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Abstract

The application of the Hydraulic Fracturing (HF) technology to exploit geothermal

energy from Hot Dry Rocks (HDR) reservoirs is addressed. HF is achieved by ex-

tensively pumping geothermal fluids to already existing fractured HDR reservoirs of

low permeability. High fluid pressures are expected to drive cracks to evolve and

connect. The newly created burgeoning hydraulic conduits should supposedly en-

hance the permeability of the existing HDR reservoirs. The flow rate/pressure values

at which geothermal fluids should be pumped, as well as the pumping schedule to

initiate HF, depend primarily on the existing geostatic conditions (geostatic stresses,

initial HDR pressure and temperature) as well as on HDR fracture properties (initial

mean fracture length, mean fracture aperture, density and orientational distribution

of fractures). While these components, in addition to their effects on borehole sta-

bility, are scrutinized in this research, focus is on the evolution during circulation

processes of the fracture properties.

A fracturing model that is capable of tracking fracture evolution in all possible spatial

orientations is used to obtain the time course of the anisotropic permeability tensor.

This evolving property is integrated into a domestic finite element code which is

developed to solve thermo–poroelastic BVPs: emphasis is laid on the efficiency of

the doublet flow technique where a fluid gains thermal energy by circulating through

the HDR reservoir from the injection well to the production well.

The spurious oscillations in the hyperbolic solutions of the approximated finite ele-

ment approach that are commensal with the phenomenon of forced heat convection

are healed/mitigated through several stabilization approaches.



Résumé

Ce travail concerne l’utilisation de la technique de Fracturation Hydraulique (FH)

pour exploiter l’énergie géothermique des réservoirs profonds de roches sèches chaudes

(HDR). La fracturation hydraulique est réalisée par injection de fluides géothermiques

dans des réservoirs partiellement fracturés de faible perméabilité. Les fluides à haute

pression sont destinés à faire évoluer les fissures et leur connectivité. Les valeurs de

débit/pression auxquelles les fluides géothermiques doivent être pompés, ainsi que

le calendrier de pompage pour initier la fracturation hydraulique, dépendent prin-

cipalement des conditions géostatiques existantes (contraintes géostatiques, pression

fluide et température initiales de l’HDR) ainsi que des propriétés des fissures de

l’HDR (longueur, épaisseur, densité et distribution directionnelle initiales moyennes

de fissures). Tous ces éléments, en sus de leurs effets sur la stabilité des forages, sont

analysés dans cette recherche.

Des modèles de fracturation, qui sont capables de suivre l’évolution des fissures

dans toutes les orientations spatiales possibles, sont utilisés pour obtenir le tenseur

anisotrope de perméabilité. Ces modèles sont intégrés dans un code domestique

d’éléments finis qui est développé pour résoudre des problèmes aux limites thermo-

poroélastiques.

Pour supprimer/diminuer les oscillations qui accompagnent les solutions paraboliques

et/ou hyperboliques lors de la convection forcée, plusieurs techniques de stabilisation

ont dû être implémentées.
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4.1 Material properties of Soultz–Sous–Forêts reservoir, (Evans et al., [2009]). *The

permeability value is used as in (Taron and Elsworth, [2009]). . . . . . . . . . . . 109

4.2 Parameters used in testing the HF model (HFM). References: 1.(Shao et al., [2005])

and 2.(Atkinson, [1991], p. 245). . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.3 Parameters used in the application of HFM. References: 1.(Shao et al., [2005]),

2.(Atkinson, [1991], p. 245), 3.(Evans et al., [2009]) and 4.(Taron and Elsworth,

[2009]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.1 Key reservoir design parameters, (Jupe et al., [1995]). . . . . . . . . . . . . . . . 162

5.2 Boundary conditions used for the stimulation test at Soultz–Sous–Forêts. l=left,
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Introduction

Objective, method and scope

The objective of this research is to develop an environment that describes permeability en-

hancement of geothermal systems in a Thermo–Hydro–Mechanical (THM) framework. The

developed environment is to include mechanical ingredients, i.e. fracturing models, to describe

Hydraulic Fracturing (HF), and a computational aspect to implement the HF process in thermo–

poroelasticity.

A great deal of time is spent in studying thermo–poroelasticity on the mathematical and the

finite element levels. The contribution from the available literature is highly valued and investi-

gated. A domestic Fortran 90 finite element code is developed to simulate thermo–poroelasticity

in single–porosity media subjected to temperature changes. Fracture and damage mechanics are

employed to develop and modify fracturing models to describe HF. The fracturing models are

integrated into our finite element code to study HF in a thermo–poroelastic framework.

Validation of the fracturing models is accounted for. Several stimulation and/or circulation

tests at the geothermal reservoir of Soultz–Sous–Forêts are finally presented.

Strategy of the PhD research

Geothermal geomechanics and its applications on the Enhanced Geothermal Systems (EGS) is

presented. Under the framework of thermodynamics, the mechanics of porous media subjected

to thermal changes is precisely studied. The field equations attributed to thermo–poroelasticity

with full coupling between the mechanical, the fluid diffusive and the thermal diffusive effects

are presented. A full mathematical model to describe fluid-temperature transports in single–

porosity deformable fractured zones is hence developed.

Using the Finite Element Method (FEM), this mathematical model was discretized in the

space and time to get the matrix formulation that can be coded for to solve the thermo-

poroelastic Transient Boundary Value Problems (TBVPs).
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Using Fortran 90, a Finite Element (FE) code capable of simulating plane strain and axisym-

metric thermo-poroelastic TBVPs is developed. The FE code is used to simulate the thermal

recovery from large–scale geothermal systems lying deep in the ground.

To enhance the performance and/or the efficiency of these geothermal systems, the process of

HF is studied thoroughly. HF is achieved by extensively pumping geothermal fluids to already

existing geothermal reservoirs of low permeability. High fluid pressures will drive cracks to

evolve and connect, the new created burgeoning hydraulic conduits will supposedly enhance the

permeability of the existing reservoir and hence the efficiency of heat extraction process.

To numerically simulate the process of HF, fracture and damage mechanics are employed

to develop fracturing models capable of describing the directional fracture evolution. These

fracturing models are tested against experimental data to ensure good results before applying

them in the research.

The fracturing models are working following this scheme: a criterion to decide whether frac-

turing and hence damage, at the scale of Gauss’ points and in any direction, takes place or not

and a rule that provides the incremental length of the crack are presented. Knowing the new

fracture radius, the change in fracture aperture is estimated based on analytical estimations

and/or experimental data which relate aperture change to change of fracture radius. Using the

new fracture aperture along with the fracture radius, the local velocity field is calculated by

implementing Navier–Stokes equation for laminar flow between two parallel plates. The macro-

scopic velocity field is deduced by the directional averaging (sort of a homogenization approach)

over the local velocities. A macroscopic anisotropic permeability tensor, that accurately de-

scribes the hydraulic connectivity of the hydraulically fractured medium, is then calculated by

applying Darcy’s law for laminar flow.

These fracturing models are integrated into the FE code that addresses thermo–poroelastic

TBVPs: thermal recovery from Hot Dry Rock (HDR) reservoirs is upgraded by enhancing

geothermal fluid circulation, i.e. increasing the reservoir permeability between injection and

production wells by the process of HF. HF has been proven to enhance the efficiency of the

thermal recovery from HDR reservoirs by 50%.

The problem of borehole stability associated with tensile and shear failure of the borehole

case–shoe is also presented to ensure safe HF process of HDR reservoirs.

A fairly sufficient study on designing the Enhanced Geothermal Systems; in terms of size,

impedance, efficiency and life time is outpointed. Chemical enhancement of EGS is also briefly

addressed from several researchers who have been working on it recently. The effect of tempera-

ture change on geothermal fluids, Newtonian and Non-Newtonian, viscosity is neatly addressed.

The phenomenon of forced heat convection is highlighted with several approaches to heal/

mitigate the oscillations in the hyperbolic solutions of the approximated finite element approach.
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The commonly used Streamline Upwind Petrov-Galerkin (SUPG) method fails to heal these

oscillations at early times near the injection wells and at late times near the production wells.

New approaches like the Subgrid Scale (SGS) and the Discontinuity Capturing Method (DCM)

are worked and employed in our FE code to perfectly heal those numerical oscillations against

which the SUPG schemes are inefficient.
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Chapter 1

Geothermy and Enhanced Geothermal

Systems (EGS): General view

1.1 Geothermal energy: Historical point of view

Geothermal energy (The adjective geothermal originates from the Greek roots geo, meaning

earth, and thermos, meaning heat) is the thermal energy generated and stored in the Earth.

Our planet self–generates this energy from the decaying of certain radioactive minerals and from

the tectonic activities. This thermal energy is driven to the surface of the Earth due to a con-

tinuous conduction which is a natural result of an existing difference of gradient of temperature

between the core and the surface of the planet (Turcotte and Schubert, [2002]).

Geothermal energy exploitation has been historically limited to certain areas on the planet

where it was feasible and easy to use it, for instance areas near tectonic plates boundaries. Mod-

ern technologies, such as hydro–fracturing, have been employed to enhance the capability of

extracting geothermal energy from any place on the planet, if cost effective though. Geothermal

power is reliable, sustainable, and environmentally friendly; the greenhouse gases that could be

released while extracting it, are much lower per unit energy produced than fossil fuels. Geother-

mal energy could be the salvation of humanity that suffers from global warming if it was widely

deployed.

The estimated total thermal energy above mean surface temperature to a depth of 10 km is

1.3×1027 J, equivalent to burning 3.0×1017 barrels of oil. Since the global energy consumptions

for all types of energy, is equivalent to use of about 100 million barrels of oil per day, the Earth’s

energy to a depth of 10 kilometers could theoretically supply all of mankind’s energy needs for

six million years (Lund, [2007]). It is quite obvious that the Earth’s geothermal resources are
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theoretically sufficient to supply humanity’s energy needs, however, they cannot be all efficiently

exploited. The efficiency here is more or less the economic efficiency; drilling to deep resources

is not inexpensive, future needs for energy, future technologies and logistic interests could be

the mean reasons driving the use of the geothermal power.

Hot springs have been used for bathing at least since Paleolithic times (Cataldi, [1993]).

The first commercial use of geothermal power appeared in the first century AD, when Romans

conquered Aquae sulis1and used hot springs there for public paths and heating. The world’s

oldest geothermal district heating system is in Chaudes-Aigues (hot waters in old French),

France, and has been operating since the 14th century (Lund, [2007]).

The USA were the first to use geothermal energy to run an entire heating system in Boise Idaho,

Klamath Fallas, and Oregon between 1892 and 1900. Geysers were also used to heat green

houses in Iceland around 1900’s and to heat homes in 1943 (Dickson and Fanelli, [2004]). The

exploitation of geothermal energy became much common and accepted after the implementation

of the heat pump in 1940’s. J. Donald Kroeker was the first to heat a common–wealth building

Portland, Oregon in 1946 by a commercial heat pump that he designed2. The idea of exploiting

geothermal energy became widely accepted and started to grow slowly after the oil crisis in 1973.

As of 2004, there are over a million geothermal heat pumps installed worldwide providing 12

GW of thermal capacity (Curtis et al., [2004]). Each year, about 80,000 units are installed in

the USA and 27,000 in Sweden (Curtis et al., [2004]).
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Figure 1.1: Total worldwide geothermal capacity from 1975 up to end of 2007 (Bertani,[2007]).

1Aquae Sulis was a small town in the Roman province of Britannia.
2Kroeker J. Donald, Chewning Ray C. (February 1948), A Heat Pump in an Office Building, ASHVE Trans-

actions 54: 221-238.
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1.2 Types of geothermal systems

1.2.1 Conventional geothermal systems

Traditional geothermal energy systems for effective electricity production can be potentially used

only on less than 10 percent of Earth’s surface. They rely on locating anomalies, section(1.1).

They use a well to pump water out of the ground and pass it through a heat exchanger. A

refrigerant cycle is then used to remove heat from the water. This refrigerant is compressed to

make a hot gas that could be used to heat buildings (Lund, [2007]).

1.2.2 Enhanced geothermal systems

The vast majority of geothermal energy, within reach of available techniques, is in dry and

non-permeable rock Hot Dry Rock (HDR) (Duchane and Brown, [2002]). Enhanced Geothermal

Systems (EGS), unlike the conventional geothermal systems, do not require any certain loca-

tion anomalies; engineers would rather enhance and/or create the geothermal recovery from this

HDR through hydraulic stimulation, see figure (1.2).

Figure 1.2: Enhanced geothermal system 1:Reservoir 2:Pump house 3:Heat exchanger 4:Turbine

hall 5:Production well 6:Injection well 7:Hot water to district heating 8:Porous sediments 9:Obser-

vation well 10:Crystalline bedrock (Wikipedia EGS, 30/08/2011).

When the rock is not porous enough to allow efficient rates of flow, cold pressurized water

is injected down the borehole. The injection increases the fluid pressure in the naturally frac-

tured rock which incites shear events, enhancing the permeability of the fractured system. This

7
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GENERAL VIEW

process is called hydro–shearing/fracturing.

Water travels through fractures in the rock, capturing the heat of the rock until it is forced

out of a second borehole as very hot water, which is converted into electricity using either a

steam turbine or a binary power plant system. All of the water, now cooled, is injected back into

the ground to heat up again in a closed loop. Distinct from conventional geothermal systems,

HDR / EGS may be feasible anywhere in the world depending on the economic limits of drilling

depth. Good locations are over deep granite covered by a thick (3-5 km) layer of insulating

sediments which slow heat loss. Most of HDR wells are expected to have a useful life of 20 to

30 years before the outflow temperature drops about 10 ◦C and the well becomes uneconomic.

If left for 50 to 300 years the temperature will recover (Beardsmore, [2007]).

There are HDR and EGS systems currently being developed and tested in France, Australia,

Japan, Germany, the U.S. and Switzerland. The largest EGS project in the world is a 25

megawatt demonstration plant currently being developed in the Cooper Basin, Australia. The

Cooper Basin has the potential to generate 5,000-10,000 MW (Beardsmore, [2007]).

1.3 Types of geothermal resources

On average, the temperature of the Earth increases about 30 ◦C/km above the mean surface

ambient temperature. Thus, assuming a conductive gradient, the temperature of the earth at

10 km would be over 300 ◦C. However, most geothermal exploration occurs where the gradient

is higher and thus where drilling is shallower and less costly. These shallow depth geothermal

resources occur due to (Wright, [1989]):

1. Intrusion of molten rock (magma) from depth, bringing up great quantities of heat.

2. High surface heat flow, due to a thin crust and high temperature gradient.

3. Ascent of groundwater that has circulated to depths of several kilometers and been heated

due to the normal temperature gradient.

4. Insulation of deep rocks by thick formation of rocks like shale whose thermal conductivity

is low (Thermal Blanketing).

5. Anomalous heating of shallow rock by decay of radioactive elements, perhaps augmented

by thermal blanketing.

8



1.3 Types of geothermal resources

Geothermal resources are usually classified as shown in Table (1.1). Geothermal resources

range from the mean annual ambient temperature of around 20 ◦C to over 300 ◦C. In general,

resources above 150 ◦C are used for electric power generation, and resources below 150 ◦C are

usually used in direct–use projects for heating and cooling (White and Williams, [1975]).

Table 1.1: Geothermal Resource Types (White and Williams, [1975]).

Resource Type Temperature Range ◦C

Convective hydrothermal resources

Vapor dominated 240◦

Hot-water dominated 20 to 350◦ +

Other hydrothermal resources

Sedimentary basin 20 to 150◦

Geo–pressured 90 to 200◦

Radiogenic 30 to 150◦

Hot rock resources

Solidified (Hot Dry Rock) 90 to 650◦

Part still molten (magma) > 650◦

1.3.1 Vapor dominated systems

Produce steam from boiling of deep waters in low permeability rocks. These reservoirs are few in

number, with The Geysers in Northern California, Larderello in Italy and Matsukawa in Japan

being ones where the steam is exploited to produce electric energy (White et al., [1971]).

Region of 

condensation
Water table

Heat

Vapor

Boiling sub-surface water table

Convecting hot water

Recharge

Recharge

Figure 1.3: Vapor dominated geothermal system edited from (White et al., [1971]).

1.3.2 Water dominated systems

These systems are generated from water circulating deep in permeable rocks that are heated by

a convecting source and later lifted up by buoyancy. These systems include an up–flow zone

9

chapter1/figures/graf1-3.eps
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at the center of each convection cell, an outflow zone of heated water moving laterally away

from the center of the system, and a down–flow zone where recharge is taking place. Surface

manifestations could include hot springs, Geysers, chemically altered rocks, or sometimes a blind

source with no surface manifestation (White et al., [1971]).
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Figure 1.4: Hot water dominated geothermal system edited from (White et al., [1971]).

1.3.3 Sedimentary basins

Produce higher temperature resources than the surrounding formations due to their low thermal

conductivity “geothermal gradients > 30◦C/km”. These basins generally extend over large areas

and are typical of the Madison Formations of North Dakota, South Dakota, Montana and

Wyoming area of the northern United States and the Pannonian Basin of central Europe where

it has been used extensively in Hungary (Anderson and Lund, [1979]).
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Figure 1.5: Sedimentary basin geothermal resource edited from (Anderson and Lund, [1979]).
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1.3.4 Geo–pressured resources

These resources, figure (1.6), occur as result of water circulating in permeable sedimentary

rocks which are buried deep in the earth crust. These deeply circulating fluids are heated by

natural/enhanced1 geothermal gradients and tightly confined by the surrounding impermeable

rocks holding pressure much larger than the hydrostatic. These waters are target for drilling

not only for geothermal power but also for the dissolved methane. The Texas and Louisiana

Gulf Coast in the United States has been tested for the geothermal energy, however, due to the

great depths of several kilometers they have not proved economic (Bebout et al., [1978]).
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Figure 1.6: Geopressured geothermal system edited from (Bebout et al., [1978]).

1.3.5 Radiogenic resources

Found where granitic intrusions are near surface heating up the local groundwater from the

decay of radioactive thorium, potassium and uranium. This localized heating increases the

normal geothermal gradient providing hot water at economical drilling depths. This type of

resource occurs along the eastern United States, but has not been developed commercially.
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Figure 1.7: Radiogenic geothermal system edited from (Anderson and Lund, [1979]).

1By a convective source like magma.
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1.3.6 Hot Dry Rock (HDR) resources

These resources represent heat trapped in quite deep rocks (up to 10 km). At such depths

geothermal energy cannot be extracted economically, besides these rocks contain few pores or

fractures and thus very low or no permeability.

In order to extract the heat, experimental projects have artificially fractured the rock by

hydraulic pressure, followed by circulating cold water down one well to extract the heat from

the rocks and then producing from a second well in a closed system. Early experimental projects

were undertaken at Fenton Hill (Valdes Caldera) in northern New Mexico and on Cornwall in

southwest England, however, both of these projects have been abandoned due to lack of funds

and poor results. Projects are currently underway in Soultz-sous-Forêts in the Rhine Graben

on the French-German border, in Switzerland at Basel and Zürich, in Germany at Bad Urach,

several locations in Japan, and in the Cooper Basin of Australia (Tenzer, [2001]).
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Figure 1.8: Hot Dry Rock (HDR) exploitation edited from (Lund, [2007]).
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1.4 Utilization of geothermal energy

1.3.7 Molten rock or magma resources

A heat exchanger constructed on the surface of the lava flow recovered steam resulting from

boiling of downward percolation water from the surface. These resources have been drilled

in Hawaii experimentally to extract heat energy directly from molten rock. It has been used

successfully at Heimaey in Iceland (one of the Westmann Islands) after the 1973 eruption.

1.4 Utilization of geothermal energy

1.4.1 Electric power generation

Geothermal energy is generated by using the hot steam which turns a turbine which is, in its

turn, designed to generate electricity. Vapor dominated resources figures (1.3) and (1.9 ) can be

used directly. However, water dominated resources need a pre–step in which pressure is reduced

to generate the steam, figure (1.10).
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Figure 1.9: Steam plant using a vapor or dry steam dominated geothermal resource edited from

(Lund, [2007]).
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Figure 1.10: Flash steam plant using a water-dominated geothermal resource with a separator to

produce steam edited from (Lund, [2007]).

When exploiting geothermal resources with low temperature < 150 ◦C, the use of a binary
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cycle called Rankine cycle that contains low–boiling organic fluid is necessary to generate the

vapor required to run the turbine, figure (1.11). Later a cooling tower is used to condense

the vapor leaving the turbine and thus increasing the efficiency of the system by creating a

considerable drop in the temperature of the vapor.

Air and water

vapor
Turbine Generator

Cooling

tower

Air

Water

Air

Water

Condenser

Cooled water

Heat exchanger

Pump

O
rg

a
n

ic
 V

a
p

o
r

Injection 

well

Production 

well
Geothermal reservoir

Figure 1.11: Binary power or organic Rankine cycle plant using a low temperature geothermal

resource and a secondary fluid of a low boiling-point hydrocarbon edited from (Lund, [2007]).

1.4.2 Direct utilization

Direct use of geothermal energy is widespread and could be located in very far and isolated

areas. This renders the estimation of the global direct utilization a tremendous task, however,

the main utilization categories are:

1. Swimming, bathing and balneology.

2. Space heating and cooling including district energy systems.

3. Agricultural applications such as greenhouse and soil heating.

4. Aquaculture application such as pond and raceway water heating.

5. Industrial applications such as mineral extraction, food and grain drying.

Direct utilization of geothermal energy includes geothermal resources which give low to in-

termediate temperature. These low to intermediate temperature resources are feasible and exist

in at least 80 countries at economic depths (Lund, [2007]). The direct utilization projects range

from individual scales of homes and greenhouses heating to large scales operations such as min-

erals extraction.
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1.5 Environmental considerations

Geothermal waters are oxygen free and care must be payed to prevent oxygen from pen-

etrating them. Dissolved gases and minerals such as Arsenic and Hydrogen Sulfide must be

removed or isolated since they are harmful to humans and plants. On the other hand, carbon

dioxide which often occurs in geothermal waters can be extracted and used to enhance growth

in greenhouses.

1.5 Environmental considerations

Although geothermal resources are considered renewable and green, there are several environ-

mental impacts, that are usually mitigated, which must be considered during utilization. These

include emission of harmful gases, noise pollution, water use and quality, land use, impact on

natural phenomena, and induced seismicity (Kagel et al., [2005]).

1.5.1 Emissions

These are normally direct results of using vapor power plants with cooling towers as they produce

water steam emission. Depending on the reservoir type, these vapor emissions include: carbon

dioxide, sulfur dioxide, nitrous oxides, hydrogen sulfide along with particulate matter. Table

(1.2) shows a small comparison of emitted gases (kg/MWh) between a coal-fired plant and a

geothermal power plant.

Table 1.2: Comparison of emitted gases (kg/MWh) between a coal-fired plant and a geothermal

power plant (Lund, [2007]).

Name of the emitted gas Amount released from Amount released from

a coal–fired plant a geothermal power plant

Carbon dioxide 994 40

Sulfur dioxide 4.71 0.16

Nitrogen oxides 1.95 0

Hydrogen sulfide 0 0.08

Other particulate matters 1.01 0

Hydrogen sulfide is routinely treated at geothermal power plants and converted to elemental

sulfur. Binary (air–cooled) power plants and direct-use projects normally do not produce any

pollutants, as the water is injected back into the ground after use without exposing it to the

atmosphere.
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1.5.2 Noise

The majority of the noise produced at a power plant or direct-use site is during the well drilling

operation which normally shuts down at night. The noise from a power plant is not considered

an issue of concern as it is extremely low, unless you are next to or inside the plant. Most of

the noise comes from cooling fans and the rotating turbines (Lund, [2007]).

1.5.3 Water use

The amount of freshwater used to cool a geothermal power plant is estimated to 20 liters per

MWh (binary power plants use no water), compared to 1,370 liters of freshwater needed by a

coal-fired plant. An oil plant uses about 15% less and nuclear about 25% more than the coal

plant. The only use of water is to cool the plant and the only discharge of it is to change the

fluid during the cyclation. Water is normally reinjected into the aquifer without mixing with

the shallow groundwater.

At the Geysers facility in northern California, 42 million liters of treated wastewater from

Santa Rosa are pumped daily for injection into the geothermal reservoir. This reduces surface

water pollution in the community and increases the production of the geothermal field. A similar

project supplies waste water from the Clear Lake area on the northeast side of the Geysers. These

projects have increased the capacity of the field by over 100 MW (Lund, [2007]).

1.5.4 Land use

Generally the power plants of geothermal energy can be located near recreational areas with very

limited visual impacts; they are designed to blend quite well with the surrounding. A typical

geothermal power plant uses 404 m2 of land per GWh compared to a coal facility that uses 3,632

m2 per GWh and a wind farm that uses 1,335 m2 per GWh (Lund, [2007]). Seismicity and land

subsidence are the main impacts that should be considered when designing a geothermal power

plant. However, they can be mitigated by reinjecting the used water back into the aquifer.

Utilizing geothermal resources eliminates the mining, processing and transporting required for

electricity generation from fossil fuel and nuclear resources (Lund, [2007]).

1.5.5 Impact on natural phenomena, wildlife and vegetation

As was stated in (1.5.1), geothermal water contains dangerous gases that could be very harmful

to humans, animals and plants. Geothermal power plants are to be located far away from wildlife

and vegetation. Designers and operators are especially sensitive about preserving manifestations

considered sacred to indigenous people. Any site considered for a geothermal power plant must
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be reviewed and considered for the impact on wildlife and vegetation. Direct use projects are

usually small and thus have no significant impact on natural features.

1.5.6 Induced seismicity

Seismicity has become the term that accompanies the geothermal energy; seismic events have

been observed in a number of operating geothermal fields and EGS projects.

1.6 Induced seismicity

Seismic activities have been observed around geothermal resources for the last 30 years in so

many countries worlwide. Such countries include Indonesia, the Philippines, South America,

New Zealand, Switzerland at Basel (2009) and Saint–Gall (2013), The Geysers and Coso geother-

mal in California fields have a long history of geothermal production and a range of induced

seismicity.

Actually, thousands of earthquakes have been observed annually, yet these earthquakes are

micro-earthquakes (MEQ’s) and not felt by people. In worst recorded cases they could have

reached magnitudes of 4 range on Richter scale. The induced seismicity may be entirely of very

low magnitudes, or may be a short–lived transient phenomenon. In the majority of the dozens of

operating hydrothermal fields around the world, there is no evidence whatsoever of any induced

seismicity causing significant damage to the surrounding community.

There are several mechanisms that could be deployed to understand the occurrences of such

seismic activities in the geothermal facilities:

1. Pore pressure increase: Increased fluid pressure can reduce stresses keeping the faults from

failing and thereby facilitate seismic slip in the presence of an unbalanced stress field. In

such cases, the seismicity is driven by the local stress field, but triggered on an existing

fracture by the pore-pressure increase. In many cases, the pore pressure required to shear

favorably oriented joints can be very low, and vast numbers of microseismic events occur

as the pressure migrates away from the well bore in a preferred direction associated with

the direction of maximum principal stress.

In a geothermal field, one obvious mechanism is fluid injection. Point injection from wells

can locally increase pore pressure and possibly account for high seismicity around injection

wells. If the rock is of very low permeability (not many open fractures) then it may be

17



1. GEOTHERMY AND ENHANCED GEOTHERMAL SYSTEMS (EGS):
GENERAL VIEW

necessary to inject fluids at higher pressures. At higher pressures, fluid injection can exceed

the rock strength creating new fractures in the rock, i.e hydro-fracturing the rock.

2. Temperature changes: Fluids interacting with hot rock can cause contraction of fracture

surfaces in a process known as thermoelastic strain. As with effective stress, the slight

opening of the fracture reduces static friction and triggers slip along a fracture that is

already near failure in a regional stress field. Alternatively, cool fluids interacting with hot

rock can create fractures and seismicity directly related to thermal contraction.

3. Volume change due to fluid withdrawal/injection: As fluid is produced (or also injected)

from an underground resource, the reservoir rock may compact or be stressed. These

volume changes cause a perturbation in local stresses which are already close to the failure

state (geothermal systems are typically located within faulted regions under high states of

stress). This situation can lead to seismic slip within or around the reservoir. A similar

phenomenon occurs where solid material is removed underground, such as in mines, leading

to Rock Bursts1 as the surrounding rock adjusts to the newly created void.

4. Chemical alteration of fracture surfaces: Injecting non-native fluids into the formation

(or allowing fluids to flow into the reservoir due to extraction) may cause geochemical

alteration of fracture surfaces, thus reducing or increasing the coefficient of friction on the

surface. In the case of reduced friction, MEQs (smaller events) would be more likely to

occur. It has been supposed that if seismic barriers evolve and asperities form, resulting

in increased friction, events larger than MEQs may become more common.

There is also another point that concerns the researchers of geothermal energy about seismic

activities. Actually the employment of hydro–fracturing aims at enhancing the permeability of

the HDR. However, this enhancement is targeted to a definite size, i.e. the radius of the en-

hancement is not to exceed a certain distance beyond the injection well (usually a few hundred

meters). It is that to extract the maximum heat from a given volume of rock one does not want

to have any fast paths that would short circuit the water, thus not allowing the injected water

to heat to the desired temperature. Ideally, one wants a large matrix of many small fractures to

give the maximum surface area for heating the injected water.

Seismic events, though dangerous, are one of the few methods in which permeability en-

hancement is monitored. If larger events were to be avoided, small events with magnitudes up

1A rock burst is a spontaneous violent fracture of rock that can occur in deep mines. The opening of a mine

shaft relieves neighboring rocks of tremendous pressure which can literally cause the rock to explode as it attempts

to re–establish equilibrium.
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to 2 for geothermal sources with radii 100 m or less, could be of great help. However, events

of magnitude 2 near certain projects have raised residents concern for both damage from single

events and their cumulative effects. Some residents believe that the induced seismicity may

cause structural damage similar to that caused by larger natural earthquakes. There is also fear

that the small events may be an indication of larger events to follow. A related concern is that

not enough resources have been invested in trying to answer some of the questions associated

with larger induced events.

The Geothermal Implementing Agreement under the International Energy Agency (IEA)

initiated an international collaboration in induced seismicity in 2004. The purpose of this col-

laboration is stated in the “Environmental Impacts of Geothermal Development, Sub Task D,

and Seismic Risk from Fluid Injection into Enhanced Geothermal Systems Geothermal Imple-

menting Agreement (IEA/GIA)” as follows:

Participants will pursue a collaborative effort to address an issue of significant concern to the

acceptance of geothermal energy in general but EGS in particular. The issue is the occurrence of

seismic events in conjunction with EGS reservoir development or subsequent extraction of heat

from underground. These events have been large enough to be felt by populations living in the

vicinity of current geothermal development sites. The objective is to investigate these events

to obtain a better understanding of why they occur so that they can either be avoided or miti-

gated. Understanding requires considerable effort to assess and generate an appropriate source

parameter model, testing of the model, and then calculating the source parameters in relation

to the hydraulic injection history, stress field and the geological background. An interaction

between stress modeling, rock mechanics and source parameter calculation is essential. Once

the mechanism of the events is understood, the injection process, the creation of an engineered

geothermal reservoir, or the extraction of heat over a prolonged period may need to be modified

to reduce or eliminate the occurrence of large events.

Following this agreement, the U.S department of energy, Geothermal Technology office has

held 3 international workshops, between 2009 and 2010, in which 17 countries have participated.

An initial induced seismicity protocol was developed for operators of geothermal fields to follow.

Specific protocols for different areas will supplement the general protocol depending on potential

for seismicity and proximity to local communities. These activities are continuing in addressing

research needs and refining protocols for induced seismicity.
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In final words, the exploitation of geothermal power and electricity generation has increased

over the past 30 years by about 15% annually, yet dropped to 3% annually the last 10 years (1990

to 2000) due to an economic declination in the far east and the low price of competing fuels.

Direct utilization of geothermal energy has remained fairly steady over the 30 year period at

10% growth annually. Only ten countries reported electrical production and/or direct utilization

from geothermal energy at the beginning of this 30 year period. Yet, by the end of this period

(2̃000), 72 countries reported utilizing geothermal energy. This is over a seven-time increase

in participating countries. At least another 10 countries are actively exploring for geothermal

resources and should be on–line by now (Lund, [2007]).
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1.7 Relevant studies

These remarks were collected at the beginning of my PhD thesis as I was trying to have a general

view about this field of research. These studies may sound difficult for those who are not so

deep in the field. However, I have chosen to keep them for those individuals who may find them

interesting as comprehensive and auxiliary notes.

• (Cheng et al., [2001]) studied the heat extraction from a fracture embedded in a geothermal

reservoir. It is a very simple approach as the authors assumed only thermal effects. They

assumed constant aperture width and rigid rock body, they also assumed that there would

be no leakage through the walls of the fracture nor would the pore pressure change. The

authors considered the following approaches:

1. Heat transport equation in the fracture, the effects of longitudinal dispersion as well

as heat storage were examined.

2. Heat conduction in the rock body, which was tested for both one and two dimensional

effects then both cases were compared.

3. Integral solution using Green’s function has been applied, leading to completely elim-

inating the outer geometry of the reservoir.
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Figure 1.12: Idealized view of heat extraction from a hot dry rock (left) with the mathematical

solution domain (right).

This work has proven that:

1. The heat storage and the heat dispersion effects are not usually important due to

dominant advective transport in the fracture fluid flow.

2. Two-dimensional heat conduction can significantly alter the prediction of heat ex-

traction temperature and the reservoir life.
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3. While modeling of heat conduction in geothermal reservoir, the use of correct reservoir

geometry could be important in predicting the life of the HDR reservoir.

4. Improvements like modeling the reservoir elasticity, thermoelasticity, and poroelastic-

ity, leading to a fracture fluid pressure, temperature, and reservoir compliance need

fracture aperture–width relations to be established.

• (Ghassemi et al., [2008]) investigated the poroelastic and thermoelastic effects of cold-water

injection in an enhanced geothermal system (EGS) by considering flow in a pre–existing

fracture in a hot rock matrix that could be permeable or impermeable. Assuming plane

fracture geometry, expressions were derived for changes in fracture aperture caused by

cooling and fluid leak-off into the matrix.
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Figure 1.13: Side (a) and top (b) view of the system being modeled. The reservoir is assumed to

extend from the top to the bottom of the system. The vertical fracture intersects the entire reservoir

and extends between the injection well on the left and the production well on the right.

The authors considered the following approaches:

1. The reservoir is assumed to be horizontal and of constant thickness, confined at the

top and the bottom by rigid, impermeable and thermally insulated formations.

2. The fracture is modeled as a vertical plane of uniform width that intersects the entire

reservoir thickness.

3. Solution geometry is 2-dimensional.

4. Rock displacement parallel to the fracture is neglected.

5. Deformation of the rock mass is not significant to affect the pore pressure.

This work came out with the following results:

First, the poroelastic effects:
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1. Although fluid loss from the fracture into the matrix reduces the pressure in the crack,

the poroelastic stress associated with fluid leak-off tends to reduce the aperture and

increase the pressure in the fracture (sort of self–pressurization).

2. High rock stiffness and low fluid diffusivity cause the poroelastic contraction of the

fracture aperture to slowly develop in time.

3. Maximum reduction of the aperture occurs at the injection point (due to self–pressurization

created by extensive leak–off) and becomes negligible at the extraction point.

Second, the thermoelastic effects:

1. Thermally induced stress increases the fracture aperture near the injection point, and

as result, the fluid pressure at this point is dramatically reduced.

2. Thermoelastic effects are particularly dominant near the inlet compared to those of

poroelasticity, yet pronounced everywhere along the fracture for large times.

• (Bai and Abousleiman, [1997]) discussed the general conditions where the coupling should

be maintained and where a partial or full decoupling technique may be applied1. Three

cases have been addressed by the authors:

1. For a stiff material or for a material subjected to relatively small load and insignificant

fluid flow, the effects of elastic deformation and thermal convection may be neglected.

Thus, the system of field equations describing thermo–poroelasticity sums into two

equations, namely; the equation of the balance of mass with the mechanical part

disregarded, and the equation of the balance of energy with the mechanical part, the

pore fluid part, as well as convectional effect disregarded.

2. For a stiff material or for a material subjected to relatively small load, and with

negligible influence of thermal expansion or contraction on the rate of change of fluid

flow. The system of field equations describing thermo–poroelasticity sums into two

equations, namely; the equation of the balance of mass with the mechanical and

the thermal parts disregarded, and the equation of the balance of energy with the

mechanical and the pore fluid parts disregarded.

3. For less significant influence of the rate of change of the elastic volumetric deformation

on those of both fluid flow and thermal transport, and negligible thermal convection,

the system of field equations describing thermo–poroelasticity sums into three equa-

tions, namely; the equation of the balance of momentum, the equation of the balance

1Coupling or decoupling here concerns whether to or not to consider the mechanical and fluid diffusive effects

in the equation of balance of energy in the frame work of Thermo–poroelasticity, see chapter (2).
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of mass with the mechanical part disregarded, and the equation of the balance of

energy with the mechanical part, the pore fluid part, as well as convectional effect

disregarded.

Generally, Thermoelastic effects are manifest in cases like; the storage of high-level nuclear

waste in dry rock masses, the contaminated site remediation through hot air stripping,

and rock fracturing using non–liquid–type heat sources. Meanwhile the poroelastic effects

are manifest in cases like; the consolidation in fluid-saturated porous materials, the fault

dislocation due to fluid withdrawal, and borehole stability in oil/gas production, all in the

isothermal environment. The results have shown that:

1. The development of a fully coupled thermo–hydro–mechanical approach is, some-

times, necessary to minimize the potential errors while modelling the behavior of

poroelastic media under non–isothermal conditions.

2. However, the full coupling may not be feasible if the engineering–oriented analytical

solutions are desired.

3. Simplifications, such as using partial decoupling, should be attempted when the influ-

ence of each coupling term is determined and the omission of such a term is justified

on a physical and analytical ground.

• (Zhou et al., [2009]) provided a three dimensional partially coupled thermo–poroelastic

model to investigate the poroelastic and thermoelastic effects of cold water injection into

EGS.
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Figure 1.14: Fluid circulation in a geothermal reservoir.
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The lubrication fluid flow and the convective heat transfer in the fracture are modeled

by finite element method, while the pore fluid diffusion and heat conductive transfer into

the reservoir matrix are assumed to be three-dimensional and modeled by the boundary

integral equation method without the need to discretize the reservoir. The finite element

method and the boundary element method are coupled and share the same mesh on the

fracture plane.

The application of the model has shown that:

First, the poroelastic effects:

1. The fluid pressures near the injection well are much larger than those near the ex-

traction wells.

2. The variations of the fluid flow field and the fluid pressure field in the fracture with

time may be neglected since the fluid leak off rate (which depends on the difference of

the fracture pressure and matrix pore pressure and the permeability of the reservoir

matrix) is small compared with the injection rate.

3. The pore pressures dissipate from the fracture surface to the far field with the elapse

of the time. A significantly large rock volume experiences pore pressure increases of

as much as 1MPa.

4. As pressure in the fracture decreases toward the extraction wells with time, so does

the induced total stresses σxx and σyy.

5. All poroelastic total stresses σxx, σyy, and σzz are compressive. They are larger

around the injection well than those around the extraction wells, which results from

the larger fluid pressures in the fracture around the injection well and correspondingly

the larger fluid leak off rates from the fracture into the reservoir formation.

6. The total stress components σxx and σyy are larger than σzz, but their values are in

the same order of magnitude.

7. The compressive total stresses in the reservoir increase and the front of the stresses

resulting from the fluid leak off moves into the reservoir with time.

8. The effective stresses from the fluid leak off are tensile, which enhance rock failure

potential around the injection zone and contributes to permeability increase and

seismicity.

Second, the thermoelastic effects:

1. With the elapse of the time, the low temperature area spreads from the injection

well to the extraction well and the temperature of the extracted fluid decreases. The

cooling spreads faster toward the extraction well that is closer.
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2. Fracture cooling will induce tensile σxx and σyy in the rock.

3. The distributions of σxx and σyy at the fracture are similar to the distribution of the

temperature.

4. Both σxx and σyy are larger near the injection well than their values near the extrac-

tion well since the cooling effect on the rock around the injection is more pronounced.

5. The tensile σzz from the cold water injection would tend to increase fracture aperture

and induce new fractures.

6. Values of σzz are in order of magnitude larger than the σxx and σyy.

7. The induced compressive and tensile stresses can contribute to rock failure in shear

and tension, resulting in increased seismicity.

• (Ghassemi and Zhou, [2011]) provided a three-dimensional partially coupled numerical

model that couples fracture aperture variation to the pressure in the fracture, and that

considers the impact of the coupled thermo–poroelastic processes and the feedback between

them, when injecting cold water into an arbitrary shaped fracture in geothermal reservoirs,

see figure(1.14). The fluid flow and the convective heat transfer in the fracture are modeled

by the finite element method, while the three-dimensional pore fluid diffusion and heat

conduction in the rock matrix are modeled by the boundary integral equation method

without discretizing the reservoir domain. The work has shown that:

1. Both fracture pressure and aperture are influenced by the poroelastic effect which

governs the fracture response during the early injection stage.

2. The thermoelastic stress becomes dominant after a long time of fluid injection.

3. When the initial fracture aperture is small enough to generate a relatively large

fracture pressure in comparison to the initial reservoir pressure, a large amount of

fluid leaks off into the matrix. This significantly decreases the fracture aperture and

pressure compared to the case without fluid leak off.

4. However, as cooling increases, the leak off influence becomes less important with

the elapse of time. After a long time of injection, the fracture aperture significantly

increases mainly in response to the thermoelastic effects.

5. As different points on the fracture plane can experience different cooling and pressur-

ization histories, they undergo different stresses and thus display different aperture

variations.

There have also been some works which put a great spot of light on the permeability changes,

the damage of the rock matrix and the induced seismicity while extracting heat. Some of them

are mentioned below for their importance.
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• (Lee and Ghassemi, [2010]) A fully–coupled thermo–poro-mechanical finite element model

is developed with damage mechanics and stress dependent permeability. The damage

model used corresponds to the brittle rock failure behavior with crack initiation, micro–

void growth and permanent increase prior to failure. In order to capture the full effects

of rock cooling by injection in the presence of higher fluxes caused by rock degradation

and permeability enhancement, the model considers both convective and conductive heat

transport in the porous medium. Numerical simulations are presented to verify the model

and to illustrate the role of various mechanisms in rock fracture and distributed damage

evolution.

Q (Fluid injection)

SH,max

Sh,min

Figure 1.15: Mesh used in simulation; SH,max represents maximum far field stress and Sh,min

is for minimum far field stress. Injection rate is Q.

The authors adopted the following approaches:

1. The continuum damage mechanics approach where the strain-stress behavior of a

rock can be divided into an elastic phase and a damage phase.

2. In the elastic phase there is no damage in the rock, whereas the rock begins to fail

by crack initiation and void growth when the stress conditions reach the failure level,

i.e. they satisfy some failure criterion.

3. Damage is measured by using a dimensionless parameter which is related to the initial

modulus of elasticity and elastic strain as well as the residual compressive/tensile

strengths of the material.

4. The progress of damage is traced using Mohr–Coulomb failure criterion.

5. The rock permeability model used, which employs the effective stresses, considers

altered permeability in the elastic and damage phases.
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Their work has demonstrated the following points:

1. The effective stresses are mitigated in the damaged phase as result of the reduction

of rock modulus and increased permeability.

2. As result, a discontinuous pore pressure field is developed that impacts the total stress

distributions around the wellbore.

3. Concentrations of the effective stresses are observed at the interface between the

damaged phase and the intact rock. This stress concentration is caused by fluid

invasion and leads to damage propagation into the reservoir.

• (Lee and Ghassemi, [2011]) A three–dimensional fully–coupled thermo–poro–mechanical

finite element model with damage mechanics is presented. The model considers stress-

dependent permeability and convective heat transport in the thermo–poroelastic formu-

lation. Locations of potential induced–seismicity caused by injection are also calculated.

The authors have adopted the same approaches as in (Lee and Ghassemi, [2010]).

Sv

SH,max

Sh,min

x

y

z

Figure 1.16: Mesh used in simulation; SH,max represents maximum horizontal stress, Sh,min is

the minimum horizontal stress, and Sv is vertical stress.

Three different far–field stress regimes were presented by the authors:

1. Strike-slip: (SH,max = 30 MPa, Sh,min = 10 MPa, Sv = 20 MPa), horizontal

far-field stress as the minimum in situ stress. Numerical results have shown that:

– Fluid injection causes both effective tangential and effective axial stresses to

become tensile.

– Damage and fractures propagate vertically and horizontally in this case where

the minimum stress is horizontal.
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– The effective axial stress caused by fluid injection is the main contributor to

tensile failure across the wellbore, (Sh,min as minimum).

2. Thrust (SH,max = 30 MPa, Sh,min = 20 MPa, Sv = 10 MPa), vertical far field

stress as the minimum in situ stress. Numerical results have shown that:

– Injection induced damage and fractured area propagate horizontally.

– The effective axial stress is not significant and the wellbore hoop stress serves to

propagate the damage.

– A higher injection pressure is needed to generate the fractured plane in the ho-

mogeneous rock case when Sv is the minimum in situ stress rather than Sh,min.

3. Normal faulting regime (SH,max = 20 MPa, Sh,min = 10 MPa, Sv = 30 MPa), the

vertical far field stress as the maximum in situ stress. Numerical results have shown

that:

– A stronger tendency for the induced damage and fractured zone to propagate

vertically.

– The effective axial stress caused by fluid injection is the main contributor to

tensile failure across the wellbore, (Sh,min as minimum).

Number of authors developed the theory of (McTigue, [1986]) to include the states of inho-

mogeneous in situ stresses, see for instance (Detournay and Cheng, [1988]), (Abousleiman and

Ekbote, [2005]) and (Abousleiman and Nguyen, [2009]). Others addressed the dual–porosity,

see for instance (Abousleiman et al., [1999]). The work of (Abousleiman et al., [1999]) is to be

presented:

• (Abousleiman et al., [1999]) The dual-porosity poroelastic behavior of an inclined well-

bore subjected to an inhomogeneous in situ state of stress, under generalized plane strain

conditions is the subject of this study. The finite element formulations are presented and

solutions compared to the single porosity cases are shown.

Anisotropic materials properties and non–homogeneous in situ stress conditions gener-

ally render the problems of thermo–poroelasticity three-dimensional. In certain conditions

it is possible to develop two dimensional algorithms to solve these problems yet mate-

rial anisotropy and three–dimensional in situ stress boundary conditions are admitted by

considering the Generalized Plane Strain (GPS) method.

Results have shown that:

1. The scenarios of wellbore injection or pumping are frequently assumed by a two–

dimensional plane strain setting due to the large axial length to diameter ratios.
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Figure 1.17: Coordinate system for an inclined wellbore.

2. The plane strain approach may not be appropriate since the wellbore axis may not

be aligned with one of the principal in situ stresses. In addition, the shear stresses

along the wellbore axis which are not incorporated in the plane strain situation do

influence the wellbore stability.

3. The generalized plane strain method can eliminate these deficiencies without sacri-

ficing the simplicity of the plane strain method, while maintaining the full terms of

the three-dimensional stress components.

4. The generalized plane strain approach is suitable for the fractured non-homogeneous

media.

5. Preliminary studies identify the fracture spacing, an index of the fracture density, as

the influential parameter which controls the magnitudes and distributions of the cou-

pled pore pressure and rock deformation, in particular within the near–well regions.

6. Future parametric investigations may include discrete features of the fracture network,

such as orientations, distributions and connectivities.
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Chapter 2

Equations for thermo–poroelasticity,

fracture propagation and permeabil-

ity evolution

This chapter provides a brief description of the theory of fluid–saturated thermo–poroelastic

media. The constitutive equations used to describe such media are illustrated and substituted

in the general conservation laws, to get the field equations that shall be used to solve for the

Initial Boundary Value Problems (IBVPs) of thermo–poroelasticity. A brief representation of

fracture and damage mechanics is also outpointed. A fracturing model which includes a criterion

to decide whether fracturing, in any direction, takes place or not and a rule that provides the

incremental length of the crack are presented. Knowing the new fracture radius, the change

in fracture aperture is estimated based on experimental data which relate aperture change to

change of fracture radius. Using the new fracture aperture along with the fracture radius, the

local velocity field is calculated by implementing Navier-Stokes equation for laminar flow between

two parallel plates. The macroscopic velocity field is deduced by a directional averaging over

the local velocities. An anisotropic permeability tensor, that accurately describes the hydraulic

connectivity of the fractured medium, is then calculated by applying Darcy’s law for laminar

flow. Finally, the fracturing model is modified by accounting for crack aperture reduction, and

validation of the model against experimental data is highlighted.

2.1 The theory of fluid-saturated, porous, thermoelastic media

A porous medium is a solid (generally called matrix ) which is permeated by interconnected

voids that could be filled by fluid or gas. Both the solid matrix and the pore space are assumed

to be continuous such that they form two interpenetrating continua like a sponge. Any porous
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medium whose solid matrix is elastic and whose fluid is barotropic is called a poroelastic medium;

a poroelastic medium is characterized by its permeability, porosity and the properties of its

constituents fluid and solid.

The concept of the poroelastic medium has first appeared in the works of Karl von Terzaghi,

1883-1963 the father of soil mechanics. Yet it was later interpreted generally (independent of its

nature and application) in the works of Maurice Anthony Biot, 1905-1985. Between 1935-1957,

Biot developed the theory of dynamic poroelasticity also called (Biot’s theory). For his theory

of Linear Poroelasticity Biot has employed the following equations:

• Equations of linear elasticity for the solid matrix.

• Navier-Stokes equation for the viscous fluid.

• Darcy’s law for the flow of fluid through the porous matrix.

The linear theory of fluid–saturated porous thermoelastic medium was developed by (Mc-

Tigue, [1986]). This theory stands for the compressibility and thermal expansion of both the

fluid and the solid constituents. However, the model of McTigue is fully linearized and it ne-

glects a lot of phenomena that could be of a vital importance in so many applications. For

example, it assumes a homogeneous single–porosity material with a small Péclet number so that

the convection of heat could be neglected. Considering that in geothermal energy extraction

the existence of fracture porosity as well as an increasing permeability is crucial to efficient

production, the assumptions of McTigue render the theory of thermo–poroelasticity with some

limitations.

Generally the problem to be described is an open system which consists of several phases.

It is evident that at the macroscopic scale each phase acts separately from others. However, the

summation over all phases gives the mixture equations of the system.

2.1.1 Constitutive equations used in thermo–poroelasticity

Constitutive equations are simply relations of two kinetic quantities describing the behavior of

materials under different external effects. Some constitutive equations are phenomenological

others are derived from stem physical principles. All the constitutive equations of thermo–

poroelasticity in this chapter are to be presented for homogeneous single–porosity media.

2.1.1.1 Mixture stress equation

According to (McTigue, [1986]) the mixture stress constitutive equation is expressed as:

σij = 2Gεij +
2Gν

1− 2ν
εkk δij − κp δij −K α

′

s θ δij , (2.1)
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2.1 The theory of fluid-saturated, porous, thermoelastic media

where σij is the total stress tensor (compressive stresses have negative sign), εij is the

infinitesimal strain tensor, G is the shear modulus, ν is the drained Poisson’s ratio, K is the

drained bulk modulus, κ is effective stress (Biot’s) coefficient equation (2.2) where K
′

s is the

first solid constituent bulk modulus:

κ =
K

′

s −K
K ′

s

, (2.2)

p is the fluid pore pressure, α
′

s is the first cubical thermal expansion coefficient for the solid,

and θ is the change of temperature (T − T0), where T0 is the reference temperature of the

mixture.

