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In the high energy limit of QCD, the smallness of the strong coupling due to the presence of a hard scale can be compensated by large logarithms of the center of mass energy. All these logarithmically-enhanced contributions can be resummed by the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation. Many processes have been proposed to study these dynamics. Among the most promising ones is the production of two forward jets separated by a large interval of rapidity at hadron colliders, proposed by Mueller and Navelet. A BFKL calculation taking into account only dominant contributions (leading logarithmic, or LL, accuracy) predicts a strong rise of the cross section with increasing rapidity separation between the jets and a large decorrelation of their azimuthal angles. However, such LL calculations could not successfully describe measurements of these observables performed at the Tevatron. In this thesis, we study this process at next-to-leading logarithmic (NLL) accuracy, taking into account NLL corrections both to the impact factors, which describe the transition from an incoming hadron to a jet, and to the Green's function, which describes the coupling between the impact factors. We investigate the magnitude of these NLL corrections and find that they are very large, leading to very different results compared with a LL calculation. In addition, we find that these results are very dependent on the choice of the scales involved in the process. We compare our results with recent data from the CMS collaboration on the azimuthal correlations of Mueller-Navelet jets at the LHC and find a rather poor agreement. We show that this can be cured by using the Brodsky-Lepage-Mackenzie procedure to fix the renormalization scale. This leads to more stable results and a very good description of CMS data. Finally, we show that at NLL accuracy the absence of strict energy-momentum conservation (which is a subleading effect in a BFKL calculation) should be a much less severe issue than at LL accuracy.

Tests phénoménologiques de la chromodynamique quantique perturbative à haute énergie au LHC Résumé Dans la limite des hautes énergies, la petite valeur de la constante de couplage de l'interaction forte peut être compensée par l'apparition de grands logarithmes de l'énergie dans le centre de masse. Toutes ces contributions peuvent être du même ordre de grandeur et sont resommées par l'équation de Balitsky-Fadin-Kuraev-Lipatov (BFKL). De nombreux processus ont été proposés pour étudier cette dynamique. L'un des plus prometteurs, proposé par Mueller et Navelet, est l'étude de la production de deux jets vers l'avant séparés par un grand intervalle en rapidité dans les collisions de hadrons. Un calcul BFKL ne prenant en compte que les termes dominants (approximation des logarithmes dominants ou LL) prédit une augmentation rapide de la section efficace avec l'augmentation de l'intervalle en rapidité entre les jets ainsi qu'une faible corrélation angulaire. Cependant, des calculs basés sur cette approximation ne purent pas décrire correctement les mesures expérimentales de ces observables au Tevatron. Dans cette thèse, nous étudions ce processus à l'ordre des logarithmes sous-dominants, ou NLL, en prenant en compte les corrections NLL aux facteurs d'impact, qui décrivent la transition d'un hadron initial vers un jet, et à la fonction de Green, qui décrit le couplage entre les facteurs d'impact. Nous étudions l'importance de ces corrections NLL et trouvons qu'elles sont très importantes, ce qui conduit à des résultats très différents de ceux obtenus à l'ordre des logarithmes dominants. De plus, ces résultats dépendent fortement du choix des échelles présentes dans ce processus. Nous comparons nos résultats avec des données récentes de la collaboration CMS sur les corrélations angulaires des jets Mueller-Navelet au LHC et ne trouvons pas un bon accord. Nous montrons que cela peut être corrigé en utilisant la procédure de Brodsky-Lepage-Mackenzie pour fixer le choix de l'échelle de renormalization. Cela conduit à des résultats plus stables et une très bonne description des données de CMS. Finalement, nous montrons que, à l'ordre des logarithmes sous-dominants, l'absence de conservation stricte de l'énergieimpulsion (qui est un effet négligé dans un calcul BFKL) devrait être un problème beaucoup moins important qu'à l'ordre des logarithmes dominants.
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Introduction

Before deep inelastic experiments were conducted in the 60's, the nature of the strong interaction was poorly known. The discovery of Bjorken scaling at such experiments at SLAC, and its successful description by the parton model of Feynman and Bjorken allowed to understand hadronic matter as made of pointlike particles called partons. However it was not possible to observe individual partons experimentally. This property is called the confinement and is due to the fact that the strong force between quarks increases with the distance between them. As a consequence, it is only possible to observe hadrons, which are composite colorless objects made of partons. Another important property of QCD, discovered by Gross, Wilczek and Politzer, is the asymptotic freedom: at short distances (or high energy), the interaction between quarks becomes weak and so at high energy it is possible to describe hadrons as made of asymptotically free particles. This smallness of the coupling in the presence of a hard scale allows to apply perturbative quantum field theory to compute physical observables that can be confronted to experimental measurements. In practice, though, it is often not possible to fully compute an observable using perturbation theory. One then has to rely on the factorization into a (calculable) hard part containing a hard scale and a soft part describing the low energy dynamics of the process. This soft part can be for example modeled, extracted from previous measurements or computed in lattice QCD. The possibility to factorize a process in a hard and a soft part is not trivial, it depends on the process and is rigorously proven only in a few cases.

For some processes, even when a hard scale justifies the use of perturbation theory and factorization is applicable, performing a calculation at a fixed order in the coupling constant may not be enough. This is due to the fact that in some kinematics, each power of the coupling constant appearing at successive orders may be accompanied by a large logarithm. Therefore, all the terms of the perturbative expansion can be of the same order of magnitude and need to be resummed. One such example is processes where two very different transverse scales are present. Logarithms of the ratio of these two scales appear in the computation and they are resummed by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation. Another example is the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation, which resums logarithms of the center of mass energy in the high energy limit. One could then expect that BFKL resummation effects would be of increasing relevance as more and more powerful colliders are built.

Finding a clear experimental evidence for BFKL dynamics has proven to be difficult, since BFKL calculations resumming only dominant contributions (the leading logarithmic approximation) could not describe experimental data better than other approaches. The goal of the present work is to identify and study observables that could be used as probes of the BFKL dynamics. The CERN Large Hadron Collider Introduction (LHC) seems to be an ideal place to study such resummation effects thanks to its unprecedented energy reach. However a downside of hadron colliders is that the initial state of processes cannot be described within perturbation theory. One thus has to rely on factorization in a hard part containing the BFKL dynamics and a soft part describing the dynamics of partons in the initial hadrons. This last part can be described in terms of parton distribution functions (PDFs), which are universal objects that can be measured in various processes. To get rid of this non-perturbative input, Mueller and Navelet proposed to study the production of two forward jets separated by a large interval of rapidity and showed that for some observables the dependence on parton distribution function vanishes. However this is only true at leading logarithmic accuracy, and such a calculation showed a poor agreement with Tevatron data. In the present work, we will study this process at next-to-leading logarithmic accuracy. We will quantify the magnitude of these higher-order corrections with respect to a leading logarithmic calculation and see if they lead to a better agreement with experimental data, in particular very recent experimental data from the LHC.

In the first chapter of this thesis, we will introduce the concepts and techniques useful to study QCD in the high energy limit and which will be used in the following of this work. We will first present the first ideas which lead to the BFKL equation. We will then briefly explain how this equation is derived and solved at leading logarithmic accuracy. The comparison of such leading logarithmic calculation with experimental data will be shown for several processes. In the end of this chapter we will focus more closely on Mueller-Navelet jets, presenting the necessary formulas to compute physical observables for this process both at leading and next-to-leading logarithmic accuracy.

In the second chapter, which is based on ref. [START_REF] Ducloué | Confronting Mueller-Navelet jets in NLL BFKL with LHC experiments at 7 TeV[END_REF], we will present the results of a study of this process at next-to-leading logarithmic accuracy. We will discuss the changes with respect to a leading logarithmic calculation and evaluate the dependence of our calculation on several parameters. These results will be compared with a very recent measurement of the azimuthal correlations of Mueller-Navelet jets at the LHC. We will also compare our results with a fixed order calculation (which does not include high energy resummation effects) to find observables which could be used to look for evidence of such resummation effects.

In the third chapter, which is based on ref. [START_REF] Ducloué | Evidence for high-energy resummation effects in Mueller-Navelet jets at the LHC[END_REF], we will show how it is possible to cure the bad convergence of the perturbative series and poor agreement with experimental data by using the Brodsky-Lepage-Mackenzie procedure to fix the renormalization scale. We will then make predictions for higher center of mass energies that could be tested at the LHC in the near future.

In the fourth chapter, we will study an important issue in BFKL calculations: the lack of strict energy-momentum conservation. In the case of Mueller-Navelet jets, it was shown in the past that because of too strong assumptions, a leading logarithmic calculation strongly overestimates the cross section. We will follow a similar approach to evaluate this effect at next-to-leading logarithmic accuracy to see if including these corrections makes this violation less severe.

Chapter 1 QCD in the high energy limit

Introduction

In this chapter we will present several tools and concepts that are useful to study QCD in the high energy limit. We will first explain how high energy scattering was studied even before QCD. We will then see how these studies were later extended in the QCD framework leading to the resummation of an infinite number of contributions. We will present some experimental tests of these dynamics for processes which were computed at leading logarithmic accuracy. Finally we will focus on the process which will be the main subject of interest of this work: Mueller-Navelet jets. After presenting the motivations behind the choice of this process to study high energy resummation effects, we will present the formulas needed to compute physical observables relevant to this process both at leading and next-to-leading logarithmic accuracy.

The S-matrix theory

Before quantum field theory was applied to strong interactions, leading to quantum chromodynamics (QCD), several properties of these interactions were uncovered by studying some general properties of the scattering matrix or S-matrix. The elements of the S-matrix represent the overlap between the initial and final states of a reaction (made of free, non interacting particles before and after the interaction):

S ab = b|a , (1.1) 
where |a and |b are the initial and final states respectively. Some general postulates on the properties of this matrix can give some informations on the nature of the interaction. We will briefly explain these three important postulates here.

Lorentz invariance: it is assumed that the S-matrix is Lorentz invariant. As a consequence, it means that the S-matrix element corresponding to the 2 → 2 process

a + b → c + d , (1.2) 
where particle i has a mass m i and a four-momentum p i , can be described in terms of 1. QCD in the high energy limit the masses of the particles and of the Mandelstam invariants s, t and u, defined as s = (p a + p b ) 2 , t = (p ap c ) 2 , u = (p ap d ) 2 .

(1.3)

These three quantities are not independent since by conservation of momentum we have

s + t + u = i m 2 i . (1.4)
Therefore it is possible to write the amplitude for 2 → 2 scattering as A(s, t) which is a function of s, t and the masses m i . The invariants s and t correspond to physical quantities: √ s is the total center of mass energy and t is the square of the momentum exchanged between a and c during the interaction.

Unitarity: the S-matrix must be unitary, i.e. we have

SS † = S † S = 1 . (1.5)
This is due to the conservation of probability: the probability for an initial state to end into a given final state, summed over all the possible final states, must be 1. This condition has an interesting application if we use the fact that the amplitude A ab for going from an initial state |a to a final state |b is related to the S-matrix element S ab by S ab = δ ab + i(2π) 4 This leads to the Cutkosky rules [START_REF] Cutkosky | Singularities and discontinuities of Feynman amplitudes[END_REF] which allow to compute the imaginary part of an amplitude by summing over all the possible intermediate states. A special case is the case of identical initial and final states. In this case the imaginary part of the elastic amplitude reads

2ImA aa = (2π) 4 δ 4 a p a - b p b n |A a→n | 2 = F σ tot , (1.8) 
where F is flux factor (F ≈ 2s if the center of mass energy is much larger than the masses of the particles) and σ tot is the total cross section for the process a → anything. This relation is called the optical theorem.

Analyticity: the third postulate is that the S-matrix is an analytic function of the Lorentz invariants, its only singularities being the ones necessary to satisfy unitarity. Analyticity is in fact a consequence of causality, stating that two regions with a spacelike separation cannot influence each other. An important consequence of analyticity is the crossing symmetry, which enables one to compute the amplitude for the processes 1.3. The soft Pomeron a+ c → b+d and a+ d → b+c knowing only the amplitude for the process a+b → c+d, according to A a+c→ b+d (s, t) = A a+b→c+d (t, s) , A a+ d→ b+c (s, u) = A a+b→c+d (u, s) .

(1.9)

Another fundamental consequence of analyticity is the dispersion relations which allow the reconstruction of the real part of an amplitude from its imaginary part. It is thus complementary to the Cutkosky rules which are useful to compute the imaginary part of the amplitude. The dispersion relations make use of the Cauchy formula

A(s, t) = 1 2πi C A(s ′ , t) (s ′ -s) ds ′ , (1.10) 
where the integration contour C does not contain any singularity of A. In the case where the amplitude goes to zero when |s| → ∞, this can be rewritten as

A(s, t) = 1 π ∞ s + th ImA(s ′ , t) (s ′ -s) ds ′ + 1 π s - th -∞ ImA(s ′ , t) (s ′ -s) ds ′ , (1.11) 
where s + th and s - th are the particle production thresholds along the real positive and negative axis respectively.

The soft Pomeron

Based on the general principles exposed in the previous section, it is possible, in the Regge limit s ≫ -t, to decompose the scattering amplitude A(s, t) as a series of Legendre polynomials P l as

A(s, t) = ∞ l=0 (2l + 1)A l (t)P l 1 + 2s t , (1.12) 
where A l (t) are the partial wave amplitudes. This can be rewritten as a contour integral in the complex angular momentum l plane. If the integrand has simple poles, the amplitude is dominated in the Regge limit by the rightmost one, i.e. the one with the largest real part, and the amplitude behaves asymptotically like

A(s, t) ∼ s α R (t) , (1.13) 
where α R (t) is called the Regge trajectory of the exchanged particle. Using the optical theorem, the total cross section for zero momentum transfer behaves like σ tot ∼ s α R (0)-1 .

(1.14)

The quantity α R (0) is called the intercept of the exchanged particle. It was shown by Okun and Pomeranchuk that the cross section vanishes when s → ∞ if the process is dominated by the exchange of charged particles. On the other hand, Foldy and Peierls showed [START_REF] Foldy | Isotopic Spin of Exchanged Systems[END_REF] that if the cross section does not vanish for asymptotically large energies, the process is dominated by the exchange of vacuum quantum numbers. Experimentally, 1. QCD in the high energy limit it is observed that actually total cross sections rise with increasing s. This can be interpreted as the exchange of an object carrying the quantum numbers of the vacuum and with an intercept greater than 1, which is called the Pomeron. Donnachie and Landshoff compiled the available data on pp and pp scattering and found that it is possible to describe the total cross section as a function of s according to [START_REF] Donnachie | Total cross-sections[END_REF] σ pp = 21.7s 0.08 + 56.1s -0.45 mb , σ pp = 21.7s 0.08 + 98.4s -0.45 mb .

(1. 15) This fit is shown on fig. 1.1. The first term of the above expressions corresponds to the Pomeron exchange which is dominant at large s. It is the same for pp and pp collisions since the Pomeron carries the quantum numbers of the vacuum and so couples in the same way to particles and antiparticles. The second term is subleading and vanishes for large s, so that there is no difference between pp and pp cross sections at high energies, as can be seen from fig. 1.1. According to this fit, the Pomeron thus has an intercept α P (0) = 1.08 . (1.16) This means that for very large values of s, the cross section will eventually violate the Froissard bound [START_REF] Froissart | Asymptotic behavior and subtractions in the Mandelstam representation[END_REF] which states that, for asymptotically large energies, the total hadronic cross section cannot grow faster than ln 2 s to satisfy unitarity. However, since α P (0) is very close to 1 it can be shown that in fact this violation does not occur below the Planck scale.

The Pomeron in QCD

After the advent of QCD, a natural question was to see if it is possible to recover the behavior of the Pomeron in the Regge limit by considering the elementary fields of the theory which are quarks and gluons. Balitski, Fadin, Kuraev and Lipatov showed that in this limit the smallness of the strong coupling constant α s (due to the presence of a 1.4. The Pomeron in QCD

p 1 p 2 q p 1 + q p 2 -q µ ν Figure 1.2:
The one gluon exchange hard scale) can be compensated by large logarithmic enhancements and so one has to resum an infinite number of diagrams behaving like (α s ln s) n . In practice this is done by computing ladder diagrams where the two incoming particles exchange reggeized (or dressed) gluons in the t channel and where an arbitrary number of real soft gluons are exchanged in the s channel, constituting the rungs of the ladder. This leads to an integral equation for the scattering amplitude which is the BFKL equation. In this section we will sketch the main steps leading to this equation. The detailed derivation can be found in the literature, see for example ref. [START_REF] Forshaw | Quantum chromodynamics and the pomeron[END_REF].

The high energy limit

We are interested in the high energy limit, where the center of mass energy s is much larger than the transfered momentum |t|:

s ≫ |t|, u ≈ -s . (1.17) 
It is convenient to use the Sudakov representation, in which any four-momentum q can be decomposed as

q µ = αp µ 1 + βp µ 2 + q µ ⊥ , (1.18) 
where p 1 and p 2 are two light-like vectors with opposite directions and q ⊥ is a transverse vector, having zero components along p 1 and p 2 . In the high energy limit the masses of the initial particles are neglected and so in the case of two incoming particles it is convenient to choose their initial momenta as p 1 and p 2 . Therefore we have s ≈ 2p 1 p 2 .

(1. [START_REF] Collins | Heavy quark production in very high-energy hadron collisions[END_REF] If these two particles exchange a particle with momentum q, we have

|t| ≈ q 2 = αβs -q 2 , (1.20) 
where q 2 = -|q ⊥ |.

The reggeized gluon

We first consider the scattering amplitude of two quarks, which is described at leading order by the exchange of one gluon as shown on fig. 1.2. The approximation due to the assumption of high-energy scattering correponds to replacing the upper vertex, which is ig ū(p 1 + q)γ µ u(p 1 ) , (1.21)

1. QCD in the high energy limit

p 1 p 2 k k -q p 1 + q p 2 -q p 1 p 2 k k -q p 1 + q p 2 -q Figure 1.3: The two gluons exchange by -ig ū(p 1 )γ µ u(p 1 ) , (1.22) 
which is called the eikonal approximation and represents the fact that the exchanged gluon is assumed to be soft with respect to the incoming quark. Therefore one can use the Gordon identity to rewrite this vertex as -2igp µ 1 . Doing the same for the lower vertex we do the replacement

-ig ū(p 2 -q)γ ν u(p 2 ) → -2igp ν 2 .
(1.23)

The amplitude for the diagram shown on fig. 1.2 is then

A (0) 8 (s, t) = 8πα s t α ij t α kl s t . (1.24) 
We will now consider the amplitude for the same process at next-to-leading order, keeping only contributions which give rise to an extra power of ln s in addition to the extra power of α s . The only two such contributions are shown on fig. 1.3 and correspond to the exchange of an additional gluon between the two quarks. The imaginary part of the amplitude is

ImA (1) 8 (s, t) = 1 2 d(P.S.) A (0) † 8 (s, k 2 )A (0) 8 (s, (k -q) 2 ) , (1.25) 
where A (0) is the leading order amplitude (1.24) and the integral over the phase space is

d(P.S.) = d 4 k (2π) 2 δ((p 1 -k 2 ))δ((p 2 + k)) = 1 8π 2 s d 2 k , (1.26) 
where we have used the phase space in Sudakov representation 

d 4 k = s 2 dαdβd 2 k . ( 1 
A (1) 8,l (s, t) = -4 α 2 s π (t α t β ) ij (t α t β ) kl ln s t s d 2 k k 2 (k -q) 2 , (1.28) 
which we can rewrite as

A (1)
8,l (s, t) = -16 

α 2 s π N c (t α t β ) ij (t α t β ) kl s t ln s t ǫ(t) , (1.29) 
ǫ(t = -q 2 ) = ᾱs 4π -q 2 d 2 k k 2 (k -q) 2 , ( 1 
A (1)
8,r (s, t) = -16

α 2 s π N c (t α t β ) ij (t α t β ) kl s t ln s t ǫ(t) .
(1.31)

Using the high energy limit assumption s ≈ -u and summing the contributions coming from both diagrams of fig. 1.3, we can write the total amplitude as

A (1) 8,tot (s, t) = 8πα s t α ij t α kl s t ln s |t| ǫ(t) = A (0) 8 (s, t) ln s |t| ǫ(t) , (1.32) 
where

A (0)
8 is the tree level amplitude (1.24). One should then proceed in the same way to compute the two-loop amplitude A 

A (2) 8,tot (s, t) = 1 2 A (0) 8 (s, t) ln 2 s |t| ǫ 2 (t) . (1.33)
Therefore, the amplitude for qq → qq reads, at leading logarithmic accuracy and up to order α 2 s :

A 8 (s, t) = A (0) 8 (s, t) 1 + ln s |t| ǫ(t) + 1 2 ln 2 s |t| ǫ 2 (t) , (1.34) 
which looks like the first terms of the expansion of

A (0) 8 (s, t) s |t| ǫ(t)
. Indeed, it can be shown that this is true at all orders and so the sum of all diagrams contributing to the qq → qq scattering at leading logarithmic accuracy can be effectively obtained by computing the tree-level diagram shown on fig. . This is called the gluon reggeization.

The Lipatov effective vertex

So far we have only addressed the question of virtual corrections to qq → qq scattering. We shall now consider real emissions. The five contributions to the process qq → qqg, 1. QCD in the high energy limit 

+ + + + = µ ν σ k 1 k 2 Γ σ µν (k 1 , k 2 )
Γ σ µν (k 1 , k 2 ) = 2p 1ν p 2µ s α 1 + 2k 2 1 β 2 p σ 1 + β 2 + 2k 2 2 α 1 p σ 2 -(k 1 + k 2 ) σ ⊥ . (1.35) 
This quantity is called the Lipatov effective vertex and describes the real production of a gluon with a momentum k 1k 2 attached in every possible ways.

The BFKL equation

Our final goal is to compute the amplitude for the scattering of two particles (here we consider quarks as an example) taking into account all leading logarithmic contributions, i.e. contributions for which each extra power of α s is compensated by an extra power of ln s. To do so we make use of the two essential ingredients presented above: the gluon reggeization, which allows to resum all virtual contributions to the qq → qq process, and the Lipatov effective vertex, which sums the real contributions to the qq → qqg process. The leading logarithmic contribution to quark-quark scattering is then given by the infinite ladder shown on fig. 1.6, where all the vertical gluon lines are reggeized gluons, the horizontal gluons are real and the blobs represent Lipatov effective vertices. We are interested in the leading logarithmic contributions which arise in the multi-Regge kinematics correponding to a strong ordering of the longitudinal momentum fractions of the reggeized gluons, having momenta

k i = α i p 1 + β i p 2 + k ⊥i , (1.36) 
such that while their transverse momenta are all of the same order of magnitude

1 ≫ α 1 ≫ α 2 ≫ • • • ≫ α i ≫ • • • ≫ α n ≫ α n+1 , 1 ≫ β n+1 ≫ β n ≫ • • • ≫ β i ≫ • • • ≫ β 2 ≫ β 1 , (1.37) 
p 1 p 2 k 1 k 2 k i-1 k i k i+1 k n k n+1 p 1 + q p 2 -q k 1 -q k 2 -q k i-1 -q k i -q k i+1 -q k n -q k n+1 -q α 1 , β 1 α 2 , β 2 α i-1 , β i-1 α i , β i α i+1 , β i+1 α n , β n α n+1 , β n+1
k 2 1 ∼ k 2 2 ∼ . . . k 2 i ∼ • • • ∼ k 2 n ∼ k 2 n+1 ∼ sα i β i . (1.38)
We thus need to compute the amplitude for the 2 → 2 + n process where n is the number of real gluons. To do so it is convenient to work on the Mellin transform of the amplitude as this allows to unravel nested integrals. This transform reads

f (ω, t) = ∞ 1 d s s 0 s s 0 -ω-1 ImA(s, t) s . (1.39)
In addition, we introduce f (ω, k 1 , k 2 , t) defined such that

d 2 k 1 d 2 k 2 k 2 2 (k 1 -q) 2 f (ω, k 1 , k 2 , q) = f (ω, q) , (1.40) 
and which is called the BFKL Green's function. By computing the function f (ω, k 1 , k 2 , q) for n = 1 in the ladder diagram of fig. 1.6, then for n = 2 and by iterating this proce-1. QCD in the high energy limit dure, one finds that f (ω, k 1 , k 2 , q) satisfies the following integral equation [START_REF] Fadin | On the Pomeranchuk Singularity in Asymptotically Free Theories[END_REF][START_REF] Kuraev | Multi -Reggeon Processes in the Yang-Mills Theory[END_REF][START_REF] Kuraev | The Pomeranchuk Singularity in Nonabelian Gauge Theories[END_REF][START_REF] Balitsky | The Pomeranchuk Singularity in Quantum Chromodynamics[END_REF]:

ωf (ω, k 1 , k 2 , q) =δ 2 (k 1 -k 2 ) + ᾱs 2π d 2 k ′ -q 2 (k ′ -q 2 k 2 1 f (ω, k ′ , k 2 , q) + 1 (k ′ -k 1 ) 2 f (ω, k ′ , k 2 , q) - k 2 1 f (ω, k 1 , k 2 , q) k ′2 + (k 1 -k ′ ) 2 + 1 (k ′ -k 1 ) 2 (k 1 -q) 2 k ′2 f (ω, k ′ , k 2 , q) (k ′ -q) 2 k 2 1 - (k 1 -q) 2 f (ω, k 1 , k 2 , q) (k ′ -q) 2 + (k 1 -k ′ ) 2 . (1.41)
This is the BFKL equation for an arbitrary momentum transfer q. In the case of zero momentum transfer (or forward case), it reduces to

ωf (ω, k 1 , k 2 , 0) = δ 2 (k 1 -k 2 ) + ᾱs π d 2 k ′ (k 1 -k ′ ) 2 f (ω, k 1 , k 2 , 0) - k 2 1 k ′2 + (k 1 -k ′ ) 2 f (ω, k 1 , k 2 , 0) , (1.42) 
which can also be written as

ωf (ω, k 1 , k 2 , 0) = δ 2 (k 1 -k 2 ) + K • f (ω, k 1 , k 2 , 0) , (1.43) 
where the operator K is called the BFKL kernel.

Solution of the BFKL equation

The BFKL equation is a Green's function equation that can be solved [START_REF] Lipatov | Pomeron in Quantum Chromodynamics[END_REF][START_REF] Lipatov | Small-x physics in perturbative QCD[END_REF] by finding a complete set of eigenfunctions φ i (k) of the kernel K and the associated eigenvalues

λ i satisfying K • φ i (k) = λ i φ i (k) . (1.44)
Then the solution to the equation (1.43) is given by

f (ω, k 1 , k 2 , 0) = i φ i (k 1 )φ * i (k 2 ) ω -λ i , (1.45) 
where i labels the set of variables on which the eigenfunctions depend and which can contain discrete as well as continuous variables. The sum over i in the above equation means that one should sum over the discrete variables and integrate over the continuous ones.

The eigenfunctions of the LL kernel are the functions E n,ν (k) defined as

E n,ν (k) = 1 π √ 2 k 2 iν-1 2 e inφ , (1.46) 
1.4. The Pomeron in QCD which satisfy the completeness relation

∞ n=0 ∞ -∞ dν E n,ν (k 1 )E * n,ν (k 2 ) = δ 2 (k 1 -k 2 ) , (1.47) 
and are normalized according to

d 2 k E n,ν (k)E * n ′ ,ν ′ (k) = δ(ν -ν ′ )δ(n -n ′ ) . (1.48)
The eigenvalue ω(n, ν) associated with

E n,ν (k) is ω(n, ν) = ᾱs χ 0 (n, ν) , (1.49) 
where

χ 0 (n, ν) = 2Ψ(1) -Ψ 1 2 + iν + n 2 -Ψ 1 2 -iν + n 2 , (1.50) 
with

Ψ(x) = Γ ′ (x)/Γ(x). Therefore the expression of f (ω, k 1 , k 2 , 0) reads f (ω, k 1 , k 2 , 0) = ∞ n=0 ∞ -∞ dν k 2 1 k 2 2 iν e in(φ 1 -φ 2 ) 2π 2 k 1 k 2 1 ω -ᾱs χ 0 (n, ν) . (1.51) 
The quantity we are interested in is the amplitude. In can be expressed as [14, 15, 

A(s) = is (2π) 2 d 2 k 1 k 2 1 Φ 1 (k 1 ) d 2 k 2 k 2 2 Φ 2 (k 2 ) dω 2πi s s 0 ω f (ω, k 1 , k 2 , 0) , 16, 17, 18, 19, 20] 
where we have introduced the objects Φ 1 and Φ 2 which are called impact factors and describe the coupling between the incoming particles and the Green's function. This factorization is shown on fig. 1.7. Contrary to the Green's function, which is processindependent, the impact factors depend on the nature of the incoming particles (e.g. quark, proton, virtual photon,...) and on the kinematic regime. In particular they may or may not be calculable in perturbation theory. In the latter case, one has to rely on modeling and/or fitting to experimental data. The inverse Mellin transform of the Green's function can be evaluated using Cauchy's theorem to perform the integration over ω:

dω 2πi 1 ω -ᾱs χ 0 (n, ν) s s 0 ω = s s 0 ᾱsχ0(n,ν)
.

