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École Doctorale Sciences Économiques et de Gestion
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Abstract

Measuring and Managing Operational Risk in the Insurance and
Banking Sectors

Operational risk existed longer than we know, but its concept was not interpreted
until after the year 1995. Though its application varied by institutions, Basel III for banks
and Solvency II for insurance companies, the idea stays the same. Firms are interested
in operational risk because exposure can be fatal. As so, and since Basel and Solvency
frameworks set forth many calculation criteria, our interest in this thesis is first to com-
bine the different measurement techniques for operational risk in financial companies,
and we highlight more and more the consequences of estimation risk which is treated as
a particular part of operational risk.

In the first part, we will present a full overview of operational risk, from the regula-
tory laws and regulations to the associated mathematical and actuarial concepts as well
as a numerical application regarding the Advanced Measurement Approach, like Loss Dis-
tribution to calculate the capital requirement, then applying the Extreme Value Theory.
This part answers to the qualitative and quantitative aspects of operational risk, in ad-
dition to some application. We will be interested as well, in the use of scenario analysis
of expert opinion in conjunction with internal data to evaluate our exposure to events.
We conclude this first part by setting a scaling technique based on (OLS) enabling us to
normalize our external data to a local Lebanese Bank. Hence, setting the platform for the
second part regarding the importance of estimation risk treated as a part of operational
risk.

On the second part, we feature estimation risk by first measuring the error induced
on the SCR by the estimation error of the parameters, to having an alternative yield
curve estimation and finishing by calling attention to the reflections on assumptions of
the calculation instead of focusing on the so called hypothesis ”consistent with market
values”, would be more appropriate and effective than to complicate models and generate
additional errors and instability. Chapters in this part illustrate the estimation risk in its
different aspects which is a part of operational risk, highlighting as so the attention that
should be given in treating our models.

Keywords: Operational Risk, Basel III, Solvency II, Loss Distribution Approach, Ex-
treme Value Theory, Bayesian Statistics, VaR, Estimation Risk, ORSA.
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Résumé

Mesure et Gestion du Risque Opérationnel en Assurance et Fi-
nance

La notion du risque opérationnel a été interprétée dans les années 1995. Bien que
son application varie selon les établissements, Bâle III pour les banques et Solvabilité II
pour les compagnies d’assurance, l’idée reste la même. Les entreprises sont intressées par
le risque opérationnel, car l’exposition peut être grave. Notre intérêt dans cette thèse est
de combiner les différentes techniques de mesure du risque opérationnel dans les secteurs
financiers, et on s’intéresse plus particulièrement aux conséquences du risque d’estimation
dans les modèles, qui est un risque opérationnel particulier.

Dans la première partie, nous allons présenter les concepts mathématiques et ac-
tuarielles associés ainsi qu’une application numérique en ce qui concerne l’approche de
mesure avancée comme Loss Distribution pour calculer l’exigence en capital, puis en ap-
pliquant la théorie des valeurs extrêmes. Les chapitres dans cette partie illustrent les
différentes méthodes qualitatives et quantitatives avec des applications directes sur le
risque opérationnel. En plus, on se concentre sur le risque d’estimation illustré avec
l’analyse des scénarios de l’opinion d’experts en conjonction avec des données de pertes
internes pour évaluer notre exposition aux événements de gravité. Nous concluons cette
première partie en définissant une technique de mise l’échelle sur la base de (MCO) qui
nous permet de normaliser nos données externes à une banque locale Libanaise.

Dans la deuxième partie, on donne de l’importance sur la mesure de l’erreur in-
duite sur le SCR par l’erreur d’estimation des paramètres, on propose une méthode al-
ternative pour estimer une courbe de taux et on termine par attirer l’attention sur les
réflexions autour des hypothèses de calcul et ce que l’on convient de qualifier d’hypothèse
”cohérente avec les valeurs de marché” serait bien plus pertinente et efficace que la com-
plexification du modèle, source d’instabilité supplémentaire, ainsi mettre en évidence le
risque d’estimation qui est lié au risque opérationnel et doit être accordé beaucoup plus
d’attention dans nos modèles de travail.

Mots clés: Risque Opérationnel, Bâle III, Solvabilité II, Statistique Bayésienne, LDA,
Théorie des valeurs extrêmes, VaR, Risque d’estimation, ORSA.
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General Introduction

Choice of the study subject
Operational Risk Management policies formalizes the Financial Institutions’ approaches
to operational risk management. It is meant at a minimum to comply with the qualifying
qualitative criteria of the Basel Capital Accord (cf. BCBS [2005]), and Solvency Directive
requirements (cf. CEIOPS [2009]), as well as local and cross-border regulatory require-
ments for defining, measuring and managing operational risk.

A set of fundamental behavioral, organizational and operational principles that em-
body the importance given by financial institutions in managing operational risks, help
facilitate the development of a culture in which managing and mitigating operational risks
is viewed as everybody’s responsibility. A wide variety of definitions are used to describe
operational risk of which the following is just a sample:

• All types of risk other than credit and market risk.

• The risk of loss due to human error or deficiencies in systems or controls.

• The risk that a firm’s internal practices, policies and systems are not rigorous or
sophisticated enough to cope with unexpected market conditions or human or tech-
nological errors.

• The risk of loss resulting from errors in the processing of transactions, breakdown
in controls and errors or failures in system support.

Basel II Committee has defined operational risk as the risk of loss resulting from
inadequate or failed internal processes, people and systems or from external events (cf.
BCBS, Definition of Operational Risk [2001]). For example, an operational risk could
be losses due to an IT failure; transactions errors; or external events like a flood, an
earthquake or a fire such as the one at Crédit Lyonnais in May 1996 which resulted in
extreme losses. Currently, the lack of operational risk loss data is a major issue on hand
but once the data sources become available, a collection of methods will be progressively
implemented.

Hence, since operational risk is a sort of a carryall including all types of risk other
than the ones explicitly taken in other modules of risk like credit and market risk, it is
essential for regulators to propose some modeling techniques for the different types of
losses encountered. We have to mention as well, that regardless of the method chosen for
the measurement of the capital requirement for this risk, financial institutions must prove
that its measures are highly solid and reliable. Yet, not taking into consideration the
complexity of some models and the estimation errors behind will create some additional
instability and will have severe influences on our Solvency Capital Requirement. Based
on operational risk definition, estimation risk is to be treated as a part of this risk. The
present study fits within this frame of reference.
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Context of the study
Sensitive to the need for suitable tools to develop operational risk, in 2001, the Basel
Committee started a series of surveys and statistics regarding operational risks that most
banks encounter. The idea was to develop and correct measurements and calculation
methods. Additionally, the European Commission also started preparing for the Solvency
II Directive, taking into consideration the operational risk for insurance and reinsurance
companies.

As so, and since Basel and Solvency accords set forth many calculation criteria,
our interest in this work, which was developed in parallel with my work on the PhD
thesis at bank Audi Lebanon and at the research laboratory of ISFA, Claude Bernard
University-Lyon, is to elaborate the different quantitative measurement techniques for
operational risk in financial institutions, (particularly in Banks and Insurance compa-
nies). We are going to present the associated mathematical and actuarial concepts as
well as a numerical application regarding the Advanced Measurement Approaches, and
focus on the qualitative part of operational risk, mostly the potential for large, unex-
pected losses, either on a per event basis or within a set time period. Hence, pointing
out the importance of both qualitative and quantitative measurements and highlighting
the necessity of an operational risk framework. Furthermore, we direct our study work
to a more specific type of operational risk which is the estimation risk. We explored such
risk to some extent by the use of scenario analysis based on expert opinion in conjunction
with internal data both used to evaluate our exposure to events. In addition, the study
work includes some reflections regarding the measurement of the error induced on the
SCR through the estimation error of the parameters. Hence, revealing the importance of
calling attention to the reflections on assumptions of the calculations.

In practice, this work attempts to present the different modeling tools for assessing
operational risk and more particularly, pointing up the consequences of estimation risk
behind. This draws the attention to the conclusion that it would be more appropriate
and effective in reality to privilege more simple and prudent models than to complicate
things and generate additional errors and instability.

Organization of the study
The main objective of this thesis is to highlight the importance of estimation risk treated
as a particular case of operational risk. The study is organized in two parts:

• The first part provides a full overview of operational risk in a bank and insurance
company, from the regulatory laws and regulations to the associated mathematical
and actuarial concepts.

• The second part is dedicated to the consequences of estimation risk in model devel-
opment.
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The first part is divided into four chapters: Laws and Regulations, Quantitative
Methodologies, Combining Internal Data with Scenario Analysis and Operational Risk
Management in a Bank. This part features the different perspectives of operational risk,
that have risen to the point of holding a significant position in risk assessment, as seen
by the fact that many banking failures in the last 20 years have demonstrated the seri-
ous dangers of operational risk events. This has incited the regulators of both the Basel
Accords for banks and the Solvency Directive for insurance companies, to propose some
quantification methods of operational risk to help financial institutions ensure its mitiga-
tion.

As so, many calculation criteria have been developed, ranging from the Basic, Stan-
dardized reaching the Advanced Measurement Approach. Through this part, operational
risk has been defined as per the different theories and approaches presented for financial
institutions. While the standardized approach is widely applied by banks and insurance
companies, this study shows that applying more advanced approaches and theories such as
Loss Distribution, Extreme Value Theory, or Bayesian updating techniques may present
more robust analyses and framework to model this risk. Additionally, we focus on the
Bayesian inference approach which offers a methodical concept that combines internal
data with experts’ opinions. Joining these two elements with precision is certainly one of
the challenges in operational risk. We are interested in applying a robust Bayesian infer-
ence technique to estimate an operational risk capital requirement that best approaches
the reality. In addition, we illustrate the importance of consistent scenario analysis in
showing how the expert opinion coherence is a major factor for capital calculations, since
it creates an estimation risk that highly influences capital requirement.

At the end, we emphasize the qualitative management of operational risk in a
Lebanese bank (Bank Audi) summarized by: Risk and Control Self Assessment (RCSA),
Incident reporting, Key Risk Indicators (KRIs) and the Incorporation of External Data.
We are going as well to assess the use of insurance policies as an option to transfer a
part of the risk to the insurance company. This will lead us to justify how insurance
policies play an important role in decreasing the financial impact of operational losses
and can therefore contribute to a better performance by covering a variety of potential
operational losses. Furthermore, we point out the effects of the increased use of insurance
against major operational risk factors, and incorporate these in the performance analyses.
The Basel Committee recognizes this potential and has accordingly allowed a reduction
in the required minimum capital for a particular risk category for any institution pos-
sessing an insurance policy. In the long run, this regulation would allow banks to replace
operational risk with counterparty risk.
Moreover, since the use of external data is absolutely important to the implementation
of an advanced method for calculating operational risk capital such as the LDA method,
we scale the severity of external losses for integrating them with internal data; a similar
approach was published by Dahen & Dionne [2008]. We resume this section by illus-
trating three examples of losses extracted from our external loss database to show the
details of how the scaling was done and how losses were normalized.

The second part, starts by an overview of the analytical framework, we will be
more interested in the consequences of estimation risk, which according to the first part,
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is considered as a particular case of operational risk. This part is divided into three chap-
ters: Estimation Errors and SCR Calculation, An Alternative Yield Curve Estimation
and Market Consistency and Economic Evaluation.

In the first chapter of this part, we will intent to measure the error induced on the
SCR by the estimation error of the parameters. We expand this analytical framework
where an insurer must calculate a VaR to a confidence level of 99.5% on a distribution
which we must estimate the parameters. This estimation might lead to important dif-
ferences in the numerical results. To be able to illustrate this situation we took the a
particular case of the only market risk for an asset consisting of a zero coupon bond, and
we highlight the possible undervaluation of the Solvency Capital Requirement if a special
attention is not given to the risk of parameter estimation.

In the second chapter, we present a new approach for fitting a yield curve, that leads
to a much more robust assessment of risk. We will propose a new method of calibration
by using Nelson-Siegel Maximum Likelihood Estimation technique (MLE) then we show
that the estimation risk is low. Thus, eliminating the potential loss of accuracy from
estimation error when calculating a Value-at-Risk.

At the end, the last chapter reveals the importance of calling attention to the re-
flections on assumptions of the calculations and since Solvency II has chosen a framework
for the evaluation of technical provisions consistent with market values: the interest rate
curve is to be used for discounting purposes. The implementation of this framework in
practice leads to important volatility assessments that might have high consequences on
balances. Based on this, we illustrate a simple proposal of correction, where we apply the
moving average technique and try to reconstruct a Yield Curve in a way, to stabilize the
volatility and smooth our curve.

The work carried out within the framework of this thesis, has been subject for
the following publications 1:

Karam E. & Planchet F. [2012], Operational Risks in Financial Sectors, Advances
in Decision Sciences, Vol. 2012, Article ID 385387, 57 pages. doi:10.1155/2012/385387

Karam E. & Planchet F. [2013a], Combining internal data with scenario analysis,
Cahiers de recherche de l’ISFA, 2013.3

Karam E. & Planchet F. [2013b], Estimation Errors and SCR Calculation, Bulletin
Français d’Actuariat, Vol. 13 no 26, juin - décembre 2013, pp. 79-92, (paper presented at
the AFIR Colloquium on June 25 2013)

1cf. www.ressources-actuarielles.net
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Measuring and Managing
Operational Risk in a Bank
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Part I - Introduction

Operational risk existed longer than we know, but its concept was not interpreted until
after the year 1995 when one of the oldest banks in London, Barings bank, collapsed
because of Nick Leeson, one of the traders, due to unauthorized speculations. A wide va-
riety of definitions are used to describe operational risk. The Basel Committee, however,
defined operational risk as the risk of loss resulting from inadequate or failed internal
processes, people and systems or from external events (cf. BCBS, Definition of Opera-
tional Risk [2001b]). For example, an operational risk could be losses due to an IT failure;
transactions errors; or external events like a flood, an earthquake or a fire such as the one
at Crédit Lyonnais in May 1996 which resulted in extreme losses.

In 2001, the Basel Committee started a series of surveys and statistics regarding
operational risks that most banks encounter. The idea was to develop and correct mea-
surements and calculation methods. Additionally, the European Commission also started
preparing for the new Solvency II Accord, taking into consideration the operational risk
for insurance and reinsurance companies.

As so, and since Basel and Solvency accords set forth many quantitative and qual-
itative criteria, the main idea in this first part is to set the grounds of operational risk,
we are going to present an overview of this risk, from the regulatory laws and regulations
to the associated mathematical and actuarial concepts. The chapters in this part are re-
lated to the published article Operational risks in Financial Sectors, Advances in Decision
Sciences (cf. Karam & Planchet [2012]).

7
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Chapter 1

Laws and Regulations

Basel II cites three ways of calculating the capital charges required in the first pillar of
operational risk. The three methods, in increasing order of sophistication, are as follows:

• The Basic Indicator Approach (BIA)

• The Standardized Approach (SA)

• The Advanced Measurement Approach (AMA)

Regardless of the method chosen for the measurement of the capital requirement for
operational risk, the bank must prove that its measures are highly solid and reliable. Each
of the three approaches have specific calculation criteria and requirements, as explained
in the following sections.

1.1 Basic Indicator and Standardized Approach

Banks using the BIA method have a minimum operational risk capital requirement equal
to a fixed percentage of the average annual gross income over the past three years. Hence,
the risk capital under the BIA approach for operational risk is given by:

KBIA =
α

Z

3∑

i=1

max (GI i, 0)

Where, Z =
3∑

i=1

I{GIi>0}, GI
i stands for gross income in year i, and α = 15% is set by

the Basel Committee. The results of the first two Quantitative Impact Studies (QIS)
conducted during the creation of the Basel Accord showed that on average 15% of the
annual gross income was an appropriate fraction to hold as the regulatory capital.
Gross income is defined as the net interest income added to the net non-interest income.
This figure should be gross of any provisions (unpaid interest), should exclude realized
profits and losses from the sale of securities in the banking book, which is an accounting
book that includes all securities that are not actively traded by the institution, and exclude
extraordinary or irregular items. No specific criteria for the use of the Basic Indicator
Approach are set out in the Accord.
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The Standardized Approach

In the Standardized Approach, banks’ activities are divided into 8 business lines (cf.
BCBS [2005]): corporate finance, trading & sales, retail banking, commercial banking,
payment & settlements, agency services, asset management, and retail brokerage. Within
each business line, there is a specified general indicator that reflects the size of the banks’
activities in that area. The capital charge for each business line is calculated by multi-
plying gross income by a factor β assigned to a particular business line.

Business line (j) Beta factors(βj)
j = 1, corporate finance 18%
j = 2, trading & sales 18%
j = 3, retail banking 12%
j = 4, commercial banking 15%
j = 5, payment & settlement 18%
j = 6, agency services 15%
j = 7, asset management 12%
j = 8, retail brokerage 12%

Table 1.1: Business lines and the Beta factors

As in the Basic Indicator Approach, the total capital charge is calculated as a three year
average over all positive gross income (GI) as follows:

KSA =

3∑

i=1

max(
8∑

j=1

βjGI
i, 0)

3

The second QIS issued by the Basel Committee, covering the same institutions surveyed
in the first study, resulted in 12%, 15% and 18% as appropriate rates in calculating regu-
latory capital as a percentage of gross income. The general criteria for using the Standard
Approach are given in the Appendix A.

Before tackling the third Basel approach (AMA), we give a simple example to illustrate
the calculation for the first two approaches.

1.1.1 Example of the BIA and SA Calculations

In the table 1.2 above, we see the basic and standardized approach for the 8 business lines.
The main difference between the BIA and the SA is that the former does not distinguish
its income by business lines. As shown in the tables, we have the annual gross incomes
related to year 3, year 2 and year 1. With the Basic Approach, we do not segregate
the income by business lines, and therefore, we have a summation at the bottom. We
see that three years ago, the bank had a gross income of around 132 million which then
decreased to -2 million the following year, and finally rose to 71 million. Moreover, the
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Basic Indicator Approach (BIA) Standardized Approach (SA)
Gross Income (GI) per million of e

Business lines t-3 t-2 t-1 Beta t-3 t-2 t-1
Corporate finance 20.00e -14.00e -1.00e 18% 3.60e -2.52e -0.18e
Trading & Sales 19.00e 3.00e 18.00e 18% 3.42e 0.54e 3.24e
Retail banking 14.00e -15.00e 18.00e 12% 1.68e -1.80e 2.16e

Commercial banking 16.00e 10.00e 11.00e 15% 2.40e 1.50e 1.65e
Payments & settlements 17.00e -8.00e 10.00e 18% 3.06e -1.44e 1.80e

Agency services 18.00e 13.00e 13.00e 15% 2.70e 1.95e 1.95e
Asset management 16.00e 4.00e -4.00e 12% 1.92e 0.48e -0.48e

Retail brokerage 12.00e 5.00e 6.00e 12% 1.44e 0.60e 0.72e

Bank 132.00e -2.00e 71.00e 20.22e -0.69e 10.86e
Treat negatives 132.00e 71.00e 20.22e 0.00 10.86e

Average of the 3 years excluding negatives: 101.50e
Alpha(α): 15%

Capital requirement under BIA 15.23e Capital requirement under SA 10.36e

Table 1.2: Simple example related to the BIA and SA calculation criteria

Basic Indicator Approach doesn’t take into consideration negative gross incomes. So, in
treating the negatives, the -2 million was removed. To get our operational risk charge,
we calculate the average gross income excluding negatives and we multiply it by an alpha
factor of 15% set by the Basel Committee. We obtain a result of 15.23 million e.

Similarly to the BI Approach, the Standardized Approach has a Beta factor for each
of the business lines as some are considered riskier in terms of operational risk than
others. Hence, we have eight different factors ranging between 12 and 18 percent as de-
termined by the Basel Committee. For this approach, we calculate a weighted average of
the gross income using the business line betas. Any negative number over the past years
is converted to zero before an average is taken over the three years. In this case, we end
up with a capital charge of around 10.36 million e.

1.1.2 The Capital Requirement Under the Basic Indicator and
Standardized Approach

As depicted in the previous example, the capital charge relating to the Standardized Ap-
proach was lower than that of the Basic Approach. This, however, is not always the case,
thus causing some criticism and raising questions such as why would a bank use a more
sophisticated approach when the simpler one would cost them less?
In this section, we show that the capital charge could vary between different approaches.

To start with, let KBIA = αGI and KSA =
8∑

i=1

βiGIi,

where α = 15%, GIi is the gross income related to the business line i, and GI is the total
gross income.
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Compiling these equations, we have:

KBIA > KSA ⇔ αGI >

8∑

i=1

βiGIi

and, consequently:

α >

8∑

i=1

βiGIi

GI
(1.1)

Therefore, the BIA produces a higher capital charge than the SA is under the condition
that the alpha factor under the former is greater than the weighted average of the indi-
vidual betas under the latter.

There is no guarantee that the condition will be satisfied, which means that moving from
the BIA to the SA may or may not produce a lower capital charge (cf. Moosa [2008]).

1.2 Capital Requirement Review

Several Quantitative Impact Studies (QIS) have been conducted for a better understand-
ing of operational risk significance on banks and the potential effects of the Basel II
capital requirements. During 2001 and 2002, QIS 2, QIS 2.5 and QIS 3 were carried out
by the committee using data gathered across many countries. Furthermore, to account
for national impact, a joint decision of many participating countries resulted in the QIS
4 being undertaken. In 2005, to review the Basel II framework, BCBS implemented QIS 5.

Some of these quantitative impact studies have been accompanied by operational Loss
Data Collection Exercises (LDCE). The first two exercises conducted by the Risk Man-
agement Group of BCBS on an international basis are referred to as the 2001 LDCE and
2002 LDCE. These were followed by the national 2004 LDCE in USA and the 2007 LDCE
in Japan.
Detailed information on these analyses can be found on the BCBS web site: www.bis.org.

Before analyzing the quantitative approaches, let’s take a look at the minimum regu-
latory capital formula and definition (cf. BCBS [2002]).
Total risk-weighted assets are determined by multiplying capital requirements for mar-
ket risk and operational risk by 12.5, which is a scaling factor determined by the Basel
Committee, and adding the resulting figures to the sum of risk-weighted assets for credit
risk. The Basel II committee defines the minimum regulatory capital as 8% of the total
risk-weighted assets, as shown in the formula below:

Total regulatory capital

RWACredit + [MRCMarket +ORCOpr] ∗ 12.5
≥ 8%
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Minimim regulatory capital = 8%[RWACredit + (MRCMarket +ORCOpr) ∗ 12.5]

The Committee applies a scaling factor in order to broadly maintain the aggregate level
of minimum capital requirements while also providing incentives to adopt the more ad-
vanced risk-sensitive approaches of the framework.

The Total Regulatory Capital has its own set of rules according to 3 tiers:

• The first tier, also called the core tier, is the core capital including equity capital
and disclosed reserves.

• The second tier is the supplementary capital which includes items such as general
loss reserves, undisclosed reserves, subordinated term debt, etc.

• The third tier covers market risk, commodities risk, and foreign currency risk.

The Risk Management Group (RMG) has taken 12% of the current minimum regulatory
capital as its starting point for calculating the basic and standardized approach.
The Quantitative Impact Study (QIS) survey requested banks to provide information on
their minimum regulatory capital broken down by risk type (credit, market, and oper-
ational risk) and by business line. Banks were also asked to exclude any insurance and
non-banking activities from the figures. The survey covered the years 1998 to 2000.

Overall, more than 140 banks provided some information on the operational risk sec-
tion of the QIS. These banks included 57 large, internationally active banks (called type 1
banks in the survey) and more than 80 smaller type 2 banks from 24 countries. The RMG
used the data provided in the QIS to gain an understanding of the role of operational
risk capital allocations in banks and their relationship to minimum regulatory capital for
operational risk. These results are summarized in the table below 1.3:

Median Mean Min 25th % 75th % Max N
Operational Risk Capital/Overall Eco-
nomic Capital

0.150 0.149 0.009 0.086 0.197 0.351 41

Operational risk capital/Minimum
Regulatory Capital

0.128 0.153 0.009 0.074 0.17 0.876 41

Table 1.3: Ratio of Operational Risk Economic Capital to Overall Economic Capital and
to Minimum Regulatory Capital

The results suggest that on average, operational risk capital represents about 15 percent
of overall economic capital, though there is some dispersion. Moreover, operational risk
capital appears to represent a rather smaller share of minimum regulatory capital over
12% for the median.

These results suggest that a reasonable level of the overall operational risk capital charge
would be about 12 percent of minimum regulatory capital. Therefore, a figure of 12%
chosen by the Basel Committee for this purpose is not out of line with the proportion of
internal capital allocated to operational risk for most banking institutions in the sample.
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1.2.1 The Basic Indicator Approach

Under the BIA approach, regulatory capital for operational risk is calculated as a percent-
age α of a bank’s gross income. The data reported in the QIS concerning banks’ minimum
regulatory capital and gross income were used to calculate individual alphas for each bank
for each year from 1998 to 2000 to validate the 12% level of minimum regulatory capital
(cf. BCBS [2001a]).
The calculation was:

αj,t =
12% ∗MRCj,t

GIj,t

Here, MRCj,t, is the minimum regulatory capital for bank j in year t and GIj,t is the
gross income for bank j in year t. Given these calculations, the results of the survey are
reported in table 1.4 below:

Individual
Observa-
tions

Median Mean WA Std WA Std Min Max 25th % 75th % N

All Banks 0.190 0.221 0.186 0.135 0.120 0.019 0.831 0.137 0.246 355
Type 1
Banks

0.168 0.218 0.183 0.136 0.121 0.048 0.659 0.136 0.225 151

Type 2
Banks

0.205 0.224 0.220 0.134 0.111 0.019 0.831 0.139 0.253 204

Table 1.4: Analysis of QIS data: BI Approach (Based on 12% of Minimum Regulatory
Capital)

Table 1.4 presents the distribution in two ways - the statistics of all banks together, and
the statistics according to the two types of banks by size. The first three columns of
the table contain the median, mean and the weighted average of the values of the alphas
(using gross income to weight the individual alphas). The median values range between
17% and 20% with higher values for type 2 banks. The remaining columns of the table
present information about the dispersion of alphas across banks.

These results suggest that an alpha range of 17% to 20% would produce regulatory capi-
tal figures approximately consistent with an overall capital standard of 12% of minimum
regulatory capital. However, after testing the application of this alpha range, the Basel
Committee decided to reduce the factor to 15% because an alpha of 17 to 20 percent
resulted in an excessive level of capital for many banks.

1.2.2 The Standardized Approach

As seen previously, the minimum capital requirement for operational risk under the Stan-
dardised Approach is calculated by dividing a bank’s operations into eight business lines.
For each business line, the capital requirement will be calculated according to a certain
percentage of gross income attributed for that business line.
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The QIS data concerning distribution of operational risk across business lines was used
and, as with the Basic Approach, the baseline assumption was that the overall level of
operational risk capital is at 12% of minimum regulatory capital. Then, the business line
capital was divided by business line gross income to arrive at a bank-specific β for that
business line, as shown in the following formula:

βj,i =
12% ∗MRCj ∗OpRiskSharej,i

GIj,i

Where, βj,i is the beta for bank j in business line i, MRCj is the minimum regulatory
capital for the bank, OpRiskSharej,i is the share of bank j’s operational risk economic
capital allocated to business line i, andGIj,i is the gross income in business line i for bank j.

In the end, 30 banks reported data on both operational risk economic capital and gross
income by business line, but only the banks that had reported activity in a particular
business line were included in the line’s beta calulation (i.e., if a bank had activities re-
lated to six of the eight business lines, then it was included in the analysis for those six
business lines).

The results of this analysis are displayed in the table 1.5 below:

Median Mean WA Std WA Std Min Max 25th % 75th % N
Corporate Finance 0.131 0.236 0.12 0.249 0.089 0.035 0.905 0.063 0.361 19
Trading & Sales 0.171 0.241 0.202 0.183 0.129 0.023 0.775 0.123 0.391 26
Retail Banking 0.125 0.127 0.110 0.127 0.006 0.008 0.342 0.087 0.168 24
Commercial Bank-
ing

0.132 0.169 0.152 0.116 0.096 0.048 0.507 0.094 0.211 27

Payment & Settle-
ment

0.208 0.203 0.185 0.128 0.068 0.003 0.447 0.1 0.248 15

Agency Services &
Custody

0.174 0.232 0.183 0.218 0.154 0.056 0.901 0.098 0.217 14

Retail Brokerage 0.113 0.149 0.161 0.073 0.066 0.05 0.283 0.097 0.199 15
Asset Management 0.133 0.185 0.152 0.167 0.141 0.033 0.659 0.079 0.210 22

Table 1.5: Analysis of QIS data: the Standardized Approach (Based on 12% of Minimum
Regulatory Capital)

The first three columns of the table 1.5 present the median, mean and weighted average
values of the betas for each business line, and the rest of the columns present the disper-
sion across the sample used for the study. As with the Basic Approach, the mean values
tend to be greater than the median and the weighted average values, thus reflecting the
presence of some large individual Beta estimates in some of the business lines.
Additionally, the QIS ranked the betas according to the business lines with ”1” represent-
ing the smallest beta and ”8” the highest. The table 1.6 below depicts this ranking, and
we see that Retail Banking tends to be ranked low while Trading & sales with Agency
Services & Custody tend to be ranked high.
Table 1.6 shows us the disparity that exists of ”typical” beta by business line in columns 4
to 9 and so, we want to find out whether this dispersion allows us to separate the different
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Median Mean Weighted Average
Corporate Finance 3 7 2
Trading & Sales 6 8 8
Retail Banking 2 1 1

Commercial Banking 4 3 7
Payment & Settlement 8 5 7

Agency Services & Custody 7 6 6
Retail Brokerage 1 2 5
Asset Management 5 4 3

Table 1.6: Size Ranking Across Three Measures of ”Typical” Beta by Business Lines

beta values across business lines. Through statistical testing of the equality of the mean
and the median, the results do not reject the null hypothesis that these figures are the
same across the eight business lines.

These diffusions observed in the beta estimate could be reflected in the calibration dif-
ference of the internal economic capital measures of banks. Additionally, banks may also
be applying differing definitions of the constitution of operational risk loss and gross in-
come as these vary under different jurisdictions. Given additional statistics and data, the
Basel Committee decided to estimate the beta factors between 12% to 18% for each of
the different business lines.

1.3 The Advanced Measurement Approach

With the Advanced Measurement Approach (AMA), the regulatory capital is determined
by a bank’s own internal operational risk measurement system according to a number of
quantitative and qualitative criteria set forth by the Basel Committee. However, the use
of these approaches must be approved and verified by the national supervisor.

The AMA is based on the collection of loss data for each event type. Each bank is
to measure the required capital based on its own loss data using the holding period and
confidence interval determined by the regulators (1 year and 99.9%).

The capital charge calculated under the AMA is initially subjected to a floor set at
75% of that under the Standardized Approach, at least until the development of measure-
ment methodologies is examined. In addition, the Basel II Committee decided to allow
the use of insurance coverage to reduce the capital required for operational risk, but this
allowance does not apply to the SA and the BIA.

A bank intending to use the AMA should demonstrate accuracy of the internal mod-
els within the Basel II risk cells, (eight business lines × seven risk types, as shown in
Appendix B and more details for the loss event type classification in Appendix C), rele-
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vant to the bank and satisfy some criteria including:

• The use of the internal data, relevant external data, scenario analyses and factors
reflecting the business environment and internal control systems;

• Scenario analyses of expert opinion;

• The risk measure used for capital charge should correspond to a 99.9% confidence
level for a one-year holding period;

• Diversification benefits are allowed if dependence modelling is approved by a regu-
lator;

• Capital reduction due to insurance is fixed at 20%.

The relative weight of each source and the combination of sources is decided by the banks
themselves; Basel II does not provide a regulatory model.

The application of the AMA is, in principle, open to any proprietary model, but the
methodologies have converged over the years and thus specific standards have emerged.
As a result, most AMA models can now be classified into:

• Loss Distribution Approach (LDA)

• Internal Measurement Approach (IMA)

• Scenario-Based AMA (sbAMA)

• Scorcard Approach (SCA)

1.3.1 The Loss Distribution Approach (LDA)

The Loss Distribution Approach (LDA) is a parametric technique primarily based on his-
toric observed internal loss data (potentially enriched with external data). Established on
concepts used in actuarial models, the LDA consists of separately estimating a frequency
distribution for the occurrence of operational losses and a severity distribution for the
economic impact of the individual losses. The implementation of this method can be
summarized by the following steps:

• 1. Estimate the loss severity distribution

• 2. Estimate the loss frequency distribution

• 3. Calculate the capital requirement

• 4. Incorporate the experts’ opinions
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For each business line and risk category, we establish two distributions (cf. Dahen [2006]):
one related to the frequency of the loss events for the time interval of one year (the loss
frequency distribution), and the other related to the severity of the events (the loss sever-
ity distribution).

To establish these distributions, we look for mathematical models that best describe the
two distributions according to the data and then we combine the two using Monte-Carlo
simulation to obtain an aggregate loss distribution for each business line and risk type.
Finally, by summing all the individual VaRs calculated at 99.9%, we obtain the capital
required by Basel II.