By manipulating equation (2.1), the infinitesimal strain tensor εij takes the form:

εij =
1

2G

[

σij −
ν

1 + ν
σkk δij

]

+
κ

3K
pδij +

α
′

s

3
θ δij (2.3)

It is worth mentioning the trace of the infinitesimal strain tensor εkk:

εkk =
σkk
3K

+
κp

K
+ α

′

s θ, (2.4)

where K = 2G(1 + ν)/3(1 − 2ν), and in terms of the elastic modulus E, K = E/3(1 − 2ν)

and G = E/2(1 + ν).

The infinitesimal shear strain tensor is expressed as:

εij =
σij
2G

, i 6= j (2.5)

2.1.1.2 Change in mixture fluid content equation

According to (McTigue, [1986]) the change in mixture fluid content constitutive equation can

be expressed as:

ζ =
1

3

(
1

K
− 1

K ′

s

)

(σkk +
3

B
p)− φ0(αf − α

′′

s ) θ, (2.6)

where ζ is the change in the fluid content, α
′′

s is the second cubical thermal expansion

coefficient for the solid, B is the pore pressure (Skempton’s) coefficient equation (2.7) where K
′′

s

is the second solid constituent bulk modulus:

1

B
= 1 + φ0

K(1−Kf/K
′′

s )

Kf (1−K/K ′

s)
, (2.7)

φ0 is the reference porosity of the mixture. In terms of the trace of infinitesimal strain tensor,

equation (2.6) can be written as in (Lee and Ghassemi, [2010]):

33



2. EQUATIONS FOR THERMO–POROELASTICITY, FRACTURE
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ζ = κ εkk + p

(−κ2
K

+
κ

BK

)

− θ
[

κα
′

s + φ0(αf − α
′′

s )
]

(2.8)

Assuming that K
′

s = K
′′

s = Ks leads to the definition of Biot’s modulus M , such that:

1

M
=
κ− φ0
Ks

+
φ0
Kf

, (2.9)

and thus equation (2.8) takes the form (Abousleiman and Ekbote, [2005]):

p =M
[

ζ − κ εkk + θ
(

κα
′

s + φ0(αf − α
′′

s )
)]

(2.10)

The difference between the bulk moduli K
′

s and K
′′

s is usually ascribed to the presence of

unconnected porosity. Meanwhile, the difference in the expansion coefficients α
′

s and α
′′

s maybe

viewed as reflecting a difference between the thermal response of the bulk drained porous medium

and that of solid constituents alone. α
′′

s may be considered equal to α
′

s (henceforth denoted by

αs) if the change in temperature is not expected to affect the reference porosity φ0.

2.1.1.3 Darcy’s equation

The constitutive equation of Darcy (2.11) relates the apparent flux of fluid to pressure gradient

and is used to describe the diffusion of fluid in the porous medium.

qf = φ0(vf − vs) = −
k

µ
.(∇∇∇p− ρf g), (2.11)

where qf is the apparent volumetric flux of the fluid relative to the solid skeleton (m/s),

vf is the fluid velocity (m/s), vs is the solid velocity (m/s), k is the permeability tensor of the

mixture (m2), µ is the dynamic fluid viscosity (Pa.s), ρf is the intrinsic fluid density (kg/m3), and

g = g e3, g is the gravitational acceleration (m/s2) and e3 is the descending vertical direction.

2.1.2 Field equations

Field equations are general equations which describe the equilibrium of a medium. Mathemat-

ically, these equations are partial differential equations. They are obtained by substituting the

constitutive equations in general conservation laws.

The modeling of single–porosity Thermo-Hydro-Mechanical (THM) couplings will assume a

homogeneous continuum mixture framework. For the model to be general, it would assume an

open system where the surroundings could contribute to the balance of the field equations.
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2.1.2.1 Equation of balance of momentum of the mixture

The equation of balance of momentum also called the equilibrium equation of elasticity is derived

based on Newton’s law of motion which states that: in an initial frame of reference, the material

rate of change of the linear momentum of a body is equal to the resultant applied forces.

∇.∇.∇.σσσ + F = 0, or,
∂σij
∂xj

+ Fi = 0, i = 1, 2, 3 (2.12)

Fi is the vector of the body forces. By applying this principle in equation (2.1) one obtains:

G
∂2ui
∂xj∂xj

+

(

K +
G

3

)
∂

∂xi

∂uj
∂xj
− κ ∂p

∂xi
−K α

′

s

∂θ

∂xi
+ Fi = 0, i = 1, 2, 3 (2.13)

That is to say three equations of balance of momentum which will result in two possibilities:

1. Whether one gets the displacement components directly by the Finite Element Method

(FEM),

2. or one finds the strain components first, then integrates to get the displacement compo-

nents.

Considering the symmetric strain tensor, 6 strain components are recognized. However, there

are always three displacement components: to find a single solution for displacement compo-

nents, the components of strain tensor cannot be arbitrary. They have to satisfy a compatibility

condition. In case of plane strain this condition is expressed as:

2
∂2εxy
∂x∂y

=
∂2εxx
∂y2

+
∂2εyy
∂x2

, (2.14)

where:

εxx(x, y) =
∂ux
∂x

εyy(x, y) =
∂uy
∂y

εxy(x, y) =
1

2
(
∂ux
∂y

+
∂uy
∂x

)

(2.15)

2.1.2.2 Equation of balance of mass of the mixture

The equation of balance of mass accounts for materials entering or leaving the system. The

linearized fluid mass balance equation according (McTigue, [1986]) is given by:

∂ζ

∂t
+∇.qf = 0 (2.16)
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By applying this principle to equations (2.8) and (2.11) and by assuming thatK
′

s = K
′′

s = Ks,

it is found that (Abousleiman and Ekbote, [2005]):

∇.
(

−k

µ
.∇∇∇p+ k

µ
.ρf g

)

+ κ
∂

∂t

(
∂ui
∂xi

)

+

(
κ− φ0
Ks

+
φ0
Kf

)
∂p

∂t

=
∂θ

∂t

[

φ0 αf + (κ− φ0)α
′

s

]
(2.17)

2.1.2.3 Equation of balance of energy of the mixture

The equation of balance of energy comes from the law of energy conservation where heat fluxes

are replaced by their values given by the law of heat conduction or Fourier’s law. Assuming

an equilibrated temperature field, the equation of balance of energy takes the following form1

(McTigue, [1986]):

ρcv
∂θ

∂t
+ ρfcvf qf,i(x, t)

∂θ

∂xi
+ T0

[

−
(

φ0αf + (κ− φ0)α
′

s

) ∂p

∂t
+K α

′

s

∂2ui
∂t∂xi

]

−χ ∂2θ

∂xi∂xi
= 0,

(2.18)

where ρf cvf is the fluid volumetric heat capacity (J/m3 ◦C), ρcv and χ (W/m ◦C) are the

effective volumetric heat capacity and conductivity of the mixture, qf,i(x, t) is the volumetric

fluid discharge (m/s), and T0 is the reference temperature. Several authors including (Mc-

Tigue, [1986]) and (Bai et Abousleiman, [1997]) have noted that the mechanical and fluid dif-

fusion terms are, in most cases, of very minor effects on the solution of the thermo–poroelastic

BVPs. Thus the third term of equation (2.18) can be neglected2.

∂θ

∂t
︸︷︷︸

Heat storage

+
ρfcvf
ρcv

qf,i(x, t)
∂θ

∂xi
︸ ︷︷ ︸

Heat convection

− ψ
∂2θ

∂xi∂xi
︸ ︷︷ ︸

Heat conduction

= 0, (2.19)

where ψ is the effective thermal diffusivity of the mixture expressed as ψ = χ/ρcv (m2/s).

Equation (2.19) shows clearly that the convection of heat mitigates the rate in which it is lost

by conduction. In the linearized mixture theory, the effective conductivity and heat capacity

can be related to the constituent properties:

χ = (1− φ0)χs + φ0 χf (2.20)

ρcv = (1− φ0)ρscvs + φ0 ρfcvf (2.21)

The subscripts s and f refer to the solid and fluid constituents respectively.

1The influence of pore fluid pressure on the enthalpy of the system is neglected as proven insignificant.
2If the convective term is also to be neglected, in cases of small pore fluid velocity for instance, the equation

of balance of energy can be decoupled from the system of equations and solved alone, see equation (2.19).
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2.1.2.4 The equation of stress diffusion

This equation is derived by manipulating the constitutive equations in the foregoing to reach

a form which can be solved by well-known methods (McTigue, [1986]). This approach is an

extension of the work of (Rice and Cleary, [1976]).

(
∂

∂t
− c∇2

)(

σkk +
3

B
p

)

= c
4G(1 + ν)

3(1− ν) α
′

s∇2θ

+
2GB(1 + ν)(1 + νu)

3(νu − ν)
φ0(αf − α

′′

s )
∂θ

∂t
,

(2.22)

where the hydraulic diffusivity c (m2/s) is given by (Mc Tigue, [1986]):

c =
k

µ

2G(1 − ν)
(1− 2ν)

[
B2(1 + νu)

2(1− 2ν)

9(1 − νu)(νu − ν)

]

(2.23)

The undrained Poisson’s ratio is given by:

νu =
3ν +B(1− 2ν)(1 −K/K ′

s)

3−B(1− 2ν)(1 −K/K ′

s)
(2.24)

Following equation (2.22), it is obvious that the quantity (σkk +
3

B
p) is integrated in a

diffusion equation that depends on spatial and temporal effects of the temperature field.

Equation (2.22) is derived without invoking the equation of balance of energy. Consequently,

this equation is general and it could be used for many theories with or without considering the

convection of heat.

If equation (2.19) is to be considered without the convective term, the temperature field

is decoupled and thus solved for alone. The temperature field is henceforth substituted in the

diffusion equation (2.22) to get the term (σkk +
3

B
p) which is then used to solve for the pressure

field, equation (2.17).

2.1.3 Time scale of Thermo–poroelastic IBVPs

There are two distinct time scales associated with the problems of thermo-poroelasticity; one

for each of the operating diffusive mechanisms. The first time scale is associated with the dif-

fusive heat transfer and is given by tθ = L2/ψ. In general, the thermal properties used in this

expression should be weighted average quantities based on the volume fraction of the pores, see

equations (2.20) and (2.21).

The second time scale is associated with diffusive flow of the pore fluid and is given by

tp = L2/Cc, Cc is the consolidation coefficient (m2/s) and is defined as Cc = k (λ + 2G)/γf , k

is the hydraulic conductivity of the medium (m/s), γf is the specific weight of the pore fluid
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(N/m3) and λ&G are Lamé’s elastic constants (N/m2). In both cases L is a typical length of

the BVP considered (m).

2.2 Fracture mechanics and damage

A brief description of the failure theory and fracture mechanics is to be presented in this section.

A commonly used approach which combines the physical (at microscopic scale) and the phe-

nomenological (at macroscopic scale) conceptions of fracturing is outlined. This approach will

be employed to calculate an anisotropic damage tensor which precisely describes the material

state under loading. Though damage is well defined mathematically through out this chapter,

it shall not be used further in this research while doing the simulations. We hope that future

studies will integrate this model in definite frameworks where it will be significantly utilized.

The theory of failure is the science of predicting the conditions under which solid materials

fail under the action of external loads. Depending on certain conditions like the rate of loading

and/or the stress state, this theory states that the failure of materials can be either brittle or

ductile.

The damage of a specific material means the loss of the material capability to hold loads.

This failure can be tested in different scales from microscopic to macroscopic.

• Microscopic failure is expressed in terms of crack propagation and initiation. Henceforth,

all the failure criteria are related to microscopic fracturing.

• Macroscopic failure is defined in terms of load carrying capacity or energy storage capacity.

The macroscopic failure models can be expressed in terms of macroscopic effects like stress

or strain or macroscopic property like stiffness or the coefficient of thermal expansion.

Generally there are five levels to consider the damage of a specific material; the material

behavior at one level is considered as a collective of its behavior at a sub–level. A damage model

should be consistent at each level. These levels are summarized as below:

1. The structural element scale.

2. The macroscopic scale where macroscopic stresses and strains are defined.

3. The mesoscale which is represented typically by a void.

4. The microscale.
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2.2 Fracture mechanics and damage

5. The atomic scale.

All these criteria, to be considered, render the development of a perfect damage model a

quite tremendous task. One should choose a model such that it includes as many levels as

possible and such that it is consistent at each level. To go on with describing damage, a brief

discussion of fracture mechanics is to be presented below.

2.2.1 Fracture mechanics

Fracture mechanics is the field of mechanics which studies the initiation and evolution of cracks.

It relates the theories of elasticity or plasticity, in terms of stress and strain, to the microscopic

crystallographic defects of materials to predict the macroscopic behavior.

2.2.1.1 Linear Elastic Fracture Mechanics (LEFM)

Linear elastic fracture mechanics was first developed by A. A. Griffith, see (Griffith, [1921]),

to explain the failure of brittle materials. Figure (2.1) shows an edge crack embedded in a

semi–infinite plate subjected to a loading state.

σ

a

Crack

Figure 2.1: An edge crack of length a in a semi–infinite plate.

Considering the model of figure (2.1), Griffith found that:

σf
√
a = Constant, (2.25)

where σf is the stress at the crack’s tip (at the initiation of the crack propagation, fracturing

stress). By solving the elasticity problem of a finite crack in an elastic plate, Griffith also found

that:

Constant =

√

2E γ

π
, (2.26)
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where E is the Young’s modulus of the material (Pa) and γ is the surface energy density

(J/m2) of the material. For this simple case of a thin rectangular plate with a crack perpendicular

to the load, Griffith’s theory becomes:

G =
π σ2 a

E
, (2.27)

where G is the strain energy release rate or the rate at which energy is absorbed by growth

of the crack (J/m2). The strain energy release at the threshold of crack propagation is defined

using the fracturing stress σf as:

Gc =
π σ2f a

E
(2.28)

If for any case G ≥ Gc the crack will begin to propagate.

The work of Griffith was quite sufficient to describe the evolution of cracks in brittle materials.

However, later G. R. Irwin found that the work of Griffith not able to represent the evolution of

cracks in the ductile materials. In ductile materials a plastic zone is developed at the tip of the

crack and it increases as the applied load increases. Thus there is a part of the energy dissipated

during this plastic loading. Irwin divided the fracturing energy into two parts (Irwin, [1957]):

1. The stored elastic strain energy which is released as the crack grows (driving force of the

fracture).

2. The dissipated energy which provides the resistance to fracture.

Following that: G = 2γ +Gp, (2.29)

where γ is the surface energy and Gp is the plastic energy dissipation per unit area of crack

growth (J/m2). Irwin’s energy criterion can be written as:

σ
√
a =

√

E G

π
, or, KI = σ

√
a π (2.30)

Kc =
√

EGc, for plane strain

Kc =

√

E Gc

1− ν2 , for plane stress

(2.31)

KI is the stress intensity factor (Pa.m0.5), Kc is the crack toughness (Pa.m0.5) and ν is the

Poisson’s ratio. Cracks start to propagate when KI ≥ Kc.

Depending on the way of loading the material, there are several modes to express the intensity

factor, see figure (2.2):
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Mode I:

Opening 

Mode II:

In-plane shear 

Mode III:

Out-of-plane shear 

Figure 2.2: The three modes of fracturing.

1. Mode I crack, (KI): Opening mode (a tensile stress normal to the plane of the crack).

2. Mode II crack, (KII): Sliding mode (a shear stress acting parallel to the plane of the crack

and perpendicular to the crack front).

3. Mode III crack, (KIII): Tearing mode (a shear stress acting parallel to the plane of the

crack and parallel to the crack front).

Note that the expression for KI in equation (2.30) shall be different for geometries other

than the center–cracked infinite plate discussed by Irwin and Griffith.

2.2.1.2 Elastic–plastic fracture mechanics (EPFM)

A lot of materials show non–linearities or inelastic behavior under considerable loads: at such

states the adoption of the LEFM may not hold correct. For cases when the plastic zone reaches

a size of the same order of magnitude as the crack, or when the plastic zone shape changes as

the applied load increases, the work of Irwin does not stand correct and Elastic Plastic Fracture

Mechanics (EPFM) is to be considered.

EPFM is not to be presented in this thesis and all models are to be simulated under the

framework of LEFM.

2.2.2 Evolution of damage and damage tensor

Let us consider a body which initially represents a continuum without defects at state (1). The

body is later loaded and cracks are initiated, state (2). A vector of displacement u that tracks

all the points from state (1) to state (2) can connect the two states. b = u+ − u− is the jump1

of the field u crossing a definite surface S. If n is a unit vector normal to S, then bi nj is a

1Note that ||b|| = 2 ||u+|| is the distance between the sides of the crack at a given point. The vector b has

the same direction as the unit vector n normal to the crack face at the same point where ||b|| is calculated.
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second order tensor that corresponds to the defect at each point M ∈ S. The geometry of such

a defect as a whole is defined by a field concentrated on S as:

D = bn δS (2.32)

For many defects equation (2.32) goes like:

D =
∑

k

bk nk δSk (2.33)

D is a singular tensor field that describes isolated defects. This field should be spread over

an elementary volume Ω to reach the continuum model (space averaging). Let us consider a

point M at the center of an elementary volume Ω: the equivalent continuum tensor (D)Ω at

point M is obtained by an integration reduced to the sum of several integrals over the parts

Sk(Ω) of the discontinuity surface Sk contained in Ω.

(D)Ω =
1

Ω

∑

k

∫

Sk(Ω)
bk nk dSk, (2.34)

( . )Ω means averaging over a representative volume Ω. Since b and n have the same direction,

the field b can be written as b = βn where β is the distance between the sides of the crack at a

given point (β = ||b||). Equation (2.34) is now expressed as:

(D)Ω =
1

Ω

∑

k

∫

Sk(Ω)
βk nk nk dSk (2.35)

As far as linear elastic properties are considered (i.e. elastic changes of state (2)), the history

of transition from state (1) to state (2) is irrelevant. Only crack field geometry of state (2) is of

importance.

Most of the damage models assume that the damage simply alters the elasticity of the

material. A natural common step is to assume that the free–energy density (W ) is a function

of the relevant state variables, generally, the strain and the damage (Atkinson, [1991]):

W =W (εεε,D) (2.36)

For small deformations, W is a quadratic in the strains and a quadratic dependence on D

is also assumed. The stress is then derived from the free–energy density as common:

σσσ =
∂W

∂εεε
(2.37)
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According to the models proposed in (Lubarda et al., [1994]), (Souley et al., [2001]) and

(Shao et al., [2005]), the tensile stress (T ) on a given crack is assumed to be proportional to the

applied deviatoric stress normal to the surface of the crack such that:

T = F nT .σd.n, (2.38)

where σd is the applied deviatoric stress tensor σd = σ − (trσ/3) δ, n is a unit vector

normal to the crack surface and F is the proportionality factor between the local tensile stress

and the applied deviatoric stress. The proportionality factor F is given by (Atkinson, [1991], p.

201):

F = f







d

a.n

√

1− a.n

d1






, (2.39)

where d is the size of the tensile region, f is a constant, d1 is the distance between the

neighboring cracks in the initial configuration, and a = an is the crack vector of magnitude a

proportional to the crack size.

If it is assumed that a is constant and related to the initial configuration, F is a linear

function of d since the local tensile stress relieves as cracks propagate. This function plays a

similar role as a hardening–softening function in plastic models.

By considering the compressive stress acting on the crack due to the hydrostatic component

of the applied stress, the local driving normal traction acting on a crack is given by:

T =
1

3
trσσσ + F nT .σd.n (2.40)
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2.3 A Directionally Distributed Fracture Model (DDFM) to de-

scribe damage and permeability enhancement

This section aims at defining a fracturing model that will be used to describe damage and per-

meability evolution of geomaterials under loading. Though anisotropic damage is fully presented

mathematically, it will not be used later in the simulations.

The model adopted in this work to represent damage and permeability enhancement is the

model proposed by (Shao et al., [2005]). The motivations behind using this model stem from

the following facts:

1. It is a coupled constitutive model which takes into account the intrinsic permeability of

the rocks.

2. The formulation of the model is based on experimental observations and main physical

mechanisms included at the microcracks scale.

3. The model is suitable for compression–dominated and tensile–dominated cracks.

4. The model is expressed in the macroscopic scale and thus it can be easily implemented in

engineering problems.

This model is based on a semi–empirical and engineering–oriented approach. It is a phe-

nomenological model where the relevant micromechanical features are included. Hence, it gathers

the characteristics of the micromechanical and phenomenological models. The dissipation of the

stored strain energy is a prime result of damage and the plastic deformation due to dislocation

can be neglected (still working in the frame of LEFM).

The following assumptions are, however, to be considered when opting this model:

1. The crack density remains small and the interaction between microcracks can be neglected

before the onset of the coalescence of microcracks.

2. The initial behavior of materials is isotropic and anisotropy is induced by preferential

growth of microcracks.

3. The model is limited to the mechanical behavior of brittle rocks before the macroscopic

failure.
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2.3 A Directionally Distributed Fracture Model (DDFM) to describe damage and
permeability enhancement

2.3.1 The DDFM for anisotropic damage

Consider a representative elementary volume (REV) Ω containing an arbitrary distribution of

microcracks in space orientations and subjected to a uniform stress field on its boundary. A

continuous crack density function, denoted by ̟(n) where n is a unit vector normal to the

boundary of Ω, is introduced to represent the orientational distribution of such cracks.

The macroscopic free enthalpy can be obtained by the integration of crack contributions over

all orientations defined on the surface of a unit sphere denoted by S. The elastic enthalpy of

cracked material is written as, see appendix (A.1) for details:

Wc =
1

2
σ

′
: S0 : σ

′
+

h

4π

∫

S+

̟(n)
(

1− ν0
2

)

(σ
′
.n).〈n.σ′

.n〉n dS

+
h

4π

∫

S−

̟(n)
[

(σ
′
.σ

′
) : (n ⊗ n)− σ

′
: (n⊗ n⊗ n⊗ n) : σ

′
]

dS

(2.41)

The surface S is decomposed into two complementary but non-overlapped subdomains. Re-

spectively, the subdomain S+ corresponds to the orientations of opening cracks and the sub-

domain S− corresponds to the orientations of closing cracks.

S0 is the initial elastic compliance tensor of the undamaged material and σ
′
is the Cauchy

effective stress tensor. The bracket 〈n.σ′
.n 〉 defines the positive cone of the normal effective

stress in the orientation n. ̟(n) is the crack density in the orientation n and h is the elastic

compliance of the cracks, defined respectively as:

̟(n) =
N r(n)3

Ω
, h =

16(1 − ν20)
3E0(2− ν0)

(2.42)

N and r(n) are the number and the average radius of cracks in the orientation n respectively.

E0 and ν0 are the drained Young’s modulus and the Poisson’s ratio of the undamaged material

respectively.

Assuming isotropic distribution of microcracks in the initial material, the macroscopic dam-

age tensor is defined as the relative variation of crack density in each orientation:

D =
1

4π

∫

S

̟(n) (n⊗ n) dS =
1

4π

∫

S

N

Ω
(r(n)3 − r30) (n ⊗ n) dS, (2.43)

where r0 is the average radius of initial microcracks, compare with equation (2.35). By

integrating equation (2.41) analytically, the free–enthalpy is obtained as function of the damage

tensor D:
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Wc =
1

2
σ

′
: S0 : σ

′
+ a1 tr(D) (trσ

′
)2 + a2 tr(σ

′
.σ

′
.D) + a3 tr(σ

′
) tr(D.σ

′
)

+ a4 tr(D) tr(σ
′
.σ

′
)

(2.44)

The four parameters ai depend on the elastic properties of intact material as follows:

a1 =
−c
70

h, a2 =
7 + 2c

7
h, a3 =

c

7
h, a4 =

−c
35

h (2.45)

The coefficient c is c = −ν0 for the case of opening cracks and c = −2 for the case of closing

cracks. It is important to point out that the expression of the free–enthalpy given by (2.44) is

valid only for two particular cases;

1. all the cracks are always opening or;

2. all the cracks are always closing.

The stress–strain relation of the damaged material is obtained by deriving the equation of

strain energy (2.44):

εεε+ εεεr(D) =
∂Wc(σ

′
, D)

∂σ
′ =

1 + ν0
E0

σ
′ − ν0

E0
(trσ

′
)δδδ + 2a1(trD trσ

′
)δδδ + a2(σ

′
.D +D.σ

′
)

+ a3[tr(σ
′
.D)δδδ + (trσ

′
)D] + 2a4(trD)σ

′
,

(2.46)

where δδδ is the Kronecker delta tensor, εεεr(D) is the damage–related inelastic strain tensor.

This tensor is not related to plastic dislocation flow but rather associated with damage evolu-

tion1 and thus the damage growth is the only dissipation mechanism in the material.

The constitutive equation (2.46) can be rewritten in the following form:

εεε+ εεεr(D) =
∂Wc(σ

′
, D)

∂σ
′ = S(D) : σ

′
(2.47)

The elastic compliance tensor of the damaged material, S(D), is given by:

Sijkl(D) =
1 + ν0
2E0

(δik δjl + δil δjk)−
ν0
E0
δij δkl + 2a1(trD)δij δkl

+
1

2
a2(δikDjl + δilDjk +Dikδjl +Dilδjk) + a3(δijDkl +Dijδkl)

+ a4(trD)(δik δjl + δil δjk)

(2.48)

1We are always working in the frame of LEFM. These permanent strains are direct result of the macroscopic

volumetric dilatancy due to crack face mismatch and local grain-matrix interaction during crack growth.
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2.3.2 A fracturing criterion for the DDFM

The damage evolution can be determined by a crack propagation criterion based on LEFM

equations (2.49) and (2.50). This criterion uses a simple approach inspired from fracture me-

chanics, section (2.2.1). The growth of the idealized penny–shaped cracks is assumed similar.

The propagation of each crack is calculated at each loading step using this criterion, and the

damage tensor is then calculated using equation (2.43).

This model combines the two modes (I and II) of crack propagation and accounts for all

possible fracture spatial orientations. For any group of cracks in a specific direction n, the

local stress normal to the crack surface acts as the confining pressure, meanwhile the local

stress applied to the crack plane is the driving force for the crack propagation, see also equation

(2.40). All the real cracks are imagined as penny–shaped cracks embedded in an infinite body

and submitted to local effective stresses.

F (σ
′
, r, n) =

√
r

[

σ
′

n

(
fc,t

fc,t + 〈−σ′

n〉

)m

+ f(r) q̃(n)

]

− Crc ≤ 0 (2.49)

σ
′

n = n.σ
′
.n, σ

′d = σ
′ −
(trσ

′

3

)

δδδ, σ
′d
n = n.σ

′d.n, q̃(n) = 3 〈σ′d
n 〉 (2.50)

In these equations1, σ
′

n is the normal effective stress applied to the crack, and q̃(n) is the

normal projection of the deviatoric effective stress tensor. The bracket 〈x〉 denotes that 〈x〉 =
(x + |x|)/2. Crc is a material parameter whose physical meaning is similar to the fracture

toughness Kc, see appendix (B.1).

• The exponent m describes the non–linear dependence of crack propagation condition on

the confining pressure. The ratio subjected to the power m tends to decrease announcing

the stabilizing effect of a compressive normal stress2.

• fc,t is either the uniaxial compression strength or the uniaxial tensile strength of the

material. The choice of the controlling strength depends on the dominant fracturing

mechanism; the compressive strength for compression–dominated cracks and the tensile

strength for the tension–dominated cracks.

• f(r) is a positive scalar valued function, see figure (2.3), which controls the kinetics of

crack propagation and has a meaning similar to the function described in equation (2.39).

The form of the function f(r) is determined experimentally based on the deterioration of

1The mechanism of the model is illustrated later in this section after defining all the parameters of the model.
2We use negative sign for compressive stresses in our sign convention.

47



2. EQUATIONS FOR THERMO–POROELASTICITY, FRACTURE
PROPAGATION AND PERMEABILITY EVOLUTION

the elastic properties as damage evolves. However, f(r) must satisfy two conditions (Shao

et al., [2005]):

1. The function should decrease as the crack begins to propagate denouncing the re-

laxation of local tensile stresses as the cracks grow away from the zone of stress

concentration. This effect insures the stable growth of cracks.

2. As the cracks start to coalesce the function reaches an asymptotic value. This effect

marks the onset of damage localization and macroscopic failure.

For this model the function f(r) takes the following form:

f(r) =







η
(rf
r

)

, r < rf

η, r ≥ rf
(2.51)

 
r0

rf

rfr0

f(r)

r

η

η

Zone of stress relaxation

Damage localization

Figure 2.3: The definition of the function f(r).

rf denotes the critical crack radius for accelerated coalescence of microcracks, and η is a pa-

rameter of the model. The loading-unloading condition for crack propagation in the orientation

n is defined according to the Kuhn-Tucker relations:

ṙ ≥ 0, F (σ
′
, r, n) ≤ 0, ṙ F (σ

′
, r, n) = 0 (2.52)

When the continuum body is under compression–dominated stresses, material fails due to

exceeding the limit of the compressive strength and fc,t is replaced by fc such that:

fc =
Crc

η
√
rf

(2.53)

Otherwise, tensile–dominated stresses state is controlling and failure is happening due to

exceeding the limit of tensile strength ft such that:

ft =
Crc

(1 + 2η)
√
rf

(2.54)
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Compression–dominated or tensile–dominated stresses state is determined by considering the

active fracturing mode, that is to say:

σ1σ1

Tension dominated Compression dominated 

Cracks propagate in 

♠�✁✂✄ ☎✄✆✝✞✆☎�✟ ✠✡✄☛✠✠ �☞✆✠

Mode I is

dominant 

Mode II is

dominant 

Figure 2.4: Cylindrical rock sample subjected to tensile dominated stresses left, and compressive

dominated stresses right.

fc/ft = (1+2η)/η, this ratio ranges between 2 and 23 depending on the type of rocks, hence

η ∈ [∼ 0.05, ∞]. For granite, fc/ft ≈ 16.

To better understand this fracturing criterion, let us consider a vertical crack embedded in

a cylindrical dry rock sample subjected to the stress state shown in figure (2.5). Compressive

stresses are negative in the sign convention adopted all along this research. The driving stresses

at the crack scale can be expressed as:

σ
′

n = σ2, and q̃(n) = 〈σ2 − σ1〉 (2.55)

σ1

σ2n

⑤σ✶⑤ ✌✌ ⑤σ2⑤

❈✍✎✏✑ ✒
❈✍✎✏✑ ✓

✔✕✖✗✘ ✙✚ σ2 ❃ ✛

✜✢✣✤ ✥ ✦✧ ✗✢★✩✕✢✪✪✦★✫

✔✕✖✗✘ ✬✚ σ2 ✭ ✛

✜✢✣✤ ✥✥ ✦✧ ✗✢★✩✕✢✪✪✦★✫

Figure 2.5: Vertical crack embedded in a cylindrical rock sample subjected to an arbitrary stress

state, out–of–plane stress is equal to σ2.

If σ2 is compressive (negative), the factor [fc/(fc+〈−σn〉)]m < 1 and more emphasis is placed

on the term q(n) and mode II of fracturing is controlling the propagation of cracks. Controver-

sially, if σ2 > 0, the factor [ft/(ft + 〈−σn〉)]m = 1 and the driving force σ
′

n is as effective as the
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term q(n). At this point propagation of the crack happens quite fast and mode I is controlling

the fracturing.

This particular case has been presented to illustrate the roles of the driving forces in the frac-

turing criterion. Other possibilities are to be worked the same way, and the model shall always

stand for mode I and/or mode II of fracturing whichever is dominant.

The evolution of the average radius of a set of cracks in direction n as a function of the

average crack radius, the normal effective stress and the deviatoric effective stress can be de-

rived following equations (2.49) and (2.50). Though the evolution of crack radius is also derived

mathematically for the unstable crack growth (r ≥ rf ), it will not be used further in doing the

simulations through out this research.

First, when r < rf :

F =
√
r σ

′

n

(
fc,t

fc,t + 〈−σ′

n〉

)m

+ 3 η

(
rf√
r

)

〈σ′d
n 〉 − Crc = 0, (2.56)

and,

∂F

∂r
=

1

2
√
r
σ

′

n

(
fc,t

fc,t + 〈−σ′

n〉

)m

− 3

2
η

(
rf√
r3

)

〈σ′d
n 〉 (2.57)

dr = − 1

∂F

∂r

[

Π(r, σ
′

n) (n ⊗ n) + Ψ(r, σ
′d
n )

(

n⊗ n− δ

3

)]

: dσ
′

(2.58)

The functions Π(r, σ
′

n) and Ψ(r, σ
′d
n ) can be defined as follows:

Π(r, σ
′

n) =







√
r, if σ

′

n > 0
√
r σ

′

n

mfmc,t
(fc,t − σ′

n)
m+1

+
√
r

(
fc,t

fc,t − σ′

n

)m

, if σ
′

n < 0

0, if σ
′

n = 0

(2.59)

Ψ(r, σ
′d
n ) =







3 η

(
rf√
r

)

, if σ
′d
n > 0

0, if σ
′d
n ≤ 0

(2.60)

Second, when r ≥ rf :

F =
√
r σ

′

n

(
fc,t

fc,t + 〈−σ′

n〉

)m

+ 3 η
√
rf 〈σ

′d
n 〉 − Crc = 0, (2.61)

and,

∂F

∂r
=

1

2
√
r
σ

′

n

(
fc,t

fc,t + 〈−σ′

n〉

)m

(2.62)
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dr = − 1

∂F

∂r

[

Π(r, σ
′

n) (n ⊗ n) + Ψ(r, σ
′d
n )

(

n⊗ n− δ

3

)]

: dσ
′

(2.63)

The functions Π(r, σ
′

n) and Ψ(r, σ
′d
n ) can be defined as follows:

Π(r, σ
′

n) =







√
r, if σ

′

n > 0
√
r σ

′

n

mfmc,t
(fc,t − σ′

n)
m+1

+
√
r

(
fc,t

fc,t − σ′

n

)m

, if σ
′

n < 0

0, if σ
′

n = 0

(2.64)

Ψ(r, σ
′d
n ) =

{

3 η
√
rf , if σ

′d
n > 0

0, if σ
′d
n ≤ 0

(2.65)

The details regarding deriving all the aforementioned equations are mentioned in appendix

(A.2)

2.3.3 The DDFM to estimate the permeability change

The following assumptions will be adopted while using the DDFM to calculate the change in

the permeability of a porous matrix:

1. Cracks are regarded as small interconnected and/or dead–end channels embedded in a

porous matrix.

2. At any loading step, a homogenization technique is adopted and the overall permeability

tensor of the cracked medium, is thus, composed of two parts: the initial permeability

tensor denoted as k0 due to the initial porosity, and the microcrack induced permeabil-

ity tensor denoted by kc. The flow in the two voids happens in parallel and the total

permeability tensor is hence k = k0 + kc.

3. The average value of local pressure fluctuations at the crack scale are quite small and

disregarded; uniform pressure is assumed at the crack scale and the macroscopic scale of

the porous matrix.

4. The permeability tensor depends directly on the distribution of cracks which is determined

using the crack propagation criterion section (2.3.2). As the distribution of cracks is

orientation dependent, the permeability tensor is anisotropic in nature.
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Let us consider again a REV Ω of the total porous matrix which is submitted to a uniform

pressure gradient on the boundaries. This REV can be assumed homogeneous and anisotropic

at the same time. The flow in the porous medium obeys Darcy’s law. The apparent fluid flow

velocity v is related to the macroscopic pressure gradient ∇∇∇p through the total permeability

tensor k (m2):

v = −k

µ
.∇∇∇p = −k0 + kc

µ
.∇∇∇p, (2.66)

µ is the dynamic viscosity of the fluid (Pa.s).

Let us now assume a group of N microcracks with direction n and volume Ωc embedded

in the REV Ω. The crack permeability tensor is a function of the cracks orientation n, the

radius r(n), the average aperture w(n) and the number of cracks N . Inside a given crack of

the orientation n, it is assumed that fluid flow takes place only in the direction parallel to the

crack plane, and can be described by the Navier–Stokes equation for laminar flow between two

parallel plates. The local flow velocity, denoted by vc(n), is thus expressed as follows:

vc(n) = − λ

12

1

µ
w(n)2(δδδ − n⊗ n).(∇∇∇p)c, 0 ≤ λ ≤ 1 (2.67)

where (∇∇∇p)c denotes the local pressure gradient applied to the crack. The positive scalar

λ, less than the unity here, intends to convey the idea that some parts of cracks are simply

dead–ends and do not contribute to the flow, see figure (2.6). When λ = 1 the classical cubic

law is recovered, λ will be assumed equal to 1 all along this research later on.

A problem here arises about how to relate the local pressure gradient (∇∇∇p)c with the macro-

scopic pressure gradient ∇∇∇p. Generally, an appropriate localization law is to be used. However,

using the assumption of neglecting the average value of all local pressure fluctuations, (∇∇∇p)c can
be assumed equal to ∇∇∇p.

The macroscopic fluid flow velocity v is obtained from the averaging of local velocity fields

vc over the crack volume Ωc:

v = −k0

µ
∇∇∇p+ 1

Ω

∫

Ωc

vc dΩc (2.68)

Linear elastic response is to be considered starting from state (2), see section (2.2.2). The

crack volume occupied by the set of cracks in the orientation n, dΩc(n), is calculated as:

dΩc(n) = N w(n)π r(n)2 (2.69)
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2.3 A Directionally Distributed Fracture Model (DDFM) to describe damage and
permeability enhancement

One should keep in mind that although all the cracks are contributing to macroscopic me-

chanical responses of a damaged rock, it is not the case for hydraulic flow. At the local scale,

a certain number of cracks may be hydraulically isolated and do not contribute to the varia-

tion of macroscopic permeability of the rock. This phenomenon leads to the definition of the

connectivity coefficient R(r(n)) such that:

R(r(n)) = t1

(
r(n)− r0
rf − r0

)t2

, 0 ≤ R(n) ≤ t1 (2.70)

where t1 and t2 are constants to be determined. The value of this coefficient depends on the

microstructure of the damaged material. The expression also indicates that the cracks which

grow contribute initially, when r(n) = r0, to zero permeability. Nonetheless it also indicates

that connectivity between cracks increases as the cracks grow in size which contributes to the

crack permeability part kc.

The confusion between the roles of the coefficients R(r(n)) and λ can be overstepped as

follows: as the coefficient R(r(n)) ensures that connectivity is necessary for a contribution in

the permeability tensor, λ ensures that the average crack aperture used in calculating the flow

and hence the permeability tensor is not to be overestimated due to dead–ends of cracks, see

figure (2.6).

Dead-end

w

r

wtrue ✮ λ ✇

Figure 2.6: The role of the coefficient λ in calculating the correct average crack aperture available

for fluid flow.

By substituting equation (2.69) in equation (2.68) and by adopting the method of space

averaging to get the continuum response, it is found that:

v = −k0

µ
.∇∇∇p+ N

Ω

1

4π

∫

S

R(n)vc(n)w(n)π r(n)2 dS (2.71)

From equation (2.67):

v = −k0

µ
.∇∇∇p+

[(

− 1

µ

)
λπ

12

N

Ω

1

4π

∫

S

R(n)w(n)3 r(n)2 (δδδ − n⊗ n) dS

]

.∇∇∇p (2.72)

Comparing (2.72) with the macroscopic Darcy’s law (2.66), the overall crack permeability

tensor can be identified as follows:
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kc =
N

Ω

λπ

12

1

4π

∫

S

R(n)w(n)3 r(n)2 (δδδ − n⊗ n) dS (2.73)

Microcracks are assumed to be penny–shaped and thus they are characterized by the radius

r and the aperture w. These two variables can evolve independently. However, this is not the

approach adopted here, the evolution of the radius r is investigated and the evolution of the

aperture w is considered as a function of the evolution of the radius r, i.e. a relation dw = h(dr)

is to be found in order to proceed with using equation (2.73).

2.3.4 Integration over a unit sphere

The components of the damage and the crack permeability tensors are calculated by the inte-

gration over all the space orientations on the surface of a unit sphere. For the implementation

of the model, the numerical integration procedure of directional integration is used.

In terms of the angles θ and φ, the unit vector n is written componentwise in the axes shown

in figure (2.7):

φ

❞θ

❞φ

1

3

2

θ

n

dS

Figure 2.7: Angular parametrization of a unit sphere Ω = Ω(θ ∈ [0, π], φ ∈ [0, 2π]).

n =





cos θ
sin θ cosφ
sin θ sinφ



 (2.74)

The differential vector area dS is defined as:

dS =
∂n

∂θ
∧ ∂n

∂φ
dθ dφ = n sinθ dθ dφ (2.75)

dΩ = |dS| = sinθ dθ dφ (2.76)

For any directional distribution D(n), the weighted integration has the form:
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∫

Ω
[...]D(n) dΩ =

∫ 2π

0
dφ

∫ π

0
D(θ, φ) sinθ dθ (2.77)

For integration over a unit sphere, the weighting factor is given by:

∫

Ω
dΩ = 4π (2.78)

2.4 Developing the DDFM by considering the change of crack

aperture

The model presented in section (2.3.2) accounts only for permeability enhancement due to crack

evolution, and at a definite stress threshold when the criterion of propagation, equations (2.49)

and (2.50), starts working. Actually, starting from the very instant of loading some cracks will

either close, due to normal compressive stresses, or open and thus extend due to shear stresses

(shear slippage), see figure (2.8).

θ

φ

σn

τm

rw

Figure 2.8: Penny-shaped crack with normal and shear stresses acting on it.

This section is divided into two parts; the first part provides a model to track the reduction

of crack aperture (Barton’s closure model) due to compressive driving forces before and while

the fracturing criterion, equations (2.49) and (2.50), is active as the criterion never accounts

for crack aperture reduction. The second part is consecrated to find a model that shall be able

to track the increase of a crack aperture as a result of shear slipping (crack slipping model)

before the onset of the fracturing criterion defined in equations (2.49) and (2.50). As soon as

the fracturing criterion starts to work, the crack slipping model does not have to be applied as

the shear effect is included in the deviatoric stress part q̃(n). The crack slipping model, despite

being provided mathematically, will not be used in doing the simulations of this research. It is

therefore provided for future studies.
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2.4.1 Barton’s hyperbolic closure model for crack aperture reduction

To account for permeability loss due to compressive stresses and crack aperture reduction, Bar-

ton’s hyperbolic normal closure model (Bandis et al., [1983]) has been adopted in this work. It

is a two-parameter model that ensures a finite aperture at zero effective stress and stands only

for normal compliance of fractures.

Given a normal stiffness coefficient kn0 at initial effective stress σ
′

n0 and maximum closure

value w0 for a joint, the available aperture w for a fluid motion at a given effective stress level

σ
′

n is derived as follows:

u (value of the closure) =
〈−σ′

n〉w0

w0kn0 + 〈−σ′

n〉
(2.79)

w = w0 − u = w0

(

1− 〈−σ′

n〉
w0kn0 + 〈−σ′

n〉

)

(2.80)

This coupled approach is only valid for compressive stresses and it was tested against var-

ious in situ experiments performed in hard rocks in the framework of a nuclear waste storage

research program. Predictive results were compared with those of other numerical approaches

(Rejeb and Bruel, [2001]).

2.4.2 Crack aperture increase due to shear slippage before the onset of the

fracturing criterion (crack slipping model)

If the effect of shearing stresses is to be considered before the onset of the fracturing criterion

section (2.3.2), the following model is to be adopted1:

τ
′

m =
∣
∣σ

′

n

∣
∣ tan(φ) + c, (2.81)

where c is the apparent cohesion, see figure (2.6). The evolution of Mohr–Coulomb yield

surface can be obtained by changing c, φ or both. Apparent cohesion will be the changing

parameter in this approach. Let us define the function G(σ
′
, c) as follows:

G = τ
′

m −
∣
∣σ

′

n

∣
∣ tan(φ)− c (2.82)

The first value of τ
′

m is the shear strength of the material, next values are to be calculated

assuming that the cohesion c changes with σ
′

n:

1This model is based on the study of Kohl presented in (Kohl and Mégel, [2007]) with a lot of modifications

considering Mohr-Coulomb criterion of failure.
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c1

c2

|✯'|

✰'m

Failure

Hardening

✱

Figure 2.9: Sketch of Mohr-Coulomb criterion, the angle of the straight lines φ is “the angle of

friction”. The apparent cohesion is the changing parameter for hardening.

dG =
∂G

∂σ
′ : dσ

′
+
∂G

∂c
dc (2.83)

dG =

[

∂G

∂τ ′

m

∂τ
′

m

∂σ
′ +

∂G

∂σ′

n

∂σ
′

n

∂σ
′

]

: dσ
′
+
∂G

∂c
dc (2.84)

∂G

∂c
= −1

∂G

∂τ ′

m

= 1

∂τ
′

m

∂σ
′ =

1

2
(m⊗n+ n⊗m)

∂G

∂σ′

n

= sgn(σ
′

n) tan(φ)

∂σ
′

n

∂σ
′ = n⊗ n

(2.85)

On the failure surface, dG = 0:

dc = − 1

∂G

∂c

[

∂G

∂τ ′

m

∂τ
′

m

∂σ
′ +

∂G

∂σ′

n

∂σ
′

n

∂σ
′

]

: dσ
′

(2.86)

dc =

[
1

2
(m⊗ n+ n⊗m) + sgn(σ

′

n) tan(φ) (n ⊗ n)

]

: dσ
′

(2.87)

Finally the dilatancy U(n) due to shear slipping is given by:

U(n) =
w0 τ

′

m

ks
tan(φdil), (2.88)

φdil is the dilatancy angle of the fracture and ks is the fracture shear stiffness. To carry on

with using this model, the following points should be accounted for:

1. Equation (2.87) gives the evolution of cohesion as a result of changing the state of the

effective stress. For the model to be consistent a good convincing relation between cohesion

change and aperture increase due to dilatation is to be found.
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2. dc is to be calculated for all possible vectors m′s at the fracture plane and the most critical

case is to be considered.

Dilatation is to be considered as long as the threshold of the fracturing criterion is not

reached. As soon as the fracturing criterion becomes active the shear effect is included in the

deviatoric stress part q̃(n) of the model. Meanwhile, Barton’s closure model remains active at

any loading step as the fracturing criterion never accounts for crack aperture reduction.

Before the threshold of the fracturing criterion, see figure (2.10):

w = w0 − u+ U (U, crack opening due to dilatation (shear slippage)) (2.89)

When the fracturing criterion starts working:

w = w0 − u+ h(dr) (dw = h(dr), crack opening due to shearing q̃(n)) (2.90)

w0

❯ ✲✳✴✵✳✷ ✸✹ening due

to dilatation)

✉ ✲✺✹✻✴✼✉✴✻ ✴✻✽✉✳✼✾✸✿ 

✽✉✻ ✼✸ ❀✵✴✼✸✿r❁ ❂✸✽✻l)

❄

❤✲✽✴❅

Figure 2.10: Sketch for a crack section illustrating contraction and dilatancy due to both compliance

and shearing.

2.5 Application of the DDFM: Simulations and expectations

Anisotropic damage due to preferential growth and closure of microcracks subjected to non–

hydrostatic stresses is the key mechanism for inelastic deformation, and leads to failure in most

brittle rocks. Crack growth at microscopic scale is associated with changes in crack aperture

which is the main reason for macroscopic volumetric dilatancy as well.

Failure of geomaterials is hence a direct result of microcracks coalescence and localization in

a form of macrocraks. The main consequences of microcracks growth that have to be considered

in the constitutive modeling are:

1. Non-linear stress-strain relations; microcracks surface dislocation and mismatch will cause

a macroscopic dilatancy and permanent irreversible strains, see section (2.3.1).

2. Deterioration of elastic properties as the material gets weaker with the evolution of micro-

cracks.
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3. Induced anisotropy; the evolution of microcracks is not the same in all directions and the

initial “isotropy” in mechanical and transport properties might be progressively modified.

4. Volumetric dilatancy as result of microcrack surfaces dislocation and mismatch.

5. Irreversible strains.

There is a clear relation between volumetric dilatancy and the increase in permeability in

brittle rocks (Oda et al., [2002]). It is a common sense to have in mind that permeability will

increase when the applied stress state induces damage expressed by microcrack opening and

growth (Kranz et al., [1979]) and (Zoback and Byerlee, [1975]).

xz-plane

xy-plane

yz-plane

σx

σy

σz

ky

kx

kz

Figure 2.11: Conceptualization of anisotropic permeability occurring on three orthogonal fracture

planes.

Preferential growth of microcracks will result in an anisotropic permeability tensor, see figure

(2.11). The maximum permeability component is observed parallel to the axis of major stress.

However, the anisotropy ratio of permeability between the axial and radial directions is quite

small (maximum of about 2.5) according to (Schulze et al., [2001]).

Stress–strain curves for brittle rocks, under dominating compressive stresses, show four dif-

ferent regions (Souley et al., [2001]) and (Shao et al., [2005]), see figure (2.12):

I II III IV V

D

C

B

A

D

C

B

A

PermeabilityA
xi

al
 s

tr
es

s

Axial strainLateral strain
Volumetric 

strain

Figure 2.12: Deformation stages and corresponding permeability change of a rock specimen tested

in compression, (Souley et al., [2001]).
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- Region I: Closure of pre–existing microcracks.

- Region II: Elastic behavior zone.

- Region III: Stable growth of cracks.

- Region IV: Unstable growth of cracks.

Triaxial tests with permeability measurement have indicated that:

1. Permeability decreases in region I because of the closure of pre-existing microcracks.

2. Permeability remains constant in region II and at the beginning of the region of stable

crack growth III.

3. Permeability increases as a function of the deviatoric stress at region IV announcing the

onset of unstable crack growth. Permeability increases drastically in region V when cracks

start to coalesce announcing the macroscopic failure of the sample.

2.5.1 Numerical simulations

The first part of this section applies the proposed model of directionally distributed fractures

DDFM, section (2.3), to a typical brittle rock of Lac du Bonnet Granite. This rock has been

widely studied in the context of Under Ground Research Laboratory (URL) in Canada for the

studies of nuclear waste storage (Shao et al., [2005]).

The second part integrates Barton’s closure model in the DDFM and compares the numerical

results for the same type of rock.

2.5.1.1 DDFM without considering crack aperture reduction: Application to Lac

du Bonnet rock sample

The model developed in section (2.3) is to be applied to a cylindrical sample of Lac du Bonnet

granitic rock. The sample is subjected to different values of confining pressure Pc until it com-

pletely consolidates. When consolidation is done, the sample is loaded axially by a deviatoric

stress ∆σ to create a non–hydrostatic stress state and to drive cracks to evolve, see figure (2.13).

The initial elastic parameters have been determined from the compression triaxial tests and

the change in their values with confining pressure is very small (Shao et al., [2005]). Table (2.1)

shows the values of all the parameters used in the simulation.
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Lac du Bonnet

rock

Pc

Pc

Pc

Pc

Δσ

Hydrostatic 

loading

Non-hydrostatic 

loading

Δσ

Cracks

close

Cracks evolve parallel

to major stress axis

Figure 2.13: Hydrostatic and non-hydrostatic loadings of a cylindrical Lac du Bonnet rock sample.

Table 2.1: Parameters used in the simulations of DDFM on Lac du Bonnet granite, (Shao et

al., [2005]).

Parameter Value

Elastic parameters Elastic modulus E0 (MPa) 68000
Poisson’s ratio ν0 0.21

Damage parameters Initial radius of cracks r0 (mm) 3.0
Final radius of cracks rf (mm) 9.0
Initial aperture of cracks w0 (mm) 0.015
Material toughness parameter
Crc (MPa

√
m) 1.03

fc/ft 18.7 c©

Model parameter η 0.06
Non–linearity parameter m 4
Number of cracks N per
unit volume (Ω = 1 m3) 2× 106 †

Hydraulic connectivity t1 0.0001 ‡

parameters t2 1.0
λ 1.0

†: Crack density of a certain rock is estimated experimentally using x–ray tomography,
see (Fabre et al., [1989]).
‡: The value of t1 is determined after estimating the crack density such that permeability
order of magnitude for a certain rock at the limit of accelerated crack coalescence r = rf
is reached. For the parameters and rock described above, at failure k ∼ 10−17 m2.
c©: Using equations (2.53) and (2.54), the ratio fc/ft corresponds to η = 0.06.