(1.53)

And so the general form of the amplitude is

A(s) = is (2π) 2 d 2 k 1 k 2 1 Φ 1 (k 1 ) d 2 k 2 k 2 2 Φ 2 (k 2 ) ∞ n=0 ∞ -∞ dν k 2 1 k 2 2 iν e in(φ 1 -φ 2 ) 2π 2 k 1 k 2 s s 0 ᾱsχ0(n,ν) = is (2π) 2 ∞ n=0 ∞ -∞ dν d 2 k 1 k 2 1 Φ 1 (k 1 )E n,ν (k 1 ) d 2 k 2 k 2 2 Φ 2 (k 2 )E * n,ν (k 2 ) s s 0 ᾱsχ0(n,ν)
.

(1.54)

1. QCD in the high energy limit 

Φ 1 (k 1 ) Φ 2 (k 2 ) k 1 k 1 k 2 k 2 f (ω, k 1 , k 2 , 0)

Experimental tests of BFKL dynamics

Finding clean tests of BFKL dynamics is quite challenging. Indeed, when computing physical observables like the cross section the BFKL Green's function appears convoluted with impact factors describing the coupling of incoming particles with the Green's function. Processes considered as clean tests of BFKL usually involve two hard hadronic probes (which can be for example virtual photons or jets) separated by a large interval of rapidity. The first requirement is necessary for perturbation theory to be applicable, while the second one is necessary to have enough phase space to allow for the emission of gluons with strongly ordered longitudinal momentum fractions. In this section we will show a few examples of such processes which have been experimentally studied to look for BFKL effects.

γ * γ * collisions at lepton colliders

The collision of two highly virtual photons at lepton colliders is a very interesting tool to study QCD in general since the description of this process does not require nonperturbative inputs like structure functions. Therefore the study of this process at high energy was suggested as an ideal test of BFKL dynamics. The total cross section of two unpolarized photons with virtualities Q A and Q B reads, at LL accuracy [START_REF] Brodsky | Probing the QCD pomeron in e + ecollisions[END_REF][START_REF] Brodsky | Virtual photon scattering at high energies as a probe of the short distance pomeron[END_REF]: where F i (ν) is the impact factor of a photon with polarization i. The impact factor for longitudinally-polarizated photon is

σ(s, Q 2 A , Q 2 B ) = i,k=T,L 1 π Q 2 A Q 2 B ∞ 0 dν 2π cos ν ln Q 2 A Q 2 B F i (ν)F k (-ν) s s 0 ω(0,ν) , (1.55) 
F L (ν) = F L (-ν) = α α S q e 2 q π Γ 3 2 -iν Γ 3 2 + iν Γ 1 2 -iν Γ 1 2 + iν Γ(2 -iν)Γ(2 + iν) ,
while it reads, in the case of transversely-polarizated photon:

F T (ν) = F T (-ν) = α α S q e 2 q π 2 3 2 -iν 3 2 + iν Γ 1 2 -iν 2 Γ 1 2 + iν 2 Γ(2 -iν)Γ(2 + iν) .
In eq. (1.55), the energy scale s 0 is of the order of Q A and Q B (which are of similar magnitude).

This cross section was measured at the LEP electron-positron collider by the L3 [START_REF]Double tag events in two photon collisions at LEP[END_REF] and OPAL [START_REF]Measurement of the hadronic cross-section for the scattering of two virtual photons at LEP[END_REF] collaborations as a function of Y ≡ ln (s γγ / Q 2 ), where √ s γγ is the center of mass energy of the two photons system and Q 2 is their mean virtuality. The comparison of these measurements with the LL BFKL prediction (1.55) is shown on fig. 1.8. We see that the BFKL calculation predicts a very strong rise with increasing Y while the data shows a rather flat behavior. Nevertheless, it should be mentioned that a LO or NLO fixed order calculation (i.e. not including BFKL-type resummation effects) predicts a decrease with increasing Y and so cannot describe the data either.

Forward jet production in deep inelastic scattering

Another process proposed to look for BFKL resummation effects is the production of a forward jet at lepton-hadron colliders, as has been done at the HERA electron-proton collider. The process under study is then

γ * + p → jet + X . (1.56)
1. QCD in the high energy limit Here the large logarithm of the BFKL evolution is Y = ln (x J /x Bj ) where x J is the longitudinal momentum fraction of the forward jet and x Bj = Q 2 /s ep , where Q is the virtuality of the photon and √ s ep is the center of mass energy. A drawback of this process is that, because of the presence of a proton in the initial state, one has to convolute the γ * + parton → jet + X subprocess with the parton distribution function (PDF) of the incoming proton, which is a non perturbative object. To do so, one has to rely on parametrizations of these PDFs based on previous measurements and introduce a factorization scale. The measurement of the cross section for this process was performed at HERA by the H1 [START_REF]Forward jet and particle production at HERA[END_REF] and ZEUS [START_REF]Forward jet production in deep inelastic scattering at HERA[END_REF] collaborations. As can be seen from fig. 1.9, the LL BFKL calculation again overestimates this cross section. However, in this case also a NLO fixed order calculation cannot describe the data and gives in fact a worse agreement than a LL BFKL calculation.

Mueller-Navelet jets at hadron colliders

At first sight, hadron colliders may appear as an ideal place to look for high energy resummation effects, thanks to the very large center of mass energies that can be reached at such colliders. Nevertheless, the fact that the initial state is made of two hadrons adds an additional complication since the convolution with parton distribution functions would in general prevent a direct access to the partonic subprocess behavior.

In 1987, Mueller and Navelet proposed to get around this difficulty by studying the production of two forward jets with a large rapidity separation at hadron colliders [START_REF] Mueller | An Inclusive Minijet Cross-Section and the Bare Pomeron in QCD[END_REF]. This process is shown schematically on fig. 1.10. As in the two processes mentioned in the previous sections, the idea behind this choice is that, compared to a leading order collinear treatment, the additional emission in the large rapidity interval between the two jets should lead to much larger cross section.

A very interesting feature of this process is that, at least in the lowest order (leading logarithmic) calculation performed in ref. [START_REF] Mueller | An Inclusive Minijet Cross-Section and the Bare Pomeron in QCD[END_REF], one could get rid of the dependence on the parton distribution functions for some observables, thus making it, in principle, a very clean process to study BFKL resummation effects. Two of such observables, which were studied both analytically and experimentally, are the cross section and the azimuthal correlation of the jets.

Cross section

In ref. [START_REF] Mueller | An Inclusive Minijet Cross-Section and the Bare Pomeron in QCD[END_REF], the authors computed the cross section for the production of two forward jets in the BFKL framework. They found that this observable could provide access directly to the pomeron intercept. In this section we will briefly explain how.

At leading logarithmic accuracy, the differential cross section can be written as

dσ d|k J,1 | d|k J,2 | dy J,1 dy J,2 = α s C A k J,1 k J,2 2 x J,1 f g (x J,1 ) + C F C A f q (x J,1 ) × x J,2 f g (x J,2 ) + C F C A f q (x J,2 ) dν k 2 J,1 k 2 J,2 iν e ω(0,ν)Y , (1.57) 
where k J,1 and k J,2 are the transverse momenta of the jets, y J,1 and y J,2 their rapidities, x J,1 and x J,2 their longitudinal momentum fractions,

C A = N c , C F = N 2 c -1
2Nc , f g and f q are the gluon and quark parton distribution functions and Y is the rapidity separation between the jets, Y ≡ |y J,1y J,2 |. The longitudinal momentum fractions of the jets are related to their transverse momenta and rapidities via

x J = |k J | √ s e y J , (1.58) 
where √ s is the center of mass energy.

The idea of Mueller and Navelet is that it is possible to get access to the rapidity dependence of the partonic subprocess by varying the center of mass energy together with y J,1 and y J,2 while keeping x J,1 and x J,2 fixed by using the relation (1.58). When taking ratios of the cross section at two different center of mass energies √ s 1 and √ s 2 , the parton distribution functions will then be evaluated at the same values of 1. QCD in the high energy limit longitudinal momentum fractions and simplify, so we will get

σ √ s 1 σ √ s 2 = dν k 2 J,1 k 2 J,2 iν e ω(0,ν)Y 1 dν k 2 J,1 k 2 J,2 iν e ω(0,ν)Y 2 . (1.59)
And so one can get access to the pomeron intercept. In the simple case where |k J,1 | = |k J,2 |, we will be able to study the function

σ(Y ) ≡ dν e ω(0,ν)Y (1.60)
as a function of Y . In the large rapidity separation limit, we can use the saddle-point method, approximating ω(0, ν) by its expression around ν = 0:

ω(0, ν) ≈ α s N c π ln 16 -14ζ(3)ν 2 , (1.61) 
and performing the integral over ν analytically. We get

σ(Y ) ≈ e αsNc π ln(16) Y π α s N c 14ζ(3)Y , (1.62) 
which is the famous exponential growth of the cross section with increasing rapidity separation. Note that we used the large rapidity limit to use the saddle-point approximation and so this result is valid only in this limit. On fig. 1.11 we show the growth of σ as a function of Y when performing the integration over ν in eq. (1.60) numerically and the result obtained with the saddle-point approximation. We choose as renormalization scale µ R = 35 GeV which is similar to the values we will use in most of this work since it is of the order of magnitude of the transverse momenta of the jets that can be measured at current experiments. We see that the two results are in good agreement for very large values of the rapidity separation (we recall that the maximal rapidity separation reachable at Tevatron was of the order of 6 while it is of the order of 10 at the LHC). Therefore it is preferable not to use the saddle-point approximation when making predictions for rapidity separations not extremely large.

This exponential rise of the cross section with increasing rapidity separation between the jets is not expected in a fixed order calculation (which does not include high energy resummation effects). Therefore it was expected that a measurement of ratios like (1.59) would allow a clear discrimination between BFKL and fixed order since such a strong rise should be easy to identify. In 1999, the D0 collaboration, using measurements of the cross section at center of mass energies of 630 and 1800 GeV at the Tevatron, presented the first measurement of the variation of the cross section with increasing rapidity [START_REF]Probing BFKL dynamics in the dijet cross section at large rapidity intervals in pp collisions at √ s = 1800 GeV and 630-GeV[END_REF]. It was observed that there is actually a rise of the cross section with increasing rapidity, while an exact LO fixed order calculation predicts a decrease. However, a very surprising feature is that this rise is even faster than what is predicted by a leading logarithmic BFKL calculation (see fig. 1.12). Nevertheless it was argued later by the authors of ref. [START_REF] Andersen | Mueller-Navelet jets at hadron colliders[END_REF] that several experimental cuts and constraints present in the D0 analysis differed from the ones assumed in the original calculation by Mueller and Navelet and so a direct comparison of the data with this calculation is questionable. 

Azimuthal correlations

After the original proposition by Mueller and Navelet to study the production of forward jets at hadron colliders, focusing on the rise of the cross section with increasing rapidity separation, another more exclusive observable was suggested as a test of BFKL dynamics: the azimuthal correlation between the two jets [START_REF] Del Duca | Dijet production at large rapidity intervals[END_REF][START_REF] Stirling | Production of jet pairs at large relative rapidity in hadron hadron collisions as a probe of the perturbative Pomeron[END_REF]. The idea is that in a leading order fixed order calculation the two jets would be emitted exactly back-toback, while in a BFKL treatment the fact that more and more gluons can be emitted between the two jets with increasing rapidity separation should lead to a decorrelation of the relative azimuthal angle of the jets. Several studies on this observable were performed at leading logarithmic accuracy [START_REF] Del Duca | Dijet production at large rapidity intervals[END_REF][START_REF] Stirling | Production of jet pairs at large relative rapidity in hadron hadron collisions as a probe of the perturbative Pomeron[END_REF][START_REF] Del Duca | BFKL versus O (alpha-s**3) corrections to large rapidity dijet production[END_REF]. However, it turned out when the D0 collaboration presented the measurement of the azimuthal decorrelation of Mueller-Navelet jets at the Tevatron [START_REF]The Azimuthal decorrelation of jets widely separated in rapidity[END_REF] that a LL BFKL calculation predicts a much too large decorrelation compared to the data. This is shown on fig. 1.13 for the observable cos ϕ , where ϕ = φ J,1φ J,2π and φ J,i are the azimuthal angles of the jets. A value of 1 corresponds to back-to-back jets while a value of 0 corresponds to uncorrelated jets. A significantly better agreement with the data was obtained in other studies which tried to correct the absence of strict energy-momentum conservation in the BFKL approach, either in an exact way in a Monte-Carlo approach [START_REF] Orr | Dijet production at hadron hadron colliders in the BFKL approach[END_REF] or in an effective way by using an effective rapidity interval [START_REF] Kwiecinski | Azimuthal decorrelation of forward and backward jets at the Tevatron[END_REF], as suggested in ref. [START_REF] Del Duca | BFKL versus O (alpha-s**3) corrections to large rapidity dijet production[END_REF].

Mueller-Navelet jets at LL and NLL accuracy

In the previous section we briefly described the process at leading logarithmic accuracy, i.e. resumming terms (α s Y ) n . We have seen that the comparison of such leading logarithmic calculations with experimental data from the Tevatron showed quite bad agreement. However these studies were performed at lowest (leading logarithmic) ac-1.6. Mueller-Navelet jets at LL and NLL accuracy This is what we will investigate in this work. In this section we will present the general formulas useful to compute physical observables relevant to this process like the cross section and the azimuthal correlations of the jets. We will then detail the explicit form they take both in the LL and NLL approximation. We will also explain how some features which were valid in the original calculation disappear when going to higher orders in perturbation theory.

x 1 x 2 ↓ k 1 , φ 1 ↓ k 2 , φ 2 k J,1 , φ J,1 , x J,1 k J,2 , φ J,2 , x J,2

Kinematics and general framework

We consider two hadrons which collide at a center-of-mass energy √ s producing two very forward jets, whose transverse momenta are labeled by Euclidean two dimensional vectors k J,1 and k J,2 , which can be parametrized by their magnitudes |k J,i | and azimuthal angles φ J,i (see fig. 1.14). Note that in the following we will often use the notation k J,i ≡ |k J,i | for simplicity. The rapidities of the jets y J,1 and y J,2 are related to their longitudinal momentum fractions via x J = |k J | √ s e y J . The two partons produced by each of these two hadrons, which initiate the hard process, are treated in a collinear way. For large enough x J,1 and x J,2 , collinear factorization leads to a differential crosssection which reads

dσ d|k J,1 | d|k J,2 | dy J,1 dy J,2 = a,b 1 0 dx 1 1 0 dx 2 f a (x 1 )f b (x 2 ) dσ ab d|k J,1 | d|k J,2 | dy J,1 dy J,2 , 
(1.63) where f a,b are the parton distribution functions (PDFs) of a parton a (b) in the according proton, characterized by their longitudinal momentum fraction x i and σab is the partonic cross section. The hard process is then described using k T -factorization. The logarithmically enhanced contributions are taken care of by convoluting, in transverse momentum space, the BFKL Green's function G with the two jet vertices, according 1. QCD in the high energy limit to

dσ ab d|k J,1 | d|k J,2 | dy J,1 dy J,2 = dφ J,1 dφ J,2 d 2 k 1 d 2 k 2 V a (-k 1 , x 1 ) G(k 1 , k 2 , ŝ) V b (k 2 , x 2 ) ,
(1.64) where the Mandelstam variable ŝ = x 1 x 2 s refers to the hard subprocess. The jet vertices V a,b , represented by the upper and lower blobs in fig. 1.14, describe the coupling between the incoming (on-shell) parton, the Green's function and the emitted jet. Combining the PDFs with the jet vertices, we can thus write

dσ d|k J,1 | d|k J,2 | dy J,1 dy J,2 = dφ J,1 dφ J,2 d 2 k 1 d 2 k 2 Φ(k J,1 , x J,1 , -k 1 ) G(k 1 , k 2 , ŝ) Φ(k J,2 , x J,2 , k 2 ) , (1.65) 
where the impact factors Φ are simply a convolution of the PDF with the jet vertex:

Φ(k J,i , x J,i , k i ) = dx i f (x i ) V (k i , x i ).
(1.66)

Note that compared to eq. (1.54), we have absorbed the factor 1

k 2 i
into the definition of the impact factors.

In order to deal both with the cross-section and with the azimuthal decorrelation, it is convenient to define the coefficients

C m ≡ dφ J,1 dφ J,2 cos m(φ J,1 -φ J,2 -π) × d 2 k 1 d 2 k 2 Φ(k J,1 , x J,1 , -k 1 )G(k 1 , k 2 , ŝ)Φ(k J,2 , x J,2 , k 2 ). (1.67)
The differential cross-section then corresponds to C 0 :

dσ d|k J,1 | d|k J,2 | dy J,1 dy J,2 = C 0 , (1.68) 
while the azimuthal correlations for fixed 

(|k J,1 |, |k J,2 |, Y ) are given by cos(mϕ) ≡ cos m(φ J,1 -φ J,2 -π) = C m C 0 . ( 1 
Ĉ(1) n 1 ,ν 1 (k J,1 , x J,1 ) = d 2 k 1 Φ(k J,1 , x J,1 , -k 1 )E n 1 ,ν 1 (k 1 ) =(-1) n 1 d 2 k ′ Φ(k J,1 , x J,1 , k ′ )E n 1 ,ν 1 (k ′ ) , (1.70) 
Ĉ(2) n 2 ,ν 2 (k J,2 , x J,2 ) = d 2 k 2 Φ(k J,2 , x J,2 , k 2 )E * n 2 ,ν 2 (k 2 ) , (1.71) 
and rewrite C m using these new definitions:

C m ≡ n dν dφ J,1 dφ J,2 Ĉ(1) n,ν (k J,1 , x J,1 ) ŝ s 0 ω(n,ν) Ĉ(2) n,ν (k J,2 , x J,2 ) cos(mϕ) =(-1) m n dν ŝ s 0 ω(n,ν) × dφ J,1 cos(mφ J,1 ) Ĉ(1) n,ν (k J,1 , x J,1 ) dφ J,2 cos(mφ J,2 ) Ĉ(2) n,ν (k J,2 , x J,2 ) + dφ J,1 sin(mφ J,1 ) Ĉ(1) n,ν (k J,1 , x J,1 ) dφ J,2 sin(mφ J,2 ) Ĉ(2) n,ν (k J,2 , x J,2 ) = n (-1) m+n dν ŝ s 0 ω(n,ν) × dφ J,1 cos(mφ J,1 ) Ĉn,ν (k J,1 , x J,1 ) dφ J,2 cos(mφ J,2 ) Ĉ * n,ν (k J,2 , x J,2 ) + dφ J,1 sin(mφ J,1 ) Ĉn,ν (k J,1 , x J,1 ) dφ J,2 sin(mφ J,2 ) Ĉ * n,ν (k J,2 , x J,2 ) , (1.72) 
where we have defined

Ĉn,ν (k J , x J ) = d 2 k Φ(k J,1 , x J , k)E n,ν (k) (1.73)
We can then define the coefficients C m,n,ν (|k J |, x J ) and S m,n,ν (|k J |, x J ) as

C m,n,ν (|k J |, x J ) = dφ J cos(mφ J ) Ĉn,ν (k J , x J ) , (1.74) 
and

S m,n,ν (|k J |, x J ) = dφ J sin(mφ J ) Ĉn,ν (k J , x J ) . (1.75)
And so we can rewrite C m as

C m = n (-1) m+n dν ŝ s 0 ω(n,ν) C m,n,ν (|k J,1 |, x J,1 )C * m,n,ν (|k J,2 |, x J,2 ) + S m,n,ν (|k J,1 |, x J,1 )S * m,n,ν (|k J,2 |, x J,2 ) . (1.76)
As the dependence of Φ on φ and φ J is reduced to the dependence on |φ J -φ|, we can write it as a Fourier series where only the even coefficients are non zero:

Φ(k J , x J , k) = ∞ l=0 f l (|k J |, x J , |k|) cos (l (φ J -φ)) .
(1.77)

1. QCD in the high energy limit

This allows us to simplify the expression of C m,n,ν (|k J |, x J ):

C m,n,ν (|k J |, x J ) = dφ J cos(mφ J ) Ĉn,ν (k J , x J ) = dφ J cos(mφ J ) d 2 k Φ(k J , x J , k)E n,ν (k) = ∞ l=0 d 2 k f l (|k J |, x J , |k|)E n,ν (k) dφ J cos(mφ J ) cos (l (φ J -φ)) .
(1.78)

We have

dφ J cos(mφ J ) cos (l (φ J -φ)) = π(1 + δ m,0 )δ m,l cos(lφ) . (1.79)
Using this, we get:

C m,n,ν (|k J |, x J ) = ∞ l=0 d 2 k f l (|k J |, x J , |k|)E n,ν (k)π(1 + δ m,0 )δ m,l cos(lφ) = d 2 k f m (|k J |, x J , |k|)E n,ν (k)π(1 + δ m,0 ) cos(mφ) = 1 + δ m,0 √ 2 d|k|f m (|k J |, x J , |k|)k 2iν dφ e inφ cos(mφ) = π √ 2 (1 + 3δ m,0 )δ m,|n| d|k|f m (|k J |, x J , |k|)k 2iν .
(1.80)

Following the same lines, we find for S m,n,ν (|k J |, x J ):

S m,n,ν (|k J |, x J ) = π √ 2 (1 -δ m,0 )δ m,|n| d|k|f m (|k J |, x J , |k|)k 2iν .
And so

C m = n (-1) m+n dν ŝ s 0 ω(n,ν) π 2 2 (1 + 3δ m,0 ) 2 + (1 -δ m,0 ) 2 δ m,|n| × d|k 1 |d|k 2 |f m (|k J,1 |, x J,1 , |k 1 |)f m (|k J,2 |, x J,2 , |k 2 |) k 2 1 k 2 2 iν = n dν ŝ s 0 ω(n,ν) π 2 2 (2 + 14δ m,0 )δ m,|n| × d|k 1 |d|k 2 |f m (|k J,1 |, x J,1 , |k 1 |)f m (|k J,2 |, x J,2 , |k 2 |) k 2 1 k 2 2 iν =2π 2 (1 + 3δ m,0 ) dν ŝ s 0 ω(m,ν) × d|k 1 |d|k 2 |f m (|k J,1 |, x J,1 , |k 1 |)f m (|k J,2 |, x J,2 , |k 2 |) k 2 1 k 2 2 iν
.

(1.81)

We have been able to perform the sum over n thanks to the fact that Φ only depends on |φ J -φ|. This allows us to redefine C m as

C m = (4 -3δ m,0 ) dν C m,ν (|k J,1 |, x J,1 )C * m,ν (|k J,2 |, x J,2 ) ŝ s 0 ω(m,ν) , (1.82) 
with

C m,ν (|k J |, x J ) = dφ J d 2 k Φ(k J , x J , k)E m,ν (k) cos(mφ J ) = C m,m,ν (|k J |, x J ) . (1.83)
One can easily check that using the expression found for C m,m,ν (|k J |, x J ) above in this new definition of C m , we get the same result as before. As a consequence, this is the definition we will use in the following as it is more convenient for numerical evaluation.

The expression for the coefficients C m above involves two main quantities: the jet vertex V and the Green's function ŝ

s 0 ω(m,ν)
. The order of the calculation will thus depend on the order at which one considers these two quantities. Each jet vertex must give rise to at least one power of the strong coupling α s and at leading logarithmic accuracy the Green's function resums all the terms (α s ln ŝ) n . Therefore at lowest order in the BFKL framework the coefficients C m are proportional to α 2 s (α s ln ŝ) n (as can be seen from eq. (1.57)). One can also go to higher orders in perturbation theory. At next-to-leading logarithmic accuracy one should also resum terms carrying an additional power of α s which is not compensated by an additional power of ln ŝ. The NLL corrections to the coefficients C m would then be of the form α 3 s (α s ln ŝ) n . This additional power of α s can come from two sources: the NLL corrections to the Green's function, which resum all the terms α s (α s ln ŝ) n , or the next-to-leading order corrections to the jet vertex which are of order α 2 s . In the following section we will discuss the explicit form of the Green's function and the jet vertex both in the LL and NLL approximations.

LL order

Green's function

As we have seen in section 1.4.5, in the LL approximation the BFKL kernel, because of its conformal invariance, is diagonalized by the eigenfunctions

E n,ν (k) = 1 π √ 2 k 2 iν-1 2 e inφ , (1.84) 
with an eigenvalue given by

ω LL (n, ν) = ᾱs χ 0 |n|, 1 2 + iν , (1.85) 
with ᾱs = N c α s /π and

χ 0 (n, γ) = 2Ψ(1) -Ψ γ + n 2 -Ψ 1 -γ + n 2 , (1.86) 
where Ψ(x) = Γ ′ (x)/Γ(x).

1. QCD in the high energy limit

Jet vertex

The jet vertex V at lowest order just implements the fact that the jet is made of a single parton, of the same nature as the collinear parton initiating the hard process. It reads [START_REF] Bartels | The NLO jet vertex for Mueller-Navelet and forward jets: The quark part[END_REF][START_REF] Bartels | The NLO jet vertex for Mueller-Navelet and forward jets: The gluon part[END_REF]:

V (0) a (k, x) = h (0) a (k)S (2) 
J (k; x) , (1.87) 
where

h (0) a (k) = α s √ 2 C A/F k 2 , (1.88) and S 
(2)

J (k; x) = δ 1 - x J x |k J |δ (2) (k -k J ) . (1.89)
In the definition of h It is possible to use the delta functions appearing in the expression of the leading order jet vertex to perform the integrations over k and x in the expression of the intermediate coefficients C m,ν (1.83) and so we get the much simpler expression

C (LL) m,ν (|k J |, x J ) = α s C A/F 2 k 2 J iν-1 x J f a (x J )(1 + δ m,0 ) , (1.90) 
so that only the integration over ν needs to be performed numerically when computing the coefficients C m .

