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Abstract

This thesis is concerned with multi-objective sequential dedion making (MOSDM).

The motivation is twofold. On the one hand, many decision problems in thedomains
of e.g., robotics, scheduling or games, involve the optimization of sequees of decisions.
On the other hand, many real-world applications are most naturally formulated in terms
of multi-objective optimization (MOO).

The proposed approach extends the well-known Monte-Carlo tree sednc(MCTS)
framework to the MOO setting, with the goal of discovering several optmal sequences
of decisions through growing a single search tree. The main challenge ie propose a
new reward, able to guide the exploration of the tree although the MOO seting does not
enforce a total order among solutions.

The main contribution of the thesis is to propose and experimentally sudy two such
rewards, inspired from the MOQO literature and assessing a solution #h respect to the
archive of previous solutions (Pareto archive): the hypervolume initator and the Pareto
dominance reward.

The study shows the complementarity of these two criteria. The hyervolume indi-
cator su ers from its known computational complexity; however the proposed extension
thereof provides ne-grained information abut the quality of solutions with respect to the
current archive. Quite the contrary, the Pareto-dominance reward islinear but it provides
increasingly rare information.

Proofs of principle of the approach are given on arti cial problems and chalenges,
and conrm the merits of the approach. In particular, MOMCTS is able to d iscover
policies lying in non-convex regions of the Pareto front, contrasting \ith the state of
the art: existing Multi-Objective Reinforcement Learning algorit hms are based on linear-
scalarization and thus fail to sample such non-convex regions.

Finally MOMCTS honorably competes with the state of the art on the 2013 MOPT SP
competition.



%SUI’TE en Framals (extended abstract in French)

Cette these porte sur le probeme de la prise de decision aientielle multi-objectif. Les
algorithmes de la prise de cecisions quentielles, plus sgiquement fondes sur la recherche
Monte-Carlo arborescente (MCTS) [Kocsis and Szepeswari, 2006], ont & etendus au
cas multi-objectif en s'inspirant des indicateurs a base de popution propoes dans la
literature de l'optimisation multi-objectif, I'indicateur d* hypervolume et la relation de
dominance.

0.1 Contexte / Motivation

0.1.1 [ecision ®quentielle

La prise de cecision compose une partie importante de nos activies gotidiennes. La
prise de cecision repose gereralement sur une mesure d'ordréotal (comme la fonction
de ecompense), indiquant la qualie des decisionsa optimiser. Le probeme de la prise
de ckcision quentielle (SDM) est plus complexe en ce senaug les equences de cecision
optimales, aussi appekes politiques de decision ou strakgies, @ sont gereralement pas
formees en slectionnant la meilleure decision individuellea chaque etape : les decisions
qui composent la £quence optimale ne sont pas incependantes. Les plications typiques
de SDM incluent les jeux [Aliprantis and Chakrabarti, 2000], la programmation [Zhang
and Dietterich, 1995], et la robotique [Mahadevan and Connell, 1992].

Une des principales dicules du probeme SDM est la taille de | 'espace de
recherche, exponentielle en fonction de la longueur des fquess consiccees. Le but
de l'apprentissage par renforcement (RL), produire des squencede cecisions optimales
a lechelle globale, proede dans le cas gereral en identi ant la fonction de valeur attactee
a unetat ou une paire gtat,action), i.e. la somme des ecompenses que I'on peut esgerer
recevoir apes avoir visie cetetat, ou apes avoir e ectle ce tte action dans cetetat.

0.1.2 Optimisation multi-objectif

Incependamment, de nombreux probemes de cecision dans le mond eel impliquent de

multiples objectifs ; par exemple, un processus de fabrication @rchera souventa min-
imiser simultarement le colt et le risque de la production. Ces probemes sont appeks
optimisation multi-objectif (MOO). Pour un probeme de MOO non tri val, il n'existe pas
de solution unique qui optimise simultarement chaque objectif. Les fonctions objectifs
sont antagonistes. Deux solutions ne sont pas recessairement comparable par exemple,
un plan de production pourrait étre d'un codtelewe eta faibl e risque, et un autre de faible
colt eta haut risque. Les solutions qui ne peuvent pas étre aneloees relativementa un

objectif sans dcegrader les autres objectifs sont appekes les solains Pareto optimales ;
leur ensemble forme le front de Pareto. L'optimisation multi-objectif est largement ap-
pligiee dans de nombreux domaines de la science, y compris enecomie, en nances et



en ingenierie.

0.1.3 La prise de ckcision quentielle multi-objectif

Cette these est au carrefour de I'apprentissage par renforcement (B) et I'optimisation
multi-objectif (MOO). L'apprentissage par renforcement (RL) [Sutt on and Barto, 1998;
Szepes\ari, 2010] est un domaine mature al de nhombreux algorithmes avetes garanties
d'optimalie ontet proposes au prix d'un passagea lechelle g uelque peu limie. Il traite
des probemes SDM dans le cadre de processus de cecision de Mak@VDP). La recherche
Monte-Carlo arborescente (MCTS), ancee sur le cadre de bandit manigot, ou bandit
a bras multiples (MAB) [Robbins, 1985], esout le probeme du passage a lechelle des
algorithmes RL standard, avec d'excellents esultats dans nombren probemes de SDM
de taille moyenne, comme des jeux [Ciancarini and Favini, 2009] et la phi cation [Nakhost
and Muller, 2009]. Il proede par la construction ierative de I'arb re formalisant la quence
des cecisions. Son e cacie algorithmique est notamment reconnue par son application
au jeu de Go ; le programme MoGo aet salle comme une avanee fondameale dans le
domaine du jeu de Go par ordinateur [Gelly and Silver, 2007].

Motivee par le fait que de hombreuses applications dans le monde eetont naturelle-
ment formukes dans le cadre de I'optimisation multi-objectif (MO O), cette theseetudie le
probeme de la prise de cecision quentielle multi-objectf (MOSDM) a la ecompense as-
soceea unetat donre dans le MDP est d-dimensionelle au lieu de scalaire. L'apprentissage
par renforcement multi-objectif (MORL) aet appligie aux tach es MOSDM telles que le
contréle du niveau d'eau du lac [Castelletti et al., 2002], lequilibre entre la consommation
dénergie dans les serveurs web [Tesauro et al., 2007], plani cation d@rille [Yu et al.,
2008] et job-shop plani cation [Adibi et al., 2010].



0.2 Contributions Principales

0.2 Contributions Principales

Le pesent travail concerne la prise de dcecision multi-objectif dans le cadre de MCTS. i
releve le c& de ke nir un egle de slection de nud lorsque les ecompenses cumukes
sont d-dimensionnelles, en s'appuyant sur des indicateurs bieetudes de la literature
MOO. Les principales contributions sont les suivantes.

0.2.1 Algorithme MOMCTS

L'algorithme de la Recherche Monte-Carlo Arborescente Multi-Objetif (MOMCTS) aee
propog dans ce travail, dans lequel I'exploration de I'arbre MCTS aet modie pour tenir
compte de l'ordre partiel entre les n uds dans I'espace d'objectif multidimensionnel, et le
fait que le esultat souhait est un ensemble de solutions Pareto-ofimales (par opposition
a une solution optimale unique).

Dans chaque nud l'arbre de recherche de MOMCTS, une ecompensevectorielle
fsa = (rsait;rsa2; ' s:a:d) repesentant la ecompense moyenne dans chaque objectif
est maintenue, ainsi que le nombrens., de visites sur le n ud. Chaque arbre dans MOM-
CTS est construit en suivant les trois mémes phases que MCTS { lalpase de lection, la
phase de construction de I'arbre et la phase akatoire. A n de s'adapter la con guration
MOO, les modi cations apporees dans les trois phases sont peseres dans les sections
suivantes.

La phase de ®lection

La slection de n ud MOMCTS depend d'un score scalaire, qui c& nit un ordre total entre
les n uds avec des ecompenses multi-dimensionnelles. Dansectravail, nous proposons
deux scores dans la phase de slection de MOMCTS { l'indicateur dehypervolume et
la ecompense de dominance Pareto. Les deux scores appartiennent a Icatgorie des
fonctions de scalarisation fondees sur la population (section 4.2.3). llss'appuient sur
I'archive P, qui maintient les ecompenses vectorielles recueillies peatant le processus de
recherche de MOMCTS.

La phase de construction de l'arbre

Dans la phase de construction de l'arbre, les heuristics delargisement progressif (Pro-
gressif Widening, PW) et d'estimation rapide de la valeur d'action (RAVE) qui sont op-

tionellement utili’es dans MCTS (section 2.6.2) sont egulerem ent inegees dans MOM-

CTS. PW limite le nombre d'actions admissibles d'un nuda une val eur entere bn%;:abc,

avecb gereralement »>ea 2 ou 4. La ®lection de l'action dans la phase de construction

de l'arbre repose sur I'heuristique RAVE.

La phase akatoire

La phase akatoire est ealize de la méme manere que dans MCTS,sauf quea la n,
une ecompense vectorielleR est retourree. L'autre modi cation est que la fonction de



scalarisation base sur la population qui maintient I'archive P des ecompenses vectorielles
recues durant la recherche de MOMCTS Sans perte de gereralie, les points domires sont
supprines de l'archive P.

MOMCTS

Par rapporta MCTS, le modi cation principlale apporee dans MOMCTS concerne letape
de ®lection de nud. Le c& est detendre le criere mono-obj ectif de ®lection de n ud au
contexte multi-objectif. Comme indiqle, le noyau de la MOO est de ecugerer I'ordre total
entre les points de I'espace d'objectif multi-dimensionnel. Ladcon la plus simple de traiter
avec l'optimisation multi-objectif est de revenira l'optimisat ion mono-objectif, grace a
I'utilisation de la fonction de scalarisation. MOMCTS est caracerise par la scalarisation
des ecompenses vectorielles base sur la population des solutisppeedentes, 'archive P.
Contrairementa MCTS, qui estime la valeur de n uds selon la dist ribution de ecompenses
xe sur un seul objectif, MOMCTS estime la valeur de n uds avec des ecompensesa
plusieurs dimensions en fonction de leur contribution a I'archive P. Notons que cette
archiveevolue au cours du processus, ke nissant un objectif nonstationnaire au long du
processus de recherche.

Grace a l'utilisation de la fonction de scalarisation base sur la population, MOM-
CTS traite un probkme d'optimisation mono-objectif dans chaque parcous d'arbre, dans
lequel la qualie de I'ensemble des solution sauvegarcees dansalfchive P est anelioee
par la recherche epetitive de solutions simples. Plusieursparcours d'arbres fournissent
un ensemble de solutions optimales au sens de dominance Pareto dans MGNIS.

L'algorithme MOMCTS est esune par l'algorithme 0.1. Les hyper-parane tres com-
munsa tous les algorithmes MOMCTS comprennent le budget de calcuN, le paranetre
B utili® dans I'heuristique delargissement progressive PW, € le mocele greratif M p
du probEme MOSDM consicee. La valeur du nud ( s;a) not par gy(s;a) est une fonc-
tion de scalarization base sur la population, ai x identi e le choix de la nethode de
scalarisation.

Dans MOMCTS, l'estimation rapide de la valeur d'action (RAVE) prend u ne forme
vectorielle (RAVE (a) 2 R%a 2 A). Une fonction de scalarisation est donc recessaire
pour ce nir un ordre total entre les actions en se fondant sur I'estimation RAVE. Dans
MOMCTS, la valeur scalariee des vecteurs RAVEGx:rave(2); 2 2 A se fonde sur la méme
fonction de scalarisation g«(s;a). La description des fonctions gy(s; a) et gx:rave(a) est
donree dans les sections 5.2 et 5.3.

Une propret importante de MCTS est la propree de consistanc e d nie comme
la capacie de l'algorithme de converger vers la politique optimale losque le nombre de
parcours d'arbresN tend vers 'in ni [Berthier et al., 2010]. La propet de consistanc e est
\eriee dans le cas stationnaire, i.e. lorsque la distribution de la fonction ecompense est

!Lorsque le nombre d'objectifs est faible (d  3), les ressources de calcul et de memoire recessaires
pour maintenir I'archive P sont limiees. Certaines heuristiques suppementaires doi vent étre corcues pour
peserver le passagea lechelle de I'approche base sur la population scalarisation dans le cadre de probemes
MOO faisant intervenir de nombreux objectifs (many objective opti mization, MaOO). L'extension de
MOMCTS au cas MaOO est une perspective de recherche future.

iv
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Algorithm 0.1:  Algorithme MOMCTS
MOMCTS
Entee: Nombre N de simulations
Sortie: Arbre de rechercheT
Initializer T  racine gtat initial) ;P fg
for t=1 to N do
Simulation(T ; P; root node)
end for
retourner T

Simulation
Entee: Arbre de rechercheT, archive P, nud s
Sortie: ecompense vectorieller
if s n'est pas une feuille, et: (b(ns + 1) % > b(ns)1™c) // (test PW non ceclencte)
then
Selectionnera = argmaxfg(s;a);(s;a)2Tg
ry  Simulation(T;P;(s;a))
else
As = f actions disponibles non-visiees sousetatsg
Selectionnera = arg maxf gx:rave(d);a2 A sg
Ajouter (s;a ) comme Isdes
ro  SimulationAleatoire(P;(s;a))
end if
Mettrea jour ns, Nsa , fs:a €8 RAVE (a)
retourner r

SimulationAleatoire
Entee: archive P,etat u
Sortie: ecompense vectorieller
Amg fg //sauvegarder I'ensemble des actions visiees durant la phase akatadie
while u n'est pas letat nal do
Selectionner uniformement une action disponiblea pour u
Amd A rnd [f ag
u (u;a
end while
ra M g(u //obtenir la ecompense vectorielle de la simulation
if ry n'est pas domire pas les points dans? then
Eliminer tous les points domires par r, dansP
P PI[f ruyg
end if
Mettrea jour RAVE (a) pour a2 A nq
retourner r




xe au cours du temps. Dans le cas de MOMCTS, cependant, la fonction dscalarisation
base sur la population cepend de l'archive deP, et donc elle est non-stationnaire. Letude
de la consistance de l'approche propose est une perspective decherche future.

0.2.2 Indicateurs de qualie de solution multi-objectif

Les approches existantes en MORL [Gabor et al., 1998; Castelletti et al.2002; Mannor and
Shimkin, 2004; Natarajan and Tadepalli, 2005; Tesauro et al., 2007] sont pour la plupart
bases sur la scalarisation lireaire de ecompenses multidimesionnelles, avec la limitation
gu'elle ne permet pas de decouvrir des solutions sur les parties an-convexes du front
de Pareto. Ces approches n'utilisent pas les indicateurs de qualitjui ontet ¢ nis et
utilises dans le domaine des Algorithmes Evolutionaires Multi-Objectif (MOEA) [Zitzler
et al., 2003]. Ce travail etablit un pont entre les deux domaines de MORL et MOEA,
en introduisant deux de ces indicateurs devaluation des perfornances des politiques dans
l'algorithme MOMCTS.

Speci quement, l'indicateur de hypervolume [Zitzler and Thi ele, 1998] aet utilie
pour ce nir la performance scalaire d'un nud. Comme monte par [FlI eischer, 2003],
l'indicateur de hypervolume est maximise si et seulement sids points dansP apparti-
ennent au front Pareto du probeme MOO consicee. Auger et al. [2009] montrent que,
pour d = 2, pour un certain nombre K de points, l'indicateur hypervolume projecte un
probeme d'optimisation multi-objectif e ni dans R 9, sur un probeme d'optimisation
mono-objectif dans R K, dans le sens ai il existe au moins un ensemble dE points
dans RY qui maximise l'indicateur hypervolume. Le nerite de cette approche est d'aller
au-deh de la scalarisation lireaire standard. L'indicateur d'hype r-volume sou re toutefois
de deux limitations. D'une part, les colts de calcul d'indicateur de hypervolume aug-
mentent de facon exponentielle avec le nombre d'objectifs. Deusmement, l'indicateur
de hypervolume n'est pas invariant par la transformation monotone des objetifs. La
propree d'invariance (satisfaite par exemple par les algorithmes d'optimisationa base
de comparaison) donne des garanties de robustesse extr@mement impamtes pour les
probemes d'optimisation mal conditionres [Hansen, 2006].

Par conequent, un autre indicateur aet consicee : la ec ompense de dominance
Pareto. Cette ecompense peut &tre consice e comme un compteu du nombre de
cecouvertes de solutions non domirees, qui est cumuke de maniee actualiee. Par rapport
a la premere approche  appeke MOMCTS-hv dans le reste de cette trese, la deuxeme
approche appeke MOMCTS-dom  a une complexie lireaire de calcul par rapport
au nombre d'objectifs, et est invariante par rapporta la transformation monotone des
objectifs. Le prixa payer pour l'anelioration de levolutivie de MOMCTS-dom est que
la ecompense de la dominance peut moins favoriser la diversiede I'archive Pareto, qui
est une mesure essentielle de la qualie de I'ensemble de stkns non-domires : un point
non-domire a la méme ecompense de dominance Pareto alors que l'ticateur de hyper-
volume favorise les points non-domires sittes dans les egions pe peupkes de Il'archive
Pareto.

Vi



0.2 Contributions Principales

0.2.3 \Validation exgrimentale

Les deux algorithms MOMCTS-hv et MOMCTS-dom ontet valices exp eprimentalement
sur quatre probemes : Deep Sea Treasure (DST) [Vamplew et al., 2010Resources Gath-
ering (RG) [Barrett and Narayanan, 2008], Grid Scheduling [Yu et al., 2008] etPhysical
Travelling Salesman Problem (PTSP) [Powley et al., 2012]. Les deux pmaers probemes
arti ciels sont corcus pour comparer les approches MOMCTSa let at de I'art en MORL
(les methodes bases sur la scalarisation lire aire). Les deux daers probemes plus ap-
plicatifs sont utili® pour tester le passage a lechelle de MOMCTS. Les propriees des
probemes consickees sont esunees par la Table 1.

Table 1: Probkmes de la prise de cecision quentielle multiobjectif

Probkeme Forme du | Fonction de transi- | Nombre Decision
front Pareto tion ceterministe or | d'objectifs | en temps

non-ceterministe eel

Deep Sea Treasure Non-convexe Deterministe et Non- | 2 Non
ceterministe

Resource Gathering Convexe Non-ceterministe 3 Non

Grid Scheduling Inconnu Deterministe 2 Non

Physical Travelling Salesman| Inconnu Deterministe 7 Oui

Les esultats exgerimentaux sur le probeme de Deep Sea Treaste con rment un nerite
principal des approches proposes, leur capcie de cecouvrir @s politiques se trouvant dans
les egions non-convexes de front deParetoA notre connaissance, cette fonctionnalie est
unique dans la literature MORL. Les exgeriences sur le probe me de Resource Gathering
montrent que MOMCTS-dom tere cie d'un meilleur passagea le chelle que MOMCTS-
hv en raison du cott de calcul de test de dominance Pareto qui est #éaire par rapport
au nombre d'objectifs. Cette robustesse de MOMCTS-dom est en outreon rree par
les Physical Travelling Salesman Problem experiences, dont 7 olegtifs sont optimises de
mangere on-line.

En contrepatrtie, les approches MOMCTS sou rent de deux faiblesse principales. Tout
d'abord, comme indique sur le Grid Scheduling et Physical Travdling Salesman Prob-
lem, une certaine connaissance pealable est recessaire pour apglier une exploration
de MOMCTS avec e cacie. Deuxemement, comme tmoigre par le probeme de Re-
source Gathering, les approches pesentes cecouvrent peu deolitiques ‘a risque” qui
se trouvent dans une egion peu prometteuse (la decouverte d'optima de type \chapeau
mexicain").

En conclusion, ce travail peut etre consicece comme une preuvede concept de
I'application du cadre MOMCTS pour les probeme MOO. Les esultats obtenus peuvent
gtre consicees comme prometteurs : les performances sont dentes comparativementa
letat de l'art, en cepit du fait qu'il s'agit d'approches beaucoup moins matures que les
approches RL standard.
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0.3 Les perspectives futures

Ce travail ouvre plusieurs perspectives de recherche, de typda fois treorique et applicatif.

La perspective treorique principale concerne l'analyse des proj@es du necanisme de
misea jour de la ecompense cumulable dans le contexte gereralde 'optimisation (mono-
objectif) dynamique. En outre, I'analyse de la consistance des ceites de ®lection de n ud
actuels (y compris l'indicateur d'hypervolume et la ecompense de dominance Pareto)
permettra de & nir des lignes directrices pour la conception de nouvelles ecompenses
scalariees dans le cadre MOMCTS.

Du coe applicatif, d'une part, la fonction de petrence de sc alarization lireaire utilise
dans les experience de Physical Travelling Salesman Problem péwtre etendue a un
contexte plus cereral (par exemple non-lireaire), ce qui peut permettre a Il'utilisateur
d'exprimer ses pegrences d'une facon plus naturelle et ineractive.

Un perspective algorithmigue concerne l'ajustement du mecanisme de mise a jour
cumulatif actuali® de la ecompense de dominance Pareto (Equation(5.7)). Vu que
la decouverte de solutions non-domirees est de plus en plus rare agours du temps,
I'ajustement du pararetre d'actualisation  devrait &tre dynamique pour compenser cet
e et de raree. Une approche serait de consicerer la decouverte de nouvelles solutions
non-domirees dans le cadre de la treorie de la valeur extréme [Dédaan and Ferreira,
2007], et d'ajuster en consquence.
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Chapter 1

Introduction

This thesis is concerned with the multi-objective sequential @cision making problem.
Firstly, sequential decision making algorithms, more speci cally the Monte-Carlo tree
search (MCTS) [Kocsis and Szepes\ari, 2006], have been thoroughly siiied in this work.
Secondly, studies in multi-objective optimization are explored andintegrated into MCTS.

1.1 Context/Motivation

1.1.1 Sequential decision making

Decision making composes an important part of daily activities in our life Decision
making usually relies on a total order measure (such as reward function)indicating the
quality of decisions to be optimized. The sequential decision makig (SDM) problem is
more complex in the sense that optimal decision sequences, a.k.a. pods, are usually not
formed by selecting the best individual decision in each step, anthe decisions composing
the optimal sequence are interdependent. A typical example of thiss that of games
[Aliprantis and Chakrabarti, 2000], scheduling [Zhang and Dietterich, 1995]*, or robotics
[Mahadevan and Connell, 1992].

Sequential decision making is frequently used in strategic gamesysh as chess and go,
in which players alternatively move or place their pieces on a game bodr In chess, if
digital scores are associated to di erent pieces in game, as was done in maohess-playing
computer projects, including the famous IBM Deep Blue computer [Hsu, 2002], the piece
moving decisions can be made automatically by choosing the move that mamxizes a
heuristic evaluation function, such as the sum of scores of all pieces dioard in the end
of the game. In the game of Go however, no such good heuristic evaluatiomriction is
available, which is primarily related to the fact that the in uence of moving one piece anc
only be seen after a long delay (and secondarily to the fact that the nurber of relevant
moves is much higher in Go than in chess).

Let us note the average number of candidate decisions in each turn of the garby
B, and the total number of turns in the game by T. Then there areBT possible decision
sequences in the game. Selecting the optimal decision sequence ama@an exponential
number of candidate sequences w.r.t. the decision length composeedtmain di culty of
SDM in games.

Additionally, in some real-world problems, like project scheduling (Figure 1.1) and
robotic navigation (Figure 1.2), the stochasticity in the envionment implies that the quality

1Scheduling can also be handled as a combinatorial optimization problem [Brucker and Brucker, 2007].
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Chapter 1. Introduction

Figure 1.1: An example schedule of a project presented in the form of Gdinchart. Only

task dependencies and time allocations are presented in this schelé. Complete project
schedule contains other resource allocation plans such as labor disttiion and monetary
budget for tasks.

of a policy should be maximized in expectation, calling for extensivecomputation and
memory resources to be estimated.

In all cited applications, it is clear that the optimal decision to sequential decision
making problems (strategic thinking, in the context of games; avoidingtraps in robotic
navigation) can hardly be obtained by nding the locally optimal solution , due to the
problem of delayed rewards. The purpose of reinforcement learningghapter 2) is to yield
globally optimal decision sequences, which requires to identifytte value of decisions in the
long term perspectives.

1.1.2 Multi-objective Optimization

Independently, many real-world decision problems involve multige objectives (e.g. the
manufacturing process which simultaneously minimizes the cost ahthe risk), and these
problems are referred to as Multi-Objective Optimization (MOO). For a non-trivial MOO
problem, there does not exist a single solution that simultaneously ofimizes each objec-
tive. The objective functions are con icting, two solutions are not necessarily comparable,
for instance, one production plan might be of high cost and low risk, whié the other is of
low cost and high risk. The set of solutions which can not be improved inone objective
without deteriorating other objectives are called the Pareto optimal solutions (see Figure
1.3, more in Chapter 3). Multi-objective optimization is widely applied in many elds of
science, including economics, nance and engineering.
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1.1 Context/Motivation

Figure 1.2: lllustration of a navigation problem. The robot is required to go through the
maze with walls (marked by yellow color) to reach the designated target \&y point. This
gure shows a feasible solution (the path marked by consecutive blaclkcircles) for this
navigation task. The solution involves the steering decisions in eaclime step, required
to ultimately reach the goal.

Economics Economics is the application eld where multi-objective optimization was
originated from. In microeconomics theory, people use the indi erece curve to show
di erent bundles of goods (objectives) between which a consumers indi erent (Figure
1.3(a)). Each point on the indi erence curve is considered as rendeng the same level of
utility (reward or satisfaction) for the consumer. Vilfredo Pareto, aft er whom a series of
notions in MOO study today (such as Pareto dominance, Pareto front, more in Chapter
3) are named, was the rst author to draw the indi erence curves in his book Manual of
Political Economy, 1906.

Economists also use the production-possibility frontier (PPF) (Figure 1.3(b)) to de-
scribe various combinations of amounts of two commodities that could be prduced using
the xed amount of resource (land, labor, capital, time, etc.). Under a limited resource
budget, maximizing the customer utility and extending the PPF both compose multi-
objective optimization problems.

Finance In nance, a common problem is to choose a portfolio when there are two
con icting objectives | maximizing the expected value of portfolio returns, and minimiz-
ing the risk, measured by the standard deviation of portfolio returns The bi-objective
problem of maximizing the expected value (rst moment) and minimizing the standard
deviation (square root of the second moment) of portfolio return is extasively studied by
[Meyer, 1987] under the name of a two-moment decision model.

Engineering  MOO methods are frequently used in the optimal design and optimal
control problems in engineering.

Firstly, a good design typically involves multiple objectives swch as nancial
cost/investment, operating cost, pro t, quality, e ciency, proce ss safety, operation time,

5



Chapter 1. Introduction

(a) Indi erence Curves (b) Production-possibility frontier

Figure 1.3: Multi-objective descriptions in economics. Left: Threeindi erence curves
showing three levels of satisfactions that di erent combinations of gmds X and Y can
bring to the customer. Right: An example production-possibility frontier (PPF) with

illustrative points marked, among which Point D is said to Pareto dominate point A
(more in Chapter 3) and Point X is outside the production possibility. Due to the law
of diminishing marginal e ect, the slope of the PPF curve decreases ith the quantity of

butter production.

etc. Consequently, in practical applications, the performance of proess and product de-
sign is often measured with respect to multiple criteria. These ofectives typically are
con icting, and MOO techniques are therefore required.

Secondly, the controlling problem in engineering involves keepig the output of a sys-
tem as close as possible to the target value. Target values of a system outpusually
involve several aspects, and are subject to constraints that preventll objectives from
being simultaneously perfectly met. For example, one might want to agust a rocket's fuel
usage and orientation so that it arrives both at a speci ed place and at a spead time.
MOO methods are used to balance the distances between the systemtputs and their
desired values [Zhai et al., 2013].

1.1.3 Multi-objective sequential decision making

This thesis is at the crossroad of Reinforcement Learning (RL) and multiobjective opti-
mization (MOO).

Reinforcement Learning (RL) [Sutton and Barto, 1998; Szepes\ari, 2010], whia will
be presented in Chapter 2, is a mature eld where many algorithms withoptimality guar-
antees have been proposed at the expense of a somewhat limited scaldfil It addresses
the sequential decision making (SDM) problems in the Markov deci®n process (MDP)
framework. Monte-Carlo tree search (MCTS), rooted on the multi-armed bandit (MAB)
framework [Robbins, 1985], overcomes the scalability problem of standard Rfor many
medium size SDM problems, such as games [Ciancarini and Favini, 2009] andapning
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1.2 Main Contributions

[Nakhost and Maller, 2009]. It proceeds by iteratively building the t ree formalizing the
sequence of decisions (Chapter 2). Its algorithmic e ciency is in paticular acknowledged
through its application to the Computer Go player { Mogo, a breakthrough in the domain
of computer go [Gelly and Silver, 2007].

Motivated by the fact that many real-world applications are naturally formu lated in
terms of multi-objective optimization (MOO), this thesis studie s multi-objective sequential
decision making (MOSDM) problem, where the reward associated to a gen state in
the MDP is d-dimensional instead of a single scalar value. multi-objective reirdrcement
learning (MORL) methods have been applied to MOSDM tasks such as lag water level
control [Castelletti et al., 2002], balancing power consumption in web severs [Tesauro
et al., 2007], grid scheduling [Yu et al., 2008] and job-shop scheduling [Adiket al., 2010].

1.2 Main Contributions

The present work is concerned with multi-objective sequential é&cision making within the
MCTS framework addressing the challenge of de ning a node selectiorule that can be
extended to the multi-objective case, building upon indicators fom the MOO literature.
The main contributions are as follows:

1. A Multi-Objective Monte-Carlo Tree Search (MOMCTS) framework h as been pro-
posed in this work, in which the exploration of the MCTS tree has been rodi ed
to account for the partial order among the nodes in the multi-dimensioral objective
space, and the fact that the desired result is a set of Pareto-optimal sations (as
opposed to, a single optimal one).

2. Existing applications in MORL [Gabor et al., 1998; Castelletti et al., 2002; Mannor
and Shimkin, 2004; Natarajan and Tadepalli, 2005; Tesauro et al., 2007] are mostly
based on the linear-scalarization of multi-dimensional rewards, whilégnoring the
quality indicators which has been used in the MOEA setting [Zitzler et al., 2003].
This work lIs the gap between MORL and MOEA by introducing two per formance
assessment indicators into the MOMCTS algorithm as the policy seledbn criteria.

