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Abstract

R
ank-metric codes recently attract a lot of attention due to their possible application to network

coding, cryptography, space-time coding and distributed storage. An optimal-cardinality alge-

braic code construction in rank metric was introduced some decades ago by Delsarte, Gabidulin

and Roth. This Reed–Solomon-like code class is based on the evaluation of linearized polynomials and

is nowadays called Gabidulin codes.

This dissertation considers block and convolutional codes in rank metric with the objective of

designing and investigating eXcient decoding algorithms for both code classes.

After giving a brief introduction to codes in rank metric and their properties, we Vrst derive

sub-quadratic-time algorithms for operations with linearized polynomials and state a new bounded

minimum distance decoding algorithm for Gabidulin codes. This algorithm directly outputs the

linearized evaluation polynomial of the estimated codeword by means of the (fast) linearized Euclidean

algorithm.

Second, we present a new interpolation-based algorithm for unique and (not necessarily polynomial-

time) list decoding of interleaved Gabidulin codes. The unique decoding algorithm recovers most error

patterns of rank greater than half the minimum rank distance by eXciently solving two linear systems

of equations. The list decoding algorithm guarantees to return all codewords up to a certain radius.

As a third topic, we investigate the possibilities of polynomial-time list decoding of rank-metric

codes in general and Gabidulin codes in particular. For this purpose, we derive three bounds on the list

size. These bounds show that the behavior of the list size for both, Gabidulin and rank-metric block

codes in general, is signiVcantly diUerent from the behavior of Reed–Solomon codes and block codes

in Hamming metric, respectively. The bounds imply, amongst others, that there exists no polynomial

upper bound on the list size in rank metric as the Johnson bound in Hamming metric, which depends

only on the length and the minimum rank distance of the code.

Finally, we introduce a special class of convolutional codes in rank metric and propose an eXcient

decoding algorithm for these codes. These convolutional codes are (partial) unit memory codes, built

upon rank-metric block codes. This structure is crucial in the decoding process since we exploit the

eXcient decoders of the underlying block codes in order to decode the convolutional code.
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Résumé Français —
Décodage des codes en bloc et des codes convolutifs

en métrique rang

L
es codes en métrique rang attirent l’attention depuis quelques années en raison de leur appli-

cation possible au codage réseau linéaire aléatoire (random linear network coding [SKK08, Sil09,

Gad09]), à la cryptographie à clé publique [GPT91a, Gib96, BL02, OG03, BL04, FL05, Ove06,

Loi10], au codage espace-temps [GBL00, LGB03, LK04, ALR13] et aux systèmes de stockage dis-

tribué [SRV12, RSKV13]. Une construction de codes algébriques en métrique rang de cardinalité

optimale a été introduite par Delsarte, Gabidulin et Roth il y a quelques décennies. Ces codes sont con-

sidérés comme l’équivalent des codes de Reed–Solomon et ils sont basés sur l’évaluation de polynômes

linéarisés. Ils sont maintenant appelés les codes de Gabidulin.

Depuis peu, le codage réseau linéaire aléatoire est devenu un thème de recherche important. C’est

un moyen eXcace pour diUuser l’information dans les réseaux des quelques sources vers quelques

destinations (cf. [ACLY00, HKM+03, HMK+06]). Le operator channel a été introduit par Kötter et

Kschischang [KK08] comme une abstraction du codage réseau linéaire aléatoire non-cohérent. Dans ce

modèle, les données par paquets sont des vecteurs d’un corps Vni et la structure interne du réseau est

inconnue. Chaque noeud du réseau transmet des combinaisons linéaires aléatoires de tous les paquets

reçus jusqu’alors. En raison de ces combinaisons linéaires, un seul paquet erroné peut se propager

largement dans le réseau et peut rendre toute la transmission inutile. Cette propagation forte des

erreurs rend essentielle les codes correcteurs d’erreurs dans le codage réseau linéaire aléatoire pour

reconstruire les paquets transmis.

Lorsqu’on considère les paquets transmis comme étant les lignes d’une matrice, les combinaisons

linéaires des nœuds ne sont rien d’autre que des opérations élémentaires sur les lignes de cette matrice.

Dans une transmission sur le operator channel sans erreurs et sans eUacements, l’espace des lignes

de la matrice transmise est donc préservé. Basés sur cette observation, Kötter et Kschischang [KK08]

ont introduit des codes de sous-espaces pour la correction d’erreurs et d’eUacements dans le codage

réseau linéaire aléatoire. Un code de sous-espaces est un ensemble non-vide de sous-espaces d’un

espace vectoriel de dimension n sur un corps Vni. Chaque mot de code est un sous-espace. Comme

une mesure de distance pour les codes de sous-espaces, on utilise la distance de sous-espaces (subspace

distance), cf. [WXS03, KK08, XF09, ES09, Ska10, EV11, Sil11, BVP13].

Silva, Kschischang et Kötter [SKK08] ont montré que les codes de Gabidulin relevés (lifted) résultaient
en des codes de sous-espaces presque optimaux pour le codage réseau linéaire aléatoire. Les codes de
Gabidulin sont les analogues en métrique rang des codes de Reed–Solomon et ils ont été introduits par
Delsarte, Gabidulin et Roth [Del78, Gab85, Rot91]. Un code en métrique rang de longueur n ≤ m peut
être considéré comme un ensemble de matricesm×n dans un corps Vni Fq ou, de manière équivalente,
comme un ensemble de vecteurs de longueur n dans l’extension de corps Fqm . Le poids rang d’un tel
«mot» est simplement le rang de sa représentation matricielle et la distance rang entre deux mots est
le rang de leur diUérence. Ces déVnitions s’appuient sur le fait que la distance rang est une métrique.
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Plusieurs constructions de codes et des propriétés de base de la métrique rang possèdent de fortes

similarités avec les codes en métrique de Hamming.

SuperVciellement, un code de Gabidulin relevé est un code de sous-espaces spécial où chaque mot de

code est l’espace des lignes d’une matrice
[
I CT

]
, où I désigne la matrice identité et C est un mot de

code (en représentation matricielle) d’un code de Gabidulin Vxé.

Cette thèse traite des codes en bloc et des codes convolutifs en métrique rang avec l’objectif de

développer et d’étudier des algorithmes de décodage eXcaces pour ces deux classes de codes. Cette

thèse est structurée comme suit.

Le chapitre 1 donne une brève motivation pour l’utilisation des codes en métriques rang dans le

cadre de l’application au codage réseau linéaire aléatoire et présente un aperçu de cette thèse.

Le chapitre 2 fournit une introduction rapide aux codes en métrique rang et leurs propriétés. Après

avoir introduit des notations pour les corps Vnis et les bases normales, nous indiquons les déVnitions

des codes en bloc et codes convolutifs en général. On donne quelques propriétés élémentaires et le

principe de base du décodage des codes en bloc. Les codes de Gabidulin peuvent être déVnis comme

des codes d’évaluation de polynômes linéarisés, pour cette raison, nous déVnissons cette classe des

polynômes et montrons comment on peut eUectuer les opérations mathématiques de base sur ces

polynômes.

La dernière section du chapitre 2 couvre les codes en métriques rang. On déVnit d’abord la métrique

rang et on donne des propriétés de base pour les codes en métrique rang (par exemple, les équivalents

des bornes de Singleton et de Gilbert–Varshamov). Ensuite, on déVnit les codes de Gabidulin, on montre

qu’ils atteignent la borne supérieure de Singleton pour la cardinalité et on donne leur matrices généra-

trice et de contrôle. Nous généralisons par la suite leur déVnition aux codes de Gabidulin entrelacés

et on montre explicitement comment les codes de Gabidulin relevés constituent un code de sous-espaces.

Dans le chapitre 3, on considère des approches eXcaces pour décoder les codes de Gabidulin. La

première partie de ce chapitre traite des algorithmes rapides pour les opérations sur les polynômes

linéarisés. Dans ce contexte, on analyse la complexité des approches connues pour les opérations

dans un corps Vnis avec des bases normales ainsi que pour les opérations mathématiques avec des

polynômes linéarisés. Ensuite, nous présentons de nouveaux algorithmes en temps sous-quadratique

pour accomplir eXcacement la composition linéarisé et l’algorithme d’Euclide linéarisé.

La deuxième partie de ce chapitre résume tout d’abord les techniques connues pour le décodage

jusqu’à la moitié de la distance rang minimale (bounded minimum distance decoding) des codes de

Gabidulin, qui sont basées sur les syndromes et sur la résolution d’une équation clé. Ensuite, nous

présentons et nous prouvons un nouvel algorithme eXcace pour le décodage jusqu’à la moitié de la

distance minimale des codes de Gabidulin. Cet algorithme peut être considéré comme un équivalent

de l’algorithme de Gao pour le décodage des codes de Reed–Solomon. Nous montrons comment

l’algorithme d’Euclide linéarisé peut être utilisé dans ce contexte pour obtenir directement le polynôme

de degré restreint d’évaluation du mot de code estimé. De plus, nous étendons cet algorithme de

décodage aVn de corriger non seulement des erreurs, mais aussi deux types d’eUacements en métrique

rang: eUacements de lignes et de colonnes.
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Le codage réseau linéaire aléatoire peut directement proVter d’un tel algorithme de décodage eXcace

pour les codes Gabidulin, car il accélère immédiatement la reconstruction des paquets transmis et donc

il réduit le délai nécessaire. L’extension de notre algorithme de décodage aux combinaisons d’erreurs et

d’eUacements est cruciale pour gérer les pertes de paquets dans le codage réseau linéaire aléatoire.

Le chapitre 4 est consacré aux codes de Gabidulin entrelacés et à leur décodage au-delà de la moitié

de la distance rang minimale. Un mot de code d’un code de Gabidulin entrelacé peut être considéré
comme s mots de code parallèles de s codes de Gabidulin normaux (pas nécessairement diUérents). Ces
smots de code sont corrompus par smatrices d’erreur. Lorsque ces smatrices d’erreur additives ont un
espace de lignes ou de colonnes en commun, il est possible de décoder les codes de Gabidulin entrelacés
au-delà de la moitié de la distance rang minimale avec une grande probabilité. Jusqu’à présent, deux
approches probabilistes pour le décodage unique sont connues pour ces codes.

Dans ce chapitre, nous décrivons d’abord les deux approches connues pour le décodage unique
et nous tirons une relation entre eux et leurs probabilités de défaillance. Ensuite, nous présentons
un nouvel algorithme de décodage des codes de Gabidulin entrelacés basé sur l’interpolation des
polynômes linéarisés. Nous prouvons la justesse de ses deux étapes principales — l’interpolation et la
recherche des racines — et montrons que chacune d’elles peut être eUectuée en résolvant un système
d’équations linéaires.

On peut utiliser l’algorithme comme algorithme de décodage en liste des codes de Gabidulin en-
trelacés, qui garantit de trouver tous les mots de code dans un certain rayon. Cependant, la taille de la
liste, et donc aussi au pire la complexité d’algorithme du décodage en liste, peut devenir exponentielle
en la longueur du code. On peut également utiliser notre décodeur comme un décodeur probabiliste
unique, en temps quadratique, avec le même rayon de décodage et la même borne supérieure de la
probabilité de défaillance que les décodeurs connus. En clair, pour n’importe quel décodeur unique,
au-delà de la moitié de la distance rang minimale il y aura toujours une probabilité de défaillance car il
n’existe pas toujours une solution unique. Nous généralisons notre décodeur pour décoder en même
temps des erreurs et des eUacements de lignes et de colonnes.

Dans le codage réseau linéaire aléatoire, un code de Gabidulin relevé entrelacé contient les espaces
des lignes de

[
I C(0)T C(1)T . . . C(s)T

]
, où les C(i), pour tout i ∈ [1, s], sont des mots de code des

codes de Gabidulin sous-jacents. Ainsi, par rapport aux codes de Gabidulin relevés, le relèvement
(lifting) des codes entrelacés de Gabidulin réduit relativement les frais généraux, qui sont causés par la
matrice d’identité jointe.

Jusqu’à présent, aucun algorithme de décodage en liste en temps polynomial pour les codes de
Gabidulin n’est connu et en fait il n’est même pas clair que cela soit possible. Cela nous a motivé à
étudier, dans le chapitre 5, les possibilités du décodage en liste en temps polynomial des codes en
métrique rang. Cette analyse est eUectuée par le calcul de bornes sur la taille de la liste des codes en
métriques rang en général et des codes de Gabidulin en particulier.

On rappelle d’abord les bornes connues sur le décodage en liste des codes en métrique de Hamming,
puis on déduit des bornes sur la taille de la liste des codes en métrique rang. Nous considérons en fait le
nombre maximal de mots de code dans une boule en métrique rang de rayon τ , qui est appelé la taille
(maximale) de la liste. Étonnamment, ces trois nouvelles bornes révèlent toutes un comportement des
codes en métrique rang qui est complètement diUérent de celui des codes en métrique de Hamming.
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La première borne montre que la taille de la liste pour un code de Gabidulin de longueur n et

de distance rang minimale d peut devenir exponentielle quand τ est au moins le rayon de Johnson

n−
√

n(n− d). Cela implique qu’il ne peut pas exister un algorithme de décodage en liste en temps

polynomial pour les codes de Gabidulin au-delà du rayon de Johnson. Il est intéressant de noter qu’on

ne sait pas ce qui se passe pour les codes de Reed–Solomon si τ est légèrement supérieur au rayon de

Johnson.

Notre deuxième borne est une borne supérieure sur la taille de la liste de tous les code en métrique

rang, qui est prouvé par des liens entre les codes de rang constant (constant-rank codes) et les codes de

dimension constante (constant-dimension codes).

Ce sont précisément ces liens qui nous permettent de dériver la troisième borne. Avec cette borne,

nous pouvons prouver qu’il existe un code en métrique rang dans Fqm de longueur n ≤ m tel que

la taille de la liste peut devenir exponentielle pour tout τ supérieur à la moitié de la distance rang

minimale. Cela implique d’une part qu’il n’y a pas de borne supérieure polynômiale, semblable à la

borne de Johnson en métrique de Hamming, et d’autre part que notre borne supérieure est presque

optimale.

La pertinence d’une algorithme de décodage en liste pour le codage réseau linéaire aléatoire est

évidente, car un tel décodeur pourrait tolérer plus de paquets erronés qu’un décodeur de distance

minimale bornée pour les codes de Gabidulin relevés.

EnVn, dans le chapitre 6, on introduit des codes convolutifs en métrique rang. Ce qui nous motive à

considérer ces codes est le codage réseau linéaire aléatoire multi-shot, où le réseau inconnu varie avec

le temps et est utilisé plusieurs fois. Les codes convolutifs créent des dépendances entre les utilisations

diUérentes du réseau aVn de se adapter aux canaux diXciles.

Nous proposons des mesures de la distance pour les codes convolutifs en métrique rang par analogie

avec la métrique de Hamming, à savoir la distance rang libre (free rank distance), la distance rang active

des lignes (active row rank distance) et la pente (slope) de la distance rang active des lignes, et on prouve

des bornes supérieures pour ces mesures. Basé sur des codes en bloc en métrique rang (en particulier

les codes de Gabidulin), nous donnons deux constructions explicites des codes convolutifs en métrique

rang : une construction à haut taux basée sur la matrice de contrôle et une construction à faible taux

basée sur la matrice génératrice. Les deux déVnissent des codes (partial) unit memory et atteignent la

borne supérieure de la distance rang libre.

Les codes en bloc sous-jacents nous permettent de développer un algorithme de décodage des erreurs

et des eUacements eXcace pour la deuxième construction, qui garantit de corriger toutes les séquences

d’erreurs de poids rang jusqu’à la moitié de la distance rang active des lignes. La complexité de

l’algorithme de décodage est cubique en la longueur de la séquence transmise. Nous prouvons sa

justesse et décrivons explicitement comment nos codes convolutifs en métrique rang peuvent être

appliqués au codage réseau linéaire aléatoire multi-shot.

Un résumé et un aperçu des problèmes futurs de recherche sont donnés à la Vn de chaque chapitre.
Finalement, le chapitre 7 conclut cette thèse.
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â(x) q-transform of a(x)
a(b) = (a(b0) a(b1) . . . a(bn−1)) Evaluation of linearized polynomial a(x) at a vector b

Mu0,u1,...,udim(U)−1
(x) Minimal subspace polynomial of a subspace U , where

{u0, u1, . . . , udim(U)−1} is a basis of U

Block Codes

(n,M, d) Code (not necessarily linear) of length n, cardinality M and

minimum distance d (in some given metric)

[n, k, d] Linear code of length n, dimension k and minimum distance

d (in some given metric)

(n,M, d)R Code in rank metric (not necessarily linear) of length n,
cardinality M and minimum rank distance d

[n, k, d]R Linear code in rank metric of length n, dimension k and

minimum rank distance d

MRD(n,M) Maximum rank distance code (not necessarily linear) of

length n and cardinality M

MRD[n, k] Linear maximum rank distance code of length n and dimen-

sion k

Gab[n, k] Gabidulin code of length n and dimension k

IGab[s;n, k(1), . . . , k(s)] Interleaved Gabidulin code of length n, elementary dimen-

sions k(i) and interleaving order s

CRqm(n,M, d, r) Constant-rank code (not necessarily linear) of length n, car-
dinalityM , minimum rank distance d and rank r over Fqm

CDq(n,M, ds, r) Constant-dimension code of cardinality M , minimum sub-

space distance ds and dimension r (= subset of Gq(n, r))
AR
qm (n, d) Maximum cardinality of a code over Fqm of length n and

minimum rank distance d

AR
qm (n, d, r) Maximum cardinality of a constant-rank code of length n,

minimum rank distance d and rank r over Fqm

AS
q (n, ds, r) Maximum cardinality of a constant-dimension code in

Gq(n, r) with minimum subspace distance ds

xii



Contents

Convolutional Codes

Fq[D] Polynomial ring in Fq with indeterminate D

µ Memory of a convolutional generator matrix

νi, ν i-th and overall constraint length of a convolutional genera-

tor matrix

UM(n, k) Unit memory code of code rate R = k/n and ν = k

PUM(n, k|k(1)) Partial unit memory of code rate R = k/n and ν = k(1)

Acronyms

BMD bounded minimum distance
BRD bounded row distance
LEEA linearized extended Euclidean algorithm
ML maximum likelihood
MRD maximum rank distance
PUM (partial) unit memory
RLNC random linear network coding

xiii



xiv



CHAPTER1
Motivation and Overview

E
rror-correcting codes have their origin in Shannon’s seminal publication from 1948 [Sha48],

where he proved that nearly error-free discrete data transmission is possible over any noisy

channel when the code rate is less than the channel capacity. This statement is nowadays

called the (noisy) channel coding theorem. The channel capacity depends on the physical properties of

the channel and it is an active research area to determine the capacity of non-trivial communication

channels. However, the proof of the channel coding theorem is non-constructive and therefore it is

not clear how to construct error-correcting codes which actually achieve the Shannon limit. A steady

stream of publications and textbooks about code constructions, their properties and decoding methods

has emerged with Hamming’s class of codes [Ham50] and has not yet come to an end. For most data

transmission and data storage systems, the Hamming metric is the “proper” metric and codes deVned in

this metric practically perform quite well.

Quite recently, random linear network coding (RLNC) attracts a lot of attention. It is a powerful means

for spreading information in networks from sources to sinks (see e.g., [ACLY00, HKM+03, HMK+06]).

The operator channel was introduced by Kötter and Kschischang [KK08] as an abstraction of non-

coherent RLNC. In this model, the packets are assumed to be vectors over a Vnite Veld while the

internal structure of the network is unknown. Each node of the network forwards random linear

combinations of all packets received so far. Due to these linear combinations, one single erroneous

packet can propagate widely throughout the whole network and can render the whole transmission

useless. This strong error propagation makes error-correcting codes in RLNC essential in order to

reconstruct transmitted packets.

When the transmitted packets are considered as rows of a matrix, then the linear combinations of

the nodes are nothing but elementary row operations on this matrix. During an error- and erasure-free

transmission over the operator channel, the row space of the transmitted matrix is therefore preserved.

Based on this observation, Kötter and Kschischang [KK08] used subspace codes for error control in

RLNC. A subspace code is a non-empty set of subspaces of the vector space of dimension n over a

Vnite Veld and each codeword is a subspace itself. The so-called subspace distance is used as a distance

measure for subspace codes, compare e.g., [WXS03, KK08, XF09, ES09, Ska10, EV11, Sil11, BVP13].

Silva, Kschischang and Kötter [SKK08] showed that lifted Gabidulin codes result in almost optimal
subspace codes for RLNC. Gabidulin codes are the rank-metric analogs of Reed–Solomon codes and
were introduced by Delsarte, Gabidulin and Roth [Del78, Gab85, Rot91]. Codes in rank metric, in
particular Gabidulin codes, can be seen as a set of matrices over a Vnite Veld. The rank of the diUerence
of two matrices is called their rank distance, which is induces a metric for matrix codes, the rank metric.

Informally speaken, a lifted Gabidulin code is a special subspace code, where each codeword is
the row space of a matrix

[
I CT

]
, I denotes the identity matrix and C is a codeword (in matrix

representation) of a Vxed Gabidulin code.
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1 Motivation and Overview

For this reason, codes in rank metric are an active research area in the context of RLNC. Apart

from RLNC [SKK08, Sil09, Gad09], the application of codes in rank metric ranges from cryptogra-

phy [GPT91a, Gib96, BL02, OG03, BL04, FL05, Ove06, Loi10] to space-time coding [GBL00, LGB03,

LK04, ALR13] and distributed storage systems [SRV12, RSKV13, SRKV13].

T
his dissertation deals with decoding approaches for block and convolutional codes in rank

metric. In the following overview of the thesis, we motivate our results with their application to

RLNC, but all of them are independently valid in a wider context of coding theory. Hence, we do

not explicitly explain the application of our results to RLNC or other possible applications within the

chapters (except for Chapter 6). This dissertation is structured as follows.

Chapter 2 provides a brief introduction to codes in rank metric and their properties. After giving

basic notations for Vnite Velds and normal bases, we state the deVnitions of block and convolutional

codes in general. We give some elementary properties and basic decoding principles for block codes.

Since Gabidulin codes can be deVned by evaluating linearized polynomials, we deVne this class of

polynomials and show how basic mathematical operations are performed on them. Finally, the last

section of Chapter 2 covers codes in rank metric. We Vrst deVne the rank metric and give basic

properties and bounds on the cardinality of codes in rank metric (namely, equivalents of the Singleton

and the Gilbert–Varshamov bound). Then, we deVne Gabidulin codes, show that they attain the

Singleton-like upper bound on the cardinality and give their generator and parity-check matrices. We

generalize this deVnition to interleaved Gabidulin codes and describe explicitly how lifted Gabidulin

codes constitute a class of subspace codes.

Within Chapter 3, eXcient approaches for decoding Gabidulin codes are considered. The Vrst part

of this chapter deals with fast algorithms for operations with linearized polynomials. In this context, we

analyze the complexity of known approaches and present new algorithms to accomplish the linearized

composition and the linearized extended Euclidean algorithm (LEEA) eXciently. The second part of this

chapter describes known syndrome-based decoding techniques and presents a new eXcient bounded

minimum distance (BMD) decoding algorithm for Gabidulin codes. Our algorithm uses the (fast) LEEA

in order to output directly the linearized evaluation polynomial of the estimated codeword. Further,

we show how our algorithm can be used for error-erasure decoding of Gabidulin codes. RLNC can

directly take advantage of such an eXcient decoding algorithm for Gabidulin codes, since it accelerates

immediately the reconstruction of the transmitted packets and reduces therefore the involved delay.

Chapter 4 is devoted to approaches for decoding interleaved Gabidulin codes. A codeword of an

interleaved Gabidulin code can be considered as s parallel codewords of usual Gabidulin codes. When

the s additive error matrices have one common row or column space, we can decode beyond half the

minimum rank distance with high probability. We Vrst describe two known approaches for unique

decoding of interleaved Gabidulin codes and derive a relation between them. Then, we present a new

interpolation-based decoding algorithm for interleaved Gabidulin codes. We prove the correctness

of its two main steps—interpolation and root-Vnding—and show that both can be carried out by

solving a linear system of equations. We outline how our decoder can be used as a (not necessarily

polynomial-time) list decoder as well as a quadratic-time probabilistic unique decoder. In this context,

we upper bound the failure probability of the unique decoder. In RLNC, a lifted interleaved Gabidulin

code consists of the row spaces of
[
I C(0)T C(1)T . . . C(s)T

]
, where the C(i), for all i ∈ [1, s], are

codewords of the underlying Gabidulin codes. Hence, compared to lifted Gabidulin codes, the lifting of

interleaved Gabidulin codes relatively reduces the overhead, which is caused by the appended identity

matrix.
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So far, no polynomial-time list decoding algorithm for Gabidulin codes is known and it is not even

clear if it is possible at all. Therefore, Chapter 5 deals with bounds on list decoding block codes in

rank metric in general and Gabidulin codes in particular. We Vrst recall known bounds on list decoding

of codes in Hamming metric and then derive three bounds on list decoding codes in rank metric.

Surprisingly, the rank-metric bounds are all signiVcantly diUerent from the known bounds in Hamming

metric. In particular, we prove that in rank metric there exists no polynomial upper bound on the

list size similar to the Johnson bound in Hamming metric. Further, one of our bounds shows that the

list size can become exponential directly beyond the Johnson radius when decoding Gabidulin codes.

Remarkably, it is not known if this property holds for Reed–Solomon codes. The relevance of a list

decoding algorithm for RLNC is obvious, since such a decoder could tolerate more erroneous packets

than a BMD decoder for the (lifted) Gabidulin code.

Finally, Chapter 6 introduces convolutional codes in rank metric. The motivation of considering

such codes lies in multi-shot RLNC, where the unknown and time variant network is used several

times. Convolutional network codes create dependencies between the diUerent shots in order to cope

with diXcult channels. First, we deVne distance measures for convolutional codes in rank metric

and prove upper bounds on them. Then, we construct a special class of convolutional codes—partial

unit memory (PUM) codes—based on rank metric block codes in two diUerent ways. We present
an algorithm which eXciently decodes these PUM codes when both, errors and erasures occur and
prove its correctness. The decoding complexity of this decoding algorithm is cubic in the length of a
transmitted block. Further, it is explicitly described how lifting of these codes can be applied for error
correction in multi-shot RLNC.

Chapter 7 concludes this dissertation.
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CHAPTER2
Introduction to Codes in Rank Metric

C
odes in rank metric of length n ≤ m can be considered as a set ofm×nmatrices over a Vnite

Veld Fq or equivalently as a set of vectors of length n over the extension Veld Fqm . The rank

weight of such a “word” is simply the rank of its matrix representation and the rank distance

between two words is the rank of their diUerence. These deVnitions rely on the fact that the rank

metric is indeed a metric. Several code constructions and basic properties of the rank metric show

strong similarities to codes in Hamming metric.

Error-correcting codes in rank metric were Vrst considered by Delsarte in 1978 [Del78], who proved

a Singleton-like upper bound on the cardinality and constructed a class of codes achieving this bound.

This class of codes was reintroduced in 1985 by Gabidulin in his fundamental paper [Gab85], where in

addition several properties of codes in rank metric and an eXcient decoding algorithm were shown.

Since Gabidulin’s publication contributed signiVcantly to the development of error-correcting codes in

rank metric, the most famous class of codes in rank metric—the equivalents of Reed–Solomon codes—are

nowadays called Gabidulin codes. These codes can be deVned by evaluating non-commutative linearized

polynomials, proposed by Ore [Ore33a, Ore33b]. Independently of the previous work, Roth discovered

in 1991 codes in rank metric in order to apply them for correcting crisscross error patterns [Rot91].

This chapter gives a brief introduction to the theory of error-correcting codes in rank metric.

Section 2.1 provides deVnitions and notations used in this thesis for codes in Vnite Velds. Section 2.2

introduces linearized polynomials and their main properties. Finally, Section 2.3 deals with general

properties and explicit constructions of codes in the rank metric.

2.1 Codes over Finite Fields

Throughout this thesis, we consider algebraic codes over Vnite Velds and hence, this section introduces

notations and basic properties of Vnite Velds (Subsection 2.1.1) and codes over them. In Subsection 2.1.2,

we show properties of normal bases since they enable us to accomplish calculations in Vnite Velds

quite eXciently. We clarify our notations for block codes and explain well-known decoding principles

for block codes in Subsection 2.1.3: bounded minimum distance decoding, nearest codeword decoding

and list decoding. Further, we introduce notations and basic properties of convolutional codes in

Subsection 2.1.4.

2.1.1 Notations for Finite Fields

This subsection provides notations concerning Vnite Velds, without going into detail about their

theory. An extensive study of Vnite Velds, their properties and applications can be found in standard

literature about Vnite Velds, e.g., [LN96, MBG+93], and also in books about coding theory, e.g.,

[Ber84, Bla03, Rot06, HP10].

Let p be a prime, then Fp = {0, 1, . . . , p− 1} denotes the prime Veld of order p. Let q be a power of

5



2 Introduction to Codes in Rank Metric

the prime p, then we denote by Fq the Vnite Veld of order q. This Vnite Veld Fq contains q elements and

p is called its characteristic. An extension Veld (of extension degreem) of Fq is denoted by Fqm . This

extension Veld Fqm can be constructed from Fq and a polynomial p(x) of degreem, which is irreducible

in Fq and whose coeXcients are in Fq . For anym there is at least one such irreducible polynomial of

degree m [LN96, Corollary 2.11]. Since all Velds of the same size are isomorphic [LN96, Theorem 1.78],

the Veld Fqm does not depend on the explicit choice of p(x) and is isomorphic to the polynomial ring

over Fq modulo p(x):
Fqm
∼= Fq/〈p(x)〉.

Thus, diUerent irreducible polynomials give diUerent representations of the same extension Veld Fqm

over Fq . The construction of Fqm can be done by using a root of p(x) in Fqm .

A primitive element α of Fqm is an element such that it generates the multiplicative group F∗
qm by its

powers, i.e.,

F∗
qm

def
= Fqm \ {0} =

{
αi, ∀i ∈ [0, qm − 2]

}
,

and αqm−1 = 1. A primitive element exists in any Vnite Veld [LN96, p. 51]. If the irreducible polynomial

p(x) has a primitive element as root, i.e., if p(α) = 0, then p(x) is called a primitive polynomial. If we

use a primitive polynomial for the construction of the extension Veld, we can take advantage of the

fact that F∗
qm is a cyclic group [MS88, Chapter 4, Theorem 1].

The extension Veld Fqm can be represented as a vector space over Fq , using a basis B = {β0, β1, . . . ,
βm−1} of Fqm over Fq . If the order of the basis elements is important, we denote the ordered basis by

β = (β0 β1 . . . βm−1). In Section 2.1.2, we will explain a type of basis which is of special interest for

eXcient computations in Vnite Velds, the so-called normal basis.

Remark 2.1 (Properties).
The following further properties/notations concerning Vnite Velds are used in this thesis:

• For any integer i, we denote the q-power by [i]
def
= qi.

• For any a ∈ Fqm : a[m] = a and for any a ∈ Fqm and integer i, the q-power is calculated modulo m:

a[i] = a[i mod m].

• For any A ∈ Fq and any integer i: A[i] = A.

• For any a, b in Fqm and any integer i: (a+ b)[i] = a[i] + b[i] [LN96, Theorem 1.46].

The set of all subspaces of Fn
q is called the projective space and denoted by Pq(n). A Grassmannian of

dimension r is the set of all subspaces of Fn
q of dimension r ≤ n and denoted by Gq(n, r). Clearly, the

projective space is Pq(n) =
⋃n

r=0 Gq(n, r). The cardinality of Gq(n, r) is given by the q-binomial (also

called Gaussian binomial coeXcient) as follows.

Lemma 2.1 (Number of Subspaces [Ber84, Theorem 11.52]).
The number of r-dimensional subspaces of Fn

q over Fq is

[
n

r

]
def
= |Gq(n, r)| =

r−1∏

i=0

qn − qi

qr − qi
.

The q-binomial has the following upper and lower bounds (see e.g., [KK08, Lemma 4]):

qr(n−r) ≤
[
n

r

]
≤ 4qr(n−r). (2.1)

In this thesis, we use Fs×n
q to denote the set of all s×n matrices over Fq and F

n
qm = F1×n

qm for the set

6



2.1 Codes over Finite Fields

of all row vectors of length n over Fqm . For a given basis B of Fqm over Fq , there exists a one-to-one

mapping for each vector a ∈ Fn
qm on a matrix A ∈ Fm×n

q . This mapping is formally deVned as follows.

DeVnition 2.1 (Mapping to Ground Field).
Let B = {β0, β1, . . . , βm−1} denote a basis of Fqm over Fq . Fix an order of this basis β =
(β0 β1 . . . βm−1) and let a be a vector in Fn

qm . The extension of a over the ground Veld is given

by the following bijective map:

extβ : Fn
qm → Fm×n

q

a = (a0 a1 . . . an−1) 7→ A =




A0,0 A0,1 . . . A0,n−1

A1,0 A1,1 . . . A1,n−1
...

...
. . .

...

Am−1,0 Am−1,1 . . . Am−1,n−1


 ,

where A ∈ Fm×n
q is deVned such that

aj =

m−1∑

i=0

Ai,jβi, ∀j ∈ [0, n− 1].

Therefore, a = β ·A. If we apply extβ to a single element a ∈ Fqm , it is mapped to a column vector

extβ (a) ∈ Fm×1
q . Throughout this thesis, we will therefore use the following notations to switch

between the two representations:

A = extβ (a) , a = ext−1
β (A) .

Further, let rk(a) denote the (usual) rank ofA = extβ (a) over Fq and letRq (A) and Cq (A) denote
the row and column space of A in Fn

q and Fm
q , respectively. The right kernel of a matrix is denoted by

ker(A) and as a notation, ker(a) = ker(extβ(a)) = ker(A).

For any m × n matrix, the rank nullity theorem states that dimker(a) + rk(a) = n. We use the

notation as a vector a ∈ Fn
qm or matrix A ∈ Fm×n

q equivalently, whatever is more convenient.

2.1.2 Normal Bases

Normal bases facilitate calculations in Vnite Velds and can therefore be used to reduce the compu-

tational complexity. This fact is crucial for our eXcient decoding algorithm for Gabidulin codes in

Subsection 3.2.4. We shortly sum up the main properties of normal bases here; however, for further

theory, the interested reader is referred to the literature, e.g., [Gao93, LN96, MBG+93].

A basis B = {β0, β1, . . . , βm−1} of Fqm over Fq is a normal basis if βi = β[i] for all i and we denote

it by BN = {β[0], β[1], . . . , β[m−1]} in the following. We call β ∈ Fqm a normal element. Lemma 2.2

shows that choosing a normal basis is not restricted to certain extension Velds.

Lemma 2.2 (Existence of Normal Basis [LN96, Theorem 2.35]).
There is a normal basis for any Vnite extension Veld Fqm over Fq , i.e., for any prime power q and any

positive integer m.

The following lemma about the existence of normal bases is even stronger.
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2 Introduction to Codes in Rank Metric

Lemma 2.3 (Existence of Normal Basis [BJ86]).

In a Vnite extension Veld Fqm over Fq , there is a normal basis of Fqs over Fq for every positive divisor s of

m. For the normal element of this basis β[s] = β holds.

The so-called dual basis B⊥ of a basis B is needed in order to switch between a polynomial and its

q-transform (compare DeVnition 2.12). To deVne the dual basis for a given basis B, we need the trace

function of Fqm over Fq for an element a ∈ Fqm :

Tr : Fqm → Fq

a 7→ Tr(a)
def
=

m−1∑

i=0

a[i].

The trace function is an Fq-linear map from Fqm to Fq and hence, Tr(a) ∈ Fq [LN96, Chapter 2.3]. A

basis B⊥ = {β⊥
0 , β

⊥
1 , . . . , β

⊥
m−1} of Fqm over Fq is called a dual basis to B = {β0, β1, . . . , βm−1} if:

Tr(βiβ
⊥
j ) =

{
1 for i = j,

0 else.
(2.2)

Lemma 2.4 (Dual of a (Normal) Basis [MBG+93, Theorem 1.1 and Corollary 1.4]).

For any given basis B of Fqm over Fq , there exists a unique dual basis B⊥. The dual basis of a normal basis

is also a normal basis.

If a basis is dual to itself, i.e., if B = B⊥, we call it a self-dual basis and if it is additionally normal, we

call it a self-dual normal basis BN = B⊥N . A self-dual basis of Fqm over Fq exists if and only if either q
is even or both q and m are odd [MBG+93, Theorem 1.9]. Self-dual normal bases of Fqm over Fq exist

ifm is odd or if q is even andm ≡ 2 mod 4 [MBG+93, Theorem 1.14].

We explain now basic mathematical operations on two elements a, b ∈ Fqm using a normal basis

BN = {β[0], β[1], . . . , β[m−1]} of Fqm over Fq . Apply the mapping extβ from DeVnition 2.1 in order to

represent these two elements as vectors in Fq :

(A0 A1 . . . Am−1)
T def

= extβ (a) ∈ Fm×1
q ,

(B0 B1 . . . Bm−1)
T def

= extβ (b) ∈ Fm×1
q .

An important observation is that in a normal basis representation, the q-power of an element a in

Fqm corresponds to a cyclic shift of the corresponding vector extβ (a) over Fq :

extβ
(
a[j]
)
= (Am−j Am−j+1 . . . A0 A1 . . . Am−j−1)

T def
= extβ (a)↓j ∈ Fm×1

q , (2.3)

where the down arrow denotes a cyclic shift of the vector by j positions to the bottom. The eXciency of

calculations with normal bases stems exactly from this property and from the application of a so-called

multiplication table (compare [Gao93, MBG+93]).

DeVnition 2.2 (Multiplication Table).

Let BN = {β[0], β[1], . . . , β[m−1]} be a normal basis of Fqm over Fq . The multiplication table of BN is a

matrix Tm ∈ Fm×m
q such that:

β[0] ·
(
β[0] β[1] . . . β[m−1]

)T
= Tm ·

(
β[0] β[1] . . . β[m−1]

)T
.

8



2.1 Codes over Finite Fields

The number of non-zero entries inTm is called the complexity ofTm of BN and is denoted by comp(Tm).

The addition a+ b in Fqm can be done component-wise by the addition extβ (a) + extβ (b) ∈ Fm×1
q

and is therefore easy to implement. By means of the multiplication table, the product of a · b ∈ Fqm

can be calculated over the ground Veld Fq :

For a, b ∈ Fqm : extβ (a · b) =
m−1∑

i=0

Bi

(
TT

m · extβ (a)↑i
)↓i
∈ Fm×1

q , (2.4)

where the up/down arrows denote cyclic shifts of the vector by i positions to the top/bottom.

If one of the elements is a basis element, i.e., b = β[j], then the vector extβ (b) is non-zero only in

the j-th row and (2.4) becomes

For a, β ∈ Fqm , β ∈ BN : extβ
(
a · β[j]

)
=
(
TT

m · extβ (a)↑j
)↓j
∈ Fm×1

q . (2.5)

It becomes clear from (2.4) and (2.5) that the number of operations in Fq in order to determine extβ (a · b)
directly depends on the number on non-zero entries ofTm, i.e., on its complexity comp(Tm). Therefore,
it is desirable that Tm is sparse.

This complexity is lower bounded by comp(Tm) ≥ 2m−1 [MBG+93, Theorem 5.1]. A normal basis

with comp(Tm) = 2m− 1 is an optimal normal basis. We call normal bases with complexity in the

order of O(m) low-complexity normal bases. Optimal normal bases exist for several values1, but for our

applications low-complexity (but not necessarily optimal) normal bases are suXcient. Low-complexity

normal bases with O(comp(Tm)) = O(m) of Fqm over Fq exist in many cases, e.g. for q = 2s if
gcd(m, s) = 1 and 8 ∤ m. For q = 2s and oddm, all these low-complexity normal bases are self-dual

(see also [Gao93, Chapter 5]).

The complexity of the mentioned operations will be analyzed in detail in Subsection 3.1.1.

2.1.3 Basics of Block Codes and Decoding Principles

This subsection gives basic notations and properties of block codes. A deeper investigation of code

classes, constructions and properties can be found in books on algebraic coding theory, e.g., [PW72,

Bla83, Ber84, MS88, vL98, Bos98, JH04, Rot06]. In the following, we show the deVnition of a metric,

give the notations of a (linear) block code and explain encoding and decoding principles.

DeVnition and Basic Properties of Block Codes

Assume, a set A (e.g., of vectors or matrices) is given. In order to deVne error-correcting codes, we

need a measurement of distance between the elements in this set. A distance measure on this set A is

called a metric if it fulVlls the following conditions.

DeVnition 2.3 (Metric).

Let A be a set (e.g., of vectors or matrices). A distance measure dA(a,b) on any two elements a,b in this

set A is a metric if it satisVes for all a,b, c ∈ A:
• positive deVniteness: dA(a,b) ≥ 0, where dA(a,b) = 0 if and only if a = b,

• symmetry: dA(a,b) = dA(a,b),

• triangle inequality: dA(a,b) + dA(b, c) ≥ dA(a, c).

1See [MBG+93, Table 5.1] for all values of m ≤ 2000 with an optimal normal basis of Fqm over Fq .
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2 Introduction to Codes in Rank Metric

Classical error-correcting codes are deVned in Hamming metric and they have been subject of a large

number of publications. Among codes in Hamming metric, the well-known classes of Hamming

codes [Ham50], Reed–Muller codes [Ree54, Mul54], Reed–Solomon codes [RS60], cyclic codes (also

called BCH codes) [Hoc59, BR60] and many others can be found. In this thesis, we consider codes in

rank metric. This metric will be given in Subsection 2.3, DeVnition 2.13, for block codes in Fqm .

From a practical point of view, a block code of length n is a code, where each “block” of length n can

be decoded independently from the other blocks. Based on a given metric, a block code can be deVned

as follows.

DeVnition 2.4 (Block Code).

Let a metric in Fn
q be given, fulVlling the requirements of DeVnition 2.3.

An (n,M, d) block code C over Fq is a set of vectors in Fn
q of cardinality M , where the minimum

distance (in the given metric) between any two vectors of this code is d.

A block code C over Fq is called linear if it is a k-dimensional subspace of Fn
q over Fq and its parameters

are denoted by [n, k, d]. The parameter k is called the dimension of C.

The fraction R
def
= (logq M)/n is called the code rate of C. If C is linear, then R = k/n.

We call all vectors in Fk
q information words. The vectors in Fn

q in an (n,M, d) code are called

codewords. The cardinality of a linear [n, k, d] block code C over Fq is therefore M = qk and since C is

a subspace of Fn
q , for any codewords c(1), c(2) ∈ C and any elements a, b ∈ Fq , the linear combination

ac(1) + bc(2) is also a codeword of C.

A linear code can be deVned by its generator matrix using a basis of the k-dimensional subspace.

DeVnition 2.5 (Generator Matrix).

Let C be a linear [n, k, d] code over Fq , i.e., it is a k-dimensional subspace of Fn
q over Fq . A k×n generator

matrixG of C is a matrix whose rows are a basis of this k-dimensional vector space over Fq .

The generator matrix can be used to encode the information words in Fk
q into codewords in Fn

q . Thus, a

codeword of an [n, k, d] code is any vector in Fn
q which can be obtained by u ·G, for some u ∈ Fk

q .

Encoding deVnes the bijective map of the information vectors in Fk
q to the codewords in Fn

q :

enc : Fk
q → Fn

q

u = (u0 u1 . . . uk−1) 7→ c = (c0 c1 . . . cn−1).

Notice that there is more than one generator matrix for a given [n, k, d] code C, since we can use any

basis of the k-dimensional subspace C over Fq in an arbitrary order.

DeVnition 2.6 (Dual Code).

For two vectors a,b ∈ Fn
q , let 〈a,b〉

def
=
∑n−1

i=0 aibi deVne the inner product and let C be a linear [n, k, d]
code over Fq . Then, the set of vectors

C
⊥ def

=
{
c⊥ ∈ Fn

q : 〈c⊥, c〉 = 0, ∀ c ∈ C

}

is called the dual code to C.

The dual code of an [n, k, d] code over Fq is also a linear code over Fq and has dimension k⊥ = n− k
and length n. Its minimum distance is denoted by d⊥, but its value is not necessarily determined by

10



2.1 Codes over Finite Fields

the parameters of the [n, k, d] code2. Therefore, the dual code C⊥ is an [n, n − k, d⊥] code, i.e., an
(n− k)-dimensional subspace of Fn

q , which can be used to deVne the parity-check matrix of C.

DeVnition 2.7 (Parity-Check Matrix).

An (n− k)× n matrixH over Fq is called a parity-check matrix of an [n, k, d] code C over Fq if and only

if it is a generator matrix of the [n, n− k, d⊥] dual code C⊥ over Fq .

Thus, for any c ∈ C, the multiplication with the parity-check matrix gives c ·HT = 0 andG ·HT = 0.
A parity-check matrix is therefore a matrix whose right kernel is the code C.

DeVnition 2.8 (Syndrome).

For any a ∈ Fn
q and a parity-check matrix H of an [n, k, d] code C, the vector s = a ·HT ∈ Fn−k

q is

called the syndrome of a.

If and only if a ∈ C, then the syndrome is s = 0.

Decoding Principles of Block Codes

After introducing these basic notations, let us now proceed to basic decoding principles.

Lemma 2.5 (Unique Decoding Capability [MS88]).

Let C be an (n,M, d) block code over Fq with minimum distance d in a given metric dA(·, ·) (see

DeVnition 2.3) and let r be a word in Fn
q .

Then, there is at most one codeword c ∈ C such that dA(r, c) ≤ τ0
def
= ⌊(d−1)/2⌋. Further, if there is a

codeword c ∈ C such that 0 < dA(r, c) ≤ d− 1, then r /∈ C.

The process of reconstructing the codeword from a received word is called decoding and we use

the expression “number of errors” throughout this thesis for dA(r, c) (in the corresponding metric).

Lemma 2.5 shows that we can always decode uniquely up to τ0 = ⌊(d−1)/2⌋ errors and detect up to d− 1
errors.

In this dissertation, we distinguish three decoding principles for an (n,M, d) code C over Fq , which

are illustrated in Figure 2.1 and explained in the following. For each of them, we assume that a received

word r ∈ Fn
q is given and denote by B(e)(r) a ball in the given metric around r of radius e.

Nearest codeword decoding (see Figure 2.1a). A nearest codeword decoder maps the received word

r to the closest codeword, i.e., the codeword with the smallest distance to r. If there is more than one

codeword in smallest distance to r, we can either output all of them or choose one randomly. For a

given metric dA(·, ·), the decoding result is hence3:

c′ = arg

(
min
c∈C

dA(r, c)

)
⊆ C.

The output of a nearest codeword decoder is therefore always at least one codeword; a decoding

failure is never declared. If we assume that a smaller error weight (in the corresponding metric) is

more likely than a greater error weight, then nearest codeword decoding is equivalent to maximum

likelihood (ML) decoding. For codes in Hamming metric, ML decoding of general linear block codes

2However, for some classes of codes, there is a direct connection, e.g. for maximum distance separable and maximum rank

distance (MRD) codes.
3We have to deVne argminx f(x) either such that it returns the set of all values for which f(x) attains its minimum or

such that it chooses one randomly.
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r

c(2)

c(1)

c(3)⌊
d−1
2

⌋

(a) Nearest codeword decoding

r

c(2)

c(1)

c(3)⌊
d−1
2

⌋

r

c(1)

(b) BMD decoding

r

c(2)

c(1)

c(3)⌊
d−1
2

⌋

rc(1)

(c) List decoding

Figure 2.1. Illustration of explained decoding principles, where the arrows show on which codeword(s) the
received word is mapped. The dashed balls have radius ⌊(d−1)/2⌋ and the gray balls have radius τ0
and τ , respectively.

is NP complete [BMVT78], and for codes in rank metric this is also conjectured. In any case, nearest

codeword and ML decoders are hardly feasible due to their high computational complexity.