NLL order

Green's function

A key ingredient for a NLL calculation is the BFKL kernel at next-to-leading order [START_REF] Fadin | BFKL pomeron in the next-to-leading approximation[END_REF][START_REF] Ciafaloni | Energy scale(s) and next-to-leading BFKL equation[END_REF]. In principle, one should work in the basis of the NLO eigenfunctions instead of the LO ones. However, the action of the NLO BFKL kernel on these LO eigenfunctions has been calculated in ref. [START_REF] Kotikov | NLO corrections to the BFKL equation in QCD and in supersymmetric gauge theories[END_REF], and it turns out that the E n,ν are still eigenfunctions in an extended sense, if one now promotes the eigenvalue to become an operator containing a derivative with respect to ν [START_REF] Ivanov | Electroproduction of two light vector mesons in the next-to-leading approximation[END_REF][START_REF] Vera | The Effect of NLO conformal spins in azimuthal angle decorrelation of jet pairs[END_REF][START_REF] Vera | The azimuthal decorrelation of jets widely separated in rapidity as a test of the BFKL kernel[END_REF]. When convoluting with jet vertices, this derivate acts on them, thus leading to a contribution to the eigenvalue which now depends on the jet vertices [START_REF] Ivanov | Electroproduction of two light vector mesons in the next-to-leading approximation[END_REF][START_REF] Vera | The Effect of NLO conformal spins in azimuthal angle decorrelation of jet pairs[END_REF][START_REF] Vera | The azimuthal decorrelation of jets widely separated in rapidity as a test of the BFKL kernel[END_REF][START_REF] Schwennsen | Phenomenology of jet physics in the BFKL formalism at NLO[END_REF] ω N LL (n, ν) = ᾱs χ 0 |n|,

1 2 + iν + ᾱ2 s χ 1 |n|, 1 2 + iν - πb 0 2N c χ 0 |n|, 1 2 + iν -2 ln µ 2 R -i ∂ ∂ν ln C n,ν (|k J,1 |, x J,1 ) C n,ν (|k J,2 |, x J,2 ) , (1.91) 
where

χ 1 (n, γ) = Sχ 0 (n, γ) + 3 2 ζ(3) - β 0 8N c χ 2 0 (n, γ) + 1 4 ψ ′′ γ + n 2 + ψ ′′ 1 -γ + n 2 -2φ(n, γ) -2φ(n, 1 -γ) - π 2 cos(πγ) 4 sin 2 (πγ)(1 -2γ) 3 + 1 + N f N 3 c 2 + 3γ(1 -γ) (3 -2γ)(1 + 2γ) δ n,0 -1 + N f N 3 c γ(1 -γ) 2(3 -2γ)(1 + 2γ) δ n,2 , (1.92) 
with the constant S = (4 -

π 2 + 5β 0 /N c )/12. ζ(n) = ∞ k=1 k -n is the Riemann zeta function while the function φ reads φ(n, γ) = ∞ k=0 (-1) k+1 k + γ + n 2 ψ ′ (k + n + 1) -ψ ′ (k + 1) + (-1) k+1 [β ′ (k + n + 1) + β ′ (k + 1)] + ψ(k + 1) -ψ(k + n + 1) k + γ + n 2 , (1.93) 
with

β ′ (γ) = 1 4 ψ ′ 1 + γ 2 -ψ ′ γ 2 . (1.94) 
At NLL accuracy, only the leading order vertex coefficients enter in the derivative term of (1.91), so that

-2 ln µ 2 R -i ∂ ∂ν ln C (LO) n,ν (|k J,1 |, x J,1 ) C (LO) n,ν (|k J,2 |, x J,2 ) * = 2 ln |k J,1 | • |k J,2 | µ 2 R .
(1.95)

The value obtained for the eigenvalue ω(0, ν) at next-to-leading logarithmic accuracy is compared to the one obtained at leading logarithmic accuracy on fig. 1.15. One can observe the striking difference between the two orders: the NLL eigenvalue does not have a single maximum at ν = 0, but instead there are two maximums which are symmetric with respect to ν = 0. In particular, this means that the saddle-point approximation should no longer be used at NLL.

Jet vertex

In the previous section we have seen that at lowest order the jet vertex has a trivial form, materializing the fact that a jet is made of only one parton which carries the same longitudinal momentum fraction as the incoming parton and the same transverse momentum as the gluon emitted in the t-channel. But of course there can be radiative corrections to this object. At next-to-leading order, which corresponds to allowing an extra power of the running coupling, these contributions are constituted by the one loop virtual corrections and the real emission corrections corresponding to an additional parton in the final state. The latter ones have been investigated in refs. [START_REF] Ciafaloni | Energy scale and coherence effects in small x equations[END_REF][START_REF] Ciafaloni | K factorization and impact factors at next-to-leading level[END_REF] while the complete expression of the NLO corrections to the jet vertex, taking into account 1. QCD in the high energy limit both real and virtual contributions, was derived in refs. [START_REF] Bartels | The NLO jet vertex for Mueller-Navelet and forward jets: The quark part[END_REF][START_REF] Bartels | The NLO jet vertex for Mueller-Navelet and forward jets: The gluon part[END_REF]. The expression of V at next-to-leading order reads

V a (k, x) = V (0) a (k, x) + α s V (1) a (k, x) , (1.96) 
where V (0) is the leading order jet vertex (1.87) and V (1) are the next-to-leading order corrections. The expressions of the NLO corrections to the jet vertex, as computed in refs. [START_REF] Bartels | The NLO jet vertex for Mueller-Navelet and forward jets: The quark part[END_REF][START_REF] Bartels | The NLO jet vertex for Mueller-Navelet and forward jets: The gluon part[END_REF] and after correcting a few misprints [START_REF] Colferai | Mueller Navelet jets at LHC -complete NLL BFKL calculation[END_REF], read

V (1) g (k, x) = 11 6 
C A π - 1 3 
N f π ln k 2 Λ 2 + π 2 4 - 67 36 
C A π + 13 36 
N f π -b 0 ln k 2 µ 2 V (0) g (k, x) + dz N f π C F C A z(1 -z)V (0) g (k, xz) + N f π d 2 k ′ π 1 0 dz P qg (z) h (0) q (k ′ ) (k -k ′ ) 2 + k ′2 S (3) J (k ′ , k -k ′ , xz; x) - 1 k ′2 Θ(Λ 2 -k ′2 )V (0) q (k, xz) + N f 2π d 2 k ′ π 1 0 dz P qg (z) N C A (1 -z)k -k ′ 2 z(1 -z) (k -k ′ ) • k ′ (k -k ′ ) 2 k ′2 S (3) 
J (k ′ , k -k ′ , xz; x) - 1 k 2 Θ Λ 2 -(1 -z)k -k ′ 2 S (2) 
J (k, x)

+ C A π 1 0 dz 1 -z [(1 -z)P (1 -z)] d 2 l πl 2 × N C A l 2 + (l -k) 2 S (3) J (zk + (1 -z)l, (1 -z)(k -l), x(1 -z); x) + S (3) J (k -(1 -z)l, (1 -z)l, x(1 -z); x) -Θ Λ 2 (1 -z) 2 -l 2 V (0) g (k, x) + V (0) g (k, xz) - 2C A π 1 0 dz 1 -z d 2 l πl 2 N C A l 2 + (l -k) 2 S (2) J (k, x) -Θ Λ 2 (1 -z) 2 -l 2 V (0) g (k, x) + C A π d 2 k ′ π 1 0 dz P (z) (1 -z) (k -k ′ ) • (1 -z)k -k ′ (k -k ′ ) 2 (1 -z)k -k ′ 2 h (0) g (k ′ ) × S (3) 
J (k ′ , k -k ′ , xz; x) - 1 k ′2 Θ(Λ 2 -k ′2 )V (0) g (k, xz) - 1 z(k -k ′ ) 2 Θ |k -k ′ | -z(|k -k ′ | + |k ′ |) V (0) g (k ′ , x) , (1.97)
1. QCD in the high energy limit for the gluon initiated jet vertex and

V (1) q (k, x) = 3 2 ln k 2 Λ 2 - 15 4 C F π + 85 36 + π 2 4 C A π - 5 18 
N f π -b 0 ln k 2 µ 2 V (0) q (k, x) + dz C F π 1 -z 2 + C A π z 2 V (0) q (k, xz) + C A π d 2 k ′ π dz 1 + (1 -z) 2 2z × (1 -z) (k -k ′ ) • (1 -z)k -k ′ (k -k ′ ) 2 (1 -z)k -k ′ 2 h (0) q (k ′ )S (3) 
J (k ′ , k -k ′ , xz; x) - 1 k ′2 Θ(Λ 2 -k ′2 )V (0) q (k, xz) - 1 z(k -k ′ ) 2 Θ |k -k ′ | -z(|k -k ′ | + |k ′ |) V (0) q (k ′ , x) + C F 2π dz 1 + z 2 1 -z d 2 l πl 2 × N C F l 2 + (l -k) 2 S (3) J (zk + (1 -z)l, (1 -z)(k -l), x(1 -z); x) + S (3) J (k -(1 -z)l, (1 -z)l, x(1 -z); x) -Θ Λ 2 (1 -z) 2 -l 2 V (0) q (k, x) + V (0) q (k, xz) - 2C F π dz 1 1 -z d 2 l πl 2 N C F l 2 + (l -k) 2 S (2) J (k, x) -Θ Λ 2 (1 -z) 2 -l 2 V (0) q (k, x) , (1.98) 
for the quark initiated jet vertex. In these expressions N f denotes the number of active quark flavors, b 0 = (11N c -2N f )/(12π), and

N = α s / √ 2.
A priori, the factorization scale µ F = Λ and the renormalization scale µ R = µ are independent of each other even though in the end we will set them equal.

In the previous expressions of the NLO corrections to the jet vertex an important quantity is the function S

(3) J which determines how, in the case of real corrections, one should deal with the two outgoing partons: if the two partons are emitted "close" to each other, they should be combined and form the jet. Otherwise, one should sum the two contributions corresponding to the case where the jet is constituted by either of these two partons. These three possibilities are shown on fig. 1.16. The exact form of S

(3) J depends on the practical jet algorithm that is used for the calculation (which determines the condition to consider that two partons are "close" enough to each other to be combined into a jet), but it should satisfy the following general constraints to ensure infrared safety: 

0, x k k, x 0, x k k -k ′ , x z k ′ , x(1 -z) 0, x k k -k ′ , x z k ′ , x(1 -z)

S

(3)

J (0, k, x; x) = S (2) 
J (k, x) , S (3) 
J (k, 0, 0; x) = S (2) J (k, x) , S (3) 
J ((1 -λ)k, λ k, λ x; x) = S (2) J (k, x) , S (3) 
J (0, k, ξ; x) = S (2) J (k, ξ) , S (3) 
J (k, 0, ξ; x) = S (2) J (k, x -ξ) .
(1.99)

In this work we will make use of two jet algorithms: the cone algorithm, which was widely used at the Tevatron, and the (anti)-k t algorithm [START_REF] Cacciari | The Anti-k(t) jet clustering algorithm[END_REF] which is now used by all LHC experiments. Here we will present the expression of S

J for these two choices. The cone jet algorithm is not infrared safe in general. However it is possible to implement it in an infrared safe way at NLO, as was done in [START_REF] Ellis | The One Jet Inclusive Cross-Section at Order alpha-s**3. 1. Gluons Only[END_REF]. It is defined such that all the partons i constituting the jet satisfy the condition

(y i -y J ) 2 + (φ i -φ J ) 2 < R 2 cone , (1.100) 
where y i is the rapidity of parton i, φ i is its azimuthal angle and y J and φ J define the jet axis according to

y J = 1 p J i p i y i , φ J = 1 p J i p i φ i , (1.101) 
where the jet transverse energy is defined as

p J = i p i . (1.102)
In eq. (1.100), R cone is a parameter which defines the size of the cone: a larger R cone means a cone with a larger aperture. In our case there are only two partons in the final state that may be combined into a jet. The condition for them to be combined into a jet with

p J = p 1 + p 2 , y J = 1 p J (p 1 y 2 + p 2 y 2 ), φ J = 1 p J (p 1 φ 1 + p 2 φ 2 ) (1.103)
1. QCD in the high energy limit is that the two conditions

(y 1 -y J ) 2 + (φ 1 -φ J ) 2 < R 2 cone ⇔ p 2 p 1 + p 2 2 (y 1 -y 2 ) 2 + (φ 1 -φ 2 ) 2 < R 2 cone , (y 2 -y J ) 2 + (φ 2 -φ J ) 2 < R 2 cone ⇔ p 1 p 1 + p 2 2 (y 1 -y 2 ) 2 + (φ 1 -φ 2 ) 2 < R 2 cone , (1.104) 
are satisfied at the same time, which can be combined into the single condition

max (p 1 , p 2 ) p 1 + p 2 2 (y 1 -y 2 ) 2 + (φ 1 -φ 2 ) 2 < R 2 cone ⇔ ∆y 2 + ∆φ 2 < p 1 + p 2 max (p 1 , p 2 ) R cone 2 , (1.105) 
where ∆y = y 1y 2 and ∆φ = φ 1φ 2 . In our case, as shown on fig. 1.16, we have

p 1 = |k -k ′ | + |k ′ | and p 2 = |k ′ |.
The expression of the jet function S

J reads in this case:

S (3,cone) J (k ′ , k -k ′ , xz; x) = S (2) J (k, x) Θ |k -k ′ | + |k ′ | max(|k -k ′ |, |k ′ |) R cone 2 -∆y 2 + ∆φ 2 + S (2) 
J (k -k ′ , xz) Θ ∆y 2 + ∆φ 2 - |k -k ′ | + |k ′ | max(|k -k ′ |, |k ′ |) R cone 2 + S (2) 
J (k ′ , x(1 -z)) Θ ∆y 2 + ∆φ 2 - |k -k ′ | + |k ′ | max(|k -k ′ |, |k ′ |) R cone 2 , (1.106) 
where ∆y and ∆φ can be computed using

∆y = log 1 -z z |k -k ′ | |k ′ | , ∆φ = arccos k ′ (k -k ′ ) k ′ 2 (k -k ′ ) 2
.

(1.107)

The three terms in eq. (1.106) correspond to the three diagrams shown on fig. 1.16: the first one corresponds to the case where the clustering condition is satisfied, so the two partons form the jet, while the two other ones correspond to the case where the jet is made of either of the two outgoing partons.

The k t algorithm is inherently infrared safe. It is a sequential recombination algorithm: one first defines the following distances:

d ij = min (p 2 i , p 2 j ) (y i -y j ) 2 + (φ i -φ j ) 2 R 2 kt , d iB = p 2 i , (1.108) 
where R kt is the size parameter of the jet. One then computes all the distances d iB and d ij where i and j run over all the particles present in the final state and identify the smallest one. If it is a d ij , particles i and j are combined into a single (pseudo-)particle by summing their four-momenta and one restarts the procedure. If it is a d iB , the (pseudo-)particle i is considered as a jet. It is removed and the procedure is restarted. This is done until all the particles are clustered into jets. At NLO, there are only three distances to be computed: d The condition for particles 1 and 2 to be combined into a jet is thus

d 12 < d 2b ⇔ p 2 2 (y 1 -y 2 ) 2 + (φ 1 -φ 2 ) 2 R 2 kt < p 2 2 ⇔ ∆y 2 + ∆φ 2 < R 2 kt . (1.109)
It is trivial to check that the same condition is found in the case p 1 < p 2 . Therefore the expression of S

J when using the k t jet algorithm reads:

S (3,kt) J (k ′ , k -k ′ , xz; x) = S (2) 
J (k, x) Θ R 2 kt -∆y 2 + ∆φ 2 + S (2) J (k -k ′ , xz) Θ ∆y 2 + ∆φ 2 -R 2 kt + S (2) J (k ′ , x(1 -z)) Θ ∆y 2 + ∆φ 2 -R 2 kt , (1.110) 
where the interpretation of the three terms is the same as in eq. ( 1.107).

The anti-k t algorithm [START_REF] Cacciari | The Anti-k(t) jet clustering algorithm[END_REF] is very similar to the k t algorithm except that the distances d ij and d iB are defined as

d ij = min 1 p 2 i , 1 p 2 j (y i -y j ) 2 + (φ i -φ j ) 2 R 2 kt , d iB = 1 p 2 i . (1.111)
We can follow the same procedure as above with these new definitions and we find that in the case of two outgoing particles the clustering condition is the same for the k t and the anti-k t algorithms. This is not surprising since the k t and anti-k t algorithms share many properties, the main difference being that with the anti-k t algorithm the jets tend to have a qualitatively more circular profile in the (y, φ) plane, which is not very meaningful here as we consider jets made of at most two partons. Since these two algorithms are equivalent at the order we are considering, in the following of this work we will often simply refer to the (anti)-k t jet algorithm.

Renormalization scheme, strong coupling and PDFs

When doing a computation, one has to choose a renormalization scheme. This is an arbitrary choice and physical observables should not depend on this choice, but when working at a given order in perturbation theory there may be some residual dependence on this choice. In this work we will mainly use the MS renormalization scheme. All the quantities we have defined above were defined in this scheme and this will be the case in this work unless otherwise mentioned.

Although at LL accuracy the running coupling is a subleading effect, this is not the case at NLL anymore. We use the two-loop strong coupling in the following form:

α s (µ 2 R ) = 1 b 0 L 1 - b 1 b 2 0 ln L L , (1.112) 
1. QCD in the high energy limit with L = ln µ 2 R /Λ 2 QCD , and

b 0 = 33 -2N f 12π , b 1 = 153 -19N f 24π 2 . (1.113)
In the following, α s or ᾱs without argument is to be understood as α s (µ 2 R ) or ᾱs (µ 2 R ) respectively. The MSTW 2008 PDFs assume µ R and µ F to be equal. Therefore, we make the same identification everywhere in our analysis. We choose

µ R = |k J,1 | • |k J,2 | as a "natural" value for µ = µ R = µ F .
As we are considering hadron collisions, we have to convolute the partonic subprocess with the parton distribution functions. This is a nonperturbative object which has to be extracted from data. Several groups have proposed different parametrizations of these objects. In this work we will mainly use the MSTW 2008 PDFs [START_REF] Martin | Parton distributions for the LHC[END_REF]. We will make comparisons with several other sets of PDF, as provided by the Les Houches Accord PDF Interface (LHAPDF) [START_REF] Whalley | The Les Houches accord PDFs (LHAPDF) and LHAGLUE[END_REF].

Choice of scale s 0

Another scale that needs to be properly chosen is the energy scale s 0 entering the Green's function ŝ

s 0 ω(m,ν)
. Like the renormalization and factorization scale the dependence on the value chosen would disappear in an all order calculation but it is not the case when calculating at a truncated order like we do here.

Let us first note that the choice of the value of s 0 is arbitrary at leading logarithm accuracy, which resums terms of the form

α s ln s s 0 n . (1.114)
Indeed, if we want to change to another value s ′ 0 , we have

α s ln s s ′ 0 n = α n s ln s s 0 + ln s 0 s ′ 0 n = α n s n k=0 C k n ln s s 0 k ln s 0 s ′ 0 n-k , (1.115) 
and we see that in the sum above, only the term k = n contributes at LL accuracy, therefore all dependence on s ′ 0 disappears. On the other hand, at next-to-leading logarithmic accuracy, where the terms

α s α s ln s s 0 n (1.116)
are also resummed, the term k = n -1 of the sum (1.115) will also contribute, so that the choice of s 0 is important.

It is natural to write the energy scale s 0 as the product of two scales like

s 0 = √ s 0,1 s 0,2 , (1.117) 
where s 0,1(2) is the energy scale associated with jet 1(2). In refs. [START_REF] Bartels | The NLO jet vertex for Mueller-Navelet and forward jets: The quark part[END_REF][START_REF] Bartels | The NLO jet vertex for Mueller-Navelet and forward jets: The gluon part[END_REF], the energy scale associated to each jet was chosen as (|k J | + |k J -k|) 2 . However, k is integrated 1.6. Mueller-Navelet jets at LL and NLL accuracy over and we prefer to make s 0 depend only on external scales. Here we opt for the simple choice s 0,i = k 2 J,i . As we have seen such a change of s 0 has to be properly taken into account at NLL accuracy. When performing a change s 0 → s ′ 0 it is necessary to change the expression of the impact factor as [START_REF] Fadin | [END_REF][START_REF] Fadin | Infrared safety of impact factors for colorless particle interactions[END_REF]:

Φ NLL (k i ; s ′ 0,i ) = Φ NLL (k i ; s 0,i ) + d 2 k ′ Φ LL (k ′ i )K LL (k ′ i , k i ) 1 2 ln s ′ 0,i s 0,i , (1.118) 
where K LL is the LL BFKL kernel

K LL (k ′ , k) = K r (k ′ , k) + 2ǫ(-k 2 )δ (2) (k -k ′ ) , (1.119) 
with the real part being

K r (k ′ , k) = α s N c π 2 1 (k ′ -k) 2 .
(1.120)

Here we have s 0,i = (|k

J,i | + |k J,i -k i |) 2 and s ′ 0,i = k 2 J,i , so ln s ′ 0,i
s 0,i vanishes when k i → k J,i and thus only the real part of the kernel contributes, leading to, using the explicit expression of Φ LL ,

Φ NLL (k i ; s 0,i = k 2 J,i ) =Φ NLL (k i ; s 0,i = (|k J,i | + |k J,i -k i |) 2 ) + α s N c π 2 x J f (x J )h (0) a (k J,i ) |k J,i | (k i -k J,i ) 2 ln |k J,i | |k J,i | + |k i -k J,i | .
(1.121)

In the following we will also investigate the dependence of the physical observables on s 0 by varying it by a numerical factor λ. This can be easily performed at the end of the calculation by using

C m,ν (|k J |, x J ; s ′ 0 = λs 0 ) -C m,ν (|k J |, x J ; s 0 ) = dφ J d 2 k d 2 k ′ dx f (x)V (0) (k ′ , x)K(k ′ , k)E m,ν (k) cos(mφ J ) 1 2 ln s ′ 0 s 0 = dφ J d 2 k ′ dx f (x)V (0) (k ′ , x) ᾱs χ 0 m, 1 2 + iν E m,ν (k ′ ) cos(mφ J ) 1 2 ln λ = ᾱs χ 0 m, 1 2 + iν C (LL) m,ν (|k J |, x J ) 1 2 ln λ . (1.122)
When adding the term (1.118) to the expression of V (1) , the energy scale is now defined as

s 0 = √ s 0,1 s 0,2 = k J,1 k J,2 .
In the expression of C m , the Green's function then has the form

ŝ s 0 ω(m,ν) = x 1 x 2 s s 0 ω(m,ν) = x 1 x 2 s k J,1 k J,2 ω(m,ν)
.

(1.123)

When using the LO jet vertex (1.87), which imposes x i = x J,i , we get after integrating over x 1 and x 2

x 1 x 2 s k J,1 k J,2 ω(m,ν) → x J,1 x J,2 s k J,1 k J,2 ω(m,ν) = e ω(m,ν)Y , (1.124) 
where we have used

x J,i = |k J,i |
√ s e y J,i and Y is the rapidity separation between the jets, Y ≡ |y J,1y J,2 |. We will now show that we can make the same replacement at NLL accuracy. In this case, the NLO corrections to the jet vertices do not contain a delta function imposing x J,i = x i . The integrations over x 1 and x 2 then have to be performed numerically. The part of the amplitude for which this replacement is not exact is the one involving the NLO corrections to the jet vertex V (1) . We can write

ŝ s 0 ω(m,ν) = x 1 x 2 s k J,1 k J,2 ω(m,ν) = x J,1 x J,2 s k J,1 k J,2 ω(m,ν) x 1 x J,1 ω(m,ν) x 2 x J,2 ω(m,ν) = e ω(m,ν)Y 1 + ω(m, ν) ln x 1 x J,1 + . . . 1 + ω(m, ν) ln x 2 x J,2 + . . . . (1.125)
As already said this term will appear multiplied by the NLO corrections to the jet vertex, which corresponds to an extra power of α s not compensated by an extra power of ln ŝ. Therefore, at NLL accuracy, only the first term in the two parenthesis of eq. ( 1.125) contribute (we recall that ω contains at least a power of α s ). Up to NLL accuracy, we are then free to perform the replacement

ŝ s 0 = k J,1 k J,2 ω(m,ν) -→ e ω(m,ν)Y (1.126)
in the expression of C m . We will use it in the following as it will be convenient when dealing with the numerical implementation since it allows us to write the Green's function in terms of y J,1 and y J,2 which are fixed parameters instead of x 1 and x 2 which are integrated over.

The LL subtraction term of the NLO jet vertex, i.e. the term multiplied by

Θ(|k - k ′ | -z(|k -k ′ | + |k ′ |)) in eqs.
(1.98) and (1.97), has a poor numerical behavior. This is due to an azimuthal averaging performed for the LL subtraction. To improve this behavior, the authors of ref. [START_REF] Colferai | Mueller Navelet jets at LHC -complete NLL BFKL calculation[END_REF] proposed to remove this averaging by introducing a new subtraction term

V (1) q; LL subtraction = - C A π 2 1 z(k -k ′ ) 2 (k -k ′ )(k -k ′ -zk ′ ) (k -k ′ ) 2 (k -k ′ -zk ′ ) 2 V (0) q (k ′ , x) , (1.127a) 
V

g; LL subtraction = -

C A π 2 1 z(k -k ′ ) 2 (k -k ′ )(k -k ′ -zk ′ ) (k -k ′ ) 2 (k -k ′ -zk ′ ) 2 V (0) g (k ′ , x) , (1.127b) 
for incoming quark and gluon respectively. As a consequence, s 0,i changes from s 0,i = (|k

J,i | + |k J,i -k i |) 2 to s 0,i = (k i -2k J,i ) 2 .
Another choice proposed by the authors of ref. [START_REF] Colferai | Mueller Navelet jets at LHC -complete NLL BFKL calculation[END_REF] is

V (1) q; LL subtraction = - C A π 2 1 z(k -k ′ ) 2 (k -k ′ )(k -k ′ -zk) (k -k ′ ) 2 (k -k ′ -zk) 2 V (0) q (k ′ , x) , (1.128a) 
V

g; LL subtraction = -

C A π 2 1 z(k -k ′ ) 2 (k -k ′ )(k -k ′ -zk) (k -k ′ ) 2 (k -k ′ -zk) 2 V (0) g (k ′ , x) . (1.128b)
This choice gives a change from s 0,i = (|k

J,i | + |k J,i -k i |) 2 to s 0,i = k 2
J,i which is our final goal and so removes the need for the extra term of eq. (1.118).

As in ref. [START_REF] Colferai | Mueller Navelet jets at LHC -complete NLL BFKL calculation[END_REF] we have checked that these three choices for the LL subtraction term give the same final results, and we opted for the choice (1.127) since it is the one providing the best numerical behavior.

Mueller-Navelet jets at LL and NLL accuracy

Collinear improvement

As we have seen already, the BFKL kernel has a very different behavior at LL and at NLL accuracy: while at LL accuracy there is only one saddle point at ν = 0 (corresponding to a real value of γ = 1 2 +iν), the NLL kernel has two saddle points which are symmetric with respect to ν = 0. The fact that at NLL the saddle points are located in regions where γ is no longer real leads to some problems, such as oscillations with transverse momentum or negative cross sections. It was shown in refs. [START_REF] Salam | A resummation of large sub-leading corrections at small x[END_REF][START_REF] Ciafaloni | The BFKL equation at next-to-leading level and beyond[END_REF][START_REF] Ciafaloni | Renormalization group improved small-x equation[END_REF][START_REF] Ciafaloni | Renormalisation group improved small-x Green's function[END_REF] that these issues can be cured by resumming some contributions which are formally of higher order but can be numerically important. Let us explain briefly the idea originally exposed in ref. [START_REF] Salam | A resummation of large sub-leading corrections at small x[END_REF].

In a BFKL calculation, where the scales involved are in principle of similar magnitude, it is natural to choose s 0 as the product of two scales k 1 and k 2 , each of them being associated with one of the scattered objects. In the case of Mueller-Navelet jets these scales would correspond to the transverse momenta of the jets. On the contrary, when these two typical transverse scales k 1 and k 2 are very different from each other, another possible choice, inspired by DGLAP-type resummation [START_REF] Gribov | Deep inelastic e p scattering in perturbation theory[END_REF][START_REF] Lipatov | The parton model and perturbation theory[END_REF][START_REF] Altarelli | Asymptotic freedom in parton language[END_REF][START_REF] Dokshitzer | Calculation of the Structure Functions for Deep Inelastic Scattering and e + e -Annihilation by Perturbation Theory in Quantum Chromodynamics[END_REF], would be to take s 0 equal to the largest of the two scales. In the case k 1 ≫ k 2 , for example, the series would contain terms of the form

α s ln k 2 1 k 2 2 ln s k 2 1 n , (1.129) 
which would give rise, if we want to rewrite them in terms of s 0 = k 1 k 2 , to terms of the form

α s ln 2 k 2 1 k 2 2 n-m α s ln k 2 1 k 2 2 ln s k 1 k 2 m .
(1.130)

These terms, although neglected in a pure BFKL treatment as formally subleading, can be numerically important when k 1 and k 2 are very different. As a consequence, they need to be resummed. A method to do so was proposed in ref. [START_REF] Salam | A resummation of large sub-leading corrections at small x[END_REF]. This is known as ω-shift since it corresponds to shifting poles in γ (corresponding to s 0 = k 1 ) and 1γ (corresponding to s 0 = k 2 ) by ω/2 when working in the Mellin-transform space of the Green's function. This is not a uniquely-defined procedure: since this is a resummation of higher-order terms, there is some freedom on how to perform it while imposing the wanted behavior at NLL accuracy. In ref. [START_REF] Salam | A resummation of large sub-leading corrections at small x[END_REF], four different ways (or schemes) to perform this collinear resummation have been proposed. They are equivalent up to NLL accuracy, but they differ by higher order terms. The resulting value obtained for the BFKL eigenvalue ω with these four schemes is shown on fig. 1.17 together with the LL and the NLL results. We observe that the four schemes lead to very similar results: contrary to the pure NLL case, there is only one saddle point located at ν = 0, like at LL. Also the value of ω at ν = 0 is between the LL and NLL results, while for large values of ν the NLL result is recovered.

