amplitude globally increases with
the probing frequency although this increase is not fully monotonic. A bump is observed
around F' = 58 GHz in the reflected amplitude. During the first sweep , the bump is
below the threshold and the initialization frequency is F} =~ 60.5 GHz (the corresponding



Chapter 4. Fluctuating density profiles reconstruction 47

-10

—t=981 us
|| == t=984 ps

#4T178

Threshold

Fi
59 61 63 65
F (GHz)

F1GURE 4.12: Reflected amplitude with respect to the probing frequencies measured
for two successive sweeps. The threshold and the initialization frequencies are also
shown.

cutoff position is Ry &~ 3.26 m). During the following sweep, the reflected amplitude has
only slightly increased but now the amplitude crosses the threshold in front of the bump.
The initialization frequency is thus significantly shifted towards a lower value (F» =~ 58
GHz, Ry ~ 3.3 m) leading to a jump of the first cutoff position. It has to be stressed
that the bump observed on the reflected amplitude is not a direct consequence of the
turbulent activity. Indeed, the time average of the reflected amplitude still presents the
bump while the turbulence effects cancel out. On this example, it might be sufficient to
raise the threshold value to get rid of the jump problem. However, if the value chosen for
the threshold is too large, a significant part of the plasma profile will not be taken into
account. The choice of the threshold value should result from a compromise between
jump avoidance and initializing the profile sufficiently far in the SOL. It is not possible
to define a threshold value which gives optimal results independently of the plasma
discharge. The threshold value needs to be determined on a case by case basis which

makes difficult to effectively and automatically initialize the density profile.

4.3.4 Long range correlations in the closed magnetic field line region

In the core plasma, the density fluctuation level is moderate (< 1%) [56]. This low
fluctuation level should guarantee a proper density profile reconstruction. However, it is
shown here that the core density profiles are affected by accidents which take place close
to the LCFS.

Fig. 4.13 shows the contours of the reconstructed density for the ohmic discharge #47475.
It can be asserted that density contours measured around r/a=0.3 up to r/a=0.9 are
highly correlated. This very long range correlation results from a shift of the recon-

structed profiles, which is an artificial effect introduced by the reconstruction algorithm.
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FIGURE 4.13: Contour plot of the reconstructed density for the #47175 Ohmic dis-
charge

In the following, a numerical model is used to identify the origin of the observed shifts
of the profile. Fig. 4.14 a) shows the time of flight (ToF) determined by FFT analysis
on #47178 .
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FIGURE 4.14: a) time of flight determined by FFT analysis and b), the associated
reconstructed density profile (the mean profile is also shown). c¢) simulated time of
flight and d), the associated perturbed density profile (the unperturbed profile is also
shown).
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A jump of the ToF , observed around F =~ 68 GHz, possibly causes a global shift of
the fluctuating profiles with respect to the mean profile (Fig. 4.14 b). This situation
was numerically reproduced in order to investigate the link between the ToF jumps and
profile shifts. To this end, the ToF associated to an initial density profile ( Fig. 4.14 d,
blue curve) was computed using the WKB approximation. A rectangular step type per-
turbation was superimposed (Fig. 4.14 c) to qualitatively reproduced the experimental
features. The density profile (Fig. 4.14 d, red curve) reconstructed from the perturbed
ToF is clearly shifted with respect to the initial profile. This models confirms, at least
qualitatively, that the profile shifts are due to jumps of the ToF. The jumps of the ToF
appear in the surroundings of the LCFS. As the jumps are not compensated, the recur-
sive reconstruction algorithm propagates the error to the whole profile. The origin of

these jumps has not yet been identified.

4.4 Summary

The reconstruction of fluctuating density profiles was addressed in this chapter. The
possible shadowing of the density profile by large amplitude fluctuations turned out to
be a marginal problem. It was shown in Sec. 4.2.1 that thanks to X-mode polarization,
the density profile remains monotonic up to relatively large fluctuation levels. However,
various phenomena, which were not considered a priori, may have deleterious effects
when reconstructing fluctuating density profiles. The threshold method used to initialize
the density profile frequently leads to jumps of the first cutoff position. These jumps
generate multimodal statistical distributions (Sec. 4.3.3). In the closed magnetic field
line region, the instantaneous profiles are shifted one respect to each other. The global

shift is caused by leaps of the time of flight which appear in the surrounding of the LCFS.

With the present treatment of sweeping reflectometry data, the fluctuating profiles ap-
pear to be affected by artificial effects introduced by the reconstruction algorithm. The
analysis of the fluctuation properties of the reconstructed profile should be thus avoided
particularly in the plasma core and far SOL. However, it might be possible to solve the
initialization problem. It was shown that the jumps of the first cutoff position were re-
lated to the non monotonicity of the mean reflected amplitude. A method, which takes
into account the mean amplitude profile, may bring satisfactory results for the profile
initialization. It would probably be more complicated to overcome the shift of the profiles

given that it is closely linked to the recursive character of the B-C algorithm.

It appears that the region right outside the LCFS is not affected by these undesired ef-

fects. As a consequence, the next chapter is devoted to analyze the fluctuation properties
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in the few centimeters beyond the LCFS, where measurements from ultrafast sweeping

reflectometry and pecker probes are available.



Chapter 5

Comparison of the measurements
from ultrafast sweeping

reflectometry and pecker probe in
Tore Supra SOL

Turbulence measurements in tokamak plasmas are challenging. The interpretation of
turbulent data often requires strong assumptions. In general, the justification of the
assumptions cannot be forwardly deduced from the measured data. However, the as-
sumptions can be indirectly tested by comparing data obtained from independent di-
agnostics. If turbulence data, measured by diagnostics based on significantly different
physical mechanisms, exhibit the same properties, it is then reasonable to accept the

underlying assumptions.

This idea has motivated a detailed comparison of the signals measured by the ultrafast
sweeping reflectometer and the Langmuir probe. Both diagnostics are sensitive to the
electron density and its fluctuations, consequently the properties of the latter will be
compared with the aim to discuss the assumptions underlying the interpretation of their
signals, and specifically the role played by the electron temperature fluctuations. To this
purpose, measurements obtained in Ohmic discharges in the SOL region of Tore Supra

are presented.

First, the parameters of the analysed discharges are presented. As a visual inspection
of the data is not sufficient to decide if the measurements from both diagnostics are

consistent, several indicators are used. The density profiles are shown in the close! SOL.

! Close SOL designates the region extending from the LCFS to 2-3 cm outside the LCFS, where probe
measurements are available.

51
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Then, the statistical distributions computed at a fixed radial position are compared. The
fluctuation level and the skewness radial profiles are also analyzed. Finally, the temporal

properties of the probe and reflectometer signal are investigated.

5.1 Parameters of the analyzed discharges

The experimental setup and the two diagnostics have been extensively presented in Chap.
2 and only few points are reminded here. The reflectometer and the probes share the
same equatorial port on the Tore Supra tokamak. The probe is inserted in the antenna
limiter (LPA) right next to the reflectometer. The spatial proximity of the reflectometer

and the probe reduces the eventual effects of poloidal and toroidal asymmetries.

7 Ohmic discharges (#47125,47126,47171,47177 — 47179,47182 ) have been analyzed.
During a single discharge, several independent datasets can be acquired. A dataset
acquired by the reflectometer is referred to as a burst whereas a dataset acquired by the
probe is referred to as a plunge. In total, 16 bursts and plunges have been compared.
The bursts and plunges were performed almost simultaneously. This quasi-simultaneity
guarantees that the plasma parameters do not evolve between a burst and the associated
plunge. However, the plasma parameters might possibly evolve between different data
acquisitions. The range of parameters covered by the chosen dataset is presented in Tab.
5.1.

Parameter By (T) (n.) (m~3) Ip (MA) Pg (MW) Rg (m) LCFS (m) LPA (m)

Min. value 3.2 1.4 x10  0.85 0.63 2.35 3.06 3.13
Max. value 3.7 50 x10 1.3 1.43 2.52 3.13 3.15

TABLE 5.1: Range of plasma parameters for the 16 analyzed datasets corresponding
to 7 Ohmic discharges #47125,47126,47171,47177 — 47179,47182

5.2 SOL density profiles

The SOL electron density profiles were reconstructed for the 16 datasets. Density pro-
files obtained by reflectometry measurements were averaged over time intervals lasting

between 3 and 15 ms, i.e. much longer than the fluctuations time scale.
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5.2.1 Reconstruction of density profiles from the ion-saturation cur-

rent measurement

The probe scans a region of 3.5 cm radial extent in approximately 1 ms. The probe
density profiles were obtained using the relation between the ion-saturation current and
the electron density , I; st = Aenecgmbe, with cé””"be = \/m and A the
effective collection area. I; 44+ and T are obtained by an exponential fit of the I-V
curves. In general, the charge Z and the ion temperature T; are not measured in the
SOL plasma; setting their values to Z = 1 and T; = 2T, is considered as a reasonable
choice [57].

5.2.2 Comparison of the SOL density profiles

Fig. 5.1 a)-c) show 3 among the density profiles measured by probe and reflectometry. In
these examples, the density measured by the probe is larger than the density measured
by reflectometry. This difference is confirmed by Fig. 5.1 d) which shows the probe
density against the reflectometer density for the 16 datasets. All the probe densities

stand above the reflectometer densities.

5.2.3 Discussion

We first investigate whether the observed density discrepancy might be due to an underes-
timate of the ion temperature T; and/or the charge Z. The role of Z on the ion-saturation
current was found to be unsignificant [58|, consequently only the impact of 7; is discussed
here using a reductio ad absurdum. Assuming that the errors on the ion-saturation cur-
rent and the average density profiles are negligible, then the ratio of these two quantities

should provide a correct estimate of the ion sound speed, creflecto. _ i sat /Aengef lecto.

r

The difference between 5/ and 2"°* may reveal how large is the error on the as-

sumption of the ion temperature. Fig. 5.2 shows a typical example of the comparison of
creflecto and 2%, Pro% Jecreases whereas ci¢/'*“1 increases with the distance to the
LCFS, respectively. An increase of the ion sound speed in the SOL region requires that
the ion temperature increases to compensate the decrease of the electron temperature.
Experimental measurement in Tore Supra SOL shows a decrease of T; with the distance

to the LCFS [57]. Consequently, this scenario is hardly acceptable.

The ratio of the ion-to-electron temperature is plausibly underestimated but cannot
explain alone the differences on the measured densities. Many other error sources can

have deleterious effects on the density measurements. To list a few, uncertainties on the
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LPA position and uncertainties on the magnetic equilibrium reconstruction can seriously

impact the densities estimated from the pecker probe and the reflectometer, respectively.

5.3 Comparison of the statistical properties

The previous section was dedicated to compare the average density profile, which is an
equilibrium plasma quantity. In this section, the properties of the density fluctuations are
compared. Statistical indicators are suitable to quantify the properties of SOL density
fluctuations [59]. In this region, the turbulent activity is generally intermittent, which
is traduced by a non-Gaussian and skewed PDF [60, 61|. The fluctuation level is here

rather large and can reach tens of percent [62].

Before presenting the results of the comparison of the statistical properties, it is worth to
explain how the densities fluctuations are extracted from the ion-saturation signal and

the density profile obtained by reflectometry.

5.3.1 Extraction of the density fluctuations

The outcome of a measurement of plasma turbulence X(r,t) is assumed to be composed

of an equilibrium part X°(r) and a fluctuating part X (r,t),

X(r,t) = X°(r) + X (r,1). (5.1)

By definition, the equilibrium part is time independent and depends only on the spatial
position. Using this representation, the fluctuating component can be extracted by
subtracting the equilibrium part. The equilibrium part X%(r) is identified as the time
average of the signal (X (r));.

Application to the probe signal

The pecker probe moves into the plasma while measuring the ion-saturation current.
During a single plunge, it is consequently not possible to obtain an ensemble of measure-
ments at a fixed radial position. This problem is overcome by assuming that the probe
signal is stationary on a radial interval of small extent. For a given radial interval, the

ion-saturation current is proportional to

Ii sat(t) o (ng + ﬁe(t))(Teo + Te(t>)1/2- (5.2)
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If the effects of the electron temperature fluctuations on the ion saturation current are
neglected in the SOL, the fluctuating component of the ion-saturation is proportional to

the density fluctuations I; sq¢(t) — (Li sat) o Te(t).

Comments on the probe collector asymmetries: As mentioned in Sec. 2.2.1;
two collectors, located on both sides of the probe, measure I; 4¢. The collector A faces
the high field side whereas the collector B faces the low field side. Fig. 5.3 shows a
sketch of the probe as well as the raw ion saturation current I; sq¢(t) measured by both
collectors. The fluctuation amplitudes of the signal collected by B are larger than the
fluctuation amplitudes on the signal collected by A. The comparison of the fluctuation
level, defined as oy, ,, /(I sat), shows that the fluctuation level is significantly larger for

k3

I %at than for Ifsat (Fig. 5.3 b)), which corroborates the latter observation.
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FIGURE 5.3: a) Comparison of the raw I; 55, measured 1 cm outside the LCFS by the
collectors A and B. b) Comparison of the fluctuation levels. The fluctuation levels are
computed on a radial interval of 3 mm extent.

This asymmetry is coherent with an interchange driven turbulence. Large density fluctu-

ations are abundantly produced at the low field side mid plane, the most unstable region
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with respect to the interchange instability. Due to fast parallel transport, the density
fluctuations rapidly move along the field line connected to the collector B, resulting in a
highly fluctuated signal. On the contrary, the collector A is connected to a more stable
region which explains why fluctuations are less pronounced on this side of the probe.
Similar asymmetries have also been observed with the rake probe [63] located at the top
of the device (see Fig. 2.2). However, it is somehow surprising that A-B collector asym-
metries are already present on the pecker probe although the probe is only 20° poloidally
displaced with respect to the mid plane.

Given that the reflectometer is located in the mid plane, only the collector which faces
the mid plane, namely the collector B, is used for the comparison of the electron density

fluctuation properties.

Application to the reflectometer signal

The extraction of the density fluctuations from reflectometer measurements is direct
because the B-C algorithm directly gives the reconstructed density. For a given radial

interval, the density fluctuations are obtained through 7. (t) = n.(t) — (ne):.

5.3.2 Comparison of the probability distribution functions

The PDFs have been estimated on radial intervals located between the deepest probe

probe

probe
andr, ..

position r, . 43 mm. The number of measurement lying in the radial interval
is significantly larger for reflectometry (between 2 x 10* and 1 x 10°, depending on the

discharge) than for the probe (around 8 x 10?).

An indicator was constructed to quantify the similarity between PDFs from both diag-

nostics, defined as follows

N—-1
Cppp = Y |PDF/ (3] < n, < afth) — PDFP™ (7l < n, <@l*)|AR.  (5.3)
j=1

N is the number of bins and An is the bin size. Fig. 5.4 illustrates the indicator used to
quantify the differences between two numerically generated PDFs. (ppr is the absolute
value of the area between the PDFs. The smaller is (ppr, the more similar are the
PDFs. In practice, N = 50 was chosen in order to ensure that a sufficiently large number
of experimental points lie in each bin. Fig. 5.5 shows 4 of the PDFs. In general, the
PDFs are positively skewed. For the analysed discharges, (ppr = 0.08 and (ppr = 0.41
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FIGURE 5.4: The shaded area between two PDFs corresponds to (ppp.

are the minimum and maximum values of the (ppr over the data set, respectively. As
a rule of thumb, the agreement between PDFs is considered as good for (ppr < 0.15,
acceptable for 0.15 < (ppr < 0.23 and bad for {(ppr > 0.23. Using this classification, 9
PDFs out of 16 are found to be in good agreement. 5 PDFs out of 16 agree acceptably
well and 2 PDFs out of 16 do not agree.
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drers ~ 1, 1.8, 0.9 and 0.8 cm for a), b), ¢) and d), respectively. The PDFs are
sorted in increasing order of (ppp values.

5.3.3 Comparison of the fluctuation level profiles

The fluctuation level is defined as the ratio of the standard deviation to the mean value.
In order to follow its radial evolution, the signals are windowed in intervals of 3 mm extent
and the fluctuation level is computed on each interval. Fig. 5.6 shows the comparison
of the fluctuation level profiles computed on probe and reflectometry data. Results
have been sorted by their distances to the LCFS. The first case, a), corresponds to
measurement for which dpopg is minimum, whereas the last case, p), corresponds to
the case where dpcorg is maximum. The fluctuation level values are about 30% percent.
An overall good agreement is found between fluctuation levels measured by probe and
reflectometry. No hierarchy has been identified between the probe and the reflectometer

fluctuation level, i.e. the probe fluctuation level is not always larger nor smaller than

that from the reflectometer.
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#47182 t~11s #47179 t~7s #47179 t~5s #47179 t~8s

fluctuation level

FIGURE 5.6: Radial profiles of the fluctuation level obtained from probe (blue curves)
and reflectometry data (red curves). The results are sorted by their distance to the
LCFS. Note that ¢) and p) are the datasets for which the PDFs do not agree.

5.3.4 Comparison of the skewness profiles

The skewness profiles have also been compared (Fig. 5.7). Again, results have been sorted
by their distances to the LCFS. The skewness is a third order moment, subsequently
the number of experimental points required for the convergence of the skewness can be
substantially large. The statistical error on the skewness, due to a finite number of
available experimental points, has been estimated for the probe data (see Appendix A).
In spite of the limited length of the probe time series (around few thousands points), the

statistical error is rather moderate and does not exceed 10% of the estimated skewness.

Even if several cases show qualitative discrepancies (e.g. Fig. 5.7 0)), the skewness mea-

sured by both diagnostics is in overall agreement, with positive values ranging between
S~0 and S=2.

