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Résumé

Les primates doivent pouvoir reconnaître de nouvelles situations pour pouvoir s’y

adapter. La représentation de ces situations dans l’activité du cortex est le sujet de

cette thèse. Les situations complexes s’expliquent souvent par l’interaction entre des

informations sensorielles, internes et motrices. Des activités unitaires dénommées sélec-

tivité mixte, qui sont très présentes dans le cortex préfrontal (CPF), sont un mécanisme

possible pour représenter n’importe quelle interaction entre des informations. En par-

allèle, le Reservoir Computing a démontré que des réseaux récurrents ont la propriété

de recombiner des entrées actuelles et passées dans un espace de plus haute dimension,

fournissant ainsi un pré-codage potentiellement universel de combinaisons pouvant être

ensuite sélectionnées et utilisées en fonction de leur pertinence pour la tâche courante.

En combinant ces deux approches, nous soutenons que la nature fortement récurrente de

la connectivité locale du CPF est à l’origine d’une forme dynamique de sélectivité mixte.

De plus, nous tentons de démontrer qu’une simple régression linéaire, implémentable par

un neurone seul, peut extraire n’importe qu’elle information/contingence encodée dans

ces combinaisons complexes et dynamiques. Finalement, les entrées précédentes, qu’elles

soient sensorielles ou motrices, à ces réseaux du CPF doivent être maintenues pour pou-

voir influencer les traitements courants. Nous soutenons que les représentations de ces

contextes définis par ces entrées précédentes doivent être exprimées explicitement et

retournées aux réseaux locaux du CPF pour influencer les combinaisons courantes à

l’origine de la représentation des contingences.

Mots-clefs: cortex préfrontal, réseaux récurrents, sélectivité mixte, dynamique

d’attracteur, simulation/modélisation, adaptation du comportement
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Abstract

In order to adapt to new situations, primates must be able to recognize these sit-

uations. How the cortex represents contingencies in its activity is the main subject of

this thesis. First, complex new situations are often explained by the interaction between

sensory, internal and motor information. Recent studies have shown that single-neuron

actvities referred to as mixed selectivity which are ubiquitous in the prefrontal cortex

(PFC) are a possible mechanism to represent arbitrary interaction between information

defining a contingency. In parallel, a recent area of reasearch referred to as Reservoir

Computing has demonstrated that recurrent neural networks have the property of re-

combining present and past inputs into a higher dimensional space thereby providing

a pre-coding of an essentially universal set of combinations which can then be selected

and used arbitrarily for their relevance to the task at hand. Combining these two ap-

proaches we argue that the highly recurrent nature of local prefrontal connectivity is

at the origin of dynamic form of mixed selectivity. Also, we attempt to demonstrate

that a simple linear regression, implementable by a single neuron, can extract any in-

formation/contingency encoded in these highly complex and dynamic combinations. In

addition, previous inputs, whether sensory or motor, to these PFC networks must be

maintained in order to influence current processing and behavioral demand. We ar-

gue that representations of contexts defined by these past inputs must be expressed

explicitely and fed back to the local PFC networks in order to influence the current

combinations at the origin of contingencies representation.



6



7

Acknowledgments

First, I would like to thank Peter Dominey my thesis advisor for his constant sup-
port and his valuable and unconditional positive attitude. I owe him the discovery of the
world of scientific research that I set my self to further explore. The disparate research
topics approached by his team has led to rich discussion and allowed to gain perspective
on my own field.

I also want thank Emmanuel Procyk that recruited me for my master internship
which eventually led to the present thesis. His insights have had a strong influence on
the work this thesis.

I would like to thank the Mark Stokes, Angelo Arleo who have had the patience to
read this thesis, and accepted to be part of my thesis jury along with Rémi Gervais,
Simon Thorpe and Xiao-Jing Wang.

I wamrly thank the members of my team for being such great guys during all these
years I have spent in the lab ;)

Xavier deserves a special thank for lively, though very rich discussions we have had
through our parallel voyage to becoming doctors. He has opened me to machine learning
after an initial refractory period from my part, but eventually led me to develop a strong
interest in it.

I am thankful to the electrophy guys, namely, Fred, Mamilys and Chacha who, on
top of being great colleagues, have been great friends outside of the lab. I want partic-
ularly to thank Charlie who took the time to help me on this present thesis and showed
me how I could do better.

I want to thank my parents for their constant care, from bringing me into this world
to the unconditional support that eventually led them to host me for more than two
weeks in order for me to write this thesis in a small cabin at the back of their garden
where these very words are being written.



8



Contents

Introduction (français) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Introduction (English) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

I State of the Art 16

1 Adaptive Behavior and its Neural Correlates 17
1.1 Facing a Changing Environment . . . . . . . . . . . . . . . . . . . . . . . 17

1.1.1 Short Introduction to Adaptive Behavior . . . . . . . . . . . . . . 17
1.1.2 Learning and Executive Functions . . . . . . . . . . . . . . . . . . 18
1.1.3 Neuropsychology of PFC . . . . . . . . . . . . . . . . . . . . . . . 20
1.1.4 Theory of PFC Function . . . . . . . . . . . . . . . . . . . . . . . 21

1.2 Neuronal Activity Correlates . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.2.1 Basic Single Unit Correlates . . . . . . . . . . . . . . . . . . . . . 22
1.2.2 Distributed and Rich Representations . . . . . . . . . . . . . . . . 23
1.2.3 Sequence Processing and Single Unit Correlates . . . . . . . . . . 24
1.2.4 Neural Activity Dynamics . . . . . . . . . . . . . . . . . . . . . . 26

1.3 The Need for Arbitrary Contingency Representations . . . . . . . . . . . 27
1.3.1 Complex Behavior Through Selectionism . . . . . . . . . . . . . . 28
1.3.2 Selection of Pertinent Representations Among a Preexisting Set

as a Mechanism to Adapt . . . . . . . . . . . . . . . . . . . . . . 29

2 Representations in Neural Networks 31
2.1 Neural Networks: Substrate to cognition. The origins of connectionism . 31

2.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.1.2 Philosophical, Psychological and Neurophysiological Roots of Con-

nectionism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.1.3 Early neural network models and their limitations . . . . . . . . . 35

2.2 Resurgence of Connectionism: Learning Non-Linear Representations . . . 38
2.2.1 Parallel Distributed Processing and Error Back-Propagation . . . 39
2.2.2 Early Recurrent Networks with Attracting Dynamics . . . . . . . 40

2.3 Distributed Non-Linear Representation and The Cortex . . . . . . . . . . 42
2.3.1 The Necessity for Complex Activity in PFC . . . . . . . . . . . . 42
2.3.2 Random Connectivity as a Simple Mechanism for Universal Spa-

tial Representations . . . . . . . . . . . . . . . . . . . . . . . . . . 43

9



CONTENTS 10

3 Adding Temporal Information to Neural Networks Representations 47
3.1 Introduction to Temporal Recurrent Networks . . . . . . . . . . . . . . . 47

3.1.1 Adding Temporal Information Through Recurrence . . . . . . . . 47
3.1.2 The Recurrent-Network Training Problem . . . . . . . . . . . . . 48

3.2 Early Recurrent Networks for Temporal Processing . . . . . . . . . . . . 49
3.2.1 Simple Recurrent Network . . . . . . . . . . . . . . . . . . . . . . 49
3.2.2 Backpropagation Through Time . . . . . . . . . . . . . . . . . . . 50
3.2.3 Temporal Recurrent Network with Untrained Recurrent Connections 51

3.3 Reservoir Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.1 History: Convergence of Signal Processing and Neuroscience Mod-

eling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.2 Brief Overview of The Reservoir Computing Principles . . . . . . 54
3.3.3 Reservoir Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.4 Learning Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Recurrence for Variation in the Spatio-Temporal Domain . . . . . . . . . 58

4 Explicit Context Representations 60
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Attractors for Working Memory and Context Representation . . . . . . . 61

4.2.1 Working Memory in Attractors . . . . . . . . . . . . . . . . . . . 61
4.2.2 Context Formation in Neural Networks . . . . . . . . . . . . . . . 62

4.3 Processing with Explicit Context Representations . . . . . . . . . . . . . 64
4.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.2 Input Units Feeding Context to the Network . . . . . . . . . . . . 64
4.3.3 Contextual Processing with Attractors . . . . . . . . . . . . . . . 64
4.3.4 Contextual Processing with Mixed Dynamics . . . . . . . . . . . . 66
4.3.5 A Mechanism for Universal Representation in the Cortex . . . . . 67

5 Hypothesis and Objectives 69
5.1 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

II Experiments 71

6 Extracting Task Variables From Prefrontal Activity 72

7 Dynamical Mixed Selectivity in Reservoir Computing and Primate
Prefrontal Cortex 87

III Discussion 120

8 Discussion 121
8.1 Task Variable Representation and Readout Mechanisms . . . . . . . . . . 121

8.1.1 “Non-Selective” Neurons Participate in Robust Representations . 122
8.1.2 Extracting Task Variables with a Simple Linear Decoder . . . . . 122



CONTENTS 11

8.1.3 Continuous Decoding of Task Variable . . . . . . . . . . . . . . . 123
8.1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.2 Modelling Cortical Representations with a Reservoir . . . . . . . . . . . . 124
8.2.1 Dynamic Mixed Selectivity . . . . . . . . . . . . . . . . . . . . . . 124
8.2.2 Explicit Context Representation . . . . . . . . . . . . . . . . . . . 127
8.2.3 Dynamics of Context Representation . . . . . . . . . . . . . . . . 128
8.2.4 Transient Dynamics with Successive Attractors . . . . . . . . . . 129
8.2.5 A Simple Mechanism to Learn Cognitive States and Context . . . 131

8.3 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.3.1 Towards a More Realistic Learning Method . . . . . . . . . . . . 131
8.3.2 Bridging Attracting and Transient Approaches . . . . . . . . . . . 132

8.4 Conclusion (Français) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
8.5 Conclusion (English) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Bibliography 137



CONTENTS 12

Introduction

Une des capacités les plus fondamentales pour s’adapter à l’environnement est la
capacité à se représenter les situations auxquelles nous faisons face dans cet environ-
nement. En effet, comment pourrions-nous nous adapter à différentes contingences si
nous ne pouvons les reconnaître? La recherche en neuroscience a démontré que l’activité
de différentes aires corticales est sélective pour des éléments de l’environnement qui sont
particulièrement pertinents dans une situation donnée. La région du cortex qui montre
les représentations les plus élaborées et robustes et la partie la plus antérieure du cortex,
dénommée le cortex préfrontal (CPF). Cette région affiche des activités sélectives pour
des éléments seuls de l’environnement (e.g. l’identité d’un stimulus visuel), mais aussi
pour des informations précédentes (e.g. est-ce que la récompense a été mise dans le trou à
gauche ou à droite), et, encore plus compliqué, pour une combinaison d’informations sen-
sorielles, internes et motrices. Certaines de ces activités complexes semblent facilement
interprétables comme représentant l’association entre différents éléments, e.g. l’identité
d’un stimulus et son comportement associé. Cependant, un grand nombre d’activité
de neurones n’ont pas de corrélation évident avec un stimulus pertinent, un comporte-
ment observable ou une association des deux. Historiquement, l’électrophysiologie s’est
concentrée sur l’interprétation d’enregistrements unitaires (l’activité de neurones seuls),
essayant de corréler l’activité de ces neurones avec un comportement appris en lab-
oratoire. Donc, les activités complexes qui n’ont pas de corrélation directe avec un
comportement observable ont longtemps été ignorées. Récemment seulement elles ont
été proposées comme contribuant à la représentation de l’information au niveau de la
population, et leur importance pour l’adaptation du comportement a été démontrée ces
dernières années par Fusi et collègues.

Cette équipe a proposé de répondre à trois questions:

• est-ce que ces activités complexes sont importantes, bien qu’il n’y ait pas de preuve
de leur intérêt pour la tâche effectuée?

• quelle est l’origine de ces activités complexes?

• comment sont représentées les contingences complexes?

Dans un premier article (Rigotti et al., 2010), ils proposent une réponse aux
deux dernières questions: les connections aléatoires recombinent les informations déjà
représentées, produisant des activités complexes qui sont expliquées par l’influence de
plusieurs variables d’une seule tâche, et ces activités peuvent représenter n’importe
qu’elle contingence qui dépend de ces variables. Dans un article suivant, (Rigotti et
al., 2013), ils démontrent que quand des singes font des erreurs dans une tâche cogni-
tive, les combinaisons complexes (non-linéaires) sont absentes de l’activité neuronale.

Dans cette thèse, nous nous proposons de développer cet argument. Les connex-
ions récurrentes locales du CPF pourrait être à l’origine des combinaisons complexes
observées dans l’activité unitaire et pourrait sous-tendre la représentation de n’importe
qu’elle contingence qui peut être expliquée par la combinaison d’information sensorielles
et motrices récentes et actuelles entrant dans le CPF. Parce que les réseaux récurrents ont
une mémoire limitée dans le temps des entrées, les informations précédentes influençant
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le comportement présent, i.e. l’information contextuelle, doivent être maintenues. Nous
proposons que la représentation explicite d’une information contextuelle (i.e. une activ-
ité spécifiquement sélective pour différents contextes) générée par le réseau et retournée
au réseau récurrent permet à des entrées non-récentes de se recombiner avec les entrées
présentes et de créer des représentations de contingences qui dépendent d’informations
non-récentes.

Le premier chapitre de ce manuscrit aborde l’importance de la représentation dans
l’activité du CPF pour l’adaptation du comportement. Après une bref revue de
l’adaptation du comportement et de la représentation d’information dans le CPF, nous
nous proposons de transposer la théorie du sélectionisme en psychologie à la généra-
tion de représentation complexes dans l’activité du CPF. Le second chapitre introduit
les réseaux de neurones comme outil de modélisation pour comprendre le traitement
de l’information et la représentation au niveau corticale. Une courte histoire du con-
nectionisme, le paradigme englobant les réseaux de neurones, nous permet de présenter
les différences fondamentales entre les approches précédentes qui tentent d’expliquer la
cognition. Après une brève description des architectures classiques dans les réseaux de
neurones, nous présentons la théorie des connexions récurrentes pour la représentation
de n’importe qu’elle contingence. Le troisième chapitre introduit les réseaux récurrents
pour le traitement temporel. Nous présentons d’abord les bases du traitement temporel
avec des réseaux récurrent et l’inhérente complexité rencontrée lors de l’apprentissage
de tels réseaux, puis nous introduisons les réseaux temporels canoniques et finalement
le paradigme du reservoir computing. Le chapitre quatre introduit les représentations
explicites de contextes dans différentes architectures de réseaux de neurones, et, par-
ticulièrement pertinent pour cette thèse, les représentations de contexte dans des at-
tracteurs. Le dernier chapitre de la section état de l’art présente l’hypothèse et les
objectifs. La seconde partie du manuscrit contient les deux articles auxquels l’auteur de
cette thèse a contribué. Le premier, publié dans PlosONE, et un article méthodologique
qui compare plusieurs décodeurs d’activité neuronale, tandis que le second, à publier,
constitue le coeur expérimental de cette thèse. Dans la troisième et dernière partie, nous
discutons les résultats de ces deux papiers et les confrontons avec notre hypothèse et la
littérature.
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Introduction

One of the most fundamental capacity necessary to adapt to the environment is the
capacity to represent the situations that we encounter in this environment. Indeed,
how would we adapt to different contingencies if we cannot recognize them? Research
in neuroscience has shown that the activity of different cortical regions is selective for
elements of the environment that are especially pertinent for given situations. The re-
gion of the cortex that has shown the most elaborated and robust representations is
the anterior most part of the cortex, namely the prefrontal cortex (PFC). This region
diplays activities selective for single elements of the environment (e.g. the identity of a
visual stimulus), but also for past information (e.g. was the reward put in the left or
right pellet), and, even more complicated, for combination of sensory, internal and motor
informations. Some of these complex activities seem easily interpreted as representing
the association between different elements, e.g. the stimuli identity and the currently
associated behavior. However, numerous single-neuron activities have no evident corre-
lation to any pertinent stimulus, observable behavior or their association. Historically,
electrophysiology concentrated on the interpretation of single-neuron activities, trying
to relate the activity of these neurons with a trained behavior. So complex activities
with no direct correlation to observable behaviors have long been ignored. Only recently
they have been proposed to contribute to the representation of information at the pop-
ulation level, and their importance for adaptive behavior has been demonstrated these
last years by Fusi and colleagues.

This team proposed to answer three questions:

• are these complex activities important, even though there is no clear evidence of
their relevance for the task at hand?

• what is the origin of these complex activities?

• how are represented complex contingencies?

In a first article (Rigotti et al., 2010), they propose an answer the two last ques-
tions: random connections combine information already represented, eliciting complex
activities that are explained by the influence of several variables of a single task, and
these activities can represent any contingency that depend on these variables. In a sub-
sequent article (Rigotti et al., 2013), they demonstrate that when monkeys make errors
in a cognitive task, complex (non-linear) combinations are absent of neural activities.

In the present thesis, we propose to develop this argument. Local recurrent connec-
tions in the PFC may be at the origin of complex combinations observed in the activity
of single neurons and would underlie the representation of any contingency that can be
explained by the combination of recent and present sensory and motor inputs to the
PFC. Because recurrent networks have a time-limited memory of previous inputs, past
information that influence current behavior, i.e. contextual information, must be main-
tained. We propose that an explicit representation of context information (i.e. activity
specifically selective for the different contexts) generated by the network and fed back
to the recurrent network allow for non-recent inputs to combine with present inputs
and participate in creating representations of contingencies that depend on non-rencent
information.
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The first chapter of this manuscript stress the importance of representation in the
activity of the prefrontal cortex for behavioral adaptation. After briefly reviewing behav-
ioral adaptation and representation of information in the PFC, we propose to transpose
the theory of selectionism in psychology to the generation of complex representation
in PFC activity. The second chapter introduces neural networks as a modeling tool to
understand information processing and representation in the cortex. A short history of
connectionism, the paradigm encompassing neural networks, allows us to present the
fundamental differences between previous approaches attempting to explain cognition.
After a brief description of classical architectures in neural networks, we present the the-
ory of random connections for arbitrary contingency representation. The third chapter
introduces recurrent networks for temporal processing. We will first present the basics
of temporal processing with recurrent networks and the inherent complexity of training
such networks, and then introduce the canonical temporal networks and eventually dwell
on the presentation of reservoir computing. The fourth chapter introduces explicit repre-
sentation of context in different neural network architectures, and, particularly relevant
to this thesis, the representation of context in attractors. The last chapter of the state
of the art section presents the hypothesis and objectives. The second part of the present
manuscript includes the two articles in which the author contributed. The first one,
published in PlosONE, is a methodological paper comparing several decoders of neural
activity, while the second, to be published, constitutes the core experimental work of
this thesis. In a third part, we discuss the results of these two papers and confront them
with our hypothesis and the litterature.



Part I

State of the Art
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Chapter 1

Adaptive Behavior and its Neural

Correlates

1.1 Facing a Changing Environment

1.1.1 Short Introduction to Adaptive Behavior

Our environment is constantly changing, at multiple levels. A given action may not

always have the same outcomes, and currently rewarded actions may not always remain

rewarded over time. In either case adequate behavior must be generated to alleviate

the organism’s needs. Changes in action-outcome relationships in the environment may

occur because resources have simply been depleted. In this case the organism has to

forage to find new resources. Alternatively, the way in which resources are available,

or the way in which the organism must act to access them, may depend on conditions

independent of the organism. In this case complex abilities are required, like recognizing

the changing conditions and acting adequately to access resources in new ways. These

examples, focused on the primordial aspect of access to resources, do not take into

account the myriad of adaptive behaviors that increase the chances of survival of a given

organism.

These behaviors are part of the adaptation needed to face the unpredictability of

the environment. A broad range of adaptive behavior exists within biological life, from

gene regulatory networks to the highly complex cognitive functions found in primates.

The advantage of animals over unicellular and vegetable life is their nervous system,

which allows them to react to external stimuli at a comparatively short time scale.

Nervous systems are therefore well suited to rapidly adapt behavior, but they come

with a cost in energy that must be compensated by a higher access to resources. We

won’t review the diversity of nervous systems and their associated adaptation abilities,

17



CHAPTER 1. ADAPTIVE BEHAVIOR AND ITS NEURAL CORRELATES 18

but it is nonetheless worth mentioning that animals with simple sensorimotor loops

within their nervous system already display rapid adaptive behaviors. As an example,

the renowned study of Carew et al. (1981) demonstrated that an animal that has a

relatively simple nervous system – Aplysia Californica – displays adaptive behavior on a

very short time scale in the form of habituation and sensitization on top of the animal’s

naturally occurring gill- and siphon-withdrawal reflex. The richness and diversity of

adaptive behavior seem to increase with nervous system complexity. From animals

having complex brains to mammals endowed with a cortex, adaptive capacity appears

to culminate in primates, which include humans.

1.1.2 Learning and Executive Functions

Any type of learning subserves adaptation. Simple predictions of the state of the

environment and the way in which it is changing subserve adaptation. After habitua-

tion and sensitization, the most simple form of adaptive behavior is associative learning

which includes classical and operant conditioning. The former is the association of a

neutral (conditioned) stimulus and a (unconditioned) stimulus that elicits a response

in an animal, through repeated exposure of both stimuli. The latter involves the as-

sociation between a behavior and its outcome. A mathematical model, known as the

Rescorla–Wagner rule, has been developed to model classical conditioning (Rescorla and

Wagner, 1972), while reinforcement learning is the most popular model for operant con-

ditioning (Barto, 1998). The former has inspired the first iterative learning methods for

neural networks, while the latter is widely used in neuroscience and psychology to model

decision making, and in artificial intelligence (including neural networks) and robotics

as a learning method.

However, primates have the ability to learn especially complex relationships between

stimuli, context and the outcome of their actions. Their cognitive processes are them-

selves remarkably flexible. The capacity to manage efficiently the different cognitive

processes is usually referred to under the umbrella terms of executive functions or execu-

tive control. A precise definition of executive functions is still lacking, rather, the terms

refer to a set of individual cognitive functions that are impaired with PFC lesions. Fu-

nahashi (2001), in an attempt to define executive functions, refers to them as “a product

of the coordinated operation of various processes to accomplish a particular goal in a

flexible manner”.

Amongst all the functions falling into this set, we must mention the following ones

for their interest to the present thesis: working memory (Miller et al., 1968; Baddeley,

2003), the ability to manipulate and actively maintain information for a limited amount

of time, decision making (Kable and Glimcher, 2009), the process by which an agent
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Figure 1.1: Wisconsin Card Sorting Test, a psychological test to assess task switching,
an instance of adaptive behavior (screenshot of PEBL software). Upper row show stimuli
cards that are presented to subjects. Each card display visual patterns with three features:
their number, shape and color. A test card is presented to the subject who is asked to
match it with one of the stimuli cards. In the present example, card 1 is a match by color
rule, card 2 by number rule and card 4 by shape rule of the objects. With successive test
cards and the feedback of the experimenter, the subject has to find to correct rule. Without
notification, the experimenter changes the feedback contingency to assess the capacity of
the subject to adapt its response.

evaluate possible actions and select one among them, and task switching (Monsell, 2003),

the capacity to switch between different goals, rules or strategies.

We are interested in the ability of primates to associate the same stimuli with dif-

ferent actions depending on context. This involves the ability to switch rapidly between

contexts without relearning the behavior associated with a context each time the previ-

ous one no longer leads to the desired outcome. Moreover, context must be maintained

actively in memory in order to consistently behave adequately.

This cognitive ability has been explored experimentally in psychology and neuropsy-

chology. In these domains, context can refer to a rule that defines the association

between stimuli, actions and outcomes. In human psychology, several tests have been

developed to assess the ability of subjects to switch between rules, amongst which the

Wisconsin Card Sorting Test (WCST) is renowned. In this test developed by Grant

and Berg (1948), stimuli cards with visual elements are presented to human subjects.

Subjects are asked to match new cards with one of the original stimuli cards without

being explicitly told how to match them (Fig. 1.1). Subjects learn to match cards by

trial and error using the experimenter’s feedback, and learn a behavioral rule in doing

so (e.g. same color). Without notifying the subject the experimenter changes the rule.

As a consequence, the subject has to adapt his response and find the new rule (e.g. same

pattern). In this test, subjects demonstrate their ability to switch effectively between

rules, i.e. inhibit a learned rule and actively search for a new one.
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Another psychological test named the Stroop test (Stroop, 1935) illustrates the need

for the behavioral control through inhibition. Subjects are asked to name the color of

words which themselves refer to colors (e.g. green). It takes more time to subjects

to name the color of the word than reading it, because there is a conflict between

two processes. The automatic process of reading the word interferes with the task of

transforming the perception of the color into a word. In this case, adaptation is needed

through the executive function referred to as inhibitory control which prevents automatic

processes to allow relevant behavior to be expressed.

1.1.3 Neuropsychology of PFC

The mammalian neural system is classified in two parts, the central and peripheral

nervous system. The peripheral system has its own set of reflex mechanisms contributing

to the repertoire of adaptive mechanisms of the animal, however the central nervous

system displays very complex flexible behaviors that are responsible for the successful

completion of the above mentioned tasks in humans. While the basal ganglia seem to be

critical for reinforcement learning (Doya, 1999), the involvement of the cortex in flexible

behavior has been progressively revealed by tragic but very informative historical events.