Speci cally, the hypervolume indicator [Zitzler and Thiele, 1998] hasbeen used to
provide node rewards. The merit of this approach is to go beyond the sindard
linear-scalarization. This approach su ers from two limitations. On th e one hand,
the hypervolume indicator computation cost increases exponentially wth the num-

ber of objectives. Secondly, the hypervolume indicator is not invarnt under the

monotonous transformation of the objectives. The invariance property (sais ed

for instance by comparison-based optimization algorithms) gives robustngs guaran-
tees which are most important w.r.t. ill-conditioned optimization pr oblems [Hansen,
2006].

Therefore, another indicator has been considered { the Pareto dominare reward.
Compared to the rst approach  referred to as MOMCTS-hv in the remainder of
this thesis, the latter approach referred to as MOMCTS-dom  has linear com-
putational complexity w.r.t. the number of objectives, and is invariant w.r.t. the
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Chapter 1. Introduction

monotonous transformation of the objectives. The price to pay for the impoved
scalability of MOMCTS-dom is that the dominance reward might less favou the
diversity of the Pareto archive, which is an essential measure of quiy of non-
dominated solution sets (Chapter 3) : any non-dominated point has the same @mn-
inance reward whereas the hypervolume indicator of non-dominated poir#t in the
sparsely populated regions of the Pareto archive is higher.

3. Both MOMCTS-hv and MOMCTS-dom algorithms have been experimentally vali-
dated on four problems : Deep Sea Treasure (DST) [Vamplew et al., 2010], Reurce
Gathering (RG) [Barrett and Narayanan, 2008], grid scheduling [Yu et al., 2008Jand
Physical Travelling Salesman Problem (PTSP) [Powley et al., 2012].

The experimental results on DST con rm a main merit of the proposed appoaches,
their ability to discover policies lying in the non-convex regionsof the Pareto front.

To our knowledge, this feature is unique in the MORL literature. T he experiments in
the three-objective RG problem validate the scalability of MOMCTS-dom algorithm

in higher dimensional optimization problems. Through comparative expeiments of
MOMCTS w.r.t. the state of the art in grid scheduling and PTSP 2013 international

competition, the potential of MOMCTS framework in solving real-world p roblems
has been shown.

1.3 Thesis Outline

The thesis manuscript is organized as follows.

Chapter 2 introduces the formal background of sequential decision makig, focusing on
the reinforcement learning and Monte-Carlo tree search.

Chapter 3 presents the basic notions, performance indicators and thegpular techniques
used in multi-objective optimization (MOO).

Chapter 4 introduces the state of the art and applications of multi-objective reinforcement
learning (MORL).

Chapter 5 extends the MCTS framework to MOMCTS, presenting and dscussing the hy-
pervolume indicator and dominance reward as solution selection crites.

Chapter 6 nally describes the validation results of MOMCTS on the Deep Sea Treasure
(DST), Resource Gathering (RG), grid scheduling, and Physical Traveling Salesman Prob-
lem (PTSP).

Chapter 7 concludes the thesis and presents perspectives for ther research.
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Chapter 2

Sequential Decision Making

In this chapter, we introduce the formal background of Sequential Detsion Making (SDM).

Then the state of the art in SDM { reinforcement learning (RL) is presented, with focus
on the exploration vs. exploitation (EVE) dilemma. Finally, the Monte- Carlo tree search
(MCTS) framework is presented.

2.1 Modeling SDM problems

The basic notions in SDM, after Sutton and Barto [1998] and Szepes\ari [2010],an be
illustrated in the navigation problem presented in section 1.1.1 (Fgure 1.2), in which we
search for a method that guides the robot towards the target position.

The di erent elements that compose an SDM problem are as follows:

- agent (the robot)

environment (the arena)

decision epochs (time steps)
- Markov decision process (MDP)

- states (position, speed and sensor values)

actions (accelerating, reversing and turning)

transition function

rewards

The agent  In SDM problems, the agent means the system which lives in the envdnment
and makes decisions. Agents can also be software, equipments or any otheeaikion-
making entities. The agent takes the information about the environmentand about itself
as input, then it makes decisions and turns these decisions into ains which in uence its
own state and the environment (Figure 2.1). In the navigation example, he robot is the
agent.

The environment The environment is anything external to the agent. In this work,
we assume that the environment changes in response to the actions of tlegent according
to xed procedures.
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Chapter 2. Sequential Decision Making

Figure 2.1: The interaction between the agent and the environment

Decision epochs The decision epochs are the times at which a decision should be
made, i.e. at which the agent needs to choose an action. In this work, we gnconsider
the case of discrete decision epochs (called time steps), refeng the reader interested in
the continuous time decision making to [Bertsekas et al., 1995]. Notice tht discrete time
steps do not necessarily mean equally spaced decision epochs. By amtion, we note the
value of a variable X at time t by X;.

2.1.1 Markov Decision Process

SDM problems are usually modeled by Markov Decision Processes (M), containing four

elements { a state space, an action space, a transition probability denty function and

a reward function. In MDPs, the state transitions possess theMarkov property, which
means that the transition probability towards the next state depends only on the current
state and the action of the decision maker. It is independent of all preious states and
actions, conditionally to the current state and action.

State space A state contains every information about the agent and the environment
needed to make a decision. We generally refer to state variables a2 S, with S referring
to the state space. The spacé& can be nite or continuous. In the navigation problem, S
is a continuous space (if the robot position is a real valued vector) or a dicrete space (in
a grid world).

Action space  The current action, selected by the agent depending on the currenstate,
will change the state of the environment and the agent. The action space ishe set of
possible choices or agent decisions, like the motor instructions (aclezation and steering)
in the navigation problem. We generally denote an action bya 2 A, A being the action
space. Similar to the state space, the action space can be nite or contirous. In some
SDM problems, only a subset of actions inA are possible to take under a certain states,
in this case, the set ofadmissible actions in state s is noted asAs.

Transition function The transition function f models the dynamics of how the state
is modi ed under the action of the agent. There are basically two casesthe deterministic
case and the stochastic case. In the deterministic case, stat®+; iS a function of the
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2.1 Modeling SDM problems

Figure 2.2: Example of a Markov decision process. States are representin blue circles
and actions are represented by arrows. The transition probability betveen states are
marked on the arrows, together with the associated rewards.

agent's state s;, and the action a; at time t (s;+1 = f(St;a&)). In the stochastic case,
the transition function is de ned through a probability function p(s;;a:;s9 yielding the
probability of arriving in  s® upon executinga; under state s;.

Rewards The last element in an MDP is the reward functionr : S A! R, dening
the instant reward the agent gets by selecting actiona in state s. The bounded reward
function is computed at each time step and is noted byr; = r(s;; at).

Starting from an initial state sp, the MDP speci es the possible interactions between the
agent and the environment in discrete time. At a given time step, the agent in states 2 S
chooses an action from the admissible action seAs. At the next time step, the agent will
be in state s° drawn randomly by following the probability density p(s; a; s, and receive
reward r(s; a). Figure 2.2 gives a graphical illustration of an MDP.

In an MDP, we de ne a policy as a function :S ! A . Although stochastic policies
have been considered in the literature [Kaelbling et al., 1996; Petar and Schaal, 2008],
only deterministic policies will be considered in the following.

2.1.2 Generative model

The MDP can be given explicitly, or through a generative model The generative model
describes the transition function and reward function which might be available in some
application domains, for instance, games. The generative model is afution M : S A'!
S R. Given the current state s2 S and an actiona2 A, M returns the next state s°
and the associated reward which are deterministic or stochastic values.

Compared to the MDP, the generative model does not require the knovedge about the
entire state spaceS and the action spaceA, and is available in more practical applications
than MDP.
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Chapter 2. Sequential Decision Making

2.2 Goal of SDM

Given the state s, the agent will cumulate rewards during its lifetime, where two cases
are distinguished: nite lifetime, referred to as the time horizon T, and the in nite time
horizon T = 1 . The in uence of the nite and in nite time horizon case will be pre sented
in the next section. Naturally, the SDM goal is to optimize the cumulative reward of the
agent within the time horizon.

Several settings are distinguished among the SDM methods, dependj on whether
the environment is known or not. In the former case, SDM boils down toplanning (or
optimal control [Littman, 1996]). In the later case, a mainstream approach is rénforcement
learning (RL) [Sutton and Barto, 1998; Szepes\ari, 2010].

In planning, the transition model of the environment is known in advance. In order to
produce credible plans, two conditions usually need to be met: a)lte model of the world
must be well de ned and informative and b) the world must not deviate from the given
model at any time point. In other words, the agent assumes that the world § stationary
and can only be changed by its actions. Early work [Fikes and Nilsson, 1972] fornhates
planning as a search problem. Heuristic search algorithms, such as Hilimbing [Goldfeld
et al., 1966] and A* [Hart et al., 1968] are used for solving it. In recent years, planing
algorithms have undergone a rapid development of the search e ciencyleading to methods
that are up to millions of times faster than A* algorithm [Delling et al., 2009] .

Reinforcement Learning (RL) addresses the SDM problem through inteactions with
environment. Unlike the planning algorithms which require complete description of the
environment states, actions, rewards, and transitions, RL can be usedhen a model of the
environment is unknown . An ideal reinforcement learning agent doesvhatever it needs to
nd an optimal policy. This usually enforces the balance between learing the transition
model of the considered problem, and nding an optimal policy on the bass of this model.
What is the optimal balance between the two is yet an open problem. Theefore most
reinforcement learning algorithms alternate between nding a good aroximation of the
problem model, and nding the optimal policy on the basis of the approximated model.

2.3 Reinforcement learning

Reinforcement learning (RL) has a strong ethological and cognitive sciece basis:

Of several responses made to the same situation, those which are @wpanied or closely
followed by satisfaction to the animal will { other things being egai { be more rmly
connected with the situation, so that when it recurs, they will mee likely to recur;

those which are accompanied or closely followed by discomfort the animal will {
other things being equal { have their connection with the situation eakened, so that when
it recurs, they will less likely to recur;

the greater the satisfaction or discomfort, the greater the strengdtening or weakening
of the link. |Thorndike, 1911.

In standard RL, the agent must learn a generative model of the environmen (the
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2.3 Reinforcement learning

transition and reward functions) and estimate the values of the states ad actions.
In this section, we will introduce the notations used in RL, followed by the main RL
approaches.

2.3.1 RL framework
Value function

The value of a policy is a functionV :S ! R which associates to each state the
expectation of cumulative rewards (also callexpected return) that  gets when starting
from this state. In nite time horizon case, which is also called epi®dic case, the value
function is de ned as the sum of the rewards in the nextT time steps.

n % #
V (s)=E r(se;a)jso = s;a = (st) (2.1)
t=0
In in nite time horizon case,
" #

p3 . _

V (s)=E r(se;at)jso = s;a = (st) (2.2)
t=0

where 2 [0; 1] is the discount factor indicating that reward gathered at time stept + 1
is less important that those gathered at timet, everything being equal. Note that also
enforces the boundedness &f . In most RL algorithms, the time horizon T is in nite. If
not speci ed, only in nite-time horizon value functions will be con sidered in the remainder
of this chapter.

Action value function

The action value function Q (s;a) (also called Q-value function) is de ned in a similar
way as the value function. It is the expectation of cumulative rewardsafter executing a
in state s and thereafter following policy

" #
s
Q (s;a=E U r(s;a)jso= S;ap= aja = (sy)fort 1 (2.3)
t=0

Bellman equations and Bellman optimality

The Markov property in MDP is essential to RL because it allows estaltishing the Bellman
equation which is the basis of many MDP solutions [Bellman, 1986].
Having the state and action values, the rst Bellman equation determines the value of
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any given policy through a xed point equation:

IIX- #
V (s)=E Yr(s;aso= s;a = (St)
t=0
" #
A : _
= r(so;a0) +E r(se;a)jso= s;a = (St)

=1 #

X X
r(s; (s)+E p(s; (s);sY Uor(ssa)jso=sis1= sta = (st)
s®2s . =1 ”

X
r(s; N+ p(s; (s);s) E Uor(ssa)jsi= Star = (st)
s?2s t=1

(according to the Markov property, the state transition probability af ter#sl does not depend orsp)

X
=r(s; (s))+ p(s; (s);s) E Uor(sta)jso= sta = (st)
SOZSX t=0
=r(s;, (s)+ p(s; (s);sHV (89
s02s

(2.4)
wherer(s; (s)) denotes the instant reward obtained by executing action (s) under state
S.

The above recursive equation reveals that the value of a stats depends on the imme-
diate reward obtained by executing (s) and the value of the following states. It is the
basis of many algorithms which search for the value functions of policiesThe Bellman
equation reads in vectorial form as:

V =R+ PV (2.5)
where R is the vector of rewards associated to each state by following policy:
1
r(ss; (s1)
r(sisj: (sjsj))
and P is the transition matrix of policy  de ned from the transition function of MDP :

P =@

p(sjsj: (Sisj)is1) P(sisjs (Sisj)i Sisj)

p(s1; (s1);s1) p(s1; (s1);sjsj)

Let the Bellman operator T de ned as an operator on value vectors:

TV=R + PV (2.6)
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Then Eq. (2.5) is rewritten: V = T V . As the Bellman operator T is a contraction
of factor w.r.t. the innity norm ( jjT V T V9j; iV VY1), V has unique
xed point satisfying V. = T (V ) [Bellman, 1986]. T is also a monotonous operator
v VvOHOT v T VO

Let us de ne as the set of all possible policies, V (s) = max > V (s) as the optimal
value function of s2S,and =argmax » V (s), then we have

V (s)=V (8= mglx V (s) 2.7)

According to Bellman [1986], the optimal value function must verify the recursive Bellman
optimality equation :
!

X
852S;V (s)=max r(s;a)+ p(s;a; AV (sY (2.8)
s2s

The Bellman optimality operator T for all value vectorsV is then de ned as:
!

X
852 S;[TV](s) = max r(s;a)+ p(s; a; IV (sY (2.9)
a s2Ss

Eq.(2.8) is written as: V = TV . Like T, the Bellman optimality operator T is a
contraction of factor w.r.t. the in nity norm, and its unique xed point is the optimal
value function V  [Bellman, 1986].

In the remainder of this work, we will use the notation greedy(V) to represent the
greedy policy w.r.t. V. If is a greedy policy onV, we haveTV = T V. Any optimal
policy  can be de ned asgreedy(V ) 1.

On the other hand, the Bellman equations hold for the action value functons as well.

X
8(s;a)2S A ; Q (s;a) = r(s;a)+ p(s; (s);s9Q (s® (sY) (2.10)
s2S

The above equation on Q-values can be presented in vectorial form:
Q =R+ POQ
where Q represents the Q-value functions in a vectorial form,

1
Q (s1;a1)

% Q (Sl,az) §

Q (SJSJ 84 )

!Note that is not necessarily unique.
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R is the average rewards associated to all state-action pairs,
r(si;a1)
R = %) r(Sl:; az) §
r(Sisj .? ajaj )

As the immediate reward function r no longer depends on the policy , we use the notation
R instead of R .
PO is the transition matrix between state-action pairs by following the policy

PO(s;a); (s%aY) = p(s;a;s) Lao= (59

where 1= (s = 1 if a®= (s and 0 otherwise. Note that P? is di erent from those
used in the Bellman equations of the value functions.
The Bellman operator T % for any Q-value function is de ned as:

TR=R+ PQ

Like in the value function case, the Bellman optimality equation for Q-value functions
reads:

X
Q (s;a) = r(s;a)+ p(s;a;s)max Q (s5a)
s02s az2A

and the Bellman optimality operator T °for Q-value functions is de ned as:

X
[TRI(s;a) = r(s;a) + p(s; a; s%) max Q(s® a9
s a2A

As was shown by Bertsekas and Tsitsiklis [1995], there exists an equivaice between value
functions V and action value functions Q, and the relationship between the two optimal
value functions can be presented by the following equations:

V (s) =max Q (s;a) (2.11)

Q (s;a)=r(s;a)+ p(s;a;sHV (sH (2.12)
s92S

In the remainder of this chapter, unless stated otherwise, the algothms implemented on
value functions V can also be implemented on the action value function®).
2.3.2 Value function based methods

Searching for the optimal policy by examining the return of each policy (brute force
method) does not scale up. The main RL approaches de ne optimal policie based on
learning of value functions.
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2.3 Reinforcement learning

2.3.2.1 Basic dynamic programming algorithms

A way to solve the Bellman equations and nd the optimal value function is the use of dy-

namic programming (DP) methods such as value iteration and policy iteraton [Bertsekas
and Tsitsiklis, 1995].

Value iteration algorithm

Value iteration proceeds by directly computing the xed point of th e Bellman operation
T (Eq.(2.9)), which is guaranteed to converge to the unique xed pointV . An optimal
policy can be deduced fromV by greedy(V ).

Algorithm 2.1:  Value iteration
Input: stopping criterion > 0
Output: approximated value function V; verifying jjV  Vijj1
Initialize Vp  arbitrary initial values, t 0
repeat
Vt+1 T Vt
t t+1
until jjVi - Vi oajin <
return V;

1

The value iteration algorithm is de ned in Algorithm 2.1, which converges asymptot-
ically towards the optimal value function V . In practice, it is not guaranteed that the
convergence will be reached within a nite number of iterations, andthe Bellman opti-
mality operator T on V is applied iteratively until the in nity norm distance between
the value functions of two successive iterations is less than, yielding a guaranteed upper
bound of the distance between the optimal value function and the obtaind value function
[Bertsekas and Tsitsiklis, 1995]:

v Viia

1

The value function V t of the greedy policy ; derived fromV; ( ¢  greedy(\})) veri es
that:

Policy iteration

Policy iteration algorithm is presented in Algorithm 2.2. It proceeds as the following:
rstly, one needs an initial policy (. Then this policy is evaluated by computing its
correspondent value function (through the solution of Bellman equation) This step is
noted as thepolicy evaluation step. Afterwards, one modi es the current policy by greedily
choosing the updatedV values. This step is calledpolicy improvement step. The two steps
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above are repeated until the stopping criterion is met (e.g. no e etive policy improvement
after policy evaluations).

In fact, the value function of policy  can be found by solving the Bellman equation
(Eq. (2.5)) directly, because it is a linear system:

Vi=r,+ P, V!
(G PYVi=r,
Vo= (l P)*tr,
However, computing the inverse of thejSj |Sj sized matrix (I P ) raises scalabil-

ity problems, hence approximated approaches are used within policyvaluation step of
Algorithm 2.2.

Policy iteration algorithm shares the convergence properties attribued to the value
iteration algorithm [Szepesvari, 2010]. In general, the policy evaluation $ep is expensive in
computation, but on the other hand, the policy iteration algorithm requir es less iterations
to converge [Bertsekas and Tsitsiklis, 1995]. Besides, policy iteratn o ers a guarantee
of convergence to the optimal policy within a limited number of iterations. An intuitive
illustration of the mechanism that value iteration and policy iteration al gorithm search
for the optimal value function is given in Figure 2.3.

Algorithm 2.2:  Policy iteration algorithm
Policy iteration
Input: an initial policy init , and the stopping criterion of policy evaluation
Output: policy 1 verifying jjV  V ©tji;  2—

Initialize ¢ init andt O

repeat
Vi1 Evaluate( ¢; ) /I Policy evaluation

t¢1  greedy(Vis) Il Policy improvement

t t+1

until t = t+1

return t+1

Evaluate

Input: a policy , and stopping criterion > 0
Output: approximated value function V *!
Initialize V% Oandl 0

repeat

\V/ 1 +1 T \V} |

[ | +1
until v vioLj<
return V!
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2.3 Reinforcement learning

Figure 2.3: An intuitive illustration from [Thery, 2010] shows how valu e iteration and
policy iteration algorithms search for the optimal value function. According to Bertsekas
and Tsitsiklis [1995], the value space can be separated into several polgtirons, each
corresponding to a value range where some policy §; p or ) is greedy. We suppose
that the state spaceS contains only two statess; and s, and the value space is therefore
a plane. In policy iteration, each the policy evaluation step searchesor the value function
V 1 Through several alternative policy evaluation and policy improvement steps, this
algorithm reaches the optimal value. In value iteration, the search is ralized by a set of
small steps which approach the optimal value function progressively.
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2.3.2.2 Approximated algorithms

Despite the optimality guarantees, the basic dynamic programming algorihms face two
bottlenecks. The rst bottleneck is the size of the problem. In reality, we often need
to solve SDM problems the state and action spaces of which are large or contious. In
this case, the thorough exploration of value functions in the entire stag/action space is
intractable.

The second bottleneck is that the computational time needed to meet he stopping
criterion de ned by is unknown. The formal guarantee of the algorithm convergence to
optimal value provided by [Sutton et al., 1999] relies on unrealistic assmptions, such as
the sampling of all actions in all states.

We therefore need to estimate the value function based on function appximation
methods. In practice, two types of RL algorithms based on function appoximations are
used to solve SDM problems with large or continuous state and action spaceso -policy
and on-policy algorithms. The o -policy algorithms may update estimated value functions
on the basis of data provided externally (not acquired by executing agiven policy). On-
policy algorithms, on the other hand, update value functions strictly on the basis of
experience gained from executing some policy. O -policy and on-polig algorithms were
respectively pioneered by Q-learning [Watkins and Dayan, 1992] and SARS [Rummery
and Niranjan, 1994].

Q-learning

Q-learning is an o -policy algorithm that approximates the optimal value f unction. This
algorithm is composed of two parts:

- an update rule that, given (s; a; s r) updates Q according to the transitions (s; a; s9)
and instant reward r;

- a sampling strategy to chooses and a, which can be determined from pre-generated
training data, or obtained online by following some xed policy

Algorithm 2.3 gives a formal description of Q-learning which requires agenerative model
of the considered problem. The policy which chooses §; @) pairs is usually implemented
greedily w.r.t. the current Q-value function, possibly combinedwith  greedy exploration.
Singh et al. [2000] propose some other sampling strategies with theoretical gtantees.

Q-learning can also be implemented from data, without any generative mdel. In this
case, for every §; a; s® r) available in the data, the update function is applied. Watkins and
Dayan [1992] proved the theoretical convergence of this algorithm, underhiie assumption
that the sampling strategy asymptotically samples all actions, and that states and actions
are discrete.

More generally, Q-learning can be combined with function approximaton [van Hasselt,
2012], which makes it possible to apply the algorithm to larger problems, ean when the
state space is continuous.
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2.3 Reinforcement learning

Algorithm 2.3:  Q-learning algorithm
Input: A generative modelM , a policy , a learning rate 2 (0;1]
Output: approximated action value function Q
Initialize  Q(s; a) arbitrarily for all ( s;a) 2 (S A )
repeat
Select an initial states2 S
repeat
a (s)
(s%r) M (s;a)
Q(s; ag (1 )Q(sia)+ [r+  maxaa Q(s% a9
s s
until s is the terminal state
until no more computational time
return Q

SARSA

SARSA is an on-policy algorithm which updates Q-value function based on gxeriences
gained from taken actions. The di erence between SARSA and Q-learnings in the update
function : instead of taking optimal estimation of future Q-value, we simply choose the
Q-value of the action a taken according to the given policy . Algorithm 2.4 provides a
formal description of SARSA.

According to [Singh et al., 2000], this algorithm is guaranteed to converge to he
optimal Q-value function Q , as long as all state-action pairs are visited an in nite number
of times and the policy is gradually biased towardgreedy(Q ) (de ned in section 2.3.1).

Algorithm 2.4:  SARSA algorithm
Input: A generative modelM , a policy , a learning rate 2 (0; 1]
Output: approximated action value function Q
Initialize  Q(s; a) arbitrarily for all ( s;a) 2 (S A )
repeat
Select an initial states2 S
repeat
a (s)
(s®r) M (s;a)
a® ()
Qsia) (1 )Qssa+ [+ Q(stad)
s s
until  stopping criterion is met
until no more computational time
return Q
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2.4 Direct policy search

The RL approaches are based on de ning the optimal value functions on eachtate or
each state-action pair. Direct policy search, quite the contrary, assciates a score or
tness to each policy , and explores a subset of the policy space according to the tness
information. In its simplest form, the quality of is de ned as a tness function ( ),
which brings a total order among all policies.

In the real world problems, one most usually considers the policy spacas a parameter
space, e.g. the weight vectors of a ( xed topology) neural networks [Horniket al., 1989].
Let denote the policy associated to a parameter vector, then the tness function

( )= (). When the function is di erentiable w.r.t. , one can use gradient descent
method [Snyman, 2005] to search for the optimal policy. Since an analytic exession for
the gradient is not always available, one must rely on an estimation of the grdient. Despite
the progress made [Stulp and Sigaud, 2012], the drawback of gradient based rhetds is
proven to fall in local optima, entailing two weaknesses { instabilty of performance and
poor reproducibility of results.

In the case where is not di erentiable w.r.t. , gradient-free methods, such as sim-
ulated annealing [Kirkpatrick, 1984], cross-entropy search [Rubinsta and Kroese, 2004]
and evolutionary computation [Fogel, 2006], have also been intensively uddo solve SDM
problems. However, the gradient-free methods face a bottleneck. fie tness function
de nes a noisy optimization problem, as the tness function ( ) is usually de ned as an
expectation of the policy return over a distribution of the starting positions of the studied
model. An approximation of the tness function must thus be used to decrease the com-
putational cost through, for instance, Bernstein races to prune the upromising solutions
[Heidrich-Meisner and Igel, 2009] or through surrogate optimization basis [Losthilov,
2013].

2.5 Exploration vs. exploitation dilemma

Providing the guarantee of nding the optimal policies in the sense ofexpected cumulative
reward, mainstream RL algorithms face the problem of scalability due to heir thorough
exploration of the state and action spaces. For many applications with focuson on-line
performance, the thorough exploration of the state and action spaces is not &sible. An
alternative approach is based on the multi-armed bandit (MAB) algorithms, from the
game theory literature [Auer et al., 2002].

The term bandit refers to the name of a slot name (one-armed bandit) in the casinos.
In an MAB problem, a player faces a nite number of independent slot machines (or
arms). Each machine has a xed unknown expected return. The playeiteratively selects
a machine (pull an arm). Since the player wishes to earn as much rewdras possible,
the choice of which machine to play should enforce a balance betweeine exploration
and exploitation (the EVE trade-o ): the player must decide whether to pull the most
rewarding arms according to the past observations (exploitation), or to pll arms that
were not pulled frequently enough (exploration), since those arms whse reward were
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2.5 Exploration vs. exploitation dilemma

not high could have been underestimated if the rst pulls were unlicky. The MAB thus
de ne a decision making problem based on a one-state MDP, which can bexeended to a
sequential decision making problem, referred to as MCTS (section 8.1). In the following,
formal de nition and some theoretical results of the multi-armed bandit problem will be
presented.

2.5.1 MAB settings

Let us de ne the multi-armed bandit problem with a nite number K of arms noted as
A =112, ;Kg. Initsoriginal formulation [Robbins, 1985], each arma 2 A corresponds
to a probability distribution P4 on [0; 1]. At each time stept 2 N, the player selects (or
pulls) arm a;, and then receives a random reward ,, drawn from the distribution P, .
Setting the time horigon to T, the player's objective in the MAB problem is to maximize
the sum of rewards thl ra,. For each arma 2 A, let n, denote the number of timesa
has been selected, and,; denote the reward received by arma at the i-th time. Then
foranya2 A, ra= fraiji =1; ;nagis ani.i.d. sample set drawn after the distribution
Pa.

It is natural to de ne the expected reward, and the empirical mean revard of arm a
when it is played for the na-th time:

a=E(ra) (2.13)

1 Xe
Na iz

with 44 %, whenna!1

Let us describe the decision rule of the player by strategy , which maps the history
of previous arm selections and rewards received to the next arm to plul For simplicity
reason, let us denote yag as a mapping from the current time step numbert to the next
chosen arm: yas :N!A . The MAB framework can be summarized by Algorithm 2.5.

Algorithm 2.5:  Multi-armed bandit framework

Known parameters . number of armsK, time horizon T with T K 2.

Unknown parameters : K probability distributions fP1;P2;  ;Pkag.

forall t=1;2, ;T do
Selecta; = map (t) based on thery,; ng, information available at time t 1
Draws the rewardr,,  Pg,
Na, na1P+nl
fay = : |:aill. May;i

end for =

Goal : Maximize the cumulative gain = [_; ra,

Nay
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2.5.2 Optimality criteria

Several optimality criteria are used in MAB solutions.

Cumulative regret

Let us note the best expected reward by = maxapa a, and the margin (or regret) of
each armais measured by 5 = a. The expected cumulative regret in a multi-armed
bandit problem at time step t is de ned as

X X X
t = E( t rat) = t na a = na a (215)
i=1 a=1 a=1

The maximization of cumulative gain in MAB problem is thus equivalent to the minimiza-
tion of the regrets.

Simple regret

The simple regret in a multi-armed bandit problem at time step t is de ned as

e = E(rat) = at (216)
In many situations, an arm is chosen for the pursuit of instant reward ingead of cumulative
rewards. For example, after a trail period of several products, one copany decides
to commercialize one product with the best quality. In this case, vhat matters is the
performance of the single best product, rather than the cumulative ewards of all products
obtained in the trial phase. The simple regret is used as the optimaly criterion in these
situations.

2.5.3 MAB Algorithms

Multiple MAB strategies have been devised in the literature, depgnding on the player's
objective.

Random Uniform

The most straightforward strategy is the random uniform selection of arms {picking each
arm a 2 A with probability 1 5Aj in each time step. Although such choice is not optimal
for the minimization of cumulative regret, it has been shown by [Bubek et al., 2009] that
random uniform selection of arms is an optimal strategy for minimizing the simple regret
asymptotically: the value E(r;) gradually converges to the optimal value whent ! 1 if
the empirical best arm were selected aftet rounds of uniform selection.
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-greedy

-greedy is the rst widely used MAB strategy, in which the EVE trade -o is controlled by
the parameter 2]0; 1[: choosing the arm with empirical best mean reward with probability
1 , and uniformly randomly picking other arms with probability . This strategy o ers
a better cumulative regret than the random uniform strategy.

In order to achieve better asymptotic expected cumulative regret, ;-greedy strategies
have been proposed, where ! 0 when the time horizont ! 1 . By carefully choosing t,
a cumulative regret in the order of O(logt) can be obtained [Auer et al., 2002]. However,
the best design of ; requires the knowledge about the distribution of rewards of the arms,
which is not always available.