Numerous experimental works have reported an increase of the skewness with the dis-

tance to the LCFS [64-67|. The present results show similar trend on several single
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discharges (Fig. 5.7 b), d) and j)-n)); however when considering the whole data set, no

significant radial increase of the skewness is found.

—_—

o
RO

skewness

FIGURE 5.7: Radial profile of the skewness obtained from probe (blue curves) and
reflectometry data (red curves). The results are sorted by their distance to the LCFS.
Note that ¢) and p) are the datasets for which the PDFs do not agree.

5.3.5 Discussion

The statistical properties of the electron density fluctuations measured by the ultrafast
sweeping reflectometer and the pecker probe are in good agreement. The non-Gaussian
PDFs show an excess of positive values. This behavior is consistent with the paradigm
of blobby transport for the SOL of a tokamak. The fluctuation levels agree remarkably
well for all the dataset and each radial position. The estimated skewness was found to
be positive on both the probe and reflectometer dataset. Nonetheless, the dispersion
observed in the skewness values cannot be only explained by the finite length of the

dataset.

The overall agreement of the statistical properties, which do not present any systematic
shift of one diagnostic data with respect to the other, supports the idea of a weak impact

of the temperature fluctuations on the ion saturation current fluctuations.
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This idea can be easily understood if we consider the opposite case, i.e. a strong impact
of the temperature fluctuations, and investigate its consequences on the fluctuation level.
If 71 and T, were in phase, then the fluctuation levels measured by the probe would be
probably larger that than those measured by reflectometry. If 7, and T, were out of
phase, then the fluctuation levels would be likely lower than those measured by reflec-

tometry.

5.4 Comparison of the temporal properties of the probe and

reflectometer data

The analysis of the PDFs and the statistical moments is suitable to address the inter-
mittency of the density fluctuations but does not contain information on the temporal
dynamics of the turbulence. Consequently, the last step of this cross diagnostics investi-
gation consists in estimating the characteristic time scales of the reflectometer and probe
signals. This is done by analyzing the autocorrelation function (ACF), which is defined

for an arbitrary time series X (t) as

(X)Xt = At))s

2
Ox

ACFx(At) =

5.4.1 Extraction of the time series

Ideally, the data used for the ACFs should be uniformly spaced in time and recorded at
a fixed spatial position. Namely, the data should form a time series. This is not the case

in practice but the data can be judiciously selected to approximately form a time series

Application to the probe data

The probe time series is straightforward to construct, it is the ion-saturation signal

probe + 3 mm. Given that the

min

probe

recorded between the deepest probe position 7, .~ and r

probe signal is sampled at 1 MHz, 1 us separates two successive probe measurements.

Application to the reflectometer data

The reflectometer time series are more tricky to build. First, it is worth to remind that

the outputs of the reconstruction algorithm are n.(F,t) and R(F,t). In order to obtain
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data uniformly spaced in time, the frequency must be fixed. In this case, two successives
data points are separated by 3 ps. However, as both n.(F,t) and R(F,t) significantly
evolve in time as discussed in Sec. 4.3 Fig. 4.7, successive data points can be separated
by several centimeters. As the turbulence properties vary on a radial scale of the order
of the centimeter in the SOL region, working at fixed frequency is problematic. It is
wiser to work at fixed radial position even if the data are no longer uniformly spaced in
time. To this end, the frequency index, for which the reconstructed radial position is the
closest to a given radial position, is retained for each sweep. Concatenating the densities
associated to the retained frequency index allows us to form the time series. With this
method, the time interval between two successive data points can slightly vary. However,

the time variation is of the order of 0.1 us and will be neglected.

Fig. 5.8 shows examples of time series measured at drcrpg ~ 1.5 cm. The time series

have been normalized to facilitate the comparison.

#47125 t~8s #47125 t~8s
% 2 EZ 2 || ‘ | | |
Lo = OW WW w\ M Mw | M W Q U M %M | W |
é2‘_20 1000, 2000 3000 v—20 1000 2000 3000

F1GURE 5.8: Example of probe and reflectometer time series obtained on #47125 at
t ~ 8 s at the radial position drcrpgs ~ 1.5 cm.

The reflectometer time series oscillates much faster than the probe time series. A slower
component is also observed on the reflectometer time series but its amplitude appears to

be lower than the fast oscillating component.

5.4.2 Comparison of the autocorrelation functions

The ACF has been computed on the probe and reflectometer time series for each dataset.
Fig. 5.9 shows 4 representative examples of ACFs obtained from probe and reflectometer
data. The probe ACFs decrease much slower than the reflectometer ACF. This differ-
ence was observed on the whole dataset. The probe ACFs full width at half maximum
(FWHM) ranges from around 20 ps to 50 pus whereas the reflectometer ACFs FWHM is

always shorter than 6 us.
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F1cURE 5.9: Examples of ACF obtained on probe and reflectometer data at dpopg ~
0.7 cm (a)), drorps ~ 1.5 cm (b)), drers ~ 0.7 cm (¢)) and drops ~ 1.6 cm (d)).

The probe ACFs decrease smoothly to zero while the reflectometer ACFs behave differ-
ently. The reflectometer ACFs drop sharply from 1 to low correlation values between
At =0 ps and At = +3 us. Then, the reflectometer ACFs decrease slowly for increasing
time lags. This behavior confirms the presence of two time scales mentioned in the last
section. An uncoherent fast oscillating component might cause the Dirac-like central
peak whereas slow variations of the signal may explain the smoother decrease of the

ACF for larger time lags.

5.4.3 Discussion

In order to get an insight on the mechanism which might be liable for the fast fluctuations
observed on the reflectometer data, it is worth to build a model for the reflectometer
time series X (t). The simplest model consists in expressing the time series as a coherent

time series S(¢) corrupted by an additive incoherent white noise 7(t)?,

2Here, noise means all the components of the recorded signal that are not taken into account by our
model. Given that the B-C algorithm uses a 1-D WKB description of the probing wave, phenomena such
as multidimensional effects, Bragg backscattering, multi-reflections, instrumental errors, etc... enter in
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X(t) = S(t) +n(t). (5.5)

The ACF of X(t) is

((S(t) +n(8)(S(t+ AL) +n(t + At)))

ACFx(At) = 2 (5.6)
ox
Assuming that S(t) and 7n(t) are independent variables and 7(¢) has zero mean,
A A
ACEx(ar) = (SO0 +80) + (n(ente + A0) .
o5+ oy
Finally, the AC' Fx takes the form
o3 &

ACFx (At) = —=—ACFg(At ACF,(At). 5.8
CFx(80) = 755 ACKS(0) + 570 ACE () (5.9

The ACF of the reflectometer time series is the pondered sum of the ACF of the coherent
time series and that of the white noise. By definition, the white noise ACF equals unity

for At = 0 and zero elsewhere.

This model is investigated numerically by generating the time series S(t) and 7(t) with
an exponential and a Dirac-like ACF, respectively [68]. The standard deviation of S(t)
and 7(t) have been set to og=1 and o, = V/3, respectively. Fig. 5.10 shows the ACFs
computed on S(t), n(t) and X (t) = S(¢)+n(t). The ACF computed on the resulting time

R B e 99 ~S()m()
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0.2 0.2 0.2
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FIGURE 5.10: ACFs computed on numerically generated time series. a) coherent com-
ponent ACF, b) white noise ACF and ¢) coherent component plus white noise ACF.

series X (t) reproduces well the experimental features observed in Fig. 5.9. According
to this model, the sharp decrease of the ACF computed on the reflectometer time series
might be due to a white noise the amplitude of which is larger than the amplitude of the

coherent time series (o, > 0g).

the noise term. A priori, these parasitic phenomena are independent. According to the central limit
theorem, it is then reasonable to model them with a Gaussian distribution.
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Despite the simplicity of this model, it provides a possible scenario to explain the different
time scales present on the reflectometer and the probe time series. Nevertheless, the

properties of the scenario are highly dependent of the reflectometer signal decomposition.

The model can be refined by evaluating the PDF of the uncoherent component of the
measured time series. To this end, the reflectometer signal is filtered to extract the
coherent part of the signal. The parameters of the filter are choosen such as to obtain

an ACF FWHM for the reflectometer signal similar to that of the probe signal.

#47125 t~8s #47125 t~8s
a) 6 —raw b) A | | —~-raw
¢4 —filtered -=filtered
L
5 <u3 0.5
N .
: <

500 1000 1500 2000 -100 50 50 100

0
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FIGURE 5.11: a) raw and filetred normalized density fluctuations time series obtained
from reflectometry and b), the associated ACFs.

Fig. 5.11 shows a comparison of the raw and filtered reflectometer time series. Once
the fast fluctuating component has been removed, the ACF significantly broadens. In-
terestingly, the filtered time series skewness is S = 0.5 whereas the original time series
skewness is S = 1.1. By filtering the signal, the skewness is strongly reduced meaning
that the fast fluctuating components should follow a positively skewed PDF in order to

contribute significantly to the skewness of the time series.

The simplest decomposition was chosen, namely the reflectometer time series was sepa-
rated into a fast and a slow component. However, others choices for the decomposition
might lead to different scenarios. In summary, the underlying mechanism should have a

signature 7 with the following properties

e a time scale much smaller than the density fluctuation time scale estimated from

the probe time series,

e an amplitude of the order of the amplitude of the coherent component of the time

series,

e a non-Gaussian positively skewed probability distribution.
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A major assumption underlies the reflectometric reconstruction of the density profile.
The reflectometer measurement is assumed to be well localized both radially and poloidally.
This is partially true given that the reflectometer signal comes not only from the reflec-
tion of the probing waves at the cutoff layer but is also Bragg backscattered in front of
the cutoff layer. In Appendix A, the poloidal size of the beam spot is estimated to 20 cm,
which is larger than the characteristic size of the density fluctuations. Consequently, the
reflectometer signal is not localized poloidally. On the contrary, the probe measurements

are almost ponctual given that the size of the collectors is millimetric.

A plausible scenario can be built by associating the coherent and incoherent components
of the time series to the localized (reflection at the cutoff layer) and unlocalized (back
scattering and 2D effects) parts of the reflectometer signal, respectively. This scenario
could explain why the fast fluctuations are observed on the reflectometer but not on the
probe time series. The multidimensional effects might lead to a randomization of the
reflectometer signal which is consistent with the very fast fluctuations of the time series.
If the multidimensional effects are cumulative, the amplitude of the incoherent signal
may be similar to the amplitude of the coherent signal. However, it is not clear why

multidimensional effects should lead to a non-Gaussian positively skewed noise.

5.5 Summary

In order to validate the assumptions underlying the interpretation of reflectometer and
probe measurements, the electron density profiles and its fluctuations obtained from
both diagnostics have been compared. The comparison was performed on the basis of
16 independent datasets measured in the Tore Supra SOL during Ohmic discharges.
The analysis has covered several properties of the electron density, namely the density
profile, the statistical properties (PDFs, fluctuation level and skewness profiles) and the

autocorrelation functions.

The density measured by the probe was found to be systematically larger than the density
measured by reflectometry. The probe density evaluation requires an assumption on the
ion temperature. The possibility of an underestimate of the ion temperature was explored
but does not appear sufficient to explain the inconsistency between the density profiles

measured by both diagnostics.

The analysis of the electron density fluctuations through the probe ion-saturation current

fluctuations is based on the assumption of negligible electron temperature fluctuations.

~reflecto.
e

The good agreement between the statistical properties of fmat and n tends to

confirm the assumption that fiwt is not significantly affected by T.. A numerical and
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experimental study performed with a gyrofluid turbulence code has reported similar

conclusions [69].

The temporal properties of the probe and reflectometer data have been investigated using
the autocorrelation functions. The reflectometer ACFs significantly differ from the probe
ACFs. This difference was attributed to the presence of a fast fluctuating component on
the reflectometer time series. The origin of the fast fluctuating component is possibly

linked to multidimensional effects, which arise only on the reflectometer signal.

It is, somehow, challenging to conciliate the discrepancies of the temporal properties of

~reflecto.
Ii,sat and ne

and the good agreement of the statistical properties of the latter quan-
tities. The arguments developed in this chapter were based on an idealized description of
the interactions of the diagnostics and the SOL plasma turbulence. Consequently, only
the leading order effects, which might explain the differences between both diagnostics,
have been addressed. A more complete picture should emerge by inserting synthetic
Langmuir probe and reflectometer diagnostics in a turbulence code. In order to validate
the conclusions of this study, the turbulence code should describe, at least, the evolution

of the electron density and temperature as well as the ion temperature in the tokamak

SOL region on time scales relevant to experience, namely few milliseconds.



Chapter 6

Turbulence correlation properties
measured on Tore Supra Ohmic

discharges

In the first part of this work, attempts have been made to quantify the electron density
fluctuation properties from the reconstructed density profiles. These attempts have been
moderately successful. One of the main problems is related to the shifts of the profiles
which make impossible to investigate the turbulence properties in the closed magnetic

field lines region.

Consequently, a new approach is adopted here: the turbulence properties are investigated

through a correlation analysis applied to the reflectometer raw signals.

The analysis of the correlation properties of reflectometer signals were generally done
using two-frequencies reflectometry (correlation reflectometry) [70-76].

The sweeping reflectometry system allows us to obtain continuous radial correlation pro-
files during a single discharge whereas standard correlation reflectometry only provides
discrete measurements. It has though to be noted that the sweeping reflectometry tech-

nique can be used as far as the turbulence is frozen during the sweeping time.

In this chapter, the temporal and spatial correlation properties of the raw fluctuating
data have been analyzed from the far SOL to the core plasma region in Tore Supra Ohmic
discharges. In particular, the correlation analysis was performed on each component of
the reflectometer signals, namely the amplitude, phase, real and imaginary parts and
the full complex signal. This part of the study aims at sheding some light on the actual
debated question of which reflectometer signal better performs the turbulence correlation

properties.

69
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Previous experimental and numerical studies have addressed this issue. By comparing
Langmuir probes and reflectometer data measured on the CCT tokamak in the presence
of strong fluctuations [77], a close correspondence was obtained between the correlation
length measured on the Acos(¢) signal and the ion saturation current. Numerically,
turbulent cut-off layers have been modeled by broadband random fluctuations. In the
first attempts, the wave-plasma interaction was described with simplified models, namely
WKB approximation [78] and physical optics [79]. It was found that the A cos(¢) sig-
nal better estimates the turbulence correlation length than the phase or the amplitude
signals. More recently, a 2D full-wave code was used to simulate O-mode reflectometry
[80]. The amplitude correlation length was there found to be in good agreement with the
turbulence correlation length for low fluctuation levels (linear regime). At higher fluctu-
ation levels, the correlation lengths appeared to be better estimated from the A cos(¢)
signal. Overall, the numerical studies have reported that the correlation lengths obtained
from the reflectometer signals tend to underestimate the turbulence correlation length

at high fluctuation level. This underestimate was also found analytically [81].

The chapter is divided as follows. First, the methods used for the determination of the
fluctuations radial sizes, namely the cross-correlation and the coherency, are presented.
Then, the correlation and the coherence length profiles computed on the different compo-
nents of the signal are compared. The impact of MHD activity on the coherence length
is also considered. Finally, the turbulence correlation properties measured in the edge

and SOL regions are discussed in detail.

6.1 Signal analysis

We remind that the complex signal measured and recorded by the reflectometer at time
t is expressed as:
S(F,t) = A(F, t)ei),

where A and ¢ are the amplitude and phase of the signal, respectively. F'is the probing

signal frequency.

The first step is to link the probing frequencies to the associated radial cut-off positions.
To this end, the knowledge of the electron density profile is required. As largely detailed
in Chap. 4, the electron density profile is reconstructed for each frequency sweep ac-
cording to the B-C recursive algorithm [25, 82]. The radial dependence of the cut-off
frequencies is given from the mean density profile which is obtained by averaging over
the N sweeps acquired during a single burst. Then, the frequency dependence of the

reflectometer signal is replaced by the radial dependence.
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Each component of the reflected signal can be written as the sum of an unperturbed
and a fluctuating part associated to the mean density profile and the plasma density

fluctuations, respectively.

SX(rt) = X(r,t) — (X(r)):. (6.1)

Here, X (r,t) denote any component of the reflected signal, namely either the full complex

signal, the real or imaginary part, the phase or the amplitude.

6.1.1 Cross-correlation

Quantitative properties of the signal fluctuations are extracted through a cross-correlation
analysis. The cross-correlation function (CCF) evaluates the similarity between data
measured at different positions and times. The CCF(r, Ar, At) computed on two time
series X (r,t) and X (r + Ar,t + At) measured at different positions reads:

([(X(r,t) = (X(r)e][X (r + Ar,t + At) — (X (r + Ar))e])s

CCF(r,Ar,At) = , (6.2
OX(r)0X (r+Ar)

(X(r)): and ox() denote the mean and standard deviation, performed over the time
series measured at the position r. The CCF is meaningful if the fluctuation time scale is
much shorter than the time series length. The CCF computed for Ar=0 is the autocorre-
lation function (ACF). The correlation time t.op is defined as the ACF FWHM. Reliable
correlation times can be obtained only if there are at least 3 experimental points on the
ACF above 0.5. Given that the time resolution is 3 us, the lowest accessible correlation
time is thus t. = 6 us.

The radial correlation length is defined as the CCF FWHM for At = 0. In practice, the
correlation time and length are calculated by linearly interpolating the CCF around 0.5.

The relation between the correlation length and time is discussed in Sec. 6.3.
Fig. 6.1 shows an example of the CCF computed on the signal amplitude.