Bounded minimum distance decoding (see Figure 2.1b). A bounded minimum distance (BMD)

decoder guarantees to Vnd all codewords in radius at most τ0 = ⌊(d−1)/2⌋ from the received word. Due

to Lemma 2.5, there is at most one such codeword and the decoding result is

c
′ =

(

C ∩ B(τ0)(r)
)

∈
(

C ∪ { }
)

.

Therefore, we obtain either a unique codeword or the empty set, in which case we can declare a

decoding failure. For several algebraic code classes as Reed–Solomon or Gabidulin codes, there are

eXcient BMD decoding algorithms in the corresponding metric.

List decoding (see Figure 2.1c). The concept of list decoding can be seen as a generalization of BMD

decoding and was introduced by Elias [Eli57] and Wozencraft [Woz58]. A list decoder guarantees to

Vnd all codewords around r up to a certain radius τ . Hence, the decoder outputs a list of codewords:

L =
{

c
(1), c(2), . . . , c(ℓ)

}

=
(

C ∩ B(τ)(r)
)

⊆
(

C ∪ { }
)

.

If the output is the empty set, a decoding failure is declared. Such a list decoder makes sense from a

practical point of view, if either the probability that the list size is greater than one is very small or

if we can use the whole list in the further decoding process, e.g. in concatenated coding schemes or

in iterative decoding. The design of eXcient list decoding algorithms (with τ > ⌊(d−1)/2⌋) is a widely
investigated topic for some classes of codes and the existence of such a polynomial-time algorithm for

codes in rank metric is investigated in Chapter 5.

For explicit decoding algorithms there are two important properties: its performance and its complex-

ity. The performance measures the fraction of correctable errors and directly depends on the minimum

distance of the code. The complexity measures the feasibility of an algorithm by counting the number

of calculations in the corresponding Vnite Veld.
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2.1 Codes over Finite Fields

2.1.4 Basics of Convolutional Codes

In contrast to block codes, convolutional codes create a dependency between the diUerent transmitted

blocks of length n. For certain channels (e.g., when the number of errors in diUerent blocks Wuctuates

a lot), their use might be superior to using block codes. In this subsection, we will shortly give basic

notations of convolutional codes, mostly based on [Pir88, McE98, Bos98, JZ99]. We also introduce

notations for (partial) unit memory ((P)UM) codes and prove rate restrictions on them. Distance
measures, constructions and decoding of convolutional codes in rank metric are established in Chapter 6.

DeVnition and Basic Properties of Convolutional Codes

The algebraic theory and description of convolutional codes was investigated by Forney [For70, For73],
showing that a q-ary convolutional code of rate R = k/n is a k-dimensional subspace of the n-
dimensional vector space Fq[D]k over the Veld of q-ary causal Laurent series (see McEliece’s chapter in
the handbook of coding theory [McE98] for a detailed description of Laurent series), where D is also
called the delay operator. Thus, encoding of convolutional codes is given by the following map:

enc-conv : Fq[D]k → Fq[D]n (2.6)

u(D) = u(0) + u(1)D + u(2)D2 + . . . 7→ c(D) = u(D) ·G(D) = c(0) + c(1)D + c(2)D2 + . . . ,

where u(i) = (u
(i)
0 u

(i)
1 . . . u

(i)
k−1) and c(i) = (c

(i)
0 c

(i)
1 . . . c

(i)
n−1), for all integers i. This map shows

how to encode the semi-inVnite information sequence u(D) into a semi-inVnite code sequence c(D).

We call the vectors u(i) and c(i) of lengths k and n, respectively, information and code blocks. The
important observation is that c(i) is a function of not only u(i), but also of u(i−1),u(i−2), . . . , where
the length of this inWuence is determined by the memory of the convolutional encoder. Further, we
consider only causal sequences, i.e., u(i) = 0 and c(i) = 0 for all i < 0. For short-hand notation, we
also denote the semi-inVnite sequences by u = (u(0) u(1) u(2) . . . ) and c = (c(0) c(1) c(2) . . . ).

The matrix G(D) ∈ Fq[D]k×n is called generator matrix and deVnes a convolutional code as follows.

DeVnition 2.9 (Convolutional Code).

A linear convolutional code C over Fq of rate R = k/n is deVned by its k × n generator matrix of rank k:

G(D) =
(
gi,j(D)

)i∈[0,k−1]

j∈[0,n−1]
,

where gi,j(D) = g
(0)
i,j +g

(1)
i,j D+· · ·+g

(µ)
i,j D

µ and g
(l)
i,j ∈ Fq , ∀l ∈ [0, µ], ∀i ∈ [0, k−1] and ∀j ∈ [0, n−1].

The parameter µ denotes the memory of G(D) (see DeVnition 2.10).

In general, gi,j(D) is a rational function, ∀i ∈ [0, k − 1], j ∈ [0, n− 1]. If gi,j(D) is a polynomial inD,
for all i, j, thenG(D) is called polynomial generator matrix and it can be realized by a Vnite impulse
response Vlter, see [JZ99, Bos98]. We restrict ourselves to such generator matrices in the following.

We strictly distinguish the terms “convolutional code”, “generator matrix” and “convolutional
encoder”. A convolutional code is a set of inVnite cardinality, which contains all sequences, deVned
by the mapping enc-conv (2.6). The generator matrixG(D) explicitly deVnes the mapping between
information and code sequences and therefore, there are several generator matricesG(D) for one code.
The encoder is a linear sequential circuit, which realizes G(D), and for one generator matrix, there are
several encoders.

The memory and constraint length are properties of the generator matrix. In the literature, there are
diUerent notations for them; we follow Forney’s notations [For70].
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2 Introduction to Codes in Rank Metric

DeVnition 2.10 (Constraint Length and Memory).

The i-th constraint length of a polynomial generator matrix G(D) is

νi
def
= max

j∈[0,n−1]

{
deg gi,j(D)

}
, ∀i ∈ [0, k − 1].

The memory is µ
def
= maxi∈[0,k−1]{νi}, and the overall constraint length is ν

def
=
∑k−1

i=0 νi.

The following remark shows several further properties of the generator matrix, most of them are

due to Forney [For70] and Johannesson and Zigangirov [JZ99].

Remark 2.2 (Further DeVnitions and Properties).

• Two convolutional generator matrices are called equivalent, if they generate the same code.

• A convolutional generator matrix is catastrophic if there is an information sequence u(D) with
inVnitely many non-zero elements that results in a code sequence with Vnitely many non-zero

elements.

• A convolutional generator matrix is delay-free if at least one of its entries g
(0)
i,j is non-zero.

• A convolutional generator matrix G(D) is called basic if it is polynomial and has a polynomial

right inverse G−1(D) such that Ik = G(D) ·G−1(D), where Ik is the k × k identity matrix.

• A convolutional generator matrixG(D) is an encoding matrix ifG(0) has full rank. An encoding
matrix is delay-free. A basic encoding matrix is non-catastrophic.

• A convolutional encoder is called obvious realization ofG(D) if it has k shift registers and the

length of the i-th register is νi.

• A basic convolutional generator matrixG(D) is calledminimal if its overall constraint length ν in

the obvious realization is equal to the maximum degree of its k × k subdeterminants.

A polynomial parity-check matrix H(D) ∈ Fq[D](n−k)×n of C has full rank and is deVned such that

for every codeword c(D) ∈ C:

c(D) ·HT (D) = 0.

We denote the entries of the parity-check matrix byH(D) =
(
hi,j(D)

)i∈[0,n−k−1]

j∈[0,n−1]
, where hi,j(D) =

h
(0)
i,j +h

(1)
i,j D+h

(2)
i,j D

2+· · ·+h
(µH)
i,j DµH and h

(l)
i,j ∈ Fq , ∀l ∈ [0, µH ] and i ∈ [0, n−k−1], j ∈ [0, n−1].

The value µH denotes the memory of the dual code, shortly called dual memory.

We can rewrite G(D) = G(0) +G(1)D +G(2)D2 + · · ·+G(µ)Dµ and H(D) = H(0) +H(1)D +
H(2)D2 + · · ·+H(µH)DµH and represent both as semi-inVnite matrices over Fq :

G =



G(0) G(1) . . . G(µ)

G(0) G(1) . . . G(µ)

. . .
. . .

. . .
. . .


 , H =




H(0)

H(1) H(0)

... H(1) . . .

H(µH)
...

. . .

H(µH) . . .
. . .




, (2.7)

where G(i) ∈ Fk×n
q and H(j) ∈ F

(n−k)×n
q , ∀i ∈ [0, µ], j ∈ [0, µH ]. These matrices are deVned such

that c = (c(0) c(1) c(2) . . . ) = u ·G = (u(0) u(1) u(2) . . . ) ·G and c ·HT = (0 0 . . . ). In general,

the memories are not equal, i.e., µ 6= µH . If both G and H are in minimal basic encoding form, the

overall constraint length ν is the same in both representations [For70, Theorem 7].

14



2.1 Codes over Finite Fields

In practical realizations, it does not make sense to consider (semi-)inVnite sequences and therefore,

throughout this thesis, we consider only linear zero-forced terminated convolutional codes. Such a code

C is deVned by the following Nk × (n(N + µ)) terminated generator matrix Gterm over Fq , for some

integer N :

Gterm =




G(0) G(1) . . . G(µ)

G(0) G(1) . . . G(µ)

. . .
. . .

. . .
. . .

G(0) G(1) . . . G(µ)


 , (2.8)

i.e., we cut the matrixG from (2.7) after N rows. Each codeword of C is a sequence of N + µ blocks of

length n over Fq , i.e., c = (c(0) c(1) . . . c(N+µ−1)).

Convolutional codes can be described by a (minimal) code trellis and ML decoding is possible

with the Viterbi algorithm [Vit67]. However, we do not explain this here and refer to the literature

[McE98, Bos98, JZ99].

(Partial) Unit Memory Codes

(P)UM codes are a special class of convolutional codes of memory µ = 1, introduced by Lee and
Lauer [Lee76, Lau79]. The semi-inVnite generator matrix consists therefore of two k × n submatrices
G(0) andG(1). These matrices both have full rank k if we construct a UM(n, k) unit memory code.

For a PUM(n, k|k(1)) partial unit memory code over Fq , rk(G(0)) = k and rk(G(1)) = k(1) < k has
to hold. W.l.o.g., for PUM codes, we assume that the lowermost k − k(1) rows of G(1) are zero and we
denote:

G(0) =

(
G(00)

G(01)

)
, G(1) =

(
G(10)

0

)
, (2.9)

whereG(00) andG(10) are k(1)×nmatrices andG(01) is a (k−k(1))×n-matrix over Fq . The encoding
rule for each code block of a (P)UM code is given by

c(i) = u(i) ·G(0) + u(i−1) ·G(1), ∀i = 0, 1, . . . , (2.10)

where u(i) and u(i−1) ∈ Fk
q for all i. The memory of (P)UM codes is µ = 1, the overall constraint

length of UM codes is ν = k and of PUM codes ν = k(1) due to DeVnition 2.10.

In the following, we derive restrictions on the code rate of (P)UM codes when a certain number
of full-rank submatrices of H, denoted by H(i) as in (2.7), should exist. This full-rank condition,
rk(H(i)) = n− k, ∀i ∈ [0, µH ], is used in one of our constructions of PUM codes based on Gabidulin
codes (see Subsection 6.2.1).

Lemma 2.6 (Rate Restriction for Unit Memory Codes).

Let the parity-check matrix H of a UM(n, k) code be in minimal basic encoding form and let it consist of

µH + 1 full-rank submatrices H(i), see (2.7), for µH ≥ 1. Then, the UM(n, k) unit memory code with

overall constraint length ν = k has code rate

R =
µH

µH + 1
.

Proof. The overall constraint length ν is the same for the generator matrix G and the parity-
check matrix H if both are in minimal basic encoding form [For70]. Since rk(H(i)) = n − k,
∀i ∈ [1, µH ], we obtain ν = µH · (n − k). On the other hand, the UM code is deVned by a
generator matrix G with ν = k, hence, k = µH · (n− k) and the statement follows.
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2 Introduction to Codes in Rank Metric

In a similar way, we can establish a rate restriction for PUM codes.

Lemma 2.7 (Rate Restriction for Partial Unit Memory Codes).

Let the parity-check matrix H of a PUM(n, k|k(1)) code be in minimal basic encoding form and let it

consist of µH + 1 full-rank submatricesH(i), see (2.7), for µH ≥ 1. Then, the partial unit memory code

PUM(n, k|k(1)) with ν = k(1) < k has code rate

R =
k

n
>

µH

µH + 1
.

Proof. As before, ν is the same for G and H in minimal basic encoding form, [For70]. Since
rk(H(i)) = n − k for all i, we have ν = µH · (n − k). For a PUM code ν = k(1) < k, hence,
µH · (n− k) < k.

The following theorem guarantees that for any parity-check matrix of certain rate, there is always a
corresponding generator matrix having memory µ = 1 and thus, deVnes a (P)UM code. This fact is
useful in order to construct (P)UM codes based on a parity-check matrix.

Theorem 2.1 ((P)UM Code from Parity-Check Matrix).

Let H be a semi-inVnite parity-check matrix as in (2.7) in minimal basic encoding form of a convolutional

code C, where H(i) ∈ F
(n−k)×n
q has full rank, ∀i ∈ [0, µH ], and let R = k/n ≥ µH/(µH + 1) with

µH ≥ 1.

Then, there is a generator matrix G of C such that C is a (partial) unit memory code.

Proof. The constraint length of H is ν = µH(n− k). Since n ≤ k(µH + 1)/µH , we obtain:

ν = µH(n− k) ≤ k(µH + 1)− kµH = k.

Due to [For70], the overall constraint length ν of dual minimal encoders is equal and thus, ofG
and H if both are in minimal form. We choose G to be in minimal basic encoding form (which is
always possible). Since it is in encoding form, rk(G(0)) = k.
Since ν > 0, the memory is µ ≥ 1. Corollary 2 and the corresponding remark in [For73] imply
thatG can be chosen such that µ is equal to ⌈ν/k⌉ ≤ ⌈k/k⌉ = 1 (in [For73, Corollary 2] the roles
ofG andH are interchanged). Hence, we can choose G such that µ = 1.
Since rk(G(0)) = k and µ = 1, the generator matrix G deVnes a (partial) unit memory code.

2.2 Linearized Polynomials

Linearized polynomials constitute a non-commutative ring and will later provide the deVnition of
Gabidulin codes. Apart from their application to coding theory, linearized polynomials are used e.g. in
root-Vnding of usual polynomials and as permutation polynomials in cryptography.

They are also called q-polynomials and were introduced in 1933 by Ore [Ore33a] as a special case
of skew polynomials [Ore33b]. The theory of skew polynomials is quite rich and widely investigated
[Ore33b, Jac43, Gie98, Jac10] and it is even possible to construct error-correcting codes based on skew
polynomials [BGU07, BU09b, BU09a, CLU09, BU12]. Skew polynomials become linearized polynomials
when the derivation is zero and the Frobenius automorphism is used, i.e., when we consider only Fq-
linear maps. Gabidulin codes are based on linearized polynomials and therefore, we restrict ourselves
to their description without going into detail about the theory of skew polynomials.
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2.2 Linearized Polynomials

After basic deVnitions and properties (Subsection 2.2.1), we brieWy show how operations with

linearized polynomials work (Subsection 2.2.2), give their connection to linear maps (Subsection 2.2.3)

and deVne the q-transform and its inverse (Subsection 2.2.4). In Chapter 3, the q-transform turns out to

be a useful tool when establishing an eXcient decoding algorithm for Gabidulin codes.

2.2.1 DeVnition and Properties

DeVnition 2.11 (Linearized Polynomial).

A polynomial a(x) is a linearized polynomial if it has the form

a(x) =

da∑

i=0

aix
[i], ai ∈ Fqm , ∀i ∈ [0, da].

The non-commutative univariate linearized polynomial ring with indeterminate x, consisting of all such
polynomials over Fqm , is denoted by Lqm [x].

If the coeXcient ada is non-zero, we call degq a(x)
def
= da the q-degree of a(x).

Recall that for any B ∈ Fq , B
[i] = B holds for any integer i. This provides the following lemma

about evaluating linearized polynomials.

Lemma 2.8 (Evaluation of a Linearized Polynomial [Ber84, Theorem 11.12]).

Let B = {β0, β1, . . . , βm−1} be a basis of Fqm over Fq , let a(x) be a linearized polynomial as in

DeVnition 2.11 and let b ∈ Fqm . Denote extβ (b) = (B0 B1 . . . Bm−1)
T ∈ Fm×1

q as in DeVnition 2.1.

Then,

a(b) =
m−1∑

i=0

Bia
(
βi
)
.

Lemma 2.8 establishes the origin of the name linearized polynomials: for all A1, A2 ∈ Fq and all

b1, b2 ∈ Fqm and a(x) ∈ Lqm [x], the following holds:

a
(
A1b1 +A2b2

)
= A1a

(
b1
)
+A2a

(
b2
)
.

Hence, any Fq-linear combination of roots of a linearized polynomial a(x) is also a root of a(x).

Theorem 2.2 (Roots of a Linearized Polynomial [Ber84, Theorem 11.31]).

Let a(x) ∈ Lqm [x] be a linearized polynomial and let the extension Veld Fqs of Fqm contain all roots of

a(x). Then, its roots form a linear space over Fq (a subspace of Fqs) and each root has the same multiplicity,

which is a power of q.

The roots of a(x) form a linear space of dimension dr ≤ da. Let {β0, β1, . . . , βdr−1} be a basis of this
dr-dimensional root space. Then, each distinct root r ∈ Fqs of a(x) can be expressed uniquely as

r =
∑dr−1

i=0 Riβi, where Ri ∈ Fq, ∀i. Conversely, the following lemma shows that the unique minimal

subspace polynomial is always a linearized polynomial.

Lemma 2.9 (Minimal Subspace Polynomial [LN96, Theorem 3.52]).

Let U be a linear subspace of Fm
q , considered as a vector space over Fq . Let u0, u1, . . . , udim(U)−1 ∈ Fqm

be a basis of this subspace. Then, the minimal subspace polynomial

Mu0,u1,...,udim(U)−1
(x)

def
=
∏

u∈U

(
x− ext−1

β (u)
)
,
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2 Introduction to Codes in Rank Metric

is a linearized polynomial over Fqm of q-degree dim(U).
The q-Vandermonde matrix was introduced by Moore in [Moo96] and plays an important role in

linearized interpolation, evaluation and the q-transform. For a vector a = (a0 a1 . . . an−1) ∈ Fn
qm , we

obtain the s× n q-Vandermonde matrix by the following map:

qvans : Fn
qm → Fs×n

qm

a = (a0 a1 . . . an−1) 7→ qvans(a)
def
=




a0 a1 . . . an−1

a
[1]
0 a

[1]
1 . . . a

[1]
n−1

...
...

. . .
...

a
[s−1]
0 a

[s−1]
1 . . . a

[s−1]
n−1




. (2.11)

Lemma 2.10 (Determinant of q-Vandermonde Matrix [LN96, Lemma 3.15]).
Let a = (a0 a1 . . . an−1) ∈ Fn

qm . Then, the determinant of the square n × n q-Vandermonde matrix,

deVned as in (2.11), is

det
(
qvann(a)

)
= a0

n−2∏

j=0

∏

B0,...,Bj∈Fq

(
aj+1 −

j∑

h=0

Bhah

)
.

Hence, det (qvann(a)) 6= 0 if and only if a0, a1, . . . , an−1 are linearly independent over Fq . If a0,
a1, . . . , an−1 are linearly independent over Fq , then qvans(a) has rank min{s, n}.

2.2.2 Basic Operations

The usual multiplication of two linearized polynomials a(x) and b(x) is not necessarily a linearized

polynomial. However, the (usual) addition and the composition a(b(x)) convert the set of linearized
polynomials into a non-commutative ring with identity element x[0] = x. The linearized composition

is often called symbolic product and will be denoted by a(x) ◦ b(x) = a(b(x)). It is associative and
distributive, but in general for a(x), b(x) ∈ Lqm [x], it is non-commutative4, i.e., a(b(x)) 6= b(a(x)).

Let da and db denote the q-degrees of a(x) and b(x), respectively. Then, the linearized composition

c(x) =
∑da+db

j=0 cjx
[j] = a(b(x)) has q-degree at most da + db and its coeXcients are:

cj =
[
a(b(x))

]
j
=

j∑

i=0

aib
[i]
j−i, ∀j ∈ [0, da + db], (2.12)

with ai = 0 for i > da and bi = 0 for i > db. When we consider the linearized composition modulo

(x[m] − x), i.e., c(x) =
∑m−1

j=0 cjx
[j] = a(b(x)) mod (x[m] − x) for da, db < m, then its coeXcients

can be calculated by:

cj =
[
a(b(x)) mod (x[m] − x)

]
j
=

m−1∑

i=0

aib
[i]
j−i =

m−1∑

h=0

aj−hb
[j−h]
h , ∀j ∈ [0,m− 1], (2.13)

with ai = 0 for i > da and bi = 0 for i > db and all indices are calculated modulo m.

In Subsection 3.1.3, we will show that the composition of two linearized polynomials modulo

(x[m] − x) is equivalent to multiplying their associated evaluation matrices, which provides an eXcient

algorithm for calculating the linearized composition.

4When all coeXcients of a(x) and b(x) lie in the ground Veld Fq , the linearized composition is commutative.
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2.2 Linearized Polynomials

Ore showed in [Ore33a, Theorem 1] that for any two linearized polynomials a(x) and b(x) in Lqm [x]
with da ≥ db, there exist unique polynomials qR(x), rR(x) and qL(x), rL(x) such that

a(x) = qR
(
b(x)

)
+ rR(x) and a(x) = b

(
qL(x)

)
+ rL(x), (2.14)

where degq rR(x), degq rL(x) < db. Determining qR(x) and rR(x) is called right linearized (or sym-

bolic) division, where qR(x) is the right (linearized) quotient and rR(x) the right (linearized) remainder.

Equivalently, Vnding qL(x) and rL(x) is called left linearized division. The right/left linearized division

can be done by a recursive procedure (compare [Ore33a, p. 561]). Throughout this thesis, we denote

the algorithmic calculation of this right/left linearized division by

qR(x); rR(x)← RightDiv
(
a(x); b(x)

)
and qL(x); rL(x)← LeftDiv

(
a(x); b(x)

)
.

The right and left divisions are shown in the following two algorithms (compare [Ore33a, p. 561]),

where the subscripts “R” and “L” for “right” and “left” are omitted.

Algorithm 2.1.

q(x); r(x)← RightDiv
(
a(x); b(x)

)

Input: a(x); b(x) 6= 0 ∈ Lqm [x] with
degq a(x) ≥ degq b(x)

Initialize: i← 1,
a(1)(x)← a(x)

db
def
= degq b(x)

1 while di ← degq a
(i)(x) ≥ db do

2 q(i)(x)←
a
(i)
di

b
[di−db]
db

· x[di−db]

3 a(i+1)(x)← a(i)(x)− q(i)(b(x))

4 i← i+ 1

5 q(x)←∑i−1
j=1 q

(i)(x)

6 r(x)← a(i)(x)

Output: q(x); r(x)

Algorithm 2.2.

q(x); r(x)← LeftDiv
(
a(x); b(x)

)

Input: a(x); b(x) 6= 0 ∈ Lqm [x] with
degq a(x) ≥ degq b(x)

Initialize: i← 1,
a(1)(x)← a(x)

db
def
= degq b(x)

1 while di ← degq a
(i)(x) ≥ db do

2 q(i)(x)←
(
a
(i)
di

bdb

)[−db]

· x[di−db]

3 a(i+1)(x)← a(i)(x)− b(q(i)(x))

4 i← i+ 1

5 q(x)←∑i−1
j=1 q

(i)(x)

6 r(x)← a(i)(x)

Output: q(x); r(x)

Both algorithms terminate such that degq r(x) < degq b(x).

Since unique right/left linearized quotients and remainders always exist in Fqm such that (2.14) holds

(compare [Ore33a, Theorem 1]), there is a right and left linearized extended Euclidean algorithm (LEEA)

in the non-commutative ring of linearized polynomials Lqm [x]. Throughout this thesis, we consider
only the right LEEA, which is given in Algorithm 2.3. The subscript “R” for quotients and remainders

is omitted when there is no ambiguity.

Let r(−1)(x) = a(x) and r(0)(x) = b(x) be two linearized polynomials with degq a(x) ≥ degq b(x).

The right LEEA with a stopping degree dstop > 0 calculates a linearized quotient q(i)(x) and linearized

remainder r(i)(x) in each step i > 0 such that

r(i)(x) = r(i−2)(x)− q(i)
(
r(i−1)(x)

)
, (2.15)

while degq r
(i−1)(x) ≥ dstop. In each of its steps, the q-degree of the remainders decreases, i.e.,

degq r
(i)(x) < degq r

(i−1)(x). If dstop = 1, the last non-zero remainder r(i−1)(x) 6= 0 is the right
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linearized greatest common divisor of a(x) and b(x). The polynomials r(i)(x) and q(i)(x) are unique
in each step of Algorithm 2.3 due to [Ore33a, Theorem 1]. The algorithm returns, amongst others, the

Vrst remainder rout(x) such that degq rout(x) < dstop.

Algorithm 2.3.

rout(x); uout(x); vout(x)← RightLEEA
(
a(x); b(x); dstop

)

Input: a(x); b(x) ∈ Lqm [x] with degq a(x) ≥ degq b(x);
stopping degree dstop

Initialize: i← 1,
r(−1)(x)← a(x), r(0)(x)← b(x),
u(−1)(x)← 0, u(0)(x)← x[0],
v(−1)(x)← x[0], v(0)(x)← 0

1 while degq r
(i−1)(x) ≥ dstop do

2 q(i)(x); r(i)(x)← RightDiv
(
r(i−1)(x); r(i−2)(x)

)

3 u(i)(x)← u(i−2)(x)− q(i)(u(i−1)(x))

4 v(i)(x)← v(i−2)(x)− q(i)(v(i−1)(x))
5 i← i+ 1

Output: rout(x)← r(i−1)(x); uout(x)← u(i−1)(x);

vout(x)← v(i−1)(x)

The matrix-matrix multiplication for two matrices A =
(
ai,j(x)

)i∈[0,m−1]

j∈[0,n−1]
∈ Lqm [x]

m×n and

B =
(
bi,j(x)

)i∈[0,n−1]

j∈[0,l−1]
∈ Lqm [x]

n×l is a matrix C = A ◦ B =
(
ci,j(x)

)i∈[0,m−1]

j∈[0,l−1]
∈ Lqm [x]

m×l with

elements:

ci,j(x) =

n−1∑

h=0

ai,h
(
bh,j(x)

)
, ∀i ∈ [0,m− 1], j ∈ [0, l − 1].

In order to use matrix-matrix multiplication in the description of the LEEA, deVne the following

matrices:

Q(i) def
=

(
0 x[0]

x[0] −q(i)(x)

)
, Q(i,j) def

= Q(i) ◦Q(i−1) ◦ · · · ◦Q(j), ∀i ≥ j ≥ 1. (2.16)

Hence, Q(i,i) = Q(i). The recursion (2.15) of the LEEA can then be rewritten by:

(
r(i−1)(x)

r(i)(x)

)
= Q(i) ◦

(
r(i−2)(x)

r(i−1)(x)

)
= Q(i,j) ◦

(
r(j−2)(x)

r(j−1)(x)

)
= Q(i,1) ◦

(
r(−1)(x)

r(0)(x)

)
. (2.17)

Further, we introduce auxiliary polynomials, needed for decoding Gabidulin codes. Let u(−1)(x) = 0,
u(0)(x) = x[0] and v(−1)(x) = x[0], v(0)(x) = 0 (see also Algorithm 2.3). Then, we calculate u(i)(x)
and v(i)(x), for i > 0, recursively, similar to the remainders:

(
u(i−1)(x)

u(i)(x)

)
= Q(i) ◦

(
u(i−2)(x)

u(i−1)(x)

)
,

(
v(i−1)(x)

v(i)(x)

)
= Q(i) ◦

(
v(i−2)(x)

v(i−1)(x)

)
.

By means of these auxiliary polynomials u(i)(x), v(i)(x), each remainder can be rewritten as follows

[Gab85, Equation (28)]:

r(i)(x) = v(i)
(
a(x)

)
+ u(i)

(
b(x)

)
, ∀i ≥ 0. (2.18)
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Similar to (2.17), we obtain

(
u(i−1)(x)

u(i)(x)

)
= Q(i,1) ◦

(
0

x[0]

)
,

(
v(i−1)(x)

v(i)(x)

)
= Q(i,1) ◦

(
x[0]

0

)
. (2.19)

Thus, it is suXcient to calculateQ(j,1) if we want to determine r(j)(x), u(j)(x) and v(j)(x).

2.2.3 Connection to Linear Maps

Recall that Lemma 2.8 implies for any a(x) ∈ Lqm [x] that a(A1b1+A2b2) = A1a(b1)+A2a(b2) holds
for all A1, A2 ∈ Fq and for all b1, b2 ∈ Fqm . Hence, the linearized polynomial a(x) ∈ Lqm [x] of
q-degree da < m induces an Fq-linear map a from Fqm to itself. The kernel of this map a is equivalent

to the root space of a(x), i.e.,
ker(a) = {b ∈ Fqm : a(b) = 0},

and can also be seen as the right kernel of an associated matrix A. This associated matrix can be

obtained by evaluating a(x) at a basis B = {β0, β1, . . . , βm−1} of Fqm over Fq and representing the

result over Fq , i.e.:

A
def
= extβ

(
(a(β0) a(β1) . . . a(βm−1))

)
∈ Fm×m

q .

We call this matrix associated evaluation matrix in the following. The kernel of the map a, denoted by

ker(a), is equivalent to the right kernel of A, denoted by ker(A). The rank nullity theorem relates the

dimensions of the (right) kernel and the image (column space) of this matrix, respectively of this map:

dim(ker(a)) + dim(im(a)) = m.

Moreover,

dim(im(a)) = rk(A).

The following lemma shows the connection between roots of a(x) and the rank of the associated

matrix.

Lemma 2.11 (Root Space and Rank).

Let a(x) ∈ Lqm [x] be a non-zero linearized polynomial of q-degree da < m. Then, the rank of the

associated evaluation matrix is rk(A) ≥ m− da.

Proof. Since degq a(x) = da, it has at most qda roots in Fqm and the dimension of the root space

is at most da. This root space is equivalent to the right kernel ofA, hence, dimker(A) ≤ da. Due
to the rank nullity theorem and since dim im(a) = rk(A), the statement follows.

The kernel of the map a is therefore the root space of a(x), represented as a vector space over Fq .

Consider now a second linearized polynomial b(x), then the composition b(a(x)) mod (x[m] − x) is a
linear map b(a), whose kernel includes the kernel of a. This is formally stated in the following lemma,

which we use when decoding (interleaved) Gabidulin codes.

Lemma 2.12 (Row Space of Composition).

Let a(x) and b(x) denote two linearized polynomials in Lqm [x] with degq a(x), degq b(x) < m. Let

c(x) = b(a(x)) and let B = {β0, β1, . . . , βm−1} be a basis of Fqm over Fq . Let

A = extβ
(
(a(β0) a(β1) . . . a(βm−1))

)
, C = extβ

(
(c(β0) c(β1) . . . c(βm−1))

)
.
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Then, for the row spaces the following holds:

Rq (C) ⊆ Rq (A) .

Proof. Consider the linearized polynomials as linear maps over Fqm . Then, the kernel of the map

a is equivalent to the roots of a(x) in Fqm , considered as a vector space over Fq . Since the roots of

a(x) are also roots of c(x) = b(a(x)), the kernels are connected by ker(a) ⊆ ker(c). Hence, for
the right kernels ker(A) ⊆ ker(C) holds, and the row spaces are related byRq (C) ⊆ Rq (A).

2.2.4 The (Inverse) q-Transform

Gabidulin codes can be deVned either by means of evaluation and interpolation of linearized poly-

nomials or by means of the q-transform. This subsection shows basic properties of the (inverse)

q-transform.

Lemma 2.3 guarantees that for any s dividing m, there is a normal basis in Fqm of Fqs over Fq .

For such a normal basis BN , the q-transform of a linearized polynomial a(x) is deVned as follows.

DeVnition 2.12 (q-Transform).

Let a linearized polynomial a(x) =
∑s−1

i=0 aix
[i] ∈ Lqm [x] (or a vector a = (a0 a1 . . . as−1) ∈ Fs

qm) be

given, where s | m, and let BN = {β[0], β[1], . . . , β[s−1]}, for β ∈ Fqm , be a normal basis of Fqs over Fq .

Then, the q-transform of a(x) with respect to BN is the linearized polynomial â(x) =
∑s−1

j=0 âjx
[j] (or

the vector (â0 â1 . . . âs−1) ∈ Fs
qm), given by

âj = a
(
β[j]
)
=

s−1∑

i=0

aiβ
[i+j], ∀j ∈ [0, s− 1]. (2.20)

Let extβ(aj)
def
= (A0,j A1,j . . . Am−1,j)

T , with Ai,j ∈ Fq for i ∈ [0,m − 1], denote the vector

representation of aj ∈ Fqm over Fq according to DeVnition 2.1 using a basis of Fqm over Fq . As

done in Subsection 2.1.2 for the multiplication of two elements, we can use the multiplication table

Tm ∈ Fm×m
q (compare DeVnition 2.2) to calculate the elements of the q-transform over the ground

Veld Fq .

extβ (âj) = extβ

(
a(β[j])

)
=

da∑

i=0

extβ

(
aiβ

[i+j]
)

=

da∑

i=0

(
TT

m · extβ (ai)
↑i+j

)↓i+j
, (2.21)

where da = degq a(x) < s, i.e., ai = 0 for i > da and âj can then be obtained by ext−1
β (extβ (âj)).

In order to switch between the polynomial and its transformed polynomial, we need an inverse

mapping, called the inverse q-transform. The following theorem shows that we actually retrieve

the original polynomial from its transform. In [SK09a] this was proved for the special case s = m.

Theorem 2.3 (Inverse q-Transform).

Let â(x) =
∑s−1

j=0 âjx
[j] ∈ Lqm [x] denote the q-transform of a(x) =

∑s−1
i=0 aix

[i] ∈ Lqm [x] as in

DeVnition 2.12, where s divides m, and BN = {β[0], β[1], . . . , β[s−1]} is a normal basis in Fqm of Fqs
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over Fq . Further, let B⊥N = {β⊥[0]
, β⊥[1]

, . . . , β⊥[s−1]} be a normal basis, which is dual to BN .

Then,

ai = â
(
β⊥[i]

)
=

m−1∑

j=0

âjβ
⊥[j+i]

, ∀i ∈ [0, s− 1]. (2.22)

We call this the inverse q-transform of â(x) with respect to B⊥N .

Proof. The condition s | m guarantees that there exists a dual normal basis B⊥N (see Lemma 2.3).

Let us denote the following two matrices:

B =




β[0] β[1] . . . β[s−1]

β[1] β[2] . . . β[0]

...
...

. . .
...

β[s−1] β[0] . . . β[s−2]


 , B⊥ =




β⊥[0]
β⊥[1]

. . . β⊥[s−1]

β⊥[1]
β⊥[2]

. . . β⊥[0]

...
...

. . .
...

β⊥[s−1]
β⊥[0]

. . . β⊥[s−2]




. (2.23)

By deVnition, (â0 â1 . . . âs−1) = (a0 a1 . . . an−1) · B, see (2.20). Now, if we calculate a′ by

a′i = â(β⊥[i]
) for i ∈ [0, s− 1] as in (2.22), we obtain:

a′ = (a′0 a
′
1 . . . a′s−1) = (â0 â1 . . . âs−1) ·B⊥ = (a0 a1 . . . an−1) ·B ·B⊥ = a ·B ·B⊥.

Moreover, due to the deVnition of the dual basis (compare (2.2)) and since Tr(β[i]β⊥[i]) =
Tr(ββ⊥)[i] = Tr(ββ⊥), we obtain:

B ·B⊥ =




Tr(ββ⊥) Tr(ββ⊥[1]
) . . . Tr(ββ⊥[s−1]

)

Tr(β[1]β⊥) Tr(β[1]β⊥[1]
) . . . Tr(β[1]β⊥[s−1]

)
...

...
. . .

...

Tr(β[s−1]β⊥) Tr(β[s−1]β⊥[1]
) . . . Tr(β[s−1]β⊥[s−1]

)




=




1
1

. . .

1


 .

Hence, a′ = a, which proves the statement.

Recalling Subsection 2.2.3 shows that the q-transform and its inverse transform provide an eXcient

tool for switching between the map and its associated evaluated matrix. In terms of interpolation and

evaluation, the inverse q-transform can be seen as the evaluation of â(x) at the dual normal basis.

Equivalently, the determination of â(x) out of a(x) can be seen as the unique linearized univariate

interpolation polynomial of q-degree less than s. In Subsection 3.2.2, we explain how to calculate this

unique interpolation polynomial based on linearized Lagrange basis polynomials.

2.3 Codes in Rank Metric

Gabidulin codes, introduced by Delsarte [Del78], Gabidulin [Gab85] and Roth [Rot91], are so-called

maximum rank distance (MRD) codes since they attain the Singleton-like upper bound with equality.

Further, they are also maximum distance separable codes when considered as codes in Hamming metric.

In Subsection 2.3.1, we introduce the rank metric and show fundamental bounds as the Singleton-like

and the Gilbert–Varshamov-like bound. We introduce the notation of MRD codes, deVne Gabidulin

codes as the evaluation of degree-restricted linearized polynomials in Subsection 2.3.2, derive their

minimum rank distance and show how generator and parity-check matrices can be constructed.

Interleaved Gabidulin codes are deVned in Subsection 2.3.3 and their minimum rank distance is

proven. Finally, we brieWy give basic notations of lifted Gabidulin codes, which constitute a special

class of constant-dimension codes (Subsection 2.3.4).
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2 Introduction to Codes in Rank Metric

2.3.1 Rank Metric and its Properties

The mapping from DeVnition 2.1 plays a fundamental role in the context of rank-metric codes. It shows

that for a given basis B of Fqm over Fq , there exists a bijective mapping for each vector a ∈ Fn
qm on a

matrix A ∈ Fm×n
q . Based on this mapping, the rank weight and rank distance are deVned as follows.

DeVnition 2.13 (Rank Weight and Rank Distance).

Let a = (a0 a1 . . . an−1), b = (b0 b1 . . . bn−1) ∈ Fn
qm and let A = extβ (a) ,B = extβ (b) ∈ Fm×n

q

denote the matrix representations with respect to a basis B of Fqm over Fq according to DeVnition 2.1. The

rank weight of a is the rank of its matrix representation over Fq , i.e.,

wtR(a)
def
= rk(a) = rk(A).

The rank distance between a and b is the rank of the diUerence of the two matrix representations:

dR(a,b)
def
= rk(a− b) = rk(A−B).

Lemma 2.13 (Rank Distance is a Metric).

The rank distance as given in DeVnition 2.13 is a metric, fulVlling the requirements from DeVnition 2.3.

Proof. For any matrices A, B, C ∈ Fm×n
q :

• rk(A−B) ≥ 0 with equality if and only if A = B, proving positive deVniteness;

• rk(A−B) = rk(B−A), proving symmetry;

• the known fact rk(A+B) ≤ rk(A) + (B) shows that the triangle inequality is fulVlled, since

rk(A−C) = rk(A−B+B−C) ≤ rk(A−B) + rk(B−C).

A sphere in rank metric of radius τ around a word a ∈ Fn
qm is the set of all words in rank distance

exactly τ from a and a ball is the set of all words in rank distance at most τ from a. Such a sphere will

be denoted by S(τ)R (a) = S(τ)R (A) and such a ball by B(τ)R (a) = B(τ)R (A). The cardinality of B(τ)R (a)
can obviously be obtained by summing up the cardinalities of the spheres around a of radius from zero

up to τ . The number of matrices of a certain rank is given for example in [MMO04]. Therefore,

|S(τ)R (a)| =
[
m

τ

] τ−1∏

j=0

(qn − qj),

|B(τ)R (a)| =
τ∑

i=0

|S(i)R (a)| =
τ∑

i=0

[
m

i

] i−1∏

j=0

(qn − qj).

Note that the cardinalities of B(τ)R (a) and S(τ)R (a) are independent of the choice of their center.

Recall from DeVnition 2.4 that a block code over Fqm of length n is a set of vectors in Fn
qm . The

size of this set is the cardinality of the block code. A linear block code can be seen as a k-dimensional

subspace of Fn
qm and its cardinality is M = qmk , where k denotes the dimension of the code. Analog to

DeVnition 2.4, we denote a code in rank metric (not necessarily linear) over Fqm of length n, cardinality
M and minimum rank distance d by (n,M, d)R. A linear code in rank metric of length n, dimension k
and minimum rank distance d is a special case of the aforementioned and is denoted by [n, k, d]R. The
codewords of both can be seen as vectors in Fn

qm or equivalently as matrices in Fm×n
q . The minimum

rank distance of a block code is deVned as follows.
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2.3 Codes in Rank Metric

DeVnition 2.14 (Minimum Rank Distance).

For a given (n,M, d)R block code C over Fqm , the minimum rank distance is deVned by

d
def
= min

c(1),c(2)∈C
c(1) 6=c(2)

{
dR(c

(1), c(2)) = rk(c(1) − c(2))
}
.

Corollary 2.1 (Minimum Rank Distance of a Linear Code).

For a linear [n, k, d]R block code C, the minimum rank distance is the minimum rank weight:

d = min
c∈C
c 6=0

{
wtR(c) = rk(c)

}
.

The following theorem shows how the minimum rank distance of a linear block code can be

determined based on its parity-check matrix.

Theorem 2.4 (Minimum Rank Distance from Parity-Check Matrix [Gab85, Theorem 1]).

Let the (n− k)× n matrix H over Fqm denote the parity-check matrix of a linear [n, k, d]R block code C

over Fqm . If and only if for any matrix A ∈ F
(δ−1)×n
q of rank δ − 1 the following holds:

rk(AHT ) = δ − 1,

and if there exists a matrix B ∈ Fδ×n
q of rank δ such that

rk(BHT ) < δ,

then C has minimum rank distance d = δ.

The maximum cardinality of a code of length n and minimum rank distance d over Fqm is denoted

by AR
qm (n, d). On the one hand, AR

qm (n, d) is an upper bound on the cardinality of any (n,M, d)R
code over Fqm , i.e., M ≤ AR

qm (n, d). On the other hand, the deVnition of the maximum cardinality

AR
qm (n, d) implies that an (n,M, d)R code of cardinality M = AR

qm (n, d) exists.

The following theorem states analogs of the sphere packing (Hamming) and Gilbert–Varshamov

bound in rank metric, which can be proved similar to Hamming metric [GY06, Loi08, GY08b, Loi12].

Theorem 2.5 (Sphere Packing and Gilbert–Varshamov Bound in Rank Metric [GY06]).
Let AR

qm (n, d) denote the maximum cardinality of an (n,M, d)R block code over Fqm of length n and

minimum rank distance d and let τ0 = ⌊(d−1)/2⌋. Then,

qmn

|B(d−1)
R (0)|

≤ A
R
qm (n, d) ≤ qmn

|B(τ0)R (0)|
. (2.24)

The LHS of (2.24) is the Gilbert–Varshamov bound in rank metric and the RHS of (2.24) is the sphere

packing bound in rank metric. The rank-metric Gilbert–Varshamov bound from [Loi08, Proposition 3]

is slightly diUerent from the one stated in [GY06] and in Theorem 2.5. Note moreover that |B(τ0)R (0)|
and |B(d−1)

R (0)| are independent of their centers.
A code is called perfect in rank metric if it fulVlls the RHS of (2.24) with equality. For a perfect code,

the balls of radius τ0 = ⌊(d−1)/2⌋ around all codewords cover the whole space. However, in contrast to
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2 Introduction to Codes in Rank Metric

Hamming metric, there are no perfect codes in rank metric [Loi08, Proposition 2].

The Singleton bound in rank metric is given in the following theorem.

Theorem 2.6 (Singleton Bound in Rank Metric [Del78, Theorem 5.4]).

Let C be an (n,M, d)R code over Fqm of length n, cardinality M and minimum rank distance d. The
cardinality M of C is restricted by:

M ≤ qmin{n(m−d+1), m(n−d+1)} = qmax{n,m}(min{n,m}−d+1). (2.25)

If the cardinality of a code fulVlls (2.25) with equality, the code is called maximum rank distance

(MRD) code. We denote an MRD (not necessarily linear) code over Fqm of length n, cardinality
M = qmax{n,m}(min{n,m}−d+1) and minimum rank distance d byMRD(n,M).

For linear codes of length n ≤ m and dimension k, Theorem 2.6 implies that d ≤ n − k + 1, see
also [Gab85, Corollary, p. 2]. A linearMRD code over Fqm of length n ≤ m, dimension k and minimum

rank distance d = n − k + 1 is therefore denoted by MRD[n, k] and has cardinality M = qmk. If

n > m, we simply transpose all matrices and apply the previous considerations. The complete (rank)

weight distribution of MRD codes was derived in [Del78, Theorem 5.6] and [Gab85, Section 3].

A special class of rank-metric codes are q-cyclic codes, which can be seen as the analogs to cyclic

codes in Hamming metric.

DeVnition 2.15 (q-Cyclic Code).
Let C be an (n,M, d)R code over Fqm of length n, cardinality M and minimum rank distance d. Then,
this code is called q-cyclic if

(c
[j]
n−j c

[j]
n−j+1 . . . c

[j]
0 c

[j]
1 . . . c

[j]
n−j−1) ∈ C,

for any integer j and any codeword (c0 c1 . . . cn−1) ∈ C.

As we will see later, q-cyclic Gabidulin codes are a subclass of Gabidulin codes.

In order to introduce the notation, we also mention shortly constant-rank codes. A constant-rank

code is a rank-metric code, where all codewords have the same rank. Such a constant-rank code over

Fqm of length n, minimum rank distance d, cardinality M and rank r is denoted by CRqm(n,M, d, r).

2.3.2 Gabidulin Codes

Gabidulin codes [Del78, Gab85, Rot91] are a special class of linear MRD codes and are often considered

as the analogs of Reed–Solomon codes in rank metric. They are the main class of block codes in rank

metric considered in this thesis.

In the following, we deVne Gabidulin codes as evaluation codes of degree-restricted linearized

polynomials, prove that they are MRD codes and give their generator and parity-check matrices.

DeVnition 2.16 (Linear Gabidulin Code).

A linear Gabidulin code Gab[n, k] over Fqm of length n ≤ m and dimension k ≤ n is the set of all words,

which are the evaluation of a q-degree-restricted linearized polynomial f(x) ∈ Lqm [x]:

Gab[n, k]
def
=
{
(f(g0) f(g1) . . . f(gn−1)) = f(g) : degq f(x) < k

}
,

where the Vxed elements g0, g1, . . . , gn−1 ∈ Fqm are linearly independent over Fq .
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2.3 Codes in Rank Metric

Alternatively, we can deVne the codewords of Gab[n, k] as the inverse q-transform (see Theorem 2.3)

of the evaluation polynomials f(x) of q-degree less than k. In order to do so, we need a normal basis5

B⊥N = {β⊥[0]
, β⊥[1]

, . . . , β⊥[n−1]} of Fqn over Fq . Recall from Lemma 2.3 that such a normal basis

exists in Fqm if n dividesm and clearly for n = m. The coeXcients of the codewords can then be given

by the inverse q-transform of f(x) as in Theorem 2.3:

ci = f
(
β⊥[i])

=
n−1∑

j=0

fjβ
⊥[j+i]

, ∀i ∈ [0, n− 1]. (2.26)

DeVnition 2.16 and Equation (2.26) agree if we choose gi = β⊥[i]
. However, the calculation of (2.26) is

only possible if there is a normal basis in Fqm of Fqn over Fq , which imposes a restriction on the length

of the code. On the other hand, DeVnition 2.16—and also the deVnitions based on generator/parity-check

matrix, see (2.27) and (2.28)—is valid for any n ≤ m.