In order to calculate the anisotropic permeability tensor using DDFM equation (2.73), a

convincing relation between the evolution of an average crack radius δr and the corresponding

average variation of its aperture δw is to be found.

Authors like (Klimczak et al., [2010]), (Takahashi and Watanabe, [1995]), (Papanastasiou
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and Thiercelin, [1993]) and (Shao et al., [2005]) have related the normal increment of crack

aperture to crack face mismatch and local grain matrix interaction during crack growth. Thus,

the normal crack aperture increment is proportional to the average crack radius increment, that

is to say:

δw

δr
= β (2.91)

β is the proportionality coefficient. (Klimczak et al., [2010]) have performed experiments

on 15 types of rocks and have found that β ∈ [0.0005, 0.5]. Data were collected from several

references to reach Table (2.2) shown below:

Table 2.2: Average crack radii and apertures relation.

Average crack radius, Average crack aperture, References

r (m) w (m)

0.006 0,00003 Shao et al., [2005]

1.2 0,00045 Papanastasiou and Thiercelin, [1993]

25 0,000501 Bruel, [2002]

30 0,00018 Rejeb and Bruel, [2001]

40 0,00032 Kohl and Mégel, [2007]

A power-fitting curve, equation (2.92) and figure (2.14), with a correlation coefficient R2 =

0.67 is used to represent the data shown in Table (2.2):

w(m) = 0.0002 r0.2497(m) (2.92)
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1:  Shao et al., [2005]
2:  Papanastasiou and Thiercelin, [1993]
3:  Bruel, [2002]
4:  Bruel and Rejeb, [2001]
5:  Kohl and Mégel, [2007]

Figure 2.14: The relation between the crack average aperture w and its average radius r. Scattered

data are collected from five references. A power fitting curve, equation (2.92), with R2 = 0.67 is

chosen to represent the data.

The derivative of equation (2.92) gives the slope β:
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β(m/m) = 5× 10−5r−0.75(m) (2.93)

β being function of r will render equation (2.91) non-linear. However, it is the only means

in hand to control the flow in very long cracks.

The model was coded using Fortran 90, the initial permeability tensor k0 associated with

pore connectivity is set to 0. Since no cracks are initially connected r = r0, the initial crack

permeability tensor kc is also 0, see equations (2.70) and (2.73). The results obtained, as shown

below, represent the permeability generated due to crack propagation only, i.e. r > r0. The

results demonstrate the following points:

1. Cracks are only evolving in the vicinity of the axial direction as the sample is loaded

vertically with deviatoric stresses, see figure (2.15(b)).
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(a) θ − φ position of a crack of radius r(n)
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(b) Directional evolution of the radius of cracks

Figure 2.15: Directional evolution of cracks radii for three values of deviatoric stress in a vertical

cross–section and for a confining pressure of 10 MPa.

2. The two curves of lateral permeabilities k22 and k33 coincide when dividing the circum-

ference into 160 segments “segment=2π/160”. This is a direct result of an axisymmetric

loading state, see figure (2.16).

3. Permeability is increasing in the axial and lateral directions simultaneously as the DDFM

stands for Mode I and Mode II of crack propagation. The DDFM is adopting the so called

“wing crack” propagation, see (Simpson and Guéguen, [2001]).
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(b) Confining pressure Pc = 40 MPa

Figure 2.16: Variation of permeability in the axial and radial directions during two triaxial com-

pression tests on Lac du Bonnet granite.
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Figure 2.17: Variation of permeability in the axial and radial directions during triaxial compression

tests on Lac du Bonnet granite with 4 confining pressure values.

4. Increasing the confining pressure will shift the threshold of deviatoric stress before cracks

start to evolve as well as the compression strength of the rocks, see figure (2.17).

5. This model accounts only for propagating cracks and does not stand at all for the reduc-

tion in permeability that results from crack aperture reduction due to normal effective

compressive stresses.

2.5.1.2 Modifying the DDFM to stand for the reduction of crack aperture

To account for the reduction in permeability that results from the closure of cracks, Barton’s

hyperbolic closure model, equation (2.94), is to be integrated in our DDFM. The hyperbolic

model is the most widely adopted model for a non–linear behavior of a fracture under normal

stress (Bandis et al., [1983]), (Bruel, [2002]) and (Baghbanan and Jing, [2008]).
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w = w0 − u = w0

(

1− −σ′

n

w0kn0 − σ′

n

)

, (2.94)

where w is the available aperture of the crack at the stress level σ
′

n, w0 is the initial aperture

of the crack/maximum closure of the crack and u is the value of the closure at the stress level

σ
′

n. Barton’s model is to be parameterized before application; the stiffness coefficient kn0 at the

reference normal effective stress σ
′

n0 is to be determined. Determination of the exact value of

the stiffness coefficient is an enormous task. The rocks are lying deep in the ground and physical

properties of the cracks including average lengths, average apertures or orientations are always

approximated.

(Bandis et al., [1983]) and (Bandis and Barton, [1985]) tried to find an empirical relation

that links the stiffness coefficient to crack face properties and some empirical constants which

depend on the cycles of loading. These empirical relations and the associated constants were

valid in the tested samples and under the specific testing conditions. Care should be exercised

when they are applied to general practical problems.

Let us write equation (2.94) in the following form:

u

w0
=

σ
′

n/σ
′

n0

(σ′

n/σ
′

n0) + 1
, (2.95)

where −σ′

n0 = kn0 w0. The relative normal compliance Cn is defined as:

Cn =
∂(u/w0)

∂(σ′

n/σ
′

n0)
=

1

(1 + σ′

n/σ
′

n0)
2

(2.96)

Figure (2.18) shows that when the normalized stress ratio, σ
′

n/σ
′

n0, is large enough, the rela-

tive normal compliance becomes negligible, and the variation of the normalized normal closure

reaches an asymptotic value of 1.

In this study as in (Baghbanan and Jing, [2008]), it is assumed that the minimum variation

of u/w0 is approximated when the normalized normal stress exceeds 9. Let us define the critical

normal effective stress σ
′

nc such that the normalized critical normal stress σ
′

nc/σ
′

n0 is equal to

10, at this point the normal compliance C0 is negligible, see figure (2.18).
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Figure 2.18: Variation of normalized normal closure u/w0 and relative normalized compliance Cn

versus normalized effective stress of cracks σ
′

n/σ
′

n0.

Unless the initial conditions are well known to estimate σ
′

n0 and to calculate the stiffness

coefficient kn0 = −σ
′

n0/w0, the initial stiffness coefficient kn0 can be calculated using the critical

normal effective stress σ
′

nc = 10σ
′

n0 that causes almost the entire closure of cracks through the

relation:

kn0 =
−σ′

nc

10w0
(2.97)

It is worth noting here that σ
′

n0 has been replaced by σ
′

nc while calculating the stiffness

coefficient without problems as both of them stand for a boundary state. σ
′

n0 represents the

boundary of no crack aperture reduction w = w0, meanwhile σ
′

nc represents the boundary of

almost full closure of the crack u/w0 → 1.

(Zangerl et al., [2008]) collected experimental results from more than 29 references to reach

a table that relates σ
′

nc, σ
′

n0 and the crack dimensions. The results of their article were used and

distributed naturally to find a relation between σ
′

nc and w0. It was found that an average value

of maximum aperture w0, of 60 µ m, was distributed around a critical normal effective stress

σ
′

nc of 32 MPa.

(Baghbanan and Jing, [2008]) have also given a linear relation between σ
′

nc and w0:

− σ′

nc (MPa) = 0.541w0 (µm) + 2.51 (2.98)

If the result of (Zangerl et al., [2008]) is to be substituted in equation (2.98), we obtain:

− σ′

nc (MPa) = 0.541 × 60 (µm) + 2.51 = 34.97MPa, (2.99)
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2.5 Application of the DDFM: Simulations and expectations

which is not far from the value that (Zangerl et al., [2008]) have given of 32 MPa. The works

of (Zangerl et al., [2008]) and (Baghbanan and Jing, [2008]) have made clear that the initial stiff-

ness coefficient kn0 is related to the dimension of cracks via the critical normal effective stress σ
′

nc.

The works of (Zangerl et al., [2008]) and (Bandis et al., [1983]) have also illustrated that,

with increasing the normal stress cracks become stiffer. Experimental results have also shown

that with increasing hydraulic aperture, higher stresses should be applied to reach the maximum

closure of cracks. Thus, it is almost impossible to get a comprehensive relation that describes

the evolution of the stiffness coefficient of a crack while loading. In this research the stiffness

coefficient will be assumed constant and equal to the initial stiffness coefficient, i.e. kn0.

Let us now consider the cylindrical sample of the Lac du Bonnet granite which was hydro-

statically loaded with a confining pressure of 10 MPa. The deviatoric stresses were later added

in a mood that guarantees drained conditions. For this simulation w0 = 15 µm, as in section

(2.5.1.1), which gives by equation (2.98), σ
′

nc = −11 MPa and the initial stiffness is kn0 = 74

GPa by equation (2.97). The threshold of crack propagation is 150 MPa for a confining pressure

of 10 MPa, see figure (2.17).

At a random vertical–section of the axisymmetrically loaded sample, figure (2.19) presents the

directional distribution of the normal effective stress as well as the closing curve for all possible

orientations of cracks at a deviatoric stress of -60 MPa.
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Figure 2.19: Directional distribution of the normal effective stress and Barton’s hyperbolic closure

curve at a vertical cross–section and for a deviatoric stress ∆σ = −60 MPa and confining pressure of

10 MPa. Point A represents a vertical crack closed by 90% due to the confining pressure (σ
′

n = −10
MPa at any time). Point B represents a horizontal crack that will continue to close while adding the

deviatoric stresses (σ
′

n ≥ −10 MPa at any time).
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When the sample is fully consolidated by the confining pressure of 10 MPa, all cracks would

have been closed by 90% in harmony, see ∆σ = 0 MPa in figure (2.20(a)). Starting to apply the

deviatoric stresses, unless the threshold of crack propagation is reached, cracks with orientations

other than θ = 90◦ will continue to close preferentially with direction, see ∆σ = −60 MPa in

figure (2.20(a)).
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(a) DDFM with aperture reduction for different
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orientations highlighted in figure (2.19)
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Figure 2.20: Directional distribution of crack aperture for w0 = 15 µm and for a confining pressure

of 10 MPa.

When the threshold of crack propagation is reached (∆σ ≥ −150 MPa), cracks start to

evolve and the apertures start to increase significantly following equation (2.92), see ∆σ = −200
MPa in figure (2.20(a)) and figure (2.20(b)).
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Figure 2.21: Variation of permeability for confining pressures of 10 and 40 MPa with and without

considering the closure of cracks, kn0 = 74 GPa.

From the previous graphs it is concluded that:

1. Cracks close simultaneously in all directions when the confining pressure is applied. In the

previous results, 90% closure is achieved when the sample is totally consolidated by the

confining pressure of 10 MPa.
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2.6 Validating the DDFM with aperture reduction using experimental data

2. When the deviatoric stresses are applied, cracks with orientations other than θ = 90◦

continue to close preferentially with direction, see the curve of ∆σ = −60 MPa in figure

(2.20(a)).

3. When the threshold of crack propagation is reached, cracks start to grow and average aper-

ture starts to increase significantly, see the curve of ∆σ = −200 MPa in figure (2.20(a)).

4. The difference in the components of permeability tensors, between the cases of considering

or not considering crack aperture reduction, is significant at the beginning of crack prop-

agation. However, this difference is compensated for as cracks start to evolve and average

aperture to increase, see figure (2.21).

5. Since cracks evolve in the vicinity of the major stress axis, aperture reduction affects the

lateral permeability in as much as it affects the axial permeability. The anisotropy ratio

of permeability between the axial and radial directions remains quite small.

2.6 Validating the DDFM with aperture reduction using exper-

imental data

(Souley et al., [2001]) have performed a large number of experiments on Lac du Bonnet Granite

in a matter of estimating its in situ hydraulic properties. Those tests were part of the tunnel

sealing experiment at the 420 m level of Canada’s Underground Research Laboratory (URL).

The experimental data were collected and correlated with the numerical response given by the

DDFM with aperture reduction, see figure (2.22) shown below.
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Figure 2.22: Correlating the DDFM with aperture reduction with the experimental data given by

(Souley et al., [2001]), Crc = 1.03 MPa
√
m.

Following figure (2.22), it is seen that the parameters which were used in Table (2.1) under-

estimate the threshold of cracks propagation, weaker rock obviously. To overcome this shortage,

the value of material toughness Crc was changed such that the numerical response would simulate
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the threshold of crack propagation. A value of 1.26 MPa
√
m was chosen for material toughness

Crc. The numerical response of the DDFM with aperture reduction correlates satisfyingly the

experimental data as shown in figure (2.23).
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Figure 2.23: Correlating the DDFM with aperture reduction with the experimental data given by

(Souley et al., [2001]), Crc = 1.26 MPa
√
m.
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Chapter 3

Finite element formulation for thermo–

poroelastic IBVPs: Focus on fluid com-

pressibility

The finite element method (FEM) is used to relate the primary unknowns to the boundary

conditions and the body forces through a discretizing technique. The unknowns are discretized

over space and equations are then solved to force the residual to vanish. The partial differen-

tial equations are reduced to either a system of linear or non–linear equations (in steady state

problems), or a system of semi–discrete ordinary differential equations (in transient problems).

This chapter is to be divided into three parts:

• Presenting the finite element formulation for the transient thermo–poroelastic problems

introduced in chapter (2).

• Testing the capability of ABAQUS1 to simulate thermo-hydro-mechanical IBVPs.

• Finally developing and validating a domestic Fortran 90 Finite Element (FE) code which

was modified by (Gelet, [2012]). The numerical results of the FE code are compared with

the ABAQUS response and analytical solutions for one–dimensional and two–dimensional

thermo–poroelastic IBVPs.

3.1 From mathematics to the finite element formulation

The brief summary below is based on the work of (Hughes, [2000]) and proceeds in three steps:

1ABAQUS is a suite of software applications for finite element analysis and computer–aided engineering,

originally released in 1978.
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1. The variational or weak formulation of the problem is first obtained from the partial

differential equations.

2. A discretizing method is used to discretize the weak formulation in space.

3. Within a generic element, a system of algebraic equations is finally developed.

The set of solutions for our problem is presumed to be a vector space which means that all

the classical algebraic operations can be conducted like for vectors of ordinary geometry.

Let the function u(x) be the sought solution and f a smooth scalar function defined in the

segment Ω =]0, 1[. The strong form if the BVP to be considered includes the partial differential

equations and the boundary conditions:

(S)







∂2u

∂x2
+ f = 0, on ]0, 1[

u(1) = g

−∂u(0)
∂x

= h

(3.1)

(1) The strong formulation (S) of the BVP is multiplied by the variation w and is integrated

by part over the domain Ω to get the variational or weak formulation (V).

(V)

∫ 1

0

∂w

∂x

∂u

∂x
dx =

∫ 1

0
w f dx+ w(0)h (3.2)

The variation w or sometimes called the weighting function is required to satisfy the homo-

geneous counter–part of the g-boundary, w(1) = 0, and to have square-integrable derivatives.

The boundary conditions are either known parts of the solution (Dirichlet boundary conditions)

or derivatives of the solution at the boundary (Neumann boundary conditions). Equation (3.2)

is indicating that enforcing a vector to be equal to zero in the space is equivalent to enforcing

every projection of this vector to be equal to zero as well. This has the physical interpretation

of the virtual work.

(2) The weak formulation is to be discretized in space. Within a generic element e, the

discretization of the trial solution uh and the variation wh is done based on a spatial discretization

corresponding to a characteristic length h. The trial solution uh has a known part gh and

unknown part vh, such that:

uh = vh + gh, (3.3)
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3.1 From mathematics to the finite element formulation

Assuming, along the Galerkin’s discretizing procedure, that the function vh belongs to the

same collection of the variations wh, it henceforth satisfies that vh(1) = 0. The function gh goes

with the definition gh(1) = g. Gathering all the known parts of the discretized weak formulation

at the right hand side leads to Galerkin’s formulation (G) of the problem.

(G)

∫ 1

0

∂wh

∂x

∂vh

∂x
dx =

∫ 1

0
wh fh dx−

∫ 1

0

∂wh

∂x

∂gh

∂x
dx+ wh(0)h (3.4)

If the functions vh do not belong to the collection of variations wh, the method is called

Petrov-Galerkin method.

(3) The last step includes writing (G) in a coupled system of algebraic equations (the matrix

problem). This can be done by writing wh and vh in terms of basis functions. Let wh and vh

consist of all the linear combinations of given functions NA and NB over the closure Ω̄ = [0, 1]

of Ω, where A, B = 1, 2, 3, ... , n. Thus, there exist constants cA’s and dB ’s such that:

wh =

n∑

A=1

cANA and vh =

n∑

B=1

dB NB (3.5)

NX ’s are referred to as shape, basis or interpolation functions. Each shape function NX

should satisfy:

NX(1) = 0, X = 1, 2, 3, ... , n (3.6)

An n+ 1 shape function Nn+1 is defined such that Nn+1(1) = 1 and gh is hence given by:

gh = g Nn+1 and thus gh(1) = g (3.7)

Now (G) is written as:

n∑

A

cA

n∑

B

∫ 1

0

∂NA

∂x

∂NB

∂x
dB dx =

n∑

A

cA

∫ 1

0
NA f

h +
n∑

A

cA [NA(0)h]

−
n∑

A

cA

∫ 1

0

∂NA

∂x

∂Nn+1

∂x
g dx

(3.8)

Since the cA’s are arbitrary constants, equation (3.8) provides a set of n equations, namely

for A = 1, 2, 3, ... , n.

n∑

B

∫ 1

0

∂NA

∂x

∂NB

∂x
dB dx =

∫ 1

0
NA f

h + [NA(0)h] −
∫ 1

0

∂NA

∂x

∂Nn+1

∂x
g dx (3.9)

All quantities appearing in equation (3.9) are known except for the dB ’s. Concisely, this

relation can be expressed as:
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n∑

B

KAB dB = FA, A = 1, 2, 3, ... , n (3.10)

Adopting the matrix notation, the matrix formulation (M) of the problem is reached:

(M) KX = F , (3.11)

where K is the stiffness matrix (for elasticity problems), componentwise:

K = [KAB] =











K11 K12 ... K1n

K21 K22 ... K2n

. . .

. . .

. . .
Kn1 Kn2 ... Knn











(3.12)

F is termed the force vector (in elasticity problems) and is equal to the right hand side of

equation (3.9):

F = [FA] =











F 1

F 2

.

.

.
F n











(3.13)

X is the overall/global displacement vector given by:

X = [dB ] =











d1

d2

.

.

.
dn











(3.14)

The following remarks are to be stated:

1. The previous brief illustration describes generally the Finite Element Method (FEM) of a

one–dimensional problem, the mathematics are viewed from a global point of view.

2. The solution of (G) through the discretization process is only an approximate solution

of (V). The Dirichlet boundary conditions are exactly met but the Neumann boundary

conditions may not be accurately satisfied. The accuracy of this approximate solution also

depends on the choice of shape functions and the number n.

3. The matrix K is symmetric due to the symmetry of the partial differential operator and

due to the use of Galerkin’s method, i.e the same shape functions for the variations and

the trial solutions.

74
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4. Following schematically the steps until the matrix solution is reached, the scheme adopted

involves two equivalent steps and an approximate step:

(S)⇔ (V) ≈ (G)⇔ (M) (3.15)

The only approximation made was by solving (V) through (G). However, in practice the

data f , g and h as well as the domain Ω may need to be approximated.

3.2 Finite element method for thermo-poroelasticity

In this research the BVPs of thermo-poroelasticity are transient problems and thus the FEM

will result in a system of semi-discrete ordinary differential equations. The constitutive model

has been presented in chapter (2). The weak and the matrix formulations are to be presented

below.

3.2.1 The weak formulations

In a space of dimension nsd, there are nsd + 2 partial differential/field equations to be satisfied

at each node:

• The balance of momentum of the mixture, equation (2.13).

• The balance of mass of the pore fluid, equation (2.17).

• The balance of energy of the mixture, equation (2.19).

Note that single porosity and local thermal equilibrium are assumed at any time. The weak

formulations are obtained by multiplying the three field equations, written in a rate form for

compatibility, by the variations δu̇, δṗ and δθ̇. The weak and the matrix formulations are to be

presented for anisotropic thermo–poroelasticity for generalization.

3.2.1.1 The weak formulation of the balance of momentum of the mixture

Following equation (2.12), the equation of balance of momentum in a rate form is expressed as

(the convention of summing over the mute indices is adopted all along this research):

∂σ̇ij
∂xj

+ Ḟi = 0, i = 1, 2, 3 (3.16)

Multiplying equation (3.16) by the variation δu̇i and integrating over the body gives:

∫

V

δu̇i
∂σ̇ij
∂xj

+ δu̇i Ḟi dV = 0 (3.17)

75
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Integrating equation (3.17) by parts:

∫

∂V

δu̇i σ̇ij nj ds−
∫

V

∂(δu̇i)

∂xj
σ̇ij dV +

∫

V

δu̇i Ḟi dV = 0 (3.18)

The rate of change of surface traction ṫi can be expressed as:

ṫi = σ̇ij nj, (3.19)

where nj is the unit outward vector normal to the boundary ∂V . Substituting for equation

(3.19) in equation (3.18) yields:

∫

V

∂(δu̇i)

∂xj

[

Dijkl ε̇kl − κij ṗ−Kijkl α
′

skl θ̇
]

dV −
∫

∂V

δu̇i ṫi ds

−
∫

V

δu̇i Ḟi dV = 0

(3.20)

Here, Kijkl is the anisotropic drained elastic modulus tensor. Assuming micro–homogeneity

and micro–isotropy, the anisotropic Biot’s coefficient tensor κij is expressed as in (Kanj and

Abousleiman, [2005]):

κij = δij −
Kijkk

3Ks
(3.21)

3.2.1.2 The weak formulation of the balance of mass of the pore fluid

Following equation (2.17), the equation of balance of mass takes the form:

ṗ

M
=

∂

∂xi

(
kij
µ

∂p

∂xj
− kij

µ
ρfgj

)

− κij
∂2ui
∂t∂xj

+ θ̇
[

κij α
′

sij + φ0(αf − α
′′

skk)
]

(3.22)

For a matter of convenience, let us note:

ω = κijα
′

sij + φ0(αf − α
′′

skk) (3.23)

Thus, ω is the pore fluid thermic parameter which relates the pore pressure variation to the

change in the temperature. Assuming micro–homogeneity and micro–isotropy, Biot’s modulus

M for anisotropic thermo–poroelasticity is expressed as in (Kanj and Abousleiman, [2005]):

M =
Ks

(

1− Kiijj

9Ks

)

− φ0
(

1− Ks

Kf

) (3.24)

Multiplying equation (3.22) by the weighting function δṗ and integrating over the body gives:
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∫

V

δṗ
∂

∂xi

(
kij
µ

∂p

∂xj
− kij

µ
ρfgj

)

dV +

∫

V

−δṗ κij ε̇ij dV +

∫

V

δṗ ω θ̇ dV =

∫

V

δṗ
ṗ

M
dV

(3.25)

Let us define the pore fluid flux vector Q (without accounting for the gravity term) as:

Qi = −
kij
µ

∂p

∂xj
(3.26)

Substituting for equation (3.26) in equation (3.25) and integrating by parts yields:

∫

V

∂(δṗ)

∂xi

kij
µ

∂p

∂xj
dV +

∫

V

δṗ κij ε̇ij dV +

∫

V

δṗ
ṗ

M
dV

−
∫

V

δṗ ω θ̇ dV +

∫

∂V

δṗ Qi ni ds−
∫

V

∂(δṗ)

∂xi

kij
µ
ρfgj dV = 0

(3.27)

The normal pore fluid flux is defined as: Qn = Qi ni = −kij/µ (∂p/∂xj)ni.

3.2.1.3 The weak formulation of the balance of energy of the mixture

Following equation (2.19), the equation of balance of energy takes the form:

− ρcv
∂θ

∂t
− ρf cvf qf,i

∂θ

∂xi
+

∂

∂xi
(χij

∂θ

∂xj
) = 0 (3.28)

χij is the anisotropic thermal conductivity tensor of the mixture, ρcv is the reference1 volu-

metric heat capacity of the mixture. Multiplying equation (3.28) by the weighting function δθ̇

and integrating over the body gives:

∫

V

−ρcv δθ̇
∂θ

∂t
dV +

∫

V

−ρf cvf δθ̇ qf,i
∂θ

∂xi
dV +

∫

V

δθ̇
∂

∂xi
(χij

∂θ

∂xj
) dV = 0 (3.29)

Based on the law of heat conduction/ Fourier’s law, let us define the heat flux vector H such

that:

Hi = −χij
∂θ

∂xj
(3.30)

Substituting for equation (3.30) in equation (3.29) and integrating by parts yields:

∫

V

−ρcv δθ̇
∂θ

∂t
dV +

∫

V

−ρfcvf δθ̇ qf,i
∂θ

∂xi
dV +

∫

∂V

−δθ̇ Hi ni ds

+

∫

V

−∂(δθ̇)
∂xi

χij
∂θ

∂xj
dV = 0

(3.31)

1The value of the volumetric heat capacity at a given point can also change depending on the thermo–

poroelastic conditions at that point.
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The normal heat flux Hn is defined such that: Hn = Hi ni = −χij(∂θ/∂xj)ni.

With some manipulation equations (3.20), (3.27) and (3.31) can be written in a form that

follows equation (3.2):

∫

V

∇∇∇(δu̇) : σ̇ dV −
∫

V

δu̇ . Ḟ dV =

∫

∂V

δu̇ . σ̇ .n ds

∫

V

∇∇∇(δṗ) .
(

Q− k

µ
ρfg

)

dV −
∫

V

δṗ Ḟp dV =

∫

∂V

δṗ Q .n ds

∫

V

∇∇∇(δθ̇) .H dV −
∫

V

δθ̇ Ḟθ dV =

∫

∂V

δθ̇H .n ds

(3.32)

The functions Ḟp and Ḟθ, equation (3.32), are called the thermo–poroelastic functions. They

depend on the poroelastic and thermoelastic properties of the mixture as well as on the solution,

i.e. pressure, temperature and their gradients.

Ḟp = ζ̇ = κij ε̇ij − ω θ̇ +
Ṗ

M

Ḟθ = ρcv θ̇ + ρfcvf qf,i
∂θ

∂xi

(3.33)

3.2.2 Discretization and Galerkin’s method

Galerkin’s procedure is adopted and the same interpolation functions are used to discretize the

primary unknowns as well as the variations1. The unknowns are interpolated within the generic

element e in terms of the nodal values of the displacement vector u, pressure p and temperature

θ through the interpolation functions Nu, Np and Nθ .

u̇ = Nu u̇e, δu̇ = Nu δu̇e, εεε(δu̇) = Bu δu̇e,

ṗ = Np ṗ
e, δṗ = Np δṗ

e, ∇(δṗ) = Bp δṗ
e,

θ̇ = Nθ θ̇
e
, δθ̇ = Nθ δθ̇

e
, ∇(δθ̇) = Bθ δθ̇

e
,

(3.34)

The same interpolation functions have been chosen for the primary variables, that is to say:

Nu = Np = Nθ, and Bp = Bθ, (3.35)

where,

Bp =∇∇∇Np, and Bθ =∇∇∇Nθ (3.36)

1Convection terms need a special treatment, chapter (6).
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This approach is satisfactory in hydro-mechanics, however it is to be tested when the thermal

effects are considered (Gelet, [2012]).

Two-dimensional four-node isoparametric elements (Q4) are used to represent the spatial

discretization of the IBVPs. Each shape function is associated with a given node; it is equal

to one at this node and to zero at the other nodes. The shape functions of a parent four-node

bilinear quadrilateral element are shown in figure (3.1):

(1,1)(-1,1)

(-1,-1) (1,-1)

1 2

34

Figure 3.1: Shape functions for a four-node bilinear quadrilateral parent element (Q4). Nodal

points are labeled in ascending order in counter-clockwise direction.

3.2.3 The matrix formulation of the semi-discrete equations

To get the matrix formulation from the weak variational semi-discrete system, equation (3.32),

the contributions of all generic elements (N el) are to be considered. The two steps (G) and (M)

are gathered here for clearer and more concise illustration.

3.2.3.1 The matrix formulation of the balance of momentum of the mixture

The matrix formulation is obtained by substituting the definitions (3.34) into the equation (3.20):

Nel
∑

e=1

∫

V e

(Buδu̇
e)T DBuu̇

e − (Buδu̇
e)T κκκNp ṗ

e − (Buδu̇
e)T Kααα

′

sNθ θ̇
e
dV e

−
Nel
∑

e=1

∫

∂V e

(Nuδu̇
e)T ṫ

e
dse −

Nel
∑

e=1

∫

V e

(Nuδu̇
e)T Ḟ

e
dV e = 0

(3.37)

By writing equation (3.37) using the matrix form, it is found that:
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Nel
∑

e=1

[

δu̇e δṗe δθ̇
e
]T

(
∫

V e





BT
u DBu −BT

u κκκNp −BT
u K ααα

′

sNθ

−−− −−− −−−
−−− −−− −−−









u̇e

ṗe

θ̇
e



 dV e

)

+

Nel
∑

e=1

[

δu̇e δṗe δθ̇
e
]T

(
∫

∂V e





−NT
u ṫ

e

−−−
−−−



 dse +

∫

V e





−NT
u Ḟ

e

−−−
−−−



 dV e

)

=





0
−−−
−−−





(3.38)

3.2.3.2 The matrix formulation of the balance of mass of the pore fluid

The matrix formulation is obtained by substituting the definitions (3.34) into the equation (3.27):

Nel
∑

e=1

∫

V e

(Bp δṗ
e)T

k

µ
Bp p

e dV e +
Nel
∑

e=1

∫

V e

(Np δṗ
e)T κκκBu u̇e dV e

+

Nel
∑

e=1

∫

V e

(Np δṗ
e)T

Np ṗ
e

M
dV e −

Nel
∑

e=1

∫

V e

(Np δṗ
e)T Nθ ω θ̇

e
dV e

+

Nel
∑

e=1

∫

∂V e

(Np δṗ
e)T Qn ds

e −
Nel
∑

e=1

∫

V e

(Bp δṗ
e)T

k

µ
ρf g dV

e = 0

(3.39)

By writing equation (3.39) using the matrix form, it is concluded that:

Nel
∑

e=1

[

δu̇e δṗe δθ̇
e
]T

(
∫

V e







−−− −−− −−−
−−− BT

p

k

µ
Bp −−−

−−− −−− −−−












ue

pe

θe




 dV e

+

∫

V e







−−− −−− −−−

NT
p κκκBu

NT
p Np

M
−NT

p Nθ ω

−−− −−− −−−













u̇e

ṗe

θ̇
e






dV e

)

+

Nel
∑

e=1

[

δu̇e δṗe δθ̇
e
]T

(
∫

∂V e







−−−
NT

p Qn

−−−






dse +

∫

V e







−−−
−BT

p

k

µ
ρfg

−−−






dV e

)

=







−−−
0

−−−







(3.40)

3.2.3.3 The matrix formulation of the balance of energy of the mixture

The matrix formulation is obtained by substituting the definitions (3.34) into the equation (3.31):
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Nel
∑

e=1

∫

V e

−ρcv (Nθ δθ̇
e
)T Nθ θ̇

e
dV e +

Nel
∑

e=1

∫

V e

−ρfcvf (Nθ δθ̇
e
)T qf Bθ θ

e dV e

+

Nel
∑

e=1

∫

∂V e

−(Nθ δθ̇
e
)T Hn ds

e +

Nel
∑

e=1

∫

V e

−(Bθ δθ̇
e
)T χχχBθ θ

e dV e = 0

(3.41)

By writing equation (3.41) using the matrix form, one finds:

Nel
∑

e=1

[

δu̇e δṗe δθ̇
e
]T

(
∫

V e





−−− −−− −−−
−−− −−− −−−
−−− −−− −ρcv NT

θ Nθ









u̇e

ṗe

θ̇
e



 dV e

+

∫

V e





−−− −−− −−−
−−− −−− −−−
−−− −−− −ρf cvf NT

θ qf Bθ −BT
θ χχχBθ









ue

pe

θe



 dV e

)

+

Nel
∑

e=1

[

δu̇e δṗe δθ̇
e
]T

∫

∂V e





−−−
−−−
−NT

θ Hn



 dse =





−−−
−−−

0





(3.42)

Assembling equations (3.38), (3.40), and (3.42):

Nel
∑

e=1

[

δu̇e δṗe δθ̇
e
]T

(
∫

V e











BT
u DBu −BT

u κκκNp −BT
u K ααα

′

sNθ

NT
p κκκBu

NT
p Np

M
−NT

p Nθ ω

0 0 −ρcv NT
θ Nθ





















u̇e

ṗe

θ̇
e











dV e

+

∫

V e









0 0 0

0 BT
p

k

µ
Bp 0

0 0 −BT
θ χχχBθ

















ue

pe

θe









dV e

)

+

Nel
∑

e=1

[

δu̇e δṗe δθ̇
e
]T

∫

V e








0 0 0

0 0 0

0 0 −ρfcvf NT
θ qf Bθ















ue

pe

θe







dV e

=
Nel
∑

e=1

[

δu̇e δṗe δθ̇
e
]T

(
∫

∂V e







NT
u ṫ

e

−NT
p Qn

NT
θ Hn






dse +

∫

V e








NT
u Ḟ

e

BT
p

k

µ
ρfg

0







dV e

)

(3.43)
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For any arbitrary variations δu̇, δṗ and δθ̇, the system (3.43) sums to:

Nel
∑

e=1

[

D
e

(
d

dt
X
e

)

+K
e
X
e + C

e
X
e − F

e

]

= O, (3.44)

where,

• X
e is the vector of the nodal unknowns {u, p and θ}.

• D
e is the element diffusion matrix.

• K
e is the element stiffness matrix.

• C
e is the element convection matrix.

• F
e is the vector of generic element contributions. These contributions include the body

forces and the surface/ boundary loading terms.

3.2.4 Time marching scheme for solving the equations: The predictor multi-

corrector method

Boundary value problems that concern fluid saturated mixtures with non-linear terms and con-

stituents that are in thermal equilibrium, are either parabolic (like in diffusion problems) or

hyperbolic (like in pure convection). The predictor multi-corrector method is to be used to solve

our linearized semi-discrete system, equation (3.44), over the time.

The overall system of equations may be written in the following format:

DV+KX+CX = F (3.45)

The matrices D, K and C are the global diffusion, stiffness and convection matrices respec-

tively. The vectors X and F are the global solution and the global load vectors respectively, V

is the time derivative of X.

This system can also be written in terms of the global load vector F as the difference between

the global surface load vector and the global internal load vectors:

R = F
TE(X,V) + F

conv(X,V)
︸ ︷︷ ︸

Internal forces

− F
surf(S,V)
︸ ︷︷ ︸

Surface forces

= O, (3.46)

F
TE, Fconv and F

surf represent the contributions from the thermoelastic, the convective and

the surface effects respectively. S represents the collective surface loading and R stands for the
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residual of the system.

The aim is to find the vector of the unknowns X by rendering the residual R equal to O.

Starting from the initial situation the solution X0 is known, going from step n to step n + 1

requires moving through the time by an interval ∆t = tn+1 − tn. The predictor multi-corrector

method, described below, is to be used to find the solution Xn+1 at the time step n+ 1.

The predictor multi-corrector method is an iterative procedure used to solve transient BVPs.

The predictor multi–corrector method proceeds in two steps. First, the prediction step calcu-

lates an initial rough approximation of the desired quantity. Second, the corrector step refines

the initial approximation. Typically this method uses an explicit method for the predictor step

and an implicit method for the corrector step. Implicit here means that it uses the previous

approximate solution for the correction.

The system of equations (3.45) is to be integrated over a Generalized trapezoidal method1

defined by a scalar α ∈]0, 1]. Within a time interval of ∆t = tn+1− tn, the approximate solution

is assumed to be found at an iteration i + 1. A new concept of explicit/implicit operator split

is introduced; this means that we choose to make some terms of the system (3.45) explicit or

implicit. The time integration procedure will use the predictor multi–corrector scheme with an

explicit/implicit operator split. Implicit/explicit terms means that such terms contribute/do

not contribute to the calculation of the effective diffusion matrix. Following equation (3.46), the

vector of the internal body forces is always implicit and the vector of the surface loads is always

explicit, meanwhile the vector of the convective forces can be either implicit or explicit.

1. If the convective forces are implicit the residual R at iteration i+ 1 can be written as:

R
i+1
n+α = F

TE(Xi+1
n+α,V

i+1
n+α) + F

conv(Xi+1
n+α,V

i+1
n+α)− F

surf(Sin+α,X
i
n+α) (3.47)

Note that at the step n + 1 the above relation is forced to be equal to O at the time

tn+α = tn + α∆t with ∆t = tn+1 − tn. This leads us to the following definition, for any

Z = X, V or S:

Z
i+1
n+α = (1− α)Zn + αZ

i+1
n+1 (3.48)

1See (Hughes, [2000]) for more details.
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The iterative process (with i being the iteration number) proceeds as follows:

Initialization :







X
0
n+1 = Xn + (1− α)∆tVn

V
0
n+1 = Vn

for i ≥ 0 :







X
i+1
n+1 = Xn +∆tVi+1

n+α = X
0
n+1 + α∆tVi+1

n+1

= X̃
i
n+1 + α∆t∆V

V
i+1
n+1 = V

i
n+1 +∆V

(3.49)

The predictor value X̃
i
n+1 is given by:

where i ≥ 0 , X̃
i
n+1 = X

0
n+1 + α∆tVi

n+1 and (= X
i
n+1 for i > 0) (3.50)

By inserting the time-integrator (3.49) in the equation (3.47):

R
i+1
n+α = −Fsurf(Sin+α,X

i
n+α) + F

TE+conv
(

(1− α)Xn + αX
n+1
i+1 , (1 − α)Vn + αV

n+1
i+1

)

= −Fsurf(Sin+α,X
i
n+α)

+ F
TE+conv

(

(1− α)Xn + α X̃
i
n+1 + α2 ∆t∆V, (1− α)Vn + α (Vi

n+1 +∆V)
)

(3.51)

The notation F
TE+conv = F

TE + F
conv is adopted since the vectors of internal forces and

convective forces are implicit. By expanding equation (3.51) to the second terms using

Taylor series:

R
i+1
n+α ≈ −Fsurf(Sin+α,X

i
n+α)

+ F
TE+conv

(

(1− α)Xn + α X̃
i
n+1, (1− α)Vn + αV

i
n+1

)

+

(
∂FTE+conv

∂X

) (

(1− α)Xn + α X̃
i
n+1, (1− α)Vn + αV

i
n+1

)

α2∆t∆V

+

(
∂FTE+conv

∂V

) (

(1− α)Xn + α X̃
i
n+1, (1− α)Vn + αV

i
n+1

)

α∆V

≈ −Fsurf(Sin+α,X
i
n+α) + F

TE+conv
(

X̃
i
n+α,V

i
n+α

)

+
(

(K+ C)α∆t+ D

)

α∆V,

(3.52)

where:

D =

(
∂FTE+conv

∂V

) (

X̃
i
n+α

)

and K+C =

(
∂FTE+conv

∂X

) (

X̃
i
n+α

)

(3.53)

By defining C
∗ = D + (K + C)α∆t the effective convection–diffusion matrix, equation

(3.52) can be expressed as:

R
i+1
n+α ≈ R

i
n+α + C

∗ α∆V (3.54)
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The residual Ri+1
n+α is forced to O and equation (3.54) is solved at each iteration to get the

Newton direction ∆V. Note that the derivatives of the vectors FTE+conv do not depend on

the rate vector V.

2. If the convective forces are explicit, the residual R at iteration i + 1 can now be written

as:

R
i+1
n+α = F

TE(Xi+1
n+α,V

i+1
n+α) + F

conv(Xi
n+α,V

i
n+α)− F

surf(Sin+α,X
i
n+α), (3.55)

The notation −Fsurf+conv = −Fsurf + F
conv is introduced since the vector of convective

forces as well as the vector of surface forces are explicit. Equation (3.55) is linearized to

get the following expression:

R
i+1
n+α ≈ −Fsurf+conv(Sin+α,X

i
n+α,V

i
n+α) + F

TE(X̃i
n+α,V

i
n+α) − (Kα∆t+D)α∆V

≈ R
i
n+α + C

∗ α∆V

(3.56)

The effective diffusion matrix C
∗ is now defined by C

∗ = D + Kα∆t. The residual Ri+1
n+α

is forced to O and equation (3.56)2 is solved at each iteration to get the Newton direction

∆V.

The algorithm for the predictor multi–corrector method at step n + 1 can be expressed in

the following manner:

1. Initialization

i = 0 :







X
0
n+1 = Xn + (1− α)∆tVn

V
0
n+1 = Vn

2. Getting Newton direction

C
∗ (α∆V) = R

i
n+α

3. Correction

i ≥ 0 :







X̃
i
n+1 = X

0
n+1 + α∆tVi

n+1

X
i+1
n+1 = X̃

i
n+1 + α∆t∆V

V
i+1
n+1 = V

i
n+1 +∆V
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4. If the iterative change in the solution vector X and/or in the residual R is smaller than a

given tolerance then go to 5

Else i = i+ 1 and go to 2

5. End

More information about convergence and accuracy can be found in (Hughes, [2000]). This

time marching scheme will be used all along this PhD research to solve the thermo–poroelastic

IBVPs. It will be tested against the numerical simulations given by ABAQUS in section (3.4.1)

for one dimensional IBVP, and against the analytical solution for two-dimensional IBVP in

section (3.4.2).
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3.3 Simulation of thermo-poroelasticity using ABAQUS

This section presents the ABAQUS simulation of a one-dimensional transient BVP of a satu-

rated rock column subjected to thermal loading while consolidating. The ABAQUS numerical

results are correlated to the analytical solution given by (Selvadurai and Suvorov, [2009]) for the

same IBVP. A study on the effects of some hydraulic and thermal parameters on the thermo-

poro-mechanical behavior is also presented.

Consider a column of rock of height L and width B which is initially saturated and heated

to a uniform temperature change θ0 without allowing any heat or fluid fluxes. This uniform

pre–heating without allowing any fluid or heat dissipation at the boundaries caused trapped

fluid to build up a uniform initial pressure value of p−0 . The column is then suddenly loaded

with a surcharge of value σ0 while allowing fluid and heat to dissipate through only the upper

surface of the column x2 = 0, heat and fluid fluxes at x2 = L are set to zero at any time. Lateral

displacement is prevented and the only displacement component allowed for is in the direction

of x2. Follow figure (3.2) shown below.

x2

▲

❘❆❇❆❉ ❆❊❋●❍❊●■❏❑● ■▼❉ ■❉❆■❏■tic base 

σ◆

Figure 3.2: Schematic diagram of the one-dimensional problem to be solved.

Initial conditions at time t = 0− (just before applying the surcharge and allowing for heat

and fluid dissipation at the top) are expressed as:

θ(x2, t = 0−) = θ0

p(x2, t = 0−) = p−0
(3.57)
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The pore fluid built up pressure p−0 is uniform which necessarily means that gravity effect is

not considered.

The boundary conditions for t > 0 are:

p(x2 = 0, t) = 0 ;
∂p

∂x2

∣
∣
(x2=L, t)

= 0

θ(x2 = 0, t) = 0 ;
∂θ

∂x2

∣
∣
(x2=L, t)

= 0

σ22(x2 = 0, t) = σ0 ; σ12(x2 = 0, t) = 0

u2(x2 = L, t) = 0

(3.58)

Applying the boundary and initial conditions to the main field equations of thermo-poro–

elasticity, while considering that solid grains are incompressible (κ = 1) and while neglecting the

poroelastic and the convective terms in the energy equation, (Selvadurai and Suvorov, [2009])

have presented the following analytical solution:

θ(x2, t) = θ0
∑

m=1,3,5...

4

mπ
sin(

mπ

2L
x2) exp(−τ2m t) , τ2m =

m2π2

4L2

χ

ρcv
(3.59)

The ratio χ/ρcv is the thermal diffusivity ψ.

p(x2, t) =
∑

m=1,3,5...

Cm sin(
mπ

2L
x2) exp(−ω2

m t) +
∑

m=1,3,5...

Am sin(
mπ

2L
x2) exp(−τ2m t), (3.60)

while,

Am =

(
K

K + 4G/3
αs − nαf − (1− n)αs

)
4θ0τ

2
m

mπ

k22
γf

m2π2

4L2
−
(

1

K + 4G/3
+

n

kf

)

τ2m

, (3.61)

Cm = p+0
4

mπ
−Am, (3.62)

and,

p+0 = ∆pσ + p−0

=
−σ0

1 + (K + 4G/3)
n

Kf

+
θ0[nαf + (1− n)αs](K + 4G/3) −K αsθ0

1 + (K + 4G/3)
n

Kf

(3.63)

∆pσ is the abrupt increase in the pore pressure as result of applying the surcharge σ0 at

t = 0+ while allowing heat and fluid to dissipate at x2 = 0, γf is the unit weight of water.
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ω2
m =

m2π2

4L2

k22

(

K +
4

3
G

)

γf

(

1 +
n

Kf

(

K +
4

3
G

)) (3.64)

K and G are the bulk and shear moduli of the geomaterial under drained conditions, αs and

αf are the solid and the fluid volumetric thermal expansion coefficients respectively, k22 is the

medium hydraulic conductivity in the direction x2 and Kf is the fluid bulk modulus.

u2(x2, t) =
1

K + 4G/3

[

−K 3αsθ0
∑

m=1,3,5...

8L2

m2π2
cos(

mπ

2L
x2) exp(−τ2m t)

−
∑

m=1,3,5...

Cm
2L

mπ
cos(

mπ

2L
x2) exp(−ω2

m t)

−
∑

m=1,3,5...

Am
2L

mπ
cos(

mπ

2L
x2) exp(−τ2m t)

+ (y − L)σ0
]

(3.65)

The constant of integration y is found by requiring the displacement to be equal to zero at

x2 = L for any time t.

3.3.1 Results obtained using ABAQUS

ABAQUSTM version 6.11-1 has been used to simulate the above mentioned one-dimensional

thermo-poroelastic problem. When simulating by ABAQUS, one must keep the following im-

portant notes in mind:

• The geostatic step is not needed as the sample is initially in equilibrium under the thermal

loading.

• Checking the time scales of the BVP, section (2.1.3), is of tremendous importance to

estimate the time required for full analysis.

• Since energy equation is decoupled from mechanical and fluid diffusion effects, the problem

could have been solved in two parts. A heat transfer problem (a) was first simulated, the

file was saved and then used to solve the second problem of consolidation (b).

• The same mesh and numbering system should be adopted in the two parts of the problem.

The best mesh choice has been noticed to be a one-dimensional mesh of ratio ∼ 3 between

the largest and the smallest elements. 100 elements were sufficient to get very accurate

results for a column of 10 m height.
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• 8-node plane strain quadrilateral elements (Q8) with reduced integration have been used

to solve both parts of heat transfer and consolidation, i.e. displacement, pore pressure and

temperature fields are discretized using Q8 elements.

• Fixed time interval transient analyses have been used to simulate the two parts of the

problem. According to the instructions of the manual (section 6.8.1), using transient

analyses in a mesh of second–order elements may lead to diverging results. This can be

overstepped by considering the following criteria for increment size:

- ∆t >
ρcv
6χ

(∆l)2, for the heat transfer part and,

- ∆t >
γf

6E k22

(

1− E

Ks

)

(∆l)2, for the consolidation part

∆l is the largest element size of the mesh, Ks is the bulk modulus of solid grains and

E is the drained elastic modulus. The above relations are derived from the integration

procedure used in ABAQUS, it introduces a relationship between the minimum usable time

increment and the element size. Unless a maximum allowable time increment is specified,

generally, there is no upper limit on the time increment size (The integration procedure

used is unconditionally stable, at least of linear problems). If smaller time increments are

required, a finer mesh is to be used in regions where changes occur rapidly.

• When simulating the thermo-poroelastic problems with transient analyses, it is highly

recommended to set the default load variation with time to “Ramp linearly over step”.

This will give more accurate results.

• When filling the material properties, namely, the logarithmic bulk modulus ϑ, one must

follow equation (3.66) shown below. This equation is a linearization of the expression

given by the manual (section 21.3.1) provided that Pt, the material tensile strength, is

sufficiently large.

K =
1 + e0
ϑ

Pt (3.66)

e0 is the initial void ratio and K is the bulk modulus of the sample. The best assumption

for Pt is to start with Pt ∼ (100− 150) p, where p is the largest expected value of the pore

pressure.

• Table (3.1) shows the time analysis that has been considered to solve the 1–dimensional

column IBVP:
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Table 3.1: Time discretization considered to simulate the 1-dimensional problem by ABAQUS.

Step number Period of the step (days) Increment size (s) Number of increments

1 1 1000 87

2 10 1500 519

3 100 5000 1556

4 365 10000 2290

5 700 30000 965

6 1400 70000 864

Let us now define the problem more concisely as follows: it is a one-dimensional column of

height L = 10 m occupying the domain 0 ≤ x2 ≤ L with a base width B = 3 m. The column is

initially (t = 0−) at elevated temperature θ0=100 ◦C and non–zero built up pressure p−0 . The

load σ0 of 10 MPa is applied at (t = 0+) while allowing heat and fluid to dissipate through the

surface x2 = 0. The hydraulic and thermal properties given in Table (3.2) are used to simulate

the problem.

Table 3.2: Properties of the sample material “Typically rock”.

Property Value

Porosity n 0.25

Young’s modulus E 60 × 109 (Pa)

Poisson’s ratio ν 0.3

Unit weight of water γf 9800 (N/m3)

Medium hydraulic conductivity k 2.94 × 10−12 (m/s)

Effective thermal conductivity χ 4 (W/m◦C)

Effective heat capacity ρcv 2465000 (J/m3 ◦C)

Volumetric thermal expansion of solid phase αs 2.49 × 10−5 (1/◦C)

Volumetric thermal expansion of liquid αf 0 or 4.2× 10−4 (1/◦C)

Fluid bulk modulus Kf ∞ or 2.2× 109 (Pa)

Let us define the vertical displacement at the top of the rock column (x2 = 0) due to pre–

heating from 0 to 100 ◦C by u−20. To stand for the effect of certain parameters, particularly

“αf and Kf”, on the thermo-poroelastic behavior of the rock column, four cases as shown in

Table (3.3) shall be considered. p−0 and u−20 for any case are calculated directly by implementing

equations (3.63) and (3.65) respectively. The effect of the linear thermal expansion αf and

fluid bulk modulus Kf on the thermo–poroelastic behavior of the problem is of tremendous

significance. Explanations for these effects are to be given later in this section.
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Table 3.3: Pore pressure (uniform) and vertical displacement (at x2 = 0) initially built up as result

of pre–heating the column from 0 to 100 ◦C.

Case definition p−0 (MPa) u−20 (mm)

(1) αf=0, Kf=∞ 26.30 18.54

(2) αf=0, Kf=2.2× 109 Pa 2.950 14.55

(3) αf=4.2× 10−4 /◦C, Kf=2.2× 109 Pa 85.91 24.79

(4) αf=4.2× 10−4 /◦C, Kf=∞ 830.0 121.8

ABAQUS numerical response is to be tested against the analytical solution of (Selvadurai

and Suvorov, [2009]). In the figures presented below, the analytical solution is shown with a

solid line meanwhile ABAQUS response is shown with scattered markers.
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Figure 3.3: Temperature and pore pressure distributions within a one–dimensional element sub-

jected to temperature change from 100 to 0 ◦C and compressive load 10 MPa, with subsequent heat

and fluid dissipation through its upper surface only.
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Figure 3.4: Vertical displacement distribution within a one-dimensional element subjected to tem-

perature change from 100 to 0 ◦C and compressive load 10 MPa, with subsequent heat and fluid

dissipation through its upper surface only. Note that u−20 = 18.54 mm.