Figure 1.1: Illustration of the Loss Distribution Approach method (LDA) (cf. Maurer
[2007])

We start with defining some technical aspects before demonstrating the LDA (cf.
Maurer [2007]).

Definition 1
Value at Risk OpVaR: The capital charge is the 99.9% quantile of the aggregate
loss distribution. So, with N as the random number of events, the total loss is

L =
N∑

i=0

ψi where ψi is the i
th loss amount. The capital charge would then be:

IP (L > OpV aR) = 0.1%

Definition 2
OpVaR unexpected loss: This is the same as the Value at Risk OpVaR while
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adding the expected and the unexpected loss. Here, the Capital charge would result
in:

IP (L > UL+ EL) = 0.1%

Definition 3
OpVar beyond a threshold: The capital charge in this case would be a 99.9%
quantile of the total loss distribution defined with a threshold H as

IP (
N∑

i=0

ψi × I1{ψi ≥ H} > OpV aR) = 0.1%

The three previous methods are calculated using a Monte Carlo simulation.

For the LDA method which expresses the aggregate loss regarding each business line ×
event type Lij as the sum of individual losses, the distribution function of the aggregate
loss, noted as Fij, would be a compound distribution (cf. Frachot et al. [2001]).

So, the Capital-at-Risk (CaR) for the business line i and event type j (shown in Ap-
pendix B) correspond to the α quantile of Fij as follows:

CaRij(α) = F−1
ij (α) = inf{x|Fij(x) ≥ α}

And, as with the second definition explained previously, the CaR for the element ij is
equal to the sum of the expected loss (EL) and the unexpected Loss (UL):

CaRij(α) = ELij + ULij(α) = F−1
ij (α)

Finally, by summing all the the capital charges CaRij(α), we get the aggregate CaR across
all business lines and event types:

CaR(α) =
I∑

i=1

J∑

j=1

CaRij(α)

The Basel committee fixed an α = 99.9% to obtain a realistic estimation of the capital
required. However, the problem of correlation remains an issue here as it is unrealistic
to assume that the losses are not correlated. For this purpose, Basel II authorized each
bank to take correlation into consideration when calculating operational risk capital using
its own internal measures. For more on operational risk and modelling dependence see
Gicamotti et al. [2008], Peters et al. [2009] and Mittnic et al. [2013].
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Figure 1.2: Operational Risk Capital-at-Risk (CaR) (cf. Maurer [2007])

1.3.2 Internal Measurement Approach (IMA)

The IMA method (cf. BCBS [2001b]), provides carefulness to individual banks on the use
of internal loss data, while the method to calculate the required capital is uniformly set by
supervisors. In implementing this approach, supervisors would impose quantitative and
qualitative standards to ensure the integrity of the measurement approach, data quality,
and the adequacy of the internal control environment.

Under the IM approach, capital charge for the operational risk of a bank would be
determined using:

• A bank’s activities are categorized into a number of business lines, and a broad set
of operational loss types is defined and applied across business lines.

• Within each business line/event type combination, the supervisor specifies an ex-
posure indicator (EI) which is a substitute for the amount of risk of each business
line’s operational risk exposure.

• In addition to the exposure indicator, for each business line/loss type combination,
banks measure, based on their internal loss data, a parameter representing the
probability of loss event (PE) as well as a parameter representing the loss given
that event (LGE). The product of EI*PE*LGE is used to calculate the Expected
Loss (EL) for each business line/loss type combination.

• The supervisor supplies a factor γ for each business line/event type combination,
which translates the expected loss (EL) into a capital charge. The overall capital
charge for a particular bank is the simple sum of all the resulting products.

Let’s reformulate all the points mentioned above; calculating the expected loss for each
business line so that for a business line i and an event type j, the capital charge K is
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defined as: Kij = ELij × γij ×RPIij

Where EL represents the expected loss, γ is the scaling factor and RPI is the Risk
Profile Index.

The Basel Committee on Banking Supervision proposes that the bank estimates the ex-
pected loss as follows:

ELij = EIij × PEij × LGEij

Where EI is the exposure indicator, PE is the probability of an operational risk event
and LGE is the loss given event.

The committe proposes to use a risk profile index RPI as an adjustment factor to capture
the difference of the loss distribution tail of the bank compared to that of the industry
wide loss distribution.
The idea is to capture the leptokurtic properties of the bank loss distribution and then
to transform the exogeneous factor γ into an internal scaling factor λ such that:

Kij = ELij × γij ×RPIij

= ELij × λij

By definition, the RPI of the industry loss distribution is one. If the bank loss distribution
has a fatter tail than the industry loss distribution RPI would be larger than one. So
two banks which have the same expected loss may have different capital charge because
they do not have the same risk profile index.

1.3.3 Scorcard Approach (SCA)

The Scorecards approach1 incorporates the use of a questionnaire which consists of a series
of weighted, risk-based questions. The questions are designed to focus on the principal
drivers and controls of operational risk across a broad range of applicable operational risk
categories, which may vary across banks.
The questionnaire is designed to reflect the organization’s unique operational risk profile
by:

• Designing organization-specific questions that search for information about the level
of risks and quality of controls.

• Calibrating possible responses through a range of ”unacceptable” to ”effective” to
”leading practice”.

• Applying customized question weightings and response scores aligned with the rela-
tive importance of individual risks to the organization. These can vary significantly
between banks (due to business mix differences) and may also be customized along

1http://www.fimarkets.com/pages/risque operationnel.php
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business lines within an organization. Note that scoring of response options will
often not be linear.

The Basel Committee did not put any kind of mathematical equation regarding this
method, but working with that method made banks propose a formula related which is:

KSCA = EIij × ωij ×RSij

Where, EI is the exposure indicator, RS the risk score and ω the scale factor.

1.3.4 Scenario-Based AMA (sbAMA)

Risk is defined as the combination of severity and frequency of potential loss over a given
time horizon, is linked to the evaluation of scenarios. Scenarios are potential future events.
Their evaluation involves answering two fundamental questions: firstly, what is the po-
tential frequency of a particular scenario occurring and secondly, what is its potential loss
severity?

The scenario-based AMA2 (or sbAMA) shares with LDA the idea of combining two di-
mensions (frequency and severity) to calculate the aggregate loss distribution used to
obtain the OpVaR. Banks with their activities and their control environment, should
build scenarios describing potential events of operational risks. Then experts are asked to
give opinions on probability of occurrence (i.e., frequency) and potential economic impact
should the events occur (i.e., severity); But Human judgment of probabilistic measures
is often biased and a major challenge with this approach is to obtain sufficiently reliable
estimates from experts. The relevant point in sbAMA is that information is only fed into
a capital computation model if it is essential to the operational risk profile to answer the
”what-if” questions in the scenario assessment. Furthermore the overall sbAMA process
must be supported by a sound and structured organisational framework and by an ad-
equate IT infrastructure. The sbAMA comprises six main steps, which are illustrated
in the figure 1.3 below. Outcome from sbAMA shall be statistically compatible with
that arising from LDA so as to enable a statistically combination technique. The most
adequate technique to combine LDA and sbAMA is Bayesian inference, which requires
experts to set the parameters of the loss distribution.

2http://www.newyorkfed.org/newsevents/events/banking/2003/con0529d.pdf
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Figure 1.3: Overview of the sbAMA

1.4 Solvency II Quantification Methods

Solvency II imposes a capital charge for the operational risk that is calculated regarding
the standard formula given by regulators or an internal model which is validated by the
right authorities.

For the enterprises that have difficulties running an internal model for operational risk,
the standard formula can be used for the calculation of this capital charge.

The European Insurance and Occupational Pensions Authority (EIOPA), previously known
as the Committee of European Insurance and Occupational Pensions Supervisors (CEIOPS),
tests the standard formulas in markets through the use of surveys and questionnaires
called Quantitative Impact Studies (QIS). The QIS allows the committee to adjust and
develop the formulas in response to the observations and difficulties encountered by the
enterprises.

Standard Formula Issued by QIS5

The Solvency Capital Requirement (SCR) concerns an organization’s ability to absorb
significant losses through their own basic funds of an insurance or reinsurance policy.
This ability is depicted by the company’s Value-at-Risk at a 99.5% confidence level over
a one-year period and the objective is applied to each individual risk model to ensure
that different modules of the standard formula are quantified in a consistent approach.
Additionally, the correlation coefficients are set to reflect potential dependencies in the
distributions’ tails. The breakdown of the SCR is shown in the figure 1.4 below:
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Figure 1.4: Solvency Capital Requirement (SCR)

With the calculation of the BSCR:

BSCR =

√
∑

ij

Corrij × SCRi × SCRj + SCRIntangibles

Corr Market Default Life Health Non-life
Market 1
Default 0.25 1
Life 0.25 0.25 1

Health 0.25 0.25 0.25 1
Non-life 0.25 0.5 0 0 1

Table 1.7: Correlation Matrix for the different risks

In relation to previous surveys, respondents suggested that:

• The operational risk charge should be calculated as a percentage of the BSCR or
the SCR.

• The operational risk charge should be more sensitive to operational risk manage-
ment.

• The operational risk charge should be based on entity-specific operational risk
sources, the quality of the operational risk management process, and the internal
control framework.
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• Diversification benefits and risk mitigation techniques should be taken into consid-
eration.

In view of the above, EIOPA has considered the following (cf. CEIOPS [2009]):

• The calibration of operational risk factors for the standard formula has been revised
to be more consistent with the assessment obtained from internal models.

• A zero floor for all technical provisions has been explicitly introduced to avoid an
undue reduction of the operational risk SCR.

• The Basic SCR is not a sufficiently reliable aggregate measure of the operational
risk, and that a minimum level of granularity would be desirable in the design of
the formula.

And so after additional analysis and reports, EIOPA recommends the final factors to be
as follows:

TP life 0.45%
TP non life 3%
Premium life 4%

Premium non life 3%
UL factor 25%

BSCR cap life 30%
BSCR cap non life 30%

Table 1.8: QIS5 Factors

Before going into the formula let’s define some notations (cf. CEIOPS [2010]):

• TPlife = Life insurance obligations. For the purpose of this calculation, techni-
cal provisions should not include the risk margin, should be without deduction of
recoverables from reinsurance contracts and special purpose vehicles

• TPnon life = Total non-life insurance obligations excluding obligations under non-life
contracts which are similar to life obligations, including annuities. For the purpose of
this calculation, technical provisions should not include the risk margin and should
be without deduction of recoverables from reinsurance contracts and special purpose
vehicles

• TPlife ul = Life insurance obligations for life insurance obligations where the in-
vestment risk is borne by the policyholders. For the purpose of this calculation,
technical provisions should not include the risk margin, should be without deduc-
tion of recoverables from reinsurance contracts and special purpose vehicle

• pEarnlife = Earned premium during the 12 months prior to the previous 12 months
for life insurance obligations, without deducting premium ceded to reinsurance
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• pEarnlife ul = Earned premium during the 12 months prior to the previous 12
months for life insurance obligations where the investment risk is borne by the
policyholders, without deducting premium ceded to reinsurance

• Earnlife ul = Earned premium during the previous 12 months for life insurance obli-
gations where the investment risk is borne by the policyholders without deducting
premium ceded to reinsurance

• Earnlife = Earned premium during the previous 12 months for life insurance obli-
gations, without deducting premium ceded to reinsurance

• Earnnon life = Earned premium during the previous 12 months for non-life insurance
obligations, without deducting premiums ceded to reinsurance

• Expul = Amount of annual expenses incurred during the previous 12 months in
respect life insurance where the investment risk is borne by the policyholders

• BSCR = Basic SCR.

Finally the Standard formula resulted to be:

SCRop = min
(
0.3BSCR,Opall none ul

)
+ 0.25Expul

Where, Opall none ul = max(Oppremiums, Opprovisions)

Oppremiums = 0.04× (Earnlife − Earnlife ul) + 0.03 ∗ (Earnnon life)+

max
(
0, 0.04× (Earnlife − 1.1pEarnlife − (Earnlife ul − 1.1pEarnlife ul))

)
+

max (0, 0.03× (Earnnon life − 1.1pEarnnon life))

and:

Opprovisions = 0.0045×max(0, TPlife − TPlife ul) + 0.03×max(0, TPnon life)
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Chapter 2

Quantitative Methodologies

A wide variety of risks exist, thus necessitating their regrouping in order to categorize
and evaluate their threats for the functioning of any given business. The concept of a
risk matrix, coined by Richard Prouty (1960), allows us to highlight which risks can be
modeled. Experts have used this matrix to classify various risks according to their average
frequency and severity as seen in the figure 2.1 below:

Figure 2.1: Risk Matrix

There are in total four general categories of risk:

• Negligible risks: with low frequency and low severity, these risks are insignificant as
they don’t impact the firm very strongly.

• Marginal risks: with high frequency and low severity, though the losses aren’t sub-
stantial individually, they can create a setback in aggregation. These risks are
modeled by the Loss Distribution Approach (LDA) which we discussed earlier.

• Catastrophic risks: with low frequency and high severity, the losses are rare but
have a strong negative impact on the firm and consequently, the reduction of these
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risks is necessary for a business to continue its operations. Catastrophic risks are
modeled using the Extreme Value Theory and Bayesian techniques.

• Impossible: with high frequency and high severity, the firm must ensure that these
risks fall outside possible business operations to ensure financial health of the cor-
poration.

Classifying the risks as per the matrix allows us to identify their severity and frequency and
to model them independently by using different techniques and methods. We are going
to see in the arriving sections the different theoretical implementation and application of
different theories and models regarding Operational risk.

2.1 Risk Measures

Some of the most frequent questions concerning risk management in finance involve ex-
treme quantile estimation. This corresponds to determining the value a given variable
exceeds with a given (low) probability. A typical example of such a measure is the Value-
at-Risk (VaR). Other less frequently used measures are the expected shortfall (ES) and
the return level (cf. Gilli & Kellezi [2003]).

2.1.1 VaR calculation

A risk measure of the risk of loss on a specific portfolio of financial assets, VaR is the
threshold value such that the probability that the mark-to-market loss on the portfolio
over the given time horizon exceeds this value is the given probability level. VaR can then
be defined as the q-th quantile of the distribution F:

V aRq = F−1(q)

Where F−1 is the quantile function which is defined as the inverse function of the distri-
bution function F . For internal risk control purposes, most of the financial firms compute
a 5% VaR over a one-day holding period.

2.1.2 Expected Shortfall

The expected shortfall is an alternative to VaR that is more sensitive to the shape of the
loss distribution’s tail. The expected shortfall at a q% level is the expected return on the
portfolio in the worst q% of the cases:

ESq = E(X | X > V aRq)
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2.2 Illustration of the LDA method

Even a cursory look at the operational risk literature reveals that measuring and modeling
aggregate loss distributions are central to operational risk management. Since the daily
business operations have considerable risk, quantification in terms of an aggregate loss
distribution is an important objective. A number of approaches have been developed to
calculate the aggregate loss distribution.
We begin this section by examining the severity distribution, the frequency distribution
function and finally the aggregate loss distribution.

2.2.1 Severity of Loss Distributions

Fitting a probability distribution to data on the severity of loss arising from an operational
risk event is an important task in any statistically based modeling of operational risk. The
observed data to be modeled may either consist of actual values recorded by business line
or may be the result of a simulation. In fitting a probability model to empirical data, the
general approach is to first select a basic class of probability distributions and then find
values for the distributional parameters that best match the observed data.

Following is an example of the Beta and Lognormal Distributions:
The standard Beta distribution is best used when the severity of loss is expressed as a
proportion. Given a continuous random variable x, such that 0 ≤ x ≤ 1, the probability

density function of the standard beta distribution is given by f(x) =
xα−1(1− x)β−1

B(α, β)
where

B(α, β) =

∫ 1

0

uα−1(1− u)β−1du, α > 0, β > 0

The parameters α and β control the shape of the distribution.

Figure 2.2: Loss severity of a Beta distribution
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The mean of the beta distribution is given by

Mean =
α

(α + β)

and standard deviation =

√

αβ

(α + β)2(α + β + 1)

In our example, we will be working with lognormal distributions (see Fig. 2.3). A log-
normal distribution is a probability distribution of a random variable whose logarithm is
normally distributed. So if X is a random variable with a normal distribution, then Y =
exp(X) has a log-normal distribution. Likewise, if Y is Lognormally distributed, then X
= log(Y) is normally distributed.
The probability density function of a log-normal distribution is:

fX(x, µ, σ) =
1

xσ

√
2πe

−
(ln x− µ)2

2σ2

Where µ and σ are called the location and scale parameter, respectively. So, for a log-
normally distributed variable X, E[X] = e−

1
2
σ2

and V ar[X] = (eσ
2 − 1)e2µ+σ2

Figure 2.3: Loss severity of a Lognormal distribution

Statistical and Graphical Tests

There are numerous graphical and statistical tests for assessing the fit of a postulated
severity of a loss probability model to empirical data. In this section, we focus on four of
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the most general tests: Probability plots, Q-Q Plots, the Kolmogorov-Smirnov goodness
of fit test, and the Anderson-Darling goodness of fit test. In discussing the statistic tests,
we shall assume a sample of N observations on the severity of loss random variable X.

Furthermore, we will be testing:

• H0: Samples come from the postulated probability distribution, against

• H1: Samples do not come from the postulated probability distribution.

Probability Plot: A popular way of checking a model is by using Probability Plots1. To
do so, the data are plotted against a theoretical distribution in such a way that the points
should form approximately a straight line. Departures from this straight line indicate
departures from the specified distribution.
The probability plot is used to answer the following questions:

• Does a given distribution provide a good fit to the data?

• Which distribution best fits my data?

• What are the best estimates for the location and scale parameters of the chosen
distribution?

Q-Q Plots: Quantile-Quantile Plots (Q-Q Plots)2 are used to determine whether two
samples come from the same distribution family. They are scatter plots of quantiles
computed from each sample, with a line drawn between the first and third quartiles. If
the data falls near the line, it is reasonable to assume that the two samples come from
the same distribution. The method is quite robust, regardless of changes in the location
and scale parameters of either distribution.
The Quantile-Quantile plots are used to answer the following questions:

• Do two data sets come from populations with a common distribution?

• Do two data sets have common location and scale parameters?

• Do two data sets have similar distributional shapes?

• Do two data sets have similar tail behavior?

Kolmogorov-Smirnov goodness of fit test: The Kolmogorov-Smirnov test statistic
is the largest absolute deviation between the cumulative distribution function of the sam-
ple data and the cumulative probability distribution function of the postulated probability
density function, over the range of the random variable:

T = max|FN(x)− F (x)|
1http://www.itl.nist.gov/div898/handbook/eda/section3/probplot.htm
2http://www.itl.nist.gov/div898/handbook/eda/section3/qqplot.htm
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over all x, where the cumulative distribution function of the sample data is FN(x), and
F (x) is the cumulative probability distribution function of the fitted distribution. The
Kolmogorov-Smirnov test relies on the fact that the value of the sample cumulative density
function is asymptotically normally distributed. Hence, the test is distribution free in the
sense that the critical values do not depend on the specific probability distribution being
tested.

Anderson-Darling goodness of fit test:

The Anderson-Darling test statistic is given by:

T̂ = −N − 1

N

N∑

i=1

2(i− 1){lnF (x̃i) + ln[1− F (x̃N+1−i)]}

where x̃i are the sample data ordered by size. This test is a modification of the Kolmogorov-
Smirnov test which is more sensitive to deviations in the tails of the postulated probability
distribution. This added sensitivity is achieved by making use of the specific postulated
distribution in calculating critical values. Unfortunately, this extra sensitivity comes at
the cost of having to calculate critical values for each postulated distribution.

2.2.2 Loss Frequency Distribution

The important issue for the frequency of loss modeling is a discrete random variable that
represents the number of operational risk events observed. These events will occur with
some probability p.

Many frequency distributions exist, such as the binomial, negative binomial, geometric,
etc., but we are going to focus on the Poisson distribution in particular for our illustration.
To do so, we start by explaining this distribution.
The probability density function of the Poisson distribution is given by

IP (X = k) =
exp−λ λk

k!

where k ≥ 0 and λ > 0 is the mean and
√
λ is the standard deviation.

Estimation of the parameter can be carried out by maximum likelihood.

Much too often, a particular frequency of a loss distribution is chosen for no reason
other than the risk managers familiarity of it. A wide number of alternative distributions
are always available, each generating a different pattern of probabilities. It is important,
therefore, that the probability distribution is chosen with appropriate attention to the
degree to which it fits the empirical data. The choice as to which distribution to use can
be based on either a visual inspection of the fitted distribution against the actual data or
a formal statistical test such as the chi-squared goodness of fit test. For the chi-squared
goodness of fit test, the null hypothesis is:
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Figure 2.4: Loss Frequency Distribution

H0 = The data follow a specified distribution

and,
H1 = The data do not follow the specified distribution

The test statistic is calculated by dividing the data into n sets and is defined as:

T̃ =
n∑

i=1

(Ei −Oi)
2

Ei

Where, Ei is the expected number of events determined by the frequency of loss probability
distribution, Oi is the observed number of events and n is the number of categories.
The test statistic is a measure of how different the observed frequencies are from the
expected frequencies. It has a chi-squared distribution with n−(k−1) degrees of freedom,
where k is the number of parameters that need to be estimated.

2.2.3 Aggregate Loss Distribution

Even though in practice we may not have access to a historical sample of aggregate losses,
it is possible to create sample values that represent aggregate operational risk losses given
the severity and frequency of a loss probability model. In our example, we took the
Poisson(2) and Lognormal(1.42,2.38) distributions as the frequency and severity distri-
butions, respectively. Using the frequency and severity of loss data, we can simulate
aggregate operational risk losses and then use these simulated losses for the calculation
of the Operational risk capital charge.
The simplest way to obtain the aggregate loss distribution is to collect data on frequency
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and severity of losses for a particular operational risk type and then fit frequency and
severity of loss models to the data. The aggregate loss distribution then can be found by
combining the distributions for severity and frequency of operational losses over a fixed
period such as a year.

Let’s try and explain this in a more theoretical way: Suppose N is a random variable
representing the number of OR events between time t and t+ δ, (δ is usually taken as one
year) with associated probability mass function p(N) which is defined as the probability
that exactly N losses are encountered during the time limit t and t + δ. and let’s define
X as a random variable representing the amount of loss arising from a single type of OR
event with associated severity of loss probability density function fX(x); Assuming the
frequency of events N is independent of the severity of events, the total loss from the
specific type of OR event between the time interval is:

S = X1 +X2 + · · ·+XN−1 +XN

The probability distribution function of S is a compound probability distribution:

G(x) =







∞∑

i=1

p(i)× F i∗(x) if x > 0

p(i) if x = 0

where F (x) is the probability that the aggregate amount of i losses is x, ∗ is the convolution
operator on the functions F and F i∗(x) is the i-fold convolution of F with itself.
The problem is that for most distributions, G(x) cannot be evaluated exactly and it must
be evaluated numerically using methods such as Panjer’s recursive algorithm or Monte
Carlo simulation.

2.2.3.1 Panjer’s recursive algorithm

If the frequency of loss probability mass function can be written in the form (cf. Mcneil
et al. [2005] p. 480):

p(k) = p(k − 1)
(
a+

b

k

)
k = 1, 2, · · ·

where a and b are constants, Panjer’s recursive algorithm can be used.

The recursion is given by

g(x) = p(1)f(x) +

∫ x

0

(a+ b
y

x
)f(y)g(x− y)dy, x > 0

where g(x) is the probability density function of G(x).

Usually, Poisson distribution, binomial distribution, negative binomial distribution, and
geometric distribution satisfy the form. For example, if our severity of loss is the Poisson
distribution seen above,

p(k) =
exp−λ λk

k!
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then a = 0 and b = λ.

A limitation of Panjer’s algorithm is that only discrete probability distributions are valid.
This shows that our severity of loss distribution, which is generally continuous, must be
made discrete before it can be used. Another much larger drawback to the practical use
of this method is that the calculation of convolutions is extremely long and it becomes
impossible as the number of losses in the time interval under consideration becomes large.

2.2.3.2 Monte Carlo method

The Monte Carlo simulation is the simplest and often most direct approach. It involves
the following steps (cf. Dahen [2006]):

1- Choose a severity of loss and frequency of loss probability model;

2- Generate n number of loss daily or weekly regarding the frequency of loss distribution

3- Generate n losses Xi, (i = 1, ..., n) regarding the loss severity distribution;

4- Repeat steps 2 and 3 forN = 365 (for daily losses) orN = 52 (for weekly). Summing
all the generated Xi to obtain S which is the annual loss;

5- Repeat the steps 2 to 4 many times (at least 5000) to obtain the annual aggregate
loss distribution.

6- The VaR is calculated taking the 99.9th percentile of the aggregate loss distribution.

Now focusing on our example taking as Lognormal(1.42, 2.38) as the severity loss distribu-
tion and Poisson(2) as the frequency distribution and by applying Monte Carlo we arrive
to calculate the VaR corresponding to the Operational risk for a specific risk type (let’s
say internal fraud).

To explain a bit the example given, we took into consideration the Poisson and Lognor-
mal as the weekly loss frequency and severity distributions respectively. For the aggregate
loss distribution we generate n number of loss each time regarding the Poisson distribu-
tion and n losses according the Lognormal distribution and so by summing the losses
Xi, i = 1, ..., n and repeating the same steps 52 times we obtain S which would be the
one annual total loss.
At the end, we repeat the same steps over and over again 100, 000 times, we obtain the
aggregate loss distribution on which we calculate the Value at Risk.
The programming was done using Matlab software and it resulted the output and calcu-
lations below:
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VaR(99.9%) 0.1% 118, 162
Mean VaR 207, 885

Table 2.1: The VaR and Mean VaR calculation

Figure 2.5: Annual Aggregate Loss Distribution

2.3 Treatment of Truncated Data

Generally, not all operational losses are declared. Databases are recorded starting from a
threshold of a specific amount (for example, 5,000 e). This phenomenon, if not properly
addressed, may create unwanted biases of the aggregate loss since the parameter estima-
tion regarding the fitted distributions would be far from reality.
In this section, we will discuss the various approaches used in dealing with truncated data.

Data are said to be truncated when observations that fall within a given set are ex-
cluded. Left-truncated data is when the numbers of a set are less than a specific value,
which means that neither the frequency nor the severity of such observations have been
recorded (cf. Chernobai et al. [2005]).
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In general, there are four different kinds of approaches that operational risk managers ap-
ply to estimate the parameters of the frequency and severity distributions in the absence
of data due to truncation.

Approach 1
For this first approach, the missing observations are ignored and the observed data
are treated as a complete data set in fitting the frequency and severity distributions.
This approach leads to the highest biases in parameter estimation. Unfortunately,
this is also the approach used by most practitioners.

Approach 2
The second approach is divided into two steps:

• Similar to the first approach, unconditional distributions are fitted to the sever-
ity and frequency distribution

• The frequency parameter is adjusted according to the estimated fraction of the
data over the threshold u

Figure 2.6: Fraction of missing data A and observed data B (cf. Chernobai et al. [2006])

In the end, the adjusted frequency distribution parameter is expressed by:

λ̂adj =
λ̂obs

1− F̂cond(u)
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where λ̂adj, represents the adjusted (complete data) parameter estimate, λ̂obs is the

observed frequency parameter estimate, and F̂cond(u) depicts the estimated condi-
tional severity computed at threshold u.

Approach 3
This approach is different from previous approaches since the truncated data is
explicitly taken into account in the estimation of the severity distribution to fit
conditional severity and unconditional frequency.
The density of the truncated severity distribution would result in:

fcond(x) =







f(x)

(1− F (u))
for x > u

0 for x ≤ u

Figure 2.7: Unconditional and conditional severity densities (cf. Chernobai et al. [2006])

Approach 4
The fourth approach is deemed the best in application as it combines the second
and third procedures by taking into account the estimated severity distribution and,
as in Approach 2, the frequency parameter adjustment formula λ̂adj.
In modelling operational risk, this is the only relevant approach out of the four
proposed as it addresses both the severity and the frequency of a given distribution.

2.3.1 Estimating Parameters using MLE

The MLE method can then be applied to estimate our parameters. To demonstrate, let’s
define (x1, · · · , xn) as losses exceeding the threshold u so the conditional Maximum Like-
lihood can be written as follows:
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n∏

i=1

f(xi)

IP (Xi ≥ u)
=

n∏

i=1

f(xi)

1− FXi
(u)

and the log-Likelihood would be:

n∑

i=1

ln

(
f(xi)

1− FXi
(u)

)

=
n∑

i=1

ln(f(xi))− nln(1− FXi
(u))

When losses are truncated, the frequency distribution observed has to be adjusted to
consider the particular non-declared losses. For each period i, let’s define ni as the num-
ber of losses which have to be added to mi, which is the number of estimated losses below
the threshold, so that the adjusted number of losses is na

i = ni +mi.
To reiterate, the ratio between the number of losses below the threshold, mi, and the ob-
served loss number, ni, is equal to the ratio between the left and right severity functions:
mi

ni

=
F̂ (u)

1− F̂ (u)

where F̂ is the truncated cumulative distribution function with parameters estimated us-
ing MLE.
Finally, we have:

na
i = ni +mi = ni +

ni × F̂ (u)

1− F̂ (u)
=

ni

1− F̂ (u)

2.3.2 Kolmogorov-Smirnov test adapted for left truncated Data

The Kolmogorov-Smirnov (KS) test, measures the absolute value of the maximum dis-
tance between empirical and fitted distribution function and puts equal weight on each
observation. so regarding the truncation criteria KS test has to be adapted (cf. Chernobai
et al. [2005]).
For that, let us assume the random variables (X1, · · · , Xn) iid following the unknown
probability distribution PX .

The null hypothesis related would be:

H0 : PX has a cumulative distribution F ∗
0 , where F

∗
0 =

F0(x)− F0(u)

1− F0(u)
Let’s note: yj = F0(xj) and yu = F0(u) so that KSobs is:

KS∗
obs = max{KS+∗, KS−∗}

where,

KS+∗ =

√
n

1− yu
sup
j

(

yu +
j

n
(1− yu)− yj

)

KS−∗ =

√
n

1− yu
sup
j

(

yj −
(

yu +
j − 1

n
(1− yu)

))

The p-value associated is then calculated using Monte-Carlo simulation.
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2.4 Introduction to Robust Statistics

Operational risk Data is one of the most challenging problems both as to quantity and
as to quality. Presence of outliers, left truncation, parameter instability and the limited
number of events.
In 2001, the Basel Committee made the following recommendation (cf. BCBS [2001b],
Annex 6, pp. 26):
”data will need to be collected and robust estimation techniques (for event impact, fre-
quency, and aggregate operational loss) will need to be developed”.

While Classical estimators as MLE may produce biased estimates of parameters lead-
ing to unreasonably high estimates of mean, variance and the operational risk capital
measure, robust statistics display less bias, greater efficiency and far more robustness
than does MLE.

This section determine influence functions for Maximum Likelihood estimation for a num-
ber of severity distributions, both truncated and not. This work is based on the study of
Opdyke & Cavallo [2012].

2.4.1 Maximum Likelihood Estimation (MLE)

According to Basel II, MLE is the basis for deriving estimators for parameters in opera-
tional risk.
To maintain its statistical properties known to be asymptotically normally distributed,
asymptotically efficient (minimum variance) and asymptotically unbiased, MLE requires
the following assumptions:

• Loss severities are identically distributed within unit of measure(perfect homogene-
ity)

• Individual loss severities are independent from one another

• The probability model of the severity distribution is well specified

Now given an i.i.d. sample of losses (x1, x2, ..., xn) and knowledge of the true probability
density function f(x|θ), the MLE parameter estimates are the values θ̂ that maximize the
likelihood function:

L(θ|x) =
n∏

i=1

f(xi|θ)

The same numeric result is obtained by maximizing the log-likelihood function:

l(θ|x1, x2, ..., xn) = ln[L(θ|x)] =
n∑

i=1

ln[f(xi|θ)]

M-class estimators include a wide range of statistical models for which the optimal values
of the parameters are determined by computing sums of sample quantities and MLE is
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amongst the class of M-estimators.

M-estimators are solutions of θ which minimize,
n∑

i=1

ρ(xi, θ)

Particularly, MLE estimator is an M-class estimator with ρ(x, θ) = −ln[f(x, θ)]

so, θ̂ = argmin
θ∈Θ

n∑

i=1

ρ(xi, θ) = argmin
θ∈Θ

n∑

i=1

− ln f(xi, θ)

Putten as an example in Appendix E the MLE estimators for the parameters of the
Lognormal distribution.

2.4.2 Influence Function

An essential tool in robust statistics is the use of Influence function that allows to analyti-
cally determine the sensitivity of parameter estimates to specific deviations from assumed
statistical model. It describes how parameter estimates of the assumed severity distribu-
tion are affected if some portion of the data follows another unspecified distribution at a
particular severity value.

let δx be a distribution where the value x occurs with probability 1.
If Y has a distribution δx, then IP (Y ≤ y) = 0 if y < x, and the mean of Y is IE(Y ) = x.