Perhaps the most famous case in neuropsychology is Phineas Gage, a railroad con-

struction foreman who survived the passage of an iron rod through his head, permanently

damaging his brain. After his rapid recovery, his wife, workers and employers soon dis-

covered that Gage’s personality had change, he became impulsive and could not follow

social rules anymore. In addition, his ability to lead and work efficiently were profoundly

impaired, as he was easily distracted and was unable to focus on one task, in other words

he could not inhibit automatic behavior and switch effectively between tasks (Harlow,

1999). The part of the brain injured was the prefrontal cortex (PFC).

Indeed, the rich adaptive behaviors encompassed by the cognitive abilities of primates

are attributed to their greatly expanded PFC compared to other mammals (Barbas,

1999). This brain region is one of the cortical structures that underwent the latest

development in evolution. The precise delimitation of the PFC is still debated, but a

simplistic definition would describe it as the part of the frontal cortex anterior to the

motor and premotor areas.

The report of Gage’s symptoms was the first well documented case of PFC injury.

Subsequent cases along with animal lesion experiments have informed the extent of im-

pairments following PFC lesions. Symptoms are neither related to sensory nor motor

behavior but to the mapping between them, especially if a delay is involved. Although

very diverse, most typical symptoms include deficits in working memory and discrimina-

tion reversal tasks. For example, it has been shown that patients with PFC lesions are
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impaired in task switching as revealed with WCST tests (Milner, 1963). Also of interest

for this thesis, lesions in the lateral regions of PFC, have shown to impair sequential

behaviors (Luria, 1966).

1.1.4 Theory of PFC Function

Globally, neuropsychology has demonstrated the key role of PFC in executive func-

tions. The PFC has a crucial role in the flexible mapping of sensory information with

actions directed to an internal goal. To explain this ability, one of the most popular

theories of PFC function is the cognitive control theory developed by Miller and Cohen

(2001). They hypothesize that the main role of the PFC is to actively maintain repre-

sentations of goals and the means to achieve them. To do so, PFC bias processing in the

sensory and motor regions in order to “guide the flow of neural activity along pathways

that establish the proper mappings between inputs, internal states, and outputs needed

to perform a given task”. Increasing the gain of sensory and motor neurons would exert

a bias to preferentially process sensory features and motor actions that subserve the

current goal.

They list the minimum requirements for this theory to hold:

• PFC must provide a source of activity that can exert the required pattern of biasing

signals to other structures

• PFC must maintain its activity robustly against distractions until a goal is

achieved, yet also be flexible enough to update its representations when needed

• PFC must house the appropriate representations, those that can select the neural

pathways needed for the task

• PFC representations must have a high capacity for multimodality and integration.

• PFC must exhibit a high degree of plasticity

In the third and fourth points, they lay down the requirement of representations that

subserve the top-down control of the PFC. Here, representation refers to the physically

observable activity of neurons that can be correlated by one means or another with an

information, whether it is sensory, motor, endogenous or a combination of them. Rep-

resentations must be highly multidimensional in order to integrate all the information

that may be relevant to achieve a goal. In addition, temporal organization of these infor-

mation may be relevant to goal-directed behavior, therefore it must also be represented

in the PFC. Miller and Cohen review few electrophysiological findings that support the

existence of diverse representations of rules or mappings between sensory and motor
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information in the PFC. However, the mechanisms underlying the genesis and diversity

of these representations have only recently been a focus of attention. This question will

be central to the present thesis.

1.2 Neuronal Activity Correlates

In this section we will briefly review the single unit and neural population activity

correlates of representations related to cognitive control in the PFC. In general, we will

use the terms task variable to refer to any feature of an experimental task that varies,

whether it is a sensory, internal or motor feature.

1.2.1 Basic Single Unit Correlates

Electrophysiological recordings in single neurons of the PFC historically starts with

persistent activity during delayed response tasks (Fuster and Alexander, 1971; Fuster,

1973). In the first of these experiments, monkeys are presented with a piece of apple

within one of two wells placed in front of them. Wells are covered by objects and a blind

is lowered to prevent the monkeys to fix an object. After a delay, the blind is removed

and monkeys can reach one of the two objects. Fuster and colleagues observed that

neurons in the PFC and thalamus persistently fired during this delay, i.e. tonic activity

started with the cued position of the reward and ended as soon as the blind was lifted.

They associated this persistent activity with the maintenance in memory of the food

location.

Funahashi (1989) replicated these findings with a spatial task that required eye sac-

cades to the spatial location of a cue presented before a delay. Persistent activity has

been associated with working memory (Goldman-Rakic, 1995), and has been correlated

with the maintenance of different types of information (e.g. visual (Miller et al., 1996),

tactile (Romo et al., 1999)). Furthermore, other studies have shown representations of

stimuli features and their associated response in the activity of PFC neurons (Watanabe,

1986; Sakagami and Niki, 1994; Hasegawa et al., 1998).

Later, researchers have started to focus on the representation of rules or strategy

in the activity of PFC neurons. For example, White and Wise (1999) recorded single

neurons in three distinct prefrontal regions while monkeys performed a demanding cog-

nitive task. The animals were required to respond differently when presented with the

exact same stimuli, i.e. they had to learn the rules that prescribed the right mapping

between stimuli and response (an equivalent of the WCST). The authors reported that

between one-third and one-half of the neurons in each region were modulated by the

rule. Similar task switching experiments have shown rule-related activity modulation in
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PFC (Wallis et al., 2001; Mansouri et al., 2006), and recently Genovesio et al. (2005)

reported modulation with strategy.

Globally, single PFC neurons display activities representing a wide variety of infor-

mation, ranging from sensory features to context and rules. This diversity might be

explained by the rich connectivity of the PFC with sensory and motor cortical areas,

which may be a critical feature of the PFC to achieve its executive control function

(Miller and Cohen, 2001).

1.2.2 Distributed and Rich Representations

While the activities presented in the previous section reflect the encoding of single

task variables, some of these experiments also revealed more complex activities explained

by the combination of diverse information. Indeed, single prefrontal neurons are rarely

selective for a single task variable, but usually respond to a complex combination of

several of them. Because of this complexity, the neuronal responses of numerous recorded

neurons in the PFC have often been hard to correlate with any aspect of the task at

hand, and may have been discarded as irrelevant.

However, recent studies have proposed that these complex activities might play a

role in mapping stimuli with responses. In a reversal learning task1 involving two cues

and two motor responses, Asaad et al. (1998) found PFC neurons whose activity dif-

ferentiate the two cues and both responses (fig. 1.2c). Other neurons responded to the

presentation of one of the two cues only when it was associated with a particular motor

response (fig. 1.2d). In other words, the activity of these neurons is explained by the

combination of two task variables, the cue identity and the motor response. The first

case is a linear combination of task variables, which means that the activity of the neu-

ron can be explained by the additive effect of each variable. The second case displays

interaction between the task variables, and is therefore a non-linear combination of the

task variables.

Previous studies have similarly shown the interactions between several task variables

(Watanabe, 1986, 1992; Sakagami and Niki, 1994). These complex activities have been

the focus of recent studies that referred to them as (non-linear) mixed selectivity (Rigotti

et al., 2013). In other words, activities of neurons that could not merely be explained by

the additive influence of the task variables, as mentioned above. In this key paper, mixed

selectivity refers to non-linear and also to linear combination of task variables. Often

overlooked because of the difficulty to interpret them, Rigotti and colleagues showed

that the dimensionality of the activity in the neural population recorded was lower

1 Typically, a task in which the associations between stimuli and rewarded responses are reversed.
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Figure 1.2: Non-linear combination of task variables in PFC (Asaad et al., 1998). Mon-
keys in front of a screen have to learn by trial and error to match a visual cue (Object A
or B) to a saccade (left or right). Neurons were recorded in the lateral PFC while mon-
keys performed this task with alternation of the reward contingency. The figure shows
the response of 4 neurons for all possible combinations of visual cue and saccade direc-
tion. Neuron a and b have easily interpretable responses: they preferentially respond for
object B and right saccade, respectively. Activities from neuron c show a more complex
nonetheless linear combination of task-variable influences. Neuron d has a non-linear
combination of cue and motor response, and can be interpreted as a specific mapping
between them.

when monkeys made errors. Moreover, the difference in dimensionality was attributed

to less non-linear activities during these errors trials (Fig. 1.3).

These results demonstrate the necessity for non-linear combination of task variables,

and imply that the dimensionality of the neuronal population activity is higher when

monkeys perform correctly. The authors showed also that, to some extent, task variables

can even be decoded only from the non-linear influence of task variables in population

activity. Similarly, it has been shown that neurons whose activity has a low statistical

correlation with a particular task variable actually help a decoder to better retrieve

the state of that variable (Meyers et al., 2012). Activities that seem unrelated to the

task could expand the dimensionality of the neuronal activity. As we will see in the

next chapters, high dimensional activity might increase the representational power of

the cortex.

In this thesis we will use the term mixed selectivity to refer to its non-linear com-

ponent only. It is defined as the non-linear combination of task variable influences on
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Figure 1.3: Monkey performance drop in a recall task correlate with non-linear mixed
selectivity decrease (Figure from Rigotti et al. (2013)). Activity of PFC neurons was
recorded while monkeys performed a recognition or recall task. The animals had to re-
member the identity and order of two objects presented on a screen. In graph a, c and
d, left y axis is the number of implementable classifier that reflect the dimensionality
of the data shown in right y axis. a. The dimensionality of population activity is lower
when monkeys make errors. b. However, cue identity can be decoded as accurately when
monkeys make errors (dashed lines) as when they perform correctly (continuous lines).
Each grey area corresponds to the presentation of one cue. Therefore, errors are not
related to degraded representation of the cues. Green and orange lines are the decoding
accuracy for the first and second cue, respectively. c. The non-linear component of mixed
displays a drop in dimensionality when monkeys make errors. d. However, the linear
component shows a similar number of dimensions with and without errors, implying that
the presence of the non-linear component is correlated with correct behavior.

single-neuron activity. These non-linear combinations can be quite complex and more

difficult to interpret than, for example, the cue-response interaction shown in fig. 1.2d.
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1.2.3 Sequence Processing and Single Unit Correlates

So far, we focused on the static mapping between stimuli and responses, however any

sequence processing and production requires temporal information to be taken into ac-

count. Indeed, most complex behaviors require temporal organization, from mere prepa-

ration of a coffee to complex language comprehension and production. This section will

briefly introduce neural activity correlates of temporal and sequential representations.

Pioneering work from Barone and Joseph (1989) revealed how stimulus-related ac-

tivity of PFC neurons was influenced by previous stimuli when presented in a sequence.

They recorded single neurons from the dorsolateral PFC of monkeys that observed se-

quences of targets on a screen. Animals had to reproduce these sequences by touching

the targets in the same order. They found neurons responsive for the rank of a particular

target during the presentation of the sequence. Also, they described neurons responding

for a fixated target only when it followed or preceded a specific target. They named

these neurons context cells, as they responded for a target only in a specific context.

These activities are reminiscent of the interaction between task variables. But in this

case, the interaction involves the temporal information related to the order of presen-

tation of the targets. Similarly, in a delayed sequential reaching task, Funahashi et al.

(1997) found that 32 of the 72 neurons that responded during a delay were selective for

a target only when presented in a specific order of the sequence. This type of contextual

selectivity has also been found in the supplementary and presupplementary motor areas

as well (Clower and Alexander, 1998). In an experiment where monkeys had to perform

cued motor sequences, Shima et al. (2007) report neurons whose activity corresponded

to the category of the sequence to be produced. A set of three possible movements (A,

B, C) composed 4-element sequences. For example, category neurons were responsive to

movement sequences A-A-B-B and C-C-A-A.

We see with these results that the representation of temporal information is em-

bedded in the representation of stimuli. This presuppose that the temporal dimension

related to sequential behavior may not be processed in parallel to non-temporal infor-

mation. Rather, it appears to be distributed and embedded within the non-temporal

representations. This point is developed in chapter III.

1.2.4 Neural Activity Dynamics

The neural activity dynamics underlying context representation is currently actively

explored. These studies find insights in dynamical system theory to explain the pop-

ulation activity dynamics of cortical neuron networks. Along this approach, cognitive

functions may be carried out by specific dynamics. For example, a popular view is that
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persistent activity in working memory task is maintained thanks to attractors of the

neural dynamics. In the case of neural activity, an attractor is a state of the network

that is relatively stable because it attracts all neighboring states to itself. The state of

a neural network is defined as the set of activity of each neuron in the network, and the

ensemble formed by all possible combinations of these states is called the state space.

Recent studies suggest that rules and context are maintained thanks to attractors.

Durstewitz et al. (2010) show an abrupt transition in the neural population activity

between two rules that occupy distinct region of the state space. They found that

population activity was rather stable after the rules were learned, suggesting that both

rules were maintained in attractors. In-depth analysis from (Balaguer-Ballester et al.,

2011) showed that the successive states of a delayed win-shift task2 are represented

in successive semi-stable and converging activities of rats medial PFC neurons. They

observed “cognitive-epoch-specific neural ensemble states” which suggest that the neural

dynamics jumps between successive attractors. Each stable state may represent the

current cognitive state related to an epoch of the task.

The opposite dynamical regime to attractors is transient dynamics, in which the

activity of neural ensembles continuously change. Studies of odor representation in locust

antennal lobe (Mazor and Laurent, 2005) and mammalian olfactory bulb (Bathellier

et al., 2008) revealed that different odors can be discriminated in the transient dynamics

that follow odor presentation. In an attempt to verify predictions of recurrent dynamics

(that we will address in the third chapter), Nikolić et al. (2009) showed that primary

visual cortex neurons showed a contextual encoding of elements presented in a sequence.

These results are reminiscent of the findings of Barone and Joseph (1989). Nikolic

and colleagues argued that sequences of visual elements are encoded in spatio-temporal

patterns of activity, in other words, in transient activities.

While attracting dynamics have received a lot of attention, these last results have

led to the proposal of “transient dynamics for neural processing” (Rabinovich et al.,

2008; Durstewitz and Deco, 2008) or spatio-temporal processing (Buonomano and Maass,

2009). Both groups of researchers support transient dynamics as behaviorally and com-

putationally relevant in many situations. Rabinovich et al. (2008) suggest that neural

systems may best be described by transient dynamics that link successive attractor

states.
2 In a win-shift task, a different choice must be made at each trial because the same choice is not

rewarded in two consecutive trials.
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1.3 The Need for Arbitrary Contingency Represen-

tations

A wealth of research findings has uncovered the fundamental mechanisms behind

learning in primates. Most of learning models rely on the prior representation of infor-

mation relevant to adaptation before any link between a contingency and a behavior is

created. In addition, in this chapter we have seen that activities in the PFC correlate

with the necessary representations of contingencies. However, the origin of these repre-

sentations is poorly understood. In this section, we will present the bases that lead to

our hypothesis on the process that generate such representations in the activity of PFC

neurons. But first, we will present the behavioral theory of selectionism that develop

ideas similar to our hypothesis at the level of behavior.

1.3.1 Complex Behavior Through Selectionism

In order to explain the diversity and complexity of behaviors, Thorndike put forward

ideas of selectionism(Donahoe, 1999), a theory which can be described as a three-step

process: variation, selection and retention (Dennett, 1995) (fig. 1.4). He argued that the

complexity of behavioral repertoires can be explained by this process.

Variation is undirected and provides the raw material upon which selection operates,

and is the source of novelty in the selectionist process. Selection is the mechanism

by which a variation is favored by the environment. Finally, retention refers to the

maintenance of the selected variations. Maintained variations subsequently contribute

to variation through an accumulation process. Repetition of these processes eventually

provide complex behaviors. This description is very general. In the context of psychology

it must be understood in terms of behavior genesis. In other words, variation refers to

the undirected generation of behaviors, and selection and retention to the strengthening

and consolidation of a relevant behavior. Much later, Skinner, a strong proponent of

behaviorism, developed similar ideas which focused on the selection aspects. He based

his theory of selection by consequences on his work on operant conditioning Skinner

(1981).

1.3.2 Selection of Pertinent Representations Among a Preex-

isting Set as a Mechanism to Adapt

Although the selectionist theory may be viewed as limited in its explanation of be-

havior, it echoes the hypothesis developed in this thesis. We are particularly interested
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Figure 1.4: Selectionism (figure reproduced from Donahoe (1999)). According to selec-
tionism, complexity arise from simple processes (variation, selection and retention) that
engage in a cyclic global process. It can be interpreted as an explanation of the emergence
of complex behavior through the cumulative effect of reinforcement.

in the variation process, whereby undirected “raw material” is generated. This raw ma-

terial is what selection acts upon. We want to transpose this concept to the generation

of representations in the prefrontal cortex (PFC). We present evidence and argue that

PFC represents all relevant contingencies of a given task in its distributed activity. We

propose that this property is inherent to the structure of the cortex. Finally, we argue

that these representations are present before any learning takes place in PFC, and that

they are the necessary precursors of prefrontal learning.

Such representations are crucial for learning, because any behavior that is not innate

must be learned. Associative and reinforcement learning involve the creation of links

between two or more representations. These representations can refer to inner states

or pertain to the sensory or motor domain. Yet, in order to be linked, any two rep-

resentations must exist in a context amenable to learning. For example, to associate

any stimulus with a behavior, the representation of the stimulus must exist before the

association can be made. Of course, representations may be altered with learning, for

example strengthening them when they lead to relevant behaviors. So specific activity

appearing with learning would be the reflection of the already existing representations
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that have been shaped by learning.

So a key question is how the pattern of activity that underlies these representations

can arise. This may be explained by the same iterative process proposed in selectionism.

At any given start point, for example before an adaptation in behavior, or in a labo-

ratory setting before the start of a task, complex combinations of sensory, motor and

already learned internal representations preexists as complex activity patterns of pre-

frontal neurons. Specific activity patterns, or combinations of patterns, are selected and

learned because they represent contingencies that lead to relevant behavior. Learning

strengthens these patterns, which can in turn participate in a new set of more com-

plex combinations to be subsequently selected and strengthened, and hence the iterative

process continues. We must stress that the theory developed here differs from neural

Darwinism (Edelman, 1987), which involves the duplication of neural groups that have

been selected.

A striking example illustrating this theory in the auditory system lies within the

development of language. Kuhl et al. (1992) demonstrated that prior to a certain age,

babies can discriminate vowels within the full vowel space of human speech. Through

exposure to a particular language, they gradually specialize to recognize the vowels of

this language. This implies that, before learning their native language, babies potentially

possess universal representation of the vowels produced by humans, yet this variation

process undergoes selection in order to refine the vowel space given initial use.

The variation process that generates any arbitrary combination of already existing

representations is the topic of this thesis. In the remaining chapters of the state of the

art section, we will refine the hypothesis that the prefrontal cortex represents all contin-

gencies in its distributed activity before any learning takes place, and that this property

is inherent to the structure of the cortex. Learning would be the mechanism by which

representations relevant to behavior are strengthened and subsequently used in combi-

nation with other representations to eventually produce complex adaptive behavior.



Chapter 2

Representations in Neural Networks

2.1 Neural Networks: Substrate to cognition

The origins of connectionism

In the previous chapter, we developed the argument that adaptation is based on se-

lection and learning of pre-existent representations. In this chapter we will first introduce

neural networks as a model to understand how the brain underlie these representations.

Then, we will discuss how arbitrary combinations of sensory, motor inputs and internal

representations can arise from inherent properties of neural networks.

Throughout the state of the art section of this thesis, we will use the term neural net-

work to refer to artificial versions of biological neural networks for modelling purposes.

The larger philosophical paradigm behind neural networks is refereed to as connection-

ism. The first part of this chapter will be dedicated to the history of the emergence

of connectionism, because of its relevance to the understanding of information repre-

sentation in neural systems. It is especially interesting in the context of the universal

representation problem. As we will see, lack of representational power in early neu-

ral networks hindered research in the field for more than a decade, shortly after their

introduction.

After defining and setting the philosophical and psychological origins of the connec-

tionist paradigm, we will look into the first neural-network models and explain the reason

for their temporary demise. We will then introduce neural networks that can learn to

perform non-linear problems followed by attracting dynamics in simple recurrent neu-

ral networks. Finally, we will show the benefits of randomly generated connections for

universal representations.

31
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2.1.1 Definition

Connectionism, like cognitivism, is a theory of information processing. However, as

we will see, connectionism is based on sub-symbolic representations and processing, in

opposition to traditional paradigms like symbolic logic. This latter approach is derived

from mathematical reasoning and involves manipulating specific and discrete symbols

with explicit and logical rules organized in hierarchy (Medler, 1998). In contrast, con-

nectionism is based on sub-symbolic, distributed and statistical representations and pro-

cessing, where each processing unit does not necessarily has a meaning. Furthermore,

the former approach operates on symbols sequentially, whereas connectionism introduces

parallel processing of information.

In order to avoid any confusion, here we are interested in connectionism related to

cognitive science, whose main objective is to understand the human mind. Neural net-

works can be approached from an engineering perspective, where the goal is to develop

systems that are efficient but are not necessarily inspired by the brain. Nowadays, con-

nectionism, among which neural network is the main implementation, is well integrated

in the meta field of cognitive science. This multidisciplinary approach has had a strong

influence on the understanding of human mind because of the convergence of its en-

compassed fields towards a more unified theory of human mind. However, as cognitive

science emerged in the 1950’s, the most advanced research on artificial intelligence was

dominated by symbolic logic, while psychology saw the advent of cognitivism that pro-

poses similar symbolic processing through successive mental states. Proponents of both

these approaches seemed to disapprove the emergent connectionism which developed

radically different theories. Indeed, connectionism explained information processes at a

lower level than their respective fields, which seemed to contradict their own theories.

In 1986, in their book entitled Parallel Distributed Processing, Rumelhart, McClel-

land and the PDP research group proposed a definition of the connectionist approach,

and more specifically, of neural networks. They list eight properties as essential to the

paradigm (Rumelhart et al., 1986a):

• A set of processing units

• A state of activation

• An output function for each unit

• A pattern of connectivity among units

• A propagation rule for propagating patterns of activities through the network of

connectivities
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• An activation rule for combining the inputs impinging on a unit with the current

state of that unit to produce a new level of activation for the unit

• A learning rule whereby patterns of connectivity are modified by experience

• An environment within which the system must operate

In other words, a neural network is composed of a structured set of units endowed

with processing properties that statistically learn to compute inputs. This processing

paradigm is denoted as distributed and parallel because its computational power is

derived from the joint operation of each individual unit. Connectionists base their

models upon the building block of the brain, the neuron, and the functional properties

of its neurophysiology which they believe are critical to understand cognition (Medler,

1998). This new modelling approach accounts for properties of human cognition poorly

handled by classical paradigms, like graceful degradation, content-addressable memory

and supervised learning. We will define these properties in their respective context in

the following sections.

2.1.2 Philosophical, Psychological and Neurophysiological

Roots of Connectionism

Connectionism takes its roots in associationism, that has philosophical origins that

can be traced back to Aristotle in ancient Greece. He described memory as composed

of simple elements linked together by temporal succession, object similarity, and spatial

proximity. Indeed, this proposition matches very well with the description of psycholog-

ical processes developed by proponents of materialism and empiricism (including Locke

and Hume) under the paradigm of associationism (Medler, 1998). The list of concepts

defined by Bechtel and Abrahamsen (1991) will help us to define the associationist

paradigm:

• mental elements or ideas become associated with one another through experience,

• experience consists of such things as spatial contiguity, temporal contiguity, simi-

larity, and dissimilarity of ideas,

• complex ideas can be reduced to a set of simple ideas,

• simple ideas are sensations, and

• simple additive rules are sufficient to predict complex ideas composed from simple

ideas
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Before behaviorism became the leading paradigm in the field and occluded any theory

on the mechanisms at work in the brain, early psychology theories included connectionist

ideas that arose with the combination of associationism and neurology. Indeed, Spencer

(1855) and James (1890) (father of the associative memory theory) developed very sim-

ilar theories stating that links between neural processes representing events in the world

are strengthened in the brain to reflect the co-occurrence of these events in the world.

Thorndike, a student of James, can be considered as one of the founding behaviorists

through experiments like the puzzle box, and is certainly one of the first true proponent of

connectionism, developing the concept of sub-symbolic neural association. He insisted

on the demarcation of connectionism from associationism (Thorndike, 1932) through

the development of what would later be known as distributed processing, hidden units

and supervised learning. Indeed, he developed the theory of Law of Effect, which is a

precursor of the reinforcement learning paradigm (Thorndike, 1898).

Finally on our brief psychological account of the origins of connectionism, Hull (1943)

is of particular interest because of his insightful conjecture on neural activity. Specifi-

cally, he proposed the idea of “interactions between two or more afferent neural impulses

which implies that behavior to the same stimulus is not constant” (Medler, 1998). This

is strongly reminiscent of the interaction between task variables likely to produce mixed

selectivity in neural activity. Furthermore, and critical for connectionism, he developed

a theory of learning that is echoed in the Rescorla-Wagner rule, and which has been

demonstrated to be identical to the Widrow-Hoff rule for training early neural networks.