In this example, the CCF contour levels are positively tilted in the (Ar, At) plane. This
tilt is a consequence of radially outward propagating fluctuations. The time lag At for
which the CCF peaks, satisfying At # 0 and CCF(r, At, Ar) > 0.5, is identified. If
at least 10 experimental points fulfill the previous condition, a linear fit of the curve
Ar = Vo At is performed to obtain the radial velocity Vio-. Fig. 6.2 illustrates the

procedure used to estimate the radial velocity on the amplitude data.
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FIGURE 6.1: Contour plot of the amplitude cross-correlation function, for Tore Supra
Ohmic shot #47170 measured 7 cm outside the LCFS. The correlation time ¢, and
length L., are represented by arrows.
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FIGURE 6.2: Position of the time lags (blue dots) where the amplitude CCF peaks, for

Tore Supra shot #47170 measured 7 cm outside the LCFS. Only time lags verifying

At # 0 and CCF(r,At, Ar) > 0.5 are kept. The red line is the linear fit from which
the radial velocity is estimated.

6.1.2 Coherency

If X is a complex variable, it is more convenient to work with the Fourier transform of
the CCF(r, Ar, At) called coherency

<PXTXT+AT >

r,Ar, F) = .
N A ) = e Pr s a2

(6.3)

Here Px, x Py, x, and Px are the cross and auto power spectra computed

r+Ar? T+ATXT+AT

on the time series X(r,t) and X (r + Ar,t). The power spectra are computed with
sliding FFTs on 128 points windows with 50 overlapping. Here, (-) denotes the average

performed over 40 spectra. The coherency gives information on the correlation of each
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frequency included in the time series. Consequently, a radial coherence length defined
as the coherency full width at half maximum can be calculated for each frequency. To
avoid any confusion, the subscripts coh and corr are used when we refer to a quantity

computed with the coherency and the CCF, respectively.

Fig. 6.3 shows an example of the coherency computed on the complex signal. On this
example the coherence lengths are larger at low frequencies and decrease slightly when

the frequency increases.

FIGURE 6.3: Contour plot of the coherency computed on the complex signal in the
core plasma (p ~ 0.4) of the Tore Supra Ohmic shot #47475. The coherence length
Lop, is represented by an arrow.

The coherence analysis has been applied to the full complex signal whereas correlation
analysis has been applied to the amplitude A, phase ¢ and the real part of the reflectome-
ter signal Acos(¢) (in the literature often referred to as the homodyne signal [78, 79]).
Separate analysis of the amplitude and the phase has been performed as they contain
different plasma fluctuation properties. The differences between the phase and amplitude
signals can be though as follow: the amplitude better accounts for the 2D (two dimen-
sional), i.e. poloidal and toroidal, mirror reflecting effects, while the phase accounts for
the density profile deformation and mostly refers to a 1D radial effect. The complex and

homodyne signals are sort of mixes of both phase and amplitude.

6.2 Application to Tore Supra Ohmic discharges

Correlation measurements obtained on Tore Supra Ohmic discharges are presented. First,
we show how the fluctuation length profile can be computed over the whole radius. It
is then highlighted how MHD activity could impact the determination of the coherence
lengths. Finally, the correlation properties are analysed in detail in the edge and SOL

plasma, over a discharge which provides better statistics.
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In the following, core (p < 0.7) and edge (0.7 < p < 1) refer to closed magnetic field lines
regions, whereas SOL (p > 1) refers to the region outside the LCFS. The radial position
is labelled by the normalized toroidal flux coordinate p for data mostly obtained in the

closed magnetic field lines region whereas the distance to the LCFS dpcrg is used in the
SOL.

6.2.1 Radial correlation length profile

Tore Supra shot #47475 is a low magnetic field (B = 3 T) Ohmic discharge. In these
conditions, the accessibility of the reflectometer measurement can cover the plasma from
about p ~ 1.2 to around p = 0.3 and provide a complete density profile from the far
SOL to the core region (Fig. 6.4 a). Fig. 6.4 b) shows the complex signal power
spectra at two different radial positions as well as the noise level, the latter being well
above the plasma signals. In the core plasma at p = 0.5, the spectrum is dominated by
frequencies in the range -50 kHz < F < 100 kHz and falls rapidly for higher frequencies.
In the edge plasma, at p = 0.8, the spectrum is flatter. The flattening of the power
spectrum might be related to the increase of the fluctuation level, which raises from
around 0n./ne. ~ 0.8% at p = 0.5 to about dn./n. ~ 2% at p = 0.8 (Fig. 6.4 a), black

curve). Here, the fluctuation level was computed as in [54].
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FIGURE 6.4: a) mean electron density profile. The fluctuation level is superposed in

full black line. The uncertainties, quantified by the standard deviation, are shown for

two radial positions. b) Complex signal power spectra computed at p = 0.5 (blue curve)

and p = 0.8 (black curve). The spectral characteristics of noise are also shown (green
curve).

3000 frequency sweeps were performed during a burst. During the acquisition, the mean
electron density < n, >= 1.98 x 10" m™3, the plasma current Ip = 0.7 MA and the
magnetic field By = 3.08 T were kept constant. Fig. 6.5 shows the radial and temporal

dependence of the normalized A , ¢ and Acos(¢) signals measured around t=3 s. The
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FIGURE 6.5: Normalized amplitude (top), real (middle) and phase (bottom) signals
with respect to the normalized radial position and time.

signals have been normalized by subtracting the mean value and dividing by the standard
deviation to weight the different plasma regions consistently. For this discharge, the
connection between the V- and W-band signals occurs at about p = 0.9.

In the far SOL the data present large turbulent structures propagating outwards which
are better seen on the amplitude rather than on the phase signal. On the opposite, in the
plasma core an MHD tearing mode (the central q—1 rational surface is hardly covered
by the reflectometer) has a stronger influence on the phase. The effect of MHD activity

will be discussed more precisely in the following relating to another plasma discharge.

Fig. 6.6 shows a comparison of the radial evolution of the coherence and correlation
lengths from the far SOL to the core plasma. The coherence lengths are measured on

the full complex signal whereas the correlation lengths are measured on the amplitude
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FIGURE 6.6: a) Coherence lengths with respect to the signal frequency and radial posi-

tion. b) Radial profiles of the coherence lengths averaged on three distinct frequencies

intervals. ¢) Radial profiles of the correlation lengths computed on the amplitude, real
part and phase signal.

phase and real part of the signal. Both coherence and correlation lengths decrease from
the centimeter range in the core plasma to millimetric at the LCFS and increase again
in the SOL plasma. It is worth noting that the continuity between the reflectometer V
and W bands is well recovered. The frequency dependence of the coherence lengths is
depicted on Fig. 6.6 a). In between p = 0.4 and p = 1.1, no difference is observed on
the coherence length for any frequency component. For p < 0.4, the coherence lengths
associated to low frequency components are clearly larger than the coherence lengths
associated to high frequencies. Fig. 6.6 b) shows the coherence lengths averaged on
three distinct frequency intervals: |F| = [0 : 5] kHz, |F| = [5 : 50] and |F| = [5 : 166]
kHz. The radial profiles of the coherence and correlation length are in close agreement
for p > 0.4, whereas reflect the presence of MHD modes in the inner region. In the latter
region, the coherence analysis is more appropriate allowing to separate the contribution
of the different frequency components as, it will be further investigated in the following

subsection.
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In the outer core, edge and SOL plasmas, coherence or correlation methods can be
equivalently used for the estimate of the fluctuation characteristic scales.

A detailed analysis of the edge region is presented in subsection 6.2.3 taking advantage of
a discharge where larger statistics and a comparison with fixed frequency reflectometer
data are available. In the above an implicit assumption of locally frozen turbulence was

used, which will also be proven on that same shot.

6.2.2 Effect of MHD activity on the correlation lengths in the core

plasma

This section aims at investigating how the correlation lengths are affected by MHD
modes.

As the MHD modes are active in the core region, we need to work with low density plasma
in order to probe the plasma up to the central region. Tore Supra shot #47537 meets
this specifications and was thus used here. 10.000 reflectometer sweeps were performed
corresponding to 30 ms acquisition. During the sweep, the mean electron density (n.) =
6.3 x 10'® m™3, the plasma current Ip = 0.6 MA and the magnetic field By = 3.38 T
were kept constant. Fig. 6.7 shows the radial dependence and temporal evolution of the

normalized A , ¢ and Acos(¢) signals.

The core plasma, is often characterized by a substantial MHD activity related to tearing
modes which is well recorded by the reflected signals [83, 84|. The ¢ profile computed
with the CRONOS integrated modelling suite code [85] has been superimposed to locate
rational surfaces to give a complementary and necessary information about the position
of rational surfaces. It is essential for their identification and the understanding of the
perturbed reflectometry data.

The data around the ¢ = 1 rational surface exhibit a complex radial and temporal
evolution. Fast oscillating tearing modes at 2 kHz are clearly visible on both sides
of the plasma center between 10 and 15 ms with an additional sawtooth crash just
after 15 ms. A first sawtooth crash also occurred at the very beginning of the data
acquisition, consistently to the electron cyclotron emission (ECE) signal from which a
sawtooth period of approximately 15 ms is obtained. Moreover, the sawtooth crashes
locally trigger an MHD activity at the neighbouring rational surfaces ¢ = 3/2 and ¢ = 2
as previously observed [86].

In order to separate the contribution of the MHD and microturbulence to the coherence
lengths, those were computed on 2 frequency intervals |F| = [0 : 5] kHz, |F| = [5 : 166]
kHz. Fig. 6.8 shows that the coherence lengths at low frequency, which are related
to MHD are up to two times larger than those at higher frequencies. Interestingly, a

reduction of the low and high frequencies coherence length profiles are observed around
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FIGURE 6.7: Normalized amplitude (top), real (middle) and phase (bottom) signals

with respect to the normalized radial position and time in the core region. The ¢ profile

(black line) is also represented. The positions of q=1,3/2 and 2 rational surfaces are
indicated by dashed-lines.
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FI1GURE 6.8: Coherence lengths computed on the complex signal for two distinct fre-
quency intervals (#47537).
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the rational surfaces ¢ = 1 and ¢ = 2. This might result from an interplay between

turbulence and MHD activity which remains to be investigated in a future work.

6.2.3 Edge and SOL regions

In this subsection, special attention is paid to the edge and SOL region turbulence
properties. This is done by analyzing data from the Tore Supra Ohmic discharge #47170.
The plasma lasted 15 s and was in steady state from t=4 to t=12 s. During the steady
state operation, the mean electron density < n, >= 2.1 x 10! m—3, the plasma current
Ip = 1 MA and the magnetic field By = 3.7 T did not vary more than 5%. Three
successive reflectometer bursts were realized at times t=5, 7.5 and 10 s which can thus
provide an interesting set of separate and independent measurements for the statistical

analysis. Fig. 6.9 shows the mean electron density profile. The fluctuation level profile
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FIGURE 6.9: Mean electron density around t=>5 s. The fluctuation level is superposed
in full black line. The uncertainties, quantified by the standard deviation, are shown
for two radial positions.

computed as in [54] is also shown and will be used for discussion.

Each burst has 3000 sweeps which corresponds to 9 ms of measurement time. For each
burst at a given radial position, the CCF are independently computed on the 9 ms time
series. Therefore, three Leopr, teorr and Vo measurements are available to quantify the

variation of the results over the plasma radius.

Edge plasma

First the correlation time is studied in the edge plasma. Fig. 6.10 shows that the sweep-
ing reflectometry ACF (black curve) computed at p = 0.64 drops very quickly to the noise

level. It is interesting to compare this result with fixed frequency reflectometry data. The
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F1GURE 6.10: Comparison of the amplitude ACF function computed at p = 0.64
around t=7.5 s between sweeping reflectometry (3us sampling time) and fixed frequency
reflectometry (1 s sampling time) data.

ACF measured with the fixed frequency reflectometer system (red curve) operating with
a 1 MHz sampling rate shows only three experimental points before reaching the noise
level. The correlation time obtained from fixed frequency reflectometry is t. = 2.3 us.
This comparison suggests that the Dirac-like ACF measured by ultrafast sweeping reflec-
tometry does not result from a white noise signal but from an insufficient time resolution.
Note that, contrary to the core plasma region in presence of MHD activity, the char-
acteristic fluctuation time scale in the edge and SOL region is much shorter than the
length of the time series; this stationary turbulence condition justifies the applicability

of the cross-correlation technique to evaluate the correlation length.
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FIGURE 6.11: a) Correlation lengths computed in the edge region on the amplitude,

real and phase signal. For each signal, the shaded area in between the maximum and

minimum correlation length represents the dispersion of the results. b) Amplitude CCF
computed at p = 0.95 around t=5 s.
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Fig. 6.11 a) shows the radial dependence of the correlation lengths computed on A,
Acos(¢) and ¢. The turbulence must be locally frozen to measure reliable correlation
lengths. A plasma region of 40 cm of radial extent is swept in 2 us, the largest structures
are therefore swept in 0.1 us which is much shorter than the local correlation time.

As already observed in Sec. 6.2.1 , the amplitude, phase and real signal correlation
lengths show similar behavior as they decrease from the edge to the LCFS. It is worth
noting that at p = 0.95, where the correlation length is minimal, the CCF measured by

the sweeping reflectometry is still resolved, as illustrated in Fig. 6.11 b).

The amplitude, real and phase correlation lengths rapidly decrease above p = 0.8 up to
p ~ 0.9 . The drop of the correlation length might originate from two distinct effects.
On one hand, the estimated correlation lengths can be artificially reduced due to the
high fluctuation level in the edge plasma (see Fig. 6.9, black curve) as discussed in the
introduction. On the other hand, velocity shear can tear apart the turbulent structures,
thus leading to a decrease of the correlation lengths. In order to investigate this latter
effects , the perpendicular velocity measured by Doppler reflectometry (Sec. 2.2.2) is
used and shown in Fig. 6.12. For 0.85 < p < 0.95, the plasma rotates in the electron
diamagnetic direction with a velocity of the order of 4 km.s~!. Around p ~ 0.95, the
perpendicular velocity drops by more than a factor two leading to a strong velocity shear.
The location of the strong velocity shear is not consistent with that of the drop of the
correlation length. Consequently, the velocity shear might have only little influence on
the radial decrease of the correlation lengths, this is most probably due to an increase of

the fluctuation level.
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FI1GURE 6.12: Radial profile of the perpendicular velocity measured by Doppler reflec-
tometry.
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SOL plasma

As mentioned above (Sec. 6.2.1), propagating structures in the SOL are better seen
on the amplitude signal thus only this signal is used to characterize the fluctuation in
the SOL. The correlation time is lower than 6 us close to the LCFS and grows almost
exponentially between dpops = 3 to 7 cm (Fig. 6.13). Further outwards, teop, stays

almost constant with values around 100 us.
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FIGURE 6.13: Amplitude correlation time in the SOL with respect to the distance to the
LCFS (drcrs). The shaded area, in between the maximum and minimum correlation
time, represents the variation of the results during the three bursts of sweeps.

Fig. 6.14 depicts the radial dependence of the correlation length of the amplitude signal,
which increases from about 2 mm at dcps= 2 cm to around 12 mm in the far SOL. At

6 cm from the LCFS a rapid increase of the correlation length is clearly identified and

quantified.
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FIGURE 6.14: Amplitude correlation length in the SOL with respect to the distance to
the LCFS (drcrs). The shaded area in between maximum and minimum the correla-
tion length represents the variation of the results during the three bursts of sweeps.
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FIGURE 6.15: Radial velocity evaluated on the amplitude signal with respect to the dis-
tance to the LCFS (drcrg). The shaded area in between the maximum and minimum
radial velocity represents the variation of the results.

The radial velocity has also been evaluated in the far SOL as shown in Fig. 6.15. Closer
to the LCFS, the time lag for which the CCF peaks is zero, therefore the radial velocity
cannot be properly inferred in this region with the cross correlation method. The radial
velocity decreases rapidly from 6 to 7 cm away from the LCFS. Further outwards, the

radial velocity decreases only slightly with values between 150 m s~! and 220 m s~!.

6.3 Summary and discussion

In this chapter, the correlation of raw signals from reflectometry has been measured on
Tore Supra Ohmic discharges. The X-mode polarisation enabled to extend continuously
the measurements from the plasma center up to the far SOL. It has been here evidenced
that turbulence exhibits different characteristics, quantified in terms of coherence and
correlation length, correlation times and propagation velocity, depending on its radial

location.

Correlations have been evaluated on each component of the reflectometer signal, ampli-
tude, phase and real part, so-called "homodyne" signal, as those account for different
plasma fluctuation properties. The question of which reflectometer signal performs the

more reliably the turbulence correlation length is still debated.

In all the plasma discharges we studied, the measured correlation length is observed to
decrease with increasing radius, with values ranging from few centimeters in the core
region down to few millimeters towards the LCFS. The three signal components present
the same trend but quantitatively different values, except close to the LCFS where they

do not differ much. In the surroundings of the LCFS, our measured correlation lengths
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might though be artificially reduced as a consequence of high fluctuation level (see Fig.
6.9), coherently to the numerical predictions [80]. We observe nonetheless that the radial
dependence and values of the correlation length from our measurements are very similar

to those obtained on ASDEX Upgrade with Doppler reflectometry [87].

In the plasma center, where the fluctuation level is low (0n/n < 1%) , the determination
of the correlation length can also be challenging. Thanks to the fast sweep technique,
MHD tearing modes, often particularly active in this region, are clearly identified and
their radial extension is accessible. The contribution of the different frequencies to the
fluctuations size was separated with the coherence analysis. The low frequencies coher-
ence lengths were found to be two times larger than those at higher frequency. This
observation indeed provides a better understanding that the correlation lengths can be

dominated by these modes rather than by the microturbulence.