δx(y) =

{
1 if y ≥ x
0 otherwise

Next, we consider a mixture of two distributions where an observation is randomly sam-
pled from distribution F with probability 1− ǫ, otherwise sampling is from the distribu-
tion δx. That is, with probability ǫ, the observed value is x. The resulting distribution is
Fx,ǫ = (1− ǫ)F + ǫδx.
δx is known as the cumulative distribution function of the dirac delta function ∆x defined
as,

∆x(y) =

{
1 if y = x
0 otherwise

A statistical functional, is the function T (F (y, θ)) = T (F ) that estimates specific statis-
tics as moments or parameters of a model given an assumed distribution F (y, θ) and a
specific estimator (such as MLE or method of moments, ...).
In the statistics literature, the derivative of a functional, T (F ), is called the influence
function of T at F , which was introduced by Hampel (1968, 1974). Roughly, the influ-
ence function measures the relative extent a small perturbation in F has on T (F ). Put
another way, it reflects the limiting influence of adding one more observation, x, to a large
sample.
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As so, the influence function for T at F is:

IF (x|T, F ) = lim
ǫ→0

[
T{(1− ǫ)F + ǫδx} − T (F )

ǫ

]

= lim
ǫ→0

[
T (Fǫ)− T (F )

ǫ

]

Now if the Influence Function is bounded over the domain of F, then the estimator is said
to be B-Robust for the distribution and in case where the Influence Function is unbounded
well then the estimator is not B-Robust.

As an example of the above, let’s formulate the Influence Function for the mean:

IF (x|T, F ) = lim
ǫ→0

[
T{(1− ǫ)F + ǫδx} − T (F )

ǫ

]

= lim
ǫ→0

[
∫
yd{(1− ǫ)F + ǫδx}(y)−

∫

ydF (y)

ǫ

]

= lim
ǫ→0

[(1− ǫ)
∫
ydF (y) + ǫ

∫
ydδx(y)−

∫

ydF (y)

ǫ

]

= lim
ǫ→0

[
ǫx− ǫµ

ǫ

]

= x− µ

As seen, the Influence Function for the mean is unbounded therefore not B-Robust. In
contrast, the Influence Function for the median is bounded (cf. Hampel et al. [1986]).

2.4.2.1 The Influence Function for MLE

M-class estimators are defined as any estimator whose optimized function satisfies (cf.

Opdyke & Cavallo [2012]):
n∑

i=1

ϕ(Xi, θ) = 0, and similarly, θ̂ = argminθ

( n∑

i=1

ρ(xi, θ)

)

,

where ϕ(x, θ) =
∂ρ(x, θ)

∂θ
and most specifically,

ρ(x, θ) = − ln[f(x, θ)]. So, ϕ(x, θ) =
∂ρ(x, θ)

∂θ
= −

∂f(x, θ)

∂θ
f(x, θ)

and ϕ
′

θ =
∂ϕθ(x, θ)

∂θ
=
∂2ρ(x, θ)

∂θ2
=

−∂
2f(x, θ)

∂θ2
.f(x, θ) +

[
∂f(x, θ)

∂θ

]2

[f(x, θ)]2
.

Now for the Influence Function for the M-class estimators is,

IFθ(x, θ) =
ϕθ(x, θ)

−
∫ b

a
ϕ

′

θ(y, θ)dF (y)
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and so,

IFθ(x, θ) =

∂f(x, θ)

∂θ
f(x, θ)

∫ b

a

[
∂f(y, θ)

∂θ

]2

− ∂2f(y, θ)

∂θ2
.f(y, θ)

f(y, θ)
dy

(2.1)

where a and b define the endpoints of the distribution F .

The correlation between the parameters must be taken into account in case of distri-
butions with more than one parameter and the equation (2.1) would result in:

IFθ(x, θ) = A(θ)−1ϕθ =






−
∫ b

a

∂ϕθ1

∂θ1
dF (y) −

∫ b

a

∂ϕθ1

∂θ2
dF (y)

−
∫ b

a

∂ϕθ2

∂θ1
dF (y) −

∫ b

a

∂ϕθ2

∂θ2
dF (y)






−1
[
ϕθ1

ϕθ2

]

(2.2)

2.4.2.2 The Influence function for MLE case of the truncated Severity Dis-
tributions

As seen in previous sections, since not all operational losses are declared most banks
record their losses above a certain threshold H (H = 5, 000e, 10, 000eor 20, 000e), so
the data with smaller losses is usually not available.

As so, the severity distribution becomes left truncated, with pdf and cdf the following:

g(x, θ) =
f(x, θ)

1− F (H, θ)
and G(x, θ) = 1− 1− F (x, θ)

1− F (H, θ)

Now the terms of the Influence Function for the MLE estimator become:

ρ(x, θ) = −ln(g(x, θ)) = −ln
(

f(x, θ)

1− F (H, θ)

)

= ln(1− F (H, θ))− ln(f(x, θ))

and,

ϕθ(x,H, θ) =
∂ρ(x, θ)

∂θ
= −

∂f(x, θ)

∂θ
f(x, θ)

−
∂F (H, θ)

∂θ
1− F (H, θ)

ϕ
′

θ(x,H, θ) =
∂ϕθ(x,H, θ)

∂θ
=
∂2ρ(x, θ)

∂θ2
=

−∂
2f(x, θ)

∂θ2
.f(x, θ) +

[
∂f(x, θ)

∂θ

]2

[f(x, θ)]2
−

∂2F (H, θ)

∂θ2
.[1− F (H, θ)] +

[
∂F (H, θ)

∂θ

]2

[1− F (H, θ)]2

Finally,
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IFθ(x, θ) =

−
∂f(x, θ)

∂θ
f(x, θ)

−
∂F (H, θ)

∂θ
1− F (H, θ)

− 1

1− F (H, θ)

∫ b

a

−∂
2f(y, θ)

∂θ2
.f(y, θ) +

[
∂f(y, θ)

∂θ

]2

f(y, θ)
dy +

∂2F (H, θ)

∂θ2
.[1− F (H, θ)] +

[
∂F (H, θ)

∂θ

]2

[1− F (H, θ)]2

The structure of the multi-parameter version correspond to the previous non truncated
severity with the difference of the cumulative left truncated distribution cdf G().

IFθ(x, θ) = A(θ)−1ϕθ =






−
∫ b

a

∂ϕθ1

∂θ1
dG(y) −

∫ b

a

∂ϕθ1

∂θ2
dG(y)

−
∫ b

a

∂ϕθ2

∂θ1
dG(y) −

∫ b

a

∂ϕθ2

∂θ2
dG(y)






−1
[
ϕθ1

ϕθ2

]

(2.3)

2.4.2.3 General Example for the LogNormal Distribution

The LogNormal distribution is charachterized by its pdf, f(x;µ, σ) =
1√
2πσx

exp

{

−

1

2

(
ln(x)− µ

σ

)2}

, for 0 < x <∞ and 0 < σ <∞

As seen above for the calculation of the Influence Function, we are in need of the first and
second order derivatives:

∂

∂µ
f(x;µ, σ) =

[
ln(x)− µ

σ2

]

f(x;µ, σ)

∂

∂σ
f(x;µ, σ) =

[
(ln(x)− µ)2

σ3
− 1

σ

]

f(x;µ, σ)

∂2

∂µ2
f(x;µ, σ) =

[
(ln(x)− µ)2

σ4
− 1

σ2

]

f(x;µ, σ)

∂2

∂σ2
f(x;µ, σ) =

([
1

σ2
− 3(ln(x)− µ)2

σ4

]

+

[
(ln(x)− µ)2

σ3
− 1

σ

]2)

f(x;µ, σ)

∂

∂µ∂σ
f(x;µ, σ) =

[
ln(x)− µ

σ2

][
(ln(x)− µ)2

σ3
− 3

σ

]

f(x;µ, σ)

Now by integrating the above into (2.2):

ϕθ =

[
ϕµ

ϕσ

]

=






∂ρ(x, θ)

∂µ
∂ρ(x, θ)

∂σ




 =











−

∂f(x, θ)

∂µ

f(x, θ)

−
∂f(x, θ)

∂σ
f(x, θ)











=






µ− ln(x)

σ2

1

σ
− (ln(x)− µ)2

σ3






Now for the Fisher information matrix we have:

• −
∫ ∞

0

∂ϕµ

∂µ
dF (y) = −

∫ ∞

0

[
(ln(y)− µ)

σ2

]2

−
[
(ln(y)− µ)2

σ4
− 1

σ2

]

f(y)dy = −
∫ ∞

0

1

σ2
f(y)dy = − 1

σ2
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• −
∫ ∞

0

∂ϕσ

∂σ
dF (y) = −

∫ ∞

0

(
3(ln(y)− µ)2

σ4
− 1

σ2

)

f(y)dy =
1

σ2
− 3

σ4

∫ ∞

0

(ln(y)− µ)2f(y)dy =
−3σ2

σ4
+

1

σ2
= − 2

σ2

• −
∫ ∞

0

∂ϕµ

∂σ
dF (y) = −

∫ ∞

0

∂ϕσ

∂µ
dF (y) =

∫ ∞

0

([
ln(y)− µ

σ2

][
(ln(y)− µ)2

σ3
− 1

σ

]

−
[
ln(y)− µ

σ2

][
(ln(y)− µ)2

σ3
− 1

σ

])

f(y)dy = 0

The cross-Partial derivatives indicate the uncorrelation between the 2 parameters.

The Influence Function would result into:

IFθ(x; θ) = A(θ)−1ϕθ =






−1

σ2
0

0
2

σ2






−1 




µ− ln(x)

σ2

1

σ
− (ln(x)− µ)2

σ3




 =





−σ2 0

0 −σ
2

2










µ− ln(x)

σ2

1

σ
− (ln(x)− µ)2

σ3




 =





ln(x)− µ
(ln(x)− µ)2 − σ2

2σ





We can see that for neither µ nor σ are B-robust since the IFs are unbounded as x →
+∞, IF → +∞.
What’s interesting is that the MLE parameter values become large or small under con-
tamination with very small values as x→ 0+, IFµ → −∞ and IFσ → +∞

2.5 Working with Extremes for Catastrophic Risks

”If things go wrong, how wrong can they go?” is a particular question which one would
like to answer (cf. Gilli & Kellezi [2003]).
Extreme Value Theory (EVT) is a branch of statistics that characterizes the lower tail
behavior of the distribution without tying the analysis down to a single parametric family
fitted to the whole distribution.
This theory was pioneered by Leonard Henry Caleb Tippett3 and was codified by Emil
Julis Gumbel4 in 1958. We use it to model the rare phenomena that lie outside the range
of available observations.
The theory’s importance has been heightened by a number of publicised catastrophic
incidents related to operational risk:

• In February 1995, the Singapore subsidiary of Barings, a long-established British
bank, lost about $1.3 billion because of the illegal activity of a single trader, Nick
Leeson. As a result, the bank collapsed and was subsequently sold for one pound.

• At Daiwa Bank, a single trader, Toshihide Igushi, lost $1.1 billion in trading over
a period of 11 years. These losses only became known when Iguchi confessed his
activities to his managers in July 1995.

In all areas of risk management, we should put into account the extreme event risk which
is specified by low frequency and high severity.

3Leonard Tippett was an English physicist and statistician.
4Emil Julis Gumbel was a German mathematician.
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In financial risk, we calculate the daily value-at-risk for market risk and we determine the
required risk capital for credit and operational risks. As with insurance risks, we build
reserves for products which offer protection against catastrophic losses.
Extreme Value Theory can also be used in hydrology and structural engineering, where
failure to take proper account of extreme values can have devastating consequences.

Now, back to our study, operational risk data appear to be characterized by two at-
tributes: the first one, driven by high-frequency low impact events, constitutes the body of
the distribution and refers to expected losses; and the second one, driven by low-frequency
high-impact events, constitutes the tail of the distribution and refers to unexpected losses.
In practice, the body and the tail of data do not necessarily belong to the same underlying
distribution or even to distributions belonging to the same family.
Extreme Value Theory appears to be a useful approach to investigate losses, mainly be-
cause of its double property of focusing its analysis only on the tail area (hence reducing
the disturbance on small- and medium-sized data) as well as treating the large losses by a
scientific approach such as the one driven by the Central Limit Theorem for the analysis
of the high-frequency low-impact losses.

We start by briefly exploring the theory:

EVT is applied to real data in two related ways. The first approach deals with the
maximum (or minimum) values that the variable takes in successive periods, for exam-
ple months or years. These observations constitute of the extreme events, also called
block (or per-period) maxima. At the heart of this approach is the ”three-types theorem”
(Fisher and Tippet, 1928), which states that only three types of distributions can arise
as limiting distributions of extreme values in random samples: the Weibull, the Gumbel
and the Frechet distribution. This result is important as the asymptotic distribution of
the maxima always belongs to one of these three distributions, regardless of the original
distribution.
Therefore the majority of the distributions used in finance and actuarial sciences can be
divided into these three categories as follows, according to the weight of their tails (cf.
Smith [2002]):

• Light-tail distributions with finite moments and tails, converging to the Weibull
curve (Beta, Weibull);

• Medium-tail distributions for which all moments are finite and whose cumulative
distribution functions decline exponentially in the tails, like the Gumbel curve (Nor-
mal, Gamma, Log-Normal);

• Heavy-tail distributions, whose cumulative distribution functions decline with a
power in the tails, like the Frechet curve (T-Student, Pareto, Log-Gamma, Cauchy).

The second approach to EVT is the Peaks Over Threshold (POT) method, tailored for
the analysis of data bigger than the preset high thresholds. The severity component of
the POT method is based on the Generalized Pareto Distribution (GPD). We discuss the
details of these two approaches in the following segments.
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2.5.1 Generalized Extreme Value Distribution: Basic Concepts

Suppose X1, X2, · · · , Xn are independent random variables, identically distributed with
common distribution F (x) = IP (X ≤ x) and let Sn = X1 + X2 + · · · + Xn and Mn =
Max(X1, X2, · · · , Xn).
We have the following two theorems (cf. Smith [2002]):

Theorem 1

lim
n→+∞

IP (
Sn − an
bn

≤ x) = Φ(x)

Where Φ(x) is the distribution function of the normal distribution,
an = nE(X1) and bn =

√

V ar(X1).

Theorem 2
If there exists suitable normalizing constants cn > 0, dn ∈ R and some non-
degenerate distribution function H such that:

IP (
Mn − dn

cn
≤ x) = FMn(anx+ bn)

d7−→ H(x)

Then H belongs to one of the three standard extreme value distributions (cf. Gilli
& Kellezi [2003]):

• Gumbel:
Λ(x) = e−e−x

if x ∈ R

• Fréchet:

Φα(x) =

{
0 if x ≤ 0

e−x−α
if x > 0 and α > 0

• Weibull:

Ψα(x) =

{

e−(−x)−α

if x ≤ 0 and α > 0
1 if x > 0

Jenkinson and Von Mises generalize the three functions by the following distribution
function:

Hξ(x) =

{

e−(1+ξx)
−

1
ξ

if ξ 6= 0

e−e−x
if ξ = 0

where 1 + ξx > 0, a three parameter family is obtained by defining Hξ,µ,σ(x) =
Hξ(

x−µ
σ

) for a location parameter µ ∈ R and a scale parameter σ > 0.

The case ξ > 0 corresponds to Fréchet with α =
1

ξ
, ξ < 0 to Weibull with α = −1

ξ
,

and the limit ξ → 0 to Gumbel.
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Figure 2.8: Densities for the Fréchet, Weibull and Gumbel functions

2.5.2 Block Maxima Method

Observations in the block maxima method are grouped into successive blocks and the
maxima within each block are selected. The theory states that the limit law of the block
maxima belongs to one of the three standard extreme value distributions mentioned before.

To use the block-maxima method, a succession of steps need to be followed. First, the
sample must be divided into blocks of equal length. Next, the maximum value in each
block (maxima or minima) should be collected. Then, we fit the generalized extreme value
distribution.

2.5.3 Generalized Pareto Distribution

The Generalized Pareto (GP) Distribution has a distribution function with two parame-
ters:

Gξ,σ(x) =







1− (1 +
ξx

σ
)
−
1

ξ if ξ 6= 0

1− e
−
x

σ if ξ = 0

where σ > 0, and where x ≤ 0 when ξ ≤ 0 and 0 ≤ x ≤ −σ
ξ
when ξ < 0.

The value of ξ determines the type of distribution: for ξ < 0, the model gives the type II
Pareto distribution; for ξ = 0, we get the exponential distribution; and for ξ > 0, we get
a reparameterised Pareto distribution.

For X > 0, we have the following formula:

E(Xp) = p

∫ +∞

0

yp−1P (X > y)dy
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We use this formula to calculate the mean (cf. Appendix D):
For σ > 0, 0 < ξ < 1 and x ≤ 0:

E(X) =
σ

1− ξ

and we calculate the variance for ξ <
1

2
:

V (X) =
σ2

(ξ − 1)2(1− 2ξ)

2.5.4 Excess Loss Distribution

Excess losses are defined as those losses that exceed a threshold. So, given a threshold
value for large losses, the excess loss technique can be applied to determine the amount of
provisions needed to provide a reserve for large losses. We consider a distribution function
F of a random variable X which describes the behavior of the operational risk data in a
certain Business Line (BL). We are interested in estimating the distribution function Fu

of a value x above a certain threshold u (cf. Medova & Kariacou [2002]).
The distribution Fu is called the conditional excess distribution function and is formally
defined as:

Fu(y) = IP (X − u ≤ y | X > u) for y = x− u > 0.

We verify that Fu can be written in terms of F as:

Fu(y) = IP (X − u ≤ y | X > u)

=
IP (X − u ≤ y;X > u)

IP (X > u)

=
IP (u ≤ X ≤ y + u)

1− P (X ≤ u)

=
FX(y + u)− FX(u)

1− FX(u)

=
FX(x)− FX(u)

1− FX(u)

For a large class of underlying distribution function F the conditional excess distribution
function Fu(y) for a large u is approximated by:

Fu(y) ≈ Gξ,σ(y) u→ +∞

where

Gξ,σ(y) =







1− (1 +
ξ

σ
y)

−
1

ξ if ξ 6= 0

1− e
−
y

σ if ξ = 0

is the Generalized Pareto Distribution.
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We will now derive an analytical expression for V aRq and ESq. First, we define F(x)
as:

F (x) = (1− F (u))Gξ,σ(x) + F (u) for x > u

Then, we estimate F (u) by
n−Nu

n
where n is the total number of observations and Nu

the number of observations above the threshold u. So, we have:

F (x) =
Nu

n




1−

(

1 +
ξ

σ
(x− u)

)−
1

ξ




+

(

1− Nu

n

)

which simplifies to:

F (x) = 1− Nu

n

(

1 +
ξ

σ
(x− u)

)−
1

ξ

Inverting the last equation, we have:

1− q = 1− Nu

n

(

1 +
ξ

σ
(V aRq − u)

)−
1

ξ

(
nq

Nu

)−ξ

= 1 +
ξ

σ
(V aRq − u)

V aRq = u+
σ

ξ

((
n

Nu

q

)−ξ

− 1

)

For the calculation of the expected shortfall, we notice that

P (X − V aRq | X > V aRq) = FV aRq(y) = Gξ,σ+ξ(V aRq−u)(y)

Since we have Fu(y) ≈ Gξ,σ(y) and as ξ is the shape parameter, we can immediately
conclude that:

E(X − V aRq | X > V aRq) =
σ + ξ(V aRq − u)

1− ξ

And now, we estimate the expected shortfall:

ESq = V aRq + E(X − V aRq | X > V aRq)

= V aRq +
σ + ξ(V aRq − u)

1− ξ

=
V aRq

1− ξ
+
σ − ξu

1− ξ
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2.5.5 The Peak Over Threshold

The POT method considers observations exceeding a given high threshold. As an ap-
proach, it has increased in popularity as it uses data more efficiently than the block
maxima method. However, the choice of a threshold can pose a problem.

To use the peak over threshold methods, we first select the threshold. Then, we fit
the Generalised Pareto Distribution function to any exceedences above u. Next, we com-
pute the point and interval estimates for the Value-at-Risk and the expected shortfall (cf.
Medova & Kariacou [2002]).

Selection of the threshold:
While the threshold should be high, we need to keep in mind that with a higher threshold,
fewer observations are left for the estimation of the parameters of the tail distribution
function.
So, it’s better to select the threshold manually, using a graphical tool to help us with the
selection. We define the sample mean excess plot by the points:

(u, en(u)) , xn1 < u < xnn

where en(u) is the sample mean excess function defined as:

en(u) =

∑n
i=k(x

n
i − u)

n∑

i=1

I1{xn
i >u}

and where xn1 , x
n
2 , · · · , xnn represent the increasing order of the n observations.

Fitting the GPD function to the exceedances over u:
As defined in the previous sections, the distribution of the observations above the thresh-
old in the right tail and below the threshold in the left tail should be a generalized Pared
distribution. The best method to estimate the distribution’s parameters is the Maximum
Likelihood estimation method, explained below.

For a sample y = {y1, ..., yn} the log-likelihood function L(ξ, σ | y) for the GPD is the
logarithm of the joint density of the n observations.

L(ξ, σ | y) =
{

−n ln σ −
(

1
ξ
+ 1
)
∑n

i=1 ln
(
1 + yi

ξ
σ

)
if ξ 6= 0

−n ln σ − 1
σ

∑n
i=1 yi if ξ = 0
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2.6 Application to a Legal Events Database

To check and understand the concepts, let’s apply them to an exercise using the four
distributions: Exponential, Lognormal, Weibull and Pareto.
The table 2.2 below shows a legal event database provided by Julie Gamonet, (cf. Ga-
monet [2009]) depicting four years’ of losses. The units are in e.

14/04/2004 323.15 12/04/2006 42.59 15/06/2007 71.02
04/06/2004 305.8 20/04/2006 4,746.8 22/06/2007 3,030
06/09/2004 66,000 04/05/2006 2,437.98 06/07/2007 50,000
10/11/2004 5,476.53 04/05/2006 92.84 10/08/2007 673.12
25/01/2005 798.82 05/07/2006 55,500 28/08/2007 132.56
17/02/2005 4.34 18/07/2006 1,000,000 17/10/2007 2.4
22/02/2005 91.38 10/08/2006 103.66 17/10/2007 31.11
07/04/2005 1,924.78 21/09/2006 193.16 29/10/2007 21,001.82
10/11/2005 2.23 13/12/2006 5,795.84 30/11/2007 4.54
10/11/2005 3.3 31/12/2006 1,035.62 06/12/2007 31.74
29/11/2005 93.66 27/02/2007 1,001 19/12/2007 32.39
30/12/2005 176.64 13/03/2007 1,428.45 28/12/2007 2.12
07/01/2006 3.5 11/05/2007 1,738 28/12/2007 15,000
28/02/2006 412.82 22/05/2007 3,455 31/12/2007 1,283.04

Table 2.2: Database of Legal loss events (cf. Gamonet [2009])

Average 29, 630.57
Standard Deviation 154, 118.645

Skewness 6.16
Kurtosis 39.27

Table 2.3: First four moments of the sample

An initial analysis calculates the average, standard deviation, skewness and kurtosis
of the database and shows that the database is leptokurtic as the skewness is greater than
3. So, given the heavy tail, it would be a good idea to start testing the database with
exponential distributions.

2.6.1 Some Probability Distributions

We will be applying the four distributions: Exponential, Lognormal, Weibull and Pareto
to the database in an attempt to fit and estimate the parameter of the distributions. But,
before doing that, let’s take a quick look at the four types of distributions.
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2.6.1.1 Exponential Distribution

We say that X has an exponential distribution with parameter λ if it has a PDF of the
form:

f(x) = λe−λx for x ≥ 0

The expected value and variance of an exponentially distributed random variable X with
rate parameter λ is given by:

E[X] =
1

λ

V ar[X] =
1

λ2

The cumulative distribution function is:

F (x) = 1− e−
x
λ

And the moment estimation for the one-parameter case is simply calculated by:

λ̂ =
1

n∑

i=1

Xi

n

2.6.1.2 Lognormal Distribution

If X is a random variable with a normal distribution, then Y = exp(X) has a log-normal
distribution. Likewise, if Y is lognormally distributed, then X = log(Y ) is normally
distributed.
The probability density function (PDF) of a log-normal distribution is:

fX(x, µ, σ) =
1

xσ

√
2πe

−
(ln x− µ)2

2σ2

Where µ and σ are called the location and scale parameter, respectively. So if X is a
lognormally distributed variable, then E[X] = e−

1
2
σ2

and V ar[X] = (eσ
2 − 1)e2µ+σ2

2.6.1.3 Weibull Distribution

The Weibull distribution is a continuous probability distribution. It is named after
Waloddi Weibull who described it in detail in 1951, although it was first identified by
Fréchet in 1927 and first applied by Rosin & Rammler in 1933 to describe the size dis-
tribution of particles. This is the distribution that has received the most attention from
researchers in the past quarter century.

The probability density function (PDF) of a Weibull random variable x is:

f(x) =
b

ab
xb−1e(−

x
a
)b for x ≥ 0
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The cumulative distribution function (CDF) is given by:

F (x) = 1− e−(x
a
)b

The mean and variance of a Weibull random variable can be expressed as:

E[X] = aΓ(1 +
1

b
) and V ar[X] = a2

[

Γ(1 + 2
1

b
)− Γ(1 +

1

b
)
2
]

2.6.1.4 Pareto Distribution

The Pareto distribution was named after the economist Vilfredo Pareto, who formulated
an economic law (Pareto’s Law) dealing with the distribution of income over a population.
Tha Pareto distribution is defined by the following functions:

CDF: F (x) = 1− (
k

x
)α; k ≤ x <∞; α, k > 0

PDF: f(x) =
αkα

xα+1
; k ≤ x <∞; α, k > 0

A few well known properties are:

E[X] =
αk

(α− 1)
, α > 1

V ar[X] =
αk2

(α− 1)2(α− 2)
, α > 2

2.6.1.5 Output Analysis

The four distributions have been fitted to the database and the parameters were estimated
according to the Maximum Likelihood Estimation. Also, a QQ-plot has been graphed to
see how well the distributions fit the data. The Kolmogorov-Smirnov test was also carried
out to see how well the distributions compare to the actual data.

As we will see in the outputs generated, the best model is the Lognormal as it does
not differ much from the data set. However, we also observe that none of these models
deal very well with the largest of events, which confirms that we need to apply extreme
value theory.

Distribution Parameter(s)

Exponential λ = 0.00003375
Lognormal µ = 5.9461, σ = 3.1642
Weibull a = 1860.8, b = 0.3167
Pareto k = 3.10, α = 88.01

Table 2.4: Estimation of the Parameters for the Exponential, Lognormal and Weibull
distributions
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As we have seen before, a Q-Q plot is a plot of the quantiles of two distributions against
each other. The pattern of points in the plot is used to compare the two distributions.
Now, while graphing the Q-Q plots to see how the distributions fit the data, the results
shows that the Lognormal, Weibull and Pareto distributions are the the best models since
the points of those three distributions in the plot approximately lie on the straight line
of y = x, as seen in figure 2.9.
Nevertheless, Kolmogorov-Smirnov test clearly depicts that the Lognormal distribution
is better in accepting the null hypothesis that the data comes from the same continuous
distribution.

Kolmogorov-Smirnov

Exponential 2.6654e− 007
Lognormal 0.9095
Weibull 0.5642
Pareto 0.7520

Table 2.5: KS formal test result

Figure 2.9: QQ-plots for fitted distributions
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2.6.2 LDA and Application of Extreme Value Theory

As seen in previous sections, the Loss Distribution Approach has many appealing features
since it is expected to be much more risk-sensitive. It is necessary to remember that VaR
is calculated for a specific level of confidence and a given period of time, assuming normal
conditions, which means that VaR does not include all aspects of risks. So one cannot
estimate or predict losses due to extreme movements, such as losses encountered in major
companies throughout the years (see table 2.6). For that, Extreme value theory is applied
to characterize the tail behavior and model the rare phenomena that lie outside the range
of available observations.

Loss Report Event Description
Enron Corporation On 15 July 2005, it was announced that Enron reached a

$1, 595 million settlements with authorities in California,
Washington and Oregon to settle allegations that the
company was involved in market manipulation and price
gouging during the energy crisis on the West Coast in 2000
2001. On 17 October 2005, an energy trader working for
Enron pled guilty to one count of fraud, when he admitted
to manipulating California’s energy market through a
fraudulent scheme during the period 1998 2001.

Start: 1 January 1998
End: 31 December 2001
Settlement: 15 July 2005
Loss Amount: 1, 595 mil-
lion USD
Event Type: Clients,
Products and Business
Practices
Business Line: Trading
and Sales
Barings Bank Barings Bank, a 233 years old British bank, suffered a 1.3

billion loss as a result of the unauthorised trading activity of
Nick Leeson who was based in Singapore. The loss was
greater than the bank’s entire capital base and reserves,
which created an extreme liquidity shortage. As a result,
Barings declared bankruptcy and subsequently got acquired
by the Dutch bank ING.

Start: 1 February 1995
End: 27 February 1995
Settlement: 27 February
1995
Loss Amount: 1.3 billion
Event Type: Internal
Fraud
Business Line: Trading
and Sales
Société Générale On 24 January 2008, the French bank, Sociéte Générale,

announced a EUR4.9 billion loss as a result of the
unauthorised activities of a rogue trader on positions in
stock index futures worth EUR50 billion. The rogue trader,
Jerome Kerviel, managed to breach five levels of controls,
having gained knowledge of how to circumvent the banks
control systems from his position in the back office. The
fraud was discovered after he made a mistake in his attempt
to cover up fictitious trades.

Start: 1 January 2005
End: 18 January 2008
Settlement: 24 January
2008
Loss Amount: $7.2 billion
Event Type: Internal
Fraud
Business Line: Trading
and Sales

Table 2.6: Highly publicized loss events

In this section, we are going to take an internal loss database for a particular business
line and apply to it the Loss Distribution Approach and calculate the VaR by using the
Extreme Value Theory.
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2.6.2.1 Application to an internal Loss Data

Our internal Database was provided by a Lebanese bank, the bank defines a reportable
incident as any unusual event, operational in nature, which caused or had the potential
to cause damage to the bank, whether tangibly or not, in readily measurable form (with
financial impact, even in the bank’s favor) or as an estimate (in economic or opportunity
cost terms). In simple terms, operational risk events are anything that went wrong or
that could go wrong.

Hence, given our data we were able to compute the Severity and Frequency distribu-
tions related to a particular Business Line × Event Type, we have to mention that some
of the data was simulated so our application is not based on the real data:

Figure 2.10: Frequency and severity distributions of Poisson and Lognormal LN

As so, and by using Monte Carlo method treated in section 2.2.3.2, for Poisson P(0.8)
and LN (7.5, 1.12) as our Lognormal Severity Distribution, we obtained our aggregated
annual loss with the density function shown in Figure 2.11:
Our Value at Risk would result into:

VaR(99.9%) 0.1% 150, 100$
Mean VaR 189, 084.3$

Table 2.7: The VaR and Mean VaR calculation
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Figure 2.11: Aggregate Loss Distribution for a particular Business Line × Event Type.

2.6.2.2 Application of the Extreme Value theory

Now, by applying the Extreme Value Theory explained in section 2.4 for the excess loss
distribution and by setting our upper threshold as the 99% quantile, we could obtain a
more robust Value at risk calculation that could mitigate our risk in a more precise manner.

Fitting the Generalized Pareto Distribution:

Gξ,σ(y) =







1− (1 +
ξ

σ
y)

−
1

ξ if ξ 6= 0

1− e
−
y

σ if ξ = 0

and calculating the VaR and Expected Shortfall related :

V aRq = u+
σ

ξ

((
n

Nu

q

)−ξ

− 1

)

ESq =
V aRq

1− ξ
+
σ − ξu

1− ξ

We obtain:

VaR 152, 040 $
Expected Shortfall 191, 661.2 $

Table 2.8: The VaR and Expected Shortfall with the use of Extreme Value Theory
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Yet, if the calibration of severity parameters ignores external data, then the severity dis-
tribution will likely be biased towards low-severity losses, since internal losses are typically
lower than those recorded in industry-wide databases. As so, LDA would be more accu-
rate if both internal and external data are merged together in the calibration process, this
point is illustrated in Frachot & Roncalli [2002] for Mixing internal and external
data for managing operational risk and Dahen & Dionne [2008] for Scaling for the
Severity and frequency of External Operational Loss Data.

2.7 The Bayesian Approach: Internal Data, External

Data and Expert Opinion

The Basel Committee has mentioned explicitly that (cf. BCBS [2005], paragraph 675):
”A bank must use scenario analysis of expert opinion in conjunction with external data
to evaluate its exposure to high-severity events. This approach draws on the knowledge
of experienced business managers and risk management experts to derive reasoned assess-
ments of plausible severe losses. For instance, these expert assessment could be expressed
as parameters of an assumed statistical loss distribution.”
As mentioned earlier, the Basel Committee has authenticated an operational risk matrix
of 8× 7 risk cells (see Appendix A for reference). Each of these 56 risk cells leads to the
modelling of loss frequency and loss severity distribution by financial institutions. Let’s
focus on a one risk cell at a time.