Upper Con dence Bound (UCB)

Proposed by Auer et al. [2002], UCB is a method that considers the expectatns and
variances of arm values at the same time. It requires that each arm should d pulled for
at least once. Then upper con dence bounds on the rewards of each arm are cputed at
each time step, and the arm with the largest upper bound will be chosen The simplest
and most implemented UCB policy is as follows.

De nition 1. (UCB1) The UCBL strategy is the strategy that rstly pulls every arm once,
and then selects at round >K anarma2fl;2; ;Kgthat maximizes
r 2Int
n
UCBL(a)="a+

a

(2.17)

The rst (respectively the second) term on the R.H.S. of Eq.(2.17) coresponds to the
exploitation (resp. exploration) term. It has been proved that the upper bound of the
cumulative regret obtained by the UCBL1 strategy grows logarithmically with the number
of total number of arm pulls t [Auer et al., 2002].

Beside UCB1, other upper con dence bound estimates have been propasesuch as
UCB1-Tuned. Let us de ne the upper bound on the variance of reward estinates as

r
1 X 2InT

Va(T) = ? rgt §+ Na
t=1

(2.18)

Then

2int
UCB;Tuned(a) = ¥, + n—nmlnf1=4;va(t)g (2.19)
a

Compared to UCB1, UCB1-Tuned has a re ned estimate of the upper bound of arm
values. Despite the same theoretical upper bound on cumulative regte [Auer et al.,
2002], UCB1-Tuned has been shown to perform substantially better than UCRB.
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Figure 2.4: The search tree and three phases of the MCTS algorithm.

2.6 Monte-Carlo Tree Search

Monte-Carlo tree search (MCTS) extends MAB to tree structured serch space [Coulom,
2006]. Recently, MCTS, including the famed Upper Con dence Tree (UCT) algorithm
[Kocsis and Szepes\ari, 2006] and its variants, has been intensivelywestigated to handle
sequential decision problems. MCTS, notably illustrated in the domain of Computer-Go
[Gelly and Silver, 2007], has been shown to e ciently handle mediumsize state and action
search spaces through a careful balance between the exploration of theaseh space, and
the exploitation of the best results found so far. While providing me consistency guar-
antees [Berthier et al., 2010], MCTS has demonstrated its merits and wid applicability
in the domain of games [Ciancarini and Favini, 2009] or planning [Nakhost and Maler,
2009] among many others.

2.6.1 MCTS algorithm

In this section, We present the MCTS framework, referring the readers to [Gelly and
Silver, 2007; Chaslot et al., 2008a] for complementary presentations.

In an SDM problem, given a states, if we have access to the action value functions
Q(s; @), then the optimal policy can be generated fromQ :  (s) = argmax ; Q(s; a).
The MCTS algorithm approximates Q(s; a) values through simulation of trajectories start-
ing with (s;a). In general, uniform simulations do not give correct estimations of acton
values. Only by biasing the trajectories towards an optimal behaviou, average rewards
could converge to theQ . Such biased trajectories are achieved by gradually construct-
ing an unbalanced tree, in which nodes represent visited statesand branches represent
actions. Favouring the most promising nodes, when more simulations & made, more sim-
ulations will be made on promising actions, thus giving them more weighton the average
reward computation. As the number of simulation grows, one can expect thathe average
reward obtained over these simulations would give a good estimation a (s;a).

MCTS simultaneously explores and builds a search tree, initially estricted to its root
node, alongN tree-walks a.k.a. simulations. As is illustrated in Figure 2.4, each tre walk
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involves three phases:

The selection phase  Each tree-walk starts from the root node and iteratively selects
an action/a child node until arriving in a leaf node. In the best known MCTS algorithm {
Upper Con dence Bounds applied to Trees (UCT) [Kocsis and Szepesri, 2006], the action
selection is handled as a multi-armed bandit problem. The sefAs of admissible actionsa
de nes the possible child nodes §; @) of node s; the selection of actiona maximizes the
Upper Con dence Bound:

q__
rsa="%sa+ Celn(ns)=nsa (2.20)

over a ranging in As, wherens stands for the number of times nodes has been visited,ns.4
denotes the number of timesa has been selected, ands? is the average reward collected
when selecting actiona from node s. The di erence between Eq.(2.20) and Eq.(2.17)
(UCB1) is that the EVE tradeo is controlled by parameter ce.

Upon the selection ofa , the next state is drawn from the transition function depending
on the current state and a . In the remainder of this manuscript, a tree node is labelled
with the sequence of actions followed from the root; the associated veard is the average
reward collected over all tree-walks involving this node.

The tree building phase Upon arriving in a node s, some actiona 2 A s is (uniformly
or heuristically) selected and 6; a) is added as child node ofs. Accordingly, the number
of nodes in the tree is the number of tree-walks.

The random phase  Starting from a leaf node (s;a), actions are iteratively selected
according to a default policy, often set to the uniform policy or a domain speci c one,
until arriving in a terminal state u. With the generative model of the problem, the total
reward r, of the whole tree walk is computed and used to update the statistics irall nodes
(s; @) visited during the tree-walk:

1
Psia m(ns;a fsa+ Tu) (2.21)
Ns;a Ns;a + 1, Ns ns+1

Algorithm 2.6 gives a formal description of MCTS.

2.6.2 MCTS extensions

Besides its celebrated application to Computer Go [Gelly and Silve 2007], MCTS has
been extended to many other SDM problems with large search space, oftehrough the
use of additional heuristics.
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Algorithm 2.6:  MCTS algorithm

Monte-Carlo tree search
Input: number N of tree-walks
Output: search treeT
Initialize T  root node (initial state)
for t=1to N do
TreeWalk(T ; root node)
end for
return T

TreeWalk
Input: search treeT, nodes
Output: reward ry,
As = f admissible actions not yet visited in sg
if Ag=; then
I/l Selection phase
Selecta = argmax frsa;(s;@)2Tg
rv« TreeWalk(T;(s;a))
else
/[ Tree building phase
Selecta uniformly from Ag
Add (s;a ) as child node ofs
// Random phase
r« RandomWalk((s;a))
end if
Update ng, ns.a and rs.a
return ry

Il Eq.2.20

Il Eq. (2.21)

RandomWalk

Input: state u

Output: reward of the simulation r,

while u is not nal state do
Uniformly select an admissible actiona for u
u (u;a)

end while

ry = evaluate(u) /[calculate the reward of the entire tree-walk

return ry
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Many armed bandit

In order to prevent over-exploration when the number of admissiblearms is large w.r.t.
the number of simulations (the so called many armed bandit issue [Wanget al., 2008]),
the Progressive Widening (PW) heuristics [Coulom, 2006] has been usad many MCTS
variants. In PW, the allowed number of child nodes of nodes is initialized to 1, and
increases with its number of visits ng like ng®™ (with b usually set to 2 or 4). Such
heuristics favours building deeper trees.

In the many armed bandit problem, since only a subset of arms will be \gited within
a limited number of simulations, the choice of arms to be pulled rst should be done
carefully. For the sake of convergence speed, it is clearly desirabte consider the best
options as early as possible. The RAVE heuristic [Gelly and Silver, 2007] ais at exploring
earlier the most promising regions of the search space. In its simplesgersion, RAVE( a) is
set to the average reward taken over all tree-walks involving actiora. The RAVE vector
can be used to guide the tree-building phase, that is, when seldag a rst child node
upon arriving in a leaf node s, or when PW heuristic is triggered and a new child node
is added to the current nodes. In both cases, the selected action is the one maximizing
RAVE( a).

Macro-actions

In SDM problems, the size of the search space grows exponentially vih the policy
length. Suppose that the policy length isl, and branching factor in each step of the policy
is b, then the total number of policies in the search space 8.

Grouping a sequence of actions as one macro-action can reduce the e edaibranch-
ing factor of the search tree. If we de ne a macro-actionA as a sequence of actions
(a1; az; ;am ), and limit the number of macro-actions asB (B pM ), then the size
of the search space based on macro-actions will bB'™ satisfying BV H. The
macro-action length parameter M controls the tradeo between the granularity of pos-
sible strategies and the forward planning potential of the search tree.Experiments on
arti cial game trees [Childs et al., 2008] and the physical travelling saksman problem
[Powley et al., 2012] have demonstrated the merits of search based on macagtions.

Partially observable games

Previous applications of MCTS are mostly based on perfect information modls, in which
the agent has access to the stats identifying the stationary reward distributions. Being
the model and testbed for many real world SDM problems, games with incoplete infor-
mation { also called Partially Observable Games (POGSs) { are games wherelpyers know
the rules but cannot fully see the actions of other players and real stat of the game, e.g.
card games. The most well known partially observable games include pok¢Ponsen et al.,
2010], Kriegspiel [Ciancarini and Favini, 2009] and phantom-go [Cazenave, 2006].
Studies on the partially observable games by using MCTS have begun irecent years.
Ciancarini and Favini [2009] show that in the incomplete information setting, simulating
the whole game (until the terminal state) in MCTS usually results in a worse estimate
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of action values than simulating just a limited number of steps, becase the latter one
introduces less noise in the state evaluation. In other words, in théncomplete information

settings, spending much e ort to search for the long term strategiesis less helpful than
focusing on the search of short term strategies. Auger [2011] introduces multiple-tree

technique, in which both the behavior of the player and its opponens are modelled by
search trees. Through the construction of opponent's search trees, éhproposed algorithm
makes better predictions on the opponents behavior and achieves a let evaluation of
the action values.

Continuous planning

Motivated by applications in economics (investment plan), engineer (ater level control
for hydro power dams) and robotics (wheel speed control), the MCTS famework has been
extended to handle SDM problems with continuous state and action space

Most current results in eld of continuous planning with MCTS varian ts rely on the
discretization of the action space [Auer et al., 2007; Mansley et al., 2011; Weitsin and
Littman, 2012]. Through the use of Gaussian convolution-based smoothing, [Coteux
et al., 2011] proposed an extension of the RAVE heuristic which allows the stimation of
state and action values in the continuous space based on samples.

Knowing that all actions can not be tried within a limited time in the continuous
action space, in order to keep the consistency of MCTS, a stochasticee building strategy
(Double Progressive Widening) which favours selecting actions fromintervals in which
better rewards were obtained in past, has been proposed in [Couetouxt @l., 2011; Auger
et al., 2013].

[Couetoux et al., 2012] provides another possibility called Blind Value (BV) which
helps the exploration of new actions. The idea of BV is to try actions that are far away
from known actions during the rst simulations, and then to focus on areas that have
many actions with high rs.5 values.

Parallelization

The scalability of MCTS, i.e. its ability to generate better policie s when additional com-
putational power is provided, has been praised as a major advantage of MCT.SHowever,
as is shown by the experiments on Computer Go [Bourki et al., 2011], althogh the per-
formance (success rate) of MCTS improves when more computational powés allocated,
the improvement speed follows a diminishing return law.

In the real-time SDM problems, as the computational cost per step (alscalled re ec-
tion time )is xed, the parallelization is a principal way to improve the MCT S performance.
In the recent literature [Bourki et al., 2011], the MCTS algorithm has been parallelized
through three message-passing methods (in which communications areicit and lim-
ited) over multi-core machines (clusters):

Fast tree parallelization consists of carrying out multiple random simulations on
di erent cores while keeping only one tree in the memory of a master rachine. This
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method is expensive in terms of communication especially when RAVEvalues are
used [Gelly et al., 2008].

Slow tree parallelization consists of having one tree on each computation node, and
to synchronize these trees slowly, i.e. not at each simulation but vth a certain
frequency such as three times per second [Gelly et al., 2008].

Very slow root parallelization is a special case of slow tree parallelization, but on the
lowest possible frequencyf = 1=t with t the allowed re ection time per step. The
trees are only synchronized once at the end of the re ection time in edt decision
step, and the drawback is that there is no load balancing between comgational
nodes.

Current experimental results show that the slow tree paralleliation method outperforms
the other two methods and represents the state of the art in MCTS paralelization [Bourki
et al., 2011].
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Chapter 3

Multi-Objective Optimization

In this chapter, we rstly describe the formal background of multi-ob jective optimization
(MOO), and discuss the critical issues in this domain. Then the clapter reviews the state
of the art in MOO.

3.1 MOO formal background

3.1.1 Problem statement

The simultaneous optimization of two or more conicting objectives is called multi-
objective optimization (MOO). Practical optimization problems, especially the engineering
design optimization problems, often have a multi-objective nature. For example, in the
engineering design problem, some structural performance criteriare to be maximized,
while the weight of the structure and the implementation costs shoutl be minimized si-
multaneously.

An MOO problem with n decision variables &1;X2; ;X,) and d objectives
(fq;f2; i fq) is formulated as follows:

Optimize y = f (x) = (f1(x); i Fa(x)) 21

sttt X =(X1;  ;Xn)2X (3.1)
where the decision vectorx ranges in the decision (parameter) spac&, y is the objective
vector with f; mapping X onto R, R is the objective space. The objective function is
the mapping f : X ! RY. In the following, without loss of generality, we only consider
objectivesf;;i=1;2; :d to be maximized.

3.1.2 MOO optimality

There are many ways to formulate an MOO problem. The key question in MGD regards
the trade-o between the conicting objectives fi;i = 1;2; ;d. This section concen-
trates on the concept of Pareto optimization at the core of multi-objective optimization,

originated from the engineer/economist Vilfredo Pareto [Pareto, 1896], stating that:

Multiple criteria solutions could be partially ordered without making any preference
choices a priori.

Several notions related to Pareto optimality are frequently used in e MOO literature
as the following, referring the reader to [Deb, 2001] for more detail.
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De nition 2. (Weak Pareto dominance ) Given two objective vectorsy =
(Y5 ya);y2=(y$::iy9), v is said to weakly dominatey® (notedy  y9 i yi y?
forall i =1; . d.

De nition 3.  (Pareto dominance ) Objective vector y dominates objective vectory®
(notedy y9%if y y%andy; >y?for atleast onei 2f1;2, ;dg.

De nition 4.  (Incomparability of vectors ) Objective vectorsy and y°are incompara-
ble (notedy ky%i y y%andy® vy.

De nition 5.  (Pareto optimality ) The solution x and its correspondent objective vec-
tor f (x ) are Pareto optimal i @ 2 X such thatf (x) f(x ).

For the sake of simplicity, we will interchangeably speak of Pareto donmance for
the decision vectorx and the associated objective vectorf (x) in the remainder of this
manuscript.

De nition 6.  Given a point setP, P is the set of points inP which are non-dominated
by points in P, referred to as Pareto front w.r.t. P.

P =fy2P:@°2P sty’ yg
De nition 7. Point set P is called a non-dominated seti P = P.

De nition 8. P is the optimal Pareto front in the considered MOO problem if it includes
all points which are non-dominated by other points inX.

De nition 9.  (Comparison between non-dominated sets ) A non-dominated set P1
is said to be better than another non-dominated se, (noted P;  P») i every y 2 Py is
weakly dominated by at least ong°2 Py and P, 6 Ps.

Having the relationship between non-dominated sets, points inP are further ordered
through the Pareto rank function [Deb et al., 2000].

De nition 10.  The Pareto ranks w.r.t. a set of objective vector® RY are determined
in an iterative manner as follows: all non-dominated points inP (noted asP or F1(P))

are given rank 1. The setF1(P) is then removed fromP; from the reduced set, the non-
dominated set are given rank 2 (noted a$ »(P)); the process continues until all points of
P have received a Pareto rank. The Pareto rank of a poinp 2 P is denotedi ank (p; P)

(Figure 3.1).

Noting the largest Pareto rank of points in P by iank :max (P), we have by construction
8i;j 2f 1 irank;max (P)gri<) )F i(P) Fj(P).



3.1 MOO formal background

Figure 3.1: Three non-dominated sets partitioned according to their Paeto ranks.

3.1.3 An MOO example

We use the following 2-variable bi-objective optimization problem toillustrate some of the
above notions in MOO:

Maximize f 1(x1;X2) = X5+ X
fa(X1;X2) = X1+ X3
sit: 10 x; 10

10 X2 10

(3.2)

Figure 3.1.3 illustrates a set of 280 Pareto optimal solutions for this probém (in red)
and one set of suboptimal solutions (in green). The optimal solutions form he Pareto
front in the objective space. Note that the Pareto front in the decision spacds neither
necessarily convex, nor continuous.

3.1.4 MOQO critical issues

In order to compare two MOO solution sets, the standard procedure is @ compare their
Pareto optimal set. The di culty lies in the fact that there exists no total order among
solution sets. In the single-objective context, the solution sets an be compared according
to their optimal elements. In the multi-objective case, however such total order does not
exist, and the the Pareto front of two solution sets might be incomparabe (Figure 3.3).
As noted by [Deb, 2001], the issue of incomparable solution sets becomes evrore severe
as the number of objectivesd increases.

Comparing two solution sets is an MOO problem per se. Still, we need #otal order
according to some preference information to assess rigorously the solom sets in MOO
algorithms. To do this, a widely accepted procedure is to usguality indicators, suggested
by Zitzler et al. [2001] and Knowles et al. [2006]. In section 3.3.3, three quayi indicators,
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Chapter 3. Multi-Objective Optimization

(a) Decision SpaceX (b) Objective Space R?

Figure 3.2: A set of solutions (Left) and their correspondent objective alues (Right) for
the bi-objective example problem (Eq. 3.2), among which the optimal Paeto front is
marked by red circles. The red points belong to the optimal Pareto font. The set of
green points is non-dominated in the sense of De nition 7, although thesesolutions are
dominated by the red ones.

respectively the generational distance (GD), inverted generationallistance (IGD) [Zitzler
et al., 2003] and hypervolume indicator [Zitzler and Thiele, 1998] will be dened to measure
the quality of non-dominated solution sets, regarding 1) the distance b&veen the non-
dominated solutions P and the Pareto optimal solutions P to be minimized; 2) the
diversity of points within P to be maximized.

3.2 Classi cation of MOO approaches

Two MOO approaches { the preference based and ideal approaches { are disguished
in the literature, depending on whether the user is required toexpress his/her preference
before starting search [Deb et al., 2000], as is illustrated in Figure 3.4.

In the preference based approaches (Figure 3.4-Left), the user de sea priori his/her
preferences on the objective vectors, then the MOO problem is handled as a (ser&of)
single-objective problem(s) which searches for the solution that b&t satis es the user
preference.

The ideal approaches suggest to rst nd all Pareto optimal solutions of the MOO
problem (Figure 3.4-Right), then choose a posteriori one or several soliins taking into
account the preference information.

1The user's preferences can be considered as an abstract utility fundion in the mind of the decision
maker faithfully re ecting his/her preferences (Figure 3.5(a)) [M arler and Arora, 2010].
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3.2 Classi cation of MOO approaches

Figure 3.3: Two sets of non-dominated solutions may be incomparable in thenulti-
objective space.

The user preference is explicitly presented in the form of a scatization function
g (f(x)) : RY! R in the preference based approaches, where is the parameter repre-
senting di erent user preferences. The main advantage of the prefence based approaches
is that the solution can be found using one of the many single-objective dpmizers avail-
able in the optimization literature. Some of the most popular preferene based MOO
approaches are presented as the following.

3.2.1 Weighted sum method

Due to its simplicity, the weighted sum method is one of the most poplar preference
based approaches for solving MOO problems. It has been used extendivdo provide
a single solution point that re ects preferences presumably incorprated in the weight
settings. In weighted sum methods, the optimization of multiple objective functions
(f1(x);f2(x);  ;fq(x)) is reformulated as the maximization of a scalar utility function:

xd

Maximize gw(x)= w; fi(x)
i=1

sit: X =(Xp; 1Xn) 2 X

(3.3)

wherew; 0i=1:;2. :dand P d wi=1

In principle, any single objective optimization method can be applia@ for solving the
above problem. Note that choosing the values for weights de nes the rakive importance
of each objective function, thus re ecting the user preferences
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Chapter 3. Multi-Objective Optimization

Figure 3.4: Left: the preference based approach of MOO. Note that the numhreof hyper-
parameters (wj = 1) in the user preference function is not necessarily the same as the
number of objectivesd. Right: the ideal approach of MOO. This illustration is adapted

from [Twsar, 2007].
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3.2 Classi cation of MOO approaches

Convex Pareto front case

The maximization of Eq. (3.3) provides a su cient condition for Pareto op timality, which
means the maximum ofg, (x) is always Pareto optimal [Zadeh, 1963]. Lin [1976] further
shows that when the Pareto optimal hypersurface of the objective spax is convex, the
entire Pareto optimal solution set can be obtained by the weighted sum mathod through
the consistent variation of weight settings.

In nature, the weight settings in the weighted sum method can be cordered as a
linear approximation of the preference function . The isolines of theutility function gy (x)
approximate the isolines of the abstract preference function (Figue 3.2.1 (a) and (b)),
which intersects with the Pareto optimal point in the objective space that brings the most
satisfaction to the user.

Despite its simplicity and optimality guarantee in the convex Pareto front case, the
weighted sum method faces one bottleneck. For multi-objective prolems in practice,
there are often in nitely many Pareto optimal solutions, especially in the problems with
continuous objective space, thus it is often required to search for ampproximated set of
Pareto optimal solutions which gives an evenly distributed coverage othe Pareto front.
However, Marler and Arora [2010] point out that, evenly distributed choices of weight
settings does not necessarily lead to an evenly distributed Paretoptimal set. The choice
of weight settings for an appropriate coverage of the Pareto front remains alallenging
issue.

Non-convex Pareto front case

Being a linear-scalarization method, the main disadvantage of the weiglgd sum method
is that it can not nd solutions which lie in the non-convex regions of the Pareto front
[Deb, 2001], an example of such solution is shown in Figure 3.5(c).

3.2.2 -constraint method

The -constraint method was rst proposed by Marglin [1967]. In this method, only one
objective function is maximized, while others are subject to congtaints de ned by the
parameter:

Maximize f p(x)
sit: fi(x) ;i=1; ;d;iép

Compared to the weighted sum method, the advantage of the-constraint method is that,
by specifying parameters in each objective, this method restricts the original sarch
space to a sub-region, which avoid redundant runs in the sense thathiere can be a lot of
combination of weights that result in the same solution in the weighted sim method.

However, despite its advantage over the weighted sum method, the apipation of -
constraint method has been prohibited due to the following drawbak: the speci cation
of constraint parameter requires strong knowledge about the objective space, which is
hard to obtain, especially when the problem domain is new to algorithm dsigners.
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(a) Preference function contours (b) Utility function contours of the weighted sum
method

(c) Optimal solutions under di erent weight set-
tings

Figure 3.5: lllustration of user preference function and the weightedsum method. (a)
The isolines of user preference functions are depicted as the dasheontours. Points on
the same dashed curve bring the same level of satisfaction to the user(b) The user
preference function is approximated by a weighted sumw; = w, = 0:5) of objective
values, the isolines of which are represented as dashed lines. (ché& points that maximize
the weighted sum utility function under di erent weight settin gs are marked by red circles.
The point lying in the non convex region of the Pareto front (marked by the black circle)
does not maximize any linear combination of objective functions.
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3.3 Multi-Objective Evolutionary Algorithms

3.2.3 Goal programming technique

Correspondingly to the -constraint method which restricts the search space to a sub-
region, another choice is the goal programming technique, which indicate directly the
desired region in the objective space. In goal programming, simplex metd or linear
programming are usually used to satisfy decision maker's goals and prioigs [Charnes
and Cooper, 1957; Tamiz et al., 1998].

Minimize
sitrjfi(x) f;] wii=1;, ;d;iép;i=1; ;d

wheref =(f;f,; ;f,) expresses the design goals.
Similarly to the -constraint, the goal programming technique requires strong knowl-
edge about the desired region in the objective space.

3.2.4 Discussion

The common disadvantage of all preference based MOOs is that they usuallyequire
the explicit representation of user preference a priori, which $ not always feasible in
reality. Besides, most preference based MOO method are sensiévto the parameters (v
in weighted sum method, in -constraint method, and f in goal programming).

In contrast, the ideal approaches tries to nd all Pareto optimal solutions in the rst
place without user preference function. This is ideal in the serssthat it does not require
any additional information before the optimization, thus the choice of soluions is made
a posteriori with the complete information about the optimal Pareto front. In practice,
the determination of the whole optimal Pareto front is di cult when th e objective space
is continuous, and we usually search for a good approximation (e.g. a u@fm sampling)
of the optimal Pareto front with a limited number of points.

Although ideal approaches are expensive, they become the last resort inany real-
world problems, in which the environment is unknown, and the integration of user's pref-
erence is impossible. The ideal approaches are extremely attractivie these situations as
they enable the user to select a posteriori his/her preferred solion. In the following sec-
tion, the state of the art in ideal approaches { the multi-objective evolutionary algorithms
(MOEASs) will be presented.

3.3 Multi-Objective Evolutionary Algorithms

In this section, we rstly introduce the basics of evolutionary algorithms, which MOEAs
are based on. After reviewing the main MOEA approaches, we detail the Nomominated
Sorting Genetic Algorithm 11 (NSGA-II) [Deb et al., 2000] algorithm, based on which many
other MOEAs are developed, and one important variant of NSGA-II { the SMS-EMOA
algorithm [Beume et al., 2007], which will be used in later chapters of th work.
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Chapter 3. Multi-Objective Optimization

Figure 3.6: The basic evolutionary algorithm involves 4 steps: initialiation, selection,
variation and evaluation. Starting from a randomly or heuristically initialized population,
all individuals in the population participate in a selection process which chooses better
evaluated solutions to reproduce themselves. The chosen indivighls (parents) go through
the variation process (mutation and crossover) and generate o -springs. The o -sprig
population is then evaluated According to the order de ned on the evaluation results,
the best individuals out of the o -spring (and optional parent) populati on are selected
deterministically or stochastically and become the new generation poplation. The entire
evolution process iterates until the stopping criterion is met.

3.3.1 Evolutionary algorithms

The term evolutionary algorithm (EA) stands for a class of stochastic optimization meth-
ods that simulate the process of natural evolution. The origins of EAs can b traced back
to the late 1950s, and since 1970s several evolutionary methodologies have beeaposed,
including genetic algorithms [Goldberg and Holland, 1988], evolutionary progamming
[Fogel et al., 1966], and evolution strategies [Rechenberg, 1978].

All evolutionary algorithms de ne a set of candidate solutions, which are alled "pop-
ulation" in the EA literature, and are usually randomly initialized. T he population itera-
tively undergoes three steps : i) evaluation, ii) selection and i variation (Figure 3.6).

i) The evaluation corresponds to computing the value of each individualin the popu-
lation, usually measured by a tness function; ii) The selection sep represents the com-
petition for resources among individuals, and tends to select indiiduals which are better
in the sense of tness function; iii) The variation relies on n-nary (usually unary mutation
or binary crossover) operations to generate new individuals.

Despite its simplicity, EA provides an e cient solution to the i ll-posed optimization
problems [Back et al., 1997]. A strength of EA is to possibly incorporate pror knowledge in
the variation and in the selection step. Moreover, EAs seem to be esplly suited to multi-
objective optimization because they are able to capture multiple Paréo-optimal solutions
in a single simulation run and may exploit similarities of solutions by recombination.

In the counterpart of the strength, the main weakness of EA is to requie a huge
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3.3 Multi-Objective Evolutionary Algorithms

number of tness functions to be evaluated?.

3.3.2 Early MOEAs

The rst way to incorporate EA into MOO is to modify the selection s tep. Historically,
the rst MOEA algorithm, Vector Evaluated Genetic Algorithm (VEGA,[Sch a er, 1985]),
was a genetic algorithm with a modi ed selection step, where the poplation is divided
into multiple sub-populations, and each sub-population has its own tness-proportional
based selection procedure w.r.t. one objective.

Since VEGA, the selection stephas been recognized as the main di erence between
most MOEASs and their single objective analogues. Animportant step of undestanding the
selection step in MOEA was made by [Goldberg and Holland, 1988], where thegiscussed
the concept of sorting individuals in an MOO perspective, which waslater implemented
in the Non-dominated Sorting Genetic Algorithm (NSGA [Srinivas and Deb, 1994]).

The common point between the early MOEAs is that they all search for a suiable
selection mechanism for the MOO purpose. The main achievement of thearly MOEA
approaches is the creation of the non-dominated sorting procedure and varus secondary
sorting criteria. In the work of [Deb et al., 2000], the non-dominated sortng procedure
is speci ed as the integer-valued tness function { Pareto rank (section 3.1.2). Deb et al.
[2000] suggest a fast non-dominated sort algorithm which determines the Pare ranks of
all points in P within time O(jPj?) (Algorithm 3.1).

3.3.3 Quality indicators

Beside the Pareto rank indicator which measures the quality of singlesolutions within a
single population, some quality indicators have been used by some MOEAas the direct
tness measure of overall quality of populations (solution sets). By maging solution sets
onto R, quality indicators provide a total order among sets. Then, even for incomparable
non-dominated sets, one can say which one is better w.r.t. a given quél indicator.

Basically, there are two types of quality indicators { unary and binary indicators. In
the rst case, the unary quality indicator | : P(RY) ! R maps populations onto R,
therefore introducing a total order in the power set of the decisionspaceX 3. However,
unary quality indicators are limited in the sense that there is no intrinsic total order among
point sets, therefore no unary quality indicator is able to judge wheter one non-dominated
set P, is better than another non-dominated setP, (P;  P») [Zitzler et al., 2003].

A unary quality indicator is said to be Pareto compliant if | (P1) > 1 (P>) for all pairs
of point sets P1; P, such that P, is better than P, (De nition 9).

P1 P2) [(P1)>1(P2)

2Some learning mechanisms incorporating the approximation of t ness function evaluation have been
developed to address this limitation (see for instance [Loshchilov, 2013]), but this is beyond the scope of
this manuscript.

SP(RY) is the power set on RY.
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Algorithm 3.1:  Fast non-dominated sort algorithm

Input: Point set P
Output: A list of non-dominated sets of di erent Pareto ranks F;;i 2 N
for p2 P do

np O Il np notes the number of points that dominate p
for q2 P do
if p qthen
S Splf ag II'Sp stores the points that are dominated by p
elseif g pthen
np np+l
end if
end for
if np =0 then

/[The points that are not dominated by any other points are
/fincluded in the rst non-dominated set Fj.
Fi F 1[f pg
end if
end for
i1
while F; 6 ; do
H =; /I H stores the remaining non-dominated points in the reduced point seP
for p2 F; do
for q2 S, do
Ng NnNg 1
if ng=0 then
//Inew non-dominated sets are constructed in a similar way to F1
H=HI[f qg
end if
end for
end for
i i+l
Fi=H
end while
return fF gjk=1;2 ;i 1g
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3.3 Multi-Objective Evolutionary Algorithms

More sophisticated binary quality indicators are de ned on pairs of solution sets| :
PRY P(RY ! R. Binary quality indicators map pairs of solution sets onto R. A
reasonable requirement for the binary quality indicator is to presewe the Pareto order
among solution sets. A trivial example of such indicator is

1 ifP, P,

HPLP2) = 5 Gtherwise

(3.4)

3.3.4 Unary quality indicators

In this section, some of the most popular unary quality indicators are preented.