The correlation time was estimated at p = 0.64 in the edge plasma, around 2 to 3 us
with the fixed frequency reflectometer measurements and is too short to be effectively
measured by our ultrafast sweeping reflectometer. The correlation time measures how
long the signature of the turbulence on the reflectometer signals remains unchanged. If we
assume that a small variation on the perturbed cut-off layer produces a small variation
on the recorded signals, then the respective fluctuation timescales are similar. In the
edge plasma, as the poloidal velocity is dominant with respect to the radial velocity, the
correlation time should approximately scale as t. ~ L./Vy, where L. is the turbulence
characteristic length. Assuming that turbulence structures have circular shapes in the
r — 6 plane [88|, L. &~ Ly = L¢orr, and using the calculated correlation lengths ranging
within 1 cm and 1 mm the poloidal velocity should range between few thousands to few
hundreds m s~'. This estimate is coherent with Doppler reflectometry measurements on

Tore Supra [89].

Large scale propagating structures in the far SOL have been observed for the first time
using ultrafast sweeping reflectometry. In the case of SOL-like turbulence [90], we have
considered the amplitude signal to be the most appropriate to estimate the turbulence
correlation characteristics, as coherent structures and their dynamics are there better
defined. The correlation time is found to increase radially towards the far SOL, in

agreement with measurements performed with Langmuir probes on Tore Supra [91].

It has been recently highlighted that the shape of turbulent structures can play a signifi-
cant role when determining velocities from cross-correlation analysis [92] our calculation

gives an estimate of ~ 150-200 m s~! for SOL structures radial velocities.
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Effects of macroscopic plasma
parameters on the turbulence

properties

In this chapter, the effects of several macroscopic plasma parameters on the turbulence
properties are investigated. The first part focuses on the variation of the turbulence
properties observed during a scan of the electron line averaged density and plasma current
in the edge region'. The effect of the latter parameters on the turbulence are quantified
through the correlation lengths, fluctuation levels and frequency spectra. The results
are discussed in light of the main instabilities which might occur in the Tore Supra edge

plasma, namely the ITG and TEM instabilities.

In the second part, the effect of the electron line averaged density on the far SOL tur-
bulence are presented. The experimental results are compared with those obtained in
numerical simulation from the 2D fluid turbulence code Tokam. A possible mechanism is
proposed which may explain the observed behaviors of the turbulence correlation lengths,

times and radial velocities with varying average density.

7.1 Parametric dependences of the turbulence properties in

the edge plasma

A parametric study of the turbulence properties is ideally performed by comparing dis-

charges during which only the parameter of interest is tuned. In practice, this is generally

'The edge region corresponds to the outer part of the confined region, i.e 0.6 < r/a < 1.

85
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difficult to achieve given that the plasma parameters are often interdependent. Never-
theless, the discharges analyzed here have been carefully selected in order to approach

the ideal situation (i.e. only one parameter varies) as close as possible.

7.1.1 Effects of the electron density on the turbulence properties
Parameters of the discharges

9 ohmic discharges (#47169:47174 and #48100:48102) are used during which the follow-
ing parameters have been kept constant Ip =1 MA, By = 3.7T, Ry = 2.38 £ 0.01 m,
a=0.71%+0.01m and ¢, = 4.5 £ 0.1 (g, is the edge safety factor). Fig. 7.1 a) shows
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FIGURE 7.1: a) Time evolutions of the line averaged electron density (lad, blue line),

plasma current (Ip, black line) and edge safety factor (¢4, red line). The vertical dashed

lines denote the time of the reflectometer acquisitions. Evolution of the electron density
b) and temperature profiles during the density ramp c).

the plasma scenario for the discharge #48102 which is representative of the analyzed
discharges. Several reflectometer bursts (represented by the vertical black dashed lines)
were performed during the density ramp. As the electron line average density (lad) is
ramped up, the electron density profile measured by ultrafast sweeping reflectometry
steepens (Fig. 7.1 b)). The density raise engenders a cooling of the plasma, as it is

observed on the electron temperature profile measured by ECE [93] ( Fig. 7.1 ¢)).
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Radial evolution of the fluctuation level and correlation lengths
Fig. 7.2 shows the time and radial evolution of the normalized amplitude signal measured
on the discharge #48102 for the lowest and highest electron density. At the first sight, the
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F1GURE 7.2: Time and radial evolution of the normalized amplitude signal for the
lowest (left) and highest (right) line averaged electron density (lad).

signals appear very similar independently of the electron density. However, significant
differences are revealed by the analysis of the radial evolution of the fluctuation levels,

the correlation lengths and the frequency spectra.

b) 16
4.8 4.8
43 43
<3 <3
o - (=N
38 ~ = 38
s & <
33 © 5 33 _°
5 4 )
28~ 28 ="
r/ 23 2.3

I~ I n n n n
087 0.75 0.8 0.85 0.9 047 0.75 0.8 0.85 0.9
rla rla

FIGURE 7.3: Radial evolution of the fluctuation levels a) and the amplitude correlation
lengths b) with respect to the electron line averaged density (lad). Results obtained on
9 discharges (#47169:47174 and #48100:48102) are displayed here.

Fig. 7.3 a) shows the fluctuation level radial profiles computed as in |54] with respect
to the electron density. In the region 0.7 < r/a < 0.8, the fluctuation level increases
moderately with values about on./n. =~ 1 — 1.5% and is not impacted significantly by
the electron density raise. For r/a > 0.8, the fluctuation level increases more rapidly
and reaches values up to dne/n. ~ 3.5%. The fluctuation level is barely larger for the

low density cases than for the high density cases. Fig. 7.2 b) shows the evolution of
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the correlation length radial profiles computed on the amplitude signals. The correlation
lengths have a different behavior with respect to the density values. For the low density
cases, the correlation lengths decreases continuously from r/a =~ 0.7 to r/a ~ 0.9. In
between r/a ~ 0.8 — 0.9, the higher density profiles show the same radial dependency
than the low density correlation lengths but with slightly larger values. In the inner
edge region r/a < 0.8, the high density correlation lengths profiles are flatter than those

obtained in the lower density cases.

Given that the fluctuation level plays a role on the error affecting the estimation of the
turbulence correlation lengths, as explained in Sec. 6.3, it only makes sense to compare
Leorr between the low and high density cases when the corresponding fluctuation levels

are similar, i.e. for radial positions lying in the interval 0.7 < r/a < 0.8.

Radial evolution of the frequency spectra

Thanks to its ultrafast sweeping capabilities, the continuous radial evolution of the fre-
quency spectra can be traced with the reflectometer data. The frequency spectra are
computed for the complex signal at constant probing frequency. The frequency spectra
are estimated using the Welch’s periodogram method. The complex signal is divided in
64 points time windows with 50 % overlapping. Then, a 128 points spectrum is com-
puted on each time window. The final spectrum results from the averaging of the spectra

obtained on each time window.

Fig. 7.4 shows the radial evolution of the frequency spectra obtained on discharge #48102
for increasing density. These spectra are representative of those obtained in the other
discharges. The spectra have been normalized to their maximum values to facilitate the

comparison among the different cases.

For different density cases and radial ranges, the frequency spectra are significantly asym-
metric with respect to F' = 0 kHz. The asymmetries are probably related to Doppler
effects. However, it is not clear how the plasma motion might generate the observed
asymmetries. Consequently, we only report here the observed asymmetry but no at-
tempt is made to interpret it. Possible explanations of the Doppler shift are exposed in

Appendix C.

In the inner edge (r/a < 0.75) at the lowest density (lad = 2.4 x 1019m~2), the frequency
spectrum is clearly dominated by frequencies in the range 50-100 kHz. This leads to a
characteristic ‘M-shaped’ spectrum. When the density increases, the dominant frequen-
cies are lower. The spectra evolve gradually from the M-shape to spectra peaking at low

frequencies and decreasing towards the high frequencies. The shape of the spectra varies
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FIGURE 7.4: Radial evolution of the complex signal frequency spectra with respect to
the density computed for the discharge #48102 (the density increases from left to right
and top to bottom)

significantly for densities above lad=3.1 x10™ m™2. At this specific density, the spec-
trum is asymmetric towards positive frequencies at r/a ~ 0.6 whereas the asymmetry

seems to reverse around r/a=0.7.

The frequency spectra flatten for the low density cases above r/a ~ 0.75 — 0.82 whereas
the flattening occurs at slightly larger radial positions for the higher density cases (lad 2,
3.1 x 10" m~2) . In the outer edge (r/a > 0.82) and independently of the electron

density, the frequency spectra are almost flat.

At lad=3.8 x10' m™2, the spectra are shifted toward positive frequencies for 0.6 <
r/a < 0.8 whereas the lad=4.5 x10' m™2 spectra are almost symmetric around F=0
kHz.
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7.1.2 Effects of the plasma current on the turbulence properties
Parameters of the discharges

6 ohmic discharges (#47670:47675) are used with the following parameters 2.5 x10¥¥m =2 <
lad < 2.8 x 10! m~2 and the same By, R and a as in the density scan. For each dis-
charge, 4 reflectometer acquisitions were performed during successive Ip plateaus (Fig.
7.5 a). Contrary to the electron line averaged density which varies only slightly with the
plasma current, the edge safety factor varies from g, ~ 4.1 to g, ~ 9.5 when the plasma
current decreases from Ip = 1.1 MA to Ip = 0.4 (MA). Fig. 7.5 b) shows the evolution
of the electron temperature profile with respect to the plasma current. The decrease of
the plasma current causes a decrease of the ohmic heating and consequently a decrease

of the electron temperature.
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FIGURE 7.5: a) Time evolutions of the line averaged electron density (lad, blue line),
plasma current (Ip, black line) and edge safety factor (g,, red line). b) Evolution of the
electron temperature profiles during the plasma current scan.

Radial evolution of the fluctuation level and correlation lengths

The effects of the plasma current on the turbulence properties are first investigated
by analyzing the fluctuation level and correlation lengths and then by discussing the

properties of the frequency spectra, as for the density scan.

Fig. 7.6 a) and b) show the radial evolution of the fluctuation level and correlation lengths
with respect to the plasma current, respectively. The fluctuation level, computed as in
[54], is almost constant in the inner plasma (r/a < 0.75) with values about dn./n. ~
1%. In this region, it appears independent of the plasma current. In the outer edge
(r/a > 0.8), the fluctuation level increases more rapidly with the minor radius. The
fluctuation levels are significantly larger for low plasma current discharges than for high

plasma current discharges.
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FIGURE 7.6: Radial evolution of the fluctuation levels a) and the amplitude correla-
tion lengths b) with respect to the plasma current. Results obtained on 6 discharges
(#47670 : 47675) are displayed here.

The correlation lengths show distinct behaviors depending on the radial region and the
plasma current. In the outer edge (r/a > 0.8), correlation lengths are very similar for all
plasma current with values about L, = 0.5 cm although the corresponding fluctuation
levels differ by 30%. This observation suggests that the impact of nonlinearities on the
determination of the correlation length may be weaker than foreseen.

In the inner edge (r/a < 0.8), Leor increases for smaller radii in the higher I'p discharges.
The higher is the plasma current, the steeper are the correlation length profiles. In
Ip ~ 1.1 MA discharges, two salient oscillations of the correlations lengths are observed.
These oscillations are still observable in the Ip ~ 0.9 MA discharges but are less evident.
In the lower plasma current discharges, the variation of the correlation lengths with
the minor radius is less pronounced. For Ip =~ 0.5 MA, the correlation length is about

L, =~ 0.5 cm over the whole radial region.

Radial evolution of the frequency spectra

Fig. 7.7 shows the radial evolution of the frequency spectra for increasing Ip.

The characteristics of the spectra gradually change with the plasma current. At Ip = 0.5
MA, the spectrum is decreasing from low to high frequencies. The spectrum slightly
broadens at larger radius. The spectra appear to be shifted towards the negative fre-
quencies independently of the radial position. At Ip = 0.7 MA and for r/a < 0.78,
the spectrum is narrower than that at Ip = 0.5. Here, the broadening of the spectrum
starts around r/a &~ 0.78. The Doppler shift observed on the Ip = 0.9 MA spectrum
continuously varies from negative frequencies for r/a < 0.7 towards positive frequencies
for 0.7 < r/a < 0.8. Above r/a > 0.8, the spectrum flattens. At the highest plasma
current Ip = 1.1 MA, the spectrum exhibits specific features for r/a < 0.8. Around
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F1GURE 7.7: Radial evolution of the complex signals frequency spectra with respect to
the plasma current computed for the discharge #47670 (the plasma current increases
from left to right and top to bottom).

r/a =~ 0.6, the spectra is M-shaped and peaks around F' = 50 — 100 kHz, similarly to
what is observed for low density. In between r/a > 0.63 and r/a < 0.68, the higher
frequencies are strongly damped. For 0.68 < r/a < 0.8, the spectra are again M-shaped
with dominant frequencies around F' = 50 — 100 kHz although the asymmetry is less
pronounced than that observed at r/a ~ 0.6. In the outer edge region (r/a > 0.8), the

spectrum is flat.

7.1.3 Discussion

The variation of the average electron density and the plasma current strongly impacts
the turbulence properties. In this section, an attempt is made to explain the abundant
observations described above in the light of turbulence and transport models. First, the
scaling of the correlation lengths with the drift-scale parameter ps (ion sound Larmor
radius) is investigated. Then, a possible interpretation of the observed frequency spectra
modifications as a function of the collisionality is proposed in terms of a turbulence

dominated by trapped electrons.
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Scaling of the turbulence correlation lengths with p,

A well known prediction of gyro-Bohm transport theory is the linear scaling of the
turbulence structure size with the ion sound Larmor radius ps = vvm;T./eB |94]. This

scaling was investigated experimentally during the last decade.

Brief review of previous results

An increase of the turbulence correlation length with ps was observed in the low temper-
ature plasma device TJ-K [95]. Nevertheless, it was found that the measured correlation
length scale with p;/ 2 [96], which is a weaker dependence than that predicted by gyro-
Bohm theory. More recently, a systematic analysis of turbulence measurements from
several plasma devices with different magnetic geometries confirmed that the correlation
lengths scale sublinearly with pg [97]. It is important to underline that those aforemen-

tioned studies were performed with Langmuir probes.

The possible scaling of the radial correlation length with the turbulent eddy size was
studied by Rhodes et al. with correlation reflectometry on D-IIID Tokamak [98]. In
this study, theoretical scalings of the eddy size predicted by several slab and toroidal
ITG models were confronted to the measured correlation lengths. Each model leads to
a linear scaling of the turbulent structure size Ar with the drift parameter p;, Ar =
psf(R/Lyn,R/Lr,R/Lg), but the dependence of the function f with the density (L),
temperature (Lp) and magnetic shear (Lg) gradient scale length differs depending on
the model. It was found that the measured correlation lengths are in the rough range
Leorr = 5 — 10 ps. It was also found that all the models predict a decrease of the
structures size with the plasma radius, consistently with the radial dependence of the
measured correlation lengths, however only the slab ITG eddies sizes computed according

to Ref. [99] were numerically close to the experimental results.

Results obtained in this work

The p, scaling of the radial correlation length measured with ultrafast sweeping reflec-
tometry on Tore Supra is investigated and presented hereafter. ps is indirectly tuned
through the variation of the electron temperature, i.e. p, decreases (resp. increases)
with the increase of the electron density (resp. the plasma current). Fig. 7.8 shows the
evolution of the radial correlation lengths L. with respect to the local ps value for
the density (left) and current scan (right). Lo varies from around 5 ps at low pg (
which corresponds to the outer edge region r/a =~ 0.9) to about 10 ps at large ps ( which

corresponds to the inner edge region r/a ~ 0.6).
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FI1GURE 7.8: Evolution of the radial correlation lengths with ps during the electron
density (left) and plasma current (right) scan.

Attempts to fit Leorr = f(ps) with linear, power law and exponential fitting functions
were made. When the whole data set is considered, the fitting functions which minimize
the least-square residues are exponential with slopes around 1.5 mm~! and 1.09 mm™*
for the density and current scan, respectively. To our knowledge, there is no theoretical
model which predicts that the turbulent structures sizes scale as o e“?s. However, the
data points were widely scattered around the fitting functions. It also has to be stressed
that the use of exponential fitting functions is questionable given that ps and Ly only
vary within less than one order of magnitude. If only the low density (lad < 3x10'9m=2)
and high Ip (Ip 2 1M A) cases are considered, the correlation lengths scale linearly with
ps with slopes about 22 and 20, respectively.

The ps scaling of our results seems inconsistent with those obtained in previous studies
with Langmuir probe measurements. Nonetheless, it is worth to mention that the mea-
surements presented here were not obtained in a dedicated experiments during which
efforts are made to keep constant the other plasma parameters. During a density or
current scan, the density gradient scale length or the magnetic safety factor (and many
other parameters) inevitably vary. These variations may be better accounted for using
the approach follow by Rhodes where Ar depends mainly on ion related quantities such
as the ion temperature or the ion temperature gradient scale length. Unfortunately, the
ion temperature is scarcely measured on Tore Supra. lon temperature measurements
were only available for the discharge #48102 (density scan). Consequently, the ITG
scalings ‘a la Rhodes‘ were tested on this discharge but unsuccessfully.

Note that the scaling of reflectometer correlation lengths with the width of an alterna-
tive type of instability, namely the resistive ballooning mode (RBM), was explored in
the edge of ASDEX Upgrade [100]. This scaling was not investigated in this work given
that the RBM are unstable for electron temperatures below 50 €V in Tore Supra [101]
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which is significantly lower than the electron temperatures involved in this study (see
Figs. 7.1 and 7.5).

Implications of the frequency spectra variation during the electron density

and plasma current scan

In the following discussion, we focus on the r/a < 0.8 region, given that in the outer edge
the frequency spectra are flat and cannot provide any useful information. The spectra

asymmetries, which are still not well understood, are not considered.