After choosing a corresponding frequency and severity distribution, the managers esti-
mate the necessary parameters. Let γ refer to the company’s risk profile which could
accord to the location, scale, or shape of the severity distribution. While γ needs to
be estimated from available internal information, the problem is that a small amount of
internal data does not lead to a robust estimation of γ. Therefore the estimate needs to
include other considerations in addition to external data and expert opinions.
For that, the risk profile γ is treated as the adjustment of a random vector Γ which is cali-
brated by the use of external data from market information. Γ is therefore a random vector
with a known distribution, and the best prediction of our company specific risk profile γ
would be based on a transformation of the external knowledge represented by the random
Γ vector. The distribution of Γ is called a prior distribution. To explore this aspect fur-
ther, before assessing any expert opinion and any internal data study, all companies have
the same prior distribution Γ generated from market information only. Company specific
operational risk events X = (X1, · · · , XN) and expert opinions ζ = (ζ(1), · · · , ζ(M)) are
gathered over time. As a result, these observations influence our judgment of the prior
distribution Γ and therefore an adjustment has to be made to our company specific pa-
rameter vector γ. Clearly, the more data we have on X and ζ, the better the prediction of
our vector γ and the less credibility we give to the market. So in a way, the observations
X and the expert opinion ζ transform the market prior risk profile Γ into a conditional
distribution of Γ given X and ζ denoted by Γ|X, ζ (cf. Lambrigger et al. [2007]).
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Γ γ

Parameter representing the whole industry Company specific parameter
Considers external market data only Considers internal data X and expert opinion ζ

Random variable Realization of Γ, hence deterministic
With known distribution Unknown, estimated by IE[Γ|X, ζ]

Table 2.9: Internal data and expert opinion (X, ζ) transform the prior risk profile of the
whole industry Γ into an individual company specific γ (cf. Lambrigger et al. [2008]).

We Denote:
πΓ(γ), the unconditional parameter density.
π̂Γ|X,ζ(γ), the conditional parameter density also called posterior density.

And let’s assume that observations and expert opinions are conditionally independent
and identically distributed (i.i.d.) given γ, so that:

h1(X|γ) = ΠN
i=1f1(Xi|γ)

h2(X|γ) = ΠM
m=1f2(ζ

(m)|γ)

where f1 and f2 are the marginal densities of a single observation and a single expert
opinion, respectively.

Bayes theorem gives for the posterior density of Γ|X, ζ:

π̂Γ|X,ζ(γ) = cπΓ(γ)h1(X|γ)h2(X|γ)

π̂Γ|X,ζ(γ) ∝ πΓ(γ)h1(X|γ)h2(X|γ)
where c is the normalizing constant not depending on γ. At the end, the company specific

parameter γ can be estimated by the posterior mean IE[Γ|X, ζ] =
∫

γπ̂Γ|X,ζ(γ)dγ.

2.7.1 A simple Model

Let loss severities be distributed according to a lognormal-normal-normal model for an
example. Given this model, we hold the following assumptions to be true (cf. Lambrigger
et al. [2008]):

• Market Profile: Let ∆ be normally distributed with parameters of mean µext and
standard deviation σext, estimated from external sources, i.e. market data.

• Internal Data: Consider the losses of a given institution i = 1, ..., N , conditional on
(∆), to be i.i.d. lognormal distributed: X1, ..., XN |∆ →֒ LN (∆, σint) where σint is
assumed as known. That is, f1(.|∆) corresponds to the density of a LN (∆, σint)
distribution.
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• Expert Opinion: Suppose we haveM experts with opinion ζm around the parameter
∆,
where 1 ≤ m ≤ M . We let ζ(1), ..., ζ(M)|∆i.i.d. →֒ N (∆, σexp) where σexp is the
standard deviation denoting expert uncertainty. That is, f2(.|∆) corresponds to the
density of a N (∆, σexp) distribution.

Moreover, we assume expert opinion ζ and internal data X to be conditionally indepen-
dent given a risk profile ∆.

We adjust the market profile ∆ to the individual company’s profile by taking into con-
sideration internal data and expert opinion to transform the distribution to be company
specific. The mean and standard deviation of the market are determined from external
data (for example, using maximum likelihood or the method of moments) as well as by
expert opinion.
µext and σext for the market profile distribution are estimated from external data (Maxi-
mum likelihood or the method of moments).

Under the model assumption, we have the credibility weighted average theorem (cf. Ap-
pendix F).

With logX =
1

N

N∑

i=1

logXi, the posterior distribution ∆|X, ζ is a normal distribution

N (µ̂, σ̂) with parameters

σ̂2 =

(
1

σ2
ext

+
N

σ2
int

+
M

σ2
exp

)−1

and
µ̂ = IE[∆|X, ζ] = ω1µext + ω2logX + ω3ζ̄

Where the credibility weights are given by ω1 =
σ̂2

σ2
ext

, ω2 =
σ̂2N

σ2
int

and ω3 =
σ̂2M

σ2
ext

The theorem provides a consistent and unified method to combine the three mentioned
sources of information by weighting the internal observations, the relevant external data
and the expert opinion according to their credibility. If a source of information is not
believed to be very plausible, it is given a smaller corresponding weight, and vice versa.
As expected, the weights ω1, ω2, ω3 add up to 1.
This theorem not only gives us the company’s expected risk profile, represented by µ̂, but
also the distribution of the risk, which is ∆|X, ζ →֒ N (µ̂, σ̂) allowing us to quantify the
risk and its corresponding uncertainty.

2.7.2 Illustration of the Bayesian Approach

Assuming that a Bank models its risk according to the lognormal-normal-normal model
and the three assumptions mentioned above, with scale parameter σint = 4, external
parameters µext = 2, σext = 1 and the expert opinion of the company given by ζ̄ = 6
with σexp = 3/2. The observations of the internal operational risk losses sampled from a
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LN(µint = 4, σint = 4) distribution are given below:

Loss i 1 2 3 4 5 6 7 8 9 10 ...
Severity Xi 20.45 360.52 1.00 7,649.77 1.92 11.60 1,109.01 24.85 0.05 209.48 ...

Table 2.10: Sampled Losses from a LN (4, 4)

So to reiterate, we have the following parameters:

M 1
µext 2
µexp 6
µint 4
σint 4
σext 1
σexp 1.50

Table 2.11: Parameters assumption

Now we can calculate the estimation and the credibility weights using the formulas given
previously (see table 2.12):

logX 4.20
σ̂2 0.17
µ̂ 3.96
ω1 0.1718
ω2 0.7518
ω3 0.07637

Table 2.12: Parameter calculation output

In the end, we compare the classical maximum likelihood estimator to the estimator
without expert opinion corresponding to M = 0 and the Bayes estimator, as shown in
figure 2.12 below:
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Figure 2.12: Comparison of the MLE estimator µ̂MLE
k , to the Bayesian estimator µ̂k and

the no expert opinion Bayes estimator given by Shevchenko and Wüthrich µ̂SW
k

The figure 2.12 shows that the Bayesian approach has a more stable behavior around the
true value of µint = 4 even when just a few data points are available, which is not the
case with the MLE and the SW estimators.
In this example we see that in combining external data with the expert opinions, we
stabilize and smooth our estimators, in a way that works better than the MLE and the
no expert opinion estimators. This shows the importance of the Bayesian approach for
estimating the parameters and calculating the capital requirement under Basel II or Sol-
vency II for Operational Risk.

In the next chapter, we will apply the Bayesian updating technique to a Lebanese bank
by trying to combine our experts opinion to an internal loss database.
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Chapter 3

Combining Internal Data with
Scenario Analysis

3.1 Introduction

Under the regulations of Basel Accords and Solvency Directive, to be able to estimate
their aggregate operational risk capital charge, many financial institutions have adopted a
Loss Distribution Approach (LDA), consisting of a frequency and a severity distribution,
based on its own internal losses. Yet, basing our models on historical losses only might
not be the perfect approach since no future attention is being taken into consideration
which can generate a biased capital charge, defined as the 0.01 % quantile of the loss
distribution, facing reality. On the other hand, adding scenario analysis given by the
experts provide to some extent a future vision.

The main idea in this chapter is the following: A Bayesian inference approach offers
a methodical concept that combines internal data with scenario analysis. We are search-
ing first to integrate the information generated by the experts with our internal database;
by working with conjugate family distributions, we determine a prior estimate. This es-
timate is then modified by integrating internal observations and experts’ opinion leading
to a posterior estimate; risk measures are then calculated from this posterior knowledge.
See Shevchenko [2011] for more on the subject.

On the second half, we use Jeffreys non-informative prior and apply Monte Carlo Markov
Chain with Metropolis Hastings algorithm, thus removing the conjugate family restric-
tions and developing, as the chapter shows, a generalized application to set up a capital
evaluation. For a good introduction to non-informative prior distributions and MCMC
see Robert [2007].
Combining these different information sources for model estimation is certainly one of the
main challenges in operational risk and as we are going to see throughout this chapter,
that a good expert judgment is of great importance, if not well treated estimation risk
consequence is severe. More on Bayesian Inference techniques could be found in Berger
[1985].
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3.2 Bayesian techniques in combining two data sources:

Conjugate prior

In our study, our data related to retail banking business line and external fraud event
type is of size 279, collected in $ over 4 years from January 2008 till December 2011. The
data fits the Poisson(5.8) as a frequency distribution, and LN (µ = 6.7, σ = 1.67) as the
severity distribution.

Applying Monte Carlo simulation (cf. Frachot et al. [2001]), with λID = 5.8, µID = 6.7,
and σID = 1.67, we obtained a Value-at-Risk of V aRID = 1, 162, 215.00 at 99.9%, using
internal losses only. The 99.9% confidence has been chosen throughout this chapter based
on Basel specification regarding banks.
On the other hand, working with the scenario analysis, our experts gave us their assump-
tions for the frequency parameter λ. As for the severity, we used the histogram approach
(cf. Shevchenko [2011] pp. 119-121) and (Berger [1985]) where our experts represent
a probability reflecting that a loss is in an interval of losses (see table 3.1 below).

Losses Interval in $ Expert Opinion
[0, 5000[ 65%

[5000, 20000[ 19%
[20000, 50000[ 10%
[50000, 100000[ 3.5%
[100000, 250000[ 1.5%
[250000, 400000[ 0.7%

≥ 400000 0.3%

Table 3.1: Scenario analysis

If we consider our severity distribution being Lognormal with parameters µ and σ2, the
objective is to find the parameters (µexp, σexp) that adjust our histogram in a way to
approach as much as possible the theoretical lognormal distribution. For this we can use
chi-squared statistic that allows us to find (µ, σ) that minimize the chi-squared distance:

T̃ =
n∑

i=1

(Ei −Oi)
2

Ei

,

where Ei and Oi are respectively the empirical and theoretical probability.

Our experts provided λ = 2, and by applying chi-squared, we obtained our lognor-
mal parameters: (µ = 7.8, σ = 1.99) with the V aR(99.9%) = 6, 592, 086.00.

We can see the high spread between the two values which can cause a problem in allo-
cating a non-biased capital requirement. In the next sections, we will apply the Bayesian
inference techniques, thus joining our internal observations with the experts opinion.
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3.2.1 Modelling Frequency distribution: The Poisson Model

We are going to work with the Poisson and Lognormal distributions since they are the
most used distributions in Operational Risk (cf. Shevchenko [2011]).
Consider the annual number of events N for a risk in a bank modelled as a random
variable from the Poisson distribution P(λ), where Λ is considered as a random variable

with the prior distribution Gamma(a, b). So we have: P(N = n) = e−λλ
n

n!
, and λ has a

prior density:

Π(Λ = λ) =
(λ
b
)a−1

Γ(a)b
e

−λ
b , λ > 0, a > 0, b > 0

As for the likelihood function, given the assumption that n1, n2, ..., nT are independent,
for N = n:

h(n|λ) =
T∏

i=1

e−λλ
ni

ni!
,

where n is the number of historical losses and ni is the number of losses in month i.

Thus, the posterior density would be: Π(λ|N = n) =
h(n|λ)Π(λ)

h(n)
, but since h(n) plays

the role of a normalizing constant, Π(λ|N = n) could be rewritten as:

Π(λ|N = n) ∝ h(n|λ)Π(λ) ∝ (λ
b
)a−1

Γ(a)b
e

−λ
b

T∏

i=1

e−λλ
ni

ni!
∝ λ

b

∑T
i=1 ni+a−1

e−λ(T+ 1
b
) ∝ λaT−1e

− λ
bT .

Which is Gamma(aT , bT ), i.e. the same as the prior distribution with aT =
T∑

i=1

ni+a and

bT =
b

(1 + Tb)
So we have:

E(λ|N = n) = aT bT = ωN̄ + (1− ω)(ab) = ωN̄ + (1− ω)E(Λ), with ω =
n

n+ 1
b

The only unknown parameter is λ that is estimated by our experts with, E(λ) = 2.

The experts may estimate the expected number of events, but cannot be certain of the
estimate. Our experts specify E[λ] and an uncertainty that the ”true” λ for next month
is within the interval [a0, b0] = [0.5, 8] with a probability p = 0.7 that P(a0 ≤ λ ≤ b0) = p,
then we obtain the below equations:

E[λ] = a× b = 2

P(a0 ≤ λ ≤ b0) =

∫ b0

a0

π(λ|a, b)dλ = F
(G)
a,b (b0)− F

(G)
a,b (a0) = 0.7

Where F
(G)
a,b (.) is the Gamma(a, b) cumulative distribution function.
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Solving the above equations would give us the prior distribution parameters λ →֒ Gamma(a =
0.79, b = 2.52), and by using the formulas stated, we obtain: aT = 279.8 and bT = 0.02
as our posterior parameters distribution. At the end, we calculate a V aR(99.9%) =
1, 117, 821.00 using Monte Carlo simulation:

1- Using the estimated Posterior Gamma(aT , bT ) distribution, generate a value for λ;

2- Generate n number of monthly loss regarding the frequency of loss distribution
Poisson(λ)

3- Generate n lossesXi, (i = 1, ..., n) regarding the loss severity distribution LN (µ, σ2);

4- Repeat steps 2 and 3 for N = 12. Summing all the generated Xi to obtain S which
is the annual loss;

5- Repeat steps 1 to 4 many times (in our case 105) to obtain the annual aggregate
loss distribution.

6- The VaR is calculated taking the 99.9th percentile of the aggregate loss distribution.

We notice that our Value-at-Risk is close to the VaR generated by the internal losses
alone, since the only thing took as unknown was λ, both parameters µ and σ are equal
to (µID, σID).

3.2.2 Modelling severity distribution: Lognormal LN (µ, σ) dis-
tribution with unknown µ

Assume that the loss severity for a risk is modelled as a random variable from a lognormal
distribution LN (µ, σ) and we consider µ →֒ N (µ0, σ

2
0) as a prior distribution.

So we have, Π(µ) =
1

σ0
√
2π
exp

{

−(µ− µ0)
2

2σ2
0

}

.

Taking Y = lnX, we calculate the posterior distribution as previously by:

Π(µ|µ0, σ
2
0) ∝ Π(µ)h(Y |µ, σ) ∝ e

−
(µ−µ0)

2

2σ2
0

σ0
√

(2π)

n∏

i=1

e−
(yi−µ)2

2σ2

σ
√
2π

since we are using a conjugate prior distribution, we know that the posterior distribution
will follow a Normal distribution with parameters (µ1, σ

2
1), where:

Π(µ|µ0, σ
2
0) ∝ e

−
(µ−µ1)

2σ2
1

By identification we obtain:







1

2σ2
1

=
1

2σ2
0

+
n

2σ2

µ1

σ2
1

=
µ0

σ2
0

+

∑n
i=1 yi
σ2
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So, µ1 =
µ0 + ω0

∑n
i=1 yi

1 + nω0

= ωȲ + (1 − ω)µ0, σ
2
1 =

σ2
0

1 + nω0

, with ω0 =
σ2
0

σ2
, and

ω =
nω0

1 + nω0
Assuming that the loss severity for a risk is modelled as a random variable from a lognor-
mal distribution X →֒ LN (µ, σ), Ω = E[X|µ, σ] = eµ+

1
2
σ2 →֒ LN (µ0 +

1
2
σ2, σ2

0) and we
consider µ →֒ N (µ0, σ

2
0) as a prior distribution.

Since the only thing unknown is µ, we already have σ = 1.67 and λ = 5.8, and the experts
gave us:

E[Ω] = eµ0+
1
2
σ2+ 1

2
σ2
0 = 15, 825 $

P (1 ≤ Ω ≤ 250, 000) = Φ

(
ln 250, 000− 1

2
σ2 − µ0

σ0

)

− Φ

(
ln 1− 1

2
σ2 − µ0

σ0

)

= 99%

Where Φ is the cumulative distribution function of the standard normal distribution.

Solving these two equations, we find that the prior distribution of µ is: µ →֒ N (µ0 =
8.15, σ2

0 = 0.25).

Hence using the formulas stated above where, µ1 =
µ0 + ω0

∑n
i=1 yi

1 + nω0

= 6.72, σ2
1 =

σ2
0

1 + nω0

= 0.0096, and ω0 =
σ2
0

σ2
= 0.0898, with n = 279 is the total number of his-

torical losses.
We find out that the posterior distribution: µ →֒ N (µ1 = 6.72, σ1 = 0.1).
At the end, using the posterior µ distribution and Monte Carlo method, we calculate the
99.9% Value-at-Risk: V aR(99.9%) = 1, 188, 079.00.

The same analysis goes here as well, since the only unknown parameter is µ, (λ, σ) =
(λID, σID), the VaR calculated will be closer to our Internal Data Value-at-Risk.

3.2.3 Modelling frequency and severity distributions: Unknown
Poisson(λ) parameter and Lognormal LN (µ, σ) distribu-
tion with unknown µ

In the two previous subsections, we illustrated the case of modelling frequency and sever-
ity distributions with unknown λ that follows a Gamma(a, b) distribution and µ that
follows a N (µ0, σ

2
0) respectively.

Joining these two distributions is relatively simple since we have the hypothesis of inde-
pendence between frequency and severity, which allows us to estimate independently the
two posterior distributions and estimate the parameters.

As so, we have already demonstrated the fact that our posterior density Π(λ|N = n)

follows the Gamma(aT , bT ) distribution, with aT =
T∑

i=1

ni + a and bT =
b

(1 + nb)
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and, Π(µ|µ0, σ
2
0) →֒ N (µ1, σ

2
1), with µ1 =

µ0 + ω0

∑n
i=1 yi

1 + nω0

, σ2
1 =

σ2
0

1 + nω0

, with ω0 =
σ2
0

σ2

Since we have the hypothesis of independence between frequency and severity, which
allows us to estimate independently the two posterior distributions, which have been
already calculated for the parameter λ we took the gamma distribution and for the µ
parameter, the posterior distribution was normal with:

λ →֒ Gamma(279.8, 0.02)

µ →֒ N (6.72, 0.1)

By simulating those two laws using Monte Carlo simulation (cf. section 3.2.1), we
obtain a Value-at Risk of 1, 199, 000.00 using the estimated posterior Gamma and Normal
distributions.

This result is highly interesting, since with two unknown parameters λ and µ, the VaR
is still closer to V aRID. This states that the parameter σ is the key parameter in this
application, as we are going to see throughout this chapter.

The general case where all parameters are unknown will not be treated in this section
since it is more complex to tackle it with the use of conjugate prior distributions (cf.
Shevchenko [2011] pp. 129-131) for details.

3.2.4 Sensitivity Analysis

Working with this method, is generally simple since conjugate prior is involved, yet one
of the main questions is how to ensure that experts opinion are consistent, relevant, and
capture well the situation, which might in a way, cause a model error. In this work we did
not take into consideration this aspect and the experts opinion were treated as correct.
To improve our results, we can do a sensitivity test regarding our prior parameters. On
the other hand, we only have the mean of the number of losses, given by our expert. So it
appears difficult to obtain the distribution of λ with this only information. So in a way,
we are immensely relying on our prior parameters which in reality don’t give us a banking
sense and are not easily comprehensive.

We are going to test the prior parameters given by the experts and highlight the di-
rect consequence on our Capital Required. To start with the first case, where we are
working with unknown λ; our experts gave us a value of a0 = 0.5 and b0 = 8 as seen in
section 3.2.1, so taking into consideration a step of 0.035 for an interval [0.1, 1.5] and 0.1
for [6, 10], respectively, we obtain the following VaR results (check Figures 3.1 and 3.2).
As for the cases of unknown µ and unknown σ, we took an interval for µ0 ∈ [6, 10] and
σ0 ∈ [0.3, 4.1] with a step of 0.1 (see Figures 3.3 and 3.4).
The following figures show the stability of our Value-at-Risk calculations regardless of all
changes in our prior parameters (a0, b0, µ0, σ0). Relying on the choice of our intervals, we
notice that the boundaries of our VaR are in an acceptable range.
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Figure 3.1: Sensitivity for a0
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Figure 3.2: Sensitivity for b0
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Figure 3.3: Sensitivity for µ0
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Figure 3.4: Sensitivity for σ0

3.3 Bayesian techniques in combining two data sources:

MCMC-Metropolis Hastings algorithm

In this section, we will use a noninformative prior and more particularly the Jeffreys prior,
(cf. Jeffreys [1946]), that attempts to represent a near-total absence of prior knowledge
that is proportional to the square root of the determinant of the Fisher information:

π(ω) ∝
√

|I(ω)|,

where I(ω) = −E

(
∂2 lnL(X|ω)

∂ω2

)

.

Then we are going to apply an MCMC model to obtain a distribution for the parameters
and generate our capital required at 99.9%. This will allow us to compare both methods’
results and develop a generalized application to set up our capital allocation, since no
restrictions is made regarding the distributions. As for the parameter σ, it will no longer
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be fixed as in the previous sections. For more details on the Jeffreys prior and MCMC-
Metropolis Hastings algorithm check Robert [2007].

3.3.1 MCMC with the Poisson(λ) distribution

Assuming that the parameter λ is the only thing unknown, the Jeffreys prior distribution

is: π(λ) ∝
√
λ

λ
(see Appendix G), thus finding the posterior distribution f(λ|nSA, nID)

with the use of experts Scenario Analysis and Internal Data would be:

f(λ|nSA, nID) ∝
Jeffreys prior
︷︸︸︷

π(λ) L(nSA, λ)L(nID, λ)
︸ ︷︷ ︸

Likelihood functions

.

So by applying Metropolis Hastings algorithm, (check appendix H.1 for full support on
detailed algorithm), with the objective density:

f(λ|nSA, nID) ∝
1√
λ

nSA∏

k=1

e−λλk

k!

nID∏

k=1

e−λλk

k!

∝ 1√
λ

nSA∏

k=1

e−λλk
nID∏

k=1

e−λλk

∝ 1√
λ
enSAλλ

∑nSA
k kenIDλλ

∑nID
k k

and with a uniform proposal density: U(λSA, λID), we obtain the parameter λ distribution
see Figure 3.5.

We have removed the first 3000 iterations so that the chain is stationary (burn-in
iterations effect), (cf. Gilks et al. [1996] pp. 5-6). We obtain a 99.9 % Value-at-Risk of
1, 000, 527.00.
The result is close to the VaR considered with the use of conjugate family.

3.3.2 MCMC with Unknown Poisson(λ) parameter and Lognor-
mal LN (µ, σ) distribution with unknown µ

Assuming that the parameters λ and µ are the only things unknown, we will treat them
independently and since the Poisson(λ) case has already been treated, the Jeffreys prior

distribution for µ is: π(µ) ∝ 1

σ
∝ 1 (see Appendix G), thus finding the posterior dis-

tribution f(µ|x, y) with the use of experts Scenario Analysis and Internal Data would
be:

f(µ|x, y) ∝
Jeffreys prior
︷︸︸︷

π(µ) L(x1, x2, ..., xnSA
|µ, σSA))L(y1, y2, ..., ynID

|µ, σID)
︸ ︷︷ ︸

Likelihood functions

.
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Figure 3.5: MCMC for the parameter λ

So by applying Metropolis Hastings algorithm, (check Appendix H.2 for full support on
detailed algorithm), with the objective density:

f(µ|x, y) ∝
nSA∏

i=1

1

xi
√

2πσ2
SA

exp{−(ln xi − µ)2

2σ2
SA

}
nID∏

i=1

1

yi
√

2πσ2
ID

exp{−(ln yi − µ)2

2σ2
ID

}

∝ exp{−
∑

i

(ln xi − µ)2

2σ2
SA

} exp{−
∑

i

(ln yi − µ)2

2σ2
ID

}

and with a uniform proposal density: U(0, 12), we obtain the parameter µ distribu-
tion see Figure 3.6.

We obtain a Value-at-Risk of 1, 167, 060.00.
Comparing this to the same case generated with conjugate prior, we can check the close-
ness of both values.

In the next subsection, we will tackle the general case, where all parameters are un-
known, this case was not treated with conjugate prior distributions since it would be
more complicated.
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Figure 3.6: MCMC for the parameter µ

3.3.3 General case: MCMC with Unknown Poisson(λ) parame-
ter and Lognormal LN (µ, σ) distribution with unknown µ
and σ

We are going to assume the general case, where all the parameters are unknown λ, µ
and σ, we will treat them independently and since the Poisson(λ) case has already been

employed, the Jeffreys prior distribution for ω = (µ, σ) is: π(ω) ∝ 1

σ3
(cf. Appendix G),

thus finding the posterior distribution f(ω|x, y) with the use of experts Scenario Analysis
and Internal Data would be:

f(ω|x, y) ∝
Jeffreys prior
︷︸︸︷

π(ω) L(x1, x2, ..., xnSA
|µ, σ))L(y1, y2, ..., ynID

|µ, σ)
︸ ︷︷ ︸

Likelihood functions

.

So by applying Metropolis Hastings algorithm, (check appendix H.3 for full support on
detailed algorithm), with the objective density:

f(ω|x, y) ∝ 1

σ3

nSA∏

i=1

1

xi
√
2πσ2

exp{−(ln xi − µ)2

2σ2
}
nID∏

i=1

1

yi
√
2πσ2

exp{−(ln yi − µ)2

2σ2
}

∝ 1

σ3

1

σnSA
exp{−

∑

i

(ln xi − µ)2

2σ2
} 1

σnID
exp{−

∑

i

(ln yi − µ)2

2σ2
}

and with a uniform proposal density: U(0, 12) and U(0, 7) for µ and σ respectively,
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we obtain the parameters µ and σ distributions, illustrated in Figure 3.7.

Figure 3.7: MCMC for the parameters µ and σ

We have removed as well, the first 3000 iterations so that the chain is stationary
(burn-in iteration effect). We obtain a Value-at-Risk of 3, 061, 151.00.
The general case generates a good combination between internal data and experts’ opinion
with a capital requirement of 3, 061, 151 $.

3.3.4 Confidence Interval calculation

To recapitulate on all the calculations, table 3.2 summarizes all Value-at-Risk generated.
As for the calculation of the confidence interval, since we are working with order statistics,
the interval (xl, xu) would cover our quantile xp with a 95% probability that depends on
the lower bound l, upper bound u, number of steps n and confidence level p.

In our calculations, we took n = 105, p = 99.9% and our integers (l, u), were con-
structed using the normal approximation N (np, np(1 − p)) to the binomial distribution
B(n, p),(since n is large). Then a simple linear interpolation has been made to obtain
the values of (xl, xu), (cf. David & Nagaraga [2003] pp. 183-186), for more details and
demonstrations.

Table 3.2 shows the helpful use of the Bayesian inference techniques. The results of both
methods are close and comparable; though conjugate prior is simple but the distributions
are restricted to the conjugate family, yet with the Jeffreys non-informative prior and
MCMC-Metropolis Hastings algorithm, we will have a wider options and generate a good
combination between internal data and experts’ opinions.
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Case Confidence Interval VaR (99.9%) Length

Aggregate $ 1,040,697.00 $ 1,230,492.00 $ 1,162,215.00 15.42%
Scenario Analysis $ 6,094,853.00 $ 7,171,522.00 $ 6,592,086.00 15.01%

Bayesian unknowm λ $ 1,053,861.00 $ 1,184,129.00 $ 1,117,821.00 11.00%
Bayesian unknown µ $ 1,097,195.00 $ 1,268,136.00 $ 1,188,079.00 13.48%

Bayesian unknowm λ and µ $ 1,141,767.00 $ 1,318,781.00 $ 1,199,000.00 13.42%
MCMC λ $ 944,793.10 $1,101,274.00 $1,000,527.00 14.21%

MCMC λ, µ $1,098,930.00 $1,244,564.00 $1,167,060.00 11.70%
MCMC λ, µ, σ $2,839,706.00 $3,310,579.00 $3,061,151.00 14.22%

Table 3.2: Value at Risk and Confidence intervals for all cases treated

In addition, we are going to use the Monte Carlo confidence intervals approach (cf. Buck-
land [1984]) in order to compare it with the previous approach and ensure the similarities.
Consider a parameter X with its consistent estimator Y , with cumulative distribution
function F (y|x) generated by some process which can be simulated. Number of sim-
ulations n and y values are independently generated and then ordered from largest to
smallest. An approximate 100(1− 2α) confidence level for X is given by (yj, yk) where j
and k represent respectfully the lower and upper bound of the interval and they are set
as: j = (n+1)α and k = (n+1)(1−α). Usually j and k will not be integer; therefore we
can simply round it to the nearest integer values or even use linear interpolation. We seek
to calculate (yj, yk), this may be found, using a conventional 100(1 − 2α)% confidence
level, by solving: F (Y |X = yj) = 1− α and F (Y |X = yk) = α.
The actual confidence level has a beta distribution with parameters k−j and n−k+j+1,
this is concluded when percentiles of the distribution F (Y |X = y) are estimated by sim-
ulation.

Respecting thatB has a beta distribution, E(B) =
k − j

n+ 1
and V ar(B) =

(k − j)(n− k + j + 1)

(n+ 1)2(n+ 2)
In our case, by using the confidence level of 99.9% and by applying the previous calcu-
lations we have obtained an approximation 95% interval for actual confidence level with
n = 105, p = 99.9%, j = 50, k = 99951, α = 0.05%, ζ = 2.5%, σ =

√

V ar(B) and by
moving 1.96 standard errors in either direction from the estimate we obtain our confi-
dence interval: [p− Φ−1(ζ)σ, p+ Φ−1(ζ)σ] = [99.88%, 99.92%], which is very close to the
previous interval calculation in table 3.2.

Furthermore, figures 3.8, 3.9 and 3.10 illustrate the Value-at-Risk calculation for different
confidence level. It shows the presence of the general case between both Internal and
Scenario Analysis curves. On the other hand, the conjugate prior figure 3.10, regarding
all 3 unknown variables, point out the closeness of the curves which add to our previous
analysis that σ is our key parameter.
Moreover, the concept of Scenario Analysis with the expert opinion deserves more clarifi-
cation. Roughly speaking, when we refer to experts judgments, we express the idea that
banks’ experts and experienced managers have some reliable intuitions on the riskiness of
their business and that these intuitions are not entirely reflected in the bank’s historical,
internal data. In our case, experts’ intuitions were directly plugged into severity and
frequency estimations through building a histogram approach.
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Figure 3.8: Different VaR Calculation
for all MCMC Cases with unknown pa-
rameters

0.95 0.96 0.97 0.98 0.99 1.00

1
e

+
0

6
3

e
+

0
6

5
e

+
0

6
7

e
+

0
6

V
a

R

VaR Internal Data
VaR unknown lambda, mu, sigma
VaR Scenario Analysis
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Figure 3.10: Different VaR Calculation for all conjugate prior cases

3.4 Bayesian approach reviewed

In this part, we are going to replace the experts opinions, by assuming that the experts’
parameters are set using the Basel II standardized approach calculation. Hence, the ex-
perts opinion is questionable in the meaning of when it’s used, we shift into the Markovian
process which can cause problems.
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3.4.1 Operational Risk Standardized Approach

In the Standardized Approach (SA), banks’ activities are divided into 8 business lines
(cf. BCBS [2006]): corporate finance, trading & sales, retail banking, commercial bank-
ing, payment & settlements, agency services, asset management, and retail brokerage.
Within each business line, there is a specified general indicator that reflects the size of
the banks’ activities in that area. The capital charge for each business line is calculated
by multiplying gross income by a factor β assigned to a particular business line.

Business line (j) Beta factors(βj)
j = 1, corporate finance 18%
j = 2, trading & sales 18%
j = 3, retail banking 12%
j = 4, commercial banking 15%
j = 5, payment & settlement 18%
j = 6, agency services 15%
j = 7, asset management 12%
j = 8, retail brokerage 12%

Table 3.3: Business lines and the Beta factors

The total capital charge is calculated as a three year average over all positive gross income
(GI) as follows:

KSA =

3∑

i=1

max(
8∑

j=1

βjGI
i, 0)

3

Hence, the application of the Standardized Approach generates a capital requirement of
KSA = 2, 760, 780.