Generational distance

Let P denote the true Pareto front, and let P denote the empirical Pareto front obtained
by a search process. The generational distance (GD) measures the asge distance from
points in P to the true Pareto front P [Van Veldhuizen, 1999].
dp——r0
P
GD(P )= — =1
IP ]
where d; is the Euclidean distance between the-th point in P and its nearest neighbour
in P

Inverted generational distance

The inverted generational distance (IGD) is de ned as the average dignce of points in
P to their nearest neighbour in P [Van Veldhuizen, 1999].
9dp——

J:'fl j d 2
IGD(P )= —
P
whered; is the Euclidean distance between the-th pointin P and its nearest neighbour
inP .

GD measures the average closeness of pointskh to the true Pareto front, while IGD
indicates whether points in P are all uniformly approximated by P . In order to best
approximate the Pareto front P, both generational and inverted generational distances
should be minimized. Although GD and IGD are used in numerous MOO probéms as
quality indicators of solution sets since Van Veldhuizen [1999], they aregroven not to be
Pareto-compliant by Zitzler et al. [2003]. An example of this is shown by Fgure 3.7, in
which a solution set corresponding to a smaller GD is dominated by a sation set with
higher GD.
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Figure 3.7: With respect to the optimal Pareto front (red stars), the set B (blue squares)
corresponding to a smaller generational distance is dominated by s& (green circles) with
a greater generational distance.

Hypervolume Indicator

The hypervolume indicator [Zitzler and Thiele, 1998] de nes a scalar masure of solution
sets in the multi-objective space as follows.

De nition 11. Given P RY a set of objective vectors, and the reference poirz 2 R
such that it is dominated by everyp 2 P, the hypervolume indicator (HV) of P is the
measure of the set of points dominated by some point iR and dominating z:

HV(P;z)= (fx2RY:9p2P sttp X z0)
where is the Lebesgue measure oR® (Figure 3.3.4).

It is clear that all dominated points in P can be removed without modifying the
hypervolume indicator (HV (P;z) = HV (P ;z)). As shown by [Fleischer, 2003], the
hypervolume indicator is maximized i points in P belong to the Pareto front of the
MOO problem. [Auger et al., 2009] show that, ford = 2, for a nhumber K of paints, the
hypervolume indicator maps a multi-objective optimization problem de ned on R¢, onto
a single-objective optimization problem on R K| in the sense that there exists at least
one set ofK points in RY that maximizes the hypervolume indicator w.r.t. z.

3.3.5 Modern MOEASs

The history of early MOEA approaches mainly is the search for suitable section criterion
in the multi-objective setting. While the modern MOEAs are characterized for their use
of quality indicators as the secondary selection criterion. The Indiator Based Evolution
Algorithm (IBEA [Zitzler and Kunzli, 2004]) is one of the rst algorithms t hat use the
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Figure 3.8: The hypervolume indicator of the point set w.r.t. refererce point z in the
lower-left corner is the surface of theshaded region

quality indicators as selection criterion in the evolution process. Afterwards, the SMS-
EMOA [Beume et al., 2007] implemented the hypervolume indicator as thesecond sorting
criterion in the non-dominated sorting algorithm. This allows extending the NSGA-II

algorithm towards the many-objective optimization problem where the objective number
d > 3 (more in section 3.3.7).

In the following sections, NSGA-Il and SMS-EMOA are respectively ntroduced as repre-
sentatives of early and modern MOEA approaches.

3.3.6 NSGA-II algorithm

Despite the diversity of early MOEAs, we consider the NSGA-II [Deb & al., 2000] as a
representative of them because of the following facts: i) NSGA-II is lhe best known MOO
algorithm which is frequently used as the baseline algorithm in the MQD literature; ii)
it serves as a basis on which many new MOEAs are developed (usually by mdidying the
secondary sorting criterion, such as SMS-EMOA [Beume et al., 2007]);i)i it has been
successfully implemented in many multi-objective sequentialdecision making problems,
including the grid scheduling problem [Yu et al., 2008] which is usedas a benchmark in
the following of this work (Chapter 6).

The NSGA-II is an improved version of NSGA [Srinivas and Deb, 1994], in whik the
concept of non-dominated sorting was rst de ned. In NSGA-II, the order of individuals
in the selection process of evolutionary algorithm is determined bywo indicators:

Firstly, the dominance-based quality indicator i;ank is de ned by the Pareto rank
criterion: the fast non-dominated sorting algorithm (Algorithm 3.1) partit ions the
objective vectors of the current population into several layers accating to their
Pareto ranks, and each layer of vectors compose a non-dominated set (Figair3.1).
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Figure 3.9: Calculation of the crowding distance.

Secondly, in order to distinguish vectors of the same Pareto rank, theecond quality
indicator igjstance , de ned by crowding distanceis applied (Figure 3.9). The crowding
distance measures the population density around a vectoy within a non-dominated
setP. It is computed as follows:

x fily?) fily;)

max(fi(y)y 2 P) min(fy)y2p) O

idistance (y; P) =
i=1

where y and y, are respectively the right and left neighbors ofy on the i-th
objective.

The two indicators together de ne a crowded comparison operator( ps) as:

Y ns inf irank (y;P) <irank (yO;P)
or (3.6)

irank (y; P) = irank (yO; P) and idistance (y; P) > distance (yO; P)

Formally, the NSGA-II algorithm is described in Algorithm 3.2. In iteration t =0, a
population Q=0 of individuals is randomly initialized. In each iteration t, the population
Q! generates o0 springs using two variation operators { crossover C (with probability pc)
and mutation M (with mutation pm). Each newly generated solutionx? is evaluated
and its objective vector f (xE) will later participate in the selection process. After the
procedure of variation, + parent and o spring individuals are sorted according to the
total order relation s de ned above.

The main advantage of NSGA-II is that the crowding distance gives a measuref popu-

lation density without requiring a user-de ned parameter. However, in higher dimensional
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Algorithm 3.2:  ( + )-NGSA-II algorithm
Input: parent population size , o spring population size , crossover ratepc,
mutation rate pm, crossover operatorC, mutation operator M , tournament size tioy,
Initialize: t 0, build a (usually uniform) parent population Q'=°

repeat
for k=1; ; do
//Choose two parents according to the tournament-based selection rule
repeat

i1 TournamentSelection (jQY; tiour )
i>  TournamentSelection(jQ!j; tiour )
until 116 io
if U(0;1.0) pcthen
fo1;009 C (Xiy;Xi,)
/lcrossover operation with probability p. between the selected parents
else
01  Xj,02 Xi,
end if
X2 o1 or 0 (each with probability 0.5)
if U0;1.0) pm then
x2 M (xD)
/Imutation operation with probability p, over the generated o spring
end if
QY Q'[f f(xDg /levaluation operation
end for
Sort(Q; ns)
/Isort the Q' point set according to the crowded comparison operator
Q" Q1 ] lIselect the rst  elements inQ!
t t+1
until  stopping criterion is met

Algorithm 3.3:  TournamentSelection function
Input: population size S, tournament size tyoyr
Output: index of the tournament winner

best WU(1;S) /luniformly choose a number between 1 and S
compete U(1;S) /frandomly choose another number between 1 andS

if f (Xcompete) f (Xpest) then
best compete
end if
end for
return best
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objective spaces @ > 3), the crowding distance may not properly estimate the population
density, because points in high dimensional space are far from each othesccording to
the famed curse of curse of dimensionality [Bellman, 1957].

3.3.7 SMS-EMOA algorithm

In order to address the drawback of the crowded distance indicator inNSGA-II, the
S-metric selection evolutionary multi-objective optimization algorithm (SMS-EMOA)
[Beume et al., 2007] has been proposed, which replaces the second qualitgicator in
NSGA-II by the hypervolume indicator. Note the candidate solution set (population) by
P. For any individual y 2 P, its hypervolume contribution is de ned as:

ihypervolume (Y;P) = HV (P;z) HV (P=fyg;2) (3.7)

The dominance-based quality indicator i;ank and hypervolume contribution indicator
ihypervolume together de ne a hypervolume contribution operator ( py) as:

Y hv inf irank (y;P)>irank (yO; P)
or

irank (Y3 P) = irank (y(l, P) and inypervolume (Y P) > i hypervolume (yO; P)

(3.8)

Then, SMS-EMOA is carried out in the same way as NSGA-II, only with a madi ed
selection step: theSort(Q!; ns) sorting procedure is modi ed to Sort(Q'; ).

The main disadvantage of SMS-EMOA is in the computational complexity of the hy-
pervolume indicator, which increases exponentially w.r.t. the nunber of objectivesd (the
complexity O(jPj92) for d > 3 [Beume et al., 2009]). To make the hypervolume indicator
based algorithm computationally feasible for larged, Monte Carlo simulation schemes have
been proposed to approximate the exact hypervolume values [Bader anditZler, 2011].

3.4 Discussion

MOO techniques have been deployed with success in a wide vatyeof real world problems,

including planning [Saadatseresht et al., 2009; Yu et al., 2008], circuit dggn [Palmers
et al., 2009; Zhao and Jiao, 2006], robotics [Saravanan et al., 2009], bioinformatics [8hi
et al., 2005], image processing [Lazzerini et al., 2010] and tra c engineeringJhlig, 2005].

The main open problems in MOO can be sketched as follows.

Noisy multi-objective optimization: Noisy optimization is a big issue both theoreti-
cally and computationally. It is particularly important in MOO as noise can perturb
Pareto dominance relations, all the more so as the number of objectives¢reases.
To develop e cient algorithms, a model of the noise should preferablybe identi ed
to propose adapted heuristics to cope with it. Although some work has beewlone
on this [Deb and Gupta, 2006; Goh and Tan, 2007; Heidrich-Meisner and Igel, 2009],
the fundamental issues of noise modelling [Beyer and Sendho, 2007; Fik et al.,
2010] have not much been touched in MOO to our best knowledge.
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3.4 Discussion

Many objectives: The complexity of handling numerous objectives hasattracted
growing attention [Purshouse and Fleming, 2007; Ishibuchi et al., 2008; Zou edl.,
2008; Bader and Zitzler, 2011]. Due to the curse of dimensionality, a large nuber
(d 3) of objectives introduce extra di culties w.r.t. computation, v isualization,
and decision making for the MOO. Ishibuchi et al. [2008] show that many algothms
that perform well for a few objectives scale poorly in the number of obgctives, ne-
cessitating special algorithms for the many-objective setting. As alrady mentioned,
the state of the art MOEASs such as NSGA-II are not e ective in solving optimization
problems with more than three objectives.

Description of approximated Pareto front: The purpose of ideal MOO metod is to
approximate the set of Pareto optimal solutionsP . Although most current MOOs

use a nite number of solutions (points) to approximate the optimal Pareto front,

it would be interesting to investigate how to describe an approximated Pareto front

in other ways. Some steps have been made in this direction. In theontinuous case,
one may consider rst-order or higher-order approximations [Loshchile, 2013].
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Chapter 4

Multi-Objective Reinforcement Learning

Multi-Objective Reinforcement Learning (MORL) is an extension of reinforcement learn-
ing to the multi-objective setting. This chapter rstly introd uces the formal background
of MORL pioneered by Gabor et al. [1998]. Then di erent categories of MORL algorithms
are presented. MORL applications are discussed in the end of this epter.

4.1 MORL background

Multi-Objective Reinforcement Learning (MORL), aimed at multi-ob jective sequential de-
cision making, addresses problems formulated as multi-objective Maxy decision process
(MOMDP). This section rstly presents the MOMDP framework [Roij ers et al., 2013],
then the problems raised in the MOMDP are discussed.

411 MOMDP

The formal setting in multi-objective Markov decision process (MOMDP) is the same
as in MDP (section 2.1.1), which consists of a quadruplet §; A; p;r) involving the state
spaceS, the action spaceA, the transition probability function p, and the reward function
r. With respect to MDP, the only modi cation of MOMDP is that the rewar d function

r:S A! RY describes ad-dimensional vectorial reward, (e.g. cost, risk, robustness)
instead of a single scalar value (quality).
Similarly to Chapter 2, we note r(s¢;at) = (ra(se;a);ra(se;a);  ;ra(se; a)) as the

vector of rewards received at timet, the value functionsV :S! R%and Q :SAI Rd
specify the expected return of each objective as follows:

2 #
V (s)=E Yor(s;a)jso = S;a = (St)
t=0 (4.1)
= (V5 (8):V; (s); Vg (9)
" #
p 3
Q (s;a=E Uor(s;a)jso= Sja0= aja = (s) fort> 1
t=0 (4.2)
=(Q4(s;a);Qa(s;@);  ;Qq(s;a)
For an MOMDP, given a set of policies = f 1; »2; ; kgand a states, each policy

2 corresponds to a value vector V (s). Note the set of value vectors for under s
by P. =fV (s); 2 g. Then we say that the policy 2 belongs to the Pareto front
of understate si V (s)2 P .
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4.1.2 Multi-objective generative model

Like in the MDP case, the MOMDP is sometimes replaced by a generativeanodel M 4 :
S AIS RY, which maps the state-action pair (s;a) to the next state s°and the
associated vectorial rewardr .

41.3 MOMDP diculties

As discussed in Chapter 3, the key impact of the multi-objective seting is that there is
no longer a total order relation on rewardsr and value functions V;Q. Therefore the
standard MDP solutions do not work directly in MOMDP. Two main approache s have
been proposed in the literature. The rst one is based on the single-plicy method, which
aggregates multiple objectives into a single one through the use of scalagtion function
(section 4.2). At this point, we will further distinguish between the linear scalarization
function and the non-linear scalarization function. The second one is bax on the multiple-
policy method, which aims at nding all policies with Pareto optimal v alues in the multi-
dimensional space.

4.2 Scalarization functions

De nition 12. A scalarization function g : R9! R, is a function that maps the vectorial

reward r(s; (s))=(rw(s; (s));ra(s; (8)); ;ra(s; (s)) onto a scalar value.
r(s; (s))= g (r(s; (9)) (4.3)
where =( 1; 2; ;) IS a parameter vector ofg.

Beside the vectorial rewards,g is applicable to the value functionV (s) as well. We
note

V()= g(V (9) (4.4)

De nition 13. A scalarization function g : RY! R is Pareto-compliant if the Pareto-
dominance relation between vectorial rewards = (rq;rp;  ;rg) and ro=(rr3 ;19
is respected :

gisri  rPr9jry>rf) g(r)>g (r9 (4.5)

The Pareto-compliant scalarization only requires that, all other things being equal,
getting more reward for one objective is always better, being remindd that all considered
objectives are to be maximized. To the best of our knowledge, all scalaation functions
in the MORL literature are Pareto-compliant.

Three classes of scalarization functions are distinguished in the MOR literature and
are presented in the following sections. The rst class is the liear scalarization function
(section 4.2.1). The second class is the non-linear scalarization funcin (section 4.2.2).
The third class, which is recently studied in both MOEA and MORL communities, is
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the population-based scalarization (section 4.2.3, [Ishibuchi et al., 2008; ¥Ahg and Sebag,
2012; Van Mo aert et al., 2013]). In the rst and the second case, we have the pararater
xed, while in the third case, the scalarization function is basically calculated from the
current archive P of previously found solutions, which is updated by the MORL algorithm.
Except for the linear-scalarization class, standard MDP approaches are notirectly
applicable to other scalarized MOMDP scalarized in other ways.

4.2.1 Linear scalarization functions

A linear scalarization function computes the inner product of a vectoral reward r =
(ri;r2;  5rq) and a weight parameterw = (w1, Wo;  ; Wg):

xd
w()=r w= 1 W (4.6)
i=1

Each element ofw speci es the relative importance of each objective. With no loss of
generality, all elements inw are non-negative and sum to 1.

The main merit of the linear-scalarization function is that it preserves the Bellman
equation :

xd
aw(V ()= w V(9
i=1 |
X !
= W ri(s; (s)+ p(s; (s);sHV; ()
i=1 s02s
(the Bellman equation holds in each objective) (4.7)

xd X xd
= (s () wi+ ps; ()8) Vi (9) wi

i=1 X s®2s i=1

= gu(r(s; (9)+ p(s; (s);s9gw(V ()
s®2s

The additivity of state values allows the implementation of Bellman operator, and the
linear-scalarized optimal value of states in MOMDP can be calculated by he standard
MDP approaches.

However, the price to pay for this simplicity is that the linear scalarization function
does not allow the discovery of Pareto optimal solutions lying in the ron-convex regions
of the Pareto front.

4.2.2 Non-linear scalarization functions

Non-linear scalarization function g : R ! R maps the vectorial reward onto R in a
non-linear way.
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The well-known Tchebyche function is an example of this class:
Onw ()= ji w (m r1)iiz (4.8)

wherem = (mj;my;  ;mg) is an Utopian/ideal point, representing the desired values
in each objective, andw are weights assigned to each objective. Note that any Pareto
optimal solution can be reached by maximizing the Tchebyche scalariation function with

a proper choice ofw, and any Tchebyche -optimal solution is Pareto-optimal [Bowman Jr,
1976]. The main di culty for implementing the Tchebyche function i s on the choice of
m and w.

The cumulative property of rewards does not hold for non-linearly scalaized rewards.
Take the Tchebyche scalarization function for example. If m = (1;1), and under a
policy , we haverg = r(sp;a0) = (0;1);r1 = r(sy;a1) = (3;0);re = r(s;;a) = (0;0)
fort> 1, w =(0:3;0:7) and =1. We haveV (s) = E tlzo Y ry =(1;1). Then
gm;w(ro) = 03 gnw(riy) = 07andgmw(rt)= 07 fort> 1, but gnw(V )=0 6

t1:O Y maw (re)-

Therefore, standard RL methods which exploit the additivity of expected cumulative
reward are no longer applicable when the scalarization function is noniear.

4.2.3 Population-based scalarization functions

Population-based scalarization functions maps a vectorial reward to a scal value based
on some archiveP of the vectorial rewards discovered previously. One example funiin
of this class is the hypervolume indicator introduced in section 3.38. Such scalarization
functions are extensively used in MOEAs in the form of quality indicators (section 3.3.3).
They attract increasingly attention from the MORL community ((Wang and Sebag, 2012;
Van Mo aert et al., 2013]) as well.

As already mentioned, population-based scalarization approaches have theopsibility
to search for solution set on the Pareto front in a single trial. As population-based scalar-
ization functions do not belong to the linear scalarization class, the adidive assumption
(Eq.(4.7)) does not hold. Besides, the dynamic nature of the populatiorbased scalar-
ization function (due to the evolution of P) makes it dicult to compare the value of
solutions along time.

Following the approach of [Vamplew et al., 2010], the MORLs can be divided ito two
classes based on the number of policies that they search for. One classnaito learn the
single policy that best satis es the preferences between objeatés which are speci ed by
the user or derived from the problem domain. We refer to these asingle-policy algorithms
The second class searches for a set of policies which lie on or are closetlie Pareto
front. We refer to this class asmultiple-policy algorithms. The single and multiple-policy
approaches in MORL respectively upgrade the preference based andddl approaches in
the MOO literature. The di erence is that the MORL proceeds in t he MDP framework.

In the following, the single- and multiple-policy MORL algorithms are presented re-
spectively in section 4.3 and section 4.4.
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4.3 Single-policy MORLs

The majority of MORL algorithms proposed so far are of the single-policy natire as they
learn a single policy [Gabor et al., 1998; Castelletti et al., 2002; Mannor and Shnkin,
2004; Natarajan and Tadepalli, 2005; Tesauro et al., 2007]. The main di erence betwee
existing single-policy algorithms regards the scalarization function gsed to express the
user's preferences.

4.3.1 Linear scalarization based single-policy algorithms

The simplest way to express the user preference is to use thenéar-scalarization func-
tion (section 4.2.1), which has been employed by [Castelletti et al.2002; Natarajan and
Tadepalli, 2005; Tesauro et al., 2007]. This approach requires little knowldge about so-
lution distributions in the objective space, and the relative importance of objectives is
represented by the weight parameterw. As the linear-scalarization keeps the cumulative
property of rewards in each objective, standard RL methods can be app#id directly on
the scalarized values functions.

The critical issue in linear-scalarization-based single-policy MOR is how to determine
the weights which best describe the user preferences. This @iblem becomes even more
challenging when the magnitude of rewards in each objective is unknaw

4.3.2 Non-linear scalarization based single-policy algorithms

Gabor et al. [1998] provide the earliest example of a non-linear scalarizatin-based single-
policy MORL { the thresholded lexicographic Q-learning (TLQ-learni ng). This algorithm
is designed for problems with constraints in some of the objectives. fie preference over
policies is de ned using 1) an order on the objectives; 2) constraintsf;  C;) on objectives
i=1;2; ;d 1. Speci cally, the order between two value vectorsQ and Qois determined
by Algorithm 4.1. The rst, out of Q and Q° to violate one of the ordered constraints, is
said to be dominated by the second. Otherwise (bothQ and QP satisfy all constraints),
the best solution is the one with better value w.r.t. the last objective f 4.

Through the use of thresholded lexicographic ordering on the objectivg a total order
is recovered among vectors in the objective space. Then the s(tjandarQ-Iearning tech-
nique can be applied to maximize the resulting scalarized values ld l1Qi ¢, Qg. The
convergence of TLQ-learning is proven by the authors [Gabor et al., 1998].

Mannor and Shimkin [2004] also use preferences de ned on the objectivepace to
specify the desired characteristics of the policy being learnt. n this case a target region
in the objective space is de ned in which expected return of the plicy should fall.

[Perny and Weng, 2010] proposed another single-policy MORL solution with non
linear scalarization function, which implements a linear programming method to solve
the MOMDP scalarized using the Tchebyche function (section 4.2), which requires the
de nition of an Utopian point and a weight setting to represent the desired optimization
direction in the objective space.
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Algorithm 4.1:  TLQ-learning
Input: the threshold value (minimum acceptable value)C; for objective
i=1;2 ; d (for the unconstrained objective, Cq =+ 1 ), vector Q = ( Q1; ; Qa),
vector Q°=(Q%;  ;QY
Output: boolean { whether Q is better than Q°
forall i=1;2; ;d 1do
if Q; <CjandQ® C; then
return false
elseif Q; Cjand Q°<Cj then
return true
end if
end for
if Qq>QY then
return true
else
return false
end if

In summary, existing non-linear scalarization based MORLs usually regire an explicit
expression of the optimization targets, which makes the design of scalartion functions
more intuitive.

4.4 Multiple-policy MORLs

Multiple-policy algorithms aim to learn a set of policies that lie on the Pareto front. By
considering diverse parameters in the scalarization function (Eq.(4.3)), di erent Pareto
optimal policies can be discovered.

Compared to single-policy algorithms, multiple-policy algorithms share the same ad-
vantages as the ideal MOO approaches : no prior knowledge about the user gezences
is required and the set of solution policies built by the algorithm allov the user to se-
lect a policy based on his or her private criteria and the trade-o among the objectives
empirically disclosed by the Pareto front.

Based on the nature of scalarization functions, multiple-policy MORLs ae catego-
rized into three classes : linear scalarization based, non-linear s@alzation based, and
population-based multiple-policy algorithms, which are presented m the following sections.

4.4.1 Linear scalarization based multiple-policy algorithms

Most existing multiple-policy algorithms are based on the linear scalaization function.
Examples of this class include [Natarajan and Tadepalli, 2005; Chatterjee, 200 Barrett
and Narayanan, 2008; Lizotte et al., 2012]. By providing multiple weight settings to the
linear scalarization function (section 4.2.1), these algorithms use staratd RL methods to
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produce multiple policies in repetitive runs.

In this section, we introduce the Multi-Objective Q-learning (MOQ-learning, [Vamplew
et al., 2010]) algorithm as a representative of all other linear scalarization basd multiple-
policy MORLs in the sense that it yields all policies found by other linear-scalarisation
based approaches, provided that a su cient number of weight settingsbe considered.

Formally, MOQ-learning optimizes independently m scaElr RL problems through Q-

learning, where the j-th problem considers rewardR; = =1 Wi Ti, Wi 0j =
1;2; ; m de ne the m weight settings of MOQ-learning, {j:l wji =1, and r; represents
the reward in the i-th objective, i = 1;2; ;d. The computational e ort allocated

to each weight setting is further equally divided into ny training phases; after the k-th
training phase, the performance of thg -th weight setting is measured by thed-dimensional
vectorial reward, noted Rjy , of the current greedy policy. The m vectorial rewards of all
weight settingsf R1.«; Roxk; 11 Rmk 9 together compose the Pareto front of MOQ-learning
at training phase k.

However, in the simplest case, if there are only values evenly distributed over [Q 1]
f0; 1 % ;159 allowed to be taken as weightsw; for each objectivei =1;2;  ;d,

and i idzl w; = 1, there are in total m = d ! 1 possible combinations of weight
settings to be taken. If the standard RL technique is applied on each wight setting, and
the computational e ort is equally divided between the resulting m scalar RL problems,
then the complexity of MOQ-learning algorithm will increase exponerially w.r.t. the
number d of objectives.

Several other multiple-policy MORL algorithms have been proposed tohandle the
complexity problem of linear-scalarization based multiple policy MORL [Natarajan and
Tadepalli, 2005; Tesauro et al., 2007; Barrett and Narayanan, 2008; Lizotte et al., 2012].
The di erences between the above algorithms are how they share thenformation between
di erent weight settings and which weight settings they choose to ogimize. Natarajan
and Tadepalli [2005] show that the e ciency of linear-scalarization based MCRL can be
improved by sharing information between di erent weight settings.

In the case where the Pareto front is known, the design of the weightegtings is made
easier provided that the Pareto front is convex. When the Pareto frort is unknown, the
alternative investigated by Barrett and Narayanan [2008] is to maintain Q-vedors instead
of Q-values for each pair (state, action). A subset of all Q-vectors disogred in the
objective space, referred to as convex hull, is de ned as follows :

De nition 14. For an MOMDP, given a set of policies = f 1; 2; ; kg and a state
s, the policy 2  belongs to the convex hull (CH) of under states if there exist aw
that maximizes the linearly scalarized value function:

CH( ;8)=f | 2 ;9w2RYst.8°2 ;w V (s) w V (g (4.9
Figure 4.1 illustrates the concept of a convex hull of a set of policies the convex hull

on the solution set is marked by the blue shadow in Figure 4.1(a). The duatepresentation
of these points on the scalarized value space is shown by bold lines ingtre 4.1(b), which
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(a) Points in the objective space (b) Linear scalarized values of points

Figure 4.1: The convex hull of points in the objective space. Each pointn (a) represents
the bi-objective value of a given policy and each line in (b) shows the&ual representation of
these points in the space of linearly scalarized policy values with thx-axis representing the
weight w; for objective 1 (thenw, =1  ws), and the y-axis representing the scalarized
value of the policies. The convex hull is shown as circles in (a), andadid lines in (b).
The Pareto front consists of all circles and the blue square in (a), amongvhich the non-
dominated points are marked by the red shadow, and points belonging to th convex hull
are marked by the blue shadow. Notice that the blue square, represeimg a non-dominated
point, does not belong to the convex hull because it lies in the nonanvex region of the
Pareto front. The gray stars in (a) and dashed lines in (b) are dominated ints.
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associates each solution a liné.

Let us assume a nite state spaceS, action spaceA and time horizon T in the con-
sidered MOMDP. Through an iterative optimization of all weight settings corresponding
to the points on the convex hull of the current Q-vectors, the algorithm in Barrett and
Narayanan [2008] narrows down the set of selected weight settings, at the pgnse of a
higher complexity of the modi ed value updating procedure in standard Q-learning : the
O(jA]j) complexity (Q(s; a) updating operation in Algorithm (2.3)) is multiplied by a fac-
tor O(nY), where n is the number of points on the convex hull of the Q-vectors. While
the approach provides optimality guarantees (i converge toward the number of Pareto
optimal policies), the number of intermediate solutions can be huge ¢ the worst case,n
equalsjAj jSj, which is the total number of Q-vectors maintained by the algorithm).

Noticing the equivalence between the Q-vectors (Figure 4.1(a)) and thir linear scalar-
ized values (Figure 4.1(b)), Lizotte et al. [2012] extends [Barrett and Naragnan, 2008]
by representing the convex hull in piece-wise linear value furttons. Under this represen-
tation, the search of points on the convex hull is carried out by merging jece-wise linear
functions, which is more computationally e cient than the point searc hing operations in
[Barrett and Narayanan, 2008]. The growth ofn values is thus kept under control, which
is at most jAj + 1 for each value update.

4.4.2 Non-linear scalarization based multiple-policy algorithms

A simple way to realize the non-linear multiple-policy MORL is to repeat the single-
policy MORL algorithms with varying parameters in non-linear scalarization function

g . Vamplew et al. [2010] demonstrate this approach by adopting multiple userde ned

parameters in the TLQ-learning algorithm [Gabor et al., 1998]. However, this approach
requires to know explicitly the scalarization function g , which may be infeasible in some
application scenarios of multiple-policy MORL (more in section 4.5.1).

4.4.3 Population-based multiple-policy algorithms

Although population-based scalarization has been extensively used in #thmulti-objective
evolutionary algorithms (MOEAs, section 3.3), there is surprisingly little work on the
multiple-policy MORL using population-based scalarization functions. To the best of our
knowledge, the only work that implements non-linear scalarization furction over multiple
value vectors is done by Van Mo aert et al. [2013] in which the hypervolumebased Q-
learning (HBQ-learning) algorithm is proposed (Algorithm 4.2). In this algori thm, an
archive P of Q-vectors of all executed actions is maintained. In each iteration of tle
algorithm, the selected action is the one maximizing the hypervolumeindicator w.r.t.
the current archive P. In the case where none of the admissible actions has a positive
hypervolume indicator (which is the most frequent case), the actionis uniformly selected.
For eachi = 1;2; ;d, the scalar action value Q;(s;a) is updated as in the standard
Q-learning approach.