Clearly, a more general deVnition of the (inverse) q-transform by using an arbitrary basis and its

dual is the same as the evaluation/interpolation of a linearized polynomial. However, we use the name

“q-transform” only together with a normal basis in order to indicate that this transform can be done

with low complexity (see Subection 3.1.1).

Theorem 2.7 (Minimum Rank Distance of a Gabidulin Code).

The minimum rank distance of a Gab[n, k] Gabidulin code over Fqm with n ≤ m is d = n− k + 1.

Proof. The evaluation polynomials f(x) have q-degree less than k and therefore the dimension

of their root spaces over Fqm is at most k − 1.
Let C = extβ (c) ∈ Fm×n

q denote the representation of c ∈ Gab[n, k] as in DeVnition 2.1. Since

the evaluation of a linearized polynomial at a basis is an Fq-linear map, it follows with Lemma 2.11

that the dimension of the right kernel of C ∈ Fm×n
q is equal to the dimension of the root space of

the corresponding evaluation polynomial f(x). Therefore,

dimker(c) ≤ k − 1, ∀c ∈ Gab[n, k].

There is a codeword c in Gab[n, k] of rank d and due to the rank nullity theorem, for this codeword

dimker(c) = n− d holds. Hence,

dimker(c) = n− d ≤ k − 1 ⇐⇒ d ≥ n− k + 1.

However, the Singleton-like bound (2.25) implies that d ≤ n− k + 1 and hence, d = n− k + 1.

Thus, Gabidulin codes are MRD codes.

Based on DeVnition 2.16, we can give the generator matrix of a Gabidulin code using the elements

g0, g1, . . . , gn−1 ∈ Fqm , which are linearly independent over Fq .

G = qvank((g0 g1 . . . gn−1)) =




g
[0]
0 g

[0]
1 . . . g

[0]
n−1

g
[1]
0 g

[1]
1 . . . g

[1]
n−1

...
...

. . .
...

g
[k−1]
0 g

[k−1]
1 . . . g

[k−1]
n−1




, (2.27)

since the evaluation of a linearized polynomial of q-degree less than k is the same as multiplying its

coeXcients with the aforementioned q-Vandermonde matrix.

5For consistency with Theorem 2.3, we denote this normal basis by B⊥

N as dual basis to BN .
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Lemma 2.14 (Parity-Check Matrix of Gabidulin Code).

Let G be a generator matrix of a Gab[n, k] code as in (2.27), where g0, g1, . . . , gn−1 ∈ Fqm are linearly

independent over Fq . Let h0, h1, . . . , hn−1 be a non-zero solution for the following n− 1 linear equations:

n−1∑

i=0

g
[j]
i hi = 0, ∀j ∈ [−n+ k + 1, k − 1]. (2.28)

Then, the (n− k)× n matrix

H = qvann−k((h0 h1 . . . hn−1)) =




h
[0]
0 h

[0]
1 . . . h

[0]
n−1

h
[1]
0 h

[1]
1 . . . h

[1]
n−1

...
...

. . .
...

h
[n−k−1]
0 h

[n−k−1]
1 . . . h

[n−k−1]
n−1




,

is a parity-check matrix of the Gab[n, k] code.

Proof. Since the dual of a Gab[n, k] code is a Gab[n, n− k] code [Gab85, Theorem 3], we have

to prove that H is a generator matrix of this dual code, i.e., G ·HT = 0 has to hold, which is

equivalent to the following n− 1 linear equations:

n−1∑

i=0

g
[l]
i h

[j]
i = 0, ∀l ∈ [0, k − 1], j ∈ [0, n− k − 1],

⇐⇒
n−1∑

i=0

g
[j]
i hi = 0, ∀j ∈ [−n+ k + 1, k − 1].

Therefore, if h0, h1, . . . , hn−1 are linearly independent over Fq , H is a generator matrix of the

dual code Gab[n, n− k]. To prove this, denote g̃ = (g
[−n+k+1]
0 g

[−n+k+1]
1 . . . g

[−n+k+1]
n−1 ). Then,

(2.28) is equivalent to

qvann−1(g̃) · (h0 h1 . . . hn−1)
T = 0. (2.29)

The matrix qvann−1(g̃) is a parity-check matrix of a Gab[n, 1] code, since g
[−n+k+1]
0 , g

[−n+k+1]
1 ,

. . . , g
[−n+k+1]
n−1 ∈ Fqm are linearly independent over Fq . Hence, the vector (h0 h1 . . . hn−1) is a

codeword of the Gab[n, 1] code. This Gab[n, 1] code has minimum rank distance d = n−1+1 = n
and therefore rk((h0 h1 . . . hn−1)) = n. Thus, H is a generator matrix of the dual Gab[n, n− k]
code and therefore a parity-check matrix of the Gab[n, k] code.

The following lemma investigates q-cyclic Gabidulin codes.

Lemma 2.15 (q-cyclic Gabidulin Code).

Let g = (g0 g1 . . . gn−1) = (β⊥[0] β⊥[1] . . . β⊥[n−1]) be an ordered normal basis of Fqn over Fq and let

Gab[n, k] be a Gabidulin code over Fqm as in DeVnition 2.16.

Then, Gab[n, k] is q-cyclic as in DeVnition 2.15.

Proof. We have to show that for any integer j and any codeword c = (c0 c1 . . . cn−1) ∈
Gab[n, k], the q-cyclic shift

c̃ = (c̃0 c̃1 . . . c̃n−1)
def
= (c

[j]
n−j c

[j]
n−j+1 . . . c

[j]
0 c

[j]
1 . . . c

[j]
n−j−1)
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is also a codeword of Gab[n, k]. The coeXcients of c̃ (indices calculated modulo n) are given by:

c̃i = c
[j]
i−j =

(
f(β⊥[i−j])

)[j]
= x[j] ◦ f(x)

∣∣∣
x=β⊥[i−j]

= x[j] ◦ f(x) ◦ x[−j]
∣∣∣
x=β⊥[i]

, ∀i ∈ [0, n− 1].

Therefore, for f(x) =
∑k−1

i=0 fix
[i], we obtain:

f̃(x)
def
= x[j] ◦ f(x) ◦ x[−j] = f

[j]
0 x[0] + f

[j]
1 x[1] + · · ·+ f

[j]
k−1x

[k−1],

and degq f̃(x) = degq f(x) < k. Thus,

c̃ = (c̃0 c̃1 . . . c̃n−1) = f̃(g) =
(
f̃(β⊥[0]) f̃(β⊥[1]) . . . f̃(β⊥[n−1])

)

is a codeword of Gab[n, k].

Lemma 2.3 provides directly the following corollary.

Corollary 2.2 (Existence of q-cyclic Gabidulin Code).

A q-cyclic Gabidulin code Gab[n, k] of length n ≤ m and dimension k ≤ n over Fqm as in Lemma 2.15

exists for any n dividing m.

Thus, when we recall (2.26), we see that deVning Gabidulin codes by the (inverse) q-transform yields

q-cyclic Gabidulin codes. This property allows to reduce the complexity of encoding and decoding (see

Section 3.2.4).

Lemma 2.16 (Parity Check Matrix of q-cyclic Gabidulin Code).

Let Gab[n, k] be a q-cyclic Gabidulin code over Fqm as in Lemma 2.15, where g =

(β⊥[0] β⊥[1] . . . β⊥[n−1]) is an ordered normal basis of Fqn over Fq , n | m, and (β[0] β[1] . . . β[n−1]) is
a dual normal basis to g.

Then, for h
def
= (β[k] β[k+1] . . . β[k+n−1]), the (n− k)× n matrix

H = qvann−k(h) =




β[k] β[k+1] . . . β[k−1]

β[k+1] β[k+2] . . . β[k]

...
...

. . .
...

β[n−1] β[0] . . . β[n−2]


 ,

is a parity-check matrix of the Gab[n, k] code.

Proof. The proof follows from the proof of Theorem 2.3: Let H consist of the last n− k rows of

B (deVned as in (2.23) with s = n) and let GT be the n× k submatrix of B⊥ (deVned as in (2.23)

with s = n), consisting of the Vrst k columns of B⊥. Then, G is exactly the generator matrix

from (2.27) and H ·GT = 0 as shown in the proof of Theorem 2.3.

Since h = (β[k] β[k+1] . . . β[k+n−1]) consists of n linearly independent elements,H is a parity-

check matrix of this Gab[n, k] code.

2.3.3 Interleaved Gabidulin Codes

Interleaved Gabidulin codes can be seen as s horizontally or vertically arranged codewords of (not

necessarily diUerent) Gabidulin codes. They are the analog of interleaved Reed–Solomon codes in

Hamming metric, see [KL97, KL98, BKY07, Kra03, BMS04, JTH04, SSB09, WZB12].
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Vertically interleaved Gabidulin codes were introduced by Loidreau and Overbeck in [LO06, Ove07]

and rediscovered by Silva, Kschischang and Kötter [SKK08, Sil09] as the Cartesian product of s trans-
posed codewords of Gabidulin codes. Later, Sidorenko and Bossert introduced horizontally interleaved

Gabidulin codes [SB10, SJB11].

We consider vertically interleaved Gabidulin codes in this thesis. However, if an application requires

matrices with the dimensions of a horizontally interleaved Gabidulin code, we can simply transpose

the codewords of the vertically interleaved code. Known decoding approaches and a new interpolation-

based decoding approach for interleaved Gabidulin codes are considered in Chapter 4.

DeVnition 2.17 (Interleaved Gabidulin Code).

Let g = (g0 g1 . . . gn−1), where g0, g1, . . . , gn−1 ∈ Fqm are linearly independent over Fq . A linear

(vertically) interleaved Gabidulin code IGab[s;n, k(1), . . . , k(s)] over Fqm of length n ≤ m, elementary

dimensions k(1), . . . , k(s) ≤ n and interleaving order s is deVned by

IGab[s;n, k(1), . . . , k(s)]
def
=








c(1)

c(2)

...

c(s)


 =




f (1)(g)

f (2)(g)
...

f (s)(g)


 : degq f

(i)(x) < k(i) ≤ n, ∀i ∈ [1, s]





.

For s = 1, this deVnes a usual Gabidulin code Gab[n, k] = IGab[1;n, k]. Using the map extβ from
DeVnition 2.1, we can either represent the codewords of the interleaved code as a vector in Fn

qms , a

matrix in Fs×n
qm or over the ground Veld as a matrix in Fsm×n

q . Throughout this thesis, we will use any
representation, whatever is more convenient and indicate which one is meant if there are ambiguities.
This is illustrated in Figure 2.2.

Analog to interleaved Reed–Solomon codes, we call an interleaved Gabidulin code homogeneous if all
elementary dimensions are equal, i.e., if k(i) = k, ∀i ∈ [1, s].

Lemma 2.17 (Homogeneous Interleaved Gabidulin Codes are MRD).

Let IGab[s;n, k, . . . , k] be a linear interleaved Gabidulin code over Fqm as in DeVnition 2.17 with k(i) = k,
∀i ∈ [1, s]. Its minimum distance is d = n− k + 1 and it is an MRD code.

Proof. On the one hand, any non-zero codeword of IGab[s;n, k, . . . , k] contains at least one
non-zero codeword of a Gabidulin code Gab[n, k] and therefore, d ≥ n − k + 1. On the other
hand,




c(1)

0
...
0


 ∈ IGab[s;n, k, . . . , k].

We can choose c(1) ∈ Gab[n, k] such that rk(c(1)) = n − k + 1 and therefore the minimum
distance of IGab[s;n, k, . . . , k] is exactly d = n− k + 1 and it is an MRD code.

For arbitrary elementary dimensions, we can use the same reasoning and the minimum distance of
IGab[s;n, k(1), . . . , k(s)] is d = n−maxi{k(i)}+ 1. Notice that this is no MRD code.

Known decoding approaches and a new interpolation-based decoding approach for interleaved
Gabidulin codes is described in Chapter 4.
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2.3 Codes in Rank Metric

c ∈ Fn
qms 7→

c(1)

c(2)
...

c(s)

∈ Fs×n
qm 7→

C(2)

C(1)

...

C(s)

∈ Fsm×n
q

Figure 2.2. Representations of codewords of an interleaved Gabidulin code of length n and interleaving order s.

2.3.4 Lifted Gabidulin Codes

This subsection will give a brief deVnition of a special class of constant-dimension codes, constructed by

lifted Gabidulin codes. These constant-dimension codes are used in Chapter 5 to establish bounds on list

decoding block rank-metric codes. Constant-dimension codes and, more general, codes in the projective

space were thoroughly investigated e.g. in [WXS03, KK08, XF09, ES09, Ska10, EV11, Sil11, BVP13, ES13].

As deVned in Subsection 2.1.1, let Fn
q denote the vector space of dimension n over the Vnite Veld Fq ,

Pq(n) the projective space and Gq(n, r) the Grassmannian of dimension r.

A distance measure for codes in the projective space is the so-called subspace distance. For two
subspaces U ,V in Pq(n), we denote by U + V the smallest subspace containing the union of U and V .
The subspace distance between U ,V in Pq(n) is deVned by

ds(U ,V) = dim(U + V)− dim(U ∩ V)
= 2 dim(U + V)− dim(U)− dim(V). (2.30)

It can be shown that the subspace distance is indeed a metric (see e.g., [KK08, Lemma 1]) and it is
connected to the so-called injection distance di as follows (see [SK09b, Equation (28)]):

di(U ,V) =
1

2
ds(U ,V) +

1

2

∣∣ dim(U)− dim(V)
∣∣. (2.31)

Throughout this thesis, we will use the subspace distance as a distance measure between subspaces.

A code in the projective space (also called subspace code) is a non-empty collection of subspaces of
Pq(n), i.e., each codeword is a subspace. A constant-dimension code (also called Grassmannian code) is
a special subspace code, where each codeword has the same dimension. Let CDq(n,M, ds, r) denote
a constant-dimension code in Gq(n, r) with cardinalityM and minimum subspace distance ds. This
code is therefore a subset of the Grassmannian Gq(n, r).

For constant-dimension codes, (2.31) shows that the minimum injection distance is half the minimum
subspace distance. Further details can be found e.g., in [KSK09], which provides a survey (up to the
year 2009) on codes in the projective space and constant-dimension codes.

The lifting of a block code deVnes a constant-dimension code as follows.
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DeVnition 2.18 (Lifting of a Matrix or a Code).

Consider the mapping

lift : Fr×(n−r)
q → Gq(n, r)

X 7→ Rq ([Ir X]) ,

where Ir denotes the r × r identity matrix. The subspace lift(X) = Rq ([Ir X]) is called lifting of the

matrix X. If we apply this map on all codewords (in matrix representation) of a block code C, then the

constant-dimension code lift(C) is called lifting of C.

The following lemma shows the properties of a lifted linear MRD code.

Lemma 2.18 (Lifted MRD Code).

Let a linear MRD[r, k] code C over Fqn−r of length r ≤ n − r, minimum rank distance d = r − k + 1

and cardinality MR = q(n−r)k be given.

Then, the lifting of the transposed codewords, i.e.

lift(CT )
def
=
{
lift(CT ) = Rq

(
[Ir C

T ]
)
: C ∈ C

}

is a CDq(n,Ms, ds, r) constant-dimension code of cardinality Ms = MR = q(n−r)k , minimum subspace

distance ds = 2d and lies in the Grassmannian Gq(n, r).

Proof. Let Ci ∈ F
(n−r)×r
q , ∀i ∈ [1,MR], denote the codewords of C in matrix representation.

The dimension of each subspace lift(CT
i ) is r since rk([Ir CT

i ]) = r, for all i ∈ [1,MR]. The
cardinality of this constant-dimension code is the same as the cardinality of the MRD code, which

is MR = q(n−r)k. The subspace distance of the constant-dimension code is two times the rank

distance of the MRD code (see [SKK08, Proposition 4]) since for any two C1,C2 ∈ C with (2.30):

ds(lift(C
T
1 ), lift(C

T
2 )) = 2 dim

(
lift(CT

1 ) + lift(CT
2 )
)
− dim

(
lift(CT

1 )
)
− dim

(
lift(CT

2 )
)

= 2 rk

(
Ir CT

1

Ir CT
2

)
− 2r = 2 rk

(
Ir CT

1

0 CT
2 −CT

1

)
− 2r

= 2
[
rk(Ir) + rk(CT

2 −CT
1 )
]
− 2r = 2 rk(C2 −C1) = 2dR(C1,C2).
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CHAPTER3
Decoding Approaches for Gabidulin Codes

D
ecoding principles for Gabidulin codes mostly rely on the similarities to Reed–Solomon

codes and are therefore equivalents of well-known decoding algorithms in Hamming metric.

The Vrst bounded minimum distance (BMD) decoding algorithm by Gabidulin [Gab85] is based

on solving a key equation with the linearized extended Euclidean algorithm (LEEA) and can be seen as

an equivalent of the Sugiyama–Kasahara–Hirasawa–Namekawa decoding algorithm for Reed–Solomon

and Goppa codes [SKHN75]. The oldest decoding principle for Reed–Solomon codes is the Peterson–

Gorenstein–Zierler approach [Pet60, GZ61]. A similar algorithm for Gabidulin codes was introduced

in 1991 by Roth [Rot91] and independently also by Gabidulin in 1992 [Gab92]. In this approach, the

solution to the key equation is found by solving a linear system of equations based on the syndrome

coeXcients.

Due to its eXcient use of shift-register synthesis, the Berlekamp–Massey algorithm [Ber68, Mas69]

is probably the most established decoding algorithm for Reed–Solomon and cyclic codes. A linearized

equivalent of it was given by Paramonov and Tretjakov [PT91] and Richter and Plass [RP04a, RP04b].

The proof of this algorithm was given later by Sidorenko, Richter and Bossert in [SRB11].

While the previously mentioned approaches solve a key equation and return an error-span poly-

nomial, interpolation-based decoders directly output the evaluation polynomial of a codeword. A

Welch–Berlekamp-like decoder [WB86] for interpolation-based BMD decoding of Gabidulin codes was

presented by Loidreau in 2006 [Loi06, Loi07].

Apart from increasing the decoding radius of Gabidulin codes (which is considered in some sense in

Chapters 4 and 5), the research interest lies in accelerating BMD decoding algorithms [SK09a, HS10,

SB12, WAS13, SWC12] and in error-erasure decoding [SKK08, Sil09, GP08, LSC13].

This chapter deals with eXcient decoding of Gabidulin codes. First, in Section 3.1, we present

new methods to accomplish eXcient calculations with linearized polynomials. Second, Section 3.2

brieWy explains known decoding approaches for Gabidulin codes and presents a new BMD decoding

algorithm, which is based on solving a transformed key equation with the LEEA and directly outputs

the evaluation polynomial of the estimated codeword. Finally, we establish how this algorithm can be

accelerated and generalize it for error-erasure decoding.

The results of Subsections 3.1.2 and 3.1.4 were partly published in [WSB10] and the results from

Subsections 3.1.3, 3.2.2 and 3.2.4 in [WAS11, WAS13].

3.1 Fast Algorithms for Linearized Polynomials

EXcient implementations of operations with linearized polynomials are essential in order to develop

fast decoding algorithms for codes in rank metric, in particular for (interleaved) Gabidulin codes.

Throughout this thesis, the computational complexity is considered as operations (multiplications and

additions) in Fqm or in Fq , where the corresponding Veld will be indicated.
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3 Decoding Approaches for Gabidulin Codes

Subsection 3.1.1 explains the complexity of known approaches and states some problems, which are

treated in the subsequent subsections. In Subsections 3.1.2 and 3.1.3, we present fast algorithms for

calculating the linearized composition and in Subsection 3.1.4, we give a fast equivalent of the LEEA

based on the Divide & Conquer strategy.

3.1.1 Complexity of Known Approaches and Overview of New Approaches

A summary of eXcient calculations in Vnite Velds using normal bases is given in Table 3.1. Further,

Table 3.2 provides an overview of the complexity of standard implementations for operations with

linearized polynomials. As a last part of this subsection, we state some problems concerning eXcient

operations of linearized polynomials, which are picked up in the following subsections.

Operations with Normal Bases

Throughout this thesis, we assume that we can switch between the representation of a vector in Fqm

and a matrix in Fq (i.e., the map from DeVnition 2.1) without any cost. Recall Section 2.1.2 about normal

bases, where we showed in (2.3) that a q-power of an element a ∈ Fqm corresponds to a cyclic shift

of extβ (a) ∈ Fm×1
q , when a normal basis is used. Hence, the complexity of q-powers is negligible

whenever we consider a normal basis representation.

The addition a + b of a, b ∈ Fqm can be implemented by extβ (a) + extβ (b) ∈ Fm×1
q in O(m)

operations over Fq .

The product a · b of any two elements a, b ∈ Fqm can be calculated as in (2.4), showing that

extβ (a · b) ∈ Fm×1
q can be obtained by m multiplications of a vector in Fm×1

q with the multiplication

table Tm and summing thesem resulting vectors up (times a scalar in Fq). Since Tm has comp(Tm)
non-zero entries, the multiplication of Tm with a vector costs comp(Tm) operations over Fq and the

whole calculation of extβ (a · b) costs O(m comp(Tm)) ≥ O(m2) operations in the ground Veld Fq .

If one of the two multiplied elements is a basis element, e.g. b = β[j], and we want to compute

a · β[j], then (2.5) shows that the summation step from (2.4) disappears and the complexity is reduced

to O(comp(Tm)) operations over Fq .

For the calculation of the (inverse) q-transform of a linearized polynomial a(x) ∈ Lqm [x] of q-degree

Table 3.1. Complexity of operations in Vnite Velds using normal bases.

Operation Notation Method Complexity

q-power of a ∈ Fqm a[i] Eq. (2.3), p. 8 negligible

Addition of a, b ∈ Fqm a+ b extβ (a) + extβ (b) O(m) in Fq

Multiplication of a, b ∈ Fqm a · b Eq. (2.4), p. 9 O(m comp(Tm)) in Fq

Multiplication of a, β[j] ∈ Fqm ,

where β[j] ∈ BN
a · β[j] Eq. (2.5), p. 9 O(comp(Tm)) in Fq

q-transform of a(x) ∈ Lqm [x]
with degq a(x) = da < s, s | m

â(x) Eq. (2.21), p. 22 O(dadâ comp(Tm))
≤ O(s2 comp(Tm)) in Fq

Inv. q-transform of â(x) ∈ Lqm [x]
with degq â(x) = dâ < s, s | m

a(x) analog to

Eq. (2.21), p. 22

O(dadâ comp(Tm))
≤ O(s2 comp(Tm)) in Fq
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3.1 Fast Algorithms for Linearized Polynomials

da < s (see DeVnition 2.12 and Theorem 2.3) recall (2.21), which shows how to obtain the coeXcients

of the transformed polynomial â(x) =
∑dâ

j=0 âjx
[i], represented as vectors over Fq . For each coeXcient

âj , we calculate da + 1 ≤ s times the product of an element ai ∈ Fqm and a basis element β[i+j] as

in (2.5). Hence, the calculation âj for j ∈ [0, dâ] requires O(dadâ comp(Tm)) ≤ O(s2 comp(Tm))
operations over Fq . The calculation of the inverse q-transform can be done analogously to (2.21). To

our knowledge, this eXcient calculation of the (inverse) q-transform was Vrst observed in [SK09a].

Table 3.1 summarizes the complexity of the mentioned operations using normal bases.

Operations with Linearized Polynomials

LetM(da, db) denote the complexity of calculating the composition of two linearized polynomials, i.e.,

a(b(x)) ∈ Lqm [x] with da = degq a(x) and db = degq b(x). The straight-forward calculation of the

coeXcients of a(b(x)) can be done as in (2.12), where the calculation of all coeXcients requires

da+db∑

j=0

(j + 1) =

da+db+1∑

j=1

j =
(da + db + 1)(da + db + 2)

2
∼ O

(
(da + db)

2
)

additions and multiplications over Fqm , when we assume again that q-powers are negligible.

The complexity of calculating the linearized composition modulo (x[m] − x) as in (2.13) requires

therefore at most O(m2) operations in Fqm and is denoted byMm(m) = O(m2) over Fqm .

The right/left linearized division can be calculated as in Algorithm 2.1 and 2.2, respectively, and its

complexity for two linearized polynomials a(x), b(x) ∈ Lqm [x] is denoted by D(da, db). The standard
implementations from Algorithm 2.1 and 2.2, for da ≥ db, terminate after at most da− db+1 iterations.
The complexity of each iteration is dominated by the linearized composition in Line 3. Since q(i)(x) has
only one non-zero coeXcient, Line 3 can be computed with db + 1 multiplications of elements in Fqm .

Hence, the complexity of the linearized division is D(da, db) = O((da − db)db) operations in Fqm .

The standard implementation of the LEEA from Algorithm 2.3 for two input polynomials a(x), b(x) ∈
Lqm [x] with da ≥ db requires O(d2a) operations over Fqm (see [GY08a]). In detail, this complexity

also depends on the stopping degree dstop, but the order of the complexity is independent of dstop, and
therefore we do not analyze this dependency in detail here.

Table 3.2 shows an overview of these standard implementations for linearized polynomials.

Table 3.2. Complexity of standard implementations for linearized polynomials.

Operation Notation Method Complexity

Linearized composition

of a(x), b(x) ∈ Lqm [x]
a(b(x)) Eq. (2.12), p. 18 M(da, db) =

O((da + db)
2) in Fqm

Linearized composition

modulo (x[m] − x)
a(b(x)) mod (x[m] − x) Eq. (2.13), p. 18 Mm(m) = O(m2)

in Fqm

Linearized division of

a(x), b(x) ∈ Lqm [x]
with da ≥ db

RightDiv
(
a(x); b(x)

)

LeftDiv
(
a(x); b(x)

) Algo. 2.1, p. 19

Algo. 2.2, p. 19

D(da, db) =
O((da − db)db)in Fqm

LEEA of a(x), b(x) ∈
Lqm [x] with da ≥ db

RightLEEA
(
a(x); b(x); dstop

)
Algo. 2.3, p. 20 OEA(da, db) = O(d2a)

in Fqm
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Problem Statement and Overview of New Approaches

The following subproblems provide the starting point of the remainder of this section.

Problem 3.1 (Fast Linearized Operations).

Let a(x), b(x) ∈ Lqm [x] with da = degq a(x) and db = degq b(x) be given.

(a) Fast Linearized Composition.

Let n = max{da, db}+ 1. Find a linearized polynomial

c(x) = a(x) ◦ b(x) = a(b(x)),

see also (2.12), with complexityM(da, db) < O(n2) operations in Fqm .

(b) Fast Linearized Composition modulo (x[m] − x).
Let da < m, db < m. Find a linearized polynomial

c(x) ≡ a(x) ◦ b(x) = a(b(x)) mod (x[m] − x),

see also (2.13), with complexityMm(m) < O(m2) operations in Fqm .

(c) Fast Linearized Multi-Point Evaluation.

Let da < m and let the s points b0, b1, . . . , bs−1 ∈ Fqm , where s | m, be given. Find the s evaluation
values

a(b0), a(b1), . . . , a(bs−1)

with complexity less than O(m2) operations in Fqm .

(d) Fast Linearized Euclidean Algorithm.

Let da ≥ db. Find the output of RightLEEA
(
a(x); b(x); dstop

)
, Algorithm 2.3, for some da >

dstop ≥ da/2, with complexity OEA(da, db) < O(d2a) operations in Fqm .

As a preview, Table 3.3 provides an overview of our new algorithms which give solutions to the

aforementioned problems and are explained and proven in detail in the following subsections.

In order to compare the diUerent algorithms, recall Table 3.1 to compare operations in Fqm with

operations in Fq . An addition of two elements in Fqm costsO(m) operations in Fq and a multiplication

of two elements in Fqm can be realized with O(m comp(Tm)) operations in Fq . If there exists a

low-complexity normal basis of Fqm over Fq , this multiplication can be done with O(m2) operations
in Fq and therefore, any operation in Fqm can be implemented with at most O(m2) operations in Fq .

Hence, Algorithm 3.1 for calculating a(b(x)) mod (x[m] − x) costs at most O(m1.69) operations
over Fqm and can be realized in O(m3.69) operations over Fq .

If we want to compare Algorithm 3.1 and Algorithm 3.3 for calculating the linearized composition,

we Vrst have to remark that Algorithm 3.1 can also calculate the linearized composition withoutmodulo.

However, when we use low-complexity normal bases, Algorithm 3.3 is more eXcient for calculating the

linearized composition modulo (x[m] − x). Moreover, the complexity improvement is achieved also for

small polynomials whereas the complexity of Algorithm 3.1 is only valid for large polynomials since

the fast matrix multiplication (by the Coppersmith–Winograd algorithm) is only eXcient for large

matrices.

Notice that there are also asymptotically faster algorithms for realizing one operation over Fqm

in Fq and therefore, it depends on the concrete implementation, which algorithm for the linearized

composition is faster.
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Table 3.3. Complexity of new algorithms for operations with linearized polynomials.

Operation Notation Method Complexity

Linearized composition

of a(x), b(x) ∈ Lqm [x]
a(b(x)) Algo. 3.1, p. 39,

Subsec. 3.1.2

M(da, db) =
O((max{da, db})1.69) in Fqm

Linearized composition

of a(x), b(x) ∈ Lqm [x]
modulo (x[m] − x)

a(b(x))
mod (x[m] − x)

Algo. 3.1, p. 39,

Subsec. 3.1.2

Mm(m) =
O(m · (max{da, db})0.69)
≤ O(m1.69) in Fqm

Algo. 3.3, p. 42,

Subsec. 3.1.3

Mm(m) =
O(max{da, s}m comp(Tm))
≤ O(m2 comp(Tm)) in Fq

Linearized multi-point

evaluation of a(x) ∈
Lqm [x] at b0, b1, . . . , bs−1

∈ Fqm , where s | m

a(b0), . . . , a(bs−1) Algo. 3.2, p. 41,

Subsec. 3.1.3

O(max{da, s}m comp(Tm))
≤ O(m2 comp(Tm)) in Fq

First half of LEEA of a(x),
b(x) ∈ Lqm [x] with
da > db

FastHalfLEEA(
a(x); b(x); dstop

) Algo. 3.4, p. 45,

Subsec. 3.1.4

OEA(da, db) =
O
(
max{D(da, db),
M(da, db)} log da

)
in Fqm

3.1.2 Fast Linearized Composition Using Fragmented Polynomials

In this subsection, we present a fast algorithm that calculates the linearized composition a(b(x))
with complexityM(da, db) = O(max{da, db}1.69) operations in Fqm instead of O((da + db)

2) as
in (2.12). The approach is based on splitting a(x) into smaller linearized polynomials and on fast

matrix multiplication. A similar fragmentation was used in [BK78, Algorithm 2.1] for calculating the

composition of power series. We explain the idea of the fast composition in the following, summarize

it in Algorithm 3.1 and prove its complexity. Our algorithm provides a solution to Problem 3.1 (a) of

calculating the linearized composition eXciently. A solution to Problem 3.1 (b) follows directly and is

stated in Corollary 3.1.

Let the assumptions of Problem 3.1 (a) be satisVed and let n∗ def
= ⌈√n ⌉ =

⌈√
max{da, db}+ 1

⌉
.

We fragment a(x) =
∑da

j=0 ajx
[j] into n∗ smaller polynomials a(i)(x) of q-degree less than n∗:

a(i)(x) =
n∗−1∑

j=0

ain∗+j x
[in∗+j], ∀i ∈ [0, n∗ − 1], (3.1)

with ah = 0 if h > da. Therefore,

a(x) =

n∗−1∑

i=0

a(i)(x) =

n∗−1∑

i=0

n∗−1∑

j=0

ain∗+j x
[in∗+j].

The following lemma shows how a(b(x)) can be calculated by one (fast) matrix multiplication.
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Lemma 3.1 (Calculation by Matrix Multiplication).

Let two linearized polynomials a(x) =
∑da

i=0 aix
[i], b(x) =

∑db
i=0 bix

[i] ∈ Lqm [x] be given and let

n∗ =
⌈√

max{da, db}+ 1
⌉
. Denote c(x) = a(b(x)) and let a(i)(x) be deVned as in (3.1). Let c(i)(x) =

a(i)(b(x)), for all i ∈ [0, n∗ − 1], and denote the coeXcients of c(i)(x) by

c(i)(x) =

db+n∗−1∑

j=0

c
(i)
j x[in

∗+j].

Then, c(x) =
∑n∗−1

i=0 c(i)(x) and the coeXcients of (c(i)(x))[−in∗], for all i ∈ [0, n∗ − 1], are given by the

following matrix multiplication:




c
(0)
0 c

(0)
1 . . . c

(0)
db+n∗

−1

c
(1)[−n∗]
0 c

(1)[−n∗]
1 . . . c

(1)[−n∗]
db+n∗

−1
...

...
. . .

...

c
(n∗)[−(n∗

−1)n∗]
0 c

(n∗)[−(n∗

−1)n∗]
1 . . . c

(n∗)[−(n∗

−1)n∗]
db+n∗

−1




= A ·B def
= (3.2)




a0 a1 . . . an∗
−1

a
[−n∗]
n∗ a

[−n∗]
n∗+1 . . . a

[−n∗]
2n∗

−1
...

...
. . .

...

a
[−n∗(n∗

−1)]
(n∗

−1)n∗
a
[−n∗(n∗

−1)]
(n∗

−1)n∗+1 . . . a
[−n∗(n∗

−1)]
n∗n∗

−1



·




b
[0]
0 b

[0]
1 . . . b

[0]
db

b
[1]
0 b

[1]
1 . . . b

[1]
db

. . .
. . .

. . .

b
[n∗

−1]
0 . . . b

[n∗

−1]
db




.

Proof. Since a(x) =
∑n∗−1

i=0 a(i)(x), we immediately obtain c(x) =
∑n∗−1

i=0 c(i)(x) and it remains

to prove the calculation of the coeXcients of c(x) as in (3.2).

Note that (a(x))[h] = a[h](x) =
∑da

i=0 a
[h]
i x[h+i] for any a(x) ∈ Lqm [x] and any integer h. Hence,

with (3.1), we obtain ∀i ∈ [0, n∗ − 1]:

(
c(i)(x)

)[−in∗]
= a(i)[−in∗](b(x)) =

n∗−1∑

j=0

a
[−in∗]
in∗+j ·b[in

∗+j−in∗](x) =
n∗−1∑

j=0

a
[−in∗]
in∗+j ·

( db∑

h=0

b
[j]
h x[j+h]

)
.

The important observation is that the expression in the sum over h does not depend on i. The
coeXcients of (c(i)(x))[−in∗] are therefore:

(c
(i)[−in∗]
0 c

(i)[−in∗]
1 . . . c

(i)[−in∗]
db+n∗−1) = (a

[−in∗]
in∗ a

[−in∗]
in∗+1 . . . a

[−in∗]
in∗+n∗−1) ·B, ∀i ∈ [0, n∗ − 1],

where the n∗× (db +n∗) matrixB is deVned as in (3.2). SinceB is independent of i, we can write

the calculations for all i as matrix multiplication and the statement follows.

Hence, we obtain the coeXcients of (c(i)(x))[−in∗] by the matrix multiplication from (3.2) and the

coeXcients of c(i)(x) from (c(i)(x))[−in∗] by a simple q-power. Finally, we sum up over i to obtain the

linearized composition c(x) = a(b(x)) =
∑n∗−1

i=0 c(i)(x).

This principle is summarized in Algorithm 3.1 and the complexity is analyzed in Theorem 3.1.

Theorem 3.1 (Linearized Composition with Algorithm 3.1).

Let two linearized polynomials a(x) =
∑da

i=0 aix
[i], b(x) =

∑db
i=0 bix

[i] ∈ Lqm [x] be given. Then,

Algorithm 3.1 calculates c(x) = a(b(x)) with complexityM(da, db) = O((max{da, db})1.69) operations
in Fqm and is therefore a solution to Problem 3.1 (a).

38



3.1 Fast Algorithms for Linearized Polynomials

Proof. Lemma 3.1 proves that Algorithm 3.1 correctly calculates c(x) = a(b(x)). The complexity

of Algorithm 3.1 is analyzed in the following, where we denote again n = max{da, db}+ 1.

• Line 1: The complexity of this step is negligible since it only splits the polynomial a(x).

• Line 2: The complexity of q-powers is negligible (see Section 3.1.1).

• Line 3: This step dominates the overall complexity of Algorithm 3.1 and can be accomplished

by a fast matrix multiplication as follows.

We split the n∗ × (db + n∗) matrix B into ⌈(db + n∗)/n∗⌉ ≤ ⌈√n + 1⌉ ≤ √n + 2 ≤
max{da, db}+ 3 matrices of size n∗ × n∗ and multiply each of these matrices from the left by

A. CalculatingA ·B is then equivalent to multiplying at most
√
n+ 2 times a n∗ × n∗ matrix.

LetN (n) denote the complexity of multiplying two n×nmatrices. The Coppersmith–Winograd

algorithm has complexity N (n) = O(n2.376), see e.g. [GG03]. Thus, Line 3 can be computed

with O(√n N (n∗)) = O(√n N (
√
n)) = O(n0.5(n0.5)2.376) = O(n1.69) operations in Fqm .

• Line 4: The q-powers are again negligible.

• Line 5: Since consecutive c(i)(x) overlap at most in db coeXcients, the overall sum requires at

most n∗ · db ≤ n∗ · n = n1.5 additions over Fqm , i.e., this step has complexity O(n1.5) in Fqm .

The overall complexity of Algorithm 3.1 is therefore dominated by the matrix multiplication and

isM(n) = O(n1.69) = O((max{da, db})1.69) operations in Fqm .

Algorithm 3.1.

c(x)← FastLinComp
(
a(x); b(x)

)

Input: a(x); b(x) ∈ Lqm [x] with degq a(x) = da, degq b(x) = db

Initialize: n∗ ←
⌈√

max{da, db}+ 1
⌉

1 Fragmentation (see (3.1)): a(i)(x)←∑n∗−1
j=0 ain∗+j x

[in∗+j], for all

i ∈ [0, n∗ − 1]

2 Calculate q-powers: a
[−n∗i]
j , for all j ∈ [0, da] and i ∈ [1, n∗ − 1]

b
[i]
j , for all j ∈ [0, db] and i ∈ [0, n∗ − 1]

3 Set up matrices A and B as in (3.2) and calculate A ·B
4 Calculate q-powers: obtain c(i)(x) out of (c(i)(x))[−in∗], for all i ∈ [0, n∗ − 1]

5 Summation: c(x) =
∑n∗−1

i=0 c(i)(x)

Output: c(x) = a(b(x)) ∈ Lqm [x] with degq c(x) = da + db

In order to apply Algorithm 3.1 to Problem 3.1 (b), we replaceB by a q-circulant matrix.

Corollary 3.1 (Linearized Composition modulo (x[m] − x) with Algorithm 3.1).

Let two linearized polynomials a(x) =
∑da

i=0 aix
[i], b(x) =

∑db
i=0 bix

[i] ∈ Lqm [x] with da, db < m be

given. Replace the n∗ × (db + n∗) matrix B in Line 3 of Algorithm 3.1 by the following n∗ ×m matrix

Bm =




b
[0]
0 b

[0]
1 b

[0]
2 . . . b

[0]
m−1

b
[1]
m−1 b

[1]
0 b

[1]
1 . . . b

[1]
m−2

...
...

...
. . .

...

b
[n∗−1]
m−n∗+1 b

[n∗−1]
m−n∗+2 b

[n∗−1]
m−n∗+3 . . . b

[n∗−1]
m−n∗




,

with bi
def
= 0 for i > db.
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Then, Algorithm 3.1 calculates c(x) = a(b(x)) mod (x[m]] − x) with complexity Mm(m) =
O(m(max{da, db})0.69) ≤ O(m1.69) operations in Fqm and is therefore a solution to Problem 3.1 (b).

The complexity of Algorithm 3.1 might be further reduced when we use a fast matrix multiplication

algorithm which takes advantage of the fact that B and Bm are highly structured matrices.

3.1.3 Fast Linearized Composition Using Fast Multi-Point Evaluation

This subsection provides an algorithm for eXciently calculating the linearized multi-point evaluation

as well as an algorithm for fast linearized composition modulo (x[m] − x). The complexity of both

algorithms is in the order of O(m3) over the ground Veld Fq .

The following theorem provides the basis of the algorithms presented in this subsection and can be

seen as an equivalent of the convolutional theorem for linearized polynomials1.

Theorem 3.2 (Transformed Values of Composition).
Let two linearized polynomials a(x) =

∑da
i=0 aix

[i], b(x) =
∑db

i=0 bix
[i] ∈ Lqm [x] be given. If possible,

let s be an integer such that da + db < s and s divides m. If such an integer does not exist, let s = m.

Let b̂(x) =
∑s−1

i=0 b̂ix
[i] denote the q-transform of b(x) with respect to an ordered normal basis β =

(β[0] β[1] . . . β[s−1]) in Fqm of Fqs over Fq according to DeVnition 2.12. Moreover, let

c(x) ≡ a(b(x)) mod (x[m] − x),

and let ĉ(x) =
∑s−1

i=0 ĉix
[i] denote its q-transform with respect to β. Then,

ĉi = a
(
b̂i
)
, ∀i ∈ [0, s− 1].

Proof. If an integer s exists which divides m and additionally, da + db < s, we obtain c(x) =
a(b(x)) mod (x[m] − x) = a(b(x)) mod (x[s] − x). Clearly, this holds also if s = m.

Since s | m, there is a normal basis in Fqm of Fqs over Fq (Lemma 2.3). Due to DeVnition 2.12, the

transformed coeXcients are ĉi = c(β[i]) and b̂i = b(β[i]) for all i ∈ [0, s − 1]. For da + db < s,
the modulo operation is useless and for s = m, we know that β[m] = β holds and the modulo

operation is implicitly included. Hence, ĉi = c(β[i]) = a(b(β[i])) = a
(
b̂i
)
.

Theorem 3.2 indicates that a fast linearized composition can be realized by fast linearized multi-point

evaluation. Hence, Vnding a solution to Problem 3.1 (c) is considered as the Vrst task on the way to fast

linearized composition. An algorithm for fast linearized multi-point evaluation is of general interest,

e.g. for encoding Gabidulin codes with gi 6= β[i]. The following lemma shows how we can use a matrix

multiplication over the ground Veld Fq to accomplish this multi-point evaluation.

Lemma 3.2 (Multi-Point Evaluation with Matrices).
Let a linearized polynomial a(x) ∈ Lqm [x] with da = degq a(x) < m and s points b̂0, b̂1, . . . , b̂s−1 ∈
Fqm be given, for some s dividingm. Let â(x) =

∑m−1
i=0 âix

[i] denote the q-transform of a(x) with respect

to an ordered normal basis β = (β[0] β[1] . . . β[m−1]) of Fqm over Fq . Denote

extβ (âi) = (Â0,i Â1,i . . . Âm−1,i)
T , ∀i ∈ [0,m− 1],

extβ (̂bi) = (B̂0,i B̂1,i . . . B̂m−1,i)
T , ∀i ∈ [0, s− 1].

1The convolutional theorem for (usual) polynomials over Vnite Velds states that polynomial multiplication modulo (xn − 1)
is equivalent to element-wise multiplication of the coeXcients in the transform domain, see e.g. [Bla03, Theorem 6.1.3],

[Bos98, Theorem 3.6].
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Then, for Â ∈ Fm×m
q and B̂ ∈ Fm×s

q , the extension of the multi-point evaluation is given by:

extβ

(
(a(̂b0) a(̂b1) . . . a(̂bs−1))

)
= Â · B̂ def

=



Â0,0 Â0,1 . . . Â0,m−1

Â1,0 Â1,1 . . . Â1,m−1
...

...
. . .

...

Âm−1,0 Âm−1,1 . . . Âm−1,m−1


 ·




B̂0,0 B̂0,1 . . . B̂0,s−1

B̂1,0 B̂1,1 . . . B̂1,s−1
...

...
. . .

...

B̂m−1,0 B̂m−1,1 . . . B̂m−1,s−1


 . (3.3)

Proof. Since B[i] = B for any B ∈ Fq and all i, we can rewrite the evaluation values by:

a(̂bi) = a

(m−1∑

j=0

B̂j,i · β[j]

)
=

m−1∑

j=0

B̂j,i · a
(
β[j]
)
, ∀i ∈ [0, s− 1].

Hence, all s evaluation values can be calculated by the following vector-matrix multiplication:

(
a(̂b0) a(̂b1) . . . a(̂bs−1)

)
=
(
a(β[0]) a(β[1]) . . . a(β[m−1])

)
· B̂.

Due to the deVnition of the q-transform,

a(β[i]) = âi =

m−1∑

j=0

Âj,i · β[j], ∀i ∈ [0,m− 1].

Therefore, the evaluation values are (a(̂b0) a(̂b1) . . . a(̂bs−1)) = β · Â · B̂.

When the number of evaluation points s does not divide m, we pad with zeros until the number

of points divides m. Lemma 3.2 is connected to considering a(x) as an Fq-linear map as in Subec-

tion 2.2.3 and looking at its associated matrix. Similar transform-based ideas were used in [GA86].

Thus, Problem 3.1 (c) of linearized multi-point-evaluation can be solved eXciently by the following

Algorithm 3.2.

It is important to remark that the q-transform in Line 1 of Algorithm 3.2 is done with regard to a

basis of Fqm over Fq (and not of Fqs over Fq), even if da < s, since this is required by the proof of

Lemma 3.2.

Algorithm 3.2.

(a(̂b0) a(̂b1) . . . a(̂bs−1))←FastLinMultEval
(
a(x); {b̂0, b̂1, . . . , b̂s−1};β

)

Input: a(x) ∈ Lqm [x] with degq a(x) = da < m;

b̂0, b̂1, . . . , b̂s−1 ∈ Fqm ;

normal basis β = (β[0] β[1] . . . β[m−1]) of Fqm over Fq

1 Calculate q-transform of a(x) w.r.t. to β: obtain âi = a(β[i]), i = [0,m− 1] as in (2.21)

2 Calculate extβ (âi) and extβ (̂bj) for all i ∈ [0,m− 1], j ∈ [0, s− 1]

3 Set up matrices Â and B̂ as in (3.3) and calculate a← β · Â · B̂
Output: a = (a(̂b0) a(̂b1) . . . a(̂bs−1)) ∈ Fs

qm
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Lemma 3.3 (Linearized Multi-Point Evaluation with Algorithm 3.2).

Let a linearized polynomial a(x) ∈ Lqm [x] with da = degq a(x) < m and the s points b̂0, b̂1, . . . , b̂s−1 ∈
Fqm , where s | m, be given. Then, Algorithm 3.2 Vnds the s evaluation values

a(̂b0), a(̂b1), . . . , a(̂bs−1)

with complexity O(max{da, s}m comp(Tm)) ≤ O(m2 comp(Tm)) operations in Fq and is therefore a

solution to Problem 3.1 (c).

Proof. Due to Theorem 3.2 and Lemma 3.2, Algorithm 3.2 returns the correct result. For the

complexity, let us analyze the steps of Algorithm 3.2 in detail.

• Line 1: The q-transform of length m for a polynomial of q-degree da costs O(mda comp(Tm))
operations in Fq (compare Table 3.1).

• Line 2: The mapping extβ (DeVnition 2.1) requires no cost.

• Line 3: Â is anm×m matrix and B̂ is anm× s matrix over Fq and therefore with straight-

forward matrix multiplication, this step costs O(sm2) operations in Fq .

Thus, Algorithm 3.2 requires overall complexity O(max{da, s}m comp(Tm)) in Fq .

Based on Theorem 3.2 and Algorithm 3.2, we can calculate the linearized composition eXciently.

This is shown in Algorithm 3.3, which computes the composition c(x) = a(b(x)) mod (x[m] − x) in
three main steps. It relies on the fact that ĉi = a(̂bi) as proven in Theorem 3.2.