3.4.2 Numerical Results for Expert opinion treated as SA

Setting the parameters to give us the same Standardized approach capital requirement
and treating them as the expert parameters gave us: λ = 6.8, µ = 7.3 and σ = 1.72.

Case Confidence Interval VaR (99.9%) Length

Aggregate $ 1,040,697.00 $ 1,230,492.00 $ 1,162,215.00 15%
Scenario Analysis $ 2,570,297.00 $ 2,876,469.00 $ 2,759,640.00 12%

Bayesian unknowm λ $ 1,084,427.00 $ 1,257,414.00 $ 1,172,801.00 16%
Bayesian unknown µ $ 1,045,412.00 $ 1,183,887.00 $ 1,118,045.00 13%

Bayesian unknowm λ and µ $ 1,114,267.00 $ 1,249,999.00 $ 1,175,326.00 12%
MCMC λ $ 1,025,132.00 $ 1,188,600.00 $ 1,083,511.00 16%

MCMC λ, µ $ 1,169,519.00 $ 1,347,836.00 $ 1,253,938.00 15%
MCMC λ, µ, σ $ 1,678,124.00 $ 1,912,897.00 $ 1,769,198.00 14%

Table 3.4: Value at Risk and Confidence intervals for all cases treated
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We note that the Standardized approach from Basel II is the one to rely on when it comes
to calculate the VaR with it’s confidence interval. It is interesting to compare both results
in table 3.2 and 3.4 where we notice that the VaR results in the cases of bayesian unknown
λ, unknown µ and unknown λ, µ are very close to the result in the Aggregate case.
As for the MCMC approach where experts opinion are respected, in the case of unknown λ,
µ and σ the results are close to the Scenario Analysis VaR. We conclude that, the expert
opinion used parameters can be uncertain and cause an issue because it can lead to a
disruption in the Markovian process. Combining these different data sources, highlights
the importance of experts opinion coherence which generate an estimation risk that affects
our capital required calculation.

3.5 Conclusion

Using the information given by the experts, we were able to determine all the parameters
of our prior distribution, leading to the posterior distributions with the use of internal
data, which allowed us to compute our own capital requirement. This approach offers a
major simplicity in its application through the employment of the conjugate distributions.
Therefore, allowing us to obtain explicit formulas to calculate our posterior parameters.
Yet, the appliance of this approach could not be perfected since it’s restricted to the
conjugate family.

On the other hand, Jeffreys prior with MCMC-Metropolis Hastings algorithm provided
us with wider options and generated a satisfactory result regarding all three unknown
variables λ, µ and σ, with the only difference of using complex methods. Taking σ un-
known as well, was very essential in reflecting the credibility of estimating our capital
requirement.

Yet, treating the experts’ outputs the same as Basel’s operational risk Standardized ap-
proach, illustrated the necessity of calling attention to the judgments given. In our appli-
cation, judgments were needed to make sensible choices but these choices will influence the
results. Understanding this influence, should be an important aspect of capital calcula-
tion, since it created an estimation risk that has highly influenced our capital requirement.
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Chapter 4

Operational Risk Management in a
Bank

We have seen in previous chapters the measurement of Operational risk with the use of
Advanced Measurement Approach (AMA) and more particularly the Loss Distribution
Approach LDA. Using LDA for modelling Operational risk cannot be perfected unless a
vision of the past losses with the internal losses, present showing the current performance
with the use of RCSA and KRIs and future giving us a future-looking view with the use of
External Losses and Scenario analysis, has been conducted and incorporated in the Capital
requirement calculation. For that, in this chapter we will outline the management of
operational risk in this same particular qualitative aspect for banks and more particularly
for Bank Audi aiming to apply more advanced models and management techniques in its
Operational Risk department. The sections in this part are divided as the following: Risk
and Control Self Assessment (RCSA), Incident reporting, Key Risk Indicators (KRIs),
Incorporation of External Data, Scenario analysis, Insurance covering operational risks
and at the end, we will scale our severity for external loss data and normalize the external
losses to our Lebanese Bank.

4.1 Introduction

Operational risk can be the most devastating and at the same time, the most difficult to
anticipate. Its appearance can result in sudden and dramatic reductions in the value of a
firm. It cannot be managed successfully with a few spreadsheets or databases developed
by an internal risk management department. In fact, one of the biggest mistakes an insti-
tution can make is to rely on simplistic and traditional solutions, which can lead to less
than ideal choices about managing operational risk.
For the purpose of managing operational risk, it is mostly the potential for large, un-
expected losses, either on a per event basis or within a set time period (e.g. a year).
The operational risk management of a Lebanese bank formalizes the approach of govern-
ment. It is meant at a minimum to comply with the qualifying qualitative criteria for the
use of more advanced measurement approaches as Standardized and Advanced Measure-
ment Approach as well as for local and cross-border regulatory requirements for defining,
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measuring and managing operational risk. Figure 4.1 depicts the key components of the
bank’s Operational Risk Management Framework.

Figure 4.1: Operational Risk Framework

4.2 Risk and Control Self Risk Assessment

The RCSA described in this section, will be used to assist in the identification and assess-
ment of operational risks. The main purpose of the RCSA table is to provide a template
for business owners where they can map their Business Units risk scenarios and related
controls, assess them and determine the ways to deal with them.

The implementation of the assessment model requires:

• Expressing Risk Tolerance

• Setting the rating scales

• Defining the fields of the RCSA table
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4.2.1 Expressing Risk Tolerance

Board members and managers need to express their views with respect to severity and
frequency in terms of occurrences per year, at the Business Unit levels respectively.
In other words, when we say ”High Severity”, it is pertinent to express what is meant by
”high”, ideally in terms of a dollars interval representing an economic loss or opportunity
cost; not the potential of an accounting loss. Similarly, when we say ”Low frequency”, it is
useful to express this in terms of potential occurrences per period (per year for example).
Also, board members and managers should express what amount of gross operational loss,
i.e., before any recovery, from insurance or otherwise, either on an event basis or as a total
per year, would call for a major review of the way a department operates and the validity
of the controls in place. This is a measure of risk tolerance which will help operational
risk management evaluate the effectiveness of the controls as events happen.

4.2.2 Setting the rating scales

Each department should select the severity level that best describes the reality. This is
in order to normalize the meaning of qualitative risk ratings.

Loss severity in $

Level 1 Insignificant ≤ 0.5K
Level 1 Low > 0.5K and ≤ 1K
Level 1 Medium-Low > 1K and ≤ 5K
Level 1 Medium > 5K and ≤ 25K
Level 1 Medium-High > 25K and ≤ 50K
Level 1 High > 50K and ≤ 250K
Level 1 Catastrophic > 250K and ≤ 10000K
Level 2 Insignificant ≤ 2K
Level 2 Low > 2K and ≤ 5K
Level 2 Medium-Low > 5K and ≤ 10K
Level 2 Medium > 10K and ≤ 50K
Level 2 Medium-High > 50K and ≤ 100K
Level 2 High > 100K and ≤ 500K
Level 2 Catastrophic > 500K and ≤ 15000K
Level 3 Insignificant ≤ 5K
Level 3 Low > 5K and ≤ 25K
Level 3 Medium-Low > 25K and ≤ 50K
Level 3 Medium > 50K and ≤ 100K
Level 3 Medium-High > 100K and ≤ 250K
Level 3 High > 250K and ≤ 1000K
Level 3 Catastrophic > 1000K and ≤ 20000K
Level 4 Insignificant ≤ 10K
Level 4 Low > 10K and ≤ 50K
Level 4 Medium-Low > 50K and ≤ 125K
Level 4 Medium > 125K and ≤ 250K
Level 4 Medium-High > 250K and ≤ 500K
Level 4 High > 500K and ≤ 2500K
Level 4 Catastrophic > 2500K and ≤ 25000K
Level 5 Insignificant ≤ 25K
Level 5 Low > 25K and ≤ 75K
Level 5 Medium-Low > 75K and ≤ 250K
Level 5 Medium > 250K and ≤ 500K
Level 5 Medium-High > 500K and ≤ 1000K
Level 5 High > 1000K and ≤ 5000K
Level 5 Catastrophic > 5000K and ≤ 100000K

Table 4.1: Potential Operational loss severity
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Each department should select the frequency level that best describes the possible fre-
quency rates of potential operational losses in its business.

Loss frequency

Level 1 High Once a quarter or more
Level 1 Medium-High Twice a year
Level 1 Medium Once a year
Level 1 Medium-Low Once every two years
Level 1 Low Once every five years
Level 1 very Low Once every twenty years
Level 2 High Once a month or more
Level 2 Medium-High Once a quarter
Level 2 Medium Twice a year
Level 2 Medium-Low Once a year
Level 2 Low Once every two years
Level 2 very Low Once every twenty years
Level 3 High Once a week or more
Level 3 Medium-High Once a month
Level 3 Medium Once a quarter
Level 3 Medium-Low Twice a year
Level 3 Low Once a year
Level 3 very Low Once every twenty years

Table 4.2: Potential Operational loss frequency

As a result of the two detailed tables above, there are ([7 severity dollar values x 5 severity
levels] x [6 frequency value x 3 frequency levels]) = 630 possible combinations of severity
expressed in dollars and frequency expressed in events per period.

In order to clarify the reasoning, an extreme example could help: While a low frequency,
high severity event in capital markets could be an unauthorized transaction happening
once every five years and costing $1 Million, a low frequency, high severity event in credit
cards could be a credit card fraud of $25,000 happening twice a year.

4.2.3 Defining the fields of the RCSA table

Board members should then respond to the four questions below:

• What is your maximum tolerable operational loss per event?

• What is your maximum tolerable operational loss per year?

• What level of operational loss per event would you call insignificant?

• What level of operational loss per year would you call insignificant?
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Once an answer is obtained on these 4 questions, Operational Risk Management will com-
pare Business Owner ratings collected during RCSAs to the risk tolerance levels approved
by the Board members.

4.3 Incident Reporting

4.3.1 Definition

A reportable incident is any unusual event, operational in nature, which caused or had
the potential to cause damage to the bank, whether tangibly or not, in readily measurable
form (with financial impact, even in the bank’s favor) or as an estimate (in economic or
opportunity cost terms). In simple terms, operational risk events are anything that went
wrong or that could go wrong.

Several benefits can result from having an effective incident reporting mechanism. Some
of these benefits can be summarized as follows:

• Protect the bank

• Contain incidents and address their root cause.

• Avoid recurrence

• Promote an open and honest environment.

4.3.2 Example of incidents

Incidents pertaining to any activity:

• Medical costs and other compensation related to any accident that occurred on or
off the Bank premises for which the bank accepted responsibility.

• A mistake in a funds transfer.

• Loan losses partially or fully attributable to an operational issue such as false in-
formation given by the customer, excess over limit allowed without authorization,
over-valuation of collateral or other operational issues linked to the management of
collaterals.

• Overtime costs in the course of dealing with an operational incident (for example:
a system failure).

• Cost of repair in case of accident or breakdown.

• The disappearance of any asset, for any reason, known or suspected.

• Any legal cost incurred in the course of dealing with an operational event.
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Incidents generally specific to branches:

• Penalty paid to a regulatory or government body.

• Discovery of an error or a theft having affected a customer’s account and our com-
pensation to the customer (for example: debiting a wrong customer account, theft
from a client’s account).

• Loss due to a system error (for example: crediting the wrong accounts and that we
were unable to reverse).

• Loss in foreign exchange or capital markets transactions due to a trading mistake
(selling instead of buying or quantity mixed up with price).

• A hold up on or off premises.

Incidents generally specific to central departments:

• An interest penalty paid to a correspondent bank.

• A penalty paid to regulatory authorities.

• A loss in foreign exchange or capital markets due to a wrong entry on the system
or to a trader trading above his limit.

• Losses in credit cards resulting from card skimming, ATM fraud, and liability shift.

• Operational losses from HR-related issues, e.g. compensation to an employee fol-
lowing an accident or a mistake.

4.4 Key Risk Indicators

4.4.1 Definition

KRIs are metrics that measure risk built into a specific business process/function or
where the implementation of effective controls could reduce the occurrence of potential
risk events.

They are tools used to monitor either exposure to Key Risks (on an inherent or residual
basis) or controls for Key Risks.
KRIs are carefully selected parameters, tailored to selected business processes or areas,
which are agreed to have a potential signaling function regarding changes in the opera-
tional risk profile.

As such, they are metrics that alert the organization to impending problems in a timely
fashion as well as monitor the banks control culture. In conjunction with RCSAs and the
analysis of incidents or loss events, they indicate the level of risk in a particular area of
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business or function and may be used to trigger corrective action before the occurrence
of events.

To reiterate, KRIs are the measures summarizing the frequency, severity and impact
of Operational Risk events or corporate actions occurred in the bank during a reporting
period. Table 4.3 shows the different types of KRIs.

Risk dimension Indicators type

Frequency Number of risk events

Severity Volume of risk events
Average risk losses
Maximum duration of disruptions

Impact Total amount of risk losses
Cost of mitigations

Table 4.3: Key Risk Indicators type

4.4.2 KRIs Process

Following are the KRI standards which cover the entire process of the KRIs implementa-
tion in the process of management of operational risk. The KRI process is divided into
the following phases: The selection phase followed by the periodical reporting phase and
the review phase.

4.4.2.1 Identification of Key Risk Indicators

The identification of KRIs is preceded by the identification of key risks in a specific
business unit. The Business Owner, in coordination with Operational Risk Management
should develop his own KRIs which cover the operational risk profile of his activities.
The developed KRIs can be related to risk drivers, actual incidents, near misses, audit
exceptions, etc.

4.4.2.2 Assessment of Key Risks Indicators

Once the KRIs are selected, they must be assessed for their importance with respect to
the risks they intend to monitor. Only time and experience are likely to tell whether
an indicator presumed as ”key” is indeed ”key” or whether its predictive value has been
overestimated. Assessing KRIs is also to assess the availability of data required to measure
KRIs. KRIs not easy to measure due to the unavailability of data may be rejected.
After selection of the KRI, its unit of measurement and its frequency of tracking shall be
decided by Business Owner. Key risks are then reviewed periodically for their relevance to
the bank by Operational Risk Management in joint consultation with respective business
unit.
Examples of Key Risk Indicators throughout departments is shown in table 4.4:
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Branch Network: Consumer Lending Department:
Number of complaints and claims to the Bank Average days of getting loan approval
Number of lost clients Number of identified fraud cases
Amount of compensation paid to the client Client dissatisfaction evidenced by client surveys
Volume of balances lost / opportunity cost Number of critical errors detected in credit files

Human resources: IT:
Turnover of experienced staff Number of failures related to IT system and other equipment
Number of temporary/short term staff Number of calls to help desk on IT system and other equipment
Number of employees, attended training courses Average down-time of IT system and other equipment
Number of employees, failed to pass mandatory evaluation Increase in transaction load on systems

Legal department: Finance department:
Number of legal actions against the Bank / third parties Volume of penalties, imposed by regulators
Volume of legal actions against the Bank / third parties Total amount of suspicious transactions
Number of regulatory enquires / legislation breaches Number of late completion or non-completed transactions

Table 4.4: Key Risk Indicators sample

4.4.2.3 Setting the KRI Scale

The KRI scale is defined as follows:

Zone/Scale Scale Definition
Green No action is required. No threshold breach
Amber A threshold breach. Management attention is required to determine

whether action needs to be taken in the near future
Red May require immediate action. A persistent threshold breach

Table 4.5: KRIs Risk Level

4.4.2.4 Determination of Thresholds

For each selected KRI, a set of threshold values or limits are to be determined. To estab-
lish the initial thresholds for each KRI, an assessment of KRI data and trends for at least
6 months is needed. Meanwhile however, the KRI is live as far as trends are concerned.

Once the threshold is set, the performance of the KRI is tested in case an incident occurs.
If the KRI value crossed the threshold predicting the occurrence of an incident, then the
threshold established might be meaningful to that KRI, otherwise another more relevant
threshold should be set.

4.4.3 Periodical KRI Reporting

Once all the characteristics of a KRI are defined and set, generating timely KRI data
is required. A periodical KRI report, generated based on the defined frequency of data
measurement, will be monitored.
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In case an indicator breaches a pre-assigned threshold, remedial measures are necessary
regarding sensitive KRI zones. The Operational risk department shall review the KRI
report, refer to the Business Owner for information, add recommendations when needed
and follow up on remedial measures initiated by the business owner.

4.4.4 Review of KRIs and their Thresholds

KRIs shall be reviewed periodically in terms of their relevance especially when there is
change in product, process, technology, activities and other internal and external material
changes. In certain cases, a particular KRI may no longer be applicable due to changing
internal or external business circumstances. In essence, each KRI identified should be
true reflective of the risk and for that an ongoing review shall be done.

Besides regular review of KRIs, the thresholds for the KRIs need to be periodically evalu-
ated to account for the change in the level and quality of controls. If for instance, process
controls have been substantially modified, the thresholds for the KRIs have to be changed
to factor in the changes in the controls.

Another review of the thresholds is needed based on incident occurrence. For a rele-
vant KRI, in case the KRI value is in the Green zone while an incident occurred, this
indicates that the threshold is too high and a lower one should be determined. In case the
KRI value is in the red zone for a considerable period of time while no incident occurs,
the threshold might be too low and a higher threshold should be determined.

4.5 Incorporation of External Data

In the words of Charles Babbage1: ”Errors using inadequate data are much less than
those using no data at all.” It seems to be generally accepted in the finance industry that
internal loss data alone is not sufficient for obtaining a comprehensive understanding of
the risk profile of a bank. This is the reason why additional data sources have to be
used, in particular external losses. There are many ways to incorporate external data
into the calculation of operational risk capital. External data can be used to supplement
an internal loss data set, to modify parameters derived from the internal loss data, and
to improve the quality and credibility of scenarios. External data can also be used to
validate the results obtained from internal data or for benchmarking.

Bank Audi’s internal management, has recently bought SAS OpRisk software giving them
as well, in addition to a lot of features, the opportunity to add SAS OpRisk Global Data
package. SAS OpRisk Global Data is one of the largest, most comprehensive and most
accurate repository of information on publicly reported operational losses in excess of
100, 000 $. The solution documents more than 25,000 events across all industries world-

1Charles Babbage, (1791-1871) was an English polymath. He was a mathematician, philosopher, inven-
tor and mechanical engineer, who is best remembered now for originating the concept of a programmable
computer
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wide and provides up to 50 descriptive, categorization and financial elements. Empirical
evidence suggests that loss magnitude is to some extent a function of firm size. That is, if
the same loss event occurred simultaneously at two firms of different sizes, the larger firm
would experience the larger loss, all else being equal. As a result, external data must be
scaled to be proportional to the size of the firm being analyzed. It provides five types of
data on which scaling can be performed revenues, assets, net income, number of employ-
ees and shareholder equity. So by using a powerful scaling algorithm or methodology, the
bank can easily tailor external data to the organization’s exact analysis requirements.

External data is used as additional data source for modelling tails of severity distri-
butions. The obvious reason is that extreme loss events at each bank are so rare that no
reliable tail distribution can be constructed from internal data only. Yet external losses
do not reflect Bank Audi’s risk profile as accurately as internal events but they surely can
significantly improve the quality of the model.

4.6 Scenario Analysis

According to Basel, scenario analysis is a process of obtaining expert opinion of busi-
ness line and risk managers to identify potential operational risk events and assess their
potential outcome. Scenario analysis is an effective tool to consider potential sources
of significant operational risk and the need for additional risk management controls or
mitigation solutions. Given the subjectivity of the scenario process, a robust governance
framework is essential to ensure the integrity and consistency of the process (cf. BCBS
[2011]).

4.6.1 Scenario Analysis Algorithm and Procedures

The following algorithm has been extracted from the book Operational Risk Management
(cf. Moosa [2007]):

1- Defining and structuring the task, specifying the area of interest and identifying the
major relevant features of this area.

2- Describing important external factors and their influence on the area of interest.
These factors form the influence fields.

3- Identifying major descriptors for each field and making assumptions about their
future trends.

4- Checking the consistency of possible combinations of alternative assumptions re-
garding the critical descriptors and identifying assumption bundles.

5- Combining assumptions with the trend assumptions regarding the uncritical de-
picters, resulting in a scenario for each field.

6- Making assumptions with respect to possible interfering events and their probabili-
ties as well as their impacts on the field.
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7- Assessing the impact of the field scenarios on the area of interest and its depicters.
Respective scenarios are constructed.

8- Identifying strategies that could promote or impede the developments described in
the scenarios.

So as a scenario analysis procedure for the bank, we would have the following chart,
moving from the Scenario risk drivers and Assumptions formulation to the Scenario se-
lection, capital planing and follow-up (see figure 4.2):

Figure 4.2: Scenario Analysis Procedure

As for the data collection, we have many data sources:

• External loss data

• Internal loss data

• RCSA

• KRI

• Expert opinions (imaginative thinking)

4.6.2 Scenario risk drivers

RCSA and KRIs may help as well to identify the business lines and event types of high
impact, as we are going to see in table 4.6 below. Given this RCSA, we can see for
example, put in bold, some of the high impact type of scenarios that might influence the
bank.
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Internal Fraud External Fraud

Employment 

Practices & 

Workplace Safety

Clients Products & 

Business practices

Damage to 

physical Assets

Business disruption 

and system failure

Execution delivery 

& Process 

Management

Corporate Finance
Failure to follow 

procedures/limits

Misrepresentation 

of information

Occupational 

accident
Regulatory breach

Business continuity 

failure
IT system failure Transaction error

Trading & Sales
Unauthorized 

trading
Forgery

Occupational 

accident

compromised client 

information

Damage to 

premises
IT system failure Data entry error

Retail Banking Embezzlement Credit card robbery Environmental issue
Negative media 

publications
Terrorist attack Utility outage

Inaccurate/Incomple

te contract

commercial Banking
Theft of customer 

funds

Fraudulent transfer 

of funds
Discrimination Client suitability Natural disaster IT system failure

Lost loan 

documentation

Payment and settlement
theft of client 

funds or assets
Payment fraud Discrimination

Noncompliance with 

AML rules

Business continuity 

failure

Failure of payment 

channels

Failure to follow 

procedures

Agency services Abuse of duties Forgery
Wrongful 

termination
Mis-selling

Business 

continuity failure
IT system failure Processing error

Asset Management
Unauthorized 

trading activities
Cybercrime

Occupational 

accident
Fiduciary breach

Business continuity 

failure
IT system failure

Mismanagement of 

account assets

Retail Brokerage Insider trading Forgery
Occupational 

accident

compromised client 

information

Business continuity 

failure
IT system failure Tax noncompliance

Table 4.6: RCSA according the business lines and event types

Another set of high severity scenarios examples is the following (cf. Chernobai et
al. [2007]):

• Large loan or card fraud (internal/external)

• High-scale unauthorized trading

• Legislation non-compliance or incomplete disclosure (banking, tax, AML regulation)

• Massive technology failure or new system migration

• Servers disruptions / network shutdown that lead to outages and loss of information

• Mergers and acquisitions with other banks

• Doubling the bank’s maximum historical loss amount

• Increase/decrease of loss frequency by 20%

• Increase/decrease if loss severity by 50%/100%

A wide variety of risks exist, thus necessitating their regrouping in order to categorize
and evaluate their threats for the functioning of any given business. The concept of a risk
matrix, coined by Richard Prouty (1960), allowed us in the previous chapters to highlight
which risks can be modeled as was seen in the figure 2.1. For the same purpose, we
have divided the different types of scenarios and events in a severity frequency matrix
exposing the internal loss data, external loss data, RCSA, KRIs, Audit findings and
Scenario Analysis, see figure 4.3.
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Figure 4.3: Scenario Matrix

4.7 Insurance Covering Operational Risks

The role that insurance plays in diminishing the financial impact of operational losses
of a bank is highly important. The transfer of a risk to an insurer can contribute to
a better performance preventing critical situation and covering a variety of losses. The
Basel Committee approved that insurance can be used as a tool to reduce the financial
impact of operational risks for banks, meaning that a specific type of insurance against
operational risks can lead to a lower level of minimal capital allocated to a particular risk
category.
While the purchase of insurance covering operational risks is still in its early stages of
development, it would allow banks to replace operational risk by counterparty risk.

4.7.1 Insurance Policies and Coverage

Many types and categories of insurance can be purchased, each with a specific clause
and price regarding the demand of the insured customer. Following, we explain the
different types of insurance policies with their respective coverages and exclusions. This
information is obtained from a local Lebanese bank.

4.7.1.1 Bankers Blanket Bond Insurance

Intended for banks and other institutions that are engaged in providing financial services,
the policy indemnifies the assured for direct monetary losses due to loss, damage, and
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misplacement during the policy period (which is usually one year).

Scope of Cover

• Clause 1 (Infidelity of Employees) Covers loss of property due to dishonest or
fraudulent acts of one or more employees of the insured resulting in unethical
financial gains.

• Clause 2 (On Premises) Covers loss of the insured or the customers’ prop-
erty on the insured’s premises due to theft, burglary, damage, destruction or
misplacement.

• Clause 3 (In Transit) Covers loss or damage to property from any cause while
in transit either in the custody of the assured’s employees or the custody of any
Security Company or its vehicles but excluding property in mail and property
subject to amounts recoverable from a Security Company under the latter’s
own insurance.

• Clause 4 (Forged Cheques et al) Covers loss due to forgery or fraudulent alter-
ation of any financial instrument or payment on the above basis.

• Clause 5 (Counterfeit Currency) Covers the insured’s loss due to acceptance in
good faith of any counterfeit or fraudulently altered currency or coins.

• Clause 6 (Damage to Offices and Contents) Covers loss or damage suffered to all
contents owned by the assured in their offices (excluding electronic equipment)
due to theft, robbery, hold-up vandalism, etc.

Limit of Indemnity
As per sums agreed by both parties according to nature, size and volume of business
handled by the insured in all their offices and branches. Usually specifies amounts
for every loss under the insuring clauses and sometimes on an aggregate or overall
annual basis.

• XXX US$ any one loss in respect of Infidelity of Employees

• XXX US$ any one loss in respect of On Premises

• XXX US$ any one loss in respect of In Transit

• XXX US$ any one loss in respect of Forgery or Alteration

• XXX US$ any one loss in respect of Counterfeited Currency

• XXX US$ any one loss in respect of Offices and Contents

• XXX US$ any one loss in respect of Securities or Written Instruments

• XXX US$ any one loss in respect of Books of Accounts and Records

• XXX US$ any one loss in respect of Legal Fees

All in excess of:
XXX US$ each loss however reducing to:
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• XXX US$ every loss in respect of insuring In transit, Offices & Contents, and
Legal Fees

• XXX US$ on aggregate in respect of insuring Counterfeited Currency

Premium Rating
A sum rated on the basis of amounts and limits of indemnity agreed, deductibles,
claims history and insured, etc.

Exclusions
Loss or damage due to war risks, etc.
Loss not discovered during the policy period
Acts of directors’ defaults
Shortage, cashier’s error or omissions

4.7.1.2 Directors and Officers Liability Insurance

The following insurance covers are applied solely for claims first made against an insured
during the period and reported to the insurer as required by the policy.

Management Liability

• Individuals: The insurer shall pay the loss of each insured person due to any
wrongful act.

• Outside Entity Directors: The insurer shall pay the loss of each outside
entity director due to any wrongful act.

• Company Reimbursement: If a company pays the loss of an insured person
due to any wrongful act of the insured person, the insurer will reimburse the
company for such loss.

Special excess protection for non-executive directors
The insurer will pay the non-indemnifiable loss of each and every non-executive
director due to any wrongful act when the limit of liability, all other applicable
insurance and all other indemnification for loss have all been exhausted.

Exclusions
The insurer shall not be liable to make any payment under any extension or in
connection with any claim of:

• A wrongful act intended to secure profit gains or advantages to which the
insured was not legally entitled.

• The intentional administration of fraud.

• Bodily injury, sickness, disease, death or emotional distress, or damage to
destruction, loss of use of any property provided.

Limit of liability
XXX US$ - Aggregate
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• Per non-executive director special excess limit: separate excess aggregate limit
for each non-executive director of the policyholder XXX US$ each

• Investigation: 100% of the limit of liability under the insurance covers of Com-
pany Reimbursement, Management Liability, and 10% of the Per non-executive
director special excess limit

4.7.1.3 Political Violence Insurance

This kind of policy indemnifies the insured with the net loss of any one occurrence up to
but not exceeding the policy limit against:

• Physical loss or damage to the insured’s buildings and contents directly caused by
one or more of the following perils occurring during the policy period:

– Act of Terrorism;

– Sabotage;

– Riots, Strikes and/or Civil Commotion;

– Malicious Damage;

– Insurrection, Revolution or Rebellion;

– War and/or Civil War;

• Expenses incurred by the insured in the removal of debris directly caused by any
one or more of the Covered Causes of Loss.

Exclusions

• Loss or damage arising directly or indirectly from nuclear detonation, nuclear
reaction, radiation or radioactive contamination.

• Loss or damage directly or indirectly caused by seizure, confiscation, nation-
alization, requisition, detention, legal or illegal occupation of any property
insured.

• Any loss arising from war between any two or more of the following: China,
France, Russia, United States of America and the United kingdom.

• Loss or damage arising directly or indirectly through electronic means including
computer hacking or viruses.

• Loss or damage arising directly or indirectly from theft, robbery, house-breaking,
mysterious or unexplained disappearance of property insured.

Limitations
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• In respect of loss or damage suffered under this extension, the underwriters’
maximum liability shall never be more than the Business Interruption Policy
Limit (if applicable), or the Policy Limit (if applicable) where this Policy Limit
is a combined amount for losses arising from both physical loss or physical
damage and Business Interruption, for any one occurrence

• To clarify, when a business interruption policy limit applies to losses suffered
under this extension, it shall apply to the aggregate of all claims by all insureds
and in respect of all insured locations hereunder, and underwriters shall have
no liability in excess of the business interruption policy limit whether insured
losses are sustained by all of the insureds or any one or more of them, or whether
insured losses are sustained at any one or more of the insured locations.

• With respect to loss under this extension resulting from damage to or destruc-
tion of film, tape, disc, drum, cell and other magnetic recording or storage
media for electronic data processing, the length of time for which underwriters
shall be liable hereunder shall not exceed:

– Thirty (30) consecutive calendar days or the time required with exercised
due diligence and dispatch to reproduce the data thereon from duplicates
or from originals of the previous generation, whichever is less; or the length
of time that would be required to rebuild, repair or reinstate such property
but not exceeding twelve (12) calendar months, whichever is greater.

4.7.1.4 Electronic and Computer Crime Policy

This kind of policy covers electronic and computer crimes related to the following:

Computer Systems
Loss due to the fraudulent preparation, modification or input of electronic data into
computer systems, a service bureau’s computer system, an electronic find transfer
system or a customer communication system.

Electronic Data, Electronic Media, Electronic Instruction

• Losses due to the fraudulent modification of electronic data or software pro-
grams within computer systems;

• Losses due to robbery, burglary, larceny or theft of electronic data or software
programs;

• Losses due to the acts of a hacker causing damage or destruction to electronic
data or software programs;

• Losses due to damage or destruction of electronic data or software programs
using computer virus.

Electronic Communications
Loss due to the transfer of funds as a result of unauthorized and fraudulent elec-
tronic communications from customers, a clearing house, custodians or financial
institutions.

97



Université de Lyon, Université Lyon I, ISFA PhD Thesis

Insured’s Service Bureau Operations
Loss due to a customer transferring funds as a result of fraudulent entries of data
whilst the insured is acting as a service bureau for customers.

Electronic Transmissions
Loss due to the transfer of funds on the faith of any unauthorized and fraudulent
customer voice initiated funds transfer instructions.

Customer Voice Initiated Transfers
Loss due to the transfer of funds on the faith of any unauthorized and fraudulent
customer voice initiated finds transfer instructions.

Extortion
Loss by a third party who has gained unauthorized access into the insured’s com-
puter systems threatening to cause the transfer of funds, disclosure of confidential
security codes to third parties, or damage to electronic data or software programs.

Limit of Indemnity
XXX US$ any one loss and in the aggregate for all clauses
The amount of the deductible under this policy for each and every loss is in excess
of XXX US$

4.7.1.5 Plastic Card Insurance Policy

These kinds of policies will indemnify the insured against losses sustained through alter-
ation, modification or forgery in any Visa Electron Card, Bankernet, Visa and MasterCard
issued by the insured or issued on his behalf and resulting from cards that have been lost,
stolen, or misused by an unauthorized person.

Exclusions
The policy does not cover:

• Loss for which the assured obtained reimbursement from its cardholder, any
financial institution, plastic card association or clearing house representing the
assured.

• Loss not discovered during the policy period.

• Loss which arises directly or indirectly by reason of or in connection with war,
invasion, act of foreign enemy, hostilities, or civil war.

• Loss resulting from the issue of any plastic card to guarantee the cashing of
any cheque.