One must briefly mention the life-long work of Lashley (1950) on lesion experiments

he summarized with the Mass Action principle: “the reduction in learning is proportional

to the amount of tissue destroyed, and the more complex the learning task, the more

disruptive lesions are.” This observation is related to the concept of graceful degradation

or fault tolerance, which is the progressive functional impairment of a system in the

event that one of its component is failing. Neural networks show similar progressive

performance degradation as connections within the model are severed.

Early accounts of connectionism in neurophysiology include the cornerstone work of

Hebb (1949) on synaptic efficiency. The principle states that if a first neuron repeatedly

contribute to the firing of a second neuron, the synapses that link them become more

efficient. This rule has been derived mathematically and is used widely in realistic

neural network models to modify weights between connections. This simple learning

method, referred to as Hebbian learning, has had a strong impact on the explanation of

associative processes in the brain.
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2.1.3 Early neural network models and their limitations

The mathematical foundations of neural modeling can be attributed to McCulloch

and Pitts (1943). In their seminal paper A logical calculus of the ideas immanent in

nervous activity, they simplify the activity of biological neurons into five functional

states:

1. The activity of the neuron is an “all-or-none” process.

2. A certain fixed number of synapses must be excited within the period of latent

addition in order to excite a neuron at any time, and this number is independent

of previous activity and position on the neuron.

3. The only significant delay within the nervous system is synaptic delay.

4. The activity of an inhibitory synapse absolutely prevents excitation of the neuron

at that time.

5. The structure of the net does not change with time.

Networks are composed with basic elements referred to as neurons or units. A con-

nection between two units is directed and weighted, meaning that the activation of the

first unit will excite the second unit proportionally to the value of the connection weight.

This effort at reducing the property of neural activity set the basis for neural mod-

eling. Less than a decade later, Hodgkin and Huxley (1952) built a neuron model that

incorporated much more detailed electrophysiology. Both versions simulate the spiking

behavior of neurons. Less detailed models simulate the firing rate of the neurons. In this

case, a neuron is represented by two variables, its activation state x and its output y.

The activation state of neuron j at time t is obtained through the weighted contribution

(weights denoted w) of afferent neurons (inputs u):

xj(t) =
m∑

i=1

(wijui(t))

The output is derived from the application of the transfer function 1 ϕ() on the

activation state:

yj(t) = ϕ(xj(t))

The models developed by the author use firing rate neurons (also denoted analog

neurons), as a consequence, we will not get into the details of the wide literature on its

spiking counterparts.

1 Also denoted activation function.
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Importantly, McCulloch and Pitts showed that networks of such simple processing

units can represent any propositional logic statement, and that these networks poten-

tially have the computational power of a Universal Turing Machine. A Turing Machine

is an hypothetical system that can manipulate symbols in sequence with logical rules.

It can be seen as a machine that sequentially process information according to symbolic

logic. Conversely, the Universal Turing Machine is the system that can simulate any

Turing Machine. In other words, a machine that can potentially implement all possible

logical operations. In principle (if the connections of the network are well set), a neu-

ral network can reproduce any logic implemented in a Turing Machine, and therefore,

compute the full extent of operations developed by symbolic logic.

Based on these principles, Rosenblatt (1958) developed the Perceptron, which laid

the bases of the canonical feedforward network architecture (fig. 2.1).

Figure 2.1: Perceptron architecture. Physical properties of the external world are trans-
duced by the sensory units which pass on their activation to association units. Through
successive association layers, activation finally reaches the response layer that connects
back to the external world. Activation flows in one way only, from sensory to response
units, and equally important, without connection between units within a layer. Note that
the conventional terminology refers to these units as input, hidden and output units.

Neural network models define their architecture with layers, which are pool of neu-

rons. In the Perceptron architecture or feedforward network, layers are connected se-

rially. Units from one layer receive activation through directed connections from the

previous layer, and send connections to the next layer. Also, a defining property of this

architecture is that there are no connections between neurons within a layer. The first
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layer of the network is called the input layer (bottom layer) and receives the information

to be processed. The last layer is the output layer (top layer), which provides the answer,

response or output of the network depending on the terminology. In between, hidden

layers process the inputs received the bottom layer through successive activation of the

layers until reaching the top layer. Depending on the type of neurons implemented each

layer produce a non-linear transformation. However, if one considers the case of a linear

activation function, connections between two layers perform a linear regression. And in

this case, it is the succession of linear transformations that elicit non-linear processing of

inputs. Rosenblatt demonstrated that this architecture is able to solve the exclusive OR

problem (XOR, or exclusive disjunction) through non-linear processing of the inputs.

The XOR is a logical operation that returns true when only one of two inputs is true.

This architecture was developed for pattern recognition purposes, yet “the Percep-

tron, more precisely, the theory of statistical separability, seems to come closer to meet-

ing the requirements of a functional explanation of the nervous system than any system

previously proposed” (Rosenblatt, 1958). Connections between the input and hidden

layers, and between hidden layers are fixed. Learning takes places as a modification of

the weights of the connections between the last hidden layer and the output layer. The

architecture, the type of neuron model and the learning method of a network consti-

tute the essential components of its description. However, one must keep in mind that

they have to be considered independently. For example, different learning methods can

sometimes operate on the same architecture.

Indeed, it is the work of Widrow and Hoff (1960) on the Adaline that seeded the

established learning rule for training feedforward networks, known as the Delta Rule. Its

denomination comes from the modification of connection weights that follows successive

small quantitative steps denoted “delta”. This method pertain to the supervised learning

class because the network is trained with a specific desired output for each input. The

gap between the actual output of the network and its desried output is referred to as the

error and is used to modify the weights. This first version was limited to training the

connections between the last hidden layer and the output layer, like the rule developed

by Rosenblatt for the Perceptron.

However, Minsky and Papert (1969) who were also interested in visual pattern recog-

nition, analyzed carefully the capabilities of Perceptrons. Because these networks can

only learn the connections between the hidden layer and the output layer, they showed

in their work entitled Perceptrons that these networks could not technically “learn” to

perform a XOR classification (Fig. 2.2). In the case of the original Perceptron, the

weights between the input layer and the hidden layer must be hand tuned and cannot

be learned. Yet, the XOR classification is the most simple linearly inseparable problem.
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Figure 2.2: Linear separability of a problem. This figure presents two example “problems”
where elements defined by two variables (that correspond to input neurons in the case of
the perceptron) must be linearly separated according to their class (x or o). In the left
hand graph one can see that the x and o elements can be separated by a single line (dashed
line). However, the problem presented on the right hand graph cannot be separated with
a single line, and is therefore non-linear. This particular problem is reminiscent of the
exclusive OR (XOR) operation, a basic logical operation. A Perceptron can learn to
separate the first problem but not the second.

If the perceptron cannot learn to solve it, what can be expected for more complex prob-

lems, Minksy and Papert asked. Their work was directed towards an assessment of the

capacity of the Perceptron, yet, their results were understood as a serious limitation of

neural networks by the scientific community, and set the demise of neural networks.

Following the downfall of behaviorism popularity and the simultaneous rise of cogni-

tivism and symbolic processing, connectionist research disappeared from psychological

literature until the mid 1980’s (Medler, 1998).

2.2 Resurgence of Connectionism:

Learning Non-Linear Representations

Connectionism has had difficulties imposing itself as an interesting paradigm to ex-

plain cognitive processes, as it developed in apparent opposition to the symbolic logic

(Newell and Simon, 1976). It was the dominant approach in the modeling of human

intelligence at that time. Furthermore, cognitivist approach itself was based on the

manipulation of symbols or mental states.

Early neural networks showed that non-linear problems could be solved by feed-

forward networks with a hidden layer. However, connection between input and hidden

layers had to be hand tuned. Although neural network research almost disappeared after
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the demonstration of the limitations of Perceptrons, some research actively contributed

to the resurgence of the field through the development of learning methods able to train

the connections at every level of a feedforward network.

2.2.1 Parallel Distributed Processing and Error Back-

Propagation

Independently discovered by several researchers (Werbos, 1974; Parker, 1982; Le Cun,

1986), the Generalized Delta Rule (GDR) was popularized by researchers who referred

to themselves as the Parallel Distributed Processing (PDP) group. In a book rightfully

named Parallel Distributed Processing they generalized the GDR, introducing the error

back-propagation algorithm (or simply backpropagation) (Rumelhart et al., 1986c).

The name stems from the process by which error is propagated from the output layer

towards the input layer, in the direction opposite to the activation of the network. The

error is defined as the discrepancy between the desired output and the actual output

of the network. To first obtain the actual output, the network is activated through

the classic propagation of activation in the network (bottom up direction). Inputs first

activate the input layer that propagates its activity to the successive layers, to finally

reach the output layer whose activation defines the output of the network. The gradient

of the error is calculated by comparing the actual output to its desired counterpart. It

is then propagated from the output layer connections towards the connections of each

successive hidden layer, until reaching the input layer (top down direction). Repeating

this method with all the available pairs of input and desired output, for several iterations,

allows the weights to be modified in the direction that decreases the error. Eventually,

the weights should converge towards a minimum of error, a state where the actual outputs

should match the desired output. This method allows the network to successively extract

the pertinent features of the inputs for the problem at hand. Each layer adds a degree

of precision to the extracted features.

Now able to learn the connections between all layers, the backpropagation algorithm

has been shown to learn to solve the XOR problem. Later, Hornik et al. (1989) have

analytically demonstrated that a feedforward network with only one hidden layer using

backpropagation algorithm is a universal approximator. This implies that it can approxi-

mate any continuous mathematical function. The degree of approximation is determined

by the number of hidden units. Discontinuous functions are approached with a second

hidden layer, but any additional hidden layer should not, in principle, add precision in

terms of function approximation. Feedforward networks with the backpropagation rule

have taken the name of multilayer perceptron for their ability to learn more than one
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layer of connections.

With appropriate neural properties (non-linear activation functions in single neu-

rons), backpropagation converges on weights that elicit non-linear combinations of inputs

in the successive layers. Importantly, these activities are sub-symbolic. This means that

the activity of each neuron do not necessarily represent symbols as in the symbolic logic

paradigm. The connectionist approach proposes mechanisms for observations poorly ex-

plained by classical symbolic and cognitive approached like generalization, the ability to

predict data outside of the original training set, previously mentioned fault tolerance and

content-addressable memory that will we present in the next section. These observations

reinforced the idea that the brain might use very different computational mechanisms to

represent and process information than those from computers, originally laid down by

John von Neuman. However, the same researcher later proposed a redundancy principle

(Von Neumann, 1956), reminding of the distributed approach later developed within the

symbolic framework by Winograd and Cowan (1963).

From a cognitive modelling approach, the backpropagation method itself does not

seem quite biologically plausible. However, this work demonstrated the capacity of

neural networks to solve quite complex non-linear problems. Here, we are interested in

the demonstration that arbitrary static pattern classification and function approximation

can be solved by non-linear networks. Indeed, the key feature of the second generation of

neural networks was their non-linear processing capabilities. Even if the learning method

itself is not plausible, properties of the network after learning can be of interest to study

non-linear distributed representations. For example, Zipser and Andersen (1988) used

backpropagation to simulate the activity of posterior parietal cortex neurons of monkeys

performing a task with saccadic eye movements towards visual cues. They reproduced in

hidden units the interaction between the eye position and saccade response observed in

the activity of parietal neurons. Interaction implies that the activity of these neurons is

explained by a non-linear combination of the variables, a property referred to as mixed

selectivity as was mentioned in the first chapter.

2.2.2 Early Recurrent Networks with Attracting Dynamics

Recurrent neural networks (RNN) are defined by a connectivity pattern that allows

connections between neurons within a layer, and between neurons from a higher layer to a

lower layer. Since the connections are recurrent, activity will not only flow from the input

layer to the output layer, but also propagate in loop and interact with current inputs,

thereby adding dynamic properties to the network. A wide variety of architectures have

been developed which have added substantial processing abilities to the neural network

paradigm.
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Recurrent neural networks can be divided in two families with different purposes

(Lukoševičius and Jaeger, 2009). Both families are of interest to the present thesis. The

temporal processing family will be the focus of the next chapter. The attractor family

is briefly introduced in this section while specific models will be covered in the fourth

chapter. Some instances of RNN have properties pertaining to both families.

The first instance of attracting RNN was developed by Hopfield (1982). Referred

to as Hopfield net, this class of networks implement content-addressable memory. It

is a property of memory function stating that an encoded memory can be retrieved

by activating a subset of the components of the memory. The brain would in turn

activate the remaining components which would form the whole memory together with

the already active components. It can also be considered as a mechanism to generalize,

based on the similarity of the inputs to the learned pattern.

Each attractor of the network is trained and represents a pattern or class of inputs.

Any input constantly activating the network will make its dynamic converge towards

one of the trained attractors. By definition, inputs of one class should be close to

the prototypical pattern that was used to train the network. Therefore, the activity

produced within the network by one input should converge towards the attractor built

from its prototype.

To elicit such dynamics, this type of network assumes full, symmetric connectivity

between the units. In other words, each unit is connected with every other units with

the same weight in each direction of the connection. This network is the first of a long

list of networks that have since been derived from this initial instance. We must mention

several extensions that brought this model closer to biology by separating excitatory and

inhibitory neurons, which were simulated with plausible spike rate (Durstewitz et al.,

2000). Stochastic instances of this type of RNN have been developed by Ackley et al.

(1985) under the name Restricted Boltzmann Machine, now used in successive layers in

Deep Neural Networks which constitute the state of the art in machine learning pattern

recognition.

Back to recurrent and attracting dynamics, we must mention the winner-take-all

(WTA) mechanism, often used as a sub-component of a larger architecture. In the

prototypical instance, neurons in one layer compete with each other to be active in the

detriment of other neurons. This elicits a dynamic that converges toward the activation

of only one neuron. A balance between excitation and inhibition must be found to

elicit the proper dynamics. In the simplest instance, inhibitory connections between

all neurons of the layer is assumed. In more complex versions, competition can be

implemented between pools of neurons. Self excitation of neurons, or within the pool

of neurons in the related case, can be used to reinforce and sustain the competitive
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dynamics. Softer competition can converge towards the co-activation of several neurons.

The richness of WTA dynamics has led to various models of decision making, either

implemented as full model dedicated to decision making, like the sophisticated biological

model of Wang (2002), or simply to provide a decision mechanism in a larger network

(Dominey et al., 1995). The Kohonen map (or self organized map, SOM) uses the

WTA mechanism along with an unsupervised learning rule to implement converging

maps reducing the dimensionality of inputs (Kohonen, 1982). All the learning methods

described so far are said to be supervised, because the objective of the training is to

modify the weights to produce an output that converges towards a defined target output.

Thus learning is carried out with pairs of input and desired output. In contrast, methods

that rely on algorithms that learn the statistical relationships between inputs are of the

unsupervised class, like the Kohonen map.

2.3 Distributed Non-Linear Representation and The

Cortex

2.3.1 The Necessity for Complex Activity in PFC

The history of neural networks has shown how representational power of networks

is a key issue. Networks must be able to represent complex non-linear combinations

of the inputs in order to solve arbitrary problems, conferring them the much pursued

and allegorical Universal Turing Machine capacity. Indeed, how can a network learn

complex outputs if it is incapable of representing complex contingencies? Hence, the

representational power of a neural network is one of its fundamental properties. On a

similar tone, Minsky and Papert in their prologue to the 1988 edition of Perceptrons

stated that “no machine can learn to recognize X unless it possess, at least potentially

some scheme for representing X”.

In addition, connectionism is born through the gradual implementation of sub-

symbolic information representation. We want to insist on that aspect of neural networks

as it is the key point in understanding the complex activity observed in models, and, by

means of projection, in the recordings of cortical neurons. Indeed, universal represen-

tational power is conditional to the non-linear and sub-symbolic property of single-unit

activity, as suggested by the work of Rigotti et al. (2013) mentioned in the first chapter.

Therefore, we argue that the non-linear activities observed in the activity of prefrontal

cortex (PFC) neurons is an inherent part of their representational power, and must be

considered as essential for any adaptive behavior to occur. We argue that the explicit

representation of complex contingencies in the activity of PFC neurons is the result of a
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selection through learning of distributed, sub-symbolic and non-linear combinations of

sensory, motor and internal variables.

Now that we have posited the fundamental properties of the representational power

of the cortex, the logical question that follows is how does the cortex to provide such

representations.

2.3.2 Random Connectivity as a Simple Mechanism for Uni-

versal Spatial Representations

As explained above, the second generation of feedforward networks – the multilayer

perceptron (MLP) – can learn to produce these non-linear combinations. However,

the plausibility of backpropagation being implemented in biological networks is rather

low. Consequently, other solutions must be envisioned in order to understand how

the cortex might generate such activities. In this respect, a mechanism as simple as

the generation of random connections is used in several networks. Indeed, random

connections inherently elicit a wide variety of activities. Before presenting networks

with fixed random connectivity, we should mention that prior training several types of

neural network require random generation of connections.

Indeed, it is necessary for MLPs to generate randomly the weights between layers

before training in order to break the detrimental effect of weight symmetry on gradient

descent. Also, one can view the learning process as a refinement of the non-linear

activities produced by random generation of the weights. Interestingly, it turns out that

the initial set of weights can have a strong influence on the performance of a MPL, as

some instances converge towards local minimum of errors2 which can be overcome with

more sophisticated backpropagation algorithm. Similarly, Kohonen maps and other

networks require random generation of the connections between the input layer and

map to produce a variety of responses, learning consist in tuning the already generated

weights. In the following paragraphs, we will address a quite different approach, one that

uses random generation of weights which are not trained. The following study illustrates

the power of this method.

In a task reminding of the WCST, Rigotti et al. (2010b) demonstrated that non-

linear combination of task rule and feedback were required in order to perform the task

correctly. This work is reminiscent of the problem of implementing a XOR operation in

simple networks, and can be considered as its cognitive counterpart. The implemented

task involved two distinct rules related to the features of visual stimuli. In short, visual

stimuli are composed of two features comprising a shape and a color. If the color rule

2 The network is stuck in a local minimum of error when the training procedure converge to set of
weights that does not elicit the minimum possible error.
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is in effect, the color of a cue appearing on a screen defines the correct color for this

trial. Amongst two stimuli presented after the cue, the network performing the task

must choose the one that matches its color. Similarly, when shape rule is active, the

network must choose the stimulus that matches the shape of the cue. Feedback is

provided to the network through an error signal that is sent to the network when the

last choice is incorrect. Figure 2.3 demonstrates that non-linear combination (termed

mixed selectivity here) of rule and feedback is necessary to perform this task.

Figure 2.3: The need for mixed selectivity in a WCST model (Figure and caption from
Rigotti et al. (2010b)). Circles represent neurons, and colors denote their response
preferences (e.g., red units respond when Color Rule is in effect). Filled circles are active
neurons and black lines are synaptic connections. A. Impossibility of implementing a
context-dependent task in the absence of mixed selectivity neurons. We focus on one
neuron encoding Color Rule (red). In the attractors (two panels on the left), the total
recurrent synaptic current (arrow) should be excitatory when the Color Rule neuron is
active, inhibitory otherwise. In case of rule switching (two panels on the right), generated
by the Error Signal neuron (pink), there is a problem as the same external input should be
inhibitory (dark blue) when starting from Color Rule and excitatory (orange) otherwise.
B. The effect of an additional neuron with mixed selectivity that responds to the Error
Signal only when starting from Shape Rule. Its activity does not affect the attractors
(two panels on the left), but it excites Color Rule neurons when switching from Shape
Rule upon an Error Signal. In the presence of the mixed selectivity neurons, the current
generated by the Error Signal can be chosen to be consistently inhibitory.

In order to solve this problem, they simply use a layer of randomly connected neurons

(RCN) that acts like the hidden layer of multilayer feedforward networks (Fig. 2.4). This

RCN layer provides the mixed selectivity required to represent any combination between

inputs and internal states. The mere random-fixed connections with input and internal



CHAPTER 2. REPRESENTATIONS IN NEURAL NETWORKS 45

units is able to potentially produce any non-linear combination, in other words, any

contingency of the task.

Figure 2.4: Random connections for arbitrary contingency representation (Figure from
Rigotti et al. (2010b)). The blue and pink neurons activate to represent states of the
external word, while recurrent neurons (red, green, light blue) persistent activity repre-
sent internal states. Randomly connected neurons (RCN) recombine these external and
internal states to produce arbitrary combinations that represent different contingencies.

This solution fulfils the desired function of representing arbitrary combinations. In

addition, the authors state that the number of units in the RCN layer, that is required to

produce the representations essential to the task, is not much higher than the minimum

number of neurons needed if the neural circuit was specifically designed to create these

representations. The substantial advantages of an RCN layer are that it does not need

to be trained, and that non-linear combinations produced by the RCN layer should be

very rich. The RCN activity potentially include every possible combination of inputs

and internal states, therefore arguing in favor of a simple mechanism for universal rep-

resentation. This property entails the possibility to use the same RCN layer to perform

different tasks, in agreement with the principle of parsimony.

In addition, the rationale behind the RCN approach includes the biological plausibil-

ity of such a network. In the Rigotti et al. model, learning takes places in the connections

directed to the recurrent neurons, representing the internal states and outputs of the

network. Internal representations are learned with a method related to hebbian learn-

ing which has been confirmed by electrophysiological experimentation. Furthermore,

because connections to the RCN are generated prior learning, the richness of the repre-

sentations is present before any learning takes place. If this is indeed the computational

principle implemented in the cortex, Rigotti et al. state that one should observe mixed

selectivity pattern in the activity of cortical neurons prior any learning.

In parallel to the selectionist view described in the first chapter, a possible mechanism
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to obtain representations of increasing complexity would be through the learning of

combinations present in the RCN units. Relevant combinations would be strengthened

through learning and then fed back to the RCN layer in order to contribute in new

combinations. In turn, these new combinations could be selected, learned and fed back,

etc.



Chapter 3

Adding Temporal Information to

Neural Networks Representations

Previous sections on neural network models focused on the processing of static inputs.

If all the information necessary to perform the desired computation is present in the

current inputs or stable internal states (as in the case of Rigotti et al. (2010b)) the

processing is said to be purely spatial. However, if the order or timing of the inputs to

the network is to be considered, these networks will be inefficient as they cannot process

the temporal dimension. Therefore, these networks come up short at modeling any

cognitive function that involves time. The temporal order of stimuli may be important

in many situations, virtually in any situation that requires processing or producing

sequences (Elman, 1990).

This chapter first introduces processing of temporal information in recurrent neu-

ral networks (RNN) thanks to reverberating activity, and exposes the inherent issue of

training such networks. We will briefly present historical methods that have been de-

veloped to circumvent this problem and we will finally dwell on the reservoir computing

paradigm, the method employed in this thesis.

3.1 Introduction to Temporal Recurrent Networks

3.1.1 Adding Temporal Information Through Recurrence

As a reminder, RNN are defined as such based on an architectural feature: connec-

tions between neurons within a layer and/or connections between a higher layer with

a lower layer in a classical feedforward bottom-up architecture. Recurrent connections

allow for activity of inputs fed in the network to reverberate, thanks to the existence of

loops in the structure of the network. Because of this capacity, this type of network has

47
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dynamical properties which can be approached by dynamical system theory.

As highlighted in the previous chapter, RNNs can be roughly divided in two cate-

gories based on their dynamics. Networks that display converging dynamics, representing

information in attractors of the neural dynamics, and networks that display transient dy-

namics. The latter networks represent information in trajectories in the neural activity

state space1. Because of their purpose oriented towards temporal information process-

ing, we will refer to them as temporal recurrent network2 (TRN). The attractor category

is best known with the aforementioned Hopfield network (Hopfield, 1982) and restricted

Boltzmann machine (Hinton and Sejnowski, 1986). The second type of network will be

the subject of this chapter.

TRNs rely on the interaction of current inputs with the reverberatory activity elicited

by previous inputs. This means that the representation of an input fed to a TRN will

depend on the inputs previously fed to the network, each input driving the activity of the

network in a different direction. This is why we often refer to the representation resulting

from a sequence of inputs as a trajectory in the state space. Thus, in TRN, it is not the

final state of the network activity that is of interest, but the transient activity elicited

by the sequence of inputs. These networks process spatio-temporal information, where

temporal information is embedded in the spatial representations within the activity of

the network. This mechanism provides an implicit representation of time. TRN have

been used to process sequential data among which language is well represented (Elman,

1991).

It should be noted that a wide diversity of architecture, sometimes with exotic neu-

ral dynamics, have been developed to process temporal information, some of them in

feedforward networks, that we will not address here (Haykin, 1999). Contrary to the

TRN principle, some of these approaches represent temporal information explicitly as

additional spatial dimensions, for example, by adding input units that correspond to

previous inputs, thereby “parallelizing time” (Elman, 1990). In contrast, TRN represent

time implicitly, in the interaction of inputs separated in time.

3.1.2 The Recurrent-Network Training Problem

All the canonical networks described in the previous chapter come with learning

rules that converge towards a supposedly optimal set of weights that minimize the error

output of the network. This property of the training methods is quite convenient as

1 The multi-dimensional space composed by the activity of all network neurons.
2 Note that temporal recurrent network is also the name given to a model by Dominey and Ramus

(2000). We will use this term in a broader sens to encompass all recurrent networks that process
temporal information.
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one can let these networks learn a task, knowing that the training will eventually find

a set of weights3. Now, the difficulty to train recurrent network is that there is no

obvious way or method that systematically converge towards a set of optimal weights.