Algorithm 3.3.

c(x)← FastLinCompTrans
(
a(x); b(x);β

)

Input: a(x); b(x) ∈ Lqm [x] with degq a(x) = da, degq b(x) = db;

normal basis β = (β[0] β[1] . . . β[m−1]) of Fqm over Fq

Initialize: DeVne transform length:
if ∃i : i | m and da + db < i then

s← i

else
s← m

Find normal basis βs = (β
[0]
s β

[1]
s . . . β

[s−1]
s ) of Fqs over Fq and its dual basis β⊥

s

1 Calculate the q-transform of b(x) w.r.t. to βs: obtain b̂i = b(β[i]), for all i ∈ [0, s− 1], as in
(2.21)

2 Multi-point evaluation:

(ĉ0 ĉ1 . . . ĉs−1)← FastLinMultEval
(
a(x); {b̂0, b̂1, . . . , b̂s−1};β

)
with Algorithm 3.2

3 DeVne linearized polynomial ĉ(x) =
∑s−1

i=0 ĉix
[i]

4 Calculate inverse q-transform of ĉ(x) w.r.t. to β⊥
s : ci = ĉ(β⊥

s
[i]
), for all i ∈ [0, s− 1], as in (2.22)

Output: c(x) = a(b(x)) mod (x[m] − x) ∈ Lqm [x] with degq c(x) ≤ min{da + db,m− 1}

We assume in the following that the ordered normal bases β and βs are known and therefore, Vnding

these bases requires no additional complexity.

Lemma 3.4 (Linearized Composition modulo (x[m] − x) with Algorithm 3.3).

Let a(x) =
∑da

i=0 aix
[i] and b(x) =

∑db
i=0 bix

[i] with da, db < m be given. If existing, let s be an integer

such that da + db < s and s divides m. If such an integer does not exist, let s = m.
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Then, Algorithm 3.3 calculates

c(x) = a(b(x)) mod (x[m] − x)

with complexityMm(m) = O(max{da, s}m comp(Tm)) ≤ O(m2 comp(Tm)) operations in Fq and

is therefore a solution to Problem 3.1 (b).

Proof. The correctness of the result of Algorithm 3.3 follows from Theorem 3.2 and Lemma 3.2.

For the complexity, we analyze the steps of Algorithm 3.3 in the following.

• Line 1: The Vrst step is a q-transform of length s and requires therefore O(sdb comp(Tm))
operations in Fq (compare Table 3.1).

• Line 2: The call of Algorithm 3.2 costsO(max{da, s}m comp(Tm)) operations in Fq (Lemma 3.3).

• Line 3: This step has negligible complexity.

• Line 4: The last step is an inverse q-transform of length s and costs at most O(s2 comp(Tm))
operations in Fq , since degq ĉ(x) < s (compare Table 3.1).

Hence, the overall complexity of Algorithm 3.3 is in the order of O(max{da, s}m comp(Tm)) ≤
O(m2 comp(Tm)) operations in Fq .

Algorithm 3.3 establishes a connection between the linearized composition and matrix multiplication.

This relation can also be used vice versa: assume, two matrices A,B ∈ Fm×m
q are given; represent

them as vectors in Fn
qm , calculate their inverse q-transforms and compute the composition of the

corresponding linearized polynomials. The q-transform of this result is the matrix multiplication

A ·B. Thus, provided that (inverse) q-transforms are eXcient, matrix multiplication and the linearized

composition are equivalent. Linearized composition faster than matrix multiplication would imply a

major breakthrough in matrix multiplication. Therefore, it is quite unlikely to Vnd an algorithm for the

linearized composition faster than Algorithm 3.3 (up to using a faster matrix multiplication algorithm).

3.1.4 Fast Linearized (Extended) Euclidean Algorithm

In the following, we derive an eXcient LEEA (see Algorithm 2.3 for the standard algorithm), which is a

generalization of the fast extended Euclidean algorithm for usual polynomials by Aho and Hopcroft

[AH74] and Blahut [Bla85]. Our fast LEEA is based on the so-called Divide & Conquer strategy, which

splits a problem of “size” n into two halves, each of “size” n/2. The structure of these halves should be

the same as the original problem. The calculation can be accelerated if there exist fast solutions for the

halved problems and if they can be combined with low complexity [AH74, Bla85, GG03].

In order to break the LEEA into two halves, recall from (2.16) that we can write

Q(i,1) = Q(i,h+1) ◦Q(h,1),

for any integer 1 ≤ h ≤ i− 1. Calculating Q(i,i) = Q(i) is equivalent to one step of the LEEA as in

(2.15). The Vrst half of the splitted LEEA hence consists of the Vrst h iterations and outputs Q(h,1).

The second uses Q(h,1) as input and considers the problem of calculating Q(i,h+1). To reduce the

complexity, Q(i,h+1) and Q(h,1) have to be calculated eXciently. For that purpose, we use the fact that

the Vrst calculations of the LEEA only depend on some leading coeXcients of the input polynomials.

Theorem 3.3 (Upper CoeXcients of the Input Polynomials of the LEEA).

Let a(x), b(x) ∈ Lqm [x], with q-degrees da ≥ db be given. Split these polynomials into two parts:

a(x) = a′
(
x[h]
)
+ a′′(x), b(x) = b′

(
x[h]
)
+ b′′(x), (3.4)
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for some h, satisfying 0 ≤ h ≤ 2db − da. Let q(x), r(x) and q
′(x), r′(x) ∈ Lqm [x] with degq r(x) < db

and degq r
′(x) < degq b

′(x) be deVned such that

a(x) = q
(
b(x)

)
+ r(x), a′(x) = q′

(
b′(x)

)
+ r′(x). (3.5)

Then,

q(x) = q′(x), r(x) = r′
(
x[h]
)
+ r′′(x),

for some r′′(x) ∈ Lqm [x] with degq r
′′(x) < h+ da − db.

Proof. The proof can be found in Appendix A.1.

Therefore, Theorem 3.3 shows that if h ≤ 2db − da, the quotient polynomial q(x) does not depend
on the h lower coeXcients of a(x) and b(x). Further, these h lower coeXcients inWuence only the

h+ da − db lowest coeXcients of the remainder r(x). The following lemma shows that about half of

the iterations of the LEEA can be calculated correctly without knowing r′′(x).

Lemma 3.5 (Quotients in the Iterations of the LEEA).

Let a(x), b(x) ∈ Lqm [x], with q-degrees da ≥ db be given and let them be fragmented into smaller

polynomials as in (3.4) with 0 ≤ h ≤ 2db − da. Let Q
(i) and Q′(i) denote the matrices as in (2.16) in step

i of RightLEEA
(
a(x); b(x); dstop

)
and RightLEEA

(
a′(x); b′(x); d′stop

)
, respectively. Then,

Q(i) = Q′(i) (3.6)

for each i where degq r
′(i)(x) ≥ (da − h)/2 and r′(i)(x) is the remainder in step i of

RightLEEA
(
a′(x); b′(x); d′stop

)
.

Proof. The proof is similar to the proof of [Bla85, Theorem 10.7.3].

A fast realization of the whole LEEA can be given based on Lemma 3.5 and consists of two parts as

in [Bla85]. However, for decoding, we only need the Vrst steps of the LEEA—sometimes even less than

half of the iterations. The acceleration of the Vrst steps of the LEEA is given in Algorithm 3.4, called

FastHalfLEEA. If we choose dstop = da/2, then Algorithm 3.4 is the linearized equivalent of Blahut’s

HalfEucAlg [Bla85, Figure 10.8].

Recall from (2.17) and (2.19) that when we knowQ(h,1), we can immediately calculate r(h)(x), u(h)(x)
and v(h)(x). For this reason, Algorithm 3.4 outputs only Q(h,1).

As typical for Divide & Conquer algorithms, Algorithm 3.4 consists of two halves (Lines 1–9 and

Lines 10–21). Each of these two halves implies a recursive call. The Vrst recursive call is done in Line 8

with truncated polynomials. Then in Line 11, one linearized division is done, which is necessary to

obtain the quotients in the recursions. In Lines 17–18, the polynomials are again truncated and the

second recursive call follows in Line 20.

Assume, Q is the output of Algorithm 3.4, then we can calculate as in (2.17):

(
r(j−1)(x)

r(j)(x)

)
= Q ◦

(
a(x)
b(x)

)
. (3.7)

These polynomials r(j−1)(x), r(j)(x) satisfy the following lemma.
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Lemma 3.6 (Degree of Output of Algorithm 3.4).

Let Q← FastHalfLEEA
(
a(x); b(x); dstop

)
be the output of Algorithm 3.4 for some da > dstop ≥ da/2,

where da = degq a(x) ≥ degq b(x). Let r
(j−1)(x) and r(j)(x) ∈ Lqm [x] be as in (3.7). Then,

degq r
(j−1)(x) ≥ dstop and degq r

(j)(x) ≤ dstop. (3.8)

Proof. The proof can be found in Appendix A.1.

Algorithm 3.4.

Q← FastHalfLEEA
(
a(x); b(x); dstop

)

Input: a(x); b(x) ∈ Lqm [x] with da = degq a(x) ≥ db = degq b(x);
stopping degree dstop, where da > dstop ≥ da/2

1 if db ≤ dstop then

2 Q←
(

x 0
0 x

)

3 else

4 h← ⌊da/2⌋
5 a(1)(x)←

(
a(x)− (a(x) mod x[h])

)
⊗ x[−h]

6 b(1)(x)←
(
b(x)− (b(x) mod x[h])

)
⊗ x[−h]

7 d
(1)
stop ←

⌊
dstop
da
· degq a(1)(x)

⌋

8 Recursive Call: Q(1) ← FastHalfLEEA
(
a(1)(x); b(1)(x); d

(1)
stop

)

9

(
a(x)
b(x)

)
← Q(1) ⊗

(
a(x)
b(x)

)

10 if degq b(x) >
dstop
da
· degq a(x) then

11 q(x); r(x)← RightDiv
(
a(x); b(x)

)
with Algorithm 2.1

12 Q←
(
0 x
x −q(x)

)

13

(
a(x)
b(x)

)
← Q⊗

(
a(x)
b(x)

)

14 Q← Q⊗Q(1)

15 if degq b(x) >
dstop
da
· degq a(x) then

16 h←
⌊
dstop(da−degq a(x))

da−dstop

⌋

17 a(1)(x)← (a(x)− (a(x) mod x[h]))⊗ x[−h]

18 b(1)(x)← (b(x)− (b(x) mod x[h]))⊗ x[−h]

19 d
(1)
stop ←

⌊
dstop
da
· degq a(1)(x)

⌋

20 Recursive Call: Q(1) ← FastHalfLEEA
(
a(1)(x); b(1)(x); d

(1)
stop

)

21 Q← Q(1) ⊗Q

Output: Q ∈ Lqm [x]
2×2

Hence, Algorithm 3.4 outputs the matrixQ, which provides the last remainder of q-degree at least
the stopping degree dstop. The degree constraints in Lines 10 and 15 of Algorithm 3.4 correspond
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3 Decoding Approaches for Gabidulin Codes

to improvements from [GY79, BGY80]. They remarked that without these degree constraints, the

algorithms by Aho and Hopcroft [AH74] and Blahut [Bla85] do not work properly. Our Algorithm 3.4 is

a generalization of the algorithms by [AH74, Bla85], considering the improvements from [GY79, BGY80].

It is equivalent to their algorithms if the stopping degree is dstop = da/2 and if m = 1, i.e., if we
consider the Veld Fq , since then A[i] = A for all elements A ∈ Fq .

Lemma 3.7 (Complexity of Algorithm 3.4).

Algorithm 3.4 requires complexity OEA(da, db) = O(max{D(da, db),M(da, db)} log da) operations if
da = degq a(x) ≥ db = degq b(x).

Proof. The complexity of the splitting operations in Lines 5, 6, 17, 18 and the value assignments

are negligible. The linearized compositions from Lines 9, 13, 14, 21 cost in the order ofM(da, db)
operations. The linearized division in Line 11 requires in the order of D(da, db) operations. Recall
from the proof of Lemma 3.6 that both recursive calls are done with polynomials of degree at most

da/2. Hence, OEA(da, db) is upper bounded by:

OEA(da, db) ≤ 2 · OEA(da/2, db/2) +M(da, db) +D(da, db).
It is known from the master theorem for linear recurrence relations (see e.g. [GG03]) that this

inequality implies OEA(da, db) ≤ O(max{M(da, db),D(da, db)} log da).
Using fast linearized composition, this results in the following corollary.

Corollary 3.2 (Fast LEEA Using Fast Composition).

If we use Algorithm 3.1 from Subsection 3.1.2 for the linearized composition, then Algorithm 3.4 has

complexity O(max{D(da, db),max{da, db}1.69} log da) operations in Fqm .

If da, db < m and we use Algorithm 3.3 (Subsection 3.1.3) for the linearized composition, then Algo-

rithm 3.4 has complexity O(max{D(da, db), dam comp(Tm)} log da) operations in Fq .

Corollary 3.2 shows therefore that a fast linearized division would immediately provide a fast LEEA.

3.2 Decoding of Gabidulin Codes

Decoding of Gabidulin codes can generally be accomplished by two diUerent principles: syndrome-
based decoding (which relies on solving a key equation) as in [Gab85, Rot91, PT91, Gab92, RP04a] and
interpolation-based decoding as in [Loi06].

In the course of this section, we Vrst describe a known syndrome-based decoding principle of
Gabidulin codes (Subsection 3.2.1) and second, we derive a new decoding algorithm in Subsection 3.2.2,
which can be seen as the rank-metric equivalent of Gao’s algorithm for decoding Reed–Solomon
codes [Gao03]. Further, we show in Subsection 3.2.3 how this algorithm can be extended to error-erasure
decoding of Gabidulin codes and how it can be accelerated based on the q-transform (Subsection 3.2.4).
The results of Subsections 3.2.2 and 3.2.4 were partly published in [WAS11, WAS13].

3.2.1 Known Syndrome-Based Decoding Approaches

Following the descriptions of [Gab85, Rot91, Gab92], we explain the idea of syndrome-based BMD
decoding (as deVned in Section 2.1.3), without going into detail about the diUerent algorithmic possibil-
ities.

Let r = c + e ∈ Fn
qm be the received word, where c ∈ Gab[n, k]. The goal of decoding is now to

reconstruct c, given only r and the code parameters. Clearly, this is possible only if the rank of the
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error e is not too big. Syndrome-based BMD decoding of Gabidulin codes follows similar steps as

syndrome-based BMD decoding of Reed–Solomon codes. For Reed–Solomon codes, the two main steps

are determining the “error locations” and Vnding the “error values”, where the second step is considered

to be much easier. Algebraic BMD decoding of Gabidulin codes also consists of two steps; however,

the second one is not necessarily the easier one. The starting point of decoding Gabidulin codes is to

decompose the error, based on the well-known rank decomposition of a matrix.

Lemma 3.8 (Rank Decomposition [MS74, Theorem 1]).

For any matrix X ∈ Fm×n
q of rank r there exist full rank matrices Y ∈ Fm×r

q and Z ∈ Fr×n
q such

that X = YZ. Moreover, the column space of X is Cq (X) = Cq (Y) ∈ Gq(m, r) and the row space is

Rq (X) = Rq (Z) ∈ Gq(n, r).

Therefore, we can rewrite the matrix representation of e with rk(e) = t by:

E = extβ (e) = A ·B, withA ∈ Fm×t
q , B ∈ Ft×n

q ,

and if we deVne a
def
= ext−1

β (A) ∈ Ft
qm :

e = ext−1
β (E) = ext−1

β (A) ·B = a ·B = (a0 a1 . . . at−1) ·B. (3.9)

This decomposition is clearly not unique, but any of them is good for decoding. The two main steps

of decoding Gabidulin codes are therefore: Vrst, determine “a basis of the column space” of the error,

i.e., Vnd the vector a of a possible decomposition, and second, Vnd the corresponding matrix B, which

Vxes the row space2. Both steps are based on the syndrome, which can be calculated out of the received

word (see DeVnition 2.8) by

s = (s0 s1 . . . sn−k−1) = r ·HT = e ·HT , (3.10)

whereH is a parity-check matrix of the Gab[n, k] code (see (2.14)). We denote the associated syndrome

polynomial by s(x) =
∑n−k−1

i=0 six
[i] ∈ Lqm [x]. Its coeXcients are:

si =
n−1∑

j=0

ejh
[i]
j =

n−1∑

j=0

t−1∑

l=0

alBl,jh
[i]
j

def
=

t−1∑

l=0

ald
[i]
l , ∀i ∈ [0, n− k − 1], (3.11)

with

dl
def
=

n−1∑

j=0

Bl,jhj . (3.12)

We deVne the error span polynomial as the minimal subspace polynomial of the vector a:

Λ(x)
def
= Ma0,a1,...,at−1(x) =

q−1∏

B0=0

· · ·
q−1∏

Bt−1=0

(
x−

t−1∑

i=0

Biai

)
. (3.13)

Hence, due to Lemma 2.9, the error span polynomial Λ(x) is a linearized polynomial of q-degree t and
any Fq-linear combination of roots of Λ(x) is also a root of Λ(x).

The Vrst part of the decoding process is to determine Λ(x), given the syndrome polynomial s(x),
and it is strongly based on the following theorem, the key equation for decoding Gabidulin codes.

2Note that it is possible to change the order of these two steps and search for a basis of the row space Vrst and then Vnd a

corresponding matrixA. This is a big diUerence to Reed–Solomon codes, where we cannot interchange the two main

steps.
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Theorem 3.4 (Key Equation for Decoding Gabidulin Codes [Gab85, Lemma 4]).

Let r = c + e ∈ Fn
qm be given, where c ∈ Gab[n, k] over Fqm and rk(e) = t < n − k. Denote by

s = (s0 s1 . . . sn−k−1) = r ·HT ∈ Fn−k
qm the syndrome as in (3.10) and by s(x) =

∑n−k−1
i=0 six

[i] its

associated polynomial.

Let the error span polynomial Λ(x) with degq Λ(x) = t be deVned as in (3.13), where a =
(a0 a1 . . . at−1) is a basis of the column space of e. Then,

Ω(x) ≡ Λ(s(x)) = Λ(x) ◦ s(x) mod x[n−k], (3.14)

for some Ω(x) ∈ Lqm [x] with degq Ω(x) < t.

Proof. With (2.12) and (3.11), the i-th coeXcient of Λ(s(x)) can be calculated by

Ωi
def
=
[
Λ(s(x))

]
i
=

i∑

j=0

Λjs
[j]
i−j =

i∑

j=0

Λj

(
t−1∑

l=0

ald
[i−j]
l

)[j]

=
t−1∑

l=0

d
[i]
l

i∑

j=0

Λj · a[j]l . (3.15)

For any i ≥ t this gives:

Ωi =
t−1∑

l=0

d
[i]
l Λ
(
al
)
= 0, ∀i ∈ [t, n− k − 1− 1], (3.16)

since Λ(x) has ai, ∀i ∈ [0, t− 1], as roots, see (3.13), and therefore degq Ω(x) < degq Λ(x) = t.

Alternatively, we can derive a key equation for the row space of the error word (compare e.g. [SK09a]).

Theorem 3.5 (Row Space Key Equation for Decoding Gabidulin Codes).

Let r = c + e ∈ Fn
qm be given, where c ∈ Gab[n, k] over Fqm and rk(e) = t < n − k. Denote by

s = (s0 s1 . . . sn−k−1) = r ·HT ∈ Fn−k
qm the syndrome as in (3.10) and by s(x) =

∑n−k−1
i=0 six

[i] its

associated polynomial.

Let the row error span polynomial be Γ(x) = Md0,d1,...,dt−1(x) with degq Γ(x) = t, where di is deVned
as in (3.12), ∀i ∈ [0, t− 1]. Further, let

s̃i = s
[i−n+k+1]
n−k−1−i , ∀i ∈ [0, n− k − 1] (3.17)

and s̃(x) =
∑n−k−1

i=0 s̃ix
[i]. Then,

Φ(x) ≡ Γ(s̃(x)) mod x[n−k], (3.18)

for some Φ(x) ∈ Lqm [x] with degq Φ(x) < t.

Proof. From (2.12) and (3.12), we obtain

s̃i =
t−1∑

l=0

a
[i−n+k+1]
l dl. (3.19)

The i-th coeXcient of the linearized composition Γ(s̃(x)) can then be calculated by

Φi
def
=
[
Γ(s̃(x))

]
i
=

i∑

j=0

Γj s̃
[j]
i−j =

i∑

j=0

Γj

(
t−1∑

l=0

a
[i−j−n+k+1]
l dl

)[j]

=
t−1∑

l=0

a
[i−n+k+1]
l

i∑

j=0

Γj ·d[j]l .
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For any i ≥ t this gives:

Φi =
t−1∑

l=0

a
[i−n+k+1]
l Γ

(
dl
)
= 0, ∀i[t, n− k − 1− 1],

since Γ(x) has all di, ∀i ∈ [0, t− 1], as roots and therefore degq Φ(x) < degq Γ(x) = t.

Based on the key equation from Theorem 3.4, we explain the diUerent steps of the standard decoding

process of Gabidulin codes in the following and summarize them in Algorithm 3.5. Similar steps have to

be accomplished when we solve the row space key equation instead of the column space key equation.

Syndrome Calculation

As mentioned before, the Vrst step of decoding Gabidulin codes is calculating the syndrome based on a

parity-check matrix H ∈ F
(n−k)×n
qm and the received word r ∈ Fn

qm :

s = (s0 s1 . . . sn−k−1) = r ·HT = e ·HT ∈ F
(n−k)
qm .

Solving the Key Equation

The direct way to Vnd Λ(x) is to solve a linear system of equations based on the key equation (3.14).

Due to (3.15) and (3.16):

Ωi =

i∑

j=0

Λjs
[j]
i−j =

t∑

j=0

Λjs
[j]
i−j = 0, ∀i[t, n− k − 1− 1].

This is equivalent to the following homogeneous linear system of equations:




Ωt

Ωt+1
...

Ωn−k−1


 =




s
[0]
t s

[1]
t−1 . . . s

[t]
0

s
[0]
t+1 s

[1]
t . . . s

[t]
1

...
...

. . .
...

s
[0]
n−k−1 s

[1]
n−k−2 . . . s

[t]
n−k−1−t



·




Λ0

Λ1
...

Λt


 = 0. (3.20)

If the dimension of the solution space of (3.20) is one, then any solution of (3.20) provides the coeXcients

of the error span polynomial Λ(x), deVned as in (3.13), except for a scalar factor. This scalar factor

does not pose a problem, since it does not change the root space. The following lemma provides a

criterion to obtain the actual number of errors out of the syndrome matrix, see [Gab92, Lemma, p. 132].

Lemma 3.9 (Rank of Syndrome Matrix).

Let r = c+e ∈ Fn
qm , where c ∈ Gab[n, k] and rk(e) = t ≤ ⌊(n−k)/2⌋ and let (s0 s1 . . . sn−k−1) ∈ Fn−k

qm

denote the corresponding syndrome. Then, for any u ≥ t, the u× (u+ 1) matrix

S(u) def
=




s
[0]
u s

[1]
u−1 . . . s

[u]
0

s
[0]
u+1 s

[1]
u . . . s

[u]
1

...
...

. . .
...

s
[0]
2u−1 s

[1]
2u−2 . . . s

[u]
u−1




(3.21)

49



3 Decoding Approaches for Gabidulin Codes

has full rank u if and only if u = t, where the i-th row of S(u) is deVned to be all-zero if i+u > n−k−1,
∀i = [0, u− 1].

Proof. Since there are n − k non-zero syndrome coeXcients, we can provide only n − k − u
non-zero rows of S(u). Therefore, for u > ⌊(n−k)/2⌋, the matrix S(u) has only n − k − u < u
non-zero rows and therefore rank less than u.
Let ai, di = 0 for i ≥ t. For u ≤ ⌊(n−k)/2⌋, we can decompose S(u) with (3.11) as follows:

S(u) =




d
[u]
0 d

[u]
1 . . . d

[u]
u−1

d
[u+1]
0 d

[u+1]
1 . . . d

[u+1]
u−1

...
...

. . .
...

d
[2u−1]
0 d

[2u−1]
1 . . . d

[2u−1]
u−1



·




a
[0]
0 a

[1]
0 . . . a

[u]
0

a
[0]
1 a

[1]
1 . . . a

[u]
1

...
...

. . .
...

a
[0]
u−1 a

[1]
u−1 . . . a

[u]
u−1




.

Both matrices are q-Vandermonde matrices and due to Lemma 2.10, they both have full rank if and

only if d0, d1, . . . , du−1 and a0, a1, . . . , au−1 are sets of elements which are linearly independent

over Fq . If u > t, this is not true, since ai, di = 0 for i ≥ t. If u = t this is true and the left matrix

is a square matrix of rank u and the right is a u × (u + 1) matrix of rank u. Since the Vrst u
columns of the right matrix constitute a matrix of rank u, the statement follows.

Thus, Lemma 3.9 proves that for t ≤ ⌊(d−1)/2⌋ = ⌊(n−k)/2⌋, S(t) has full rank and the dimension of

the solution space of (3.20) is one. For the algorithmic realization, we can set up S(u) for u = ⌊(d−1)/2⌋
and check its rank. If the rank is not full, we decrease u by one, control the rank, and so on, until we

Vnd u such that the rank is full. Since we have to solve several linear systems of equations over Fqm ,

the complexity of this step is in the order of at least O(t3) ≤ O(n3) operations in Fqm with Gaussian

elimination (see [Rot91, Gab92]).

However, the matrix S(u) is highly structured, it is a q-circulant matrix. The algorithm based on the

LEEA from [Gab85] and the Berlekamp–Massey-like algorithms from [PT91, RP04a, RP04b, SRB11] take

advantage of this structure and can therefore solve the key equation with complexity O(n2) operations
in Fqm .

Finding the Root Space of Λ(x)

After solving the key equation (3.20) for the coeXcients of Λ(x), we have to Vnd a basis of the root

space of Λ(x). This basis corresponds to one possible a = (a0 a1 . . . at−1) in the decomposition of

(3.9). Finding a basis of the root space of a linearized polynomial is relatively easy due to the structure

of their roots. Recall Subsection 2.2.3, where it is shown that we can Vnd the root space of Λ(x) by
Vnding the right kernel of its associated evaluated matrix, i.e., for some basis B = {β0, β1, . . . , βm−1}
of Fqm over Fq , we have to determine:

ker
(
extβ

(
(Λ(β0) Λ(β1) . . . Λ(βm−1))

))
.

The kernel of this matrix is equivalent to extβ (a) of one possible a. Thus, Vnding the root space of

Λ(x) involves solving a linear system of equations of size m over Fq , which has complexity at most

O(m3) over Fq . This root-Vnding procedure was explained in detail in [LN96, Ber84].

Determining the Error

Knowing a possible vector a ∈ Ft
qm , we have to Vnd the corresponding matrix B ∈ Ft×n

q such that

e = a ·B as in (3.9). This is basically done in two substeps. Based on (3.11), we can set up the following
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system of equations,3 which we have to solve for d = (d0 d1 . . . dt−1):




a
[0]
0 a

[0]
1 . . . a

[0]
t−1

a
[−1]
0 a

[−1]
1 . . . a

[−1]
t−1

...
...

. . .
...

a
[−(n−k−1)]
0 a

[−(n−k−1)]
1 . . . a

[−(n−k−1)]
t−1



·




d0
d1
...

dt−1


 =




s
[0]
0

s
[−1]
1
...

s
[−(n−k−1)]
n−k−1




. (3.22)

Solving this system of equations with Gaussian elimination requires complexity O(n3) operations over
Fqm , whereas the recursive algorithm from [Gab85] requires complexity O(n2) over Fqm by using the

q-Vandermonde structure of the involved matrix.

After having found d, we determine the matrix B out of dl =
∑n−1

i=0 Bl,ihi for all l ∈ [0, t− 1]. The
complexity of this calculation is negligible, since (h0 h1 . . . hn−1) has rank n and we are looking for

the representation of d over Fq using these linearly independent elements.

Finally, we calculate e = a ·B and can reconstruct c = r−e. A summary of this decoding procedure

is given in Algorithm 3.5. Notice that the decoding procedure most probably fails when t > ⌊(d−1)/2⌋.

Algorithm 3.5.

c or “decoding failure”←DecodeGabidulin
(
r;H

)

Input: r = (r0 r1 . . . rn−1) ∈ Fn
qm with n ≤ m;

parity-check matrix H = qvann−k((h0 h1 . . . hn−1)) of Gab[n, k]

1 Syndrome calculation: s← r ·HT ∈ Fn−k
qm

2 if s = 0 then

3 Estimated codeword: c← r

4 else

5 Set up S(t) as in (3.21) for t = ⌊(n− k)/2⌋
while rk(S(t)) < t do

6 t← t− 1

7 Set up S(t) as in (3.21)

8 Solve S(t) ·ΛT = 0 for Λ = (Λ0 Λ1 . . . Λt) ∈ Ft+1
qm

9 Find basis (a0 a1 . . . aε−1) ∈ Fε
qm of the root space of Λ(x) =

∑t
i=0 Λix

[i] over

Fqm

10 if ε = t then
11 Find d = (d0 d1 . . . dt−1) ∈ Ft

qm by solving (3.22)

12 Find B =
(
Bi,j

)i∈[0,t−1]

j∈[0,n−1]
∈ Ft×n

q such that di =
∑n−1

j=0 Bi,jhj

13 Estimated codeword: c← r− a ·B
14 else

15 Declare decoding failure

Output: Estimated codeword c ∈ Fn
qm or “decoding failure”

We can use the fast LEEA from Subsection 3.1.4 in order to reduce the complexity of the algorithm

from [Gab85]. However, this only accelerates the step of solving the key equation, whereas the overall

3Notice that this system of equations from (3.22) can be used for row-erasure-only correction, i.e., when a is known in

advance due to the channel (compare Subsection 3.2.3).
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complexity remains in the order of O(n2) over Fqm . Algorithm 3.6 in the next subsection shows how

we can directly obtain the q-degree-restricted evaluation polynomial of the codeword by the LEEA and

therefore, we do not have to solve (3.22).

3.2.2 A Gao-like Decoding Algorithm

In contrast to the two-step procedure of the previous subsection, Loidreau’s Welch–Berlekamp-like

interpolation based decoding algorithm [Loi06] directly outputs the evaluation polynomial of the

estimated codeword and therefore, the second step of Vnding d and B is not necessary.

In this subsection, we present a new approach, where the LEEA directly provides the q-degree
restricted evaluation polynomial of the estimated codeword. This algorithm is an equivalent of Gao’s

algorithm for decoding Reed–Solomon codes [Gao03, Fed05]. The advantage compared to [Loi06] is

that we can accelerate our decoding algorithm based on the fast LEEA from Subsection 3.1.4 for q-cyclic
Gabidulin codes. Compared to solving directly the key equation from Theorem 3.4 with the LEEA as

in [Gab85], our advantage is that we do not need the (computationally intensive) step of Vnding B.

Let r = c+e, where c ∈ Gab[n, k] and t = rk(e), denote the received word and r(x) =
∑n−1

i=0 rix
[i]

its associated linearized polynomial. Let G = {g0, g1, . . . , gn−1} consist of n elements from Fqm , which

are linearly independent over Fq and which are used as evaluation points of the Gab[n, k] code as in
DeVnition 2.16. Let r̂(x) ∈ Lqm [x] denote the unique linearized polynomial of q-degree less than n
such that r̂(gi) = ri, ∀i ∈ [0, n− 1], holds. This polynomial can be calculated as follows:

r̂(x) =
n−1∑

i=0

ri ·
Li(x)

Li(gi)
, (3.23)

where Li(x) denotes the i-th linearized Lagrange basis polynomial of q-degree n− 1, see also [SK07],

which is deVned as the minimal subspace polynomial of G \ gi = {g0, . . . , gi−1, gi+1, . . . , gn−1}, i.e.:

Li(x) = MG\gi(x) =

q−1∏

B0=0

· · ·
q−1∏

Bi−1=0

·
q−1∏

Bi+1=0

· · ·
q−1∏

Bn−1=0

(
x−

n−1∑

j=0,j 6=i

Bjgj

)
. (3.24)

Therefore,

Li(gj)

Li(gi)
=

{
1 if i = j,

0 else.

It is important to remark that for the case of n | m and when G is a normal basis of Fqn over Fq , then

r̂(x) is the q-transform of r(x) as in DeVnition 2.12. This fact is used in Subsection 3.2.4 to accelerate

our decoding algorithm for q-cyclic Gabidulin codes. Here, we describe the decoding algorithm in

general for any Gab[n, k] code by using linearized Lagrange interpolation and a transformed key

equation.

Theorem 3.6 (Transformed Key Equation).

Let r = (r0 r1 . . . rn−1) be given and let r̂(x) be deVned as in (3.23), where G = {g0, g1, . . . , gn−1} is a
set of n elements, which are linearly independent over Fq . Let a = (a0 a1 . . . at−1) denote a basis of the
column space of r− (f(g0) f(g1) . . . f(gn−1)), for some f(x) ∈ Lqm [x] with degq f(x) < k.

Then, the linearized error span polynomial Λ(x), deVned as in (3.13), satisVes the transformed key

equation:

Λ
(
r̂(x)− f(x)

)
≡ 0 mod MG(x). (3.25)
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Proof. Due to the deVnition of Λ(x) in (3.13) and the deVnition of the linearized Lagrange basis

polynomial (3.24):

Λ
(
r̂(gi)− f(gi)

)
= Λ

(
ri − ci

)
=

t−1∑

j=0

Bj,iΛ
(
aj
)
= 0, ∀i ∈ [0, n− 1],

where Bi,j ∈ Fq for all i, j and c = (c0 c1 . . . cn−1) ∈ Gab[n, k].

Hence, for any G0, G1, . . . , Gn−1 ∈ Fq :

Λ
(
r̂(x)− f(x)

) ∣∣∣
x=

n−1∑
i=0

Gigi

=

n−1∑

i=0

GiΛ
(
ri − ci

)
= 0, ∀G0, G1, . . . , Gn−1 ∈ Fq.

Therefore,
(
x−∑n−1

i=0 Gigi
)
divides (in the usual sense) Λ

(
r̂(x)−f(x)

)
for anyG0, G1, . . . , Gn−1

∈ Fq . This implies that

Λ
(
r̂(x)− f(x)

)
≡ 0 mod MG(x).

For n = m, the minimal subspace polynomial is MG(x) = (x[m] − x) and due to Theorem 3.6,

Λ
(
r̂(x) − f(x)

)
≡ 0 mod (x[m] − x). This special case was also proven by Silva and Kschischang

in [SK09a, Sil09, Theorem 5] using properties of the q-transform. Moreover, for n | m, we can choose

G = {g0, g1, . . . , gn−1} such that it is a basis in Fqm of Fqn over Fq and then, MG(x) = (x[n] − x),
since then the unique subVeld Fqn of Fqm consists precisely of the roots of (x[n] − x) [LN96, p. 50].

The problem of solving the transformed key equation can be stated as follows.

Problem 3.2 (Solving Transformed Key Equation).

Let r̂(x) ∈ Lqm [x] as in (3.23) for G = {g0, g1, . . . , gn−1} with rk(g0 g1 . . . gn−1) = n be given,

where r ∈ Fn
qm denotes the received word. Let dR(r, c) = rk(r − c) ≤ ⌊(n−k)/2⌋ for some codeword

c = f(g) ∈ Gab[n, k].

Find Λ(x) ∈ Lqm [x] of q-degree t ≤ ⌊(n−k)/2⌋ and f(x) of q-degree less than k such that Λ(x) =
MA(x) for some set A = {a0, a1, . . . , at−1} with rk(a0 a1 . . . at−1) = t and such that

Λ
(
r̂(x)− f(x)

)
≡ 0 mod MG(x). (3.26)

We solve Problem 3.2 with a generalization of Gao’s algorithm [Gao03] for linearized polynomials,

given in Algorithm 3.6. The transformed key equation (3.25), Theorem 3.6, can be rewritten with a

polynomial Ω(x) ∈ Lqm [x]:

Λ
(
r̂(x)− f(x)

)
= −Ω

(
MG(x)

)
≡ 0 mod MG(x),

and thus,

Λ
(
f(x)

)
= Ω

(
MG(x)) + Λ

(
r̂(x)

)
. (3.27)

Recall that RightLEEA
(
a(x); b(x); dstop

)
with degq a(x) ≥ degq b(x) (Algorithm 2.3) returns unique

linearized polynomials rout(x), uout(x) and vout(x) such that degq rout(x) < dstop and

rout(x) = vout
(
a(x)

)
+ uout

(
b(x)

)
. (3.28)

If we compare (3.27) and (3.28), we obtain the idea for Algorithm 3.6: we run the LEEA with the input

polynomials a(x) ← MG(x) and b(x) ← r̂(x) and the stopping degree dstop ← ⌊(n−k)/2⌋ + k =
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⌊(n+k)/2⌋. If there exists a codeword c ∈ Gab[n, k] such that rk(r−c) ≤ ⌊(n−k)/2⌋, Theorem 3.7 proves

that the remainder rout(x) is equal to a ·Λ
(
f(x)

)
and the auxiliary polynomials are vout(x) = a ·Ω(x)

and uout(x) = a · Λ(x) for some scalar a ∈ Fqm . Hence, we can Vnd f(x) by a left linearized division

of rout(x) by uout(x). If no such codeword exists, the remainder of this linearized division is unequal

to zero, and we declare a decoding failure.

This idea is given in pseudo-code in Algorithm 3.6 and its correctness is proven in Theorem 3.7.

Our proof does not use the same strategy as in [Gao03], since Gao’s proof does not work directly for

linearized polynomials, instead we use some properties of the transformed key equation.

Theorem 3.7 (Correctness of Algorithm 3.6).

Let r ∈ Fn
qm and g = (g0 g1 . . . gn−1) with rk(g) = n be given. If t = rk(r − c) ≤ ⌊(n−k)/2⌋

for a codeword c = f
(
g
)
∈ Gab[n, k], then Algorithm 3.6 solves Problem 3.2. Hence, it returns f(x)

of degq f(x) < k and Λ(x) = MA(x), where A = {a0, a1, . . . , at−1} ∈ Fqm , such that (r − c) =
(a0 a1 . . . at−1) ·B as in (3.9).

If there is no such codeword, Algorithm 3.6 returns “decoding failure”.

Algorithm 3.6.

f(x); Λ(x) or “decoding failure”← DecodeGaoGabidulin
(
r; g0, g1, . . . , gn−1

)

Input: r = (r0 r1 . . . rn−1) ∈ Fn
qm with n ≤ m;

g0, g1, . . . , gn−1 ∈ Fqm , linearly independent over Fq

1 Calculate r̂(x)←
n−1∑
i=0

ri ·
Li(x)

Li(gi)
as in (3.23)

2 rout(x);uout(x); vout(x)← RightLEEA
(
MG(x); r̂(x); dstop = ⌊(n+k)/2⌋

)
with

Algorithm 2.3

3 f(x); r(x)← LeftDiv
(
rout(x);uout(x)

)
with Algorithm 2.2

4 if r(x) = 0 then

Output: Estimated evaluation polynomial f(x) with degq f(x) < k;
Estimated error span polynomial Λ(x)← uout(x)

5 else
Output: “Decoding failure”

Proof. First, we show that, given r̂(x) and MG(x), the transformed key equation (3.26) has a

unique solution for Λ(x) of minimal q-degree and f(x) of q-degree less than k. Second, we show
that Algorithm 3.6 Vnds this solution. Third, we prove if the rank distance of r to any codeword

c is greater than ⌊(n−k)/2⌋, there is no f(x) of degree less than k, fulVlling the transformed key

equation.

1.) We assume that there is a codeword c ∈ Gab[n, k] such that t = rk(r− c) ≤ ⌊(n−k)/2⌋ and we

prove that there is a unique solution of (3.26) (except for a constant factor), where degq f(x) < k
and degq Λ(x) = t. This follows either from reducing the transformed key equation (3.26) to

the “classical” key equation (3.14) (which has a unique solution due to Lemma 3.9) or directly

from [Loi06, Proposition 2].

2.) Now, we show that the result of the LEEA is a solution of the transformed key equation. Due

to (3.28), the RightLEEA
(
MG(x); r̂(x); dstop = ⌊(n+k)/2⌋

)
outputs unique polynomials such that:

rout(x) = uout
(
r̂(x)

)
mod MG(x). (3.29)
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On the one hand, rout(x) = r(i−1)(x) is the Vrst remainder in the iterations of the LEEA of q-
degree less than ⌊(n+k)/2⌋ and uout(x) is such that degq uout(x) = degq a(x)− degq r

(i−2)(x) ≤
⌊(n−k)/2⌋. On the other hand, the transformed key equation can be rewritten as

Λ
(
f(x)

)
≡ Λ

(
r̂(x)

)
mod MG(x), (3.30)

with degq Λ(x) = t ≤ ⌊(n−k)/2⌋ and degq f(x) < k. In [Loi06, Propositions 1 and 2] it was shown

that for t ≤ ⌊(n−k)/2⌋, the polynomials Λ(x) and f(x) provide a solution to (3.30) if and only if

Λ(x) and some Φ(x) of q-degree less than ⌊(n+k)/2⌋ provide a solution to

Φ(x) ≡ Λ
(
r̂(x)

)
mod MG(x). (3.31)

If we compare (3.29) and (3.31), it becomes clear that the output of the LEEA is such a solution,

including the degree constraints. [Loi06, Proposition 2] shows that there exists only one pair of

polynomials Φ(x),Λ(x) such that (3.31) is fulVlled with the required degree constraints. Hence,

there is also only one pair of polynomials Λ(x), f(x) such that (3.30) and its degree constraints

are fulVlled and we Vnd exactly this solution by the LEEA.

3.) Let t > ⌊(n−k)/2⌋, and assume nonetheless that Algorithm 3.6 returns f ′(x) with degq f
′(x) <

k. The following holds for the output of the LEEA:

uout
(
r̂(x)

)
≡ uout

(
f ′(x)

)
mod MG(x),

and hence also

uout
(
r̂(gj)− f ′(gj)

)
= uout

(
rj − c′j

)
= 0, ∀j ∈ [0, n− 1].

Due to the stopping condition, degq uout(x) ≤ ⌊(n−k)/2⌋ and hence, the dimension of the root

space of uout(x) is at most ⌊(n−k)/2⌋. Therefore, for j ∈ [0, n − 1], there exists a c′ such that

there are at most ⌊(n−k)/2⌋ linearly independent rj − c′j and thus, rk(r − c′) ≤ ⌊(n−k)/2⌋. This
is a contradiction to the assumption and thus, Algorithm 3.6 fails when the rank distance of r is
greater than ⌊(n−k)/2⌋ to any codeword.

With straight-forward implementation, Algorithm 3.6 has complexity O(n2) operations in Fqm .

3.2.3 Error-Erasure Decoding

Applications like random linear network coding might provide additional information about the

occurred error. Such information can be used to declare erasures and thus, to increase decoding

performance. In comparison to classical erasure decoders in Hamming metric, we distinguish two types

of erasures in rank metric: row erasures and column erasures.

We thereby consider the most general form of such row and column erasures as in [SKK08, GP08]

and show how the additional information can be incorporated into our decoding algorithm from

Subsection 3.2.2. We consider only the case n = m in this subsection. On the one hand this helps to

simplify the notations, but on the other hand this is since Lemma 3.10 only holds for n = m and it is

not clear how to extend it for arbitrary n < m.

We apply the q-transform in this subsection, but all considerations except Lemma 3.10 hold straight-

forward for linearized Lagrange interpolation polynomials as in the previous section. The presented

error-erasure decoder is able to reconstruct a codeword of a Gab[n, k] code over Fqm for n = m with

asymptotic complexity O(n2) operations over Fqm if

2t+ ̺+ γ ≤ d− 1 = n− k, (3.32)
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where t denotes the rank of the error, ̺ the rank of the row erasures and γ the rank of the column

erasures. Compared to the approaches from [GP08, SKK08, LSC13], again the advantage of our approach

is that the acceleration of the LEEA (Algorithm 3.4) can be used.

In the following, we explain our notations of row/column erasures, derive a generalization of the

transformed key equation and show how our decoder can be modiVed to incorporate also erasures.

Row and Column Erasures and Generalized Transformed Key Equation

Consider a Gab[n, k] code over Fqm with n = m, deVned in its q-cyclic form as in Lemma 2.15 with

g = (g0 g1 . . . gn−1) = (β⊥[0]
β⊥[1]

. . . β⊥[n−1]
) and the corresponding parity-check matrix with

h = (β[k] β[k+1] . . . β[k+n−1]) from Lemma 2.16.

The additional side information of the channel is assumed to be given in form of:

• ̺ row erasures (in [SKK08] called “deviations”) and

• γ column erasures (in [SKK08] called “erasures”),

such that the received matrix can be rewritten in accordance to (3.9) by

extβ (r) = extβ (c) +A(R)B(R) +A(C)B(C) +A(E)B(E)

︸ ︷︷ ︸
def
=E

∈ Fm×n
q , (3.33)

where A(R) ∈ Fm×̺
q , B(R) ∈ F̺×n

q , A(C) ∈ Fm×γ
q , B(C) ∈ Fγ×n

q , A(E) ∈ Fm×t
q , B(E) ∈ Ft×n

q ,

and A(R) and B(C) are known to the receiver. Further, t denotes the number of errors without side

information. This decomposition is also shown in Figure 3.1.

Em

n

= A(R)m

̺

· B(R) ̺

n

+ A(C)m

γ

· B(C) γ

n

+ A(E)m

t

· B(E) t

n

Figure 3.1. Illustration of row erasures, column erasures and (full) errors in rank metric. The known matrices
(given by the channel) are Vlled with gray.

Similar to (3.9), we can represent the error word as a vector as follows:

e = r− c = a(R)B(R) + a(C)B(C) + a(E)B(E) def
= e(R) + e(C) + e(E) ∈ Fn

qm , (3.34)

where a(R) ∈ F̺
qm , a(C) ∈ Fγ

qm and a(E) ∈ Ft
qm and let e(R)(x), e(C)(x) and e(E)(x) ∈ Lqm [x] denote

the linearized polynomials associated to e(R), e(C) and e(E).

Figure 3.2 illustrates the simplest case of row erasures, where the known matrix A(R) has only ̺
non-zero elements. This case was considered in earlier publications as [GPT91b, GP03, RP04b], but

in the general model (introduced in [GP08, SKK08]),A(R) can be any arbitrary matrix of rank ̺ over

Fq . The notation of (generalized) row erasures and codes correcting such erasures were also shown

in [RS96] using a diUerent terminology.

Similar to Subsection 3.2.1, we use the known matrix B(C) in order to calculate:

d
(C)
i =

n−1∑

j=0

B
(C)
i,j g⊥j =

n−1∑

j=0

B
(C)
i,j β[j], ∀i ∈ [0, γ − 1]. (3.35)
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3.2 Decoding of Gabidulin Codes

However, it is important to note that this deVnition diUers from (3.12) by using g⊥i = β[i] here and

hi = β[k+i] in (3.12).

B
(R)
1

B
(R)
0

m

n

=

E(R) = A(R) · B(R)

m

1

1

̺

·
B

(R)
1

B
(R)
0 ̺

n

Figure 3.2. Illustration of the simplest case of row erasures, where ̺ = 2 and the known matrix A(R) has only
two non-zero entries.

As before, we deVne error span polynomials, but now three diUerent types. In particular, we deVne

Γ(C)(x), Λ(R)(x) and Λ(E)(x) as the linearized polynomials of smallest q-degree such that:

Γ(C)
(
d
(C)
i

)
= 0, ∀i ∈ [0, γ − 1],

Λ(R)
(
a
(R)
i

)
= 0, ∀i ∈ [0, ̺− 1], (3.36)

Λ(E)
(
Λ(R)(a

(E)
i )

)
= 0, ∀i ∈ [0, t− 1].

Therefore, Γ(C)(x) = M
d
(C)
0 ,d

(C)
1 ,...,d

(C)
γ−1

(x) and Λ(R)(x) = M
a
(R)
0 ,a

(R)
1 ,...,a

(R)
̺−1

(x) can be calculated at

the beginning of the decoding process since B(C) and a(R) are known.