In this work we implemented scheme 3 of ref. [START_REF] Salam | A resummation of large sub-leading corrections at small x[END_REF]. As can be seen from fig. 1.17, this choice is not very important since the eigenvalue has a very similar behavior in all the schemes. Also, when computing physical observables by the use of the coefficients C m , we will integrate over ν and so the differences between various schemes will be even more reduced.
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Figure 1.17: Value of the BFKL eigenvalue ω(n, ν) for n = 0 as a function of ν obtained with the four schemes proposed in ref. [START_REF] Salam | A resummation of large sub-leading corrections at small x[END_REF] to improve the behavior of the NLL Green's function in the collinear limit. The pure LL and NLL results are shown in blue and magenta respectively.

Note that this collinear resummation is only required by the Green's function. Indeed, this procedure deals with poles in the γ plane. It has been checked numerically [START_REF] Colferai | Mueller Navelet jets at LHC -complete NLL BFKL calculation[END_REF] that the jet vertices do not contain γ poles and so are not affected by this procedure.

Chapter 2 NLL BFKL predictions for the LHC

In this chapter we will use the formulas presented in the previous chapter to get numerical estimates of physical quantities of interest. In particular we will see how the NLL corrections modify the results obtained at LL accuracy.

Practical implementation

In practice, we need to evaluate the quantities C m as defined in eq. (1.82) for fixed rapidities and transverse momenta of the jets. The numerical evaluation of these coefficients is difficult because of the number of integrations to be performed. We have seen in the previous chapter that when one uses the leading order jet vertex the expression of C m simplifies a lot and so only the final integration over ν is not trivial and has to be performed numerically. But when one wants to use the NLO jet vertex and uses all the delta functions to reduce the number of integrations as much as possible, the total number of integrations remaining for some terms is 9. To overcome this difficulty, we follow the same strategy as in ref. [START_REF] Colferai | Mueller Navelet jets at LHC -complete NLL BFKL calculation[END_REF]: we tabulate the values of C m,ν (|k J,1 |, x J1 ) and C m,ν (|k J,2 |, x J2 ) on a grid on ν. Then we perform the final integration on ν, convoluting the interpolation of these functions with the BFKL Green's function.

Integration over k J

So far we have discussed observables for fixed values of k J,1 and k J,2 . But experimentally the observables are measured for values of the transverse momenta of the jets that lie in some range. Therefore, to do some comparison with experimental studies, we need to also integrate k J,1 and k J,2 over some range. We do so by computing the observables for fixed k J,1 and k J,2 on a (k J,1 , k J,2 ) grid. Then an interpolation is done and we integrate over k J,1 and k J,2 . For Mueller-Navelet jets, experimental data is typically given with only lower cuts on k J,1 and k J,2 , according to k J,1 ≥ k Jmin1 and k J,2 ≥ k Jmin2 . This could be an issue to compare our results with such data, as we cannot integrate transverse momenta up to infinity with our method using a grid. Nevertheless, the cross section for fixed k J,1 and k J,2 is decreasing very rapidly with increasing k J,1 and k J,2 . This is shown on fig. 2.1 where the growth of the integrated cross section with increasing upper cut on the transverse momenta of the jets is shown. We plot these results for a pure LL calculation, a mixed treatment involving the NLL Green's function but the LO jet vertex and our full NLL result. We use the color convention (2.14). The result with the collinear improved Green's function is not shown as this collinear resummation does not lead to significant changes compared with the pure NLL Green's function here. On fig. 2.1 (L) we show the value of the integrated cross section for the three treatments described above, for a rapidity separation between the jets Y = 8. One can see that there is a strong rise for low values of k J max and then the cross section quickly saturates. On fig. 2.1 (R) we show the same evolution, but this time we normalize the value of the cross section for each treatment by the maximum value. Here we see that the behavior of the pure LL and mixed treatments is almost the same, while the inclusion of the NLO corrections to the jet vertex leads to a faster convergence. We observe that for k J max = 60 GeV, which is typical of values we will choose in the following, already more than 80% of the LL cross section is taken into account, while more than 90% of the cross section is taken into account in the full NLL case. We then consider this value as safe to compare with data with no upper cut on k J,1 and k J,2 for the azimuthal correlations of the jets. Indeed, we have checked that for angular observables the dependence on this cutoff is very weak. This can be understood as these observables are computed as cos nϕ = C n /C 0 and the coefficients C n have a very similar dependence on k J max . Therefore some part of this dependence cancels when taking ratios.

Comparison with previous studies

We have checked that our method of integrating over k J,1 and k J,2 gives compatible results with previous studies at leading order. In particular, when working with fixed longitudinal momentum fractions, the integrations over k J,1 and k J,2 can be performed analytically as long as the scales are chosen as functions of k Jmin1 and k Jmin2 and not k J,1 and k J,2 . This has been done in ref. [START_REF] Vera | The azimuthal decorrelation of jets widely separated in rapidity as a test of the BFKL kernel[END_REF]. We will show how here. Using eqs. (1.82) and (1.83), we get the expression of the coefficients C m at LL accuracy:

C m = α s C A/F 2 dν 1 k 2 J,1 k 2 J,2 k 2 J,1 k 2 J,2 iν x J,1 f a (x J,1 )x J,2 f a (x J,2 )e ω(m,ν)Y . (2.1)
This quantity is differential with respect to |k J,1 | and |k J,2 | (and not k 2 J,1 and k 2 J,2 ). We thus need to integrate it over |k J,1 | and |k J,2 |. If the renormalization scale (entering α s in the expression of ω) and the factorization scale (entering the parton distribution 2.1. Practical implementation functions f ) are chosen as functions of k Jmin1 and k Jmin2 , we can then perform this integration using

k J max1 k J min1 d|k J,1 | k J max2 k J min2 d|k J,2 | 1 k 2 J,1 k 2 J,2 k 2 J,1 k 2 J,2 iν = 1 1 + 4ν 2 × k 2 J min1 k 2 J min2 iν k Jmin1 k Jmin2 - k 2 J max1 k 2 J min2 iν k Jmax1 k Jmin2 - k 2 J min1 k 2 J max2 iν k Jmin1 k Jmax2 + k 2 J max1 k 2 J max2 iν k Jmax1 k Jmax2 . (2.2)
In practice, experimental measurements are mostly done with only a lower cut on k J,1 and k J,2 , as is the case of the study in ref. [START_REF] Vera | The azimuthal decorrelation of jets widely separated in rapidity as a test of the BFKL kernel[END_REF]. In this case where k Jmax1 = k Jmax2 = ∞, the above equation reduces to

∞ k J min1 d|k J,1 | ∞ k J min2 d|k J,2 | 1 k 2 J,1 k 2 J,2 k 2 J,1 k 2 J,2 iν = k 2 J min1 k 2 J min2 iν k Jmin1 k Jmin2 (1 + 4ν 2 ) , (2.3) 
and we get

C int m = α s C A/F 2 k Jmin1 k Jmin2 x J,1 f a (x J,1 )x J,2 f a (x J,2 ) dν k 2 J min1 k 2 J min2 iν 1 + 4ν 2 e ω(m,ν)Y . (2.4)
Then the remaining integration over ν is performed numerically (as in ref. [START_REF] Vera | The azimuthal decorrelation of jets widely separated in rapidity as a test of the BFKL kernel[END_REF]). We can see that in this simple case the expressions of ratios C m /C n is particularly simple as all the coefficients in front of the integral on ν will simplify. Indeed, we get

C int m C int n = dν (1 + 4ν 2 ) -1 k 2 J min1 k 2 J min2 iν e ω(m,ν)Y dν (1 + 4ν 2 ) -1 k 2 J min1 k 2 J min2 iν e ω(n,ν)Y . (2.5)
On fig. 2.2 we show the comparison between the two treatments for cos ϕ = C 1 C 0 in typical Tevatron kinematics, as was studied in ref. [START_REF] Vera | The azimuthal decorrelation of jets widely separated in rapidity as a test of the BFKL kernel[END_REF]: k Jmin1 = 20 GeV, k Jmin2 = 50 GeV and 0 < |y J,1 |, |y J,2 | < 3. The scales µ F and √ s 0 are taken to be √ k Jmin1 k Jmin2 , with k Jmin1 = 20 GeV and k Jmin2 = 50 GeV. Solid lines show the results obtained with eq. (2.5), i.e. the integration on k J,1 and k J,2 is performed analytically before the integration on ν. With points are shown the results obtained with our code, where we first integrate over ν for fixed values of k J,1 and k J,2 and then we integrate numerically over k J,1 and k J,2 using a (k J,1 , k J,2 ) grid. In both cases the integration on ν is performed numerically (we do not use the saddle-point approximation).

Note that on fig. 2.2 we show the results of our calculation only for rapidity separations larger than 4 because of a convergence issue at low Y that we will discuss in the next section. There is no problem in the case of analytical integration on k J,1 and k J,2 as this issue only arises for fixed value of the transverse momenta of the jets.

We have been able to perform the integration over k J,1 and k J,2 analytically here because of the simple structure of the jet vertex at leading order. At next-to-leading order, the momentum structure of the jet vertex is much more complicated and then we have to rely on numerical integration, hence the importance of checking that our results at LL are consistent with previous studies. Comparison of cos ϕ with the LO jet vertex, using either the analytical integration over k J,1 and k J,2 as in ref. [START_REF] Vera | The azimuthal decorrelation of jets widely separated in rapidity as a test of the BFKL kernel[END_REF] or the numerical integration as in our implementation, in the Tevatron kinematics.

Convergence issue at low rapidities

There is an issue in our treatment of the integration over k J,1 and k J,2 : we have to evaluate observables for fixed values of k J,1 and k J,2 . However, because of the behavior of the Green's function at low rapidities, it can be shown, already at leading logarithmic accuracy, that there is a divergence of the coefficients C n for values of Y lower than π 2αsNc , which, for the typical values of transverse momenta involved in this work, corresponds to about Y ∼ 4. This is a purely technical problem, as there is no divergence as long as one integrates k J,1 and k J,2 over some finite range. This is however a problem in our approach, and so in the following we will restrict ourselves to values of the rapidity separation larger than 4. This is not a severe issue as a BFKL treatment is supposed to be valid at large rapidities and values of the rapidity separation as large as 9.4 can be reached at the LHC at the moment.

Here we will show how this problem occurs already in a pure LL calculation, which involves a convolution of the LO jet vertices with the LL BFKL Green's function. We will focus on the differential cross section as the issue is here for all values of n. We recall the master formula at LL:

dσ d|k J,1 | d|k J,2 | dy J,1 dy J,2 = C 0 = dν C (LL) 0,ν (|k J,1 |, x J,1 )C (LL) * 0,ν (|k J,2 |, x J,2 )e ᾱsχ0(0,ν)Y , (2.6) with C (LL) 0,ν (|k J |, x J ) = α s C A/F k 2 J iν-1 x J f a (x J ) , (2.7) 
and

χ 0 (0, ν) = 2Ψ(1) -Ψ 1 2 + iν -Ψ 1 2 -iν . (2.8)
We can put C 0 in the following form, where we have clearly separated the part depending on ν:

C 0 = α s C A/F 2 k 2 J,1 k 2 J,2 x J,1 f a (x J,1 )x J,2 f a (x J,2 ) dν k 2 J,1 k 2 J,2 iν e ᾱsχ0(0,ν)Y . (2.9) If we naively set |k J,1 | = |k J,2 | = |k J |, we get C 0 = α s C A/F 2 k 4 J x J,1 f a (x J,1 )x J,2 f a (x J,2
) dν e ᾱsχ0(0,ν)Y .

(2.10)

Let us first note that the region where ν approaches 0 is not problematic, as the function χ 0 takes a finite value χ 0 (0, 0) = ln 16. But we need to integrate ν up to infinity. For large values of ν, we can use the asymptotic development of χ 0 which is χ 0 (0, ν → ∞) ∼ -2γ -2 ln ν. In practice this development is valid already for values of ν as low as ∼ 1. We then need to evaluate the integral

dν Exp (ᾱ s χ 0 (0, ν)Y) ≈ dν Exp -2α s N c π (γ + ln ν)Y =Exp -2α s N c π γY dν Exp -2α s N c π Y ln ν =Exp -2α s N c π γY dν ν -2αs Nc π Y , (2.11) 
which is obviously only convergent if 2αsNcY π > 1. As long as k J,1 and k J,2 are different, we have to evaluate instead the integral

dν k 2 J,1 k 2 J,2 iν ν -2αs Nc π Y , (2.12) 
which is always convergent as long as k J,1 = k J,2 and Re(2α s Nc π Y ) > 0, which is of course always true. This divergence for k J,1 = k J,2 is only a technical difficulty, it is not a fundamental problem of the theory. Indeed, experimentally there is always a limited resolution in transverse momentum of the jets. Then the comparison is only valid when integrating k J,1 and k J,2 over some range. This issue disappears when we integrate over k J,1 and k J,2 . This can be seen using the formulas that we derived in the previous section, where the integration over k J,1 and k J,2 was done analytically. For k Jmax1 = k Jmax2 = ∞, we will need to evaluate, after integrating over k J,1 and k J,2 , the expression

dν 1 1 + 4ν 2 k 2 Jmin1 k 2 Jmin2 iν ν -2αs Nc π Y , (2.13) 
and the term (1 + 4ν 2 ) -1 coming from the integration over the transverse momenta of the jets will ensure the convergence of the integral over ν for any value of 2αsNcY π . In the case of finite (and potentially different) values for the upper cuts on k J,1 and k J,2 , the same will happen for the four terms appearing in eq. (2.2).

Results: impact of the NLL corrections

In this section we will study the effect of including the next-to-leading corrections to the Green's function and the jet vertex on physical observables such as the cross section and the azimuthal correlations.

We will consider several kinds of scenarios, starting from a pure LL approximation up to full NLL and collinear improved NLL approximations. The convention for colors that we will use for the plots showing the different treatments is the following: blue: pure LL result (LO vertices and LL Green's function) magenta: LO vertices and NLL Green's function green:

LO vertices and collinear improved NLL Green's function brown:

full NLL result (NLO vertices and NLL Green's function) red:

NLO vertices and collinear improved NLL Green's function.

(2.14)

In view of possible comparison with experimental data from the LHC, we will consider a symmetric configuration with the following cuts:

35 GeV < |k J,1 |, |k J,2 | < 60 GeV , 0 < |y J,1 |, |y J,2 | < 4.7 , (2.15) 
and focus on a center of mass energy √ s = 7 TeV. Note that usually, experimental data are differential with respect to Y and not y J,1 and y J,2 . To be able to compare our results with data, we do the same and so for each value of Y we integrate over y J,1 and y J,2 with the constraint |y J,1y J,2 | = Y . In practice, this integral is evaluated as a discrete sum, the y J,i being sampled here in 10 intervals of width 0.47. Given the cuts (2.15), the maximum value of the rapidity separation Y is 9.4. In addition, because of the convergence issue for low values of Y discussed in section 2.1.3, we will show results only for values of Y larger than 4.

Differential cross section

We start with the differential cross section dσ dY as a function of the rapidity separation between the jets Y . This is shown on fig. 2.3. A general behavior is the strong decrease of the cross section for large values of Y , which is due to the fact that when going to larger rapidities at fixed transverse momentum, the parton distribution functions are probed at larger longitudinal momentum fractions.

We can see that the pure LL calculation is the one predicting the largest cross section. The curves obtained when combining the LO vertices with the pure NLL Green's function and when combining the LO vertices with the collinear improved NLL Green's function are almost indistinguishable. Similarly, the curves obtained when combining the NLO vertices with the pure NLL Green's function and when combining the NLO vertices with the collinear improved NLL Green's function are very close.

The outcome of this comparison is that the inclusion of next-to-leading logarithmic corrections to the Green's function lead to a significant decrease of the cross section. Adding also the NLO corrections to the jet vertex leads to another decrease, of about the same order of magnitude.

Azimuthal correlations

We now consider the azimuthal correlations. First we show results for cos ϕ on fig. 2.4 (L). First we can observe that the pure LL calculation leads to a very large azimuthal decorrelation between the two jets. Comparing this scenario with the combination of LO vertex with NLL Green's function, we see that the NLL corrections to the Green's function produces a sizable increase of the correlation. But the inclusion of NLO corrections to the jet vertex have an even more dramatic effect, leading to a very large correlation (we recall that a value cos ϕ = 1 would mean that the jets are always emitted back-to-back). On the same plot, we see that the effect of collinear improvement to the Green's function is a slightly lower correlation with the LO vertex. This difference is much smaller with the NLO vertex: here the collinear resummation has almost no effect.

Let us now consider the observable cos 2ϕ . The results based on the 5 approaches (2.14) are displayed on fig. 2.4 (R). Similar conclusions as for cos ϕ can be drawn. Indeed, an even more dramatic effect due to the NLL corrections to the jet vertices is observed. On the other hand, the difference between the pure NLL and the collinear improved NLL treatments is very small, this time of the same order of magnitude as the one observed between a mixed LO jet with pure NLL Green's function and the mixed LO jet with collinear improved NLL Green's function approaches. Again, when including all NLL corrections, the decorrelation effect is much smaller than the one obtained in LL or mixed treatments, and the dependence with respect to Y becomes more flat.

The extraction of higher harmonics can be as well experimentally performed. We show on fig. 2.5 our predictions for cos 3ϕ based on the 5 different treatments (2.14). In comparison with cos 2ϕ , again the effect of NLO corrections to the jet vertices is very important, leading to a much smaller decorrelation.

The study of ratios of the kind cos mϕ / cos nϕ was suggested in ref. [START_REF] Vera | The azimuthal decorrelation of jets widely separated in rapidity as a test of the BFKL kernel[END_REF] as a better test of BFKL dynamics because some collinear contributions cancel, leading to more stable results with respect to the scales. We will study this stability in a following section, but for now we will focus on the difference between the treatments described in eq. (2.14) when using the natural values for the scales.

The observable cos 2ϕ / cos ϕ is shown on fig. 2.6 (L). The difference between the full NLL prediction (either collinearly improved or not) and the non-full NLL ones is sizable for Y 6. On the other hand, for the observable cos 3ϕ / cos 2ϕ which is shown on fig. 2.6 (R), we obtain a rather small difference between the different treatments. Nevertheless, it can be noted that for both cos 2ϕ / cos ϕ and cos 3ϕ / cos 2ϕ , the inclusion of the NLO corrections to the jet vertex leads to a rather different behaviour than when using the LO vertex: the curves have a less pronounced slope and show a slower decrease with increasing rapidity separation.

Azimuthal distribution

Computing the coefficients C n for arbitrary values of n gives access to the full azimuthal distribution 1 σ dσ dϕ , which can be expressed as

1 σ dσ dϕ = 1 2π 1 + 2 ∞ n=1 cos (nϕ) cos (nϕ) . (2.16) 
In figs. 2.7 to 2.9, we show the azimuthal distribution as a function of ϕ obtained with the five different BFKL treatments described in (2.14) for three different values of Y . One can see on fig. 2.7 (L) that the pure LL calculation is quite flat in ϕ, having a small peak near ϕ = 0, which indicates a very low correlation. Also the decrease of correlation with increasing Y is very important. On fig. 2.7 (R) we show the same distribution, but with the NLL Green's function instead of the LL one. The NLL corrections to the Green's function lead to a larger correlation at same Y and a slower decorrelation with increasing Y . The inclusion of the collinear improvement to the NLL Green's function does not lead to a significantly different behavior, as can be seen from fig. 2.8. On the other hand, as for the observables cos nϕ , the inclusion of NLO corrections to the jet vertex leads to a very strong increase of the correlation at same Y and a slower decorrelation with increasing Y . This can be seen on fig. 2.9 (L). As in the LO jet vertex case, adding the collinear improvement to the NLL Green's function gives very similar results as without it. This is shown on fig. 2.9 (R).

Effect of the various parameters

Jet algorithm

As already mentioned in section 1.6.3, for numerical evaluations of physical observables one has to choose a specific jet algorithm obeying the property of infrared safety. In our calculation we implemented both the cone and the (anti)-k t algorithms, according to eqs. (1.106) and (1.110) respectively. This allows us both to compare our results with previous studies using the cone algorithm, like in ref. [START_REF] Colferai | Mueller Navelet jets at LHC -complete NLL BFKL calculation[END_REF], and to do predictions for current experiments which mostly use the anti-k t algorithm. In this section we will study the difference between the NLL predictions using the two algorithms. We recall dY obtained with the cone and k t jet algorithms. The cross section obtained with the cone algorithm is about 20% larger than the one obtained with the kt algorithm. Therefore, it is important to use the same algorithm as experimental analyses to compare results on the cross section. The azimuthal quantities cos ϕ , cos 2ϕ and cos 3ϕ are less dependent on the jet algorithm than the cross section. This is shown on figs. 2.10 (R), 2.11 (L) and 2.11 (R) respectively. The relative difference between the two choices is not exceeding 10%, except for cos ϕ at very large rapidity separation. Consequently, the variation for the ratios of these observables, cos 2ϕ / cos ϕ and cos 3ϕ / cos 2ϕ , shown on fig. 2.12, is also very small, almost never exceeding 5%. As the azimuthal distribution 1 σ dσ dϕ can be expressed in terms of the cos nϕ variables which are not strongly dependent on the jet algorithm, it can be expected that this quantity is also not very sensitive to this choice. This is actually the case, as can be seen from fig. 2. [START_REF] Lipatov | Pomeron in Quantum Chromodynamics[END_REF], where the difference between the two calculations is barely visible.

PDF uncertainties

As our calculation involves the parton distribution functions (PDFs), our results depend on the actual parametrization that we choose. In most of this work we used the MSTW 2008 parametrization [START_REF] Martin | Parton distributions for the LHC[END_REF]. In this section we evaluate the changes produced by the use of other PDF sets. For easy change of parametrization, we use the LHAPDF library. We use the following PDF sets: red:

ABKM09 [ Left: ratio of the differential cross section dσ dY at LL accuracy using one of the PDF sets (2.17) and using the MSTW 2008 PDFs. Right: ratio of the differential cross section dσ dY at NLL accuracy using one of the PDF sets (2.17) and using the MSTW 2008 PDFs.

On fig. 2.14 we can see how the change of PDF parametrization choice changes the differential cross section at LL accuracy (LO vertices with LL Green's function) and at NLL accuracy (NLO vertices with NLL Green's function). The difference with respect to MSTW 2008 is about 10%, except with CT10 with leads to a significantly larger cross section for Y 7, and this difference is increasing with Y . For the maximal value of Y , the calculation with CT10 leads to a cross section about 40% larger that MSTW 2008. We can observe that the behavior is very similar at LL and NLL accuracy.

We will now consider the PDF dependence of azimuthal correlations. We first note that the dependence on the PDF parametrization does not exist when using the leading order jet vertex in the case of fixed transverse momenta and rapidities of the jets. This can be seen from the expression of C m in the case of LO jet vertex: the parton distribution functions f will be evaluated for the same values of longitudinal momentum fractions in the numerator and the denominator (we recall that cos nϕ = C n /C 0 ) and so will simplify in azimuthal quantities. When integrating over the rapidities and/or transverse momenta of the jets, this cancellation no longer happens exactly (we recall that x J = |k J | √ s e y J ). However, the PDF dependence arising is extremely small, of the order of less than 1% for all the angular quantities we study here. For this reason we will not show it.

In the NLO corrections to the jet vertex, there is no longer a delta function imposing x = x J . As a consequence, the x's at which the PDFs are evaluated need to be integrated over independently in the numerator and denominator and so the PDF dependence does not disappear even for fixed values of the transverse momenta and rapidities of the jets. However, it can be seen from fig. 2.15 (L) that this dependence is still very weak for cos ϕ , of the order of a few percent at most. The same can be said for cos 2ϕ and cos 3ϕ , as shown on fig. 2.15 (R) and 2.16 (L) respectively. These two observables share a very similar behavior, with the uncertainty associated with the PDF parametrization choice being less that 3% across the full Y range.

Since the variation induced by the change of PDF parametrization is small for observables cos nϕ , it is also the case for the ratios of these observables. This is shown on fig. 2 variation is again less than 3%, and especially the variation for cos 3ϕ / cos 2ϕ is very small, because of the very similar change induced for cos 2ϕ and cos 3ϕ .

Collinear improvement

In ref. [START_REF] Colferai | Mueller Navelet jets at LHC -complete NLL BFKL calculation[END_REF], the collinear improvement of the Green's function was only included for n = 0, corresponding to the cross section. We saw that this improvement lead to a slight modification of the cross section, but the effect was not clearly visible with the logarithmic scale needed to represent values different by orders of magnitude. Let us study this effect in more details here. On fig. 2.18, we show the relative variation induced by this collinear resummation on C 0 as a function of the rapidity separation Y , both when using the LO and the NLO jet vertex. In both cases, this change is less than 15%. But the behavior is quite different in the two cases: with the leading order jet vertex, the cross section is lower using the collinear resummation for low values of Y and becomes larger for values of Y larger than 7. When convoluted with the next-to-leading order jet vertex, the collinear improved Green's function always leads to cross sections smaller than with the pure NLL Green's function, with a value slowly decreasing in the range ∼ 90 -85%. This explains the relative difference for cos ϕ = C 1 /C 0 induced by the collinear improvement with the LO or NLO jet vertex when one takes into account this resummation only for n = 0, as was done in ref. [START_REF] Colferai | Mueller Navelet jets at LHC -complete NLL BFKL calculation[END_REF]. This is shown on fig. 2.19: with the LO jet vertex, the value of cos ϕ obtained with the collinear improvement is slightly larger than without it for low values of Y and then becomes slightly larger for large values of Y . On the other hand, with the NLO jet vertex, the value obtained with the collinear improvement is systematically larger than without it, and this difference grows slowly with increasing Y .

The collinear resummation was extended for n = 0 in refs. [START_REF] Vera | The azimuthal decorrelation of jets widely separated in rapidity as a test of the BFKL kernel[END_REF][START_REF] Schwennsen | Phenomenology of jet physics in the BFKL formalism at NLO[END_REF][START_REF] Marquet | Azimuthal decorrelation of Mueller-Navelet jets at the Tevatron and the LHC[END_REF] and so one could argue that, to be fully consistent, one should also take it into account for n = 0. On fig. 2.20 we show the effect of the collinear improvement on C 1 , both when using the LO and NLO jet vertex. Contrary to what happens for C 0 , here the behavior is almost the same in the two cases, with a decrease induced by the collinear improvement passing from ∼ 10% to ∼ 15% with increasing Y . When we compare with fig. 2.18, we see that with the NLO jet vertex the behavior is very similar for C 0 and C 1 . Thus we expect that when taking the ratio of these two quantities, we will get very similar values with and without the collinear improvement. On the contrary, with the LO jet To illustrate this, we show on fig. 2.21 the effect of the collinear improvement on C 0 , C 1 and C 1 /C 0 = cos ϕ when using the leading order (L) and next-to-leading order (R) jet vertex. Indeed, with the LO jet vertex the values obtained with the resummation are now 10% to 20% smaller than without it, while with the NLO jet vertex the change is always less than 5%

In practice, when adding the collinear improvement for n = 0, the fig. As a cross-check of our implementation of the collinear improvement of the NLL Green's function, we compared our results using the LO jet vertex with results obtained with the code of the authors of ref. [START_REF] Marquet | Azimuthal decorrelation of Mueller-Navelet jets at the Tevatron and the LHC[END_REF], which implements collinear improvement for all values of n. The comparison is shown on fig 2.23. On the left are shown our results and on the right the results obtained with the code of the authors of ref. [START_REF] Marquet | Azimuthal decorrelation of Mueller-Navelet jets at the Tevatron and the LHC[END_REF]. The agreement between the two calculations is very good, and the small difference for the collinear improved result can be explained by the fact that we used scheme 3 of ref. [START_REF] Salam | A resummation of large sub-leading corrections at small x[END_REF] while the code of ref. [START_REF] Marquet | Azimuthal decorrelation of Mueller-Navelet jets at the Tevatron and the LHC[END_REF] uses scheme 4.