1The concept of convex hull is also well-known in the literature on partially-observable Markov decision
process (POMDP, [Smallwood and Sondik, 1973]).
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Algorithm 4.2:  Hypervolume-based Q-learning algorithm
Input: A multi-objective generative model M 4, a policy , learning rate 2]0; 1]
Output:  Approximated action value function Q
Initialize  Q;i(s;a) arbitrarily forall ( s;a)2S A andi=1;2 od

repeat
Select an initial s 2 S, archive P fg
repeat
a (s)
(s%r) M 4(s;a)
amax  argmaxana oHV (P [f Q(s%a%g;2) Il z is the reference point

Q(s;a) (1 )Q(s;a)+ [r+ Q(saly)l
P P[f Q(s;ag
s g9
until s is the terminal state
until stopping criterion
return Q

The main bene t of population-based multiple-policy MORLs is that no p reference
information needs to be specied before the optimization. However, he drawback of
these algorithms is that a point setP is required to be maintained, and the population-
based scalarization function (such as the hypervolume indicator, se@in 3.3.3) is more
computationally expensive than other non-linear scalarization functiors.

4.5 MORL applications

4.5.1 Application scenarios

MORL has been employed in a wide range of applications, both in simulatin and real-
world settings. In this section, we classify these applications inb three categories based on
how the user's preferences are taken into account (Figure 4.2). All thee scenarios contain
a planning phase and an execution phase. In all real-world applications, o matter how
many solutions are found by the MORL during the planning phase, only onepolicy can
be executed in the execution phase.

The rst scenario is called the known preference scenaripin which the user preference
is speci ed in the form of scalarization function g with xed parameters at the time
of planning (Figure 4.2(a)). Having an explicit presentation of scalarizaion function, the
MOO problem is reduced to a single-objective optimization problem,and single-policy
MORLs with both linear and non-linear (e.g. TLQ-learning) scalarization functions are
applicable in such scenario. Notice that when the scalarization functioris non-linear, the
additive property of each objective does not necessarily hold for thecalarized value func-
tion, and standard RL methods can not be applied. An alternative is to useevolutionary
algorithms (section 3.3.1) in this case.
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Figure 4.2: The three application scenarios for MORL. (a) Known preferere scenario; (b)
Varying preference scenario; (c) Decision support scenario (adapdefrom [Roijers et al.,
2013]).

Both the second and the third scenarios start by building a Pareto optimal solution
set. In the second scenario, called thgarying preference scenario(Figure 4.2(b)), the user
preferences are expressed in the scalarization functianm , but the parameter may change
due to the current context of deployment. Consider for example a pblic transport system
which aims to minimize both latency (i.e. the time that commuters need to reach their
destinations) and pollution costs. Assume that the resulting multi-objective SDM can be
scalarized by converting each objective into monetary cost: economistcan impose a tax
g (r) representing the lost public welfare due to latency and pollution Such monetary
costs vary due to the change of public opinion (represented by the paraeter ) towards
latency and pollution. In such a scenario, multiply-policy MORLs can be used to compute
a set of Pareto optimal policies such that, for any public preference, one of those policies
is optimal. When it is time to select a policy (the selection phasg, the current preference

is used to determine the best policy from the solution set.

In the third scenario, called the decision support scenarig aggregating multiple objec-
tives into a single one is infeasible throughout the entire decisionmaking process due to
the di culty of specifying the user preferences in an explicit way. For example, in the
urban planning case, the decision maker usually has a subjective pierence over existing
construction plans, which defy precise quanti cation: when the corstruction of an intercity
rail-road can be made more e cient by obstructing a beautiful view, th e human designer
may not be able to quantify the loss of beauty. The diculty of specify ing the exact
scalarization becomes even more apparent when the designer is not a siaglerson but a
committee or legislative body which is composed of members with di eent preferences.
In such systems, the multiple-policy MORL is used to calculate aPareto optimal solution
set. As is shown by Figure 4.2(c), in the selection phase of the dectsi support scenario,
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the user(s) select a policy from the set of solutions according to thearbitrary preferences,
rather than maximizing an explicit scalarized value function.

4.5.2 Real-world applications

This section surveys some representative applications of MORL algoritms.

Robotics is one of the earliest application elds of MORL (note that most work in
this eld has been in simulation). Maravall and de Lope [2002] consider the ontrol of
a robot, with the objectives of moving in a desired direction while avoiding collisions.
Meisner et al. [2009] identify social robots as a promising application of M&L methods:
their behaviour is inherently multi-objective because they must carry out a task without
causing anxiety or discomfort for humans.

Re ecting the increasing social and political concerns on the envionmental problems,
many MORL algorithms have been proposed to balance the trade-o among econoiu,
social and environmental objectives. One of the most extensively sdied applications of
MORL is the water reservoir control problem [Soncini-Sessa et al., 2003 astelletti et al.,
2008, 2011]. The task in this problem is to nd a control policy for releasing waer from
a dam while balancing multiple functionalities of the reservoir, including hydroelectric
and ood mitigation. Management of hydroelectric power production is also examined by
Shabani [2009].

Computing and communication applications have been widely considekas well. Both
Tesauro et al. [2007] and Liu et al. [2010] consider the problem of controlling a coputing
server, with the objectives of minimizing both response time to ser requests and the power
consumption. Perez et al. [2009] apply a linear scalarized single-policy ®RL method to
the allocation of resources to jobs in a cloud computing scenario, with He objectives
of maximizing system responsiveness, utilization of resources, arfdirness among users.
Comsa et al. [2012] consider how to maximize system throughput and ensuneser equity
in the context of Longer Term Evolution (LTE) mobile communications packet scheduling
protocol. Zheng et al. [2012] also use constrained MORL methods to makingouting
decisions in a cognitive radio network, aiming to minimize average tansmission delay
while maintaining an acceptably low packet loss rate.

MORL has also been applied to the control of tra ¢ infrastructure. Yang and Wen
[2010] apply it to the control of freeway on-ramps and vehicle management syasms, aiming
to maximize both the throughput and equity of a freeway system. Houli & al. [2010] also
apply MORL to tra c light control. Their approach considers di erent ob jectives based
on the current state of the road system: minimizing vehicle stops igrioritized when tra c
is free- owing; minimizing waiting time is emphasized when thesystem is at medium load;
and minimizing queue length at intersections is targeted when the ystem is congested.

Lizotte et al. [2012] apply MORL in a medical application: prescribing an appopriate
drug regime for a patient so as to achieve an acceptable trade-o betweethe e ectiveness
and the severity of the drug and its side e ects. Their system leans multiple policies
based on the data produced during randomized drug trials. The seléon of the best
treatment for a speci ¢ patient is then made by a doctor based on that patent's individual
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circumstances?.

Table 4.1 summarizes the above MORL approaches and their application soarios. We
nd that a majority of MORL applications focus on the known preferenc e scenario, which
can be reduced to a single-objective problem once the scalarizationrigtion is known. But
the varying preference scenario and decision support scenario mly starts drawing the
attention of researchers [Houli et al., 2010; Castelletti et al., 2011, Lizotte etl., 2012].

Table 4.1: Summary of applications of MORL to real-world problems.

Areas

\ References

| Application Scenario

Robot control

Human-robot interaction

Maravall and de Lope [2002]
Meisner et al. [2009]

known preference
known preference

Water reservoir control

Soncini-Sessa et al. [2003]
Castelletti et al. [2008]
Shabani [2009]

Castelletti et al. [2011]

known preference
known preference
known preference
decision support

Automatic computing

Telecommunication

Tesauro et al. [2007]
Perez et al. [2009]
Liu et al. [2010]
Comsa et al. [2012]
Zheng et al. [2012]

known preference
known preference
known preference
known preference
known preference

Tra ¢ control

Yang and Wen [2010]
Houli et al. [2010]

known preference
varying preference

Medical treatment

Lizotte et al. [2012]

decision support

2The work of Lizotte et al. [2012] is remotely related to the work of preference-based reinforcement
learning [Rernkranz et al., 2012; Akrour et al., 2012], which is outside the scope of this manuscript.
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Chapter 5

Multi-Objective Monte-Carlo Tree Search

In order to extend MCTS to multi-objective sequential decision making, we propose in this
work the multi-objective Monte-Carlo tree search (MOMCTS) which aims at discovering
multiple Pareto-optimal solutions within a single tree. In this chapter, we rstly introduce

the MOMCTS framework, the core of which is a local scalarization functon used in each
node for action selection. Two scalar functions have been consideredespectively the
hypervolume indicator (section 5.2) and the Pareto dominance reward (setion 5.3). The
properties of the considered action selection criteria are discusd in the end of this chapter.

5.1 Overview of MOMCTS

In each node of the MOMCTS search tree, a vectorial reward's.a = (rs:a:1; 's:a:2; i Ts:ad)
representing the average reward in each objective is maintained, togiger with the number
Ns.q Of visits to the node. Each tree-walk in MOMCTS involves the same thiee phases
as MCTS (section 2.6.1) { the selection phase, the tree building phasand the random
phase. In order to adapt to the MOO setting, the modi cations made in the three phases
are presented in the following.

5.1.1 Selection phase

The node selection in MOMCTS depends on a scalar score, which suppgsera total order
among nodes with multi-dimensional rewards. In this work, we proposewo scores in
the selection phase of MOMCTS { the hypervolume indicator and the Paréo dominance
reward. Both belong to the population based scalarization class (section 2.3). They rely
on the archive P, which maintains the vectorial rewards gathered during the MOMCTS
process.

5.1.2 Tree building phase

In the tree building phase, the progressive widening (PW) and Rapil Action Value Estima-
tion (RAVE) which are optionally used in MCTS (section 2.6.2), are regularly integrated
into MOMCTS. Let us recall that PW limits the number of admissible actions of a node
to an integer value bné;:abc, with b equalling usually 2 or 4. The selection of the action in
the tree-building phase relies on the RAVE heuristic.
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Chapter 5. Multi-Objective Monte-Carlo Tree Search

5.1.3 Random phase

The random phase is carried out in the same way as in MCTS, except that irthe end,
a vectorial reward r is returned. The other modi cation is that the population based
scalarization function (section 4.2.3) will require the archive P of the received vectorial
rewards to be maintained. When the number of objectives is lowd 3), the computation
and memory resources needed to maintain the archive® are limited. With no loss of
generality, dominated points are removed from the archiveP.
Some additional heuristics need to be devised to maintain the scalaliy of the

population-based scalarization approach in the many-objective setting. The extension
of MOMCTS to the many-objective case is a perspective for further vark.

5.1.4 MOMCTS framework

The MOMCTS framework is summarized by Algorithm 5.1. The common input for all
MOMCTS algorithms include the computational budget N, the b parameter used in the
progressive widening heuristic, and the generative modeM 4 of the considered multi-
objective SDM problem. The value of node §; a) noted by g«(s; a) is a population based
scalarization function, with x identifying the choice of scalarization method.

In MOMCTS, the Rapid Action Value Estimation (RAVE) takes a vectorial for m
(RAVE (a) 2 R%a 2 A). A scalarization function is therefore required to recover the
total order among RAVE values as well. Likewise, a scalarization of the RAVE vetors
noted by Ox:rave (8); @ 2 A is used with the same type of scalarization method as iy (s; a).
The detailed description of gx(s;a) and gx.rave (@) functions is given in section 5.2 and
section 5.3.

5.1.5 Discussion

Compared to MCTS, the main modi cation made in MOMCTS regards the node selection
step. The challenge is to extend the single-objective node sel@an criterion (Eq.(2.20))
to the multi-objective setting. As stated, the core of the MOO is to recover the total order
among points in the multi-dimensional space. The most straightforward vay of dealing
with multi-objective optimization is to get back to single-objectiv e optimization, through
the use of scalarization function. MOMCTS features a population based sdarization of
vectorial rewards. In contrast to the MCTS, which estimates the value of nodes according
to the stationary reward distribution on a single objective, MOMCTS estimates the value
of nodes with multi-dimensional rewards according to their contribution to the archive P,
thus along a non-stationary setting.

Through the use of population based scalarization function, MOMCTS handls a
single-objective optimization problem in each tree-walk, by repetiively searching for sin-
gle solutions which bring most improvement to the quality of the soluion set P. Multiple
tree-walks together provide an approximated Pareto optimal solution s€in MOMCTS.

An important property of MCTS is the consistency property de ned as th e ability of
algorithm to converge towards the optimal policy when the number of treewalk goes to
in nity [Berthier et al., 2010]. The consistency property criticall y relies on the stationary
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5.1 Overview of MOMCTS

Algorithm 5.1:  MOMCTS framework
MOMCTS
Input: number N of tree-walks
Output: search treeT
Initialize T  root node (initial state) ;P fg
for t=1to N do
TreeWalk(T ; P; root node)
end for
return T

TreeWalk
Input: search treeT, archive P, nodes
Output:  vectorial reward r
if sis not a leaf node, and: (b(ns + 1) ¥Pc > b(ns)1™c) // (PW test is not triggered)
then
Selecta =argmaxfgg(s;a);(s;a)2Tg
r« TreeWalk(T;P;(s;a))
else
A = f admissible actions not yet visited in sg
Selecta = argmaxfgxrave(d);a2 Asg
Add (s;a ) as child node ofs
re« ~ RandomWalk(P;(s;a))
end if
Update ng, Nsa , f's:a and RAVE (a)
return r

RandomWalk
Input: archive P, state u
Output: vectorial reward ry
Amg fg /Istore the set of actions visited in the random phase
while u is not nal state do
Uniformly select an admissible actiona for u
Amd A rnd [f ag
u (u;a
end while
ra M g(u //obtain the vectorial reward of the tree-walk
if ry is not dominated by any point in P then
Prune all points dominated by r in P
P PI[f ruyg
end if
Update RAVE (a) for a2 A g
return r
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assumption, that is the fact that the reward distribution is xed. In the case of MOMCTS,
however, the population-based scalarization function relies on the Pato archive, and
thus is non-stationary. Studying the consistency of the proposed MOMCTS approach is
a perspective for further work.

5.2 MOMCTS based on hypervolume indicator

5.2.1 Hypervolume indicator based value estimation

We associate to each nodes( a) in the tree the vector rs.5 of the upper con dence bounds
on its rewards:

q_—  d
rsa= fsait GlIn(ns)=nga (5.1)
i=1
with ¢ the exploration vs. exploitation parameter for the i-th objective (Eq.(2.20)).

As the hypervolume indicator provides a scalar measure of solution seti& the multi-
objective space, it then comes naturally to de ne an optimistic estimate of the value of
(s; @) as the hypervolume indicator contribution associated to the upper on dence vector
I's.a W.r.t. archive P. Let us denote

HV (rsa) = HV (P [f rsag:2) HV(P;2) (5.2)

Although HYV (rs:a) provides a scalar value of a nodeg; a) conditioned on the solutions
previously evaluated, the problem is that HV (rs.a) takes on a constant value O ifrga
is dominated by some vectorial reward inP. In order to di erentiate among dominated
points, the proposed approach considers the perspective projectiorf., of rg, onto the
approximated Pareto surfaceP over point setP.

The calculation of approximated Pareto surface is one of the critical isgses in MOO
study [Zhou et al., 2011].

In this work, we treat P as the polygonal approximation of the archive P of non-
dominated points. In the two-dimensional caseP is de ned as the linear piecewise function
over P (an example of this is demonstrated by the dashed lines in Figure 5.1(h)

De nition 15. Note P as an ordered set of two-dimensional pointd p1;p2;  ;pnQ =
f(Xx1y1):(X2;¥2); s (Xn;yn)g with x; < xj if i <j . Then the polygonal apprPximation
|P of P is the set of segmentgiipi+1;i =1;2; ;n, together with the half-linesp,p; and
Pn 1Pn.

P = foopiePs;  Pn 2Pn L Pn 1Pn)g

In higher dimensional objective spacesd 3), the polygonal approximation of P can
be obtained through several triangulation methods [Edelsbrunner and Bah, 1996; Shojaee
et al., 2006], referring the reader to [Kolesnikov, 2003] for a compreheng presentation
of the surface approximation methods.
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5.2 MOMCTS based on hypervolume indicator

(a) Value of non-dominated vectorial reward (b) Value of dominated vectorial reward

Figure 5.1: Left: For a vectorial reward rs.4 that is not dominated w.r.t. the archive

P, Viv(s; @) is its hypervolume indicator contribution to the solution set. Right: For a

vectorial reward that is dominated by some point in the archive P, its value is measured
by the opposite of its Euclidean distance to the approximated surfacgdashed lines) of
the Pareto front.

Let r2, denote the unique intersection of half-line!z rs.a With P (being reminded that
z is dominated by all points in P and by rs.3). The value of node ;a) is then de ned as
the opposite of the Euclidean distance betweems, and r8.4. Finally, the scalarization of
I's:a IS de ned as:

HV (rs.a)  if rsa is non-dominated in P

k r8a rsakd  otherwise (5:3)

ghv(S; a) =

The Euclidean distance term sets a penalty for dominated points, inceasing with their

distance to the approximated Pareto surfaceP. This term is elevated to the d-th power by

homogeneity with the hypervolume indicator. Note that Eq.(5.3) sets a total order on all

vectorial rewards in RY, where non-dominated points are ranked higher than dominated
ones.

5.2.2 MOMCTS-hv algorithm

We refer to the MOMCTS algorithm based on the hypervolume indicator as MOMCTS-hv.
It is realized by using

a =argmax gny(s;a) (5.4)
as node selection rule in the MOMCTS framework (Algorithm 5.1).
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RAVE vectors are used to select new nodes in the tree-building pdise of MOMCTS-hv.
Letting RAVE (a) denote the average vectorial reward associated ta. As RAVE (a) is
a weighted sum over vectorial rewards gathered in previous tree-watk they are likely to
be dominated by points in the current archive P. Therefore, we scalarize RAVE vectors
based on their Euclidean distance toP. Let RAVE P(a) denote the perspective projection
of RAVE (a) on P, then the action selected is the one maximizing

Ohvrave(@) = k RAVE P(a) RAVE (a) ko (5.5)

Beside the standard MOMCTS parameters { the total number of tree-walks N, the b pa-
rameter in the progressive widening heuristic, and the generativenodelM 4, MOMCTS-hv
algorithm involves the following additional parameters: (i) the exploration vs. exploitation
trade-o parameter ¢ for every i-th objective, and (ii) the reference point z.

5.2.3 Discussion on MOMCTS-hv

Let B denote the average branching factor in the MOMCTS tree, and letN denote the
number of tree-walks. As each tree-walk adds a new node, the number abdes in the tree
is N +1 by construction. The average length of a tree-path thus is inO(log N ). Depending
on the number d of objectives, the hypervolume indicator is computed with complexty
O(jPj%2) for d > 3 (respectively O(jPj) for d = 2 and O(jPjlogjPj) for d = 3) [Beume
et al., 2009]. The complexity of each tree-walk thus isO(BjPj%?logN), where jPj is at
most the number N of tree-walks.

By construction, the hypervolume indicator based selection criteion (Eg. (5.3)) drives
MOMCTS towards the Pareto front and favours the diversity of the Pareto archive [Beume
et al., 2007]. On the negative side however, this criterion su ers fronthree drawbacks:

1) The hypervolume indicator is not invariant under monotonous transformation of
objective functions, which prevents the approach from enjoying tke same robustness
as comparison-based optimization approaches [Hansen, 2006].

2) The MOMCTS critically depends on its hyper-parameters. The expgoration vs.
exploitation (EVE) trade-o parameters ¢;;i =1;2;:::;dof each objective (Eq.(5.1))
have a signi cant impact on the performance of MOMCTS-hv (likewise, the MCTS
applicative results depend on the tuning of the EVE trade-o parameters [Chaslot
et al., 2008b]). Additionally, the choice of the reference pointz also in uences the
hypervolume indicator values [Auger et al., 2009].

3) The computational cost of gy, (S; @) is exponential with the number d of objectives.

5.3 MOMCTS based on Pareto dominance reward

Aimed at overcoming the limitations in the node selection criterion based on hypervolume
indicator, this section presents a new selection criterion based othe Pareto dominance
test.
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5.3 MOMCTS based on Pareto dominance reward

5.3.1 Cumulative discounted dominance reward based value estimation

The hypervolume indicator based node value estimation requires thénformation of the
average rewardsr£,;; and EVE constant ¢; in each objectivei = 1;2; :d. Instead of
gathering and updating the multi-dimensional vectorial rewards in ea& node, a simpler
option is to associate to each tree-walk a reward 1 if the tree-walk geta vectorial reward
ru which is not dominated by any point in the archive P, and reward 0 otherwise. Formally
this boolean dominance reward, called .qom, iS de ned as:

1 if@2P;r ry

fudom = otherwise (56)

The advantage of this option is its simplicity. Given a vectorial reward, the dominance
reward is calculated within time O(djPj). The drawback of this option is that, due to the
rarity of non-dominated rewards, most tree-walks get a 0 dominance rewardConsidering
the the rarity of dominance rewards, the update ofr,.qom proceeds along a cumulative
discounted (CD) process as follows. Lets.; denote the index of the last tree-walk which
visited node (s;a), let t =t tsa Wheret is the index of the current tree-walk, let

2 [0; 1] be a discount factor, the cumulative discounted dominance (CDD) revard update
is de ned as:

fs;a;dom Ps:a;dom b+ Fudom; 2 [0;1] (5.7)
ts:a t; Nsa Nsa+1;, ns ns+1

The update procedure of dominance reward di ers from the standard sceme (Eq.(2.21)) in
two respects. Firstly, cumulative instead of average rewards are caidered. The rationale
for this modi cation is that a tiny percentage of the tree-walks nds a non-dominated
vectorial reward. In such cases, average rewards come to be negligible front of the

exploration term, making the MCTS degenerate to pure random search. Tk use of
cumulative rewards instead tends to prevent this degradation.

Secondly, a discount mechanism is used to moderate the cumulative ects using the
discount factor (O < 1) and taking into account the number t of tree-walks since
this node was last visited. This discount mechanism is meant to cop&vith the dynamics
of multi-objective search through forgetting old rewards, thus enabling the decision rule
to re ect up-to-date information.

Indeed, the CD process is reminiscent of the discounted cumulate reward de ning the
value function in Reinforcement Learning [Sutton and Barto, 1998], with the di erence that
the time-step t here corresponds to the tree-walk index, and that the discount mechnism
is meant to limit the impact of past (as opposed to, future) information.

In a stationary context, suppose that the node §;a) corresponds to an expectation of
dominance reward E = E( rs.a:dom) 2 [0; 1], and the interval of time between two visits to

the node is xed as t, then fs.3.gom Would converge towardsl%Er. If the node gets

rarely visited ( t 1), then ! goes to 0 andr£,.qom goes to the average reward E
Quite the contrary, if the node happens to be frequently visited( t = 1), the cumulative
reward equals the reward expectation E multiplied by a large factor (%Er), entailing

77



Chapter 5. Multi-Objective Monte-Carlo Tree Search

the over-exploitation of the node. However, the over-exploitation 5 bound to decrease as
soon as the Pareto archive moves towards the true Pareto front, whiclieduces the reward
expectation E;. In section 5.4.3, the CDD reward properties are illustrated through an
example problem.

Finally, the node value estimation based on the CDD rewards is de nedas:

q
Odom(S; @) = ¥s:adom +  Celn(Ns)=ns:a (5.8)

5.3.2 MOMCTS-dom algorithm

We call the MOMCTS based on CDD rewards as MOMCTS-dom. It proceeds astandard
MCTS except that the selection rule is de ned by

a = arg max gqom(S; a) (5.9)

Likewise, letting Qgom:rave (@) denote the CDD reward gathered in each actiona (up-
dated in the same way asr £a.dom, EQ.(5.7)), then the selected action in the tree building
phase is the one maximizinQgom:rave (8)-

Keeping the same notationsB; N and jPj as above, as the dominance test in the end
of each tree-walk is linear O(djPj)), the complexity of each tree-walk in MOMCTS-dom
is O(B logN + djPj), thus linear w.r.t. the number d of objectives.

Besides the common MOMCTS parametersN, b and M 4, MOMCTS-dom involves
two additional hyper-parameters: i) the exploration vs. exploitation trade-o parameter
Ce; and ii) the discount factor

Compared to MOMCTS-hv, MOMCTS-dom enjoys a smaller computational conplex-
ity. The price to pay for the improved scalability of MOMCTS-dom is that the dominance
reward might less favour the diversity of the Pareto archive than thehypervolume indica-
tor: any non-dominated point has the same dominance reward whereas the hygpvolume
indicator contribution of non-dominated points in sparsely populated regions of the Pareto
archive is higher.

5.4 Proof of concept

Within the MOMCTS framework de ned in section 5.1.4, let us study th e behaviour
of hypervolume indicator and dominance reward based selection rules on aarti cial
problem.

5.4.1 Example problem

In the following, we examine the properties of hypervolume indicatorand CDD rewards
through a bi-objective MAB problem.

Let us de ne a MAB problem with 3 arms A = f1;2;3g, each arma 2 A brings
a vectorial reward (r,;r9). Each reward r, (respectively rQ) is an uniformly distributed
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5.4 Proof of concept

Figure 5.2: Reward distributions of the bi-objective MAB problem. The reward regions
corresponding to action 12 and 3 are respectively marked by green, blue and purple
shadows.

random variable in [l4;ua] (resp. [9;ul]). Figure 5.6 shows the reward distribution of
actions in A with rq 2 [0;1];r$ 2 [0:5; 1:5];r2 2 [0; 1], 1S 2 [0; 1];r3 2 [0:5; 1:5];r§ 2 [0; 1].

Noting the expected value of actionsa 2 A by E, = (E( ra); E(r9), we have E; =
(0:5;1); E2 = (0:5;0:5) and E3 = (1; 0:5) with the same variance in each action. It is easy
to see that a; and az are non-dominated, and both dominatea,.

5.4.2 Hypervolume indicator based criterion analysis

Figure 5.3(a) and (b) respectively show the hypervolume indicator sores @ (s;a)) of

actions along time for various EVE trade-o parameters. For the low values ofthe ex-

ploration terms (¢; = ¢o = 0:1, Figure 5.3(a)), two phenomena are observed. Firstly,
it is found that the hypervolume indicator score of action 2 tends to improve, while the

hypervolume indicator scores of action 1 and 3 tend to fall with training time steps. Such
phenomenon can be explained by examining Eq.(5.1):

p____ d
ra= fai+ clin(n)=ny
. . . . P :

where n, is the number of play times in each action, andn =  _,, Na. As action
2 is rarely played, n, stays unchanged during most periods of the searching process.
Then the increase of the tgtal numbern of action selections result in the augmentation
of the exploration terms ( ¢ In(n)=ny;i = 1;2) of action 2, on the top of which the
hypervolume indicator score is computed. This explains the tendecy that action 2 values
keeps improving throughout the searching process. Quite the condiry, because action 1
and 3 are frequently played, their n, values increase more rapidly than the Inf) term.
Then the exploration terms of action 1 and 3 gradually drop to O whenn goes to in nity.

Secondly, some abrupt changes appear in the evolution curves of the hypmlume
indicator score. A tentative interpretation for this fact is as follows. A rst mechanism
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(@ c=co=0:1

(0) ¢ = co=1

Figure 5.3. The evolution of hypervolume indicator rewards in action 1 2; 3 of represen-
tative runs under di erent EVE trade-o parameter settings.
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5.4 Proof of concept

Figure 5.4. The approximated Pareto surface found under the hypervolme indicator
based action selection criterion withc; = ¢.0o = 0:1. The evolution of the empirical Pareto
front has a non-smooth impact on the hypervolume indicator base value egnhation (e.g.
r§ jumps forward when the Pareto front moves).

is that the action vectorial reward f; becomes more stable as actioa is played for more
times. On the other hand, the hypervolume indicator re ects the changes in the Pareto
archive P as new non-dominated solutions are discovered. The hypervolume incktor
score associated to each action is computed in each time step. As is showy Figure
5.4, the distance betweenf; and the Pareto front may change abruptly when new non-
dominated solutions are found. The score of action 2 abruptly decreases iie beginning
as non-dominated solutions are discovered when triggering action 1 and 3. &&fr a while,
the score of all three actions become negative, as the Pareto archiv better approximates
the true Pareto front (Figure 5.4). For action 1 and 3, the hypervolume indicator score
converges to the distance between their average vectorial reward, and the true Pareto
front.

For the high values of the exploration terms ¢ = ¢o = 1, Figure 5.3(b)), the gap
between the three actions are shorten and the dominated action 2 are plag more fre-
quently than in the low exploration case. Eventually, the number of times (frequency)
that each action are selected during 3000 time steps under di erent gxerimental settings
are summarized by Table 5.1.

5.4.3 CDD reward analysis

By implementing the CDD reward based action selection criterion (E7.(5.8)) with  =0:95
and ¢ = 1 for 3000 time steps, we obtain the curve of of dominance reward evolutiomi ac-
tion 1;2 and 3 in Figure 5.6(a). It is observed that, successive discovery ofam-dominated
rewards in action 3 initially renders this action over explored, and ro other actions are
played between time step 15 and 50. However, as the discovery of non-domated rewards
in action 3 becomes more rare, the dominance score associated action 3 expotially

81



Chapter 5. Multi-Objective Monte-Carlo Tree Search

Table 5.1: Action selection frequencies among 3000 time steps in the bi-@rtive MAB
problem (averaged over 11 runs).

Selection criterion [ Parameter setting [ Acton1 | Action2 [ Action3
hypervolume G =¢Go=0:1 1505.9 1225.6| 38.1 56.2 | 1456.0 1206.2
indicator reward G =¢Co=1 1386.5 676.2 | 159.2 67.0 | 1458.8 685.1
CDD reward =0:9c=1 1012.8 29.0 | 836.3 266.7| 1060.0 48.8
=0:95¢c=1 1094.3 77.3 819.9 67.1 1085.9 81.5
=0:99¢c=1 1168.8 248.7 | 498.8 117.1| 1331.5 291.2
=0:999¢c. =1 1479 1339.2 35 2.0 1350.2 1346.8

Figure 5.5: The Pareto optimal solution set found under the CDD based actin selection
criterion gradually moves towards the true Pareto front.

drops down due to the discounting phenomenon. On the other hand, thexploration term
triggers other arms and the algorithm switches to action 1 and 2 after time gep 50, and
very soon discards action 2.

As could have been expected, the discovery of non-dominated rewardsecomes more
rare, and the interval between two successive discoveries of nateminated rewards be-
comes longer (Figure 5.6(b)).