As fluid and heat start to dissipate from the column upper surface, the column starts to cool

down. Consequently, pore pressure and vertical displacement built up fields begin to decrease

significantly. Figures (3.5), (3.6) and (3.7) show the pore pressure and vertical displacement
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time profiles for the cases defined in Table (3.3).
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Figure 3.5: Pore pressure time profiles at (x2 = 10 m) without and with considering the compress-

ibility of pore fluid.
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Figure 3.6: Pore pressure time profiles at (x2 = 10 m) without and with considering the thermal

expansion of pore fluid.
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Figure 3.7: Vertical displacement time profiles at (x2 = 0 m).

93

chapter3/figures/graf3-6.eps
chapter3/figures/graf3-7.eps
chapter3/figures/graf3-8.eps
chapter3/figures/graf3-9.eps
chapter3/figures/graf3-10.eps
chapter3/figures/graf3-11.eps


3. FINITE ELEMENT FORMULATION FOR THERMO–POROELASTIC
IBVPS: FOCUS ON FLUID COMPRESSIBILITY

From the graphs previously shown, the following points are concluded:

• Thermo–poroelastic simulations are very sensitive to hydraulic and thermal parameters

considered for both phases, solid and fluid.

• The pore pressure p−0 and the vertical displacement u−20 generated during the heating phase

(a) can be qualitatively explained by the following physical arguments:

1. the higher the thermal expansion coefficient of the fluid phase, the higher the fluid

volume would likely to increase;

2. since the pore fluid is not free to move out of the solid skeleton, this will increase

pore pressure and vertical displacement fields tremendously;

3. the increase in pore pressure and vertical displacement fields, is still somehow, reduced

by the mechanical compressibility of the fluid. These effects provide some explanation

to the values of pore pressure and vertical displacement shown in Table (3.3).

• Pore pressure gets expectedly smaller for larger values of fluid compressibility.

• Compressible fluids are less likely to be affected by thermal loadings than incompressible

fluids.

• For this problem, the higher the values of linear thermal expansion coefficients of the fluid

phase, the higher will be the values of pore fluid pressure1.

3.3.2 Comparing the effect of heat transfer to the abrupt change caused by

the sudden application of the surcharge σ0

This part is aimed at comparing the effect of 100 ◦C temperature change through the sample

to the effect of the 10 MPa applied surcharge. The sample is left to totally consolidate on a

temperature field of θ =100 ◦C and then, when consolidation is done, the boundary temperature

at x2 = 0 is set to zero. Figure (3.8) shows the history of loading for this study.

Four cases were considered, numerical responses shown below are obtained by ABAQUS:

• Fluid with zero compressibility and neglected thermal expansion, figure (3.9(a)).

• Fluid with compressibility 4.54 × 10−10 1/Pa and neglected thermal expansion, figure

(3.9(b)).

• Fluid with zero compressibility and linear thermal expansion 4.2 × 10−4 1/◦C, figure

(3.10(a)).

1This cannot be generalized as the BVP simulated here is highly constrained, see the foregoing notes.
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• Fluid with compressibility 4.54×10−10 1/Pa and linear thermal expansion 4.2×10−4 1/◦C,

figure (3.10(b)).
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Pre-heating the column while

preventing any fluid flux

Leaving the column to cool

while consolidating it

t=0

Figure 3.8: History of loading for this study can be summarized as follows: A- The sample has

been heated from zero to 100 ◦C without allowing any fluid seepage which has led the pore pressure

to build up an initial value p−0 . B- At time t = 0+, a load of 10 MPa is applied at the top of the

column allowing it to consolidate while preventing any heat dissipation through the surface x2 = 0

m. C- After consolidation is totally done, zero temperature is imposed at the surface x2 = 0 allowing

heat transfer to take place and sample to consolidate again until temperature change over all the

column vanishes “D”.
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Figure 3.9: Pore pressure time profiles at (x2 = 10 m), fluid thermal expansion is neglected.

The negative values of pore pressure in figure (3.9) indicate fluid suction. This can be

explained as follows; since cooling starts after the built up pressure p−0 vanishes, the fluid dis-

sipation at the upper surface which is driven by the applied surcharge σ0 and the contraction

resulting from cooling, requires fluid to be sucked from the column so that the column remains

saturated while consolidating again by cooling, see figure (3.11). The effect of suction is more

evident in the cases when the fluid thermal expansion is considered. The ratio αf/αs is equal to

16.9 which means that fluid is contracting 17 times larger than the solid skeleton while cooling.

This also causes pore fluid to be sucked to fill the formed gaps in order to guarantee a fully

saturated medium.
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Figure 3.10: Pore pressure time profiles at (x2 = 10 m), fluid thermal expansion is 4.2 × 10−4

1/◦C.

The fourth case, when considering both fluid compressibility and thermal expansion, tends

to be the most realistic and it imitates the field state. To further go into the details of this case;

this work gives the graphs of the effective axial stress σ
′

22 and axial strain ε22 at the bottom of

the column x2 = 10 m.
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Figure 3.11: Axial stress and strain time profiles at (x2 = 10 m), fluid thermal expansion and

compressibility are 4.2× 10−4 1/◦C and 4.54× 10−10 1/Pa respectively.

σ
′−
0 and ε−0 are the initial axial effective stress and strain at x2=10 m which have been built

up as result of heating the column from zero to 100 ◦C. ∆σ
′

σ and ∆εσ are the abrupt changes

of axial effective stress and strain when the surcharge of 10 MPa is suddenly applied.

The effect of 100 ◦C temperature change through the sample to the effect of the 10 MPa

suddenly applied surcharge σ0, can be conceived by dividing the maximum change caused by

heat transfer to the maximum abrupt change caused the consolidating surcharge. For example

following figure (3.9(a)), ∆pθ/∆pσ = 1.76/10 = 0.176. Table (3.4) summarizes the results of the

comparison for all the possible combinations of αf and Kf :
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Table 3.4: Comparison between the effect of heat transfer to the effect of consolidation.

Case definition ∆pθ/∆pσ ∆σ
′

22θ/∆σ
′

22σ ∆ε22θ/∆ε22σ

αf=0, Kf=∞ 0.176 0.176 13.4

αf=0, Kf=2.2× 109 1/Pa 1.15 0.115 13.4

αf=4.2× 10−4 1/◦C, Kf=2.2× 109 1/Pa 36.2 3.62 13.4

αf=4.2× 10−4 1/◦C, Kf=∞ 5.76 5.76 13.4

Following Table (3.4), one concludes:

1. The effect of heat transfer to that of the sudden surcharge on the pore pressure p “∆pθ/∆pσ”

is significantly affected by the thermal expansion of pore fluid. It also increases tremen-

dously when assuming compressible fluid.

2. The previous result holds correct for the axial stress σ
′

22, and is equal to that of the pore

pressure “∆pθ/∆pσ = ∆σ
′

22θ/∆σ
′

22σ”, unless the fluid is assumed compressible.

3. Changing αf and Kf does not affect the ratio ∆ε22θ/∆ε22σ . This is a unique result for

this problem as it is highly constrained εkk = ε22. The axial strain of the homogeneous

field does not depend on αf nor Kf , see equation (3.75).

3.3.3 Verifying the homogeneous parts of the numerical solution with the

analytical solution

In this section the numerical results of pore pressure field due to pre–heating, as well as the axial

strain field at the end of consolidation and heat transfer are verified by the analytical solutions

of thermo–poroelasticity, section (2.2.1).

3.3.3.1 Verifying pore pressure increase due to the thermal loading only

The sample has been initially at 0 ◦C, then it is homogeneously heated to 100 ◦C while fluid

is trapped. After sufficient time, a homogeneous state of thermal loading is finally achieved.

Lateral strains (in directions 1 and 3) are restricted to zero, total axial stress (in direction 2) is

also zero since the surcharge at the top is not yet applied.

Starting with equation (2.4), one can write:

ε22 =
2σ11
3K

+
κp

K
+ αsθ (3.67)

Using equation (2.3):

ε11 =
1

2G

(

σ11 −
2νσ11
1 + ν

)

+
κ

3K
p+

αs

3
θ = 0 (3.68)
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ε11 = 0, thus equation (3.68) becomes:

σ11 =
E

ν − 1

( κ

3K
p+

αs

3
θ
)

(3.69)

Substituting equation (3.69) in equation (3.67) while noting that 3K = E/(1 − 2ν) yields:

ε22 = εkk =
1 + ν

3(1 − ν)
(pκ

K
+ αsθ

)

(3.70)

Using equation (2.10), the pore pressure p is written in the form:

p

(
1

M
+

κ2(1 + ν)

3K(1− ν)

)

= θ

(−κ(1 + ν)αs

3(1 − ν) + αs(κ− φ0) + αfφ0

)

(3.71)

Considering the values mentioned in Table (3.2) for the case αf = 0 and Kf = ∞, the

pore pressure is easily calculated p = 26.34 MPa. This value is identical to the value obtained

numerically by ABAQUS1.

3.3.3.2 Verifying the homogeneous field of the axial strain at the end of consoli-

dation and heat transfer

When the homogeneous field of the axial strain is reached, the axial stress (in direction 2) is

equal to -10 MPa and the change in the pore pressure p vanishes.

Following equation (2.3), one writes:

ε22 =
1

2G

(

σ22 −
νσkk
1 + ν

)

+
αs

3
θ (3.72)

Considering equation (2.4) gives:

ε22 =
σkk
3K

+ αsθ, (3.73)

and:

σkk = 3K(ε22 − αsθ) (3.74)

Substituting equation (3.74) in equation (3.72) while noting that 3K = E/(1 − 2ν) yields:

ε22

(

1 +
ν

1− 2ν

)

=
σ22(1 + ν)

E
+ αsθ

(
ν

1− 2ν
+

1

3

)

(3.75)

Considering the values mentioned in Table (3.2) and that θ = 0 ◦C, the axial strain is calcu-

lated ε22 = −0.124 mm/m, which is identical to the value obtained numerically by ABAQUS2.

1See for instance figure (3.9(a)) and Table (3.3).
2See for instance figure (3.11(b)).
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3.4 Validation of the Fortran 90 finite element code

Though the numerical solution that was given by ABAQUS was quite satisfying, ABAQUS is not

going to be used later in doing the simulations of this study. Actually, the version of ABAQUS

used in doing the simulations of section (3.3) can not implement a fully coupled thermo–hydro–

mechanical BVP. As was stated, the heat transfer part was simulated alone by solving a mere

heat transfer problem and the results were uploaded to the poro–elastic part.

To avoid any mistakes resulting from dividing the thermo–poroelastic simulations, and to

have our own domestic code where a specific and advanced developed model of damage and

permeability enhancement can be integrated, a developed Fortran 90 FE code which was modi-

fied by (Gelet, [2012]) and in turn modified by me is to be used to obtain the sought numerical

responses.

The aim of this section is to validate the initial version of the FE code by comparing the an-

alytical results with the numerical simulations shown by the FE code. Two transient conduction

problems are to be studied, namely:

1. The aforementioned one–dimensional problem presented by (Selvadurai and Suvorov, [2009]).

Since the authors neglect the mechanical and hydraulic contributions to the energy equa-

tion, we will also disregard them to provide a valid comparison. However, it should be

outpointed here that the FE code may/may not stand, depending on the user’s desire, for

full coupling in the energy equation and that convection of heat is also partially treated.

2. A two–dimensional wellbore stability problem which is presented in the study of (He and

Jin, [2010]). The authors neglect the mechanical and hydraulic contributions to the energy

equation as well as part of the mechanical contribution, namely the term (∂2ui/∂t∂x), to

the equation of balance of mass to get the analytical solution of the BVP. In our FE

code we can stand for full decoupling of hydraulic and mechanical effects in the energy

equation, nonetheless full coupling is always ensured in the equation of balance of mass.

Consequently, the FE code thermal response is expected to match that of the analytical

solution of (He and Jin, [2010]), meanwhile some differences are expected in pore pressure

response between the FE code results and the analytical solution.

3.4.1 One–dimensional application

The analytical solution offered by (Selvadurai and Suvorov, [2009]) stands only for incompressible

grains κ = 1. The Fortran 90 FE code cannot simulate thermo–poroelastic problems with
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incompressible grains, incompressible fluid, or neglected thermal expansions; that will result in

a division by zero. Thus, the quite accurate results of ABAQUS will be used as a reference

instead of the analytical solution. The thermal and hydraulic properties shown in Table (3.5)

were used to simulate the problem.

Table 3.5: Properties of the sample material “Typically rock”.

Property Value

Porosity n 0.25

Young’s modulus E 38× 109 (Pa)

Poisson’s ratio ν 0.3

Unit weight of water γf 9800 (N/m3)

Medium hydraulic conductivity k 2.94 × 10−12 (m/s)

Effective thermal conductivity χ 4 (W/m◦C)

Effective heat capacity ρcv 2465000 (J/m3 ◦C)

Volumetric thermal expansion of solid phase αs 2.49 × 10−5 (1/◦C)

Volumetric thermal expansion of liquid αf 4.2× 10−4 (1/◦C)

Fluid bulk modulus Kf 2.2× 109 (Pa)

Solid bulk modulus Ks 37.0 × 109 (Pa)

The same boundary and initial conditions, as in section (3.3), are adopted here. The only

addition is that solid grains are assumed compressible with solid constituent bulk modulus of

Ks = 37.0× 109 Pa. The reference solution is obtained for 700 days by simulating the transient

BVP using ABAQUS following the same scheme as in Table (3.1).

To simulate this problem using our FE code, the following approach is used:

• A one–dimensional mesh of 30 elements refined at the top of the column with ratio 10

between the largest and the smallest elements is considered.

• The time scheme used in the FE code is designed to calculate and to plot time–logarithmic

results. First time step starts at second 1, just after verifying the geostatic step, and

continues to increase logarithmically until it reaches a maximum value (is set here to be

1,000,000 s). After the maximum value is reached, the next time step is calculated as the

previous time plus the maximum value, see figure (3.12).

• Hydraulic and mechanical contributions to the equation of energy are disregarded as our

version of ABAQUS can not simulate fully coupled thermo–poroelstic response.
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Figure 3.12: Time scheme used in the domestic FE code to solve the thermo–poroelastic IBVPs.

First time step starts at second 1 and continues to increase logarithmically till a specific maximum

value. After the maximum value is reached, time steps are to increase linearly by a slope equal to

the maximum value.

• Unlike the Q8 elements used for discretization by ABAQUS, our FE code uses 4–node

bilinear quadrilateral elements to discretize the space of all the unknowns, see section

(3.2.2).

• This transient BVP is also simulated in two steps by the FE code:

1. The sample was sealed at all boundaries to prevent fluid fluxes and then heated from

0 to 100 ◦C. This has led the pore pressure to build up an initial value p−0 equal to

94.6 MPa,

2. the surcharge σ0 is then applied as the sealing at the top is removed to allow the

column to consolidate through a temperature change from 100 to 0 ◦C

Numerical response of the FE code and ABAQUS results were in good agreement, see figures

(3.13) and (3.14):
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Figure 3.13: Vertical displacement time profile at (x2 = 0 m), comparison between numerical

response of the FE code and ABAQUS simulation.

The small differences between the FE code response and ABAQUS results in the vertical dis-

placement and temperature profiles are most likely attributed to the facts that; much smoother
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refinement is adopted in doing the ABAQUS simulation (100 elements), and the Q8 elements

may describe the thermo–hydromechanical behavior better than the Q4 elements used in our

FE code.
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(a) Temperature profile
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(b) Pore pressure profile

Figure 3.14: Temperature and pore pressure time profiles at (x2 = 10 m), comparison between

numerical response of the FE code and ABAQUS simulation.

3.4.2 Two–dimensional application

To further verify the simulation capacities of the domestic FE code, this section uses the

code to simulate a 2–dimensional wellbore stability BVP. Wellbore stability problems are of-

ten encountered when drilling in high permeability formations where the analyses of thermal

stresses are of importance see for instance (Abousleiman and Ekbote, [2005]), (Abousleiman

and Nguyen, [2009]) and (He and Jin, [2010]). Wellbore stability will be addressed in details in

section (4.6).

3.4.2.1 Model description

The model used in this study is the same as the model implemented in (He and Jin, [2010]).

This model describes a torsionless axisymmetric transient BVP of a wellbore drilled in an infinite

porous rock formation, see figure (3.15).

❫

r

z

❴❵❜❝❵❝te ❡orou❢ ❣ock

form❫t❝o❵

Figure 3.15: Cylindrical hole in an infinite fluid saturated porous rock formation.
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Only a quarter of the model has been discretized taking advantage of the rotational symme-

try. 4-node isoparametric quadrilateral elements (Q4) have been used to solve for displacement,

pressure and temperature. Spatial discretization (FEM mesh) of 756 elements is shown in figure

(3.16).
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Figure 3.16: Spatial discretization of the model geometry.

3.4.2.2 The analytical solutions of the BVP

Short time single–porosity solutions for pressure and temperature are obtained using Laplace’s

transformation and its asymptotic properties (He and Jin, [2010]). To get these analytical

solutions, authors have neglected the hydraulic and mechanical contributions to the energy

equation as well as the a part of the mechanical contribution, namely the term (∂2ui/∂t∂x), to

the equation of balance of mass. All the boundary conditions are applied on the model such

that only torsionless axisymmetric BVP is achieved.

• Temperature field

Only conduction of heat is considered, the following initial and boundary conditions are applied:

θ(r, t)|t=0 = 0, a ≤ r <∞
θ(r, t)|r=a = θaH(t), t > 0

θ(r, t)|r→∞ = 0, t > 0

(3.76)

θa is a constant “the temperature of the solid applied at the boundary r = a” and H(t) is

the Heaviside step function. The analytical solution is given by (He and Jin, [2010]):

θ(r, t) = θa

√
a

r
erfc

(
r − a
2
√
ψt

)

, (3.77)
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where ψ is the thermal diffusivity given by ψ = χ/ρ cv, χ being the thermal conductivity, ρ

is the density and cv is the heat capacity of the saturated porous medium at constant volume.

• Pore pressure field

The term ∂2ui/∂t∂x is disregarded from the equation of balance of mass. The following boundary

and initial conditions are applied:

p(r, t)|t=0 = 0, a ≤ r <∞
p(r, t)|r=a = paH(t), t > 0

p(r, t)|r→∞ = 0, t > 0

(3.78)

pa is the fluid pore pressure applied at the boundary r = a. By substituting for the temper-

ature field using equation (3.77) in the equation of balance of mass, the analytical solution is

given by (He and Jin, [2010]):

p(r, t) =

{

pa +
c′θaψ

(c− ψ)

} √
a

r
erfc

(
r − a
2
√
ct

)

− c′θaψ

(c− ψ)

√
a

r
erfc

(
r − a
2
√
ψt

)

, (3.79)

where c is the hydraulic diffusivity coefficient of the porous medium equation (2.23), and c′

is given by:

c′ =
1

S

[
2(1 − 2ν)

3(1 − ν) κα
′

s + φ0(αf − α
′′

s )

]

, (3.80)

S =
κ

BK

(

1− 4ηB

3

)

and η =
1− 2ν

2(1− ν) κ, (3.81)

where κ is the Biot’s coefficient, α
′

s and α
′′

s are the first and the second solid volumetric

thermal expansion coefficients respectively. φ0 is the reference porosity, B is the Skempton’s

coefficient equation (2.7) and K is the drained bulk modulus.

Table (3.6) lists the thermal properties of the solid and the fluid phases and Table (3.7) lists

the poroelastic parameters of the fluid saturated porous medium..

Table 3.6: Thermal parameters for the fluid and the solid phases.

Property Solid Fluid

Effective thermal conductivity (W/m◦C) χs=2.4 χf=0.6

Density (kg/m3) ρs=2600 ρf = 1000

Specific heat at constant volume (J/Kg◦C) cvs=920 cvf = 4200

Volumetric thermal expansion coefficients α
′′

s = α
′

s=3.3× 10−5 αf=3.0 × 10−4

(1/◦C)
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Table 3.7: Poroelastic parameters for the fluid saturated porous medium.

Property value

Shear modulus (GPa) G=6.8

Poisson’s ratio (drained) ν=0.18

Bulk modulus (drained) (GPa) K=8.4

Biot-Willis coefficient κ=0.74

Skempton’s coefficient B=0.5

Reference porosity φ0=0.4

Hydraulic diffusivity (m2/s) c = 1.4 × 10−3

3.4.2.3 Calculations and results

Considering the fact that the analytical solutions were obtained by the asymptotic short time

inverse of the equations written in the Laplace’s s domain, all the numerical simulations were

performed in a non–dimensional time interval t̃ ≤ 0.3: for the values defined in Table (3.6), this

limits the simulation time to t ≤ 0.3 a2/ψ.

If quantities of θa, pa and a are given the values 100 ◦C, 25 MPa and 10 cm respectively,

the numerical simulations using the FE code can be performed. In the graphs shown below,

the solid lines represent the short time single–porosity analytical solution, equations (3.77) and

(3.79).
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(a) Radial distribution t̃=0.01
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Figure 3.17: Temperature distribution along the radial direction.

The following notes are concluded:

1. The radial distributions of temperature, numerical and analytical, are in good agreement.

2. The difference between the analytical solution and the numerical response in figure (3.18)

comes from the fact that, the term ∂2ui/∂t∂x has been disregarded from the equation
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of balance of mass so that the analytical solution might be reached. The FE code is

only valid for coupled pore pressure which is more realistic and maintain the constitutive

hydro–mechanical coupling.
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(b) Radial distribution t̃=0.25

Figure 3.18: Pore pressure distribution along the radial direction.

3. Unlike the radial distribution of temperature, the radial distribution of pore pressure for

the short–time solution does not change too much in the interval t̃ ≤ 0.3. It seems that

the pore fluid diffusion happens much faster than the thermal diffusion. By checking the

time scales of the diffusive heat transfer tθ = L2/ψ and the diffusive flow of pore fluid in

the porous medium tp = L2/Cc, it is found that:

tθ
tp
≈ 2600 (3.82)

It means that the diffusion of pore fluid is about 2600 times faster than the diffusion of heat

in the medium. This is an expected result when simulating thermal recovery from Hot Dry Rock

(HDR) reservoirs. The diffusion of pore fluid happens much faster than the conductive diffusion

of heat. However, if the convection of heat is considered in the simulations, the diffusion of heat

is to be enhanced several orders of magnitudes. Nonetheless in all cases, whether by convection

or conduction, the diffusion of pore fluid remains faster than the diffusion of heat in most of the

HDR reservoir implementations.
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Chapter 4

Simulations of heat extraction from

natural and enhanced HDR reservoirs

by hydraulic fracturing

Geothermal reservoirs/ Hot–Dry–Rocks (HDR) are, nowadays, correctly simulated by assuming

dual–porosity Local Thermal Non-Equilibrium (LTNE), where heat transport as well as hy-

draulic diffusion in each phase along with heat and fluid exchanges between phases are precisely

described. The works of (Gelet et al., [2012]) have clarified that the assumption of dual–porosity

LTNE is inevitable to get precise description of a geothermal reservoir. The convection of heat

is dominant in the fissure fluid phase, meanwhile the conduction of heat is controlling in the

pore fluid phase.

Dual–porosity LTNE is not covered in this thesis as we hope that we would provide an initial

insight into the process of Hydraulic Fracturing in single–porosity Local Thermal Equilibrium

(LTE). This insight can be used later as a basis for more sophisticated studies.

This chapter proceeds as follows; the simulations of heat and fluid transports at the geother-

mal reservoir of Soultz–Sous–Forêts without considering permeability stimulation by Hydraulic

Fracturing (HF) are first presented. The process of HF is then discussed and a fracturing model

which is based on mode I of fracturing and capable of tracking directional fracture evolution

is developed. By implementing the fracturing model into our FE code, the hydraulic enhance-

ment/stimulation of the geothermal reservoir of Soultz–Sous–Forêts is presented. Finally, the

problem of borehole stability associated with tensile and shear failure of the borehole case-shoe

is presented to ensure safe HF process of HDR reservoirs.
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4.1 Preliminary results: The natural geothermal reservoir of

Soultz–Sous–Forêts

Several HDR projects were initiated around the globe; Fenton Hill (USA) starting in 1973,

Rosemanowes (England) in 1977 and Hijiori (Japan) in 1989. Several Enhanced Geothermal

Systems (EGS) were later established for instance; projects at Soultz–Sous–Forêts (France),

Coso (USA) and Habanero (Australia).

The HDR project at Soultz–Sous–Forêts, figure (4.1), is chosen to perform the preliminary

simulations of the Thermo–Hydro–Mechanical research of this thesis. This HDR reservoir was

artificially stimulated by hydraulic and/or chemical approaches (Evans et al., [2009]). Cold

water is injected from the well (GPK1) and left to travel through the geothermal reservoir

before it is retrieved via the production well (GPK2). Hot water is then passed through a heat

exchanger where it is exploited and thus cooled. Cold water is re-injected through (GPK1) for

the subsequent circulation.

450 m

36 m

280 m

GPK1

3600 m

GPK2

3878 m

Heat 

exchanger

x

y

z

Zone of simulation

Impermeable granitic rock

Figure 4.1: Modeling of the geothermal reservoir at Soultz–Sous–Forêts, figure is not to scale.

To imitate the conditions of the natural reservoir, simulations will be first performed as-

suming low permeability and therefore a brief description on temperature, pressure and stress

distributions is obtained. The fracturing model will be then integrated to account for permeabil-

ity enhancement. Convection of heat is to be treated a priori using the SUPG method, chapter

(6).

4.1.1 Material properties

The material properties of Soultz–Sous–Forêts reservoir are shown in Table (4.1). The time

scales associated with this particular BVP, for a length L = 450 m, were calculated as shown in

section (2.3.1):
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- for thermal diffusion, tθ = 8482.5 years,

- for hydraulic diffusion, tp = 1.6 days.

Table 4.1: Material properties of Soultz–Sous–Forêts reservoir, (Evans et al., [2009]). *The perme-

ability value is used as in (Taron and Elsworth, [2009]).

Property Value

Drained Young’s modulus E 54× 109 † (Pa)
Drained Poisson’s ratio ν 0.25
Bulk modulus of solid grains Ks 50× 109(Pa)
Bulk modulus of fluid Kf 2.2 × 109 (Pa)
Dynamic viscosity of the fluid µ 3× 10−4 (Pa.s)
Porosity φ 0.1003
Permeability* k0 6.8 × 10−15 (m2)
Solid thermal conductivity χs 2.49 (W/m◦C)
Fluid thermal conductivity χf 0.6 (W/m◦C)
Solid heat capacity at constant volume cvs 1000 (J/kg ◦C)
Fluid heat capacity at constant volume cvf 4200 (J/kg ◦C)
Density of solid ρs 2910.2 (kg/m3)
Unit weight of water γf 9800 (N/m3)
Volumetric thermal expansion of the solid αs 7.5 × 10−6 (1/◦C)
Volumetric thermal expansion of the fluid αf 1× 10−3 (1/◦C)

†: Actually this value is quite large, obviously a very strong rock is
encountered during the operations of Soultz–Sous–Forêts reservoir.

4.1.2 Geometry and FEM mesh

The dimensions of the reservoir to be simulated at Soultz–Sous–Forêts are 450 m × 36 m ×
750 m in x, y and z (the vertical direction) respectively. This reservoir is composed of several

fractured zones that extend over the 750 m height (Evans et al., [2009], p. 75). Only one

fractured zone is to be simulated in this simple plane strain approach.
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❺❻♣❥⑦❦❹ ③❥t✈♥
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Insulating and impervious boundaries 
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p0 = 37 MPa

T0 = 170 °C

Horizontal domain

Figure 4.2: Initial conditions and geometric layout of a fractured zone at Soultz–Sous–Forêts.
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The values of in situ stresses were calculated as shown in (Evans et al., [2009], p. 38–39)

for z = 3.7 km. In situ stresses are identical in x and y directions for this depth, however

anisotropic in situ stress states will be considered later. The initial pressure p0 and the initial

temperature T0 also correspond to a typical depth of 3.7 km.

A temperature of T = 80 ◦C is applied at the injection well, the temperature at the outlet

production well, 450 m away, is sought. All the other boundaries are thermally insulated, i.e.

no thermal fluxes are permitted with the surroundings.

Injection and production pressures are fixed to p0 + 1 MPa and p0 − 1 MPa respectively, other

boundaries are hydraulically insulated from the surroundings.

The mechanical boundary conditions are defined by the geostatic stresses applied at the upper

and right boundaries. The lower boundary is constrained in y-direction, meanwhile the left

boundary is constrained in x-direction (roller displacement), see figure (4.3).

These stresses are applied at t = 0− and allowed to equilibrate with the initial pore pressure

of 37 MPa and the initial temperature of 170 ◦C. With a Biot’s coefficient of κ = 0.28, the

application of -28.54 MPa effective stresses over the geologic time gives an in situ permeability

of 6.8 × 10−15 m2. This value of the in situ permeability is just an assumption, chosen as in

(Taron and Elsworth, [2009]). It is to be enhanced later by HF to reach the in situ permeability

of the enhanced geothermal reservoir of Soultz–Sous–Forêts (∼10−11 m2).
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Figure 4.3: Modeling of a circulation test at Soultz–Sous–Forêts. Figure is not to scale.

Only the upper right quarter of the horizontal domain, figure (4.2), is discretized due to

symmetry. Several FEM meshes were tested. The BVP is proven to be mesh independent. The
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choice of the meshing scheme controls only the smoothness of the output contours. A FEM mesh

of 300 elements, 10 elements in y-direction and 30 elements in x-direction, has been chosen so

that smooth output contours may be obtained, see figure (4.3).

4.1.3 Simulations and expectations

The transient BVP discussed above is to be simulated using our domestic FE code. A brief

discussion on the mesh definition and Péclet number is needed to explain the rule and significance

of heat convection.

4.1.3.1 Mesh definition and Péclet number

The mesh is composed of 300 elements of size hx × hy = 15 m × 1.8 m. The simulations are

preliminarily preformed to get an impression about the pattern of fluid diffusion that corresponds

to our IBVP, figure (4.4). Note that this fluid diffusion pattern will not change all along the

simulations owing to extremely fast hydraulic diffusion of 1.6 days, see section (4.1.1).
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Figure 4.4: Scaled fluid velocity vectors for a steady state of injection pressure p0 + 1 MPa at

well GPK1 and extraction pressure p0 − 1 MPa at GPK2. The velocity field is not homogeneous at

the neighbors of the wells, however, the average velocity of the formation fluid is about ||v|| = vx =

9.46× 10−7 m/s since vy ≈ 0.

Grid Péclet number (Peg) is hence calculated with an average fluid velocity of ||v|| = 9.46×
10−7 m/s and thermal diffusivity ψ = χ/ρcv = 7.56× 10−7 m2/s, see table (4.1).

Peg =
hx ||v||
2ψ

= 9.38 (4.1)

A Péclet number greater than 1 indicates that fluid is carrying heat faster than it is being

diffused and thus the convection of heat is significant. The time required for thermal diffusion

with heat convection is to be reduced several orders of magnitude less than the value presented

in section (4.1.1):

tconv =
L (= 450m)

||v|| = 15 years (4.2)
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The profiles of temperature and pressure, along the symmetry line y = 0 m, at different

times are shown in figure (4.5).
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Figure 4.5: Temperature and pore pressure profiles at y = 0 m. Hydraulic diffusion is very fast,

meanwhile, heat front propagates faster, as expected, when convection of heat is accounted for.

Although the value of the permeability chosen is quite small, convection of heat is significant

and plays an important role in facilitating the propagation of the heat wave, see figure (4.5(a))

and equation (4.2). The profiles of pore pressures are almost linear and do not show any palpable

changes. This is due to the fact that the hydraulic diffusion time is about 1.6 days, and these

changes can not be seen in these quite long–time simulations.

4.1.3.2 Contours of mixture temperature and effective stresses

The contours of mixture temperature at different times are shown in figure (4.6).
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(b) Temperature contour at year 15

Figure 4.6: Contours of the mixture temperature at two times when convection of heat is considered

in the simulations.

112

chapter4/figures/graf4-5.eps
chapter4/figures/graf4-6.eps
chapter4/figures/graf4-7.eps
chapter4/figures/graf4-8.eps


4.1 Preliminary results: The natural geothermal reservoir of Soultz–Sous–Forêts

The reservoir is cooled quickly in y-direction, this is a due to the fact that fluid spreads all

over the volume in this direction, see figure (4.4). This feature creates large hydraulic gradients

in the neighbors of the injection well and can contribute to maintain the cracks open in spite of

the shrinkage caused by rock cooling.

The contours of effective stresses in x, y and z-directions and for the simulations when the

convection of heat is accounted for/not considered, are presented in figures (4.7), (4.8), (4.9),

(4.10), (4.11) and (4.12).

First: for the longitudinal effective stress σ
′
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Figure 4.7: Contours of longitudinal effective stress σ
′

x at two times when convection of heat is

considered in the simulations.

1. At the injection well GPK1, i.e. x = 0 m and y = 0 m, the cold water injected causes

rocks to contract and thus compressive stresses are mitigated.

2. Considering that the ratio αf/αs ≈ 133, fluid will contract during cooling much more than

the solid. This differential contraction between the two phases will cause pore pressure to

be sucked to fill the gaps formed and to reach the assumption of full saturation. However,

this reduction in the pore pressure is only a few kPa and it is not noticeable on the

pressure curves, figure (4.5(b)) for instance. Obviously the permeability of the medium is

sufficiently large and the moving fluid needs not to be strongly sucked to fill the gaps.

3. Being the shorter path 18 m/450 m, fluid starts to spread over the available volume in

y-direction. Thus the created high fluid gradients, near the line of symmetry x = 0 m,
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cause stresses to decrease leading micro–cracks to open if rock toughness is reached, See

figure (4.7(a)).
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Figure 4.8: Contours of longitudinal effective stress σ
′

x at two times when convection of heat is

NOT considered in the simulations.

4. At the neighbors of the injection well and as the heat front moves away, the rock relaxes

and the generated fluid fluxes dissipate taking stresses back to the equilibrium state, com-

pare figures (4.7(a)) and (4.7(b)), figures (4.9(a)) and (4.9(b)).

Second: for the transversal effective stress σ
′

y
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Figure 4.9: Contours of transversal effective stress σ
′

y at two times when convection of heat is

considered in the simulations.
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4.1 Preliminary results: The natural geothermal reservoir of Soultz–Sous–Forêts

5. Far from the injection well, the fluid fluxes are not that significant and the rock cools down

for a gradient of 0.6 ◦C/m, see figure (4.6(b)). This behavior does not change the effective

stresses from the state of equilibrium, σ
′

y = σ
′

x = −28.76 MPa, so much.
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Figure 4.10: Contours of transversal effective stress σ
′

y at two times when convection of heat is

NOT considered in the simulations.

Third: for the out–of–plane effective stress σ
′

z
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Figure 4.11: Contours of out–of–plane effective stress σ
′

z at two times when convection of heat is

considered in the simulations.

6. The out–of–plane effective stress, figures (4.11) and (4.12), is calculated based on the

assumption εz = 0 which yields σ
′

z = ν(σ
′

x + σ
′

y).

7. In all the above mentioned cases, the assumption of neglecting the convection of heat is ut-
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terly non–realistic, section (4.1.3.1). This erroneous assumption leads to tremendous delay

in the heat front. However, following figures (4.8) and (4.10), it is seen that convection of

heat does not affect stresses that are mainly developed as result of the hydraulic gradients.

This is due to the fact that the diffusion of fluid is very fast and the field of fluid velocity

is almost homogeneous at the times considered in these simulations, see figures (4.7) and

(4.9) and compare them with figures (4.8) and (4.10) near the injection well.
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Figure 4.12: Contours of out–of–plane effective stress σ
′

z at two times when convection of heat is

NOT considered in the simulations.
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4.2 An insight into the process of Hydraulic Fracturing (HF)

Hydraulic Fracturing (HF) is the process of causing fractures within a rock layer to propagate

by using pressurized fluid. Normally the process of HF is suppressed by the confining pressure

coming from the surrounding strata. This is particularly the case when describing mode I of

fracturing where fracture walls are supposed to move away from each other. HF is practically

done by reducing the effective stress by pumping pressurized fluid to a point where the minimum

principal stress becomes tensile and exceeds the tensile strength of the rock layer.

Consider a vertical borehole, as shown in figure (4.13), if the pressure inside the fracture

is assumed equal to the pressure in the borehole, and if the tensile limit is exceeded in the

direction of the smallest principal stress σh, the vertical fracture will propagate perpendicular

to this direction.

➩➫

➩➭

➩v

Figure 4.13: Vertical fracture around a vertical well. Two symmetric fracture wings develop

perpendicularly to the direction of least principal stress.

Hydraulic fracturing has been commercially used to stimulate production techniques in low

permeability reservoirs in the field of petroleum engineering since the early fifties. Such tech-

niques involve pumping huge amounts of fluid and proppants1 thus creating large permeability

conduits filled with proppants.

A massive hydraulic fracturing job (MHF) may exceed one thousand cubic meters of fluid and

one million kilograms of proppants. If these induced fractures are not filled with solid materials

they will close when the fluid pressure drops (Fjaer et al., [2008]).

4.2.1 Lost circulation

Lost circulation is a common phenomenon in the process of HF where an unintentional fracturing

may occur during drilling operations, or when the casing mud of a borehole is lost into an

1A proppant is a material that will keep an induced hydraulic fracture open, during or following a fracturing

treatment, while the fracking fluid itself varies in composition depending on the type of fracturing used, and can

be gel, foam or slickwater-based.
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existing fracture. Lost circulation will lead to a serious drop of the hydraulic support in the

wellbore. If the pressure in the wellbore drops below the pore pressure in the formation, and if

the formation is sufficiently permeable, formation fluid will start penetrating into the wellbore

in an uncontrolled manner causing, in worst cases, a blowout1.

This is mainly an operational problem; partly because mud is expensive, or because there is

a definite amount of the mud that can be loaded to the rig of the borehole. This problem is

usually solved by keeping the weight of mud sufficient considering the following two criteria:

1. The limit of wellbore pressure for fracture initiation and growth in non-fractured forma-

tions,

2. and the fracture reopening pressure in naturally fractured formations, see (Fjaer et al., [2008],

p. 319) for more details.

In recent applications of HF for extracting natural gas from shales, engineers started to use

cement casing in stead of the mud, see figure (4.14). Cement is much stronger than the mud

and hence a much smaller amount is needed which at the end turns to be more cost-effective.

➯➲➳er

Water

Pumper truck

Cement casing

Steel tubing

Ground water

Tight gas reservoir
Horizontal 

well

Water

+ proppants

Proppants keep

cracks open

0 m

1000 m

4000 m

Fracturing

Process of Hydraulic Fracturing

Figure 4.14: A schematic graph summarizing the process of extracting natural gas by using the

technique of HF, reproduced from wikipedia.

While the main industrial use of HF is in arousing production from oil and gas wells, HF

has several applications today that include:

1. Stimulation of groundwater wells.

1A blowout is the uncontrolled release of geothermal fluids from a borehole after pressure control systems

have failed.
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2. Disposal of waste by injection into deep rock formations.

3. As a method to measure in situ stresses in rock formations.

4. Extracting heat to produce electricity in Enhanced Geothermal Systems (EGS).

4.2.2 Tensile failure in HF

In the framework of LEFM fracturing is related to tensile failure, i.e. material fails when traction

exceeds the tensile strength Tc assuming pure mode I of fracturing. The tensile fracturing

condition should then read:

σ > Tc (4.3)

For porous materials the total stress should be replaced by the effective stress and the

condition will be (compressive stresses have negative sign):

σ + pf > Tc, (4.4)

where pf is the pressure in the pores. Note that the coefficient of effective stress (Biot’s

coefficient) is equal to 1 here, since fracturing is a state of failure for the rock. In other words,

the thermo–poroelastic relations involve Biot’s effective stress but the failure condition involves

Terzaghi’s effective stress, see (Atkinson, [1991], p. 244) and (Fjaer et al., [2008], p. 371).

To consider the criterion in equation (4.4) in more details, let us assume that we have a plug

of porous and permeable material, this plug is subjected to external stress σ. The pressure in

the pores pf can be changed, see figure (4.15).

P➵

➸ ➸

Figure 4.15: Hydraulic fracturing of a porous and permeable rock, (Fjaer et al., [2008]).

Let us consider that the grains are glued to each other and that the plug is also glued to

the piston. Along the dashed line the bonds are yet broken thus forming a closed fracture. The

stress needed to open the fracture is given by:
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σ + pf > 0 (4.5)

Now let us assume that the two sides of the fracture are covered by impermeable films and

that the fluid pressure pf is injected between these films, the condition for opening the fracture

still reads as in equation (4.5). The pore pressure in the plug (assuming a random value) does

not play any role as long as it remains less than σ and pf .

If the bonding between the grains forming the crack is to be considered, then additional hurdle

is to be overcome which is the tensile strength of such a bond. The condition for fracturing will

be again like in equation (4.4):

σ + pf > Tc, (4.6)

where pf is the pressure in the fracture or in the pores forming the fracture. Generally,

equation (4.6) represents the general criterion of splitting a material in tension, while equation

(4.5) represents the criterion for reopening of an existing fracture.

4.2.2.1 Initiation of fractures and breakdown of formation

The basics of borehole failure in tension1 (HF) are to be outpointed here. For a more complete

and advanced presentation, the reader is advised to check (Fjaer et al., [2008], chapter 4). To

illustrate the concept of fracture initiation let us consider the following situation: a vertical

borehole penetrating some rock formulation with far field stresses such that -σv > −σH >

−σh, the rock formulation is assumed homogeneous and isotropic. As the borehole pressure pw

increases the effective tangential stress σ
′

θ will correspondingly decrease, see figure (4.16).

➺➻

➺HP➼

➽➾➼ rr

➚➪➶max = 3➚H-➚➹ at ➘=90°  

➚➪➶min = 3➚➹-➚H at ➘=0°

➘=0°  

➘=90°

pf

P➼
➴➷➬➮➱ ✃➷➬➮❐❒➬ ❮

❰❒Ï Ð❮ÑÒ

pf ÓÔÕÖ×ØÙÚÕÛ ÜÖÝÞÞßÖÝà

Figure 4.16: Vertical wellbore with vertical cracks. Wellbore wall can/can not be aligned with a

mud cake.

1The failure of boreholes in shear is to be addressed later, section (4.6), as it is not likely to happen when HF

is achieved, i.e. for high values of borehole casing shoe pressure pw (Fjaer et al., [2008], p. 155).
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The condition for HF initiation becomes:

σθ + pf = Tc, (4.7)

where pf is the formation pressure. In the presence of a mud cake, the borehole pressure

required to create the hydraulic fracturing in the direction of σH is expressed as in equation

(4.8):

pfw = −
[
(3σh − σH) + pf − Tc

]
(4.8)

Equation (4.8) is only valid when the walls of the borehole are perfectly impermeable. In

the absence of a mud cake and if the pressurization rate was slow enough to ensure steady

state conditions during pumping, the pressure required to create hydraulic fracturing is given

by (Fjaer et al., [2008], p. 374):

pfw = −
[
(1− ν)(3σh − σH) + (1− 2ν)pf − (1− ν)Tc

]
(4.9)

Note that even in the absence of a mud cake, full fluid pressure continuity, i.e. pw = pf , can-

not be assumed. Equations (4.8) and (4.9) are based on experimental observations and should

imitate the field situation (Fjaer et al., [2008]).

Equation (4.8) represents the upper limit for the pressure needed to start the fracturing

(fast pressurization), meanwhile equation (4.9) represents the lower limit for HF pressure (slow

pressurization).

The pressure response in a borehole can be expressed as shown in figure (4.17).
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Figure 4.17: Borehole pressure response during hydraulic fracturing of a vertical borehole, two

pressure cycles are defined. Figure is not to scale.
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The first linear part of the curve represents the elastic deformation of borehole and the for-

mation around it, this is a direct result of increasing the pressure and thus reducing the effective

stress. The peak of the curve represents the point where the effective tensile stresses produced

exceed the strength of the rock and thus fracturing begins at this point. The instantaneous

drop of pressure at this point indicates accelerating growth of fractures where the volume of

the fractures is growing at much higher rate than the rate at which fluid is pumped. Finally, a

steady state is reached and stable fracture growth is achieved.

The second curve in figure (4.17) represents the second cycle of pumping where the only

resistance that hinders the initiation of fractures is the stress concentration, since the tensile

strength has already vanished as the fracture already exists.

Rock formations which have permeability less than 10−18 m2 are considered totally imperme-

able. Boreholes drilled in such formations are considered lined with a mud cake and the upper

limit of fracture initiation, equation (4.8), would apply. Rocks with permeability above this

value are considered fully permeable and the lower limit of fracture initiation, equation (4.9),

applies (Fjaer et al., [2008]).

4.2.2.2 Fracture size and shape

The study of fracture geometry started with the assumption of line crack embedded in an infi-

nite elastic plane, (Griffith, [1921]) and (Irwin, [1957]). The effect of fluid pressure can then be

integrated along with the possibility of leak off. The equation of balance of mass can be solved

to get an expression for the fracture length, width and height.

The model used to describe fracture geometry in this research is the classical two–dimensional

(Kristianovitch–Geertsma–de Klerk) KGD model, figure (4.18). The KGD model assumes strain

to be confined to the horizontal plane which is quite the case when doing plane–strain analysis.

✇max

r

H

☛☞✌✇

Figure 4.18: Illustration of the fracture shape for the KGD model.

The following two assumptions are to be accounted for when using the KGD model:
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1. The fracture height is constant in time and independent of the fracture length.

2. The net pressure at the fracture tip is zero.

These two assumptions are merely simplifications since the hydraulic fractures evolve mainly

in the vertical direction following σv, and consequently horizontally following σH . Net pressure

at the fracture tip can not be zero since this pressure is required to overcome the tip resistance

and make the fracture propagate (Savitski and Detournay, [2002]).

Assuming an elliptical shape of the fracture cross section, the average fracture width w can

be found using the following expression, see (Savitski and Detournay, [2002]):

w =
π(1− ν2)r pe

E
, (4.10)

where r is the fracture half length, see figure(4.18), E is the drained Young’s modulus, ν is

the drained Poisson’s ratio and pe is the net fracture pressure (Terzaghi’s effective stress acting

on the fracture walls). The net fracture pressure depends on the flow resistance in the fracture,

on the fluid fluxes to the surrounding and thus on fluid viscosity and injection rate. Equation

(4.10) has been also suggested by (Atkinson, [1991], p. 245).

4.2.2.3 Thermal effects on hydraulic fracturing

Thermally induced fracturing is a phenomenon observed while injecting cold water into very

hot rock layer. Rock matrix shrinks and thus reduces the compressive geologic stresses that

confine the borehole. Let us follow equation (4.11) which describes the mechanical behavior of

a saturated porous medium subjected to temperature change θ:

σσσ + κpδδδ = E : (εεε− εθεθεθ), (4.11)

E is the elasticity tensor and εθεθεθ is the thermal strain tensor defined as εθij = (αs/3) θ δij , αs

is the cubical thermal expansion coefficient. If the porous medium was sufficiently permeable to

a point the diffusion of fluid happens much faster than the diffusion of heat (the common case

when simulating real EGS reservoirs), the term κpδδδ could be assumed constant while cooling.

Thus, while cooling θ becomes negative and negative mechanical strains (εεε) are needed in

equation (4.11) to keep the equilibrium condition ∇∇∇.σσσ = 0. Negative mechanical strains (con-

traction) develop positive tensile stresses, imagine some degree of restrain at the boundaries,

which in turn means reduction of the confining compressive geologic stresses.

(Fjaer et al., [2008], p. 388) has given the analytical expression for thermal stresses resulting

from cooling a cylindrical zone of arbitrary radius d and arbitrary height h around a borehole.
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For the situation (d/h →∞), i.e. when the cooling front moves considerably in the cylindrical

zone, the temperature change θ becomes uniform around the borehole and the expression for

the thermal stresses reads:

σr(θ) = σθ(θ) = −
E

3(1− ν)αs θ (4.12)

If the temperature field is to be decoupled from the mechanical and hydraulic effects while

assuming isotropy, equation (4.12) can be integrated in equations (4.8) and (4.9) to give the

borehole pressures at failure in presence and in absence of mud cake as:

With a mud cake: pfw = −
[

(3σh − σH) + pf −
E αs θ

3(1− ν) − Tc
]

(4.13)

Without a mud cake: pfw = −
[

(1− ν)(3σh − σH) + (1− 2ν)pf −
E αs θ

3
− (1− ν)Tc

]

(4.14)

Note that the pressurization of impermeable media (permeability < 10−18 m2) is equivalent

to the presence of a mud cake. Meanwhile all porous media with permeability > 10−18 m2 are

assumed permeable and the limit for pressurization without a mud cake shall apply.

For typical sandstone values (E = 5 GPa, ν = 0.3, αs = 4.5 × 10−5 1/◦C), equation (4.12)

gives a stress change of -0.1 MPa/◦C. From the correspondence between thermoelasticity and

poroelasticity:

κ (1− 2ν)∆p⇐⇒ −E αs θ

3
(4.15)

For a typical injection test the change of temperature θ is up to -80 ◦C (cooling) which is

equivalent to fluid pressure change of 15 MPa (κ = 1). This indicates that the cooling effects

taking place at the beginning of an injection test can be equivalent to large pressurizing values.

The effect of temperature change on the fracture aperture, equation (4.10), must be also

considered. Actually, tensile stresses developed by cooling could help reducing the confining

stresses and consequently help opening the fractures. This will be addressed in more details in

section (4.3.1).

Summing up the foregoing strategies, HF technique in EGS can be summarized following

figure (4.19). As the injection of cold water begins, the geostatic stresses start to decrease.

Temperature change (cooling) helps mitigating the compressive geostatic stresses as well. If

pressurization and cooling continue to a point where effective stresses become tensile and exceed

the tensile strength of the rock material, fracturing happens.
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Figure 4.19: Mohr circles and failure line: the effect of increasing pore pressure and decreasing

temperature on HF.

4.3 Development of the Hydraulic Fracturing Model (HFM)

This section is devoted to develop the initial version of the Hydraulic Fracturing Model (HFM)

that will be used to simulate HF of geothermal systems. The section proceeds as follows; the

mathematics of the model is firstly presented, a single point test is addressed with sufficient

study on the model parameters, finally a scheme for integrating the HFM in our FE code is

highlighted.

4.3.1 From continuum mechanics to fracture mechanics

Let us assume a vertical borehole as shown in figure (4.20), with a group of cracks of average

radius r and arbitrary direction n in the horizontal plane (x, y). σv is the out–of–plane burden

stress.

✰✱

✰✲✳✴

✵✶✴

✷

✸

Figure 4.20: Vertical borehole with vertical fracture of average radius r and arbitrary direction n.

The radius of the borehole Rw is assumed very small compared to the dimensions of the BVP

considered, besides the ratio r/Rw → 0. Actually, one should keep in mind that LEFM does

not consider crack nucleation and we must start with already existing cracks though quite small.
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If the borehole pressure is gradually increased to a point where the effective stress σ
′

n (at the

crack tip) becomes tensile and exceeds the limit of material tensile strength, the group of cracks

starts propagating and consequently the average aperture of cracks increases.