To understand this issue, one must take into consideration that the recurrence of the

network poses a problem of recurrence in the propagation of errors. As an example

let’s consider neurons A and B as reciprocally connected neurons, B being an output

neuron. With backpropagation, the error computed between the actual and desired

output is propagated from B to A, but if one follows the connections that contribute to

the activation of A, the error must be propagated back to B, then again to A, and so

on endlessly. This toy example includes only two neurons, but the problem remains the

same with a loop constituted by an arbitrary number of neurons. Thus, this chapter

describes the methods that have been developed to overcome this issue inherent to TRNs.

3.2 Early Recurrent Networks for Temporal Pro-

cessing

In this section we will review a few architectures and methods to train TRN that are

of interest in introducing the Reservoir Computing paradigm, therefore this account of

TRN is clearly not exhaustive.

3.2.1 Simple Recurrent Network

Based on the classical feedforward architecture, the first model of the class we are

interested in has been developed by Jordan (1986). To integrate previous outputs with

current inputs, he connected the output layer with fixed topographic4 connections to a

state layer that fed back its activity to the hidden layer, thereby creating a closed loop

including the output, state and hidden layers. Since the connections to the state layer

all have a weight value of 1, and are topographical, the network copies the output into

the state layer. Thus, at the next time step, the activity of the output will influence

the processing of inputs in the hidden layer. However, connections between the state

layer and the hidden layer are fully distributed, like a regular connectivity between input

and hidden layers. (Elman, 1990) based his own TRN model named Simple Recurrent

Network (SRN) on this architecture except that instead of copying the output, it is the

3 . . . if one puts aside the suboptimal solutions and the obvious overfitting issue.
4 In artificial neural networks, topographic connections usually imply that the sending layer and

receiving layer have the same number of units and that each unit of the sending layer connects to its
corresponding unit in the receiving layer (i.e., the weight matrix is diagonal).
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hidden layer that is copied into what he calls a context layer (Figure 3.1. In fine, the

context (or state) layer provides the network with memory.

Figure 3.1: Simple Recurrent Network (Figure from Elman (1990)). Dashed arrows
represent trainable connections, the plain arrow represents fixed connections. Context
layer receives copies of the hidden layer which recombines with future inputs in the hidden
layer.

Elman and Jordan trained their network as regular feedforward networks. For ex-

ample, in Elman networks, this implies that the error is propagated from the hidden-

to-output connections to the input-to-hidden and context-to-hidden connections. Of

course, because of the complex interactions between hidden and context layers and in-

puts, the convergence of the weights is problematic. The next method is an attempt to

extend backpropagation to recurrent networks.

3.2.2 Backpropagation Through Time

Because basic backpropagation was not suited to recurrent networks, many re-

searchers developed independently a method referred to as backpropagation through time

(BPTT) (Rumelhart et al., 1986b; Robinson and Fallside, 1987; Mozer, 1989; Werbos,

1988). The basic principle of this approach is to copy lagged version of the network

for a given number of time step, and operate the classic backpropagation algorithm on

it. It can be understood as unfolding time into a spatial representation with which

the backpropagation can be applied. BPTT is still one of the most popular method

to train recurrent connections (Jaeger, 2005), although, other methods also employing
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gradient descent have been proposed like Real-Time Recurrent Learning (Williams and

Zipser, 1989), Atiya–Parlos Recurrent Learning (Atiya and Parlos, 2000) or using dif-

ferent approaches as the Extended Kalman Filters (Puskorius and Feldkamp, 1994) and

the Expectation Maximization algorithm (Ma and Ji, 1998).

Figure 3.2: Schematic of Back-Propagation Through Time. Schematic representation
of the unfolding process used by BPTT. at denotes the inputs at time t, xt the internal
states at time t, yt the output of the network at time t. f and g are the transformation
operated by the input-to-hidden weights and hidden-to-output weights, respectively. The
lower panel illustrates the unfolding of three time steps in classic feedforward network.

Although this algorithm has been shown to be efficient in certain situations, the

computational complexity5 of teaching recurrent connections with such algorithm must

be taken into account. Indeed, it is proportional to the squared number of neurons N in

the recurrent layer: O(T*N2) where T is the number of time step back in time that are

learned (Jaeger, 2005). Furthermore, classical methods are not guaranteed to converge,

as bifurcations of the neural dynamics appear when the weights are modified gradually

(Doya, 1992). Other more subtle issues in training RNN with these methods are exposed

in Lukoševičius and Jaeger (2009).

3.2.3 Temporal Recurrent Network with Untrained Recurrent

Connections

Dominey et al. (1995) developed a model of the cortico-striatal system for the se-

quential processing of visual stimuli. The network model incorporates a sub-network

reminiscent of the SRN architecture. Indeed, the PFC is modeled with two layers re-

currently connected. The main PFC layer receives visual inputs and is topographically

connected to the second layer denoted as damped PFC layer. This latter layer is en-

dowed with a slower dynamics thanks to longer time constant in their leaky integration,

and is connected back with fully distributed random weights (see figure 3.3 for the rest

of the architecture). The originality of this model is that the recurrent connections

5 Computational complexity measures the efficiency of an algorithm in terms of resources.
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are not modifiable, learning takes place between the main PFC layer and the output

(the striatum in this model) through modification of the weights according to an early

form of reinforcement learning. The rationale behind this method is that the dynamics

elicited by the recurrent layers is rich enough even without learning and can therefore

provide arbitrary representations of the temporal dependency between inputs of a se-

quence. Next section on Reservoir Computing will give a more detailed description of

the benefits of this approach. Note that this model has been demonstrated to process

Figure 3.3: Cortico-striatal model for sequence processing (Figure from Dominey et al.
(1995)). This model learns to recognize and reproduce spatial sequences. Spatial infor-
mation is represented in the lateral intra-parietal (LIP) layer which is connected to a
cortico-striato-thalamic loop, and to a prefrontal cortex (PFC) recurrent network. This
latter layer is composed of two recurrently connected layers. Connections between the
two layers are not modifiable, they intrinsically allow for rich spatio-temporal representa-
tions. A readout layer representing the caudate nucleus (CD) receives connections from
the PFC module that are modified with reinforcement learning. The caudate nucleaus is
part of the cortico-striato-thalamic loop which includes the frontal eye field (FEF), the
substantia nigra pars reticulata (SNr) and the thalamus (TH). The superior colliculus
layer implement a winner-take-all decision mechanism which leads to a saccade.

embedded sequences (Dominey, 1995) and was later used for the temporal processing of

language (Dominey and Ramus, 2000; Blanc and Dominey, 2003).

Also using an untrained network with randomly generated connections, Buonomano

and Merzenich (1995) demonstrated the temporal processing power of a network of

spiking neurons endowed with paired-pulse facilitation and inhibitory postsynaptic po-

tentials, two properties observed in cortical neurons.
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3.3 Reservoir Computing

3.3.1 History: Convergence of Signal Processing and Neuro-

science Modeling

Because training recurrent neural networks is a task that is computationally costly

and difficult, a researcher working on neural networks for machine-learning found a

very convenient method to teach the recurrent connections (Jaeger, 2001): not training

them! Instead, the connections are randomly generated following a set of rules that

ensure suitable dynamics in the activity of the recurrent nodes, much like the TRN

models developed by Dominey (1995) which can be considered the first prototypes of

this new paradigm. A readout layer performing a simple linear regression from the

recurrent nodes provides the output of the network (Fig. 3.4). This new approach

benefits from the inherent temporal processing abilities of recurrent networks, while

using simple training methods of linear networks. Such networks were baptized Echo

State Networks (ESN) for their reverberating dynamics (echo states) in the recurrent

layer. ESNs have demonstrated impressive performances in processing temporal signals

(Jaeger and Haas, 2004; Verstraeten et al., 2006; Jaeger et al., 2007a).

Independently from this research, a team, whose main focus is understanding the

computational principles of the cortex, developed a surprisingly similar neural network

model called Liquid State Machine (LSM) for the inherent dynamical states of the main

layer, which display ripples of activity elicited by inputs (Maass et al., 2002). While units

in Jaeger’s work implement analog/continuous output values, the neural network models

developed by Maass use more biologically plausible spiking neurons. It is only later that

both teams realized they developed very similar networks, which consequently sparked

the FP7 European research project Organic (comprising the author’s team), whose main

focus was the recently baptized paradigm of Reservoir Computing (Verstraeten et al.,

2007).

3.3.2 Brief Overview of The Reservoir Computing Principles

The description of the reservoir paradigm in the present thesis is largely biased

towards the Echo State Network (ESN) developed by Jaeger (2001), as this is the type

of network used in the work exposed here. The typical reservoir computing network is

comprised of an input layer, an internal/hidden recurrent layer called the reservoir, and

a readout layer fully connected to the reservoir units. By metonymy, the full architecture

(and the paradigm itself) is often referred to as a reservoir. If one omits the recurrent

nature of the hidden layer, the architecture is very similar to a feedforward network
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Figure 3.4: Comparison between the architecture of a reservoir network and previous re-
current networks. The basic architecture of recurrent networks comprises an input layer,
a recurrent network and an output layer (also denoted as readout). The error, defined
as the difference between the desired output and the actual output, is used to modify
the weights of the network (grey arrows). Dashed arrows are modifiable connections,
plain arrows are fixed connections. A. Previous approaches involved training the recur-
rent network connections and the input connections. B. Reservoir computing approach
trains only the readout connections (between the recurrent layer and the readout) thereby
avoiding the complexity of training recurrent connections. Instead, these connections are
randomly generated with parameters eliciting a suitable dynamics for the task at hand.

with one hidden layer. In both types of models, the activity of the hidden layer is read

out by an output layer, and successive transformations of the inputs result in non-linear

processing. However, the analogy stops here, as the number of neurons in the reservoir

is usually much higher than the number of input neurons, whereas the ratio between

input and hidden neurons is generally inverse in canonical MLP. In addition to the

recurrent connections within the reservoir layer, reservoir networks can include feedback

connections from the readout/output layer to the hidden layer.

As in MLPs, the expansion of inputs into a higher dimensional space facilitates

regression/approximation based on these inputs, and/or separation (e.g. for classifica-

tion) of these inputs. Because of this property and the fact that learning takes place

only between this expanded space and the output, reservoir are sometimes compared to

temporal versions of Support Vector Machines6 (SVM), which are the state of the art for

a wide range of spatial problems in machine learning (Hermans and Schrauwen, 2012;

Schrauwen et al., 2007; Jaeger et al., 2007b). Even though the representations of input

sequences within the recurrent network are highly dynamic, a simple linear readout with

fixed weights is able to continuously separate the trajectories of each sequence (Buono-

mano and Maass, 2009). This property is very important for the biological plausibility of

such networks, because if such representational power exists in cortical networks, a single

cortical neuron corresponding to the readout should be able to extract spatio-temporal

6 Except that the expansion is computed explicitly in reservoirs, not in SVM.
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representations.

The global architecture described so far is common with some RNN that are trained

using classical gradient descent methods. As explained above, the main progress re-

sides in the generation of recurrent connections that are fixed, not subjected to training.

Because the reservoir method avoids the laborious task of training the recurrent con-

nections it lowers the complexity to be proportional to the number of neurons in the

reservoir O(N).

Instead, the weights of the recurrent layer are generated prior learning with a stochas-

tic process ensuring a favorable dynamical regime for the task at hand in the reservoir

layer. Lower complexity also means that, computational resources being equal, a much

higher number of neurons in the recurrent network can be used to perform the same

task, so a much richer expansion of the inputs into the recurrent layer is available. The

key to understanding the choice of fixed recurrent connections lies in the already very

rich dynamics that can be obtained from untrained recurrent networks. The readout

layer simply needs to combine linearly the already rich representations of the hidden

layer to produce the target output (Fig. 3.5).

Echo State Networks are mostly used in the machine learning domain for signal

processing. Specific implementations include speech recognition, robot motor control,

financial forecasting and medical applications like seizure detection in epileptic patients

(Lukoševičius et al., 2012). However, it has also been used in computational modelling

to model fading memory of reward (Bernacchia et al., 2011) and in our team to model

language processing (Hinaut and Dominey, 2013). Liquid State Machine has been mainly

used in computational neuroscience to explore the computational property of generic

microcircuits (Maass, 2011; Nikolić et al., 2009; Maass et al., 2002).

3.3.3 Reservoir Dynamics

The key to reservoir networks is the appropriate generation of the recurrent connec-

tions ensuring a rich dynamical representations in the recurrent layer. Indeed, one of

the main issue in training a reservoir lies in the right set of parameters used for the

generation of internal connections, which should underlie dynamics suited to the task at

hand (Jaeger, 2001).

The seeding papers in ESN and LSM proposed similar capabilities for reservoir. As

stated in Maass et al. (2002), if a reservoir possesses two properties, the point-wise

separation property and universal approximation property, it “has universal power for

computations with fading memory on functions of time”, i.e. it is a Universal Turing

Machine that include temporal processing of recent inputs. Point-wise separation prop-

erty is related to the separability in the reservoir representations of two non-identical
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Figure 3.5: Training a reservoir with linear regression. This figure presents an example
of Echo State Network with leaky integrator neurons (A) that learns to discriminate two
sequences of three consecutive inputs (B) with a linear regression between the activity
of the reservoir (C) and the desired output of the network (D). Only the first element
of each sequence is different and the network must learn to segregate the two sequences
when the last input is fed to the network. Note that the activity within the reservoir is
reset at the end of the first sequence. The reservoir layer displays rich dynamics that
encode the successive inputs and their order. After the readout weights are trained with
linear regression, the network discriminates the two sequences (E).

inputs. The universal approximation property echoes what has been said on MLP but

in the spatio-temporal domain, i.e. the capacity of the reservoir to approximate any

finite-time function. The latter property has been demonstrated in RNN (Funahashi

and Nakamura, 1993). In other words, a reservoir endowed with both these properties

could theoretically process any spatio-temporal input if the temporal aspect is limited

in time.

Indeed, the memory of previous inputs vanishes with time, which means that the in-

fluence of a specific segment of an input stream on subsequent input processing becomes

negligible (Maass et al., 2004, 2002). This property is necessary for the reservoir to gen-
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eralize over similar inputs and is part of the denominated echo state property (Jaeger,

2001). It is a formal definition of the desired dynamics within an ESN which echoes the

fading memory principle from LSM literature. It states that the state of the reservoir

is the result of the recent inputs fed to it and not by its own initial state, so in other

words, it gradually forgets its own states.

To obtain this desired dynamics in the reservoir, some parameters have to be carefully

chosen. Importantly, the recurrent weights must be scaled. For ESNs, a popular method

consists in scaling the weight matrix with a parameter denoted as the spectral radius,

which is the largest eigen-value of the weight matrix. As most parameters defining the

connectivity of the network, its optimal value depends mostly on the inputs fed to the

network. The distribution and sparseness of the recurrent layer is typically chosen to be

low (~0.1), however it has a limited influence on the dynamics (Schrauwen et al., 2007).

Spectral radius has an influence on the dynamical excitability of the reservoir layer.

It is at the heart of a trade off between fading-memory span and generalization. A low

spectral radius elicits short fading memory of the inputs, accompanied with good gen-

eralization abilities because similar inputs elicit similar reservoir activities. Conversely,

a higher spectral radius yields longer fading memory with good separation abilities,

small differences in inputs are amplified because the dynamics becomes more chaotic.

Indeed, these properties are linked to the degree of chaoticity of the reservoir dynam-

ics. Key studies have shown the computational power of dynamical regimes close to

chaos in rather simple dynamical systems (Langton, 1990), subsequently referring to the

exploitation of this regime as computation at the edge of chaos. Interestingly, for best

performances the spectral radius is often set to a value where the reservoir regime is al-

most chaotic. Likewise, in the LSM literature it has been shown that reservoirs perform

optimally in this same dynamical regime (Legenstein and Maass, 2007).

A further fine-tuning of the recurrent connections can be achieved through intrinsic

plasticity. It is a biologically inspired (homeostatic plasticity), local7, information maxi-

mization8, unsupervised tuning of each neuron activation level that has demonstrated its

capacity to steer the dynamics of the entire network towards a computationally desirable

regime (Schrauwen et al., 2008; Steil, 2007).

3.3.4 Learning Procedure

Training a reservoir consists in modifying the readout connections to produce the de-

sired output. The easiest method is a linear regression in batch mode (single step learn-

ing, see fig. 3.5 for an example). While the sequence of inputs is fed to the network, the

7 Modifications taking place at the level of the neuron, no global training signal is used.
8 Along the formal information theory framework.
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activity of reservoir neurons is stored. A least mean square regression is performed be-

tween the activity of the reservoir neurons and the desired output, producing the matrix

of readout weights. This simple linear regression can be performed with regularization

to prevent overfitting. In this case ridge regression9 is the most commonly used method.

Online/iterative learning can also be implemented with recursive least squares which is

the iterative counterpart of least mean square (Jaeger, 2002; Jaeger and Haas, 2004).

However this method is more complex and requires more computational resources.

A common issue arises when the readout is connected back to the reservoir, because

the trained weights are part of the recurrence in the network. To train the network

in batch mode, the desired output is clamped to the reservoir as an input during the

training. However, the actual output after training is rarely identical to the desired

output, so after training the reservoir layer will be fed back an output that differs

from the one it receives during learning. In this case, the readout may diverge even

more from the desired out, successively amplifying errors in the network. Several basic

solutions exist to overcome this circular dependency, however, there is no guarantee of

convergence. Ridge regression is the easiest method. Adding noise to the reservoir units

is another way to sample slight deviation from the expected activity, thereby making the

network more robust to output errors. The training succeeds if the set of weights creates

an attracting dynamics around the desired output, reducing (instead of amplifying) the

errors and keeping them within an acceptable distance from the target output.

FORCE learning, a recent method for training RNN, is a clever method for this exact

purpose (Sussillo and Abbott, 2009). Most online learning methods iteratively modify

the weights with small steps in the hope that the actual output eventually converges to

the target output. FORCE learning operates with large modification of the weights to

obtain an output very close to the target output, and this, from the onset of learning.

However, it does not completely correct the weights, so that small deviations from the

output are fed back to the recurrent layer. Because, the deviation from the desired

output is kept small from the onset of learning, it provides the recurrent layer with a

feedback resembling the target output. In addition, the network samples small deviations

from the desired output, which makes network more robust to deviations after training.

In other words, the amplitude of weight modifications gradually decreases while error

is kept small, as opposed to classical iterative methods, in which weight modification

is usually small, and output error gradually decreases. It elicits a higher tolerance to

errors, and strengthens the attractor created with learning. Note that an extended

version of this method has been successfully applied to the training of the connections

within the recurrent layer. Recently, Hoerzer et al. (2014) developed a very similar

9 Also denoted Thikonov regression.
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method that uses more biologically plausible learning methods, i.e. Hebbian learning

with reinforcement signal.

3.4 Recurrence for Variation in the Spatio-

Temporal Domain

As mentioned in the first chapter, adaptive behavior includes the capacity to process

and produce sequences. Indeed, activities within the PFC seem to reflect corresponding

spatio-temporal representations. Yet, how these spatio-temporal representations arise is

still largely unknown. Previous chapter reported the work that has been done on neural

networks to explain the origin of distributed representations of arbitrary contingencies.

A simple method is used, namely, a layer of randomly connected neurons.

However, the representations produced are limited to the spatial domain, i.e. the

information available at one point in time. In this chapter we develop the idea that

a similar simple mechanism can be used to generate arbitrary spatio-temporal repre-

sentations. The reservoir paradigm which we reviewed is based on randomly connected

recurrent networks. This paradigm allows for universal computational power with fading

memory. In other words, reservoir can represent any combination of present and recent

inputs along with the order in which they were fed to the network.

The representational power of these networks lies in the recurrent nature of their

hidden layer. Yet, a striking feature of the connectivity of cortex is its local recurrent

structure. In addition, this property is found to be most pronounced in the PFC. Fur-

thermore, the readout layer can extract spatio-temporal representation of the recurrent

layer with a linear readout. Transposed to the cortex, it implies that a single neuron

could harness the representational power of PFC, even if the neural-population activity

is highly dynamic.

With these elements in mind, we posit that the representational capacity of the cortex

may be explained by its recurrent nature. If one ascribes the computational properties

of reservoirs to recurrent networks of neurons in the PFC, arbitrary combinations of

recent sensory, motor and internal information should be represented in cortical activity.

Therefore, if a particular contingency can be explained by this information, we posit

that a representation of this contingency exists in the distributed activity of the PFC.

However, these representations are limited in time, and may be relatively weak in the

face of noise. Next chapter will address mechanisms developed to overcome these issues.



Chapter 4

Explicit Context Representations

4.1 Introduction

The last chapter ended on the introduction of universal spatio-temporal representa-

tions by means of random recurrent connections. What must be kept in mind is that the

temporal dimension is inherently and exponentially fading. This means that memory

traces of inputs, and, consequently, their temporal relations, have a limited lifetime.

Yet recordings in the prefrontal cortex (PFC) display explicit representations of task

relevant information that seem to bridge past sensory inputs with current behavioral de-

mand. Depending on the literature and the task at hand, this process may be described

in cognitive terms as working memory (WM), rule maintenance, or context-dependent

processing1. For simplicity’s sake, in the current chapter we will refer to context as

encompassing WM and rule maintenance. The reservoir paradigm in its original version

may be limited to explain such representations.

A system that can process information must somehow create a bridge between past

inputs and subsequent processing. That bridge would necessarily span delays larger than

the fading memory capacity already present in the dynamics of the network. Because

only selected information from inputs must influence future processing, the key concept

of this cognitive function is that it is an intentional maintenance of selected features of

input. The intentional component of this function implies that learning may play an

important role in order to distinguish the relevant from irrelevant information. As we

will see, it can lead to the formation of context representing relevant information for

current processing. As opposed to the spatio-temporal representations in the reservoir

that are implicit and universal, the solutions presented in this chapter employ explicit

1 It must be noted that these terms are not precisely defined, literature uses them with different
intended meaning. For example, one can argue that context-dependent processing refers to what a
reservoir provides through its time-limited spatio-temporal representations.
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stable representations of context, most of them with attractors.

We will first review a detailed model of working memory, then proceed with a model

of context formation through concretion of attractors. In the second section, we will

expand on two interesting types of model that involve context-dependent processing.

4.2 Attractors for Working Memory and Context

Representation

4.2.1 Working Memory in Attractors

Because the first extensively studied correlate of WM is persistent activity, early

neural network models have focused on dynamics that elicit this type of activity. The

most evident solutions are attractors of the neural dynamics that reproduce different

instances of persistent activity. In the simplest case, a fixed point2 produce a static and

fixed persistent activity, while continuous variables can be encoded in bump attractors3.

The first use of an attractor network to model memory is the Hopfield network tat

we presented in the second chapter. Despite its biological relevance in reproducing asso-

ciative and content-addressable memory, its original implementation does not reproduce

the maintenance aspect of WM, since the persistent activity is only possible through the

constant activation of an input to the network. However, it set bases for new models of

memory with active maintenance through attractors in RNN (Amit, 1989, 1995). One of

the most popular biological model of WM in RNN has been developed by Compte et al.

(2000). They postulate that recurrent excitation between pyramidal neurons mediated

by NMDA receptors, a type of glutamatergic receptor in synapses, and mutual inhibi-

tion mediated by GABAergic interneurons, may be underlying persistent activity. This

model reproduces the maintenance of a saccade direction in an occulomotor delayed-

response task. To achieve maintenance of saccade direction during delay, a calibrated

balance between excitation and inhibition elicits reverberating dynamics that stabilize

in a cyclic bump attractor. Another version employing similar biological mechanisms

implements fixed point attractors to model the maintenance of object in WM. Figure

4.1 illustrates the interaction between excitatory pyramidal and inhibitory interneurons

used in this model.

This model is a popular instance of a rich domain (Wang, 2001; Durstewitz et al.,

2000). Note that models have been developed along the same biological principles to

explain decision making (Wang, 2008).

2 Mathematically speaking, a fixed point is a 0-dimensional attractor.
3 A 1-dimensional attractor, called ring attractor if it is cyclic.
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Figure 4.1: Biologically realistic model with an attractor network (Figure from Brunel
and Wang (2001)). A. Schematic description of the Brunel and Wang’s WM memory
model. Distinct pools of pyramidal neurons (left hand circle) represent different objects
to be held in memory during a delay. They project to GABAergic (inhibitory) interneu-
rons which projects back to pyramidal neurons and to other interneurons, maintaining
a balance excitation in the network. Projections from other areas onto pyramidal and
GABAergic neurons selectively activates pools of pyramidal neurons and trigger the delay
persistent activity. B. Raster and average activity of persistently firing spiking neurons
during the delay.

4.2.2 Context Formation in Neural Networks

Attractors in neural networks have demonstrated their explanatory power concern-

ing WM. A related subject is the formation of context representations that temporarily

indicate the current rule in effect. Since the work on attractor led to promising explana-

tions of temporary maintenance of information, studies have attempted to demonstrate

how attractors can form and lead to the representation of sequences and context.