A salient feature of the measured frequency spectra is the presence of bumps around
F~ + 50-100 kHz. These bumps are only observed at low density and high plasma
current. Frequency spectra with similar shapes have been observed in T-10 [102] and
TEXTOR [103] tokamaks. In the latter studies, these bumps are referred to as quasi-
coherent modes (QC modes). It was suggested that the QC modes could originate from
ITG instabilities. Here, we explore the possibility that the QC modes are due to trapped
electron modes [104] (TEM), rather than ITG instabilities. The main argument is that,
contrary to ITG instabilities, TEM are stabilized at high collisionality (vee o neTg / 2).
Consequently, TEM are affected by the variation of the electron density and the plasma

current (through ohmic heating) and thus might be responsible for the observed evolution

of the frequency spectra during the parametric scan.

In the limit of a large effective collision frequency of the trapped electron, verr >> wie,
a simplified dispersion relation obtained from bounce averaged drift equation gives the
TEM growth rate [105]

2
v = /25y, (7.1)

Vee
with e the inverse aspect ratio, w. the electron diamagnetic frequency, ve. the electron-
electron collisionality and 7. = L, /L7, the ratio of the electron density and the electron
temperature gradient scale lengths. The growth rate formula shows clearly that the den-
sity stabilizes the TEM through the collisionality but also through the 7, term. The
density gradient scale length tends to decrease with increasing density leading to a re-
duction of the TEM growth rate. The TEM growth rate expression (Eq. 7.1) supports
the hypothesis that the QC modes observed on the frequency spectra at low density
(high plasma current) might originate from TEMs, the growth rate of which decreases
at high density (low plasma current) by effect of the increased v, and decreased density

scale length, this resulting in the disappearance of the QC mode. It has to be mentioned
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that a damping of the QC modes with the increase of plasma density was also reported

on T-10 [106] but this observation retained low attention.

Interpretation of the results, in terms of ITG/TEM instabilities

Various approaches have been explored in order to build a coherent scenario able to
explain the joint evolution of the frequency spectra, correlation lengths and fluctuation
level measured by reflectometry during the parametric scans.

We first analysed the plasma linear stability for one of the density ramp discharges,
#48102, by means of local simulations using the fast quasi-linear gyrokinetic code Qua-
likiz [107]. Qualikiz solves the local electrostatic gyrokinetic dispersion relation account-
ing for both passing and trapped particles, thus providing growth rates, mode frequencies
and wavenumbers of all present instabilities, namely I'TG, TEM or ETG. Simulations
were performed at radii r/a = 0.2 — 0.8 using the experimental local parameters from
the considered discharge, first processed by the CRONOS integrated modelling transport
code [85], which further provides the ion density and temperature profiles as well as the
safety factor profile needed as input to Qualikiz. Fig. 7.9 shows the normalized growth
rates and frequencies computed by Qualikiz for the lowest (left) and highest (right) den-
sity cases. At low density Qualikiz predicts both ITG and TEM instabilities, the first in
the inner region, with frequency around 10 kHz (not shown), and the latter dominating

for r/a > 0.75. At high density, only the ITG is present, peaking at r/a =~ 0.75; the
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FI1GURE 7.9: Radial profile of the linear growth rates of ITGs and TEMs computed by
Qualikiz at low (left) and high (right) density for the reference discharge #48102.

TEM became stable.

This linear analysis shows indeed the presence of a TEM peaking at frequencies about 50
kHz at low density (Fig. 7.10, left panel), which is then stabilized at high density. How-
ever, the presence of an I'TG which would become even more unstable at high density,

peaking at frequency around 50 KHz (Fig. 7.10, right panel), seems contradicting the
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experimental observations. At high density, on the one side the measured power spec-
trum presents a reduction around F' ~ 50 kHz and on the other the correlation length
decreases, whereas I'TG eddies size is actually found numerically larger than TEM eddies
size [108].
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FIGURE 7.10: Growth rates and corresponding frequencies computed by Qualikiz at

r/a = 0/75 at low (left) and high (right) density for the reference discharge #48102.

Positive and negative frequencies correspond to a rotation in the electron and ion dia-
magnetic direction, respectively.

One should take into account that for the measured level of fluctuations (Fig. 7.3 and
7.6 a) the plasma is indeed in a non-linear turbulent regime so that the linear scenario
depicted above might not be realistic. The non-linear effects have various impacts on
the linear instabilities: first, the critical ion temperature gradient threshold for the ITG
instability is non-linearly up-shifted to an effective critical gradient (Dimits shift [109]);
second, the non-linear coupling induces the generation of zonal flows, low-frequency finite
k-, n = m = 0 localized flows, which on their turn have a stabilizing effect by shearing
the ambient turbulence [110]; third, non-linear mode coupling induces a radial spreading
of the unstable region.

Given the above considerations, one could infer that due to the Dimits shift and the
damping by zonal flows, which is more effective on ITG than TEM due to their larger
eddie size, ITGs could actually be non-linearly marginally stable, at least at low density.
Concerning the radial localization of TEM which in the linear simulation does not match
the observed QC modes localization (r/a > 0.6), turbulence spreading might be invoked.
Considering now the effect of the increased density, the observed modification of the
experimental spectra towards dominating lower frequencies, might be explained by a
saturation of TEM, which mainly occurs via anisotropic energy transfer towards low fre-
quency and low k zonal modes, as proposed in [111]. However, at the same time, ion-ion

collisions also affect the turbulence saturation via the damping of the zonal flows [112],
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which would lead again to a rise of turbulence level, which is though not observed. Con-
sidering that the transfer rate to zonal modes is significantly larger than that to other
modes, one might suspect that zonal flows dominate the saturation, keeping the ITG to
marginality.

The whole observed spectra behaviour could thus be understood in terms of TEM insta-
bility and saturation.

It though needs to be mentioned that the proposed mechanism is not able to account for
the experimentally observed correlation length reduction with increasing collisionality.
Evidently non-linear simulations should be performed to consistently take into account
the complex interplay of all the above elements, which leads to the observed stationary

turbulent state.

7.2 Effects of a density scan on the turbulence properties
in the far SOL

The SOL is the open field line plasma region extending up to the first walls where
therefore the plasma wall interactions takes place. The issues related to plasma wall
interaction, and consequently SOL physics, are of primary importance for future devices
like ITER. The experimental efforts currently undertaken, as the ITER-like wall program
in JET [113] or the forthcoming installation of a tungsten divertor in Tore Supra, reflect

the importance of these questions.

The properties of the core plasma are also affected by SOL physics. A critical density for
reactor operation, called the Greenwald density [114], above which the plasma disrupts,
is though to be a consequence of SOL physics [115]. Therefore, significant efforts have
been devoted to characterize the SOL properties under different density regimes. Those
were primary done by focusing on macroscopic plasma quantities as the SOL density
and electron temperature profiles or effective transport coefficients. The impact of the

average density on SOL turbulence was studied only more recently [64, 116, 117].

In this section, the SOL turbulence properties are studied during a density scan. First
the parameters of the analyzed discharges are introduced. The turbulence properties
measured by reflectometry during different density plateaus are presented and followed
by a discussion of the results in light of observations reported on different devices.

The possibility to interpret our measurements as the signature of individual blobs is also
examined. Finally, the reflectometry measurements are compared to simulations results

from a code based on a simplified SOL fluid turbulence model. From this comparison,
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a possible scenario is formulated in order to interpret the modification of the turbulence

properties as the density is varied.

7.2.1 Parameters of the analyzed discharges

6 Tore Supra ohmic discharges (#47680:47685) have been used to investigate the effects
of the line averaged density in the far SOL. During each discharge, 4 reflectometer bursts
were performed at different line averaged densities as depicted in Fig. 7.11 a). The
other parameters were kept constant, namely Bo= 3.8 T, Ip=0.9 MA and q,=5.26. The
electron temperatures measured by ECE at the LCFS are about 350 eV and 10 eV, for

the lowest and highest density cases, respectively.
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FIGURE 7.11: a) Time evolutions of the line averaged density (lad, blue line), plasma

current (Ip, black line) and edge safety factor (g, red line). The vertical dashed lines

denote the times of the reflectometer acquisitions. b) shows the evolution of the electron
density profiles measured by reflectometry during the density scan.

The evolution of the electron density profiles during the density scan (Fig. 7.11 b)
shows interesting features. Around dpcrs =~ 5 cm, the density profile associated to
lad = 3.5 x 10" m™2 and 4.5 x10' m™2 are significantly steeper than the profiles
associated to lad = 2.4 x 10" m~2 and 2.1 x10™ m =2 On the other hand, the density
profiles do not differ much in the region dycrpgs > 6 cm if the associated line averaged
density does not exceed 3.5 x 10" m™2. By contrast, the density profile associated to

lad = 4.5 x 10" m~2 decreases steeply for drcpg > 6 cm.

7.2.2 Effects on the density on the turbulence correlation properties

and radial velocities

Fig. 7.12 shows a representative example of the radial and temporal evolution of the

normalized amplitude signals for low (left) and high (right) density cases. Note that the
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FI1GURE 7.12: Radial and temporal evolution of the normalized amplitude signals for
low (left) and high (right) line averaged densities measured on #47681.

plasma is detected closer to the LCFS at high density, consistently with the shape of the
density profiles. At first sight, there is no obvious difference between the two different
density cases for dr,crpg < 6 cm. For both cases, an abrupt transition? is observed around
drors ~ 7 cm. In the inner SOL the amplitude fluctuations have small scales whereas
in the far SOL, the fluctuations last longer and have larger sizes. In the latter region,
marked differences are observed between low and high densities, namely the structures
appear to have larger time and spatial scales in the high density case. Consequently a
special attention is paid to the far SOL where the amplitude fluctuations properties are

quantified in terms of correlation lengths, times and radial velocities.

Fig. 7.13 a), b) and c) show the radial evolution of the correlation lengths, times and
radial velocities with respect to the line averaged density. The qualitative differences

observed on the 2D plots (Fig. 7.12) are confirmed.

The correlation lengths tend to increase with line averaged density. At low and moderate
densities, the correlation lengths are not affected by the density, and are rather constant
radially (Leorr =~ 1 cm). For the highest density cases (lad > 4 x x10Y m~2), the
correlation lengths are around 1.5-2 cm, thus substantially larger than those obtained at

lower densities.

The correlation times clearly increase with the density. For low density (lad < 3 x
10Y¥m=2), teorr is about 30-100 s and slightly decreases with the radial position whereas
for 3 x 101 m=2 < lad < 4 x 10 m™2, toop is around 50-200 us and slightly increases
with the radial position. At the highest density (lad > 4 x 10 m™2), teopr increases
rapidly with the radial position and reaches values up to 500-1000 us.

2Such an abrupt transition is partially due to an imperfect matching of the V and W frequency bands
(see Sec. 2.3)
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FI1GURE 7.13: Effects of the line averaged density on the radial evolution of the corre-
lation lengths (a), times (b) and radial velocities (c¢) in the far SOL.

The last quantity analyzed here is the radial velocity, which tends to decrease with the
line averaged density. For low density cases, the radial velocities are about 300-500
m.s~! and almost constant radially. For lad ~ 3.5 x 1019 m—2
are about 300-400 m.s~*

, the radial velocities
at drops ~ 7 cm and decrease down to 100-200 m.s~! around
drcrs ~ 17 cm. At high density, the radial velocities are around 200 m.s~! in the region
7cm Sdrorps S 10 cm and then, decrease rapidly.

7.2.3 Discussion

The results here presented show that in Tore Supra the density profile in the SOL strongly

steepens when the line averaged density increases (lad > 3 x 10! m~2). In contrast, a
flattening of the SOL electron density profiles has been reported on several tokamaks,
including C-MOD [118], DIII-D [119] and TCV [64]. There, the observed flattening was,
at least partially, explained in terms of an enhanced recycling occurring at high aver-

aged density. This regime, often referred to as main recycling regime [120], seems to
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solely apply to diverted tokamaks. The apparent inconsistency of Tore Supra measure-
ments compared to other machines might thus be related to the limiter versus diverted

configuration.

Before discussing the effects of density on the SOL turbulence properties in light of the
results reported in the literature, a point should be clarified. Most of the existing works
have investigated the effects of density on individual turbulent structures called blobs.
A question arises then naturally, can we consider that reflectometer signal fluctuations

are signatures of indiviudal blobs even if the beam spot size?

is much larger than the
blob characteristic scales? This question is addressed by estimating the number of blobs
illuminated by the beam spot at a given time. 2 consecutive blobs are approximately
separated poloidally by a distance ALy ~ VpAt, where At is the time between two blobs
or waiting time. The waiting time distribution measured with probes in Tore Supra peaks
around 100-250 ps [59]. Taking Vp ~ V. ~ 50 — 500 m.s~! leads to 5 mm < ALy < 12.5
cm. Given that the poloidal spot size is about 20 c¢m, the number of illuminated blobs

ranges from unity to few dozens. Consequently, the reflectometer signal fluctuations may

result from a kind of poloidal average over the blob turbulence.

Existing results on the effect of density on the SOL turbulence are contrasted. In MAST
[116], midplane probe measurements have revealed that the blob radial velocity first
increases and then saturates when the density is increased. In contrast, the blobs dura-
tions and radial length scales were found to continuously increases with the density. In
C-MOD [117], a continuous increase of the radial velocity with the density was observed
with gas puff imaging. On TCV [64], an effective radial velocity deduced from transport
measurements was found to increase with the density, as well as the burst durations.
Note that the increase of bursts duration with the density on MAST and TCV is much

weaker than the increase of the correlation time observed in Tore Supra.

It is rather challenging to conciliate the observations obtained on the different devices
with those obtained on Tore Supra in order to build a general model aiming at explaining
the effects of density on the turbulence properties. The effect of density seems to depend
on the device geometry. The analysis technique used to infer the turbulence properties

might also play an important role.

The collisionality is a key parameter in the blob analytical models [121], thus experiments
on density are very convenient for testing these models. Blobs models predict that the
radial velocity should scale differently with the blobs sizes depending on the collisionality.
At low and high collisionalities, the dynamics of an individual blob can be described with
the sheath connected [22] and inertial regimes [122], respectively. The sheath connected

regime leads to ¥ o 1/52, whereas the inertial regime leads to 0 \/g, where, 6 and 9

3The beam spot size is analyzed in detail in Appendix B
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are normalized blobs sizes and radial velocities , respectively. The normalization factors
depend mainly on the local electron temperature. Fig. 7.14 shows the relation between
the radial velocities and correlation lengths measured by reflectometry during the density

scan. The radial velocities are negatively correlated with the correlation lengths, namely

800
. 45
700t .
r
600/ 4 e 4
T, 500 0
: . ,*;ée:.'. >°E
v,_ Y X & _
§ 400 E .- > < o ® 3 10_
> $ &l ° ©
300f  ° ot ¥ 3
0y & ° I
. "’ ° 2.6—
200} o ‘.,:0:‘ o1 -!.:-:“
. 7 %o 2.1
100¢ o et e ¢
1 - ® 1
0 2 3
L (cm)

corr

FIGURE 7.14: Relation between the radial velocities and correlations lengths for dif-
ferent line averaged densities.

the radial velocities decrease when the correlation lengths increase. It is tempting to
conclude that the sheath connected regime is relevant in Tore Supra plasmas regardless
of the density regime. However, important ingredients, such as electron temperature
measurements, are missing in order to qualitatively compare our measurements to the
sheath connected model predictions. Moreover, we recall that reflectometer measure-
ments do not provide information on isolated blobs whereas blobs analytical models only
apply to individual blobs. Consequently, reflectometer measurements will not be further
compared to the blob models. As an alternative, the interpretation of the reflectometer
measurements with the help of a SOL turbulence code is attempted in the following

section.

7.2.4 Comparison with Tokam 2D SOL turbulence code

By comparing the results of the Tokam code with the measurements, this section aims
at establishing the impact of collisionality on the SOL turbulence. As it will be shown
below, the Tokam turbulence model is too simple to attempt a quantitative comparison
with the experiments. Consequently, the Tokam parameters are not necessarily chosen

such as to match the experimental parameters. Our goal is solely to check if the turbulent
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properties, measured experimentally and computed numerically, follow the same trend

when the collisionality is varied.

Brief description of Tokam

The Tokam fluid turbulence 2D SOL code is extensively detailed in Ref. [123, 124], only

a brief description is given here.

Tokam solves the conservation equations for density and charge with cold ions and con-
stant electron temperature. The system is reduced to 2 dimensions by performing a field
line average. Fluctuations are assumed to have flute characteristics. Plasma-wall inter-
action is accounted for via Bohm conditions imposed at both ends of the field lines. The

2 directions correspond to radius and the poloidal angle along the poloidal gard limiters.
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(7.2)

The space and time coordinates are normalized to the Larmor radius ps; and the ion cy-
clotron frequency 2;, respectively. The densities and potential are normalized as follows,
n =n/ng, » = ep/T, where ng and T, represent an arbitrary density and electron tem-
perature, respectively. The density and the vorticity (W = A¢) conservation equations
are non-linearly coupled through the Poisson brackets and the parallel loss terms due
to the sheath boundary conditions. The Poisson brackets terms represent the £ x B
advection. The system becomes unstable due to the effect of g, the magnetic curvature
term, which drives interchange type instabilities. D and v are coefficients accounting
for the collisional particle diffusion and viscosity, respectively. The latter coefficients
are normalized to the Bohm diffusion coefficient Dpgopm = psvin, with vy, the thermal
velocity. Finally the right hand sides of the equations stand for the source and sink
terms. The source term S is defined as a Gaussian. The sink terms represent the losses
along the magnetic field lines. The sink terms can be seen as the boundary conditions
in the parallel direction. They are obtained by using jointly the flute assumption and
the Bohm sheath criterion. ¢ and A denote the conductivity and the floating potential,

respectively.