The following model, equation (4.16), has been suggested to track the evolution of average

radius r of a group of cracks in direction n:

F (σ
′

n, r) = f(r)σ
′

n

√
πr −KIc, (4.16)

where KIc is the material toughness for mode I of fracturing. The normal effective stress

applied to the crack (σ
′

n) is expressed as:

σ
′

n = n.σ
′

.n (4.17)

f(r) has the same definition as illustrated in section (2.3.2) and is given by:

f(r) =







η
(rf
r

)

, r < rf

η, r ≥ rf
(4.18)

rf denotes the critical crack radius for unstable coalescence of cracks. The function f(r) in

equation (4.18) has been chosen such that a stable crack growth is assured. A stable crack growth

requires that additional tensile stresses to be added so that cracks may continue to propagate,

in other words, dG/dr < 0 where G is the strain energy release rate (rate with respect to crack

length and not time). For mode I of fracturing, the energy release rate GI for plane strain

problems is given by (Atkinson, [1991], p. 7):

GI =
K2

I (1− ν2)
E

(4.19)

KI is the stress intensity factor for mode I of fracturing. Following equation (4.16), KI =

f(r)σ
′

n

√
πr, the product f(r)

√
r must be decreasing and thus a stable crack growth is achieved.

When r ≥ rf the product f(r)
√
r is no longer decreasing and unstable crack growth is obtained.

The latter case is not to be addressed in this research, more details about unstable crack growth

can be found in (Atkinson, [1991], chapter 4).

The continuum mechanics approach, equations (4.8), (4.9), (4.13) or (4.14), has been pre-

sented such that the hydraulic fracturing model equation (4.16) can be parameterized. η, the

model parameter, is to be determined such that the fracturing will begin at a borehole pressure

pfw corresponding to one of the cases demonstrated in equations (4.8), (4.9), (4.13) or (4.14)
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whichever applies.

The derivation of the incremental propagation dr of a group of cracks of average radius r

and arbitrary direction n resulting from an increment of effective stress dσ
′

n can be obtained

following equations (4.16) and (4.18):

dF =
∂F

∂r
dr +

∂F

∂σ
′ : dσ

′
, (4.20)

which leads to:

dF =
∂F

∂r
dr +

[

∂F

∂σ
′

n

∂σ
′

n

∂σ
′

]

: dσ
′
, (4.21)

thus, at the onset of fracturing (dF = 0):

dr = − 1

∂F

∂r

[

∂F

∂σ′

n

∂σ
′

n

∂σ
′

]

: dσ
′

(4.22)

When r < rf :

F = η
√
π σ

′

n

(
rf√
r

)

−KIc = 0 (4.23)

∂F

∂r
= −1

2
η
√
π σ

′

n

(
rf√
r3

)

(4.24)

∂F

∂σ′

n

= η
√
π

(
rf√
r

)

(4.25)

∂σ
′

n

∂σ
′ = n⊗ n (4.26)

The average crack aperture is now calculated following equation (4.10) suggested by (Savitski

and Detournay, [2002]) and (Atkinson, [1991], p. 245):

w =
π(1− ν2) r σ′

n

E
(4.27)

The overall crack permeability tensor can be identified, see section (2.3.3), as follows:

kc =
N

Ω

λ

48

∫

S

R(n)w(n)3 r(n)2 (δδδ − n⊗ n) dS (4.28)

The implementation of equation (4.28) requires that our KGD crack model, figure (4.18), to

be replaced by a penny–shaped crack which shares the same cross–sectional properties (w and

r) in a plane that contains n.
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4.3.2 Testing and calibrating the HFM at a Gauss’ point

The purpose of this part is to test the Hydraulic Fracturing Model HFM, equations (4.16) and

(4.18). Let us assume that we have a parallelepiped sample of Lac du Bonnet Granite. The

rock sample is drilled at the middle where pressurized fluid is permitted to flow. While allowing

drainage, the sample is subjected to the stress state shown in figure (4.21).

p✹

- 40 MPa

- 15 MPa

1

3

Figure 4.21: parallelepiped sample of Lac du Bonnet granite subjected to the stress state shown

and drilled at the middle where fluid is pumped, out of plane stress is equal to -10 MPa.

Table (4.2) shows the values of all the parameters used in the simulations.

Table 4.2: Parameters used in testing the HF model (HFM). References: 1.(Shao et al., [2005]) and

2.(Atkinson, [1991], p. 245).

Parameter Value Reference

Elastic parameters Elastic modulus E0 (MPa) 68000 1
Poisson’s ratio ν0 0.21 1

Damage parameters Initial radius of cracks r0 (mm) 3.0 1
Final radius of cracks rf (mm) 9.0 1
Initial aperture of cracks w0 (mm) 0.001‡ Calculated
or w0 (mm) 0.015 1
Material tensile strength Tc (MPa) 8.3 2
Material toughness parameter
KIc (MPa

√
m) 1.87 2

Model parameter η 1.6† Parameterized
Number of cracks N per
unit volume (Ω = 1 m3) 2× 106 1

Hydraulic connectivity t1 0.0001 1
parameters t2 1.0 1

Initial permeability k0 (m2) 10−21 1

The value of the initial and final crack radii, r0 and rf , correspond to a sample tested at the

laboratory scale. Larger values, in the order of cm’s, will be used in subsequent studies when
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simulating large scale geothermal reservoirs.

Note that the parallelepiped sample is subjected to a 3–dimensional non–axisymmetric load-

ing state. Actually, the HFM model developed previously can be used for 2–dimensional or

3–dimensional problems. The definition of the direction n as well as the discretization of equa-

tion (4.28) control the dimensions of calculations.

The initial fracture aperture‡ w0 is calculated using equation (4.27) by replacing σ
′

n by the

tensile strength of the rock Tc = 8.3 MPa with r = r0:

w0 =
π (1− 0.212)× 3× 10−3 × 8.3× 106

68× 109
= 1× 10−6 m (4.29)

The sample is initially almost impermeable (k0 = 10−21 m2). Since drainage is allowed in

the aforementioned study figure (4.21), initial formation pressure pf before pumping the fluid

is zero. Thus, the value of pore pressure required to start the hydraulic fracturing is calculated

based on equation (4.8):

pfw = −
[

(3×−15× 106 + 40× 106)− 0.0− 8.3
]

≈ 14 MPa (4.30)

The value of the model parameter† η has been determined such that the fractures will start

propagating at pfw = 14 MPa.

This problem has been simulated following two approaches:

1. The incremental change in the fracture aperture ∆w due to increments of dr and dσ
′

n is

estimated using equation (4.27) or,

2. the incremental change ∆w is calculated using the study presented in section (2.5.1.1).

The choice between the two approaches will depend on the results of simulations. In either

case, the study presented in section (2.5.1.1) for permeability evolution of Lac du Bonnet granite

during compression loading will be used as a guiding reference.

4.3.2.1 ∆w is calculated using equation (4.27)

The evolution of axial and lateral permeability components (k11 and k33) due to pumping fluid

is shown in figure (4.22).

The general shape of the curve in figure (4.22) sounds fine, most of changes occur in the short

interval pw ∈ [15, 23] MPa. This is due to the fact that only mode I of fracturing is considered.
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As soon as the criterion for hydraulic fracturing is achieved r goes to rf almost instantaneously1

in the direction of maximum principal stress (direction 1).
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Figure 4.22: Variation of permeability in the axial and lateral directions during pumping water in

a parallelepiped Lac du Bonnet granite sample with a stress state as shown in figure (4.21). ∆w is

calculated using equation (4.27). As the rock sample resembles a single point, the pumping pressure

pw is equal to the pore pressure.

Using equation (4.27) seems to underestimate the values of the permeability tensor com-

ponents considerably. In fact, the values of the permeability tensor components at point B

(k11 = k33 = 4.9 × 10−20 m2) are not anyhow close to the values (∼ 10−17 m2) obtained for

the same rock when destroyed in compression, figure (2.17). It is conceivable that fracturing

should happen much faster when only mode I for tensile fracturing is considered. Nevertheless,

the permeability of the damaged rock (whether in tension or in compression) should not differ

so much when considering the order of magnitude.

The aforementioned point can be explained following the fact that; permeability is attributed

to spatial connected conduits which will be reached whether the sample is damaged in compres-

sion or in tension.

Hence, the first approach, equation (4.27), will not be used any longer in performing HF

simulations in this research. The second approach is to try the relations w(r) that were derived

in section (2.5.1.1).

1Fracturing is a steady state problem. If time–related vocabulary is used, it shall refer to the energy release

rate with respect to the crack length and not time. In other words, for small changes in the controlling variable,

there will be considerable changes in the fracture radius. The controlling variable in this single point study is the

injection pressure pw.
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4.3.2.2 ∆w is calculated using section (2.5.1.1)

Simulations are performed while assuming that the normal increment of crack aperture ∆w is

related to the increment of average crack radius ∆r.

Like in figure (4.22) most of the change in the permeability tensor components (k11 and k33)

take place within the interval pw ∈ [15, 24] MPa, see figure (4.23). The propagation of cracks

in direction 1 is very fast and the component k11 almost reaches its ultimate value at point C.

Again, this is due to the fact that only mode I of fracturing is considered.
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Figure 4.23: (a) Variation of permeability in the axial and lateral directions during pumping water

in a parallelepiped Lac du Bonnet granite sample with a stress state as shown in figure (4.21), ∆w is

calculated using section (2.5.1.1). (b) Variation of the ratio k11/k33 with the pumping/pore pressure.

Figure (4.24(b)) shows the directional evolution of the crack radius at the vertical plane

φ = 90◦ and at a pumping pressure pw = 24 MPa.
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(b) Directional evolution of the radius of cracks

Figure 4.24: Directional evolution of cracks radii at point C, pw = 24 MPa.
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The ratio k11/k33 increases significantly and almost instantly in region II, see figure (4.23(b)).

This is due to the preferential growth of cracks in the direction of maximum principal compres-

sive stress -40 MPa. At point C most of the cracks contributing to the component k11 are

connected (r = rf ). However, cracks in other orientations continue to grow slowly contributing

to the component k33. In region III, k33 continues to increase slowly and thus the ratio k11/k33

decreases consequently.

At point B all the cracks, in all orientations, get connected (r = rf ) leading to an isotropic

state where k11 = k33, see figure (4.25).
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Figure 4.25: Directional evolution of cracks radii at point B, pw = 47 MPa.

The isotropic permeability tensor obtained at the macroscopic failure of the sample (r = rf )

can be illustrated by knowing the value of the critical effective normal stress (σ
′

nc) needed to

drive r to rf at any direction n. Following equation (4.16):

σ
′

nc = lim
r→rf

KIc

f(r)
√
πr

=
KIc

η
√
πrf

= 6.54 MPa, (4.31)

As soon as pw is increased to a point the effective normal stress becomes equal to σ
′

nc in all

directions, r becomes equal to rf and correspondingly the average aperture w reaches its ulti-

mate value in all directions as well. At this point the sample fails at the macroscopic scale and

this research does not model post failure behavior. Figure (4.26) shows the directional variation

of the normal effective stress σ
′

n at point B of curve (4.23(a)) and at a pumping pressure value

of pw = 47 MPa.

It is seen from figure (4.26) that, on cracks which are not aligned with the minor principal

compressive stress, the effective normal stress σ
′

n may exceed the critical effective normal stress

σ
′

nc. However as this research does not stand for unstable growth of cracks, any further change

in the permeability is not to be studied.
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Figure 4.26: Directional variation of normal effective stress (σ
′

n = n.σ
′

.n) at point B, pw = 47

MPa.

Summing up all the foregoing, it is concluded that:

1. Point A represents the threshold of hydraulic fracturing where the pore pressure reduces

the confining stresses to a point the effective stresses become tensile and exceed the limit of

material tensile strength at the tips of the cracks pointing toward the maximum principal

stress -40 MPa.

2. Cracks propagate faster in the axial direction (direction 1) following the axis of maximum

principal stress.

3. The difference between the axial permeability component k11 and the lateral permeability

component k33 is maximum at the region of accelerated crack propagation, region II in

figure (4.23(a)). However, this difference is coped for while the material enters the region

of macroscopic failure.

4. Point B represents the stage where all microcracks coalesce (r = rf ) forming macroscopic

fractures. After point B, permeability change is out of scope of this research.

5. The magnitudes of the permeability tensor components at point B are k11 = k33 = 2.8 ×
10−16 m2. These values are almost equal to the values obtained for the same rock when

driving it to fail under compressive stresses, see for instance figure (2.17).

4.3.3 The role of the model parameter η

The model parameter η that appears in equations (4.16) and (4.18) should be determined exper-

imentally based on the deterioration of the elastic properties of the rock considered as damage

evolves, section (2.3.2). If η is equal to one, the classical Griffith fracturing model is retrieved.

In the study presented in the previous section (4.3.2), the value of the HF pressure was

determined using the continuum approach equation (4.8) and was found to be 14 MPa. Let us
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work equations (4.16) and (4.18) to get the model parameter η as a function of average crack

radius at the threshold of crack propagation F = 0:

η =

√
r KIc√
π rf σ

′

n

(4.32)

Following figure (4.21), the first group of cracks to start propagating are those oriented in

the direction of maximum principal stress -40 MPa with direction n pointing to the out of

plane minimum principal stress -10 MPa. The normal effective stress acting on such a group

at the threshold of HF is σ
′

n = −10 MPa + 14 MPa = 4 MPa. If this normal effective stress

is substituted in equation (4.32), the model parameter to start HF at a pressure of 14 MPa is

known, compare with the value in Table (4.2):

η =

√
r0KIc√
π rf σ

′

n

=

√
3× 10−3 × 1.87 × 106√
π × 9× 10−3 × 4× 106

= 1.6 (4.33)

Actually for the rock sample presented in section (4.3.2), the radii of initial cracks are

assumed normally distributed around r0 = 3 mm. In such a case, larger cracks will give larger

model parameter η if substituted in equation (4.32) for the same effective normal stress. They

will also start propagating at lower pressure in case of using the same model parameter calculated

for r = r0 = 3 mm (η = 1.6 in the previous case).

Figure (4.27(a)) shows the plot of the equation (4.32) for the parameters values shown in Table

(4.2). Meanwhile Figure (4.27(b)) shows the plot of the function f(r) for 4 different values of

the model parameter η and for rf = 9 mm.
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(a) Average initial crack radius as a function of

η at the threshold of crack propagation F = 0,

equation (4.32). See Table (4.2) for parameters

values
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(b) The curves of f(r), equation (4.18), for dif-

ferent values of η. r0 and rf are as indicated in

Table (4.2)

Figure 4.27: Study of the model parameter η effects on crack propagation and stability of crack

growth.
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Figure (4.27) shows that: larger η is needed to start larger crack propagation if other parame-

ters of equation (4.32) are kept constant. Regardless of the value of η, the definition of the scalar

valued function f(r), equation (4.18), makes the function decrease as the crack propagates, see

figure (4.27(b)). However, the smaller the value of η, the smoother the slope of f(r) especially

for small propagations of cracks, which necessarily means stabler growth. Stabler growth means

that crack will propagate slower for the same parameters and stress conditions. For instance the

curve of η = 0.5, in figure (4.27(b)), reaches the asymptotic state almost at r = 6 mm meanwhile

other curves continue to reduce considerably even at the state r = rf .

Indeed, the value of the pore fluid pressure pfw at the threshold of HF, as a function of the

model parameter η, can be determined following the stress state of figure (4.21) and equation

(4.32):

pfw =

√
r KIc

η
√
π rf

− (−10 × 106)
︸ ︷︷ ︸

minimum principal stress (Pa)

(4.34)

Using the parameters presented in Table (4.2) and values for η in the range [0.01, 2.5],

equation (4.34) can be represented as shown in figure (4.28):
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Figure 4.28: Effect of the model parameter η on the HF pressure, equation (4.34). Parameters

values are used as in Table (4.2).

Figure (4.28) shows that the larger the model parameter, the smaller the value of pore fluid

pressure needed to start the process of HF if other parameters are kept constant. Since larger

crack radius requires larger values of η to start HF, see figure (4.27(a)), a smaller pore fluid

pressure is needed to cause longer cracks to propagate by figure (4.28). This phenomenon is also

proved by previous researches, see for instance (Atkinson, [1991], p. 244).

Figure (4.29) shows the simulations of the test presented in section (4.3.2) for four values of

the model parameter η. The following points are finally concluded:
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1. The four curves reach the ultimate order of magnitude for permeability ∼ 10−16 m2, as it

depends on values of r0, rf , crack density and the relation used to calculate the change in

crack aperture.
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Figure 4.29: Variation of permeability in the axial and lateral directions during pumping water in

a parallelepiped Lac du Bonnet granite sample with a stress state as shown in figure (4.21) and for

different values of the model parameter η.

2. Reducing the value of the model parameter η means less damaged material and stabler

growth of cracks, see figure (4.27(b)).

3. Less damaged material indicates smaller cracks and therefore an increased value of pore

fluid pressure to start the process of HF.

4.4 Integrating the Hydraulic Fracturing Model (HFM) in the

FEM

This section seeks to integrate the HFM which was presented in section (4.3) into the Fortran 90

FE code. Actually our FE code accounts only for plane strain and/or axi–symmetric isotropic
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thermo–poro–elasticity. Under the framework of LEFM full anisotropy needs to be implemented

at the scale of microcracks in order to calculate the macroscopic strain tensor, equation (2.47).

4.4.1 Anisotropy and Voigt’s notation

Real materials can not be isotropic and in some cases, like in composite materials, the differences

in properties in different directions are huge, and thus can not be neglected and full isotropy

is not to be assumed. Within the frame work of LEFM, the relationship between stress and

strain is given by Hooke’s law 1975. Hooke’s law uses a fourth–order stiffness tensor Cijkl and

describes the stress–strain relationship for anisotropic elastic material as follows:

σij = Cijkl εkl (4.35)

The stiffness tensor Cijkl consists of 81 components. However, accounting for the symmetries

of the stress and strain tensors, Voigt’s notation enables us to rewrite it considering only 36

components:

σi = Cij εj ⇒











σxx
σyy
σzz
σyz
σzx
σxy











=











C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C66

C61 C62 C63 C64 C65 C66





















εxx
εyy
εzz
γyz
γzx
γxy











(4.36)

The stress and the strain tensors are introduced through pseudo–vectors of length 6:

εεε =





εxx εxy εxz
εyx εyy εyz
εzx εzy εzz



⇒ εTεTεT =
[
εxx εyy εzz γyz γzx γxy

]
, (4.37)

and,

σσσ =





σxx σxy σxz
σyx σyy σyz
σzx σzy σzz



⇒ σTσTσT =
[
σxx σyy σzz σyz σzx σxy

]
, (4.38)

with the shear strains defined as:

γyz = 2εyz , γxz = 2εxz, and γxy = 2εxy (4.39)

Conservative materials possess a strain energy density function and as a result, the stiffness

and compliance tensors are symmetric. Therefore, only 21 stiffness and compliance components

are actually independent in the generalized Hooke’s law, equation (4.36).
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4.4.1.1 Hooke’s law for anisotropic plane strain linear elasticity

For plane strain anisotropic elasticity equations (4.37) and (4.38) simplify to:

εεε =





εxx εxy 0
εyx εyy 0
0 0 0



⇒ εTεTεT =
[
εxx εyy 2εxy 0

]
, (4.40)

and,

σσσ =





σxx σxy 0
σyx σyy 0
0 0 σzz



⇒ σTσTσT =
[
σxx σyy σxy σzz

]
(4.41)

Hooke’s law, equation (4.36) becomes:







σxx
σyy
σxy
σzz






=







C11 C12 C16 0
C21 C22 C26 0
C61 C62 C66 0
C31 C32 C36 0













εxx
εyy
2εxy
0







(4.42)

The strain pseudo–vector is related to the displacement vector through:










εxx

εyy

2εxy










=










∂ux
∂x
∂uy
∂y

∂ux
∂y

+
∂uy
∂x










(4.43)

4.4.1.2 Hooke’s law for anisotropic axisymmetric linear elasticity

For an axisymmetric analysis, all the displacement components are to be expressed in the cylin-

drical coordinates (r, θ, z) instead of the Cartesian coordinates (x, y, z). The main hypothesis of

axisymmetry is that; all functions under consideration are to be independent of the rotation θ.

In addition, the circumferential displacement uθ is assumed equal to zero, uθ = 0. Noting that

εθθ = ur/r is generally not zero, the strain pseudo–vector in an axisymmetric analysis is related

to the displacement vector through:












εrr

εzz

2εrz

εθθ
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




=


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+
∂uz
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r














, (4.44)

thus, equations (4.40) and (4.41) for an axisymmetric analysis become:
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εεε =





εrr εrz 0
εzr εzz 0
0 0 εθθ



⇒ εTεTεT =
[
εrr εzz 2εrz εθθ

]
, (4.45)

and,

σσσ =





σrr σrz 0
σzr σzz 0
0 0 σθθ



⇒ σTσTσT =
[
σrr σzz σrz σθθ

]
(4.46)

Hooke’s law, equation (4.36), for an axisymmetric linear elasticity is expressed in the follow-

ing form:







σrr
σzz
σrz
σθθ




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
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
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
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




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εrr
εzz
2εrz
εθθ







(4.47)

4.4.2 Updating the Fortran 90 FE code for micro–scale anisotropy

To be able to track the evolution of micro–anisotropies over the failure surface expressed in equa-

tion (4.16), the stress should be calculated at each spatial position and each time discretization.

Each Gauss’ point will be seen as a vertical borehole with a negligible diameter compared

to the dimensions of the BVP simulated. The temperature change, formation pressure and

effective stresses at each borehole (Gauss’ point) are calculated using the balance equations of

thermo–poroelasticity, see figure (4.30).

✽✾✿h of FE

Gauss' points

Pw

r

n

σy

σx

Figure 4.30: Schematic diagram which represents integrating the HFM into the FEM.

For the time discretization ∆t, if the increment of effective stress is known at a definite

Gauss’ point, the evolution of cracks dr around this Gauss’ point can be tracked as in section

(4.3.1). The flow chart shown below is based on the time integration scheme of section (3.2.4),
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and follows the same logarithm as in the available version of the FE code. It is only devoted to

the researchers who may adjust the logarithm of the code.

• The matrix STRGS(LKS, 4) to store stress tensor is initialized. LKS is a counter for

storing stress tensor, and the number 4 accounts for the 4 components of the stress tensor

(in plane strain problems).

• The matrix STRGP(LKP, 4) to store permeability tensors is initialized. LKP is a counter

for storing permeability tensor, and the number 4 accounts for the 4 components of the

permeability tensor.

• Initial stress state, σ0, is stored in STRGS for LKS=1.

• Initial permeability tensor k0 is stored in STRGP for LKP=1.

• Considering the boundary and initial conditions, the Left–Hand–Side (LHS) is formed and

factorized.

• (A) Beginning of the solution phase:

1. Time is discretized and ∆t for the step n+ 1 is calculated.

2. Solving by the predictor multi–corrector method, Degrees of Freedom (DOF’s) for

the time step n+ 1, i.e. X0
n+1 are initialized for i = 0.

3. Stresses are calculated based on X
0
n+1, i.e. σ

0
n+1

is known.

4. σ0
n+1

is stored in STRGS for LKS=LKS+1.

5. The incremental stress change ∆σ0
n+1

due to the thermo–poroelastic changes is cal-

culated such as: ∆σ0
n+1

=STRGS(LKS, 4)-STRGS(LKS-1, 4).

6. Using σ0
n+1

and ∆σ0
n+1

the permeability tensor k0
n+1

is calculated.

7. k0
n+1

is stored in STRGP for LKP=LKP+1.

8. Beginning of predictor multi–corrector method:

8.1. i = 0

8.2. If i = 0, first iteration in the predictor multi–corrector loop:

- The Right–Hand–Side (RHS) matrix is formed using X
i
n+1.

- The formulation of the LHS matrix and the RHS matrix is solved to get the

residual Ri
n+α (it is equal to zero here).

- The system C
∗(α∆V) = R

i
n+α is solved to get ∆V.

Else:
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- If full Newton-Raphson method is implemented, C∗ is updated using X
i
n+1.

- The LHS matrix is updated and factorized using X
i
n+1.

- The RHS matrix is formed using X
i
n+1.

- The formulation of the LHS matrix and the RHS matrix is solved to get the

residual Ri
n+α.

- The system C
∗(α∆V) = R

i
n+α is solved to get ∆V.

Correctors are applied to get Xi+1
n+1.

Stresses are calculated based on X
i+1
n+1, i.e. σ

i+1

n+1 is known.

σ
i+1

n+1 is stored in STRGS for LKS=LKS+1.

The incremental stress change∆σ
i+1

n+1 is calculated such as: ∆σ
i+1

n+1 =STRGS(LKS, 4)-

STRGS(LKS-1, 4).

Using σ
i+1

n+1 and ∆σ
i+1

n+1 the permeability tensor ki+1

n+1 is calculated.

ki+1

n+1 is stored in STRGP for LKP=LKP+1.

Convergence Test:

- If convergence is reached go to (A).

- Else, i = i+ 1, go to 8.2.

• End
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4.5 Hydraulic enhancement/stimulation: Geothermal reservoir

of Soultz–Sous–Forêts

The geothermal reservoir presented in section (4.1) is to be hydraulically enhanced using the

HFM and fluid circulation tests are to be simulated. Poroelastic and thermoelastic material

properties are exactly as shown in Table (4.1) based on the study of (Evans et al., [2009]).

Material properties for the process of HF are shown in Table (4.3).

Table 4.3: Parameters used in the application of HFM. References: 1.(Shao et al., [2005]), 2.(Atkin-

son, [1991], p. 245), 3.(Evans et al., [2009]) and 4.(Taron and Elsworth, [2009]).

Parameter Value Reference

Elastic parameters Elastic modulus E0 (MPa) 54000 3

Poisson’s ratio ν0 0.25 3

Damage parameters Initial radius of cracks r0 (cm) 15.0 3

Final radius of cracks rf (cm) 55.0 3

Initial aperture of cracks w0 (cm) 3.111 × 10−3 Section (2.5.1.1)

Material tensile strength Tc (MPa) 8.3 2

Material toughness parameter

KIc (MPa
√
m) 1.87 2

Model parameter η 0.04 Parameterized

Number of cracks N per

unit volume (Ω = 1 m3) 2× 106 1

Hydraulic connectivity t1 0.0001 1

parameters t2 1.0 1

Initial permeability k0 (m2) 6.8× 10−15 4

The initial crack radius r0 is determined based on the study of (Evans et al., [2009], p. 35)

assuming homogeneous orientational distribution of cracks in the space. The final crack radius

rf is equal to [3-4] times r0, the initial aperture w0 is calculated based on the study presented

in section (2.5.1.1). This combination of crack dimensional properties will give permeability

components with maximum magnitude order around 10−11 m2 as shown in (Evans et al., [2009],

p. 79) for the enhanced reservoir.

The reservoir is initially fully permeable (k0 > 10−18 m2), the excess formation pressure needed

to start the HF for a temperature change of θ = −90 ◦C is calculated using equation (4.14):

pfw = −
[

(1− 0.25) × (2×−38.9× 106) + (1− 2× 0.25) × 37× 106 − 54000 × 106

×2.5× 10−6 ×−90− (1− 0.25) × 8.3× 106
]

= 33.93 MPa
(4.48)
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The casing shoe pressure at the injection well GPK1 should be around (37 + 33.93 = 71)

MPa to start the hydraulic fracturing. This magnitude is close to the values (around 65 MPa)

implemented at Soultz–Sous–Forêts to start HF and to measure the minimum geologic stress

at a depth of 3.7 km, (Evans et al., [2009], p. 50). The model parameter η is now determined

by knowing the threshold of HF, chosen as pfw = 65 MPa. Figure (4.31) shows the FEM mesh

of the upper right horizontal quarter of the reservoir to be simulated along with the initial and

boundary conditions. The FEM mesh is composed of 300 Q4 elements, 10 elements in y-direction

and 30 elements in x-direction.
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Figure 4.31: Modeling of HF process at Soultz–Sous–Forêts. Figure is not to scale.

Injection pressure is increasing at GPK1 linearly; pumping starts with 58 MPa and termi-

nates, after 15 years, with 82 MPa. All other boundary and initial conditions are as illustrated

in section (4.1). The curves of the simulations for time periods of 1, 5, 10 and 15 years with and

without standing for HF are shown in the coming discussion.

The high fluid gradients near the injection well traveling mainly in y–direction cause fast

cooling and bring cracks to propagate and thus permeability to increase in this direction, figures

(4.32) and (4.38(a)). Since the reservoir is constrained in x and y directions due to roller dis-

placement, near the injection well y = x = 0 m, cooling creates tensile stresses which mitigate

geologic stresses and contribute to crack propagation in these directions, see figure (4.36). In

the case when HF is utilized the distribution of effective stress is much more irregular following

the preferential cooling derived by the new paths created by the HF, see figures (4.36(a)) and

(4.36(c)) and compare with figures (4.34) and (4.38(a)). Formation fluid prefers to travel follow-

ing the regions of high hydraulic fluxes carrying heat front right with it by convection. Thus,

thermal stresses are noticed in the regions of high fluid velocity and/or enhanced permeability,

again see figures (4.36(a)) and (4.36(c)) and compare with figures (4.34) and (4.38(a)).
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(b) Temperature contour at year 5 without HF
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Figure 4.32: Contours of the mixture temperature at two times with/without HF.
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Figure 4.33: Scaled fluid velocity vectors without HF at year 1.
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Figure 4.34: Scaled fluid velocity vectors with HF at year 1.
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(a) Pressure contour at year 1 without HF
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(b) Pressure contour at year 10 without HF

0 100 200 300 400

0

5

10

15

30

40

50

60

x (m)

With HF

y (m)

P
or

e 
pr

es
su

re
 (

M
P

a)

(c) Pressure contour at year 1 with HF
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(d) Pressure contour at year 10 with HF

Figure 4.35: Contours of the formation pressure at two times with/without HF.
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Figure 4.36: Contours of longitudinal effective stress σ
′

x at two times with/without HF.

In the regions where HF is active, formation pressure distribution tends to be uniform in

the space before it starts to decline considerably in the regions of low permeability, figures

(4.35(c)) and (4.35(d)). This behavior of pressure distribution was also noticed by (Lee and

Ghassemi, [2010]) and (Lee and Ghassemi, [2011]). If figure (4.35) is looked at with scrutiny, it

is seen that along the line x = 0 m, the fluid pressure is about 2 to 2.5 MPa lower in the case

when HF is not utilized. This is due to the fact that fluid thermal expansion is much larger than

that of the solid. Therefore when cooling, fluid phase will contract more than the solid phase

and hence gaps will be formed. Consequently, fluid is to be sucked more strongly in the case of

low permeability (without HF) to fill the gaps formed and to reach full saturation which leads

to lower pressure values.

The process of HF requires serious pressurization capacities which, along with the permeability
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enhancement, cause heat front to travel quite fast in the reservoir by convection, see figures

(4.32(c)) and (4.32(d)).

Effective stresses are influenced by the heat front in the very early stages. When heat front

moves away, stresses start to adopt the shape of formation pressure distributions, see figures

(4.35), (4.36) and (4.37). This behavior of effective stresses was also observed by (Lee and

Ghassemi, [2010]) and (Lee and Ghassemi, [2011]).
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Figure 4.37: Contours of transversal effective stress σ
′

y at two times with/without HF.

Following the results of simulations, it is concluded that:

1. At the early stage of HF both the pressurization capacity as well as heat conduction and/or

convection are controlling.
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2. Permeability components (kx and ky) reach their maximum values at and very close to the

injection well where changes are most extreme.
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Figure 4.38: Contours of longitudinal permeability component kx at different times during HF

process.

3. High fluid gradients near the injection well, traveling mainly in y–direction, lead cracks

to open and the permeability components become considerably large, see figure (4.38(a))

along the symmetry axis x = 0 m.

4. After 1 year of pumping, heat effects are still controlling and permeability distribution

is following the zig–zag of stress distribution. Permeability components are high in the

regions of low effective compressive stresses, see figures (4.36(c)), (4.37(c)) and(4.38(a)).

5. At 5 years of operation, the enhanced hydraulic system along with the high pressurizing

capacities lead heat front to reach the end of the reservoir. At this point pressure gradients
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are controlling the process of HF, stress surfaces are becoming similar and following the

shape of formation pressure distributions.
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Figure 4.39: Contours of the ratio ky/kx at two times during HF process.

6. Due to the fact that only mode I of fracturing is considered in the aforementioned version

of HFM, the previous conclusion wipes off the anisotropy of the permeability tensor and

brings kx to be equal to ky since the geologic far field stresses are equal1, see figure (4.39).

7. The only anisotropy observed in the permeability tensor remains close to the injection well

and in the projection x = 0 m. This is due to the high fluid gradients causing preferential

growth of cracks, see figure (4.39(b)).

8. The anisotropy ratio of the permeability tensor components remains in the range [0.4, 2.5]

as observed by (Schulze et al., [2001]).

Check appendix (B.1) to understand the role of the fracture toughness KIc in

the process of HF in weak rock formations.

1More details about this behavior along with a more sophisticated fracturing model which accounts for mode

I and II of crack propagation are presented in chapter (5).
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4.6 Stresses around boreholes and borehole stability

This section is consecrated to study the stability of wellbores under shearing effects. The section

proceeds as follows; the hollow cylinder model is firstly employed to provide a full solution for

the expressions of stress distributions around the borehole. Secondly, Mohr–Coulomb criterion

is adopted to express the failure criteria for boreholes under extreme shearing effects.

4.6.1 Stresses around boreholes: The hollow cylinder model

The hollow cylinder model, figure (4.40), is commonly used to describe the stability of boreholes

in a stressed formation. This model provides a perception for vertical wells where the horizontal

far field stresses are equal.

The hollow cylinder has a full rotational symmetry around its axis and a full translational

symmetry along the same axis. The cylinder is loaded with the vertical stress σv. The expressions

for the stresses in the cylinder are to be derived while it is loaded with internal pressure pw and

external stress σh. The external stresses acting on the cylinder are all the time in the direction

of the normal to the surface and independent of angular position θ and vertical location z.

σ❁p❂

❘❂ ❘0

pf

r

❘❂
❃

❘❂
-

Figure 4.40: Section of the hollow cylinder model, pw is the borehole pressure and pf is the

formation pore pressure. In the presence of a mud cake pf (R
+
w) 6= pw, meanwhile if well and

formation fluids are fully connected pf (R
+
w) = pf(R

−

w) = pw (rigorous assumption).

If the cylinder is sufficiently long, the only significant deformation will be in the radial

direction. Thus, the model will be in the horizontal plane in plane–strain. By ignoring the body

forces and by applying the well conditions R0 >> Rw, (Fjaer et al., [2008], p. 139) solved the

equations of equilibrium while assuming uniform (in space) fluid formation pressure pf to reach

the following system:
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σr =

(

1− R2
w

r2

)

σh −
R2

w

r2
pw

σθ =

(

1 +
R2

w

r2

)

σh +
R2

w

r2
pw

σz = constant

(4.49)

Figure (4.41) shows the distribution of stresses around a borehole as expected by the hollow

cylinder model. It is seen that stresses increase near the borehole (the inhomogeneity) above

the far field stress, this phenomenon is called stress concentration.

Unless perfectly lined mud cake is achieved, implementing the assumption of uniform forma-

tion pressure is erroneous and does not represent the actual situation taking place in the EGS.

Indeed pumping cold water in the well will cause poro–thermoelastic changes.

- σ

r

  p❄ pf (formation ❅❆❇❈❈❉❆❇❊ ●❈❈❉❍❇❏ uniform)

-σθ

-σr

-σz

❑❄

Figure 4.41: Stresses around a borehole in linear elastic formation, compressive stresses are nega-

tive. σr is always compressive, meanwhile σθ could be compressive or tensile depending on pw.

(Fjaer et al., [2008], p. 141) provided full solution for the expressions of stress distributions

around the borehole while considering varying pore pressure. In this research we are concerned

with stresses on borehole wall (r = Rw) as we study the stability of these boreholes. The

expressions of stress distributions on the borehole wall of figure (4.40) while assuming varying

formation pressure take the form:

σr = −pw

σθ = 2σh + pw + 2κ
(
pf0 − pf (R+

w)
)
− E αs θ

3(1 − ν)
︸ ︷︷ ︸

Thermal stress part

σz = σv + 2κ
(
pf0 − pf (R+

w)
)
− E αs θ

3(1 − ν)
︸ ︷︷ ︸

Thermal stress part

(4.50)
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κ is the poroelastic stress coefficient defined using Biot’s coefficient κ as:

κ =
1− 2ν

2(1 − ν) κ (4.51)

pf0 is the far field formation pressure and pf (R
+
w) is the formation (reservoir) fluid pressure

just at the outer wellbore wall, figure (4.40). If well fluid and the formation fluid are connected,

pf (R
+
w) is equal to pw. In the presence a mud cake, pf (R

+
w) is equal to the formation pressure

just behind the mud cake.

Equation (4.50) can be explained as follows: if the reservoir pressure is getting increased

pf (R
+
w) > pf0, this indicates that water is being pumped into the formation, material is expand-

ing and stresses are increasing in compression. If on the other hand water is being sucked from

the formation, formation pressure is decreasing pf (R
+
w) < pf0, material is relaxing and thus

stresses are decreasing in compression which normally happens at the production wells. Refer

to section (4.2.2.3) to understand the role of the thermal stress part.

4.6.2 Borehole shear failure criteria

The theme of HF process is to cause fractures at the casing shoe of a wellbore to propagate by

pumping geothermal fluids with extremely high pressures. Subsequently, HF is synonymous to

borehole tensile failure. It is conceivable that with such high pressures at the shoes of wellbores,

they are not likely to fail under shearing effects. The research presented below for shear failure

of wellbores is highlighted just to provide a full perspective for borehole failure.

The shear failure of a borehole is reached when the deviation of effective stresses around the

borehole, due to the change in fluid pressures between the borehole and the formation, exceeds

the failure criterion of the rock. Borehole shear failure is demonstrated by rock deformations

which are not necessarily dramatic from an operational point of view; borehole shear failure

does not mean a lost well, (Fjaer et al., [2008]).

Let us start with a vertical borehole with uniform formation pressure and anisotropic far field

stresses. The assumption that the formation pressure is uniform is only reached if the wellbore

walls are lined with perfect mud cake. This approach gives an approximation about the range

of stress deviation at failure. Nevertheless, a changing formation pressure is to be considered

for more realistic research.
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As was stated previously, for a linearly elastic material the largest changes in stress states

occur at the borehole wall. For uniform formation pressure, the system of equations (4.50)

modifies to (Fjaer et al., [2008]):

σr = −pw

σθ = σH + σh − 2(σH − σh) cos 2θ + pw −
E αs θ

3(1 − ν)

σz = σv − 2 ν(σH − σh) cos 2θ −
E αs θ

3(1− ν)

(4.52)

σH is the maximum far field compressive stress, σh is the minimum far field compressive

stress and θ, as an orientation, is measured relative to the direction of major horizontal stress

(σH). There are several stress states under which the borehole is expected to fail, yet the most

common practical stress states are observed for the principal stress magnitudes corresponding

to −σθ > −σz > −σr and −σz > −σθ > −σr. In the aforementioned two cases −σr is always

the smallest principal stress. Hence, if the formation pressure and temperature change such that

−σr is lowered to a point it becomes the smallest principal stress in the system (4.52), shear

failure of the borehole becomes quite possible.

Let us consider the first stress state where −σθ is the largest principal stress. According to

the failure criterion of Mohr–Coulomb, failure occurs when:

− σ′

θ = C0 − σ
′

r tan2(β) (4.53)

C0 is the uniaxial compressive strength of the material. β can be defined following the

expression shown in equation (4.54):

2β = φ+
π

2
(4.54)

C0

-σr▲

▼

◆❖

-σP▲

◗❚❯❲❳❨❩

-σ▲

❬

Figure 4.42: Sketch of Mohr-Coulomb criterion, equation (4.53), the angle of the straight line φ

is “the angle of friction”. C0 is the uniaxial compressive strength of the material. The angle β

represents the orientation of failure plane.
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β is the angle for which failure criterion is fulfilled, it gives the orientation of the failure

plane, see figure (4.42). Since the friction angle φ is centered around 30◦, β is centered around

60◦ and thus tan2(β) = 3 generally, (Fjaer et al., [2008], p. 156).

The failure criterion for borehole when −σθ > −σz > −σr is calculated by substituting the

system1 (4.52) in equation (4.53):

pw,min = pf +
−3σH + σh − 2pf − C0

1 + tan2(β)
+

E αs θ

3
(
1 + tan2(β)

)
(1− ν) (4.55)

Similarly for the case when −σz > −σθ > −σr, the failure criterion reads:

pw,min = pf +
−σv − 2ν(σH − σh)− pf − C0

tan2(β)
+

E αs θ

3 tan2(β)(1 − ν) (4.56)

Practically, one needs to calculate the value of the minimum borehole pressure using equa-

tions (4.55) and (4.56). If the value of pw applied is lower than the lowest value calculated, shear

failure will occur at the borehole wall.

Since the HF process is achieved by increasing borehole pressure pw to a point where σ
′

θ be-

comes positive (tensile), the borehole is not likely to fail under shear. The failure of the borehole

under tension (Hydraulic fracturing, section (4.2.2.1)) is the theme of this research. The value

of borehole pressure pfw to start HF is calculated using equations (4.8), (4.9), (4.13) or (4.14)

whichever applies.

We now apply the conditions addressed in equations (4.55) and (4.56) on the BVP presented

in section (4.3) while keeping in mind that for granite, generally, (friction angle φ ≈ 30◦,

failure angle β ≈ 60◦, and compressive strength C0 ≈ 180 MPa). The vertical burden stress

corresponding to 3.7 km depth is σv ≈ −80 MPa. Equation (4.55) gives:

pw,min = 37× 106 +
−2×−38.9 × 106 − 2× 37 × 106 − 180 × 106

1 + 3
+

+
54× 109 × 7.5× 10−6 ×−90

3× 4× 0.75
= −11.1 MPa,

(4.57)

while equation (4.56) gives:

pw,min = 37× 106 +
80× 106 −×37× 106 − 180× 106

3
+

+
54× 109 × 7.5× 10−6 ×−90

3× 3× 0.75
= −14.07 MPa

(4.58)

1The most critical cases defined previously, i.e. σθ,max and σv,max are to be considered.
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Conditions of borehole shear failure give pw,min < 0.0. As expected, based on the boundary

and initial conditions addressed in figure (4.31), the borehole (GPK1) is not likely to fail in

shear but rather in tension due to the process of HF and as pw gets closer to 65 MPa, see section

(4.3).
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Chapter 5

Designing HDR reservoirs: Impedance,

efficiency, fracturing modes and life–

time

Chapter (4) provided a general view about simulations of heat extraction from geothermal reser-

voirs with and/or without considering permeability enhancement using the process of HF. The

fracturing model presented in section (4.3) has been worked such that an anisotropic perme-

ability tensor is calculated at each Gauss’ point and at each step of time discretization. This

fracturing model accounted only for mode I of fracturing and was integrated in the simulations

of the HDR reservoir presented in section (4.1). The last section of chapter (4) addressed the

stability of boreholes against shear failure.

More sophisticated numerical studies, in terms of boundary and initial conditions, are pre-

sented in this chapter. Field data from several references are also collected to validate the

numerical simulations. Designing parameters of an efficient HDR reservoir are addressed along

with the usefulness of the process of HF in terms of creating a worthy reservoir. Brines commonly

used in running geothermal reservoirs are studied with the possibility of viscosity–temperature

change. A brief insight into using carbon dioxide (CO2) as a geothermal fluid is simply presented

following the studies of (Ueda et al., [2005]), (Pruess, [2006]) and (Pruess, [2008]).

A spot of light is shed on improving the fracturing model of section (4.3) to account for

a combination of mode I and mode II of fracturing. The new fracturing model is inserted in

our FE code where results of different simulations, for the same reservoir, are systematically

compared for the cases when HF is/is not accounted for.
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While this work is devoted to hydro–mechanical improvements of permeability through HF,

the last section of this chapter gives a brief discussion about the chemical enhancement of

geothermal reservoirs: a potential alternative or conjugate tool to establish an acceptable fluid

flow through HDR reservoirs.

5.1 Designing and modelling of a prototype HDR reservoir

A key criterion in designing HDR projects is the definition of boreholes locations. The location

of boreholes is a problem of optimization as it must balance two opposing effects. Low hydraulic

impedances and fluid losses could be easily achieved when boreholes are not very far from each

other. On the other hand, large reservoir areas mean long thermal operating life and hence

improved economical performance, (Bruel, [1995]).

5.1.1 Well testing and hydraulic parameters

EGS are always run under high pressure values where it is almost impossible to assume constant

permeability and porosity of the formation. Permeability of EGS is actually pressure dependent

often varying by several order of magnitudes from the depressurized situation.

5.1.1.1 Reservoir impedance

An important operational parameter of a geothermal reservoir is the flow impedance Z, defined

as the pressure (Pa) needed to cause a unit flow rate (m3/s) through the reservoir. It can be

calculated as the difference between the injection and the production wellhead pressures divided

by the produced flow rate. The impedance should be smaller than, say Z < 1000 MPa s/m3, if

the power required to pump water through the reservoir is not to exceed a substantial fraction

of the power produced by the reservoir, (Murphy et al., [1999]).

Figure (5.1) shows a schematic diagram of an HDR reservoir power generating system. As

defined in the figure, the impedance of HDR power generating system includes that of both

wellbores in addition to that of the reservoir. The impedance of wellbores is comprised of two

parts; 1) the frictional resistance to flow in order of 0.004 MPa s/m3 for injection and production

at 10 l/s in 0.2 m diameter wells at 3 km deep, and 2) impedance resulting from the thermo–

siphon derived by the deep column of cold dense water in the injection well and hot light water

in the production well. This thermo–siphon helps gaining some pressure head. Yet, this gain

is usually less than 1 MPa meanwhile the pressure loss in the reservoir is usually several times

greater, (Murphy et al., [1999]).
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Injection well Production well

Wellbore friction

Inlet friction Outlet friction

Reservoir impedance

Static reservoir pressure

Reservoir Storage

Figure 5.1: Schematic diagram of HDR power generating system, (Murphy et al., [1999]).

In fact, the major part of the reservoir impedance stems from the reservoir itself. The turbu-

lent flow in the reservoir fractures leads to pressure–dependent fracture dilation which normally

results in non–linear relation between pressure and flow, (Grecksch et al., [2003]). At the Fenton

Hill HDR reservoir the impedance decreased with an increasing level of reservoir pressurization,

i.e. at higher flow rates, (Murphy et al., [1999]).

Following figure (5.1), the impedance of an HDR reservoir is to be thought of as having

three components. The inlet impedance near the injection well where streamlines concentrate

leading to high fluid velocities which result in very turbulent flow. This turbulent flow results

in high pressure losses. However, since injection wells normally operate at considerable high

pressures, the fracture dilation will lead to some hydraulic connection which offsets the high

pressure loss by steering the flow in the direction of fracture evolution. The second component

is referred to as reservoir major impedance: at this point streamlines have diverged and fluid

velocity becomes almost homogeneous and small, therefore pressure losses may be surprisingly

small despite the longer flowpath lengths in the main reservoir. The third component is the

outlet impedance near the production well: streamlines converge at this point giving high fluid

velocities and extremely turbulent flow. Pressure losses at the production well are serious and

greater than those at the injection well. These losses stem from maintaining the production well

at lower pressure which result in tightly closed fractures in its vicinity. It turns out that most of

the reservoir impedance emits from the production well. Consequently, greater heat production

can be garnered from larger reservoirs with greater spacing between injection and production

wells without suffering significant impedance increase, (Bruel, [1995]).
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Though it seems very complicated to control the impedance of an engineered geothermal

reservoir, almost all of the reservoirs created to date have values of Z < 1000 MPa s/m3. Not to

forget that reservoirs can be hydraulically manipulated and stimulated to provide the impedance

that the operator desires. The ambitious goal of Z < 100 MPa s/m3 is yet to be achieved on a

consistent basis, (Murphy et al., [1999]).

(Murphy et al., [1999]) have shown that with time the engineered reservoir flow paths become

more diffuse with the longer residence–time paths taking progressively more of the total flow. In

addition, field experiments have proven that as the inlet region is progressively cooled, additional

flow paths open up and manifold with the previous less-accessible paths (effects of thermal

strains, see section (4.2.2.3)).

5.1.1.2 Reservoir water loss

Water loss is an important factor when stimulating EGS. Water losses could be a serious factor

where there exists a risk of provoking a damaging earthquake by elevated pore pressure. Other

than this risk, water loss is not a serious problem except for the regions where fresh water is not

available. It is not recommended to pump ocean/salt water to avoid uncontrolled geochemical

reactions.

(Murphy et al., [1999]) have stated three principal components for water losses in an engi-

neered geothermal reservoir. Not all these components are operational for all reservoirs, nor for

all times during development and subsequent operations of a particular reservoir. Nevertheless,

they help in understanding water loss behavior:

1. Water loss from the periphery of a pressurized reservoir by pressure diffusion through the

rock surrounding the pressure dilated reservoir region.

2. Apparent water loss due to water storage in an expanding engineered reservoir. A large

part of this stored water could be recovered ultimately when the reservoir is depressurized.

3. Water loss due to flowing into geological faults and fractures which intersect or are inter-

sected by the engineered reservoir.

Operational techniques should compromise between raising pressure and therefore reducing

impedance or lowering pressure and hence low water loss. Operating conditions depend upon

the site conditions; if water is plentiful, the operator may decide to increase the pressure thus

reducing impedance and energy production. If water is scarce, an operator may reduce the

pressure thus reducing water loss and accepting higher impedance and lower energy production

rate.
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5.1.2 Modelling approaches for HDR reservoirs

The presence of natural fractures and faults of various lengths renders HDR reservoirs very

heterogeneous. As a result, the choice of a representative volume to model the HDR reservoir is

a difficult task and information about every individual fracture is required to reach the so called

near field models. Generally HDR reservoirs are modeled using two approaches (Bruel, [1995]):

1. HDR reservoirs are assumed to be formed of spherical connected permeable zones. Thermal

recovery is calculated using dimensionless parameters via Maxwell analogy, see (Elsworth,

[1989]) for more details. This is an averaging approach which may not be valid if the

fractures are not fully connected or if they are not evenly distributed in space, which is

certainly the case in real HDR reservoirs.

2. Models emerging from the statistics describing the pre–existing fractured system. Such

approaches include discrete fracture models which include the major structures governing

the flow. However, detailed data sets and relevant parameters are quite difficult to extract

from the field.

The second approach is the model adopted so far in simulating thermal recovery from HDR

reservoirs. Unless stated, this approach will be used all along this research as well.

The distance between HDR reservoir wellbores is to be estimated considering that the reser-

voir is to meet the required thermal performance objectives. These thermal objectives were

defined in the work of (Jupe et al., [1995]) by thermal performance of 10% thermal drawdown,

or less, during 10–year circulation at 15 l/s production. Thermal drawdown TD is defined as the

relative difference between initial temperature of the reservoir T0 and production temperature

T :

TD =
T0 − T
T0

(5.1)

5.1.2.1 Reservoir design parameters

Having determined performance criteria of an HDR, the objectives of the design are firstly to

define the reservoir parameters (e.g. reservoir temperature) needed to achieve this performance,

and secondly, to inspect the engineering operations (e.g. wellbores drilling) needed to achieve

the design and to manipulate the reservoir performance.
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(Jupe et al., [1995]) have divided the modelling studies of an HDR into three components,

Table (5.1): the drilling and the completion of injection and production boreholes, the stimula-

tion of the reservoir using high flowrates, and the behavior during long term circulation of the

system.

Table 5.1: Key reservoir design parameters, (Jupe et al., [1995]).