• Loss resulting wholly or partially, directly or indirectly from any fraudulent or
dishonest act performed alone or with others, by an officer, director or employee
of the assured or by any organization that authorizes, clears, manages, or
interchanges transactions for the assured.
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Limit of Indemnity
XXX US$ - per card per year
XXX US$ - in the annual aggregate for all cards

Deductible
XXX US$ in the annual aggregate

4.7.2 Advantages of Insuring Operational Risks

In general, the role of insurance is to transfer the financial impact of a risk from one entity
to another. However, transferring risk is not the same as controlling it as we do not avoid,
prevent or reduce the actual risk itself. Nevertheless, insurance as a risk reduction tool
helps the bank avoid or optimize the loss by buying a policy related to operational risk for
which the bank pays an insurance premium in exchange for a guarantee of compensation
in the event of the materialization of a certain risk. This means that insuring against
operational risks enables a bank to eliminate or reduce large fluctuations of cash flow
caused by high and unpredictable operational losses. By doing so, the bank benefits by
improving income and increasing its market value, allowing it to avoid severe situations
that would lead to insolvability.

• A variety of factors influence banks to purchase insurance to cover operational risks:
The size of a bank matters as smaller banks have lower equity and free cash flows,
thus making them more vulnerable to losses from operational risks. Consequently,
large banks have the resources to manage their operational risks, though they also
purchase insurance policies to protect themselves from any type of major loss, es-
pecially when it affects investors’ confidence or would result in extreme negative
effects.

• The time horizon also has its effect: the extent to which a bank can cover the
immediate expense of an insurance premium in exchange for a benefit that may
materialize only in the long run depends on the time horizon over which the bank
is willing to pay premiums to cover a risk that may or may not happen in the long
term.

• The better the rating, the higher the cost of refinancing: banks with very good rating
can opt to finance losses by contracting credits rather than insurance. However, the
bank might suffer high losses when it incurs considerable deficits that were not
subject to insurance causing restrictions in its access to financing.

4.7.3 Basel II views

The Basel II Committee (cf. BCBS [2003]) stated that any effort to improve risk man-
agement should be viewed independently from the request of capital and hence insurance
should not affect the required minimum capital. However, many bankers and insurers
believe that insurance should be treated as an instrument of reducing the required min-
imum capital for operational risk. The problem here arises in determining how much of
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the insured amount needs to be deducted from the level of required capital.

Moreover, the Basel Committee is against the use of insurance to optimize the capi-
tal required for operational risk for banks that use either the Basic Indicator Approach
or the Standardized Approach, but a bank using the AMA is allowed to consider the risk
mitigating impact of insurance in the measuring of operational risk used for regulatory
minimum capital requirements. The recognition of insurance mitigation is limited to 20%
of the total operational risk capital charge.

In addition to this, the insurance policy must have an initial term of at least one year.
For policies with a residual term of less than one year, the bank must make appropriate
haircuts reflecting the declining term of the policy, up to a full 100% haircut for policies
with a residual term of 90 days or less. Additionally, the insurance policy should not have
exclusions or limitations based upon regulatory action or for the receiver or liquidator of
a failed bank.

The insurance coverage must be explicitly mapped to the actual operational risk ex-
posure of the bank and have a minimum claims paying ability rating of A as shown in
the table below (cf. BCBS [2010]):

Agency CPA rating Descriptive Ratings category Definition
S&P A Strong Insurer financial

strength rating
Denotes strong finan-
cial security charac-
teristics

Moody’s A Good Long term insurance
financial strength rat-
ing

Denotes ability to
meet senior policy-
holder obligations.

Fitch A High credit quality Investment grade Denotes low expecta-
tion of credit risk

AM Best A Excellent Secure best ratings Denotes strong ability
to meet ongoing poli-
cyholder obligations

Table 4.7: Agencies equivalent ratings

4.7.4 Capital assessment under insurance on operational losses

In this section, we discuss insurance coverage and its effects on operational losses. Indi-
vidual operational losses are insured with an external insurer under an excess of loss (XL)
contract. So, to include insurance contracts in the operational risk model, we take into
consideration many other factors such as deductibles d and policy limit m (cf. Bazzarello
et al. [2006]).
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Let’s consider xij as the ith loss drawn from the severity distribution in the year j, and
nj as the number of losses in year j drawn from the frequency distribution. Then the
insurance recovery for the individual loss xij would be:

Rd,m(xij) = min
(

max(xij − d, 0),m
)

∀i = 1, · · · , nj, j = 1, · · · , J

where J is the number of annual losses.

On an annual basis, if we set the aggregated deductibles as D, the aggregated policy

limit as M , and we let Xj =
∑

i

xij be the jth annual loss, then the annual recovery loss

can be rewritten as:

Rd,m,D,M(Xj) = min

(

max
( nj∑

i=1

Rd,m(xij)−D, 0
)

,M

)

, ∀j = 1, · · · , J

Hence, the net annual loss would result in:

Yj = Xj −Rd,m,D,M(Xj), ∀j = 1, · · · , J

Adhering to the Basel II standards for AMA, we take into consideration the following (cf.
BCBS [2010]):

• Appropriate haircuts

• Payment uncertainty

• Counterparty risk

4.7.4.1 Appropriate haircuts

For policies with a residual term of less than one year, the bank must make appropriate
haircuts reflecting the declining residual term of the policy, up to a full 100% haircut for
policies with a residual term of 90 days or less. Accounting for the haircuts, the recovered
annual loss can be written as:

Rd,m,D,M(Xj) = α min

(

max
( nj∑

i=1

Rd,m(xij)−D, 0
)

,M

)

, ∀j = 1, · · · , J

where,

α =







min

(
Number of lasting days

365
, 1

)

if Number of lasting days > 90

0 if Number of lasting days ≤ 90

101
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4.7.4.2 Payment uncertainty

Payment uncertainty occurs when the insuring party cannot commit to its contractual
obligations on a timely basis. To account for such deviations from full recovery, we use
β (0 ≤ β ≤ 1) as the average recovery rate to discount the insurance payments. Beta can
be estimated from internal data as:

β =
Actual recovered loss amount in one year

Potential recovered loss amount

We then integrate this factor into our calculation for the recovery on annual loss:

Rd,m,D,M(Xj) = β α min

(

max

(
nj∑

i=1

Rd,m(xij −D, 0

)

,M

)

, ∀j = 1, · · · , J

4.7.4.3 Counterparty risk

Counterparty risk occurs when the insurance company fails to fulfill its payment obliga-
tions.
To model this particular risk, let’s consider pd as the probability of default and γ as the
recovered loss given default. So, if J is the number of years containing annual losses,
then the full insurance recoveries can be obtained for only (1 − pd)J years as we expect
a coverage only when the insurer is in good financial health. Now, for the remaining
pd J years, insurance recoveries must be discounted using the factor γ according to the
formula:

Rd,m,D,M(Xj) =







γ β α min

(

max

(
nj∑

i=1

Rd,m(xij)−D, 0

)

,M

)

if j ∈ Y D, ∀j = 1, · · · , J

β α min

(

max

(
nj∑

i=1

Rd,m(xij)−D, 0

)

,M

)

if j ∈ Y ND, ∀j = 1, · · · , J

where, Y D is the set of simulated years where the insurer has defaulted and Y ND is the
set of simulated years where the insurer has not defaulted.
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4.8 Scaling Severity for External Loss Data

We have seen in the previous sections the management of Operational Risk in the banking
sector and more particularly at a Lebanese Bank. Yet given the importance of scenario
analysis and according to Basel II accords, the use of external data is absolutely indis-
pensable to the implementation of an advanced method for calculating operational capital.
This section investigates how the severity of external losses are scaled for integration with
internal data (cf. Dahen & Dionne [2008]). The model based on OLS, generate a nor-
malization function to be able to join external loss data with specific internal loss data
for Bank Audi Lebanon, so a similar approach of Dahen and Dionne was treated taking
into account firm size, location, business lines and risk types to calculate internal loss
equivalent to an external loss, which might occur in a given bank. The estimation results
show that the variables took into consideration have significant power in explaining the
loss amount. They are used to develop a normalization formula.

4.8.1 Loss data and scenarios

As we have mentioned in previous chapters Loss data is the foundation of an Advanced
Measurement Approach based on loss distributions. This is one of the main reasons
for undertaking Operational Risk loss data collection. It is not just to meet regulatory
requirements, but also to develop one of the most important sources of operational risk
management information. Yet we recognize that internal loss data has some weaknesses
as a foundation for risk exposure measurement, including:

• Loss data is a backward-looking measure, which means it will not immediately
capture changes to the risk and control environment.

• Loss data is not available in sufficient quantities in any financial institution to permit
a reasonable assessment of exposure, particularly in terms of assessing the risk of
extreme losses.

These weaknesses can be addressed in a variety of ways, including the use of statistical
modelling techniques, as well as the integration of the other AMA elements, i.e. external
data, scenario analysis all of which have been previously discussed in the above sections.
For the application of the LDA approach (cf. chapter 2) at Bank Audi for example aiming
to use advanced models, the following data can be used:

• Internal loss data: Bank Audi started the collection of loss data in 2008. Hence,
a loss history of more than five years is now available for all business lines in the
bank.

• External data: The data we will work on is generated from 2008 till 2012 by SAS
OpRisk Global Data.

• Generated scenarios: Specified by experts in departments, control and support func-
tions and regions in RCSA and KRIs.

The main idea in this section is to provide a process for normalizing the external loss data
to be able finally to feed it into the LDA model.
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4.8.2 Description of the External Data

SAS OpRisk Global Data is one of the largest, repository of information on publicly
reported operational losses in excess of 100, 000 $. The solution documents more than
25,000 events across all industries worldwide and provides up to 50 descriptive, catego-
rization and financial elements.
The database contains the following elements:

• The name of the parent company and of the subsidiary

• A full description of the event

• Event risk Category according to Basel II with its sub risk category

• Business unit according to Basel business line - Level 1 and 2

• Country of Incident and legal entity

• The loss amount in local currency, American dollars, and its real value (counting
inflation)

• currency conversion rate and currency code

• Date of incident and settlement date

• Industry: Either financial services or public administration

• An industry sector code and name

• Information on the institution where the loss occurred: total revenues, total assets,
net income, total deposits, shareholder equity and number of employees

In our study, we took external losses from 2008 till 2012 accounting for 1062 external loss.

We are going as well to suppose the following hypothesis:

• We suppose that the loss amounts recorded in the base as reported in the media are
exact and factorial. The evaluation of losses is thus based neither on rumors nor
predictions.

• We suppose that all types of losses are as likely to be recorded in the base; there is
thus no media effect related to certain types of risk.

• We suppose that the external base provides all the losses of more than a 100,000
dollars for the financial institutions contained in it.

• We suppose that there is no correlation between the amount of the loss and the
probability of its being reported. The severity and frequency distributions are thus
supposed to be independent.
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4.8.3 Model specification

4.8.3.1 Theoretical scaling model

We will not go through the full theoretical background for the model, for detailed support
of the theory behind the model see Dahen & Dionne [2008].
The scaling mechanism depends on three fundamental hypotheses. The first is that the
monetary loss can be broken down into two components: common and idiosyncratic or
specific. The second stipulates a non-linear relation between the idiosyncratic component
and the different factors composing it. The third and last hypothesis states that, aside
from the factors controlled for the purpose of scaling, all the other non-observable factors
(quality of control environment, etc.) are supposed to remain the same for all banks.
Thus our scaling formula would be:

ln(Lossi) = ln(Compcommon) + a ln(assetsi) +
∑

j

bjfactorsij,

and in order to explain the variability of the losses and to construct the scaling model,
the different elements of the idiosyncratic component must be identified, since they play
a role as factors explaining the severity of losses.

4.8.3.2 Description of the variables

The endogenous variable would be the logarithm of the loss amount taken greater then
100,000 USD. The statistics shows that the average by loss event is evaluated at 37 million
USD, with a standard deviation of 320 million. The maximum of the losses is 6 billion.
The loss amounts thus vary widely from quite substantial to catastrophic.
As for the exogenous variables, according to the literature, the size, location, business
lines and event types must be taken into consideration.
Many information on size are available, such as: total equity, total revenues, total assets
and number of employees. We have chosen total assets as the estimator for size, since
all these variables are correlated,. In our database, losses reported differ greatly in size,
varying from the smallest bank (with total assets of 0.4 million USD) to the largest insti-
tution (with assets of 3, 783, 173.10 million USD).

As for the location variable it has been classified in three categories: United States
(USA), Europe and Other countries (Others) since losses do not all occur in the same
country, a variable capturing the effect of location must be incorporated. Seeing differ-
ences in environment, legislation, etc., we expect this variable to be significantly linked to
loss amounts. It is worth noting that 32.30% of the losses occurred in USA, while 28.25%
in Europe and 39.45% in all the other countries. This variation can be explained by the
fact that the number of banks in the United States is big.

In table 4.8, we present the number of events, the average, and the standard deviation for
losses according to location in addition to the total assets divided in those three locations.
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USA Europe Others
Number of losses 343 300 419
Average of losses (Millions of dollars) 48.98 51.6 16.7
Standard deviation (Millions of dollars) 422.1 382.3 96.8
Average of Assets (Millions of dollars) 759,603.96 876,565.89 339,262.04
Standard deviation (Millions of dollars) 919,482.20 930,666.66 651,653.37

Table 4.8: Statistics on operational losses according to location of event. Locations have
been classified in three categories: United States (USA), Europe and Other countries
(Others)

In addition, business lines should have impact on the losses, that’s why we have
added all 8 business lines, see Appendix B for details. Table 4.9 shows all business line
category: RB: Retail Banking, CB: Commercial Banking, PS: Payment and Settlement,
CF: Corporate Finance, AM: Asset Management, AS: Agency Services, TS:Trading &
Sales, Rb: Retail brokerage, with their number of losses, average of losses and standard
deviation.

RB CB PS CF AM AS TS Rb
Number of losses 640 198 13 27 29 5 96 54
Average of losses (Millions of dollars) 39.41 26.18 10.13 65.72 12.72 55.026 62.37 6.79
Standard deviation (Millions of dollars) 394.91 107.07 19.44 103.96 22.72 44.71 260.83 25.18

Table 4.9: Statistics of operational losses according to business lines in which the losses
occurred. We have selected the classification proposed by Basel II, including 8 lines of
business

At the end, we have added all 7 event types, see Appendix B for details, since certain
risk types are infrequent but extremely severe, whereas others are very frequent but of
relatively weak severity. Table 4.10, display all 7 event types: CPBP: Clients, Products
& Business Practices, IF: Internal Fraud, DPA: Damage to Physical Assets, EF: External
Fraud, EPWS: Employment Practices and Workplace Safety, BDSF: Business Disruption
and System Failures, EDPM: Execution, Delivery & Process Management.

CPBP IF DPA EF EPWS BDSF EDPM
Number of losses 199 277 32 453 36 9 56
Average of losses (Millions of dollars) 94.87 31 73.025 18.12 7.66 23.03 14.55
Standard deviation (Millions of dollars) 553.47 176.87 224.31 284.85 15.32 52.30 58.38

Table 4.10: Statistics of operational losses according to event types in which the losses
occurred. We have selected the classification proposed by Basel II, including 7 event types
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4.8.3.3 Linear regression

To be able to evaluate the common and specific components for each loss amount. The
previous equation:

ln(Lossi) = ln(Compcommon) + a ln(assetsi) +
∑

j

bjfactorsij,

would regress to the following:

ln(Lossi) = a0
︸︷︷︸

ln(Comp. Comm.)

+ a1Sizei + a2USAi + a3Europei +
10∑

j=4

ajBLij +
16∑

j=11

ajRTij + ǫi

︸ ︷︷ ︸

ln g(Comp. Idiosyncratic)

Where,

• a0: Common Component;

• Sizei = ln(Assetsi);

• USAi and Europei are both Binary variables taking the values of 1 if the loss
occurred in those countries and 0 if not. The variable omitted is Others for its not
applicability in the regression’s output;

• BLij: Binary variable assuming the value 1 if the loss occurred in the business unit
j, otherwise 0. The category omitted is Asset Management for its not applicability
in the regression’s output;

• RTij: Binary variable assuming the value 1 if the loss is of the risk type j, otherwise
0. The category omitted is Execution, Delivery & Process Management type of risk
for its not applicability in the regression’s output.

• ǫi: Error term variable representing the non-observable specific component which is
supposed to follow a normal distribution with parameters (0, σ2).

4.8.3.4 Simple Regression Results

Table 4.11 shows the Simple Regression results regarding all the variables took into consid-
eration. The Ordinary Least Squares (OLS) method is used to estimate the parameters.
We notice that we obtain an adjusted R-squared of 21.8% which will be accepted since it
is difficult to capture certain non-observable factors, which are not present in the external
base and mentioning that it is better than the 5% found in the literature to date (Shih
et al., 2000) and the 10.63% found in (Dahen & Dionne [2008]).
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Variable Coefficient P-value

Constant 12.357 0.000
Ln(Assets) 0.05 0.00811
Retail Banking -0.87942 0.0165
Trading and Sales 0.34315 0.37843
Agency services 2.561 0.00366
Commercial Banking 0.67 0.07526
Retail brokerage -0.973 0.02247
Payment and Settlement 0.3684 0.54845
Corporate Finance 1.07 0.02903
United States 0.476 0.0005
Europe 0.16233 0.25507
External Fraud 0.088 0.7527
Internal Fraud 0.792 0.00518
Damage to Physical Assets 2.002 4.80e-06
Business Disruption and System Failures 1.6991 0.00974
Clients, Products & Business Practices 1.1802 4.24E-05
Employment Practices and Workplace Safety 0.8791 0.02473

R-Squared 0.2297
Adjusted R-Squared 0.2179

Table 4.11: Results obtained from estimating the linear regression coefficients with the
ordinary least squares method

It is worth noting that with a 90% confidence level, the variables we took into
consideration and are valuable for us were: Constant variable, Ln(Assets), Retail Bank-
ing, Agency services, Commercial Banking, Retail brokerage, Corporate Finance, United
States, Internal Fraud, Damage to Physical Assets, Business Disruption and System Fail-
ures, Clients Products & Business Practices, Employment Practices and Workplace Safety.
We mention that the three variables: Others, Asset Management and Executive, Delivery
& Process Management were omitted since the variables are a linear combination of other
variables.

As a robustness check, we started by integrating the variables one by one and com-
pare their impact on our regression table 4.12, shows the different cases treated. Case 3
contains only the significant variables in the scaling model. Whereas Cases 1 and 2 are
used to test the stability of each category of variables in the basic model. The figures in
parenthesis are the P-value statistics. We notice that at first in case 1 where only the size
(ln(Assets)) is placed our Adjusted R-Squared was 0.5%, yet with the addition of the
business lines and the location variables we have seen a major improve to 16%. On case
3, we put all significant variables to check the improvement which increased to 21.93%.
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Variables Case 1 Case 2 Case 3

Constant 12.694 (0.000) 13.236 (0.000) 12.61452 (0.000)
Ln(Assets) 0.0521 (0.0095) 0.062 (0.00098) 0.05668 (0.00197)
Retail Banking -1.476 (0.000) -1.1518 (0.000)
Trading and Sales 2.361 (0.00567) 2.31181 (0.005)
Agency services
Commercial Banking 0.40666 (0.0505)
Retail brokerage -1.366 (0.000) -1.28293 (0.000)
Payment and Settlement
Corporate Finance 0.975 (0.0134) 0.8076 (0.0347)
United States 0.366 (0.0035) 0.40684 (0.0009)
Europe
External Fraud
Internal Fraud 0.70285 (0.000)
Damage to Physical Assets 1.8994 (0.000)
Business Disruption and System Failures 1.6021 (0.0088)
Clients, Products & Business Practices 1.10116 (0.000)
Employment Practices and Workplace Safety 0.80723 (0.012)

R-Squared 0.006329 0.163 0.2281
Adjusted R-Squared 0.005391 0.1622 0.2193

Table 4.12: Robustness test for different cases of the variables treated

4.8.3.5 Normalization formula and resulted output

We have captured in section 4.8.3.3 the regression formula with ln(Lossi) as the dependent
variable. Now as the common component is constant for all loss amounts, it is possible
to re-write the regression equation as follows:

CompComm. =
LossA

g(Compidio)A
=

LossB
g(Compidio)B

= ... =
LossN

g(Compidio)N
.

At the end, if we suppose that we have a loss which occurred in an external bank B and
that we want to know its equivalent value if it occurred in a local bank A. Based on the
analysis above, we multiply the coefficients already estimated by the corresponding value
of the different variables to find the idiosyncratic or specific component:

LossA =
g(Compidio)A
g(Compidio)B

× LossB.

To apply all of the preceding to Bank Audi, we present three examples of losses
extracted from the external database SAS OpRisk Global Data and we show in detail
how the scaling is done and how the losses are normalized to Bank Audi. For that, table
4.13 illustrates the amount of losses with the Total Assets (per M$) of the banks where
the different losses have been produced.
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External Loss Total Assets Coefficient

Citibank 2011 0.750 USA Retail Banking EF 1,913,902 2.75
ING Group 2008 0.59 Europe Asset Management IF 1,918,955 9.10
Bank of Canada 2009 1.960 Europe Retail Banking EF 595,353 1.61

Loss Audi Total Assets Coefficient
Bank Audi 2011 0.379 Lebanon Retail Banking EF 28,737 1.39
Bank Audi 2008 0.470 Lebanon Asset Management IF 20,385 7.25
Bank Audi 2009 1.677 Lebanon Retail Banking EF 26,486 1.38

Table 4.13: Examples of Normalized external losses extracted from SAS Oprisk Global
Data

We take into example Citibank in 2011 suffered from an External Fraud (EF) in
its Retail Banking for 0.750 M$, now by applying the previous theory with the required
variables needed, we can calculate its coefficient: g(Com.Idio.), which would be in this
case:

g(Com.Idio.)ext = exp (0.050× ln(Assetsext)− 0.879×Retail Banking + 0.476× USA)

= exp
(
0.050× ln(1, 913, 902× 106)− 0.879× 1 + 0.476× 1

)

= 2.75

We then apply the same calculation technique for Bank Audi, we obtain a coefficient of
g(Com.Idio.)Audi = 1.39.

Since,

g(Com.Idio.)Audi = exp (0.050× ln(AssetsAudi)− 0.879×Retail Banking + 0.476× 0)

= exp
(
0.050× ln(28, 737× 106)− 0.879× 1 + 0.476× 0

)

= 1.39

At the end, the normalization formula would be:

LossAudi =
g(Com.Idio.)Audi

g(Com.Idio.)ext
× External Loss

=
1.39

2.75
× 0.75

= 0.379 M$
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4.8.4 Data requirements for specifying frequency distributions

We have seen previously all the requirements to set and specify the severity distribution
yet no work has been done regarding the specification of the frequency distribution.
In LDA model, the specification of frequency distributions could as well be entirely based
on internal loss data, in contrast to Frachot & Roncalli [2002] who suggest to use
internal and external frequency data and Dahen & Dionne [2008] who completed their
work by scaling model for frequency of external losses. The main reasons for using only
internal data are:

• Internal loss data reflects loss profile most accurately;

• It is difficult to ensure completeness of loss data from other financial institutions.
However, data completeness is essential for frequency calibration;

• Data requirements are lower for calibrating frequency distributions than for cali-
brating severity distributions (in particular, if Poisson distributions are used).

In this chapter we will stop the study to this limit, and for further readings regarding best
practices, (cf. Aue & Kalkbrener [2007]), as for the scaling models for the Severity
and Frequency of External Operational Loss Data, see Dahen & Dionne [2008] and
Frachot & Roncalli [2002].
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Part I - Conclusion

This part’s objective has featured the different perspectives of operational risk, that have
risen to the point of holding a significant position in risk assessment.
Operational risk quantification is a challenging task both in terms of its calculation as well
as in its organization. Regulatory requirements (Basel Accords for Banks and Solvency
Directive for insurance companies) are put in place to ensure that financial institutions
optimize this risk.

The different qualitative and quantitative approaches for operational risk in ad-
dition to the importance use of insurance policies, have been highlighted throughout the
four chapters. At the end, since the use of external data is absolutely important to the
implementation of an advanced method for calculating operational capital like LDA, we
scaled the severity of external losses for integration with internal data, a similar approach
as Dahen & Dionne [2008] was used, and finished by presenting three examples of losses
extracted from our external loss database that showed in detail how the scaling is done
and how are the losses normalized to bank Audi.

We managed as well to illustrate the various mathematical and actuarial techniques
for mitigating this risk, and emphasized the qualitative management of operational risk
which has set grounds and gave continuity for the second part, focusing on the estimation
risk behind operational risk and its influence on our capital requirement.
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Part II

Addressing Estimation Risk
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Chapter 5

Estimation Errors and SCR
Calculation

5.1 Introduction

Measuring the Value-at-Risk of the own funds is a central topic in insurance with the new
Solvency II framework and finance regarding Basle II and III accords.

Many banks and financial institutions, develop models to compute the value-at-risk and
resulting capital requirement, but we know that any model is by definition an imperfect
simplification and in some cases a model will produce results that are bias due to param-
eter estimation errors. For instance, this point is illustrated in Boyle and Windcliff
[2004] for pension plans investment and in Planchet & Therond [2012] for the deter-
mination of Solvency capital in the Solvency II Framework. As a direct consequence of
parameter estimation risk, the capital requirement may be underestimated.

Article 101 of the European directive states that the Solvency Capital Requirement (SCR),
shall correspond to the Value-at-Risk of the basic own funds of an insurance or reinsur-
ance undertaking subject to a confidence level of 99.5% over a one-year period.

We are interested in this chapter, in assessing the potential loss of accuracy from es-
timation error when calculating the SCR, we expand this analytical framework where an
insurer must calculate a VaR to a confidence level of 99.5% on a distribution which we
must estimate the parameters, now this estimation might lead to important differences in
the numerical results. To be able to illustrate this situation we took the very particular
simple case of the only market risk for an asset consisting of a zero coupon bond, we are
thus led to study the distribution of P (1, T − 1) which is the value of the asset at t = 1
and we highlight the possible undervaluation of the Solvency Capital Requirement if a
special attention is not given to the risk of parameter estimation. At the end, we are
going to check the effect of adding another zero coupon bond on our Capital estimation.
The following chapter adds to the value of the section 2.4 in chapter 2 about the influ-
ence function for MLE as an introduction to robust statistics and it has been subject to
publication at the Bulletin Français d’Actuariat see Karam & Planchet [2013].
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5.2 Model Presentation

For sake of simplicity, we use in this chapter the classical one-factor interest rate Vasicek
model (cf. Vasicek [1977]). The key point here is that we need closed form solutions for
the zero-coupon bond price. Moreover, the distribution of the ZC price at a future time
is known (and is log normal one). This will help us to compute very easily the quantile
of the price distribution.

5.2.1 Simulating Interest rates: The Vasicek model

We consider an asset consisting of a zero-coupon bond now Vasicek model, assumes that
r(t) is an adapted process on a filtered probability space (Ω,F ,P, (Ft)0<t<T ) that satisfies
the following stochastic differential equation:

drt = k(θ − rt)dt+ σdWt

where k, θ and σ are non-negative constants and rt is the current level of interest rate.
The parameter θ is the long run normal interest rate. The coefficient k > 0 determines the
speed of pushing the interest rate towards its long run normal level, and W is a standard
Brownian motion.

The solution of the r(t) stochastic differential equation would generate (cf. Bayazit [2004]):

rt = r0e
−kt + θ(1− e−kt) + σe−kt

∫ t

0

ekudWu (5.1)

and for 0 ≤ s ≤ t ≤ T , rt = rse
−k(t−s) + θ(1− e−k(t−s)) + σ

∫ t

s

e−k(t−u)dWu

If one wants to take the market price of risk λ into account, (for the purpose of this chap-
ter and to minimize our uncertainty, we took a constant market price of risk λ(t, rt) = λ,
but in general a market price of risk has a more complex structure, more on this topic
could be found in Caja and Planchet [2011]), which allows us to switch between the
real universe P to the risk-neutral world Q, then with the respect of the new probability
measure Q, we can rewrite the stochastic equation as follows (cf. Van Elen [2010]):

drt = k(θ∗ − rt)dt+ σdW ∗
t

The structure of this equation in the risk-neutral world is comparable to that in the real

universe where, θ∗ = θ − σλ

k
.

In particular, we can use the explicit formula seen previously with,

rt = r0e
−kt + θ∗(1− e−kt) + σe−kt

∫ t

0

ekudW ∗
u .

A zero-coupon bond of maturity T is a financial security paying one unit of cash at a
prespecified date T in the future without intermediate payments. The price at time t ≤ T
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is denoted by P (t, T ).
The general case of a zero coupon bond at time t with maturity T is (cf. Bayazit [2004]):

P (t, T ) = A(t, T )e−B(t,T )r(t),

where,







A(t, T ) = exp

[

(θ∗ − σ2

2k2
)(B(t, T )− (T − t))− σ2

4k
B(t, T )2

]

B(t, T ) =
1− e−k(T−t)

k

5.2.2 Parameter Estimation

For the Vasicek model, we have drt = k(θ − rt)dt + σdWt with the solution already cal-

culated that generate rt = rse
−k(t−s) + θ(1− e−k(t−s)) + σe−kt

∫ t

s

ekudWu,

now rt is normally distributed with mean and variance:







E[rt|Fs] = rse
−k(t−s) + θ(1− e−k(t−s))

V ar[rt|Fs] =
σ2

2k
(1− e−2k(t−s))

The properties of the integral of a deterministic function relative to a Brownian motion
lead to the exact discretization (cf. Planchet & Thérond [2005]):

rt+δ = rte
−kδ + θ(1− e−kδ) + σ

√

1− e−2kδ

2k
ǫ,

where ǫ is a random variable that follows the standard normal distribution and δ is the
discretization step.

To calibrate this short rate model, let’s rewrite it in more familiar regression format:
yt = α + βxt + σ1ǫt

Where, yt = rt+δ, α = θ(1− e−kδ), β = e−kδ, xt = rt and σ1 = σ

√

1− e−2kδ

2k

The OLS regression provides the maximum likelihood estimator for the parameters: α, β
and σ1 (cf. Brigo et al. [2007]).
One can for instance compare the formulas stated above with the estimators derived di-

rectly via maximum likelihood given our Log-Likelihood function: ln(L) = ln

(
1

σ1
√
2π

)n

−

1

2σ2
1

n∑

i=1

(ri − ri−1β − θ(1− β))2 which are of the form (cf. Brigo & Mercurio [2006]):

β̂ =

n

n∑

i=1

riri−1 −
n∑

i=1

ri

n∑

i=1

ri−1

n

n∑

i=1

r2i−1 − (
n∑

i=1

ri−1)
2
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θ̂ =

n∑

i=1

[ri − β̂ri−1]

n(1− β̂)

σ̂2
1 =

1

n

n∑

i=1

[ri − β̂ri−1 − θ̂(1− β̂)]2

Parameter estimation is an important stage in the simulation of trajectories of a contin-
uous process because it can cause a bias as we will see in the next section.

Given the parameters estimated all what is left is to find the market price of risk λ
which give us the right price of the zero coupon. Since P (0, T ) is usually known (given by
the market at time t = 0), and P (0, T ) is a function of k, θ, σ and λ as seen previously,
λ would be calculated as:

λ =

((

θ − σ2

2k2

)

−

(σ2

4k
B(0, T ) + r0

)

B(0, T ) + ln
(
P (0, T )

)

B(0, T )− T

)
k

σ

5.2.3 Calculation of the SCR

Article 101 of the European directive (cf. CEIOPS [2009]) states that the Solvency Cap-
ital Requirement (SCR), shall correspond to the Value-at-Risk of the basic own funds
of an insurance or reinsurance undertaking subject to a confidence level of 99.5% over a
one-year period.

In our case the SCR would be calculated as follows:

rt = r0e
−kt + θ∗(1− e−kt) + σe−kt

∫ t

0

ekudW ∗
u is normaly distributed with mean and vari-

ance: 





E[rt|F0] = r0e
−kt + θ∗(1− e−kt)

V ar[rt|F0] =
σ2

2k
(1− e−2kt)

In addition, A(t, T ) and B(t, T ) are deterministic in the the zero coupon price fundamental
equation:

P (t, T ) = A(t, T )e−B(t,T )r(t),

So, P (t, T ) would follow the LogNormal distribution since if X is normally distributed
with mean µx and variance σ2

x, ae
−bXwould follow the Lognormal distribution with:

mean: eln(a)−bµx+
1
2
b2σx

2
and variance: (eb

2σx
2 − 1)e−2bµx+b2σx

2
.