Both strength and weakness of Tokam reside in the simplicity of the model. Numerous
phenomena relevant to tokamak SOL physics are not modeled by Tokam, consequently

it is unreasonable to attempt to compare quantitatively experimental results and Tokam
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outputs. However, Tokam was found to reproduce well the statistical properties of probe
signals [125]. This qualitative agreement is a strong indication that Tokam captures the
dominant physics at play for SOL turbulence. In the following, Tokam is used as a toy

model in order to interpret the SOL turbulence modifications via the density.

A possible scenario to explain the effects of density on SOL turbulence

The parameter of interest for the comparison is the collisionality. In Tokam, the increase
of collisionality is accounted for by increasing the viscosity parameter v, whereas experi-
mentally, the increase of collisionality is achieved by increasing the density. For the sake
of clarity, experimental measurements obtained at high (resp. low) density and numeri-
cal results computed for large (resp. low) viscosity will be referred to as high (resp. low)

collisionality cases.

Fig. 7.16 shows snapshots of the density computed by Tokam for the low and high
collisionality cases. The x and y coordinates represent the radial and poloidal directions,
respectively. Biperiodic boundary conditions are used. The parameters used for the
simulations leads to a gyroradius ps =~ 0.6 mm, and thus a simulation box size of about
15.3 cm. The particle injection takes place around x = 0. The analysis of the turbulence

properties is therefore restricted to 50 < x/ps < 200.

At first sight, obvious differences can be noticed between the low and high collisionality
cases. The turbulent structures appear more radially elongated in the high collisionality

case than in the low collisionality case.
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FIGURE 7.15: Snapshots of the density computed by Tokam in the stationary state of
the simulation, for low (left) and high (right) collisionality cases.

The turbulence properties are quantified with the same procedure as for the experimental

data. First the density is averaged poloidally in order to account for the effects of the
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finite beam spot size. As a result, density time series n(x,t) are obtained for each radial
position. Then, the correlation analysis applied on the time series gives the correlation

times, lengths and radial velocities.

Fig. 7.16 shows the radial and temporal evolution of the poloidally averaged densities.
The density have been normalized for clarity as ((n—(n);)/oy,). The similarities between
the patterns observed numerically on the normalized density and experimentally in the

far SOL on the normalized amplitude signals are striking (see Fig.7.12).
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FIGURE 7.16: Radial and temporal evolution of the poloidally averaged density com-
puted by Tokam for low (left) and high (right) collisionality cases.

The turbulence correlation properties estimated on Tokam and on reflectometer data
at low and high collisionality are depicted on Fig. 7.17.

The effects of collisionality on the turbulence properties observed experimentally are
qualitatively reproduced numerically, namely the increase of collisionality leads to an
increase of the correlation times and lengths but also to a decrease of the radial velocity.
The qualitative agreement between experiment and simulation allows us to suggest a

possible mechanism to interpret the observations.

When the density (or collisionality) increases, the plasma becomes more viscous. Con-
sequently, the interaction of the coherent structures with the background plasma is en-
hanced. The background plasma acts as a drag force which slows down the coherent
structures. This mechanism leads to the decrease of the radial velocity observed exper-
imentally. Moreover, the viscous term in the Tokam equation is proportionnal to the
square of the laplacian of the potential o A%¢. By expanding the potential in Fourier
series ¢(7,t) = > ¢kei(’;ﬂw’t), one finds that the viscous damping is proportional to
k*. Consequently, the small spatial scales are damped much more rapidly than the large
spatial scales. The fast damping of the small scales at high collisionality might explain

why the turbulence correlation times and lengths increase with the density.
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Ficure 7.17: Effects of the collisionality on the turbulence correlation properties

measured on Tokam density (left panel, solid lines) and reflectometer signals (right

panel, dashed lines). The blue and red lines represents the low and high collisionality

cases, respectively. The experimental data presented here were measured on the ohmic

discharge #47682. The line averaged density was varied from lad=2.3 x10'9 m~=2 (low
collisionality) to lad=4.5 x10'® m~2 (high collisionality).

7.3 Summary

In this chapter, the effects of different plasma parameters on the turbulence properties
measured by reflectometry have been investigated. In the closed field line region, the
turbulence properties have been characterized with the frequency spectra, correlation
lengths and fluctuation levels whereas in the SOL plasma, the correlation lengths and

times and the radial velocities have been used.

The evolution of the reflectometer signals during the electron density and current scan
was attributed to the variation of the plasma collisionality. An increase of the collision-
ality, indifferently achieved through the increase of density or the decrease of plasma
current, produces similar effects on the spectra and correlation lengths. The correlation
length was observed to decrease while increasing the collisionality in the plasma edge. In

the region 0.6 < r/a < 0.75, the spectra was dominated by quasi-coherent (QC) modes
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with frequencies around 50-100 kHz in the low collisional plasma. The QC modes are no
more visible on the spectra at high collisionality. In this case, the spectra are dominated
by low frequencies and decrease towards the high frequencies. We strongly suspect that
the QC modes are a signature of TEM modes, a type of instability which may be damped
by collisionality.

Attempts have been made to interpret the local variation of the turbulence properties.
A coherent scenario was proposed in terms of TEM instability which can account for
the observed frequency spectra modifications. It was though difficult to explain the joint
evolution of the spectra, correlation lengths and fluctuations levels. Fully nonlinear sim-
ulations would be needed to shed some light on the mechanisms leading to the observed

turbulence modifications.

In the second part of the chapter, the effects of plasma density on the turbulence prop-
erties were investigated in the far SOL. A significant reduction of the radial velocity
was observed while increasing the density. On the other hand, the correlation times and
lengths were found to increase with the density. We think that the key parameter which
causes these variations is again the collisionality.

As it is now widely accepted that the far SOL turbulence is dominated by blobs, the pos-
sibility to compare our measurements to blob analytical models was considered. However,
such a comparison is difficult due to a main incompatibility between the experimental
and the theoretical approaches. Namely, the latter always considers a single blob whereas
the reflectometer signal accounts for all blobs in the illuminated area. As an alternative,
the SOL turbulence code Tokam was used and provided a satisfactory interpretation of
the experimental measurements. By increasing the collisionality, the SOL plasma be-
comes more viscous. In Tokam simulations, it was found that the viscosity enhances the
interaction between the propagating structures and the background plasma. This leads
to the observed reduction of the radial velocities. Moreover, the small scales structures
are faster damped at high collisionality explaining the increase of the correlation lengths

and times.



Chapter 8

Effects of ICRH heating on the
turbulence properties in the far SOL

On Tore Supra, the heating is mainly achieved by radio waves in the range of the ion
cyclotron frequencies (ICRH heating). An increase of the ion temperature in the core
plasma, and thus a steepening of the ion temperature profile, results from the injection
of ICRH power. As the ion temperature gradient is a major drive of the turbulence, the

application of ICRH heating possibly modifies the turbulent state of the core plasma.

In the selected database used in this work, ICRH power was limited to 2 MW due to
technical problems during the last experimental campaign. No significant modifications
of the turbulence properties in the core plasma were observed during ICRH heating. This

might be due to the insufficient ICRH power.

On the other hand, number of works have shown interest in the modification of the SOL
properties in ICRH heated plasma. Antenna erosion [126], hot spots [127, 128|, enhanced
sputtering [129, 130] and disruptions [131] are among the undesirable effects caused
by ICRH heating. More recently, strong modifications of the turbulence properties,
including a decrease of the fluctuation level and a flattening of the frequency spectra,
have been measured by Langmuir probes on ASDEX-Upgrade [132] and Tore Supra [133].
In this chapter, the modifications of the turbulence properties as observed by ultrafast
sweeping reflectometry are presented. First the parameters of the ICRH discharges
are described. Then, the turbulence properties during ICRH heating are analysed and
compared to those obtained in ohmic discharges. Finally, mechanisms potentially able

to account for the reflectometer measurements are discussed.

109
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8.1 Parameters of the ICRH discharges

The data used here were acquired during 7 discharges (# 46996:47002) where different
ICRH antennas were successively switched on. The heating scheme is summarized in Fig.
8.1 a). Reflectometry acquisitions were performed during the initial ohmic phase, in the
ICRH phases and in between two successive ICRH phases which are separated by around
30 ms. The injected power varies from about 0.5 MW to around 2 MW depending on
the discharge and the active antenna. Nonetheless, the modifications of the turbulence

properties were found to be independent of the injected power.
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FIGURE 8.1: a) Heating scenario: the ICRH power was injected with 3 distinct antennas

(QL, Q2 and Q5) after an initial ohmic phase. b) Time evolutions of the line averaged

density (lad, blue line), plasma current (Ip, black line) and edge safety factor (q,, red
line). The vertical dashed lines denote the time of the reflectometer acquisition.

Fig. 8.1 b) shows that the plasma parameters are almost constant over a discharge.
The plasma parameters vary moderately among the analyzed discharges, with values
Ip=0.9-1MA, ¢,—4.8-5.4, B=3.84 T and lad=4-5.4 x10'? m~2. Note that the density is
generally lower during the ohmic phase. The electron temperature measured by ECE
at r/a=0.8 varies from about 0.3 KeV to around 0.5 Kev during the ohmic and ICRH

phases, respectively.

As it will be shown below, the turbulence properties strongly depend on the active ICRH
antenna, it is thus worth to remind the locations of the ICRH antennas with respect to
the reflectometer port. Fig. 8.2 shows an illustration of the torus wall unwrapped along
the toroidal direction. It is important to notice that the reflectometer is located in
the same port that the antenna protection (LPA). As the LPA is radially closer to the
LCFS than the ICRH antennas, the LPA acts as a solid boundary. The ¢ = 0 reference
position is therefore taken as the LPA toroidal position. While moving along the toroidal

direction, Q5 is the closest antenna with respect to the reflectometer, followed by Q1 and
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FIGURE 8.2: Schematics of the ICRH antennas toroidal locations in Tore Supra, with

respect to the reflectometer. Q5, Q1 and Q2 label the ICRH antennas. LPA and LPT

refer to the antenna limiter and toroidal limiter, respectively. The magnetic connections
of the reflectometer are also shown.

finally Q2. The reflectometer is generally magnetically connected to the toroidal limiter
(LPT). The fieldlines intersect the LPT below the ICRH antenna Q5.

8.2 Modifications of the turbulence properties during ICRH
heating

The comparison of the amplitude signals recorded during ohmic and ICRH phases reveals
strong differences. These differences are more or less pronounced depending on the active
antenna as shown in Fig. 8.3. Assoon as ICRH is on, the plasma tends to expand radially
outwards in the far SOL. During the ohmic phase, the plasma is first detected about 10
cm outside the LCFS. When Q1 or Q2 are powered, the plasma is detected around 16
cm outside the LCFS. When Q5 is switched on, the plasma expands as far as 22 cm
beyond the LCFS. Clearly, the modifications of the reflectometer signals induced by
ICRH are much stronger when Q5 fires rather than when Q1 or Q2 are powered. These
modifications are better quantified when comparing the usual correlation properties of

the reflectometer signal.

Fig. 8.4 a), b) and c) show the profiles of the correlation times, lengths and radial
velocities, respectively. Here data obtained during the 7 discharges are shown. The
expansion of the plasma during the ICRH phase, which is especially marked when Q5 is

active, is confirmed.

In ohmically heated plasma, the correlation times increase sharply from around 60 us at
drocrs=6 cm up to 1 ms at dpops=10 cm. When Q1 or Q2 are active, the correlation

time profiles are very similar. In those cases, t.o increases radially in between dyopg =
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FicUrReE 8.3: Time and Radial evolution of the normalized amplitude signals with
respect to the active ICRH antenna. The ohmic data were acquired before the first
ICRH phase. These signals were recorded on the discharge #46998.

5¢m and drpops = 10 cm and then saturates with values around 60-110 ps. The profile
of teorr in Qb-heated plasma exhibits salient differences: tqo.r increases from 8-20 us at
drorps=6 cm to 60-70 us at drporps=25 cm. An oscillation is clearly visible on nearly all

the discharges presented here. The crest of the oscillation is located at dpopg ~14 cm.

The correlation lengths is the quantity for which the differences between each case are
the less pronounced. During the ohmic phase, most of the correlation lengths lie in the
range 1.5-2.5 cm. Again, L¢, does not differ much between Q1 and Q2 plasma with
values around 1.5-2.5 for 7 cm < drops < 13 cm. Nevertheless, a significant dispersion
of the correlation lengths is observed for dycrs > 13 cm. There, L., varies between 2
mm to 4 cm. When Q5 fires, the correlation lengths increase smoothly from drops =
5 cm to dporps = 12 cm with values ranging from 2 mm to 1 cm, then L., saturates

before decreasing in the very far SOL.

The last quantity of interest is the radial velocity V.or-. During the ohmic phase, Vi
values are around few hundreds m.s~! and decrease suddenly to few tens m.s~! when
approaching drops =~ 13 cm. When Q1 or Q2 fire, the estimated velocities are rather
radially constant with values just above those found during the ohmic phases. Q5 firings

lead to major differences on the radial velocities. First, note that the correlation method
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FIGURE 8.4: Far SOL profiles of the correlation times a), lengths b) and radial velocities
¢) during ohmic and ICRH heating.

can not provide radial velocities estimates in the region drops < 12 cm when Q5 is
on. The underlying reasons are not very clear. A possible explanation might be that the
poloidal velocities are locally much larger than the radial velocities, in this case, the radial
displacement of the turbulent structures while crossing the beam spot is to small too be
detected by the reflectometer. For dpcrs > 12 cm, a specific and reproducible trend is
observed on the radial velocitiy profiles. Vo, increases from 1 km.s™! at drops ~ 12
cm, peaks at drcrs ~ 17 cm with values around 2 km.s™!, and then decrease down to
300 m.s~! in the furthest part of the SOL.

8.2.1 Considerations on the role of the active antenna

The role played by the active antenna during ICRH heating was previously investigated
by Antar et al. [133]. Turbulence modifications were observed with Langmuir probes
which are spatially close to the powered antenna but not necessary magnetically con-
nected it. When the probes are located far from the active antenna, almost no modi-
fications were recorded on the probes signals. As shown in the last section, the effects

of ICRH on turbulence properties measured by reflectometry are the most pronounced
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when Q5 fires. Given that Q5 is the antenna which is the closest to the reflectometer,

our observations are consistent with the probe measurements.

The condition of toroidal vicinity is rather important because it restricts the number
of phenomena potentially responsible for the turbulence modification. It is rather un-
likely that the mechanism which causes the turbulence modification takes place in the
closed field lines region. In this case, the turbulence would be affected globally due
to the very fast parallel transport. What is needed to be invoked is an ICRH-induced
phenomenon specific to the SOL region. This phenomenon shall also account for the
combined modifications of the turbulence correlation properties, namely an increase of

the radial velocities and a decrease of the correlation times.

8.2.2 Impact of the Faraday screen design

As it will be shown below, the modification of the turbulent properties depends on the
design of the metallic screens equipping the ICRH antennas and aiming at filtering the
parasitic waves modes, called Faraday screens. Consequently, the study of the turbulence
with different screen configurations is worth because it may bring new information on
the mechanism which causes the turbulent modifications.

The results presented so far were obtained with the new Faraday screen [134] installed
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FIGURE 8.5: Comparison of the radial velocity profiles measured in Q5 heated plasma
for the old (discharges #46590 : 46599) and new (discharges #47151 : 47155 — 47159 :
47162) Faraday screen.

on the Q5 antenna since 2011. In Fig. 8.5, the radial velocities profiles measured with
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the old and new screen are compared!. The radial velocities measured with the old Q5
configuration are well above those obtained when Q1 or Q2 are powered (Fig. 8.4).
This finding confirms that the mechanism, which impacts the turbulent structures, takes
place in the vicinity of the active antenna. Moreover, the radial velocities obtained with
the old and new Q5 configurations are very similar. The new screen appears to simply
enforce the observed modifications.

It has to be stressed that the new screen was primarly designed to mitigate an ICRH-
induced phenomena called radio frequency (RF) rectified potential. Surprisingly, probe
measurements reported that instead of being reduced, the potentials are enhanced by
the new screen [135]. These potentials are therefore excellent candidates to account for

the Q5 induced modification and are thoroughly discussed in the following section.

8.3 Effects of the radio frequency rectified potentials on the

turbulence properties

Sheath rectified potentials localized on the antenna side limiters are well-known conse-
quences of ICRH heating [136]. These phenomena have been thoroughly studied both
experimentally and theoretically. The rectified potentials can be basically explained as
follows. The parallel component of the heating wave electric field produces a fast os-
cillating radio frequency potential at the boundaries between the plasma wall and the
magnetic field lines. As a reaction, the field lines get biased at a DC potential which is
generally much larger than the usual Bohm sheath potential. The detailed description of
the interaction of ICRH waves and plasma boundaries is outside the scope of the present

work but a comprehensive review can be found in [137].

On Tore Supra, rectified potentials have been measured on the Q5 antenna by means
of Langmuir probes. A 2D mapping of the potential structures [138| is shown in Fig.
8.6. Rectified potentials exhibit strong up-down asymmetries. The potentials are much
larger at the bottom of the antenna. More attention will be paid to the bottom potential
given that the projection of the reflectometer location along the field line is close to the
bottom of the antenna (see Fig. 8.2). The bottom potential reaches values up to 180 V
and peaks poloidally around 25 cm below the midplane and radially around 5 cm outside
the LCFS. Note that the potential is elongated along the poloidal direction leading to

an electric field in the radial direction.

These potentials give rise to an electric field and consequently to an E x B convection.

The E x B convection will interact with the turbulence and modify the turbulence

!The discharges presented here were not necessarily performed with similar plasma parameters which
may explain the large dispersion of the data points.
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FIGURE 8.6: Rectified potentials measured by Langmuir probes on the lateral limiter
(LL) of the Q5 antenna. The leading edge is located 3 cm outside the LCFS. The figure
is adapted from [138].

properties. In the following, the effect of rectified potentials on the turbulence properties
is investigated by means of Tokam simulations. Specific questions are addressed in detail:
what is the impact of the potential on the turbulence correlation properties? Does the

potential lead to an expansion of the plasma as observed experimentally?