Component Reservoir parameter Engineering control

Borehole Reservoir temperature Depth
configuration Fracture intersection- Separation

frequency and orientation Trajectory
Reservoir volume Number of boreholes

Open–hole length

Stimulation Reservoir volume Stimulation flow rate
Growth direction Fluid volume
Permeability enhancement Fluid viscosity
Near wellbore impedance Proppants

Circulation Heat exchange surface area Circulation direction
Heat extraction volume Flow rate
Impedance Production well pressure
Water loss Downhole pump deployment
Thermal drawdown

Many of the reservoir parameters such as: reservoir volume, heat exchange area and growth

direction are mainly dependent on the existing fracture networks and their interaction with the

in situ stress state. A sophisticated model which is capable of implementing complex coupled

processes is therefore needed to encompass all aspects of reservoir creation and circulation.

5.1.2.2 Exploitation of large scale hydraulic features

Experimental investigations at Soultz–Sous–Forêts HDR reservoir site have emphasized the exis-

tence of large scale fractured zones (>100 m) at depths 2850 to 3500 m. These fractured zones are

characterized by their high storage capacity1 but low productivity, (Jupe et al., [1995]). These

natural conductive zones can play a very significant role in exploiting HDR reservoirs consider-

ing that a relatively little permeability enhancement is required to achieve low impedance and

good productivity of the system. Figure (5.2) shows a schematic representation for the thermal

exploitation of isolated large scale conductive fractured zone.

The general fracture pattern at Soultz–Sous–Forêts consists of two main strike directions at

N10–E20 and N170.

1Storage capacity of a fracture can be defined as how much volume a fracture can provide to store fluid.
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Figure 5.2: Schematic representation of an HDR reservoir design, based on the exploitation of

isolated large scale conductive fractured zones.

In situ stress measurements have indicated that stress amplitudes (MPa) for depths (2000–

3500 m) can be estimated by the following linear relationships, z (m) is the depth, see (Bruel, [1995]):

Minimum horizontal stress: −σh = 48.0 + 0.014(z − 3600)
Maximum horizontal stress: −σH = 0.026z
Vertical stress: −σv = 0.026z

(5.2)

Stress amplitudes given by the system of equations (5.2) are almost the same as shown for

Soultz–Sous–Forêts HDR reservoir in (Evans et al., [2009], p. 37–44). Experimental evidences

have proven that the maximum horizontal stress σH is oriented in the N170 direction (which is

the direction of the fracture pattern).

5.2 Stimulation tests of Soultz–Sous–Forêts HDR reservoir: Phase

1 injection test at GPK1

This section is devoted to study and imitate the phase 1 injection test at GPK1 well of Soultz–

Sous–Forêts HDR reservoir. This injection test included pumping high pressurized fluid which

led to permeability enhancement as well as a microseismic record. The works of (Bruel, [1995])

and (Jupe et al., [1995]) have fairly addressed this stimulation test and shall be used as a guiding

reference for our simulations. This section proceeds as follows; the flow logging at well GPK1

during phase 1 injection test and for 17 days is first simulated using our FE code with the

HFM of section (4.3). The time of the simulations is then extended to study the permeability

enhancement of the whole reservoir using the process of HF.
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5.2.1 Phase 1 injection test at GPK1 well, 1993: Simulating the flow history

In 1993 a stimulation test of GPK1 well, between 2800 m and 3500 m, at Soultz–Sous–Forêts

HDR reservoir was conducted. Pressurized fluid led to fracture evolution which in–return gener-

ated seismic energy. The spatial distribution of the induced seismic events can be related to the

propagation of the fluid pressure front. Roughly, seismic networks can delineate and constrain

good estimates of the rock volume affected by the pressurized fluid.

The general shape of the recorded microseismic events at Soultz–Sous–Forêts HDR reservoir

shows a dense cloud at 2850 m depth in the horizontal plane. The microseismic cloud extends

mainly in the direction of the maximum far field horizontal stress σH i.e. N170, see figure (5.3),

(Bruel, [1995], p. 442).
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Figure 5.3: Summary of microseismic event locations from the 1993 phase 1 stimulation test,

(Bruel, [1995]).

5.2.1.1 The transient BVP: Geometry, material properties and FEM mesh

Based on the seismic event locations presented in (Bruel, [1995], Fig. 2) and based on the study

given by (Baumgärtner et al., [2000], p. 268), the fractured zone to be stimulated lies at a

depth of 2.8 to 2.9 km and has dimensions of 1 km and 400 m around the well GPK1 with N170

Azimuth and W70 Dip.

The second well GPK2 is drilled 400–500 m away from GPK1 and in the direction of fracture

evolution (seismic events), see (Baumgärtner et al., [2000], Fig. 1). The fractured zone to be

stimulated is shown in figure (5.4).

The values of in situ stresses were calculated using the system of equations (5.2) for z = 2.8

km. The initial pressure p0 and the initial temperature T0 also correspond to a typical depth
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of 2.8 km, (Evans et al., [2009]) and (Bruel, [1995]). A temperature of T = 50 ◦C is applied at

the injection well, the temperature at the outlet production well GPK2, 500 m away, is sought.

All the other boundaries are thermally insulated, i.e. no thermal fluxes are permitted with the

surroundings.
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Figure 5.4: Geometric layout of the fractured zone to be stimulated at the HDR reservoir of Soultz–

Sous–Forêts. GPK2 is drilled in the direction of fracture evolution. Only quarter of the problem is

to be studied due to symmetry.

Production pressure is fixed to p0 − 1 MPa, injection pressure/flux is to be applied corre-

sponding to the purpose of intended simulation, other boundaries are hydraulically insulated

from the surroundings. The mechanical boundary conditions are defined by the in situ stresses

applied at the outer and right boundaries, the inner boundary is constrained in y-direction,

meanwhile the left boundary is constrained in x-direction (roller displacement), see figure (5.5).
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Figure 5.5: Modeling of the phase 1 injection test at Soultz–Sous–Forêts: simulating the flow

logging at GPK1, figure is not to scale.

These in situ stresses are applied at t = 0− and allowed to equilibrate with the initial pore

pressure of 28.5 MPa. The effective stresses over the geologic times give an in situ permeability
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of k0 = 2.85 × 10−14 m2, (Bruel, [1995], Fig. 5)1. Table (5.2) summarizes all the boundary

conditions used in the stimulation process.

Table 5.2: Boundary conditions used for the stimulation test at Soultz–Sous–Forêts. l=left, r=right,

o=outer, and i=inner boundaries of figure (5.5).

Type Boundary Condition

Displacements l No horizontal displacement
i No vertical displacement
r and o Calculated based on the stresses applied

Fluid flow l, i, r and o Impermeable
Injection well Pore fluid pressure or fluid fluxes
Production well Pore fluid pressure (p = p0 − 1 MPa)

Heat flow l, i, r and o Thermally insulated
Injection well T = 50 ◦C
Production well Temperature is sought

The material properties of Soultz–Sous–Forêts reservoir are shown in Table (5.3). These

thermo–poroelastic properties are typical for Soultz–Sous–Forêts reservoir rock as shown by

(Evans et al., [2009]).

Table 5.3: Material properties of Soultz–Sous–Forêts reservoir.

Property Value

Drained Young’s modulus E 54× 109 (Pa)
Drained Poisson’s ratio ν 0.25
Bulk modulus of solid grains Ks 50× 109 (Pa)
Bulk modulus of fluid Kf 2.2 × 109 (Pa)
Dynamic viscosity of the fluid µ 3× 10−4 (Pa.s)
Porosity φ 0.1003
Initial permeability k0 2.85 × 10−14 (m2)
Solid thermal conductivity χs 2.49 (W/m◦C)
Fluid thermal conductivity χf 0.6 (W/m◦C)
Solid heat capacity at constant volume cvs 1000 (J/kg ◦C)
Fluid heat capacity at constant volume cvf 4200 (J/kg ◦C)
Density of solid ρs 2910.2 (kg/m3)
Unit weight of water γf 9800 (N/m3)
Volumetric thermal expansion of the solid αs 7.5 × 10−6 (1/◦C)
Volumetric thermal expansion of the fluid αf 1× 10−3 (1/◦C)

A mesh of 800 elements, 40 elements in x−direction and 20 elements in y−direction, is used
to perform the stimulation. The mesh is refined in x− and y−directions near the injection well

to track the extreme abrupt changes at this point, see figure (5.5). Material properties for the

1The value of the initial permeability k0 has been back–calculated from (Bruel, [1995], fig. 5) by considering

that the enhanced permeability of the reservoir has an order of ∼ 10−11 m2, (Evans et al., [2009]).
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process of HF are shown in Table (5.4).

Table 5.4: Parameters used in the application of stimulation/ HF process: 1.(Shao et al., [2005]),

2.(Atkinson, [1991], p. 245), 3.(Evans et al., [2009]) and 4.(Bruel, [1995]).

Parameter Value Reference

Damage parameters Initial radius of cracks r0 (cm) 25.0 3
Final radius of cracks rf (cm) 80.0 3
Initial aperture of cracks w0 (cm) 3.084 × 10−3 Section (2.5.1.1)
Material tensile strength Tc (MPa) 22.8 Calculated
Material compressive strength
C0 (MPa) 228 3
Material toughness parameter
KIc (MPa

√
m) 1.87 2

Model parameter η 0.2 Parameterized
Number of cracks N per
unit volume (Ω = 1 m3) 1× 106 4

Hydraulic connectivity t1 0.0001 1
parameters t2 1.0 1

Initial permeability k0 (m2) 2.85 × 10−14 4

The over all rock tensile strength Tc, in Table (5.4), is taken as 10% of rock compressive

strength C0 = 228 MPa. The initial crack radius r0 is determined based on the study of (Evans

et al., [2009], p. 35) assuming homogeneous orientational distribution of cracks in the space.

The final crack radius rf is equal to [3-4] r0, and the initial average aperture w0 is calculated

based on the study presented in section (2.5.1.1). The fracture physical characteristics in Table

(5.4) correspond to large scale geothermal reservoirs. These characteristics are much larger than

those in Tables (2.1) and (4.2) for scale laboratory tests.

This combination of crack dimensional properties, Table (5.4), will give permeability compo-

nents with maximum magnitude order around 10−11 m2 as shown in (Evans et al., [2009], p. 79)

for the enhanced reservoir.

The reservoir is initially fully permeable k0 > 10−18 m2, section (4.2.2.1). The excess for-

mation pressure needed to start the HF for a temperature change of θ = −105 ◦C is calculated

using equation (4.14):

pfw = −
[

(1− 0.25) × (3×−38.2 × 106 + 75.4 × 106) + (1− 2× 0.25) × 28.5 × 106 − 54000 × 106

×2.5× 10−6 ×−105 − (1− 0.25) × 22.8 × 106
]

≈ 18 MPa

(5.3)

The casing shoe pressure at the injection well GPK1 should be around (28.5 + 118 = 46.5)

MPa to start the hydraulic fracturing. This magnitude is close to the values (around 40 MPa)
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implemented at Soultz–sous–Forêts to start HF during phase 1 injection test at a depth of 2.8

km, (Bruel, [1995], Fig. 1). The threshold of HF is chosen to be as in the field pfw = 39 MPa.

The model parameter η is now determined by knowing the threshold of HF.

The conditions addressed in equations (4.55) and (4.56) are to be applied on the BVP

presented in figure (5.4) to check the shear stability of borehole GPK1. For granite, generally,

(friction angle φ ≈ 30◦, failure angle β ≈ 60◦, and compressive strength C0 = 228 MPa). The

vertical burden stress corresponding to 2.8 km depth is σv = σH = −75.4 MPa. The minimum

value of borehole pressure required to cause shear failure by equation (4.55) is:

pw,min = 28.5 × 106 +
−3×−75.4 × 106 − 38.2 × 106 − 2× 28.5 × 106 − 228 × 106

1 + 3
+

+
54× 109 × 7.5× 10−6 ×−105

3× 4× 0.75
= −0.48 MPa,

(5.4)

while the minimum value of shear failure pressure by equation (4.56) is:

pw,min = 28.5 × 106 +
75.4 × 106 − 0.5(−75.4 × 106 + 38.2× 106)− 28.5 × 106 − 228 × 106

3
+

+
54× 109 × 7.5× 10−6 ×−105

3× 3× 0.75
= −31.97 MPa

(5.5)

The conditions addressed above give pw,min < 0.0. It becomes clear that based on the

boundary and initial conditions, addressed in figure (5.4), the borehole (GPK1) is not likely to

fail in shear but rather in tension due to the process of HF and as pw gets closer to 39 MPa.

5.2.1.2 Time scales of the BVP to be stimulated

The time scales associated with the foregoing particular BVP, for lengths L = 200 m and L = 500

m, were calculated as shown in section (2.1.3), such that:

• For L = 200 m,

- for thermal diffusion tθ = 1676.21 years,

- for hydraulic diffusion tp = 0.08 day.

• For L = 500 m,

- for thermal diffusion tθ = 10476.34 years,

- for hydraulic diffusion tp = 0.47 day.
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The calculated time for the thermal diffusion of heat front is to be reduced several orders

of magnitude if the convection of heat is accounted for. For instance, later in section (5.2.2.2),

figure (5.10), the average convective velocity over the volume of the reservoir is about ||vcon|| =
5.57 × 10−6 m/s. The characteristic time associated with convection of heat is calculated as

follows:

tconv =
L (= 500m)

||vcon||
= 2.85 years (5.6)

5.2.1.3 Flow history at GPK1 well: Simulations and correlations

The model described in figure (5.5) is to be stimulated by the Hydraulic Fracturing Model

(HFM) of section (4.3). The results of simulations of the HF process are to be correlated with

the flow logging injection tests performed at GPK1 well of Soultz–Sous–Forêts HDR reservoir

in September 1993. The most important level of the stimulation process is located at 2.85 km

of GPK1 and absorbs about 60% of the injected fluid, (Bruel, [1995]).

Phase 1 injection test was implemented by pumping water into GPK1 well gradually until a

total flow rate of 40 l/s was reached at day 17. The experimental pressure curve at the injection

well showed non–linear relation with injected flow announcing the existence of turbulent flow,

(Grecksch et al., [2003]). Our simulations for the HF process will be performed by following the

schemes presented in Table (5.5).

Table 5.5: Simulation schemes of the HF process at GPK1 for phase 1 injection test.

Scheme BC † at GPK1 Condition at outer and right boundaries

First scheme Linear flow rate (in 17 days) Impermeable boundaries

(from 0.13 l/s to ∼ 20 l/s)

Second scheme Linear flow rate (in 17 days) Permeable boundaries

(from 0.13 l/s to ∼ 20 l/s) (p = p0 = 28.5 MPa)
†: Boundary Condition(s)

Figure (5.6) shows the applied flow rate history at GPK1 well as suggested by the experi-

mental work of (Bruel, [1995]) and as applied in our simulations. Figure (5.7) correlates between

the numerical response obtained by our HFM, first and second schemes in Table (5.5), and the

experimental data obtained from (Bruel, [1995], Fig. 1) for a period of 17 days.

When the reservoir is assumed impermeable at the outer and right boundaries (first scheme),

the geothermal system reaches a pressure of 137 MPa at a flow rate ∼20 l/s (∼ 60% of 40 l/s)

with a plateau announcing the presence of extreme turbulent flow near GPK1, see figure (5.7(a)).
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Figure 5.7: Injection pressure at GPK1 during the 1993 phase 1 injection test at Soultz–Sous–

Forêts. Comparison between experimental data and the numerical response of our HFM for schemes

shown in Table (5.5).

This pressure value of 137 MPa is 3.5 times higher than the HF pressure (39 MPa) obtained

experimentally by (Bruel, [1995]). However, when the outer and right boundaries of the reservoir

are assumed permeable (second scheme), the geothermal system reaches the pressure of HF at a

flow rate of ∼20 l/s almost as applied experimentally (∼ 60% of 40 l/s). The numerical response

in figure (5.7(b)) is no longer showing an asymptotic plateau as the fluid turbulence is greatly

eliminated when the outer and right boundaries are assumed permeable, i.e. smoother flow is

achieved within the reservoir.

The previous conclusion can be illustrated by the fact that HF is more effective when the

reservoir is impermeable at the boundaries; trapped water helps increasing the pressure of pore

fluid. Strong HF process is equivalent to more obvious crack evolution and/or dilation which

evidently means more turbulent flow.
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at GPK1

5.2.2 Phase 1 injection test at GPK1 well, 1993: Permeability enhancement

of the reservoir

The time of the simulations presented in the previous section is to be extended in this part so

that the permeability enhancement along the reservoir can be tracked. The BVP as described

in figure (5.4) is to be simulated for the cases when HF is/is not accounted for. The effects of

HF process on the reservoir impedance and thermal recovery is also addressed.

5.2.2.1 The transient BVP: Geometry, material properties and FEM mesh

The model suggested to start the simulation of HF process of the reservoir is shown in figure (5.8).

A homogeneous finite element mesh of 800 elements, 40 elements in x−direction and 20 elements

in y−direction, is used to perform the stimulation. Poroelastic and thermoelastic material

properties are exactly as shown in Table (5.3) based on the study of (Evans et al., [2009]).

Material properties for the process of HF are shown in Table (5.4).
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Figure 5.8: Modeling of the phase 1 injection test at Soultz–Sous–Forêts: permeability enhancement

of the reservoir. All boundary and initial conditions are shown on the graph, figure is not to scale.

Casing shoe pressure at the injection well GPK1 to start HF has been calculated as in

equation (5.3) and should be around 39 MPa. The stability of the borehole GPK1 against shear

failure has been also assured as in equations (5.4) and (5.5). Injection pressure is increasing at

GPK1 linearly; pumping starts with 34.5 MPa and reaches 35.9 MPa at year 1. Thereafter, it

continues to increase also linearly but with a smoother rate to reach a value of 39 MPa after 20

years of injection.

171

chapter5/figures/graf5-9.eps


5. DESIGNING HDR RESERVOIRS: IMPEDANCE, EFFICIENCY,
FRACTURING MODES AND LIFE–TIME

5.2.2.2 Simulations of the HDR reservoir without HF

The results of the simulations for time periods of 5 and 10 years are shown in the following

discussion.
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Figure 5.9: Contours of the mixture temperature at two times, convection of heat is accounted for.

Fracture zone cools in x− and y−directions due to the high fluid gradients spreading all over

the volume of the reservoir. These large fluid gradients, near the injection well, help opening

the cracks along with the reduction in the compressive stresses due to thermal tensile stresses

resulting from cooling, see figure (5.10).
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Figure 5.10: Scaled fluid velocity vectors for the defined injection state at well GPK1 and extraction

pressure of p0−1 MPa at GPK2. The velocity field is not homogeneous at the neighbors of the wells.

However, the average velocity of the formation fluid is about ||v|| = 5.57× 10−6 m/s.

The homogeneous mesh, figure (5.8), is composed of 800 elements of size hx×hy = 12.5 m ×
10 m. Grid Péclet number (Peg) is calculated with an average fluid velocity of ||v|| = 5.57×10−6

m/s and thermal diffusivity ψ = χ/ρcv = 7.56 × 10−7 m2/s, see table (5.3).

Peg,x =
hx ||v||
2ψ

= 46.05 (5.7)
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at GPK1

Peg,y =
hy ||v||
2ψ

= 36.84 (5.8)

For fluid flow, either in x−direction or in y−direction, Péclet number is much larger than

1, which indicates that the convection of heat is quite significant and should be accounted for

when performing the simulations.
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Figure 5.11: Contours of the mixture pore pressure at two times, convection of heat is accounted

for.

The contours of fluid pore pressure are not showing any considerable changes during the time

of simulations. The fast diffusion of pressure front, time scale of 0.48 day, makes the motion of

pressure front almost instantaneous at the time scale we are interested in here.
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Figure 5.12: Contours of longitudinal effective stress σ
′

x at two times, convection of heat is ac-

counted for.
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Figure 5.13: Contours of transversal effective stress σ
′

y at two times, convection of heat is accounted

for.

The contours of effective stresses are following the diffusion of heat front showing consider-

able reduction in compressive stresses near the injection well, and in the cooled regions due to

the thermal tensile stresses created by cooling. Following figures (5.12(b)) and (5.13(b)), the

reservoir is relaxing faster in y−direction than in x−direction: this effect is due to the geologic

far field stress state which imposes much smaller stresses on the outer boundary of the reservoir.

Indeed, HF is going to enhance the permeability of the HDR reservoir following the direction of

maximum far field stress.

(Bruel, [1995], p. 447) suggested planarity and persistency of the fault crossed by GPK1 at

2.8 km: thus the vertical section of the well GPK2 over which flow is taking place is approxi-

mately 550 m extending to about 3.3 km. The radius of operating well GPK2 at such a depth

is 15 cm, (Baumgärtner et al., [2000]).

Figure (5.14) shows the relation between injection fluid pressure at the well GPK1 and the

magnitude of fluid flux at the same well. The linear relation between them indicates smooth

flow without any created and/or improved connections.

The impedance Z of the unenhanced reservoir is shown in figure (5.15). It is calculated as

shown in equation (5.9):

Z =
Pinj − Ppro

Q
(5.9)
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5.2 Stimulation tests of Soultz–Sous–Forêts HDR reservoir: Phase 1 injection test
at GPK1

Pinj and Ppro are the injection and production wellhead pressures respectively, Q is the

injected/produced flow rate since there is no leak off. The impedance of the unenhanced reservoir

is greater than 1000 MPa s/m3 at any time, which means an inefficient operation where the

power pumped through the reservoir will most probably exceed a substantial fraction of the

power produced by the reservoir, (Murphy et al., [1999]).
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Figure 5.14: Relation between injected pore fluid pressure and the magnitude of created fluid flux

at the injection well GPK1 of unenhanced HDR reservoir at Soultz–Sous–Forêts.
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Figure 5.15: Impedance profile of unenhanced HDR reservoir at Soultz–Sous–Forêts.

5.2.2.3 Simulation of the HDR reservoir with HF

If HF is activated in our FE code, after 1 year of pumping at GPK1, casing shoe pressure will

reach a value of 35.9 MPa and permeability contours for the enhanced HDR reservoir are shown

in figure (5.16).

Cracks are evolving in the direction of maximum far field stress (right boundary) leading

longitudinal permeability to reach its maximum value up to distances of (≃80 m in y−direction
and ≃240 m in x−direction). The results of this simulation are in good agreement with the

microseismic events diagram presented in (Bruel, [1995], fig. 2) announcing the propagation of
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hydraulic front and fracture coalescence.

Preferential cooling following the new paths of the enhanced permeability is thus expected.

The HDR reservoir is no longer cooling, almost equally, in both x− and y− directions; heat

diffusion is dominant in the direction of the far field stress (direction of crack evolution), see

figure (5.17). The oscillations in temperature contours near the production well are related to

the convection of heat as fluid fluxes converge leading to high pore fluid velocity.

0
100

200
300

400
500 0

50

100

150

200
10

−14

10
−12

10
−10

y (m)
x (m)

k x (
m

2 )

(a) Contour of kx at year 1

 

 

10
−14

10
−13

10
−12

10
−11

0 100 200 300 400 500
0

50

100

150

200

x (m)

y 
(m

)

At year 1

Projection of k
x
 contour (m 2)

(b) Projection of kx contour in the x− y plane

Figure 5.16: (a) The contour of longitudinal permeability component kx at year 1, (b) The pro-

jection of kx contour in x− y plane.
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Figure 5.17: Contours of the mixture temperature at two times with HF, convection of heat is

accounted for.

These oscillations are purely numerical and stem from the difficulty of modeling heat waves

striking stiff boundaries. The phenomenon of forced heat convection will be highlighted with

several approaches to heal/mitigate the oscillations in the hyperbolic solutions of the approxi-
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mated finite element approach in chapter(6).

Velocity field at year 1, figure (5.18), shows superior pore fluid velocity, ∼ 2.75× 10−5 m/s,

in the zone of active HF. The average pore fluid velocity in other regions is around ∼ 6.20×10−6

m/s.
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Figure 5.18: Scaled fluid velocity vectors for the defined injection state at well GPK1 and extraction

pressure of p0 − 1 MPa at GPK2 when activating HF. The velocity field is not homogeneous at

the neighbors of the wells, the average velocity of the formation fluid in the zone of active HF is

||v|| = 2.75× 10−5 m/s while in the other zones it is about ||v|| = 6.20× 10−6 m/s.

Contours of pore fluid pressure at years 5 and 10 are shown in figure (5.19). The changes

in pore fluid pressure contours are no longer significant in the zone of active HF. Darcy’s law

indicates that the gradient of fluid pressure is proportionally related to the inverse of permeability

tensor ∇p ∝ k−1. The tremendous fast increase in the components of permeability tensor in

the zone of active HF makes the changes in pore fluid pressure quite small if compared to the

situation of unenhanced HDR reservoir.
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Figure 5.19: Contours of the mixture pore pressure at two times with HF, convection of heat is

accounted for.
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Contours of effective stresses, whether longitudinal or transversal figures (5.20) and (5.21),

are following the preferential cooling derived by the process of HF.
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Figure 5.20: Contours of longitudinal effective stress σ
′

x at two times with HF, convection of heat

is accounted for.
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Figure 5.21: Contours of transversal effective stress σ
′

y at two times with HF, convection of heat

is accounted for.

Stresses are dawdled in compression in the cooled regions as the reservoir is constrained to

some degree on the boundaries of symmetry. The created new highly–permeable paths take

most of the fluid gradients directly in the direction of maximum far field stress causing stresses

to augment in compression near the outer boundary of the HDR reservoir. Thus at the outer

boundary cracks are most likely closing and permeability is thus decreasing, unless shear dilata-

tion might cope for the reduction in their apertures, (Chen et al., [2007]).
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5.2 Stimulation tests of Soultz–Sous–Forêts HDR reservoir: Phase 1 injection test
at GPK1

Figure (5.22) shows the relation between injected pore fluid pressure and the magnitude of

created fluid flux at the injection well GPK1. A non–linear relation is found during the first

year of simulation while HF process is active. The non–linearity of the pressure record versus

flow record tells us that improved connections are created around the borehole GPK1. It also

describes the dependence of hydraulic conductivity on the effective stress (Bruel, [1995]).
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Figure 5.22: Relation between injected pore fluid pressure and the magnitude of created fluid flux

at the injection well GPK1. Non–linear relation is clear while HF process is active announcing the

creation of improved connections, (Bruel, [1995]).

The statement of end of HF in figure (5.22) may sound puzzling. Actually, the experimental

work of (Papanastasiou, [1999]) have proven that for every geothermal system there exists an

optimum injection schedule (injection pressure and duration). Any further increases in stimu-

lation effort, i.e. stimulation time for a given stimulation pressure, does not provide additional

permeability enhancement. Our injection pressure schedule defined in figure (5.8) was sufficient

to enhance the reservoir permeability as shown in figure (5.16(a)) up to year 1. The subsequent

increases in stimulation pressure and time did not enhance the reservoir permeability any more.

Therefore, end of HF means the time and pressure values at which the enhancement of the

reservoir is final.

The jump between the two points M and N in figure (5.22) can be understood by studying

the permeability history at the injection well GPK1, figure (5.23).

Following figure (5.23), it is noticed that permeability evolution at the injection well happens

very rapidly. This is due to modeling hydraulic fracturing while considering only mode I of

fracture propagation. It is also seen that the period of intense permeability enhancement is

taking place earlier at the injection well which is expected due to harsh thermo–poroelastic

changes at this point. However, if permeability histories at all the Gauss’ points in figure

(5.8) are averaged, the period of intense permeability enhancement in the averaged curve will

correspond to the jump (M–N) in figure (5.22).
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Figure 5.23: Longitudinal permeability kx history at the injection well GPK1. Points M and N

correspond to the period of intense permeability enhancement in figure (5.22). Intense permeability

enhancement happens earlier than in the flow–injection logging, figure (5.22).

Process of HF, for only one year, has reduced the flow impedance of the HDR reservoir from

∼ 1200 MPa s/m3 to ∼ 600 MPa s/m3 reducing the power required to pump water through the

reservoir and enhancing its efficiency by 50%, see figure (5.24) and equation (5.9).

0 5 10 15 20 25
0

500

1000

1500

Im
pe

da
nc

e 
(M

P
a 

s/
m

3 )

Time (years)

After 1 year 
End of HF

Impedance of unenhanced
HDR reservoir

N

Figure 5.24: Impedance profile of the enhanced HDR reservoir at Soultz–Sous–Forêts.

Figure (5.25(a)) shows the profiles of produced fluid temperatures with HF (Thf) and with-

out HF (Twhf). Figure (5.25(b)) shows the profile of the ratio Twhf/Thf . In most geothermal

systems, the produced fluid is efficiently used as long as its temperature does not drop below 80

◦C, (Lund, [2007]).

The standard mean production temperature curve, shown in figure (5.25(a)), is based on

the analytical solution provided by (Kolditz, [1995], fig. 5) for one–dimensional matrix heat

diffusion and for 15 l/s injection flow rate. Kolditz standard solution shows a thermal drawdown

of approximately 29% in 10 years, meanwhile the enhanced reservoir shows a thermal thrawdown

of 45%, see figure (5.26). In both cases, thermal drawdown exceeds the limits required by (Jupe

et al., [1995]), i.e. 1% thermal drawdown per year. This could be due to the rigorous assumption

of neglecting the three–dimensional heat diffusion, (Kolditz, [1995]).

180

chapter5/figures/graf5-a.eps
chapter5/figures/graf5-33.eps


5.2 Stimulation tests of Soultz–Sous–Forêts HDR reservoir: Phase 1 injection test
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Figure 5.25: (a) Profiles of produced fluid temperature with HF (Thf) and without HF (Twhf). (b)
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Figure 5.26: Thermal drawdown, equation (5.1), of the mean production temperature for the

enhanced HDR reservoir curve B, and the standard production temperature as suggested by

(Kolditz, [1995]) curve C.

If the process of HF is utilized in the simulations, the HDR reservoir is exhausted in 10.5,

see figure (5.25(a)). However, if HF is not activated the HDR reservoir may last to 20 years.

The efficiency of utilizing HF becomes quite clear in terms of the energy used to pump water

through the reservoir, see figure (5.24), and in terms of the produced flow rate, see figure (5.27).

After 1 year of the process of HF, the produced flow rate from the HDR reservoir is 2 times

higher than if the reservoir was not hydraulically stimulated, see figure (5.27(b)). Considering

that the stimulated reservoir will operate efficiently till 10.5 years and that the unenhanced

reservoir will efficiently operate till 20 years; the volume of the produced fluid can be calculated

by numerically integrating the curves, in figure (5.27(a)), for the case of active HF and the case

of inactive HF till the points A and B respectively.
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Figure 5.27: (a) Profiles of produced flow rate with HF (Qhf) and without HF (Qwhf). (b) Profile

of the ratio Qwhf/Qhf .

• The volume of efficient fluid produced from the stimulated HDR reservoir over a period of

10.5 years is 4.922 Million m3,

• while the volume of efficient fluid produced from the unenhanced HDR reservoir over a

period of 20 years is 5.364 Million m3.

These huge amounts of water used are not utterly lost; one should keep in mind that the

geothermal fluids are recirculated over the volumes of the HDR reservoirs over and over again.

It becomes clear now that HF process has increased the efficiency of the HDR reservoir up to

50% according to figure (5.24). Yet by the calculations of efficient fluid volume, only 7 to 8% of

the total efficient fluid to be produced is lost over the entire effective age of the reservoir.
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Figure 5.28: (a) The contour of transversal permeability component ky at year 1. (b) The projection

of kx/ky contour in x− y plane at year 1.
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5.2 Stimulation tests of Soultz–Sous–Forêts HDR reservoir: Phase 1 injection test
at GPK1

Figure (5.28(a)) shows the contour of transversal permeability ky of the enhanced HDR

reservoir after 1 year of HF. Figure (5.28(b)) shows the projection of the contour of kx/ky in

x− y plane with some points where the evolution of fracture radii is to be studied.

The anisotropy of the permeability tensor components remains in the range [0.4, 2.5] as sug-

gested by (Schulze et al., [2001]). Since the longitudinal stress component σx is arranged in the

position (σx = σ11) in the stress tensor used in our FE code, longitudinal fractures lie exactly

at the position θ = 90◦ and transversal fractures at the position θ = 0◦, see figure (5.29) and

chapter (4).
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Figure 5.29: θ–φ position of a crack of radius r(n).

Figure (5.30) shows the directional evolution of fracture radius at the end of the process of

HF at points A and D, see figure (5.28(b)).

  0.2

  0.4

  0.6

  0.8

30

60

90

120

150

180 0 

 

Point A

θ

r (m)

  0.2

  0.4

  0.6

  0.8

30

60

90

120

150

180 0 

 

Point D

θ

r
f

r
0

r (m)

Figure 5.30: Directional evolution of fracture radii at points A and D at year 1 (the end of HF).

Point A represents a position very close to the injection well where the components of perme-

ability tensor increase rapidly and almost equally, nevertheless, with a preference in the direction

of far field longitudinal stress θ = 90◦, kx/ky = 1.05. Point D is far away from the region of
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active HF and no change to fracture radius is recorded, r = r0 = 25 cm.

Figure (5.31) shows the directional evolution of fracture radii at the end of the process of HF

at points B and C, see figure (5.28(b)). At point C, fractures evolve strongly in the longitudinal

direction and slightly in the transversal direction kx/ky = 1.7. Meanwhile, a slighter evolution

of fractures in the longitudinal direction is observed at point B which gives kx/ky = 1.6.
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Figure 5.31: Directional evolution of fracture radii at points B and C at year 1 (the end of HF).

5.3 Working fluids of geothermal systems: Characteristics and

alternatives

The purpose of this section is to study the effect of geothermal systems conditions, namely

pressure and temperature, on the dynamic viscosities of the working fluids. A brief discussion is

first presented about the temperature–viscosity change of water substance. Geothermal brines

temperature–viscosity change is later addressed and compared to that of the water substance.

The simulations of the phase 1 injection test section (5.2.2) are repeated while accounting for

temperature–viscosity change of the brine used. Finally, an alternative for geothermal brines,

punctually using carbon dioxide CO2 as a working fluid, is briefly studied.

5.3.1 Thermophysical properties of water substance

The permeability tensor which has been introduced in the equation of balance of the fluid mass

section (2.1.2.2), as well as in the matrix formulation section (3.2.3.2), represents an intrinsic

characteristic of the porous medium which has been enhanced by causing cracks to evolve and

intersect, i.e. improving hydraulic connection. Generally pumping cold water into fractured

HDR reservoirs causes considerable changes in temperature field and, possibly, pressure field if

HF is utilized to enhance the productivity of HDR reservoirs.
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5.3 Working fluids of geothermal systems: Characteristics and alternatives

Such considerable changes in the temperature and pressure fields are expected to change

the dynamic viscosity of the injected fluid which appears in the explicit form of the equation of

balance of the fluid mass section (2.1.2.2), see (Burger et al., [1985]) and (Likhachev, [2003]).

The easiness with which a fluid can move through pore spaces or fractures is described by

hydraulic conductivity KH . Hydraulic conductivity depends on the intrinsic permeability of the

porous medium, on the degree of saturation1, and on the density and viscosity of the fluid.

KH = k
ρ g

µ
, (5.10)

where KH is the hydraulic conductivity (m/s), k is the intrinsic permeability of the porous

medium (m2), µ is the dynamic viscosity of the fluid (Pa.s), ρ is the density of the fluid (kg/m3)

and g is the acceleration due to gravity (m/s2).

The circulating fluid used while utilizing and/or enhancing HDR reservoirs is brine water

with certain types and amounts of dissolved salts. These dissolved salts are expected to improve

the performance of such reservoirs in terms of hydraulic conductivity and preventing mineral

precipitation, see (Du et al., [2005]), (Taron et al., [2009]) and (Evans et al., [2009]).

If, conservatively, the geothermal brines are assumed to have the same, or close, thermo-

dynamical characteristics as the water substance, the phase diagram shown in figure (5.32) is

assumed to be applicable.

1
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Figure 5.32: Phase diagram of water substance at different temperature and pressure values.

The simulation and/or stimulation of HDR reservoirs is mostly done with temperature values

expected in the range 50 to 200 ◦C and pore fluid pressure of 30 to 50 MPa i.e. 300 to 500 atm.

1Assumed equal to 1 all along this research.
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According to water phase diagram, figure (5.32), no phase changes of the water substance are

expected in such ranges and the water shall be liquid at any time.

5.3.2 Dynamic viscosities of working fluids as a function of temperature and

pressure

Dynamic viscosity of a fluid describes its resistance to gradual deformation, and hence flow. It

can be thought of as a measure of fluid friction. Water viscosity is independent of fluid pressure

except for very high values larger than 80 MPa, yet it is strongly dependent on temperature,

(Likhachev, [2003]). Viscosity of liquid water at different temperatures up to the normal boiling

point is listed in Table (5.6)1.

Table 5.6: Dynamic viscosity of water substance (1 cP(centipoise)= 10−3 Pa.s).

Temperature Dynamic viscosity

T (◦C) µ (cP)

10 1.308

20 1.002

30 0.7978

40 0.6531

50 0.5471

60 0.4658

70 0.4044

80 0.3350

90 0.3150

100 0.2822

(Burger et al., [1985]) have indicated that the variation of water substance viscosity in

temperature range of 0 ◦C to 370 ◦C can be approximated by equation (5.11), T in Kelvin, with

accuracy of 97.5%.

µ = 2.414 × 10−5 × 10

(

247.8

T − 140

)

(Pa.s) (5.11)

Figure (5.33) shows a quite good agreement between the experimental record of Table (5.6)

and the analytical expression of (Burger et al., [1985]) for the temperature range of 10 ◦C to

100 ◦C.

1www.engineeringtoolbox.com
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Figure 5.33: Correlation between the experimental record of the water substance shown in Table

(5.6) and the analytical expression of (Burger et al., [1985]).

Fluids usually used in geothermal systems are brines with the dominance of Cl and Na ions

over a wide range of salinity relevant for geothermal applications. Geothermal fluids are fre-

quently modeled as aqueous NaCl solutions, (Francke and Thorade, [2010]). In most of the

geothermal systems, as in Groß Schönebeck 50 km north of Berlin, the total of dissolved solids

sums up to 265 g/l with dominant sodium chloride mass fraction of 0.225 kgNaCl/kgH2O corre-

sponding to a molality of 4.968 molNaCl/kgH2O, (Francke and Thorade, [2010]) and (Battistelli

et al., [1997]).

(Francke and Thorade, [2010]) collected experimental data from several studies to provide

three models, Table (5.7), for brine viscosity calculations.

Table 5.7: Applicability range of various models for calculating brine viscosity, (Francke and Tho-

rade, [2010]).

Study T (◦C) p (MPa) Electrolytes Concentration

(mol.kg−1)

Model 1 10–350 0.1–50 NaCl 0–5

Model 2 20–150 0.1–35 NaCl 0–6

Model 3 0–350 0.1–100 NaCl, KCl, LiCl 0–6

• Model 1 is based on a study where the ratio of solution viscosity to water substance

viscosity is calculated using four coefficients.

• Model 2 is based mainly on experimental studies.

• Model 3 is based on a study where ten parameters were used to calculate the ratio of

solution viscosity to water substance viscosity.
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The different models, in their respective application range shown Table (5.7), result in very

consistent values of brine viscosity (µb) with average deviation of 0.3% and maximum deviation

of 0.9%. Figure (5.34) shows the viscosity of 0.225 kgNaCl/kgSolution brine for different values of

temperature at constant pressure of 1.5 MPa. The values of brine viscosity (µb) are the average

of the three models listed in Table (5.7). An exponent function of the form µb = 9.15×107 T−4.37,

with T being temperature in Kelvin and (µb) in Pa.s, is chosen to represent averaged models

data with determination coefficient of R2 = 0.9957.
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Figure 5.34: Brine viscosity as a function of temperature while pressure and NaCl mass fraction are

held constant to 1.5 MPa and 0.225 kgNaCl/kgSolution respectively. Solid line represents the fitting

curve of the scattered data with determination coefficient of R2 = 0.9957.

(Francke and Thorade, [2010]) have also employed the models of Table (5.7) to study the

effect of NaCl mass fraction on the viscosity of the brine. Brine viscosity has been proven to

increase almost linearly by 76% for an NaCl mass fraction change of 0 kgNaCl/kgH2O to 0.25

kgNaCl/kgH2O at a temperature of 150 ◦C and pressure of 1.5 MPa. It has been also found that

the effect of fluid pressure is quite insignificant on the brine viscosity at a temperature of 150

◦C and pressure values in the range of 0.01 MPa to 50 MPa, see also (Likhachev, [2003]).

Figure (5.35) shows the percent of viscosity increase as result of using sodium chloride NaCl

in a concentration of 0.225 kgNaCl/kgH2O as function of temperature. The curve extends over a

temperature range of 0◦C to 220◦C and is built up using the analytical expression of (Burger

et al., [1985]), equation (5.11), to get water substance viscosity (µ) and our fitting curve, figure

(5.34), to get brine viscosity (µb).

The point highlighted in figure (5.35) indicates 65% of viscosity increase as result of using

sodium chloride to a concentration of 0.225 kgNaCl/kgH2O at temperature of 150 ◦C. This result

matches quite well the work of (Francke and Thorade, [2010], fig. 7).
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Figure 5.35: Percent of viscosity increase as result of using sodium chloride NaCl in a concentration

of 0.225 kgNaCl/kgH2O, fluid pressure is held at 1.5 MPa.

5.3.3 Phase 1 injection test at GPK1 well, 1993: Permeability enhancement

of the reservoir with viscosity–temperature change

The fitting curve presented in figure (5.34) is used to update brine viscosity at each Gauss’ point

in our FE code with possible viscosity–temperature changes. Assuming brine working fluid, the

value of pore fluid viscosity used in all the simulations presented in section (5.2) corresponds to

a temperature of 152 ◦C, see also Table (5.3) and figure (5.34). Injecting cold brine with 50 ◦C

temperature is expected to increase brine viscosity (µb) by a threefold, see figure (5.34).

The simulations are to be presented in two manners; firstly with deactivating HF, secondly

with activating HF. This shall give us a general view about the effect of increasing brine viscosity

as result of cooling on all the simulations presented in section (5.2).

5.3.3.1 Deactivating HF process: Viscosity–temperature change is accounted for

Increasing pore fluid viscosity will definitely decrease the hydraulic conductivity of the porous

medium, see equation (5.10). This will in turn decrease the rate by which the hydraulic front

is moving. Figure (5.36) shows pore fluid pressure profiles along the plane y = 0 m, solid lines

account for the simulation when viscosity is updated with temperature, meanwhile dashed lines

represent the case of constant brine viscosity µb = 0.3 cP.

Following figure (5.36), it is quite clear that increasing the viscosity of the brine as result of

cooling slows down the propagation the hydraulic front. The depression in pore pressure values

when brine viscosity is increased can be illustrated following Darcy’s law. Darcy’s law indicates

that the change of pore fluid pressure is proportionally related to the negative of the dynamic

viscosity, i.e. ∇∇∇p ∝ −µ. Increasing dynamic viscosity will increase the change of pore fluid
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pressure (in negative) and thus it will reduce the value of pore pressure calculated at a given

Gauss’ point. The reduction in pore fluid pressure as result of increasing brine viscosity shall

definitely hinder the process of HF.
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Figure 5.36: Pore pressure profiles at the plane y = 0 m, for the times of 1 and 15 years. Solid

lines account for the simulation when viscosity is updated with temperature, meanwhile dashed lines

represent the case of constant brine viscosity µb = 3× 10−4 Pa.s.

Figure (5.37) shows the relation between injection fluid pressure at the well GPK1 and the

magnitude of fluid flux at the same well.
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Figure 5.37: Relation between injected pore fluid pressure and the magnitude of created fluid flux

at the injection well GPK1, viscosity–temperature change is accounted for.

The relation is no longer linear yet no improved hydraulic connections are created by HF

and less fluid flux is obtained, compare with figure (5.14). This non–linear relation, due to vis-

cosity increase, announces more turbulent flow near the injection well equivalent to improving

hydraulic connections, compare with figure (5.22).

Figure (5.38) shows the impedance Z of the unenhanced reservoir for a period of 20 years.

Clearly, increasing brine viscosity as result of cooling decreases tremendously the efficiency of

the HDR reservoir. The impedance continues to increase while the reservoir is becoming more
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and more cold announcing less produced volume of fluid and less efficiency of the reservoir,

(Murphy et al., [1999]).
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Figure 5.38: Impedance profile of unenhanced HDR reservoir at Soultz–Sous–Forêts, viscosity–

temperature change is accounted for.

Increasing brine viscosity also hinders the rate by which heat front is traveling through the

reservoir: more viscous fluid is expected to move at lower convective velocity and hence reduced

heat convection rate, see figure (5.39) and compare with figure (5.9).
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Figure 5.39: Contours of the mixture temperature at two times, convection of heat and viscosity–

temperature change are accounted for.

5.3.3.2 Activating HF process: Viscosity–temperature change is accounted for

As stated previously, increasing pore fluid viscosity hinders the process of HF as it reduces pore

fluid pressure. The contours of reservoir permeability at years 1 and 5 are shown in figure (5.40).
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Figure 5.40: Contours of longitudinal permeability component kx at two times, viscosity–

temperature change is accounted for.

Unlike the case when constant brine viscosity was assumed, increasing viscosity by cooling

tends to create high fluid gradients near the injection well traveling strongly in y−direction and

leading fractures to evolve and intersect, see figure (5.40(a)). The lag in heat front, as result

of increasing viscosity, renders injection pressure schedule shown in figure (5.8) active1 till year

5. Cracks continue to evolve following the direction of maximum far field stress (x-direction)

leading reservoir permeability to get enhanced up to a distance of 170 m in x−direction in 5

years, see figure (5.41).
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Figure 5.41: Projection of kx contour in the x − y plane at year 5, viscosity–temperature change

is accounted for. Injection pressure schedule shown in figure (5.8) is active till year 5.

The reason why injection pressure schedule of figure (5.8) remains active till year 5 when

viscosity–temperature change is accounted for can be explained by the following argument: un-

like the case of constant brine viscosity, increasing viscosity by cooling hinders the propagation of

the heat wave. The slow propagation of the heat front gives rise to slower movement of thermal

1Compare with figure (5.16) where maximum permeability enhancement was obtained at year 1 for the same

injection pressure profile.

192

chapter5/figures/graf5-55.eps
chapter5/figures/graf5-56.eps
chapter5/figures/graf5-57.eps


5.3 Working fluids of geothermal systems: Characteristics and alternatives

tensile stresses, which along with the fluid pressure keep on mitigating the geologic compressive

stresses and hence helping cracks to evolve.

Figure (5.42) shows the contours of mixture temperature when HF is activated and while

accounting for viscosity increase due to brine cooling. Preferential cooling following the new

paths of the enhanced permeability is clear. Heat front is traveling mainly in the direction of

maximum far field stress following the direction of crack evolution.
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Figure 5.42: Contours of the mixture temperature at two times with HF, convection of heat and

viscosity-temperature change are accounted for.

Following figure (5.43), it is seen that the changes in pore fluid pressure contour are not

significant in the regions of enhanced permeability.
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Figure 5.43: Contours of the mixture pore pressure at two times with HF, convection of heat and

viscosity-temperature change are accounted for.

Figure (5.44) shows the relation between injected pore fluid pressure and the magnitude of
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created fluid flux at the injection well GPK1. During the first 5 years, while HF process is

active, the produced fluid volume is obviously increasing though the viscosity of the brine fluid

is increasing as result of cooling. In fact, permeability enhancement due to HF counteracts

the hindrance due to viscosity increase: an approximative linear relation is observed during

this period of active HF, compare with figure (5.22). After 5 years, HF process stops which

eliminates the part counteracting the hindrance of viscosity increase, thus the produced fluid

volume starts to decline considerably.

35 36 37 38 39
0

1

2

3

4

5

6
x 10

−5

P
or

e 
flu

id
 fl

ux
 (

m
/s

)

Injection pressure (MPa)

~ 6 l/s 
(injection rate)

M

N

Smaller period of intense enhancement
due to viscosity effects

N: After 5 years 
End of HF

Figure 5.44: Relation between injected pore fluid pressure and the magnitude of created fluid flux

at the injection well GPK1, viscosity–temperature change is accounted for.

HF process reduces flow impedance of the HDR reservoir from about 1700 MPa s/m3 (see

figure (5.38) when HF is not activated) to about 700 MPa s/m3, which should render the

operation of the HDR reservoir efficient to a period of about 8.5 years, see figure (5.45). After

8.5 years, flow impedance becomes higher than 1000 MPa s/m3 and the utilization of the reservoir

becomes inefficient. This means that injection pressure must increase to a point HF continues

to work such that it counteracts the dragging effects of increased viscosity.
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Figure 5.45: Impedance profile of enhanced HDR reservoir at Soultz–Sous–Forêts, viscosity–

temperature change is accounted for.

Figure (5.46) proves that an HDR reservoir is going to last longer if the change of geother-

mal fluid viscosity with temperature is considered, compare with figure (5.25(a)). However this
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extended operational life is not of any importance as the impedance exceeds the limits of eco-

nomic operation from the start in the case of not activated HF and after 8.5 years when HF is

activated. The only solution is to increase injection pressure to a point HF continues to work

such that it counteracts the dragging effects of increased viscosity.
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Figure 5.46: Profiles of produced fluid temperature with active HF (Thf(µ)) and without active

HF (Twhf(µ)), convection of heat and viscosity-temperature change are accounted for.

This depressive behavior, as it seems, that stems from changing viscosity with temperature

is a direct result of assuming Newtonian geothermal fluids. Authors like (Santoyo et al., [2001])

and (Gutiérrez et al., [2005]) have studied the behavior of eleven Non–Newtonian geothermal flu-

ids: they observed that the temperature changes associated with Non–Newtonian fluids are not

as large as we have observed here. In other words, the Non-Newtonian character of the drilling

fluids counteracts the thermal dependence of the dynamic viscosity. This statement clearly

calls that future studies take into consideration both thermal effects and Non–Newtonian flu-

ids. Possibly their effects may, in some circumstances, be cooperating rather than counteracting.

Other thermophysical properties which include density, specific heat and thermal conductiv-

ity do not vary significantly with temperature (less than 15%) for the geothermal drilling fluids.

They can be assumed constant and can be approximated by the corresponding values for water

substance without remorses, (Gutiérrez et al., [2005]).

5.3.4 EGS using carbon dioxide (CO2) as working fluid

Evidently, brines used as geothermal working fluids pose a number of concerns. Aside from

considerably increasing viscosity due to cooling, brines work as a powerful solvent for many

rock minerals especially at elevated temperatures. Dissolution and precipitation effects, if not

well considered, clog fracture aperture and hence reduce the permeability and render the EGS

reservoir inefficient (in terms of productivity).
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However, recent geothermal system applications have been using dissolving brines to enhance

the permeability of the reservoirs chemically, see section (5.5). One should keep in mind that,

especial and very careful treatment and modeling must be considered when brines are used in

running the geothermal systems:

• Modeling brines as Non–Newtonian fluids should be accounted for to counteract the drag-

ging effect of viscosity change.

• Brines salinity must be well recorded so that no excess dissolution and precipitation take

place.

• Proppants must be added to the brines so that clogging of fracture aperture due to excessive

precipitation may not be encountered.

Since 2000, carbon dioxide (CO2) as a heat transmission fluid in EGS has triggered a signif-

icant research. The idea is appealing: besides capitalizing on the physical advantages of CO2

over water/brines as a working fluid, the technique would, as an ancillary benefit, contribute to

storing this heat trapping gas. Indeed, CO2 has several physical and chemical properties which

would render it advantageous as a geothermal working fluid (Pruess, [2006]):

• Reduced power consumption as result of the provided buoyancy force that stems from

large density differences1 between the cold CO2 in the injection well and the hot CO2 in

the production well.

• CO2 viscosity is much lower than that of water substance which will develop larger flow

velocities for a given pressure gradient which, in turn, reduces the impedance of the EGS

reservoir.