Neurophysiological recordings in the temporal cortex revealed neurons that are se-

lective to stimuli that are close in the temporal order of sequences in which they belong

(Miyashita and Chang, 1988). This observation led to the development of models using

Hebbian synaptic plasticity to develop attractors based on the temporal contiguity of

stimuli repeatedly presented in the same sequential order (Griniasty et al., 1993; Brunel,

1996). Note that, in terms of dynamical regime, the representation of sequence in these

models and in the reservoir are opposite, because the reservoir represents sequences with

transient dynamics.

Recently, Rigotti et al. (2010a) used this same method to implement the formation

of context by incremental concretion of attractors. They simulated an appetitive and

aversive trace conditioning experiment in which the contingencies between two uncondi-
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Figure 4.2: Model of context formation through attractor concretion (Modified figure
from Rigotti et al. (2010a)). A and B are the two CS, and R and P denote the reward and
the punishment, together they constitute the inputs to the network. An associative layer
represent the prediction of the network, +, - and 0 respectively denoting a predicted
reward, predicted punishment and the neutral state, i.e. when the associative layer is
inactive. The pair of characters represent the attractors that have already formed after
the first step of learning in the context layer. For example A+ is the attractor active after
stimulus A is followed by the prediction of a reward in the associative layer. In the four
parts of this figure, the left hand panel illustrates in a graph the temporal succession of
attractors due to the task design. Each node of the graph represents the already formed
attractors while the arrows represent the possible transitions between attractors. The
more frequent the transitions, the wider the arrows. The right hand panel shows the
merging of attractors due to temporal contiguity of the most frequent transition.

tioned stimuli (US) and their respective conditioned stimuli (CS) were reversed. Context

formation is implemented in a two-step process. First, neurons transiently co-activated

by events of the task see their mutual connections strengthened with Hebbian learning.

It progressively produces attractors that segment the task in its successive steps. These

steps are delimited in time by the events of the task. Secondly, the temporal continuity

between task states triggers the merging of successive attractors. Hebbian learning is

also used in this case, causing the attractors most frequently succeeding each other to it-

eratively merge until two major attractors remain which represent the two contingencies

between US and CS (fig. 4.2).
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4.3 Processing with Explicit Context Representa-

tions

4.3.1 Introduction

In the previous chapter, we addressed the representation of context in transient dy-

namics and the contextual processing of inputs through the interaction between current

inputs and the reverberatory activity elicited by previous inputs. Here we introduce a

different mechanism of contextual processing, where information about previous inputs

is held in memory in an explicit form. In this case, continuous activity of units steadily

represent the information to be held. While the transient dynamics contextual process-

ing allows for temporal processing on a short time scale, steady and explicit contextual

representations allow the system’s processing to be influenced by inputs that were fed

to the network on a much longer time scale. From a biological point of view, the tran-

sient dynamics exposed in the previous chapter might be inherent to the connectivity of

cortical neuron sub-populations, in contrast to explicit contextual representations that

may need to be learned.

4.3.2 Input Units Feeding Context to the Network

Feeding the context to the network as an input is the simplest method to influence

the dynamics of a network so that it to processes inputs depending on a defined context.

The input layer of the network will then be divided in regular input units that feed

the features of each input pattern, and context units whose activation will vary to

represent the context. For example, Cohen and Servan-Schreiber (1992) simulate deficits

in schizophrenic patients with the Stroop task performed with a MLP that represents

the contexts (or rules) “word reading” and “color naming” in the activation of two

input/context units. In this case, backpropagation is used to train the network to

perform the Stroop task.

4.3.3 Contextual Processing with Attractors

Trying to unveil the computational mechanism behind the contextual processing of

sensory information, Mante et al. (2013) developed a model of the PFC with a RNN

trained with backpropagation that was then compared with macaque monkey electro-

physiology. The task modeled is a recent version of a long series of tasks on perceptual

decision making (Newsome and Pare, 1988; Kim and Shadlen, 1999), which features

moving dots. In this version, random dots have two properties, direction and color.
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In the color context, the agent must determine which color is most represented in the

dots. Conversely, in the motion context, it must pay attention to the most represented

direction of the dots. These independent visual features are present whichever context

is in effect. This task is a perceptual decision making version of the WCST introduced

in the first chapter. One of the differences is that the difficulty of the present task can

vary, the salience of the relevant perceptual feature can be modulated with a parameter

denoted as coherence. Previous neural recordings and models with a similar task have

suggested that the cortex accumulates over time evidence of the perceptual feature to

process and that, when coherence is higher, decision is reached more rapidly.

Figure 4.3: Context-dependent processing through linear attractors (Figure from Mante
et al. (2013)). A RNN is taught with backpropagation to perform a perceptual decision
making task with two distinct rules. The training creates two line attractors whose axis
represent the amount of evidence for a choice. a. To understand the dynamic of the con-
text attractors, they observed the response of the network after a brief activation (pulse)
of one sensory input neuron for 1 ms. In motion context, a motion pulse displaces the
state of the population along the line attractor for choice while the colour pulse has no
effect. In the colour context, the effects are opposite. b. The four graphs illustrate in two
dimensions how the attractors integrate motion and color inputs with a vector field and a
selection vector. The vector field shows in which direction the population state is moved
if sensory input displaces the population state from the line attractor. The direction of
the selection vector determines the type of sensory information integrated along the line
attractor that represents the amount of evidence. Pulses of relevant sensory information
are integrated (left) while irrelevant information is ignored (right). c Representation of
both line attractors and selection vectors in two dimensions. Note that the selection vec-
tors are parallel to the relevant sensory axis and perpendicular to the irrelevant sensory
axis as shown in figure b.

The present study innovated with an elaborated Principal Composant Analysis that

revealed that each component of the sensory information actually reaches the PFC,

whichever rule is in effect. Therefore, irrelevant sensory information for the current

decision is still represented in the PFC. To explain how only relevant information con-
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tribute to the choice, they implemented the task in a RNN (having the same architecture

as a reservoir) fed with the two sensory information (motion and color), and with the

context, which, in this case, is explicitly represented in the activity of two input neurons.

The activity of one output neuron connected to the recurrent layer provides the answer

of the network, which is trained with a recent implementation of the backpropagation

algorithm (Martens and Sutskever, 2011). The training produces two linear attractors,

each corresponding to a context (color or motion rule) (Fig. 4.3). When the color rule is

in effect, only the color information is integrated along the choice axis, and, conversely,

with motion rule, only motion is integrated.

4.3.4 Contextual Processing with Mixed Dynamics

Because reservoirs have a fading memory of past inputs, its spatio-temporal process-

ing capabilities are limited in time. To circumvent this inherent limitation Maass et al.

(2007) introduced learning inside a Liquid State Machine (LSM) for a few neurons only.

It is equivalent as readout neurons that connect back into the recurrent layer. They

demonstrated theoretically that this feedback mechanism produce a system with univer-

sal capabilities that can map time-varying inputs to a time-varying output potentially

unlimited in time. This feedback mechanism produces high dimensional attractors, that

maintain selected information and still allow for complex spatio-temporal processing.

For example they demonstrate that these circuits can produce WM and integration of

evidence dynamics with continuous attractors.

As of Echo State Networks, Pascanu and Jaeger (2011) have developed a model of

working memory (WM) with a similar mechanism. Outlying neurons that represent

states to be memorized feed their activity back to the recurrent layer. Although the

approach is defined as bio-inspired, the network was developed for machine learning

purposes. Nevertheless, the results are of interest for neural modeling purposes. The

model implements a task of temporal image processing. The network is trained to count

the number of opening brackets in a stream of characters, each closing bracket decreasing

the count number. This count is held in a set of WM units schematically represented

outside of the network (Fig. 4.4).

In addition, the output units are trained to predict the next character in the sequence.

The probability of succession between character depends on the level of opening brackets.

Consequently, to efficiently predict the next character, the output has to rely on the WM

information fed back to the reservoir. WM units are fully connected and display fast

attracting dynamics, switching between binary states that keep track of the opening

level of detected brackets. In addition from the usual training of output connections,

WM states are trained with the modification of connections within the WM layer, and
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Figure 4.4: Architecture of Echo State Network (ESN) with working memory (WM)
units (Figure from Pascanu and Jaeger (2011)). WM units represent the opening level
of detected brackets from a stream of characters presented in input. The output must
predict the next character as a function of the input and the opening level of brackets.
WM memory units differ from classical output units by having trainable connections
between themselves (dashed arrows).

between the reservoir and WM layer. After training the network, they observe what

they refer to as input driven attractors because the continuous inputs fed to the network

influence the attracting dynamics.

The nature of the dynamics implemented in this network is mixed in the sense that

the network displays simultaneously attracting and transient dynamics. Attractors keep

track of the opening level of brackets which is used by transient dynamics to process

inputs. This attracting mechanism with feedback may be essential to explain contextual

processing in the brain.

4.3.5 A Mechanism for Universal Representation in the Cortex

At the end of the previous chapter, we developed the argument that the cortex is

endowed with the same representational power as reservoirs because of its recurrent

structure. However, since reservoirs have a fading memory of recent inputs, another

mechanism must explain the explicit representations that the cortex displays in its ac-

tivity. Consequently, in the previous section, we presented a solution that involves

readout neurons robustly representing contextual information with attractors and feed-
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ing back their activity to the recurrent layer. This method allows for robust and lasting

representations of information related to past inputs. We postulate that the cortex rep-

resents context with a similar feedback mechanism which allows for transient dynamics

to encode complex contingencies influenced by this context.



Chapter 5

Hypothesis and Objectives

We posit at the end of the first chapter that representations of complex contingencies

pre-exist the learning that eventually link them to a behavior. The necessary represen-

tations may not be directly available, but would be the result of an iterative process

comparable to selectionism in psychology, whereby a cyclic process of variation, selec-

tion and retention produces representations of successively more complex contingencies.

In the following sections we will present our hypothesis on how the cortex underlies the

variation process, followed by the objectives of this thesis.

5.1 Hypothesis

For clarity, we use the term contingency to refer to a situation that can be defined

by a set of past and present sensory, motor, and internal information denoted as inputs.

The context of a contingency is the subset, composed by the non-recent past inputs,

that participate in the definition of this contingency.1

Following the argument of the first chapter, complex behaviors that underlie adapta-

tion can be learned because the cortex can represent complex contingencies. The main

hypothesis of this thesis is that the recurrent nature of local cortical circuits endows the

cortex with the inherent capacity to represent arbitrary contingencies that depend on

current and recent inputs in its distributed activity. Consequently, we argue that:

• a single neuron can robustly extract any contingency from this complex distributed

activity with a simple linear mechanism

• contingencies relying on context require explicit contextual representation that are

fed back to recurrent cortical networks
1 Of course, a broader definition of context would also include recent task variables. However, we

exclude them from this strict definition to avoid confusion in the statement of our hypothesis.
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• the combination of these mechanisms provide the cortex with a potentially univer-

sal representation of contingencies

5.2 Objectives

The hypothesis presented above is highly influenced by the work of Dominey and

colleagues (Dominey et al., 1995; Dominey, 1995; Dominey and Ramus, 2000), the work

of Maass and colleagues (Maass et al., 2002; Buonomano and Maass, 2009), and the work

of Fusi and colleagues (Rigotti et al., 2013, 2010b). Together, these teams have demon-

strated the spatiotemporal processing power of recurrent networks with random fixed

connections, and stressed the importance of complex non-linear activities in the cortex.

However, no systematic comparison between a reservoir and the activity of prefrontal

neurons has been performed to show the spatio-temporal representations encoded in the

PFC.

Our objectives are:

• To demonstrate, in a cognitive task, that simple neural networks with random

recurrent connections can produce rich spatio-temporal combinations of inputs,

and that they are sufficient to learn the task

• To confirm the presence of dynamic non-linear combinations of task variables in

the activity of PFC neurons

• To assess if a simple linear decoder can extract the spatio-temporal representations

of task variables from activity of the PFC, in a similar manner that a linear readout

can extract dynamic representations of a reservoir

• To show, in a cognitive task, that feedback of persistent activity representing

contextual information allows for robust maintenance of context through time

thanks to attracting dynamics, while still allowing for spatio-temporal processing

• To confirm that the population activity of PFC neurons displays a corresponding

mix of attracting and transient dynamics in the same cognitive task



Part II

Experiments
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Chapter 6

Extracting Task Variables From

Prefrontal Activity

Although the present experiment is dedicated to the assessment of decoders in order

to extract task variables, the results obtained can inform our hypothesis on the nature

of information representation in the cortex.

Several decoders are tested to extract exogenous and endogenous information from

the frontal eye fields (FEF) of macaque monkeys. The former being related to the spatial

position of a cue, and the later refers to the instructed position of a target.

The main contribution of the author of this thesis was to test reservoirs as decoders,

from a signal processing perspective. As explained in the state of the art section, echo

state networks have been used for signal processing of time series, and have demonstrated

excellent performance compared to previous methods. Since activity in the PFC has

demonstrated to be dynamic, especially after stimulus presentation, the reservoir was

tested to assess its capacity in extracting task variables from a spatio-temporal processing

perspective. However, as we will see, the temporal component of information processing

capabilities of such a network was not useful because task variables could be extracted

with a much simpler method.
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Introduction

Decoding neuronal information is an important analysis tool in

neuroscience both as a means to understand how neural

information is distributed and multiplexed over large populations

[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], and as a means to

drive neuroprosthetic effectors [12], [13], [14], [15]. In this

framework, classifiers are used to define the most probable state of

a given variable (the position of a stimulus in space, the direction of

the intended motor plan etc.), given the observed instantaneous

simultaneous activity of a neuronal population. Above-chance

decoding accuracy indicates that the neuronal population contains

reliable information about the variable of interest, whether its

individual neurons also do or not.

In order to optimize their prediction, all classifiers define a

decision boundary in the space of the variable of interest (2-D space

for stimulus position or movement goal, n-class discrete space for

stimulus or movement classification), using a training set of data, i.e.

a set of neuronal population activities matched with the actual

experimental condition that they correspond to. The accuracy of

the decoders is then evaluated on a testing set of data, corresponding

to neuronal population activities from an independent sample.

Accuracy is calculated as the percentage of correct predictions

provided by the classifier. The shape and properties of the decision

boundary varies across classifiers. Linear classifiers will set

hyperplane boundaries while non-linear classifiers will set complex

non-planar boundaries. Flexible decision boundaries will maximize

the separation of the training neuronal population response as a

function of the decoded variable, including irrelevant idiosyncratic

noise patterns specific of this training data. This over-fitting of the

decision boundary will result in a poor generalization on new testing

data (see [16], [17]). In contrast, a too simple decision boundary,

such as a hyperplane, may often fail to account for a non-linear

encoding of the variable of interest by the recorded neuronal

population.

Most classifiers have been developed in the fields of statistics and

machine learning. As a result, their mathematical properties are

well understood. Early studies have formalized the use of major

classifiers to the readout of continuous variables (such as position

in space, orientation etc.) from neuronal population activities [18],

[19]. However, in the face of real data, the sensitivity with which

information is extracted from neuronal activity will depend on

several factors. In particular, a given neuronal population may not
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encode with the same reliability and discrimination power all the

variables it represents (e.g. a sensory information as compared to a

cognitive information). As a result, classification sensitivity will

depend both on the general response properties of the neuronal

population being targeted and on the variable being decoded. The

decoding sensitivity will also depend on the classifier being used as

well as on the adequacy of the classifier with the experimental

constraints. Several studies have used two or more decoders at

reading out neuronal population activities (e.g. [20], [1], [2], [5]),

without however pursuing a systematic comparison of their

performance and how it is affected by the properties of the

experimental data. In the following, we compare the readout

performance of six commonly used classifiers operating on monkey

frontal eye fields (FEF) spike signals, as a function of the size of the

neuronal population, the number of training trials, and the

balance in the data. The classifiers fall into three general decoder

classes: probabilistic decoders, linear decoders and non-linear

decoders. The classifiers we focus on are classifiers that have been

used or proposed to decode neuronal population activities (non-

exhaustive selection). These are a regularized optimal linear

estimator, in its explicit formulation (regularized OLE, [12]) or in its

linear artificial neural network approximation (ANN OLE, [1],

[2]), a non-linear artificial neural network estimator (ANN NLE,

[1], [2]), a non-linear naı̈ve Bayesian estimator (Bayesian, [21];

please note that the naı̈ve Bayesian estimation is formally

equivalent to a Maximum likelihood classification) and a non-

linear support vector machine classifier (SVM, [4]). A non-linear

Reservoir recurrent network classifier (Reservoir, [22]) has also been

tested because of its potential interest in decoding variables that

have a specific organization in time. The general architecture and

properties of these classifiers are described in the methods section.

We will compare how these decoders read out two distinct types

of information available in FEF neuronal population responses.

The first decoded variable corresponds to the position at which an

initial stream of visual stimuli is presented. This information is

exogenously driven by the environment (the presentation of the

visual streams) and is robustly represented in the FEF [23], [24].

The second variable corresponds to the interpretation of the

instruction held by the cue and the corresponding attention

orientation signal. This information is endogenously driven in that

it corresponds to the output of internal cognitive computations

performed on lower level exogenous characteristics of the cue

(here, position and color). Such endogenous attentional informa-

tion is known to build up in the FEF [4], [25] and to influence

lower visual areas, thanks both to feedback [26] and feedforward

connections [27], [28].

In summary the present work pursues two objectives: 1)

investigate whether endogenously driven neuronal information

can be decoded with the same performance as exogenously driven

neuronal information, and 2) identify the classifier that performs

best at decoding neuronal information as a function of the

experimental factors (neuronal population properties, subject’s

behavior and number of trials).

Methods

Ethical statement
All procedures were in compliance with the guidelines of

European Community on animal care (European Community

Council, Directive No. 86–609, November 24, 1986). All the

protocols used in this experiment were approved by the animal care

committee (Department of Veterinary Services, Health & Protec-

tion of Animals, permit number 69 029 0401) and the Biology

Department of the University Claude Bernard Lyon 1. The

animals’ welfare and the steps taken to ameliorate suffering were

in accordance with the recommendations of the Weatherall report,

‘‘The use of non-human primates in research’’. The study involved

two Rhesus maccaca (a male, 10 kg, age 7 and a female, 7 kg, age 6), a

standard in electrophysiological studies. The animals were housed

in twin cages (2 m2 by 2 m height in total). The twin cages could be

separated in two individual cages or on the opposite, connected to

form a unique housing for a pair of monkeys thus offering the

monkeys a socially enriched environment. This last configuration

was the norm. Twin cages communicated with a larger play cage

(461.562 m3) to which the monkeys were granted access on days

on which they were not involved in experiments. Light was switched

on and off at fixed hours (on: 7.30 a.m and off: 8 p.m), all year

round. Monkeys had free access to food pellets. They were also

given fresh fruits and nuts. All cages were enriched with mirrors,

hanging ropes, water pools, balls and foraging baskets. No

procedure that might cause discomfort or pain was undertaken

without adequate analgesia or anesthesia. In particular, each

monkey underwent a single surgical session under gas anesthesia

(Vet-Flurane à 0.5–2%) during which a craniotomy was made over

the left (resp. right) prefrontal cortex for monkey Z (resp. M) and

peek recording chambers were implanted to allow access to the FEF

with microelectrodes. Post-surgery pain was controlled with a

morphine pain-killer (Tamgesic, 0.01 mg/kg i.m.) and a full

antibiotic coverage was provided (long action Tamgesic 100, one

injection during the surgery and one 5 days later, 0.1 mg/kg, i.m.).

The general health status of the animals was monitored every day by

competent and authorized personal. In agreement with the 3R

‘reduction’ recommendation, the two animals involved in the

present study were enrolled later in another experiment.

Description of the neurophysiological database
Behavioral task. The data analyzed in the present work

were collected while monkeys performed a cued target detection

task based on a rapid serial visual presentation (figure 1, see also

[25], [29]). It allowed to dissociate in time the processes related to

the orientation of attention from those related to target detection

[30]. In particular, the cue was a non-spatial abstract cue that

informed the monkey in which hemifield it should direct its

attention. Briefly, the monkey had to fixate a central point on the

screen throughout each trial. Two streams of visual objects were

presented, one in the visual receptive field of the neuron being

recorded and the other in the contralateral hemifield. One of the

streams included a cue which instructed with a certain probability

the position of the target. The cue could be green (resp. red),

predicting that the target would appear in the same (resp. other)

stream. In the following, the green cue will be called a Stay cue and

red cue a Shift cue. The monkey had to combine the information

related to the physical attributes of the cue (its location and its

color) to find out where the target was likely to appear. The

monkey had to release a lever to report the presence of the target.

The target appeared on 80% of the trials. The remaining 20% no

target trials were catch trials that served to discourage the monkeys

from making false alarms. In target trials, the target appeared

either 150 ms, 300 ms, 600 ms or 900 ms following the cue. In

80% of these trials (64% of all trials), the target appeared in the

instructed stream (valid trials). In the remaining 20% target trials

(16% of all trials), it appeared in the opposite stream (invalid trials).

The monkey was rewarded for releasing the lever 150 to 750 ms

following target onset on valid and invalid trials and holding it on

catch trials. Invalid trials were used to check that the monkey used

the predictive information provided by the cue in order to guide its

behavior. Sessions in which this was not the case were discarded

from the analysis.

Decoding Population Sensory and Cognitive Signals
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Cell population. The spiking activity of 131 frontal eye field

(FEF) neurons was recorded from two macaque monkeys. All

procedures were approved by the local animal care committee in

compliance with the guidelines of the European Community on

Animal Care (cf. [25] for details). These cells were subjected to

individual statistical analysis. Amongst them, a subset of neurons

(n = 21) reliably encoded cue instruction while apparently provid-

ing no information about cue location or cue color (see [25] for

details). These cells thus encoded the final position of attention,

discriminating between cues instructing attention towards the

receptive field (contralateral Stay cues and ipsilateral Shift cues) and

cues instructing attention away from the receptive field (ipsilateral

Stay cues and contralateral Shift cues). In the following, we will be

comparing the performance of several classifiers at decoding the

position of the initial visual stream of stimuli (exogenously driven

visual information) to their performance at decoding the final

position of attention instructed by the cue (endogenously driven

cognitive information). The exogenous information was decoded

using the entire FEF neuronal population while the endogenous

information was decoded using either the entire population or the

subset of cue instruction cells. This allows us to make two

comparisons. Firstly, we can compare the decoding performance

for exogenous versus endogenous information using the entire FEF

neuronal population, secondly we can compare the decoding

performance of endogenous information between the entire FEF

neuronal population and the subset of cells that we previously

identified as significantly modulated by the variable of interest.

Decoding procedure
Data pre-processing. For each cell and each trial, the

spiking data was smoothed by averaging the spiking activity over

100 ms sliding windows (temporal resolution of 1 ms). This

window width corresponds to a trade-off between performance

and decoding speed, as narrower filtering windows result in a

lower performance while wider filtering windows increase the

delay of real-time decoding [29]. The 131 cells were combined to

form a single neuronal population. To decode the first flow

position, both correct and error trials were used, because the cells’

response to this exogenous event does not depend on the monkey’s

engagement in the task. As a result, an average of 295 trials

(s.d. = 107) was available per cell. In contrast, only correct trials

were used to decode the position of attention, as error trials can

arise from an improper orientation of attention. In addition, unless

otherwise stated, trials in which the target appeared 150 ms after

the cue were excluded from the data set to avoid a confound

between cue- and target-encoding. As a result, fewer trials were

available (mean=112 trials, s.d. = 33). For each cell, 60 trials were

randomly selected per condition (First flow on the left, First flow

on the right, Attention instructed to the left and Attention

instructed to the right). For most cells, these trials corresponded to

a random subset of all the available trials per condition. For a

minority of cells, some trials were randomly duplicated to achieve

the requirement of 60 trials per condition. Since this can

potentially induce an artificial inflation of decoding performance,

we conducted random permutations following the exact same

procedure as described in the data pre-processing section, in order

to define the actual chance level; decoding performance was

systematically compared to this chance level. Single trial responses

were randomly combined across the entire neuronal population in

order to create 60 virtual population responses to each event of

interest. This procedure, defining a seed population activity, was

repeated 20 times, thus defining 20 different population activity

seeds (out of more than 131 to the power of 60 possible population

activities, thus limiting the potential inflation induced by the

duplication of some trials). Note that these population responses

are free of the correlations that would be found in simultaneous

recordings.