Scales uncertainties

The biggest uncertainty of our prediction comes from the various scales involved: the renormalization scale µ R , the factorization scale µ F and the energy scale √ s 0 . In practice we take the factorization and renormalization scales equal, µ F = µ R = µ, and we choose as a central value for all these scale the "natural" scale of the process, k J,1 k J,2 . Of course the results of a complete all-order calculation would not depend on these scales at all, but as we are only computing to a given order in perturbation theory some dependence remains. To evaluate its importance, it is customary to vary the scales by some numerical factor to see if the calculation is strongly dependent on the choice of the scales or not. If this is the case, it means that the region where the perturbative series converges has not been reached. Here we will vary µ and √ s 0 by a factor of 2 to evaluate the dependence of our calculation on these scales. We will only show results obtained in a full NLL treatment, as at LL the change of the scales is a formally higher-order correction. Also we will not show results obtained with the collinearly improved NLL Green's function as they are very close to the ones obtained with the pure NLL Green's function.

We start with the differential cross section, as shown on fig. 2.24. On the left part of the figure we show the value of the cross section for the central value µ = √ s 0 = k J,1 k J,2 and when varying the scales by a factor of 2. The variation due to the scales is barely visible on a logarithmic scale except at values of Y close to 4 where the values obtained with √ s 0 = 2 k J,1 k J,2 are much larger than all the other ones. This particular behaviour should not be interpreted as a scale dependence but a manifestation of the problem at low rapidity discussed in section 2.1.3. On fig. 2.24 (R), we show the relative variation of the differential cross section with the scales. If we exclude the particular case of √ s 0 = 2 k J,1 k J,2 at low values of Y and the very large rapidity region (Y 9), the cross section can vary by up to 20% when varying the scales by a factor of 2.

On fig. 2.25 (L), we show the variation of cos ϕ with the scales. The first observation is that this observable is very sensitive to the scale choice, and the largest dependence comes from µ. Values of µ and √ s 0 larger than k J,1 k J,2 lead to a lower correlation, while small values of the scales can even lead to values larger than 1. This is due to the fact that cos ϕ is computed as C 1 /C 0 , according to eq. (1.69), but this relation is formally true only when taking into account all orders in perturbative theory. Here we are considering C 0 and C 1 at NLL accuracy and the contributions coming from the NLO corrections to the jet vertex are very large and negative, indicating a poor convergence of the perturbative series. A computation taking into account enough higher order terms so that the convergence region has been reached should not present this issue.

µ = √ s0 = kJ,1kJ,2 µ → µ/2 µ → 2µ √ s0 → √ s0/2 √ s0 → 2 √ s0 Y dσ dY -1 -0.5 0 0.5 1 4 5 6 7 8 9 µ → µ/2 µ → 2µ √ s0 → √ s0/2 √ s0 → 2 √ s0 Y dσ dY relative variation
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The same variation is done for cos 2ϕ , as shown on fig. 2

.25 (R). For this observable one can notice that in the intermediate Y values range the dependence on

√ s 0 is very weak. On the contrary, the dependence on µ is still very important, of the same order of magnitude as it was for cos ϕ . The same behavior is observed for cos 3ϕ , as shown on fig. 2.26.

We now do the same analysis for cos 2ϕ / cos ϕ and cos 3ϕ / cos 2ϕ , as shown on fig. 2.27 (L) and (R) respectively. If we again exclude the problematic case of large √ s 0 values at low rapidity separation, one can see that these observables are more stable when changing the scales that the previous individual moments cos nϕ for not too large rapidity values. This confirms what was observed in ref. [START_REF] Vera | The azimuthal decorrelation of jets widely separated in rapidity as a test of the BFKL kernel[END_REF] in a mixed treatment when the NLL Green's function was convoluted with the LO jet vertex.

We also study the effect of changing the scales by a factor of 2 on the azimuthal distribution Right: Variation of cos 3ϕ / cos 2ϕ when varying µ and √ s 0 by a factor 2.
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a rapidity separation Y = 8. As the computation of this observable involves a sum over the coefficients cos nϕ and we have just seen that these coefficients are not very stable with respect to the scales, it is not surprisingly also the case here. The uncertainty is quite large, again in particular due to the renormalization/factorization scale µ. We see that large values of µ give larger values of the distribution for large values of ϕ but the distribution is still slightly negative.

Small cone approximation

The formulas for the NLO corrections to the forward jet vertex were first obtained in refs. [START_REF] Bartels | The NLO jet vertex for Mueller-Navelet and forward jets: The quark part[END_REF][START_REF] Bartels | The NLO jet vertex for Mueller-Navelet and forward jets: The gluon part[END_REF], for a general jet function S

J obeying some general constraints. Recently the NLO corrections to the jet vertex were computed in the case of cone jet algorithm and in the limit of a small aperture cone in ref. [START_REF] Ivanov | The next-to-leading order forward jet vertex in the small-cone approximation[END_REF]. To compare our results with this calculation, we need to change the definitions of C m from

C m = (4 -3δ m,0 ) dν C m,ν (|k J,1 |, x J,1 )C * m,ν (|k J,2 |, x J,2 ) ŝ s 0 ω(m,ν) (2.18) 
to with the expression for Cm,ν reading

C m = dν Cm,ν (|k J,1 |, x J,1 ) C * m,ν (|k J,2 |, x J,2 ) ŝ s 0 ω(m,ν) , (2.19) 
µ = √ s0 = kJ,1kJ,2 µ → µ/2 µ → 2µ √ s0 → √ s0/2 √ s0 → 2 √ s0 1 σ dσ dϕ ϕ 0.01 0.1 1 0 0.5 1 1.5 2 2.5 3 µ = √ s0 = kJ,1kJ,2 µ → µ/2 µ → 2µ √ s0 → √ s0/2 √ s0 → 2 √ s0 1 
Cm,ν (|k J |, x J ) = 2πI(|k J |, x J ) k 2 J iν-1 , (2.20) 
with

I a (|k J |, x J ) = I (0) a (|k J |, x J ) + α s I (1) a (|k J |, x J ) , (2.21) 
where I = I q is to be used in the case of incoming quark and I = I g is to be used in the case of incoming gluon. The expression of I (0) is

I (0) a (|k J |, x J ) = α s C A/F 2 x J f a (x J ) . (2.22)
The expressions for I

q and I (1) g

(which depend on m and ν), extracted from ref.

[67] and adapted to the normalization of the present work, read

I (1) q (|k J |, x J ) = 1 x J dζ ζ a=q,q f a x J ζ × P qq (ζ) + C A C F P gq (ζ) ln k 2 J µ 2 F -2ζ -2γ ln R {P qq (ζ) + P gq (ζ)} + C A δ(1 -ζ) χ(m, γ) ln s 0 k 2 J + 85 18 + π 2 2 + 1 2 ψ ′ 1 + γ + m 2 -ψ ′ m 2 -γ -χ 2 (m, γ) + (1 + ζ 2 ) C A (1 + ζ -2γ ) χ(m, γ) 2(1 -ζ) + -ζ -2γ ln(1 -ζ) 1 -ζ + + C F - C A 2 ζ ζ 2 I 2 - 2 ln ζ 1 -ζ +2 ln(1 -ζ) 1 -ζ + + δ(1 -ζ) C F 3 ln 2 - π 2 3 - 9 2 - 5N f 9 - β 0 2 ln k 2 J µ 2 R +C A ζ + C F ζ + 1 + ζ2 ζ C A ζ ζ I 1 + 2C A ln ζ ζ + C F ζ -2γ (χ(m, γ) -2 ln ζ) (2.23) 
for the quark part and

I (1) g (|k J |, x J ) = 1 x J dζ ζ f g x J ζ C A C F × P gg (ζ) + 2 N f C F C A P qg (ζ) ln k 2 J µ 2 F -2ζ -2γ ln R {P gg (ζ) + 2 N f P qg (ζ)} + C A δ(1 -ζ) χ(m, γ) ln s 0 k 2 J + 1 12 + π 2 6 + 1 2 ψ ′ 1 + γ + m 2 -ψ ′ m 2 -γ -χ 2 (m, γ) + 2C A (1 -ζ -2γ ) 1 ζ -2 + ζ ζ ln ζ + ln(1 -ζ) 1 -ζ - β 0 2 ln k 2 J 4µ 2 R δ(1 -ζ) + C A 1 ζ + 1 (1 -ζ) + -2 + ζ ζ (1 + ζ -2γ )χ(m, γ) -2 ln ζ + ζ2 ζ 2 I 2 + N f 2ζ ζ C F C A + (ζ 2 + ζ2 ) C F C A χ(m, γ) + ζ ζ I 3 - 1 12 δ(1 -ζ) (2.24)
for the gluon part. In these expressions,

χ(m, γ) = 2ψ(1) -ψ m 2 -γ -ψ m 2 + 1 + γ , (2.25) 
γ = iν -1 2 , and we have used the plus-prescription, defined as

1 a dx f (x) (1 -x) + = 1 a dx f (x) -f (1) (1 -x) - a 0 dx f (1) (1 -x) , (2.26) 
for any function f (x) regular at x = 1. The expressions of I

(1) q and I

(1) g in eq. (2.23) and (2.24) involve the functions I 1 , I 2 and I 3 which are defined as

I 1 = ζ 2ζ I 2 + ζ ζ ln ζ + 1 -ζ -2γ 2 χ(n, γ) -2 ln ζ , (2.27) 
I 3 = ζ 2ζ I 2 - ζ ζ ln ζ + 1 -ζ -2γ 2 χ(n, γ) -2 ln ζ , (2.28) 
I 2 = ζ 2 ζ2 ζ 2 F 1 (1, 1 + γ -n 2 , 2 + γ -n 2 , ζ) n 2 -γ -1 - 2 F 1 (1, 1 + γ + n 2 , 2 + γ + n 2 , ζ) n 2 + γ + 1 + ζ -2γ 2 F 1 (1, -γ -n 2 , 1 -γ -n 2 , ζ) n 2 + γ - 2 F 1 (1, -γ + n 2 , 1 -γ + n 2 , ζ) n 2 -γ + 1 + ζ -2γ χ(n, γ) -2 ln ζ + 2 ln ζ , (2.29) 
and where 2 F 1 is the Hypergeometric function. One can see from the expressions above that in this limit, there is only one integration remaining in the NLO corrections to the jet vertex I (1) . This leads to potentially much shorter evaluation times. Care should be taken however when dealing with the Hypergeometric function 2 F 1 in numerical implementations.

The formulas above should be valid for small values of R. We implemented them in our calculation and compared with our results in the case of "exact" treatment of the cone size as shown before. We did this for two cone sizes: R = 0.3 to be sure that the small cone approximation is valid, and R = 0.5 to see if this approximation is still valid for typical values of R used in experimental measurements. This comparison is shown on figs. 2.29 to 2.31. We can see that the difference between the exact and approximate treatments of the cone size is very small even for a value R = 0.5. This is a good check that the NLO jet vertex is handled correctly in our approach. Nevertheless, in the following we will still use the approach for generic S (3) J described before, as it allows us to use any cone size without wondering whether the small cone approximation is valid and we can change the jet algorithm to use, for example, the k t jet algorithm. This is important since we have seen in section 2.3.1 that different jet algorithms can lead to significantly different results for the cross section and most experimental collaborations now use the anti-k t algorithm.

Higher order terms

We are here considering the process at next-to-leading logarithmic accuracy and so we need to include all the terms of order α 2 s (α s ln ŝ s 0 ) n and α 3 s (α s ln ŝ s 0 ) n (we recall that the process starts at order α 2 s ). However, our calculation also involves higher order terms Left: ratio of the differential cross section dσ dY using the small cone approximation and the exact treatment of the cone size. Right: ratio of cos ϕ using the small cone approximation and the exact treatment of the cone size. Left: ratio of cos 2ϕ / cos ϕ using the small cone approximation and the exact treatment of the cone size. Right: ratio of cos 3ϕ / cos 2ϕ using the small cone approximation and the exact treatment of the cone size.

that one can decide to keep or discard. For example, the convolution of two NLO vertices with the LL Green's function is a NNLL term, and the convolution of two NLO vertices with the NLL part of the Green's function is a NNNLL term. For simplicity of numerical evaluation we keep all these terms which are formally subleading but can in fact be quite sizable numerically. This is another indication that the convergence of the series is poor, and that a NNLL calculation would probably help reduce the scale uncertainty. This is however out of reach for now, as neither the NNLL BFKL Green's function nor the NNLO corrections to the jet vertex are known at the moment.

In ref. [START_REF] Caporale | Scale choice and collinear contributions to Mueller-Navelet jets at LHC energies[END_REF], where the formulas for the NLO jet vertex in the small cone approximation were used for phenomenology, the authors found a slight discrepancy between their results and the results of refs. [START_REF] Colferai | Mueller Navelet jets at LHC -complete NLL BFKL calculation[END_REF][START_REF] Ducloué | Confronting Mueller-Navelet jets in NLL BFKL with LHC experiments at 7 TeV[END_REF]. As we saw in the previous section we implemented these formulas in our calculation and found no such discrepancy. It is likely that this difference can be explained by the different treatment of some NNLL or NNNLL contributions. For example, it appears from eq. ( 42) of ref. [START_REF] Caporale | Mueller-Navelet small-cone jets at LHC in next-to-leading BFKL[END_REF] that the NNLL contributions coming from the case where both jet vertices are treated at next-to-leading order are discarded, while they are kept in our case.

The fact that the inclusion of these formally subleading terms leads to such a large change probably indicates that the NNLL corrections are also of large magnitude and so that the convergence of the perturbative series is not very good, as indicated by the fact that NLL corrections are themselves very large.

Comparison with data

After our predictions [START_REF] Ducloué | Confronting Mueller-Navelet jets in NLL BFKL with LHC experiments at 7 TeV[END_REF] were published, the CMS collaboration presented [START_REF]Azimuthal angle decorrelations of jets widely separated in rapidity in pp collisions at √ s = 7 TeV[END_REF] data on the azimuthal decorrelation of Mueller-Navelet jets at the LHC at a center of mass energy √ s = 7 TeV and with cuts similar to the ones that we used so far (2.15), with the exception that no upper cut was set for the transverse momenta of the jets. However, as we have seen in section 2.1.1, the value k J max = 60 GeV that we chose previously should be large enough to be able to compare our predictions with these data. This is what we will do in the present section. There is no data on the cross section yet so we can't compare our predictions with data for this observable. It should also be noted that the configuration chosen by CMS with k Jmin1 = k Jmin2 does not allow us to study whether our NLL BFKL calculation gives a better agreement with the data than a fixed order calculation. Indeed, these calculations have instabilities when the transverse momenta of the two jets are equal.

On fig. 2.32 (L), we show the comparison of the five different BFKL treatments (2.14) with the data presented by the CMS collaboration for the azimuthal correlation cos ϕ . We observe that the pure LL treatment predicts a much too large decorrelation compared to the data. Including the NLL corrections to the Green's function increases the correlation but the results are still not in agreement with the data, and including the collinear improvement to the NLL BFKL Green's function gives an even worse agreement. On the other hand, the two calculations involving the NLO jet vertex, either with the pure NLL or the collinearly improved NLL Green's function, predict a too large correlation. But as we have seen in the section discussing scale uncertainties, even in a full NLL approach this observable is very sensitive to the scales, as shown CMS CMS on fig. 2.32 (R). Choosing a value of the renormalization/factorization scale 2 times larger than the "natural" value increases decorrelation but not enough to be in agreement with the data. However, this factor 2 is an arbitrary choice and should not be interpreted as an exact uncertainty of the calculation. Therefore, one should say that this observable is very dependent on the scale choice and so no firm conclusion can be drawn at this order in perturbation theory.

µ = √ s0 = kJ,1kJ,2 µ → µ/2 µ → 2µ √ s0 → √ s0/2 √ s0 → 2 √ s0 Y cos ϕ
µ = √ s0 = kJ,1kJ,2 µ → µ/2 µ → 2µ √ s0 → √ s0/2 √ s0 → 2 √ s0 Y cos 2ϕ
About the same can be said for cos 2ϕ . On fig. 2.33 (L) we see that the data points are between the BFKL treatments involving the LO jet vertex and the ones involving the NLO jet vertex. On fig. 2.33 (R) we can see that with the choice µ = 2 k J,1 k J,2 the agreement with the data is slightly better than for cos ϕ .

The situation is a little different for cos 3ϕ : as can be seen from fig. 2.34 (L), the data points at large rapidity separation are quite close to the full NLL BFKL calculation and when taking into account the scale uncertainty we get a reasonable agreement with the data in this domain (fig. 2 We now turn to the ratios of previous observables, and we start with cos 2ϕ / cos ϕ . On fig. 2.35 (L) we see that, as already mentioned, the behaviour of the BFKL calculations involving the LO jet vertex is different from the ones involving the NLO jet vertex, the latter ones being flatter in Y . In fact, the behaviour of the full NLL calculation, with or without collinear improvement added to the Green's function, describes very well the one of the data, while treatments with the LO jet vertex predict a too fast decrease with increasing Y . We show on fig. 2.35 (R) the variation of this observable at NLL with respect to the scales, and as already observed this observable is quite stable with respect to the scales so the scale uncertainty does not affect the good agreement with the data. About the same can be said for cos 3ϕ / cos 2ϕ (see fig. 2.36), with the exception that while the decrease of BFKL calculations using the LO jet vertex with increasing Y is faster than when using the NLO jet vertex, the absolute difference between the different BFKL treatments is smaller. However, the agreement of the full NLL calcu- lation with the data is rather good and again the good stability of this observable with respect to the scales make this agreement reliable.

= √ s0 = kJ,1kJ,2 µ → µ/2 µ → 2µ √ s0 → √ s0/2 √ s0 → 2 √ s0 Y cos 2ϕ / cos ϕ
The full azimuthal distribution 1 σ dσ dϕ has also been extracted by the CMS collaboration, integrated over Y in three different Y bins: 0 < Y < 3, 3 < Y < 6 and 6 < Y < 9.4. Because of the problem of convergence for values of Y 4 that we discussed before, we can only compare our results with these data in the largest rapidity bin. This comparison is shown on fig. 2.38 (L) and (R) on a linear and logarithmic scales respectively. As the computation of this observable involves a sum over the coefficients cos nϕ , and given that we have seen that the agreement of our calculation with CMS data for these observables is not very good, it is not surprising to see that here also we do not get a good description of the data: the value of the distribution we obtain is too large for ϕ ∼ 0 and too small for ϕ ∼ π. Even when varying the scales involved by a factor of 2 it is not possible to get a good description of the data. This is especially visible on a logarithmic scale as the distribution can even reach slightly negative values for large values of ϕ. As with the observables cos nϕ , a larger value of µ than the "natural" value k J,1 k J,2 seems to be favored by the data. Indeed, a choice like 2 k J,1 k J,2 gives a better description of the data for both small and large values of ϕ but the agreement at large ϕ is still very poor.

Comparison with a fixed order calculation

To study the need for high-energy resummation effects, a comparison with a fixed order calculation which does not include such resummation would be very useful. However, these calculations have instabilities when the lower cut on the transverse momenta of the jets is the same for both jets. As such a configuration was chosen by the CMS collaboration in ref. [START_REF]Azimuthal angle decorrelations of jets widely separated in rapidity in pp collisions at √ s = 7 TeV[END_REF], it is not possible to study whether our NLL BFKL calculation gives a better agreement with the data than a fixed order calculation.

In this section, we choose slightly different cuts from the previous ones: we take the same cuts as when comparing with CMS data in the previous section, but in addition we impose the condition that at least one of the jets has a tranverse momentum of at 2. NLL BFKL predictions for the LHC least 50 GeV. We thus use the cuts
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35 GeV < |k J,1 |, |k J,2 | < 60 GeV , 50 GeV < Max(|k J,1 |, |k J,2 |) , 0 < |y J,1 |, |y J,2 | < 4.7 . (2.30)
Such a configuration allows us to compare our results with a fixed-order calculation and could be easily implemented by experimental collaborations, either using new or existing data, at the expense of course of lower statistics due to the discarding of some events.

In the following we compare our results with the NLO fixed-order (O(α 3 s )) code Dijet [START_REF] Aurenche | Jet-jet and hadron-jet correlations in hadro-and electro-production[END_REF]. Note that we choose the renormalization and factorization scales to be proportional to k J,1 k J,2 while Dijet uses a scale proportional to

k J,1 +k J,2 2 
. Nevertheless these two values are very close to each other in the range of transverse momenta involved here. We choose the central value for µ as k J,1 k J,2 for our BFKL calculation and as

k J,1 +k J,2 2 
for Dijet.

Note that the Dijet code does not allow to compute high harmonics and is limited to n = 7 typically. Thus it is not possible to have access to the azimuthal distribution 1 σ dσ dϕ . In the following we will show results for the differential cross section and for the same azimuthal quantities that were measured by the CMS collaboration.

Differential cross section

Let us start our analysis with the differential cross section. The results obtained for this observable are shown on fig. 2.39 (L) for the five BFKL treatments described in (2.14) and for Dijet (black dots with error bars corresponding to varying the renormalization/factorization scale by a factor of 2). As in the symmetric configuration studied before, the NLL corrections to the Green's function lead to a decrease of the cross section, as well as the NLO corrections to the jet vertex. A surprising feature of this plot is that the fixed order calculation predicts a larger cross section that even a pure LL BFKL calculation for rapidity separations below 8. For all values of rapidity separation the full NLL BFKL calculation is below the predictions of Dijet. On fig. 2.39 (R) we plot again the Dijet result with the error bars associated with the choice of µ and the full NLL BFKL result with the scale variation. Even if the scale variation can be relatively important, especially in the fixed order case, the two calculations are still not compatible with each other.

Azimuthal correlations

We now turn to the azimuthal correlation cos ϕ which was suggested as a promising test of BFKL dynamics because of the expected lower correlation than in a fixed order treatment. On fig. 2.40 (L) we can see that indeed Dijet predicts a much larger correlation than the three BFKL treatments using the LO jet vertex. However, as we have seen before, the NLO corrections to the jet vertex give a very important increase of the correlation, which in fact turns out to be larger than what is obtained with Dijet. But again this calculation is very sensitive to the choice of the scales and we can see Dijet Dijet The situation is different for cos 2ϕ / cos ϕ , as shown on fig. 2.43. This time there is a clear difference between the BFKL treatments using the LO jet vertex, the ones using the NLO jet vertex and the fixed order calculation. As in the NLL BFKL treatment this observable is more stable with respect to the scales than cos ϕ and cos 2ϕ , the difference between NLL BFKL and NLO fixed order does not vanish when varying the scales by a factor of 2. This confirms that this observable seems to be well suited to look for high-energy resummation effects at hadron colliders.

µ = √ s0 = kJ,1kJ,2 µ → µ/2 µ → 2µ √ s0 → √ s0/2 √ s0 → 2 √ s0 Y dσ dY [nb]
µ = √ s0 = kJ,1kJ,2 µ → µ/2 µ → 2µ √ s0 → √ s0/2 √ s0 → 2 √ s0 Y cos ϕ
About the same can be said about cos 3ϕ / cos 2ϕ regarding the difference be- Dijet Dijet tween NLL BFKL and NLO fixed order, as shown on fig. 2.44. The main difference here is that the difference between BFKL treatments using the LO or NLO jet vertex is smaller than for cos 2ϕ / cos ϕ , but the difference between NLL BFKL and NLO fixed order is still sizable.

µ = √ s0 = kJ,1kJ,2 µ → µ/2 µ → 2µ √ s0 → √ s0/2 √ s0 → 2 √ s0 Y cos 2ϕ
µ = √ s0 = kJ,1kJ,2 µ → µ/2 µ → 2µ √ s0 → √ s0/2 √ s0 → 2 √ s0 Y cos 3ϕ

Unnatural scale choice

We have seen in section 2.4 where we compared our results for azimuthal correlations with CMS data that we got a reasonable description for the ratios of the type cos 2ϕ / cos ϕ that are quite stable with respect to the scales involved. On the other hand, the quantities cos nϕ are very sensitive to the choice of the scales, especially the renormalization/factorization scale µ (we recall that we use µ R = µ F = µ), and the Dijet Dijet description of the data is not very good. We also saw that choosing larger values of µ brings our predictions closer to data. To evaluate the uncertainty associated with the scale choice, we varied them by a factor of 2 but this is of course purely conventional.

µ = √ s0 = kJ,1kJ,2 µ → µ/2 µ → 2µ √ s0 → √ s0/2 √ s0 → 2 √ s0 Y cos 2ϕ / cos ϕ
µ = √ s0 = kJ,1kJ,2 µ → µ/2 µ → 2µ √ s0 → √ s0/2 √ s0 → 2 √ s0 Y cos 3ϕ / cos 2ϕ
To see how the scale variation can provide a better agreement with data, we tried to vary µ by larger magnitude. We found that using a factor 4 to 8, one can get a satisfactory description of all the observables measured by CMS. In the following we will discuss the results obtained with the choice µ = 8 k J,1 k J,2 . This is shown on figs. 2.45 and 2.46 for the observables cos ϕ , cos 2ϕ and cos 3ϕ , where we can see that indeed, choosing a scale of this kind leads to a lower correlation and a much better agreement with data. On the contrary, we can see on fig. 2.47 that cos 2ϕ / cos ϕ and cos 3ϕ / cos 2ϕ , which were not much affected by a variation of the scales by a factor of 2, are also almost unchanged when choosing a scale as large as 8 k J,1 k J,2 . Thus the good agreement with the data, already present for µ = k J,1 k J,2 , is still present.

Regarding the azimuthal distribution, the results are shown on fig. 2.48. The distribution is now smaller for low values of ϕ and larger for large values of ϕ, which leads to a dramatic improvement in the agreement with the data across the full ϕ range. In particular, the distribution no longer reaches slightly negative values for ϕ close to π.

Discussion

We have presented the results of the study of the cross section and azimuthal correlations of Mueller-Navelet jets at full NLL accuracy, i.e. including the next-to-leading logarithmic corrections both to the Green's function and to the jet vertices. We have seen that the inclusion of NLO corrections to the jet vertices produces a dramatic change of the predictions, and so cannot be ignored. The dependence on several pa- rameters has been investigated and was found to be rather small for most of them. We have shown results for realistic experimental cuts, and this allowed us to compare directly our predictions with the first measurement of azimuthal correlations of Mueller-Navelet jets at the LHC, performed by the CMS collaboration. None of the BFKL calculations can describe the data when choosing the value of the scales at their "natural" value k J,1 k J,2 . But the fact that the NLL corrections are so large compared to LL results and that the dependence on the scales is also still very important seems to indicate that the convergence of the perturbative series is very poor, and so no firm conclusion can be drawn for now. Nevertheless, we have confirmed that ratios of the type cos mϕ / cos nϕ with n, m = 0 are more stable with respect to the scales, both at LL accuracy, as it was already observed, and at NLL accuracy. The experimental data for these observables is well described by our full NLL calculation and the NLO corrections to the jet vertices need to be taken into account for this. We found a significant difference when using asymmectric cuts between our NLL BFKL calculation and a NLO fixed order calculation for these observables, and so we expect that an experimental analysis with such cuts would be very useful to study the need for resummation at high energy. We have found that using an "unnatural" renormalization/factorization scale µ = 8 k J,1 k J,2 leads to a very good description of CMS data. The fact that this choice gives a good description of all observables seems to indicate that what was previously chosen as a "natural" scale was not appropriate.