8.3.1 Modeling of the rectified potentials with the Tokam code

Before describing the implementation of the potential in the code, preliminary remarks
have to be formulated. As explained in Sec 7.2.4, Tokam is considered here as a toy
model. There is no attempt to compare quantitatively the experimental results with the
outputs of the code. The effects of the potential on the turbulence will be studied only
qualitatively. Consequently, the values of Tokam parameters are not chosen to perfectly

match the experimental values.

The rectified potential is numerically reproduced by biasing the sheath boundary electric
potential within a limited domain in the (x,y) plane [139]. The floating potential A in Eq.
7.2 is then modified in a limited 2D region. The size of the biased domain is chosen such
to be much larger than the turbulent structure sizes in order to qualitatively reproduce
the features of the rectified potential. Fig. 8.7 a) shows a snapshot of the Tokam potential
with an external biasing. Here, the plasma was simulated for approximately 3 ms with
ps about 0.6 mm. The biased domain is centered at (xo,yo) = (200,256). To ensure the

continuity between the biased and unbiased domains, the floating potential is modeled
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FIGURE 8.7: Snapshots of the biased potential a) and the corresponding density in
Tokam b).

as a hyperbolic tangent function,

Ao+ Ap(1+ tanh(a‘z:l, y_fjd)) if <z, y<uyo
Ag + Ay(1 + tanh(Z=2 YY)y if 3 > ¢, y <
Az,y) =4 ° pl ( L L ) | 0¥ =4 (8.1)
Ao + Ap(1 + tanh(= :l, y“Lyy)) if =<z, y>yo
Ao+ Ap(1+ tanh(ITL:x, y“L;y)) if x>0,y > 0.

The sizes of the biased domain in the x and y directions are x, — x; = Yy — Yqg =
128ps (~ 7.7cem). Ly =2 ps and L, = 20 p, are the characteristic gradient scale lengths
chosen in order to obtain a stronger gradient along the = direction. Ag = 4 is the usual
Bohm sheath potential. Note that A, = —9 is chosen negative in order to guarantee the

numerical stability of the code?. For T,=100 eV, A, is equal to 900 V in S.I. units.

Fig. 8.7 b) shows a snapshot of the density computed by Tokam. On the biased domain,
a density depletion can be observed as well as the absence of turbulent structures. The
effect of the polarization on the time averaged density profiles can be studied by com-
paring the density with and without external biaising. This is done on Fig. 8.8 where
AN (@,y) = [(N(2,9)" )= (N (2, )" 7%)e] /(N (2)"%0)yy i depicted, (N (z, )" "),
and (N (z,y)"**); being the local time averaged density with and without biasing, re-

nobia5>

spectively. (N (z) t,y is the unbiased density averaged both in time and along the y
direction. Note that the normalization and the colorbar have been chosen such to reveal
the density variations related to the effects of the polarization. In fact, the time averaged

density can vary poloidally up to 30%.

2A, > 0 might cause the code to diverge because of the exponential form of the sheath boundary
condition (Eq. 7.2)
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FiGURE 8.8: Effects of the external biasing on the time averaged density. The de-

picted quantity is AN (z,y) = [(NV(2,1)"9%);— (N (z,)"® ¥a%),] /(N (2)7002%) ., where

N (z,y)"° b and N(x,y)"** are the local time averaged density with and without bi-

asing, respectively. (N (z)"°b"s), is the unbiased density averaged both in time and

along the y direction. The boundaries of the polarized domain are indicated with dotted
lines. The direction of the ExB convection is indicated by arrows.

The figure shows interesting and informative patterns. First, a net accumulation of
density is observed in front of the polarized domain (region A). This accumulation results
from the strong potential gradient which takes place at the boundary of the polarized
domain. The potential acts as a local transport barrier [140] which stops the turbulent
structures and consequently causes the density depletion observed inside the polarized
domain. The counter clockwise E x B advection explains why the region B is denser
than the unbiased case whereas the region D is less dense than the unbiased case. A vast

area ,labeled C, is depleted in density.

The effect of macroscopic potentials on the plasma density was also studied using an
advection-diffusion model in [141]. In this approach, the advection term accounts for the
ExB convection caused by the potential whereas turbulent transport is modeled via a
diffusive coefficient. Consistently to the finding presented here, the advection-diffusion
model leads to a density depletion inside the polarized domain. It was also found that, for
large enough potential Vj > 50V, the density significantly increases behind the polarized

domain , which is not observed on Tokam simulations.

Only the effect of polarization on the time averaged density has been studied so far.
We analyze now the turbulence properties in presence of external baising. Fig. 8.9 a),
b) and c¢) show the spatial dependence of the correlation times, lengths and the radial

velocities, respectively. Two general comments can be formulated. The potential affects
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the turbulence correlation properties only locally. Far from the polarized domain, the
correlation properties have similar values to those obtained without external biasing. As
the turbulent activity is strongly damped inside the polarized domain, the density does

not fluctuate making the correlation analysis not meaningful.
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FIGURE 8.9: Turbulence correlation properties in presence of external biasing. a), b)
and c¢) depict the correlation times and lengths and the radial velocities, respectively.
A positive radial velocity corresponds to a outwards motion.

The spatial variation of the velocities is first described because the spatial dependences of
the correlation lengths and times can be easily understood in the light of the velocity field.
The spatial variation of the radial velocity is trivial to understand by taking into account
the ExB velocity induced by the polarized domain. The radial velocity is enhanced at
the bottom of the polarized domain whereas the direction of the radial velocity is reversed
at the top of the polarized domain. Void regions correspond to the positions where there
is no time delay with respect to the adjacent radial positions, consequently V_,.. can
not be estimated at these specific positions. This mainly happens inside the polarized
domain where almost no fluctuations remain. This also happens at the left and right

sides of the polarized domain where the velocity is mainly along the y direction.

As explained previously, teor is not an intrinsic property of the density fluctuations but
depends on the local velocity field. Thus, it is easy to understand why teo- is strongly

reduced in the region of steep potential gradient, i.e where the ExB velocity is large.
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The decrease of the correlation lengths observed on the right and left parts of the po-
larized domain might be a consequence of a shearing of the turbulent structures. Far
from the polarized domain, the turbulent structure velocity is mainly along the radial
direction. When approaching the right or left boundaries of the polarized domain, an
important poloidal component adds to the initial velocity. The turbulent structures are
torn apart by the local variation of the velocity field leading to a reduction of the radial

correlation lengths.

8.3.2 Discussion

The first goal of this section was to qualitatively reproduce the modifications observed
during ICRH heating, namely a decrease of the correlation time and an increase of the

radial velocity.

The experimental observations were numerically reproduced in a biased plasma only in
the potential gradient region. Far from the polarized domain, the turbulence properties
remain unchanged with respect to the unbiased case. Given that the rectified potential
peaks around 5 cm outside the LCFS and is about 2 cm large, it can not explain the
increase (resp. decrease) of the radial velocities (resp. correlation times) measured as
far as 20 cm outside the LCFS.

Moreover, the plasma expansion, probably traducing an increase of density in the far
SOL, observed when Q5 is powered was not reproduced numerically. Finally, the at-
tentive reader might have already noticed that the direction of the ExB motion at the
bottom of the antenna is directed radially inwards, i.e opposite to the radial velocity
measured by reflectometry. It has to be noted that the inferred direction of the ExB
advection does not only rely on the probes measurement as shown in Fig. 8.6 but also
on the postmortem analysis of the antenna limiter [142]: the erosion of the antenna
limiter was found to be more pronounced at the midplane consistently with a clock-
wise ExB advection. The latter argument is very robust and allows us to exclude that
the modifications of the turbulence properties originate from the local antenna rectified

potential.

8.3.3 Alternative scenarios proposed to explain the ICRH induced
SOL modifications

Alternative scenarios have been very recently explored in order to explain the ICRH-

induced SOL modifications.
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Following the observation of the frequency spectra flattening in ICRH plasma on Tore
Supra [133], a bicoherence analysis was performed on probe signals with a very high
sampling rate [143]. The bicoherency revealed a possible wave coupling. The ranges of
frequencies involved are those of ICRH waves (57 MHz), sound waves (1.7 MHz) and
blobby turbulence ( < 100 kHz). It was suggested that sound waves, excited by ICRH,
damp the large turbulent structures. This mechanism might not explain the reflectometer
measurements because it does not directly predict an increase of the turbulent structure

velocities.

On C-mod, modifications of the SOL properties have been observed far from the powered
ICRH antenna [144]. It was proposed that the SOL modifications were indeed due to
rectified potentials. Nevertheless, there is a major difference with the rectified potential
discussed in the last section. In that case, the rectified potentials result from a partial
absorption of the heating wave. A certain amount of ICRH power is reflected from
the bulk plasma towards the wall and the rectified potentials build-up where the ICRH
waves hit the wall. This scenario was also investigated numerically and and found to

agree reasonably well with the experimental data [145].

Assuming that the turbulent modifications observed by reflectometry on Tore supra are,
in fact, due to potentials generated by a partial reflection of the ICRH wave, then the
electric field at play can be estimated from the measured radial velocity. The measured
radial velocity is assumed to be dominated by the E x B velocity: V, = Ey/B when
Q5 is on. The poloidal component of the electric field is therefore easily calculated

and is depicted on Fig. 8.10. Evidently, the poloidal electric field peaks at the same
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FIGURE 8.10: Poloidal electric field estimated from the measured radial velocities when
Q5 is on (new screen, discharges #46996 : 47002). We remind that the leading edge of
the antenna limiter is located 3 cm outside the LCFS.

position than the radial velocities, namely around dpors &~ 17 cm. The poloidal electric

field varies between 1000 V.m™! and 5000 V.m™!. These values are larger than those
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found with probes on the Q5 antenna (peaking around 1000 V.m~!). This difference
suggests that the potentials which cause the modification of the reflectometer signals
have different shape than the Q5 lateral limiter potentials (see Fig. 8.6). They might be
radially elongated and rather thin along the poloidal direction.

8.4 Summary

In the present chapter, the investigation of turbulence properties in ICRH heated plasma
was reported. No significant modification of the turbulence properties was observed in
the confined plasma. The analysis was therefore restricted to the SOL region. In ICRH
heated plasma, the radial velocities increase with respect to the ohmic case whereas
the correlation lengths and times are reduced. These modifications are much more pro-
nounced when the Q5 antenna is powered. Given that Q5 is the closest antenna to the
reflectometer, we suspected local mechanisms to be responsible for the turbulence mod-
ifications.

The possibility that rectified potentials, generated on the lateral limiter of Q5, would
cause the modifications has been explored. To this end, the influence of macroscopic
potentials on the turbulence properties have been investigated with the Tokam code.
The potentials were found to only impact the turbulence in the vicinity of the biased do-
main, inconsistently with the experimental observations. Moreover, the direction of the
turbulent structure motion induced by the Q5 rectified potentials is opposed to that ob-
served by reflectometry. This last finding evidences that there is no direct causal relation
between the modifications of the reflectometer signals in ICRH heated plasma and the
rectified potentials measured on the side limiter of the Q5 antenna. Other mechanisms

should be invoked to account for the observations, and were briefly presented.



Chapter 9

Conclusion and perspectives

In this work, ultrafast sweeping reflectometry has been used to investigate the fine scale
plasma turbulence in Tore Supra tokamak. The sweeping system provides a probing
of the plasma from the SOL to the core. By repeating sweeps, the evolution of the
electron density and its fluctuations are followed with a fine temporal (3us) and relative
spatial resolution in the millimeter range. All over this work we demonstrated that the
ultrafast sweeping reflectometer, which was updated to such an unprecedented temporal
resolution so to provide access to microturbulence scales, is a suitable diagnostics for the
characterization and study of turbulence dynamics even though the interpretation of the

reflectometer signal remains challenging.

9.1 Main findings

We first attempted to quantify the fluctuation properties via the reconstructed fluctuat-
ing density profiles. This attempt was shown to be moderately successful partly due to
unexpected signal perturbation at the edge and to the reconstruction algorithm in the
frame of the WKB approximation. This results in the reconstructed fluctuation density
profiles of artificial radial shifts, which besides lead to unrealistically large correlation
lengths in the confined plasma. We were thus confronted to the evidence that with the
present treatment, the reconstructed density profiles could not be used to properly infer
the density fluctuations properties both in the far SOL and confined region. The recon-
structed density profiles though appear not to be affected by the problems mentioned
above in the region close to the LCFS. In this specific region, Langmuir probe data were
also available to investigate the electron density fluctuations.

The comparison of probe and reflectometer signals was proposed as an indirect reciprocal
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validation of those diagnostics, namely regarding the assumptions underlying the respec-
tive density fluctuation reconstruction. A good agreement was found between the PDFs,
fluctuation levels and skewness measured by both diagnostics. This tends to validate the
assumption of negligible temperature fluctuations, on which the evaluation of density
fluctuations from probe measurements is based.

The fluctuation time scales of the probe and reflectometer signals were also compared.
The reflectometer signals fluctuate systematically faster than the probe signals. This
discrepancy might be related to multidimensional effects arising from the relatively large

spot size of the reflectometer beam.

Due to the difficulties inherent to the reconstruction of fluctuating density profiles, the
properties of the turbulent fluctuations in ohmically heated plasma were therefore investi-
gated on the raw reflectometer signals, as it is presented in Chapter 6. The interpretation
of the results became therefore more challenging. Each component of the reflectometer
signal, namely the amplitude, phase, real and imaginary part as well as the full complex

signal, was analyzed separately as those contain a priori different information.

In absence of MHD activity, the fluctuation radial characteristic lengths computed on
the diffrent signal components are very similar. They are in the centimetric range in the
confined region and the far SOL, while milimetric close to the LCFS. When MHD modes
are active, their contributions to the characteristic lengths can be conveniently filtered
out by using a coherency analysis to the full complex signal.

It was first assumed that the turbulence properties could directly be deduced from the
signal fluctuation properties. Nonetheless, recent numerical simulations (see references
cited in section 6.3) have shown that this assumption is not correct, particularly close to
the LCFS, where the fluctuation level is large. In these conditions non-linear effects can
affect the probing wave response, leading to an underestimate of the correlation length.
Consequently, the very small radial correlation lengths observed at the transition between
the closed and open field line region are doubtful The correlation time of the fluctuating
signals was also investigated. The timescale of the signal can be understood as the time
spent by the structure to cross the reflectometer beam spot. In the edge and near SOL
plasma, the observed short time scale (< 6us) was thus possibly attributed due to a
large poloidal velocity (~ km.s™1).

For the first time, the fluctuation properties in the far SOL plasma were characterized
with reflectometry as it offers the possibility to probe plasmas with density as low as
10'6 m™3. Few centimeters outside the LCFS, the fluctuation timescale was observed
to increase rapidly up to few hundred ps. There, turbulent structures appear to move

radially outwards with a radial velocity of about 200 m.s~!.
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The influence of macroscopic plasma parameters on turbulent fluctuations was than stud-
ied, as it is presented in the Chapter 7 of the manuscript.

In the confined plasma, the modifications of the signal fluctuation properties observed
during a density and current scan were attributed to the underlying variation of electron-
electron collisionality. An increase of the collisionality leads to a decrease of the fluc-
tuation radial correlation length. Also, quasi-coherent modes with frequency around
50-100 kHz, are observed within 0.6 < r/a < 0.75 at low collisionality, which disappear
with an increase of the collisionality. A possible interpretation of the latter observation
was proposed in terms of TEM, which stabilize with collisionality, and investigated by
a linear stability analysis with the code Qualikiz. This shows an unstable TEM at low
collisionality, absent at high. The quasi-coherent modes are thus thought to account
for the presence of TEM. A more complete modelling of the observed behaviour would
require thorough non-linear simulations including both ions and electron dynamics.

In the far SOL, the radial velocity is observed to decrease when the line average density is
ramped up, whereas the correlation length and time are increasing. Simulations with the
2D fluid turbulence code, TOKAM, were performed to understand the effects of density,
or equivalently, the collisionality, in the SOL plasma. From this modelling we could infer
that the radial velocity is reduced and the small scales are damped, respectively, due to
the increase of viscous forces and the broadening of the dissipative range while increasing
the collisionality.

Finally, the effect of additional heating was analyzed. In ICRH heated plasmas, an
increase of the radial velocity accompanied by a strong decrease of the fluctuation cor-
relation time were observed in the far SOL. Interestingly, these modifications depend
on the active antenna and were much more pronounced when the antenna Q5, which
is the closer connected to the reflectometer port, was powered. It was first suspected
that rectified potentials arising on the Q5 antenna limiter could cause the observed local
modifications. However, combined information from probe measurements and numerical
simulations with TOKAM, tend to invalidate the locality of the perturbation. Others

mechanisms should be invoked to account for these observations.

9.2 Future directions

In previous studies on sweeping reflectometry [27, 28, 46|, it was shown that this system
could provide information such as the density profiles, the density fluctuation profiles
and the wavenumber spectra. This work has extended the possibilities to the radial cor-
relation length, radial velocities and the frequency spectra, up to 160 kHz.

All the analysis techniques mentioned above are now routinely available.

The Doppler shifts observed on the frequency spectra have not been deeply studied but
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will surely might bring new information on the plasma rotation and structure of the
turbulence.

However, because of reduced experimental campaign, due to a premature interruption of
the tokamak Tore Supra, our studies have been restricted to mainly ohmic plasmas and
low additional (ICRH) power L-mode plasmas. More systematic analysis in dedicated
experiments will be necessary to highlight the parametric dependences of the turbulence.
The Tore Supra upgrade (WEST project) with a divertor configuration and new tungsten
wall is now undertaken and will provide long duration H-mode discharges by the end of
2015.