General cross-validation procedure. Visual and attention-

related signals do not have the same temporal dynamics and their

mean response peaks at different latencies from event onset. For

both variables, the decoding was performed around this peak

response. As a result, when decoding the position of the initial

visual stream, we trained the classifiers on the smoothed activity

observed at 125 ms following visual stream onset (i.e. on the 100

bin centered at 125 ms). When decoding the instructed position of

attention, we trained the classifiers on the smoothed activity

observed at 245 ms following visual stream onset (i.e. on the 100

bin centered at 245 ms). These timings correspond to the timing of

the peak neuronal response to each specific event as estimated in

Ibos et al. [25]. Due to a more complicated architecture, the

Figure 1. Task description. The experimental procedure is a cued-
target detection based on a dual rapid serial visual presentation (RSVP)
paradigm. The monkey is required to maintain its gaze on the central
fixation point all throughout the trial. A first stream of stimuli, that is a
succession of visual stimuli every 150 ms, is presented either within (as
here) or opposite the fixation point from the cell’s receptive field. Three
hundred milliseconds later, a second stream appears opposite the first
stream from the fixation point. Three hundred, 450 or 600 ms (here,
300 ms) following the second stream onset, a cue is presented within
the first stream. This cue can be a green stay cue indicating to the
monkey that the target has a high probability to appear within this very
same stream or a red shift cue (as here), indicating that the target has a
high probability to appear within the opposite stream. On 80% of the
trials, the target is presented 150, 300, 600 or 900 ms from cue onset.
On 80% of these target trials (64% of all trials), the target location is
correctly predicted by the cue (valid target, as here). On 20% of these
target trials (16% of all trials), the target location is incorrectly predicted
by the cue (invalid target). On the remaining 20% of trials, no target is
presented (catch trials), so as to discourage false alarms. The target is
composed of just one horizontal and one vertical spatial cycle, while
distractor items are composed of up to 6 horizontal and vertical spatial
cycles. The monkey gets rewarded for responding by a bar release,
between 150 and 750 ms following target presentation, and for holding
on to the bar when no target is presented.
doi:10.1371/journal.pone.0086314.g001
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reservoir was trained using data from a time-window of 75 ms

around these training references.

We trained the classifiers on 70% of the data (84 trials) and

tested them on the remaining 30% of the data (remaining 36 trials)

so that the testing is performed on a naı̈ve set of trials, never

experienced by the classifier. During training, the decoders were

simultaneously presented with single-trial population activities

(corresponding to the observed inputs) and the state of the decoded

variable (corresponding to the associated outputs: Visual stream on

the left or on the right or Attention instructed to the left or to the

right). During testing, the decoders were presented with the

successive test sets centered on a window of 100 ms around the

time at which training was performed (i.e. one test set every 1 ms

in this window) and produced their guess for the state of the

decoded variable. The readout performance on each decoding run

is then calculated by averaging the performance produced by the

100 successive testing sets (1 ms resolution) and corresponds to the

percentage of trials on which the classifier provided the correct

guess for the state of the decoded variable. This procedure was

chosen to ensure that the final readout performance reflects a

robust pattern of activity. This training/testing procedure was

repeated for each data seed (i.e. 20 times in all, cf. data pre-

processing section) to yield an average readout performance, using

the exact same randomly constructed training/testing datasets for all

decoders. Testing the decoders on a set of predefined seeds allows

to discuss their readout performance independently of data

variability.

Random permutation tests. Randomized permutation tests

were performed for each classifier and for each analysis using the

exact same procedure as above, after assigning, for each cell,

randomized condition labels to each trial (using a random

sampling with replacement procedure). This procedure, repeated

50 times, for each of the 20 data seeds, yielded the distribution of

chance performance of each classifier. This distribution was thus

constructed with 1000 data points. The readout performance of a

given classifier was considered as significant when it fell in the 5%

upper tail of its corresponding chance performance distribution

(non-parametric random permutation test, p,0.05).

Classifiers
Optimal Linear Estimator (OLE). The linear regression

(figure 2a–b) minimizes the mean square error for the following

equation C= W*R, where R is an n by t matrix of Rij, n being the

number of cells in the neuronal population of interest, t the

number of available trials and Rij the neuronal response of cell i in

the population, on trial j; C is a 1 by t vector, the sign of the

elements of which describes the two possible classes taken by the

binary variable of interest and W is a 1 by n vector corresponding

to the synaptic weights that adjust the contribution of each cell to

the final readout. This procedure defines a linear boundary

between data points sampled from two independent distributions

(figure 3a). As a result, such an estimator is optimal provided the

neuronal output of the population activity is a linear sum of the

inputs. This assumption appears to be a general property of

neuronal populations (see [19], [31], [32], [1], [2], who suggest

that neurons could form a set of basis functions encoding real-

world variables). Such a linear decoding can be achieved in two

ways:

Regularized Explicit function (R. OLE). The first approach is to

inverse the above equation as W= C *R{, noting R{ the Moore-

Penrose pseudo-inverse of R. R{ was determined on a subset of the

data (Figure 2a, Atrain= training dataset) and the resultant W

matrix was applied to solve C = R * W on the rest of the data

(Atest= testing dataset). As the Moore-Penrose pseudo-inverse

leads to overfitting, we used a Tikhonov-regularized version of

it: this solution minimizes the compound cost norm(W*R – C)+

l*norm(W), where the last term is a regularization term added to

the original minimization problem [33]. The scaling factor l was

chosen to allow for a good compromise between learning and

generalization. Its precise value was optimized for each analysis as

this value depended on the population size and number of training

trials (see [34] for the l optimization procedure).

Artificial Neural Network (ANN OLE). To estimate the penalty

(or benefits) of training artificial neural networks, we compared the

formal OLE solution described above with the performance of a

one-layer feed-forward network with as many units in the input

layer as in the FEF cell population of interest, one unit in the

output layer reflecting the class of the binary variable of interest

and a hyperbolic tangent transfer function (see Figure 2b, [1], [2]).

Training was performed using a quasi-Newton back-propagation

that defines the weight vector W which minimizes the square

distance between the estimate of the state of the variable of interest

and its actual value. To prevent overfitting, a regularization

procedure was used. This procedure modifies the initially chosen

network performance function (the mean of sum of squares of the

network errors) by adding an additional regularization term. The

regularization term consists of a weighted mean of the sum of

squares of the network weights and biases. As a result, the modified

performance function msereg becomes: msereg = l*mse +

(12l)*msw, where mse is the mean square error and msw is the

mean square weight. The factor l sets the performance ratio

between the mean square error and the mean square weight.

Here, equal weight was given to both the mean square error and

the mean square weights (l=0.5) as this value yielded the highest

decoding performances. The sign of the classifier output described

the possible states of the variable of interest (21 and 1).

Non Linear Artificial Neural Network Estimator (ANN

NLE). The OLE described above cannot, by definition, capture

non-linear processes, which might be at play in prefrontal cortical

regions and/or during cognitive endogenous processes. We thus

decided to implement a non-linear estimator. If the ANN NLE

outperformed the ANN OLE, this would support the presence of

non-linear neuronal information processes. The ANN NLE is

implemented similarly to the ANN OLE above, except that a

second layer is added to the network architecture in order to

capture potential hidden non-linearities in the neuronal popula-

tion response. This additional hidden layer has half as many units

as the input layer (Figure 2c). Such a two-layer network

architecture draws a non-linear boundary between data points

sampled from two independent distributions (figure 3b).

Bayesian classifier. We used a Gaussian naı̈ve Bayes

classifier [35], [36] which directly applies Bayes’ theorem

(Figure 2d) to calculate the conditional probability that the

population response, R is of class Ck: P(Ck|R). Cells are ‘‘naı̈vely’’

assumed statistically independent. Bayes’ theorem can be written

for cell n as follows:

P(CkjRi)~
P(Ck) � P(RijCk)

P(Ri)
ðeq:1Þ

P(Ri) can be ignored, since it is constant and independent of Ck.

P(Ck) is also constant across the different classes by design (the two

classes are equi-probable). As a result

P(CkjRi)~aP(RijCk) ðeq:2Þ
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where a is constant across the different classes Ck. If the

components Ri of R are independent,

P(CkjR)~aP
n

i~1
P(RijCk)

and the Bayesian classifier is optimal, in the sense that it

intrinsically minimizes the misclassification rate. Indeed, misclas-

sification is minimized if and only if the response R is assigned to

the class Ck for which the P(Ck|R) is maximum [37]. As a result,

the Bayesian decoding procedure amounts to using fk(R) =

P(R|Ck) as discriminant function. We estimated the conditional

probability density of the neuronal response Ri of a given neuron

P(Ri|Ck), given a stimulus class Ck, as a Gaussian distribution,

taking as parameters the mean and the standard deviation of the

neuron’s response across trials. The resulting Bayesian classifier

draws a quadratic non-linear boundary between data points and

takes into account the variance structure of the input distributions

(figure 3c, distinct-variance Gaussian Bayesian model). This is

equivalent to a discrete maximum likelihood method in that it

calculates, for each trial, the probability of each class and chooses

the class that presents the highest probability.

Reservoir Computing. We used a specific class of recurrent

neural networks derived from Reservoir computing. In such a design,

the dynamics of the neurons of the reservoir map the input onto a

higher dimensional space, thus unveiling potential hidden

Figure 2. Decoders. (A) Regularized OLE, the training step is a simple regularized linear regression. (B) Optimal Linear Estimator (ANN OLE),
implemented as a one-layer feedforward artificial neural network. The input layer has one unit per FEF cell and receives instantaneous population
neuronal activities. The output layer contains 1 unit. Training involves optimizing the weights using a Levenberg-Marquardt backpropagation
algorithm and a hyperbolic tangent transfer function. (C) Non-Linear Estimator (ANN NLE), implemented as a 2-layer feedforward artificial neural
network. The network architecture only differs from the OLE by an additional hidden layer with n/2 units, n being equal to the number input units. (D)
Bayesian decoder, applying Bayes’ theorem to calculate the posterior probability that state i is being experienced given the observation of response r.
(E) Reservoir decoding. The decoder has one input unit per FEF cell and one output unit. Fixed connections are indicated by dotted arrows and
dynamical connections are indicated by full arrows. The reservoir contains 200 units. The recurrent connections between them are defined by the
training inputs. A simple linear readout is then trained to map the reservoir state onto the desired output. (F) Support Vector Machine (SVM), the
LIBSVM library (Chih-Chung Chang and Chih-Jen Lin, 2011) was used (Gaussian radial basis function kernel so as to map the training data into a
higher dimensional feature space). The transformed data is then classified with a linear regressor and training is performed with a 5-fold cross-
validation. For all decoders, the sign of the output corresponds to the two possible states of the variable being decoded.
doi:10.1371/journal.pone.0086314.g002
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contingencies. The simple readout process is then trained to map

the overall state of the neuronal reservoir onto the desired output

[38], [39]. Because of the higher dimensionality mapping achieved

by the reservoir, such a recurrent neuronal network is expected to

yield a better read out performance than a simple direct linear

mapping (OLE) between the input and the desired output. In

particular, it allows to segregate the data points sampled from two

independent distributions thanks to a non-linear boundary that

minimizes the mean square error in the higher dimensionality

space the input data is projected on. Specifically, we used a

recurrent neural network (RNN, figure 2e) with fixed connections

and a readout layer that reads the activity of all neurons in the

RNN [40]. All parameters specific to the reservoir were set with a

grid-search procedure prior to the decoding experiments in order

to optimize the decoding performance. This procedure consisted

in testing the decoding performance of the reservoir over a large

set of parameters and selecting those parameters that maximize

correct classification. Due to heavy and time costly computations,

these parameters (number of nodes, transfer function, scaling

factor, input sparseness, reservoir sparseness, spectral radius, time

constant and regularization parameter) were optimized only for

full population- and trial-sizes. For all analyses, unless otherwise

stated, the nonlinear optimal reservoir contained 500 analog nodes

without transfer function. The fixed connections between the input

units and the reservoir were randomly generated from a uniform

distribution between 0 and 1 and scaled with a factor of 1021.2 in

order to balance how strongly the reservoir is driven by the input

data. This optimal reservoir had no interconnections between its

nodes. The nodes were initially set as leaky integrator, but

optimization of their time constant revealed that the network

performs better without leaky integration. As a result, such a

reservoir is equivalent to a completely non-dynamic neural

network using independent non-linear transformations to calculate

the decoding performance. A Tikhonov regularization procedure

was chosen in order to avoid overfitting. The readout layer

performs an explicit linear regression between the activity of the

neurons within the RNN and the desired output.
Reservoir with memory. Recurrent networks like the

reservoir have been used to process temporal information such

as time series. Here, we wanted to test whether the reservoir could

extract temporal information embedded in the data and provide a

stationary decoding performance that memorizes the decoded

event for a longer period of time. To do this, new parameters were

set in a grid-search manner (as described above) in order to

optimize the decoding performance for a training window of

70 ms to 500 ms after cue onset. The non-linear dynamic

reservoir contained 500 analog nodes with a hyperbolic tangent

transfer function. The fixed connections between the input units

and the reservoir were randomly generated from a uniform

distribution between 0 and 1 and the scaling factor was set to

1023.8. There were no interconnections between the nodes within

the reservoir and the time constant was set to 55. These

parameters created a non- dynamic reservoir that, because of

the high time constant, uses previous time-steps to extract

information. The readout layer performed an explicit linear

regression between the activity of the neurons within the RNN and

the desired output.
Support vector machine (SVM). The basic SVM can be

considered as a non-probabilistic binary linear classifier that maps

the inputs in space so as to maximize the separation between the

inputs of the two classes ([41], figure 2f). The input data is

nonlinearly mapped to a higher-dimensional feature space and

then separated by a maximum margin hyperplane. Generally, this

maximum margin hyperplane corresponds to a non-linear decision

boundary in the input space, defined by the following equation

(Eq3)

d(~RR:p)~sign(
Xt

j~1
CjajSw(Rj):w(Rp)Tzb) ðeq:3Þ

where d(~RR:p)is the decision on the test neuronal population

response ~RR:p; t is the total number of training trials; the class labels

Cj M {21,+1} and represent the states of the binary output

variable during training; aj represents a set of t constants that

define the SVM optimal solution for the training set; the input

data vector ~RR:jrepresents the population neuronal response on trial

j. The decision boundary is fully defined by a subset of training

samples, the so-called support vectors, but is never explicitly

calculated. Mercer’s theorem states that for each continuous

positive definite function, K(x, y), there exists a mapping W such

that K(x, y) equals the dot-product,,W(x),W(y). for all x, y M Rn.

Mercer’s theorem allows to learn the relationship between x and y

in the feature space without an explicit estimation of the mapping

function W, by simply using a kernel function; this makes the

support vector machine efficient for operating in a high-

dimensional feature space [42], [43]. The architecture of the

SVM decoder we use here is presented on figure 2f (LIBSVM

library, Gaussian kernel implantation, [44], http://www.csie.ntu.

edu.tw/̃cjlin/libsvm). Note that we used a SVM design with a

Gaussian kernel, K(x,y) = exp(2c||x2y||2). Overall, because

the input data is projected onto a higher-dimensional feature

space, SVM allows segregating the data points sampled from two

independent distributions thanks to a non-linear boundary

(figure 3d). A grid search procedure (calculating decoding

Figure 3. Decision boundaries for the different classifiers. Each
plot represents the activity of a hypothetical cell 1 as a function of the
activity of hypothetical cell 2, on successive trials, in response to a
stimulus 1 (circles) or 2 (squares). a) Optimal linear estimator; b) non-
linear estimator; c) naive Bayesian. The dotted ellipsoids (Bayesian)
correspond to the probability-density fitted Gaussian distributions of
the cells’ activities for each stimulus; d) SVM with Gaussian kernel (RBF)
and Reservoir. In the case of SVM, the dotted line corresponds to the
margin around the decision boundary.
doi:10.1371/journal.pone.0086314.g003
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performance over a range of cost and gamma SVM parameters)

was performed, for each set of train data, prior to the decoding

procedure, in order to find the SVM parameters that maximize

decoding performance. This was done using a 5-fold cross-

validation procedure so as to minimize over fitting. Specifically,

each training set was randomly divided into 5 parts. One part was

retained for testing the model while the other 4 parts were used for

the training of the grid search procedure. This procedure was

repeated 5 times so that each part is used exactly once to evaluate

the selected parameters.

Results

Though the mathematical properties of the classifiers consid-

ered in the present work are well described, how they behave and

how they differ when applied to real neuronal population activities

has not been investigated this far. In particular, no study has

directly questioned how their performance is affected by actual

biological noise in the data, and how it differs between sensory and

cognitive signals. In the following, we examine the performance of

different classifiers and their dependency on several parameters

that often turn out to be crucial in the context of single cell

recording experiments. We first compare the decoders’ perfor-

mance as a function of the variable being decoded (visual/

exogenous versus attentional/endogenous). We then evaluate the

dependency of each decoder on the number of available training

trials and the number of available cells. Last, we quantify the

impact of unbalanced training samples, i.e. samples with unequal

number of trials for each decoded class.

Who’s best? Comparing readout performance across
classifiers
A straightforward measure of how well a decoder extracts

information from population neuronal activities is its readout

performance, i.e. its correct classification rate. We thus compared

the average performance of each classifier (SVM, Reservoir,

regularized OLE, Bayesian, ANN OLE and ANN NLE) over 20

successive decoding runs (each performed on a distinct data set, cf.

data seeds in the methods section) when decoding either the

position of the first visual flow (figure 4a, light gray bars), or the

instructed position of attention (figure 4a, dark gray bars) from the

whole FEF population (n= 131). The different classifiers did not

perform equally well and this, irrespectively of whether the

position of the first visual flow or the instructed position of

attention was being decoded (2-way repeated measure ANOVA,

Variable x Classifier, Classifier main factor, p,0.001, figure 4a). A

Bonferroni post-hoc analysis indicated that the SVM, the regularized

OLE, the Reservoir and the ANN OLE significantly outperformed the

Bayesian and the ANN NLE (p,0.001) both when decoding position

of the first visual flow (p,0.01) and the instructed position of

attention (p,0.001).

However the 95% confidence interval (as estimated by a non-

parametric random permutation test, p,0.05, cf. methods) that

served as a decision boundary for significantly above chance

performance varied from one decoder to the other. We calculated,

for each classifier, its performance relative to this 95% confidence

upper limit (figure 4b). As was the case for the absolute readout

performance, the relative readout performance also varied across

classifiers (2-way repeated measure ANOVA, Variable x Classifier,

Classifier main effect p,0.001, figure 4b). Here, a Bonferroni

post-hoc analysis indicated that only the SVM and the regularized

OLE significantly outperformed the other classifiers (p,0.001)

both when decoding the position of the first visual flow (p,0.05)

and the instructed position of attention (p,0.001, accompanied

here by the reservoir and the ANN OLE). This difference between the

absolute performance and the present relative performance

analyses was due to the higher 95% confidence limit of the

Reservoir and the ANN OLE as compared to that of the SVM and the

regularized OLE.

Who’s best? Comparing the readout performance for
endogenously driven vs. exogenously driven neuronal
information
The next question we sought to answer is whether the

performance of classifiers on exogenous information is predictive

of their performance on endogenous information. We thus

compared the performance of the different classifiers at decoding,

from the whole FEF population, either the spatial position at

which the first stream was presented (exogenous, figures 4a–b,

light gray bars) or the position at which attention was instructed by

the cue (endogenous, figures 4a–b, dark gray bars). All decoders

(SVM, Reservoir, regularized OLE, Bayesian, ANN OLE or ANN NLE)

provided both a better absolute and relative readout of the

exogenous variable as compared to the endogenous variable (2-

way ANOVA, Variable x Classifier, Variable main factor, p,

0.001, figures 4a–b). Specifically, the average absolute decoding

performance of first stream position over all decoders (mean

= 93.0%, s.e. = 5.2%) was 16 percent higher than the average

absolute decoding performance of the instructed position of

attention (mean = 77.0%, s.e. = 1.6%). Likewise, the average

relative decoding performance of first stream position over all

decoders (mean = 33.8%, s.e = 1.8%) was also 16 percent higher

than the average relative decoding performance of the instructed

position of attention (mean = 17.7%, s.e = 1.8%).

Most of FEF neurons encode visual information, while only a

small proportion of cells encode the instructed position of attention

(16%, [25]). This could account for the higher performance

obtained at decoding the exogenous information as compared to

the endogenous information. Alternatively, this difference could be

due to a noisier encoding of endogenous variables by cortical

neurons as compared to how exogenous information is encoded

(or more broadly speaking, to different cortical encoding schemes

as a function of the variable being considered). In order to address

this issue, we performed two additional analyses: 1) we evaluated

the decoders’ performance at reading out the instructed position of

attention from a subset of FEF cells characterized by a statistically

significant cue-instruction related response (n = 21), and 2) we

evaluated the SVM’s performance at decoding the first visual

stream position from a random selection of 21 visual cells. We then

compared the performance a) between the two conditions

(population size hypothesis), and b) between the first condition

and when using the whole neuronal population (population

selectivity hypothesis).

Population size hypothesis. In order to test whether

population size fully accounts for the difference in performance

between the readout of first visual stream position and the readout

of the instructed position of attention, we proceeded as follows. We

identified, within the whole FEF population, the visually

responsive neurons (n = 111, significant visual modulation within

150 ms from first stream onset for 30 ms out of 25 ms, t-test, p,

0.05). We randomly selected 21 visual neurons from this pool of

111 visual neurons and we calculated the average performance of

the SVM at reading out the first visual stream position from this

small population over 20 successive decoding runs. This procedure

was repeated 20 times so as to have an estimate of the influence of

the cell sampling on the readout performance. Such a procedure

yields an absolute average readout performance of 79.5%

(s.e. = 0.2%; relative mean performance = 22.6%, s.e. = 0.19%
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figure 5, light gray bar). Both the absolute and relative average

readout performance of attention position from the cue-instruction

selective FEF cells fell within the range of readout performance of

first flow position from a random small FEF population(absolute

performance: p = 0.09, mean=77.9%, s.e. = 0.90%; relative per-

formance: p= 0.53, mean = 22.0%, s.e = 0.92%, figure 5, dark

gray bar). The smallest readout performance of first visual stream

position obtained from the different random samples of FEF visual

cells was 65.9% while the highest performance was 92.9% (figure 5,

dotted line on light gray bar). This demonstrates that for small

populations, performance is highly dependent on the population

sample. This applies to the decoding of first visual stream position

and most probably also to the decoding of the instructed attention

location.

Population selectivity hypothesis. The readout perfor-

mance at decoding the instructed position of attention was

estimated from a subset of cells, individually encoding the final

cue instruction (21 cells). As for decoding the instructed position of

attention from the entire FEF population, all decoders did not

perform equally well (one-way ANOVA with repeated measures,

decoder main factor, p,0.001, figures 4a–b, medium gray bars). A

Bonferroni post-hoc analysis indicated that the SVM, the regularized

OLE, the reservoir, the ANN OLE and the Bayesian classifiers

outperformed the ANN NLE (absolute performance: p,0.001,

figure 4a; relative performance: p,0.05, figure 4b). In addition,

decoding the instructed position of attention from the whole FEF

population or from a selected subset of cells did not affect the

readout performance of all decoders in the same way (two-way

ANOVA, significant interaction between the two populations and

decoder main factors, p,0.001). A Bonferroni post-hoc analysis

revealed that this population effect is specific to the Bayesian decoder

both for the absolute and the relative performances (p,0.001,

figure 4a–b), the absolute readout performance of this classifier

being 9.0% higher when the decoding is performed on the selected

subset of cells than when it is performed on the entire the FEF

population.

Trade-off between population size and population
response sampling
Two parameters are expected to drastically influence readout

performance: population size (i.e. the number of cells which are

simultaneously being recorded from) and population response

sampling (i.e. the number of trials on which the training is

performed). In the following, we consider sequentially the impact

of each parameter in conjunction and then independently so as to

gain a better understanding of the contribution of each of these

Figure 4. Comparison of mean performance at reading out first stream position and spatial attention across classifiers. A) Absolute
readout performance. The dashed lines indicate the chance level for each condition, as estimated by a random permutation test (p,0.05). B) Readout
performance, relative to chance level. The flow position is decoded using all cells in the population (light gray). Spatial attention is decoded using all
cells in population (dark gray) or using only cells with significant individual attention-related responses (intermediate gray). The mean readout
performance and the associated standard error around this mean are calculated over 20 decoding runs. SVM = support vector machine, Res. =
reservoir, R. OLE = regularized OLE, Bay. = Bayesian, NLE = ANN non-linear estimator, OLE = ANN optimal linear estimator.
doi:10.1371/journal.pone.0086314.g004

Figure 5. Comparison of decoding flow onset (light gray) with
21 visual cells versus decoding spatial position of attention
(dark gray) with the 21 cells with significant individual
attention-related responses. The mean read-out performance
across 20 runs is showed with standard deviation around this mean.
The dotted line corresponds the maximum- and minimum performance
across 20 draws of 21 visual cells out of 111. The SVM classifier was
used. The mean readout performance and the associated standard error
around this mean are calculated over 20 decoding runs. Chance level is
defined using a random permutation procedure (p,0.05).
doi:10.1371/journal.pone.0086314.g005
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two parameters onto decoding performance. The ANN NLE was

excluded from all further analysis due to its extremely time costly

computations (,6 hours per data seed/run) combined with a

relatively poor readout performance (Regularized OLE/Bayesian:

less than 1 second per data seed per run; ANN OLE: less than 2

seconds per data seed per run; SVM/Reservoir: less than 3

seconds per data seed per run; note that these time estimates are

both dependent on the type of processor being used and on the

optimization of the computation scripts).

Population size and trial number trade-off. In order to further

explore the trade-off between trial number and population size

when decoding the instructed position of attention from randomly

selected FEF cells, we performed an additional analysis in which

we co-vary both parameters simultaneously. This analysis is

performed on the best performing classifiers, namely, the

regularized OLE (figure 6a), the SVM (figure 6b) and the reservoir

(figure 6c). On all plots, we indicate both the 65%, 70% and 75%

performance iso-contours (figure 6, black contours) and the 95%

confidence limits for significant readout (figure 6, gray contours).