So in our case,

E
[
P (t, T )

]
= exp

{

ln(A(t, T ))− B(t, T )

(

r0e
−kt + θ∗(1− e−kt)

)

+
1

2
B(t, T )2

(
σ2

2k
(1− e−2kt)

)}

V ar
[
P (t, T )

]
=

(

eB(t,T )2 σ2

2k

(
1−e−2kt

)

− 1

)

exp

{

− 2B(t, T )
(
r0e

−kt + θ∗(1− e−kt)
)
+B(t, T )2 σ

2

2k
(1− e−2kt)

}
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To reiterate, since we have P (t, T ) →֒ LN
(

µL = ln(A(t, T ))− B(t, T )E[rt|F0], σ
2
L = B(t, T )2V ar[rt|F0]

)

,

if we denote xLNp our quantile, p the critical value and Φ the cdf of a standardized gaussian
random variable we would have:

xLNp = V aRp(P (t, T )) = F−1
0 (p) = exp(σLΦ

−1 (p)
︸︷︷︸

1−α

+µL)

At the end, the Solvency Capital Requirement (SCR) of our zero coupon bond would be:

SCR = P (0, T )− xp(e
−R1P (1, T − 1))

In practice, p = 0.5% and R1 is the spot rate for t = 1.

5.3 Estimation Risk

To show the estimation risk we are going to take the very particular simple case of the
only market risk for an asset consisting of a zero coupon bond, we are thus led to study
the distribution of P (1, T − 1) which is the value of the asset at t = 1 and then we will
add to it one more zero coupon bond and check how estimation risk affects the Solvency
Capital Requirement if a special attention is not given to the risk of parameter estimation.

5.3.1 Case of one zero coupon bond

For the case of one zero coupon bond, we are going to follow the below steps to calculate
our Solvency Capital requirement and show the estimation error behind:

1. We fix the Vasicek parameters set ϑ = (k0, θ0, σ0, λ0) by applying the Maximum
Likelihood estimation technique stated previously in section 2.2.

2. Let ω = (k, θ, σ), given the asymptotic normality of MLE, we have: ω̂ →֒ N ((k0, θ0, σ0)
︸ ︷︷ ︸

ω0

,Σ),

where Σ is calculated using the inverse of fisher information matrix: Σ =

(

−E

[
∂2 lnL
∂ω∂ω′

])−1

ω=ω0

.

3. We estimate the market price of risk λ since P (0, T ) is known at t = 0, which allows
us to switch between the real measure P to the risk-neutral measure Q see section
2.2;

4. Calculate the Solvency capital Requirement (SCR) of the Zero-Coupon bond at

0.5%, and its Relative difference ǫ =
ˆSCR− SCR

SCR
;

5. Repeat steps 2 to 5 on a number N of times (in our example, we took N = 105

iterations) to be able to analyze the empirical cumulative distribution function of

ǫ = (ǫ1, ..., ǫN), where ǫi =
ˆSCRi − SCR

SCR
.
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As for the calculation of Fisher’s inverse information Matrix:

Σ =

(

−E

[
∂2 lnL
∂ω∂ω′

])−1

ω=ω0

,

we used the log-likelihood function: ln(L) = ln

(
1

σ1
√
2π

)n

− 1

2σ2
1

n∑

i=1

(ri − ri−1β − θ(1− β))2

see appendix A for the full support.

5.3.2 Estimation Risk of a Portfolio consisting of two Zero-
Coupon bonds

In this section, we will be interested in capturing the effect of parameter estimation when
we add another zero-coupon bond to our portfolio; we took the two zero coupon bonds
maturing respectively at T1 and T2 months.

Let P0 be the Price at t = 0 of our Portfolio, P0 = P (0, T1) + P (0, T2) with the only
difference that P will not follow a LogNormal Distribution in that case.
Following the same estimation technique of parameters from above, we explain how we
computed the market price of risk λ which give us the right price of the Portfolio.

Now with P (0, T ) = e

(

θ−λσ
k

−1/2 σ2

k2

)

(

1−e−Tk/12

k
−T/12

)

−1/4
σ2(1−e−Tk/12)

2

k3
−
(1−e−Tk/12)r0

k , already
illustrated above we would have:

P0 = P (0, T1) + P (0, T2)

P0 = e

(

θ−λσ
k

−1/2 σ2

k2

)

(

1−e−T1 k/12

k
−T1/12

)

−1/4
σ2(1−e−T1 k/12)

2

k3
−
(1−e−T1 k/12)r0

k +

e

(

θ−λσ
k

−1/2 σ2

k2

)

(

1−e−T2 k/12

k
−T2/12

)

−1/4
σ2(1−e−T2 k/12)

2

k3
−
(1−e−T2 k/12)r0

k

We can solve this equation numerically and find λ by using the dichotomy method.

The sum of lognormal variables

We often encounter the sum of lognormal variables in financial modeling, a lot of methods
are used to approximate the sum into a lognormal distribution but in our study, we
are going to apply Fenton-Wilkinson approach (cf. Fenton [1960]) the most used for its
simplicity. We place ourselves in the case where we have l lognormal distributionsXi = eYi

where Yi →֒ N (µi, σi), the approach states that the sum of l lognormal distributions

S =
l∑

i=1

eYi can be approximated by a lognormal distribution eZ , Z →֒ N (µZ , σ
2
Z) where,
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µZ = 2 ln(m1)− 1/2 ln(m2)

σ2
Z = ln(m2)− 2 ln(m1)

and,

m1 = E(S) = eµZ+σ2
Z/2 =

l∑

i=1

eµYi
+σ2

Yi ,

m2 = E(S2) = e2µZ+2σ2
Z =

l∑

i=1

e2µYi
+2σ2

Yi + 2
l−1∑

i=1

l∑

j=i+1

eµYi
+µYj e

1/2(σ2
Yi

+σ2
Yj

+2ρijσYi
σYj

)
,

are the first and second moment of S (cf. El Faouzi & Maurin [2006])1.
As a result, and by applying the same previous steps as in section 6.3.1, where

SCR = P − e−R1xp

(

P (12, T − 12) + P (12, T
′ − 12)

︸ ︷︷ ︸

P1

)

, with xp our quantile estimated, P1 is

the price of our Portfolio at t = 12 months and typically in the Solvency II context
p = 0.5%, we were able to estimate our Capital Requirement.

5.3.3 Numerical Results

In this section, we apply the preceding theoretical discussion of our estimation technique
to the problem at hand. From the Federal Reserve (FR), we took our interest rates, dated
from January 1982 till August 2008 (n = 320 months), and compared our results with
smaller data dated from July 2001 till August 2008, which gives us 86 months overall.
We estimated the model parameters of Vasicek then we applied the asymptotic normal-
ity of Maximum Likelihood to generate various outcomes. This simulation example is
intended to indicate how parameter estimation can affect directly the Solvency Capital
Requirement for one zero coupon bond of maturity 120 months and two zero coupon
bonds of respective maturity of 60 and 120 months. Now since the estimation of the SCR
is executed on simulated values, the simulations and the estimation of the SCR has to be
effected on a large size sample (we took N = 105 simulations).

As so, and with our fixed values parameters shown in table 1 below, we have been able
to estimate our Solvency Capital Requirement and its relative difference ǫ = (ǫ1, ...ǫN),

where ǫi =
ˆSCRi − SCR

SCR
.

1Corrections of the formulas given in this paper have been made regarding the second moment of S:
E(S2)
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Fixed Values
n 320 86

r0 = 1.75% 1.75%
k = 0.219 0.153
θ = 3.388% 0.971%
σ = 1.104% 0.8189%
λ = −0.4189 −0.9954

P (0, 120) = 0.678 0.678
P (0, 60) = 0.854 0.854

P = 1.532 1.532

Table 5.1: Vasicek parameter model

With the given Inverse Fisher information matrix for n = 320:







0.00004655 −0.00004988 −2.7924× 10−13

−0.00004988 0.0001488 8.7048× 10−13

−2.7924× 10−13 8.7048× 10−13 1.5591× 10−8







and for n = 86:






0.0002959 −0.0003975 −1.1661× 10−12

−0.0003975 0.0009364 2.69943× 10−12

−1.1661× 10−12 2.69943× 10−12 3.2427× 10−8







Now we are interested in the particular case of ǫ < 0 and more particularly where ǫ < ǫmax

where the SCR is underestimated by more than 3%. For that, table 2 compares the results
regarding, P(ǫ ≤ −0.03), for our one and two zero coupon bonds of maturity 60 and 120
months.

n = 320 n = 86
P(0,120) P(0,60)+P(0,120) P(0,120) P(0,60)+P(0,120)
45.3% 42.9% 48.4% 47.8%

Table 5.2: Underestimation of the SCR

We can easily check that whichever the case treated, on average, 45% of the simulations
underestimated our solvency capital requirement by more than 3%, (P(ǫ ≤ −3%) = 45%).
Figure 6.2, shows us the empirical cumulative distribution function of ǫ of our Portfolio
composed of one zero coupon bond maturing in 120 months, for n = 320. We notice that,
45.3% of our cases underestimated the Solvency Capital Requirement by more than 3%
given a probability P(ǫ < −3%) = 45.3%.
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Figure 5.1: Empirical Cumulative Distribution Function of ǫ

5.4 Conclusion

In this chapter, we have focused on the possible underestimation of the Solvency Capital
Requirement, by taking into consideration the very simple case of an asset consisting of
one and two zero coupon bonds. Applying the Vasicek model, enabled us to illustrate the
direct consequence of parameter estimation risk on the capital requirement. For example
Boyle and Windcliff [2004] shows a similar consequence by working on the pension
plans investment.

In practice we do not know the true value of our parameters and estimated values are
usually treated as correct, yet if we take into consideration the impact of parameter es-
timation risk, then our capital requirement have a 50% chance to be underestimated by
more then 3% as the study shows us.

So it would be more appropriate in reality to privilege simple and prudent models and
avoid complexing them, in a way, to prevent more estimation errors that might have se-
vere influences in some cases on our Solvency Capital Requirement.

Moreover, such simplified models should be used to comply to the Own Risk Solvency
Assessment (ORSA) required by Solvency II.
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Chapter 6

An Alternative Yield Curve
Estimation

6.1 Introduction

Article 101 of the European directive, (cf. Official Journal of the European Union [2009]),
states that the Solvency Capital Requirement (SCR), shall correspond to the Value-at-
Risk of the basic own funds of an insurance or reinsurance undertaking subject to a
confidence level of 99.5% over a one-year period. Our focus in this chapter is on interest
rate risk. The Nelson-Siegel (1987) curve fitting model is widely used by central banks as
a method for the term structure of interest rates, they employ government bonds in the
estimations since they carry no default risk. The model as well, can also be valuable for
forecasting the term structure (see Diebold & Li [2006]). We have many ways and opti-
mization techniques for calibrating the model: from the Ordinary Least Squares (OLS)
or the maximization of the Adjusted R2.

We are going to propose a new method of calibration by using Maximum Likelihood
Estimation technique (MLE) then showing that the estimation risk is low. To be able
to illustrate this situation, we consider the monthly market rates of French government
bonds dated between August 2011 and July 2012, and calculate the capital constituting a
life Annuity Immediate at age of 65 in arrears, with the use of the French mortality table
TH00-02 and we highlight the robustness of our estimation technique and the decrease of
the estimation risk behind.

6.2 Model Presentation

The relationship between the yields of default-free zero coupon bonds and their length to
maturity is defined as the term structure of interest rates and is shown visually in the yield
curve. We use in this work, the famous Nelson-Siegel model to be able to estimate the
term structure of interest rates. This will help us to compute the price of a life Annuity
Immediate easily.
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6.2.1 Curve Fitting: The Nelson-Siegel model

The Nelson-Siegel (cf. Nelson & Siegel [1987]), is a parametric model, widely used in
reality for the term structure of interest rates (cf. Le Maistre & Planchet [2013]). The
instantaneous forward rate at maturity m is given by the solution to a second-order
differential equation with real and equal roots.
The function form is:

f(m, θ) = β0 + β1 exp(
−m
λ

) + β2
m

λ
exp(

−m
λ

),

In this equation, θ = (β0, β1, β2) denote respectively the long-term value of the interest
rate, the slope and curvature parameter. β2 and λ are responsible for the hump, where λ
determines the position of the hump representing the scale parameter that measures the
rate at which the short-term and medium term components decay to zero.
The spot interest rate for maturity m can be derived by integrating the previous equation.
The resulting function is expressed as follows (cf. BIS Papers [2005]):

R(m, θ) = β0 + β1

(
1− e−mτ

mτ

)

+ β2

(
1− e−mτ

mτ
− e−mτ

)

where, β0 describing the long run is positive, β0 + β1 determines the starting value

of the curve at maturity zero must be positive as well and τ =
1

λ
> 0

We have many ways and optimization techniques for calibrating the model. R project
uses two types of estimation treated in the two packages: ’YieldCurve1’ and ’fBonds2’.
Where the first tries to maximize the adjusted R2 and the second function finds a global
solution and start values for the β’s are solved exactly as a function of λ using OLS.
On the other hand, our estimation technique focuses on Maximizing the Likelihood func-
tion by respecting the parameters’ constraints. The idea is as follows: Rt,j = R̂t,j + ǫt,j,
and the estimated Nelson-Siegel function is of the form:

R̂t,j(mj, θ̂) = β̂0 + β̂1

(
1− e−mj τ̂

mj τ̂

)

+ β̂2

(
1− e−mj τ̂

mj τ̂
− e−mj τ̂

)

where, θ̂ = (β̂0, β̂1, β̂2, τ̂), t is the date and mj is the j − th maturity.
with the constraints of: 





β̂0 > 0

β̂1 + β̂2 > 0
τ̂ > 0

and the hypothesis that: ǫt,j →֒ N (0, σ2), where σ̂ =

√
√
√
√

1

n

n∑

j=1

(

Rt,j − R̂t,j

)2

, is an esti-

mation for σ.

1URL: http://cran.r-project.org/web/packages/YieldCurve/YieldCurve.pdf
2URL: http://cran.r-project.org/web/packages/fBonds/fBonds.pdf
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Hence, the Log-Likelihood function would be: max
θ̂




−n
2

ln(2πσ2)− 1

2

n∑

j=1

(

Rt,j − R̂t,j

σ

)2


,

and maximizing this function would supply us with the estimators we need for our curve
fit.
Table 6.1 below compares the three used estimation methods for particular Yield Curve
dates, we can see that the MLE method proposed by us, with respect to the constraints
stated previously, fits very well compared to the others. The R ’fBonds’ methods gives
the global solution without taking into consideration the constraints and on the other
hand ’YieldCurve’ method has a lower adjusted R2.

August-11

MLE R ”YieldCurve” package R ”fBonds” package
β0 0.04724 0.04711 -2.09087
β1 -0.03976 -0.03952 2.09640
β2 -0.04207 -0.04279 2.60792
τ 0.46968 0.47819 0.01266

Adjusted R2 99.958% 99.952% 99.982%

July-12

MLE R ”YieldCurve” package R ”fBonds” package
β0 0.04159 0.04110 -11.96394
β1 -0.03920 -0.03824 11.96146
β2 -0.05982 -0.06202 13.12383
τ 0.52439 0.55179 0.00541

Adjusted R2 99.974% 99.972% 99.859%

Table 6.1: Comparing the three estimation methods

As for Figure 6.1 below it shows the adjusted R2 for all the months calculation,
where it clearly demonstrate the effectiveness of MLE estimation regarding the others.
Noting that the ”fBonds” used estimation technique does not respect the constraints
given by the model with an R2 higher than MLE. Furthermore, applying MLE allows us
to emphasize the robustness of our estimated parameters by the use of the asymptotic
normality. A property that is not applied by the other methods.
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Figure 6.1: Adjusted R2

6.2.2 Estimation Risk

To show the estimation risk, we are going to take the monthly market rates of French
government bonds dated between August 2011 and July 2012, fit them using the MLE
method explained previously and calculate the capital constituting of a life Annuity Im-
mediate at age of 65 in arrears, with the use of the French mortality table TH00-02 and
we highlight the robustness of our estimation technique.
To do this, we are going to follow the below steps to calculate our Value-at-Risk and show
the estimation error behind:

1. We fix, for a given date, the Nelson-Siegel parameters set ω0 = (β0, β1, β2, τ) by
applying the Maximum Likelihood estimation technique stated previously in section
6.2.1.

2. We calculate the life annuity immediate a0x =
∑

h≥1

P (0, h)
Lx+h

Lx

, where P (0, h) =

exp(−R(h, ω0)h), and
Lx+h

Lx

given by TH00-02;

3. Given the asymptotic normality of MLE, we have: ω̂ →֒ N (ω0,Σ), where Σ is cal-

culated using the inverse of fisher information matrix: Σ =

(

−E

[
∂2 lnLω

∂ω∂ω′

])−1

ω=ω0

;

4. Calculate the life annuity immediate for the given ω̂;

5. Repeat steps 3 and 4 on a number n of times (in our case, we took n = 105

iterations) to be able to analyze the empirical cumulative distribution function of
ax = {aix, i = 1, ..., n};
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6. Repeat steps 1 to 5 for each date.

As for the calculation of Fisher’s inverse information Matrix:

Σ =

(

−E

[
∂2 lnLω

∂ω∂ω′

])−1

ω=ω0

,

we used the log-likelihood function: ln(L) =
−n
2

ln(2πσ2) − 1

2

n∑

j=1

(

Rt,j − R̂t,j

σ

)2

see

appendix J for the full support.

6.2.3 Numerical Results

In this section, we apply the preceding theoretical discussion of our estimation technique
to the problem at hand. From Bloomberg, we took monthly market rates of French gov-
ernment bonds dated between August 2011 and July 2012 (n = 12 months). For each
date, we estimated the model parameters of Nelson-Siegel then we simulated various out-
comes from Nelson-Siegel using the known parameter set and proceed to estimate the
model parameters. This simulation example is intended to indicate how parameter esti-
mation can affect directly our calculated capital constituting of a life Annuity Immediate
for a person at the age of 65 in arrears, with the use of the French mortality table TH00-02.

Now since the estimation of the VaR is executed on simulated values, the simulations
and the estimations has to be effected on a large size sample (we took 105 simulations).

As for the calculation of the confidence interval, since we are working with order statistics,
the interval (xl, xu) would cover our quantile xp with a 99.5% probability that depends
on the lower bound l, upper bound u, number of steps n and confidence level p.

In our calculations, we took n = 105, p = 99.5% and our integers (l, u), were con-
structed using the normal approximation N (np, np(1 − p)) to the binomial distribution
B(n, p),(since n is large). Then a simple linear interpolation has been made to obtain
the values of (xl, xu), (cf. David & Nagaraga [2003] pp. 183-186), for more details and
demonstrations.

As so, and with our fixed values parameters, for each month, we have been able to
estimate the VaR(99.5%) of our annuity shown in table 6.2.

Table 6.2 displays the non-existence of consequences in estimated parameters with a rel-
ative change on the VaR/Annuity not more then 0.8% throughout the months. Fur-
thermore, calculating the relative difference for a given date: ǫ = (ǫ1, ...ǫn), where

ǫi =
âix − a0x
a0x

. Figure 6.2, shows the Empirical Cumulative Distribution Function of ǫ

which clearly displays the robustness of our estimation.
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Date Annuity VaR(99.5%) ∆(VaR/Annuity) CI(99.5%) ∆(UB/Mean)

1 August-11 11.907 11.986 0.67% 11.985 11.988 0.64%
2 September-11 12.123 12.204 0.67% 12.201 12.208 0.68%
3 October-11 11.586 11.634 0.42% 11.634 11.635 0.43%
4 November-11 11.379 11.415 0.32% 11.415 11.415 0.32%
5 December-11 11.771 11.871 0.84% 11.869 11.873 0.82%
6 January-12 11.676 11.730 0.46% 11.729 11.731 0.48%
7 February-12 11.877 11.973 0.80% 11.971 11.974 0.78%
8 March-12 11.921 12.005 0.70% 12.004 12.007 0.69%
9 April-12 11.872 11.948 0.64% 11.947 11.949 0.62%
10 May-12 12.511 12.607 0.77% 12.606 12.609 0.75%
11 June-12 12.071 12.139 0.57% 12.139 12.140 0.56%
12 July-12 12.697 12.765 0.54% 12.764 12.767 0.53%

Table 6.2: Nelson Siegel’s Annuity Output

Figure 6.2: Empirical Cumulative Distribution Functions for ǫ, for several dates

6.3 Conclusion

We have developed in this work, a new estimation approach for fitting a yield curve
that leads to a robust assessment of risk related to a Maximum Likelihood Estimation
of Nelson-Siegel parameters. Compared to other used estimation methods it performs
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efficiently, respecting as well, all of the constraints given by the model.

To expose the robustness, we took monthly market rates of French government bonds
dated between August 2011 and July 2012 (n = 12 months). For each date, we estimated
the model parameters of Nelson-Siegel then we simulated various outcomes from Nelson-
Siegel using the known parameter set and proceed to estimate the model parameters, then
we calculated a life Annuity Immediate for a person at the age of 65 in arrears, with the
use of the French mortality table TH00-02.

We have featured the nonexistence of consequences in estimating the parameters with
a relative change on the VaR/Annuity not more then 0.8% throughout the months. Fur-
thermore, calculating the relative difference for a given date, clearly indicates the robust-
ness of our estimation.

The result of this chapter will help us illustrate a different type of estimation risk re-
lated to the fluctuation of our yield curves that will be treated in the next chapter. This
study gave us a sort of assertiveness that fitting our yield curve using MLE method will not
generate additional instability and uncertainty regarding the parameters estimated. Yet
as we are going to see further on, which is so different then what have we illustrated in the
previous chapter where our uncertainty was directly linked to the parameters estimated,
the instability we had in our model would be the result of the conceptual framework that
our calculations were based on.
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Chapter 7

Market Consistency and Economic
Evaluation

7.1 Introduction

Solvency II has chosen a framework for the valuation of technical provisions consistent
with market values, with the obligation of taking provision for risk consistent with market
values, where a yield curve is used for discounting purposes. Accordingly, assets are to
be valued at their market value, whereas liabilities are discounted at the risk-free yield
curve rate. This principle of market consistency, introduced by the regulators, requires
the use of financial markets as reference to mathematical models at the date of assets and
liabilities valuation. This implementation in practice leads to important volatility (cf.
EIOPA [2013]). Adjustments being tested as part of the exercise Long-Term Guarantees
Assessment (LTGA), (cf. KPMG [2013]), particular objective to remedy this situation.
The consequence of high volatility would impact our balance sheet which will be subject
to the variation of the interest rates and not to forget the errors generated from the esti-
mated parameters with which the estimation method have been calibrated.
In our study, we are fitting yield curves using Nelson-Siegel model (cf. Nelson & Siegel
[1987]), but to reduce the parameter estimation error, we applied an MLE method ex-
plained in details in the previous chapter. Thus, the only problem we are left with, is
the variation of the financial markets that is creating high volatilities on our balance sheet.

Moreover, the assessment of balance sheet is taking into account risks that insurers are
not really exposed to, as we are going to see in this chapter. Hence, fluctuation of in-
terest rate curve add to this phenomenon and leads to volatility assessments of technical
provisions, (spread risk is increasing given that the risks we are not held responsible of
are being taken into consideration). Then, this volatility could compromise the Solvency
Capital Requirement (SCR) by underestimating it, (cf. Ifergan [2013]) for more on this.
Our assets role are essential to cover the liability cash flows, but since our assets are being
valued at their market value, this will create the following problem: an increase of spread
risk on the asset side will lead to a mismatching between assets and liabilities. Therefore,
we will illustrate a simple proposal of correction, using the monthly annuity immediate
calculation, where we apply the moving average technique to stabilize the volatility and
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smooth our curve. In addition, we try to reconstruct our yield curve in a way to attempt
and stabilize the balance sheet exposure, by trying to synchronize the volatility of assets
with the one of liabilities.
At the end, we will test the behavior of our Asset Liability Management by applying a
stress test in order to show the interaction between the Asset side with the Liability and
the consequence on the Equity.

7.2 Market Consistency

The current low yield environment and the regulators market consistent approach has
exposed the balance sheet of many insurers to high volatility. We investigate in this
section, a market-consistent valuation of insurance liabilities that neutralizes changes and
stabilize the balance sheet exposure.

7.2.1 Economic Evaluation

Since Solvency II has chosen a framework for the evaluation of technical provisions consis-
tent with market values that implementation in practice leads to important volatility, we
are going to provide a simple proposal of correction, where we apply the moving average
technique to stabilize the volatility and smoothing our curve.
To illustrate this, we used the same monthly market rates of French government bonds
dated between August 2011 and July 2012, and calculate the capital constituting a life
Annuity Immediate at age of 65 in arrears, with the use of the French mortality table
TH00-02, as done in the previous section. The rates are as well fitted using Nelson-
Siegel (cf. Nelson & Siegel [1987]), with the Maximum Likelihood Estimation method (cf.
chapter 6) that gives us more robustness in parameter estimation. We complete this, by
calculating the average curve of the 12 and 24 months prior to the evaluation see Table
7.1.

Date Annuity Smoothing 12 months Smoothing 24 months

1 August-11 11.907 11.574 11.565
2 September-11 12.122 11.565 11.599
3 October-11 11.585 11.530 11.615
4 November-11 11.378 11.496 11.616
5 December-11 11.772 11.509 11.639
6 January-12 11.675 11.533 11.655
7 February-12 11.878 11.569 11.672
8 March-12 11.922 11.631 11.691
9 April-12 11.872 11.678 11.700
10 May-12 12.512 11.767 11.723
11 June-12 12.071 11.833 11.733
12 July-12 12.697 11.920 11.766

Table 7.1: 12 months and 24 months smoothing calculations
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Figure 7.1: Economic Valuation

Figure 7.1 shows the different smoothing curves. The blue curve shows that the
erratic nature of the assessment of commitment varies from one month to the next within
a range of +/− 5%. Showing the high volatility as months progress.
To reiterate, in addition to EIOPA solutions (cf. Planchet & Leroy [2013]), applying a
simple smoothing technique as seen in the Figure 7.1, lead us to a much more usable
solution in terms of managing risks. When looking at the curves, we logically note a
stabilization in the assessments, that evolves now by a trend, which reflects in this case
a decline in interest rates. We can as well note that, the smoothed 12 and 24 curves
are below the annuity curve for the majority of the corresponding months, this is related
to the severe decrease in interest rates throughout the months (see Figure 7.2) due to
the Eurozone crisis and most specifically, Greek government-debt crisis that has widely
affected the European Union.

Figure 7.2: Monthly Spot Rates
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7.2.2 Balance Sheet Exposure

Under the context of Solvency II Framework and the new international accounting stan-
dard1, IAS19 states that the pension liabilities, must be defined by market valuation and
that the converse of pension liabilities to be taken up in the financial statement of the
company. Of course, this means that any volatility in the assets will be felt in the corpo-
ration’s financial.

The interest-rate exposure arises because rates fluctuate from day to day and contin-
uously over time. Where an asset is marked at a fixed rate, a rise in rates will reduce
its NPV and so reduce its value to the insurance company. This is intuitively easy to
understand, because the asset is now paying a below-market rate of interest. Or we can
think of it as a loss due to opportunity cost foregone, since the assets are earning below
what they could earn if they were employed elsewhere in the market. The opposite applies
if there is a fall in rates: this causes the NPV of the asset to rise. Even for the simplest
insurance operation, we can check that this will produce a net mismatch between assets
and liabilities as we are going to see further in this work.

The objective is to eliminate the volatility of liabilities caused by the assets backing up the
insurance commitments. Indeed, in the case of long-duration liabilities, invested assets
are typically composed of bonds which market values are subject to credit risk, liquidity
risk and default risk. But these assets are purchased in a primary objective to neutralize
interest rate risk and not to be sold. Fluctuations in market value due to movements in
interest rates does not constitute an efficient economic information to manage our Balance
Sheet exposure since only the default of the counterparty is the real risk we are exposed to.

Our interest in this section, is to attempt and stabilize the balance sheet exposure, by try-
ing to synchronize the volatility of assets with the one of liabilities. For the actual balance
sheet of the company, we are going to identify the Net-Asset-Value which is defined as the
difference between the market-consistent value at time t, Vt(At) of the assets At and the
discounted value (risk-free yield curve) Vt(Lt) of the liabilities Lt, NAVt = Vt(At)−Vt(Lt).

In this work, our asset portfolio is being invested on n =
Lx+h

Lx

number of zero-coupon

bonds, where the
∑

h≥1

P (0, h)
Lx+h

Lx

represent the price of our portfolio discounted by

monthly market rates of French government bonds dated between August 2011 and July
2012 (12 months). As for the liability part, we calculate the capital constituting of a life
Annuity Immediate at age of 65 in arrears, with the use of the French mortality table
TH00-02 and discounted using Government bond, nominal, all triple A issuer companies
provided by European Central Bank2 for the same dates. The use of two different yield
curves generates an Asset/Liability mismatch scenario. Not to forget that the payment
stream from the issuer to the annuitant has an unknown duration based principally upon
the date of death of the annuitant, where the contract will be terminated.

1URL: www.ifrs.org
2URL: www.ecb.europa.eu
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The rates are as well fitted using Nelson-Siegel estimation technique . We complete this,
by calculating the average curve of the 24 months prior to the evaluation and calculate
the NAV at time t related to:







NAV1 : Asset− Liability
NAV2 : Asset smoothed− Liability smoothed
NAV3 : Asset− Liability smoothed

The high instability generated in the Balance Sheet, tends to complicate the situation
of the insurance company and its risk control. In a way, we are investing our Asset in
zero-coupon bond that present some spread compared to the market, which is usually
explained by credit risk, default risk and liquidity risk of the bond issuer. On the other
hand, seeing that we are tending to hold our bond until maturity, the only risk assigned
to it would be the default of the counterparty, (Downgrading the bond value would not
influence us in any risky way and selling the bond before maturity is of no importance as
well). Moreover, all these risks are reflected in the market price of the assets. Therefore,
if assets are valued at market value then they will be underrated because the insurer is
only exposed to the default risk of the issuer. However, an increase in the spread leads
to a decrease in our Asset side, but our Liability, (discounted by the use of the risk-free
yield curve), stays the same, which creates a deficiency that we are not responsible of.
At the end, and since in our case, only counterparty default is the real risk, the coverage
of commitments is submitted to variations which the cause is only partially linked to our
risk effectively supported (cf. Planchet & Leroy [2013]).

Asset Liability NAV

Date Instantaneous Smoothed Instantaneous Smoothed NAV1 NAV2 NAV3
Aug-11 11.907 11.565 12.376 11.778 -0.469 -0.213 0.129
Sep-11 12.122 11.599 12.695 11.824 -0.572 -0.225 0.298
Oct-11 11.585 11.615 12.382 11.863 -0.797 -0.248 -0.277
Nov-11 11.378 11.616 12.145 11.891 -0.767 -0.274 -0.513
Dec-11 11.772 11.639 12.627 11.945 -0.855 -0.306 -0.173
Jan-12 11.675 11.655 12.622 11.991 -0.947 -0.336 -0.316
Feb-12 11.878 11.672 12.661 12.033 -0.783 -0.361 -0.155
Mar-12 11.922 11.691 12.699 12.076 -0.777 -0.386 -0.155
Apr-12 11.872 11.700 12.791 12.119 -0.919 -0.419 -0.246
May-12 12.512 11.723 13.484 12.171 -0.972 -0.449 0.341
Jun-12 12.071 11.733 12.932 12.200 -0.861 -0.467 -0.128
Jul-12 12.697 11.766 13.466 12.296 -0.768 -0.530 0.401

Table 7.2: Balance Sheet asset, Liability and NAV calculation

Figure 7.3 illustrates the different NAV related to smoothed and non-smoothed Asset
Liability calculation through all 12 Months.
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Figure 7.3: NAV Calculation

7.2.2.1 Restructuring the Yield Curve

The volatility of interest rates have resulted a debate amongst insurers on how to evaluate
their Balance Sheet. In the previous sections, we have already emphasized the role of risks
encountered in reality and their effect on our Balance Sheet. In this part, we are going
to change the weights given to our yield curves and expose another way of tackling the
subject.
We have an insurance Liability labeled by the ECB spot rates and we are investing on a
number of zero-coupon bonds evaluated by the use of the French Government rates.
We used the monthly market rates dated between September 2004 and July 2012 and
calculated the capital constituting a life Annuity Immediate at age of 65 in arrears, with
the use of the French mortality table TH00-02, this capital ax is then invested in zero-
coupon bonds, so that at t = 0 our Assets are equal to the Liability. To be able to
reconstruct our yield curve, we are going to assume that our Liability is always stable
with a life annuity immediate for a 65 years in arrears.
In another way, for a month to the other, our balance is being compensated which means
that every exit is being replaced by an entry invested in the yield curve month. Hence,
our entry flow α for a given month t would be:

αt = f( 1
12

qx, Curvet) = 1
12
qx.axt

Where,

• 1
12

qx = 1− (1− qx)
1/12, is the probability that a person at the age of x = 65, would

die within a month;
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• axt =
∑

h≥1

P (0, h)
Lx+h

Lx

, for the month t in consideration.