In the meantime, measurements are foreseen on the ASDEX Upgrade tokamak in 2014.
Hardware upgrades are also planned. The D-band (110-150 GHz), which probes the
plasma center, is already being upgraded and will also be able to operate sweeps in 2 us.
Together with the V and W bands, this should provide very promising capabilities for the
systematic analysis of the full plasma in various experimental conditions. 1 us sweeping
time with dead time of 0.5 us is considered for the V (50-75 GHz) and W (75-110 GHz)
bands, which is lower than the fluctuation correlation time in the closed field line region.
Such a short sampling time will increase the temporal dynamic by a factor of two but
also broaden the complex frequency spectra measurements up to 300 kHz instead of 160
kHz.

Still remains the interpretation and specially the understanding of the plasma-wave in-
teraction, which presently is the object of strongly active researches in the community,
to access the ’true’ plasma turbulence from the reflected signal fluctuations. A promis-
ing method, aiming at correcting the measured correlation lengths, has been recently
developed [76] and should be applied to the ultrafast sweeping reflectometer data. The
coupling of a synthetic reflectometer with non-linear turbulence simulations will greatly
improve the understanding of the recorded signals. The characterization of the turbulent
structures properties may gain in reliability if the experimental data are systematically

interpreted with the help of numerical simulations.



Appendix A

A method for evaluating the
uncertainties affecting the

experimental skewness

When investigating the SOL turbulence, the skewness is often used as a measure of the
intermittency. However, the skewness is a third order statistical moment and requires
long time series to converge. The experimental time series from turbulence diagnostics
in Tore Supra are generally of a few thousand points leading thus to statistical uncer-
tainties on the skewness estimate. Here, a simple method is presented to evaluate the
uncertainty affecting the skewness. The method consists in generating a large number of
numerical time series with a known probability distribution, then the deviation between
the theoretical and measured skewness is studied with respect to the length of the time

series.

A.1 Model for skewed time series

A model for Langmuir probe time series able to reproduce the shape of the experimental

PDF was proposed by Sandberg [146], the signal time series is decomposed into

w(t) = Z(t) +~vZ(t)>. (A1)

where Z(t) is a zero mean Gaussian process with a standard deviation equal to one. The
parameter vy measures the deviation from Gaussianity of w(t) . The skewness of such a

process is given by
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3+ 4y?

S(v) = T ax 2922 (A.2)

Evidently, the skewness is positive for 4 > 0 and tends to S=23/2 for large .

Fig. A.1 a) and b) show a 5000 points time series computed according to Eq. A.1 with
v = 0.15 and the corresponding distribution, respectively.
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FIGURE A.1: a) Numerical time series computed on 5000 points with v = 0.15 and b)
its corresponding distribution.

The estimated or measured skewness is S,,, = 0.85 whereas a theoretical skewness of
S5:=0.91 is predicted from Eq. A.2 for v = 0.15. The difference between the measured

and theoretical skewness is due to the finite length of the time series.

A.2 Method for estimating the error on the measured skew-

ness

Assuming that the experimental time series are well described by Sandberg’s model, a
numerical experience can be developed to estimate the uncertainty affecting the measured
skewness. This method is based on the generation of a large number of numerical time
series with different lengths and « values. The method takes advantage that the true
(S¢) and estimated skewness (S,,) can be calculated for each time series, consequently

statistics can be made on the error err = S,, — S;.

In practice, N=10* time series are generated for M—10 distinct time series lengths and
P—100 values of v. The time series length is varied from 103 points to 10* points by
step of 10% points. The parameter v is spaced such that the theoretical skewness varies

linearly from 0 to about 2.7.
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The definition of the statistical uncertainty is a subtle point. First we want to stress that
only the estimated skewness S;, is experimentally known. Also different values of the
theoretical skewness S; can lead to the same value of \S,,, due to statistical uncertainties.
Subsequently, the average deviation between S, and S; can be assessed the probability
of obtaining S; for a given value of S, is known. Thus, a definition for the statistical

uncertainty arises quite naturally,

/
(err?)V/2 = ( [~ st>2PDFsm<St>dst>1 g (A3)

(err?)1/2 is the root mean square deviation between S, and S; and is related to the
width of PDFg,, (St), the latter being the conditional probability of the true skewness

given the measured skewness.

The exact expression of PDFg, (S;) is unknown but a discrete sample of the distribution
can be obtained from the numerical experience. To this end, the number of event lyings
in the interval [Sy,(1 — €), S; (1 + €)] is counted for each value of S; and the associated

distribution is built.

S.=2.5
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S
t
FIGURE A.2: a) Measured skewness with respect to the underlying theoretical skew-
ness. Here, 103 points long time series are used. PDFg, (S;) are shown on b) and c)

for S, = 2.5 and S,, = 1, respectively.
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The procedure is illustrated in Fig. A.2 with 103 points long time series. The intervals
on which the distributions are computed are also shown. Note that, ¢ = 10% has been
used for the purpose of illustration. However, ¢ = 2% is enough to obtain a sufficiently

sampled distribution when applying the method to the experimental data.

Fig. A.2 b) depicts the distribution obtained for S, = 2.5. In this case, the distribution
does not drop to zero because Sy, is too close to the boundaries of the computing interval
(Sm € [0,2.7]). Consequently, the uncertainty can not be properly inferred for such a high
value of S,,. The application of the method is only valid for the interval S,, € [0.3,2],

which is relevant for most of the experimental situations.

Fig. A.2 ¢) shows the distribution obtained for S,,, = 1. In this case, the distribution is

well-behaved and the corresponding quadratic error is <6T‘T2>1/ 2=0.13.

Finally, the quadratic errors are computed for different lengths of the time series. The

quadratic error curves are shown in Fig. A.3 for 1000, 5000 and 10000 points time series.

0.25

—1000 pts
—5000 pts
0.2[{—10000 pts

0.05'_///

0.5 1 15 2
S
m

FIGURE A.3: Numerical abacus of the quadratic error affecting the skewnes

Unsurprisingly, the quadratic error increases with the measured skewness and decreases
with the length of the time series. The quadratic error is rather small even for 1000 points
time series. This is quite encouraging and gives a relative confidence in the skewness
measured experimentally. The curves are used as abacuses to estimate the experimental
uncertainty. As the lengths of the experimental time series do not generally match
the lengths of the numerical time series, the experimental uncertainty is obtained by

interpolating the numerical uncertainty.

The main finding of this method is that the statistical uncertainty affecting the skewness
is surprisingly small even for short time series. Howerver, this method is based on the
strong assumption that experimental time series can be expressed in the form of Eq.
A.1. The reliability of this model is questionable given that it does not account for the

long correlation time commonly observed in the SOL. Nevertheless, the above method
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concerns the statistical properties of the time series which should, at priori, be insensitive

to the dynamical properties of the system.

More recently, O. Garcia has proposed a stochastic model accounting for both the statis-
tical and dynamical properties of the probe time series [147]. It will be very interesting
to include Garcia’s model in our method in other to investigate if a dependence exists

between the statistical and dynamical properties of the system.






Appendix B

Considerations on the beam spot

size

The spot size is a key parameter to interpret the reflectometer signals. The spot size is
directly linked to the antenna radiation pattern which tells us how large is the fraction
of the radiated energy in a given direction. The radiation pattern depends mainly on
the antenna geometry. The emitting and receiving antennas are 3.2 c¢m square horn
antennas. Fig. B.1b) and c) show the radiation pattern calculated in the far field region,
for two frequencies in the (E, E) and (ﬁ , E) planes, respectively. Taking k aligned to the
antenna axis, (E, E) and (FI , E) correspond approximately to the poloidal and toroidal
planes, respectively. The radiation patterns show clearly that the width of the central
lobe is larger for low frequency waves. The angle, for which the fraction of the radiated

power is reduced by -3 dB defines the spot size.

(E, k) plane (H,k) plane
oot

20 10 g 10 20 30 % 20 -10 g 10 20 30

FIGURE B.1: a) Schematic view of the antenna horn. b) radiation diagram for two
frequencies in the (E, k) plane. ¢) radiation diagram for two frequencies in the (E, k)

To evaluate the spot size, one has also to know the distance traveled by the wave between
the antenna and the cutoff position. The antenna is located 4.26 m away from Tore Supra
vertical axis. The link between the probing frequency and the cut-off position is obtained

through the density profile. Fig. B.2 shows the spot sizes in the poloidal and toroidal

133



Appendix B. Considerations on the beam spot size 134

planes using Tore Supra #47170 density profile. D ~ 16 cm and Dy =~ 22 cm are the
spot sizes in the poloidal and toroidal planes, respectively. The spot sizes have only a
weak dependence with respect to the radial position. Larger distances traveled by high
frequencies waves are compensated by a narrowing of the radiation pattern. Note that
the spot size was evaluated with geometric optics. Effects like refraction, due to the

propagation through the plasma, were note taken into account.
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FIGURE B.2: Beam spot sizes evaluated in the poloidal and toroidal planes with respect
to the radial cut-off position for #47170 plasma parameters (By = 3.387T, (n.) = 6.310'®
and Ip =0.6MA).

In the following, the spot size is compared to the plasma characteristic lengths, namely
the cutoff layer curvature and the turbulent structure size, in order to study its potential

impact on the measurements interpretation.

B.1 Mean plasma curvatures

First, the plasma cut-off layers are considered as smooth mirrors curved in both the
toroidal and poloidal directions. In the toroidal direction, two disctinct radii of curvature
have to be taken into account. The mean toroidal curvature can be fairly estimated by
the tokamak major radius. It is found that Dy /2mRy << 1, meaning that the mean
toroidal curvature does not play a significant role. Tore Supra is subject to a significant
ripple (due to the finite number of poloidal coils) which bends locally the field lines and
thus the cutoff layers. Fig. B.3 illustrates the bending of the refraction index contours
on Tore Supra. In the SOL, the refraction index contours are only marginally bent on a
distance comparable to the toroidal spot size. Moreover, the effect of magnetic ripple is
lower when going towards the plasma core.

Fig. B.4 shows the position of cutoff layers on a poloidal cross section calculated with
B =4T and ne =5 10" m™3. Again, the cutoff layers curvature is low on a distance

of the order of the poloidal spot size.
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FiGURE B.3: Bending of the refraction index contours due to the magnetic ripple in
the Tore Supra SOL. The red arrow represents the toroidal spot size. dpcprg denotes
the distance to the LCFS. Adapted from [148].

1
0.5
¥ oz
AU oo
N NS
-0.5
-1
-1 -0.5 0 0.5 1

r/‘a

FIGURE B.4: Position of the X-mode cutoff layers on a poloidal cross section for
different probing frequencies. The red arrow represents the poloidal spot size. Adapted
from [148].

B.2 Plasma turbulence

Additionally to the toroidal and poloidal curvatures, the cutoff layers are deformed by
electron density fluctuations. Here, the characteristic scale lengths of the fluctuations
are compared to the spot sizes. To this end, the cutoff layers are now represented by

corrugated mirrors.

In the poloidal direction, the turbulence structure size is generally centimetric in tokamak
core plasmas [149-151| thus smaller than the poloidal spot size. Because of the strong
anisotropy of the magnetic field, the particles parallel velocity is much larger than the
perpendicular velocitiy. Consequently, the turbulent structures are elongated along the

magnetic field with typical length L = 2mqR, q being the safety factor. The safety factor
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q is around unity at the plasma center leading to a parallel length L ~ 15m which is
much bigger than the spot size. However the tilt angle « of the field line has also to be
taken into account. Let’s call h the distance traveled by the structure in the poloidal
plane on the spot size. If h is small with respect to the poloidal spot size, then the
turbulence can be considered homogeneous in the toroidal direction. Fig. B.5 illustrates

the situation.

F1GURE B.5: Schematic representation of the tilt of a turbulent structure elongated
on a magnetic field line on the illuminated plasma area.

From elementary trigonometry,

h D
LRt i S (B.1)
DE DE qR
Using realistic values of ¢, the condition h/Dp << 1 is fulfilled from the core to the
LCFS.

In this discussion, it was shown that the effects of the mean plasma curvatures are not
significant on the reflection of the probing wave on the plasma cutoff layer. Taking
into account that the irregularities are elongated along the magnetic field lines, only the
poloidal size of the structure are smaller than the spot size. Consequently, the modeling
of the plasma waves interaction can be restricted, at the first order, to the r — 6 plane

in slab geometry.
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Comments on the frequency spectra

asymietries

As mentionned in Sec. 7.1.1 and 7.1.2, the observed frequency spectra asymmetries are
caused by Doppler shifts. It is yet not fully understood how the plasma motion can lead
to the observed spectra. Nevertheless, it is worth to present the main mechanisms which

are susceptible to generate the frequency shifts.

Doppler shifts have already been reported on correlation reflectometry spectra. For
example, a correlation between the direction of the parallel velocity and the sign of the
frequency shift was observed in TEXTOR [103]. It was consequently suggested that the
asymmetry of the spectra originates from the parallel velocity.

On Tore Supra, frequency shifts are observed in the edge region on the fixed frequency
reflectometer signals. These frequency shifts are attributed to a significant ripple and a

non-zero toroidal angle of incidence of the reflectometer beam.

We remind that a plasma moving at a velocity V creates a frequency shift Aw on the

electromagnetic wave with wave vector k,

Aw=Fk-V. (C.1)

=

Expanding this relation in the reflectometer frame! (Z, 7, 2) gives

Aw =k, Vi + &y Vyy + k. V.. (C.2)

!The reflectometer frame is illustrated in Fig. C.2.
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Contrary to the fixed frequency system, the ultrafast sweeping reflectometer was designed
to probe the plasma at normal incidence. Consequently k, >> ky, k. ~ 0, and the k,V,,

and k,V, terms are neglected in the following.

C.1 Doppler shift due to the radial motion of the plasma

Assuming that a global plasma motion along the radial direction is responsible for the
observed frequency shifts. As the reflectometer is located in the tokamak midplane, V, ~
V.. The observed doppler shift is of the order of Aw = 20 kH z, and the characteristic
wavenumber close to the cutoff, k, ~ 1 cm ™!, then a net radial velocity V, ~ 500 m s~
is obtained. Such a large radial velocity would lead to a very poor confinement of the
density due to a strong advection. Consequently, a net radial motion of the plasma is

not suitable to explain the Doppler shifts.

C.2 Doppler shift due to the poloidal motion of the plasma

Some insight on the mechanisms underlying the Doppler shift can be obtained by analysing
specific experiments during which the contact point between the plasma and the vacuum
vessel is modified. During the discharges #47182 and #47183, the contact point was
varied from bottom to top, respectively. The plasma poloidal cross sections are depicted
on Fig. C.1 as well as the corresponding frequency spectra. Note that apart from the
contact point and geometry, the plasma parameters are similar for discharges #47182
and #47183.

The Doppler shift is positive for the plasma limited at the top of the vessel whereas the
Doppler shift is negative for the bottom limited plasma. This observation supports the
idea that the Doppler effect is, at least partially, due to a counter clockwise poloidal rota-
tion of the plasma. For bottom limited plasmas and density structures rotating poloidally
in the electron diagmagnetic direction, the reflectometer detects the structure as it was
moving radially away. This leads to the experimentally observed negative Doppler shift.
Contrarily, if the plasma is top limited, a poloidally rotating density structure appears

as it were approaching to the reflectometer when crossing the reflectometer beam.

The effective radial velocity originating from the poloidal plasma motion can be estimated

as illustrated in Fig. C.2.

If the structure moves poloidally with a constant velocity Vp, the effective velocity per-

ceived by the reflectometer is the projection of the poloidal velocity on the reflectometer
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FIGURE C.1: a) Position of the plasma in the Tore Supra vacuum vessel. The plasma

center was shifted of Az = £8 cm with respect to the midplane. b) and c) show the fre-

quency spectra corresponding to plasma with top and low contact points, respectively.
The white curves highlight the frequencies for which the spectra peak.

F1GURE C.2: Schematic explanation of the Doppler shift for a top limited plasma.
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axis V;(0) = Vpsin(f). The resulting Doppler shift is Aw = k;(Vy)g where (Vy)g is the

effective velocity averaged on the beam spot,

1 01

Vi) =
(Va)e 0 =05 )y,

Vo (0)do. (C.3)

Here, 61 and 65 are the angles corresponding to the intersection of the beam spot and the
poloidal layer. 6; and #y can be calculated from 6, the aperture of the probing beam,
and on the reflectometer position through rg, L and Az as defined in Fig. C.2. Using
0, = 3°, Az = 8 cm, rg = 0.7a =~ 50 cm, and Vy = 2 km.s~! (typical velocity measured
by Doppler reflectometry in the edge plasma), the Doppler shift is of the order of 30 kHz.
The Doppler shift found with this simplified model agrees within one order of magnitude

with the experimental values.

C.3 Local inversions of the Doppler shift

No attention was paid to the detailed evolution of the Doppler shift so far. Nevertheless,
the peak frequency position generally varies with respect to the radial position. The
peak frequency can even change its sign when the MHD activity is strong as depicted
in Fig. C.3 a). On this example, the position of the Doppler shift inversions are clearly
correlated with the MHD mode as observed on the phase signals (Fig. C.3 b).

Localized inversions of the peak frequency have already been observed with Doppler
reflectometry in the core region of Tore Supra [152]. Change of signs of the radial

electric field were proposed to account for the inversion of the Doppler spectra.

Nonetheless, the detailed shape of the frequency spectra are not fully understood and
require further investigations. We suspect that the shape of the poloidally rotating tur-
bulent structures, and especially their tilt angle, contribute significantly to the Doppler

shifts and to the observed change of signs.
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