Let p(x) =
∑m−1

i=0 pix
[i] denote the full q-reverse linearized polynomial of p(x) ∈ Lqm [x], deVned by

the coeXcients pi = p
[i]
−i mod m as in [SK09a, Sil09]. The following lemma shows that for n = m, the full

q-reverse is related to the transpose of the associated evaluated matrix of p(x) (see Subsection 2.2.3).

Lemma 3.10 (Evaluated Matrix of q-Reverse [Sil09, Lemma 6.3]).

Let p(x) ∈ Lqm [x] with degq p(x) < m and its full q-reverse p(x) with the coeXcients pi = p
[i]
−i mod m,

for i ∈ [0,m− 1], be given. Let A = {α0, α1, . . . , αm−1} and B = {β0, β1, . . . , βm−1} be bases of Fqm

over Fq and let A⊥ = {α⊥
0 , α

⊥
1 , . . . , α

⊥
m−1} and B⊥ = {β⊥

0 , β
⊥
1 , . . . , β

⊥
m−1} denote their dual bases. Let

(p(α0) p(α1) . . . p(αm−1)) = (β0 β1 . . . βm−1) ·P,

where P ∈ Fm×m
q . Then,

(
p(β⊥

0 ) p(β
⊥
1 ) . . . p(β⊥

m−1)
)
= (α⊥

0 α⊥
1 . . . α⊥

m−1) ·PT .

Based on the previous lemma, we can establish the generalized transformed key equation, incorporating

errors and row/column erasures.

Theorem 3.8 (Generalized Transformed Key Equation).

Let r = c + e, for c ∈ Gab[n, k] over Fqm with n = m, be the given received word and let r̂(x) =

f(x) + ê(x) be its q-transform as in DeVnition 2.12. Let Γ(C)(x), Λ(R)(x) and Λ(E)(x) be deVned as in
(3.36).
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Then, these polynomials satisfy the generalized transformed key equation:

Λ(E)
(
Λ(R)

(
ê(Γ(C)(x))

))
≡ 0 mod (x[m] − x). (3.37)

Proof. The proof can be found in Appendix A.2.

Error-Erasure Decoding with Gao-like Algorithm

The idea of our error-erasure decoding algorithm is to modify the transformed received word in the

beginning of the decoding process as follows:

ŷ(x)
def
= Λ(R)

(
r̂(Γ(C)(x[γ]))

)
mod (x[m] − x),

which can immediately be calculated since all polynomials on the RHS are known from the channel.

This modiVed transformed received word can be rewritten as

ŷ(x) = Λ(R)
(
f(Γ(C)(x[γ]))

)
︸ ︷︷ ︸

degq<k+γ+̺

+Λ(R)
(
ê(Γ

(C)
(x[γ]))

)
mod (x[m] − x), (3.38)

where f(x) with degq f(x) < k is the evaluation polynomial of the transmitted codeword such that

c = f(g) ∈ Gab[n, k].

The idea is now to pass the modiVed transformed received word ŷ(x) from (3.38) (instead of r̂(x))

to Algorithm 3.6. The polynomial Λ(R)
(
f(Γ(C)(x[γ]))

)
on the RHS of (3.38) has q-degree less than

k+ ̺+ γ and can therefore be seen as the evaluation polynomial of a Gab[n, k+ ̺+ γ] codeword. The

polynomial Λ(R)
(
ê(Γ(C)(x[γ]))

)
is called modiVed transformed error in the following and it is shown in

Lemma 3.11 that its evaluation has rank at most t. Therefore, error-erasure decoding of a Gab[n, k] is
reduced to errors-only decoding of a Gab[n, k+ ̺+ γ] code. In principle, any error decoding algorithm

for Gabidulin codes can now be applied.

Lemma 3.11 (Rank of ModiVed Error Word).

Let e(RC)(x) (respectively e(RC) ∈ Fn
qm) with n = m denote the inverse q-transform of the modiVed

transformed error word Λ(R)
(
ê(Γ(C)(x[γ]))

)
. Further, let e(E) be deVned as in (3.34) with rk(e(E)) = t.

Then,

rk
(
e(RC)

)
≤ rk

(
e(E)

)
= t.

Proof. Due to the proof of Theorem 3.8, Λ(R)
(
(ê(R)(x)+ ê(C)(x))◦Γ(C)(x))

)
≡ 0 mod (x[m]−

x) holds and therefore also Λ(R)
(
(ê(R)(x) + ê(C)(x)) ◦ Γ(C)(x[γ]))

)
≡ 0 mod (x[m] − x) holds

and we obtain

Λ(R)
(
ê(Γ(C)(x[γ]))

)
≡ Λ(R)

(
ê(E)(Γ(C)(x[γ]))

)
mod (x[m] − x).

Let G =
(
Gi,j

)i∈[0,m−1]

j∈[0,m−1]
∈ Fm×m

q be such that Γ(C)(g
[γ]
j ) =

∑m−1
i=0 Gi,jgi and thus, ∀j ∈

[0,m− 1]:

e
(RC)
j = Λ(R)

(
ê(Γ(C)(g

[γ]
j ))

)
= Λ(R)

(
ê(E)(Γ(C)(g

[γ]
j ))

)
=

m−1∑

i=0

Gi,jΛ
(R)
(
ê(E)(gi)

)
.

Hence,

e(RC) =
(
Λ(R)

(
ê(E)(g0)

)
Λ(R)

(
ê(E)(g1)

)
. . . Λ(R)

(
ê(E)(gm−1)

))
·G.
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Due to Lemma 2.12,
(
Λ(R)(ê(E)(g0)) Λ(R)(ê(E)(g1)) . . . Λ(R)(ê(E)(gm−1))

)
lies in the same

row space as e(E) =
(
ê(E)(g0) ê

(E)(g1) . . . ê(E)(gm−1)
)
and hence, has rank at most t. The

multiplication with G does not increase the rank.

Since degq Λ
(R)
(
f(Γ(C)(x[γ]))

)
< k + ̺ + γ and since rk(e(RC)) ≤ t, we can call Algorithm 3.6

by DecodeGaoGabidulin
(
ŷ(x);g

)
and have to skip Step 1. This outputs Λ(R)

(
f(Γ(C)(x[γ]))

)
and

Λ(E)(x) if

rk
(
e(RC)

)
≤ t ≤ n− degq

(
Λ(R)(f(Γ(C)(x[γ])))

)
+ 1

2
=

n− k − ̺− γ

2
=

d− 1− ̺− γ

2
.

This follows directly from Theorem 3.7. After calling Algorithm 3.6, we have to divide the output

Λ(R)
(
f(Γ(C)(x[γ]))

)
from the left/right by the known error span polynomials Λ(R)(x) and Γ(C)(x[γ])

in order to obtain f(x). Thus, with these modiVcations, we can use Algorithm 3.6 for error-erasure

decoding. This error-erasure decoding principle is shown in Algorithm 3.7 in the next section together

with an acceleration based on the q-transform.

3.2.4 Fast Error-Erasure Decoding of q-cyclic Gabidulin Codes

For q-cyclic Gabidulin codes, linearized Lagrange interpolation (see e.g. (3.23)) coincides with the

q-transform (see DeVnition 2.12). A q-cyclic Gab[n, k] Gabidulin code over Fqm exists for any n
dividing m as shown in Corollary 2.2. In this section, we show how to accelerate the error-erasure

approach from the previous section for n = m using the q-transform. As before, the idea is based on

the comparison of the output of RightLEEA
(
x[m] − x; ŷ(x); dstop

)
, which is:

rout(x) ≡ uout
(
ŷ(x)

)
mod (x[m] − x),

where ŷ(x) = Λ(R)(r̂(Γ(C)(x[γ]))), and the generalized transformed key equation, shifted by γ (com-

pare Theorem 3.8):

Λ(E)
(
Λ(R)(f(Γ(C)(x[γ])))

)
≡ Λ(E)

(
Λ(R)(r̂(Γ(C)(x[γ])))

)
= Λ(E)

(
ŷ(x)

)
mod (x[m] − x),

where the q-degree of the LHS is less than t + ̺ + k + γ. Similar to Subsection 3.2.2, the decoding

algorithm follows from this comparison and is given in Algorithm 3.7.

Theorem 3.9 (Correctness and Complexity of Algorithm 3.7).

Let r ∈ Fn
qm , a low-complexity normal basis β = (β[0] β[1] . . . β[m−1]) of Fqm over Fq with

comp(Tm) ∼ O(m), the vector a(R) ∈ F̺
qm and the matrix B(C) ∈ Fγ×n

q as in (3.34) be given.

If a codeword c = f
(
g
)
∈ Gab[n, k] and the corresponding decomposition of r− c from (3.34) satisfy

2t + ̺ + γ ≤ n − k, then Algorithm 3.7 returns f(x) of degq f(x) < k. If there is no such codeword,

Algorithm 3.7 returns “decoding failure”.

If there is a fast (right and left) linearized division such thatD(m) =Mm(m), then error-only decoding
can be accomplished with complexity O(m3 logm) operations over Fq and if, in addition, there is also

a method to calculate the minimal subspace polynomial with complexityMm(m), then error-erasure

decoding can be accomplished by Algorithm 3.7 with complexity O(m3 logm) operations over Fq .

Else, the overall complexity is O(m2) operations over Fqm .
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Algorithm 3.7.

f(x) or “decoding failure”← FastDecodeGaoGabidulin
(
r(x);a(R);B(C);β

)

Input: r(x) ∈ Lqm [x] with degq r(x) < n = m;

a(R) = (a
(R)
0 a

(R)
1 . . . a

(R)
̺−1) ∈ F̺

qm ;

B(C) =
(
Bi,j

)i∈[0,γ−1]

j∈[0,n−1]
∈ Fγ×n

q ;

Ordered normal basis β = (β[0] β[1] . . . β[m−1]) of Fqm over Fq

1 Calculate d
(C)
i ←∑n−1

j=0 B
(C)
i,j β[j], ∀i ∈ [0, γ − 1], as in (3.35)

2 Calculate minimal subspace polynomials: Γ(C)(x)←M
d
(C)
0 ,d

(C)
1 ,...,d

(C)
γ−1

(x)

Λ(R)(x)←M
a
(R)
0 ,a

(R)
1 ,...,a

(R)
̺−1

(x)

3 Caculate q-reverse Γ(C)(x) with Γ
(C)
i = Γ

(C)[i]
−i mod m, ∀i ∈ [0,m− 1]

4 Calculate r̂(x) by q-transform: r̂i ← r
(
β[i]
)
, ∀i ∈ [0,m− 1] as in DeVnition 2.12

5 Calculate ŷ(x)← Λ(R)
(
r̂(Γ(C)(x[γ]))

)
mod (x[m] − x)

6 rout(x), uout(x), vout(x)← FastHalfLEEA
(
x[m] − x; ŷ(x); dstop =

⌊
n+k+̺+γ

2

⌋)
with Algorithm 3.4

7 f ′(x); r′(x)← LeftDiv
(
rout(x);uout(Λ

(R)(x))
)
with Algorithm 2.2

8 f(x); r(x)← RightDiv
(
f ′(x); Γ(C)(x[γ]) mod (x[m] − x)

)
with Algorithm 2.1

9 if r(x) = 0 and r′(x) = 0 then

Output: Estimated evaluation polynomial f(x) with degq f(x) < k

10 else
Output: “Decoding failure”

Proof. The correctness follows directly from Theorem 3.7 and Theorem 3.8. The complexity can

be analyzed as follows, where the complexity of not-mentioned steps is negligible.

• Line 2: The minimal subspace polynomials can be calculated recursively with complexityO(γ2)
and O(̺2) over Fqm with the recursive procedure described in [SKK08, pp. 3961–3962].

• Line 4: The q-transform can be accomplished with O(n2 comp(Tm)) ∼ O(n2m) operations
in Fq as shown in Table 3.1.

• Line 5: The linearized composition modulo (x[m] − x) can be done withMm(m) ≤ O(m1.69)
operations in Fqm if we use Algorithm 3.1 or withMm(m) ≤ O(m2 comp(Tm)) ∼ O(m3)
operations over Fq if we use Algorithm 3.3.

• Line 6: The call of the LEEA can be accomplished by using the fast LEEA from Algorithm 3.4

with complexity O(max{D(m),M(m)} logm). It is important to remark that both of our

algorithms for calculating the linearized composition, Algorithms 3.1 and 3.3, depend on the

degree of the involved polynomials and not only onm. This is necessary, since the polynomials

in the recursions of the fast LEEA have degree much smaller thanm and the whole algorithm

can only be accelerated if the complexity of each step depends on this degree and not on m.

• Lines 7 and 8: The left and right division require complexity D(m).

Hence, Theorem 3.9 shows that as soon as an eXcient way to calculate the linearized division and the

minimal subspace polynomial is found, we obtain a fast error-erasure decoding algorithm for Gabidulin

codes with complexity O(m3 logm) over the ground Veld Fq . The complexity of known decoding

approaches are all in the order O(n2) over Fqm , with some improvements of sub-steps. An overview of
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decoding approaches is given in Table A.1 in Appendix A.3.

3.3 Summary and Outlook

The Vrst part of this chapter deals with eXcient algorithms for operations with linearized polynomials.

We have analyzed the complexity of operations in Vnite Velds using normal bases and of standard

implementations for operations with linearized polynomials. Then, we have shown two methods for

reducing the complexity of the linearized composition, one based on a fragmentation of the involved

polynomials and one using linearized multi-point evaluation in the transform domain. In this context,

also an eXcient algorithm for calculating the linearized multi-point evaluation was given. Based on the

Divide & Conquer principle, a fast linearized Euclidean algorithm was presented.

The second part of this chapter covers decoding approaches for Gabidulin codes. First, we have

brieWy summarized a well-known syndrome-based decoding approach by deriving two types of key

equations and showing how to reconstruct the transmitted codeword if the rank of the additive error is

at most half the minimum rank distance. Second, we have presented a new BMD decoding approach,

which solves a transformed key equation by means of the linearized Euclidean algorithm and directly

outputs the evaluation polynomial of the estimated codeword. This algorithm can be seen as the rank-

metric equivalent to Gao’s algorithm. Finally, we have shown how this algorithm can be extended to

correct not only errors, but also row and column erasures simultaneously and how it can be accelerated

by means of the fast linearized Euclidean algorithm.

In future, a fast linearized division and a fast calculation of the minimal subspace polynomial

should be found. This will immediately speed up our decoding algorithm. Further, polynomial-time

decoding of Gabidulin codes beyond half the minimum rank distance is a challenging open problem.

An investigation of the possibilities of list decoding Gabidulin codes will be given in Chapter 5.
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CHAPTER4
Decoding Approaches for Interleaved

Gabidulin Codes

I
nterleaved Gabidulin codes were introduced in Subsection 2.3.3 and can be seen as s parallel
codewords of Gabidulin codes. When applied to random linear network coding, they can be

advantageous compared to usual Gabidulin codes since only one identity matrix is appended to s
Gabidulin codewords in order to construct constant-dimension codes. Therefore, the relative “overhead”

is reduced. Independently from this application, for certain types of errors, the decoding capability of

interleaved Gabidulin codes is higher than the usual BMD decoding capability.

This chapter is devoted to decoding interleaved Gabidulin codes. First, in Section 4.1, we explain two

known decoding approaches [LO06, SB10] and prove a connection between them. In the subsequent

sections, a new interpolation-based approach for decoding interleaved Gabidulin codes of length n,
interleaving order s and elementary dimensions k(i), ∀i ∈ [1, s], is presented. Our decoding principle

relies on constructing a multi-variate linearized polynomial by interpolating the received words. We

prove that the evaluation polynomials (of q-degree less than k(i)) of any interleaved Gabidulin codeword
in rank distance less than (sn−∑s

i=1 k
(i) + s)/(s+ 1) are roots of this multi-variate polynomial. Our

decoding approach uses similar principles as Guruswami andWang for folded/derivative Reed–Solomon

codes [Gur11, GW13] and Mahdavifar and Vardy for folded Gabidulin codes [MV12].

Section 4.2 explains the basic principle of this decoder and shows how the two main steps—

interpolation and root-Vnding—can each be accomplished by solving a linear systems of equations.

Our decoder is Vrst interpreted as a (not necessarily polynomial-time) list decoding algorithm in

Subsection 4.3.1 and second, as a unique decoding algorithm with a certain failure probability in

Subsection 4.3.2. To our knowledge, it is the Vrst list decoding algorithm for interleaved Gabidulin

codes. For the unique decoder, we derive a connection to the known unique decoding approaches

from [LO06, SB10], which provides an upper bound on the failure probability. Finally, in Section 4.4,

we show how our algorithm can be generalized to error-erasure decoding.

Parts of the results in Sections 4.2 and 4.3 were published in [WZ13].

4.1 Known Decoding Approaches

So far, there exist two approaches for decoding interleaved Gabidulin codes: one based on solving a

system of equations constructed by the received words by Loidreau and Overbeck [LO06] and one

based on the syndromes by Sidorenko and Bossert [SB10]. Both are unique probabilistic decoding

algorithms and correct with high probability up to the radius τ = ⌊s(n−k)/(s+1)⌋ when k(i) = k for all

i ∈ [1, s].

In the following, we shortly summarize the two principles and prove a relation between them. It is

important to remark that the approach from [SB10] was originally shown for horizontally interleaved
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4 Decoding Approaches for Interleaved Gabidulin Codes

Gabidulin codes, i.e., where an interleaved codeword is deVned by (f (1)(g) f (2)(g) . . . f (s)(g)).
However, in the following, we describe it for vertically interleaved Gabidulin codes as in DeVnition 2.17.

Let r(i) = (r
(i)
0 r

(i)
1 . . . r

(i)
n−1), ∀i ∈ [1, s], denote the s elementary received words, i.e., r(i) =

c(i) + e(i) and c(i) ∈ Gab[n, k(i)] as in DeVnition 2.17. Further, let t(i) = rk(e(i)) and let t
def
=

rk(e(1)T e(2)T . . . e(s)T ). We assume throughout this chapter that every interleaved error matrix

(e(1)T e(2)T . . . e(s)T )T ∈ Fs×n
qm of rank t is equi-probable.

With a usual BMD decoder, we could correct up to the radius
⌊
(n−k(i))/2

⌋
, ∀i ∈ [1, s], with each

elementary Gab[n, k(i)] code. However, if the row spaces of the error words are connected, interleaved

Gabidulin codes can correct more errors with high probability.

For the explanation of the two decoding principles, we assume that we know the actual rank of the

error t, which enables us to directly set up the corresponding system of equations in the appropriate

size. A straight-forward algorithmic realization would therefore solve this system of equations for

every t, where ⌊(d−1)/2⌋+ 1 ≤ t ≤ τ , but this principle can easily be improved.

A Decoding Approach based on the Received Word

In [LO06], Loidreau and Overbeck established an approach for unique decoding of interleaved Gabidulin

codes with k(i) = k, ∀i ∈ [1, s], up to the radius τ = ⌊s(n−k)/(s+1)⌋ with high probability. Clearly, their

algorithm also works when the k(i) are diUerent. We show the main properties of this general case in

the following; for details the reader is referred to [LO06, Ove07, Ove08]. For some t ≤ τ , the main step

of their decoding algorithm is to solve a linear system of equations

RR · λT = 0, (4.1)

for λ = (λ0 λ1 . . . λn−1), where the (n− t− 1 + s(n− t)−∑s
i=1 k

(i))× n matrix RR depends on

g = (g0 g1 . . . gn−1) and the received words:

RR =




GR

R
(1)
R

R
(2)
R
...

R
(s)
R




def
=




qvann−t−1(g)

qvann−k(1)−t(r
(1))

qvann−k(2)−t(r
(2))

...

qvann−k(s)−t(r
(s))




. (4.2)

If the right kernel ofRR has dimension one, the nearest interleaved codeword can be reconstructed

since any vector λ in this right kernel has rank weight n− t and reveals the error pattern, see [LO06]

and [Ove07, Algorithm 3.2.1]. However, whenRR has rank less than n− 1, the codeword cannot be

reconstructed in most cases. Thus, the probability that rk(RR) is less than n− 1, upper bounds the
probability of a decoding failure (or equivalently, the fraction of non-correctable errors of rank t).

The Vrst k(i) rows of GR, for i ∈ [1, s], constitute the generator matrix of the Gab[n, k(i)] code,
which is the i-th elementary code of the IGab[s;n, k(1), . . . , k(s)] code. This is due to the fact that

t ≤ τ ≤ n−maxi{k(i)} − 1, and hence, k(i) ≤ n− t− 1, ∀i ∈ [1, s]. Therefore, the right kernel of
RR can also be expressed in terms of the elementary error words:

ker
(
RR

)
= ker




qvann−t−1(g)

qvann−k(1)−t(e
(1))

qvann−k(2)−t(e
(2))

...

qvann−k(s)−t(e
(s))




def
= ker (ER) . (4.3)
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The rank of GR is n− t− 1 (compare Lemma 2.10) and the overall rank of the lower s submatrices

of ER is t ≤ τ . Hence, the overall rank is rk(RR) = rk(ER) ≤ n− 1. For s ≤ t, the probability that

rk(RR) < n− 1 was upper bounded by [LO06, Equation (6)], [Ove07, Equation (12)] as follows:

P
(
rk(RR) < n− 1

)
≤ 1−

(
1− 4

qm

)(
1− qm(s−t)

)s
. (4.4)

A Syndrome-Based Decoding Approach

The Sidorenko–Bossert approach [SB10, SJB11] considers unique decoding of interleaved Gabidulin

codes of arbitrary dimensions k(i) and is to some extent a generalization of the key equation-based

decoding approach for Gabidulin codes (see Subsection 3.2.1). Here, we will use the row space key

equation from Theorem 3.5, but the principle was originally described for the “usual” column space key

equation (Theorem 3.4). Denote the s syndrome vectors of length n− k(i) by:

s(i) = r(i) ·H(i)T = e(i) ·H(i)T = (s
(i)
0 s

(i)
1 . . . s

(i)

n−k(i)−1
), ∀i ∈ [1, s],

where H(i) is a parity-check matrix of Gab[n, k(i)]. Further, deVne the coeXcients of the s modiVed

syndromes as in (3.17) by:

s̃
(i)
j = s

(i)[j−n+k(i)+1]

n−k(i)−1−j
, ∀i ∈ [1, s], ∀j ∈ [0, n− k(i) − 1],

and denote the s corresponding (modiVed) syndrome polynomials by s̃(i)(x). Then, we obtain a row

space key equation for each of the s modiVed syndromes as in (3.18):

Γ(i)
(
s̃(i)(x)

)
≡ Φ(i)(x) mod x[n−k(i)], ∀i ∈ [1, s],

where degq Γ
(i)(x) = t(i) = rk(e(i)) and degq Φ

(i)(x) < degq Γ
(i)(x).

Since we assume that t = rk
(
e(1)T e(2)T . . . e(s)T

)
, for the row space of the elementary errors

Rq

(
e(i)
)
⊆ Rq (B) holds for some B ∈ Ft×n

q of rank t ≤ τ and i ∈ [1, s]. Hence, we can search for

one common (row) error span polynomial Γ(x) for all s key equations:

Γ
(
s̃(i)(x)

)
≡ Φ(i)(x) mod x[n−k(i)], ∀i ∈ [1, s],

where Γ(x) =
∑t

i=0 Γix
[i] = MD(x), where D is a basis of the overall row space, i.e., ofRq

(
e(1)
)
+

Rq

(
e(2)
)
+ · · ·+Rq

(
e(s)
)
, of dimension t ≤ τ .

Setting up these s key equations as a system of equations with the coeXcients of Γ(x) as unknowns
(similar to (3.14)) provides the following linear system of equations (see also [Gab92, Equation (16)]):

S · ΓT =




S(1)

S(2)

...

S(s)



· ΓT = 0, (4.5)
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where Γ = (Γ0 Γ1 . . . Γt) and

S(i) =




s̃
(i)[0]
t s̃

(i)[1]
t−1 . . . s̃

(i)[t]
0

s̃
(i)[0]
t+1 s

(i)[1]
t . . . s̃

(i)[t]
1

...
...

. . .
...

s̃
(i)[0]

n−k(i)−1
s̃
(i)[1]

n−k(i)−2
. . . s̃

(i)[t]

n−k(i)−1−t




=




s
(i)[t−n+k(i)+1]

n−k(i)−1−t
s
(i)[t−n+k(i)+1]

n−k(i)−t
. . . s

(i)[t−n+k(i)+1]

n−k(i)−1

s
(i)[t−n+k(i)+2]

n−k(i)−2−t
s
(i)[t−n+k(i)+2]

n−k(i)−t−1
. . . s

(i)[t−n+k(i)+2]

n−k(i)−2
...

...
. . .

...

s
(i)[0]
0 s

(i)[0]
1 . . . s

(i)[0]
t



. (4.6)

Thus, if rk(S) = t, we obtain a unique solution of Γ(x) (except for a scalar factor) and we continue

with Vnding the error vectors for each elementary Gabidulin code separately as in Subsection 3.2.1.

The matrix S from (4.5) provides at most
∑s

i=1(n− k(i) − t) linearly independent equations. In order

to obtain rk(S) = t, the parameters have to satisfy

s∑

i=1

(n− k(i) − t) ≥ t.

When k(i) = k, ∀i ∈ [1, s], the maximum decoding radius, which can be achieved by solving the linear

system of equations from (4.5), is then τ = ⌊s(n−k)/(s+1)⌋.
For the approach from [SB10], the probability of failure can be upper bounded by the probability

that S from (4.5) has rank less than t, which is bounded in [SB10, Theorem 5] for s ≤ τ as follows:

P
(
rk(S) < t

)
≤ 3.5 q−m

(
(s+1)(τ−t)+1

)
<

4

qm
.

This bound improves the bound from [LO06] and in general we can use Pf < 4/qm as simpliVed upper

bound on the failure probability of both cases.

Moreover, in [SB10, SJB11] an eXcient algorithm based on linearized multi-sequence shift-register

synthesis for decoding interleaved Gabidulin codes was developed, which implicitly Vnds the real

value of t and solves (4.5). However, for analyzing the connection to [LO06] and to our approach, the

interpretation as a linear system of equations is more convenient.

Connection Between the two Known Approaches

In the following lemma, we derive a connection between the two approaches from [LO06] and

from [SB10] when decoding interleaved Gabidulin codes with k(i) = k, ∀i ∈ [1, s].

Lemma 4.1 (Relation Between Ranks of Decoding Interleaved Gabidulin Codes).

Let k(i) = k, ∀i ∈ [1, s], let t ≤ τ = ⌊s(n−k)/(s+1)⌋ and let RR and S be deVned as in (4.2) and (4.5),

(4.6). Then, rk(S) < t if and only if rk(RR) < n− 1.

Proof. First recall the matrix RR from (4.2). The submatrix GR is a generator matrix of a

Gab[n, n− t− 1] code. Let h = (h0 h1 . . . hn−1) deVne an (n− k)×n parity-check matrixH(0)

of the elementary Gab[n, k] code (which deVnes the IGab[s;n, k, . . . , k] code) as in Lemma 2.14.
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Then,H = qvant+1((h
[n−k−t−1]
0 h

[n−k−t−1]
1 . . . h

[n−k−t−1]
n−1 )) is a (t+1)×n parity check matrix

of a Gab[n, n− t− 1] code and is a (t+ 1)× n submatrix of H(0), consisting of the lowermost

t+ 1 rows ofH(0).

Multiplying RR by HT and comparing the result to (4.6) gives:

RR ·HT =




qvann−t−1(g)

qvann−k−t(r
(1))

qvann−k−t(r
(2))

...

qvann−k−t(r
(s))




·HT =




qvann−t−1(g)

qvann−k−t(e
(1))

qvann−k−t(e
(2))

...

qvann−k−t(e
(s))




·HT =




0

S(1)[n−k−t−1]

S(2)[n−k−t−1]

...

S(s)[n−k−t−1]




. (4.7)

For any integer i, rk(A) = rk(A[i]), where A[i] means that every entry is taken to the q-power i.
Based on (4.7), we Vrst prove the if part. Calculate by Gaussian elimination of RR the matrix

Ẽ =

(
GR

ẼR

)

such that rk(RR) = rk(Ẽ) = rk(GR) + rk(ẼR) = n− t− 1 + rk(ẼR) (i.e., such that the ranks

sum up). Notice that ẼR does not necessarily consist of the s lower submatrices of ER from (4.3).

These elementary row operations do not change the rank and we obtain from (4.7)

rk
(
S
)
= rk

(
S[n−k−t−1]

)
= rk

(
RR ·HT

)
= rk

(
Ẽ ·HT

)
= rk

(
ẼR ·HT

)
.

Now, if rk(RR) < n−1, then rk(ẼR) < t since rk(GR) = n−t−1. Then, also rk
(
ẼR ·HT

)
< t

and therefore rk(S) < t.
Second, let us prove the only if part. Due to Sylvester’s rank inequality

rk
(
RR

)
+ rk

(
HT
)
− n ≤ rk

(
RR ·HT

)
= rk

(
S[n−k−t−1]

)
= rk

(
S
)
.

Clearly, rk(H) = t+ 1. Hence, if rk(S) < t, then rk
(
RR

)
≤ n− t− 1 + rk

(
S
)
< n− 1.

Thus, we proved that both approaches fail for exactly the same error matrices and clearly also have

the same fraction of correctable error matrices when k(i) = k, ∀i ∈ [1, s]. This means that the tighter

bound on the failure probability from [SB10] can also be used to bound the failure probability of [LO06].

However, for arbitrary k(i) = k, it is not clear if the matrix on the RHS of (4.7) has the same rank as

S since the q-powers of each submatrix diUer.

4.2 Principle of Interpolation-Based Decoding

Sudan [Sud97] and Guruswami and Sudan [GS99] introduced polynomial-time list decoding of Reed–

Solomon and Algebraic Geometry codes based on interpolating bivariate (usual) polynomials. For

linearized polynomials, however, it is not clear how to deVne mixed terms (i.e., monomials containing

more than one indeterminate) and how to design a list decoding algorithm for Gabidulin codes similar

to [Sud97, GS99]. When we deVne bivariate linearized polynomials without mixed terms, it is possible

to decode a Gab[n, k] code up to the BMD radius ⌊(n−k)/2⌋, which was done in [Loi06].
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Our decoding approach for interleaved Gabidulin codes relies on interpolating a multi-variate

linearized polynomials without mixed terms. The principle consists of an interpolation and a root-

Vnding step. First, we give interpolation constraints for a multi-variate linearized interpolation

polynomialQ(x, y1, . . . , ys) = Q0(x)+
∑s

i=1Qi(yi) and prove that the q-degree-restricted evaluation
polynomials f (1)(x), . . . , f (s)(x) of the interleaved Gabidulin codeword are roots of Q(x, y1, . . . , ys)
up to a certain radius τ . Second, we show how the root Vnding step can be accomplished by solving a

linear system of equations.

4.2.1 Interpolation Step

The conditions on our multi-variate linearized interpolation polynomial are as follows.

Problem 4.1 (Interpolation Step for Decoding Interleaved Gabidulin Codes).

Let r(i)(x) =
∑n−1

j=0 r
(i)
j x[j] ∈ Lqm [x], ∀i ∈ [1, s], and g0, g1, . . . , gn−1 ∈ Fqm , which are linearly

independent over Fq , be given.

Find an (s+ 1)-variate linearized polynomial of the form

Q(x, y1, . . . , ys) = Q0(x) +Q1(y1) + · · ·+Qs(ys),

which satisVes for given integers n, τ, k(1), . . . , k(s):

• Q(gj , r
(1)
j , . . . , r

(s)
j ) = 0, ∀j ∈ [0, n− 1],

• degq Q0(x) < n− τ ,

• degq Qi(yi) < n− τ − (k(i) − 1), ∀i ∈ [1, s].

Let us denote the coeXcients of the univariate polynomials by

Q0(x) =

n−τ−1∑

j=0

q0,jx
[j], Qi(yi) =

n−τ−k(i)∑

j=0

qi,jy
[j]
i , ∀i ∈ [1, s].

A solution to Problem 4.1 can be found by solving a linear system of equations, which is denoted by

R · qT = 0, where g = (g0 g1 . . . gn−1) and R is an n× (n− τ +
∑s

i=1(n− τ − k(i) + 1)) matrix

as follows:

R =
(
qvann−τ (g)

T qvann−τ−k(1)+1(r
(1))T . . . qvann−τ−k(s)+1(r

(s))T
)
, (4.8)

and q = (q0,0 . . . q0,n−τ−1 | q1,0 . . . q1,n−τ−k(1) | . . . | qs,0 . . . qs,n−τ−k(s)).

Lemma 4.2 (Maximum Radius).

There exists a non-zero Q(x, y1, . . . , ys), fulVlling the conditions of Problem 4.1 if

τ <
sn−∑s

i=1 k
(i) + s

s+ 1
. (4.9)

Proof. The number of linearly independent equations is given by the interpolation constraints

(i.e., the number of rows ofR in (4.8)), which is is at most n and has to be less than the number

of unknowns (given by the length of q) in order to guarantee that there is a non-zero solution.

Hence:

n < n− τ +
s∑

i=1

(
n− τ − k(i) + 1

)
⇐⇒ τ(s+ 1) < sn+ s−

s∑

i=1

k(i).
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4.2 Principle of Interpolation-Based Decoding

For the special case k(i) = k, ∀i ∈ [1, s], this gives τ < s(n− k + 1)/(s+ 1).

The unique decoding approaches from [LO06, SB10] (see Section 4.1) have maximum decoding radius

τu = (sn−∑s
i=1 k

(i))/(s+ 1). A comparison to the maximum value of τ given by Lemma 4.2 provides

the following corollary, showing that our decoding radius is at least the same as τu.

Corollary 4.1 (Decoding Radii for Interpolation-Based and Joint Decoding).

Let τ be the greatest integer fulVlling (4.9) and let τu =
⌊
(sn−∑s

i=1 k
(i))/(s+ 1)

⌋
. Then, 1 ≥ τ −τu ≥

0.

The following theorem shows that the evaluation words of the interleaved Gabidulin code are a root

of any interpolation polynomial, which fulVlls Problem 4.1.

Theorem 4.1 (Roots of Interpolation Polynomial).

Let c(i) = f (i)(g), where degq f
(i)(x) < k(i), and let r(i) = c(i) + e(i), ∀i ∈ [1, s]. Assume, t =

rk
(
e(1)T e(2)T . . . e(s)T

)
≤ τ , where τ satisVes (4.9). Let a non-zeroQ(x, y1, . . . , ys) be given, fulVlling

the interpolation constraints from Problem 4.1. Then,

F (x)
def
= Q

(
x, f (1)(x), . . . , f (s)(x)

)
= 0. (4.10)

Proof. DeVne r̂(i)(x) and ê(i)(x) such that r̂(i)(gj) = r
(i)
j and ê(i)(gj) = e

(i)
j = r

(i)
j − c

(i)
j ,

∀j ∈ [0, n− 1] and ∀i ∈ [1, s] using linearized Lagrange interpolation as in (3.23), (3.24).

Further, denote R(x)
def
= Q

(
x, r̂(1)(x), . . . , r̂(s)(x)

)
. Since all polynomials are linearized,

R(x)− F (x) = Q
(
0, ê(1)(x), . . . , ê(s)(x)

)

= Q1

(
ê(1)(x)

)
+Q2

(
ê(2)(x)

)
+ · · ·+Qs

(
ê(s)(x)

)
.

Then,

R
(
g
)
− F

(
g
)
=

s∑

i=1

Qi

(
ê(i)(g)

)
=

s∑

i=1

Qi

(
e(i)
)

=
( s∑

i=1

Qi(e
(i)
0 )

s∑

i=1

Qi(e
(i)
1 ) . . .

s∑

i=1

Qi(e
(i)
n−1)

)
.

Lemma 2.12 shows that the row spaces fulVll

Rq

(
s∑

i=1

Qi

(
e(i)
)
)
⊆ Rq

(
(e(1)T e(2)T . . . e(s)T )T

)
.

Because of the interpolation constraints, R(g) = 0 and hence rk (F (g)) = rk(
∑s

i=1Qi(e
(i))) ≤

rk(e(1)T e(2)T . . . e(s)T ) = t ≤ τ .
If rk(F (g)) ≤ τ , then the dimension of the root space of F (x) in Fqm has to be at least n − τ ,
which is only possible if its q-degree is at least n− τ . However, degq F (x) ≤ n− τ − 1 due to
the interpolation constraints and therefore F (x) = 0.

The interpolation step can be accomplished by solving the linear system of equations based on the

matrixR from (4.8), which requires cubic complexity in Fqm when using Gaussian elimination. Instead

of this, the eXcient interpolation from [XYS11] can be used and the complexity of the interpolation step
is reduced to O(s2n(n− τ)) operations over Fqm (in their notation L = s, C = n and D = n− τ − 1
and the complexity of their algorithm is O(L2CD)).
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4.2.2 Root-Finding Step

Similar to Guruswami and Wang in [Gur11, GW13] for folded/derivative Reed–Solomon codes and to

Mahdavifar and Vardy in [MV12] for folded Gabidulin codes, the root-Vnding step of our approach

results in solving a linear system of equations.

Assume, Q(x, y1, . . . , ys) is given, fulVlling the interpolation constraints from Problem 4.1. Then,

the task of the root-Vnding step is to Vnd all tuples of polynomials f (1)(x), f (2)(x), . . . , f (s)(x) such
that

F (x) = Q0(x) +Q1

(
f (1)(x)

)
+Q2

(
f (2)(x)

)
+ · · ·+Qs

(
f (s)(x)

)
= 0.

The important observation is that this is a linear system of equations over Fqm in the coeXcients of

f (1)(x), f (2)(x), . . . , f (s)(x). Recall for this purpose that (a+ b)[i] = a[i] + b[i] for any a, b ∈ Fqm and

any integer i and let us demonstrate the root-Vnding step with an example.

Example 4.1 (Root-Finding).

Let s = 2, n = m = 7, k(1) = k(2) = 2 and τ = 3. Find all pairs f (1)(x), f (2)(x) with degq f
(1)(x) =

degq f
(2)(x) < 2 such that F (x) = F0x

[0]+F1x
[1]+ · · ·+Fn−τ−1x

[n−τ−1] = 0. Due to the constraints
of Problem 4.1, degq F (x) ≤ n− τ − 1 = 3. Thus,

F0 = 0 = q0,0 + q1,0f
(1)
0 + q2,0f

(2)
0 ,

F1 = 0 = q0,1 + q1,1f
(1)[1]
0 + q1,0f

(1)
1 + q2,1f

(2)[1]
0 + q2,0f

(2)
1 ,

F2 = 0 = q0,2 + q1,2f
(1)[2]
0 + q1,1f

(1)[1]
1 + q2,2f

(2)[2]
0 + q2,1f

(2)[1]
1 ,

F3 = 0 = q0,3 + q1,2f
(1)[2]
1 + q2,2f

(2)[2]
1 .

Therefore, given Q(x, y1, y2), we can calculate the coeXcients of all possible pairs f (1)(x), f (2)(x) of
q-degree less than two by the following linear system of equations:




q1,0 q2,0

q
[−1]
1,1 q

[−1]
2,1 q

[−1]
1,0 q

[−1]
2,0

q
[−2]
1,2 q

[−2]
2,2 q

[−2]
1,1 q

[−2]
2,1

q
[−3]
1,2 q

[−3]
2,2


 ·




f
(1)
0

f
(2)
0

f
(1)[−1]
1

f
(2)[−1]
1


 =




−q0,0
−q[−1]

0,1

−q[−2]
0,2

−q[−3]
0,3


 . (4.11)

In order to set up (4.11) in general, we can use more than one Q(x, y1, . . . , ys). Namely, we can use all

polynomials corresponding to diUerent basis vectors of the solution space of the interpolation step.

This also decreases the probability that the system of equations for the root-Vnding step does not have

full rank (see also Subsection 4.3.2). In order to calculate the dimension of the solution space of the

interpolation step, denoted by dI , we need the rank of the interpolation matrix.

Lemma 4.3 (Rank of Interpolation Matrix).

Let rk
(
e(1)T e(2)T . . . e(s)T

)
= t ≤ τ , where τ satisVes (4.9). Then, for the interpolation matrix from

(4.8), rk(R) ≤ n− τ + t holds.

Proof. The Vrst k(i) columns of R contain the (transposed) generator matrices of the Gabidulin

codes Gab[n, k(i)]. Hence, for calculating the rank of R, we can subtract the codewords and their

q-powers from the s right submatrices such that these submatrices only depend on the error.

Hence, the rank ofR depends on rk(qvann−τ (g)), which is n− τ , and on the rank of the error

matrix, which is t. Hence, rk(R) ≤ n− τ + t.
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4.2 Principle of Interpolation-Based Decoding

The dimension of the solution space of the interpolation step is therefore:

dI
def
= dimker(R) ≥ (s+ 1)(n− τ)−

s∑

i=1

(k(i) − 1)− (n− τ + t)

= s(n− τ + 1)−
s∑

i=1

k(i) − t, (4.12)

and for k(i) = k for all i ∈ [1, s], we obtain dI ≥ s(n− τ − k + 1)− t.

In the following, let Q(h)(x, y1, . . . , ys), ∀h ∈ [1, dI ], denote the interpolation polynomials corre-

sponding to diUerent basis vectors of the solution space of the interpolation step. Let us denote the

following matrices:

Q
[i]
j

def
=




q
(1)[i]
1,j q

(1)[i]
2,j . . . q

(1)[i]
s,j

q
(2)[i]
1,j q

(2)[i]
2,j . . . q

(2)[i]
s,j

...
...

. . .
...

q
(dI)[i]
1,j q

(dI)[i]
2,j . . . q

(dI)[i]
s,j




, f
[i]
j

def
=




f
(1)[i]
j

f
(2)[i]
j
...

f
(s)[i]
j




, q
[i]
0,j

def
=




q
(1)[i]
0,j

q
(2)[i]
0,j
...

q
(dI)[i]
0,j




. (4.13)

For k = maxi{k(i)}, the linear system of equations for Vnding the roots of Q(x, y1, . . . , ys) is:

Q(h)
(
x, f (1)(x), . . . , f (s)(x)

)
= Q

(h)
0 (x) +Q

(h)
1 (f (1)(x)) + · · ·+Q(h)

s (f (s)(x)) = 0, ∀h ∈ [1, dI ]

⇐⇒



Q
[0]
0

Q
[−1]
1 Q

[−1]
0

Q
[−2]
2 Q

[−2]
1 Q

[−2]
0

. . .
. . .

. . .

. . .
. . .

. . .

Q
[−(n−τ−3)]
n−τ−k Q

[−(n−τ−3)]
n−τ−k−1 Q

[−(n−τ−3)]
n−τ−k−2

Q
[−(n−τ−2)]
n−τ−k Q

[−(n−τ−2)]
n−τ−k−1

Q
[−(n−τ−1)]
n−τ−k




·




f0

f
[−1]
1
...

f
[−(k−1)]
k−1




=




−q0,0

−q[−1]
0,1
...

−q[−(n−τ−1)]
0,n−τ−1




, (4.14)

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
Q · f = q0

where Q is a ((n − τ)dI) × sk matrix and where we assume that f
(i)
j = 0 if j ≥ k(i) and qi,j = 0

when j ≥ n− τ − k(i), ∀i ∈ [1, s].

Lemma 4.4 (Complexity of the Root-Finding Step).

Let Q(h)(x, y1, . . . , ys), ∀h ∈ [1, dI ], be given, satisfying the interpolation constraints from Problem 4.1.

Then, the basis of the subspace, which contains the coeXcients of all tuples f (1)(x), . . . , f (s)(x) such that

F (x) = Q
(
x, f (1)(x), . . . , f (s)(x)

)
= Q0(x) +Q1(f

(1)(x)) + · · ·+Qs(f
(s)(x)) = 0,

can be found recursively with complexity at most O(s3k2) operations over Fqm .
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Proof. The complexity of calculating q-powers is negligible (compare Table 3.1). The solution

of (4.14) can be found by the following recursive procedure. First, solve the linear system of

equations Q
[0]
0 · f0 = −q0,0 of size dI × s for f0 with complexity at most O(s3) when using

Gaussian elimination. Afterwards, calculate Q
[−1]
1 · f0 with sdI ≈ s2 multiplications over Fqm

and solve the system Q
[−1]
1 · f0 +Q

[−1]
0 · f [−1]

1 = −q[−1]
0,1 for f1 with complexity at most O(s3)

operations. We continue this until we obtain all coeXcients of f (1)(x), . . . , f (s)(x), where for
fj , we Vrst have to calculate (j − 1) · s · dI multiplications over Fqm and solve a dI × s linear
system of equations. Hence, the overall complexity for the root-Vnding step is upper bounded by∑k

j=1

(
(j − 1) · s · dI + s3

)
≤ O(s2k2 + s3k) ≤ O(s3k2) operations over Fqm .

4.3 Interpolation-Based Decoding Approaches

The decoding principle from the previous section can either be used as a list decoding algorithm, which

returns all codewords of the interleaved Gabidulin code in rank distance at most τ from the received

word, where τ satisVes (4.9) (described in Subsection 4.3.1), or as a probabilistic unique decoding

algorithm (described in Subsection 4.3.2). For the probabilistic algorithm, we derive a relation to the

known unique decoding algorithms and bound the failure probability.

4.3.1 A List Decoding Approach

Our decoding approach for interleaved Gabidulin codes can be seen as a list decoding algorithm,

consisting of solving two linear systems of equations. Except for pruning the solution space of the

root-Vnding step, we Vnd the solution(s) with complexity at mostO(s3n2) operations in Fqm . However,

our algorithm is not a polynomial-time list decoding algorithm (with respect to n) for interleaved
Gabidulin codes since the list size can become exponential in n as shown in the following lemma.

Lemma 4.5 (Maximum List Size).

Let r(i), ∀i ∈ [1, s], be given and let τ satisfy (4.9). Then, the list size ℓI , i.e., the number of codewords

from IGab[s;n, k(1), . . . , k(s)] in rank distance at most τ to r = (r(1)T r(2)T . . . r(s)T )T , is

ℓI
def
= max

r∈Fs×n
qm

{∣∣IGab[s;n, k(1), . . . , k(s)] ∩ B(τ)R (r)
∣∣
}
≤ qm(

∑s
i=1 k

(i)−mini{k
(i)}).

Proof. The list size can be upper bounded by the maximum number of solutions for the root-

Vnding step (4.14). There exists an integer i ∈ [1, s] such thatQi(x) 6= 0, sinceQ(x, y1, . . . , ys) 6=
0. Note that Q0(x) 6= 0 and Qi(x) = 0 , ∀i ∈ [1, s], is not possible since (qvann−τ (g))

T is a

full-rank matrix.

Hence, let i ∈ [1, s] be such that Qi(x) 6= 0 and let j be the smallest integer such that qi,j 6= 0.
Consider the submatrix of Q, which consists of the columns corresponding to the coeXcients of

f (i)(x). For some h ∈ [1, s], this submatrix contains at least one k(i)×k(i) lower triangular matrix

with q
(h)[−j]
i,j , q

(h)[−(j+1)]
i,j , . . . , q

(h)[−(j+k(i)−1)]
i,j on the diagonal. Therefore, rk(Q) ≥ mini{k(i)}

and the dimension of the solution space is at most (
∑s

i=1 k
(i) −mini{k(i)}).

It is not clear whether the list size ℓI can really be that great. Moreover, Vnding the actual list of

codewords out of the solution space of (4.14) further reduces the list size.
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When ℓI > 1, the system of equations for the root-Vnding step (4.14) cannot have full rank. The

following lemma estimates the average list size. For most parameters, this value is almost one (see

Example 4.2). The proof proceeds similar to McEliece’s proof for the average list size in the Guruswami–

Sudan algorithm [McE03].

Lemma 4.6 (Average List Size).

Let c(i) = f (i)(g), ∀i ∈ [1, s], where degq f
(i)(x) < k(i) and let r(i) = c(i) + e(i). Let

rk(e(1)T e(2)T . . . e(s)T ) = t ≤ τ and let τ satisfy (4.9). Then, the average list size, i.e., the aver-

age number of codewords (c(1)T c(2)T . . . c(s)T )T ∈ IGab[s;n, k(1), . . . , k(s)] such that

rk
(
(r(1)T r(2)T . . . r(s)T )− (c(1)T c(2)T . . . c(s)T )

)
≤ τ,

is upper bounded by

ℓI < 1 + 4
(
qm

∑s
i=1 k

(i) − 1
)
q(sm+n)τ−τ2−smn.