Chapter 3

Results with optimal renormalization

In the previous chapter we have seen that a BFKL calculation cannot describe the experimental data on azimuthal correlations of Mueller-Navelet jets at the LHC: on one hand, a LL calculation overestimates the decorrelation, as was already observed with Tevatron data. On the other hand, taking into account the NLL corrections restores some correlation, but the effect of these corrections is so large that they now lead to a very high correlation, much larger than what is observed in the data. This also leads to some problems like values of cos ϕ which can sometimes be slightly larger than 1 or values of the azimuthal distribution 1 σ dσ dϕ which can reach slightly negative values. The fact that the NLL corrections are so large and that even at NLL accuracy the scale uncertainty (especially due to the renormalization/factorization scale µ) is very important indicates that the perturbative series is probably converging very poorly. A way to (hopefully) solve these problems would probably be to perform the calculation at a higher order like NNLL. However this is out of reach for now: performing such a calculation would require to know the expressions of the NNLL Green's function and of the NNLO jet vertex, none which have been derived at the moment. A possible way to get more meaningful predictions while staying at NLL accuracy is to use an optimization method to fix the scales, a procedure which tries to better guess the result of a hypothetical all-orders calculation based on the known first terms of the series. In this chapter we will investigate how using such an optimization method affects our results and the comparison with data.

Optimized perturbation theory

Several methods have been proposed to choose the "optimal" scale when computing physical observables. In this section we will explain the idea underlying some of them and focus on the Brodsky-Lepage-Mackenzie procedure that we will choose in the end.

Different optimization methods

Fastest apparent convergence (FAC)

The fastest apparent convergence (FAC) is based on the assumption that the magnitude of coefficients of a perturbative series should be decreasing when going to higher order in perturbation theory. Thus after reaching a certain order, the inclusion of even higher order terms should not modify the result significantly. Based on this, the FAC optimization method consists in choosing the scale such as to make the highest order term vanish.

Principle of minimal sensitivity (PMS)

The principle of minimal sensitivity (PMS) is based on the fact that a physical observable should not depend on the choice of the scales. It extends this idea to the truncated perturbative series by requiring that the result of the computation at a known order in perturbation theory depends as weakly as possible on the scale. In practice, one should then vary the scale and choose the value that makes the dependence of the calculation on this scale minimal. A possible issue with PMS is that it can happen in some cases that no minimum can be identified or that there are several minimums.

Brodsky-Lepage-Mackenzie (BLM) procedure/ Principle of maximal conformality (PMC) Brodsky, Lepage and Mackenzie (BLM) proposed [START_REF] Brodsky | On the Elimination of Scale Ambiguities in Perturbative Quantum Chromodynamics[END_REF] a way to fix the renormalization scale inspired by QED, where the photon self-energy corrections are absorbed into the running coupling by an appropriate scale choice. Their goal was to reproduce this feature in the context of QCD. According to this idea, in the absence of gluon-gluon interactions, the optimal scale choice would be obtained by requiring that all light quarks vacuum polarization corrections are absorbed into the running coupling. Following the BLM procedure, the renormalization scale at NLO should be chosen so that the result of the calculation is independent on the number of flavors N f . Doing so, the flavor dependence of the observable is absorbed into the running coupling. When computing physical observables, it is usually possible to find an exact correspondence between the N f terms coming from self-energy corrections to the gluon propagator at one loop and terms proportional to β 0 . That is why the widely-known practical implementation of the BLM procedure is to identify the β 0 -dependent term of a calculation and choose the renormalization scale to make it vanish. The BLM procedure was later extended to all orders, leading to the principle of maximal conformality (PMC) [START_REF] Brodsky | Setting the Renormalization Scale in QCD: The Principle of Maximum Conformality[END_REF][START_REF] Brodsky | Scale Setting Using the Extended Renormalization Group and the Principle of Maximum Conformality: the QCD Coupling Constant at Four Loops[END_REF][START_REF] Mojaza | A Systematic All-Orders Method to Eliminate Renormalization-Scale and Scheme Ambiguities in PQCD[END_REF][START_REF] Wu | The Renormalization Scale-Setting Problem in QCD[END_REF][START_REF] Brodsky | Systematic Scale-Setting to All Orders: The Principle of Maximum Conformality and Commensurate Scale Relations[END_REF].

Comparison of the different approaches

The three optimization methods that we described above have different motivations: the first two ones, FAC and PMS, rely on the numerical behavior of perturbative series and can be used to fix any kind of scale. The BLM/PMC scale setting is based on physical motivations and gives a prescription to fix only the renormalization scale. Because of the different motivations and assumptions, these three approaches can give very different results when applied to the same physical observable. For example, the authors of refs. [START_REF] Kramer | Optimized Perturbation Theory Applied to Jet Crosssections in e + e -Annihilation[END_REF][START_REF] Kramer | Jet production rates at LEP and the scale of alpha-s[END_REF] applied these three procedures to the three-jet rate in e + e - annihilation. In this case jets are defined by clustering particles with invariant mass less than √ ys, where y is a resolution parameter and √ s is the center of mass energy.

One expects that the renormalization scale would be of the order of √ ys. The ratio µ R √ s obtained with the different optimization procedures is shown on fig. 3.1. The "natural" scale µ R = √ ys is shown as dotted line. The solid line represents the scale obtained using the FAC procedure, the dashed line the one obtained with the PMS procedure and the dash-dotted line the BLM/PMC scale. We can see that for large values of y Table 3.1: Total cross-sections for the top-pair production with and without PMC scale setting at √ s = 1.96 TeV, see ref. [START_REF] Wu | The Renormalization Scale-Setting Problem in QCD[END_REF].

before PMC scale setting after PMC scale setting LO NLO NNLO total LO NLO NNLO total q + q (pb) 4.989 0.975 0.489 6.453 4.841 1.756 -0.063 6.489 g + g (pb) 0.522 0.425 0.155 1.102 0.520 0.506 0.148 1.200 g + q (pb) 0.000 -0.0366 0.0050 -0.0316 0.000 -0.0367 0.0050 -0.0315 g + q (pb) 0.000 -0.0367 0.0050 -0.0315 0.000 -0.0366 0.0050 -0.0316 sum (pb) 5.511 1.326 0.654 7.492 5.361 2.188 0.095 7.626 sections at LO, NLO and NNLO are shown in table 3.1, both with and without using the PMC scale. If we look at the sum of these processes (giving the total cross section), we see that the total (LO+NLO+NNLO) result is not much affected by the PMC procedure. But we can see that the NNLO contribution is much smaller when using PMC than with the standard scale fixing procedure. This means that the convergence of the perturbative series has indeed been improved by this procedure. In the case where only the corrections up to NLO would be known, the LO+NLO result obtained with PMC would then be much closer to the LO+NLO+NNLO result than a LO+NLO calculation without using PMC.

Top quark pair forward-backward asymmetry

An observable which raised a lot of interest is the top quark pair forward-backward asymmetry which has been studied both at the Tevatron and at the LHC. It was found that the standard model expectation value using usual scale setting was quite different from the value observed at the Tevatron. In particular, for A(M t t > 450 GeV), where M t t is the invariant mass of the top-antitop pair, the deviation with respect to the standard model value is about 3σ. Thus this was thought by many as a possible place for physics beyond the standard model and many mechanisms were thought as possible explanations of this discrepancy. The authors of ref. [START_REF] Brodsky | Application of the Principle of Maximum Conformality to the Top-Quark Forward-Backward Asymmetry at the Tevatron[END_REF] have made new standard model predictions for this observable, but using the principle of maximal conformality to fix the renormalization scale. The result, shown on fig. 3.2, is that with this prescription the value obtained for the asymmetry is now only a little more than 1σ away from the CDF data.

This example is of particular interest because it is a case where PMC (or equivalently BLM) gives very different results from what is obtained by trying to guess which is the "natural" scale of the process, and these results do not lie inside the uncertainty band that is obtained by the usual variation of the scale by an arbitrary factor (typically 2) around this "natural" value.

BFKL pomeron intercept

In the present work we are interested in applying the Brodsky-Lepage-Mackenzie procedure in the case of BFKL calculations. The first step in this direction was done in refs. [START_REF] Brodsky | The QCD pomeron with optimal renormalization[END_REF][START_REF] Brodsky | Highenergy QCD asymptotics of photon photon collisions[END_REF] for the γ * γ * total cross-section. In this work the Green's function was considered at NLL accuracy but the leading order γ * impact factor was used, focusing with

C n,ν (|k J |, x J ) = dφ J d 2 k dx f (x)V (k, x)E n,ν (k) cos(nφ J ) . (3.2) 
In this expression of C n the renormalization scale µ R enters both ω (through α s and the term 2 ln

|k J,1 |•|k J,2 | µ 2 R
which carries an explicit dependence on µ R , see eq. (1.95)) and the jet vertex V . The expression of the jet vertex at next-to-leading order is

V a (k, x) = V (0) a (k, x) + α s V (1) a (k, x) , (3.3) 
where both V (0) and V (1) contain an α s factor. To easily count the powers of α s , we define new coefficients D (0) and D (1) which are simply D (i) ≡ V (i) /α s , and so we have

V a (k, x) = α s D (0) a (k, x) + α s D (1) a (k, x) . (3.4) 
We can now rewrite eq. (3.1) as

C n = α 2 s (4 -3δ n,0 ) dν dφ J 1 d 2 k 1 dx 1 dφ J 2 d 2 k 2 dx 2 D(k 1 , x 1 )D(k 2 , x 2 ) × A(x 1 , k 1 , φ J1 )A * (x 2 , k 2 , φ J2 )e ω(n,ν)Y , (3.5) 
where

A(x i , k i , φ Ji ) ≡ f (x i )E n,ν (k i ) cos(nφ Ji ).
We now focus on the µ R -dependent term under the integral, which is D(k 1 , x 1 )D(k 2 , x 2 )e ω(n,ν)Y ≡ B n . It can be expanded as the following series at NLL accuracy, for an arbitrary initial renormalization scale µ R,init :

B n = ∞ m=0 ( ᾱs (µ R,init )χ 0 (n, γ)Y ) m m! 1 + m ᾱs (µ R,init ) χ1 (n, γ χ 0 (n, γ × D (0) (k 1 , x 1 )D (0) (k 2 , x 2 ) + α s (µ R,init ) D (1) (k 1 , x 1 )D (0) (k 2 , x 2 ) + D (0) (k 1 , x 1 )D (1) (k 2 , x 2 ) . (3.6) 
Up to now, all the quantities we introduced were defined in the MS scheme. However, it was suggested in refs. [START_REF] Brodsky | The QCD pomeron with optimal renormalization[END_REF][START_REF] Brodsky | Highenergy QCD asymptotics of photon photon collisions[END_REF] that in the BFKL framework the BLM procedure is more conveniently applied in a physical renormalization scheme, so we first perform the transition from the MS to the MOM scheme, which is equivalent to writing [START_REF] Celmaster | QCD Perturbation Expansions in a Coupling Constant Renormalized by Momentum Space Subtraction[END_REF][START_REF] Celmaster | The Renormalization Prescription Dependence of the QCD Coupling Constant[END_REF] 

α MS = α MOM 1 + α MOM T MOM π , (3.7) 
where

T MOM = T β MOM + T conf MOM , T conf MOM = N c 8 17 2 I + 3 2 (I -1) ξ + 1 - 1 3 I ξ 2 - 1 6 ξ 3 , T β MOM = - β 0 2 1 + 2 3 I , (3.8) 
where

β 0 = (11N c -2N f )/3, N f is the number of flavors, I = -2 1 0 dx ln(x)/[x 2 -x + 1] ≃ 2.
3439 and ξ is a gauge parameter. The expression of B n in the MOM scheme can be written as

B n,MOM = B n + δB n , (3.9) 
where δB n corresponds to the change induced by passing from the MS scheme to the MOM scheme and reads

δB n = D (0) (k 1 , x 1 )D (0) (k 2 , x 2 ) ᾱs (µ R,init ) T MOM N c ∞ m=1 ( ᾱs (µ R,init )χ 0 (n, γ)Y ) m (m -1)! . (3.10) 
To express B n,MOM as a function of an arbitrary renormalization scale µ R we use the running of the coupling:

α s (µ R,init ) = α s (µ R ) 1 -α s (µ R ) β 0 4π ln µ 2 R,init µ 2 R . (3.11) 
We shall now insert eq. (3.11) in the expression of B n,MOM and extract the β 0 -dependent part to finally choose the renormalization scale to make it vanish. One can see from the expression of V

(1) a

given in eqs. (1.97) and (1.98) that the term depending on β 0 is proportional to the leading order part of the vertex, i.e. we have

D (1)β (k i , x i ) = - β 0 2π ln k i µ R,init D (0) (k i , x i ) . (3.12) 
Thus the part of B n,MOM proportional to β 0 reads

B β n,MOM =D (0) (k 1 , x 1 )D (0) (k 2 , x 2 ) ∞ m=0 α s (µ R ) m+1 χ 0 (n, γ) m Y N c π m 1 m! × - β 0 2π ln |k 1 | • |k 2 | µ 2 R,init + m N c π χβ 1 (n, γ) χ 0 (n, γ) + T β MOM N c -m β 0 4π ln µ 2 R,init µ 2 R , (3.13) 
where χβ 1 and T β MOM are the β 0 -dependent parts of χ1 and T MOM respectively. The optimal scale µ R,BLM is the value of µ R that makes the expression inside the brackets vanish. Taking into account the fact that our initial scale is µ R,init = k J,1 k J,2 and that D (0) (k i , x i ) contains a factor δ (2) 

(k i -k J,i ) which will enforce |k i | = |k J,i | ≡ k J,i
after integrating over d 2 k i , we need to solve the equation

N c π χ β 1 (n, γ) χ 0 (n, γ) + T β MOM N c - β 0 4π ln |k J,1 | • |k J,2 | µ 2 R,BLM = 0 , (3.14) 
whose solution is

µ 2 R,BLM = |k J,1 | • |k J,2 | exp 1 2 χ 0 (n, γ) - 5 3 + 2 1 + 2 3 I . (3.15) 
Thus the value of the BLM scale is a function of the conformal spin n and of ν (which is integrated over in the end) in addition to |k J,1 | and |k J,2 |. On fig. 3.4 we show the value of

µ R,BLM (n,ν) µ R,init (with µ R,init = k J,1 k J,2
) as a function of ν for different values of n. The value of this ratio around ν = 0 decreases with increasing n, behaving like 1 √ n . It is larger than 1 (i.e. the BLM scale is larger than the "natural" scale) for values of n lower than 36. We can also expand the result for large values of ν (in practice this approximation is already very good for values of ν of the order of 1) and we find a behavior which is independent of n and decreases like 1 √ ν .

The fact that the optimal renormalization scale depends strongly on ν, which is integrated over when computing physical observables, means that is is not easy to estimate what is the real value of µ. What we can do is to define an 'effective' value of the renormalization scale as

µ R,eff (n) ≡ dν µ R,BLM (n, ν)C n,ν (|k J,1 |, x J,1 )C * n,ν (|k J,2 |, x J,2 )e ω(n,ν)Y dν C n,ν (|k J,1 |, x J,1 )C * n,ν (|k J,2 |, x J,2 )e ω(n,ν)Y . ( 3.16) 
When doing so, we find for small values of the conformal spin n a value which is typically about 5 times larger than the "natural" value k J,1 k J,2 . This is understandable as

µ R,BLM (n,ν) µ R,init
is much larger than 1 in the small ν region, which is the region important when performing the final integration over ν.

A potential issue could come from the large ν region. Indeed, at large ν the value of the optimal renormalization scale decreases like 1 √ ν and so one could be worried that at some point the scale becomes so small that we get out of the region where perturbation theory is applicable. Here this does not happen as the integrand is strongly peaked around ν = 0 and so, for the maximal values of ν that we have to reach to get a good convergence, the argument of the running coupling is always larger than a few GeV.

The fact that the value of the renormalization scale depends on ν has implications regarding the convergence issue for small rapidities when k J,1 = k J,2 that we discussed in section 2.1.3: we have seen that in this case the integral over ν does not converge anymore at large ν if 2αsNcY π < 1, which is equivalent, when using the choice µ R = k J,1 k J,2 , to values of the rapidity separation Y lower that about 4. When using the BLM procedure, the value of the renormalization scale at large values of ν is smaller than k J,1 k J,2 and so the minimal value of Y to get convergence is smaller. However the exact value depends on several parameters and is not easy to evaluate because of the integration over ν. Therefore, in the following where we will investigate the change due to using the BLM procedure to fix the renormalization scale on our results, we will continue to show results only for Y > 4.

Theoretical uncertainties

In the previous section we have shown how to apply the BLM procedure to our NLL calculation. However several theoretical uncertainties remain.

The first source of uncertainty is the choice of the scale entering the global α 2 s factor in eq. (3.5). This scale is not fixed in the implementation of the scale fixing procedure that we used here. Two sensible choices for this scale would be to set it equal to the "natural" scale k J,1 k J,2 or to the BLM scale. To evaluate the corresponding uncertainty, we performed evaluations using these two choices.

Another important source of uncertainty is the factorization scale µ F which appears because of the convolution with parton distribution functions. In principle, one could vary µ R and µ F independently. However, the choice µ R = µ F is often made for simplicity. In particular, this choice is made by all parton distribution functions fitting collaborations that we are aware of. Therefore, one could argue that for consistency the same choice should be made throughout the calculation. This is why we set µ R = µ F in the previous chapter. This was not very important then because the "natural" choice for these two scales was the same. But we have just seen that when using the Brodsky-Lepage-Mackenzie procedure, the resulting renormalization scale is much larger than the "natural" value. On the contrary, the factorization scale is not fixed by this procedure and there is no physical reason why it should also be so different from k J,1 k J,2 . To evaluate the uncertainty associated with this choice, we performed two evaluations: one with µ F = µ R = µ R,BLM and one with µ F = k J,1 k J,2 .

Results

In this section we will investigate how the results at next-to-leading logarithmic accuracy we discussed in the previous chapter are affected by fixing the renormalization scale according to the Brodsky-Lepage-Mackenzie procedure instead of choosing the "natural" value µ R = k J,1 k J,2 . In particular, we will compare these new results with experimental data on azimuthal correlations from the CMS collaboration to see if this particular scale choice improves the agreement of our predictions with experimental data in a symmetric configuration (k Jmin1 = k Jmin2 ). We will also study how the comparison with a fixed-order treatment is affected in an asymmetric configuration (k Jmin1 = k Jmin2 ) to see if the clear difference between NLL BFKL and NLO fixed-order that we found for some observables in section 2.5 is still present.

Comparison with experimental data

We first show results for a symmetric configuration where the lower cut on transverse momentum is the same for the two jets, with the same cuts as in section 2.2, to be able to compare our results with existing CMS data [START_REF]Azimuthal angle decorrelations of jets widely separated in rapidity in pp collisions at √ s = 7 TeV[END_REF]. The results displayed in every figure include the NLL BFKL calculation with the "natural" choice µ R = µ F = k J,1 k J,2 (dashed line), the NLL BFKL calculation with the BLM scale choice (gray uncertainty band which includes the uncertainty sources that we discussed in section 3.3) and the CMS data points (black dots with error bars).

In figs. 3.5 and 3.6, we show our results for the angular correlations cos ϕ , cos 2ϕ and cos 3ϕ as a function of the rapidity separation Y . The conclusion for these three observables is similar: while, as we have seen in the previous chapter, the calculation with the choice µ R = µ F = k J,1 k J,2 clearly underestimates the decorrelation compared with data and shows a very large dependence on the renormalization scale choice, the use of the BLM procedure to fix the renormalization scale leads to a lower correlation and a better agreement with the data, which is quite good when one takes into account both experimental and theoretical uncertainties.

The situation is different when looking at ratios of these observables such as cos 2ϕ / cos ϕ and cos 3ϕ / cos 2ϕ , shown on fig. 3.7. We already observed that these observables were much less sensitive to the scale choice, and so were not very affected by a change of the renormalization scale by a factor 2. Here we see that even when using the BLM renormalization scale, which is very different from the initial choice µ R = k J,1 k J,2 , the change is very minor. As a consequence, the good agree- 

Y NLL BFKL, µ R = µ R,BLM NLL BFKL, µ R = µ R,init
CMS data cos 3ϕ ment with experimental data that we obtained with the initial scale choice is almost unaffected.

As already mentioned, the expression of the azimuthal distribution 1 σ dσ dϕ involves the quantities cos nϕ , for which we did not get a good description of the data in the previous chapter. This explains why the agreement of our calculation with experimental data was also very poor for the azimuthal distribution. We can see on fig. 3.8 that the significant improvement to the description of cos nϕ coming from the use of the BLM procedure to fix the renormalization scale leads to a very good description of experimental data also for the azimuthal distribution. This agreement is much better both for small and large values of ϕ, and in particular the distribution no longer reaches negative values for values of ϕ close to π. Taking into account experimental and theoretical uncertainties, we find an almost perfect agreement with the data.

For now we only studied how the BLM procedure affects the agreement of the full next-to-leading logarithmic treatment with experimental data. As the aim of the BLM procedure is to improve the convergence of the perturbative series, one could also wonder if the use of the BLM scale in a leading logarithmic treatment or a mixed treatment involving the LO jet vertex with the NLL Green's function would lead to results closer to full NLL results than when using the "natural" scale choice, and also potentially to a better agreement with data. This is what we will study here.

On figs. 3.9 and 3.10, we compare the results of the BFKL calculation in the three treatments mentioned above using the BLM scale setting with CMS data for cos ϕ , cos 2ϕ and cos 3ϕ . We observe that for cos ϕ , while the pure LL treatment lead to a significantly lower correlation than the mixed treatment with the "natural" scale choice, these two calculations now lead to very similar results taking into account the remaining uncertainties. With this regard, it could be said that the BLM procedure indeed improved the convergence. However, these results still underestimate the correlation by a large margin, especially for large values of the rapidity separation for which they have a steeper slope than the data. On the contrary the full NLL calculation slightly overestimates the correlation for small rapidity separations but the overall agreement is rather good and the behavior more similar to the one of the data. The inclusion of the NLO corrections to jet vertex, which is missing in the pure LL and the mixed treatments, is thus essential.

We can draw similar conclusions with respect to the importance of NLO corrections to the jet vertex for cos 2ϕ / cos ϕ and cos 3ϕ / cos 2ϕ , as shown on fig. 3.11. We see that now the pure LL and the mixed treatment results do not overlap, and none of these calculations can describe the data in the full Y range. This is because they predict a too fast decrease with increasing Y . Here again the inclusion of the NLO corrections to the jet vertex leads to a less steep curve which is consistent with the data taking into account the experimental and theoretical uncertainties.

The need to include NLO corrections to the jet vertex can also be seen when considering the azimuthal distribution, as shown on fig. 3.12. Here the two treatments involving the LO jet vertex are compatible with each other when using the BLM procedure, but again predict too small values of the distribution for small values of ϕ and too large values for large values of ϕ. Thus these two calculations are not compatible with experimental data. In contrast the full NLL calculation reproduces the behavior of the data and is compatible with all the data points but one.

To conclude on the comparison of our calculation with experimental data, we can say that the Brodsky-Lepage-Mackenzie procedure improves a lot the agreement of our full NLL calculation with data. We observed that with a "natural" scale choice we get a too large decorrelation in a LL calculation and a too small decorrelation at NLL. We could expect that a higher order calculation (e.g. NNLL) would give results between these two treatments. The BLM procedure, which aims at improving the convergence of the perturbative series by reducing the importance of higher order terms, indeed leads to results which are in very good agreement with experimental data. The observables which already showed a good agreement with the data are almost not affected, while for all the other ones the agreement is now much better. We also saw that the inclusion of the NLO corrections to the jet vertices is essential to have a good description of the data for all the observables and in the full kinematical range. 

Asymmetric configuration

In the previous section we have seen that using the BLM procedure to fix the renormalization scale allows us to get a good description of the data at NLL accuracy. Nevertheless, as we have already seen, the configuration chosen by the CMS collaboration for the analysis does not allow a direct comparison with a fixed-order calculation, which would be needed to find a clear evidence for the need of a resummed calculation to describe the data. For this a new analysis with a different lower cut on the transverse momenta of the jets would be needed. We compared our calculation with a NLO fixed order calculation in such a configuration in the previous chapter and found that for some observables there is a clear difference between NLO fixed order and NLL BFKL. Nevertheless, we have seen in the previous section that the BLM procedure can lead to significantly different results compared to the ones obtained with a "natural" scale choice. Therefore, in this section we will perform a similar analysis as in section 2.5 but this time using the BLM renormalization scale in our NLL BFKL calculation. We will see how this different scale choice affects the comparison between NLO fixed order and NLL BFKL.

The results displayed in every figure include the NLL BFKL calculation with the "natural" choice µ R = µ F = k J,1 k J,2 (dashed line), the NLL BFKL calculation with the BLM scale choice (gray uncertainty band which includes the uncertainty sources that we discussed in section 3.3) and the Dijet results (black dots with error bars). For the Dijet results we use as a central value for the renormalization and factorization scale µ

= 1 4 k J,1 k J,2 2 
. This is different from the "natural" value µ =

k J,1 k J,2 2 
that we used in the previous chapter, but it was found by the authors of the Dijet code that this is needed to reproduce the Tevatron data on azimuthal correlations of Mueller-Navelet jets. Of course this choice does not come from first principles and is purely empirical. To estimate the uncertainty we varied this value by a factor 2. It should be noted that this value

1 4 k J,1 k J,2 2 
would not be included in the customary variation of µ by a factor 2 around its "natural" value We first consider the observable cos ϕ , as shown on fig. 3.13 (L). Here we see that while the NLL BFKL calculation predicts a significantly larger correlation than a NLO fixed order approach, this is no longer the case when fixing the renormalization scale according to the Brodsky-Lepage-Mackenzie procedure. When doing so, the two approaches are in fact rather close to each other and the BFKL calculation predicts a slightly smaller correlation. The situation is different for cos 2ϕ , as shown on fig. 3.13 (R). For this observable, the results of the NLL BFKL calculation using the "natural" value of the renormalization scale are compatible with those obtained with Dijet. But with the BLM scale setting a noticeable difference between the two treatments arises at large values of Y . Results are qualitatively similar for cos 3ϕ , as shown on fig. 3.14, although here the scale uncertainty for the fixed order calculation is quite large which does not allow a clear discrimination with the BFKL results.

k J,1 k J,2 2 
We now turn to the ratios of previous observables, which are interesting because we saw that in a BFKL treatment they are generally more stable with respect to the scales and we found a significant difference between NLL BFKL and NLO fixed order for these observables in the previous chapter. On fig. 3.15 (L) we show the comparison of the two approaches for cos 2ϕ / cos ϕ . As in the symmetric configuration this observable is almost no affected by the BLM procedure. Thus the significant difference between NLO fixed order and NLL BFKL remains across the full Y range. For cos 3ϕ / cos 2ϕ , shown on fig. 3.15 (R), there is a significant difference between the two approaches only for large values of the rapidity separation. However the scale uncertainty of the fixed order calculation is quite large for moderate values of Y .

Higher order terms

In the previous chapter we saw that the inclusion of the next-to-leading logarithmic corrections in our calculation has a dramatic effect. We also saw that some subleading contributions that one has the freedom to discard can in fact be not very small. This is a sign of a poor convergence of the perturbative series. The Brodsky-Lepage-Mackenzie procedure aims at improving the convergence of the perturbative series by absorbing some contributions into a redefinition of the running coupling. Therefore one could think that the magnitude of such NNLL or NNNLL contributions should be reduced when using the BLM procedure to fix the renormalization scale. We have checked that indeed the importance of the NNLL terms corresponding to the case where both jets vertices are treated at next-to-leading order is much less important numerically, indicating that the convergence of the perturbative series has been improved.

Comparison with other center of mass energies

So far we have focused on a center of mass energy of 7 TeV. This is because the only data available from LHC at the moment is for this value. But the LHC will soon restart with a higher center of mass energy, presumably √ s = 13 TeV. Therefore it could be interesting to evaluate how our results change with the center of mass energy.