Table 5.1 shows the in uence of the discount factor over action frequencies. It is
found that the performance of the algorithm is in uenced by the parameter from two
aspects. Firstly, for greater values, as the cumulative e ect of dominance reward lasts
longer, the non-dominated actions 1 and 3 are played more frequently (rected by the
average frequency values) than in the smaller case. Secondly, it is observed that greater
values result in greater variances of action frequencies due to the balanced exploration.
For example, when = 0:999, it is often the case that action 1 is played for more than
2800 times while action 3 is played for only 100 times, or inversely. Thefore, a careful
tuning of the value is required for the discovery of all non-dominated solutions.
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5.4 Proof of concept

(a) Log scale in x-axis

(b) Normal scale in x-axis

Figure 5.6: The evolution of CDD rewards in action 1, 2; 3.
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5.4.4 Discussion

By construction, and as con rmed by the proof of preliminary experiment, both hyper-
volume indicator and CDD reward based selection rules support the disovery of the true
Pareto front.

The main di erence between the hypervolume indicator and CDD rewand based action
selection criteria lies in the fact that, all vectorial reward have the same impact on the
average rewardr, and on the hypervolume indicator scores, no matter when they are
discovered. Quite the contrary, the CDD reward depends on the dyamics of the search.
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Chapter 6

Experimental Analysis

This chapter presents the experimental validation of MOMCTS. Two arti cial problems
and two real-world applications are considered in our experiments to asess the perfor-
mance of MOMCTS in multi-objective SDM problems with convex and non-convex Pareto
front, deterministic and probabilistic transition functions, many objectives d 3) and
real-time decision making settings. The real-time problem was condered in the frame-
work of 2013 Multi-Objective Physical Travelling Salesman Problem (PTSP) competition
where MOMCTS-based controller got the 2nd rank.

6.1 Goals of experiments

The experiments in this manuscript are carried out with two goals in mind. The rst goal
is to assess the performance of the MOMCTS approaches comparatively tché state of
the art in MORL [Vamplew et al., 2010]. Two arti cial benchmark problems ( Deep Sea
Treasure and Resource Gathering) with probabilistic transition funcions are considered
to this aim. The Deep Sea Treasure problem has two objectives whictle ne a non-convex
Pareto front (section 6.2). The Resource Gathering problem has three gbctives and a
convex Pareto front (section 6.3).

The second goal is to assess the performance and scalability of MOMCTS apmaches
in real-world setting. The MOMCTS algorithm calculates multiple Pare to optimal policies
in multi-objective SDM problems. Depending on whether the userpreference function is
explicitly known in the execution phase of policies, MOMCTS can beimplemented in two
di erent application scenarios { the decision support scenario and tke varying preference
scenario (section 4.5.1). In order to assess the MOMCTS performance ihese scenarios,
we rstly test MOMCTS in the grid scheduling problem which is a r epresentative appli-
cation in the decision support scenario. Then the physical travelling salesman problem
(PTSP) is used to assess the performance of MOMCTS in varying prefence scenario with
real-time constraints. We consider the Physical Travelling Saleman Problem as we par-
ticipated in the international competition of multi-objective Phys ical Travelling Salesman
Problem during the 2013 Computational Intelligence in Games (CIG) confeence. In con-
trast to arti cial problems, baseline algorithms considered in the real-world experiments
of this work do not include MORL algorithms. This is due to the fact that the state space
in real-world problems are unknown in advance.

The considered experiments are summarized in Table 6.1. All reportedesults in the
experiments are averaged over 11 runs unless stated otherwise. Thygiality of solution
sets in all experiments are measured by the hypervolume indicatorgenerational distance
(GD) and inverted generational distance (IGD) (section 3.3.3) w.r.t. the reference Pareto
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Table 6.1: Multi-objective SDM problems

Problem Convex or Non- | Deterministic or | Number | Real-
convex Pareto| Stochastic tran- | of ob- | time
front sition function jectives | decision

Deep Sea Treasure Non-convex Deterministic 2 No

and Stochastic
Resource Gathering Convex Stochastic 3 No
Grid Scheduling Unknown Deterministic 2 No
Physical Travelling Salesman| Unknown Deterministic 7 Yes

front 1. The algorithms are also assessed w.r.t. their computational cost (meased on a
PC with Intel dual-core CPU 2.66GHz).

6.2 Deep Sea Treasure problem

The choice of Deep Sea Treasure (DST) problem is motivated as it invoks a non-convex
Pareto front. As already discussed, the challenge with non-convex Pate front is that
the non-convex regions can not be discovered using linear-scalarizati methods, and the
discovery of these regions remains a main challenge for MOO approachgslt must also be
emphasized that the chance for the Pareto front to be convex decreasegth the number
of objectives, everything else being equal.

Additionally, we investigate the impact of non-deterministic transition functions on
the DST context.

6.2.1 Problem statement

The Deep Sea Treasure (DST) problem was rst introduced by Vamplev et al. [2010]. The
state space of DST consists of a 10 11 grid (Figure 6.1(a)). The action space of DST
includes four actions (up, down, left and right), each sending the aget to one adjacent
square in the indicated direction. When the agent would go beyond the brder line of the
grid or touch the sea oor, it stays in the same place. Each policy, withthe top left square
as initial state, gets a two dimensional reward: the time spent until reaching a terminal
state or reaching the time horizon T = 100, and the treasure attached to the reached
terminal state if any (depicted in Figure 6.1(a)), or O otherwise. The 10non-dominated
vectorial rewards in the form of (-time,treasure) are depicted in the two-dimensional plane
in Figure 6.1(b), forming a non-convex Pareto front.

In our experiments, the transition model of the DST is modi ed and converted into a
stochastic model as follows. When action is executed, the agent woulgo to the indicated

1The reference Pareto front is the true Pareto front when it is known; othe rwise, it is set to the union
of all non-dominated solutions found over all runs and all algo rithms.

2 Examples of such MOO with non-convex Pareto front are ZDT2 and DTLZ2 test benchmarks [Deb
et al., 2002].
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6.2 Deep Sea Treasure problem

(a) The state space (b) The Pareto front

Figure 6.1: The Deep Sea Treasure problem. Left: the DST state space thi black cells
as sea- oor, gray cells as terminal states, the treasure value is indated in each cell. The
initial position is the upper left cell. Right: the Pareto front in t he time treasure plane.

direction with probability 1 , and in the other directions with equal probability =3,
where 0 < 1 indicates the noise level in the environment.

6.2.2 Experimental setting

In the DST problem, the performance of MOMCTS-hv and MOMCTS-dom are compared
with that of the baseline algorithm { MOQ-learning (section 4.4.1), with the same param-
eters as in [Vamplew et al., 2010]:

-greedy exploration is used with =0:1.

Learning rate is set to 0.1.

The state-action value table is optimistically initialized (time = 0;treasure = 124).
Due to the episodic nature of DST, no discounting is used in MOQ-éarning ( = 1).
In the bi-objective DST problem, the number m of weight settings ranges in
f3;7;21g, with = -;i=1;2:::;m.

A few preliminary experiments are used to adjust the parameters inMOMCTS. The
progressive widening parameterdis set to 2 in both MOMCTS-hv and MOMCTS-dom. In
MOMCTS-hv, the exploration vs. exploitation (EVE) trade-o0 parameter s in the time cost
and treasure value objectives are respectively set t@ime = 20;000 and Cyeasure = 150.
In MOMCTS-dom, the EVE trade-o parameter c is set to 1, and the discount factor
is set to 0.999.

As the DST problem is concerned with minimizing the search time (naximizing its
opposite) and maximizing the treasure value, the reference point wed in the hypervolume
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indicator calculation is set to (-100,0). The hypervolume indicator of the Pareto optimal
solution set is 10455.

Experiments are carried out in a DST simulator with the  noise level ranging in
0;0:00% 0:01; 0:05 and Q1. Each run of MOQ-learning, MOMCTS-hv and MOMCTS-dom
is limited to 300,000 time steps (ca 37,000 tree-walks in MOMCTS-hv and 45,00€ee-
walks in MOMCTS-dom 3). The entire training process is equally divided into ny, = 150
phases. At the end of thei-th training phase, the MOQ-learning and MOMCTS solution
sets are tested in the DST simulator, and form the Pareto setP;. The performance of
algorithms is reported as the hypervolume indicator ofP;.

6.2.3 Results

Table 6.2: The DST problem: hypervolume indicator results of MOMCTS-hv, MOMCTS-

dom and MOQ-learning with m ranging in 3,7 and 21 with di erent noise levels , averaged
over 11 independent runs after 300,000 time steps. The optimal hypervame indicator
is 10455. For each , best results are indicated in bold font (signi cance valuep < 0:05
according to the Student's t-test).

\ =0 | =0:001| =0:01 | =0:05| =01
MOMCTS-hv 10416 37 [ 10434 31 | 10436 32 [ 10205 211[ 9883 1091
MOMCTS-dom 10450 4 | 10446 19 | 10389 65 | 9858 1153| 9982 360
MOQ-learning-m=3 | 7099 3926 | 8116 3194 | 6422 4353 | 7333 4411 6953 3775
MOQ-learning-m=7 | 10078 34 | 10049 94 | 9495 1701 | 8345 2887 | 8924 2663
MOQ-learning-m=21 | 10078 17 | 10085 129 | 7806 1933 | 8744 2070 | 6744 2355

The performance of MOMCTS approaches and MOQ-learning measured by thayper-
volume indicator are reported in Table 6.2.

Deterministic setting Figure 6.2 displays the hypervolume indicator performance of
MOMCTS-hv, MOMCTS-dom and that of MOQ-learning for m = 3;7;21 in the DST
problem. It is observed that for m = 7 or 21, MOQ-learning reaches a performance
plateau (10062) within 20,000 time steps. The fact that MOQ-learning does notreach
the optimal hypervolume indicator 10455 is explained as the DST Pareto frotis not
convex (Figure 6.1(b)). This con rms experimentally that linear-scalarization approaches
do not discover non-dominated solutions lying in the non-convex regios of the Pareto
front, establishing the inconsistency of MOQ-learning.

MOMCTS-hv features a very fast convergence towards the true Paretdront, domi-
nating all other approaches. However, it nds the full Pareto front in 5 out of 11 runs.
MOMCTS-dom is slow to catch up MOMCTS-hv and MOQ-learning (after 80,000 time
steps), but it ultimately outperforms MOMCTS-hv (after approxim ately 120,000 time

3 Due to di erent node selection criteria, the average tree depths in MOMCTS-hv and MOMCTS-dom
are di erent.
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(@)

(b)

Figure 6.2: The hypervolume indicator performance of MOMCTS-hv, MOMCTS-dom
and MOQ-learning versus training time in the deterministic DST problem. For the sake
of a fair comparison with MOQ-learning, the training time refers to the number of action
selections in MOMCTS approaches (each tree-walk in MOMCTS carries duon average 7
to 8 action selections in the DST problem). Top: The hypervolume indcator of MOMCTS-

hv, MOMCTS-dom and MOQ-learning-m=21. Bottom: The hypervolume indic ator of
MOQ-learning with m = 3;7; 21.
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steps), and reaches the entire Pareto front in 10 out of 11 runs. The irtance of MOQ-
learning is analysed in Figure 6.2(b). The general trend is that the intial progress is
faster for low value of m, the price to pay is the instability of the hypervolume indicator
performance, which only disappears fom = 21.

@ (b)

Figure 6.3: Left: The vectorial rewards found by representative MOMCTS-hv, MOMCTS-
dom and MOQ-learning-m = 21 runs. Right: The percentage of times out of 11 runs that
each non-dominated vectorial reward was discovered by MOMCTS-hv, MMCTS-dom
and MOQ-learning-m = 21, during at least one test episode.

The percentage of times out of 11 runs that each non-dominated vectorial reard
is discovered for at least one test episode during the training precess of MOMCTS-hv,
MOMCTS-dom and MOQ-learning for m = 21 is displayed in Figure 6.3(b). Figure 6.3
shows that MOQ-learning discovers all strategies (lying in the norconvex regions of the
Pareto front) during intermediate test episodes. However, thes non-convex strategies
are eventually discarded as the MOQ-learning solution set gradually coverges to extreme
strategies, which are points (-19,124) and (-1,1) (Figure 6.3(a)). Quite the ontrary, MOM-
CTS approaches discovers all strategies in the Pareto front, and keeghem in the search
tree after they have been discovered. The weakness of MOMCTS-hig that the longest
decision sequences corresponding to the vectorial rewards (-17,74) a(d9,124) are more
rarely discovered.

Stochastic setting Figure 6.4 shows the performance of MOMCTS-hv, MOMCTS-dom
and MOQ-learning-m=21 with stochastic noise ranging from 0.01 to 0.1. Comparatively
to Figure 6.2, we can see that noise in the environment adversely a ectshe stability
of all approaches, and particularly MOQ-learning. It aects MOMCTS-hv m ore than
MOMCTS-dom in the low noise setting ( = 0:01). It a ects comparably MOMCTS-hv
and MOMCTS-dom in the high-noise setting.

In summary, the empirical validation on the arti cial DST problem show s both the
strengths and the weaknesses of MOMCTS approaches. On the positiveds, MOMCTS
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(@ =0:01

(b) =0:1

Figure 6.4: The hypervolume indicator of MOMCTS-hv, MOMCTS-dom and MO Q-
learning-m=21 versus training time in the stochastic environmentwith (a) = 0:01 and
(b) =0:1.
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Figure 6.5: The Resource Gathering problem. The initial position of theagent is the mid-
bottom case. Two resources (gold and gems) are located in xed positions. Wo enemy
cases (marked by swords) send the agent back home with 10% probability.

approaches show able to nd solutions lying in the hon-convex regions oftte Pareto front,

as opposed to linear scalarization-based methods. Moreover, MOMCTS slwvs a relatively
good robustness w.r.t. probabilistic transition model, comparativdy to MOQ-learning. On

the negative side, MOMCTS approaches are more computationally expenséivthan MOQ-

learning (for 300,000 time steps, MOMCTS-hv takes 147 secs, MOMCTS-domakes 49
secs versus 25 secs for MOQ-learning).

6.3 Resource Gathering problem

The MORL methods have been mostly applied to bi-objective SDM poblems. For ex-
ample, [Tesauro et al., 2007] optimizes both the performance and power camsiption of
a computing system. [Castelletti et al., 2011] balances between the bet (the average
performance) and risk (the worst-case performance) of a water reservocontrol system.

As discussed in section 3.4, a challenge for MOO is to deal with many objages (d  3)
due to the fact that, on one hand, the number of non-dominated solutions inthe search
space increases with the numbed of objectives. On the other hand, the number of non-
dominated solutions needed to approximate the entire Pareto front ircreases exponentially
with d as well [Ishibuchi et al., 2008].

In this section, we use a three-objective arti cial problem { Resouce Gathering to
assess the scalability of MOMCTS approaches.
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6.3 Resource Gathering problem

6.3.1 Problem statement

The Resource Gathering (RG) task rst introduced in Barrett and Nara yanan [2008] is
carried out in a 5 5 grid (Figure 6.5). The action space of RG includes the same
four actions (up, down, left and right) as in the DST problem. Starting from the home
location, the goal of the agent is to gather two resources (gold and gems) and takbem
back home. Each time the agent reaches one resource location, the resoaiiis picked up.
Both resources can be carried by the agent at the same time. If the agent gps on one of
the two enemy cases (indicated by swords), it may be attacked with 10%probability, in
which case the agent loses all resources being carried and is returnggthe home location
immediately. The agent enters a terminal state when it returns home(including the case
of being attacked) or when the time horizonT = 100 is reached. Five possible immediate
reward vectors ordered as énemy; gold; gems will be received upon the termination of a

policy:
( 1,0;0) in case of an enemy attack;
(0; 1; 0) for returning home with only gold;
(0; 0; 1) for returning home with only gems;
(0; 1; 1) for returning home with both gold and gems;
(0;0;0) in all other cases.

The RG problem involves a discrete state space of 100 states correspondito the 25 agent
positions in the grid, multiplied by the four possible states of resouces currently being
held (none, gold only, gems only, both gold and gems). The vectorial reward assiated
to each policy is calculated as follows:

Let r = (enemy; gold; gem$ be the vectorial reward obtained by policy after a L-
step episode. The reward in each time step of the episode is notedyly .| = r=L =
(enemy=L; gold=L;gems=L. The policy is assessed by the average over 100 episodes of
r .., wherelL is the length of each episode, favouring the discovering of gold and gem
as soon as possible. Seven policies (Table 6.3 and Figure 6.6) correspomdin the non-
dominated average vectorial rewards of the RG problem are identi ed by \amplew et al.
[2010]. The non-dominated vectorial rewards compose a convex Pareto front ithe three
dimensional space (Figure 6.7).

6.3.2 Experimental setting

In the RG problem, the MOMCTS approaches are assessed comparatively thithe MOQ-
learning algorithm, which independently optimizes the weighted sims of the three ob-
jective functions (enemy; gold; gem3 under m weight settings. In the three dimensional

reward space, one weight setting is de ned by a 2D vector (;; |°) with  ;; |° 2 [0;1]

4Furthermore, the increase of objective number makes it more dicul t to visualize and assess the
solution sets in the objective space.
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Figure 6.6: The seven policies in the Resource Gathering problem thatorrespond to the
non-dominated vectorial rewards.

Figure 6.7: The seven non-dominated vectorial rewards in the Resourcedhering problem
identi ed by Vamplew et al. [2010].
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Table 6.3: The optimal policies for the Resource Gathering problem.

# | policy description \ vectorial reward
1 | Go directly to gems, avoiding enemies (0,0,0.1)
> | Go to both gold and gems, avoiding ene- (0;5:556 10 ?;5:556 10 ?)
mies
Go directly to gold, avoiding enemies (0;8:333 10 2;0)

3
4 | Go to both gold and gems, through en-| ( 7:75 10 °:6:977 10 %,6:977 10 ?)
emyl or enemy2 once

5 | Go directly to gold, through enemy1 once ( 1.075 10 %,9:677 10 %0)

6 | Go to both gold and gems, through the| ( 1:815 10 %;7:736 10 %;7:736 10 ?)
enemies twice

7 | Go directly to gold, through enemy1 twice ( 2628 10 %;1:1203 10 % 0)

and 0 i+ io 1. Let us denote the scalar rewards optimized by MOQ-learning as
=@ 0 9% Tenemy+ i Tgola* O Tgems, Wherel weights ; (respectively 9
are evenly distributed in [0; 1] for the gold (resp. gems) objective, subject to ; + io 1,
the total number of weight settings thus ism = %

The parameters of MOQ-learning and MOMCTS approaches have been seled after
preliminary experiments, using the same amount of computational resorces for a fair
comparison.

For the MOQ-learning:

The -greedy exploration is used with =0:2.

Learning rate is set to 0.2.

The discount factor is set to 0.95.

By taking | = 4;6; 10, the numberm of weight settings ranges inf 6; 15; 45g.

The progressive widening parameterb in MOMCTS-hv is set to 2. The exploration
vs exploitation (EVE) trade-o parameters associated to each objectiveare de ned as
Cenemy =1 10 3 Cgold = Cgems =1 10 4,

In MOMCTS-dom, the progressive widening parameterb is set to 1 (no progressive
widening). The EVE trade-o parameter c is set to 0.1. The discount factor is set to
0.99.

The training time of all considered algorithms is 600,000 time steps (ca 17,200ee-
walks for MOMCTS-hv and 16,700 tree-walks for MOMCTS-dom. Like in the DST prob-
lem, the training process is equally divided into 150 phases. At tk end of each training
phase, the MOQ-learning and MOMCTS solution sets are tested in the & simulator.
Each solution (strategy) is launched 100 times and is associated the awage vectorial
reward (which might dominate the theoretical optimal ones due to the limited sample).
The vectorial rewards of the solution set provided by each algorithm dene its Pareto
archive. The reference pointz used in the hypervolume indicator calculation is set to
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Figure 6.8: The Resource Gathering problem: Average hypervolume indator of
MOMCTS-hv, MOMCTS-dom and MOQ-learning (with m = 6, 15 and 45) over 11 runs,
versus number of time steps. The optimal hypervolume indicator 201 10 2 is indicated
by the top line.

( 0:33 1 103 1 10 3), where -0.33 represents the maximum enemy penalty av-
eraged in each time step of the episode, and the1 10 2 values in the gold and gems
objectives are taken to encourage the exploration of solutions with vectdal rewards ly-
ing in the hyper-planes gold = 0 and gems = 0. The optimal hypervolume indicator is
2:01 10 3.

6.3.3 Results

Table 6.4. The Resource Gathering problem: Average hypervolume indicatr of
MOMCTS-hv, MOMCTS-dom and MOQ-learning (with m = 6, 15 and 45) over 11 runs.
The optimal hypervolume indicator is 2:01 10 3. Signi cantly better results are indicated
in bold font (signi cance value p < 0:05 for the Student's t-test).
| HV( 103) | | HV( 10 3)
MOMCTS-hv 1.735 0.304 | MOMCTS-dom, =0:9 1.285 0.351
MOQ-learning, m = 6 1.933 0.04 | MOMCTS-dom, =0:98 1.75 0.38
MOQ-learning, m =15 | 2.021 0.033 | MOMCTS-dom, =0:99 | 1.836 0.175
MOQ-learning, m =45 | 2.012 0.041 | MOMCTS-dom, =0:999| 1.004 0.26

Table 6.4 shows the performance of MOMCTS-hv, MOMCTS-dom and MOQ-larning
algorithms after 600,000 training times steps, measured by the hypervolme indicator.
Figure 6.8 displays the evolution of hypervolume indicator in MOMCTS-hv, MOMCTS-
dom and MOQ-learning with m = 6; 15;45. The percentage of times out of 11 runs that
each non-dominated vectorial reward is discovered for at least one testguiod during the
training process of each algorithm is displayed in Figure 6.10. It is obsged that with
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(&) Enemy vs Gold (b) Enemy vs Gems

Figure 6.9: The vectorial rewards found by representative MOMCTS-hy MOMCTS-dom
and MOQ-learning with m = 6;15 runs. Left: the points projected on the Gems = 0
plane. Right: the points projected on the Gold = 0 plane. The Pareto optimal points are
marked by circles.

Figure 6.10: The percentage of of times out of 11 runs that each non-dominated wtorial
reward was discovered by MOMCTS-hv,MOMCTS-dom and MOQ-learning with m =
6; 15; 45, during at least one test period.
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Figure 6.11: The hypervolume indicator performance of MOMCTS-dom with varying in
f0:9; 0:98; 0:99; 0:999, versus training time steps in the Resource Gathering problem.

m = 6 weight settings, the MOQ-learning performance stops improvingafter reaching a
plateau of 1:9 10 ° at 120,000 time steps. Inspecting the Pareto archive, the di erence
between the performance plateau and the optimal performance (@1 10 3) is due to
the non-discovery of policies 2; 4 and s whose vectorial rewards are not covered by the
6 weight settings. MOQ-learning reaches the optimum whermm increases (after 240,000
steps form = 15 and 580,000 steps fom = 45).

The MOMCTS approaches are outperformed by MOQ-learning; their averagehyper-
volume indicator reach 18 10 3 in the end of the training process, which is explained
as the MOMCTS approaches rarely nd the risky policies ( 6; 7) (Figure 6.10). A ten-
tative explanation for this fact is that risky non-dominated policies, such as ¢ and 7,
are hidden by dominated policies. For example, policy g visits the enemy case twice; the
neighbour nodes of this policy thus get the (-1,0,0) reward. As noted by [Gquelin and
Munos, 2007], it may require an exponential time for the UCT algorithm to conwerge to
the optimal node if this node is hidden by nodes with low reward.

As shown in Figure 6.11, the parameter governs the MOMCTS-dom performance.
A low value ( = 0:9) leads to quickly forgetting the discovery of non-dominated rewards
turning MOMCTS-dom into pure exploration. Quite the contrary, high values of ( =
0:999) limit the exploration and likewise hinder the overall performance The increasing
interval between successive discoveries of non-dominated solatis (section 5.4.3) suggests
that should be adjusted dynamically. This is a perspective for furtherwork.

On the computational cost side, the average execution time of 600,000 traingn steps
of in MOMCTS-hv, MOMCTS-dom and MOQ-learning are respectively 944 scs, 47 secs
and 43 secs. Let us recall that the complexity of each tree-walk in MOMCB-hv and
MOMCTS-dom are respectively O(BjPj%2logN) and O(B logN + djPj), where B is av-
erage branching factor in the MOMCTS tree, P is Pareto archive andN is the number
of tree-walks. As the size of the Pareto archive is close to 10, and the teedepth is about
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Figure 6.12: The Resource Gathering problem: average computational cost fane tree-
walk for MOMCTS-hv and MOMCTS-dom over 11 independent runs. On avegage, each
tree-walk in MOMCTS is ca. 35 training time steps.

30 (logN 30) in most tree-walks of MOMCTS-hv and MOMCTS-dom, the fact that
MOMCTS-hv algorithm is 20 times slower than MOMCTS-dom re ects their computa-
tional complexities.

As shown in Figure 6.12, the average cost of a tree-walk in MOMCTS-hv inaases up
to 20 times compared to that of MOMCTS-dom within the rst 500 tree-walk s, during
which period the Pareto archive sizejPj grows. Afterwards, the cost of MOMCTS-hv
gradually increases with the depth of the search tree @Q(logN)). On the contrary, the
computational cost of each tree-walk in MOMCTS-dom remains stable (beteen 1 10 3
secs and 2 10 2 secs) throughout the training process.

6.4 Grid Scheduling problem

Pertaining to the domain of autonomic computing [Tesauro et al., 2007; Perez2010], the
problem of grid scheduling is concerned with scheduling the di eent tasks involved in
the jobs on di erent computational resources. As tasks are interdependnt and resources
are heterogeneous, grid scheduling de nes an NP-hard combinatorial optiimation prob-
lem [Ullman, 1975]. We refer the reader to [Yu et al., 2008; Perez et al., 2010] for a
comprehensive presentation of the eld.

Grid scheduling naturally aims at minimizing the so-called makespanthat is the overall
job completion time. But other objectives such as energy consumptionmonetary cost, or
the allocation fairness w.r.t. the resource providers become ineasingly important. In the
rest of this section, two objectives will be considered, the makgsmmn and the cost of the
solution. Due to its multi-objective nature, the grid scheduling problem has a set of Pareto
optimal solutions available, among which only one will be executed in tle reality. The nal
choice of execution plans is made by a coordinator (human or computer) whesdecision
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(@) (b)

Figure 6.13: Scheduling a job containing 7 interdependent tasks on a gtiof 2 resources.
Left: The dependency graph of tasks in the job. Right: The illustration of an execution
plan.

depends on the observation of the entire Pareto optimal solution set. Ashe coordinator
preference function is unknown, grid scheduling is a decisionupport application scenario
of MOMCTS [Runarsson et al., 2012].

6.4.1 Problem statement

In grid scheduling, a job involvesJ tasks Ty ::: Ty, partially ordered through a dependency

relation; T; ! T; denotes that task T; must be executed before taskl; (Figure 6.13(a)).

Each task T; is associated with its unitary load L;. Each task is assigned one out oM

resourcesRy1;:::Ry: resourceRy has computational e ciency speeg and unitary cost

cost,. Grid scheduling achieves the task-resource assignment and ordetee tasks executed

on each resource. A grid scheduling solution called execution plan is\g@n as a sequence
of (task-resource) pairs (Figure 6.13(b)).

Let (i) = k denote the index of the resourceRi on which T; is executed. LetB(T;)
denote the set of tasksT; which must either be executed beforeT; (T; ! T;) or which are
scheduled to take place beforel; on the same resourceR (). The completion time of a
task T; is recursively computed as:

Li
end(Ti) = —— + maxfend(T;);T; 2 B(T;
(Ti) speed(i) X (T;): T, (Ti)g
where the rst term is the time needed to processT; on the assigned resourc® (;y, and the
second term expresses the fact that all jobs iB(T;) must be completed prior to executing
Ti.
Finally, grid scheduling is the two-objective optimization problem aimed at minimizing
the overall scheduling makespan and cost:
Flg',nd ()= argminpf maxfend(Tj); j =1:::39;

costy .
k=1::M speed, i st (i)=k ng
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Figure 6.14: The EBI_ClustalW2 work ow.

6.4.2 Experimental setting

The state of the art in grid scheduling is achieved by stochastic optinization algorithms
[Yu et al., 2008]. The two prominent multi-objective variants (NSGA-II [ Deb et al., 2000]
and SMS-EMOA [Beume et al., 2007], section 3.3.3) are therefore chosen as thaseline
algorithms in our experiment.

A simulated grid environment containing 3 resources with di erent unit time costs and
processing capabilities ¢ost; = 20; speed = 10; cost, = 2; speed = 5; cost; = 1; speed =
1) is de ned. We rstly compare the performance of MOMCTS approaches andbaseline
algorithms on a realistic bio-informatic work ow EBI _ClustalW2 (Figure 6.14), which per-
forms a ClustalW multiple sequence alignment using the EBI's WSQustalW2 service’.
This work ow contains 21 tasks and 23 precedence pairs (graph densitg = 12% ©), as-
suming that all workloads are equal. Secondly, the scalability of MOMCTSapproaches
is tested through experiments based on arti cially generated work ows containing respec-
tively 20, 30 and 40 tasks with graph densityqg = 15%.

As evidenced from the literature [Wang and Gelly, 2007], MCTS performanes heavily
depend on the so-called random phase (section 2.6.1). Preliminary exparents showed
that a uniform action selection in the random phase was ine ective. A smple heuristic
was thus used to devise a better suited action selection criterioin the random phase, as

5The complete description is available at http://www.myexperiment.org/work ows/203.html
®The graph density g is de ned as the portion of pairs ( Ti;T;) which are linked by a precedence
constraint.
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follows.
Let ECT; de ne the expected completion time of taskT; (computed o -line, [Eswari
and Nickolas, 2011)):

ECT; = L; + maxf ECT; sit: Tj ! Tig

The heuristic action selection uniformly selects an admissible tds T;. It then compares
ECT; to all ECT; for Tj admissible. If ECT; is maximal, T; is allocated to the resource
which is due to be free at the earliest; if ECT; is minimal, T; is allocated to the resource
which is due to be free at the latest. The random phase thus implemds a default policy,

randomly allocating tasks to resources, except for the most (respeiely less) critical tasks
that are scheduled with high (resp. low) priority.