Proof. Let R be a random variable, uniformly distributed over all matrices in Fs×n
qm and let

r be a realization of R, i.e., the s elementary received words written as rows of a matrix. Let

c ∈ IGab[s;n, k(1), . . . , k(s)] be the Vxed transmitted codeword. Then, P (rk(r − c) ≤ τ) =
P (rk(r) ≤ τ), which is the probability that a random sm× n matrix over Fq has rank at most

τ . Let IGab∗[s;n, k(1), . . . , k(s)] be the code IGab[s;n, k(1), . . . , k(s)] without the transmitted

codeword.

Let us further consider another random variable X , which depends on R:

X(R) =
∣∣∣
{
IGab∗ ∩ B(τ)R (r)

}∣∣∣,

where r ∈ Fs×n
qm . Denote by 1(..) the indicator function, then the expectation of X is given by:

E[X] =
∑

r∈Fs×n
qm

P (R = r)X(R)

=
∑

c∈IGab∗

∑

r∈Fs×n
qm

1(rk(r− c) ≤ τ)P (R = r)

=
∑

c∈IGab∗

E
[
1(rk(r− c) ≤ τ)

]

=
∑

c∈IGab∗

P (rk(r− c) ≤ τ)

=
∑

c∈IGab∗

P (rk(r) ≤ τ).

Therefore

E[X] =
∣∣IGab∗

∣∣ ·
∣∣R ∈ Fsm×n

q : rk(R) ≤ τ
∣∣

qsmn

<
(
(qm)

∑s
i=1 k

(i) − 1
) 4q(sm+n)τ−τ2

qsmn
.

The average list size is ℓI = E[X] + 1, since we have to add the transmitted codeword.
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Unfortunately, it is not clear if it is possible that ℓI = 1 and nonetheless, the system of equations for
the root-Vnding step (4.14) does not have full rank. Thus, Lemma 4.6 does not bound the probability
that the rank of Q is not full; this will be done in Lemma 4.9.

Theorem 4.2 summarizes the properties of our list decoding algorithm.

Theorem 4.2 (List Decoding of Interleaved Gabidulin Codes).

Let the interleaved Gabidulin code IGab[s;n, k(1), . . . , k(s)] over Fqm consist of the elementary codewords

c(i) = f (i)(g), where degq f
(i)(x) < k(i) and let the elementary received words r(i), ∀i ∈ [1, s], be given.

Then, we can Vnd a basis of the subspace, containing all tuples of polynomials f (1)(x), . . . , f (s)(x),
such that their evaluation at g is in rank distance

τ <
sn−∑s

i=1 k
(i) + s

s+ 1

to (r(1)T r(2)T . . . r(s)T )T with overall complexity at most O(s3n2).

The complexity of Vnding the basis of the list is quadratic in n, but the worst-case complexity for
Vnding explicitly the whole list can be exponential in n. Therefore, this is not a polynomial-time list
decoder, although in most cases the list size is one and in then, the complexity of Vnding the unique
solution is quadratic in the length of the code.

4.3.2 A Probabilistic Unique Decoding Approach

In this section, we consider our decoding approach as a probabilistic unique decoding algorithm. Since
the list size might be greater than one, there is not always a unique solution. We accomplish the
interpolation step as before and declare a decoding failure as soon as the rank of the root-Vnding matrix
Q (see (4.14)) is not full. We upper bound this probability and call it failure probability. Moreover, we
show a relation to the unique decoding approaches from [LO06, SB10]. The upper bound as well as
simulation results show that the failure probability is quite small. Therefore, we can use our decoder
as probabilistic unique decoder which basically consists of solving two structured linear systems of
equations and has overall complexity at most O(s3n2), where s≪ n is usually a small Vxed integer.

It is important to observe that we always set up the system of equations for the interpolation step
(Problem 4.1) with maximum possible τ , but—in contrast to solving the systems of equations from (4.1)
and (4.5) — we also Vnd the unique solution (if it exists) if t < τ without decreasing the size of the
matrix, since the rank of the matrix R from (4.8) is not important.

Recall the matrix notations from (4.13) and denote additionally the dI × (s+ 1) matrix

Q0
def
=




q
(1)
0,0 q

(1)
1,0 . . . q

(1)
s,0

...
...

. . .
...

q
(dI)
0,0 q

(dI)
1,0 . . . q

(dI)
s,0


 . (4.15)

The rank of any matrix A ∈ Fl×n
qm satisVes rk(A[i]) = rk(A) for any integer i since the q-power on

the whole matrix is a linear operation. The matrixQ of the root Vnding step (4.14) contains a lower
block triangular matrix, providing the following lemma.

Lemma 4.7 (Rank of Root-Finding Matrix).

LetQ be deVned as in (4.14) andQ[0]
0 as in (4.13). If rk(Q[0]

0 ) = s, then rk(Q) = sk.
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Proof. This holds since Q contains a lower block triangular matrix with Q
[0]
0 , . . . , Q

[k−1]
0 on the

diagonal of the Vrst k blocks and since rk(Q
[0]
0 ) = rk(Q

[i]
0 ).

The dI ×smatrixQ
[0]
0 can have rank s only if dI ≥ s, which is guaranteed for t = τ if (compare (4.12)):

dI = dimker(R) ≥ s(n− τ + 1)−
s∑

i=1

k(i) − t ≥ s ⇐⇒ t ≤ sn−∑s
i=1 k

(i)

(s+ 1)
. (4.16)

This is equivalent to the decoding radius of joint decoding and slightly diUerent to (4.9), which is the

maximum decoding radius when we consider our algorithm as a list decoder (see Section 4.3.1).

In the following, we will show a connection between the probability that Q does not have full rank

and that the matrix RR from [LO06], see (4.2), does not have full rank.

Lemma 4.8 (Connection Between Matrices of DiUerent Approaches).

LetQ0 be deVned as in (4.15) andRR as in (4.2) for t = τ =
⌊
(sn−∑s

i=1 k
(i))/(s+ 1)

⌋
. If rk(Q0) < s,

then rk(RR) < n− 1.

Proof. If rk(Q0) < s, then by linearly combining the dI ≥ s dimensional basis of the solution

space of the interpolation step, there exists a non-zero interpolation polynomial Q(x, y1, . . . , ys),
which fulVlls Problem 4.1 and has the coeXcients q0,0 = q1,0 = · · · = qs,0 = 0. Since

Q(x, y1, . . . , ys) 6= 0 (Lemma 4.2), the interpolation matrix without the Vrst column of each

submatrix (i.e., the columns corresponding to q0,0, q1,0, . . . , qs,0), denoted by R̃, does not have full

rank.

Moreover R
[1]
R = R̃T and hence,

rk(RR) = rk(R̃) <

s∑

i=0

degq Qi(x) = (s+ 1)(n− τ)−
s∑

i=1

k(i) − 1.

For τ =
⌊
sn−

∑s
i=1 k

(i)

(s+1)

⌋
, this gives rk(RR) < n− 1.

Combining the last two lemmas, we obtain the following theorem.

Theorem 4.3 (Connection Between Failure Probabilities of DiUerent Approaches).

Assume that r(i),∀i ∈ [1, s], consists of random elements uniformly distributed over Fqm . Let RR be as in

(4.2) and S as in (4.5) for t = τ =
⌊
(sn−∑s

i=1 k
(i))/(s+ 1)

⌋
. Then, for k = maxi{k(i)}:

P
(
rk(Q) < sk

)
≤ P

(
rk(Q0) < s

)
≤ P

(
rk(RR) < n− 1

)
. (4.17)

Therefore, for τ ≥ s:

P
(
rk(Q) < sk

)
≤ 1−

(
1− 4

qm

)(
1− qm(s−τ)

)s
.

If k(i) = k, ∀i ∈ [1, s], additionally P
(
rk(Q) < sk

)
≤ P

(
rk(S) < τ

)
holds.

Proof. Since τ =
⌊
(sn−∑s

i=1 k
(i))/(s+ 1)

⌋
, we obtain dI = s and rk(Q0) = rk(Q

[0]
0 ). The

Vrst inequality of (4.17) follows from Lemma 4.7 and the second from Lemma 4.8. Hence, we can

bound P
(
rk(Q) < sk) by the failure probability from [LO06]. Due to Lemma 4.1, the failure

probability from [LO06] is the same as the failure probability of [SB10] for k(i) = k, ∀i ∈ [1, s].
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4 Decoding Approaches for Interleaved Gabidulin Codes

The assumption of random received vectors and the restriction τ ≥ s follow from [Ove07, Theo-

rem 3.11]. We conjecture that τ ≥ s is only a technical restriction and that the results hold equivalently

for τ < s.

Alternatively, we can bound the failure probability as follows. Assume, the matrixQ
[0]
0 consists of

random values over Fqm . This assumption seems to be reasonable, since in [LO06] and [SB10] it is

assumed that r(1), . . . , r(s) are random vectors in Fn
qm . In our approach, the values ofQ

[0]
0 are obtained

from a linear system of equations, where each qi,0 is multiplied with the coeXcients of a diUerent r(i).

Lemma 4.9 (Alternative Calculation of Failure Probability).

Let rk
(
e(1)T e(2)T . . . e(s)T

)
= t ≤ τ , where τ =

⌊
(sn−∑s

i=1 k
(i))/(s+ 1)

⌋
, let k = maxi{k(i)},

let Q be deVned as in (4.14) and let q
(j)
1,0, q

(j)
2,0, . . . , q

(j)
s,0 for j = 1, . . . , dI be random elements uniformly

distributed over Fqm . Then,

P
(
rk(Q) < sk

)
≤ 4

q(m(dI+1−s))
= 4q−m(s(n−τ)−

∑s
i=1 k

(i)−t+1).

Proof. Due to dI ≥ s and Lemma 4.7, if rk(Q
[0]
0 ) = s, then rk(Q) = sk. Hence, P (rk(Q) < sk)

≤ P (rk(Q
[0]
0 ) < s). When q

(j)
1,0, . . . , q

(j)
s,0 for j = [1, dI ] are random elements from Fqm , we bound

P (rk(Q
[0]
0 ) < s) by the probability that a random (dI × s)-matrix over Fqm has rank less than s:

P
(
rk(Q) < sk

)
≤ P

(
rk(Q

[0]
0 ) < s

)

≤

s−1∑
j=0

j−1∏
h=0

qdI−qh

qj−qh

j−1∏
i=0

(qs − qi)

qmsdI

<
4qm((dI+s)(s−1)−(s−1)2)

qmsdI

=
4

qm(dI−s+1)
= 4q−m(s(n−τ)−

∑s
i=1 k

(i)−t+1).

Lemma 4.9 does not have the technical restriction τ ≥ s as Theorem 4.3 and the bounds from

[LO06, SB10]. The following theorem summarizes our results.

Theorem 4.4 (Unique Decoding of Interleaved Gabidulin Codes).

Let the interleaved Gabidulin code IGab[s;n, k(1), . . . , k(s)] over Fqm consist of the elementary codewords

c(i) = f (i)(g), where degq f
(i)(x) < k(i), ∀i ∈ [1, s], and let the given elementary received words r(i),

∀i ∈ [1, s], consist of random elements uniformly distributed over Fqm . Then, with probability at least

1− 4q−m(s(n−τ)−
∑s

i=1 k
(i)−t+1),

we can Vnd a unique solution f (1)(x), . . . , f (s)(x) such that its evaluation at g is in rank distance

t ≤ τ =
⌊sn−∑s

i=1 k
(i)

s+ 1

⌋

to (r(1)T r(2)T . . . r(s)T )T with overall complexity at most O(s3n2).
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Example 4.2 (Failure Probabilities).

Consider the IGab[s = 2;n = 7, k(1) = 2, k(2) = 2] code over F27 . The maximum decoding radius for

unique as well as for list decoding according to (4.9) and (4.16) is τ = 3 whereas a BMD decoder guarantees

to correct all errors of rank at most τ0 = 2.

In order to estimate the failure probability, we simulated 107 random error matrices

(e(1)T e(2)T . . . e(s)T )T ∈ Fs×n
qm , uniformly distributed over all matrices of rank t = τ = 3. The

following simulated probabilities occurred:

P
(
rk(Q) < sk

)
= P

(
rk(S) < τ

)
= P

(
rk(RR) < n− 1

)
= 6.12 · 10−5.

As a comparison, the average list size calculated with Lemma 4.6 is ℓI < 1 + 6.104 · 10−5, the upper

bound from Theorem 4.3 (and therefore the upper bound from (4.4), [LO06]) gives

P
(
rk(Q) < sk

)
≤ P

(
rk(RR) < n− 1

)
≤ 0.04632,

and the bound from Lemma 4.9 gives P
(
rk(Q) < sk

)
≤ 4q−m(s(n−k−τ)−τ+1) = 2.44 · 10−4.

Due to the simulation results, we conjecture that if and only if rk(Q) < sk, then rk(S) < τ and

rk(RR) < n− 1. Hence, we believe that Lemma 4.8 holds in both directions.

4.4 Error-Erasure Decoding

This section is in some sense a generalization of Subsection 3.2.3 and outlines brieWy how interpolation-

based error-erasure decoding of interleaved Gabidulin codes over Fqm with n = m can be done. We

assume that γ column erasures and ̺(i) row erasures, ∀i ∈ [1, s], occurred. This notation is based on

the following decomposition of the interleaved error, which generalizes (3.34):



e(1)

e(2)

...

e(s)


 =




a(1,R) ·B(1,R)

a(2,R) ·B(2,R)

...

a(s,R) ·B(s,R)


+




a(1,C)

a(2,C)

...

a(s,C)


 ·B

(C) +




a(1,E)

a(2,E)

...

a(s,E)


 ·B

(E) ∈ Fs×n
qm , (4.18)

where a(i,R) ∈ F̺(i)

qm , B(i,R) ∈ F̺(i)×n
q , a(i,C) ∈ Fγ

qm , B
(C) ∈ Fγ×n

q , a(i,E) ∈ Ft
qm , B

(E) ∈ Ft×n
q for

all i ∈ [1, s], and a(1,R),a(2,R), . . . ,a(s,R) and B(C) are known on the receiver side. Lemma 4.10

shows later why the a(i,R) and B(i,R) can be diUerent whereas B(C) has to be common for all

i ∈ [1, s]. Moreover, this model of errors and erasures is slightly more general than the one in [LSC13,

Equation (19)], since there the a(i,R) are assumed to be equal.

Based on the known matrix B(C) and as in (3.35), we can calculate the following basis of the row

space of the column erasures prior to the decoding process:

d
(C)
i =

n−1∑

j=0

B
(C)
i,j g⊥j =

n−1∑

j=0

B
(C)
i,j β[j], ∀i ∈ [0, γ − 1]. (4.19)

As in (3.36), we deVne Γ(C)(x) and Λ(i,R)(x), ∀i ∈ [1, s], as linearized polynomials of smallest

q-degree such that:

Γ(C)
(
d
(C)
j

)
= 0, ∀j ∈ [0, γ − 1],

Λ(i,R)
(
a
(i,R)
j

)
= 0, ∀j ∈ [0, ̺(i) − 1], i ∈ [1, s]. (4.20)
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4 Decoding Approaches for Interleaved Gabidulin Codes

Let r̂(i)(x) denote the q-transform of r(i)(x), ∀i ∈ [1, s], as in DeVnition 2.12, then we deVne smodiVed

transformed received words (similar to Subsection 3.2.3) by:

ŷ(i)(x)
def
= Λ(i,R)

(
r̂(i)(Γ(C)(x[γ]))

)
mod (x[m] − x), ∀i ∈ [1, s],

where Γ(C)(x) is the full q-reverse of Γ(C)(x) as in Lemma A.1.

Lemma 4.10 (Rank of ModiVed Interleaved Error).

Let n = m and let e(i,RC) = Λ(i,R)
(
ê(i)(Γ(C)(g[γ]))

)
∈ Fn

qm , ∀i ∈ [1, s]. Further, let e(i,E) =

a(i,E) ·B(E), ∀i ∈ [1, s], as in (4.18) with rk
(
e(1,E)T e(2,E)T . . . e(s,E)T

)
= t. Then,

rk




e(1,RC)

e(2,RC)

...

e(s,RC)


 ≤ rk




e(1,E)

e(2,E)

...

e(s,E)


 = t.

Proof. The proof is a straight-forward generalization of the proof of Lemma 3.11 and we obtain:




e(1,RC)

e(2,RC)

...

e(s,RC)


 =




Λ(1,R)
(
ê(1,E)(g0)

)
Λ(1,R)

(
ê(1,E)(g1)

)
. . . Λ(1,R)

(
ê(1,E)(gm−1)

)

Λ(2,R)
(
ê(2,E)(g0)

)
Λ(2,R)

(
ê(2,E)(g1)

)
. . . Λ(2,R)

(
ê(2,E)(gm−1)

)
...

...
. . .

...

Λ(s,R)
(
ê(s,E)(g0)

)
Λ(s,R)

(
ê(s,E)(g1)

)
. . . Λ(s,R)

(
ê(s,E)(gm−1)

)


 ·G,

where G =
(
Gi,j

)i∈[0,m−1]

j∈[0,m−1]
∈ Fm×m

q is deVned such that Γ(C)(gj) =
∑m−1

i=0 Gi,jgi and the

statement follows as in Lemma 3.11.

Lemma 4.10 requires that Γ(C)(x) is common for all i ∈ [1, s], whereas Λ(i,R)(x) can be diUerent. This

clariVes why B(C) has to be independent of i.

Hence, similar to error-erasure decoding of Gabidulin codes in Subsection 3.2.3, we use ŷ(i)(g),
∀i ∈ [1, s], as the input of interpolation-based decoding and treat ŷ(i)(g) in the same way as the

transform of a codeword of an interleaved Gabidulin code of elementary dimensions k(i) + ̺(i) + γ,
which is corrupted by an error of overall rank t.

As in Problem 4.1, we look for an (s+ 1)-variate linearized polynomial Q(x, y1, . . . , ys) = Q0(x) +
Q1(y1) + · · ·+Qs(ys), which satisVes for given integers n, τ , k(i), ̺(i), γ, ∀i ∈ [1, s]:

• Q(gj , ŷ
(1)(gj), ŷ

(2)(gj), . . . , ŷ
(s)(gj)) = 0, ∀j ∈ [0, n− 1],

• degq Q0(x) < n− τ ,

• degq Qi(yi) < n− τ − (k(i) − γ − ̺(i) − 1), ∀i ∈ [1, s].

Similar to Lemma 4.2, a non-zero interpolation polynomial Q(x, y1, . . . , ys), which satisVes the

above mentioned conditions, exists if

τ <
sn−∑s

i=1(k
(i) + ̺(i) + γ) + s

s+ 1
.

If k(i) = k, and ̺(i) = ̺, ∀i ∈ [1, s], we obtain τ < s(n− k + 1− ̺− γ)/(s+ 1).

The interpolation and root-Vnding procedure is straight forward to the errors-only approach from

Section 4.2 and returns Λ(i,R)
(
f (i)(Γ(C)(x[γ]))

)
, ∀i ∈ [1, s], in rank distance at most τ . In order to
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obtain f (i)(x), we have to divide from the left and right by Λ(i,R)(x) and Γ(C)(x[γ]), respectively,
∀i ∈ [1, s], as in Subsection 3.2.3.

With this principle, our interpolation-based decoding algorithm can be applied to (unique or list)

error-erasure decoding of interleaved Gabidulin codes.

For interpolation-based error-erasure decoding in Hamming metric it is more common to puncture

the code at the erased positions and interpolate an (interleaved) code of smaller length and same

dimension(s) as the original code, whereas we interpolate a code, which has the same length as the

original code, but higher dimension(s).

4.5 Summary and Outlook

This chapter considers decoding approaches for interleaved Gabidulin codes. First, two known decoding

principles are described and a relation between them is proven. Second, we have presented a new

approach for decoding interleaved Gabidulin codes based on interpolating a multi-variate linearized

polynomial. The procedure consists of two steps: an interpolation step and a root-Vnding step, where

both can be accomplished by solving a linear system of equations. This new decoder for interleaved

Gabidulin codes can be used as a list decoder as well as a unique decoder with a certain failure

probability. The complexity of the unique decoder as well as Vnding a basis of all solutions of the

list decoder is quadratic in the length of the code. The output of both decoders is a unique decoding

result with high probability. Further, we have derived a connection to the two known approaches for

decoding interleaved Gabidulin codes. This relation provides an upper bound on the failure probability

of our unique decoder.

For future work, the big challenge is to increase the decoding radius (for Gabidulin as well as

interleaved Gabidulin codes). Nearby goals are to apply re-encoding in order to reduce the complexity

and to use subspace evasive subsets for the elimination of the valid solutions in the list decoder as

Guruswami and Wang did in [GW13].
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CHAPTER5
Bounds on List Decoding of Block Codes

in Rank Metric

T
he idea of list decoding was introduced by Elias [Eli57] and Wozencraft [Woz58] stating that

a list decoder returns the list of all codewords in distance at most τ from any given word. The

Johnson bound in Hamming metric [Joh62, Bas65, Gur99] shows that for any code of length

n and minimum Hamming distance dH , the size of this list is polynomial in n for any τ less than

the Johnson radius, i.e., τ < τJ = n −
√

n(n− dH). Although this fact has been known since the

1960s, a polynomial-time list decoding algorithm for Reed–Solomon codes up to the Johnson radius

was found not earlier than 1999 by Guruswami and Sudan [GS99] as a generalization of the Sudan

algorithm [Sud97]. Moreover, in Hamming metric, it can be shown that there exists a code such that

the list size becomes exponential in n beyond the Johnson radius [GRS00], [Gur99, Chapter 4]. It is

not known whether such an exponential list beyond the Johnson radius also exists for Reed–Solomon

codes. Several publications show an exponential behavior of the list size for Reed–Solomon codes only

for a radius rather greater than τJ (see e.g. Justesen and Høholdt [JH01] and Ben-Sasson, Kopparty and

Radhakrishnan [BKR10]).

However, for Gabidulin codes, so far there exists no polynomial-time list decoding algorithm (beyond

half the minimum distance) and it is not even known whether it can exist or not. The contributions

by Mahdavifar and Vardy [MV10, MV12] and by Guruswami and Xing [GX12] provide list decoding
algorithms for special classes of Gabidulin codes and subcodes of Gabidulin codes.

In this chapter, we investigate bounds on list decoding rank-metric codes in general and Gabidulin
codes in particular in order to understand if polynomial-time list decoding algorithms can exist or
not. We derive three bounds on the maximum list size when decoding rank-metric codes. In spite
of the numerous similarities between Hamming metric and rank metric and even more between
Reed–Solomon and Gabidulin codes, all three bounds reveal a strongly diUerent behavior compared to
Hamming metric.

On the one hand, a lower bound on the maximum list size, which is exponential in the length n of
the code, rules out the possibility of polynomial-time list decoding since already writing down the list
has exponential complexity. On the other hand, a polynomial upper bound—similar to the Johnson
bound for Hamming metric—shows that a polynomial-time list decoding algorithm might exist.

In Section 5.1, we state (partly informally) known bounds on list decoding in Hamming metric. In
Section 5.2, we explain connections between constant-dimension codes, constant-rank codes and the list
of codewords and state the problem. We derive a lower bound (Bound I) for Gabidulin codes of length
n and minimum rank distance d in Section 5.3. It proves that the list size can become exponential if the
radius is at least the Johnson radius τJ = n−

√
n(n− d). The second bound (Bound II, Section 5.4) is

an exponential upper bound for any rank-metric code, which provides no conclusion about polynomial-
time list decodability. Finally, in Section 5.5, the third bound (Bound III) shows that there exists a
rank-metric code over Fqm of length n ≤ m such that the list size is exponential in the length n when
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5 Bounds on List Decoding of Block Codes in Rank Metric

the decoding radius is greater than half the minimum distance. An interpretation of our bounds and a

comparison to bounds on list decoding in Hamming metric is shown in Section 5.6.

The bound presented in Section 5.3 was published in [Wac12] and the bounds from Sections 5.4 and

5.5 in [Wac13b]. The journal paper [Wac13a] contains a detailed description of all three bounds.

5.1 Known Bounds on the List Size for Codes in Hamming Metric

Without going into depth, we want to state some of the bounds on list decoding of codes in Hamming

metric, in particular Reed–Solomon codes.

DeVnition 5.1 (Hamming Weight and Hamming Distance).

The Hamming weight of a = (a0 a1 . . . an−1) ∈ Fn
q is deVned as

wtH(a)
def
= | supp(a)| def= |ai 6= 0, i ∈ [0, n− 1]|,

and the Hamming distance between a and b ∈ Fn
q is the Hamming weight of the diUerence:

dH(a,b)
def
= wtH(a− b) = | supp(a− b)|.

In conformance with the notations for codes in rank metric, an (n,M, d)H code C over Fq is a code of

length n, cardinality M and minimum Hamming distance d.

The q-ary and the alphabet-independent Johnson bounds in Hamming metric (stated in the following)

show that from a combinatorial point of view, list decoding of any (not necessarily linear) code

in Hamming metric is feasible up to the Johnson radius. A thorough discussion of the Johnson

bound and related combinatorial aspects can be found in Guruswami’s books [Gur07, Chapter 3]

and [Gur99, Chapter 3].

Theorem 5.1 (q-ary Johnson Bound in Hamming Metric [Joh62, Joh63, Bas65]).

For any (n,M, d)H code C over Fq of length n and minimum Hamming distance d and any integer τ such

that τ2 > (1− 1/q) (2τ − d)n, the list size ℓH is upper bounded by

ℓH
def
= max

r∈Fn
q

{∣∣C ∩ B(τ)H (r)
∣∣
}
≤ (1− 1/q)nd

τ2 − (1− 1/q) (2τ − d)n
, (5.1)

where B(τ)H (r) denotes a ball around r of radius τ in Hamming metric.

The alphabet-independent (or generic) Johnson bound (5.2) follows from upper bounding (5.1) for any

q > 1. Clearly, when q is large, then (1− 1/q)→ 1 and the two bounds are equivalent. However, for

small q (especially for binary codes), it can be much better to take into account the alphabet size and to

use (5.1).

Corollary 5.1 (Johnson Bound in Hamming Metric).

For any (n,M, d)H code C over Fq of length n and minimum Hamming distance d and any integer

τ < τJ
def
= n−

√
n(n− d), the list size ℓH is upper bounded by

ℓH
def
= max

r∈Fn
q

{∣∣C ∩ B(τ)H (r)
∣∣
}
≤ nd

τ2 − (2τ − d)n
=

nd

(n− τ)2 − n(n− d)
. (5.2)
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The restriction τ < τJ holds since the denominator has to be greater than zero. An improvement of

the numerator of (5.2) from nd to n(d− τ) was shown by Cassuto and Bruck in [CB04].

Thus, the Johnson bound proves that any ball in Hamming metric of radius less than the Johnson

radius τJ = n −
√

n(n− d) always contains a polynomial number of codewords of any code in

Hamming metric of length n and minimum Hamming distance d.

From a combinatorial point of view, the Johnson bound is tight as a relation between list decodability

and the minimum Hamming distance since it can be shown that there exist codes in Hamming metric

such that the list size becomes exponential in n if the radius is slightly greater than the Johnson radius.

For general (not necessarily linear) codes this was shown by Goldreich, Rubinfeld and Sudan [GRS00].

Guruswami extended this result to linear codes, stating that there exists a linear code in Hamming

metric such that the size of the list grows super-polynomially in n when the radius of the ball is at least

the Johnson radius [Gur99, Chapter 4]. However, he proved this only using a widely-accepted number

theoretic conjecture [Gur99, Theorem 4.7]. These results do not imply that the Johnson bound is tight

for any code in Hamming metric—it rather means that there are some codes for which it is tight.

In particular, it is not known whether such an exponential list slightly beyond the Johnson radius

also exists for Reed–Solomon codes. Justesen and Høholdt [JH01] and Ben-Sasson, Kopparty and

Radhakrishnan [BKR10] showed an exponential behavior of the list size for Reed–Solomon codes only

for a radius rather greater than τJ . However, Guruswami and Rudra’s limits to list recovery (which is a

more general scenario) of Reed–Solomon codes indicate that the Johnson bound might be tight also for

Reed–Solomon codes [GR06].
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Figure 5.1. Decoding regions of codes in Hamming metric

Figure 5.1 illustrates the asymptotic behavior of the list size depending on the relative distance

δ = d/n. The existence of a code in Hamming metric with exponential list size beyond the Johnson

radius is shown in Figure 5.1a. For Reed–Solomon (and maximum distance separable codes in general),

the relative distance is δ = d/n = 1−R+ 1/n and for large lengths, δ ≈ 1−R and therefore the list

size is displayed in dependency of the code rate in Figure 5.1b.
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5.2 Codes Connected to the List of Decoding and Problem Statement

This section shows relations between constant-dimension and constant-rank codes, states the problem

and shows a connection between constant-rank codes and the resulting list when list decoding codes

in rank metric. These relations are used for our bounds in Sections 5.4 and 5.5.

5.2.1 Connection between Constant-Dimension and Constant-Rank Codes

This section recalls and generalizes some of the connections between constant-dimension and constant-

rank codes by Gadouleau and Yan [GY10]. The Vrst lemma shows a connection between the subspace

distance and the rank distance and is a special case of [GY10, Theorem 1].

Lemma 5.1 (Connection between Subspace and Rank Distance [GY10, Theorem 1]).

LetX,Y ∈ Fm×n
q with rk(X) = rk(Y). Then:

1

2
ds
(
Rq (X) ,Rq (Y)

)
+

1

2
ds
(
Cq (X) , Cq (Y)

)

≤ dR(X,Y)

≤ min

{
1

2
ds
(
Rq (X) ,Rq (Y)

)
,
1

2
ds
(
Cq (X) , Cq (Y)

)}
+ rk(X).

Proof. Let us denote r
def
= rk(X) = rk(Y). As in Lemma 3.8, we decompose X = CTR

and Y = DTS, where C,D ∈ Fr×m
q and R,S ∈ Fr×n

q and all four matrices have full rank.

Hence, X − Y = (CT | − DT ) · (RT |ST )T . In general, it is well-known that rk(AB) ≤
min{rk(A), rk(B)} and rk(AB) ≥ rk(A) + rk(B) − n when A has n columns and B has n
rows. Therefore,

rk(CT | −DT ) + rk(RT |ST )− 2r ≤ rk(X−Y) = rk
(
(CT | −DT ) · (RT |ST )T

)
(5.3)

≤ min
{
rk(CT | −DT ), rk(RT |ST )

}
.

Let Cq
(
CT
)
+ Cq

(
DT
)
denote the smallest subspace containing both column spaces. Then,

rk(CT | −DT ) = dim(Cq
(
CT
)
+ Cq

(
DT
)
)

= dim(Cq
(
CT
)
+ Cq

(
DT
)
)− 1

2

{
dim(Cq

(
CT
)
) + dim(Cq

(
DT
)
)
}

+
1

2

{
dim(Cq

(
CT
)
) + dim(Cq

(
DT
)
)
}

=
1

2
ds(Cq

(
CT
)
, Cq
(
DT
)
) + r =

1

2
ds(Cq (X) , Cq (Y)) + r,

and in the same way

rk(RT |ST ) =
1

2
ds(Rq (X) ,Rq (Y)) + r.

Inserting this into (5.3), the statement follows.

Lemma 5.1 can equivalently be derived using [MS74, Equation (4.3)], which also results in (5.3) and

then we can use the same reformulations for the subspace distance.

For the proof of the upper bound in Theorem 5.3 (see Section 5.4), the following upper bound on the

maximum cardinality of a constant-rank code is applied. It shows a relation between the maximum

cardinalities of a (not necessarily linear) constant-rank and a constant-dimension code.
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5.2 Codes Connected to the List of Decoding and Problem Statement

Proposition 5.1 (Maximum Cardinality [GY10]).

For all q and 1 ≤ δ ≤ r ≤ n ≤ m, the maximum cardinality of a CRqm(n,M, dR = δ + r, r) constant-
rank code over Fqm is upper bounded by the maximum cardinality of a constant-dimension code as

follows:

A
R
qm (n, dR = δ + r, r) ≤ A

S
q (n, ds = 2δ, r) .

However, the connections between constant-dimension and constant-rank codes are even more

far-reaching. The following proposition shows explicitly how to construct constant-rank codes out of

constant-dimension codes and is a generalization of [GY10, Proposition 3] to arbitrary cardinalities.

Proposition 5.2 (Construction of a Constant-Rank Code).

Let M be a CDq(m, |M|, ds,M , r) and N be a CDq(n, |N|, ds,N , r) constant-dimension code with r ≤
min{n,m} and cardinalities |M| and |N|. Then, there exists a CRqm(n,MR, dR, r) constant-rank code
C of cardinality MR = min{|M|, |N|} with Cq (C) ⊆ M and Rq (C) ⊆ N. Further, the minimum rank

distance dR of C is

dR ≥
1

2
ds,M +

1

2
ds,N ,

and if |M| = |N| additionally:
dR ≤

1

2
min

{
ds,M , ds,N

}
+ r.

Proof. LetGi ∈ Fr×m
q andHi ∈ Fr×n

q , ∀i ∈ [1,min{|M|, |N|}], be full-rank matrices, whose row

spaces are min{|M|, |N|} codewords (which are subspaces themselves) of M and N, respectively.

Let C be a CRqm(n,MR, dR, rR) constant-rank code, deVned by the set of codewordsAi = GT
i Hi,

∀i ∈ [1,min{|M|, |N|}]. All such codewords Ai are distinct, since the row spaces of all Gi,

respectively Hi, are diUerent. These codewords Ai are m× n matrices of rank exactly rR = r
since Gi ∈ Fr×m

q and Hi ∈ Fr×n
q have rank r. The cardinality is |C| = MR = min{|M|, |N|} and

Cq (C) ⊆ M andRq (C) ⊆ N by Lemma 3.8.

The lower bound on the minimum rank distance follows from Lemma 5.1 for diUerent Ai,Aj :

dR ≥
1

2
ds(Rq (Ai) ,Rq (Aj)) +

1

2
ds(Cq (Ai) , Cq (Aj)) ≥

1

2
ds,N +

1

2
ds,M .

If |M| = |N|, there exist two matrices Ai,Aj such that ds(Rq (Ai) ,Rq (Aj)) = ds,N . Then,

Lemma 5.1 gives dR ≤ ds,N + r. If we choose Ai and Aj such that ds(Cq (Ai) , Cq (Aj)) = ds,M ,

then dR ≤ ds,M + r and the upper bound on the rank distance follows.

5.2.2 Problem Statement

We analyze the question of polynomial-time list decodability of rank-metric codes. Thus, we want to

bound the maximum number of codewords in a ball of radius τ around a received word r. This number

will be called the maximum list size ℓ in the following. The worst-case complexity of a possible list

decoding algorithm directly depends on ℓ.

Problem 5.1 (Maximum List Size).

Let C be an (n,M, d)R code over Fqm of length n ≤ m, cardinality M and minimum rank distance

dR = d. Let τ < d. Find lower and upper bounds on the maximum number of codewords ℓ in a ball of
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5 Bounds on List Decoding of Block Codes in Rank Metric

rank radius τ around a word r = (r0 r1 . . . rn−1) ∈ Fn
qm . Hence, Vnd bounds on

ℓ
def
= ℓ

(
m,n, d, τ

) def
= max

r∈Fn
qm

{∣∣C ∩ B(τ)R (r)
∣∣
}
.

Whenever the parametersm,n, d, τ are clear from the context, we will use the short-hand notation ℓ
for the maximum list size. For an upper bound on ℓ, we have to show that the bound holds for any

received word r, whereas for a lower bound on ℓ it is suXcient to show that there exists (at least) one r
for which this bound on the list size is valid.

W.l.o.g. we assume throughout this chapter that n ≤ m. If this is not the case, we consider the

transpose of all matrices such that also n ≤ m holds. We call n the length of such a block code in rank

metric over Fqm .

Moreover, if we restrict ourselves to Gabidulin codes rather than arbitrary rank-metric codes, the

task becomes more diXcult due to the additional imposed structure of the code.

Let us denote the list of all codewords of an (n,M, d)R code C in the ball of rank radius τ around a

given word r by:

L
(
C, r
) def
= C ∩ B(τ)R (r) =

{
c(1), c(2), . . . , c(|L|) : c(i) ∈ C and rk(r− c(i)) ≤ τ, ∀i

}
. (5.4)

Clearly, the cardinality is |L
(
C, r
)
| ≤ ℓ.

5.2.3 Connection between Constant-Rank Codes and the List of Decoding

Before proving our bounds, let us explain the connection between the list size for decoding a certain

rank-metric code and the cardinality of a certain constant-rank code. As in (5.4), denote the list of

codewords for an (n,M, dR = d)R code C and for τ < d by

L
(
C, r
)
=
{
c(1), c(2), . . . , c(|L|)

}
= C ∩ B(τ)R (r) =

τ∑

i=0

(
C ∩ S(i)R (r)

)
,

for some (received) word r ∈ Fn
qm . If we consider only the codewords with rank distance exactly τ

from the received word, i.e., on the sphere S(τ)R (r):
{
c(1), c(2), . . . , c(ℓ)

}
def
= C ∩ S(τ)R (r),

we obtain a lower bound on the maximum list size: ℓ ≥ ℓ = |C ∩ S(τ)R (r)|.
Now, consider a translate of all codewords on the sphere of radius τ as follows:

L
(
C, r
) def
=
{
r− c(1), r− c(2), . . . , r− c(ℓ)

}
.

This set L
(
C, r
)
is a CRqm(n,MR, dR ≥ d, τ) constant-rank code over Fqm since rk(r − c(i)) = τ ,

∀i ∈ [1, ℓ], and its minimum rank distance is at least d, since

rk(r− c(i) − r+ c(j)) = rk(c(i) − c(j)) ≥ d, ∀i, j ∈ [1, ℓ], i 6= j.

The cardinality of this constant-rank code is MR = ℓ. For τ < d, this constant-rank code is non-linear

(or a translate of a linear code if C is linear), since the rank of its codewords is τ , but its minimum

distance is at least d.

Hence, a translate of the list of all codewords of rank distance exactly τ from the received word can

be interpreted as a constant-rank code. This interpretation makes it possible to use bounds on the

cardinality of a constant-rank codes to obtain bounds on the list size ℓ for decoding rank-metric codes.

This is also illustrated in Figure 5.2.
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r

c(5)

c(9)

c(7)

c(10)

c(8)

c(6)

c(2)

c(1)

c(4)

c(3)

τ

Figure 5.2. Interpretation of the decoding list as a constant-rank code, where all codewords (gray and black)
constitute the decoding list and the black codewords constitute a constant-rank code.

5.3 A Lower Bound on the List Size for Gabidulin Codes

In this section, we provide a lower bound on the list size when decoding Gabidulin codes. The proof is

based on the evaluation of linearized polynomials and is inspired by Justesen and Høholdt’s [JH01]

and Ben-Sasson, Kopparty, and Radhakrishnan’s [BKR10] approaches for bounding the list size of

Reed–Solomon codes.

Theorem 5.2 (Bound I: Lower Bound on the List Size).

Let the linear Gabidulin code Gab[n, k] over Fqm with n ≤ m and dR = d = n − k + 1 be given. Let

τ < d. Then, there exists a word r ∈ Fn
qm such that the maximum list size ℓ satisVes

ℓ = ℓ
(
m,n, d, τ

)
≥
∣∣∣Gab[n, k] ∩ S(τ)R (r)

∣∣∣ ≥
[

n
n−τ

]

(qm)n−τ−k

≥ qmqτ(m+n)−τ2−md, (5.5)

and for the special case of n = m:

ℓ ≥ qnq2nτ−τ2−nd.

Proof. Since we assume τ < d = n− k + 1, also k − 1 < n− τ holds. Let us consider all monic

linearized polynomials of q-degree exactly n− τ whose root spaces have dimension n− τ and all

roots lie in Fqn . There are exactly (see e.g. [Ber84, Theorem 11.52])
[

n
n−τ

]
such polynomials.

Now, let us consider a subset of these polynomials, denoted by P : all polynomials where the

q-monomials of q-degree greater than or equal to k have the same coeXcients. Due to the

pigeonhole principle, there exist coeXcients such that the number of such polynomials is

|P| ≥
[

n
n−τ

]

(qm)n−τ−k
,

since there are (qm)n−τ−k possibilities to choose the highest n − τ − (k − 1) coeXcients of a

monic linearized polynomial with coeXcients Fqm .

Note that the diUerence of any two polynomials in P is a linearized polynomial of q-degree strictly
less than k and therefore the evaluation polynomial of a codeword of Gab[n, k].
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5 Bounds on List Decoding of Block Codes in Rank Metric

Let r be the evaluation of p(x) ∈ P at a basis A = {α0, α1, . . . , αn−1} of Fqn over Fq :

r = (r0 r1 . . . rn−1) =
(
p(α0) p(α1) . . . p(αn−1)

)
.

Further, let also q(x) ∈ P , then p(x)− q(x) has q-degree less than k. Let c denote the evaluation

of p(x) − q(x) at A. Then, r − c is the evaluation of p(x) − p(x) + q(x) = q(x) ∈ P , whose
root space has dimension n − τ and all roots lie in Fqn . Thus, dimker(r − c) = n − τ and

dim Cq (r− c) = rk(r− c) = τ .
Therefore, for any q(x) ∈ P , the evaluation of p(x) − q(x) is a codeword of Gab[n, k] and has

rank distance τ from r. Hence,
∣∣∣Gab[n, k] ∩ S(τ)R (r)

∣∣∣ ≥ |P|.

Using (2.1), this provides the following lower bound on the maximum list size:

ℓ ≥ |P| ≥ q(n−τ)τ

(qm)n−τ−k
≥ qmqτ(m+n)−τ2−md,

and for n = m the special case follows.

This lower bound is valid for any τ < d, but we want to know, which is the smallest value for τ such
that this expression grows exponentially in n.

For arbitrary n ≤ m, we can rewrite (5.5) by

ℓ ≥ qm(1−ǫ) · qτ(m+n)−τ2−m(d−ǫ),

where the Vrst part is exponential in n ≤ m for any 0 ≤ ǫ < 1. The second exponent is positive for

τ ≥ m+ n

2
−
√

(m+ n)2

4
−m(d− ǫ)

def
= τ∗J .

For n = m, this simpliVes to

τ ≥ n−
√
n(n− d+ ǫ)

def
= τJ . (5.6)

Therefore, our lower bound (5.5) shows that the maximum list size is exponential in n for any τ ≥ τ∗J .
For n = m, the value τJ is basically the Johnson radius for codes in Hamming metric.

Faure obtained a similar result in [Fau06, Fau09] by using probabilistic arguments.

This reveals a diUerence between the known limits to list decoding of Gabidulin and Reed–Solomon
codes. For Reed–Solomon codes, polynomial-time list decoding up to the Johnson radius can be
accomplished by the Guruswami–Sudan algorithm. However, it is not proven that the Johnson radius
is tight for Reed–Solomon codes, i.e., it is not known if the list size is polynomial in n between the
Johnson radius and the known exponential lower bounds (see e.g. [JH01, BKR10]).

The result of Theorem 5.2 can also be obtained by interpreting the decoding list as a constant-rank
code as in Subsection 5.2.3. For this purpose, we can use [GY10, Lemma 2] as follows.

Let C be a Gab[n, n − d + 1] code of minimum rank distance d and B be a Gab[n, d − τ ] code
of minimum rank distance n − d + τ + 1. Let C be deVned as in DeVnition 2.16 with the ele-
ments g0, g1, . . . , gn−1 ∈ Fqm , which are linearly independent over Fq , and let B be deVned with

g
[n−d+1]
0 , g

[n−d+1]
1 , . . . , g

[n−d+1]
n−1 . The corresponding generator matrices according to (2.27) are denoted

byGC and GB.

Then, the direct sum code C ⊕ B has the generator matrix (GT
C
GT

B
)T and is a Gab[n, n − τ + 1]

code with minimum rank distance τ .
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The rank weight distribution of MRD codes was given in [Gab85, Section 3] and therefore the number
of codewords of rank τ in C⊕ B is

Wτ (C⊕ B) =

[
n

τ

]
(qm − 1).

The cardinality of the code B is |B| = qm(d−τ) and therefore, with the pigeonhole principle, there exists
a vector b ∈ B such that the number of codewords in the translated code C⊕ b is lower bounded by

Wτ (C⊕ b) ≥
[
n
τ

]
(qm − 1)

qm(d−τ)
. (5.7)

Hence, the number of codewords of C in rank distance τ from b isWτ (C⊕b) and (5.7) yields the same
lower bound on ℓ as Theorem 5.2.

Example 5.1 (List Decoding of Gab[12, 6] Code).
For the Gabidulin code Gab[12, 6] over F212 with d = 7, the BMD decoding radius is τ0 = ⌊(d−1)/2⌋ = 3.
The radius from (5.6) with ǫ = 0.9 is τJ = ⌈3.58⌉ = 4. Hence, for this code of rate k/n = 1/2, no
polynomial time list-decoding beyond τ0 is possible.

5.4 An Upper Bound on the List Size for Rank-Metric Codes

In this section, we will derive an upper bound on the list size when decoding rank-metric codes. This
upper bound holds for any rank-metric code and any received word.

Theorem 5.3 (Bound II: Upper Bound on the List Size).

Let ⌊(d−1)/2⌋ ≤ τ < d ≤ n ≤ m. Then, for any (n,M, d)R code C in rank metric, the maximum list size

is upper bounded as follows:

ℓ = ℓ
(
m,n, d, τ

)
= max

r∈Fn
qm

{∣∣C ∩ B(τ)R (r)
∣∣
}

≤ 1 +

τ∑

t=⌊ d−1
2 ⌋+1

[
n

2t+1−d

]
[

t
2t+1−d

]

≤ 1 + 4
τ∑

t=⌊ d−1
2 ⌋+1

q(2t−d+1)(n−t)

≤ 1 + 4 ·
(
τ −

⌊
d−1
2

⌋ )
· q(2τ−d+1)(n−⌊(d−1)/2⌋−1). (5.8)

Proof. Let {c(1), c(2), . . . , c(ℓ)} denote the intersection of the sphere S(t)R (r) in rank metric
around r and the code C. As explained in Section 5.2.3,

L
(
C, r
)
=
{
r− c(1), r− c(2), . . . , r− c(ℓ)

}

can be seen as a CRqm(n,MR, dR ≥ d, t) constant-rank code over Fqm for a word r ∈ Fn
qm .

Therefore, for any word r ∈ Fn
qm , the cardinality of L

(
C, r
)
can be upper bounded by the

maximum cardinality of a constant-rank code with the corresponding parameters:

|L
(
C, r
)
| =

∣∣C ∩ S(t)R (r)
∣∣ ≤ A

R
qm (n, dR ≥ d, t) ≤ A

R
qm (n, d, t) .
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5 Bounds on List Decoding of Block Codes in Rank Metric

We can upper bound this maximum cardinality by Proposition 5.1 with δ = d− t and r = t by the

maximum cardinality of a constant-dimension code:

A
R
qm (n, d, t) ≤ A

S
q (n, ds = 2(d− t), t) .

For upper bounding the cardinality of such a constant-dimension code, we use the Wang–Xing–
Safavi-Naini bound [WXS03] (often also called anticode bound) and obtain:

A
S
q (n, ds = 2(d− t), t) ≤

[
n

t−(d−t)+1

]
[

t
t−(d−t)+1

] . (5.9)

In the ball of radius ⌊(d−1)/2⌋ around r, there can be at most one codeword of C and therefore, the
contribution to the list size is at most one. For higher t, we sum up (5.9) from t = ⌊(d−1)/2⌋+ 1 to
τ , use the upper bound on the q-binomial (2.1) and upper bound the sum.