Confirming our previous observations, the regularized OLE

achieved the best readout performance at all population sizes

and training trial number combinations. In particular, a 75%

absolute performance rate was achieved with as few as 60 cells and

as little as 40 training trials. The SVM came next, followed by the

Reservoir, although the latter appears to outperform the former

for small trial numbers and small population size.

Population size. The readout performance at decoding the

instructed position of attention from the entire FEF population

steadily increased as a function of population size for all decoders

(Figure 7a). For populations of less than 25 randomly selected FEF

neurons, SVM, Reservoir, regularized OLE and ANN OLE provided

equivalent readout success rates, outperforming the Bayesian

classifier. As the number of neurons in the population increased,

the SVM, the regularized OLE and the reservoir improved their

performances similarly whereas the ANN OLE improved with a

slower rate. The Bayesian was trounced by all the others and the

impact of increasing the population size onto its readout

performance was the lowest.

Absolute readout performances above the upper 95% confi-

dence limit are indicated, in figure 7a, by a thicker line. It is

interesting to note that the SVM and the regularized OLE had an

absolute performance significant with as few as 4 random FEF

cells. The reservoir achieved significant readout performances with 9

cells, whereas the Bayesian required 22 cells in the population.

When decoding was performed on the subset of attention

selective FEF cells (n = 21, figure 7b), the overall effect of

population size on readout performance was equivalent across

decoders, except for the fact that the regularized OLE improved with

a slightly slower rate as the population size increases (Figure 7b).

As expected by their high attention-related information content,

adding an attention-cell to the population induced an average

increase of 0.76% on the readout performance (Figure 7b). This is

to be contrasted with the impact of a randomly selected cell onto

the overall population performance (0.17% increase in readout

performance, figure 7a).
Trial number. As for population size, the readout perfor-

mance at decoding the instructed position of attention from the

entire FEF population steadily increased as a function of the

number of available trials on which to train the decoders

(Figure 7c). However, all decoders did not behave equally in the

face of trial number. In particular, the regularized OLE

outperformed all other decoders at all values of training trial

number. This classifier actually reached significant decoding rates

with as few as 10 trials (thick green line, figure 7c). The

performance of the Reservoir, SVM and ANN OLE decoders

became statistically significant around 20 training trials and

stabilized for 30 trials or so (thick lines, figure 7c). While the SVM

achieved the best readout performance amongst these three, the

Bayesian decoder was outperformed by all the other classifiers at

all training trials number and required more than 35 trials to

achieve significant readouts.

When the decoding of instructed position of attention was

performed on the subpopulation of attention-selective FEF cells,

the impact of number of trials was drastically reduced (figure 7d).

Indeed, the regularized OLE, the SVM and the reservoir achieved

significant readout rates and are close to their maximum decoding

performance with as few as 15 cells. The rise to maximum

performance was slower for the ANN OLE and the Bayesian

classifiers, and here again, this latter decoder required more data

samples to achieve significant readouts (more than 30 trials).

Training sample balance
In an online-decoding environment, training is ideally per-

formed on a fixed number of past trials in reference with the

testing time-point. The assumption that these fixed trials equally

Figure 6. Decoding of spatial attention from the whole FEF population activities as a combined function of number of trials and
cells with (A) Regularized OLE, (B) SVM and (C) Reservoir decoders. The black contour lines correspond, from yellow to dark red regions, to
65, 70 and 75% of readout performance. The gray contour lines corresponds to chance level as calculated, at each point, by a random permutation
test (p,0.05). Smoothing with Gaussian kernel of 7. The readout performance is an average readout performance on 10 decoding runs. The
maximum possible number of training trials is 84 trials. The y-axes are truncated at 80 trials.
doi:10.1371/journal.pone.0086314.g006
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represent condition 1 (here, attention instructed to the left) and

condition 2 (attention instructed to the right) might actually be

violated, in particular due to a potential bias in the performance of

the subject, having a higher performance for one condition over

the other. Here, we explored the impact of such an imbalance in

the number of training trials for the two states of the variable of

interest (figure 8). The overall picture is that this imbalance incurs

a drop in average readout performance. This drop in performance

increased as the imbalance between the number of trials for the

two conditions increased. The rate at which the performance

decreased highly depended on the classifier. The Bayesian and the

ANN OLE performed best with a respective performance drop rate

of 3% and a 5% for a 50% imbalance in the data set (i.e. when one

class has half as many trials as the other class). Furthermore, the

Bayesian and the ANN OLE were the only classifiers for which

performance remained above the upper 95% confidence limit at

50% imbalance. In comparison, the SVM had an 18%

performance drop rate, the regularized OLE, a 28% performance

drop rate and the reservoir, a 30% performance drop rate. There

thus appears to be a trade-off between decoding performance in

ideal settings and resistance to actual real data biases as considered

here.

Memory
All previous decoding procedures relied on the estimation of the

readout performance from population activities averaged over

successive 100 ms windows, irrespectively of the response that was

produced by the population at previous time points. However,

recent evidence suggests that reverberating activities in local

neuronal populations allows to maintain as well as to accumulate

information in time [9], [45]. The specific Reservoir architecture

allows us to directly assess the impact of information maintenance

and accumulation over time by simply presenting the network with

training data sampled over a longer time interval (70–500 ms after

cue onset–figure 9, dark gray curve- versus 212–283 ms–figure 9,

light gray curve) while still testing over successive 100 ms intervals

(dark and light gray curves respectively, figure 9). In this analysis

the classifier is tested on all time points ranging from 70 to 500 ms

after cue presentation and each readout performance corresponds

to the exact performance for that time point (i.e. in contrast with

the previous measures, we do not average the readout perfor-

mance over a 100 ms window). In this analysis, trials in which the

target appeared 150 ms or 300 ms after cue onset have both been

excluded to avoid the potential confound between cue and target-

related activities. Readout performances above the upper 95%

Figure 7. Decoding spatial attention (A–B) as a function of cell population size and (C–D) number of trials available for training. In
(A) and (C), decoding is performed on the whole FEF cell population while in (B) and (D), decoding is performed only on the attention-related cells -
presented also in gray in (A). The mean readout performance is calculated over 20 decoding runs. Thick lines indicated values that are significantly
above chance as calculated using a random permutation test (p,0.05). SVM = support vector machine, Res = reservoir, Ex. OLE = explicit OLE, Bay.
= Bayesian, NLE = ANN non-linear estimator, OLE = ANN optimal linear estimator.
doi:10.1371/journal.pone.0086314.g007

Decoding Population Sensory and Cognitive Signals

PLOS ONE | www.plosone.org 10 January 2014 | Volume 9 | Issue 1 | e86314



confidence limit are represented with a thick line. As expected,

taking into account a longer period of time when training the

reservoir network resulted in an increased decoding performance

throughout the post-cue period, that was sustained at a distance

from the cue (400–500 ms post-cue, dark gray curve). Taking into

account the temporal structure of the signals however lead to a 5%

drop in readout performance at the time of maximum attention-

related population activity (245 ms following cue onset). As a

result, this decoding approach is only interesting when the ability

to track the information over time is more important than

achieving maximum decoding performance.

Discussion

Our results suggest that endogenous information such as the

orientation of attention can be decoded from the FEF with the

same accuracy as exogenous visual information. In addition, all

classifiers did not behave equally in the face of population size and

heterogeneity, the available training and testing trials, the subject’s

behavior and the temporal structure of the variable of interest. In

most situations, the regularized optimal linear estimator and the

non-linear Support Vector Machine classifiers outperformed the

other tested decoders.

Decoding of endogenous information as compared to
exogenous information
Our decoders achieve, on average, a 19% higher performance

at decoding exogenous information (here, the position of the first

visual stream) from a heterogeneous FEF neuronal population, as

compared to endogenous information (here, the position of

attention instructed by the cue). These observations are in line

with a previous study also showing a higher accuracy at decoding

the position of a visual cue (SVM classifier, 100% accuracy, [4]) as

compared to decoding the position of attention away from cue

presentation (SVM classifier, 89% accuracy), from a heterogeneous

FEF population. In the current study, we further show that this

advantage at decoding exogenous over endogenous information is

constant across both linear and non-linear classifiers. This could be

due to the fact that FEF contains more visual-selective than

attention-selective cells (Cell selectivity hypothesis). Alternatively, it

could be that visual information is encoded in the FEF with a

higher reliability than attention-related information (Response

reliability hypothesis). While we cannot favor one possibility over

the other, both are worth considering.

Cell selectivity hypothesis. The frontal eye fields are known

to have strong, short latency visual responses [24], due to direct as

well as indirect anatomical projections from the primary visual

cortex V1 [46], [47]. Early studies report that up to 47% of FEF

neurons are visually responsive [48] while up to 80% of pre-

saccadic FEF neurons are also visually responsive [23]. In the

dataset used in the present work, FEF neurons were recorded on

the basis of their responsiveness to the key events of the cued-target

detection task. Eighty-four percent of these neurons had significant

neuronal responses to first visual stream onset (111 visual neurons

out of a total of 131 neurons).The frontal eye fields are also known

to be at the source of covert attention signals [49], [26]. And

indeed, FEF neurons have been shown to encode spatial attention

signals. The proportion of such FEF neurons varies from one study

to another, most probably due to the specificities of the behavioral

task being used. For example, in classical cued-target detection

tasks that allow to manipulate spatial attention, the spatial

mapping between the cue and the subsequent covert attentional

orientation changes. The cue can be a spatial cue, indicating that

attention should be held at the location where it is presented. In

this case, there is a direct mapping between the location of the cue

and the instructed position of attention and about half FEF

neurons are shown to represent this latter information (40.8% in

[50]; 51.8% in [4]). The cue can be a symbolic cue that requires to

be interpreted so that the instructed location of attention can be

extracted, for example, a central cue that instructs attention to the

right if of a specific type (e.g. red or right pointing arrow), and to

Figure 8. Impact of imbalance in the training set. The y-axis
represents the difference between the readout performance of a
balanced data set (same number of trials for each condition) and that of
an unbalanced data set (more trials in condition 1 than in condition 2).
The x-axis represents the degree of imbalance in training trial number
between the two conditions. The mean readout performance and the
associated standard error around this mean are calculated on 20
decoding runs. Thick lines indicated values that are significantly above
chance as calculated using a random permutation test (p,0.05). SVM =
support vector machine, Res = reservoir, R. OLE = regularized OLE,
Bay. = Bayesian, NLE = ANN non-linear estimator, OLE = ANN optimal
linear estimator.
doi:10.1371/journal.pone.0086314.g008

Figure 9. Impact of memory on Reservoir decoding perfor-
mance on reading out the spatial position of attention. The light
gray curve and bars corresponds to a reservoir training on a window of
75 ms around 245 ms after cue onset (as in all previous figures). The
dark gray curve and bars corresponds to a reservoir training a larger
time window (from cue onset at 0 ms to 700 ms post-cue). Decoding is
performed on all FEF cell population activities. The bars show the mean
readout performance and the associated standard error around this
mean obtained by testing activities in a time window of 100 ms around
the time reference point for training (245 ms after cue onset, N = 20
decoding runs). The curves show the mean readout performance and
the associated standard error around this mean for each time point.
Thick lines indicated values that are significantly above chance as
calculated using a random permutation test (p,0.05).
doi:10.1371/journal.pone.0086314.g009
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the left if of another type (e.g. green or left pointing arrow). In this

case, the spatial location of the cue is irrelevant to define the final

position of the cue, while its identity is fully informative. Gregoriou

et al. [51] report that 44.7% of FEF neurons were modulated by

spatial attention in such a task. A more complex situation is the

one used in Ibos et al. [25], in which the spatial location and the

color of the cue are non-informative if considered separately, but

fully informative if combined. This complex transformation most

probably accounts for the lower proportion of attentional neurons

available in the present dataset (16%, 21 out of 131, [25]). Overall,

the proportion of visual and attentional FEF neurons thus appears

to vary from one study to another, depending on the specific tasks

being used and the associated recording biases.

Focusing on the present dataset (84% of visual cells and 16% of

attention-related cells), the better readout performance at decod-

ing the position of the first visual stream from the entire FEF

population as compared to the decoding of the instructed position

of attention could be due to the fact that more cells contribute to

the encoding of this visual event. Constrained by our FEF

neuronal sample, we cannot increase the proportion of FEF

attention selective cells to match that of visually selective cells.

However, we can select amongst the visually-selective cells a

random sub-sample of neurons matching the number of attention-

selective cells. As described in the cell drop-out analysis, decreasing

the size of the neuronal population being decoded from is expected

to have a drastic impact on the readout performance. This is

indeed what is observed (test performed selectively with the SVM

classifier, figure 5), though the decoding accuracy highly depends

upon the visually-selective cells composing the random sub-

sample: in 20 successive draws of a sub-sample of 21 visually-

selective cells, performance varied from as low as 65.9% to as high

as 92.9%. The readout performance at decoding the instructed

position of attention from the attention-selective cells lies within

this range. This suggests that the decoding accuracy of visual

information and attention information are comparable and that

another sample of attention-selective cells could have led to either

higher or lower performances than what we describe here.

Extrapolating over this observation, it should thus be possible to

achieve spatial attention allocation readout performances equal to

those obtained for first visual stream onset position, provided more

attention-selective cells are included in the neuronal population.

This will need to be confirmed experimentally.

Response reliability hypothesis. The observed differences

in performance at decoding first visual stream position versus the

spatial attention allocation could be due to the fact that the

encoding of endogenous variables is more susceptible to trial-to-

trial variability due to intrinsic factors such as motivation or

fatigue. The encoding of a sensory stimulus (as first visual stream

onset, here) is expected to be less affected by these intrinsic factors

unless its detectability is highly degraded. Supporting this

hypothesis, Cohen et al. [52], [53] show that, on a single trial,

the degree to which a neuronal V4 population encodes spatial

attention varies and is predictive of the overt behavioral

performance on that very same trial. In Farbod Kia et al. [29],

we demonstrate that, in the present task, part of the error trials

arise from a miss-encoding of attention orientation. Here, the run-

to-run variability in the decoding accuracy, each run consisting of

a different training/testing set of trials, reflects the trial-to-trial

variability with which a given variable is encoded by the neuronal

population. The decoding accuracy for the spatial position of

attention has a higher standard error than the decoding accuracy

for first stream position. This could be due to a genuine difference

in the trial-to-trial variability with which these two types of

information are encoded. It is however worth noting that, though

the cue-to-attention mapping required from the monkeys in the

present dataset is complex, the SVM achieves a readout

performance of 81.2% at decoding the spatial allocation of

attention from the entire FEF population. This performance is

relatively close to that achieved with the same classifier at decoding

the same information during a simpler task involving a direct

spatial mapping between cue position and attention allocation

(89%, [4]) from an FEF population composed of a higher

proportion of attention-selective cells (51.8%, in [4], vs. 16% in

the present study). This indicates that the proportion of attention-

selective cells in the neuronal population is not the only

determinant of performance and response variability needs to be

considered. Information redundancy across attention-selective

cells should also be taken into account. In the current study, as

well as in the Armstrong et al. study, single-neuron recordings

were achieved in independent sessions. Decoding from simulta-

neously recorded neuronal population activities in a single animal

is expected to uniformly improve readout performance for all

decoders due to a decrease in overall (inter-subject and inter-

session) data variability. However, the response of simultaneously

recorded neurons also shows an important degree of correlation

[54]. The impact of these correlations on the total information

conveyed by such a neuronal population is controversial [55],

[56], [57], [58], preventing a direct estimate of their net effect on

the decoding accuracy reported here. This needs to be borne in

mind when considering the present study.

Overall, our study suggests that endogenous information such as

covert attention orientation can be decoded from an appropriate

neuronal population with similar accuracy as exogenous informa-

tion such as the position of visual stimulus. Interestingly, and in

line with our present work, Gunduz et al. [59] show that the

spatial position of attention can also be decoded from larger

distributed neuronal populations in humans, as recorded from a

parieto-frontal ECoG matrix, with a performance of up to 48%

(chance = 33.3%, decoding being performed on the whole band

signal spectrum). This decoding accuracy is to be compared to the

performance at decoding attentional engagement (84.5%, chance

= 50%) and motor engagement (92.5%, chance = 50%). Roter-

mund et al. [60] decode the spatial position of attention, in non-

human primates, with a maximum accuracy ranging between 93%

(left/right hemisphere spatial attention allocation) and 99%

(spatial attention allocation to two close by positions within the

same hemisphere), from a large distributed neuronal population,

as recorded from an epidural ECoG matrix placed over the striate

and extra-striate visual cortex. Altogether, these different studies

and ours strongly support the idea that endogenous cognitive

information content can be decoded from population neuronal

activities.

The optimal classifiers
A general observation from our study is that the SVM, the

Regularized OLE, the Reservoir and the ANN OLE unambiguously

outperform the Bayesian and the ANN NLE. A link is often made

between reservoir computing and kernel machines [61], [62], in

particular because both techniques map the input data into a

higher-dimensional feature space. In the case of the Reservoir, this

mapping is performed explicitly by the reservoir neurons whereas

the SVM uses the so-called ‘‘kernel-trick’’ to avoid this costly

explicit computation. The Regularized OLE and the ANN OLE differ

significantly from these two classifiers because they only use a

simple hyperplane to separate the input data (i.e. they can only

classify linearly separable data). Even though these four classifiers

outperform the other classifiers, there are several other factors that

also need to be considered.
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Temporal structure in decoded feature. A major differ-

ence of reservoir computing is that it can depend on the recent

history of the input. Such a Reservoir allows to process information

that is explicitly coded in time. In contrast, the state of the other

classifiers only depends on the current input [63]. As a result, using

the Reservoir classifier is a better choice when decoding variables

with a specific temporal organization as is often the case with

spatial attention that moves around in time. Indeed, in such a

behavioral context as the one described here, attention needs to be

sustained in time from cue interpretation up to target detection.

When this temporal aspect is taken into account by training the

Reservoir on single trial population responses sampled over a longer

post-cue interval (70–500 ms rather than 207–283 ms), the

decoding accuracy for the spatial attention orientation is

remarkably maintained over time. However, if the objective is to

achieve highest decoding performance, than simpler decoding

schemes appear to be more appropriate than Reservoir decoding.
Decoding speed-accuracy trade-off. Although the SVM,

Regularized OLE, Reservoir and ANN OLE perform equally well in an

optimal situation, it is important to note that the regularized OLE

appears to be more resilient to a limited number of trials.

Moreover, when both the number of available trials and cells in

the population are limited, the regularized OLE outperforms the SVM,

reservoir and ANN OLE. Last, when decoding speed becomes

critical, the Regularized OLE approach is the fastest.
Information within the neuronal population. Here, we

describe that the SVM, the Regularized OLE, the Reservoir and the ANN

OLE classifiers outperform the other classifiers when decoding a

given feature from a heterogeneous population containing both

feature-selective neurons and non-selective neurons. This repre-

sents an advantage in an online decoding perspective, as it

indicates that optimal readout performance can be achieved

without a prior selection of the neuronal population contributing

most to the feature of interest. If, for specific purposes, this

selection becomes crucial, it can be performed statistically, using

for example a single value decomposition approach (SVD, as in

[12]).
The subject’s behavior. Another critical aspect to take into

consideration is the behavior of the subject which can also

influence the choice of classifier. Indeed, if the subject presents a

difficulty to perform the task correctly and is for example biased

for one state of the feature of interest, then this produces an

imbalance in the training set that can lead to a decrease in the

performance. All classifiers do not behave equally in the face of

this imbalance. The Bayesian and the ANN OLE decoders appear to

be quite resilient to this factor, while the SVM, the Regularized OLE

and the Reservoir are strongly affected by an imbalance beyond 10

to 40%. While imbalance in the training data sample affects the

decoding performance of the SVM and of the Regularized OLE, we

have shown that these two classifiers are quite resilient to a drop in

trial number. As a result, they can still be considered as optimal in

the case of biased behavior, provided the training is performed on

a balanced subset of the data.

Number of feature states to be decoded. Support vector

machines were originally designed for binary classification [41]

and there is a lot of ongoing research on how to effectively extend

them to multiclass decoding. Up to now several methods have

been proposed where a multiclass SVM is constructed by using

many binary SVM classifiers. Generally, this results in a more

computationally expensive classifier [64]. The Regularized OLE, the

ANN OLE and the ANN NLE are by essence continuous classifiers

(as their output can take any value in a one-dimensional, two-

dimensional or n-dimensional space) but they can also be extended

to multiclass decoding by constructing several binary classifiers.

The Reservoir can easily be implemented in a multiclass decoding

problem thanks to an architecture that has the same number of

output neurons as the number of classes. Each output neuron then

represents one class, and the output neuron with the highest

activation is chosen as best guess on a given trial. It can also be

extended to a continuous n-dimensional decoder, reading out for

example the position of a given variable in space, thanks to two

output cells representing respectively the x- and y-coordinates.

The naı̈ve Bayesian classifier also naturally extends to multiclass

decoding since it calculates the probability of each class given a

certain response and then chooses the class with the highest

probability. It can be extended to a continuous n-dimensional

feature space within the Gaussian process regression framework

[65].
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39. Lukoševičius M, Jaeger H (2009) Reservoir computing approaches to recurrent

neural network training. Computer Science Review 3: 127–149.
40. Verstraeten D, Schrauwen B, D’Haene M, Stroobandt D (2007) An

experimental unification of reservoir computing methods. Neural Netw 20:
391–403.

41. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20: 273–297.
42. Aizerman M, Braverman E, Rozonoer LI (1964) Theoretical foundations of the

potential function method in pattern recognition learning. Automation and
Remote Control: 821–837.

43. Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for optimal
margin classifiers. Proceedings of the fifth annual workshop on Computational
learning theory. COLT ’92. New York, NY, USA: ACM.pp. 144–152.

44. Chang C-C, Lin C-J (2011) LIBSVM: A library for support vector machines.

ACM Trans Intell Syst Technol 2: 27:1–27:27.
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Chapter 7

Dynamical Mixed Selectivity in

Reservoir Computing and Primate

Prefrontal Cortex

We want to show that randomly connected recurrent networks can elicit rich dy-

namics that underlie all the representations necessary to perform a cognitive task. To

demonstrate this, we used a simple recurrent network with untrained recurrent connec-

tions, the reservoir. Because the representational power of such a network is limited

in the temporal domain, we implemented a feedback mechanism that represented con-

text explicitly. After training a reservoir to perform a cognitive task, we analyzed and

compared its unit and population activity to single neuron recordings from the dorsal

anterior cingulate cortex of macaque monkeys which were trained to perform the same

task.

The present experiment focuses on the representational power of randomly generated

recurrent networks, therefore, the learning mechanism is secondary in this particular

experiment. As a consequence, the learning method was chosen for its efficiency and has

low biological plausibility.
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Chapter 8

Discussion

In this discussion we will first review the results from the first article (chap. 6) that

does not contain a discussion related to our hypothesis. Then we will review the results

of the second article (chap. 7) and contrast them with our hypothesis. Finally, we will

suggest future experiments directly related to our model followed by the proposition of

a new modeling approach.

8.1 Task Variable Representation and Readout

Mechanisms

The goal of the first experiment was to assess the capacity of six decoders in retriev-

ing variables of a cognitive task. As a short reminder, macaque monkeys had to fixate

a central point on a screen while two visual streams were presented on the screen. A

cue appeared embedded in one of the streams and its color indicated the position of an

upcoming target that the animals had to fixate. Two task variables were extracted from

the activity of FEF neurons, namely, the position of the cue (exogenous information) and

the interpreted position of the upcoming target (endogenous information). A striking

result is that the endogenous information was as efficiently decoded as the exogenous

information. Three findings of this study are of particular interest for our hypothesis.

First, neurons not classified as specifically responsive to the upcoming position of the

target (attention cell) contributed to increase the performance of most of the decoders.

Second, a simple regularized linear decoder was as efficient as the state of the art in ma-

chine learning (namely, Support Vector Machine). Third, a “reservoir” with short time

constants and without recurrent connections1 can continuously decode the endogenous

1 Note that the name “reservoir” is no longer appropriate for this network since there are no more
recurrent connections within the hidden layer.
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information. We will clarify each point, in the following sections.

8.1.1 “Non-Selective” Neurons Participate in Robust Repre-

sentations

A subset of 21 over 131 recorded FEF neurons were categorized as attention cells

if their activity between the presentation of the cue and the appearance of the target

could significantly predict the position of the target. While the position of the upcoming

target could be decoded efficiently from this small set of neurons, adding the remain-

ing population of neurons increased the decoding performance. The whole population

seemed to represent the attention position more reliably. According to the theory we

support, the cortex should inherently represent relevant contingencies in activities that

are highly complex and seemingly unrelated to these contingencies. So we expect that

neurons which are not classified as attention cells nonetheless encode both task vari-

ables with distributed representations. Hence, decoding should be improved when one

includes non-selective neurons, which is the result obtained here. Indeed, distributed

activity underlies the representational power of the cortex, which is in part explained

by the increased dimensionality of the population activity that eases the separation of

task variables. Likewise, in chapter 1 we mentioned a study which showed that task

variables can be relatively well decoded when the neurons most statistically correlated

to the decoded task variable were removed (Meyers et al., 2012).