The parameters of all algorithms have been selected after preliminarexperiments,
using the same amount of computational resources for a fair comparison. Therpgressive
widening parameterbis set to 2 in both MOMCTS-hv and MOMCTS-dom. In MOMCTS-
hv, the exploration vs. exploitation (EVE) trade-o parameters associated to the makespan
and cost objectives,Gime and ceost are both setto 5 10 3. In MOMCTS-dom, the EVE
trade-o0 parameters ¢ is set to 1, and the discount factor is setto 0:99. The parameters
used for NSGA-II (respectively SMS-EMOA) involve a population size 0f200 (resp. 120)
individuals, of which 100 are selected and undergo stochastic unary anidinary variations
(resp. one-point re-ordering, and resource exchange among two indivighls). For all three
algorithms, the number N of tree-walks a.k.a. evaluation budget is set to 10,000. The
reference point in each experiment is set to %; z;), where z; and z. respectively denote
the maximal makespan and cost.

Due to the fact that the true Pareto front in the considered problems is unknown,
as said, we use a reference Pareto froft gathering all non-dominated vectorial rewards
obtained in all runs of all three algorithms in lieu of the true Pareto front. The performance
indicators are de ned by the generational distance (GD) and inverted gaerational distance
(IGD) (section 3.3.3) between the actual Pareto frontP found in the run and the reference
Pareto front P . In the grid scheduling experiment, the IGD indicator measures he
diversity of solutions in the Pareto front P, like the hypervolume indicator does in DST.

6.4.3 Results

Figure 6.15 displays the GD and IGD of MOMCTS-hv, MOMCTS-dom, NSGA-II and
SMS-EMOA on EBI _ClustalW2 work ow scheduling and on arti cial jobs with a num-
ber J of tasks ranging in 2Q 30 and 40 with graph density q = 15%. Figure 6.16 shows
the Pareto front discovered by MOMCTS-hv, MOMCTS-dom, NSGA-Il and SMS-EMOA
on the EBI_ClustalW2 work ow after N = 100; 1000 and 10000 policy evaluations (tree-
walks), comparatively to the reference Pareto front. In all consideed problems, the MOM-
CTS approaches are outperformed by the baselines in terms of the GD inclator. While
they quickly nd good solutions, they fail to discover the reference Pareto front. In the
meanwhile, they yield a better IGD performance than the baselinesindicating that on
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(a) EBI _Clustalw?2 (b) J =20;9=15%

(c) J =30;9=15% (d) J =40;9=15%

Figure 6.15: The generational distance (GD) and inverted generational disince (IGD) for

N = 100; 1000 and 10000 of MOMCTS-hv, MOMCTS-dom, NSGA-Il and SMS-EMOA
on (a): EBI _ClustalWw2; (b)(c)(d): arti cial problems with number of tasks J and graph
density g. Each performance point after 1000 and 10 000 evaluations are respectively
marked by single and double circles.
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(2) MOMCTS-hv (b) MOMCTS-dom

(c) NSGA-II (d) SMS-EMOA
Figure 6.16: Progression of the Pareto-optimal solutions found forN = 100; 1000

and 10000 for MOMCTS-hv, MOMCTS-dom, NSGA-II and SMS-EMOA on the
EBI _ClustalW2 work ow. The reference Pareto front is indicated by circles.
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Figure 6.17: The PTSP map.

average a single run of MOMCTS approaches spreads to a wider region in thabjective
space, and reaches a better approximation of the true Pareto front.

Overall, the main weakness of MOMCTS approaches is their computational untime.
The computational cost of MOMCTS-hv and MOMCTS-dom are respectively 5and 2.5
times higher than that of NSGA-Il and SMS-EMOA ’. This is indeed a serious problem
for real-time decision settings. However, in many real-world problers, the evaluation cost
dominates by several orders of magnitude the search cost, which allevies this weakness
of MOMCTS.

6.5 Physical Travelling Salesman Problem

6.5.1 Problem statement

The physical travelling salesman problem (PTSP) extends the traelling salesman prob-
lem (TSP) to the problem of robot navigation. The TSP is a well known combinatorial

optimization problem where a series of cities (or nodes) and the cost dfavelling between
them are known. A salesman must visit all cities exactly once and go backo the starting

city by following the path of minimum cost.

In PTSP, the agent (i.e. the salesman) governs a ship that must visita series of
way-points scattered in a map (Figure 6.17) as quickly as possible. Bed# the goal of
minimizing the time to visit all way-points, the agent must also consider two supplemen-
tary goals { minimize the fuel consumption and the damage caused by passinthrough

7On work ow EBI _Clustalw2, the average execution time of MOMCTS-hv, MOMCTS- dom, NSGA-II
and SMS-EMOA are respectively 142 secs, 74 secs, 31 secs and 38cs.
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Figure 6.18: Action space of PTSP.

dangerous areas (lava surface) or when confronting obstacles during thep.

The 6 actions in PTSP (Figure 6.18) are determined by two di erent inputs : acceler-
ation and steering. Acceleration can take two possible values (on and o ), whe steering
can turn the ship to the left, right or keep it straight. Each acceleration action consumes
one unit of fuel.

The state of the ship is described as by a 3-tupled; v;; pt), including the orientation
o, velocity v; and position p; vectors. A known deterministic transition model is used to
modify the state of PTSP according to the executed actions.

The orientation of the ship is changed as shown in Eq.(6.1), given the shls orientation
o in the last time step and the rotation angle caused by the steering action. Eq.(6.2)
indicates how the velocity vector is modied, given the previous velocity v;, the new
orientation d+1, an acceleration constantK , and a frictional loss factor L. In this case,
the acceleration input determines the value ofT; : set to 1 if the action implies acceleration
or 0 otherwise. Finally, Eq.(6.3) updates the position of the ship by addng the velocity
vector to its location p; in the previous time step. The inertia of the ship is kept in the
velocity vector v¢, which makes the task of navigating the ship more challenging.

co ) sin( )
%1 §in() coy ) & (6.2)
Vier (it (04 TiK)) L (6.2)
Pr+1 Pt + Vt+1 (6.3)

Di erent elements in PTSP map are shown in Figure 6.19, among which boththe
obstacles and the lava surface in the map may damage the ship. One unit alamage is
taken by the ship for every time step it spends on the lava surface.A collision on the
normal obstacle does a low damage (15 units) to the ship and produces arestic collision,
which modi es the velocity of the ship (both in direction and module). Collisions on the
damaging surface bring a high damage (30 units) to the ship. Elastic sudce does not
damage the ship, but produces an elastic collision.

6.5.2 Problem analysis

Robot navigation in PTSP faces two main challenges. Firstly, the policyspace in PTSP
is large BT, with B = 6 the branching factor and T = 1000 the minimal time horizon

106



6.5 Physical Travelling Salesman Problem

Figure 6.19: Legends of elements in an PTSP map.

Figure 6.20: An example path which traverse all way-points in the PTSP map. 1530
actions are made to correct the direction and accelerate the ship in ths path.

107



Chapter 6. Experimental Analysis

Figure 6.21: Paths with dierent visit orders corresponds to dierent length in PTSP
extracted from [Powley et al., 2012]. Figuresb and d respectively shows the trace of the
ship by following orders de ned by Figure a and c. Note that the time is not simply
determined by the travel length due to the inertia e ect.

which enables a tour which successfully visits all way-points (Kjure 6.20)).

Secondly, the PTSP imposes real-time planning requirements tote controller. In
real-world robot navigation problems, robot decisions about the next movenent usually
need to be made within milliseconds. Speci cally, in the 2013 CIG PTSP competition,
1000 ms is given for the initialization of controllers, and the planning interval between two
consecutive actions is 40 ms. Under the real-time constraint, the onite planning ability
becomes essential in the controller design.

In order to overcome the challenges in the above two aspects, we rit x the visit
order of all way-points in PTSP, and the task of MOMCTS is to achieve thelocal navigation
from one way-point to another one by following the xed order.

Secondly, we introduce the persistence parametdvl , imposing that each selected ac-
tion out of 6 is executed repetitively alongM consecutive steps. The ne-grained adjust-
ment of M is a critical issue as it controls the size of the local navigation problm, of
which the time horizon is divided by M. On the other hand, it restricts the exibility of
the navigation. Preliminary experiments were used to adjustM, a range from 5 to 30 is
considered in the experiments.

The third point is to incorporate the varying preference application scenario described
in section 4.5.

Techniques used in the design of MOMCTS-based PTSP controller areofmally pre-
sented as the following.

6.5.2.1 Problem decomposition

Taking inspiration from Powley et al. [2012], the PTSP problem is decompoed into two
sub-problems with di erent levels of granularity. Firstly, at a glob al level, a macro-planner
de nes the order in which the way-points are visited. Secondly, ata local level, a steer-
ing controller based on the MOMCTS algorithm determines how to go from te current
position to the next way-point.

Noticing that di erent visit orders of way-points produce paths wit h varying lengths
(Figure 6.21), the macro-planner achieves an approximated optimal order of @y-points
through the resolution of a regular TSP problem, using anA algorithm for an a ordable
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(@ M =10 (b) M =30

Figure 6.22: Examples of the path followed by the MOMCTS controller. Left The path
created with M = 10, in which rotations are smooth. Right: The path created with
M = 30, in which most turns are in 90 angle.

approximation &,

The MOMCTS is only in charge of steering the ship from the current podtion to the
next way-point in plan.

The benet of the problem decomposition is to reduce the length of thesequential
decision making in PTSP from 1000 to ca 100 time steps.

6.5.2.2 Macro actions

Following again Powley et al. [2012], a hyper-parameteM is introduced, controlling the
persistence of actions in the PTSP controller. Speci cally, each adbn is repeated forM
time steps. The M value in uences the performance of steering controller as follows.

On one hand, smallerM value corresponds to a control with higher exibility. Suppose
that one steering step corresponds to a rotation of 3. Then setting M = 30 restricts the
ship to only making 90 turns. However, algorithms using this setting will only nd paths
that have to bounce o walls or follow convoluted routes to line up with way-points. A
choice of M = 10 corresponds to 30 turns, which allows for a ner control of the ship
(Figure 6.22).

On the other hand, greater M values increase the controller's ability to plan ahead.
Assuming that given the same amount of computation time, the forward plannng ability
of the model exponentially increases withM .

In summary, M controls the trade-o between the exibility and forward planning
ability of the controller, which needs to be tuned in practical applications.

8 Once the map is given, the point to point distances are estimated by the scanline ood Il algorithm
[Lieberman, 1978].
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6.5.2.3 Varying preference modes

Complying with the time constraint of 40 ms, the action selection in the MOMCTS based
steering controller is achieved as follows. Firstly, 7 auxiliary obgctives are de ned and
computed for each tree-walk:

r = (Tdist; MdistNext ; MeftwaypointNb ; I'time
l'fuel ; I damage: ! leftF ueltankNb )

where rgist is the instant distance to the next way-point in plan, rgisivext IS the instant
distance to the point after the next one. The two terms (rgist; distnext ) are designed to
guide the steering controller towards the next way-point, while adieving a favourable
position from which to set o towards the second planned way-point. The third objective
leftwaypointNb 1S the number of way-points to be visited in the remainder of the trajectory.
The 4th term rgme records the minimum time spent before visiting the next way-poit
computed by the simulator. The fth and sixth term ( reyel ;r'damage) counts the fuel
consumption and damage caused by the steering policy. The last objec®W iettr veltankNb
is the number of fuel tanks left to be collected. All objectives are equired to be minimized.

In each decision step, MOMCTS is launched, estimating the Paretorbnt w.r.t. the
7 objectives. The choice of actions among Pareto optimal solutions is detmined by
following the varying preference application scenario (section 4.5)Speci cally, three types
of situations are considered: the set-o mode, the high-speed mode dnnormal mode.
Each situation is associated a weight setting, re ecting the prior knowledge of steering
in di erent environments. The action minimizing the weighted sum (Eq. (4.6)) of the 7
objectives is retained?®.

Set-0 mode: In the situation where the fuel storage is a uent and the speed of
the ship is small (like at the moment when the ship sets o0 ), the shp is encouraged
to accelerate to reach a normal speed as soon as possible. The followingight

setting is therefore taken, which ignores the cost in fuel consumpon and discourages
collecting fuel tanks:

W = (Wgist = 10; Wgistnext = 3; WieftwaypointNb = 500; Wiime = 10;
Wiyel = 0;Wdamage = 1; Wiettrueltankn = 100)
High speed mode: When the speed of the ship overpasses a threshol@/{j 1:2in
the PTSP environment), the risk of collision and target missing increases drastically.

The acceleration (fuel consumption) is discouraged in this situation ad the following
weight setting is taken :

W = (Wgist = 10; WyistNext = 3 WieftwaypointNb = 900; Wtime = 10;

Wiyel = 5;Wdamage = 1; WieftFueltanknb = 500)

9 Non-linear preference functions can also be used in the selectin among Pareto optimal solutions.
The design and learning of user preference functions is an increasigly active eld in RL [Brochu et al.,
2007; Farnkranz et al., 2012; Akrour et al., 2012]. Developing p opulation based preference function also
composes one of the major perspectives of our work. More discussins on this perspective will be found in
section 6.6.

110



6.5 Physical Travelling Salesman Problem

Normal mode: In all other cases, the following weight setting keeps a balance
between objectives:

W = (Wgist = 10; WgistNext = 3 WieftwaypointNb = 500; Wtime = 10;

Wryel = 1;Wdamage = 1; WiettFueltanknb = 500)

In summary, the calculation of multiple Pareto optimal solutions in MOM CTS allows the
use of multiple preference modes which enables the integration ofrjpr knowledge in the
controller and allows for a better control in face of the dynamics in PTSPproblem. The
MOMCTS controller thus treats the varying preference application scenario of multiple-
policy MORL. Interestingly, while the optimization of the weighted s um of objectives can
be solved by single-objective optimizers, the experiments showhat searching for the set
of Pareto optimal solutions in the planning phase does enforce a bettegxploration of the
multi-dimensional objective space and eventually bring a better slution in the execution
phase (more in section 6.5.5).

6.5.3 Baseline algorithms

In the PTSP problem, MOMCTS is compared with its ancestor versions { the MCTS
and MC (Monte-Carlo) algorithms. MCTS is the original version of MOMCTS wh ich
solves single-objective SDM problems (section 2.6.1). In our experiemt, MCTS solves
the multi-objective PTSP problem by optimizing the upper bound of weighted sum of the
7-objective vectorial reward in PTSP. Let # denote the average rewards cumulated in the
7 auxiliary objectives of PTSP, and let w denote the associated weight setting. The node

selection criterion in MCTS is de ned as
q___
ow(s;a)=%sa+ Celn(ns)=nsa (6.4)

wherery., = £ w. For a fair comparison, as the situation/mode of the ship is known, the
weights associated to the objectives in MCTS take the same value as in @MCTS.

MC method optimizes the same value functiongy, (s; &) as in MCTS. However, unlike
MCTS which chooses actions in multiple levels of the search treehe MC method chooses
the action maximizing gy (S; @) among the direct descendants of the root node, and there-
after randomly chooses actions until reaching the time horizon of the loal search problem.
By limiting the search tree depth to 1, MCTS degrades to the MC.

6.5.4 Experimental setting

Goals of experiments Experiments on PTSP are carried out with three goals in mind.
The rst goal is to compare the performance of MOMCTS, MCTS and MC. The second
goal is to assess the scalability of algorithms depending on the compleyitof the map.
The third goal is to examine the sensitivity of algorithms w.r.t. the hyper-parameter M .

The presented experiments rely on the PTSP framework used in 2013 PTSP
competition. In each PTSP game, the initial 1000 ms are used to execute # macro-
planner. The planning interval between two consecutive actions is40 ms. The rotation
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step is xed to 3 . The friction factor L is xed to 0.99. The acceleration constant
K is xed to 0.025. Three maps of di erent complexities (simple, medium, di cult) are
used in our experiment, each of which contains 10 way-points (Figure &3). The game
is terminated in four cases: if the ship has not visited all 10 way-poits within 5000 time
steps, or more than 800 time steps are spent without reaching a new wayeint, or the
ship runs out of fuel, or the cumulative damage su ered by the ship is nore than 5000.

As preliminary experiments show, the MOMCTS-hv algorithm fails to nd solutions
in PTSP problem under the real-time constraint due to its excessie computational cost.
The results reported in our experiment are therefore based on the M@ICTS-dom (noted
by MOMCTS in the following), MCTS, and MC algorithm.

The MOMCTS, MCTS and MC based steering controllers implement thesame 6 macro
actions as in [Powley et al., 2012], where the 6 original actions are executeepetitively
for a xed number M of times. After preliminary experiments, the time horizon T in all
tested algorithms is xed to 5, which correspond to a search space of°6= 46; 656 possible
policies. Note that only a negligible fraction of the policy space can be evahted under
the time constraint (ca 1000 policies).

After tuning the parameters in MOMCTS, MCTS and MC, the search tree depth D
in MOMCTS, MCTS and MC is respectively set to 3, 3 and 1°. In MOMCTS, the
EVE trade-o parameter ce = 10, and the discount factor is set to 0.5. The progressive
widening parameterb is set to 2 in both MOMCTS and MCTS. c is set to 100 in both
MCTS and MC.

All algorithms are executed for 11 times in each map, and 11 result vectorf® =
(Rtime ; Rdamage: Rfuel ), representing the overall completion time, damage and fuel con-
sumption of the traversal trip, are returned by the PTSP engine. As ech run yields a
result vector, the result vectors generated by 11 runs are associatedith a hypervolume
indicator, which measures the performance of each algorithm, with the eference pointz
set to (5000 500Q 5000).

6.5.5 Results

Table 6.5 The best hypervolume indicator of the set of result vectorsR =
(Rtime ; Rdamage; Rfuel ) Obtained by MOMCTS, MCTS and MC over 11 runs (each run
generates one single result vectoR ) in the three test maps, with the reference pointz set
to (5000; 500Q 5000). The best results are indicated in bold font.

| MOMCTS | MCTS | MC

Simple map ( 10%) 8.24 7.57 | 7.87
Medium map ( 10') 7.45 6.82 | 7.25
Dicult map ( 10%) 4.28 3.71 | 4.39

As the macro action length M in uences the performance of steering controllers in

0 Correspondingly, the length of the random phase in MOMCTS, MCTS and MC equalling T D are
respectively 2, 2 and 4.
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(a) Simple Map (b) Medium Map

(c) Dicult Map

Figure 6.23: Three representative maps extracted from the 2013 CIG PTSP ampetition
toolkit. All three maps are of the same size 512 pixel 512 pixel. Blue points are way-
points to be visited, and green points are fuel tanks. The di erencebetween these maps
lies in the obstacle setting. The simple map (a) does not contain any obsicle, while the
medium map (b) contains more rugged walls and 4 obstacles in the middle. Ae di cult
map (c) is a maze-like arena (black segments indicate walls) in whicmo straight path
exist between any two way-points.
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(a) Simple map (b) Medium map

(c) Dicult map

Figure 6.24: Sensitivity analysis: impact of macro-action lengthM on hypervolume indi-
cator performance of MOMCTS, MCTS and MC in simple, medium and di cul t maps.

114



6.5 Physical Travelling Salesman Problem

PTSP problem, experiments with M varying in f 1;5; 7; 10; 15; 20; 25; 30g have been carried
out to assess such in uence, and the results are shown in Figure 6.24t ik observed that,
the best runs of MOMCTS, MCTS and MC all correspond to the M value between 10 and
15, which generates 30to 45 of rotation or 10 to 20 pixels of displacement (assuming
that the average speed of the ship is around 1.2) in each macro-action. Knong that the
time horizon T is xed to 5 in our experiment, M 2 [10; 15] then corresponds to an activity
region with the maximal radius of 100 pixels, which is in the same scale ofhe average
distance between two neighbour way-points (between 150 and 200) in theoasidered maps.
Inspecting the traversal trace of the ship in di erent maps, we nd out that greater M
values M  20) decrease the algorithm performance due to the reduced control exiitity
which result in more target missing and bounces on the walls. The harmil e ect of large
M values is even more obvious in more di cult maps (Figure 6.24(b),(c)).

Table 6.5 further shows the comparison among the hypervolume indicatoof solution
sets obtained by MOMCTS,MCTS and MC with dierent M values. MOMCTS out-
performs MCTS and MC in both the simple and medium map, while MC outpaforms
MOMCTS for the di cult map. The optimal solution sets are displayed i n Figure 6.25.
We nd that most MCTS solutions are dominated by the MOMCTS and MC ones. Recall
that the only di erence between MC and MCTS is that MC has a smaller serch tree
depth and longer random phase, a tentative explanation for this phenomenois that more
samples are need to assess the value of a node.

When comparing MOMCTS and MC, it is observed that MC solutions are mostly
better than MOMCTS rewards in the time objective, and are worse in thedamage and
fuel objectives. This is probably due to the single-policy nature of MC mé¢hods. By
inspecting the reward log of optimization process, we notice that in nost linearly scalarized
rewards in MC (whose amplitude reaches 10,000), the impact dtiel and damageobjectives
(rfuel ; ' damage @nd rfyeTank ) is less than 10%, which easily gets ignored when compared
with the time objective related rewards. Further inspections show that discarihg the
damage and fuel related rewards is actually bene cial to MC in the dicu It map : the
di cult map requires the ship to frequently change its orientation through accelerations
(fuel consumption) or bounces against walls (damage). Compared to MOMCTSMC tends
to sacri ce fuel and damage related objectives to achieve better timeelated performance.
Such behaviour is particularly e ective in the di cult map.

Our tentative explanation for the phenomenon that MOMCTS is dominated by MC
in the di cult map is due to the fact that the weights is biased toward s the simple and
medium map. The analysis of the champion of 2013 CIG PTSP competition, whik is an
MCTS based controller, shows that the authors have been optimizing lhe weight settings
using the CMA-ES [Hansen, 2006] algorithm. Further experiments will lkewise use MO-
CMA-ES to re ne the weight vectors used in MOMCTS !, With the manual weight
vectors, the MOMCTS-based PTSP controller got the 2nd rank in the multi-objective
PTSP competition out of 8 competitors, and the 4th place in the single-obgctive PTSP

11 In order to get better results in PTSP, another possibility is t o re ne the preference mode design in
MOMCTS-based controller. As longer term perspectives, non-lin ear scalarization function in the PTSP
framework will also be considered.

115



Chapter 6. Experimental Analysis

competition out of 30 competitors 12.

Through the PTSP problem, the ability of MOMCTS to exploit prior know ledge has
been demonstrated. On the negative side, it has been shown that the i@l results depend
on the accuracy of some prior knowledge, here, the weight vectors.

6.6 Partial conclusion

The careful experimental study of MOMCTS on arti cial and real-world | ike problems has
shown the potential and current limitations of the approach.

On the positive side, MOMCTS does not su er from intrinsic limit ations w.r.t. non-
convex Pareto front. In the meanwhile, it requires quite some tunig e orts to best t the
problem at hand. These e orts include 1) the design of a heuristic rolout policy to be
used in the random phase, as shown for the grid scheduling problem; 2hé adjustment of
the depth vs breadth of the search tree, speci cally between theitne horizon and forward
exploration ability, as shown in the PTSP experiments.

The comparison of the MOMCTS-hv and MOMCTS-dom shows that some progress
can be done regarding the trade-o between the diversity of the disceered Pareto front and
the computation time. Speci cally, MOMCTS-dom is almost at side w.r.t. computational
cost regarding the state of the art, while MOMCTS-hv is slower by at least one order of
magnitude.

The good robustness w.r.t. probabilistic transition model of both MOMCTS-hv and
MOMCTS-dom has been demonstrated.

A next perspective for further extension of MOMCTS thus regards hav to enforce the
discovery of the whole range of Pareto front in the MOMCTS-dom. Further work will be
considered with optimization of the prior in both Grid Scheduling and PTSP as well.

2|n the single-objective PTSP competition, only the maximiza tion of the number of way-points vis-
ited under a xed time budget is considered. The results of both competitions are available on the site
http://www.ptsp-game.net/bot _mo_rankings.php.
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(a) Simple map: Time vs Damage (b) Simple map: Time vs Fuel
(c) Medium map: Time vs Damage (d) Medium map: Time vs Fuel
(e) Di cult map: Time vs Damage (f) Di cult map: Time vs Fuel

Figure 6.25: The result vector Rtme ; Rdamage; Rfuel ) distribution of MOMCTS, MCTS
and MC in the three tested maps.
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Chapter 7

Conclusions

This thesis investigates the multi-objective sequential decijmn making (MOSDM) problem.
Besides the known di culties of sequential decision making (siz of the search space,
delayed e ects of decisions, possibly stochastic transition mods), the MOSDM faces the
main di culty at the core of multi-objective optimization setting, nam ely the lack of total
order among solutions, here policies.

7.1 Summary of contributions

Our contribution is to extend the MCTS framework [Kocsis and Szepe\ari, 2006] to
multi-objective sequential decision making. Inheriting the scahble advantage of MCTS
in single-objective SDM, the proposed MOMCTS framework handles themulti-objective
SDM problem by searching for several Pareto optimal solutions within asingle tree. The
main challenge in this work is to extend the node selection rule in NCTS to the multi-
objective case. This was done by using, besides the estimation of thepper bound of
rewards associated to each node, an archive of all solutions discovered during the search
in terms of the Pareto front in the objective space. By maintaining this archive, auxiliary
performance indicators can be computed for each tree-walk.

Inspired from the MOO literature, the rst performance indicator i s the hypervolume
indicator measuring how a given non-dominated solution extends and impves the Pareto
front. A main merit of the hypervolume indicator is to enforce the diversity of the discov-
ered solution, favoring the sampling of the Pareto front. A diculty of the hypervolume
indicator is that it is not often operational as the majority of tree-walk sol utions are dom-
inated. Therefore, a penalty over the hypervolume indicator is impmsed by considering
the distance of the dominated solutions to the envelope of the currenPareto front. The
weakness of the hypervolume indicator based performance measure isaviold. On the
one hand, it is computationally expensive. Experimentally it was not usable in the PTSP
experiments in Chapter 6. The second weakness is that the hypervoloe indicator is not
invariant w.r.t. the monotonous transformation of the objectives.

Addressing these limitations, the second performance indicator is qwposed, where the
binary reward associated to each tree-walk is 1 i this tree-walk is ron dominated w.r.t.
the current Pareto archive. The dominance reward based performancedicator enjoys two
advantages. Firstly, its computational complexity is linear w.r.t. th e number of objectives.
Secondly, it is invariant under the monotonous transformation of the objedive functions.
However, as there is only a tiny percent of tree-walks that nd non-domnated solutions,
the average dominance reward in most nodes are negligible in front of thexploration
term, making the MOMCTS degenerate to pure random search. In order toovercome this

121



Chapter 7. Conclusions

limitation, a cumulative discounted (CD) updating procedure is used to update the value
of nodes based on the dominance reward. Therefore, the second perforntagnindicator is
called cumulative discounted dominance (CDD) reward.

These approaches have been validated on both arti cial (Deep Sea Trease and Re-
source Gathering) and real-world (Grid Scheduling and Physical Traelling Salesman Prob-
lem) problems. The experimental results on the Deep Sea Treasuproblem con rm a main
merit of the proposed approaches, their ability to discover policiedying in the non-convex
regions of the Pareto front. To our knowledge?, this feature is unique in the MORL
literature. The experiments on Resource Gathering show that MOMCTS-dom enjoys a
better scalability than MOMCTS-hv because of the linear computational cost of Pareto
dominance test w.r.t. the number of objectives. Such scalability ofMOMCTS-dom is
further con rmed by the Physical Travelling Salesman Problem experiments, in which 7
objectives are optimized in an on-line manner.

In the counterpart, MOMCTS approaches su er from two main weaknesses Firstly,
as shown on the Grid Scheduling and Physical Traveling Salesman Pradém, some domain
knowledge is required to enforce the exploration e ciency of MOMCTS. Secondly, as evi-
denced in Resource Gathering problem, the presented approaches liy discover "risky"
policies which lie in an unpromising region (the proverbial needlen the haystack).

In summary, this work can be seen as a proof of concept of the application of IMCTS
framework for the MOO setting. The promising result is that the presented work reaches
a decent performance, despite the fact that they are less mature thathe approaches in
the RL eld.

7.2 Future directions

This work opens theoretical and applicative perspectives for furthe studies.

The main theoretical perspective concerns the properties of the quulative discounted
(CD) reward updating mechanism in the general (single-objective) gnamic optimization
context. Besides, the consistency analysis of the current node Ieetion criteria (including
hypervolume indicator and dominance reward) is required to providea guideline for the
future reward design within the MOMCTS framework.

On the applicative side, rstly, the linear scalarization preference function used in the
Physical Traveling Salesman Problem experiment can be extendedotmore general (for
example { non-linear) forms, which may allow more natural and interactive user preference
expressions.

Another most interesting algorithmic perspective regards the adjustnent of the CD

1A general polynomial result of MOO has been proposed by Chatterjee [2007], which claims that for
all irreducible MDP with multiple long-run average objectives, th e Pareto front can be -approximated
in time polynomial in . However this claim relies on the assumption that nding some Pareto optimal
point can be reduced to optimizing a single objective: optimze a convex combination of objectives using
as set of positive weights(page 2, Chatterjee [2007]), which does not hold for non-convex Pareto fronts.
Furthermore, the approach relies on the -approximation of the Pareto front proposed by Papadimitriou
and Yannakakis [2000], which assumes the existence of an orde telling for each vectorial reward whether
itis -Pareto-dominated (Thm. 2, page 4, Papadimitriou and Yannaka kis [2000]).

122



7.2 Future directions

reward updating mechanism (Eq.(5.7)). As said, the discovery of non-dminated solutions
is increasingly more rare along the search; the adjustment of the parameter should
compensate for this e ect. An option would be to consider the discovey of new non-
dominated solutions along the extreme-value theory setting [De Haan and étreira, 2007],
and to adjust accordingly.