In [Wac12, Theorem 2], we showed an alternative proof of Theorem 5.3 based on the intersection of
subspaces, but implicitly it re-derives the Wang–Xing–Safavi-Naini bound [WXS03].

The bound can slightly be improved if we use better upper bounds on the maximum cardinality of
constant-dimension codes instead of (5.9) in the derivation, for example the iterated Johnson bound for
constant-dimension codes [XF09, Corollary 3]. In this case, we obtain:

ℓ = ℓ
(
m,n, d, τ

)
≤ 1 +

τ∑

t=⌊ d−1
2 ⌋+1

⌊
qn − 1

qt − 1

⌊
qn−1 − 1

qt−1 − 1

⌊
. . .

⌊
qn+d−2t − 1

qd−t − 1

⌋
. . .

⌋⌋⌋
.

However, the Wang–Xing–Safavi-Naini bound provides a nice closed-form expression and is asymp-
totically tight. Therefore, using better upper bounds for constant-dimension codes does not change the
asymptotic behavior of our upper bound. Unfortunately, our upper bound on the list size of rank-metric
codes is exponential in the length of the code and not polynomial as the Johnson bound for Hamming
metric. However, the lower bound in Section 5.5 will show that any upper bound depending only on
the length n ≤ m and the minimum rank distance d will be exponential in (τ − ⌊(d−1)/2⌋)(n − τ),
since there exists a rank-metric code with such a list size.

5.5 A Lower Bound on the List Size for Rank-Metric Codes

The bound presented in this section shows the most signiVcant diUerence to bounds for codes in
Hamming metric. We show the existence of a rank-metric code with exponential list size for any
decoding radius greater than half the minimum distance. First, we prove the existence of a certain
constant-rank code in the following theorem.

Theorem 5.4 (Constant-Rank Code).

Let ⌊(d−1)/2⌋ + 1 ≤ τ < d ≤ n ≤ m and τ ≤ n − τ . Then, there exists a CRqm(n,MR, dR ≥ d, τ)

constant-rank code over Fqm of cardinalityMR = q(n−τ)(τ−⌊(d−1)/2⌋).

Proof. First, assume d is even. Let us construct a CDq(m, |M |, d, τ) constant-dimension code M
and a CDq(n, |N |, d, τ) code N by lifting an MRD[τ, τ − d/2 + 1] code over Fqm−τ of minimum
rank distance d/2 and an MRD[τ, τ − d/2 + 1] code over Fqn−τ of minimum rank distance d/2 as
in Lemma 2.18. Then, with Lemma 2.18:

|N| = q(n−τ)(τ−d/2+1) ≤ |M| = q(m−τ)(τ−d/2+1).

90
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From Proposition 5.2, we know therefore there exists a CRqm(n,MR, dR, τ) code of cardinality

MR = min
{
|N|, |M|

}
= q(n−τ)(τ−d/2+1) = q(n−τ)(τ−⌊(d−1)/2⌋).

For its rank distance by Proposition 5.2, the following holds:

dR ≥
1

2
dS,M +

1

2
dS,N = d.

Second, assume d is odd. LetM be a CDq(m, |M |, d− 1, τ) code constructed by the lifting of an

MRD[τ, τ − (d−1)/2 + 1] code over Fqm−τ and let N be a CDq(n, |N |, d+ 1, τ) code, constructed
by lifting an MRD[τ, τ − (d+1)/2 + 1] code over Fqn−τ code as in Lemma 2.18. Then,

|N| = q(n−τ)(τ−(d+1)/2+1) ≤ |M| = q(m−τ)(τ−(d−1)/2+1).

From Proposition 5.2, we know that there exists a CRqm(n,MR, dR, τ) code of cardinality

MR = min
{
|N|, |M|

}
= |N| = q(n−τ)(τ−(d−1)/2) = q(n−τ)(τ−⌊(d−1)/2⌋).

With Proposition 5.2, the rank distance dR is lower bounded by:

dR ≥
1

2
dS,M +

1

2
dS,N =

1

2
(d− 1) +

1

2
(d+ 1) = d.

This constant-rank code can now directly be used to show the existence of a rank-metric code with

exponential list size.

Theorem 5.5 (Bound III: Lower Bound on the List Size).

Let ⌊(d−1)/2⌋+ 1 ≤ τ < d ≤ n and τ ≤ n− τ . Then, there exists an (n,M, dR ≥ d)R code C over Fqm

of length n ≤ m and minimum rank distance dR ≥ d, and a word r ∈ Fn
qm such that

ℓ = ℓ
(
m,n, d, τ

)
≥
∣∣C ∩ B(τ)R (r)

∣∣ ≥ q(n−τ)(τ−⌊(d−1)/2⌋). (5.10)

Proof. Let the CRqm(n,MR, dR ≥ d, τ) constant-rank code from Theorem 5.4 consist of the

codewords: {
a(1),a(2), . . . ,a(|N|)

}
.

This code has cardinalityMR = |N| = q(n−τ)(τ−⌊(d−1)/2⌋) (see Theorem 5.4). Choose r = 0, and
hence, rk(r− a(i)) = rk(a(i)) = τ , ∀i ∈ [1, |N|] since the a(i) are codewords of a constant-rank
code of rank τ . Moreover, dR(a

(i),a(i)) = rk(a(i) − a(j)) ≥ d since the constant-rank code has

minimum rank distance at least d.
Therefore, a(1),a(2), . . . ,a(|N|) are codewords of an (n,M, dR ≥ d)R code C over Fqm in rank

metric, which all lie on the sphere of rank radius τ around r = 0 (which is not a codeword of C).

Hence, there exists an (n,M, dR ≥ d)R code C over Fqm of length n ≤ m such that ℓ ≥
|C ∩ B(τ)R (r)| ≥ |C ∩ S(τ)R (r)| = |N| = q(n−τ)(τ−⌊(d−1)/2⌋).

Notice that this (n,M, dR ≥ d)R code in rank metric is non-linear since it has codewords of weight

τ < d, but minimum rank distance at least d.
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For constant code rate R = k/n and constant relative decoding radius τ/n, where τ > ⌊(d−1)/2⌋,
(5.10) gives

ℓ ≥ qn
2(1−τ/n)(τ/n−(1−R)/2) = qn

2·const.

Therefore, the lower bound for this (n,M, dR ≥ d)R code is exponential in n ≤ m for any

τ > ⌊(d−1)/2⌋. Hence, Theorem 5.5 shows that there exist rank-metric codes, where the number

of codewords in a rank-metric ball around the all-zero word is exponential in n, thereby prohibiting a

polynomial-time list decoding algorithm. However, this does not mean that this holds for any rank

metric code. In particular, the theorem does not provide a conclusion if there exists a linear code or

even a Gabidulin code with this list size.

Remark 5.1 (Non-Zero Received Word).

The rank-metric code C shown in Theorem 5.5 is clearly not linear. Instead of choosing r = 0, we can

choose for example r = a(1). The codewords of the CRqm(n,MR, dR ≥ d, τ) constant-rank code from

Theorem 5.4 of cardinality MR = |N| = q(n−τ)(τ−⌊(d−1)/2⌋) are denoted by:

a(1),a(2), . . . ,a(|N|).

Then, the following set of words

{
c(1), c(2), . . . , c(|N|)

} def
=
{
0,a(1) − a(2),a(1) − a(3), . . . ,a(1) − a(|N|)

}

consists of codewords of an (n,M, dR ≥ d)R code C over Fqm since dR(c
(i), c(j)) = rk(c(i) − c(j)) =

rk(a(1)−a(i)−a(1)+a(j)) = rk(a(j)−a(i)) ≥ d for i 6= j since a(i),a(j) are codewords of the constant-
rank code of minimum rank distance dR. Moreover, all codewords c(i) have rank distance exactly τ from r
since rk(r− c(i)) = rk(a(i)) = τ and the same bound on the list size of C follows as in Theorem 5.5. This

(n,M, dR ≥ d)R rank-metric code over Fqm is not necessarily linear, but also not necessarily not linear.

The next corollary shows that the restriction τ ≤ n − τ does not limit the code rate for which

Theorem 5.5 shows an exponential behavior of the list size. For the special case of τ = ⌊(d−1)/2⌋+ 1,
the condition τ ≤ n− τ is always fulVlled for even minimum distance since d ≤ n. For odd minimum

d− 1 ≤ n has to hold. Notice that d = n is a trivial code.

Corollary 5.2 (Special Case τ = ⌊(d−1)/2⌋ + 1).
Let n ≤ m, τ = ⌊(d−1)/2⌋+ 1 and d ≤ n− 1 be odd. Then, there exists an (n,M, dR ≥ d)R code C and

a word r ∈ Fn
qm such that |C ∩ B(τ)R (r)| ≥ q(n−τ).

This corollary hence shows that for any n ≤ m and any code rate there exists a rank-metric code of

rank distance at least d whose list size can be exponential in n.

For the special case when d is even, τ = d/2 and n = m, the minimum rank distance of C is exactly

d since the lower and upper bound on dR in Proposition 5.2 coincide.

Corollary 5.3 (Special Case τ = d/2).
Let n = m, d be even and τ = d/2. Then, there exists an (n,M, dR = d)R code C in rank metric and a

word r ∈ Fn
qm such that |C ∩ B(τ)R (r)| ≥ q(n−τ).

Corollaries 5.2 and 5.3 show that the condition τ ≤ n− τ does not restrict lists of exponential size

to a certain code rate. However, the following remark shows anyway what happens if we assume

τ > n− τ .
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Remark 5.2 (Case τ > n − τ ).
Let ⌊(d−1)/2⌋ + 1 ≤ τ < d ≤ n ≤ m and τ > n − τ . Here, we can apply the same strategy as before:

construct a constant-dimension code and show the existence of a constant-rank code of certain cardinality.

For simplicity, let us consider only the case when d is even, the case of odd minimum distance follows

straight-forward. Consider the lifting of a linearMRD[n−τ, n−τ−d/2+1] code C over Fqτ of minimum

rank distance d/2. The lifting is denoted by lift(C), i.e., we consider [Iτ Ci] with Ci ∈ F
τ×(n−τ)
q for all

i = 1, . . . , |C|. In contrast to Lemma 2.18, we do not transpose the codewords of the MRD code here. The

subspaces deVned by this lifting are a CDq(n, |N |, ds = d, τ) constant-dimension code of cardinality

qτ(n−τ−d/2+1).

Then, with the same method as in Theorems 5.4 and 5.5 and a CDq(m, |M |, d, τ) code M and a

CDq(n, |N |, d, τ) code N, there exists an (n,MR, dR ≥ d)R code C in rank metric and a word r ∈ Fn
qm

such that ∣∣C ∩ B(τ)R (r)
∣∣ ≥ qτ(n−τ−d/2+1).

However, the interpretation of this value is not so easy, since it depends on the concrete values of τ, d and n
if the exponent is positive and if this bound is exponential in n or not. Moreover, as mention before, we do

not need this investigation for polynomial-time list decodability as we recall that Theorem 5.5 shows that

the list size is lower bounded by q(n−τ) if we choose τ = ⌊(d−1)/2⌋+ 1 for codes of any rate, since then

τ ≤ n− τ is fulVlled.

The following lemma shows an improvement in the exponent of the lower bound of Theorem 5.5 for

the case τ = d/2 or when m is quite large compared to n.

Lemma 5.2 (Bound of Theorem 5.5 for τ = d/2 or Large Extension Degree m).

Let ⌊(d−1)/2⌋ < τ < d < n and τ ≤ n− τ . If either τ = d/2 orm ≥ (n− τ)(2τ − d+1)+ τ +1, then
there exists an (n,M, dR = d)R code C over Fqm of length n ≤ m and minimum rank distance d, and a
word r ∈ Fn

qm such that

ℓ = ℓ
(
m,n, d, τ

)
≥
∣∣C ∩ B(τ)R (r)

∣∣ ≥ q(n−τ)(2τ−d+1). (5.11)

Proof. We use [GY10, Theorem 2], which shows that for 2r ≤ n ≤ m and 1 ≤ δ ≤ r there exists
a constant-rank code of cardinality

A
R
qm (n, δ + r, r) = A

S
q (n, ds = 2δ, r)

if either δ = r or m ≥ (n− r)(r − d+ 1) + r + 1.
Thus, similar to the proof of Theorem 5.3, we choose r = τ and δ = d− τ . Hence, there exists a
CRqm(n,MR, d, τ) constant-rank code of cardinality

MR = A
S
q (n, ds = 2(d− τ), τ) ≥ q(n−τ)(τ−(d−τ)+1) = q(n−τ)(2τ−d+1),

where we used the cardinality of a constant-dimension code based on a lifted MRD code (see

Lemma 2.18) as lower bound. Analog to Theorem 5.5, we can use this constant-rank code to bound

the list size.

For the case τ = d/2, this results in Corollary 5.3. Hence, for the cases of Lemma 5.2, the lower bound

on the list size (5.11) and the upper bound (5.8) show the same asymptotic behavior and the upper

bound is therefore asymptotically tight.
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5.6 Summary, Comparison to Hamming Metric and Outlook

Let us interpret the results from the previous sections and compare them to known bounds on list

decoding in Hamming metric (see e.g. [Gur99, Chapters 4 and 6]).

Theorem 5.5 (Bound III) shows that there is a code over Fqm of length n ≤ m of rank distance at least

d such that there is a ball of any radius τ > ⌊(d−1)/2⌋, containing a number of codewords that grows

exponentially in the length n. For this rank-metric code, no polynomial-time list decoding algorithm

beyond half the minimum distance exists. This bound is tight as a function of d and n, since below
we can clearly always decode uniquely. It does not mean that there is no code in rank metric with a

polynomial list size for a decoding radius greater than half the minimum distance, but in order to Vnd a

polynomial upper bound, it will be necessary to use further properties of the code in the derivation of

such bounds (linearity or the explicit code structure).

In particular, for Gabidulin codes, there is still an unknown region between half the minimum distance

and the Johnson radius. With Bound I, we have proven that the list size can become exponential if the

radius is at least the Johnson radius (see Theorem 5.2). These decoding regions are shown in Figure 5.3,

depending on the relative normalized minimum rank distance δ = d/n.
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Figure 5.3. Decoding regions of codes in rank metric

Further, our lower bound from Theorem 5.5 (Bound III) shows that there does not exist a polynomial

upper bound depending only on n and d similar to the Johnson bound for Hamming metric. Hence,

our upper bound from Theorem 5.3 is relatively tight (except for a factor of two in the exponent), since

it has the same asymptotic behavior as the lower bound from Theorem 5.5.

These results show a surprising diUerence to codes in Hamming metric. Any ball in Hamming metric

of radius less than the Johnson radius τJ = n−
√

n(n− d) always contains a polynomial number of

codewords of any code of length n and minimum Hamming distance d (compare Section 5.1). Moreover,

it can be shown that there exist codes in Hamming metric with an exponential number of codewords if

the radius is at least the Johnson radius [GRS00, Gur99]. However, it is not known whether this bound

is also tight for special classes of codes, e.g. Reed–Solomon codes. This points out another diUerence

between Gabidulin and Reed–Solomon codes: For Reed–Solomon codes, the minimum radius for which

an exponential list size is proven is much higher [JH01, BKR10] than for Gabidulin codes (see Bound I,

94



5.6 Summary, Comparison to Hamming Metric and Outlook

Theorem 5.2).

Nevertheless, it is often believed that the Johnson bound is tight not only for codes in Hamming

metric in general, but also for Reed–Solomon codes. Drawing a parallel conclusion for Gabidulin codes

would mean that the maximum list size of Gabidulin codes could become exponential directly beyond

half the minimum distance—but this requires additional research.

For future research, it is challenging to Vnd a bound for the unknown region when list decoding

Gabidulin codes. However, this seems to be quite diXcult since the gap between the Johnson radius

and the known lower exponential bounds for Reed–Solomon codes seems to translate into the gap

between half the minimum distance and the Johnson radius for Gabidulin codes. Despite numerous

publications on this topic, nobody could close the gap for Reed–Solomon codes so far. As a Vrst step

towards revealing the gap for Gabidulin codes, it might be possible to prove something like Theorem 5.5

for linear codes in rank metric.
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CHAPTER6
Convolutional Codes in Rank Metric

P
artial unit memory (PUM) codes are convolutional codes with memory one (compare Subsec-
tion 2.1.4). All convolutional codes can be written as (P)UM codes when we join several blocks

into one block as in [Bos98, Theorem 8.28].

Further, they can be constructed based on block codes, e.g., Reed–Solomon [ZS94, PMA88, Jus93]
or cyclic codes [DS93, DS92]. The underlying block codes make an algebraic description of the
convolutional code possible, enable us to estimate the distance properties and allow us to take into
account existing eXcient block decoders in order to decode the convolutional code.

A convolutional code in Hamming metric can be characterized by its active row distance, which in
turn is basically determined by the free distance and the slope. These distance measures determine the
error-correcting capability of the convolutional code. In [Lee76, Lau79, TJ83, PMA88], upper bounds on
the free (Hamming) distance and the slope of (P)UM codes are derived.

In the context of network coding, dependencies between diUerent blocks transmitted over a network
can be created by convolutional codes. In multi-shot network coding, the network is used several times
to transmit several blocks. In such a scenario, dependencies between the diUerent shots can help to
correct more errors than the classical approach based on rank-metric block codes.

In this chapter, we introduce (P)UM codes in (sum) rank metric. The sum rank metric is motivated
by multi-shot network coding [NU10] and we use it to deVne the free rank distance and the active
row rank distance in Subsection 6.1.1. In Subsection 6.1.2, we derive upper bounds on the free rank
distance and the slope of the active row rank distance of (P)UM codes. Section 6.2 provides two explicit
constructions of UM and PUM codes based on Gabidulin codes. The construction in Subsection 6.2.1
is based on the parity-check matrix and we give a lower bound on its distance parameters for dual
memory µH = 1. In Subsection 6.2.2, we construct PUM codes based on the generator matrix of
Gabidulin codes and calculate their distance properties. Section 6.3 provides an eXcient decoding
algorithm based on rank-metric block decoders, which is able to handle errors and row/column erasures.
This decoding algorithm can be seen as a generalization of the Dettmar–Sorger algorithm [DS95].
Finally, in Section 6.4, we show—similar to [SKK08]—how lifted PUM codes can be applied in random

linear network coding (RLNC) and how decoding in RLNC reduces to error-erasure decoding of PUM
codes based on Gabidulin codes.

The results presented in Section 6.1 and Subsection 6.2.1 were partly published in [WSBZ11a,
WSBZ11b] and the results from Subsection 6.2.2 and Sections 6.3 and 6.4 in [WS12].

6.1 Distance Measures for Convolutional Codes in Rank Metric

In this section, we deVne distance measures for convolutional codes based on a special rank metric and
prove upper bounds on them. This special rank metric—the sum rank metric—was proposed by Nóbrega
and Uchôa-Filho under the name “extended rank metric” in [NU10] for multi-shot transmissions in a

97
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network. Furthermore, they modiVed the lifting construction such that it suits the sum rank metric.

6.1.1 DeVnition of Distance Parameters

In [NU10], it is shown that the sum rank distance and the subspace distance of the modiVed lifting
construction are related in the same way as the rank distance and the subspace distance of the lifting
construction, see [SKK08] and Lemma 2.18. Hence, the use of the sum rank metric for multi-shot
network coding can be seen as the analog to using the rank metric for single-shot network coding.

The sum rank weight and distance are deVned as follows.

DeVnition 6.1 (Sum Rank Weight and Sum Rank Distance).

Let two vectors a,b ∈ FnN
qm be given and let them be decomposed into N subvectors of length n such that:

a = (a(0) a(1) . . . a(N−1)), b = (b(0) b(1) . . . b(N−1)),

with a(i),b(i) ∈ Fn
qm , ∀i ∈ [0, N − 1]. The sum rank weight of a is the sum of the ranks of the subvectors:

wtΣ,R(a)
def
=

N−1∑

i=0

wtR(a
(i)) =

N−1∑

i=0

rk(a(i)). (6.1)

The sum rank distance between a and b is the sum rank weight of the diUerence of the vectors:

dΣ,R(a,b)
def
= wtΣ,R(a− b) =

N−1∑

i=0

rk(a(i) − b(i)). (6.2)

Since the rank distance is a metric (see Lemma 2.13), the sum rank distance is also a metric.

An important measure for convolutional codes in Hamming metric is the free distance, and conse-
quently, we deVne the free rank distance in a similar way in the sum rank metric.

DeVnition 6.2 (Free Rank Distance).

The free rank distance of a convolutional code C is the minimum sum rank distance (6.2) between any two

diUerent codewords a,b ∈ C:

df,R
def
= min

a,b∈C,
a 6=b

{
dΣ,R(a,b)

}
= min

a,b∈C,
a 6=b

{
∞∑

i=0

rk(a(i) − b(i))

}
.

For a linear convolutional code df,R = mina∈C,a 6=0

{
wtΣ,R(a)

}
holds. Throughout this chapter, we

consider only linear convolutional codes.

Any convolutional code can be described by a minimal code trellis, which has a certain number of
states and the input/output blocks are associated to the edges of the trellis. The current state in the
trellis of a (P)UM code over Fq can be associated with the vector s(i) = u(i−1)G(1), see e.g., [Jus93],

and therefore there are qk
(1)

possible states. We call the current state zero state if s(i) = 0. A code
sequence of a (P)UM code with N non-zero consecutive blocks can therefore be considered as a path in
the trellis, which starts in the zero state and, after N edges (with non-zero output blocks), ends in the
zero state.

The error-correcting capability of convolutional codes is determined by active distances—a fact
that will become obvious in view of our decoding algorithm in Section 6.3. In the following, we
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deVne the active row/column/reverse column rank distances analog to active distances in Hamming

metric [TJ83, HJZZ99, JZ99]. In the literature, there are diUerent deVnitions of active distances in

Hamming metric. Informally stated, for a j-th order active distance of C, we simply look at all sequences

of length j, including conditions on the passed states in the minimal code trellis of C.

Let C
(r)
j denote the set of all codewords in a convolutional code C, corresponding to paths in the

minimal code trellis which diverge from the zero state at depth zero and return to the zero state for

the Vrst time after j branches at depth j. W.l.o.g., we assume that we start at depth zero, as we only

consider time-invariant convolutional codes. This set is illustrated in Figure 6.1.

States

Time

0 1 2 . . . j

C
(r)
j

Figure 6.1. Illustration of the set C
(r)
j : it consists of all codewords of C having paths in the minimal code trellis

which diverge from the zero state at depth 0 and return to the zero state for the Vrst time at depth j.

DeVnition 6.3 (Active Row Rank Distance).

The active row rank distance of order j of a linear convolutional code is deVned as

d
(r)
j,R

def
= min

c∈C
(r)
j

{
wtΣ,R(c)

}
, ∀j ≥ 1.

Clearly, for non-catastrophic encoders, the minimum of the active row rank distances of diUerent

orders is the same as the free rank distance, see DeVnition (6.2):

df,R = min
j

{
d
(r)
j,R

}
.

The slope of the active row rank distance is deVned as follows.

DeVnition 6.4 (Slope of Active Row Rank Distance).

The average linear increase (slope) of the active row rank distance (DeVnition 6.3) is

σR
def
= lim

j→∞

{
d
(r)
j,R

j

}
.

As in Hamming metric [JPZ04, Theorem 1], [Jor02, Theorem 2.7], the active row rank distance of

order j can be lower bounded by a linear function d
(r)
j,R ≥ max{j · σR + β, df,R} for some maximum

β ≤ df,R.

Similar to Hamming metric, we can introduce an active column rank distance and an active reverse

column rank distance. Let C
(c)
j denote the set of all codewords leaving the zero state at depth zero

and ending in any state at depth j and let C
(rc)
j denote the set of all codewords starting in any state at
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depth zero and ending in the zero state in depth j, both without zero states in between (see Figure 6.2).

The active column rank distance and the active reverse column rank distance are then deVned by:

d
(c)
j,R

def
= min

c∈C
(c)
j

{
wtΣ,R(c)

}
, d

(rc)
j,R

def
= min

c∈C
(rc)
j

{
wtΣ,R(c)

}
, ∀j ≥ 1. (6.3)

States

0 1 2 . . . j

(a) C
(c)
j : all codewords of C diverging from the

zero state at depth 0.

0 1 2 . . . j

(b) C
(rc)
j : all codewords of C ending in the zero

state at depth j.

Figure 6.2. Illustration of the sets C
(c)
j and C

(rc)
j , where no zero states between depths 0 and j are allowed.

6.1.2 Upper Bounds on Distances of (Partial) Unit Memory Codes

In this section, we derive upper bounds on the free rank distance df,R (DeVnition 6.2) and the slope σR
(DeVnition 6.4) for UM and PUM codes based on the sum rank metric (6.1), (6.2). The derivation of the
bounds uses known bounds for (P)UM codes in Hamming metric [Lee76, Lau79, PMA88].

Theorem 6.1 (Connection between Distances in Hamming and Sum Rank Metric).

Let the free rank distance be deVned as in DeVnition 6.2 and the active row rank distance as in DeVnition 6.3.

The active row Hamming distance d
(r)
j,H and the free Hamming distance df,H are deVned by replacing the

sum rank weight/distance in DeVnitions 6.2 and 6.3 by the Hamming weight/distance. Then,

df,R ≤ df,H ,

d
(r)
j,R ≤ d

(r)
j,H , ∀j ≥ 1.

Proof. The rank and Hamming weight of a vector a ∈ Fn
qm are rk(a) ≤ wtH(a). Hence:

wtΣ,R(a) =

N−1∑

i=0

rk(a(i)) ≤ wtH(a(0) a(1) . . . a(N−1)).

and the statement follows with (6.1) and DeVnitions 6.2, 6.3.

Thus, the upper bounds for the free Hamming distance and the slope of (P)UM codes from [TJ83, PMA88]
also hold for (P)UM codes in sum rank metric.

Corollary 6.1 (Upper Bounds).

For a UM(n, k) code, where ν = k, the free rank distance is upper bounded by:

df,R ≤ 2n− k + 1. (6.4)
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For a PUM(n, k|k(1)) code, where ν = k(1) < k, the free rank distance is upper bounded by:

df,R ≤ n− k + ν + 1. (6.5)

For both, UM and PUM codes, the average linear increase (slope) is upper bounded by:

σR ≤ n− k. (6.6)

6.2 Constructions of Convolutional Codes in Rank Metric

This section provides two constructions of (P)UM codes based on Gabidulin codes. One of them uses
the parity-check matrix (Subsection 6.2.1) and the other one the generator matrix (Subsection 6.2.2) of
the convolutional code for the deVnition.

6.2.1 PUM Codes Based on the Parity-Check Matrix of Gabidulin Codes

The construction in this subsection is similar to the construction of (P)UM codes based on Reed–
Solomon codes from [ZS94]. Theorem 6.2 shows suXcient conditions that the parity-check matrix
(based on Gabidulin codes) deVnes a (P)UM code.

Theorem 6.2 ((P)UM Code Based on Gabidulin Codes).

Let µH ≥ 1 and letH be the semi-inVnite parity-check matrix of a convolutional code C over Fqm as in

(2.7) with code rate R = k/n ≥ µH/(µH + 1). Let each submatrixH(i) be the parity-check matrix of a

Gab[n, k] code, i.e.:

H(i) = qvann−k(h
(i)) = qvann−k((h

(i)
0 h

(i)
1 . . . h

(i)
n−1)), ∀i ∈ [0, µH ],

where h
(i)
0 , h

(i)
1 , . . . , h

(i)
n−1 ∈ Fqm are linearly independent over Fq . Additionally, let

H(c) def
=




H(0)

H(1)

...

H(µH)


 deVne a Gab[n, n− (µH + 1)(n− k)] code, (6.7)

and let H(r(i)) def
=
(
H(i) H(i−1) . . . H(0)

)
deVne a Gab[(i+ 1)n, in+ k] code, ∀i ∈ [1, µH ].

Then, H is the parity-check matrix of a rate R ≥ µH/(µH + 1) (partial) unit memory code over Fqm .

Proof. The proof follows from Theorem 2.1 (since the rate restriction is fulVlled and allH(i) have
full rank) and from Lemma 6.2, which shows that H is in minimal basic encoding form.

Hence, not only each submatrix H(i) deVnes a Gabidulin code, but also speciVed blocks of submatrices.
The latter one is not necessary to guarantee that it is a (P)UM code, but it results in good distance
properties (see Theorem 6.3). Lemma 6.1 gives an explicit construction, satisfying all requirements of
Theorem 6.2.

In order to fulVll (6.7), H(c) has to be a q-Vandermonde matrix:

H(c) = qvan(µH+1)(n−k)(h
(0)) = qvan(µH+1)(n−k)((h

(0)
0 h

(0)
1 . . . h

(0)
n−1)). (6.8)
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To satisfy also the conditions on H(r(i)), ∀i ∈ [1, µH ], we have to ensure that all elements in the set

H def
=
{
h
(0)
0 , . . . , h

(0)
n−1, h

(1)
0 , . . . , h

(1)
n−1, . . . , h

(µH)
0 , . . . , h

(µH)
n−1

}

=
{
h
(0)
0 , . . . , h

(0)
n−1, h

(0)[n−k]
0 , . . . , h

(0)[n−k]
n−1 , . . . , h

(0)[µH(n−k)]
0 , . . . , h

(0)[µH(n−k)]
n−1

} (6.9)

of cardinality |H| = (µH + 1) · n, are in Fqm and are linearly independent over Fq .

Therefore, if the elements of H (6.9) are linearly independent and H(c) ∈ F
(µH+1)(n−k)×n
qm is a

q-Vandermonde matrix as in (6.8), all requirements of Theorem 6.2 are fulVlled.

The following lemma shows explicitly how to choose the setH using a normal basis of Fqm over Fq

(see also Subsection 2.1.2) in order to construct a (P)UM code based on Gabidulin codes.

Lemma 6.1 (Explicit Construction with Normal Basis).

Let µH ≥ 1, the code rate R = k/n ≥ µH/(µH + 1) and BN = {β[0], β[1], . . . , β[m−1]} be a normal

basis of Fqm over Fq , where the Veld size satisVes

m ≥ µH(n− k)
⌈ n

n− k

⌉
+ n. (6.10)

Further, deVne h(0) ∈ Fn
qm by

h(0) =
(
β[0] β[1] . . . β[n−k−1] | β[(µH+1)(n−k)] β[(µH+1)(n−k)+1] . . . β[(µH+2)(n−k)−1] | (6.11)

β[2(µH+1)(n−k)] β[2(µH+1)(n−k)+1] . . . β[2(µH+2)(n−k)−1] | . . .
)
.

Let H(c) be deVned by (6.8) using h(0). Let the semi-inVnite parity-check matrix H as in (2.7) be deVned
with the setH from (6.9).

Then,H consists of µH + 1 submatricesH(i) and satisVes all requirements of Theorem 6.2.

Proof. To prove that H(r(i)) deVnes a Gabidulin code, ∀i ∈ [1, µH ], with the parameters as in
Theorem 6.2, it is suXcient that all elements in H are linearly independent (6.9). There are at
most m linearly independent elements in Fqm . If (n− k) divides n, then h(0) can be divided into
subvectors, each of length (n− k) as in (6.11), and the Veld size has to bem ≥ (µH + 1) · n. In
general, the last subvector in h(0) might be shorter than n− k and the linear independence within
H (6.9) is guaranteed if (6.10) is fulVlled.

Therefore, h(j)i = h
(0)[j(n−k)]
i as in (6.8) and the elements in H (6.9) are linearly independent.

Hence, H(c) andH(r(i)) deVne Gabidulin codes with the parameters required in Theorem 6.2.

The following lemma shows that the parity-check matrix constructed in such a way is in minimal
basic encoding form.

Lemma 6.2 (Construction is in Minimal Basic Encoding Form).

Let a (P)UM code based on Gabidulin codes be deVned by its parity-check matrix H as in Theorem 6.2,

explicitly written e.g. as in Lemma 6.1. Then, H is in minimal basic encoding form.

Proof. Let us denote the corresponding polynomial parity-check matrix by H(D) = H(0) +
H(1)D + · · ·+H(µH)DµH and compare Remark 2.2 for the required properties.
First, H is in encoding form sinceH(0) is a q-Vandermonde matrix and therefore has full rank.
Second, we show that H is in basic form. According to [For70, DeVnition 4], H(D) is basic if it is
polynomial and if there exists a polynomial right inverse H−1(D), such thatH(D) ·H−1(D) =
I(n−k)×(n−k). By deVnition, H(D) is polynomial. A polynomial right inverse exists if and only
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6.2 Constructions of Convolutional Codes in Rank Metric

if H(D) is non-catastrophic and hence if the slope is σR > 0 [Det94, Theorem A.4]. We will

calculate the slope in Theorem 6.4, proving that σR > 0.
Third, we show thatH(D) is in minimal form by analyzing the degree of the determinants of all

(n − k) × (n − k) submatrices of H(D). Denote these submatrices by Hℓ(D) for ℓ = 0, 1, . . . .
Clearly, deg(hij(D)) = µH for all i ∈ [0, n − k − 1], j ∈ [0, n − 1]. Thus, deg[det(Hℓ(D))] ≤
µH(n− k). The coeXcient of DµH(n−k) of det(Hℓ(D)) is exactly det(H

(µH)
ℓ ), where H

(µH)
ℓ is

a (n− k)× (n− k)-submatrix of H(µH). Since H
(µH)
ℓ is an (n− k)× (n− k) q-Vandermonde

matrix, det(H
(µH)
ℓ ) 6= 0 and deg[det(Hℓ(D))] = µH(n− k), ∀ℓ = 0, 1, . . . . This is equal to the

constraint length in obvious realization ν = µH(n − k) and hence, H(D) is in minimal basic

encoding form.

Alternatively, we could use [JZ99, Theorem 2.22, (iii)] to prove that H is in basic form. Since we

consider non-binary convolutional codes, notice that the corresponding matrix [H(D)]h (in the notation
of [JZ99]) is a matrix in Fqm with the highest coeXcient of hi,j(D) at entry (i, j) and with the entry

0 if hi,j(D) = 0. For our construction, [H(D)]h = H(µH), which has full rank and therefore, due

to [JZ99, Theorem 2.22, (iii)], H is a basic encoding matrix.

Example 6.1 (Construction of PUM Code based on Parity-Check Matrix).

Let us construct a PUM(6, 4|2) code C with µH = 1 and code rate R = 2/3 ≥ µH/(µH +1) = 1/2. Due

to (6.10), the Veld size ism ≥ 12 and we deVne the code over Fqm = F212 . Let BN = {β[0], β[1], . . . , β[11]}
be a normal basis of F212 over F2.

With (6.11) and (6.9), we obtain

h(0) =
(
β[0] β[1] | β[4] β[5] | β[8] β[9]

)
,

h(1) =
(
β[2] β[3] | β[6] β[7] | β[10] β[11]

)
.

The semi-inVnite parity-check matrix H is then given by

H =




β[0] β[1] β[4] β[5] β[8] β[9]

β[1] β[2] β[5] β[6] β[9] β[10]

β[2] β[3] β[6] β[7] β[10] β[11] β[0] β[1] β[4] β[5] β[8] β[9]

β[3] β[4] β[7] β[8] β[11] β[12] β[1] β[2] β[5] β[6] β[9] β[10]

β[2] β[3] β[6] β[7] β[10] β[11] . . .

β[3] β[4] β[7] β[8] β[11] β[12] . . .




.

As required by Theorem 6.2, the matrices H(0), H(1), (H(0) H(1)) and

(
H(0)

H(1)

)
deVne Gabidulin codes.

Theorem 6.2 guarantees that there is a generator matrix of C with memory µ = 1, consisting of two
(4× 6)-submatrices G(0) and G(1). The submatricesG(00), G(01), G(10) are all (2× 6)-matrices, since

k(1) = ν = µH(n− k) = 2. Hence, H deVnes a rate R = 2/3 PUM code based on Gabidulin codes.

Let us now calculate the active row rank distance of the construction of Theorem 6.2 with dual

memory µH = 1. Implicitly, this calculation provides the free rank distance df,R and the slope σR.
Denote the minimum rank distances of the codes deVned by the parity-check matrices H(0), H(1) and(
H(1) H(0)

)
by d0, d1 and d10, respectively. They are d0 = d1 = d10 = n− k + 1.
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6 Convolutional Codes in Rank Metric

Theorem 6.3 (Active Row Rank Distance of our Construction).

Let a PUM(n, k|k(1)) code of rate R ≥ 1/2 with µH = 1 be given, where the submatrices of H deVne

Gabidulin codes as in Theorem 6.2. Then, the active row rank distance d
(r)
j,R (DeVnition 6.3) is bounded by

d
(r)
1,R = 2(n− k) + 1,

d
(r)
j,R ≥

⌈
j + 1

2

⌉
· (n− k + 1), j ≥ 2.

(6.12)

Proof. The derivation of the active row rank distances for µH = 1 is similar to the analysis

by Zyablov and Sidorenko [ZS94]. In order to estimate the active row rank distance d
(r)
j,R from

DeVnition 6.3, consider all paths in the set C
(r)
j (compare Figure 6.1) for j ≥ 1.

• For the active row rank distance of order one, we have to consider only code sequences of the

form (c(0) 0 0 . . . ). Using the 2(n − k) × n parity-check matrix H̃ = (H(0)T H(1)T )T , the
codewords have to satisfy H̃ · c(0)T = 0. Since H̃ deVnes a Gabidulin code of minimum rank

distance 2(n− k) + 1, we obtain d
(r)
1,R = 2(n− k) + 1.

• For j = 2, we have to investigate all code sequences of the form
(
c(0) c(1) 0 . . .

)
. These code

sequences are deVned by the 3(n− k)× 2n parity–check matrix

H̃ =



H(0)

H(1) H(0)

H(1)


 .

i.e., H̃ ·
(
c(0) c(1)

)T
= 0. Hence, amongst others, the following equations must be fulVlled:

H(0) · c(0)T = 0, H(1) · c(1)T = 0.

Due to the deVnition of the sum rank distance, d(r)2,R ≥ d0 + d1 = 2(n− k + 1).

• For j = 3 and code sequences of the form
(
c(0) c(1) c(2) 0 . . .

)
, the same two equations have

to hold and therefore, d(r)3,R ≥ d0 + d1 = 2(n− k + 1).

• For j = 4 and code sequences
(
c(0) c(1) c(2) c(3) 0 . . .

)
, we have to consider the 5(n−k)×4n

parity-check matrix H̃, for which H̃ ·
(
c(0) c(1) c(2) c(3)

)T
= 0 and in particular:

H(0) · c(0)T = 0, H(1) · c(1)T +H(0) · c(2) = 0, H(1) · c(3)T = 0,

and therefore, d(r)4,R ≥ d0 + d10 + d1 = 3(n− k + 1).

Similarly, d(r)5,R ≥ d0 + d10 + d1 = 3(n− k + 1) and d(r)6,R ≥ d0 + d10 + d10 + d1 = 4(n− k + 1).
In general, by continuing this strategy, we obtain the statement.

The following theorem shows that our construction achieves the upper bound on the free rank distance
for PUM codes (6.5) and half the optimal slope (6.6).

104



6.2 Constructions of Convolutional Codes in Rank Metric

Theorem 6.4 (Free Rank Distance and Slope of our Construction for µH = 1).
For R > 1/2, the PUM(n, k|k(1)) code based on Gabidulin codes as in Theorem 6.2 with µH = 1 achieves

the upper bound on the free rank distance (6.5) and half the optimal slope (6.6):

df,R = 2(n− k) + 1 = n− k + ν + 1,

σR =
n− k + 1

2
.

Proof. The overall constraint length is ν = n− k. Hence,

df,R = min
j

{
d
(r)
j,R

}
= d

(r)
1,R = 2(n− k) + 1 = n− k + ν + 1.

The slope is calculated as in DeVnition 6.4:

σR = lim
j→∞

{
d
(r)
j,R

j

}
=

n− k + 1

2
.

However, it is not clear what happens when µH > 1. Based on simulations, we conjecture the

following.

Conjecture 6.1 (Free Rank Distance and Slope of our Construction for Arbitrary µH ).

ForR > µH/(µH+1), the PUM(n, k|k(1)) code based on Gabidulin codes as in Theorem 6.2 with µH ≥ 1
achieves

df,R = (µH + 1)(n− k) + 1 = n− k + ν + 1,

σR ≥
n− k + 1

µH + 1
.

The lower bound on the slope can actually be proven similar to Theorem 6.3, but for the free rank

distance it is not clear if d
(r)
1,R is the minimum of the active row rank distances.

This conjecture implies that the free rank distance increases with higher µH and the slope decreases.

Hence,—if the conjecture is true—a trade-oU between the free rank distance and the slope is possible. A

similar behavior was observed by Jordan, Pavlushkov and Zyablov [JPZ04] in Hamming metric, since

they showed that for general convolutional codes, the upper and lower bounds on the free distance

increase with increasing memory whereas the upper and lower bounds for the slope decrease.

6.2.2 PUM Codes Based on the Generator Matrix of Gabidulin Codes

In the previous subsection, (P)UM codes were constructed such that the submatrices of the parity-check
matrix deVne Gabidulin codes. In this subsection, we construct such codes based on the generator
matrix. Our construction is an adaptation of the construction from [DS95] to rank metric.

DeVnition 6.5 ((P)UM Code based on Generator Matrices of Gabidulin Codes).

Let k + k(1) ≤ n ≤ m, where k(1) ≤ k, and let g0, g1, . . . , gn−1 ∈ Fqm be linearly independent over

Fq . For k
(1) = k we deVne a UM(n, k) code and for k(1) < k a PUM(n, k|k(1)) code over Fqm by a

zero-forced terminated generator matrix Gterm as in (2.8) with µ = 1 and the k × n submatrices G(0)
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6 Convolutional Codes in Rank Metric

andG(1):

G(0) =

(
G(00)

G(01)

)
=




g0 g1 . . . gn−1

g
[1]
0 g

[1]
1 . . . g

[1]
n−1

...
...

. . .
...

g
[k(1)−1]
0 g

[k(1)−1]
1 . . . g

[k(1)−1]
n−1

g
[k(1)]
0 g

[k(1)]
1 . . . g

[k(1)]
n−1

g
[k(1)+1]
0 g

[k(1)+1]
1 . . . g

[k(1)+1]
n−1

...
...

. . .
...

g
[k−1]
0 g

[k−1]
1 . . . g

[k−1]
n−1




, (6.13)

and

G(1) =

(
G(10)

0

)
=




g
[k]
0 g

[k]
1 . . . g

[k]
n−1

g
[k+1]
0 g

[k+1]
1 . . . g

[k+1]
n−1

...
...

. . .
...

g
[k+k(1)−1]
0 g

[k+k(1)−1]
1 . . . g

[k+k(1)−1]
n−1

0




. (6.14)

Table 6.1 denotes the Gabidulin codes, deVned by submatrices of the generator matrix, their minimum

rank distances and their block rank-metric error-erasure bounded minimum distance (BMD) decoders—

realized e.g. by the decoder from Subsection 3.2.3. These BMD decoders decode correctly if (3.32)

is fulVlled for the corresponding minimum rank distance. If we consider unit memory codes with

k = k(1), then d00 = d10 = n− k + 1, dσ = n− 2k + 1 and d01 =∞, since G(01) does not exist.

Table 6.1. Submatrices of (P)UM code from DeVnition 6.5 and their block codes.

Generator
matrix

DeVned
code

Code
parameters

Minimum rank
distance

BMD
decoder

G(0) C0 Gab[n, k] d0 = n− k + 1 BMD(C0)(
G(01)

G(10)

)
C1 Gab[n, k] d1 = n− k + 1 BMD(C1)

G(00) C00 Gab[n, k(1)] d00 = n− k(1) + 1 not needed

G(01) C01 Gab[n, k − k(1)] d01 = n− k + k(1) + 1 BMD(C01)

G(10) C10 Gab[n, k(1)] d10 = n− k(1) + 1 not needed

Gσ =

(
G(00)

G(01)

G(10)

)
Cσ Gab[n, k + k(1)] dσ = n− k − k(1) + 1 BMD(Cσ)

Lemma 6.3 (Construction is in Minimal Basic Encoding Form).

Let a (P)UM code based on Gabidulin codes be deVned by its generator matrix G as in DeVnition 6.5. Then,

G is in minimal basic encoding form.

Proof. The proof is straight-forward to the proof of Lemma 6.2.
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In the following, we calculate the active row rank distance (DeVnition 6.3) by cutting the semi-inVnite

generator matrix of the PUM code from DeVnition 6.5 into parts. Pay attention that each code block of
length n can be seen as a codeword of Cσ .

Theorem 6.5 (Lower Bound on Active Distances).

Let k + k(1) ≤ n ≤ m, where k(1) ≤ k. Let C be a UM(n, k), respectively PUM(n, k|k(1)), code over
Fqm as in DeVnition 6.5. The active row, column and reverse column rank distances d

(r)
j,R, d

(c)
j,R and d

(rc)
j,R

(DeVnition 6.3 and Equation (6.3)) of C are lower bounded by

d
(r)
1,R ≥ δ

(r)
1,R = d01, d

(r)
j,R ≥ δ

(r)
j,R = d0 + (j − 2) · dσ + d1, ∀j ≥ 2,

d
(c)
j,R ≥ δ

(c)
j,R = d0 + (j − 1) · dσ, ∀j ≥ 1,

d
(rc)
j,R ≥ δ

(rc)
j,R = (j − 1) · dσ + d1, ∀j ≥ 1,

where d01 = n − k + k(1) + 1 for k(1) < k and d01 = ∞ for k(1) = k; d0 = d1 = n − k + 1 and

dσ = n− k − k(1) + 1.

Proof. For the estimation of the active row rank distance, the encoder starts in the zero state

hence, u(−1) = 0. For the Vrst order active row distance d(r)1,R, we look at all code sequences of the

form (. . . 0 c(0) 0 . . . ), which is only possible if u(0) = (0 . . . 0 u
(0)

k(1)
. . . u

(0)
k−1) and u(i) = 0,

∀i ≥ 1. In this case, c(0) ∈ C01 and the encoder returns immediately to the zero state. For the UM

case, also u(0) = 0 and the only codeword in C
(r)
0 is the all-zero codeword and thus, d(r)1,R =∞.

For higher orders of d(r)j,R, we have to consider all code sequences, starting with c(0) ∈ C0

(since u(−1) = 0), followed by j − 2 codewords of Cσ and one Vnal code block, resulting from

u(j−1) = (0 . . . 0 u
(j−1)

k(1)
. . . u

(j−1)
k−1 ) and for the UM case u(j−1) = 0. For the UM and the PUM

case, the block u(j−2) is arbitrary, therefore c(j−1) = u(j−1) ·G(0) + u(j−2) ·G(1) ∈ C1.

For the estimation of d(c)j,R, the encoder starts in the zero state but ends in any state. Thus, c(0) ∈ C0

is followed by j − 1 arbitrary information blocks resulting in codewords from Cσ .
For the active reverse column rank distances, we start in any, hence, all Vrst j − 1 blocks are from
Cσ . The last block is from C1 in order to end in the zero state.

We call the lower bounds of d(r)j,R, d
(c)
j,R, d

(rc)
j,R designed active distances δ(r)j,R, δ

(c)
j,R, δ

(rc)
j,R in the following.

Corollary 6.2 (Free Rank Distance and Slope of our Construction).

Let k + k(1) ≤ n ≤ m, where k(1) ≤ k. Let C be a UM(n, k), respectively PUM(n, k|k(1)), code over
Fqm as in DeVnition 6.5. The free rank distance df,R for k(1) = k is

df,R ≥ min
j

{
δ
(r)
j,R

}
= d0 + d1 = 2(n− k + 1),

and for k(1) < k:

df,R = min
j

{
δ
(r)
j,R

}
= d01 = n− k + k(1) + 1 = n− k + ν + 1.
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The slope σR of C for both cases is:

σR ≥ lim
j→∞

{
δ
(r)
j,R

j

}
= dσ = n− k − k(1) + 1.

Thus, for any k(1) < k, the construction achieves the upper bound on the free rank distance of PUM
codes (6.5). When k(1) = k = 1, we meet the upper bound on the free rank distance of UM codes (6.4).
For k(1) = 1 ≤ k, the upper bound on the slope is attained.