8.1.2 Extracting Task Variables with a Simple Linear Decoder

Globally, this first experiment found that the best decoders are a Support Vector

Machine (SVM) and a regularized linear regression. This means that a readout as sim-

ple as a linear regression can extract task variables from a population of PFC neurons

as efficiently as state of the art machine learning. SVMs expand their inputs into a

higher dimensional space in order to better separate them with a linear hyperplane. In

this experiment it seems that the expansion used by SVMs is not necessary to extract

both task variables. A confirmation lies in the optimization of the reservoir decoder. In

order to perform optimally, reservoir parameters must be explored to create the most

interesting dynamics inside the recurrent layer. We observed that the optimal reservoir

had no recurrent connections, and that its neurons did not use leaky integration. Inter-

estingly, the resulting network was a feedforward layer with one hidden layer, learning

taking place only between the hidden layer and the readout. In other words, it was an

original Perceptron with randomly connected connections between the input and the

hidden layer that do not process temporal information. Thus, this network was closer
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to the linear decoder that elicit the best performance, strengthening the observation

that a linear readout can be sufficient to extract task variables from cortical activity.

However, expansion of neural activity may be necessary to reconstruct its original high

dimensional space in the case when only a few neurons have been recorded (Balaguer-

Ballester et al., 2011). But, in our case, since a further expansion with the SVM do not

facilitate the extraction of task variables, we postulate that the activity was already high

dimensional, a property that contributes to the representational power of the cortex.

8.1.3 Continuous Decoding of Task Variable

Finally, training a decoder on continuous activity resulted in sustained decoding per-

formance. After optimization, the network decoder, which was originally a reservoir,

had no recurrent connections and a short time constant for leaky integration, making

each neuron in the network a running average of the combination of its recent inputs.

This result shows that a readout mechanism can continuously extract a task variable

without changing its weights even if the firing rate of neurons within the population

source is dynamic. Reservoir computing uses the same mechanism; once trained, the

readout layer is static and can extract and segregate inputs by separating trajectories

within the activity of the recurrent layer (Buonomano and Maass, 2009). The second

article of this thesis also demonstrate continuous extraction with a linear regression of

a dynamically-represented task variable. Consequently, we assume that a simple mech-

anism like a linear regression can also continuously decode the variables of the present

task. This means that a cortical neuron that receives afferent connections from the

recorded population could similarly continuously extract the task variable (Buonomano

and Maass, 2009). We will further explore this question in the next sections.

8.1.4 Conclusion

Activity within the FEF represents task variables in a few very specialized cells

but also in activities that do not seem a priori to be selective for these task variables

(Meyers et al., 2012). Since a linear decoder can extract the task variables as efficiently

as methods that expand the activity into a higher dimensional space, we argue that the

activity of the cortex may already be high dimensional, and that this property is present

before learning takes place. Furthermore, a static network can continuously decode

a task variable, meaning that a similar cortical network could also efficiently extract

this information continuously. We will review in the next section an experiment of the

second article (chap. 7) that demonstrates continuous decoding of a variable represented

in dynamical activity with a simple linear regression.
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8.2 Modelling Cortical Representations with a

Reservoir

The goal of the second experiment was to demonstrate the mechanism of information

representation in the cortex through the comparison of dorsal anterior cingulate cortex

(dACC) single neuron activity with a reservoir model. We first demonstrated that a

randomly recurrent network shows rich spatio-temporal representations that we denoted

dynamic mixed selectivity in reference to the work of Rigotti et al. (2013). We showed

that representing explicitly contextual information (i.e. searching the rewarded target

or repeating the last target) in the network led to the creation of two attractors that

produced different output behaviors depending on the context. A Principal Component

Analysis suggest similar dynamics in the dACC. Finally, we found that the context

can be continuously extracted with a simple static linear readout from the dynamic

population activity of the model and the dACC. In the following paragraph we will

confront specific points with our main hypothesis. A full discussion of the results can

be found at the end of the corresponding article (chap. 7).

8.2.1 Dynamic Mixed Selectivity

In the selectionist approach that we defined in the state of the art section, adaptive

behavior arises from the iterative selection of pre-existent combinations of available in-

puts (variation process). Our main hypothesis is that a striking property of the cortex,

its highly recurrent local connectivity, endows it with a universal spatio-temporal repre-

sentation with fading memory, and would underlie the variation process. In this context,

our second experiment first demonstrated that every instance of a simple recurrent net-

work with randomly-generated connections displays complex non-linear spatio-temporal

combinations of the task variables in the activity of the recurrent neurons. The tempo-

ral aspect is revealed in the changing patterns of mixed selectivity with the epochs of

the task. In addition, the nature of reservoir activity is necessarily spatio-temporal and

spans almost a full trial as memory of the previous choice is required to choose correctly

at any given trial.

Because the activity of dACC neurons recorded in the same task also displayed dy-

namic mixed selectivity of task variables, we argue that the common property between

the model and the cortex, namely their recurrence, is at the origin of the rich combi-

nations found in both systems. One corollary ensues from this reasoning. One should

observe dynamic mixed selectivity in every cortical area of the brain before any learning

takes place.
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In accordance with this principle, Nikolić et al. (2009) found dynamic representations

of visual stimuli in the primary visual (V1) cortex of cats. A population of V1 neurons

displayed fading memory of characters presented in a sequence, i.e. characters were

encoded in spatio-temporal representations. The authors demonstrated that the identity

of characters can be extracted using a linear decoder that acts as a cortical readout

neuron with static weights.

Figure 8.1: spatio-temporal encoding in V1 activity (Figure from Nikolić et al. (2009)).
The activity of V1 neurons of cats was recorded while sequences of characters were pre-
sented in the visual field of these neurons. Each of the three panels shows the decoding
accuracy (blue line) of a linear decoder trained to extract the identity of the first char-
acter presented in each sequence (blue characters). The blue shaded area corresponds to
the decoding accuracy that is not statistically above chance. The dash-dotted line repre-
sents the mean firing rate of the population of neurons (right scale). In each panel, the
decoding of the first character (among two possible characters) is still possible even when
the second and third character are presented. Consequently, representation of current
visual inputs in a population of V1 neurons is influenced by previous inputs, a sign of
spatio-temporal processing. In addition, a linear decoder representing a cortical neuron
can continuously extract inputs represented in dynamic activity.

Theses results first imply that a form of dynamic mixed-selectivity is present in

the activity of single V1 neurons without any learning from the animal. In addition,
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they show that a simple linear readout with static weights can continuously decode the

identity of visual elements, meaning that a downstream neuron could similarly extract

this information. Likewise, we found in our own experiment that a simple regularized

linear regression with fixed weights is able to extract continuously the endogenous task

variable related to the exploration behavior (search or repeat) of the model, and of the

monkey. Thus, these results confirm in the PFC what as been found in the primary

visual cortex.

The study of Meyers et al. (2012) presents results that apparently contradict our

hypothesis concerning the presence of mixed selectivity in the PFC prior learning. The

purpose of their experiments was to show the incorporation of new information in the

activity of PFC after monkeys learned to perform match-to-sample tasks. One of the

task depended the matching contingency between the identity of two stimuli, while the

other involved the position of two identical stimuli. Prior training, single neural activity

was first recorded while monkeys passively viewed two stimuli separated by a delay. The

activity was also recorded after training when monkeys were performing correctly the

match to sample tasks.

Figure 8.2: Match/non-match decoding before and after training in a match-to-sample
task (Figures from Meyers et al. (2012)). Prefrontal cortex neurons were recorded prior
and after learning in monkeys that performed two match-to-sample tasks. Graphs il-
lustrate the percentage of correct decoding of the match/nonmatch trial status pretrain-
ing (blue) and posttraining (red) for stimulus identity A and position B tasks. The
gray shaded regions indicate the times when the first, second, and decision stimuli were
shown, the black horizontal line indicates the level of decoding expected by chance, the
color shaded regions indicate 1 SE in the decoding accuracy if different neurons were used,
and the red and blue bars at the bottom of the figure indicate times when the decoding
accuracy was above chance (permutation test, P < 0.005).
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To determine if task relevant information was incorporated after training, the authors

decoded the match/nonmatch status of trial, i.e. whether the second stimulus was

identical to, or, at the same position as the first one. In the position task, before training,

results show that this contingency can be decoded better than chance just during and

after the presentation of the second stimulus (Fig. 8.2B). However permutation tests

show that this result is not significant. Learning the task seems to have strengthened the

representation of this relevant information as shown by the high decoding accuracy with

post-training activities. Conversely, in the stimuli identity task, the match/nonmatch

status cannot be decoded before learning, but in this case decoding accuracy is not above

chance (Fig. 8.2A). Yet, the authors demonstrate that stimuli position and identity

can be decoded prior learning, hence all the necessary information to determine the

matching contingency are present in the activity of PFC. According to our hypothesis,

the match/nonmatch information should be represented prior learning in dynamic mixed

selectivity which should allow decoding of this variable. The author show that this is

not the case.

However, we believe that the maximum correlation coefficient method used to decode

task variables in this study is poorly adapted to extract weakly represented variables.

Our own experiments with cross-temporal pattern analysis (CPTA) and continuous lin-

ear decoding of dynamical activity revealed that weakly correlated population activities

can nonetheless represent robustly a task variable. Indeed, exploring the dynamic na-

ture of phase (the behavioral context) representation in the activity of dACC showed

that this representation in the whole population activity was radically different between

distinct periods of a trial, because the correlation is almost null. Yet, the linear de-

coder had a very high accuracy at separating the two behavioral contexts throughout

full trials, meaning that context information is indeed present in the population activ-

ity. Consequently, we believe that the maximum correlation coefficient method used by

Meyers et al., which relies on correlations between activities, is not suited to extract

weakly represented information. The question of the contrast between CTPA and linear

decoding is further explored in the section 8.2.3 Dynamics of Context Representation.

8.2.2 Explicit Context Representation

In the second article, explicit representation of the context (search or repeat) with a

continuously active neuron was fed back into the recurrent network. We demonstrated

that this allows the model to perform the task with less than half the number of neurons

otherwise necessary. The main goal of the context neuron was to extend the influence of

the task feedback (presence or absence of the reward) on the subsequent choice, and was

therefore used as a temporal bridge between the feedback from one trial and the choice of
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the subsequent trial. Indeed, the reward activation was a short impulse that propagated

in the activity of the recurrent network. But, because of the time constant of the

network dynamics, the brevity of this input could not sufficiently affect the dynamics of

the network, as opposed to the choice readout that was activated for a longer period. In

addition to create this temporal bridge, the context neuron robustly expressed a crucial

information to perform this task, and thanks to its feedback connections, it contributed

to refine the representation of the contingencies of the task. Let us confront this result

with our theory.

According to our hypothesis, if a given contingency or context can be defined as

spatio-temporal combinations of sensory, motor and internal variables, then a recurrent

network with random connections fed with these variables will inherently represent it.

In fact, in our case, the behavioral context (search vs repeat) is explained solely by the

feedback variable. Instead of strengthening a combination of task variables in the spatial-

temporal domain, we strengthened a contextual information in the temporal domain.

Nevertheless, it is part of the retention process that allows for new combinations in the

activity of the network. More precisely, in our case, it expressed explicitly a past input to

strengthen the representation of contingencies, which are the combinations of previous

choice and previous feedback inputs. With 300 neurons in the reservoir, the model could

not perform the task perfectly without the context neuron, which means that these

contingencies were not represented in the reservoir. However, with context feedback,

the model made almost no errors. Hence, the temporal bridge created with explicit

representation of the context allowed for the emergence of more robust contingency

representations.

8.2.3 Dynamics of Context Representation

The mechanism used to maintain this contextual information through time is similar

to the attracting dynamics of some of the models presented in the state of the art section

(Wang, 2001; Rigotti et al., 2010a; Mante et al., 2013). However, our model is closer to

the approach of Pascanu and Jaeger (2011) and Maass et al. (2007) that uses attracting

dynamics to maintain information while processing is still carried out through transient

dynamics. This dynamical regime is obtained with high dimensional attractors. In other

words, some dimensions of the activity can segregate the state of a variable encoded in

attractors, while the remaining dimensions are still available for spatio-temporal repre-

sentations. However, these representations now rely on combinations that include the

state of this variable. In this dynamical regime, activity of the population can still be

highly dynamic while a few dimensions of the activity are engaged in attracting dynam-

ics. In our case, the trajectories of search and repeat are very well separated, in the first
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dimensions found with principal component analysis (PCA). This is due to the sharp

input from the context neurons that strongly influenced the reservoir activity.

Conversely, it appears that the representation of the behavioral context in the dACC

was similarly strengthened, as the activity of numerous single neurons clearly differenti-

ate between search and repetition. PCA indicates that the trajectories of each behavioral

context were separated in the state space, this suggests that dACC may also use attract-

ing dynamics to robustly represent context. The attractors do not seem as well separated

as in the model, because only a small part of the population activity variance separates

well the trajectories.

However, continuous decoding of context indicates underlying attracting dynamics.

Indeed, a single linear decoder with static weights could continuously extract the context

from the population of dACC neurons throughout full trials. If the same linear decoder

can correctly segregate all points of the trajectories, these trajectories must lie in dif-

ferent regions of the state space, hence suggesting an attracting dynamics (Durstewitz

et al., 2010). However, the cross-temporal pattern analysis (CTPA) revealed that the

representation of context in the whole population is rather dynamic. Indeed, the differ-

ent contexts are best separated in the third component of the PCA which explains only

9% of the activity variance. This low percentage of variance implies that the attractors

underlying the representation of context are only a small part of the whole dynamic of

the population, which is consistent with the proposition of high dimensional attractors.

In fact, we observed in the model that the strength of feedback had a strong impact on

the separation of context in the trajectories (results not shown). In the results presented

in the paper, trajectories of each context are separated in the first principal component.

However, when decreasing the feedback weights of the context neuron, the separation of

context was transferred to components of the PCA with lower explained variance.

Together, these results suggest that high dimensional attracting dynamics observed

in reservoirs with feedback could explain the relatively dynamic but reliable representa-

tion of context in the dACC. However, the degree of dynamicity of this representation

was not uniform throughout full trials. Next section proposes an interpretation of this

phenomenon based on the literature.

8.2.4 Transient Dynamics with Successive Attractors

Both model and dACC populations showed cyclic trajectories, each representing one

trial. This implies that the population activity goes through the same regions of the

state space during each trial. The model’s activity appears uniformly dynamic (with

a constant multidimensional speed) compared to the dACC’s dynamics that seem to

fluctuate. The multidimensional speed of population trajectories (results not included
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in the article), along with PCA and cross-temporal pattern analysis suggest that dACC

dynamics may best be explained by the alternation between rather stable activities and

dynamic ones.

Figure 8.3: Transient dynamics for neural processing (Figure and caption from Rabi-
novich et al. (2008)). A model of how neural networks in the locust antennal lobe process
information. A. Single-trial responses of 110 locust antennal-lobe principal neurons to
one odor can be recorded (gray bar, 1 s). B. Projections of principal-neuron trajecto-
ries, representing the succession of states visited by this neural network in response to one
odor. Red lines, individual trials; black line, average of 10 trials. BL, baseline state; FP,
fixed point (attractor), reached after 1.5 s. C. Putative dynamical model of transients:
a set of dissipative saddles (semi-stable states, dark circles), sequentially connected by
unstable separatrices (dashed lines). A single trajectory (continuous line) connects the
neighborhoods of saddles in a heteroclinic channel.

Recent studies strongly suggest that attractors represent the content of cognition

(Colgin et al., 2010; Hyman et al., 2012; Durstewitz et al., 2010, 2000), and that cognitive

processing is explained by the succession of attractors corresponding to mental states

(O’Reilly, 2006; Rabinovich et al., 2008; Balaguer-Ballester et al., 2011). Based on the

dynamics observed during odor processing, Rabinovich et al. (2008) develop the theory

of heteroclinic channels referring to the dynamic activities of neural population that

hop between semi-stable states interleaved by transient dynamics (Fig. 8.3). Likewise,

in the population activity of ACC neurons, Balaguer-Ballester et al. (2011) found that

population dynamics converge towards successive temporary stable states specific to each

epoch of a task. These findings may participate in reconciling the cognitivist approach

of mental states with the connectionist paradigm. Interestingly, another study involving

PFC dynamics echoes these findings (Stokes et al., 2013). Neurons were recorded in the

PFC of monkeys that were trained to perform a delayed paired-associate recognition

task. Animals were first trained to associates 3 cues with 3 targets, then, in the delay
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task, they were presented with a cue and a target interleaved with a delay. They had to

activate a lever after a second delay if the target was associated with the cue during the

training. A dynamic regime is found just after the presentation of the cue and of the

target, while the first and second delay display stable regimes. Transient dynamics seem

to be linked to the processing of the stimuli while stable regimes of activity generally

associated with working memory may represent specific cognitive states.

While transient dynamics seem to explain the processing of incoming inputs, attrac-

tors may maintain cognitive states and participate in the integration of specific features

of inputs (Mante et al., 2013). We will propose in the following sections a new model

that would combine the transient and attracting approaches.

8.2.5 A Simple Mechanism to Learn Cognitive States and Con-

text

In the two previous sections, we proposed that context is represented in high dimen-

sional attractors, while successive semi-stable attractors represent the cognitive states

of a task. Interestingly, the combination of these dynamics can be explained by the

results of a model developed by Rigotti et al. (2010a) (which we reviewed in chap. 4).

Indeed, they demonstrate that Hebbian learning allows for the formation of attractors

that represent the successive cognitive states of the simulated task, which echoes the

results presented in the previous section. These attractors gradually merge to form two

attractors, each representing a distinct context. These results suggest that a very simple

learning rule could potentially produce the attracting dynamics representing cognitive

states and context that we observe in cortical activity.

8.3 Perspectives

Although the current version of our model has demonstrated the computational

power of recurrent networks with fixed random connections in a cognitive task, further

modelling is necessary to explore more biologically plausible architectures, dynamics and

learning methods. The first section suggests to modify the learning of the current version

of our model, while the second proposes to extend with more sophisticated attracting

dynamics.

8.3.1 Towards a More Realistic Learning Method

Concerning our hypothesis, a major drawback of our model is that it does not model

the selection of representations since it focuses on the representational power of recurrent
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networks. The implemented learning method (FORCE learning) was primarily intended

for motor learning and has low biological plausibility (see (Hoerzer et al., 2014)).

The cognitive task performed by our model was originally designed to understand

the rapid alternation between search and repeat behaviors, and has been successfully

modeled with the reinforcement learning (RL) framework (Khamassi et al., 2011, 2013).

A logical follow up would be the training of our network model with RL to modify the

weights between the reservoir and the readout. The output would implement a winner-

take-all (WTA) mechanism to choose among the four possible targets, and feed back

this information in the recurrent network. Reservoirs and RL have already met in the

work of several teams.

Cognitive neural network modelling by Dominey et al. (1995) demonstrated how a

cortico-striatal model with a form RL could process and produce sequences. Connections

between the PFC (fixed recurrent network) and the striatum were modified with the sign

of the prediction error. Interestingly, it was the first model which proposed that reward-

related dopamine would underlie cortico-striatal plasticity.

In computational neuroscience, Hoerzer et al. (2014) developed a learning method

similar to FORCE learning, but with Hebbian learning modulated by RL, which are

more biologically plausible. They demonstrated the powerful computations that can

be carried out with reservoirs endowed with this learning mechanism. Such learning

rules could bring our model closer to biology and potentially lead to new insights in the

representation of task variables in the PFC.

8.3.2 Bridging Attracting and Transient Approaches

While our model, and others in the transient dynamic community, may explain how

powerful spatio-temporal processing can be carried out in simple recurrent network, the

attracting dynamics have shown their importance for numerous cognitive functions, like

working memory (Wang, 2001), decision making (?), and contextual processing (Mante

et al., 2013). Attractors have the advantage of maintain robustly information (resistance

to distractors), carry out specific computations (selective integration of information) and

can span much longer periods than the fading memory of transient dynamics (WM and

context representation).

Because of the need for attracting dynamics to explain cognition, and because of the

inherent fading memory of reservoir networks, researchers in the transient dynamic com-

munity have integrated feedback mechanisms with attracting dynamics to their models

in order to increase the memory capacity of the network and process inputs depending on

context Pascanu and Jaeger (2011); Maass et al. (2007); Hoerzer et al. (2014). Although

these models are able to reproduce the functional properties of attracting networks, they
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do not seem to capture the complexity of the learning mechanisms that lead to complex

adaptive behaviors. In this respect, we remind the reader of the work from Rigotti et al.

(2010a) that proposes a very interesting mechanism to explain the emergence of context

representation.

We speculate that the future of cortical modelling is in bridging the computational

power of transient modelling approaches with the cognitive power of attracting dynamics.

While the transient approach can be seen as a bottom-up or analytical approach that

analyzes the capacity of generic cortical microcircuits, the attractor community has had

a rather top-down or constructive approach in which circuits are designed to perform

a specific function (Maass et al., 2007). We can see in the recent literature that both

approaches have made steps toward hybrid dynamics. Indeed, the reservoir community

has introduced attractors to augment the computational power of temporal recurrent

networks while the cognitive attractor community has shown an interest in reservoir

computing to explain the power of randomly generated networks.

We believe that the key to understanding the processing power of cortical circuits lies

in specific learning methods that would allow generic networks to specialize to provide

particular cognitive functions observed in specifically designed models. Indeed, it was

pointed out that the same type of attractor network is able to carry out different cog-

nitive functions (working memory and decision making) Wang (2013), in line with the

description of other researchers that believe that the canonical cortical circuits imple-

ment winner-take-all through competitive dynamics (Douglas and Martin, 2004). The

same cortical substrate may allow for the variety of cognitive processes observed in the

different areas of the cortex. An explanation for the specific processing capabilities of

each area may lie in the specialization of this cortical area for a particular dynamics

through the right combination of transient and attracting dynamics.

One of the possible implementation would include a reservoir-style recurrent network

connected to the inputs, and an attracting recurrent network endowed with learning that

would act as a readout of the reservoir. This reservoir layer would expand the inputs

in the spatio-temporal domain, while the attractor layer would develop the adapted

cognitive function and express relevant information for the task at hand. The key to

such a network would be the implementation of a biologically realistic learning that

would allow the emergence of cognitive-related functions in the attractor network. The

iterative approach of Rigotti et al. (2010a) (mentioned above) is a potential candidate.

The following paragraph is dedicated to a possible biological substrate to such a system.

The majority of afferent connections to a cortical column are in layer IV, which may

act as a form of reservoir, whereas the popular models of working memory and decision

making cited above involve competitive dynamics with pyramidal neurons of layer II/III.
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The transient dynamics of a reservoir (layer IV) must remain relatively stable, while the

attracting dynamics in layers (layers II/III) could form through reward based learning

with dopamine-mediated synaptic modifications. Interestingly, dopaminergic afferents

from the midbrain project to all layers but layer IV (Berger et al., 1991). We let the

reader appreciate the value of such speculations.

It has been more than 70 years since the first mathematical model from McCulloch

and Pitts was introduced in science. From the early neural networks of this epoch to the

current highly detailed models, the connectionist approach has uncovered fundamental

mechanisms that slowly bridged the cognitive and neuroscience levels of explanation.

This explanatory gap may be closed by merging the models of current constructive and

analytical approaches.

8.4 Conclusion (Français)

Les dynamique transientes apparaissent comme un mécanisme dynamique puissant

pour représenter l’information, et peuvent être implémentées par une architecture simple.

Parce que les neurones du cortex cingulaire antérieur dorsal affichent des combinaisons

non-linéaires complexes et dynamiques qui font écho à celles trouvées dans un réseaux de

neurones avec des connections récurrentes aléatoires, nous soutenons que la puissance

de traitement spatio-temporel du cortex est due en partie à la forte récurrence de sa

connectivité locale. Cette capacité pour servir ce que nous dénommons le processus

de variation qui permet au cortex de représenter des contingences arbitraires à travers

la combinaisons d’informations sensorielles, motrices et internes disponibles. Les pro-

cessus de sélection et de rétention pourrait en partie prendre la forme de la créations

d’attracteurs pour maintenir et représenter des contingences de manière robuste. Des

contingences représentées de manière explicite et retournées dans le réseau pourrait par-

ticiper au développement de nouvelles combinaisons qui pourrait augmenter la puissance

de représentation du cortex.

8.5 Conclusion (English)

Transient dynamics appear to be a powerful dynamical mechanism to represent in-

formation, and can be implemented with a simple architecture. Because dACC neurons

possess complex dynamic non-linear combinations that echo those found in a neural net-

work with random recurrent connections, we argue that the spatio-temporal processing

power of the cortex is in part due to its highly recurrent local connectivity. This capacity

may subserve what we refer to as the variation process that enables the cortex to rep-
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resent arbitrary contingencies through the combination of available sensory, motor and

internal information. The selection and retention processes may in part take the form of

the creation of attractors to maintain and represent robustly contingencies. Explicitly

represented contingencies fed back in the network would participate in developing new

combinations which would enhance the representational power of the cortex.
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