Until now we have mostly studied the azimuthal correlations of Mueller-Navelet jets rather than the cross section. This is for two main reasons: the first one is that there is for now LHC data only for these correlations and not for the cross section. The second one is that when we compared our NLL BFKL results for the cross section with predictions obtained with the NLO fixed order code Dijet, we found that the BFKL calculation predicted a smaller cross section. This is surprising since BFKL calculations are often considered to overestimate cross sections because of several assumptions which lead to the loss of strict energy-momentum conservation. This could indicate a potential normalization issue when comparing the two calculations. This issue can be avoided by computing azimuthal correlations as we have done before since they involve ratios like cos nϕ = Cn C 0 , where normalization plays no role. Another possibility to avoid this problem is to compute ratios of the cross section at different center of mass energies. There are two other strong motivations for such studies: the first one is that this is very close to the original idea of Mueller and Navelet, who proposed to study the behavior of the cross section when varying the center of mass energy. The second motivation comes from experiments: the LHC has recorded Mueller-Navelet jets events at a center of mass energy √ s = 7 TeV, which were used by the CMS collaboration to study the azimuthal correlations of the jets. If similar data is taken at √ s = 13 TeV, it may become possible to get access to the ratio of the cross section at a center of mass energy of 7 and 13 TeV. This could be confronted to theoretical predictions to look for BFKL effects.

The study of the azimuthal correlations of Mueller-Navelet jets could also benefit from higher center of mass energies. The main advantages are the increased cross section and so potentially better statistics, and the larger accessible kinematic domain, especially regarding the rapidities of the jets. It should be noted that at leading logarithmic accuracy, the plots that we showed for the azimuthal correlations of the jets would be the same for a different center of mass energy. Indeed, if we look at the formulas at leading logarithmic accuracy, we see that the azimuthal correlations cos nϕ do not depend on the center of mass energy at all. This is because the LO jet vertex imposes x J,i = x i and so the parton distribution functions cancel when taking ratios of the kind C m /C n . On the contrary, when using the NLO jet vertex, the integration over x 1 and x 2 is no longer trivial. Thus such cancellation no longer exists and some dependence of these observables on √ s remain. This dependence could be interesting to study as we have seen in the previous sections that the NLO corrections to the jet vertex have a very important impact on our results.

In this section, we will thus study how the cross section and the azimuthal correlations change when going from a center of mass energy of 7 TeV to a value of 13 TeV. As before, we will do a first analysis in a symmetric configuration (k Jmin1 = k Jmin2 ), to be able to use the CMS data as a reference for √ s = 7 TeV. We will then turn to an asymmetric configuration with k Jmin1 = k Jmin2 , so we can compare our results with a fixed order calculation. For this we again use the Dijet code, and so we use the cone jet algorithm to do a consistent comparison between the two approaches.

Symmetric configuration

In this section we will focus on a symmetric configuration with k Jmin1 = k Jmin2 and compare the results obtained for √ s = 7 and √ s = 13 TeV. Except for √ s, we keep the same parameters as before to be able to do a direct comparison between the two center of mass energies. 

Azimuthal correlations

We first consider the azimuthal correlations of the two jets. We begin our analysis with the angular correlations cos ϕ , cos 2ϕ and cos 3ϕ . The comparison between the case √ s = 7 TeV and √ s = 13 TeV for these observables at NLL accuracy is shown on figs. 3.16, 3.17 and 3.18 respectively. These three observables have the same behavior when going from 7 to 13 TeV center of mass energy: the values for both choices are very close, which is not surprising since, as stated before, these quantities do not depend on √ s at all at leading logarithmic accuracy for fixed values of the transverse momenta and rapidities of the jets. The most notable change is that there is no longer a small rise at large values of Y . This is probably due to the fact that the borders of the phase space are now further, so the kinematical constraints are weaker.

As the individual correlations cos nϕ depend weakly on the center of mass energy, it is not surprising to see that this is also the case for cos 2ϕ / cos ϕ and cos 3ϕ / cos 2ϕ , as shown on figs. ϕ close to π.

Cross section

We now study the behavior of the cross section with respect to the center of mass energy. More precisely, we will study the ratio of the cross sections at √ s = 13 TeV and 7 TeV as a function of the rapidity separation between the jets Y .

First we show on fig. 3.22 the ratio of the cross section at 13 TeV versus the one at 7 TeV for the five BFKL treatments described in (2.14) for a "natural" value of the renormalization/factorization scale µ = k J,1 k J,2 . On this plot it is difficult to distinguish the three treatments involving the LO jet vertex as they are almost superposed. The important element of this comparison is that the two calculations using the NLO jet vertex predict a stronger rise of the cross section with increasing energy than the treatments using the LO jet vertex at large rapidity separation. This is rather surprising because LL BFKL is often thought to overestimate the rise of the cross section with increasing energy. Thus one could expect that including higher order corrections would reduce this growth. However we have seen that the fact that the NLL corrections are so large means that the predictions using µ = k J,1 k J,2 may not be really trustable.

On fig. 3.23 we show the ratio of the cross section obtained at √ s = 13 TeV and the one at √ s = 7 TeV as a function of the rapidity separation between the jets Y in the full NLL treatment using the "natural" scale µ = k J,1 k J,2 (dashed line) and the BLM scale (gray error band). First we see that the BLM procedure does not affect this ratio very much, contrary to what happens for angular correlations. At moderate Y values, the increase is noticeable but not extremely large. But for large values of Y the increase is very important, with the cross section at 13 TeV being about 100 times larger than at 7 TeV at Y = 9 for example. This means that a measurement at a center of mass energy of 13 TeV with the same luminosity as was used for the CMS analysis [START_REF]Azimuthal angle decorrelations of jets widely separated in rapidity in pp collisions at √ s = 7 TeV[END_REF] would lead to about 100 times more events for such values of the rapidity separation and so a statistical uncertainty reduced by a as much as a factor 10. This is very important since we have seen in the previous chapter that the cross section is falling quickly at large values of Y because the parton distribution functions are probed at large values of x, where they are very small. This leads to low statistics for large values of Y and so larger uncertainties as can be seen from CMS data. Thus a similar analysis as the one performed by the CMS collaboration but this time at a center of mass energy of 13 TeV could improve the accuracy of the measurement of the azimuthal correlations a lot. 

Asymmetric configuration

Cross section

Mueller and Navelet originally proposed to study the production of forward jets separated by a large interval of rapidity at hadron colliders because the rise of the cross section with increasing center of mass energy predicted by BFKL at leading logarithmic accuracy is faster than the one predicted by a fixed order treatment. In this section we will investigate whether this statement is still true when comparing a NLL BFKL calculation with a NLO fixed order calculation. As already mentioned, to be able to compare this rise in our NLL BFKL approach and in a NLO fixed order approach, we have to choose different lower cuts on the transverse momenta of the jets. Here we use the same cuts as in section 3.4.2, and we compare our results with the ones obtained with the Dijet code.

First we show on fig. 3.24 the ratio of the cross section at √ s = 13 and 7 TeV as a function of Y obtained by the NLL BFKL calculation with the "natural" scale choice µ = k J,1 k J,2 (dashed line) and the BLM scale choice (gray error band) and the NLO fixed order calculation (black dots with error bars). For the fixed order calculation we use the same scale choice as in section 3.4.2. We observe that, as in the original calculation by Mueller and Navelet, the rise of the cross section is faster in a BFKL treatment than in a fixed order one. This is especially visible for large values of the rapidity separation and these results are almost not affected by the BLM procedure.

To better estimate the difference between NLL BFKL and NLO fixed order, we show on fig. 3.25 the same quantity for Y = 7 (Left), Y = 8 (Center) and Y = 9 (Right) in the NLO fixed order treatment and in the NLL BFKL calculation supplemented by the BLM procedure. On these plots, in addition to the uncertainties already mentioned above, we also include the variation due to the choice of different PDF pa- rameterizations, as we have seen in section 2.3.2 that the cross section is quite sensitive to the choice of the parameterization. To evaluate this dependence we use the same sets as in section 2.3.2. The outcome of this comparison is that the value of the ratio σ 13 TeV σ 7 TeV predicted by the BFKL calculation is always larger than the value predicted by Dijet. However, when taking into account the uncertainty associated with the choice of the PDF set, these two approaches can give results very close to each other. Thus using this observable to look for high energy resummation effects would require a very precise measurement of this ratio, which could be experimentally challenging because of the very small cross section at large rapidity at √ s = 7 TeV.

Azimuthal correlations

In section 3.4.2 we have already studied the comparison of our NLL BFKL calculation with the BLM scale setting with results obtained in a NLO fixed order treatment at √ s = 7 TeV. In this section we will do the same analysis for a value of the center of mass energy of 13 TeV and see how the comparison between fixed order and BFKL is affected by the change of √ s from 7 TeV to 13 TeV.

On fig. 3.26, we show the comparison between the NLL BFKL calculation with the BLM scale setting and the NLO fixed order calculation at a center of mass energy √ s of 7 TeV and 13 TeV. While there is not a big change when passing from 7 TeV to 13

TeV for low values of Y , for large values of Y the BFKL calculation predicts a lower correlation at 13 TeV while the fixed order calculation is almost not affected. Thus the difference between the two calculations, which predict a different slope, is more sizable at 13 TeV than at 7 TeV. The situation is similar for cos 2ϕ , as shown on fig. 3.27. The main difference between the two center of mass energies is that at 13 TeV, neither of the calculations predict a rise of cos 2ϕ for large values of Y anymore. This is probably due to the less stringent kinematical constraints, as the jets can now reach larger rapidities. The difference between the two approaches is significant and slightly more important than for cos ϕ . For cos 3ϕ , shown on fig. 3.28, the behavior is similar but the scale dependence of the fixed order calculation is larger so the difference between the two approaches is not really significant. We have seen in section 2.5 that, when using the "natural" scale choice µ = k J,1 k J,2 (or

k J,1 k J,2 2 
in the fixed order approach) at a center of mass energy of 7 TeV, the values obtained for the ratios cos 2ϕ / cos ϕ and cos 3ϕ / cos 2ϕ were significantly different in the NLL BFKL and NLO fixed order approaches. One could expect that this difference increases with the center of mass energy. We can see on fig. 3.29 that this is not the case for cos 2ϕ / cos ϕ : the difference between the two treatments is marginally larger for low values of Y but becomes smaller for large values of Y . For the ratio cos 3ϕ / cos 2ϕ the situation is even worse, as can be seen from fig. 3.30: using the scale choice µ

= 1 4 k J,1 k J,2 2 
in Dijet as explained in section 3.4.2, we observe a difference between NLL BFKL and NLO fixed order only for large rapidity separation at a center of mass energy √ s = 7 TeV. With √ s = 13 TeV this difference is no longer present and it turns out that the two calculations are compatible with each other.

Discussion

In this section we tried to overcome the very large remaining scale dependence of our NLL BFKL calculation and the absence of the possibility for a complete NNLL calculation by using an optimization method to fix the renormalization scale. Among the several existing optimization procedures, we chose the one proposed by Brodsky, Lepage and Mackenzie which seems to be the most physically motivated one. We observed that using the BLM renormalization scale, we find results which are often not lying in the uncertainty band that we obtained in the previous chapter by setting the renormalization/factorization scale to its "natural" value and then varying it by a factor 2. This is not surprising as the typical value of the scale obtained with the BLM procedure is much larger than this "natural" scale. This indicates that the convergence of the perturbative series is poor.

We compared our results using this particular scale choice with the measurement of the azimuthal correlations of Mueller-Navelet jets performed at the LHC by the CMS collaboration. While a LL calculation overestimates the decorrelation and a NLL calculation underestimates it, we found a very good agreement with the data when using the NLL calculation supplemented by the BLM procedure. The improvement is considerable for all the observables which were very dependent on the scale choice, while the good agreement obtained in the previous chapter for observables more stable with respect to this choice remained. We also saw that calculations involving the LO jet vertex can't describe the data even when using the BLM scale setting, which confirms the importance of the NLO corrections to the jet vertex.

As we found that our results with the BLM scale setting were in much better agreement with CMS data at a center of mass energy of 7 TeV, we reproduced our analysis at a center of mass energy of 13 TeV in view of the possible upcoming measurements at the LHC. The azimuthal correlations are not much affected by the center of mass energy, which is not very surprising as they do not depend on it at all when using the LO jet vertex. The difference between NLL BFKL and NLO fixed order that we found for some observables at √ s = 7 TeV is mostly unaffected, except in a few cases where it can become slightly smaller or larger. Nevertheless a measurement of the azimuthal correlations at a center of mass energy of 13 TeV could still be very valuable given the much larger cross section, especially at large rapidity separation. Indeed, we can see that for some observables the experimental uncertainty of the CMS analysis is still quite large. This would be worse if one wanted to do another analysis with the same data but in an asymmetric configuration (as needed to compare with fixed order calculations) because many events would be discarded. A measurement at a center of mass energy of 13 TeV could achieve much higher statistics thanks to the increased cross section and so a reduced experimental uncertainty, thus possibly allowing to distinguish between BFKL and fixed order.

The possibility of future measurements at larger center of mass energies could also provide a test of the original idea of Mueller and Navelet, that is the rapid growth of the cross section with increasing center of mass energy at leading logarithmic accuracy. Indeed we compared the growth obtained in our next-to-leading logarithmic approach and in a NLO fixed calculation and found that the rise is faster in the BFKL treatment. However, when taking into account the different uncertainties, the two approaches give quite similar results. Therefore a very precise measurement would be needed to use this observable as a test of BFKL dynamics.

Chapter 4 Energy-momentum conservation

A general weakness of BFKL calculations is the fact that there is no strict energymomentum conservation imposed in such calculations. While such kinematic constraints are in principle subleading in the BFKL approach, their effect could be sizable.

It is possible to avoid this issue by using, instead of the analytical expression of the Green's function that we have used so far, a Monte Carlo event generator which iterates over the number of emitted gluons. It is then possible to impose energy-momentum conservation at each iteration. This approach was followed by the authors of ref. [START_REF] Orr | Dijet production at hadron hadron colliders in the BFKL approach[END_REF], where it was found that this effect was not negligible.

Another, more phenomenological way to take these effects into account is to follow the idea proposed in ref. [START_REF] Del Duca | BFKL versus O (alpha-s**3) corrections to large rapidity dijet production[END_REF]. Here the authors introduced an effective rapidity Y eff defined as is the O(α 3 s ) term obtained when expanding the LL BFKL result in powers of α s and truncating to order α 3 s . Here we will only consider the case of incoming gluons, so we consider the gg → ggg subprocess. In ref. [START_REF] Del Duca | BFKL versus O (alpha-s**3) corrections to large rapidity dijet production[END_REF] the authors also took into account the quark contributions, which are subleading at large rapidities. We have checked that considering only gluonic contributions we reproduce the results of ref. [START_REF] Del Duca | BFKL versus O (alpha-s**3) corrections to large rapidity dijet production[END_REF] with reasonable accuracy. In any case, extending the analysis we will present here to take into account quark contributions should be straightforward. The value of Y eff is an indication of how valid the leading logarithmic approximation is: a value close to Y means that the leading logarithmic approximation is valid, while a value significantly different from Y means that it is a too strong assumption in the kinematics under study. The definition of the effective rapidity (4.1) is motivated by the observation that if one replaces Y by Y eff in the BFKL calculation, expands in powers of α s and truncates to order α 3 s the exact result is recovered. Thus the use of Y eff instead of Y in the BFKL expression can correct in an effective way the potentially too strong assumptions made in a BFKL calculation while preserving the additional emissions of gluons specific to this approach.

Y eff ≡ Y C 2→3 m C BFKL,O(α 3 s ) m . ( 4 

Leading order

In ref. [START_REF] Del Duca | BFKL versus O (alpha-s**3) corrections to large rapidity dijet production[END_REF], the denominator of eq. (4.1) was considered at leading logarithmic accuracy. We recall that at this order the expression of the coefficients C m reads

C m = (α s C A ) 2 k 2 J,1 k 2 J,2
x J,1 f (x J,1 )x J,2 f (x J,2 ) dν k 2 J,1

k 2 J,2 iν e ᾱsχ0(m,ν)Y = (α s C A ) 2 k 2 J,1 k 2 J,2
x J,1 f (x J,1 )x J,2 f (x J,2 ) dν k 2 The only O(α 3 s ) term comes from the second term of the expansion of the Green's function and reads

C BFKL,O(α 3 s ) m = (α s C A ) 2 k 2 J,1 k 2 J,2
x J,1 f (x J,1 )x J,2 f (x J,2 ) dν k 2 ). On this figure we can see the main source of discrepancy between the exact result and the BFKL one at order O(α 3 s ): if we denote the rapidities of the most forward and most backward final-state partons by y 1 and y 2 respectively, in the exact treatment the rapidity y 3 of the third parton can lie anywhere between y 1 and y 2 . On the contrary it is assumed in the BFKL calculation that there is a strong ordering in rapidity, i.e. we have y 2 ≪ y 3 ≪ y 1 . In the first case, the kinematics are treated exactly. Therefore, the longitudinal momentum fractions of the incoming partons, x a and x b , depend on the kinematics of the three outgoing partons according to In this case the integration over x a and x b is not trivial since these variables depend on y 3 . When integrating over y 3 , the configurations where y 3 is close to the borders of the domain of integration, i.e. close to y 1 or y 2 , are strongly suppressed by the parton distribution functions. This does not happen in the LL BFKL approach, as we have seen in the first chapter that in this case the longitudinal momentum fractions of the incoming partons are taken equal to the ones of the jets according to

x a = x J,1 = k 1 e y 1 √ s , x b = x J,2 = k 2 e -y 2 √ s , (4.5) 
which is the limit of eq. (4.4) in the case y 2 ≪ y 3 ≪ y 1 . These values do not depend on y 3 , this is why we could factor out the parton distribution function in eq. (4.2). As a consequence, the suppression effect for y 3 close to y 1 or y 2 present in the exact calculation is neglected. The integration over y 3 is then reduced to a global factor |y 1y 2 | = Y , as seen in eq. (4.2). When k J,1 = k J,2 it is possible to perform the integration over ν analytically by using the integral representation of the ψ function

ψ(z) = 1 0 dx 1 -x z-1 1 -x -γ , (4.6) 
where γ is the the Euler constant γ ≈ 0.577215. We get TeV, Y = 8), for m = 0 which corresponds to the cross section. One can see on this figure that while the effective rapidity is close to Y when the two jets have similar transverse momenta, the ratio Y eff /Y decreases quickly when k J,2 increases, indicating that the BFKL calculation overestimates the cross section by a large amount. We also observe that, as expected, this effect is less severe in the LHC kinematics than in the Tevatron ones since the larger center of mass energy makes the high energy limit more justified. Nevertheless this effect is still very large even when the transverse momenta of the jets are not very different. This is important since in the previous chapters we compared our results with the ones obtained by a fixed order calculation in an asymmetric configuration (k Jmin1 = k Jmin2 ), as required to obtain trustable results in the fixed order approach. Therefore one could be worried that our results are not reliable because of this energy-momentum conservation issue. However, this discussion is valid only at leading logarithmic accuracy. One could expect that going at higher orders like NLL would make this issue less problematic by taking into account some effects which were neglected at leading logarithmic accuracy.

C BFKL,O(α 3 s ) m = (-1) m α 3 s C 2 A k J,1 k J,2 N c k J,2 k J,1 m x J,1 f (x J,1 )x J,2 f (x J,2 ) |k J,1 -k J,2 |(k J,1 + k J,2 ) Y , (4.7 

Next-to-leading order

In the previous section we have seen that energy-momentum conservation plays an important role in a LL BFKL calculation. As in this work we are mainly interested in NLL calculations, it is natural to ask if this is still true at this order. One could hope that going at higher orders would would make this issue less problematic by taking into account some effects which were neglected at leading logarithmic accuracy. As we have seen previously, the NLL corrections to this process come from two sources: the Green's function and the jet vertex. The NLL corrections to the Green's function are beyond the O(α 3 s ) precision we are interested in. Indeed, in this case the expansion of the Green's function e ω(m,ν)Y reads 1 + ᾱs χ 0 (m, ν)Y + ᾱ2 s χ 1 (m, ν)Y + . . . which, taking into account the global α 2 s factor coming from the two jet vertices, means that the NLL corrections to the Green's function play no role at order α 3 s . On the contrary, the NLO corrections to the jet vertices, giving rise to an extra power of α s , contribute at order O(α 3 s ) when convoluted with the first term of the expansion of the Green's function.

A major difference between the LO and the NLO jet vertex is the fact that at nextto-leading order there can be two emitted partons instead of one at LO. These two partons are not separated by a large interval of rapidity (the NLO corrections to the jet vertices give rise to an extra power of α s without an extra power of ln ŝ). Therefore, when considering the BFKL result truncated at O(α s ) 3 , contributions where two of the three partons are not separated by a large rapidity gap appear. These kinds of contributions, which are present in the exact 2 → 3 calculation, were neglected in the LL calculation of the previous section where only the LO jet vertex was considered. Therefore one can expect that taking into account these contributions leads to results closer to the exact ones. This is especially important since in ref. [START_REF] Del Duca | BFKL versus O (alpha-s**3) corrections to large rapidity dijet production[END_REF], the authors observed that the large overestimate of the cross section comes mostly from using the approximate x's given by eq. (4.5) in the PDFs instead of the exact ones (4.4), thus neglecting the strong suppression of configurations with y 3 close to y 1 or y 2 . On the contrary, with the NLO jet vertex, the longitudinal momentum fraction of an incoming parton is no longer fixed to be equal to the one of the outgoing jet, making it necessary to perform the integration over x 1 and x 2 numerically.

We show the two additional terms that we need to include when considering the jet vertex at next-to-leading order on fig. In the following we will see how taking into account the next-to-leading order corrections to the jet vertex affects the values obtained for the effective rapidity Y eff in the previous section. Again we will only consider the case m = 0 corresponding to the cross section but this analysis could also be performed for the azimuthal correlations in the same spirit.

We want to compute the same Y eff as in the previous section, but now the BFKL cross section at order α 3 s has two additional contributions. We will make use of the expression of the coefficients C m used before. Recalling that the general expression of We now focus on the first term of eq. (4.12), which is -iν-1 x J,2 f (x J,2 )(1 + δ m,0 )

C BFKL,O(
× dφ J,1 d 2 k 1 dx 1 f (x 1 )V (1) (k 1 , x 1 )E m,ν (k 1 ) cos(mφ J,1 ) =(2 -δ m,0 ) α 2 s C A k 2 J,2
x J,2 f (x J,2 )

× dν dφ J,1 d 2 k 1 dx 1 k 2 J,2

-iν f (x 1 )V (1) (k 1 , x 1 )E m,ν (k 1 ) cos(mφ J,1 ) . 

E m,ν (k) = 1 π √ 2 k 2 iν-1 2 e imφ , (4.16) 
we get

C BFKL,O(α 3 s ) NLL(1) m = 2 -δ m,0 π √ 2 α 2 s C A k 2 J,2
x J,2 f (x J,2 ) dν dφ J,1

d 2 k 1 dx 1 k 2 1 k 2 J,2 iν × f (x 1 )V (1) (k 1 , x 1 ) 1 |k 1 |
e imφ 1 cos(mφ J,1 ) . (4.17)

We can then perform the integration on ν using 

α 2 s C A k J,2
x J,2 f (x J,2 ) dφ J,1 k 1 dk 1 dφ 1 dx 1 δ(k 1k J,2 )

× f (x 1 )V (1) (k 1 , x 1 ) 1 k 1 e imφ 1 cos(mφ J,1 ) = 2δ m,0 √ 2

α 2 s C A k J,2
x J,2 f (x J,2 )

× dφ J,1 dφ 1 dx 1 f (x 1 )V (1) (k J,2 , φ 1 , x 1 )e imφ 1 cos(mφ J,1 ) , (4.19) where V (1) (k J,2 , φ 1 , x 1 ) is to be understood as V (1) (k 1 , x 1 ) where |k 1 | = k J,2 . Therefore only three integrations remain over φ 1 , φ J,1 and x 1 . The second term of eq. (4.12) is obtained in the same way by exchanging jets 1 and 2.

As we are interested in the case k J,1 = k J,2 , the expression of V (1) entering in eq. (4.19) can also be simplified a lot. Indeed, in the complete expression of V (1) g several terms are proportional to δ(k 1k J,1 ). After integrating over k 1 by following the procedure above, these terms will be proportional to δ(k J,2k J,1 ) and so vanish in the case k J,1 = k J,2 . These terms are the ones proportional to V (0) (k, x) or S (2) J (k; x). In the case k J,1 = k J,2 , we shall then use the following expression for V (1) : 

V (1) (k, x) = C A π 1 0 dz 1 -z [(1 -z)P (1 -z)] d 2 l πl 2 × N C A l 2 + (l -k) 2 S
+ C A π d 2 k ′ π 1 0 dz P (z)(1 -z) (k -k ′ ) • (1 -z)k -k ′ (k -k ′ ) 2 (1 -z)k -k ′ 2 h (0) g (k ′ ) × S (3) 
J (k ′ , k -k ′ , xz; x) - 1 z(k -k ′ ) 2 Θ |k -k ′ | -z(|k -k ′ | + |k ′ |) V (0)
g (k ′ , x) .

(4.20)

For the same reason, the first term in the expression of S

J (k ′ , kk ′ , xz; x) as seen in eqs. (1.106) and (1.110) vanishes. This is due to the fact that the process is initiated by collinear partons: since there is no transverse momentum in the initial state, the same is true for the final state and so k 1 + k 2 + k 3 = 0. Considering fig. 4.3 (L) as an example, we see that if partons 1 and 3 are to be combined into a jet, we have k J,1 = k 1 + k 3 = -k 2 = -k J,2 (since the lower vertex is treated at leading order), and so k J,1 = k J,2 . The opposite is true: if we impose k J,1 = k J,2 , partons 1 and 3 can't form a single jet.

In practice, evaluating C BFKL,O(α 3 s ) NLL m is very similar to computing the coefficients C m that we used throughout this work, since we can use the same formulas except that we fix some variables instead of integrating over them and we use the simplified expression of V (1) (k, x) above. On fig. 4.4 we show the ratio Y eff /Y obtained (again for m = 0) for fixed k J,1 = 35 GeV as a function of k J,2 at a center of mass energy of 7 TeV and for a rapidity separation Y = 8, both in the LL approximation and NLL approximation. As we have seen in the previous section, in the LL case this ratio decreases quickly with increasing k J,2 . The behavior is different at NLL accuracy, as the ratio first grows and then stabilizes close to 1 for k J, [START_REF] Ducloué | Evidence for high-energy resummation effects in Mueller-Navelet jets at the LHC[END_REF] 45 GeV. The dip when k J,1 is close to k J,2 is probably due to the fact that, even if we have removed several contributions explicitly proportional to δ(k J,1k J,2 ), some additional contributions divergent when k J,1 → k J,2 may appear when performing the integrations numerically. A more careful analysis would be needed to isolate such terms but the analytical study of the NLL amplitude is much more complicated than at LL accuracy. The fact that this dip is smeared around k J,1 = k J,2 is presumably due to the fact that we are performing a numerical treatment. Nevertheless, we would like to stress that in the region where the transverse momenta of the jets are significantly different, where our calculation should be trustable, the value of Y eff is very close to Y and this value is very stable with respect to k J,2 . This means that in this region the inclusion of the NLO corrections to the jet vertex dramatically reduces the overestimate of the cross section found in a LL calculation. Therefore the violation of energy-momentum conservation should be a rather minor effect at NLL, both when |k J,1k J,2 | is small (as this is the case already at LL) and when it is large (where our evaluation of Y eff at NLL should be valid). An important consequence is that the comparisons with a fixed order calculation that we made in the previous chapters where we chose different lower cuts on the transverse momenta of the jets should not be strongly affected by this energy-momentum conservation issue.

Discussion

In this chapter, we have studied the importance of violation of energy-momentum conservation in Mueller-Navelet jets production in the NLL BFKL approach. This is an important question in the context of LHC measurements, with the aim of getting a clear signal of high-energy resummation effects. We have shown, based on the study of the gg → ggg process at order O(α 3 s ), treated either exactly or in the BFKL approximation, that when including the NLO corrections to the jet vertex (which means here allowing the third gluon to be close in rapidity to one of the most forward/backward ones), one obtains a very significant improvement of energy-momentum conservation. This is true in the region where the two outgoing jets have not very similar transverse momenta, which is the region of main interest in view of comparisons with fixed order NLO computations which suffer from instabilities when the two jet transverse momenta are almost identical. Therefore, we believe that energy-momentum non conservation in NLL BFKL should not be a major issue for the comparisons we made with a fixed order calculation in the previous chapters. configurations. These observables could be used to find an evidence of BFKL dynamics. However, to compare the agreement of these two approaches with experimental data, it would be needed to choose slightly different lower cuts on the transverse momenta of the jets, as required by fixed order calculations. Such cuts could easily be implemented by experimental collaborations for future analyses.