At the end, we would have the following recurrence relation:

{
Curve0 = Yield Curve of the first month September 2004
Curvet = (1− αt)Curvet−1 + αtCurvet, for t ≥ 1

This application, generates a new reconstructed yield curve, allowing our liability to
be discounted with the use of a new yield curve that is much coherent with our Portfolio
selected and can neutralize the variations and exposure of our balance sheet as Table 7.3
and Figure 7.4 show us, by only representing the last 12 months of our calculations.
We have to mention that the rates generated are as well fitted using Nelson-Siegel ML
estimation technique. The NAV calculated are related to:

Asset Liability NAV

Date Instantaneous Smoothed Instantaneous Smoothed NAV1 NAV2 NAV3
Aug-11 11.907 11.179 12.269 11.337 -0.362 -0.159 0.570
Sep-11 12.122 11.192 12.569 11.361 -0.447 -0.169 0.761
Oct-11 11.585 11.201 12.271 11.379 -0.685 -0.178 0.206
Nov-11 11.378 11.209 12.093 11.389 -0.715 -0.181 -0.012
Dec-11 11.772 11.216 12.583 11.420 -0.811 -0.204 0.352
Jan-12 11.675 11.225 12.618 11.425 -0.943 -0.200 0.250
Feb-12 11.878 11.231 12.603 11.446 -0.725 -0.215 0.432
Mar-12 11.922 11.248 12.703 11.475 -0.782 -0.228 0.446
Apr-12 11.872 11.257 12.749 11.499 -0.877 -0.242 0.373
May-12 12.512 11.277 13.443 11.532 -0.931 -0.255 0.980
Jun-12 12.071 11.290 12.848 11.549 -0.777 -0.259 0.522
Jul-12 12.697 11.316 13.396 11.590 -0.699 -0.274 1.107

Table 7.3: NAV Calculation by restructuring the Yield Curve







NAV1 : Asset− Liability
NAV2 : Asset smoothed− Liability smoothed
NAV3 : Asset− Liability smoothed

Figure 7.5, displays all resulted curves in a way to compare the different NAV
calculated. Reconstructing the Yield curve in the way explained in this section, granted
the balance sheet throughout the months, less exposure by trying and synchronizing the
asset and liability sides.

On the other hand, Figure 7.6 shows the instantaneous and restructured smoothed
capital calculation which have been discounted with the use of French Government bonds
OAT from September 2004 till July 2012.

141
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Figure 7.4: NAV Calculated by restructuring our Yield Curve

Figure 7.5: Compared NAV Curves

7.2.2.2 Sensitivity to the age of the portfolio

To check the influence of the weights calculated to our yield curves, we will take 3 different
categories of ages with x = 65, x = 75 and x = 85.
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Figure 7.6: NAV Calculated by restructuring our Yield Curve

We have:

Curvet = (1− αt)Curvet−1 + αt
︸︷︷︸

Curvet

= (1− αt)(1− αt−1)Curvet−2 + (1− αt)αt−1
︸ ︷︷ ︸

Curvet−1 + αtCurvet

= (1− αt)(1− αt−1)(1− αt−2)Curvet−3 + (1− αt)(1− αt−1)αt−2
︸ ︷︷ ︸

Curvet−2 +

(1− αt)αt−1Curvet−1 + αtCurvet

=
...

=
t∏

i=1

(1− αi)Curve0 +
t−1∑

i=1

αt−i

t∏

k=t−i+1

(1− αk)

︸ ︷︷ ︸

Curvet−i + αtCurvet, for t ≥ 1

So we would have the weights for each Curve:

t −→ αt

t− 1 −→ (1− αt)αt−1

t− 2 −→ (1− αt)(1− αt−1)αt−2

...

t− i −→ αt−i

t∏

k=t−i+1

(1− αk)

At the end, Figure 7.7 shows the sensitivity to different ages of the Portfolio, high-
lighting as well the fact that by age growth, the weights given to past curves decrease and
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those given to recent curves increase. As for the weighted durations Dx =
n∑

i=0

weighti× i,

we obtain: D65 = 26.9, D75 = 25.3 and D85 = 19.6.

Figure 7.7: Age Sensitivity

7.2.2.3 Stress Test

To test the behavior of our Asset Liability Management, we will stress test our Liability
Portfolio consisting of a Life annuity immediate stable for the age of 65. The idea is that,
given a particular month, 30% of our Portfolio will be extracted. Hence, showing the
direct effect on our Balance Sheet. Table 7.4, shows the interaction between the Asset(A)
side with the Liability(L) and the consequence on the Equity(E).

Asset (A) Liability (L)

3− Required liquidation α% of Assets to cover step 1 1− Shock by 30% on a given month

4− (1− α)%A must cover the remaining payments of L 2− 70%L is the remaining value of our Liability

Equity (E)
i) If α = 30% −→ E is stable

ii) If α < 30% −→ E is increased
iii) If α > 30% −→ E is decreased

Table 7.4: Balance Sheet exposure with a shock

We will assume that on September 2006, an unexpected exit of 30% of our Liability
Portfolio has been made, (having the reconstructed yield curve see section 2.2.1). The
insurer has in this case to sell a part α% of his assets in a way to pay for the unplanned
departures. Regardless of our mortality table, Figure 7.8 displays the amount of yearly
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payments to be made given that a shock happened, we see that on September 2006 where
the stress scenario appeared, the insurer had to pay about 4.33 e, which is decomposed
of the yearly one euro amount that has to be regularly made and the market rate value
of the 30% exit that generates an amount of 3.33 e.
On the other hand, we must as well sell a part of our Zero-Coupon, that generates the
same amount. Hence, given the market value at the date: α = 29.6%, which means that
29.6% of our Assets have to be sold, enabling us to absorb the shock.
At the end we must say that, since the market was in our favor with an α < 30%, we
have gained a bit from this situation, but this is not the case all the time. So in a way,
we are exposed to a pure interest rate risk.

Figure 7.8: Yearly payments given a shock of 30%

Now if we consider that our Portfolio is not stable by taking into consideration the
mortality table required at the age of 65, this situation will complicate a bit more our
stress test. Additionally, having ECB yield curve for our Liability and French Government
for the Asset, will change our calculations. On one hand, given our market values at the
stress date (September 2006), we would be obliged to sell 30.2% of our Assets allowing
us to cover the unplanned payments. On the other hand, we find ourselves unable to
cover the yearly payments afterwards which influence our Equity, as already explained in
Table 7.4. Now since we took mortality into consideration, the new scheme would differ,
and instead of paying a fixed amount throughout the years, our payments would vary

regarding the number of living people
Lx+h

Lx

at year h, as we will see in Figure 7.9, the

yearly payments would correspond to:
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





September 2005 :
Lx+1

Lx

September 2006 :
Lx+2

Lx

(1 + 0.3ax+2)

September 2007 : 0.7
Lx+3

Lx

September 2008 : 0.7
Lx+4

Lx

· · · · · ·

Figure 7.9: Yearly variable payments given a shock of 30%
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7.3 Conclusion

In this chapter, we have emphasized the high impact of volatility, seen in market values,
on our calculations. Targeting to solve the volatility issue, the EIOPA proposed many
solutions. Accordingly, we have decided in this work to focus more on the conceptual
framework of our calculation and try to limit the volatility of our estimation by providing
a simple proposal of correction, where we apply the moving average technique to stabilize
the volatility and smooth our jumping curves.

On the second part, we proposed another method to synchronize our balance sheet, where
we reconstructed the yield curve in a way to investigate a market-consistent valuation of
insurance liabilities that neutralize changes and stabilize the balance sheet exposure.

At the end, we showed the behavior of our Asset Liability Management by applying
a stress test in order to spot the interaction between the Asset side with the Liability and
the consequence on the Equity.

Hence, calling attention to the reflections on assumptions of the calculation instead of
focusing on the so called hypothesis ”consistent with market values”, would be more
appropriate and effective than to complicate models and generate additional instability.
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General Conclusion

Operational risk quantification is a challenging task both in terms of its calculation as well
as in its organization. Regulatory requirements, (Basel III for banks and solvency II for
insurance companies), are put in place to ensure that financial institutions mitigate this
risk. Many calculation criteria have been developed, ranging from Basic to Standardized
to Advanced Measurement Approaches, in addition to a wide range of qualitative regu-
latory framework which enhance the whole set of managing, mitigating and quantifying
operational risk.

In this thesis, we have provided a full overview of operational risk by presenting both
qualitative aspects and quantitative theories and approaches for some financial institu-
tions wishing to model this type of risk. Additionally, we displayed the highly importance
in putting attention on the consequences of estimation risk in model development, which
is a particular case of operational risk.

The first part was dedicated to point out the different perspectives of operational
risk, that have risen to the point of holding a significant position in risk assessment, as
seen by the fact that many banking failures was the result of operational losses. This
has incited the regulators both Basel Accords and Solvency Directive, to propose some
quantification methods ensuring that banks and insurance companies are mitigating this
risk. Additionally, a full overview of the quantification techniques and an outline man-
agement of operational risk in a qualitative aspect is given throughout the chapters of
this part. Not to forget the role that insurance plays in diminishing the financial impact
of operational losses of a bank. The transfer of a risk to an insurer can contribute to a
better performance preventing critical situation and covering a variety of losses which has
been as well noted in the last chapters of this part. Moreover, we show the necessity of a
good judgment to make sensible choices but these choices will influence results. Under-
standing this influence, should be important. We concluded this part, by highlighting the
use of external data which is absolutely important to the implementation of an advanced
method for calculating operational capital charge like LDA, we try to scale the severity
of external losses for integration with internal data and finished by presenting three ex-
amples of losses extracted from our external loss database that showed in detail how the
scaling is done and how should the losses be normalized.

The risk of not accurately estimating the amount of future losses is an essential
issue in risk measurements. Sources of estimation risk include errors in estimation of
parameters which can affect directly the VaR precision. Estimation risk in itself is related
to operational risk in a way that the losses are arising from estimation errors. Based
on this, we were interested in exposing the estimation risk in its different aspects from
measuring the error induced on the SCR by the estimation error of the parameters to
check the market consistency and economic valuation. Also, and since Solvency Directive
has chosen a framework for the evaluation of technical provisions consistent with market
values: the interest rate curve is to be used for discounting purposes. The implementation
of this framework in practice leads to important volatility assessments that might have
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high consequences on balances. Furthermore, we presented a new approach for fitting
a yield curve, that led to a robust assessment of risk. Thus, eliminating the potential
loss of accuracy from estimation error when calculating a Value-at-Risk. We illustrated,
a simple proposal of correction, where we apply the moving average technique and try
to reconstruct a new Yield Curve in a way, to stabilize the volatility and smooth our curve.

To reiterate, quantifying operational risk is not easy at all, an attention has to
be made regarding all measurement techniques and methods used, so that a robust capi-
tal allocation is generated. Meeting the requirements of advanced models is challenging,
but given the importance of Operational risk it is a must. We have drawn the attention
in our study to the importance of operational risk and more particularly to the estima-
tion risk that we are facing. Many banks and financial institutions, developed models to
compute the value-at-risk and resulting capital requirement, but we know that any model
is by definition an imperfect simplification and in some cases a model will produce results
that are bias due to parameter estimation errors. For instance, this point is illustrated
in Boyle and Windcliff [2004] for pension plans investment and in Planchet and
Therond [2012] for the determination of Solvency capital in the Solvency II Framework.
One of the consequences of estimation risk, is that the capital requirement may be un-
derestimated. So it would be more appropriate in reality to privilege simple and prudent
models and avoid complexing them, in a way to prevent more estimation errors that might
have severe influences on our models.

At the end, the work described in this thesis opens the way to other perspectives.
We have indeed shown the importance of estimation risk in our work, yet we did not treat
any mitigation of that risk. In addition, since a model can at the best be an approximate
representation of the real world, risk always exist and must be carefully treated. We
need to be aware of the impact of model uncertainty on our models. Model risk should
be treated with extreme caution. We can mention the paper, Difficult Risk and Capital
Models, Frankland et al. [2013], which focuses on four specific types of error in model
risk.

Another perspective for this work might be to check the judgment exercise of the
experts which create more biases in problem solving then solutions, since decisions are
usually based on beliefs concerning the likelihood of uncertain events. In our work, judg-
ments were needed to make sensible choices but these choices have influenced our results.
Understanding this influence, should be an important aspect of capital calculations, since
it created an estimation risk that has highly influenced our capital requirement. More on
this topic could be found with Tversky & Kahneman [1974], [2000] and Kahneman
[2003] which focuses on experts judgment under uncertainty.
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Appendix A

Qualifying Criteria for Standardized
Approach for Operational Risks

• The bank must have an operational risk management system with clear respon-
sibilities assigned to an operational risk management function. The operational
risk management function is responsible for developing strategies to identify, assess,
monitor and control/mitigate operational risk; for codifying firm-level policies and
procedures concerning operational risk management and controls; for the design and
implementation of the firms operational risk assessment methodology; for the design
and implementation of a risk-reporting system for operational risk.

• As part of the banks internal operational risk assessment system, the bank must
systematically track relevant operational risk data including material losses by busi-
ness line. Its operational risk assessment system must be closely integrated into the
risk management processes of the bank. Its output must be an integral part of the
process of monitoring and controlling the banks operational risk profile. For in-
stance, this information must play a prominent role in risk reporting, management
reporting, and risk analysis. The bank must have techniques for creating incentives
to improve the management of operational risk throughout the firm.

• There must be regular reporting of operational risk exposures, including material
operational losses, to business unit management, senior management, and to the
board of directors. The bank must have procedures for taking appropriate action
according to the information within the management reports.

• The banks operational risk management system must be well documented. The
bank must have a routine in place for ensuring compliance with a documented set
of internal policies, controls and procedures concerning the operational risk man-
agement system, which must include policies for the treatment of non-compliance
issues.

• The banks operational risk management processes and assessment system must be
subject to validation and regular independent review. These reviews must include
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both the activities of the business units and of the operational risk management
function.

• The banks operational risk assessment system (including the internal validation
processes) must be subject to regular review by external auditors and/or supervisors.

For more details on Standardized Approach qualifying criteria and measurements
see BCBS[2005].
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Appendix B

Business Lines and Event types

Basel II Business Lines (BL) Basel II Event Types

Corporate finance (β1 = 0.18) Internal fraud

Trading & Sales (β2 = 0.18) External fraud

Retail banking (β3 = 0.12) Employment practises and workplace safety

Commercial banking (β4 = 0.15) Clients, products and business practices

Payment & Settlement (β5 = 0.18) Damage to physical assets

Agency Services (β6 = 0.15) Business disruption and system failures

Asset management (β7 = 0.12) Execution, delivery and process management

Retail brokerage (β8 = 0.12)

Table B.1: Basel II 8 Business Lines × 7 Event Types
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Appendix C

Detailed loss event type classification

Annex 1: Loss event type classification

Event-Type Category (Level 1) Definition Categories (Level 2) Activity Examples (Level 3)

Unauthorised Activity Transactions not reported (intentional)
Trans type unauthorised (w/monetary loss)
Mismarking of position (intentional)

Theft and Fraud Fraud  / credit fraud / worthless deposits
Theft / extortion / embezzlement / robbery
Misappropriation of assets
Malicious destruction of assets
Forgery
Check kiting
Smuggling
Account take-over / impersonation / etc.
Tax non-compliance / evasion (wilful)
Bribes / kickbacks
Insider trading (not on firm’s account)

Internal  fraud Losses due to acts of a type intended to defraud,
misappropriate property or circumvent regulations,
the law or company policy, excluding diversity/
discrimination events, which involves at least one
internal party.

External fraud Losses due to acts of a type intended to defraud,
misappropriate property or circumvent the law, by a
third party

Theft and Fraud Theft/Robbery
Forgery
Check kiting

Systems Security Hacking damage
Theft of information (w/monetary loss)

Employee Relations Compensation, benefit, termination issues
Organised labour activity

Safe Environment General liability (slip and fall, etc.)
Employee health & safety rules events
Workers compensation

Employment Practices and
Workplace Safety

Losses arising from acts inconsistent with
employment, health or safety laws or agreements,
from payment of personal injury claims, or from
diversity / discrimination events

Diversity & Discrimination All discrimination types

Clients, Products & Business
Practices

Losses arising from an unintentional or negligent
failure to meet a professional obligation to specific
clients (including fiduciary and suitability
requirements), or from the nature or design of a
product.

Suitability, Disclosure & Fiduciary Fiduciary breaches / guideline violations
Suitability / disclosure issues (KYC, etc.)
Retail consumer disclosure violations
Breach of privacy
Aggressive sales
Account churning
Misuse of confidential information
Lender Liability

Improper Business or Market Practices Antitrust
Improper trade / market practices
Market manipulation
Insider trading (on firm’s account)
Unlicensed activity
Money laundering

Table C.1: Detailed loss event classification 1
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Event-Type Category (Level 1) Definition Categories (Level 2) Activity Examples (Level 3)

Product Flaws Product defects (unauthorised, etc.)
Model errors

Selection, Sponsorship & Exposure Failure to investigate client per guidelines
Exceeding client exposure limits

Advisory Activities Disputes over performance of advisory activities

Damage to Physical Assets Losses arising from loss or damage to physical
assets from natural disaster or other events.

Disasters and other events Natural disaster losses
Human losses from external sources (terrorism,
vandalism)

Business disruption and system
failures

Losses arising from disruption of business or system
failures

Systems Hardware
Software
Telecommunications
Utility outage / disruptions

Execution, Delivery & Process
Management

Losses from failed transaction processing or process
management, from relations with trade
counterparties and vendors

Transaction Capture, Execution &
Maintenance

Miscommunication
Data entry, maintenance or loading error
Missed deadline or responsibility
Model / system misoperation
Accounting error / entity attribution error
Other task misperformance
Delivery failure
Collateral management failure
Reference Data Maintenance

Monitoring and Reporting Failed mandatory reporting obligation
Inaccurate external report (loss incurred)

Customer Intake and Documentation Client permissions / disclaimers missing
Legal documents missing / incomplete

Customer / Client Account Management Unapproved access given to accounts
Incorrect client records (loss incurred)
Negligent loss or damage of client assets

Trade Counterparties Non-client counterparty misperformance
Misc. non-client counterparty disputes

Vendors & Suppliers Outsourcing
Vendor disputes

Table C.2: Detailed loss event classification 2
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Appendix D

Moments calculation for the
Generalized Pareto Distribution

The Generalized Pareto Distribution, has two parameters with the distribution function:

Gξ,σ(x) =







1− (1 +
ξx

σ
)
−
1

ξ if ξ 6= 0

1− e
−
x

σ if ξ = 0

where σ > 0, and where x ≤ 0 when ξ ≤ 0 and 0 ≤ x ≤ −σ
ξ
when ξ < 0.

The mean and variance of the Generalized Pareto distribution calculation E(X) and V (X)
are:

For σ > 0, 0 < ξ < 1 and x ≤ 0,

E(X) =

∫ +∞

0

(1− F (x)) dx

=
σ

ξ

∫ +∞

0

ξ

σ

(

1 + x
ξ

σ

)− 1
ξ

dx

=
σ

ξ











(

1 + x
ξ

σ

)−
1

ξ
+ 1

−1

ξ
+ 1











+∞

0

=
σ

ξ







1
1

ξ
− 1







=
σ

1− ξ
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and we calculate the variance for ξ <
1

2
,

E(X2) = 2

∫ +∞

0

yP (X > y)dy

= 2

∫ +∞

0

y (1− F (y)) dy

= 2

∫ +∞

0

y

(

1 + y
ξ

σ

)− 1
ξ

dy

= 2












yσ

ξ − 1

(

1 + y
ξ

σ

)1−
1

ξ






+∞

0

− σ

ξ − 1

∫ +∞

0

(

1 + y
ξ

σ

)1− 1
ξ

dy







=
−2σ

ξ − 1

∫ +∞

0

(

1 + y
ξ

σ

)1− 1
ξ

dy

=
−2σ2

ξ(ξ − 1)





(
1 + y ξ

σ

) 2ξ−1
ξ

2ξ−1
ξ





+∞

0

=
2σ2

(ξ − 1)(2ξ − 1)

which give us,

V (X) = E
(
X2
)
− [E (X)]2

=
2σ2

(ξ − 1)(2ξ − 1)
− σ2

(ξ − 1)2

=
(ξ − 1)(2σ2)− (2ξ − 1)σ2

(ξ − 1)2(2ξ − 1)

=
σ2

(ξ − 1)2(1− 2ξ)
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Appendix E

Derivation of MLE Estimators for
LogNormal Parameters

Assuming i.i.d. sample of n loss observations x1, x2, ..., xn from the LogNormal distribu-
tion.

f(x, µ, σ) =
1√
2πσx

exp{−1

2

(
ln(x)− µ

σ

)2

}, for x, σ ∈ IR+∗

Wemaximize the function l(θ|x) =
n∑

i=1

ln[f(xi|µ, σ)] by fiding µ̂ and σ̂ such that
∂l(θ|x)
∂µ

=

0 and
∂l(θ|x)
∂σ

= 0.

We have,

l(θ|x) =
n∑

i=1

ln[f(xi|µ, σ))]

=
n∑

i=1

ln(1)− ln(
√
2πσxi)−

1

2

(
ln(xi)− µ

σ

)2

=
n∑

i=1

−ln(
√
2π − ln(σ)− ln(xi)−

[ln(xi)− µ]2

2σ2

0 =
∂l(θ|x)
∂µ

=
n∑

i=1

∂

∂µ

(

− [ln(xi)− µ]2

2σ2

)

=
n∑

i=1

2[ln(xi)− µ]

2σ2
=

n∑

i=1

[ln(xi)− µ]

σ2
=

1

σ2

n∑

i=1

ln(xi)−
nµ

σ2

nµ =
n∑

i=1

ln(xi) so, µ̂ =

n∑

i=1

ln(xi)

n

and,
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0 =
∂l(θ|x)
∂σ

=
n∑

i=1

∂

∂σ

(

− ln(σ) − [ln(xi)− µ]2

2σ2

)

=
n∑

i=1

− 1

σ
− (−2)[ln(xi)− µ]2

2σ3
=

n∑

i=1

[ln(xi)− µ]2

σ3
− n

σ

n

σ
=

1

σ3

n∑

i=1

[ln(xi)− µ]2, so nσ2 =
n∑

i=1

[ln(xi)− µ]2

at the end, σ̂2 =

n∑

i=1

[ln(xi)− µ̂]2

n
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Appendix F

Simple Credibility Model

Given Θ = θ, random variables X1, X2, ..., Xn are independent and identically distributed
with

µ(θ) = E[Xj|Θ = θ]

and,
σ2(θ) = V ar[Xj|Θ = θ].

Θ is a random variable with µ0 = E[µ(Θ)], and τ 2 = V ar[µ(θ)].
The aim of credibility estimators is to find an estimator of µ(Θ) which is linear in
X1, X2, ..., Xn:

µ̂(Θ) = â0 + â1X1 + ...+ ânXn,

and minimize quadratic loss function:

{â0, ..., ân} = min
a0,...,an

E
[
(µ(θ)− a0 − a1X1 − ...− anXn)

2
]

The invariance of the distribution of X1, ..., Xn under permutations of Xj, gives â1 = â2 =
... = ân := b
Then, by solving the minimization problem for two parameters a0 and b by setting corre-
sponding partial derivatives with respect to a0 and b to zero, we obtain:

µ̂(Θ) = ωX̄ + (1− ω)µ0

where,

ω =
n

n+ σ2

τ2

and,

X̄ =
1

n

n∑

i=1

Xi.
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Appendix G

Jeffreys prior distribution

Jeffreys prior attempts to represent a near-total absence of prior knowledge that is pro-
portional to the square root of the determinant of the Fisher information:

π(ω) ∝
√

|I(ω)|,

where I(ω) = −E

(
∂2 lnL(X|ω)

∂ω2

)

.

Jeffreys prior for Poisson(λ) and Lognormal(µ, σ) dis-

tributions

Let N →֒ P(λ), the poisson density function is: f(k|λ) = P(N = k) =
e−λλk

k!
with,

∂2 ln f(k|λ)
∂λ2

= − k

λ2

and consequently, π(λ) ∝
√
λ

λ
.

Let X →֒ LN (µ, σ2), with fX(x) =
1

x
√
2πσ2

exp{−(ln x− µ)2

2σ2
}.

Hence, by letting ω = (µ, σ) and calculating the corresponding partial derivatives to
ln fX(x) we obtain:

I(ω) =

[

σ−2 0

0 1/2 σ4

]

As a consequence, π(µ) ∝ 1

σ2
∝ 1 and π(ω) =

1√
2σ6

∝ 1

σ3
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Appendix H

MCMC Metropolis-Hastings
algorithm

H.1 Applying MCMC with Metropolis-Hastings al-

gorithm for λ

1- Initialize λ0 =
λID + λSA

2

2- Update from λi to λi+1 (i = 1, ..., n) by

– Generating λ →֒ U(λSA, λID)

– Define ζ = min

(
f(λ|nSA, nID)

f(λi|nSA, nID)
, 1

)

– Generate Rnd →֒ U(0, 1)

– If Rnd ≤ ζ, λi+1 = λ, else λi+1 = λi

3- Remove the first 3000 iterations, so that the chain is stationary (burn-in effect).

H.2 Applying MCMC with Metropolis-Hastings al-

gorithm for µ

1- Initialize µ0 = µID

2- Update from µi to µi+1 (i = 1, ..., n) by

– Generating µ →֒ U(0, 12)
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– Define ζ = min

(
f(µ|x, y)
f(µi|x, y)

, 1

)

– Generate Rnd →֒ U(0, 1)

– If Rnd ≤ ζ, µi+1 = µ, else µi+1 = µi

3- Remove the first 3000 iterations, so that the chain is stationary (burn-in effect).

H.3 Applying MCMC with Metropolis-Hastings al-

gorithm for ω = (µ, σ)

1- Initialize µ0 = µID and σ0 = σID

2- Update from µi to µi+1 and σi to σi+1, (i = 1, ..., n) by

– Generating µ →֒ U(0, 12) and σ →֒ U(0, 7)

– Define ζ = min

(
f(µ, σ|x, y)
f(µi, σi|x, y)

, 1

)

– Generate Rnd →֒ U(0, 1)

– If Rnd ≤ ζ, µi+1 = µ and σi+1 = σ else µi+1 = µi and σi+1 = σi

3- Remove the first 3000 iterations from both distributions, so that the chains is sta-
tionary (burn-in effect).

For more on Markov Chain Monte Carlo and Metropolis-Hastings algorithm see Robert[2007].
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Appendix I

The Inverse of Fisher Information
Matrix

The calculation of the Inverse Fisher Information Matrix: Σ =

(

−E

[
∂2 lnLω

∂ω∂ω′

])−1

ω=ω0

,

was done by the use of the Log-Likelihood function:

ln(L) = ln

(
1

σ1
√
2π

)n

− 1

2σ2
1

n∑

i=1

(ri − ri−1β − θ(1− β))2

Now by deriving the Log-Likelihood function we obtain the following:

∂2

∂β2
ln(L) = −1/2

2nθ2 +
n∑

i=1

2 ri−1
2 − 4 ri−1θ

σ1 2

∂2

∂θ2
ln(L) = −1/2

2n− 4nβ + 2nβ2

σ1 2

∂2

∂σ1 2
ln(L) = n

σ1 2
− 3

nθ2 − 2nθ2β + nθ2β2 +
n∑

i=1

ri
2 − 2 riri−1β − 2 riθ + 2 riβ θ + ri−1

2β2 + 2 ri−1β θ − 2 ri−1β
2θ

σ1 4

∂2

∂θ∂β
ln(L) = −1/2

−4nθ + 4nθ β +
n∑

i=1

2 ri + 2 ri−1 − 4 ri−1β

σ1 2

∂2

∂σ1∂β
ln(L) =

−2nθ2 + 2nθ2β +
n∑

i=1

−2 riri−1 + 2 riθ + 2 ri−1
2β + 2 ri−1θ − 4 ri−1β θ

σ1 3

∂2

∂σ1∂θ
ln(L) =

2nθ − 4nθ β + 2nθ β2 +
n∑

i=1

−2 ri + 2 riβ + 2 ri−1β − 2 ri−1β
2

σ1 3

∂2

∂β∂θ
ln(L) = −1/2

−4nθ + 4nθ β +
n∑

i=1

2 ri + 2 ri−1 − 4 ri−1β

σ1 2
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∂2

∂β∂σ1
ln(L) =

−2nθ2 + 2nθ2β +
n∑

i=1

−2 riri−1 + 2 riθ + 2 ri−1
2β + 2 ri−1θ − 4 ri−1β θ

σ1 3

∂2

∂θ∂σ1
ln(L) =

2nθ − 4nθ β + 2nθ β2 +
n∑

i=1

−2 ri + 2 riβ + 2 ri−1β − 2 ri−1β
2

σ1 3

We can easily check that the matrix is symmetric, since:

∂2

∂θ∂β
ln(L) = ∂2

∂β∂θ
ln(L), ∂2

∂σ1∂β
ln(L) = ∂2

∂β∂σ1
ln(L) and ∂2

∂σ1∂θ
ln(L) = ∂2

∂θ∂σ1
ln(L).
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Appendix J

The Inverse of Fisher Information
Matrix for Nelson-Siegel Maximum
Likelihood Estimation Technique

The calculation of the Inverse Fisher Information Matrix: Σ =

(

−E

[
∂2 lnLω

∂ω∂ω′

])−1

ω=ω0

,

was done by the use of the Log-Likelihood function:

ln(L) = −n
2

ln(2πσ2)− 1

2

n∑

i=1

(

Rt,i − R̂t,i

σ

)2

Now by deriving the Log-Likelihood function we obtain the following:

∂2

∂β0
2 ln(L) = − n

σ2

∂2

∂β1
2 ln(L) = −1/2

∑n
i=1 2

1
σ2mi

2τ2
− 4 e−miτ

σ2mi
2τ2

+ 2
(e−miτ)

2

σ2mi
2τ2

∂2

∂β2
2 ln(L) = −1/2

∑n
i=1 2

(−1+e−miτmiτ+e−miτ)
2

σ2mi
2τ2

∂2

∂τ 2
ln(L) = −1/2

∑n
i=1 2 riβ2mi

3e−miττ 3 − β0β2mi
3e−miττ 3 − 2 β0β1e

−miτmi
2τ 2 + 2 riβ1e

−miτmi
2τ 2 + ...

∂2

∂β0∂β1
ln(L) = −1/2

∑n
i=1 −2 e−miτ

σ2miτ
+ 2 1

σ2miτ

∂2

∂β0∂β2
ln(L) = −1/2

∑n
i=1 −2 e−miτ

σ2 − 2 e−miτ

σ2miτ
+ 2 1

σ2miτ
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∂2

∂β0∂τ
ln(L) = −1/2

∑n
i=1 2

miβ2e−miτ

σ2 + 2 β1e−miτ

σ2miτ2
+ 2 β1e−miτ

σ2τ
+ 2 β2e−miτ
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−4 β2
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2τ3

+
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β1(e−miτ)
2
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2τ3
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β1(e−miτ)

2

σ2miτ2

∂2

∂β2∂τ
ln(L) = −1/2

∑n
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β2e−miτ
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− 8
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2

σ2miτ2
+ 6 β1e−miτ
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2
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2
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∂β1∂β2
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i=1 −4 e−miτ

σ2mi
2τ2

− 2 e−miτ

σ2miτ
+ 2

(e−miτ)
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+ 2
(e−miτ)

2
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We can easily check the symmetry between the derivatives by calculating:

∂2

∂β1∂β0
ln(L), ∂2

∂β2∂β0
ln(L), ∂2

∂β2∂β1
ln(L), ∂2

∂τ∂β0
ln(L), ∂2

∂τ∂β1
ln(L), ∂2

∂τ∂β2
ln(L).

With the calculated Inverse Fisher information matrix for January, May and June 2012
respectively:









0.0002073524868 −0.0002092749170 −0.0003758479225 0.0001206084079

−0.0002092749170 0.0002113310112 0.0003791704355 −0.0001220492405

−0.0003758479225 0.0003791704355 0.0006828312441 −0.0002192919973

0.0001206084079 −0.0001220492405 −0.0002192919973 0.00007284896082








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







0.00000077287583 −0.00000097142986 0.00000060673452 −0.00002646070

−0.00000097142986 0.0000021353495 −0.0000042267498 0.000054060676

0.00000060673452 −0.0000042267498 0.000019597771 −0.00015296904

−0.00002646070 0.000054060676 −0.00015296904 0.0019702643

















0.00000045258754 −0.000000563330 0.00000019165506 −0.000011855585

−0.000000563330 0.0000011466567 −0.0000018390743 0.000022846680

0.00000019165506 −0.0000018390743 0.0000084197638 −0.000053622260

−0.000011855585 0.000022846680 −0.000053622260 0.00064884444








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µ̂SW
k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.1 Sensitivity for a0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2 Sensitivity for b0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3 Sensitivity for µ0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.4 Sensitivity for σ0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.5 MCMC for the parameter λ . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.6 MCMC for the parameter µ . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.7 MCMC for the parameters µ and σ . . . . . . . . . . . . . . . . . . . . . . 75
3.8 Different VaR Calculation for all MCMC Cases with unknown parameters . 77
3.9 Different VaR Calculation for Internal Data, MCMC General Case and

Scenario Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.10 Different VaR Calculation for all conjugate prior cases . . . . . . . . . . . . 77

4.1 Operational Risk Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2 Scenario Analysis Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.3 Scenario Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

179
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