If we compare this to the construction from Subsection 6.2.1,—with free rank distance and slope as
in Theorem 6.4—we see that they both attain the upper bound on the free rank distance for k < k(1). It
depends on the concrete parameters n, k, k(1), which slope is higher.

The construction based on the parity-matrix (Theorem 6.2) requires that R = k/n ≥ µH/(µH + 1)
and provides therefore a high-rate code, whereas the construction based on the generator matrix
(DeVnition 6.5) results in a low-rate code since k + k(1) ≤ n has to hold.

6.3 Error-Erasure Decoding of PUM Gabidulin Codes

This section provides an eXcient error-erasure decoding algorithm for (P)UM codes as in DeVnition 6.5,
using the block rank-metric decoders of the underlying Gabidulin codes of Table 6.1.

6.3.1 Bounded Row Distance Condition and Decoding Idea

We consider the terminated generator matrix of a (P)UM code as in (2.8) and therefore we look at blocks

of length N + µ = N + 1. Let the received sequence r = (r(0) r(1) . . . r(N)) ∈ F
n(N+1)
qm be given and

let the matrix sequence R = (R(0) R(1) . . . R(N)) ∈ F
m×n(N+1)
q denote the matrix representation of

r according to the mapping from DeVnition 2.1. Let r(i) = c(i) + e(i), for all i ∈ [0, N ]. The matrix
representation R(i) ∈ Fm×n

q can be decomposed as in (3.33), including t(i) errors, ̺(i) row erasures

and γ(i) column erasures in rank metric, for all i ∈ [0, N ].

Analog to Justesen’s deVnition in Hamming metric [Jus93], we deVne a bounded (row rank) distance
decoder for convolutional codes in rank metric, incorporating additionally erasures.

DeVnition 6.6 (Bounded Row Distance Error–Erasure Decoder in Rank Metric).

Given a received sequence r = c+ e ∈ F
n(N+1)
qm , a bounded row distance (BRD) error-erasure decoder in

rank metric for a convolutional code C guarantees to Vnd the code sequence c ∈ C if

i+j−1∑

h=i

(
2 · t(h) + ̺(h) + γ(h)

)
< δ

(r)
j,R ≤ d

(r)
j,R, ∀i ∈ [0, N ], j ∈ [0, N − i+ 1], (6.15)

where t(h), ̺(h), γ(h) denote the number of errors, row and column erasures in block e(h) ∈ Fn
qm as in

(3.34).

In Algorithm 6.1, we present such a BRD rank-metric error-erasure decoder for (P)UM codes constructed
as in DeVnition 6.5. It is a generalization of the Dettmar–Sorger algorithm [DS95] to rank metric and to
error-erasure correction. The generalization to error-erasure decoding can be done in a similar way in
Hamming metric.

In the course of this subsection, we explain the idea and the diUerent steps of Algorithm 6.1 in detail.
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In Subsection 6.3.2, we prove that the algorithm is actually a BRD error-erasure rank-metric decoder as
in DeVnition 6.6 and we show that its complexity is cubic with the length n of a code block.

The main idea of Algorithm 6.1 is to take advantage of the algebraic structure of the underlying
block codes and their eXcient decoders (see Table 6.1). We use the outputs of these block decoders
to build a reduced trellis. As a Vnal step of our decoder, the usual Viterbi algorithm is applied to this
reduced trellis, which has only very few states and therefore the Viterbi algorithm has low complexity.

The Vrst step of Algorithm 6.1 is to decode r(i), ∀i ∈ [1, N − 1], with BMD(Cσ), since each code
block c(i) is a codeword of Cσ , ∀i ∈ [1, N − 1]. Because of the termination, the Vrst and the last block
can be decoded in the codes C0 and C01, respectively, which have a higher minimum rank distance
than Cσ . Let c(i)′, for all i ∈ [0, N ], denote the result of decoding r(i) if it is successful.

For all i ∈ [0, N ], we draw an edge in a reduced trellis with the following metric:

m(i) =





rk(r(i) − c(i)′), if BMD(Cσ), BMD(C0), BMD(C01)
in blocks 0, [1, N − 1], N is successful,⌊

dσ + 1 + ̺(i) + γ(i)

2

⌋
, else.

∀i ∈ [0, N ]. (6.16)

The metric for the successful case is always smaller than the metric for the non-successful case since

rk(r(i) − c(i)′) = t(i) + ̺(i) + γ(i) ≤
⌊
dσ + 1 + ̺(i) + γ(i)

2

⌋
− 1.

If the block error-erasure decoder BMD(Cσ) decodes correctly, the result is c(i)′ = u(i)G(0) +

(u
(i−1)
0 u

(i−1)
1 . . . u

(i−1)

k(1)−1
) ·G(10). Since the minimum distance dσ ≥ 1, we can reconstruct the whole

information vector u(i) = (u
(i)
0 u

(i)
1 . . . u

(i)
k−1) and the mentioned part of the previous information

(u
(i−1)
0 u

(i−1)
1 . . . u

(i−1)

k(1)−1
).

Assume, we reconstructed u(i) and (u
(i−1)
0 u

(i−1)
1 . . . u

(i−1)

k(1)−1
) in Step 1, then with (2.9) and the

encoding rule (2.10), we can calculate:

r(i+1) − (u
(i)
0 u

(i)
1 . . . u

(i)

k(1)−1
) ·G(10) = u(i+1)G(0) + e(i+1) (6.17)

r(i−1)− (u
(i−1)
0 u

(i−1)
1 . . . u

(i−1)

k(1)−1
) ·G(00) = (u

(i−1)

k(1)
. . . u

(i−1)
k−1 | u

(i−2)
0 . . . u

(i−2)

k(1)−1
)

(
G01

G10

)
+ e(i−1).

Hence, Step 2 uses the information from block i to decode ℓ(i)f blocks forward with BMD(C0) and ℓ
(i)
b

blocks backward with BMD(C1) from any node found in Step 1. This closes (most of) the gaps between
two blocks correctly decoded by BMD(Cσ) (of course, it is not known, which are decoded correctly).

The values ℓ(i)f and ℓ
(i)
b are deVned as follows.

ℓ
(i)
f = min

j

(
j


j∑

h=1

(
dσ −m(i+h)

)
≥

δ
(c)
j,R −

∑j
h=1

(
̺(i+h) + γ(i+h)

)

2

)
, (6.18)

ℓ
(i)
b = min

j

(
j


j∑

h=1

(
dσ −m(i−h)

)
≥

δ
(rc)
j,R −

∑j
h=1

(
̺(i−h) + γ(i−h)

)

2

)
. (6.19)

These deVnitions are chosen such that we can guarantee correct decoding if the BRD condition (6.15) is
fulVlled (see Section 6.3.2).
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r(0) . . . r(i) r(i+1) r(i+2) r(i+3) r(i+4) . . .Given:

Step 1:

BMD(Cσ)
c(0) . . .
BMD(C0)

c(i+2) c(i+4) . . .

Step 2:

BMD(C0),

BMD(C1)

c(0) . . . c(i+2) c(i+4)c(i+1) c(i+3)

. . .. . .
. . .

Step 3:

BMD(C01)
c(0) . . . c(i+2) c(i+3)c(i+1) c(i+4)c(i)

. . .

. . .

Step 4:

Viterbi

Figure 6.3. Illustration of the diUerent steps of Algorithm 6.1: The received sequence (r(0) r(1) . . . r(N)) is
given and the diUerent steps and their decoding results are shown. Dashed blocks/edges illustrate
that they were found in a previous step.

For Step 3 and some i ∈ [0, N −1], assume we know (u
(i+1)
0 u

(i+1)
1 . . . u

(i+1)

k(1)−1
) and u(i) from Step 1

or 2, then as in (6.17), we can calculate

r(i+1) − (u
(i+1)
0 u

(i+1)
1 . . . u

(i+1)

k(1)−1
) ·G(00) − (u

(i)
0 u

(i)
1 . . . u

(i)

k(1)−1
) ·G(10) =

(u
(i+1)

k(1)
u
(i+1)

k(1)+1
. . . u

(i+1)
k−1 ) ·G(01) + e(i+1),

which shows that we can use BMD(C01) to close a remaining gap in block i+ 1.

After Step 3, assign as metric to each edge

m(i) =





rk(r(i) − c(i)′), if BMD(C0), BMD(C1)
or

BMD(C01) is successful,⌊
d01 + 1 + ̺(i) + γ(i)

2

⌋
, else,

∀i ∈ [0, N ], (6.20)

where c(i)′ denotes the result of a successful decoding. For one received block r(i), there can be several

decoding results c(i)′ from the diUerent BMD decoders. Thus, there can be more than one edge in the

reduced trellis at depth i. Each edge is labeled with regard to (6.20) using its corresponding code block.

Finally, we use the Viterbi algorithm to Vnd the path with the smallest sum rank weight in this

reduced trellis. As in [DS95], we use m(i), for all i ∈ [0, N ], as edge metric and the sum over diUerent
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6.3 Error-Erasure Decoding of PUM Gabidulin Codes

edges as path metric. The diUerent steps of our decoding algorithm are roughly summarized in
Algorithm 6.1, the details can be found in the preceding description and Figure 6.3 illustrates our
decoding algorithm.

Algorithm 6.1.

c← BoundedRowDistanceDecoderPUM
(
r
)

Input: Received sequence r = (r(0) r(1) . . . r(N)) ∈ F
n(N+1)
qm

1 Step 1: Decode block r(0) with BMD(C0)

2 Decode block r(i) with BMD(Cσ), for all i ∈ [1, N − 1]

3 Decode block r(N) with BMD(C01)

4 Assign metric m(i) as in (6.16), for all i ∈ [0, N ]

5 Step 2: For all found blocks c(i): decode ℓ(i)f steps forward with BMD(C0),

6 decode ℓ(i)b steps backward with BMD(C1)

7 Step 3: For all found blocks c(i): decode r(i+1) with BMD(C01)

8 Assign metric m(i) as in (6.20), for all i ∈ [0, N ]

9 Step 4: Find complete path with smallest sum rank metric using the Viterbi algorithm

Output: Codeword sequence c = (c(0) c(1) . . . c(N)) ∈ F
n(N+1)
qm

In Section 6.3.2, we prove that if (6.15) is fulVlled, then after the three block decoders, all gaps are
closed and the Viterbi algorithm Vnds the path with the smallest sum rank weight.

6.3.2 Proof of Correctness of the Error-Erasure Decoding Algorithm

In the following, we prove that decoding with Algorithm 6.1 is successful if the BRD condition (6.15) is
fulVlled. The proof follows the proof of Dettmar and Sorger [Det94, DS95]. Lemma 6.4 shows that the
gaps between two correct results of Step 1 are not too big and Lemmas 6.5 and 6.6 show that the gap
size after Steps 1 and 2 is at most one if the BRD condition (6.15) is fulVlled. Theorem 6.6 shows that
these gaps can be closed with BMD(C01) and the Viterbi algorithm Vnds the correct path.

Lemma 6.4 (Gap Between two Correct Results of Step 1).

If the BRD condition (6.15) is satisVed, then the length of any gap between two correct decisions in Step 1 of

Algorithm 6.1, denoted by c(i), c(i+j) is less than min
{
L
(i)
f , L

(i)
b

}
, where

L
(i)
f = min

j

(
j


j∑

h=1

(
dσ −m(i+h)

)
≥

δ
(r)
j,R −

∑j
h=1(̺

(i+h) + γ(i+h))

2

)
,

L
(i)
b = min

j

(
j


j∑

h=1

(
dσ −m(i−h)

)
≥

δ
(r)
j,R −

∑j
h=1(̺

(i−h) + γ(i−h))

2

)
.

Proof. Decoding of a block r(i) in Step 1 fails or outputs a wrong result if there are at least
(dσ−̺(i)−γ(i))/2 errors in rank metric. In such a case, the metricm(i) = ⌊(dσ+1+̺(i)+γ(i))/2⌋
is assigned.
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6 Convolutional Codes in Rank Metric

In order to prove the statement, assume there is a gap of at least L
(i)
f blocks after Step 1. Then,

L
(i)
f∑

h=1

t(i+h) ≥
L
(i)
f∑

h=1

dσ − ̺(i+h) − γ(i+h)

2
≥

L
(i)
f∑

h=1

(
dσ −m(i+h)

)

≥
δ
(r)

L
(i)
f

,R
−∑L

(i)
f

h=1

(
̺(i+h) + γ(i+h)

)

2
,

which follows from the deVnition of the metric (6.16) and from the deVnition of L
(i)
f . This

contradicts the BRD condition (6.15). Similarly, we can prove this for L
(i+j)
b and the gap size is

less than min
{
L
(i)
f , L

(i)
b

}
.

Lemma 6.5 (Correct Path for Few Errors).

Let c(i) and c(i+j) be decoded correctly in Step 1 of Algorithm 6.1. Let Step 2 of Algorithm 6.1 decode ℓ
(i)
f

blocks in forward direction starting in c(i) and ℓ
(i+j)
b blocks in backward direction starting in c(i+j) (see

also (6.18), (6.19)).

Then, the correct path is in the reduced trellis if the BRD condition (6.15) is satisVed and if in each block

less than min
{
(d0 − ̺(i) − γ(i))/2, (d1 − ̺(i) − γ(i))/2

}
rank errors occurred.

Proof. If there are less than min
{
(d0 − ̺(i) − γ(i))/2, (d1 − ̺(i) − γ(i))/2

}
errors in a block,

BMD(C0) and BMD(C1) always yield the correct decision. Due to the deVnition of ℓ
(i)
f , see (6.18),

the forward decoding with BMD(C0) terminates as soon as

ℓ
(i)
f∑

h=1

t(i+h) ≥
ℓ
(i)
f∑

h=1

dσ − ̺(i+h) − γ(i+h)

2
≥

ℓ
(i)
f∑

h=1

(
dσ −m(i+h)

)

≥
δ
(c)

ℓ
(i)
f

,R
−

ℓ
(i)
f∑

h=1

(
̺(i+h) + γ(i+h)

)

2
=

d0
2

+
(
ℓ
(i)
f − 1

)dσ
2
−
∑ℓ

(i)
f

h=1

(
̺(i+h) + γ(i+h)

)

2
,

where the Vrst inequality holds since the decoding result could not be found in Step 1 and the

second and third hold due to the deVnition of the metric (6.16) and the deVnition of ℓ
(i)
f .

Similarly, the backward decoding with BMD(C1) terminates if

ℓ
(i+j)
b∑

h=1

t(i+j−h) ≥ d1
2

+
(
ℓ
(i+j)
b − 1

)dσ
2
−
∑ℓ

(i+j)
b

h=1

(
̺(i+j−h) + γ(i+j−h)

)

2
.

The correct path is in the reduced trellis if ℓ
(i)
f + ℓ

(i+j)
b ≥ j − 1, since the gap is then closed.

Assume now on the contrary that ℓ
(i)
f + ℓ

(i+j)
b < j − 1. Since Step 1 was not successful for

the blocks in the gap, at least (dσ − ̺(h) − γ(h))/2 rank errors occured in every block r(h),

∀h ∈ [i+ ℓ
(i)
f + 1, i+ j − ℓ

(i+j)
b − 1], i.e, in the blocks in the gap between the forward and the

backward path.
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Then,

j−1∑

h=1

t(i+h) ≥
ℓ
(i)
f∑

h=1

t(i+h) +

ℓ
(i+j)
b∑

h=1

t(i+j−h) +

j−1−ℓ
(i+j)
b∑

h=ℓ
(i)
f

+1

dσ − ̺(i+h) + γ(i+h)

2

≥ d0
2

+
(
ℓ
(i)
f − 1

)dσ
2
−
∑ℓ

(i)
f

h=1(̺
(i+h) + γ(i+h))

2

+
d1
2

+
(
ℓ
(i+j)
b − 1

)dσ
2
−
∑ℓ

(i+j)
b

h=1

(
̺(i+j−h) + γ(i+j−h)

)

2

+

(
j − 1− ℓ

(i)
f − ℓ

(i+j)
b

)

2
dσ −

∑j−1−ℓ
(i+j)
b

h=ℓ
(i)
f

+1

(
̺(i+h) + γ(i+h)

)

2

≥ d0
2

+
d1
2

+
(j − 3)

2
dσ −

∑j−1
h=1

(
̺(i+h) + γ(i+h)

)

2

=
δ
(r)
j−1,R −

∑j−1
h=1

(
̺(i+h) + γ(i+h)

)

2
,

which is a contradiction to the bounded row distance condition (6.15) and the statement follows.

Lemma 6.6 (Gap Size is at Most One After Steps 1 and 2).

Let c(i) and c(i+j) be decoded correctly in Step 1 of Algorithm 6.1 (with no other correct decisions in

between) and let the BRD condition (6.15) be fulVlled. Let d0 = d1.

Then, there is at most one error block e(h), h ∈ [i+ 1, i+ j − 1], of rank at least (d0 − ̺(i) − γ(i))/2.

Proof. To fail in Step 1, there have to be at least (dσ − ̺(i) − γ(i))/2 errors in r(i), ∀i ∈
[i+ 1, i+ j − 1]. If two error blocks in this gap have rank at least (d0 − ̺(i) − γ(i))/2, then

j−1∑

h=1

t(i+h) ≥ 2 · d0
2

+ (j − 3) · dσ
2
−
∑j−1

h=1

(
̺(i+h) + γ(i+h)

)

2

≥
δ
(r)
j−1,R

2
−
∑j−1

h=1

(
̺(i+h) + γ(i+h)

)

2
,

which contradicts (6.15).

Lemmas 6.5 and 6.6 show that if the BRD condition is satisVed, then the correct path is in the reduced
trellis after Steps 1 and 2, except for at most one block.

Theorem 6.6 (Correct Path is in Reduced Trellis after Steps 1–3).

If the BRD condition (6.15) is satisVed, then the correct path is in the reduced trellis after Steps 1–3 of

Algorithm 6.1.

Proof. Lemma 6.6 guarantees that after Step 2, at most one block is missing from the correct
path. This gap can be closed in Step 3 with BMD(C01), which is able to Vnd the correct solution

since d01 ≥ δ
(r)
1,R = df,R.

The complexity is determined by the complexity of the BMD rank block error-erasure decoders from
Table 6.1 (realized e.g., as in [SKK08, GPB10] and Subsection 3.2.3), which are all in the order O(n2)
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operations in Fqm . Hence, the calculation of the complexity is straight-forward to [DS95, Theorem 3]

and we can give the following bound on the complexity without proof.

Theorem 6.7 (Bounded Row Distance Decoding with Algorithm 6.1).

Let k + k(1) ≤ n ≤ m, where k(1) ≤ k. Let C be a zero-forced terminated UM(n, k) or PUM(n, k|k(1))
code over Fqm as in DeVnition 6.5. Let a received sequence r = (r(0) r(1) . . . r(N)) ∈ F

n(N+1)
qm be given.

Then, Algorithm 6.1 Vnds the code sequence c = (c(0) c(1) . . . c(N)) ∈ F
n(N+1)
qm with smallest sum

rank distance to r if the BRD condition is satisVed (6.15). The complexity of decoding one block of length n
is upper bounded by

O(dσn2) ≤ O(n3).

The analysis of what happens if too many errors occur or if the BRD condition (6.15) is not fulVlled

in one or several blocks, is analog to [DS95]. We can give a condition similar to (6.15) for a single block

and see that the algorithm returns to the correct path relatively fast.

6.4 Application to Random Linear Network Coding

The motivation for considering convolutional codes in rank metric is to apply them in multi-shot

random linear network coding (RLNC). In this section, we Vrst explain the model of multi-shot network

coding and show how to deVne lifted (P)UM code in rank metric. Afterwards, we show how decoding
of these lifted (P)UM codes reduces to error-erasure decoding of (P)UM codes in rank metric.

There are other contributions devoted to convolutional network codes (see e.g. [EF04, LY06, PR10,
GCSM11]). However, none of these code constructions is based on rank metric and deals with the
transmission over the operator channel as ours. Our contribution can be seen as an equivalent for
convolutional codes to the block code construction from [SKK08].

6.4.1 Multi-Shot Transmission of Lifted PUM Codes

As network channel model we assume a multi-shot transmission over the so-called operator channel.
The operator channel was deVned by Kötter and Kschischang in [KK08] and the concept of multi-shot
transmission over the operator channel was Vrst considered by Nóbrega and Uchôa-Filho [NU10].

In this network model, a source transmits packets (which are vectors over a Vnite Veld) to a sink.
The network has several directed links between the source, some internal nodes and the sink. The
source and sink apply coding techniques for error control, but have no knowledge about the structure
of the network. This means, we consider non-coherent RLNC. In a multi-shot transmission, we use
the network several times and the internal structure may change in every time instance. In detail, we
assume that we use it N + 1 times. In the following, we shortly give basic notations for this network
channel model. The notations are similar to [SKK08], but we include additionally the time dependency.

LetX(i) ∈ F
n×(n+m)
q , ∀i ∈ [0, N ]. The rows represent the transmitted packetsX(i)

0 , X
(i)
1 , . . . , X

(i)
n−1

∈ Fn+m
q at time instance (shot) i. Similarly, let Y(i) ∈ F

n(i)×(n+m)
q be a matrix whose n(i) rows

correspond to the received packets Y (i)
0 , Y

(i)
1 , . . . , Y

(i)

n(i)−1
∈ Fm+n

q . Notice that n and n(i) do not have
to be equal since packets can be erased and/or additional error packets might be inserted.

The term random linear network coding originates from the behavior of the internal nodes: they
create random linear combinations of the packets received so far in the current shot i, ∀i ∈ [0, N ].
Additionally, erroneous packets might be inserted into the network and transmitted packets might be
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lost or erased.

Let the links in the network be indexed from 0 to ℓ− 1, then, as in [SKK08], let the rows of a matrix

Z(i) ∈ F
ℓ×(n+m)
q contain the error packets Z

(i)
0 , Z

(i)
1 , . . . , Z

(i)
ℓ−1 inserted at the links 0 to ℓ− 1 at shot i.

If Z
(i)
j = 0, j ∈ [0, ℓ− 1], then no corrupt packet was inserted at link j ∈ [0, ℓ− 1] and time i. Due to

the linearity of the network, the output can be written as:

Y(i) = A(i)X(i) +B(i)Z(i), (6.21)

where A(i) ∈ Fn(i)×m
q and B(i) ∈ Fn(i)×ℓ

q are the (unknown) channel transfer matrices at time i.

When there are no errors or erasures in the network, the row space ofY(i) is the same as the row

space of X(i). In [KK08, SKK08] it was shown that subspace codes constructed by lifted MRD codes (as

in Lemma 2.18) provide an almost optimal solution to error control in the operator channel. Such lifted

MRD codes are a special class of constant-dimension codes (see Subsection 2.3.4). In the following, we

deVne lifted PUM codes based on Gabidulin codes in order to use these constant-dimension codes for

error correction in multi-shot network coding.

DeVnition 6.7 (Lifted (Partial) Unit Memory Code).

Let C be a zero-forced terminated PUM(n, k|k(1)) code over Fqm as in DeVnition 6.5. Represent each code

block c(i) ∈ Fn
qm , ∀i ∈ [0, N ], as matrix C(i) ∈ Fm×n

q according to DeVnition 2.1.

Then, the lifting of C is deVned by the following set of subspace sequences:

lift(C) =

{(
Rq

(
[In C(0)T ]

)
Rq

(
[In C(1)T ]

)
. . . Rq

(
[In C(N)T ]

))
:

(
ext−1

β (C(0)) ext−1
β (C(1)) . . . ext−1

β (C(N))
)
∈ C

}
.

As in DeVnition 2.18, we denote lift(C(i)T ) = Rq

(
[In C(i)T ]

)
, ∀i ∈ [0, N ]. We transmit this sequence

of subspaces over the operator channel such that each transmitted matrix is a lifted block of a codeword

of the rank-metric PUM code, i.e., X(j) = [In C(i)T ], ∀i ∈ [0, N ]. Of course, any other basis of the row
space can also be chosen as transmitted matrix.

By means of this lifted PUM code, we create dependencies between the diUerent shots in the
network. Since each code block of length n is a codeword of the block code Cσ , each transmitted
subspace is a codeword of a CDq(n+m, ds = 2dσ, n) constant-dimension code, lying in Gq(n+m,n),
see [SKK08, Proposition 4] and Lemma 2.18.

However, the lifted (P)UM code contains additionally dependencies between the diUerent blocks
and for decoding, we obtain therefore a better performance than simply lifting the block code Cσ as in
Lemma 2.18. Since the PUM code transmits k information symbols per shot, a comparison with a lifted
block code of rate k/n is much fairer than comparing it with Cσ (see Example 6.2).

6.4.2 Decoding of Lifted PUM Codes in the Operator Channel

In this section, we will show how the decoding problem in the operator channel reduces to error-erasure
decoding of PUM codes based on Gabidulin codes—analog to [SKK08], where it reduces to error-erasure
decoding of Gabidulin codes. Since each code block of length n of a PUM(n, k|k(1)) code is a codeword
of the block code Cσ , we can directly use the reformulations of Silva, Kschischang and Kötter [SKK08].

Let the transmitted matrix at time instance i beX(i) = [In C(i)T ] and denote byY(i) = [Â(i) Ŷ(i)] ∈
F
n(i)×(n+m)
q the received matrix after the multi-shot transmission over the operator channel as in (6.21).
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The channel transfer matricesA(i) and B(i) can be time-variant. Moreover, assume rk(Y(i)) = n(i),

since linearly dependent received packets are directly discarded. Then, as in [SKK08], we denote the

column and row deVciency of Â(i) by:

γ(i)
def
= n− rk(Â(i)), ̺(i)

def
= n(i) − rk(Â(i)), ∀i ∈ [0, N ].

If we calculate the reduced row echelon (RRE) form ofY(i) (and Vll it up with zero rows, if necessary), we

obtain the following matrix in F
(n+̺(i))×(n+m)
q (similar to [SKK08, Proposition 7], but in our notation):

RRE0

(
Y(i)

)
=

(
In +B(i,C)T IT

U(i) R(i)T

0 A(i,R)T

)
, (6.22)

for a set U (i) ⊆ {1, 2, . . . , n} with |U (i)| = γ(i) such that IT
U(i)R

(i)T = 0 and IT
U(i)B

(i,C)T = −Iγ(i) ,

and IU(i) denotes the submatrix of In consisting of the columns indexed by U (i). Moreover, B(i,C)T ∈
Fn×γ(i)

q andA(i,R)T ∈ F̺(i)×n
q .

Furthermore, it was shown in [SKK08] that R(i) can be decomposed into

R(i) = C(i) +A(i,R)B(i,R) +A(i,C)B(i,C) +A(i,E)B(i,E), ∀i ∈ [0, N ],

where
(
ext−1

β (C(0)) ext−1
β (C(1)) . . . ext−1

β (C(N))
)
∈ C and A(i,R) and B(i,C) are known to the

receiver, since the matrix from (6.22) can be calculated from the channel output. Comparing this

equation to (3.33) makes clear that the problem of decoding lifted PUM codes in the operator channel
reduces to error-erasure decoding of the PUM code in rank metric. For this purpose, we can use our
decoding algorithm from Section 6.3, which is based on rank-metric error-erasure block decoders.

Now, let the received matrix sequenceY = (Y(0) Y(1) . . . Y(N)) as output of the operator channel
be given, then we show in Algorithm 6.2 how to reconstruct the transmitted information sequence.

Algorithm 6.2.

u = (u(0) u(1) . . . ,u(N−1))← NetworkPUMDecoder
(
Y
)

Input: Received sequence Y = (Y(0) Y(1) . . . ,Y(N)),

where Y(i) ∈ F
n(i)×(n+m)
q , ∀i ∈ [0, N ]

1 γ(i) ← n− rk(Â(i)), ∀i ∈ [0, N ]

2 ̺(i) ← n(i) − rk(Â(i)), ∀i ∈ [0, N ]

3 Calculate RRE0(Y
(i)) and therefore R(i) as in (6.22), ∀i ∈ [0, N ]

4 r = (r(0) r(1) . . . r(N))←
(
ext−1

β (R(0)) ext−1
β (R(1)) . . . ext−1

β (R(N))
)

5 c = (c(0) c(1) . . . c(N))← BoundedRowDistanceDecoderPUM
(
r
)
with Algorithm 6.1

6 Reconstruct u = (u(0) u(1) . . . ,u(N−1))

Output: Information sequence u = (u(0) u(1) . . . ,u(N−1)) ∈ FkN
qm

The asymptotic complexity of Algorithm 6.2 for decoding one matrix Y(i) of size n(i) × (n +m)
scales cubic in n, since calculating the RRE is at most cubic in n if we use Gaussian elimination. Also,
Algorithm 6.1 has asymptotic complexity O(n3). The reconstruction of the information sequence out
of the code sequence is negligible.
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Example 6.2 (Lifted PUM Code for Network Coding).

Let N + 1 = 7, n = 8 ≤ m, k = 4, k(1) = 2 and therefore d0 = d1 = 5, d01 = 7 and dσ = 3 (Table 6.1).

Let C be a PUM(n, k|k(1)) code as in DeVnition 6.5. Construct the lifting of C as in DeVnition 6.7. Assume,

Y = (Y(0) Y(1) . . . Y(6)) is given as output of the operator channel and apply Algorithm 6.2.

After calculating the RRE (and Vlling the matrix up with zero rows as in (6.22)), let the number of errors,

row erasures and column erasures in each block be as in Table 6.2. The results of the diUerent decoding

steps of Algorithm 6.1 for error-erasure decoding of PUM codes are also shown. In this example the BRD

condition (6.15) is fulVlled and correct decoding is therefore guaranteed due to Theorem 6.6.

The code rate of C is 1/2 and as a comparison with the (lifted) Gabidulin codes from [SKK08], the last

line in Table 6.2 shows the decoding of a block Gabidulin code of rate 1/2 and minimum rank distance

d = 5. For fairness, the last block is also decoded with a Gab[8, 2] code. The block decoder fails in Shots 1

and 5.

However, similar to the ongoing discussion whether block or convolutional codes are better, it depends on

the distribution of the errors and erasures, i.e., on the channel, whether the construction from [SKK08] or

ours performs better.

Table 6.2. Example for error-erasure decoding of lifted (partial) unit memory codes based on Gabidulin codes.

Shot i 0 1 2 3 4 5 6

̺(i) + γ(i) 0 1 3 1 1 0 2

t(i) 2 2 0 1 0 3 2

PUM code Decoding with Cσ ,

block 0 with C0,

block N with C10

X

× × × X ×

X

Decoding with C0, C1 × X X ×
Decoding with C01 X X

Block code Decoding with Gab[8, 4] X × X X X × X

6.5 Summary and Outlook

The topic of this chapter are convolutional codes in rank metric, their decoding and their application to

random linear network coding.

First, we have deVned general distance measures for convolutional codes based on a modiVed rank

metric—the sum rank metric—and have derived upper bounds on the free rank distance and the slope

of (P)UM codes based on the sum rank metric.

Second, we have given two explicit constructions of (partial) unit memory codes based on Gabidulin
codes and have calculated their free rank distances and slopes. The Vrst (high-rate) construction is
based on the parity-check matrix and the second (low-rate) construction on the generator matrix.
Both constructions achieve the upper bound on the free rank distance and it depends on the concrete
parameters whose slope is higher.

Third, we have presented an eXcient error-erasure decoding algorithm for the (P)UM construction
based on the generator matrix. The algorithm guarantees to correct up to half the active row rank
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distance and its complexity is cubic in the length. Finally, we have shown how constant-dimension

codes, which were constructed by lifting the (P)UM code, can be applied for error control in random
linear network coding.

As an outlook, it will be interesting to prove Conjecture 6.1 and, more far reaching, to Vnd new
codes for error control in network coding, e.g. low-density-parity-check codes in rank metric.
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CHAPTER7
Concluding Remarks

W
ithin this thesis, decoding of block and convolutional codes in rank metric has been

considered. Since the invention of codes in rank metric by Delsarte, Gabidulin and Roth,

several authors have investigated the properties of such codes. A couple of eXcient decoding

algorithms for a class of maximum rank distance codes—nowadays called Gabidulin codes—were

presented within the last years, most of them similar to renown decoding algorithms for Reed–Solomon

codes.

In the course of this dissertation, we have developed a new eXcient bounded minimum distance

decoding algorithm for Gabidulin codes and an interpolation-based decoding procedure for interleaved

Gabidulin codes. Further, we have derived bounds on the list decoding radius of rank-metric codes,

and introduced and decoded a class of convolutional codes in rank metric. The main results of this

dissertation are summarized in the following.

Chapter 3 is dedicated to decoding of Gabidulin codes. First, we have shown eXcient algorithms

for calculations with linearized polynomials, including two algorithms for calculating the linearized

composition with sub-quadratic complexity. Second, we have presented a bounded minimum distance

decoding algorithm for Gabidulin codes, similar to Gao’s decoding algorithm for Reed–Solomon codes.

We have proven how the linearized Euclidean algorithm can be used in this context to output directly

the q-degree-restricted linearized evaluation polynomial of the estimated codeword. Moreover, we

have extended this decoding algorithm in order to incorporate not only errors, but also two types of

erasures in rank metric: row and column erasures.

Chapter 4 covers interleaved Gabidulin codes and their decoding beyond half the minimum distance.

So far, two probabilistic unique decoding approaches have been known for these codes, which both

fail with a certain probability since there might be more than one codeword within the decoding

radius. We have presented an interpolation-based decoding approach, which relies on solving two

linear systems of equations, one for the interpolation step and one for the root-Vnding step. It can be

used as a list decoding algorithm for interleaved Gabidulin codes and guarantees to Vnd all codewords

within a certain radius. However, the list size and therefore also the worst-case complexity of the list

decoder can become exponential in the length of the code. Alternatively, our decoder can be used as a

probabilistic unique decoder, with the same decoding radius and the same upper bound on the failure

probability as the known decoders. We have further generalized our decoder to error-erasure decoding.

Up to now, there exists no algorithm which decodes Gabidulin codes beyond half the minimum
distance. This motivated us to investigate in Chapter 5 the possibilities of polynomial-time list decoding
of rank-metric codes in general and Gabidulin codes in particular. We have derived three bounds on
the list size, i.e., on the maximum number of codewords in a ball of radius τ . All three bounds reveal
a behavior which is completely diUerent from the one of codes in Hamming metric. The Vrst bound
shows that the list size for Gabidulin codes can become exponential when τ is at least the Johnson
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radius. This implies that there cannot be a polynomial-time list decoding algorithm of Gabidulin

codes beyond the Johnson radius. Interesting enough, it is not known for Reed–Solomon codes what

happens if τ is slightly greater than the Johnson radius. Our second bound is an upper bound on the

list size of any code in rank metric, which we have proven by connections between constant-rank and

constant-dimension codes. Exactly these connections helped us to derive the third bound. This bound

proves that there exists a code in rank metric over Fqm of length n ≤ m such that the list size can

become exponential for any τ greater than half the minimum distance. This implies on the one hand

that there is no polynomial upper bound similar to the Johnson bound in Hamming metric and on the

other hand, it also shows that our upper bound is almost tight.

Finally, Chapter 6 deals with convolutional codes in rank metric. We have proposed distance

measures for convolutional codes in rank metric analog to Hamming metric, namely, the free rank

distance, the active row rank distance and the slope and we have derived upper bounds on them.

Based on rank-metric block codes (Gabidulin codes), we have given two explicit constructions of

convolutional codes in rank metric, one high-rate construction based on the parity-check and one

low-rate construction based on the generator matrix. Both deVne so-called (partial) unit memory codes

and achieve the upper bound on the free rank distance. The underlying block codes have enabled us to

design an eXcient error-erasure decoding algorithm for the second construction, which guarantees to

correct all error sequences of rank weight up to half the active row rank distance. We have proven its

correctness and have outlined how our convolutional rank-metric codes can be applied to multi-shot

random linear network coding.

Future research directions have been given in a short outlook at the end of each chapter.
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Appendix

A.1 Proofs for the Linearized Extended Euclidean Algorithm

Proof of Theorem 3.3. With (3.4) and (3.5):

a(x) = q′(b′(x[h])) + r′(x[h]) + a′′(x) = q′(b(x))− q′(b′′(x)) + r′(x[h]) + a′′(x).

DeVne r′′(x)
def
= a′′(x) − q′(b′′(x)) and therefore a(x) = q′(b(x)) + r′(x[h]) + r′′(x). If

degq
(
r′(x[h]) + r′′(x)

)
< db, then q′(x) = q(x) since the linearized division is unique [Ore33a,

Theorem 1].

We verify this degree constraint by showing that it holds for each of the terms:

• degq
(
r′(x[h])

)
< degq b

′(x) + h = degq b(x) = db,

• degq
(
a′′(x)

)
< h ≤ 2db − da ≤ db,

• degq
(
q′(b′′(x))

)
< degq q

′(x) + h ≤ degq a
′(x)− degq b

′(x) + h
≤ (da − h)− (db − h) + h ≤ db.

Hence, degq r
′′(x) < da − db + h and q(x) = q′(x).

Proof of Lemma 3.6. We can prove this lemma by induction, assuming that for the outputs of

the recursions Equation (3.8) holds with the corresponding stopping degrees. We analyze the

degrees of the polynomials in the diUerent lines of Algorithm 3.4 in the following.

• Lines 5–6: degq a
(1)(x) = da − h and degq b

(1)(x) = db − h < da/2.

• Line 8: For the explanation, let us deVne

(
r(1)(j−1)(x)

r(1)(j)(x)

)
= Q(1) ⊗

(
a(1)(x)

b(1)(x)

)
,

whereQ(1) is the output of the recursive call. Due to the induction assumption, the degrees

of these remainders are restricted by: degq r
(1)(j−1)(x) ≥ d

(1)
stop =

⌊
dstop
da
· degq a(1)(x)

⌋
and

degq r
(1)(j)(x) ≤ d

(1)
stop.

• Line 9: After the linearized matrix-multiplication with Q(1), we obtain degq a(x) =

degq r
(1)(j−1)(x) + h ≥ d

(1)
stop + h ≥ dstop +

da−1
2da

(da − dstop) ≥ 1
2(da + dstop) − 1, where

the “−1” comes from the Woor operation in cases where da is odd. Moreover, degq b(x) =

degq r
(1)(j)(x) + h ≤ 1

2(da + dstop), since ⌊da/2⌋ ≤ da/2. Note that these values lie in the

middle between da and dstop, i.e., we have already accomplished the Vrst half of the degree

reduction.

• Line 13: After the linearized division in Line 11, a(x) becomes the previous b(x) from Line 9

and therefore, degq a(x) ≤ 1
2(da + dstop). Moreover, the q-degree of b(x) reduces by at least

one, i.e., degq b(x) <
1
2(da + dstop).

• Line 16: We obtain h ≥ dstop/2 due to the q-degree restriction of a(x) from Line 13.

• Lines 17–18: The truncation results in polynomials with the following q-degrees: degq a
(1)(x)

= degq a(x) − h ≤ 1
2(da + dstop) − dstop/2 = da/2 and degq b

(1)(x) < da/2. Thus, the
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recursive call in Line 20 is done with polynomials having at most half the q-degree of the

original input polynomials.

• Line 20: For the derivation of the q-degree, let us deVne again
(
r(1)(j−1)(x)

r(1)(j)(x)

)
= Q(1) ⊗

(
a(1)(x)

b(1)(x)

)
,

whereQ(1) is the output of the recursive call. Then, degq r
(1)(j−1)(x) ≥ d

(1)
stop and degq r

(1)(j)(x)

≤ d
(1)
stop =

⌊
degq a

(1)(x)dstop/da
⌋
≤ dstop/2.

• Output: We deVne r(j−1)(x) and r(j)(x) as in (3.7) and therefore,

degq r
(j−1)(x) = degq r

(1)(j−1)(x) + h ≥ d
(1)
stop + h =

⌊
dstop
da
· (degq a(x)− h)

⌋
+ h

≥ h
(
1− dstop

da

)
+

dstop
da

(degq a(x)− 1)

= dstop − dstop
da

degq a(x) +
dstop
da

(degq a(x)− 1) > dstop − 1,

i.e., degq r
(j−1)(x) ≥ dstop and degq r

(j)(x) = degq r
(1)(j)(x) + h ≤ d

(1)
stop + h ≤ dstop.

The same holds inductively within the recursions and the statement follows.

A.2 Proof of the Generalized Transformed Key Equation

First, the following lemma is needed.

Lemma A.1 (Transformed Key Equation for Column Erasures).

Let Γ(C)(x) be the full q-reverse of Γ(C)(x), which is deVned as in (3.36) and let ê(C)(x) denote the

q-transform of e(C)(x). Then,

ê(C)
(
Γ(C)(x)

)
≡ 0 mod (x[m] − x).

Proof. The statement holds if and only if ê(C)(Γ(C)(x)) ≡ 0 mod (x[m]−x). The i-th coeXcient

of a linearized polynomial a(x) is denoted by [a(x)]i in the following. Hence, the i-th coeXcient

of the aforementioned q-reverse polynomial is (the indices are calculated modulo m):

[
ê(C)

(
Γ(C)(x)

)]

i

=
[
ê(C)

(
Γ(C)(x)

)][i]
−i

=
m−1∑

h=0

ê
(C)[i]
h Γ

(C)
−i−h

[i+h]

=
m−1∑

j=0

ê
(C)[i]
−j Γ

(C)
j−i

[i−j]

.

With

ê
(C)
−j = ê

(C)
j

[−j]

, Γ
(C)
j−i

[i−j]

= Γ
(C)
i−j ,

we obtain

[
ê(C)(Γ(C)(x))

]

i

=
m−1∑

j=0

ê
(C)
j

[i−j]

Γ
(C)
i−j =

m−1∑

j=0

ê
(C)
i−j

[j]

Γ
(C)
j =

[
Γ(C)

(
ê(C)(x)

)]
i
, ∀i ∈ [0,m−1].

Let g = β⊥ (and g⊥ = β) and ê(C)(g) = ê(C)(β⊥) = β · extβ
(
e(C)

)
= β · E(C). Then,

Lemma 3.10 states that ê(C) (β⊥) = ê(C) (g) = g⊥ ·E(C)T = β ·E(C)T . Thus,

Γ(C)
(
ê(C)(β⊥)

)
= Γ(C)

(
ê(C)(g)

)
= Γ(C)

(
β ·
(
extβ

(
e(C)

))T)
= Γ(C)

(
β ·B(C)T ·A(C)T

)
.
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Hence,

Γ(C)
(
ê(C)(gi)

)
= Γ(C)

( t−1∑

j=0

d
(C)
j A

(C)
i,j

)
=

t−1∑

j=0

A
(C)
i,j Γ(C)

(
d
(C)
j

)
= 0, ∀i ∈ [0,m− 1],

where the d
(C)
j are deVned as in (3.35) and similar to the proof of Theorem 3.6, the statement

follows.

Based on this, we can now give the proof of the generalized transformed key equation (Theorem 3.8).

Proof of Theorem 3.8. Let us split the transformed error into three parts, which correspond to

row erasures, column erasures and (full) errors: ê(x) = ê(R) + ê(C) + ê(E).

1.) First, consider only column erasures. Due to Lemma A.1, ê(C)(Γ(C)(x)) = 0 mod (x[m] − x)

and therefore also Λ(E)
(
Λ(R)

(
ê(C)(Γ(C)(x))

))
≡ 0 mod (x[m] − x).

2.) Second, consider the row erasures. Since any element in Fqm can be represented as a linear

combination of the elements gi with coeXcients from Fq , we can rewrite Γ(C)(gi) =
∑m−1

j=0 Gi,jgj ,

where Gi,j ∈ Fq . Moreover, ê(R)(gj) = e
(R)
j =

∑̺−1
h=0B

(R)
h,j a

(R)
h with B

(R)
h,j ∈ Fq .

Hence, for all i ∈ [0,m− 1]:

Λ(R)

(
ê(R)

(
Γ(C)(gi)

))
= Λ(R)

(
ê(R)

(m−1∑

j=0

Gi,jgj

))
=

m−1∑

j=0

Gi,jΛ
(R)
(
ê(R)(gj)

)

=

m−1∑

j=0

Gi,jΛ
(R)

( ̺−1∑

h=0

B
(R)
h,j a

(R)
h

)
=

m−1∑

j=0

Gi,j

̺−1∑

h=0

B
(R)
h,j Λ

(R)
(
a
(R)
h

)
= 0,

due to the deVnition of Λ(R)(x). Hence, Λ(E)
(
Λ(R)(ê(R)(Γ(C)(gi)))

)
= 0 for all i ∈ [0,m − 1]

and thus, Λ(E)
(
Λ(R)(ê(R)(Γ(C)(x)))

)
≡ 0 mod (x[m] − x).

3.) Third, consider the errors. We denote again Γ(C)(gi) =
∑m−1

j=0 Gi,jgj , where Gi,j ∈ Fq and

ê(E)(gj) =
∑t−1

h=0B
(E)
h,j a

(E)
h with B

(E)
h,j ∈ Fq . Hence, for all i ∈ [0,m− 1]:

Λ(R)

(
ê(E)

(
Γ
(C)

(gi)
))

= Λ(R)

(
ê(E)

(m−1∑

j=0

Gi,jgj
))

=
m−1∑

j=0

Gi,jΛ
(R)
(
ê(E)(gj)

)

=
m−1∑

j=0

Gi,jΛ
(R)

( t−1∑

h=0

B
(E)
h,j a

(E)
h

)
=

m−1∑

j=0

Gi,j

t−1∑

h=0

B
(E)
h,j Λ

(R)
(
a
(E)
h

)
,

and thus,

Λ(E)
(
Λ(R)

(
ê(E)(Γ(C)(gi))

))
=

m−1∑

j=0

Gi,j

t−1∑

h=0

B
(E)
h,j Λ

(E)
(
Λ(R)

(
a
(E)
h

))
= 0,

due to the deVnition of Λ(E)(x) and similar to the proof of Theorem 3.6, it follows that

Λ(E)
(
Λ(R)

(
ê(E)(Γ

(C)
(x))

))
≡ 0 mod (x[m] − x).

The sum of the three parts gives exactly the LHS of (3.37) and the statement follows.
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A.3 Comparison of Decoding Approaches for Gabidulin Codes

Let us compare the complexity of our decoding approach from Subsection 3.2.4 to the complexity of

known approaches for decoding Gabidulin codes in Table A.1, where the degree of all input polynomials

is in the order of n and we do not consider constant factors (which would result in a slight diUerence

between the decoding algorithms from [Gab85, PT91, RP04b, Loi06]).

If we assume that each operation in Fqm costs O(m2) operations over Fq (see Table 3.1), then

O(m3 logm) operations over Fq is smaller than O(n2) operations over Fq .

Table A.1. Complexity of decoding Gabidulin codes

Algorithm Overall decoding

complexity

Methods/Details

Gabidulin [Gab85] O(n2) over Fqm Solves key equation by LEEA, recursive

procedure to determine error

Gabidulin [Gab92] O(n3) over Fqm Solves key equation by Gaussian elimina-

tion

Paramonov–Tretjakov

[PT91], Richter–Plass

[RP04a, RP04b]

O(n2) over Fqm Berlekamp–Massey-like algorithm to

solve the key equation

Loidreau [Loi06] O(n2) over Fqm Welch–Berlekamp-like algorithm, out-

puts evaluation polynomial of codeword

Silva–Kschischang [SK09a] O(n2m2) over Fq Syndrome calculation with O(m3) in Fq ,

Calculating the root space of the error

span polynomial: O(m3) over Fq as in

[Ber84].

Hassan–Sidorenko [HS10] O(n2) over Fqm Solves key equation with fast Berlekamp–

Massey-like algorithm with complexity

O(Mm(m) logm)

This thesis (Section 3.2.4) O(n2) over Fqm Gao-like algorithm, solves transformed

key equation with LEEA; error-erasure

decoding

If D(m) = Mm(m) and if the calcula-

tion of a minimal subspace polynomial

costs Mm(m), then O(m3 logm) over
Fq .
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