A possible source of concern when comparing a BFKL calculation with a fixed order one in the case of different lower cuts on the transverse momenta of the jets is energy-momentum conservation. In a BFKL calculation this is a formally subleading effect and it was shown that because of this a BFKL calculation at leading logarithmic accuracy strongly overestimates the cross section when the transverse momenta of the jets are significantly different. We studied this effect at next-to-leading logarithmic accuracy and found that the overestimate of the cross section is much smaller than at leading logarithmic accuracy. This is entirely due to the inclusion of next-to-leading order corrections to the jet vertices and is another indication that these corrections are essential. As a consequence, the comparisons with a fixed-order calculation that we presented in this work should not be strongly affected by energy-momentum conservation effects. This work could be extended in several directions, one of which being the evaluation of the effect of multiparton interactions (MPI) contributions: when going to higher energies the density of partons grow and so the probability that several partons from the same hadron take part in the interaction increases. These effects should thus become more and more important as colliders reach higher energies. This field has raised growing interest in the last few years but the inclusion of such effects at small-x is still an open question as there is not yet a theoretical framework to do so. Nevertheless some simple model could be used to estimate the order of magnitude of these effects in the present case. Another interesting direction would be to extend this work to heavy-ion collisions. Indeed, the azimuthal correlation of dijets has been an important subject of interest in this context. In particular, the so-called "ridge effect" has drawn a lot of attention recently. It consists in an increase of probability for two jets to be emitted in the same direction in high multiplicity collisions. It was shown that this can be explained in some cases by using a mix of BFKL and color glass condensate effective field theory. However, in these works the BFKL contribution was only treated at leading logarithmic accuracy. The inclusion of NLL corrections could lead to a better understanding of the azimuthal correlations of jets in heavy-ions collisions.
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 4164 And so, imposing the unitarity condition to this equation, we find2ImA ab = (2π) 4 δ
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 11 Figure 1.1: The fit obtained by Donnachie and Landshoff for the total cross section in pp and pp colliders. Figure from ref. [5].
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 27 Using these relations the amplitude for the diagram on the left of fig. 1.3 reads
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 14 Figure 1.4: The three gluons exchange

. 30 )

 30 and ᾱs = α s Nc π . In the same way, the amplitude for the right diagram of fig. 1.3 is

( 2 ) 8 .

 28 Again, only the contributions with an additional gluon exchanged between the two quarks give rise to an extra power of ln s and so contribute at leading logarithmic accuracy. These contributions are shown on fig. 1.4. After computing them, one finds the final result for A (2) 8

  1.2, but multiplying the propagator of the exchanged gluon by a factor s |t| ǫ(-q 2 )
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 15 Figure 1.5: The Lipatov effective vertex
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 16 Figure 1.6: The BFKL ladder. Zigzag lines represent reggeized gluons and dark blobs represent Lipatov effective vertices.
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 17 Figure 1.7: Factorization of the amplitude as a convolution of two impact factors with the BFKL Green's function in the case of zero momentum transfer.
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 18 Figure 1.8: Variation of σ γ * γ * as a function of Y as measured at LEP2 and compared with a LL BFKL calculation.
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 19 Figure1.9: Comparison of the cross section for forward jet production at HERA with a LL BFKL calculation and a NLO fixed order calculation. Figure from ref.[START_REF]Forward jet and particle production at HERA[END_REF].
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 110 Figure 1.10: Mueller-Navelet jets.
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 111 Figure 1.11: Growth of σ as defined in eq. (1.60) as a function of the rapidity separation between the jets Y , integrating over ν numerically (blue) or using the saddle-point approximation (purple).
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 112 Figure 1.12: Rise of the cross section with increasing rapidity separation measured at the Tevatron by the D0 collaboration. Figure from ref. [28].

Figure 1 . 13 :

 113 Figure 1.13: Azimuthal correlation cos ϕ between Mueller-Navelet jets measured at the Tevatron by the D0 collaboration. Figure from ref. [33].
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 114 Figure 1.14: Kinematics of the process

  , C A = N c = 3 is to be used for initial gluon and C F = (N 2 c -1)/(2N c ) = 4/3 for initial quark.
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 115 Figure 1.15: Value of the BFKL eigenvalue ω(n, ν) for n = 0 as a function of ν at LL (blue) and NLL (magenta) accuracy.
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 116 Figure 1.16: Contributions to the real emission of the NLO jet vertex.
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 21 Figure 2.1: Left: Growth of the cross-section with k J max = k Jmax1 = k Jmax2 , for Y = 8 and k J min = k Jmin1 = k Jmin2 = 35 GeV. Right: same but normalized to the maximum value of the cross section.

  Figure2.2: Comparison of cos ϕ with the LO jet vertex, using either the analytical integration over k J,1 and k J,2 as in ref.[START_REF] Vera | The azimuthal decorrelation of jets widely separated in rapidity as a test of the BFKL kernel[END_REF] or the numerical integration as in our implementation, in the Tevatron kinematics.
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 2324 Figure 2.3: Differential cross-section as a function of the jet rapidity separation Y , integrated over 35 GeV < |k J,1 |, |k J,2 | < 60 GeV and 0 < |y J,1 , | |y J,2 | < 4.7, for the 5 scenarios described in the text, see (2.14).

8 Figure 2 . 7 : 8 Figure 2 . 8 :

 827828 Figure 2.7: Left: Azimuthal distribution 1 σ
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 829210 Figure 2.9: Left: Azimuthal distribution 1 σ
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 217218 Figure2.17: Ratio of cos 3ϕ / cos 2ϕ at NLL accuracy using one of the PDF sets (2.17) and using the MSTW 2008 PDFs.
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 2191220 Figure 2.19: The observable cos ϕ as a function of the jet rapidity separation Y , for |k J,1 | = |k J,2 | = 35 GeV, 3 < |y J,1 |, |y J,2 | < 5 and √ s = 14 TeV, for the 5 scenarios described in the text, see (2.14), taking into account the collinear improvement of the Green's function only for n = 0.

  2.19 now changes to what is shown on fig. 2.22, which shows the same behavior as what was shown on fig. 2.15 (L): the collinear improvement leads to significantly lower values with the LO jet vertex, but the effect of this improvement is barely noticeable with the NLO jet vertex.
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 221222 Figure 2.21: Variation of C 0 , C 1 and cos ϕ = C 1 /C 0 when introducing the collinear improvement in the Green's function, when convoluted with the leading order jet vertex (Left) and the next-to-leading order jet vertex (Right).
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 223 Figure 2.23: The observable cos ϕ as a function of the jet rapidity separation Y , for |k J,1 | = |k J,2 | = 35 GeV, 0 < |y J,1 , | |y J,2 | < 4.7 and √ s = 14 TeV, for the 3 scenarios of (2.14) involving the leading order jet vertex, obtained with our code (Left) and with the code of the authors of ref. [66] (Right).
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 224 Figure 2.24: Left: Variation of the cross-section when varying µ and √ s 0 by a factor 2. Right: Relative variation of the cross-section when varying µ and √ s 0 by a factor 2.
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 225 Figure 2.25: Left: Variation of cos ϕ when varying µ and √ s 0 by a factor 2. Right: Variation of cos 2ϕ when varying µ and √ s 0 by a factor 2.

1 σ

 1 dσ dϕ , as shown on fig. 2.28 (L) and (R) on linear and logarithmic scales for
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 226 Figure 2.26: Variation of cos 3ϕ when varying µ and √ s 0 by a factor 2.
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 227 Figure 2.27: Left: Variation of cos 2ϕ / cos ϕ when varying µ and √ s 0 by a factor 2.
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 228 Figure 2.28: Variation of the azimuthal distribution 1 σ
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 52 Figure2.29: Left: ratio of the differential cross section dσ dY using the small cone approximation and the exact treatment of the cone size. Right: ratio of cos ϕ using the small cone approximation and the exact treatment of the cone size.
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 55230 Figure2.30: Left: ratio of cos 2ϕ using the small cone approximation and the exact treatment of the cone size. Right: ratio of cos 3ϕ using the small cone approximation and the exact treatment of the cone size.

  to exact treatment of R cone
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 2 Figure2.31: Left: ratio of cos 2ϕ / cos ϕ using the small cone approximation and the exact treatment of the cone size. Right: ratio of cos 3ϕ / cos 2ϕ using the small cone approximation and the exact treatment of the cone size.
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 232 Figure 2.32: Left: Comparison of cos ϕ in the 5 BFKL scenarios described in the text, see (2.14), with CMS data (black dots with error bars). Right: Comparison of cos ϕ in the full NLL BFKL calculation including a scale variation by a factor of 2 with CMS data (black dots with error bars).
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 233 Figure 2.33: Left: Comparison of cos 2ϕ in the 5 BFKL scenarios described in the text, see (2.14), with CMS data (black dots with error bars). Right: Comparison of cos 2ϕ in the full NLL BFKL calculation including a scale variation by a factor of 2 with CMS data (black dots with error bars).
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 235 Figure 2.35: Left: Comparison of cos 2ϕ / cos ϕ in the 5 BFKL scenarios described in the text, see (2.14), with CMS data (black dots with error bars). Right: Comparison of cos 2ϕ / cos ϕ in the full NLL BFKL calculation including a scale variation by a factor of 2 with CMS data (black dots with error bars).
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 237 Figure 2.37: Left: Comparison of the azimuthal distribution 1 σ
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 238 Figure 2.38: Comparison of the azimuthal distribution 1 σ
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 239 Figure 2.39: Left: Comparison of the differential cross section dσ dY in the 5 BFKL scenarios described in the text, see (2.14), with the NLO fixed order Dijet code (black dots with error bars). Right: Comparison of the differential cross section dσ dY in the full NLL BFKL calculation including a scale variation by a factor of 2 with the NLO fixed order Dijet code (black dots with error bars).
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 240 Figure 2.40: Left: Comparison of cos ϕ in the 5 BFKL scenarios described in the text, see (2.14), with the NLO fixed order Dijet code (black dots with error bars). Right: Comparison of cos ϕ in the full NLL BFKL calculation including a scale variation by a factor of 2 with the NLO fixed order Dijet code (black dots with error bars).
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 241 Figure 2.41: Left: Comparison of cos 2ϕ in the 5 BFKL scenarios described in the text, see (2.14), with the NLO fixed order Dijet code (black dots with error bars). Right: Comparison of cos 2ϕ in the full NLL BFKL calculation including a scale variation by a factor of 2 with the NLO fixed order Dijet code (black dots with error bars).
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 242 Figure 2.42: Left: Comparison of cos 3ϕ in the 5 BFKL scenarios described in the text, see (2.14), with the NLO fixed order Dijet code (black dots with error bars). Right: Comparison of cos 3ϕ in the full NLL BFKL calculation including a scale variation by a factor of 2 with the NLO fixed order Dijet code (black dots with error bars).
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 243 Figure 2.43: Left: Comparison of cos 2ϕ / cos ϕ in the 5 BFKL scenarios described in the text, see (2.14), with the NLO fixed order Dijet code (black dots with error bars). Right: Comparison of cos 2ϕ / cos ϕ in the full NLL BFKL calculation including a scale variation by a factor of 2 with the NLO fixed order Dijet code (black dots with error bars).
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 244 Figure 2.44: Left: Comparison of cos 3ϕ / cos 2ϕ in the 5 BFKL scenarios described in the text, see (2.14), with the NLO fixed order Dijet code (black dots with error bars). Right: Comparison of cos 3ϕ cos 2ϕ in the full NLL BFKL calculation including a scale variation by a factor of 2 with the NLO fixed order Dijet code (black dots with error bars).
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 245246 Figure 2.45: Left: Comparison of cos ϕ in the full NLL BFKL calculation using a scale µ = k J,1 k J,2 (solid line) and µ = 8 k J,1 k J,2 (dashed line) with CMS data (black dots with error bars). Right: Comparison of cos 2ϕ in the full NLL BFKL calculation using a scale µ = k J,1 k J,2 (solid line) and µ = 8 k J,1 k J,2 (dashed line) with CMS data (black dots with error bars).
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 247248 Figure2.47: Left: Comparison of cos 2ϕ / cos ϕ in the full NLL BFKL calculation using a scale µ = k J,1 k J,2 (solid line) and µ = 8 k J,1 k J,2 (dashed line) with CMS data (black dots with error bars). Right: Comparison of cos 3ϕ / cos 2ϕ in the full NLL BFKL calculation using a scale µ = k J,1 k J,2 (solid line) and µ = 8 k J,1 k J,2 (dashed line) with CMS data (black dots with error bars).
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 33 Figure 3.3: Value of the BFKL eigenvalue ω(n, ν) for n = 0 as a function of ν obtained at LL accuracy (blue), NLL accuracy (magenta) and NLL accuracy using the Brodsky-Lepage-Mackenzie procedure (green).
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 34 Figure 3.4: Ratio of the BLM renormalization scale and the "natural" renormalization scale as a function of ν for several values of the conformal spin n.
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 35 Figure 3.5: Left: comparison of cos ϕ in a full NLL calculation with CMS data (black dots with error bars), using both a natural scale (dashed line) or the BLM scale setting (gray error band). Right: comparison of cos 2ϕ in a full NLL calculation with CMS data (black dots with error bars), using both a natural scale (dashed line) or the BLM scale setting (gray error band).
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 36 Figure 3.6: Comparison of cos 3ϕ in a full NLL calculation with CMS data (black dots with error bars), using both a natural scale (dashed line) or the BLM scale setting (gray error band).
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 373839 Figure 3.7: Left: comparison of cos 2ϕ / cos ϕ in a full NLL calculation with CMS data (black dots with error bars), using both a natural scale (dashed line) or the BLM scale setting (gray error band). Right: comparison of cos 3ϕ / cos 2ϕ in a full NLL calculation with CMS data (black dots with error bars), using both a natural scale (dashed line) or the BLM scale setting (gray error band).
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 310311 Figure 3.10: Comparison of cos 3ϕ in three of the BFKL treatments described in the text, see (2.14), using the BLM procedure to fix the renormalization scale.
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 312 Figure 3.12: Comparison of the azimuthal distribution 1 σ
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 313314 Figure 3.13: Comparison of cos ϕ (Left) and cos 2ϕ (Right) in a full NLL calculation with Dijet results (dashed line), using both a natural scale (solid line) or the BLM scale setting (gray error band).
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 315 Figure 3.15: Comparison of cos 2ϕ / cos ϕ (Left) and cos 3ϕ / cos 2ϕ (Right) in a full NLL calculation with Dijet results (dashed line), using both a natural scale (solid line) or the BLM scale setting (gray error band).
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 316317 Figure 3.16: Comparison of cos ϕ at a center of mass energy √ s = 7 TeV (Left) and √ s = 13 TeV (Right) in a full NLL calculation with the BLM scale setting.
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 3183197320321 Figure 3.18: Comparison of cos 3ϕ at a center of mass energy √ s = 7 TeV (Left) and √ s = 13 TeV (Right) in a full NLL calculation with the BLM scale setting.
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 322 Figure 3.22: Ratio of the cross-section at a center of mass energy of 13 and 7 TeV in an asymmetric configuration for the 5 BFKL scenarios described in the text, see (2.14).
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 323 Figure 3.23: Ratio of the cross-section at a center of mass energy of 13 and 7 TeV in a full NLL BFKL calculation with a natural scale (dashed line) and the BLM scale setting (gray error band) in a symmetric configuration.

NLLFixed-order NLO σ 13 TeV σ 7 TeVFigure 3 . 24 :

 7324 Figure3.24: Ratio of the cross-section at a center of mass energy of 13 and 7 TeV in a full NLL BFKL calculation with a natural scale (dashed line) and the BLM scale setting (gray error band) and in a NLO fixed order treatment (black dots with error bars) in an asymmetric configuration.
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 9325 Figure 3.25: Ratio of the cross-section at a center of mass energy of 13 and 7 TeV in a full NLL BFKL calculation and in a NLO fixed order treatment in an asymmetric configuration for a rapidity separation Y = 7 (Left), 8 (Center) and 9 (Right).
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 326327328 Figure 3.26: Comparison of cos ϕ at a center of mass energy √ s = 7 TeV (Left) and √ s = 13 TeV (Right) in a full NLL BFKL calculation with the BLM scale setting (gray error band) and in a NLO fixed order treatment (dashed line).
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 329330 Figure 3.29: Comparison of cos 2ϕ / cos ϕ at a center of mass energy √ s = 7 TeV (Left) and √ s = 13 TeV (Right) in a full NLL BFKL calculation with the BLM scale setting (gray error band) and in a NLO fixed order treatment (dashed line).

. 1 )

 1 In this expression, C 2→3 m is the exact O(α 3 s ) result obtained by studying the reaction with two incoming and three outgoing partons, as shown schematically on fig. 4.1 (L). The denominator C BFKL,O(α 3 s ) m

J, 1 k 2 J, 2 iν( 1 +

 1221 ᾱs χ 0 (m, ν)Y + . . . ) . (4.2)

3 )

 3 It corresponds to the case where only one gluon is emitted by the Green's function and is shown schematically on fig.4.1 (R

x a = k 1 e y 1 + k 2 e y 2 +

 12 k 3 e y 3 √ s ,x b = k 1 e -y 1 + k 2 e -y 2 + k 3 e -y 3 √ s .(4.4)

Figure 4 . 1 :

 41 Figure 4.1: Schematic representation of the 2 → 3 process in an exact calculation (L) and a LL BFKL treatment (R).

  ) which is to be compared with C 2→3 m which is the exact result at order O(α 3 s ) [92, 93, 94, 95]. The ratio Y eff /Y is shown for fixed k J,1 = 35 GeV as a function of k J,2 on fig. 4.2, for kinematics typical of the Tevatron ( √ s = 1.8 TeV, Y = 6) and the LHC ( √ s = 7

√ s = 1 . 8 8 YFigure 4 . 2 :

 18842 Figure 4.2: Variation of Y eff /Y as defined in eq. (4.1) as a function of k J,2 at fixed k J,1 = 35 GeV in two kinematic configurations: Y = 6 at √ s = 1.8 TeV (dashed line) and Y = 8 at √ s = 7 TeV (solid line).
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 43 When we compare with fig. 4.1 (R), we
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 43 Figure 4.3: Additional contributions to the 2 → 3 process coming from the NLO jet vertex in a NLL BFKL calculation.

= α s C A 2 k 2 Jiν- 1 x

 21 the coefficients C m readsC m = (4 -3δ m,0 ) dν C m,ν (|k J,1 |, x J,1 )C * m,ν (|k J,2 |, x J,2 )e ω(m,ν)Y = (4 -3δ m,0 ) dν C m,ν (|k J,1 |, x J,1 )C * m,ν (|k J,2 |, x J,2 ) (1 + ω(m, ν)Y + . . . ) , (4.8) with C m,ν (|k J |, x J ) = dφ J d 2 k dx f (x)V (k, x)E m,ν (k) cos(mφ J ) ,(4.9)andV (k, x) = V (0) (k, x) + α s V (1) (k, x) . mis the contribution coming from the LL calculation (4.3) and the NLL contribution readsC BFKL,O(α 3 s ) NLL m = (4 -3δ m,0 ) dν C NLO m,ν (|k J,1 |, x J,1 )C * LO m,ν (|k J,2 |, x J,2 ) + dν C LO m,ν (|k J,1 |, x J,1 )C * NLO m,ν (|k J,2 |, x J,2 ) ,(4.12)withC LO m,ν (|k J |, x J ) = dφ J d 2 k dx f (x)V (0) (k, x)E m,ν (k) cos(mφ J ) J f (x J )(1 + δ m,0 ) ,(4.13)andC NLO m,ν (|k J |, x J ) = α s dφ J d 2 k dx f (x)V(1) (k, x)E m,ν (k) cos(mφ J ) . (4.14)

α 3 s 2 J, 2

 322 ) NLL(1) m =(4 -3δ m,0 ) dν C NLO m,ν (|k J,1 |, x J,1 )C * LO m,ν (|k J,2 |, x J,2 ) =(4 -3δ m,0 ) α s dν α s C A 2 k

(4. 15 )

 15 Using the explicit representation of the LL BFKL eigenfunction E m,ν

2 J, 2 =k 2 J, 2 x= 2 -

 22222 π|k J,2 |δ(|k 1 | -|k J,2 |) , J,2 f (x J,2 ) dφ J,1 d 2 k 1 dx 1 π|k J,2 |δ(|k 1 | -|k J,2 |) × f (x 1 )V (1) (k 1 , x 1 ) 1 |k 1 |e imφ 1 cos(mφ J,1 ) δ m,0 √ 2

( 3 )

 3 J (zk + (1z)l, (1z)(kl), x(1z); x) + S (3) J (k -(1z)l, (1z)l, x(1z); x)
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 44 Figure 4.4: Variation of Y eff /Y as defined in eq. (4.1) as a function of k J,2 at fixed k J,1 = 35 GeV for Y = 8 and √ s = 7 TeV at leading logarithmic (blue) and next-toleading logarithmic (brown) accuracy.

  12 , d 1B and d 2B . Let us first consider the case p 1 > p 2 . In this case d 2B is smaller than d 1B . The smallest distance can then be either d 12 or d 2B .

  The observable cos 3ϕ as a function of the jet rapidity separation Y , integrated over 35 GeV < |k J,1 |, |k J,2 | < 60 GeV and 0 < |y J,1 , | |y J,2 | < 4.7, for the 5 scenarios described in the text, see (2.14).
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the three optimization procedures give similar results, with a scale smaller than the "natural" one. But at low values of y their behavior is very different, with the FAC and PMS scales rising very fast with decreasing y, for which there is no physical explanation. On the contrary the BLM/PMC scale follows the same general behavior as expected with a constant decrease towards 0 at y = 0.

In the following we will opt for the BLM procedure, as it relies on physical motivations rather than purely numerical considerations. A welcome practical feature is that it is often possible to compute the BLM scale analytically and use it for numerical calculations while FAC and PMS generally require to do a lot of evaluations of a given observable for many different values of the renormalization scale to find the one that will give the 'optimal' result.

Examples of application of the BLM procedure

In this section we will present a few examples that can be found in the literature where the BLM/PMC procedure was applied to physical processes for comparison with data. The goal of this section is not to be an exhaustive review of the use of BLM/PMC, but to highlight a few examples that exhibit some particular features of this scale fixing procedure.

Top quark pair production

The process under study here is the total top pair production cross section σ t t which has been measured at the Tevatron and at the LHC. For now this cross section has been computed up to NNLO. There are four channels in this process (q q, gg, gq and g q). The PMC/BLM procedure was applied to these channels [START_REF] Brodsky | Eliminating the Renormalization Scale Ambiguity for Top-Pair Production Using the Principle of Maximum Conformality[END_REF] and the resulting cross F B (M t t > 450 GeV) using the conventional scale choice [START_REF] Hollik | The electroweak contribution to the top quark forward-backward asymmetry at the Tevatron[END_REF] (blue band) and the PMC scale choice [START_REF] Brodsky | Application of the Principle of Maximum Conformality to the Top-Quark Forward-Backward Asymmetry at the Tevatron[END_REF] (red line) compared with CDF data [START_REF]Evidence for a Mass Dependent Forward-Backward Asymmetry in Top Quark Pair Production[END_REF]. Figure from ref. [START_REF] Wu | The Renormalization Scale-Setting Problem in QCD[END_REF].

on the pomeron intercept. The authors of refs. [START_REF] Brodsky | The QCD pomeron with optimal renormalization[END_REF][START_REF] Brodsky | Highenergy QCD asymptotics of photon photon collisions[END_REF] argued that in the BFKL context, the BLM procedure is more conveniently applied in a physical renormalization scheme like the MOM scheme rather than in the usual MS scheme. This is related to the issue of correctly identifying the N f terms with β 0 terms: in physical renormalization schemes, the leading order N f -term should come entirely from β 0 , while in dimensional regularization schemes it is not immediately obvious which N f terms should be identified with β 0 , β 1 and so on. As we have seen already, the behavior of the BFKL eigenvalue ω is very different at LO and at NLO, especially around ν = 0. The authors of refs. [START_REF] Brodsky | The QCD pomeron with optimal renormalization[END_REF][START_REF] Brodsky | Highenergy QCD asymptotics of photon photon collisions[END_REF] found that applying the BLM procedure in the MOM scheme reduces the importance of NLO corrections to the BFKL eigenvalue, thus improving the convergence of the perturbative series. This is shown on fig. 3.3. This method was used in a similar spirit in refs. [START_REF] Angioni | Dijet Production at Large Rapidity Separation in N=4 SYM[END_REF][START_REF] Hentschinski | The hard to soft Pomeron transition in small x DIS data using optimal renormalization[END_REF][START_REF] Hentschinski | Description of F 2 and F L at small x using a collinearly-improved BFKL resummation[END_REF]. This work was extended recently in ref. [START_REF] Zheng | Reanalysis of the BFKL Pomeron at the next-to-leading logarithmic accuracy[END_REF], where the authors applied the principle of maximal conformality (PMC) to the pomeron intercept (we recall that PMC is an extension of BLM to all orders).

Application of the BLM procedure to Mueller-Navelet jets at NLL

In this section we will see how to implement the BLM procedure in our NLL BFKL calculation of Mueller-Navelet jets. We will follow the same line of thought as in refs. [START_REF] Brodsky | The QCD pomeron with optimal renormalization[END_REF][START_REF] Brodsky | Highenergy QCD asymptotics of photon photon collisions[END_REF] but taking into account also the NLO corrections to the jet vertex.

We recall the expression of the coefficients C n , which will be useful to study both the cross section and the azimuthal correlations:

Conclusions

In this work we have studied in detail a process suggested as a way to look for BFKL dynamics at hadron colliders: Mueller-Navelet jets. While in a leading logarithmic calculation, which could not describe experimental data from the Tevatron, it is possible to isolate observables for which the dependence on the parton distribution functions cancel, this is no longer the case at next-to-leading logarithmic accuracy. Therefore a complete next-to-leading logarithmic analysis of this process, taking into account the next-to-leading corrections both to the Green's function and to the jet vertices, is much more complicated.

We presented the results of such a calculation, finding that the next-to-leading logarithmic contributions are very important, leading to very different results compared with the original calculation by Mueller and Navelet. We evaluated the dependence on a number of parameters and found that our results are quite stable with respect to most of them, except the choice of the scales. We compared our results with the first data on the azimuthal correlations of Mueller-Navelet jets at the LHC presented by the CMS collaboration. The result of this comparison is that while a leading logarithmic calculation overestimates the decorrelation between the jets, a next-to-leading logarithmic calculation underestimates it. However, because of the large scale dependence of the next-to-leading logarithmic calculation, it is not possible to draw firm conclusions. For some observables, though, the scale dependence is small and these observables show a good agreement with data at next-to-leading logarithmic accuracy while a leading logarithmic calculation cannot describe the data.

Since the magnitude of the next-to-leading logarithmic corrections was found to be so large and the remaining scale uncertainty is still significant at this order, indicating a poor convergence of the perturbative series, we used an optimization procedure to fix the renormalization scale to reduce this problem. Among the different optimization methods available, we chose the Brodsky-Lepage-Mackenzie procedure which seems to be the most physically-motivated one. We showed how to apply it to Mueller-Navelet jets at next-to-leading logarithmic accuracy and evaluated the impact of this procedure on our predictions. We found that the results obtained are in general between the leading logarithmic and the next-to-leading logarithmic ones, indicating an improvement of the convergence of the perturbative series. The comparison with CMS data on the azimuthal correlations of the jets shows a very good agreement for all the measured observables. Based on this, we made predictions for higher center of mass energies that should be reached by the LHC in the near future.

An important point of this study is that we found a sizable difference between a BFKL treatment and a fixed order one for several observables in some kinematic