• CO2 is much less effective solvent if compared to water which means mitigating or elimi-

nating clogging problems, such as silica dissolution or precipitation in water based EGS.

5.3.4.1 Thermophysical properties of CO2

Figure (5.47) shows the phase diagram of CO2 for different temperature and pressure values, the

critical point of CO2 is shown on the graph corresponding to Tc = 31.04 ◦C and pc = 7.328 MPa.

At lower (subcritical) temperatures and pressures CO2 can be found in two different phases

(liquid or gaseous) as well as two–phase mixtures of these states (on the line of saturation).

Supercritical CO2 forms a strange unique phase that is neither liquid nor gas and can change

continuously into either gaseous or liquid CO2 with no phase boundaries.

1Density differences result from CO2 large thermal expansivity which is, generally, 30 times larger than that

of water substance.
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Figure 5.47: Phase diagram of carbon dioxide (CO2). Dashed lines are only drawn to identify

regions with different customary naming conventions. They do not signify phase transitions, as all

fluid properties vary smoothly and continuously across these lines, (Pruess, [2006]).

A very important thermophysical property which controls fluid mass flow for a given driving

force is called mobility (m) defined as the ratio of density to viscosity of the fluid m = ρ/µ

(inverse of kinematic viscosity s/m2). CO2 mobility is generally larger than that of water sub-

stance. It also shows a significant dependence on pressure and temperature if compared to water

substance.

Interestingly, CO2 mobility variations are such that they attain maximum values in the

regions of intermediate temperatures and pressures extending beyond the saturation line figure

(5.47). Mobility becomes smaller for liquid–like CO2 (low T , high p) and for gas–like CO2 (high

T , low p). For temperature and pressure conditions relevant to geothermal reservoirs operations,

CO2 mobility can be larger than that of water by a factor of 10, see (Pruess, [2008], fig. 2).

5.3.4.2 EGS reservoir heat extraction using CO2: Benefits and concerns

Recent studies that tried to implement CO2 as a geothermal working fluid, have come out with

several benefits which sound very interesting and promising, (Pruess, [2006]), (Pruess, [2008])

and (Ganzer et al., [2013]):

• For EGS running on CO2 as a geothermal fluid, heat extraction rates are seen, from

simulations and laboratory tests, to be approximately 50% larger than that of water. This

indicates a very significant acceleration of energy recovery, i.e. similar to implementing

HF process.

• For general EGS working conditions, lower temperature in the vicinity of the injection

well increases considerably the viscosity of water if compared to CO2. This gives CO2

additional advantage for the flow in the vicinity of the injection well.
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• The previous conclusion makes clear that stronger pressure gradients will be developed

near the injection well for the case of CO2. These strong hydraulic gradients mean large

drop of pressure available between injection and production wells and hence improved

fluid circulation. Figure (5.36) shows how increased viscosity of geothermal brine near the

injection well reduces considerably pressure gradients.

• Owing to its large compressibility and expansivity as compared to water, supercritical

CO2 will give rise to strong buoyancy forces between injection and production wells. This

will provide an improved fluid circulation, an improved production rate and hence reduced

impedance (power consumption) to run the reservoir.

• Using CO2 as a geothermal fluid will help getting rid, in a matter of geologic storing, of

one of the most toxic gases in our planet. Geologic storage of CO2 will be shown in the

form of lost flow mass which depends on the site permeability, porosity and mineralogy of

the EGS reservoir.

The very important question about CO2–based EGS would be always about how to create

them. Water–based EGS would include hydraulic and/or chemical enhancement of the existing

natural fracture system, and most possibly generating new fractures. CO2–based EGS would

require the additional step of sequestering supercritical CO2 at the core of the EGS.

(Ueda et al., [2005]) showed a general scheme for CO2 sequestration into geothermal fields, figure

(5.48).
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Figure 5.48: General scheme of CO2 sequestration into geothermal fields, adjusted from (Ueda et

al., [2005]).

Supercritical CO2 is injected down the borehole at high temperature. At the migrating open-

ing of the borehole, CO2 is dissolved in groundwater where the resulting CO2–saturated water
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reacts with the surrounding rocks and forms calcite assemblages. Such mineral assemblages

result in occlusion of the porosity and hence the formation of impermeable layers which can act

as a cap rock that traps the supercritical CO2 fluid.

(Pruess, [2006]) has indicated that a CO2–based EGS is expected to comprise three reservoir

zones:

Zone 1 The core (main volume) of the reservoir from which thermal energy is extracted

by pumping CO2. This volume contains only a single supercritical CO2 phase and has

been created by removing all water by dissolution into the flowing CO2 stream1.

Zone 2 Intermediate zone which embodies the main volume and consists of a two–phase

mixture of CO2 and aqueous fluid. Rock–water–CO2 interactions happen in this zone

which result in calcite and clay minerals like kaolinite (Ueda et al., [2005]).

Zone 3 The external zone which is still mainly controlled by the EGS activities. The

fluid is a single aqueous phase with dissolved and chemically active CO2.

Each zone is expected to be different especially for chemical interactions. In zone 1, the long–

term exposure to supercritical CO2 is supposed to cause dehydration of rock minerals which will

reduce their molar volume and will increase porosity and permeability of the formations (it is

an advantage here).

The chemically active CO2 in the zone 2 along with the elevated temperatures will ren-

der fluid–mineral reactions quite fast. These reactions provide very suitable conditions for

sequestering CO2 in the form of solid minerals. Dissolution and precipitation effects could

impact the growth and longevity of the EGS reservoir rendering long–term behavior unclear

regarding energy recovery and estimating CO2 loss rate, see calcite assemblages in figure (5.48),

(Pruess, [2006]).

As was cited in the outermost zone, aqueous solutions can be very corrosive and can dissolve

several minerals in the rock material aside from attacking steel liners and casings used in the

construction of the injection borehole. Yet, sequestration of CO2 at the core of the EGS reservoir

happens quite fast causing aqueous fluids to be quickly removed to reach a single phase of

supercritical CO2. The continuous operation of the CO2–based EGS reservoir will result in a

stream of dry CO2 that is expected to no longer cause any corrosive effects to the production

well, (Pruess, [2006]).

1To understand the chemistry of CO2 solubility in water and brine under reservoir conditions, the reader is

advised to check the work of (Enick and Klara, [1990])
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5.4 Improving the HFM to stand for shear sliding: Mode I and

mode II fracturing model (HFM2)

There are three different approaches to simulate fluid flow in naturally fractured rocks; single

continuum, dual continuum and discrete fracture approach. Single continuum approach uses

a homogeneous system with a specific permeability tensor to describe the fractured medium.

This is the approach that has been and will be used along this research. In dual continuum ap-

proach the domain is divided into two interacting parts; 1) the rock matrix where conduction of

heat is most dominant and permeability is quite small, 2) the fractures, assumed having regular

patterns in most cases, where convection of heat is most dominant and permeability is large,

see works of (Gelet et al., [2012]). Finally the discrete fracture approach where fractures are

explicitly discretized in the domain, see works of (Bruel, [1995]).

The HFM (Hydraulic Fracturing Model), presented in section (4.3), has been developed

to stand for fracture evolution which results from increasing fracture pressure to a point the

minimum principal stress becomes tensile and exceeds the tensile strength of the material, and

consequently normal separation of fracture surfaces (mode I) occurs. Since fractures in all spatial

orientations are considered in the model, shear displacement is expected during fracture opening

by mode I, see figure (5.49):

σx

σy

➣↔↕➙➛➜ ➝➞↔➟➠➡➞➢

➣➢➤➢➞➥➛➦➞

σ➧

➨

➩

➫➩

➭σx ➯ ➭σy 

Figure 5.49: Shear slippage of inclined fractures, wing fracture evolution.

5.4.1 From continuum mechanics to fracture mechanics: HFM2

A vertical borehole with a group of vertical cracks with average radius r and arbitrary normal

direction n is presented in figure (5.50). This schematic diagram is to be used to define the new

Hydraulic Fracturing Model (HFM2) which accounts for opening and shearing of cracks. σv is

the out–of–plane burden stress.

The same assumptions, as in section (4.3.1), are adopted here. Cracks in the field are relaxed

to the initial geophysical conditions which include; the burden and far field stresses, pore fluid

pressure and the temperature of the solid and fluid phases.
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σ➲

σ➳➵➸

➺➻➸

➼

➽

Figure 5.50: Vertical borehole with vertical fracture of average radius r and arbitrary direction n.

The Directionally Distributed Fracture Model (DDFM), that was presented and tested ex-

perimentally in chapter (2), works for compression and tensile dominated stresses and stands

for opening and shearing of cracks, see (Shao et al., [2005]).

If the borehole pressure is gradually increased to a point where the combination of effective

normal stress σ
′

n along with the normal projection of the deviatoric effective stress tensor σ
′d
n

exceeds material toughness, the group of cracks start to propagate and consequently the average

aperture of cracks increases. Following section (2.3.2), the model suggested to track the evolution

of average radius r of a group of cracks in direction n takes the form:

F (σ
′
, r, n) =

√
r
[

σ
′

n + f(r)q̃(n)
]

− Crc ≤ 0 (5.12)

σ
′

n = n.σ
′
.n, σ

′d = σ
′ −
( trσ

′

3

)

δδδ, σ
′d
n = n.σ

′d.n, q̃(n) = 3 〈σ′d
n 〉 (5.13)

where Crc is the material toughness for mode I and mode II of fracturing. It is worth noting

here that the term [fc,t/(fc,t + 〈−σ
′

n〉)]m is always equal to 1 due to the definition of HF, i.e.

σ
′

n > 0 and hence 〈−σ′

n〉 = 0.

The function f(r) has the same definition as illustrated in section (2.3.2) and is given by:

f(r) =







ξ
(rf
r

)

, r < rf

ξ, r ≥ rf
(5.14)

rf denotes the critical crack radius for unstable coalescence of cracks, ξ is the model param-

eter which has the same definition as η1. The function f(r) in equation (5.14) has been chosen

1The name of the parameter has been changed from η to ξ just to distinguish between HFM2 and HFM of

section (3.4).
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such that a stable crack growth is assured. The continuum mechanics approach, equations

(4.8), (4.9), (4.13) or (4.14), has been presented such that the HFM2 equation (5.12) can be

parameterized. ξ is to be determined such that the fracturing will begin at a borehole pressure

pfw corresponding to one of the cases demonstrated in equations (4.8), (4.9), (4.13) or (4.14)

whichever applies.

The derivation of the incremental propagation of a group of cracks of average radius r and

arbitrary direction n can be obtained following equations (5.12), (5.13) and (5.14) as shown in

section (2.3.2).

When r < rf :

F =
√
r σ

′

n + 3 ξ

(
rf√
r

)

〈σ′d
n 〉 − Crc = 0, (5.15)

and,

∂F

∂r
=

1

2
√
r
σ

′

n −
3

2
ξ

(
rf√
r3

)

〈σ′d
n 〉 (5.16)

dr = − 1

∂F

∂r

[

Π(r, σ
′

n) (n ⊗ n) + Ψ(r, σ
′d
n )

(

n⊗ n− δ

3

)]

: dσ
′

(5.17)

The functions Π(r, σ
′

n) and Ψ(r, σ
′d
n ) are defined as follows:

Π(r, σ
′

n) =

{√
r, if σ

′

n > 0

0, if σ
′

n = 0
(5.18)

Ψ(r, σ
′d
n ) =







3 ξ

(
rf√
r

)

, if σ
′d
n > 0

0, if σ
′d
n ≤ 0

(5.19)

The overall crack permeability tensor can be calculated, see section (2.3.2), as follows:

kc =
N

Ω

λ

48

∫

S

R(n)w(n)3 r(n)2 (δδδ − n⊗ n) dS (5.20)

When r ≥ rf the product f(r)
√
r is no longer decreasing and unstable crack growth is

obtained, the latter case is not to be addressed in this research.
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5.4.2 Testing and calibrating the HFM2 at a Gauss’ point

The fracturing model (HFM2), presented above and which stands for opening and shearing of

fractures, is to be validated using the study shown in section (2.5.1.1) by (Shao et al., [2005])

and is to be compared with the numerical response of the HFM model of section (4.3.2).

Again a parallelepiped sample of Lac du Bonnet granite is considered. The rock sample is

drilled at the middle where pressurized fluid is permitted to flow. While allowing drainage, the

sample is subjected to the stress state shown in figure (5.51).

p➾

➚ ➪➶ ➹➘a

➚ ➴➷ ➹➘a

1

3

Figure 5.51: parallelepiped sample of Lac du Bonnet granite subjected to the stress state shown

and drilled at the middle where fluid is pumped, out of plane stress is equal to -10 MPa.

The parameters used in the simulation are the same as shown in Table (4.2) except for the

parameter ξ which replaces η. The value of the model parameter ξ should be determined such

that the fractures will start propagating at pfw = 14 MPa, see section (4.3.2). Let us work

equation (5.15) at the threshold of fracture propagation, i.e. F = 0:

ξ =
Crc

√
r − rσ′

n

3rf 〈σ′d
n 〉

(5.21)

Following figure (5.51), the first group of cracks to start propagating are those oriented in

the direction of maximum principal stress -40 MPa with direction n pointing to the out of plane

minimum principal stress -10 MPa. The normal effective stress acting on such a group at the

threshold of HF is σ
′

n = σ
′

2, meanwhile the normal projection of the deviatoric effective stress

tensor is calculated for n = [0, 1, 0] and is equal to σ
′d
n = (2σ

′

2 − σ
′

1 − σ
′

3)/3.

Considering that initial cracks are normally distributed around r = r0 = 3 mm and for a

fracturing pressure of pfw = 14 MPa, the values of σ
′

n and σ
′d
n are respectively, 4 MPa and 11.667
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MPa. The aforementioned values along with the parameters values presented in Table (4.2) can

be substituted in equation (5.21) to get the value of ξ at the pressure threshold of HF (14 MPa):

ξ =
Crc
√
r0 − r0 σ

′

n

3 rf 〈σ′d
n 〉

=
1.87 × 106 ×

√
3× 10−3 − 3× 10−3 × 4× 106

3× 9× 10−3 × 11.667 × 106
= 0.29 (5.22)

The simulation can now be performed and compared with the results of section (4.3.2) as

shown below:
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Figure 5.52: (a) Variation of permeability in the axial and lateral directions while pumping water in

a parallelepiped Lac du Bonnet granite sample with a stress state as shown in figure (5.51). (b) The

variation of the ratio k11/k33 with the formation pressure. Dashed lines describe the simulations of

HFM of section (4.3), meanwhile solid lines represent the simulations of the HFM2 discussed above.

Colored curves are provided in the digital version.
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Figure 5.53: Directional evolution of crack radius at pw = 24 MPa and at the plane φ = 90◦.

The curve with the dashed line represent the simulations using HFM of section (4.3), meanwhile the

curve with solid line describe the simulations using HFM2 discussed above.

Following figures (5.52) and (5.53), it is seen that adopting the HFM2 ensures stabler growth

of fractures for the same rock, as it accounts for opening and shearing modes of fracturing. The

maximum anisotropy of the permeability tensor, as shown in figure (5.52(b)), is about 1.6 for the

204

chapter5/figures/graf5-70.eps
chapter5/figures/graf5-71.eps
chapter5/figures/graf5-72.eps
chapter5/figures/graf5-73.eps


5.4 Improving the HFM to stand for shear sliding: Mode I and mode II fracturing
model (HFM2)

two HF models (HFM and HFM2) and remains in the range [0.4, 2.5] as suggested by (Schulze

et al., [2001]).

By a glimpse at figure (5.52), the anisotropy ratio k11/k33 increases significantly and almost

instantly when only mode I (HFM) is considered. However, when modes I and II are adopted

(HFM2) the increase in the anisotropy ratio is much smoother due to the shearing effect of

fracturing, see also figure (5.53).

At the peaks of the two curves in figure (5.52(b)), most of the cracks pointing to the max-

imum principal stress -40 MPa and contributing to the component k11 are connected (r = rf ).

Cracks in other orientations continue to grow slowly contributing to the component k33, thus

the anisotropy ratio starts to decline after the peaks. When HFM is considered, the increase in

the pore fluid pressure will cancel the anisotropy of the permeability tensor, i.e. k33 will finally

equate k11, which is quite convincing if only opening of fractures is the mode to cause them to

evolve. Yet, if HFM2 is adopted, only fractures with certain orientations where σ
′d
n is positive,

i.e. helping shearing fracture plane in equation (5.12), are going to propagate. Other fractures

will have negative σ
′d
n and insufficient σ

′

n to cause propagating by its own.

The latter case seems to be the most realistic and has been observed by experimental studies,

see (Shao et al., [2005]) and (Schulze et al., [2001]). An isotropy ratio of the range [0.4, 2.5] is to

be recorded in case of non–hydrostatic loading conditions where wing–crack propagation is the

natural phenomenon of fracture evolution.
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Figure 5.54: Effect of using HFM2 instead of HFM on the order of magnitude for rock permeability.

This curve is directly obtained from figure (5.52(a)) by calculating the ratios k11,HFM/k11,HFM2 and

k33,HFM/k33,HFM2.
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Figure (5.54) shows how accounting for mode II of fracture shearing affects considerably the

order of magnitude for rock permeability at the beginning of the process of HF. At considerable

pore pressure values, the final order of magnitude for axial and lateral permeability components

is obtained regardless of the model used to describe HF. Nonetheless, at small pressure values,

close to pfw, the difference between using HFM or HFM2 can be up to 3 orders of magnitude.

This indicates a much smoother evolution of permeability tensor components for HFM2. This

is suspected to have significant effects on the process of fluid diffusion.

5.4.3 Phase 1 injection test at GPK1 well, 1993: Permeability enhancement

of the reservoir using HFM2

The same boundary and initial conditions as addressed in section (5.2) are considered in the

following simulations. Poroelastic and thermoelastic material properties are as in Table (5.3).

Material properties for HF are as indicated in Table (5.4) except for the model parameter

ξ = 0.0205, which is calculated for pfw = 39 MPa.

Unlike the case when only mode I of fracturing is considered, section (5.2.2), hydraulic

fracturing process described by HFM2 requires less energy. For the same pore fluid injection

profile, presented in figure (5.8), HF remains active for a period of 2 years meanwhile it was

only significant of a period of 1 year when HFM of mode I was considered. After 2 years of

stimulation, the reservoir is almost entirely enhanced in the direction of maximum far field stress,

i.e. direction of fracture propagation, see figure (5.55).
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Figure 5.55: Enhanced longitudinal permeability component kx depicted as the projection of its

contour in the x− y plane. Fracture propagation is in the direction of maximum far field stress. In-

jection pressure schedule, described in figure (5.8), is sufficient to entirely enhance the HDR reservoir

in the longitudinal direction.

Clearly HFM2 provides stabler and smoother evolution of porous block permeability, section

(5.4.2), which is translated into slower propagation of the heat front and hence better hydraulic

enhancement (in terms of the volume being affected by the process of HF).
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The volume of the HDR reservoir enhanced by the process of HF, whether by applying

HFM or HFM2, for a period of one year, shows that cracks are evolving in the direction of

maximum far field stress (right boundary). This behavior drives longitudinal permeability to

get stimulated up to almost the same distances in x− and y− directions for HFM and HFM2

at year 1, compare figures (5.16(b)) and (5.55(a)). The results of these simulations are in good

agreement with the microseismic events diagram presented in (Bruel, [1995], fig. 2) for one year

of HF, announcing the propagation of hydraulic front and fracture coalescence.
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Figure 5.56: Contours of the mixture temperature at two times with HF by applying HFM2,

convection of heat is accounted for.

The preferential cooling following the new paths created by HF is shown in figure (5.56).

Heat front diffusion is fast and dominant in the direction of far field stress at which fractures

are propagating. The spurious wiggles on the temperature contours come from the shocks that

disturb heat front when porous medium permeability is suddenly increased due to HF.

Actually, the sudden increase in the formation permeability leads to significant increase in

pore fluid flux and hence pore fluid velocity. The concentration of heat forced convection de-

fined as fluid velocity multiplied by the gradient of mixture temperature v.∇∇∇θ, see equation

(2.19), requires special scrutiny and challenges the numerical methods used generally to solve

diffusion–dominated flow problems where convection of heat is not significant. These spurious

wiggles will be healed/stabilized by applying the Subgrid Scale (SGS) method, see section (6.4.2).

As observed previously in chapter (4) and section (5.2.2.3), the changes in pore fluid contours

are no longer significant in the zones of active HF, see figure (5.57). Since HF simulations by using

HFM and/or HFM2 are showing almost the same enhanced volume of the reservoir for a period
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of one year, pore pressure contours in figures (5.19(a)) and (5.57(a)) are almost, consequently,

the same.

0
200

400

0

100

200
25

30

35

40

x (m)y (m)

P
or

e 
pr

es
su

re
 (

M
P

a)

(a) Pore pressure contour at year 1

0
200

400

0

100

200
25

30

35

40

x (m)y (m)

P
or

e 
pr

es
su

re
 (

M
P

a)
(b) Pore pressure contour at year 10

Figure 5.57: Contours of the mixture pore pressure at two times with HF by applying HFM2,

convection of heat is accounted for.

After 2 years of HF, the HDR reservoir is almost entirely enhanced all over the directions of

fracture evolution. The changes in pore pressure contours, over the entire volume of the reser-

voir, become quite small as the tremendous fast increases in the components of permeability

tensor owing to HF become a fact, see figure (5.57(b)).
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Figure 5.58: Contours of longitudinal and transversal effective stresses after 10 years of HF by

applying HFM2, convection of heat is accounted for.

Contours of effective stresses, whether longitudinal or transversal, figure (5.58), are following
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the preferential cooling derived by the process of HF. Stresses are dawdled in compression in the

cooled regions due to tensile thermal stresses. Since the created new highly–permeable paths

take most of the fluid gradients directly in the direction of maximum far field stress, effective

stresses in such regions decrease in compression as well. However, the deficiency of fluid gradients

at other regions, where HF is not working, especially at the outer boundary not far away from

the injection well, will cause stresses to increase significantly in compression as it is kept in

mind that the reservoir is still hot from the surroundings there. Thus, at the outer boundary,

transversal cracks are most likely closing and permeability is possibly decreasing, unless shear

dilatation might cope for the reduction in fracture aperture, (Chen et al., [2007]).

Transversal effective stresses are also increasing in compression near the production well and

longitudinal cracks are most likely closing causing permeability components to decrease probably.
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Figure 5.59: Longitudinal permeability kx history at the injection well: Comparison between the

simulations using HFM or HFM2.

As stated in section (5.4.2), HFM2 accounts for mode I and mode II of crack propagation,

i.e. cracks are evolving as result of opening and shearing of their planes, and hence a stabler

growth of cracks for the same rock. This is clear in figure (5.59) where the curve of longitudinal

permeability history is going smoother.

A non–linear relation is found during the first two years of the simulations between injected

pore fluid pressure and the magnitude of the induced fluid flux at the injection well GPK1,

see figure (5.60(a)). The non–linearity of the pressure record versus flow record tells us that

improved connections are created around the borehole GPK1, it also describes the dependence

of hydraulic conductivity on the effective stress (Bruel, [1995]), see also figure (5.22).

The jump in the pore fluid pressure–flux record at the end of the process of HF can be

explained by considering the curves of permeability history, figure (5.59), and the way pore
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fluid flux is calculated. Normal fluid flux over a surface S is calculated by surface integral, see

equation (2.11) and section (3.2.1.2), such that: Q =

∫∫

S

[(−k/µ).∇∇∇p] n dS.
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Figure 5.60: (a) Relation between injected pore fluid pressure and the magnitude of created fluid

flux at the injection well GPK1 by HFM2. (b) Impedance profile of the enhanced HDR reservoir at

Soultz–Sous–Forêts by HFM2.

For a small change of injection pressure ∆p, just before and just after the end of HF, there

exists a significant abrupt change in the permeability tensor components averaged all over the

volume of the reservoir. This is also clear in figure (5.59) where permeability longitudinal

component suddenly jumps to reach the maximum value when cracks coalesce (more clear in

the case of HFM of only mode I of fracturing). I think that the jump of the pressure–flux record

can be mitigated if the spatial discretization of equation (5.20) is significantly refined, whence

a quite small time increment of the simulations is simultaneously considered. Such a suggestion

should be exhausting in terms of calculation time and memory storage though.

0 5 10 15 20

60

80

100

120

140

160

time (years)

T
em

pe
ra

tu
re

 (
°C

)

 

 

T
HFM

T
HFM2

10.5 years
4 years

At the production well

(a) Profiles of produced fluid temperature

0 5 10 15 20 25
0

10

20

30

40

50

Q
 (

l/s
)

Time (years)

 

 

Q
HFM

Q
HFM2

4 years 10.5 years

(b) Profiles of produced flow rate (Q)

Figure 5.61: Comparison between the time profiles of produced (a) temperatures (b) flow rates for

HFM and HFM2.

210

chapter5/figures/graf5-83.eps
chapter5/figures/graf5-84.eps
chapter5/figures/graf5-86.eps
chapter5/figures/graf5-87.eps


5.4 Improving the HFM to stand for shear sliding: Mode I and mode II fracturing
model (HFM2)

Since HFM2 enhances the permeability of more reservoir volume for the same injection

schedule of pore fluid, the reservoir is depleted faster which is well presented in figure (5.61(a)).

The produced flow of the HDR reservoir when HFM2 is applied is, by average, 2.5 times higher

than that produced if HFM is used in the simulations, figure (5.61(b)). The HDR reservoir will

work efficiently for 10.5 years in case of HFM and only 4 years when HFM2 is used. If flow

profiles, figure (5.61(b)), are numerically integrated over the efficient age of the HDR reservoir,

the useful extracted fluid volume is to be known:

• The volume of efficient fluid produced from the stimulated HDR reservoir by HFM over a

period of 10.5 years is 4.922 Million m3,

• while the volume of efficient fluid produced from the stimulated HDR reservoir by HFM2

over a period of 4 years is 2.681 Million m3.

These huge amounts of water used are not utterly lost; one should keep in mind that the

geothermal fluids are recirculated over the volumes of the HDR reservoirs over and over again.

For instance, for the first case of HFM, we need to run the geothermal system on 1280 m3/day.

If there is no fluid lost, this quantity of the geothermal fluid will be pumped and reproduced all

along the effective age of 10.5 years.

By the calculations above, about 45.5% of the efficient produced fluid is lost when HFM2

is used in the simulations for the injection schedule presented in figure (5.8). However, using

HFM2 has reduced the power needed to operate the HDR reservoir by about 80%, see figure

(5.60(b)). The implementation of HF is a matter of compromise; less consumption of energy

requires strong HF which, regrettably, means short effective age of the HDR reservoir and hence

reduction of the ultimate produced efficient fluid.

(Murphy et al., [1999]) have indicated that the ambitious goal is to enhance HDR reservoirs

to a point their impedances become very small, i.e. Z < 100 MPa s/m3 on a consistent ba-

sis. This can be achieved numerically by applying HFM2 and choosing such a strong injection

schedule where more volume of the reservoir is to be enhanced. Yet, one should keep in mind

that such a process will strongly and regrettably reprimand the effective age of the reservoir and

thus the amount of the efficient fluid produced.

(Jiang et al., [2013]) have proven that, during heat extraction process, the heat being trans-

ferred to the transmissive fluid comes from the reservoir rock matrix directly by convective and

conductive heat exchange, with convection of heat being most dominant in most EGS projects
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(proven in our work previously). The other part of transferred heat comes indirectly from the

rocks enclosing the reservoir mainly by heat conduction into the solid rocks. The contribution

from the enclosing rocks is very small compared to the transferred heat coming from the HDR

reservoir itself. For the work of (Jiang et al., [2013]), such a contribution did not exceed 6%

of the initial reservoir temperature after 25 years of fluid circulation. Thus, assuming that the

useful part of the reservoir is properly defined, considering or neglecting the contribution of

energy coming from rocks enclosing the reservoir is frivolous. HF process remains a matter of

compromise between the energies input to and output from an HDR reservoir.

5.4.4 Beyond HFM and HFM2: Shear slippage under compressive stresses

Neither HFM nor HFM2 accounts for slippage of fracture plane under compressive stresses.

Though HFM2 was designed such that mode II of fracturing may occur, the change in fracture

aperture was related to the increase of fracture radius under tensile stresses. In fact, as soon as

pumping geothermal fluids begins, the geologic stress state acting on the fractures will change.

The stress change may create a deviatoric stress condition that can cause shear slippage of some

fractures and hence increasing their apertures.

(Bunger et al., [2013]) have developed an analytical approach to simulate the roughness in-

duced opening of fractures in the presence of compressive and shear stresses as well as fluid

pressure inside the fracture. They have found that shear slippage takes place along the planes

of pre–existing fractures which causes permanent opening of the fracture planes by the fracture

asperities (roughness induced opening). Their work has also shown that, this shear slippage

before the limit of fracture opening (tensile normal stresses) has a maximum value that can be

reached. (Bunger et al., [2013], p. 573) have indicated that this maximum slippage is measured

to be of the order of a fraction of a millimeter, meanwhile, fracture aperture that is created by

conventional HF is in the order of tens of millimeters.

Consequently, though our research does not stand for fracture slippage before the onset of

HF, it is most likely not expected to affect the permeability profiles that were obtained by our

simulations.
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5.5 Chemical enhancement of geothermal reservoirs: A short

review

The permeability of a fractured porous medium is affected by the chemical composition of the

injected fluid. Flow is changing corresponding to the paths created and/or closed by dissolution

and precipitations of minerals on fracture walls. It is inevitable, in such a case, to consider the

fractures as conduits with non–constant apertures which may evolve with time and during the

alteration, (Du et al., [2005]).

Considering the chemical enhancement side by side with the process of HF leads to innovative

stimulation technologies which take into account a lot of possibilities that were ignored before.

Although great breakthroughs have been made in this field, plenty of difficulties are always

lying ahead when accounting for the chemical enhancement that include, (Evans et al., [2009]):

multiple types of co–existing formation damage, uncertain rock mineralogy, complex chemical

reactions between fluids and formation minerals, and fast reaction kinetics at elevated tem-

peratures. Others are: inadequate zonal coverage, limited active penetration of chemicals, rock

deconsolidation due to chemical-rock interactions, chemical emulsion and sludge tendencies, cor-

rosion, safety and environmental concerns.

(Taron and Elsworth, [2009]) studied the necessity of coupling between the chemical ef-

fects and the geomechanical (mechanical, hydraulic and thermal) processes happening in EGS,

as well as quantifying the strength of coupling between the aforementioned processes. They

utilized laboratory results of fracture behavior under hydrothermal conditions to describe the

aperture changes due to Thermo–Hydro–Mechanical–Chemical (THMC) changes, (Taron and

Elsworth, [2009], p. 856). Permeability tensor components have been noticed to be influenced

by each geomechanical process separately: a strong influence of mechanical effects in the short–

term, the influence of thermal effects in the intermediate–term, and the prolonged and long-term

influence of chemical effects.

A strong coupling between chemical and mechanical processes has been observed. Chemical

dissolution will affect the aperture (permeability) available for THM responses and the change

in the THM responses will affect the flow map, and hence the chemical alteration process.

A method is implemented to introduce the coupling of thermal, hydraulic and chemical pre-

cipitation/dissolution processes with the mechanical response in (Taron et al., [2009]). This
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article completes the research presented in (Taron and Elsworth, [2009]): it studies the com-

bined influence of stress–driven asperity dissolution, thermal–hydro–mechanical asperity com-

paction/dilation, and mineral precipitation/dissolution alteration onto the permeability of frac-

tures during thermal, hydraulic, and chemical stimulation. Linear dual–porosity poroelasticity

is introduced to mechanically link fractures to the rock matrix. Heterogeneity is accounted for

where permeability, porosity, stiffness and chemical composition may spatially differ and evolve

with local temperature, effective stress and chemical potential. The approach considers inertial

effects in the fracturing process, it has been proven able to represent rapid and undrained re-

sponse of the fluid–mechanical system to mechanical loading.

Acidizing1 is the common technique exploited in the process of chemical enhancement.

Acidizing has several undesired side effects that include: Clay swelling, fines migration, gel

formation/ particle precipitation. These side effects can be mitigated or even avoided by imple-

menting a well designed chemically and physically compatible hydrofluoric2 acid (FH) stimula-

tion treatment. Care is to be paid when acidizing in the presence of illites, potassium feldspars,

sodium feldspars and zeolites, as these compounds can contribute to the formation of matrix–

blocking precipitates, (Evans et al., [2009]).

Clay swelling occurs when the acidizing fluids exchange ions with formation minerals: acidiz-

ing fluids become more and more brine and thus too weak to prevent clay swelling. Care is to

be taken to sustain the salinity of the injected fluid after ion exchange. In details, many water–

sensitive clays contain potassium chloride (KCl) and sodium chloride (NaCl) ions that can be

exchanged with ions in injected fluids to lower the salinity of the fluid. For example, when a 3%

ammonium chloride (NH4Cl) acidizing fluid flows across a typical ion–exchanging clay, the fluid

becomes 3.3% NaCl, a brine too weak to prevent clay swelling, thus requiring a 5% (NH4Cl) or

equivalent solution.

Chemical enhancement has been, for so long, implemented in oil and gas wells: it has been

partially adopted in the EGS mainly to remove scaling deposited in the wells after long years

of exploitation. However, recently they have been applied to geothermal granitic reservoirs like

Fjallbäcka3 and Beowawe4 improving fracture network in the host rock, (Evans et al., [2009]).

1Well–stimulation method to increase oil production by injecting hydrochloric acid into the oil-bearing for-

mation; the acid dissolves rock to enlarge the porous passages through which the oil must flow.
2Hydrofluoric acid (FH) is a solution of hydrogen fluoride in water. Hydrofluoric acid is a highly corrosive

acid, capable of dissolving many materials, especially oxides. FH is used as a catalyst to equilibrate the very

alkylated formations.
3HDR project in Sweden
4HDR project in Nevada, USA
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In the USA, 90% of the wells chemically enhanced showed two to four fold production increases,

(Evans et al., [2009]).

Chemical enhancement was applied to the EGS of Soultz-sous-Forêts: the wells GPK2, GPK3

and GPK4 were subjected to distinct amounts of chemicals and thus the injectivity of each well

was altered differently. The chemical treatment at this geothermal site was characterized by

high reactivity and slow flow which prevented the penetration of acid to the far field between

the wells. Increasing of reactivity is not necessarily the solution; high reactivity involves the

creation of “wormholes”, i.e. increasing the porosity but not always the permeability of the

medium. The compromise could include using high fluid flow that will start HF process, this

will result in an enhancement of the fracture network as well as fracture connectivity.
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Chapter 6

Phenomenon of forced heat convec-

tion in EGS: Stabilization methods

This chapter sheds a spot of light on the computational difficulties associated with the phe-

nomenon of forced heat convection. The annoying spurious wiggles that appeared on the con-

tours of mixture temperature in the previous research are to be healed and/or mitigated by

applying some stabilization methods. The chapter proceeds as follows:

1. The mechanism of forced heat convection is first defined.

2. The Streamline–Upwind/Petrov–Galerkin (SUPG) method, which has been used to stabi-

lize the convection of heat in the previous chapters, is presented.

3. The method of Subgrid Scale (SGS) is studied and integrated into our FE code. The SGS

is designed to overcome the defects of the SUPG method especially for early times at the

injection well.

4. The simulations of sections (5.2.2) and (5.4.3) are repeated while accounting for the SGS

method instead of the SUPG method.

5. Finally, the Discontinuity Capturing Method (DCM) is addressed and integrated into our

FE code. The DCM is meant to heal the spurious wiggles of heat convection near the

production well at late times.

6.1 Mechanism of forced heat convection

The phenomenon of heat convection, also called advection1, is defined by the fluid velocity mul-

tiplied by the gradient of its temperature, i.e. v.∇θ. Heat convection can be well–understood

1The term convection and/or advection are synonymous in this research, however, a distinction remains in

some disciplines.
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by addressing the diffusion and convection of chemicals in a fluid.

Let us assume that we have a solute of concentration c = c(x, t) that is placed in a moving

fluid F at position (x0, y0) at time t = 0. The flow of the fluid F takes place at velocity

v = v(x, t) and is assumed uncoupled from external factors like fluid pressure for instance. At

time t = 0+, solute will start to diffuse, solute diffusion is homogenized through the space, with

velocity vs, figure (6.1).

➬➮➱✃❐ ➬

t=0

(x0❒ ❮0) 
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Figure 6.1: Diffusion leads ultimately to a spatially uniform repartition of the solute particles. In

a stream, the solute particles with turtle velocity are convected by the flow: their velocity is that of

the flow.

Two fluxes are introduced; the absolute flux q, and the diffusive flux qd to highlight that

diffusion is relative to the fluid flow:

q = cvs
︸ ︷︷ ︸

absolute flux

, qd = c(vs − v)
︸ ︷︷ ︸

diffusive flux

, (6.1)

where,

q = qd + cv (6.2)

Diffusion phenomenon is governed by:

- Fick’s law which relates the diffusive flux qd to the gradient of solute concentration through

the coefficient of molecular diffusion/or the chemical diffusivity Dc, such that:

qd = −Dc∇c, Fick’s law, (6.3)

- and by the balance of mass equation which, in terms of concentration c and absolute flux

q, writes:
∂c

∂t
+∇q = 0 (6.4)

By substituting equation (6.2) into equation (6.4) and while assuming constant convective

velocity v and constant chemical diffusivity Dc, one writes:

∂c

∂t
+ v.∇c−Dc∇2c = 0 (6.5)
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6.2 Presentation of the SUPG method: Mathematics and FEM formulation

The term
[

(∂c/∂t) + v.∇c
]

corresponds to a concentration wave propagating at constant

velocity v.

The aforementioned principle, to describe convection and diffusion of the solute concentra-

tion c, is the same as the principle adopted to describe convection and diffusion of heat in a

therm–poroelastic framework, see equation (2.19). The difficulty arises when numerically solving

the energy balance equation with dominant convection of heat. The Bubnov–Galerkin numerical

methods, which are widely and successfully used to describe diffusion–dominated problems, are

not as efficient when treating the heat wave
[

(∂θ/∂t) + v.∇θ
]

striking suddenly a stiff bound-

ary. Applying the conventional Bubnov–Galerkin methods will lead to a hyperbolic solution

with spurious numerical oscillations presenting the unstable reflexion of the heat wave. Hence,

a method is needed to stabilize the spurious numerical oscillations in the hyperbolic solutions of

the convection–dominated thermo–poroelastic BVPs.

Several of numerical methods were presented in literature to treat such oscillations, for ex-

ample: Galerkin/Least Squares method (GLS), the Galerkin/Gradient Least Squares method

(GGLS) and the Streamline–Upwind/Petrov–Galerkin (SUPG) method which is widely pre-

ferred. The SUPG method does not require an introduction to additional testing functions, it

nevertheless adds perturbations to the Galerkin test functions Nθ . This makes this method

widely acceptable and easily implemented to the problems of heat convection, not to forget that

the SUPG method is clearly described in the available literature.

6.2 Presentation of the SUPG method: Mathematics and FEM

formulation

The Streamline–Upwind/Petrov–Galerkin (SUPG) method, is the stabilization method that was

used to treat the oscillations of heat convection in all the foregoing research, (Gelet, [2012]). It

was sufficient to give smooth numerical solutions except for the following cases:

- Strong pumping near the injection well at early times.

- When HF is activated where strong increase in the permeability tensor components is

expected.

- At the production well at late times when the major part of the heat front reaches the

stiff boundary there.
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The structure of the SUPG method can be presented by defining the following operators:

let R be the convection–diffusion operator of our generic partial differential equation describing

the balance of energy of a thermo–poroelastic transient BVP:

R θ = θ̇ + v.∇∇∇θ −∇. (ψ∇∇∇θ) with Rconv θ = v.∇∇∇θ, (6.6)

R is the generic differential operator, Rconv is the convective part of the whole operator R,

v is the convective velocity vector (m/s) and ψ is the thermal diffusivity (m2/s). The transient

term of equation (6.6) is integrated in the definition of the differential operator R as first order

derivatives do not only occur in convective terms, but also in time–dependent terms ∂θ/∂t of

non–stationary problems.

The equation of balance of energy with its source term f can now be expressed by benefiting

from the definition of equation (6.6) such that:

R θ − f = 0, with Rconv θ = v.∇∇∇θ (6.7)

The weak form associated with equation (6.7) is defined as:
∫

V

δθ (R θ − f) dV (6.8)

δθ is the variation corresponding to the temperature change θ. SUPG method is a Petrov–

Galerkin method, thus two different interpolation functions are to be presented to interpolate

the unknown temperature change θ and the variation δθ:

θ = Nθ θ
e,

δθ = Wθ δθ
e

(6.9)

The SUPG method requires that the standard Bubnov–Galerkin shape functions Nθ to be

modified by a streamline upwind perturbation. The shape function Wθ is henceforth defined

as:

Wθ = Nθ + τ Rconv Nθ,

= Nθ + τ v∇Nθ

(6.10)

By substituting the definition (6.10) into equation (6.8), the discretized form of the problem

is reached:

Nel
∑

e=1

[δθe]T
∫

V e

NT
θ

(

R θ − f
)

dV e +
Nel
∑

e=1

[δθe]T
∫

V e

(

∇NT
θ vT

)

τ
︸ ︷︷ ︸

Streamline perturbation

(

R θ − f
)

dV e

︸ ︷︷ ︸

Stabilizing part

= 0

(6.11)
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τ is the stabilization parameter that weighs the perturbation, it is expressed as:

τ =
h

2|v|

(

coth(α)− 1

α

)

(6.12)

v is the convective velocity (m/s), h is the typical element length (m) and α is the Péclet

number. It is observed that the perturbation term τ v∇Nθ is applied to all the terms of the

weak form; including those in the residual form f of the differential equation. This ensures

that consistency is enforced from the beginning and that the exact solution should fulfill the

stabilized weak form.

To overcome the deficiencies of the SUPG method to heal the oscillations in the numerical

solutions of transient convection–diffusion problems at early times and when activating the HF

process, the Subgrid Scale/Gradient Subgrid Scale SGS/GSGS method is to be presented.

6.3 Presentation of the SGS/GSGS method

As stated previously, the application of the SUPG method is not sufficient to circumvent the

spurious oscillations in the numerical solutions especially at small time steps and when activating

HF. Actually, the characteristic time that weighs the stabilization of the SUPGmethod, equation

(6.12), can be expressed as in (Yin et al., [2009]):

τ =
1

√
(

2

∆t

)2

+

(
2|v|
h

)2

+ 9

(
4ψ

h2

)2
, (6.13)

with ∆t being time step (s), v is the convective velocity (m/s), h is the typical element

length (m) and ψ is the thermal diffusivity (m2/s). For quite small time steps (∆t → 0), the

stabilization coefficient τ becomes inefficient:

lim
∆t→0

τ = 0 (6.14)

It is, henceforth, conceivable that the calculation of the stabilization parameter must take

into account a time–dependent factor, where the transition between the convection–dominated

situation and the diffusion dominated situation in small time steps is indeed natural.

The incorporation of a time–dependent factor into the calculation of the stabilizing param-

eters was declared in the work of (Harari, [2004]). He suggested that the transient term of a

transient diffusion problem can be transformed into a reaction term by first discretizing in time

instead of the conventional method of first discretizing in space. This scheme of integration
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converts the transient diffusion problem into a steady diffusion–reaction problem. The latter

problem is deployed to include the conversion of a transient convection–diffusion problem to a

steady convection–diffusion–reaction problem addressed by (SGS/GSGS method).

6.3.1 The mathematics of the SGS/GSGS method

In an explicit form, let L be the steady state convection–diffusion operator and L∗ its adjoint

defined by integration by parts1:

Lϕ = v.∇∇∇ϕ−∇. (ψ∇∇∇ϕ)

−L∗ ϕ = v.∇∇∇ϕ+∇. (ψ∇∇∇ϕ)
(6.15)

The transient problem is now defined as:

∂φ

∂t
+ Lϕ− f = 0, with appropriate boundary and initial conditions (6.16)

Now the transient convection–diffusion problem (6.16) is to be integrated using a generalized

trapezoidal scheme (β method) to find a definition for the reaction term:

ϕn+1 − ϕn

∆t
+ (Lϕ− f)n+β = 0 (6.17)

Applying the notation an+β = (1−β) an+β an+1, equation (6.17) can be further manipulated:

β
(

Ln+1 ϕn+1 − fn+1

)

+
ϕn+1

∆t
= −(1− β)

(

Ln ϕn − fn
)

+
ϕn

∆t

vn+1.∇∇∇ϕn+1 −∇. (ψ∇∇∇ϕn+1) +
ϕn+1

β∆t
=
−(1− β)

β
Ln ϕn +

fn+β

β
+

ϕn

β∆t

(6.18)

Let us redefine the operators L and L∗ such that all the time–independent parts of equation

(6.18) are highlighted in the left hand side:

Nϕ = v.∇∇∇ϕ−∇. (ψ∇∇∇ϕ)− s ϕ,

−N∗ ϕ = v.∇∇∇ϕ+∇. (ψ∇∇∇ϕ) + s ϕ
(6.19)

s is the source parameter s > 0 for production and s < 0 for dissipation or absorption, the

source parameter s is expressed following the formulation:

s =
−1
β∆t

< 0 (6.20)

1

∫

V

(Lϕ,E) =

∫

∂V

[

v ϕE− (ψ∇∇∇ϕ)E+ ϕψ∇∇∇E

]

.n dS +

∫

V

(ϕ,L∗ E)
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The steady convection–diffusion–reaction problem at step n+ 1 is now defined as:

Nϕn+1 − Fn+1 = 0, (6.21)

where:

Fn+1 =
−(1− β)

β
Ln ϕn +

fn+β

β
+

ϕn

β∆t
(6.22)

The weak form of the stabilized equation (6.21) can be reached by discretizing the space

Ω into N el non–overlapping generic elements e, where each occupies a volume of Ωe such that

Ω =
∑Nel

e=1Ω
e. For a spatial discretization corresponding to a characteristic length h, let Nh be

the associated finite element solution and V
h be the weighting space. For some variation wh

which belongs to the space V
h, the integral weak form of equation (6.21) is sought such that:

let us find ϕh ∈ N
h for all wh ∈ V

h:

∫

V

wh

(

Nϕh
n+1 − Fn+1

)

dV +

Nel
∑

e=1

∫

V e

(

−N∗ w
h
n+1

)

τ e00

(

Nϕh
n+1 − Fn+1

)

dV e

+

Nel
∑

e=1

∫

V e

∇∇∇
(

−N∗ w
h
n+1

)

τ e11∇∇∇
(

Nϕh
n+1 − Fn+1

)

dV e = 0,

(6.23)

where τ e00 (s) and τ e11 (m2 s) are the stabilization parameters.

(Hauke et al., [2007]) have implemented the one–dimensional nodal exactness to relate the

stabilization parameters τ e00 and τ e11 to two dimensionless parameters namely t00 and t11 respec-

tively:

τ e00 =
h

|v| t00,

τ e11 =
h3

|v| t11
(6.24)

With nodal exactness they could have also defined these dimesionless parameters as:

t00 =

(

−2σ +
σ2 sinh(α)

− cosh(α) + cosh(γ) + σ sinh(α)

)−1

, (6.25)

and:

t11 =
1

6σ3



−3− σ2 + 3σ

α
+
σ
(

3σ cosh(γ) + (−3 + σ2) sinh(α)
)

−2 cosh(α) + 2 cosh(γ) + σ sinh(α)



 , (6.26)

where:
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γ =
√

α(−2σ + α) (6.27)

α and σ are the Péclet and Damköhler numbers respectively, they are defined as following:

α =
|v|h
2ψ

=
Advection

Diffusion
Péclet number

σ =
s h

|v| =
Reaction

Advection
Damköhler number

(6.28)

Figure (6.2) shows the behavior of the parameters t00 and t11 as functions of α and σ.
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Figure 6.2: Dimensionless stabilizing parameters (a): t00 and (b): t11 stemming from one–

dimensional nodal exactness of (Hauke et al., [2007]).

Following figure (6.2), it is noted that the first stabilizing parameter t00 is always positive,

whereas the second one t11 is always negative. For linear elements in one–dimensional prob-

lems and under convective–diffusive dominant condition (σ → 0), the method, equation (6.23),

produces the same modification as the SUPG method in absence of the reactive term s:

∫

V

wh

(

Nϕh
n+1 − Fn+1

)

dV

+

Nel
∑

e=1

∫

V e

(

v.∇∇∇wh
n+1

)

τ ead

(

Nϕh
n+1 − Fn+1

)

dV e = 0,

(6.29)

where τ ead is the standard convective parameter obtained by implementing Taylor expansion

of equations (6.25) and (6.27) around (σ = 0), see (Hauke et al., [2007]) for details1:

τ ead
σ→0−−−→ h

2|v|

(

coth(α) − 1

α

)

(6.30)

1The third term of equation (6.23) disappears as at least for linear elements in one–dimensional problems, the

gradient stabilization term N∗ disappears when σ → 0 as τ e11 is uniformly bounded to a limit, see figure (6.2(b)),

whence s2 τ e11 → 0. The previous remark becomes quite clear if the matrix form of equation (6.23) is derived for

one–dimensional problem with linear elements.
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(Hauke et al., [2007], p. 309–311) have provided several definitions for the stabilizing param-

eters τ e00 and τ e11 depending on the dominant limit: convective–diffusive with no reaction limit,

without convection limit, reaction dominated limit and high Péclet number limit. The general

expressions of equations (6.25) and (6.26) were implemented in the work of (Yin et al., [2009])

and showed good results. The only case where it is thought that the general expressions could be

troublesome is when s is very small, generally less than 10−3 (1/s). The latter case is addressed

as “convective–diffusive with no reaction limit”.