123






Bibliography

Adibi, M., Zandieh, M., and Amiri, M. (2010). Multi-objective schedul ing of dynamic job
shop using variable neighborhood searchExpert Systems with Applications 37(1):282{
287. (Cited on pages ii and 7)

Akrour, R., Schoenauer, M., and Sebag, M. (2012). April: active preferene learning-based
reinforcement learning. In Machine Learning and Knowledge Discovery in Databases
pages 116{131. Springer. (Cited on pages 67 and 110)

Aliprantis, C. D. and Chakrabarti, S. K. (2000). Games and decision making Oxford
University Press New York. (Cited on pages i and 3)

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analyss of the multiarmed
bandit problem. Machine Learning, 47(2):235{256. (Cited on pages 24 and 27)

Auer, P., Ortner, R., and Szepeswri, C. (2007). Improved rates for the stochastic
continuum-armed bandit problem. In Learning Theory, pages 454{468. Springer. (Cited
on page 32)

Auger, A., Bader, J., Brockho, D., and Zitzler, E. (2009). Theory of the hy pervolume
indicator: optimal -distributions and the choice of the reference point. INFOGA'09,
pages 87{102. ACM. (Cited on pages vi, 48, and 76)

Auger, D. (2011). Multiple tree for partially observable monte-carlo tree search. In Ap-
plications of Evolutionary Computation, pages 53{62. Springer. (Cited on page 32)

Auger, D., Couetoux, A., and Teytaud, O. (2013). Continuous upper con dencetrees with
polynomial exploration{consistency. In Machine Learning and Knowledge Discovery in
Databases pages 194{209. Springer. (Cited on page 32)

Back, T., Hammel, U., and Schwefel, H.-P. (1997). Evolutionary computation: Comments
on the history and current state. Evolutionary computation, IEEE Transactions on,
1(2):3{17. (Cited on page 44)

Bader, J. and Zitzler, E. (2011). Hype: An algorithm for fast hypervolume-basd many-
objective optimization. Evolutionary Computation, 19(1):45{76. (Cited on pages 52
and 53)

Barrett, L. and Narayanan, S. (2008). Learning all optimal policies with multip le criteria.
In Cohen, W. W., McCallum, A., and Roweis, S. T., editors, ICML'08 , pages 41{47.
ACM. (Cited on pages vii, 8, 60, 61, 63, and 93)

Bellman, R. (1957). Dynamic Programming. Princeton University Press, Princeton, NJ,
USA, 1 edition. (Cited on page 52)

125



BIBLIOGRAPHY

Bellman, R. (1986). Dynamic programming and lagrange multipliers. The Bellman Con-
tinuum: A Collection of the Works of Richard E. Bellman, page 49. (Cited on pages 15
and 17)

Berthier, V., Doghmen, H., and Teytaud, O. (2010). Consistency modi cations for auto-
matically tuned Monte-Carlo Tree Search. In Blum, C. and Battiti, R. , editors, LION4,
pages 111{124. LNCS 6073, Springer-Verlag. (Cited on pages iv, 28, and 72)

Bertsekas, D. P., Bertsekas, D. P., Bertsekas, D. P., and Bertsals, D. P. (1995). Dynamic
programming and optimal control, volume 1. Athena Scientic Belmont. (Cited on
page 12)

Bertsekas, D. P. and Tsitsiklis, J. N. (1995). Neuro-dynamic programming: Anoverview.
In Decision and Control, 1995., Proceedings of the 34th IEEE Confegnce on volume 1,
pages 560{564. IEEE. (Cited on pages xvii, 18, 19, 20, and 21)

Beume, N., Fonseca, C. M., Lopez-lbanez, M., Paquete, L., and Vahrenhod]. (2009).
On the complexity of computing the hypervolume indicator. IEEE Transactions on
Evolutionary Computation, 13(5):1075{1082. (Cited on pages 52 and 76)

Beume, N., Naujoks, B., and Emmerich, M. (2007). SMS-EMOA: Multiobjective se-
lection based on dominated hypervolume.European Journal of Operational Research
181(3):1653 { 1669. (Cited on pages 43, 49, 52, 76, and 101)

Beyer, H.-G. and Sendho , B. (2007). Robust optimization{a comprehensivesurvey. Com-
puter methods in applied mechanics and engineeringl96(33):3190{3218. (Cited on
page 52)

Bourki, A., Chaslot, G., Coulm, M., Danjean, V., Doghmen, H., Hoock, J.-B., Herault,
T., Rimmel, A., Teytaud, F., Teytaud, O., et al. (2011). Scalability and p arallelization
of monte-carlo tree search. InComputers and Gamespages 48{58. Springer. (Cited on
pages 32 and 33)

Bowman Jr, V. J. (1976). On the relationship of the tchebyche norm and the e cient
frontier of multiple-criteria objectives. In Multiple criteria decision making, pages 76{86.
Springer. (Cited on page 58)

Brochu, E., De Freitas, N., and Ghosh, A. (2007). Active preference learimg with discrete
choice data. In NIPS. (Cited on page 110)

Brucker, P. and Brucker, P. (2007). Scheduling algorithms volume 3. Springer. (Cited on
page 3)

Bubeck, S., Munos, R., and Stoltz, G. (2009). Pure exploration in multi-armed bandits
problems. In Algorithmic Learning Theory, pages 23{37. Springer. (Cited on page 26)

Castelletti, A., Corani, G., Rizzolli, A., Soncinie-Sessa, R., and Weéer, E. (2002). Rein-
forcement learning in the operational management of a water system. IlFFAC Workshop

126



BIBLIOGRAPHY

on Modeling and Control in Environmental Issues, Keio University, Yokohama, Japan
pages 325{330. (Cited on pages ii, vi, 7, and 59)

Castelletti, A., Pianosi, F., and Restelli, M. (2011). Multi-objectiv e tted g-iteration:
Pareto frontier approximation in one single run. In ICNSC, pages 260{265. (Cited on
pages 66, 67, and 92)

Castelletti, A., Pianosi, F., and Soncini-Sessa, R. (2008). Receding hizon control for
water resources managementApplied Mathematics and Computation 204(2):621{631.
(Cited on pages 66 and 67)

Cazenave, T. (2006). A phantom-go program. InAdvances in Computer Games pages
120{125. Springer. (Cited on page 31)

Charnes, A. and Cooper, W. W. (1957). Management models and industrial apptiations
of linear programming. Management Science4(1):38{91. (Cited on page 43)

Chaslot, G., Bakkes, S., Szita, I., and Spronck, P. (2008a). Monte-carlo #e search: A
new framework for game ai. InAIIDE . (Cited on page 28)

Chaslot, G., Chatriot, L., Fiter, C., Gelly, S., Hoock, J.-B., Perez, J., Rimmel, A., and
Teytaud, O. (2008b). Combining expert, oine, transient and online kno wledge in
monte-carlo exploration. (Cited on page 76)

Chatterjee, K. (2007). Markov decision processes with multiple longun average objec-
tives. FSTTCS 2007 Foundations of Software Technology and TheoretidaComputer
Science 4855:473{484. (Cited on pages 60 and 122)

Childs, B. E., Brodeur, J. H., and Kocsis, L. (2008). Transpositions and nove groups
in monte carlo tree search. InComputational Intelligence and Games, 2008. CIG'08.
IEEE Symposium On, pages 389{395. IEEE. (Cited on page 31)

Ciancarini, P. and Favini, G. P. (2009). Monte-Carlo Tree Search techngues in the game
of kriegspiel. In Boutilier, C., editor, IJCAI'09 , pages 474{479. (Cited on pages ii, 6,
28, and 31)

Comsa, I. S., Aydin, M., Zhang, S., Kuonen, P., and Wagen, J.-F. (2012). Mult objective
resource scheduling in Ite networks using reinforcement learng. International Jour-
nal of Distributed Systems and Technologies (IJDST) 3(2):39{57. (Cited on pages 66
and 67)

Coquelin, P. and Munos, R. (2007). Bandit algorithms for tree search. arXiv preprint
¢s/0703062 (Cited on page 98)

Couetoux, A., Doghmen, H., and Teytaud, O. (2012). Improving the exploration in upper
con dence trees. In Learning and Intelligent Optimization, pages 366{371. Springer.
(Cited on page 32)

127



BIBLIOGRAPHY

Couetoux, A., Hoock, J.-B., Sokolovska, N., Teytaud, O., and Bonnard, N. (2011). Contin-
uous upper con dence trees. InLearning and Intelligent Optimization, pages 433{445.
Springer. (Cited on page 32)

Couetoux, A., Milone, M., Brendel, M., Doghmen, H., Sebag, M., Teytaud, O., et al.
(2011). Continuous rapid action value estimates. InThe 3rd Asian Conference on
Machine Learning (ACML2011), volume 20, pages 19{31. (Cited on page 32)

Coulom, R. (2006). E cient selectivity and backup operators in Monte-Carl o Tree Search.
In Proc. Computers and Games pages 72{83. (Cited on pages 28 and 31)

De Haan, L. and Ferreira, A. (2007). Extreme value theory: an introduction Springer.
(Cited on pages viii and 123)

Deb, K. (2001). Multi-objective optimization using evolutionary algorithms, pages 55{58.
Chichester. (Cited on pages 35, 37, and 41)

Deb, K. and Gupta, H. (2006). Introducing robustness in multi-objective optimization.
Evolutionary Computation, 14(4):463{494. (Cited on page 52)

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2000). A fast elitist non-d ominated
sorting genetic algorithm for multi-objective optimization: NSGA-Il. | n Schoenauer,
M. et al., editor, PPSN VI, pages 849{858. LNCS 1917, Springer Verlag. (Cited on
pages 36, 38, 43, 45, 49, and 101)

Deb, K., Thiele, L., Laumanns, M., and Zitzler, E. (2002). Scalable multi-objective opti-
mization test problems. In Proceedings of the Congress on Evolutionary Computation
(CEC-2002),(Honolulu, USA), pages 825{830. Proceedings of the Congress on Evolu-
tionary Computation (CEC-2002),(Honolulu, USA). (Cited on page 86)

Delling, D., Sanders, P., Schultes, D., and Wagner, D. (2009). Engineérg route planning
algorithms. In Algorithmics of large and complex networks pages 117{139. Springer.
(Cited on page 14)

Edelsbrunner, H. and Shah, N. R. (1996). Incremental topological ipping woiks for
regular triangulations. Algorithmica, 15(3):223{241. (Cited on page 74)

Eswari, R. and Nickolas, S. (2011). Expected completion time based scheliing algo-
rithm for heterogeneous processors.Information Communication and Management{
International Proceedings of Computer Science and Information chnology (Cited on
page 102)

Fikes, R. E. and Nilsson, N. J. (1972). Strips: A new approach to the applicabn of
theorem proving to problem solving. Arti cial intelligence , 2(3):189{208. (Cited on
page 14)

Finck, S., Hansen, N., Ros, R., and Auger, A. (2010). Real-parameter black-boxpti-
mization benchmarking 2010: Presentation of the noisy functions. Techmal report,
Citeseer. (Cited on page 52)

128



BIBLIOGRAPHY

Fleischer, M. (2003). The measure of Pareto optima. applications to multiobjective meta-
heuristics. In EMO'03, pages 519{533. LNCS 2632, Springer Verlag. (Cited on pages vi
and 48)

Fogel, D. B. (2006). Evolutionary computation: toward a new philosophy of machine
intelligence, volume 1. John Wiley & Sons. (Cited on page 24)

Fogel, L., Owens, A., and Walsh, M. (1966). Articial intelligence through simulated
evolution. (Cited on page 44)

Rarnkranz, J., Hallermeier, E., Cheng, W., and Park, S.-H. (2012). Preference-based
reinforcement learning: a formal framework and a policy iteration algorithm. Machine
learning, 89(1-2):123{156. (Cited on pages 67 and 110)

Gabor, Z., Kalnar, Z., and Szepes\ari, C. (1998). Multi-criteria re inforcement learning.
In ICML'98 , pages 197{205. Morgan Kaufmann. (Cited on pages vi, 7, 55, 59, and 63)

Gelly, S., Hoock, J.-B., Rimmel, A., Teytaud, O., Kalemkarian, Y., et al. (2008). On the
parallelization of monte-carlo planning. In ICINCO . (Cited on page 33)

Gelly, S. and Silver, D. (2007). Combining online and o ine knowledge in UCT. In
Ghahramani, Z., editor, ICML'07 , pages 273{280. ACM. (Cited on pages ii, 7, 28, 29,
and 31)

Goh, C. K. and Tan, K. C. (2007). An investigation on noisy environments in evoltion-
ary multiobjective optimization. Evolutionary Computation, IEEE Transactions on,
11(3):354{381. (Cited on page 52)

Goldberg, D. E. and Holland, J. H. (1988). Genetic algorithms and machine learmg.
Machine learning, 3(2):95{99. (Cited on pages 44 and 45)

Goldfeld, S. M., Quandt, R. E., and Trotter, H. F. (1966). Maximization by g uadratic
hill-climbing. Econometrica: Journal of the Econometric Society pages 541{551. (Cited
on page 14)

Hansen, N. (2006). The cma evolution strategy: a comparing review. Irifowards a new
evolutionary computation, pages 75{102. Springer. (Cited on pages vi, 7, 76, and 115)

Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A formal basis for the heurisic deter-
mination of minimum cost paths. Systems Science and Cybernetics, IEEE Transactions
on, 4(2):100{107. (Cited on page 14)

Heidrich-Meisner, V. and Igel, C. (2009). Hoe ding and bernstein races d¢r selecting poli-
cies in evolutionary direct policy search. InProceedings of the 26th Annual International
Conference on Machine Learning pages 401{408. ACM. (Cited on pages 24 and 52)

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforw ard networks are
universal approximators. Neural networks 2(5):359{366. (Cited on page 24)

129



BIBLIOGRAPHY

Houli, D., Zhiheng, L., and Yi, Z. (2010). Multiobjective reinforcement | earning for tra c
signal control using vehicular ad hoc network. EURASIP Journal on Advances in Signal
Processing 2010:7. (Cited on pages 66 and 67)

Hsu, F.-H. (2002). Behind Deep Blue: Building the computer that defeated the world chess
champion. Princeton University Press. (Cited on page 3)

Ishibuchi, H., Tsukamoto, N., and Nojima, Y. (2008). Evolutionary many-objecti ve opti-
mization: A short review. In Evolutionary Computation, 2008. CEC 2008.(IEEE World
Congress on Computational Intelligence). IEEE Congress onpages 2419{2426. |IEEE.
(Cited on pages 53, 57, and 92)

Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Reinforcement learning: A
survey. arXiv preprint ¢s/9605103. (Cited on page 13)

Kirkpatrick, S. (1984). Optimization by simulated annealing: Quantitati ve studies. Jour-
nal of statistical physics 34(5-6):975{986. (Cited on page 24)

Knowles, J., Thiele, L., and Zitzler, E. (2006). A tutorial on the perfor mance assessment
of stochastic multiobjective optimizers. Tik report, 214:327{332. (Cited on page 37)

Kocsis, L. and Szepeswari, C. (2006). Bandit based Monte-Carlo planningIn Rarnkranz,
J., Sche er, T., and Spiliopoulou, M., editors, ECML'06, pages 282{293. Springer Ver-
lag. (Cited on pages i, 3, 28, 29, and 121)

Kolesnikov, A. (2003). E cient algorithms for vectorization and polygonal approximatio n.
University of Joensuu. (Cited on page 74)

Lazzerini, B., Marcelloni, F., and Vecchio, M. (2010). A multi-objective evolutionary
approach to image quality/compression trade-o in jpeg baseline algorithm. Applied
Soft Computing, 10(2):548{561. (Cited on page 52)

Lieberman, H. (1978). How to color in a coloring book. ACM SIGGRAPH Computer
Graphics, 12(3):111{116. (Cited on page 109)

Lin, J. G. (1976). Three methods for determining pareto-optimal solutions of multiple-
objective problems. InDirections in large-scale systemspages 117{138. Springer. (Cited
on page 41)

Littman, M. L. (1996). Algorithms for sequential decision making PhD thesis, Brown
University. (Cited on page 14)

Liu, W., Tan, Y., and Qiu, Q. (2010). Enhanced g-learning algorithm for dynamic power
management with performance constraint. InProceedings of the Conference on Design,
Automation and Test in Europe, pages 602{605. European Design and Automation
Assaociation. (Cited on pages 66 and 67)

130



BIBLIOGRAPHY

Lizotte, D. J., Bowling, M., and Murphy, S. A. (2012). Linear tted-q iter ation with
multiple reward functions. Journal of Machine Learning Research 13:3253{3295. (Cited
on pages 60, 61, 63, 66, and 67)

Loshchilov, 1. (2013). Surrogate-Assisted Evolutionary Algorithms PhD thesis, Universie
Paris Sud-Paris Xl. (Cited on pages 24, 45, and 53)

Mahadevan, S. and Connell, J. (1992). Automatic programming of behavior-basedabots
using reinforcement learning. Arti cial intelligence , 55(2):311{365. (Cited on pages i
and 3)

Mannor, S. and Shimkin, N. (2004). A geometric approach to multi-criterion reinforcement
learning. Journal of Machine Learning Research pages 325{360. (Cited on pages vi, 7,
and 59)

Mansley, C. R., Weinstein, A., and Littman, M. L. (2011). Sample-based plaming for
continuous action markov decision processes. IITCAPS. (Cited on page 32)

Maravall, D. and de Lope, J. (2002). A reinforcement learning method for dynamic obstacle
avoidance in robotic mechanisms.Computational Intelligent Systems. World Scienti c,
Singapore pages 485{494. (Cited on pages 66 and 67)

Marglin, S. A. (1967). Public investment criteria; bene t-cost analysis for planned eco-
nomic growth,. (Cited on page 41)

Marler, R. T. and Arora, J. S. (2010). The weighted sum method for multi-objective
optimization: new insights. Structural and multidisciplinary optimization , 41(6):853{
862. (Cited on pages 38 and 41)

Meisner, E. M., Adviser-Isler, V., and Adviser-Trinkle, J. (2009). Learning controllers for
human-robot interaction. (Cited on pages 66 and 67)

Meyer, J. (1987). Two-moment decision models and expected utility mabnization. The
American Economic Review pages 421{430. (Cited on page 5)

Nakhost, H. and Maller, M. (2009). Monte-Carlo exploration for determinist ic planning.
In Boutilier, C., editor, IJCAI'09 , pages 1766{1771. (Cited on pages ii, 7, and 28)

Natarajan, S. and Tadepalli, P. (2005). Dynamic preferences in multi-crieria reinforcement
learning. In ICML'05 . ACM. (Cited on pages vi, 7, 59, 60, and 61)

Palmers, P., McConnaghy, T., Steyaert, M., and Gielen, G. (2009). Massigly multi-
topology sizing of analog integrated circuits. InProceedings of the Conference on Design,
Automation and Test in Europe, pages 706{711. European Design and Automation
Association. (Cited on page 52)

Papadimitriou, C. H. and Yannakakis, M. (2000). On the approximability of trad e-0 s
and optimal access of web sources. IIFOCS, pages 86{92. IEEE Computer Society.
(Cited on page 122)

131



BIBLIOGRAPHY

Pareto, V. (1896). Cours d'economie politique Librairie Droz. (Cited on page 35)

Perez, J. (2010).Apprentissage arti ciel pour I'ordonnancement des taches dans les gilies
de calcul PhD thesis, PhD thesis. (Cited on page 99)

Perez, J., Germain-Renaud, C., kegl, B., and Loomis, C. (2009). Resporige elastic
computing. In Proceedings of the 6th international conference industry sessioon Grids
meets autonomic computing pages 55{64. ACM. (Cited on pages 66 and 67)

Perez, J., Germain-Renaud, C., Kegl, B., and Loomis, C. (2010). Multi-objective re-
inforcement learning for responsive grids. Journal of Grid Computing, 8(3):473{492.
(Cited on page 99)

Perny, P. and Weng, P. (2010). On nding compromise solutions in multiobjective markov
decision processes. IEECAI, pages 969{970. (Cited on page 59)

Peters, J. and Schaal, S. (2008). Reinforcement learning of motor skills it policy gradi-
ents. Neural networks 21(4):682{697. (Cited on page 13)

Ponsen, M. J., Gerritsen, G., and Chaslot, G. (2010). Integrating opponehmodels with
monte-carlo tree search in poker. Ininteractive Decision Theory and Game Theory
(Cited on page 31)

Powley, E. J., Whitehouse, D., and Cowling, P. I. (2012). Monte carlo tree search with
macro-actions and heuristic route planning for the physical travellng salesman problem.
In Computational Intelligence and Games (CIG), 2012 IEEE Conferenceon, pages 234{
241. IEEE. (Cited on pages vii, xxi, 8, 31, 108, 109, and 112)

Purshouse, R. C. and Fleming, P. J. (2007). On the evolutionary optimizaton of many
conicting objectives. Evolutionary Computation, IEEE Transactions on, 11(6):770{
784. (Cited on page 53)

Rechenberg, I. (1978).Evolutionsstrategien Springer. (Cited on page 44)

Robbins, H. (1985). Some aspects of the sequential design of experimenttn Herbert
Robbins Selected Papergpages 169{177. Springer. (Cited on pages ii, 6, and 25)

Roijers, D. M., Vamplew, P., Whiteson, S., and Dazeley, R. (2013). A swey of multi-
objective sequential decision-making.Journal of Arti cial Intelligence Research , 48:67{
113. (Cited on pages xix, 55, and 65)

Rubinstein, R. Y. and Kroese, D. P. (2004). The cross-entropy method: a uni ed approach
to combinatorial optimization, Monte-Carlo simulation and machine learning Springer.
(Cited on page 24)

Rummery, G. A. and Niranjan, M. (1994). On-line Q-learning using connectionist systems
University of Cambridge, Department of Engineering. (Cited on page 22)

132



BIBLIOGRAPHY

Runarsson, T. P., Schoenauer, M., and Sebag, M. (2012). Pilot, rollout and mae carlo
tree search methods for job shop scheduling. Iiearning and Intelligent Optimization,
pages 160{174. Springer. (Cited on page 100)

Saadatseresht, M., Mansourian, A., and Taleai, M. (2009). Evacuation planning sing
multiobjective evolutionary optimization approach. European Journal of Operational
Research 198(1):305{314. (Cited on page 52)

Saravanan, R., Ramabalan, S., Ebenezer, N., and Dharmaraja, C. (2009). Evolunary
multi criteria design optimization of robot grippers. Applied Soft Computing 9(1):159{
172. (Cited on page 52)

Schaer, J. D. (1985). Some experiments in machine learning using veéor evaluated
genetic algorithms. Technical report, Vanderbilt Univ., Nashville, TN (USA). (Cited
on page 45)

Shabani, N. (2009).Incorporating ood control rule curves of the Columbia river hydroelec-
tric system in a multireservoir reinforcement learning optimization model PhD thesis,
University of British Columbia. (Cited on pages 66 and 67)

Shin, S.-Y., Lee, I.-H., Kim, D., and Zhang, B.-T. (2005). Multiobjectiv e evolutionary
optimization of dna sequences for reliable dna computing Evolutionary Computation,
IEEE Transactions on, 9(2):143{158. (Cited on page 52)

Shojaee, D., Helali, H., and Alesheikh, A. (2006). Triangulation for surface mdelling.
In Ninth International Symposium on the 3D Analysis of Human Movenent, France.
(Cited on page 74)

Singh, S., Jaakkola, T., Littman, M. L., and Szepes\ari, C. (2000). Convergere results for
single-step on-policy reinforcement-learning algorithms.Machine Learning, 38(3):287{
308. (Cited on pages 22 and 23)

Smallwood, R. D. and Sondik, E. J. (1973). The optimal control of partially observable
markov processes over a nite horizon. Operations Research 21(5):1071{1088. (Cited
on page 63)

Snyman, J. A. (2005). Practical mathematical optimization: an introduction to basic opti-
mization theory and classical and new gradient-based algorithmsolume 97. Springer.
(Cited on page 24)

Soncini-Sessa, R., Castelletti, A., and Weber, E. (2003). A dss for plaring and managing
water reservoir systems.Environmental Modelling and Software 18(5):395{404. (Cited
on pages 66 and 67)

Srinivas, N. and Deb, K. (1994). Muiltiobjective optimization using nondominated sorting
in genetic algorithms. Evolutionary computation, 2(3):221{248. (Cited on pages 45
and 49)

133



BIBLIOGRAPHY

Stulp, F. and Sigaud, O. (2012). Path integral policy improvement with covariance matrix
adaptation. arXiv preprint arXiv:1206.4621. (Cited on page 24)

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT
Press. (Cited on pages ii, 6, 11, 14, and 77)

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour, Y. (1999). Poliy gradient
methods for reinforcement learning with function approximation. In NIPS, volume 99,
pages 1057{1063. (Cited on page 22)

Szepeswri, C. (2010). Algorithms for Reinforcement Learning. Morgan and Claypool
Publishers. (Cited on pages ii, 6, 11, 14, and 20)

Tamiz, M., Jones, D., and Romero, C. (1998). Goal programming for decision makig
An overview of the current state-of-the-art. European Journal of operational research
111(3):569{581. (Cited on page 43)

Tesauro, G., Das, R., Chan, H., Kephart, J., Levine, D., Rawson, F., andLefurgy, C.
(2007). Managing power consumption and performance of computing systems ing
reinforcement learning. In Platt, J. C., Koller, D., Singer, Y., and Roweis, S. T.,
editors, NIPS'07, pages 1{8. (Cited on pages ii, vi, 7, 59, 61, 66, 67, 92, and 99)

Thery, C. (2010). leration sur les politiques optimiste et apprentissage du jeu de Tais.
PhD thesis, Nancy 1. (Cited on pages xvii and 21)

Twsar, T. (2007). Design of an algorithm for multiobjective optimization wit h di erential
evolution. (Cited on pages xviii and 40)

Uhlig, S. (2005). A multiple-objectives evolutionary perspective to nterdomain traf-
¢ engineering. International Journal of Computational Intelligence and Applications,
5(02):215{230. (Cited on page 52)

Uliman, J. D. (1975). NP-complete scheduling problemsJournal of Computer and System
Sciences 10(3):384{393. (Cited on page 99)

Vamplew, P., Dazeley, R., Berry, A., Issabekov, R., and Dekker, E(2010). Empirical eval-
uation methods for multiobjective reinforcement learning algorithms. Machine Learning,
84:51{80. (Cited on pages vii, xx, 8, 58, 61, 63, 85, 86, 87, 93, and 94)

van Hasselt, H. (2012). Reinforcement learning in continuous state and actiorspaces. In
Reinforcement Learning, pages 207{251. Springer. (Cited on page 22)

Van Mo aert, K., Drugan, M. M., and Nowe, A. (2013). Hypervolume-based multi -
objective reinforcement learning. In Evolutionary Multi-Criterion Optimization , pages
352{366. Springer. (Cited on pages 57, 58, and 63)

Van Veldhuizen, D. (1999). Multiobjective evolutionary algorithms: classi cations, anal-
yses, and new innovations. Technical report, DTIC Document. (Cited on page 47)

134



BIBLIOGRAPHY

Wang, W. and Sebag, M. (2012). Multi-objective Monte-Carlo Tree Search. InAsian
Conference on Machine Learning (Cited on pages 57 and 58)

Wang, Y., Audibert, J., and Munos, R. (2008). Algorithms for in nitely many-ar med
bandits. In Koller, D., Schuurmans, D., Bengio, Y., and Bottou, L., editors, NIPS'08,
pages 1{8. (Cited on page 31)

Wang, Y. and Gelly, S. (2007). Modi cations of UCT and sequence-like simulaitons for
Monte-Carlo Go. In CIG'07, pages 175{182. leee. (Cited on page 101)

Watkins, C. J. and Dayan, P. (1992). Q-learning. Machine learning, 8(3-4):279{292. (Cited
on page 22)

Weinstein, A. and Littman, M. L. (2012). Bandit-based planning and learning in
continuous-action markov decision processes. IICAPS. (Cited on page 32)

Yang, Z. and Wen, K. (2010). Multi-objective optimization of freeway trac ow via a
fuzzy reinforcement learning method. InAdvanced Computer Theory and Engineering
(ICACTE), 2010 3rd International Conference on, volume 5, pages V5{530. IEEE.
(Cited on pages 66 and 67)

Yu, J., Buyya, R., and Ramamohanarao, K. (2008). Work ow Scheduling Algorithms for
Grid Computing, volume 146 ofStudies in Computational Intelligence pages 173{214.
Springer. (Cited on pages ii, vii, 7, 8, 49, 52, 99, and 101)

Zadeh, L. (1963). Optimality and non-scalar-valued performance criteria. Automatic
Control, IEEE Transactions on, 8(1):59{60. (Cited on page 41)

Zhai, G., Zhou, Y., Ye, X., and Hu, B. (2013). A method of multi-objective reliability
tolerance design for electronic circuits. Chinese Journal of Aeronautics (Cited on

page 6)

Zhang, W. and Dietterich, T. G. (1995). A reinforcement learning approachto job-shop
scheduling. InlJCAI , volume 95, pages 1114{1120. Citeseer. (Cited on pages i and 3)

Zhao, S. and Jiao, L. (2006). Multi-objective evolutionary design and knowlede discovery
of logic circuits based on an adaptive genetic algorithm. Genetic Programming and
Evolvable Machines 7(3):195{210. (Cited on page 52)

Zheng, K., Li, H., Qiu, R. C., and Gong, S. (2012). Multi-objective reinforcement learn-
ing based routing in cognitive radio networks: Walking in a random maze. In Com-
puting, Networking and Communications (ICNC), 2012 International Conference on
pages 359{363. IEEE. (Cited on pages 66 and 67)

Zhou, A., Qu, B.-Y., Li, H., Zhao, S.-Z., Suganthan, P. N., and Zhang, Q. (2011). Muti-
objective evolutionary algorithms: A survey of the state of the art. Swarm and Evolu-
tionary Computation, 1(1):32{49. (Cited on page 74)

135



BIBLIOGRAPHY

Zitzler, E. and Kunzli, S. (2004). Indicator-based selection in multiobjective search. In
Parallel Problem Solving from Nature-PPSN VIII, pages 832{842. Springer. (Cited on
page 48)

Zitzler, E., Laumanns, M., Thiele, L., Zitzler, E., Zitzler, E., Thiele, L., and Thiele,
L. (2001). Spea2: Improving the strength pareto evolutionary algorithm. (Cited on
page 37)

Zitzler, E. and Thiele, L. (1998). Multiobjective optimization using e volutionary algo-
rithms - a comparative case study. In Eiben, A. E., Back, T., Schoerauer, M., and
Schwefel, H., editors,PPSN V, pages 292{301. LNCS 1498, Springer Verlag. (Cited on
pages vi, 7, 38, and 48)

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., and da Fonseca, V.G. (2003).
Performance assessment of multiobjective optimizers: an analysis angeview. |IEEE
Trans. Evolutionary Computation, 7(2):117{132. (Cited on pages vi, 7, 38, 45, and 47)

Zou, X., Chen, Y., Liu, M., and Kang, L. (2008). A new evolutionary algorithm for
solving many-objective optimization problems. Systems, Man, and Cybernetics, Part
B: Cybernetics, IEEE Transactions on, 38(5):1402{1412. (Cited on page 53)

136