The convective–diffusive with no reaction limit is to be implemented if s is considerably small:

as s → 0, σ → 0− as well and the dimensionless stabilizing parameters are to be calculated as

follows:

t00 → 1

2

(

coth(α) − 1

α

)

α→0−−−→ α

6

t11 → −1
24

(
3

α3

(
1− α coth(α)

)
+ coth(α)

)

α→0−−−→ − α

60

(6.31)

For a single porosity isotropic thermo-poroelastic BVP, the equation of balance of energy of

the mixture, section (2.1.2.3), reads:

∂θ

∂t
+ v.∇∇∇θ −∇. (ψ∇∇∇θ)− T0

[(
φ0 αf + (κ− φ0)α

′

s

)

ρ cv

∂p

∂t
− K α

′

s

ρ cv

∂

∂t
(εkk)

]

︸ ︷︷ ︸

f

= 0 (6.32)

By comparing equation (6.32) and equation (6.16) and while considering the definitions of

equation (6.28), the appropriate convection and reaction parameters α and σ read:

α← |v|h
2ψ

, (6.33)

and:

σ ← − h

β∆t |v| (6.34)

6.3.2 The finite element formulation of the SGS/GSGS method

Let us consider that we have a geothermal BVP on which we desire to apply the SGS/GSGS

method. Let us denote the geostatic step by n at which the discretization of time is t = 0. At

step n + 1, ∆t is recorded, equation (6.32) is discretized in time to get the reaction term (s θ)

and the term Nθn+1 is defined as, see equation (6.19):
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N θn+1 = vn+1.∇∇∇θn+1 −∇. (ψ∇∇∇θn+1)− s θn+1 (6.35)

The source term Fn+1 is more complicated and depends on the trapezoidal time integration

of f , equation (6.32), and the term Ln θn, equation (6.22):

Ln θn = vn.∇∇∇θn −∇. (ψ∇∇∇θn) , (6.36)

Let us define the following two coefficients1:

ap =

(
φ0 αf + (κ− φ0)α

′

s

)
T0

ρ cv
, (6.37)

and:

aε = −
K α

′

s T0
ρ cv

(6.38)

The source term f is now defined as:

f = ap
∂p

∂t
+ aε

∂

∂t
(εkk), (6.39)

and hence:

fn+β

β
=

1

β

[

(1− β) fn + β fn+1

]

, (6.40)

and finally,

fn+β

β
=

(
1

β
− 1

)[

ap ṗ
n + aε ε̇

n
kk

]

+ ap ṗ
n+1 + aε ε̇

n+1
kk (6.41)

By substituting equations (6.36) and (6.41) into equation (6.22), the following definition of

Fn+1 is obtained:

Fn+1 = −
(
1

β
− 1

) [

vn.∇∇∇θn −∇. (ψ∇∇∇θn)
]

+

(
1

β
− 1

)[

ap ṗ
n + aε ε̇

n
kk

]

+ ap ṗ
n+1 + aε ε̇

n+1
kk

− sθn
(6.42)

By collecting all the previously known terms (of step n) of equation (6.42) in one side, the

formulation of a variable −Gn is defined as follows:

−Gn =

(

1− 1

β

) [

vn.∇∇∇θn −∇. (ψ∇∇∇θn)
]

− sθn +

(
1

β
− 1

)[

ap ṗ
n + aε ε̇

n
kk

]

(6.43)

1Despite being a rigorous assumption, a homogeneous isotropic continuum is assumed
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Now Fn+1 sums to:

Fn+1 = ap ṗ
n+1 + aε ε̇

n+1
kk −Gn (6.44)

Equation (6.35) and equation (6.44) are to be integrated into equation (6.23) along with ap-

propriate definition of interpolation functions to get the matrix form of the weak formulation of

equation (6.23). Let Nθ be the interpolation functions chosen to interpolate the unknown tem-

perature change θ, andWθ the interpolation functions to interpolate the variation corresponding

to the temperature change δθ:

θ = Nθ θ
e,

wh = Wθ δθ
e = Nθ δθ

e,

∇∇∇(wh) = ∇Nθ δθ
e

(6.45)

Bubnov–Galerkin method is adopted in this study and the weighting functions are chosen

equal to the shape functions (Wθ = Nθ). The matrix form of equation (6.23) is to be obtained

working term by term of the Left Hand Side (LHS):

1. First term of the LHS ∫

V

wh

(

Nϕh
n+1 − Fn+1

)

dV (6.46)

Yet:

N θhn+1 − Fn+1 = vn+1.∇∇∇θn+1 − ψ∆θn+1
︸ ︷︷ ︸

∆θ=∇.(∇∇∇θ)

−s θn+1

︸ ︷︷ ︸

N θhn+1

−ap ṗn+1 − aε ε̇n+1
kk +Gn (6.47)

Integration by parts for the diffusive term (ψ∆θn+1):

∫

V

wh ψ∆θn+1 dV =

∫

∂V

wh ψ∇∇∇θ.n ds−
∫

V

ψ∇∇∇wh.∇∇∇θ dV (6.48)

The definitions of equation (6.45) are now applied to get the matrix form of equation

(6.46):

∫

V e

wh (N θn+1)
e dV e =

∫

V e

wh
N(Nθ θ

e
n+1) dV

e

=
Nel
∑

e=1

[δθe]T

[
∫

V e

NT
θ

(

vT
n+1∇∇∇Nθ − sNθ

)

θe
n+1 + (∇∇∇Nθ)

T ψ∇∇∇Nθ θ
e
n+1 dV

e

+ NT
θ

∫

∂V e

hn+1

ρ cv
dse

]

,

(6.49)
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where:

hn+1

ρ cv
=
−χ∇∇∇θn+1.n

ρ cv
=

Normal heat flux

volumetric specific heat
, χ is the thermal conductivity (6.50)

Before getting the matrix form of the weak formulation

∫

V

−wh Fn+1 dV , let us recall the

following definitions from section (3.2.2):

vs = Nu u̇e,

ε̇kk = tr(Bu) u̇
e,

ṗ = Np ṗ
e

(6.51)

The quantity −Gn, of equation (6.44), is to be treated as an influence working at the

interior of the generic elements; hence no integration by parts is needed for the diffusive

term ψ∇.(∇θn). Let us define the coefficient aβ such that:

aβ =

(

1− 1

β

)

(6.52)

∫

V e

−wh F e
n+1 dV

e

=

Nel
∑

e=1

[δθe]T
∫

V e

NT
θ

[

− apNp ṗ
e
n+1 − aε tr(Bu) u̇

e
n+1 − aβ

[

vT
n ∇∇∇Nθ − ψ∆∆∆Nθ

]

θe
n

+ sNθ θ
e
n + aβ

[

apNp ṗ
e
n + aε tr(Bu) u̇

e
n

]
]

dV e

(6.53)

The elemental vector Ge
n is now defined as:

Ge
n = NT

θ

(

−aβ
[

vT
n ∇∇∇Nθ − ψ∆∆∆Nθ

]

θe
n + sNθ θ

e
n + aβ

[

apNp ṗ
e
n + aε tr(Bu) u̇

e
n

])

(6.54)

Let us now consider the following definitions for four elemental vectors namely, Ce
1θ, C

e
1u,

Ce
1p and C̃e

1θ:

Ce
1θ = NT

θ vT
n+1∇∇∇Nθ + ψ (∇∇∇Nθ)

T ∇∇∇Nθ − sNT
θ Nθ, (6.55)
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Ce
1u = −aεNT

θ tr(Bu), (6.56)

Ce
1p = −apNT

θ Np, (6.57)

and finally:

C̃e
1θ = −aβ NT

θ vT
n ∇Nθ + aβ ψNT

θ ∆Nθ + sNT
θ Nθ (6.58)

The elemental vector Ge
n becomes:

Ge
n = C̃e

1θ θ
e
n − aβ Ce

1p ṗ
e
n − aβ Ce

1u u̇e
n (6.59)

(Finite element matrices C̃e
1θ, C

e
1p and Ce

1u are estimated at time n)

The matrix form of equation (6.46) finally sums to:

∫

V e

wh

(

(N θn+1)
e − F e

n+1

)

dV e

=

Nel
∑

e=1

[δθe]T

[
∫

V e

Ce
1θ θ

e
n+1 +Ce

1u u̇e
n+1 +Ce

1p ṗ
e
n+1 dV

e +

∫

V e

Ge
n dV

e

+

∫

∂V e

NT
θ

hn+1

ρ cv
dse

]

(6.60)

2. Second term of the LHS

Nel
∑

e=1

∫

V e

(

−N∗ w
h
n+1

)e

τ e00

(

(N θn+1)
e − F e

n+1

)

︸ ︷︷ ︸

Worked in equation (6.46)

dV e (6.61)

(

−N∗ w
h
n+1

)e

= −N∗(Nθ δθ
e) = vT

n+1∇∇∇Nθ δθ
e + ψ∆∆∆Nθ δθ

e + sNθ δθ
e (6.62)

Nel
∑

e=1

∫

V e

(

−N∗ w
h
n+1

)e

dV e =
Nel
∑

e=1

[δθe]T
∫

V e

(∇∇∇Nθ)
T vn+1+ψ (∆∆∆Nθ)

T +sNT
θ dV e (6.63)

The boundary terms of the thermal diffusivity in equation (6.61) vanish by considering

the stabilization contribution only on the element’s interior.
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(N θn+1)
e = N(Nθ θ

e
n+1) =

[
vT
n+1∇∇∇Nθ − ψ∆∆∆Nθ − sNθ

]
θe
n+1 (6.64)

−F e
n+1 = −apNp ṗ

e
n+1 − aε tr(Bu) u̇

e
n+1 − aβ

[

vT
n ∇∇∇Nθ − ψ∆∆∆Nθ

]

θe
n + sNθ θ

e
n

+ aβ

[

apNp ṗ
e
n + aε tr(Bu) u̇

e
n

]

(6.65)

Let us define the following elemental vectors:

CeT
2θ = (∇∇∇Nθ)

T vn+1 + ψ (∆∆∆Nθ)
T + sNT

θ , (6.66)

Ce
2θ = vT

n+1∇∇∇Nθ + ψ∆∆∆Nθ + sNθ, (6.67)

Ce
3θ = vT

n+1∇∇∇Nθ − ψ∆∆∆Nθ − sNθ, (6.68)

Ce
2u = −aε tr(Bu), (6.69)

Ce
2p = −apNp, (6.70)

C̃eT
2θ = −aβ vT

n ∇∇∇Nθ + aβ ψ∆∆∆Nθ + sNθ (6.71)

and finally:

Me
n = C̃e

2θ θ
e
n − aβ Ce

2p ṗ
e
n − aβ Ce

2u u̇e
n (6.72)

(Finite element matrices C̃e
2θ, C

e
2p and Ce

2u are estimated at time n)

Finally the matrix form of equation (6.62) is expressed as:

Nel
∑

e=1

∫

V e

(

−N∗ w
h
n+1

)e

τ e00

(

(N θn+1)
e − F e

n+1

)

dV e

=

Nel
∑

e=1

[δθe]T
∫

V e

CeT
2θ τ

e
00

[

Ce
3θ θ

e
n+1 +Ce

2u u̇e
n+1 +Ce

2p ṗ
e
n+1 +Me

n

]

dV e

(6.73)
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3. Third term of the LHS

Before proceeding in getting the matrix form of the third term of the LHS of equation

(6.23), let us keep in mind the following definitions1:

∇∇∇(−N∗ ϕ) = v.∇2ϕ+∇v∇∇∇ϕ+∇∇∇
(

∇. (ψ∇∇∇ϕ)
)

+ s∇∇∇ϕ, (6.74)

∇∇∇(Nϕ) = v.∇2ϕ+∇v∇∇∇ϕ−∇∇∇
(

∇. (ψ∇∇∇ϕ)
)

− s∇∇∇ϕ, (6.75)

and,

∇∇∇(Lϕ) = v.∇2ϕ+∇v∇∇∇ϕ−∇∇∇
(

∇. (ψ∇∇∇ϕ)
)

(6.76)

It is henceforth concluded:

∇∇∇
(

−N∗ w
h
n+1

)e

= ∇∇∇
(

−N∗(Nθ δθ
e)
)

= vT
n+1∇2∇2∇2Nθ δθ

e + (∇vn+1)
T ∇∇∇Nθ δθ

e + ψ∇∇∇(∆∆∆Nθ) δθ
e

+ s∇∇∇Nθ δθ
e

(6.77)

Nel
∑

e=1

∫

V e

∇∇∇
(

−N∗ w
h
n+1

)e

dV e

=

Nel
∑

e=1

[δθe]T
∫

V e

(∇2∇2∇2Nθ)
T vn+1 + (∇∇∇Nθ)

T
∇vn+1 + ψ

(

∇∇∇(∆∆∆Nθ)
)T

+ s (∇∇∇Nθ)
T dV e

(6.78)

The boundary terms of the thermal diffusivity vanish by considering the stabilization

contribution only on the element’s interior.

∇∇∇(N θn+1)
e = ∇∇∇

(

N(Nθ θ
e
n+1)

)

=
[

vT
n+1∇2∇2∇2Nθ + (∇vn+1)

T ∇∇∇Nθ − ψ∇∇∇(∆∆∆Nθ)− s∇∇∇Nθ

]

θe
n+1

(6.79)

∇∇∇(−F e
n+1) = −ap∇∇∇Np ṗ

e
n+1 − aε∇∇∇tr(Bu) u̇

e
n+1 − aβ

[

vT
n ∇2∇2∇2Nθ + (∇vn)

T ∇∇∇Nθ

− ψ∇∇∇(∆∆∆Nθ)
]

θe
n + s∇∇∇Nθ θ

e
n + aβ

[

ap∇∇∇Np ṗ
e
n + aε∇∇∇tr(Bu) u̇

e
n

]

(6.80)

1
∇(v.∇ϕ) =

∂

∂xi

(

vk
∂ϕ

∂xk

)

= vk
∂2ϕ

∂xi∂xk

+
∂vk
∂xi

∂ϕ

∂xk
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Let us define the following elemental vectors:

∇∇∇CeT
2θ = (∇2∇2∇2Nθ)

T vn+1 + (∇∇∇Nθ)
T
∇vn+1 + ψ

(

∇∇∇(∆∆∆Nθ)
)T

+ s (∇∇∇Nθ)
T , (6.81)

∇∇∇Ce
2θ = vT

n+1∇2∇2∇2Nθ + (∇vn+1)
T ∇∇∇Nθ + ψ

(

∇∇∇(∆∆∆Nθ)
)

+ s∇∇∇Nθ, (6.82)

∇∇∇Ce
3θ = vT

n+1∇2∇2∇2Nθ + (∇vn+1)
T ∇∇∇Nθ − ψ∇∇∇(∆∆∆Nθ)− s∇∇∇Nθ , (6.83)

∇∇∇Ce
2u = −aε∇∇∇tr(Bu), (6.84)

∇∇∇Ce
2p = −ap∇∇∇Np, (6.85)

∇∇∇C̃eT
2θ = −aβ vT

n ∇2∇2∇2Nθ − aβ (∇vn)
T ∇∇∇Nθ + aβ ψ

(

∇∇∇(∆∆∆Nθ)
)

+ s∇∇∇Nθ, (6.86)

and finally:

∇∇∇Me
n = ∇C̃e

2θ θ
e
n − aβ ∇Ce

p ṗ
e
n − aβ ∇Ce

2u u̇e
n (6.87)

(Finite element matrices ∇C̃e
2θ, ∇Ce

2p and ∇Ce
2u are estimated at time n)

The matrix form is now expressed as:

Nel
∑

e=1

∫

V e

∇∇∇
(

−N∗ w
h
n+1

)e

τ e11∇∇∇
(

(N θn+1)
e − F e

n+1

)

dV e

=
Nel
∑

e=1

[δθe]T
∫

V e

∇∇∇CeT
2θ τ

e
11

[

∇∇∇Ce
3θ θ

e
n+1 +∇∇∇Ce

2u u̇e
n+1 +∇∇∇Ce

2p ṗ
e
n+1 +∇∇∇Me

n

]

dV e

(6.88)

The matrix forms of equations (6.60), (6.73) and (6.88) are to be combined to get the entire

behavior of the steady advective–diffusive–reaction BVP expressed in equation (6.23). Let us

define the following conclusive elemental vectors:
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Ce
θ = Ce

1θ + τ e00 C
eT
2θ Ce

3θ + τ e11∇∇∇CeT
2θ ∇∇∇Ce

3θ,

Ce
u = Ce

1u + τ e00 C
eT
2θ Ce

2u + τ e11∇∇∇CeT
2θ ∇∇∇Ce

2u,

Ce
p = Ce

1p + τ e00C
eT
2θ Ce

2p + τ e11∇∇∇CeT
2θ ∇∇∇Ce

2p,

F e
cn = Ge

n + τ e00 C
eT
2θ Me

n + τ e11∇∇∇CeT
2θ ∇∇∇Me

n

(6.89)

And finally:

Nel
∑

e=1

[

δu̇e δṗe δθ̇
e
]T

(
∫

V e




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θe
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 dV e
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V e
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u̇e
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ṗe
n+1

θ̇
e

n+1





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dV e

)

+
Nel
∑

e=1

[

δu̇e δṗe δθ̇
e
]T

(
∫

∂V e







−−−
−−−

NT
θ

hn+1

ρ cv






dse +

∫

V e






−−−
−−−
F e
cn




 dV

e

)

=






−−−
−−−

0






(6.90)

If the stabilizing parameters τ e00 and τ e11 are set to zero in the system of equations (6.89),

the conventional matrix form of the equation of balance of energy in a thermo–poroelastic frame

work is retrieved provided that, the first trapezoidal integration of time is accounted for.

6.3.3 First, second and third order gradients of the shape functions of the

four–node bilinear quadrilateral elements (Q4)

Two–dimensional four–node isoparametric elements are used to represent the spatial discretiza-

tion of the geothermal BVPs being considered in this research. The shape functions at a given

node are equal to one at this node and to zero at the other nodes. The shape functions of a

reference (parent) four-node bilinear quadrilateral element are shown in figure (6.3).

Let us assume that we have two vectors namely xe and ye that collect the physical coordi-

nates of the nodes of an arbitrary element running counter–clockwise1:

[xe]T = [xe1 xe2 xe3 xe4], [ye]T = [ye1 ye2 ye3 ye4] (6.91)

1The collection of the coordinates should follow the same scheme as for the parent elements in ζ − η system

of figure (6.3).
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(1,1)(-1,1)

(-1,-1) (1,-1)

1 2

34

Figure 6.3: Shape functions for a four-node bilinear quadrilateral reference element. Nodal points

are labeled in ascending order in counter-clockwise direction.

Let us define the following geometrical vectors and their corresponding parameters:

IT = [1 1 1 1], ζT = [−1 1 1 − 1], ηT = [−1 − 1 1 1], hT = [1 − 1 1 − 1] (6.92)

α0 =
1

4
IT xe, α1 =

1

4
ζT xe, α2 =

1

4
ηT xe, α3 =

1

4
hT xe,

β0 =
1

4
IT ye, β1 =

1

4
ζT ye, β2 =

1

4
ηT ye, β3 =

1

4
hT ye

(6.93)

The physical coordinates of an arbitrary element can thus be obtained from the parent

coordinates ζ − η of figure (6.3) by implementing the following isoparametric interpolation:

x = α0 + α1 ζ + α2 η + α3 ζ η,

y = β0 + β1 ζ + β2 η + β3 ζ η
(6.94)

Let us define the following notation:

A13 = α1 + α3 η, A23 = α2 + α3 ζ, B13 = β1 + β3 η,

B23 = β2 + β3 ζ,

∆0 = α1 β2 − α2 β1, X = α1 β3 − α3 β1, H = α3 β2 − α2 β3,

∆ = ∆0 +X ζ +H η

(6.95)

and:

ai =
1

4
(1 + ηi η) ζi, bi =

1

4
ζi ηi, ci =

1

4
(1 + ζi ζ) ηi, i ∈ [1, 4] (6.96)

Now the first, the second and the third gradients of the parent coordinates are expressed as

follows:
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• First order gradients of the parent coordinates

∂ζ

∂x
=

B23

∆
,

∂ζ

∂y
= −A23

∆
,

∂η

∂x
= −B13

∆
,
∂η

∂y
=

A13

∆

(6.97)

• Second order gradients of the parent coordinates

1

H

∂2ζ

∂x∂x
=

1

X

∂2η

∂x∂x
= 2

B13 +B23

∆3
,

1

H

∂2ζ

∂x∂y
=

1

X

∂2η

∂x∂y
= − A23B13 +A13B23

∆3
,

1

H

∂2ζ

∂y∂y
=

1

X

∂2η

∂y∂y
= 2

A13A23

∆3

(6.98)

• Third order gradients of the parent coordinates1

1

H

∂3ζ

∂x3
=

1

X

∂3η

∂x3
= 3× 1

H

∂2ζ

∂x∂x

B13H −B23X

∆2
,

1

H

∂3ζ

∂x2∂y
=

1

X

∂3η

∂x2∂y
= 3× 1

H

∂2ζ

∂x∂y

B13H −B23X

∆2
− β3

∆3
,

1

H

∂3ζ

∂y2∂x
=

1

X

∂3η

∂y2∂x
= 3× 1

H

∂2ζ

∂x∂y

A23X −A13H

∆2
− α3

∆3
,

1

H

∂3ζ

∂y3
=

1

X

∂3η

∂y3
= 3× 1

H

∂2ζ

∂y∂y

A23X −A13H

∆2

(6.99)

The first, the second and the third gradients of the shape functions Ni =
1

4
(1 + ζi ζ)(1 +

ηi η), i ∈ [1, 4] are expressed as follows:

• First order gradients of the shape functions

∂Ni

∂x
= ai

∂ζ

∂x
+ ci

∂η

∂x
,

∂Ni

∂y
= ai

∂ζ

∂y
+ ci

∂η

∂y

(6.100)

• Second order gradients of the shape functions

∂2Ni

∂x∂x
= ai

∂2ζ

∂x∂x
+ 2 bi

∂ζ

∂x

∂η

∂x
+ ci

∂2η

∂x∂x
,

∂2Ni

∂x∂y
= ai

∂2ζ

∂x∂y
+ bi

(
∂ζ

∂x

∂η

∂y
+
∂ζ

∂y

∂η

∂x

)

+ ci
∂2η

∂x∂y
,

∂2Ni

∂y∂y
= ai

∂2ζ

∂y∂y
+ 2 bi

∂ζ

∂y

∂η

∂y
+ ci

∂2η

∂y∂y

(6.101)

1There are several equivalent ways of expressing these derivatives.
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• Third order gradients of the shape functions
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(6.102)

6.4 Implementation of the SGS/GSGS method: Results and

simulations

Since the SGS method requires to first integrate in time instead of space, a special treatment

should be accounted for when the method is implemented in the time integration scheme of

section (3.2.4). The time scheme adopted so far works as follows: the Newton direction ∆V is

obtained by solving the system C
∗ (α∆V) = R

i
n+α where the tangent matrix C

∗ and the residual

R
i
n+α are accurately calculated at each iteration of the predictor multi–corrector method. The

calculated Newton direction ∆V is then used to obtain the new vector of the primary unknowns

X
i+1
n+1.

Integration in time at first step means that the vector of the primary unknowns X
i+1
n+1 is

already solved for. It also necessarily requires that the convective velocity field vi+1
n+1 to be used

in forming the tangent matrix C
∗, see equation (6.90). All of this is reprimanding a direct

implementation of the SGS method in our integration time scheme, the following approach is

adopted to overcome this obstacle:

1. The convective velocity field of the previous integration step vi
n+1 is to be used in forming

the convective terms of the tangent matrix C
∗ as the field vi+1

n+1 is not yet known.
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2. Only the components of the positions (Ke
j3 and De

j3, j = 1, 2, and 3) of the stiffness and

diffusion matrices K and D, are not consistent with the time integration scheme as they

are to be multiplied by the unknowns θe, i+1
n+1 and θ̇

e, i+1
n+1 , see equation (6.90).

3. By recalling the definitions of θe, i+1
n+1 and θ̇

e, i+1
n+1 of section (3.2.4):

θ
e, i+1
n+1 = θ̃

e, i

n+1 + β∆t∆θe

θ̇
e, i+1
n+1 = θ̇

e, i

n+1 + ∆θe
(6.103)

4. The multiplication of the third column components of the matrices K and D by the un-

knowns θe, i+1
n+1 and θ̇

e, i+1
n+1 becomes:

Ke
j3 θ

e, i+1
n+1 +De

j3 θ̇
e, i+1
n+1 = Ri

n+β(θ), (6.104)

Ke
j3 (θ̃

e, i

n+1 + β∆t∆θe) +De
j3 (θ̇

e, i

n+1 +∆θe) = Ri
n+β(θ), (6.105)

and:

(Ke
j3 β∆t+De

j3)
︸ ︷︷ ︸

C∗(θ)

β∆θe = βRi
n+β(θ)− βKe

j3 θ̃
e, i

n+1 − βDe
j3 θ̇

e, i

n+1
︸ ︷︷ ︸

Adjusted RHS

(6.106)

β is the integration coefficient of the trapezoidal rule (1/2 or 2/3 generally).

The foregoing presentation of the SGS method has been implemented to our FE code to study

its stabilizing effects on the oscillations in the hyperbolic solutions of the convection-diffusion

problems. The same BVP as described in section (5.2.2) is considered, results of simulations for

heat extraction as well as HF using HFM2 are to be presented.

6.4.1 Phase 1 injection test at GPK1 well, 1993: Heat extraction simulations,

convection of heat is treated by the SGS method

The same homogeneous finite element mesh, as in section (5.2.2), is used to perform heat ex-

traction simulations. Poroelastic and thermoelastic material properties are exactly as shown in

Table (5.3) based on the study of (Evans et al., [2009]).

Figure (6.4) compares the profiles of temperature and pressure, along the line of symmetry

y = 0 m, for the SGS and the SUPG methods at different times of 10 days, 6 months and at

years 1, 2, 5 and 10. It is obvious that the implementation of the SGS method heals quite

satisfactorily the oscillations of the SUPG method even at quite small time interval of 10 days.
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The profiles of pore fluid pressure do not differ between the SGS and the SUPG methods since

hydraulic diffusion happens very rapidly. The jump in the pressure profiles at the injection well

between the time intervals of 10 days and 6 months is due to the pumping schedule, see figure

(5.8).
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Figure 6.4: Temperature and pore pressure profiles along the line of symmetry y = 0 m: (a) Heat

convection oscillations near the injection well are well stabilized when the SGS method is applied.

(b) Pore fluid pressure profiles are not affected by the SGS method since hydraulic diffusion is very

fast.

Though the SGS method was wonderfully capable of circumventing the heat convection

oscillations at very short and intermediate time intervals, its capacity deteriorates with time.
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Figure 6.5: Temperature profiles along the line of symmetry y = 0 m: (a) Heat convection oscilla-

tions are mitigated at the production well but far from being healed. (b) The capacity of the SGS

method is lost; SUPG and SGS methods are almost the same.

At year 15 and despite mitigating the wiggles at the production well, the SGS method still
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leaves serious temperature oscillations, see figure (6.5(a)).

At quite large time intervals near the production well, the source term becomes negligible

(s → 0) meanwhile the convective velocity is considerably large. This causes the Damköhler

number to disappear (σ → 0), therefore the capacity of the SGS method is lost as a convection–

dominated situation appears and the stabilizing method produces the same modification as the

SUPG method, see figure (6.5(b)).

6.4.2 Phase 1 injection test at GPK1 well, 1993: Permeability enhancement

by HFM2, convection of heat is treated by the SGS method

The same BVP as in sections (5.2.2) and (5.4.3) is to be stimulated/enhanced using the HFM2

and while implementing the SGS method. The purpose of this section is to use the SGS method

to heal the annoying convection oscillations which appear in figure (5.56), and to study its effects

on the stimulation (permeability contours) of the HDR reservoir.

Figure (6.6) shows the contours of reservoir temperature during the process of stimulation at

times of 5 and 10 years. The application of the SGS method cures almost all of heat convection

oscillations, compare for instance with figure (5.56).
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Figure 6.6: Contours of the mixture temperature at different times with HF by applying HFM2,

convection of heat is treated by the SGS method.

The contours of the enhanced permeability of the HDR reservoir are about 0.96 times smaller

when the SGS method is implemented. This is conceivable by following figure (6.4) where the

mixture temperature at a definite location is a little bit smaller for the case of the SGS method.
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It seems like SGS method is more stabilizing/more diffusive than the SUPG method for the

same conditions, see figure (6.7) and compare with figure (5.55) of SUPG method.
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Figure 6.7: Enhanced longitudinal permeability component kx depicted as the projection of its

contour in the x− y plane. Fracture propagation is in the direction of maximum far field stress. In-

jection pressure schedule, described in figure (5.8), is sufficient to entirely enhance the HDR reservoir

in the longitudinal direction.

The previous conclusion becomes more evident when the history of the enhanced permeability

is plotted at some point, see figure (6.8). It is clear that the evolution of the longitudinal perme-

ability is smoother in the case of the SGS method as it provides more stabilization. Nonetheless,

the same general evolution behavior is more or less obtained for the SGS and the SUPG methods.
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Figure 6.8: Longitudinal permeability kx history at the injection well; comparison between the

simulations when implementing the SGS method (solid lines) and the SUPG method (dashed lines).

The advantages and disadvantages of the SGS/GSGS method can finally be summed up:

1. The SGS method has been proven capable of efficiently healing the heat convection oscil-

lations at very short and intermediate time intervals.

2. The SGS method is also efficient to cure the stubborn heat convection oscillations even

while tremendously enhancing the HDR reservoir permeability by the process of HF.
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3. The implementation of SGS method slightly affects the values of the enhanced permeability

of the HDR reservoir which can be neglected without remorses.

4. At quite large time intervals and if convection–dominated situations are present, SGS

method loses its efficiency and SUPG method is retrieved. In other words, SGS provides

results similar to the SUPG.

6.5 Beyond the SGS and the SUPG methods

Neither the SGS method nor the SUPG method was capable of healing the numerical noises

resulting from the heating wave striking the stiff boundary at the production well. Yet, such

noises were a bit mitigated in the case of the SGS method for moderately long periods, see figure

(6.5(a)). (John and Knobloch, [2007]) have defined an interesting modification to the SUPG

method such that it may become capable of treating the spurious numerical wiggles at long

periods, their approach is called Discontinuity Capturing Method (DCM) in the literature.

6.5.1 The Discontinuity Capturing Method (DCM)

The DCM is developed to smoothly treat the sharp shock oscillations which result from heat

waves suddenly striking stiff boundaries at long times of the simulations, see (John and Knobloch,

[2007]) and (Hughes, [2000], chapter 9). The DCM can be resumed by the following strategy:

The DCM suggests the following shape function for the variation in the temperature change

δθ:

Wθ = Nθ + τ1 v∇Nθ + τ2 v||∇Nθ (6.107)

v|| is the projection of v on ∇θ, defined as:

v|| =







v.∇θ

||∇θ||2 ∇θ, if ∇θ 6= 0

0, if ∇θ = 0

(6.108)

By substituting the definition (6.107) in equation (6.8), the discretized form for the DCM is

obtained:
N∑

e=1

[δθe]T
∫

V e

W T
θ

(

R θ − f
)

dV e = 0 (6.109)

Gradient of temperature change ∇θ is obtained through the discretization1 ∇Nθ θ
e. ||x||

is the Euclidean norm of the vector x. The interaction of the shape function W T
θ with the

convection term v.∇θ in equation (6.109) leads to:

1This is a non–linear stabilizing method as v|| = v||(θ
e).
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W T
θ v.∇θ = NT

θ v.∇θ +∇NT
θ τ1 v

T v.∇θ +∇NT
θ τ2 v

T
|| v.∇θ,

= NT
θ v.∇θ +∇NT

θ τ1 v
T v.∇θ +∇NT

θ τ2 v
T
|| v||.∇θ,

(6.110)

due to the fact that v.∇θ = v||.∇θ by equation (6.108), one writes:

W T
θ v.∇θ = NT

θ v.∇θ +∇NT
θ τ1 v

T v.∇θ
︸ ︷︷ ︸

Streamline operator

+∇NT
θ τ2 v

T
|| v||.∇θ

︸ ︷︷ ︸

DCM operator

(6.111)

The stream line matrix vT v is a first–order positive semidefinite matrix acting only in the

streamline direction. While the discontinuity capturing matrix vT
|| v|| is also a first–order positive

semidefinite matrix yet acting only in the direction of the discrete solution temperature gradient.

The stabilizing parameters τ1 and τ2 are defined such that:

τ1 = τ (of the SUPG method) and τ2 = τ||, (6.112)

τ|| is deduced using the same strategy to calculate τ , equation (6.12), but using the parallel

velocity v||. If v = v|| the doubling of the stabilizing parameter τ is engaged. At this point the

SUPG method alone is sufficient to do the required stabilization and the component τ vT v in

the direction ∇θ must be removed. The stabilizing parameters are to be calculated following

this scheme:

τ1 = τ and τ2 = max[0, (τ|| − τ)] (6.113)
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6.5.2 Phase 1 injection test at GPK1 well, 1993: Heat extraction simulations,

convection of heat is treated by the DCM method

The afore–presented DCM has been integrated into the Fortran 90 FE code, where the simula-

tions of section (6.4.1) were redone for the same initial BVP for long periods. Figure (6.9) shows

that the DCM is capable of almost entirely healing the numerical noises at the production well

resulting from heating waves hitting the stiff boundary the that position.
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Figure 6.9: Temperature profiles along the line of symmetry y = 0 m. DCM is capable of treating

the most stubborn numerical noises at the production well where both the SGS and SUPG methods

were proven inefficient.
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Reflections and perspectives

The main objective of this research was to develop a constitutive model to describe the perme-

ability enhancement of a fractured medium in a fully coupled thermo–poroelastic analysis. The

following main achievements may be listed:

1. general view about Enhanced Geothermal Systems (EGS),

2. formulation of the governing equations for a fully coupled thermo–poroelastic analysis in

homogeneous single–porosity media,

3. fracturing models to track the crack evolution in all possible spatial orientations,

4. implementation of the thermo–poroelastic governing equations in a domestic finite element

(FE) code using a time marching scheme in a non–linear context,

5. integration of the fracturing models in the FE code to couple permeability stimulation

with the thermo–poroelastic analysis to study transient heat extraction from enhanced

geothermal systems,

6. presentation of several stabilization methods to heal the oscillations in the hyperbolic

solutions due to forced heat convection.

The following points are worth of further research:

1. A model emerging from the statistics describing the pre–existing geothermal fractured

systems has been used all along this research in simulating thermal recovery. This model

included discrete fracture patterns which formed the major structures governing the flow

(the reservoir). The direction of the flow and the generation of the new hydraulically

created fracture networks were assumed to happen within the reservoir volume. Such

models require accurate stochastically generated realizations of the site on the geophysical

and mechanical aspects. The key points for an improved model include:
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(a) investigating large scale heterogeneities of the geothermal site:

The characteristics of the explored faults should be well recorded. Fault zones are

usually irregular, branched, anastomosed, and curved rather than simple and pla-

nar. The dip angle of such zones, as well as their interaction with the surroundings

control the direction of the flow and the amount of water lost while operating the

geothermal systems. Once all these factors are taken into consideration, the small

scale heterogeneities, at the reservoir scale, must be also deemed.

(b) quantifying small scale heterogeneities:

- fracture properties: fracture distribution, density, average radius and average

aperture,

- natural fluid production and its contribution to the mass balance,

- the influence of heterogeneity on the hydraulic conductivity and storage capacity,

- the influence of heterogeneity on the mechanical properties,

- the influence of heterogeneity on the fracture properties.

2. The fracturing models, which were developed to describe HF, did not stand at all for

fracture slippage and permeability reduction under compressive stresses. Actually, the

natural directional enhancement of EGS leaves regions of the reservoir with very large

compressive stresses where aperture reduction and/or slippage is expected. We call future

research on developing our models so as they could track permeability change due to

fracture aperture reduction and/or increase under compressive stresses.

3. Experimental tests providing pore pressure and temperature variations in igneous rocks

with forced convection in the context of thermal recovery from enhanced geothermal reser-

voirs would be welcome. The experimental data are to be correlated to the numerical

responses where the models of fracturing and thermo–poroelasticity can be calibrated.

4. The impact of temperature change on the viscosity of Non-Newtonian geothermal fluids

should be assessed. The Non-Newtonian character of the drilling fluids was proven to

counteract the thermal dependence of their dynamic viscosity. This statement clearly

calls that future studies take into consideration both thermal effects and Non–Newtonian

fluids. Possibly their effects may, in some circumstances, be cooperating rather than

counteracting.

5. For very high velocities in porous media, inertial effects become significant. Non–Darcian

flow should be considered to account for such inertial effects which lead to non–linear

dependence of pressure gradient on the velocity of the fluid.
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6. EGS require large volumes of circulating water to generate electricity, and a considerable

amount of this water is lost during production. Donald Brown of Los Alamos National

Laboratory proposition of substituting CO2 for water in EGS production systems is not

an environmentalist’s fairytale. We call for further research on CO2–based EGS as they

might be that last truffula seed that we can pass on to our posterity.
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Appendix A

A.1 Macroscopic free enthalpy of a fractured medium

Consider a Representative Elementary Volume (REV) Ω of a brittle material which is initially

isotropic and homogeneous, including an array of mesocracks. Each mesocrack i or set of quasi–

oriented mesocracks is characterized by its surface Si, orientation ni and its crack displacement

discontinuity bi. The expression of the global strain on the REV considering the contribution

of all the cracks is:

εεε = S0 : σσσ +
1

2Ω

∑

i

∫

Si

(bi ⊗ ni + ni ⊗ bi)Si (A.1)

Here, S0 is the initial compliance fourth–order tensor. If ni remains constant over the cracks

(flat cracks) and if the cracks are quasi–circular (with radius ai), equation (A.1) becomes:

εεε = S0 : σσσ +
1

2Ω

∑

i

(biavg ⊗ni + ni ⊗ biavg)S
i, (A.2)

where biavg is bi averaged over the mesocrack set i. Following the sense of equation (A.2), the

global strain is composed of two terms: the first represents the matrix strain without damage,

the second includes the contribution of the mesocracks. The macroscopic free enthalpy of the

fractured medium can be expressed as:

Wc =
1

2
σσσ : S0 : σσσ +

1

2Ω

∑

i

ni.σσσ.biavg S
i (A.3)

(Kachanov, [1992]) gives the form of biavg in a three–dimensional case of crack embedded in

an infinite body with stress σσσ at infinity. In the general case, where mesocracks are allowed to

open, biavg comprises normal and shear components:

251



A.

biavg =
16(1 − ν20)

3π

ai

E0
(ni.σσσ.ni)ni

︸ ︷︷ ︸

Shear component

+
16(1 − ν20)

3π(1− ν0/2)
ai

E0

[
ni.σσσ − (ni.σσσ.ni)ni

]

︸ ︷︷ ︸

Normal component

(A.4)

Let us define the elastic compliance h of a crack as:

h =
16(1 − ν20 )
3E0(2− ν0)

(A.5)

Substituting equation (A.4) in equation (A.3) and manipulating the result, one obtains:

Wc =
h

Ω

[
∑

i

ai

π

(

1− ν0
2

)

σσσ.ni(ni.σσσ.ni)ni Si +
∑

i

ai

π

(

(σσσ.σσσ) : (ni ⊗ ni)

− σσσ : (ni ⊗ ni ⊗ ni ⊗ ni) : σσσ
)

Si

] (A.6)

In our model of damage, equation (2.44), effective stresses are directly used in the free

enthalpy relation. This means that poroelastic parameters and thermoelastic parameters used

in calculating the effective stresses, i.e. Biot’s coefficient (κ) and the thermal expansion of the

solid phase (αs) are not assumed to deteriorate with damage (rigorous assumption), see (Lu et

al., [2010]) for details.

A.2 Derivation of the Directionally Distributed Fracture Model

(DDFM) to describe damage and permeability evolution:

Equation (2.63)

Following the crack propagation criterion given by equations (2.49), (2.50) and (2.51), we can

derive the evolution of crack propagation as a function of the crack radius, the normal effective

stress, and the deviatoric effective stress for the case r < rf .

F =
√
r σ

′

n

(
fc,t

fc,t + 〈−σ′

n〉

)m

+ 3 η

(
rf√
r

)

〈σ′d
n 〉 − Crc (A.7)

When F (r, σ
′

n, σ
′d
n , n) = 0 cracks start to propagate:

dF =
∂F

∂r
dr +

∂F

∂σ
′ : dσ

′
, (A.8)

which leads to the following equation:

dF =
∂F

∂r
dr +

[

∂F

∂σ′

n

∂σ
′

n

∂σ
′ +

∂F

∂σ′d
n

∂σ
′d
n

∂σ
′

]

: dσ
′
, (A.9)
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A.2 Derivation of the Directionally Distributed Fracture Model (DDFM) to
describe damage and permeability evolution: Equation (2.63)

and considering the definitions mentioned in equation (2.50), we conclude:

σ
′

n = n.σ
′
.n

σ
′d
n = n.σ

′
.n− n.

[(

σ
′

3

)

δ

]

.n

∂σ
′

n

∂σ
′ = n⊗ n

∂σ
′d
n

∂σ
′ = n⊗ n− δ

3
(nn)

(A.10)

The evolution of damage can be expressed as:

dr = − 1

∂F

∂r

[

∂F

∂σ′

n

∂σ
′

n

∂σ
′ +

∂F

∂σ′d
n

∂σ
′d
n

∂σ
′

]

: dσ
′
, (A.11)

∂F

∂r
=

1

2
√
r
σ

′

n

(
fc,t

fc,t + 〈−σ′

n〉

)m

− 3

2
η

(
rf√
r3

)

〈σ′d
n 〉 (A.12)

Let us assume that σ
′

n > 0 and whether σ
′d
n is positive or negative, ∂F/∂σ

′

n will take the

following form:

∂F

∂σ′

n

=
√
r, (A.13)

when σ
′

n < 0 and whether σ
′d
n is positive or negative,

F =
√
r σ

′

n

(
fc,t

fc,t − σ′

n

)m

+ 3 η

(
rf√
r

)

〈σ′d
n 〉 − Crc, (A.14)

∂F

∂σ′

n

=
√
r σ

′

n

mfmc,t
(fc,t − σ′

n)
m+1

+
√
r

(
fc,t

fc,t − σ′

n

)m

, (A.15)

when σ
′d
n > 0 and whether σ

′

n is positive or negative,

F =
√
r σ

′

n

(
fc,t

fc,t + 〈−σ′

n〉

)m

+ 3 η

(
rf√
r

)

σ
′d
n − Crc, (A.16)

∂F

∂σ′d
n

= 3 η

(
rf√
r

)

, (A.17)

when σ
′d
n < 0 and whether σ

′

n is positive or negative,

∂F

∂σ′d
n

= 0 (A.18)

Finally, the evolution of the average radius of the set of cracks in direction n takes the

following form:
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dr = − 1

∂F

∂r

[

Π(r, σ
′

n) (n ⊗ n) + Ψ(r, σ
′d
n )

(

n⊗ n− δ

3

)]

: dσ
′

(A.19)

The functions Π(r, σ
′

n) and Ψ(r, σ
′d
n ) can be defined as follows:

Π(r, σ
′

n) =







√
r, if σ

′

n > 0
√
r σ

′

n

mfmc,t
(fc,t − σ′

n)
m+1

+
√
r

(
fc,t

fc,t − σ′

n

)m

, if σ
′

n < 0

0, if σ
′

n = 0

(A.20)

Ψ(r, σ
′d
n ) =







3 η

(
rf√
r

)

, if σ
′d
n > 0

0, if σ
′d
n ≤ 0

(A.21)

When r ≥ rf : this indicates that cracks start to coalesce to form macroscopic fractures which

will finally lead the sample to failure, equation (A.7) is expressed as:

F =
√
r σ

′

n

(
fc,t

fc,t + 〈−σ′

n〉

)m

+ 3 η
√
rf 〈σ

′d
n 〉 −Crc (A.22)

Following the same procedures as above, one can write:

∂F

∂r
=

1

2
√
r
σ

′

n

(
fc,t

fc,t + 〈−σ′

n〉

)m

(A.23)

dr = − 1

∂F

∂r

[

Π(r, σ
′

n) (n ⊗ n) + Ψ(r, σ
′d
n )

(

n⊗ n− δ

3

)]

: dσ
′

(A.24)

The functions Π(r, σ
′

n) and Ψ(r, σ
′d
n ) can be defined as follows:

Π(r, σ
′

n) =







√
r, if σ

′

n > 0
√
r σ

′

n

mfmc,t
(fc,t − σ′

n)
m+1

+
√
r

(
fc,t

fc,t − σ′

n

)m

, if σ
′

n < 0

0, if σ
′

n = 0

(A.25)

Ψ(r, σ
′d
n ) =

{

3 η
√
rf , if σ

′d
n > 0

0, if σ
′d
n ≤ 0

(A.26)

Though the unstable crack evolution, when r ≥ rf , is derived as above, it will not be used

in this research unless crack healing is accounted for, see (Atkinson, [1991], chapter 4).
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Appendix B

B.1 The effective fracture toughness in Hydraulic Fracturing

(HF): HF in weak formations

(Papanastasiou, [1999]) had the problem of a hydraulically–driven fracture addressed by studying

the numerous contributions since early fifties. It was found that classical HF simulators that

are based on linear elasticity often underestimate the down–hole pressures which are measured

in field operations. It has been also noted that the difference in pressures encountered in field

and predicted by conventional HF become higher in weak formations. This discrepancy was

explained using several hypotheses among which the most consistent with practical observations

are:

• Rock dilation: the observed high pressure, encountered in the field, is related to huge

fluid–pressure drop and the existence of dry regions near crack tip. Rock dilation has been

proposed as the source of sharp pressure drop near crack tip, rock dilation beyond the

advancing fracture will constrain the opening which may lead to high pressure gradients.

Elasticity does not account for rock dilation and thus it can not provide the required high

pressure drop to match field encountered values.

• Effective fracture toughness: the values of fracture toughness measured in laboratories

underestimate in situ values. Estimations based on HF field data showed that typical

fracture toughness values are two or three times higher than the values calculated from

conventional laboratory tests. Studies presented in the available literature attributed these

increases of field fracture toughness to scale effects, to the influence of confining stresses

and plasticity in the process zone near the crack tip.

It has been noted that plastic yielding results in shorter but wider fractures if compared with

elastic fracturing, the shorter wider fractures developed by elasto–plastic fracturing models are
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expected to result in smaller fluid lag regions, henceforth better predicting field HF pressure,

(Papanastasiou, [1999]). To account for plastic yielding and the increase of effective fracture

toughness it incites, an elasto–plastic HF model based on finite element analysis has been used

by the study of (Papanastasiou, [1999]).

Inelastic deformation has an extent which depends strongly on rock properties and loading

stresses. Plastic deformation is expected to take place in weak rocks, such as clayey rocks or

poorly consolidated sandstones, in areas close to the crack tip due to huge stress concentrations.

Inelastic deformation near the crack tip produces a plastic yielding zone, if the plastic zone size

is small compared to the radius of the evolving crack, the assumption of linear elastic fracture

mechanics holds correct and can be used to describe the fracturing process. However, in soft

rocks plastic zones are not likely to be small enough to a point the assumption of linear elasticity

would hold sufficient, in such a case the application of plasticity theory will be necessary to

analyze properly the irreversible strains due to excessive shear stresses around the fracture tip,

see section (2.2.1).

ïðñòóôõ òóö÷òò
øôòóöôùúóôûü

ýü÷ðñòóôõ òóö÷òò
øôòóöôùúóôûüþóö÷òò ÿö÷÷

❈û�÷òô✁÷ ✥ûü÷❱ôòôùð÷ õöñõ✂

❚öú÷ õöñõ✂

σr ✄☎÷òôøúñð òóö÷òò❧

Figure B.1: Representation of the elasto–plastic fracturing process of rocks.

In a stationary crack, the plastic zone will develop near the crack tip and depending on

the stress concentration and material properties, the fracture will deform either elastically or

plastically. If rock was soft and the stress concentration was sufficient to create a plastic zone

significantly large, plastic yielding will take place and fracture will deform plastically and the

plastic zone shall unload elastically behind the advancing crack, the new area near the current

tip will deform later plastically, see figure (B.1).

(Papanastasiou, [1999]) has shown that the rock mass remote from the fracture may deform

elastically, whereas the area near the body of the fracture is initially elastic then deforms plasti-

cally and finally unloads elastically after the fracture has advanced. The main processes which

govern hydraulic fracturing in a weak formation are:

• Viscous fluid flow in the fracture, see section (5.3).
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formations

• Elasto–plastic deformation caused by stress concentration incited by the state of in situ

stresses as well as the action of fluid pressure.

• Fracture propagation into the rock formation.

The elasto–perfectly plastic model, which was adopted by (Papanastasiou, [1999]), was capa-

ble of dealing with nonproportioanl loading in order to track the plastic yielding–elastic unload-

ing of the plastic zone at the crack tip. The model has proven that during fracture propagation

the size of the plastic zone increases before it reaches a constant size eventually. Effective frac-

ture toughness was found to develop following the size of the plastic zone; it starts with rock

fracture toughness Kc, which dictates the energy required for propagating elastic fractures, and

increases to reach an asymptotic value when the plastic zone is fully developed. Higher energy

is needed for propagating elasto–plastic fractures as the plastic yielding softens the material

surrounding the crack tip and creates an effective shielding in which the level of stress in the

direction of propagation is reduced.

(Papanastasiou, [1999]) has found that the size of the plastic zone, along with the correspond-

ing effective fracture toughness, increase with the contrast of several factors that include; the

magnitude of the in situ stresses, the strength of the rock, the elastic modulus and the pumping

parameters that include fluid viscosity and flow rate. Elastic analyses were later performed using

the values of the effective fracture toughness, calculated by the elasto–plastic model, to estimate

whether plasticity effect in HF can be embedded in the notion of effective fracture toughness

while doing elastic fracturing. It has been demonstrated that, in terms of pressure and fracture

profiles, an elastic model using the concept of effective fracture toughness matches the results

of plasticity quite well.
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C.1 Sub–matrices of the weak formulation of therm–poroelasticity:

Chapters (3) and (6)

First, for displacement:

u =

[
ux
uy

]

= Nu ue,

[ue]T =
[
u1x u1y u2x u2y u3x u3y u4x u4y

]
,

Nu =





N1
u 0 N2

u 0 N3
u 0 N4

u 0

0 N1
u 0 N2

u 0 N3
u 0 N4

u



 ,

Bu =









N1
u,x 0 N2

u,x 0 N3
u,x 0 N4

u,x 0

0 N1
u,y 0 N2

u,y 0 N3
u,y 0 N4

u,y

N1
u,y N1

u,x N2
u,y N2

u,x N3
u,y N3

u,x N4
u,y N4

u,x









,

tr(Bu) =
[
N1

u,x N1
u,y N2

u,x N2
u,y N3

u,x N3
u,y N4

u,x N4
u,y

]
,

∇∇∇(tr(Bu)) =





N1
u,xx N1

u,yx N2
u,xx N2

u,yx N3
u,xx N3

u,yx N4
u,xx N4

u,yx

N1
u,xy N1

u,yy N2
u,xy N2

u,yy N3
u,xy N3

u,yy N4
u,xy N4

u,yy



 ,

v =

[
vx
vy

]

,

∇v =





vx,x vx,y

vy,x vy,y




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and (6)

Second, for pore fluid pressure:

p = Np p
e,

[pe]T =
[
p1 p2 p3 p4

]
,

Np =
[
N1

p N2
p N3

p N4
p

]
,

∇∇∇Np =





N1
p,x N2

p,x N3
p,x N4

p,x

N1
p,y N2

p,y N3
p,y N4

p,y





Third, for mixture temperature:

θ = Nθ θ
e,

[θe]T =
[
θ1 θ2 θ3 θ4

]
,

Nθ =
[
N1

θ N2
θ N3

θ N4
θ

]
,

∇∇∇Nθ =





N1
θ,x N2

θ,x N3
θ,x N4

θ,x

N1
θ,y N2

θ,y N3
θ,y N4

θ,y



 ,

∆∆∆Nθ =
[
N1

θ,xx +N1
θ,yy N2

θ,xx +N2
θ,yy N3

θ,xx +N3
θ,yy N4

θ,xx +N4
θ,yy

]
,

vT
∇

2Nθ =





vxN
1
θ,xx + vy N

1
θ,xy vxN

2
θ,xx + vy N

2
θ,xy vxN

3
θ,xx + vyN

3
θ,xy vxN

4
θ,xx + vy N

4
θ,xy

vxN
1
θ,yx + vy N

1
θ,yy vxN

2
θ,yx + vy N

2
θ,yy vxN

3
θ,yx + vyN

3
θ,yy vxN

4
θ,yx + vy N

4
θ,yy



 ,

∇v∇Nθ =





vx,xN
1
θ,x + vy,xN

1
θ,y vx,xN

2
θ,x + vy,xN

2
θ,y vx,xN

3
θ,x + vy,xN

3
θ,y vx,xN

4
θ,x + vy,xN

4
θ,y

vx,yN
1
θ,x + vy,yN

1
θ,y vx,yN

2
θ,x + vy,yN

2
θ,y vx,yN

3
θ,x + vy,yN

3
θ,y vx,yN

4
θ,x + vy,yN

4
θ,y



 ,

∇∇∇(∆∆∆Nθ) =





N1
θ,xxx +N1

θ,yyx N2
θ,xxx +N2

θ,yyx N3
θ,xxx +N3

θ,yyx N4
θ,xxx +N4

θ,yyx

N1
θ,xxy +N1

θ,yyy N2
θ,xxy +N2

θ,yyy N3
θ,xxy +N3

θ,yyy N4
θ,xxy +N4

θ,yyy




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